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FOREWORD 

As the information revolution replaced the industrial age an avalanche 
of massive data sets has spread all over the activities of engineering, science, 
medicine, finance, and other human endeavors. This book offers a nice 
pathway to the exploration of massive data sets. 

The process of working with these massive data sets of information to 
extract useful knowledge (if such knowledge exists) is called knowledge 
discovery. Data mining is an important part of knowledge discovery in data 
sets. Knowledge discovery does not start and does not end with the data 
mining techniques. It also involves a clear understanding of the proposed 
applications, the creation of a target data set, removal or correction of 
corrupted data, data reduction, and needs an expert in the application field in 
order to decide if the patterns obtained by data mining are meaningful. The 
interpretation of the discovered patterns and the verification of their 
accuracy may also involve experts from different areas including 
visualization, image analysis and computer graphics. 

The book Data Mining and Knowledge Discovery Approaches Based 
on Rule Induction Techniques edited by Evangelos Triantaphyllou and 
Giovanni Felici is comprised of chapters written by experts in a wide 
spectrum of theories and applications. The field of knowledge discovery in 
data sets is highly interdisciplinary, and the editors have made an 
outstanding job in bringing together researchers from many diverse areas to 
contribute to this volume. The book's coverage and presentation of topics is 
outstanding. It can be used as complimentary material for a graduate course 
in data mining and related fields. I have found the contents of the book 
refreshing and consistently very well written. 

The last couple of decades have witnessed an awesome development of 
novel mathematical and algorithmic theories focusing on knowledge 
discovery. What is remarkable about these theories is their unified effects in 
real-world applications. Books that capture these exciting interdisciplinary 
activities in data mining and knowledge discovery in an efficient way are 
extremely important for the education and training of the next generation of 
researchers. The present book has exactly done that. 

It gives me a particular pleasure to welcome this edited volume into this 
series and to recommend it enthusiastically to all researchers, educators. 
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PREFACE 

The recent advent of effective and efficient computing and mass 
storage media, combined with a plethora of data recording devices, has 
resulted in the availability of unprecedented amounts of data. A few years 
ago we were talking about mega bytes to express the size of a database. Now 
people talk about giga bytes or even tera bytes. It is not a coincidence that 
the terms "mega,'' "giga'' and "tera" (not to be confused with "terra" or 
earth in Latin) mean in Greek "large" "giant" and "monster" respectively. 

This situation has created many opportunities but also many 
challenges. The new field of data mining and knowledge discovery from 
databases is the most immediate result of this explosion of information and 
availability of cost effective computing power. Its ultimate goal is to offer 
methods for analyzing large amounts of data and extracting useful new 
knowledge embedded in such data. As K.C. Cole wrote in her seminal book 
The Universe and the Teacup: The Mathematics of Truth and Beauty, "... 
nature bestows her blessings buried in mountains of garbage." 

Another anonymous author stated poetically that "today we are 
giants of information but dwarfs of new knowledge." 

On the other hand, the principles that are behind most data mining 
methods are not new to modem science: the danger related with the excess 
of information and with its interpretation already alarmed the medieval 
philosopher William of Occam (Okham) and convinced him to state its 
famous "razor," entia non sunt multiplicanda prater necessitatem ^plurality 
should not be assumed without necessity/ Data mining is thus not to be 
intended as a new approach to knowledge, but rather as a set of tools that 
make it possible to gain from observation of new complex phenomena the 
insight necessary to increase our knowledge. 

Traditional statistical approaches cannot cope successfully with the 
heterogeneity of the data fields and also with the massive amounts of data 
available for analysis. Since there are many different goals in analyzing data 
and also different types of data, there are also different data mining and 
knowledge discovery methods, specifically designed to deal with data that 
are crisp, fuzzy, deterministic, stochastic, discrete, continuous, categorical, 
or any combination of the above. Sometimes the goal is just to use historic 
data to predict the behavior of a natural or artificial system; in other cases 
the goal is to extract easily understandable knowledge that can assist us to 
better understand the behavior of different types of systems, such as a 
mechanical apparatus, a complex electronic device, a weather system or the 
symptoms of an illness. 



Chapter 1 ^ 

A COMMON LOGIC APPROACH TO 
MINING AND PATTERN RECOGNITION 

DATA 

Arkadij D. Zakrevskij 
United Institute of Informatics Problems 
of the National Academy of Sciences of Belarus 
Surganova Str. 6, 220012 Minsk, Belarus 
E-mail: zakr(a),newman. bas-net. by 

Abstract: In this chapter a common logical approach is suggested to solve both data 
mining and pattern recognition problems. It is based on using finite spaces of 
Boolean or multi-valued attributes for modeling of the natural subject areas. 
Inductive inference used for extracting knowledge from data is combined with 
deductive inference, which solves other pattern recognition problems. A set of 
efficient algorithms was developed to solve the regarded problems, dealing 
with Boolean functions and finite predicates represented by logical vectors and 
matrices. 

An abstract world model for presentation of real subject areas is also 
introduced. The data are regarded as some information concerning individual 
objects and are obtained by the experiments. The knowledge, on the contrary, 
represents information about the qualifies of the whole subject area and 
establishes some relationships between its attributes. The knowledge could be 
obtained by means of inductive inference from some data presenting 
information about elements of some reliable selection from the subject area. 
That inference consists of looking for empty (not containing elements of the 
selection) intervals of the space, putting forward corresponding hypotheses 
(suggesting emptiness of the intervals in the whole subject area), evaluating 
their plausibility and accepting the more plausible ones as implicative 
regularities, represented by elementary conjunctions. 

These regularities serve as axioms in the deducfive inference system used 
for solving the main recognition problem, which arises in a situation when an 
object is contemplated with known values of some attributes and unknown 
values of some others, including goal attributes. 

Key Words: Data Mining, Data and Knowledge, Pattern Recognition, Inductive Inference, 
Implicafive Regularity, Plausibility, Deductive Inference. 

^ Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery 
Approaches Based on Rule Induction Techniques, Massive Computing Series, 
Springer, Heidelberg, Germany, pp. 1-43, 2006. 
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1. INTRODUCTION 

1.1 Using Decision Functions 

There exist a great variety of approaches to data representation and data 
mining aimed at knowledge discovery [Frawley, Piatetsky-Shapiro, et a/., 
1991], and only some of them are mentioned below. The most popular base 
for them is perhaps using the Boolean space M of binary attributes 
constituting some set X= {xj, X2y ..., Xn). 

When solving pattern recognition problems, the initial data are 
frequently represented by a set of points in the space M presenting positive 
and negative examples [Bongard, 1970], [Hunt, 1975], [Triantaphyllou, 
1994]. Every point is regarded as a Boolean vector with components 
corresponding to the attributes and taking values from the set {0, 1}. The 
problem is considered as finding rules for recognizing other points, i.e. 
deciding which of them are positive and which are negative (in other words, 
guessing the binary value of one more attribute, called a goal attribute). To 
solve that problem, some methods were suggested that construct a Boolean 
function / separating the two given sets of points. This function is used as a 
decision function dividing the Boolean space into two classes, and so 
uniquely deciding for every element to which class does it belong. This 
function can be considered as the knowledge extracted from the two given 
sets of points. 

It was suggested in some early works [Hunt, 1975], [Pospelov, 1990] to 
use threshold functions of attributes as classifiers. Unfortunately, only a 
small part of Boolean functions can be presented in such a form. That is 
why disjunctive normal forms (DNF) were used in subsequent papers to 
present arbitrary Boolean decision functions [Bongard, 1970], [Zakrevskij, 
1988], [Triantaphyllou, 1994]. It was supposed that the simpler function / 
is (the shorter DNF it has), the better classifier it is. 

For example, let the following Boolean matrix A show by its rows the 
positive examples, and matrix B - the negative ones (supposing that X = (a, 
b, c, d)). 

A = 

abed 

'0 0 0 f 

0 10 0 

0 111 

1 1 1 0 

B = 

abed 

"0010 

1111 

10 0 0 

10 0 1 
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No threshold function separating these two sets exists in that case. 
However, a corresponding decision function / can be easily found in DNF 
by the visual minimization method based on using the Karnaugh maps: 
rectangular tables with 2" squares which represent different elements of the 
space Mand are ordered by the Gray code [Karnaugh, 1953], [Zakrevskij, 
I960]. This order is indicated by the lines on the top and left sides of the 
table. They show columns and rows where corresponding variables take 
value 1. Some of the table elements are marked with 1 or 0 - the known 
values of the represented Boolean function. For example, four top elements 
in Figure 1 (scanned from left to right) correspond to inputs (combinations 
of values of the arguments a, b, c, d) 0000, 0010, 0011, and 0001. Two of 
them are marked: the second with 0 (negative example) and the fourth with 1 
(positive example). 

It is rather evident from observing the table that all its elements which 
represent positive examples (marked with 1) are covered by two intervals of 
the space MoverX, that do not contain zeros (negative examples). 

bd' 
h ^ 
m\ \T 

c 

( 

j \ 

IJI 
c 

T| 

c 

d 

a'd 

a 

Figure 1. Using a Karnaugh Map to Find a Decision Boolean Function. 

The characteristic functions of those intervals are bd' (b and not d) 
and a 'd (not a and d), hence the sought-for decision function could be 

/ = bd' V a'd. 

In general, to find a decision Boolean function with minimum number of 
products is a well-known hard combinatorial problem of incompletely 
specified Boolean functions minimization. Nevertheless, several practically 
efficient methods were developed for its solution, exact and approximate 
ones [Zakrevskij, 1965], [Zakrevskij, 1988], some of them oriented towards 
large databases [Triantaphyllou, 1994]. 
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It is worthwhile to note a weak point of recognition techniques aimed at 
binary decision functions. They produce too much categorical classification, 
when sometimes the available information is not sufficient for that and it 
would be more appropriate to answer: "I do not know". Generally speaking, 
for these techniques there appear to be some troubles connected with 
plausibility evaluation of the results of recognition. Because of it, new 
approaches have been developed, overcoming this drawback. 

A special approach was suggested in [Piatetsky-Shapiro, 1991], 
[Agrawal, Imielinski, et al., 1993], [Matheus, Chan, et al, 1993], [Klosgen, 
1995] for very big databases. The whole initial data are presented by one 
set of so called transactions (some subsets At from the set of all attributes A), 
and association rules are searched defined as condition statements "if F, then 
w'\ where VczA and usually w e A. They are regarded valid if only the 
number of transactions for which Fu{w} c ^ / (called the support) is big 
enough, as well as the percentage of transactions where Vu{w} c^/holds 
taken in the set of transactions where relation V^At is satisfied (called the 
confidence level). The boundaries on the admissible values of these 
characteristics could be defined by users. 

One more approach is suggested below. It is based on introducing a 
special symmetrical form of knowledge (called implicative regularities) 
extracted from the data. That form enables us to apply powerful methods of 
deductive inference, which was developed before for mechanical theorem 
proving [Chang and Lee, 1973], [Thayse, Gribomont, et al., 1988] and now 
is used for solving pattern recognition problems. 

1.2 Characteristic Features of the New Approach 

The following main properties of the suggested common approach to 
data mining and pattern recognition should be mentioned next. 

First, the concepts of data and knowledge are more strictly defined 
[Zakrevskij, 1988], [Zakrevskij, 2001]. The data are considered as some 
information about separate objects, while the knowledge is information 
about the subject area as a whole. According to this approach, we shall 
believe that the data present information about the existence of some objects 
with definite combinations of properties (attribute values), whereas the 
knowledge presents information about existing regular relationships between 
attributes, and these relationships are expressed by prohibiting some 
combinations of properties. 

Second, no attributes are regarded a priori as goal ones. All attributes 
are included into the common set X = {x/, X2,..., Xn) and have equal rights 
there. Hence, the data are presented by only one set of selected points from 
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the Boolean space over X, and there is no need to represent them, for 
instance, by two sets of examples (positive and negative). 

Third, the knowledge consists of some known regularities. The key 
question is to choose a proper model for them. Starting from general 
assumptions the following statements are accepted. Any regarded regularity 
defines a logical connection between some attributes. This means that some 
combinations of attribute values are declared impossible (prohibited). In the 
simplest case such a regularity can be expressed by the logical equation 
ki=0 or by the equation di= 1, where ki is a conjunct formed of some 
attributes (in direct or inverse mode) from the set X, di is a disjunct, and 
di = —iki. For instance, the equations ab'c =0 and a'vbvc'= 1 represent 
the same regularity, which prohibits the following combination: a = 1, Z) = 0, 
c= I. A regularity of this kind is called implicative regularity (more general 
than functional one) [Zakrevskij, 1982, 1987]. It prohibits a set of attribute 
value combinations forming an interval in the Boolean space MovQrX- the 
characteristic set of the conjunct ki. As it is shown below, regularities of 
the considered type could be rather easily extracted from the data, and it is 
not difficult to evaluate their strength and plausibility, which is very 
important for their further application. 

Fourth, no decision functions for some separate attributes are found and 
used. Instead, the recognition problem is solved individually in every 
concrete situation, when an object with known values of some attributes is 
observed and the value of some other attribute (regarded as goal one in that 
situation) should be found. Different result types are foreseen by that 
[Zakrevskij, 1982]: 

success - the value is found, since the knowledge is sufficient for that, 
failure - the knowledge is not sufficient, and that is why the unique value 

of the attribute cannot be defined, 
inconsistency - the object contradicts the knowledge, so either it does not 

belong to the subject area or the knowledge is not reliable. 

Fifth, some results of the theory of Boolean functions were generalized 
for finite predicates [Zakrevskij, 1990]. That enabled us to extend the 
methods developed for dealing with data and knowledge in the case of 
binary attributes onto the case of multi-valued ones. 

To characterize the suggested approach, it is necessary to define also the 
concept of the world model. 

Not declining far from the tradition, we shall use an abstract artificial 
world into which many natural subject areas can be mapped without any 
essential detriment. Suppose this world is a set FT of some objects. Objects 
can differ in values of attributes, where attributes compose the set 
X= {xi, X2, ..., Xn}. Each one of the attributes Xt is characterized by the 
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corresponding finite set F, of its alternative values, and the Cartesian product 
of these sets Vjx V2X ... x F„ constitutes the space of multi-valued attributes 
M Elements from W are identified with some elements of M and may be 
considered as abstract models of real objects of a natural subject area. 

Hence, the world is represented by a relation WQMOY by a 
corresponding finite predicate 9 (xj, X2, ..., x^) taking value 1 on the elements 
of the set W. In case of two-valued attributes this predicate degenerates into 
a Boolean function f(X], X2, ..., Xn). The world is trivial when W "= M, and in 
this case the problems discussed below have no sense. However, it turns out 
in the majority of practical interpretations that the number of different world 
objects is essentially less than the number of all elements in the space M: 
I W\«\M\. 

This chapter is organized as follows. The basic notions of data and 
knowledge are discussed in the second section, and some modes of data and 
knowledge representation by logical matrices are proposed, both for cases of 
Boolean and multi-valued attributes. The problem of extracting knowledge 
from data is regarded in the third section, where implicative regularities are 
introduced to present the knowledge, and the rules for estimating their 
plausibility are suggested. In the fourth section, a method for testing the 
knowledge matrices for consistency is proposed. Also, some algorithms of 
knowledge matrices equivalence transformations are described, leading to 
their useful simplification. The fifth section is devoted to the concluding 
stage of the pattern recognition process, of which the aim is to calculate the 
values of the goal attributes of an observed object. A method of deductive 
inference is suggested, which uses the previously found knowledge and the 
partial information about the object. Special attention is paid to the 
deductive inference in finite predicates. The last section contains a brief 
enumeration of some practical applications of the suggested approach. 

2. DATA AND KNOWLEDGE 

2.1 General Definitions 

Any research in the pattern recognition problem is inevitably connected 
with data and knowledge processing. The question about decomposing 
information into data and knowledge appears when developing systems of 
artificial intelligence defined usually as knowledge based systems. 

Both data and knowledge are basic concepts, and that is why it is 
difficult to define them strictly formally. A number of definitions were 
suggested reflecting different aspects of these concepts but touching rather 
forms of representation of data and knowledge and the rules of their using 
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than their essence. For instance, knowledge was regarded as "a form of 
computer representation of information" [Pospelov, 1990], and was defined 
as "information which is necessary for a program for its intellectual 
behavior" [Waterman, 1986]. Such attempts suggest the idea of 
impossibility of differentiation between data and knowledge, strict and 
universal at the same time, for any situation. According to a more universal 
definition the knowledge is regarded as some useful information derived 
from the data [Frawler, Piatetsky-Shapiro, et al., 1991]. 

In this chapter, a working definition is proposed, intended for use in 
logical inference. Proceeding from the general suppositions, it is natural to 
define the data as any information about individual objects, and the 
knowledge about the world Was 3, whole. According to this assumption, we 
shall consider the data presenting information about the existence of some 
objects with definite combinations of properties (P), and consider the 
knowledge presenting information about the existence of regular 
relationships between attributes, prohibiting some other combinations of 
properties ( 0 by equations ki = 0, where kt is a conjunction over the set of 
attributes X. In other words, the knowledge is regarded as the information 
about the non-existence of objects with some definite (now prohibited) 
combinations of attribute values. 

Reflecting availability of the mentioned combinations by the predicates 
P and Q, one can present the data by the affirmations 

3w e W: P{w\ 

with the existential quantifier 3 (there exists) and the knowledge - by 
affirmations 

^3weW: Q{w\ 

with its negation -i 3 (there does not exist). The latter ones could be easily 
transformed into affirmations 

\fweW: -^ Q{w\ 

with the generality quantifier V (for every). 
When natural subject areas are investigated, the data present initial 

information obtained by discovering some objects and revealing their 
qualities via attribute value measurements. The result of data processing, 
their generalization, could be regarded as the knowledge. The classical 
example of the data are the Tycho Brahe tables of how the planets of our 
solar system move across the sky, whereas the Kepler laws, induced from 
them, can serve as an excellent example of the knowledge. 

Suppose that the data present a complete description of some objects 
where for each attribute its value for a considered object is shown. Usually 
not all the objects from some world W could be described but only a 
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relatively small part of them which forms a random selection F \ \F\«\W\. 

Selection F can be represented by a set of selected points in the space M. 
The distribution of these points reflects the regularities inherent in the 

world: every prohibition generates some empty, i.e. free of selected points, 
region in the space M. The reverse affirmation suggests itself: empty 
regions correspond to some regularities. But such an affirmation is a 
hypothesis which could be accepted if only it is plausible enough. The 
matter is that an empty region can appear even if there are no regularities, 
for instance when ff = M (everything is possible) and elements of the set F 
are scattered in the space M quite at random obeying the law of uniform 
distribution of probabilities. Evidently, the probability of such an event 
depends only on the character and the size of the empty region as well as on 
parameters of the space M and the cardinality of the set F. It is pertinent to 
remember the Ramsey theorem which asserts that in each structure 
consisting of n elements some regular substructures having m elements are 
arising if m is considerably less than n. That means that for any m a 
corresponding n can be found for which this assertion holds [Boolos and 
Jeffrey, 1989], [Graham and Spencer, 1990]. 

The data are obtained usually experimentally, while the knowledge is 
obtained from an expert, or by means of inductive inference from some data 
presenting information about elements of some reliable selection from the 
subject area. The knowledge asserts the non-existence of objects with some 
definite combinations of properties, declaring bans on them. The inductive 
inference consists in looking for empty (not containing elements of the 
selection) intervals of the space M, putting forward corresponding 
hypotheses (suggesting emptiness of the intervals in the whole subject area), 
evaluating plausibility of these hypotheses and accepting the more plausible 
of them as implicative regularities. 

A set of regularities forms the contents of a knowledge base and can be 
subjected to equivalence transformations in order to increase the efficiency 
of using it when solving various problems of recognition. 

The main recognition problem relates to the situation when an object is 
contemplated with known values of some attributes and unknown values of 
some others, including goal attributes. The possible values of the latter ones 
are to be calculated on the base of the knowledge. Sufficiently high 
plausibility of the forecasting should be guaranteed by that. This problem 
could be solved by means of deductive inference of the theorem proving 
type. The problem of minimizing inference chains could be solved 
additionally, that arises when explanatory modules of expert systems are 
worked out. 
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2.2 Data and Knowledge Representation - the Case of 
Boolean Attributes 

Using Boolean (two-valued) attributes to describe an object, we suppose 
that the value 1 means that the object has the corresponding property and the 
value 0 means that it has not. 

Consider first the problem of data representation. 
If the information about some object is complete (in as much as our 

world model allows), it can be represented by a point in the Boolean space 
or by a corresponding Boolean vector indicating with Is in some positions 
which properties belong to the object. For example, if X= {x/, X2, xj, x^}, 
the vector 1001 means that the described object possesses the properties Xi 
and X4, but not X2 or xs. 

When the information about the object is incomplete, a ternary vector 
could be used for its representation. For example, the vector 10-1 means 
that it is not known if the object has the property xj. 

A selection of elements from /^can be presented by a Boolean matrix K 
(or a ternary one, in case of incomplete information about the regarded 
elements). Let us call it a conjunctive matrix^ meaning that its rows are 
interpreted as products. It could be regarded as a data matrix and looks as 
follows: 

K = 

abcdefgh 

0 1 1 1 0 0 1 0 
1 1 0 0 1 0 1 0 

1 1 1 1 0 1 0 0 

1 
2 

m 

Note that the number of rows m in this matrix should be large enough, 
otherwise it would be practically impossible to extract any useful knowledge 
from the data. 

By contrast, when presenting knowledge it is more convenient for future 
operations to use disjunctive ternary matrices in which all rows are 
interpreted as elementary disjunctions, called also simply disjuncts. 

Suppose that X = {a, b, c, d, e, f) and consider the implicative regularity 
aZ>fe = 0 forbidding the combination 101 of values of the attributes a, b, e, 
accordingly. The corresponding empty interval of the space M contains 
eight elements: 100010, 100011, 100110, 100111, 101010, 101011, 101110 
and 101111. The equation ab'e = ̂  may be changed for the equivalent 
equation aft fe -> 0 with the implication operator -> (if... then...), known as 
the sequent (its left part is always a conjunction, and the right part is a 
disjunction). The latter equation may be subjected to equivalence 
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transformations consisting of transferring arbitrary literals between the left 
part (conjunction) and the right one (disjunction), changing each time their 
type (positive for negative or vice versa). In such a way it is possible to 
obtain the following set of the equivalent equations ae -> b (if a = 1 and 
^ = 1, then b=\), ab'-^ e\ a-^ bw e\ ..., I -> a' v b v e'. The last one 
could be changed for the disjunctive equation a^v bv e' = I. 

A set of regularities given in such a form can be presented by a ternary 
disjunctive matrix D, called below a knowledge matrix. For example, the 
knowledge matrix 

abcdefgh 
1 - - 0 - - 0 -• 

0 1 

affirms that every object of the regarded area must satisfy the equations 

avd'vg'= I, dvf=l and a'vb=\. 

In other words, in the considered Boolean space there exists no object 
which has any of the following combinations of attribute values: (a = 0, 
d=l,g=l%(d=OJ=0) and (a=Ub = 0). 

The set of these equations can be reduced to one equation D = 1 where D is a 
CNF (conjunctive normal form) represented by matrix D. In our case: 

D =(avd'vg')(dvf)(a'vb). 

2.3 Data and Knowledge Representation - the Case of 
Multi-Valued Attributes 

In the general case of multi-valued attributes, it is more convenient to 
use sectional Boolean vectors and matrices introduced for the representation 
of finite predicates [Zakrevskij, 1990], [Zakrevskij, 1993]. A sectional 
Boolean vector consists of some sections (domains) corresponding to 
attributes and each section has several binary digits corresponding to the 
attribute values indicating definite properties. For example, the section 
corresponding to the attribute color, which has the values blue, red, green, 
yellow, brown, black and white, should have 7 bits. 

Suppose that X= {x, y, z), and the attributes x,y, z select their values 
from the corresponding sets V\ = {a, b, c}, F2 = {a, e,f,g}, F3 = {h, i] (note 
that these sets may intersect). Then vector 010.1000.01 describes an object 
with the value b of the attribute x, the value a of the attribute y and the 
value / of the attribute z. If a vector represents some element of the space 
M of multi-valued attributes, it has the only 1 in each section. The situation 
is different in the case of having some fuzziness. Vector 011.1001.01 can be 
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interpreted as presenting a partial information about the object, when we 
know only that x^a, y ^ e, y ^f and z^ h. Note, that each of these 
inequalities serves as an information quantum and is marked by a zero in the 
corresponding component of the vector. 

In the case of finite predicates, generalized conjuncts and disjuncts can 
be used to present the knowledge [Zakrevskij, 1994]. Any interval in the 
space of multi-valued attributes is defined as a direct product of non-empty 
subsets at taken by one from each set F/. Its characteristic function is 
defined as a conjunct, and the negation of the latter is a disjunct. 

Considering the previous example, suppose that ai ={(3f}, a2 ={a, e, g}, 
and as={h,i]. The interval I = aix a2>< as presented by the vector 
100.1101.11 has the characteristic function (conjunct) 

k = (x = a) A{(y = a)w iy = e)\/ (y -- g)) A{{Z = h)w {z = i)\ 

which could be simplified to: 

A: = (x = a) A ((y - a) V (y = e) V (y = g)), 

in as much as {z = h)\/ {z = i)= 1. If this product enters the equation A: = 0 
refiecting a regular connection between x and y, then / n W=0, i.e. 
interval / turns out to be empty. The regularity can be represented by the 
equation 

(x==a)A{(y = a)v(y = e)v(y=g)) = 0. 

As it can be seen from the above example, the structure of a conjunctive 
term in the finite predicate algebra is more intricate compared with that of 
the binary case - the two-stage form of the type A v is inherent in it. One 
can avoid that complexity changing the equation k= 0 for the equivalent 
equation -ik = I and transforming -i k into a one-stage disjunctive term d. 
Such transformation is based on the de-Morgan rule and changes expressions 
—1 (Xi e ai) for equivalent expressions X/ G Vi\ai. This is possible since all 
sets Vi are finite. 

For the considered example we have: 

d = —ik = (x^a)v ((y^a) A(y^e) A(y^ g)) = 
= (x = b)v(x = c)v(y =f). 

Hence, the same regularity can be expressed in a more compact form, as 
follows: 

(x = b)v(x = c)v(y=J)=L 

Suppose that the knowledge about the world obtained either from 
experts or by induction from data is represented by a set of disjuncts dj, d2, 
..., dm . The corresponding equations di= 1 are interpreted as conditions 
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which should be satisfied for any objects of the world, and it is possible to 
reduce these equations to a single equation JD = 1 the left part of which is 
presented in the conjunctive normal form (CNF) D = djAd2A ... Ad^ . It 
follows from here that in the finite predicate algebra the CNF has some 
advantage over the disjunctive normal form (DNF) K = kj v k2V ...v k^n 
which is used in the equivalent equation K=0. Indeed, DNF has three 
stages (v A v), whereas CNF has only two (A V). 

Suppose for instance, that X= {a, b, c}, Vj = {1, 2, 3}, ¥2= {1, 2, 3, 4} 
and F5 = {1,2}. Then the knowledge matrix 

D = 

a 
0 0 1 

1 1 0 

b 

0 0 1 0 

0 0 1 1 

c 

0 0" 

0 1 

0 1 0 . 1 1 0 0 . 1 0 

0 0 1 . 0 1 0 0 . 0 1 

may be interpreted as a set of disjunctive equations as follows: 

(a = 3)v(b = 3)=h 
(a = 1) V (a = 2) V (Z) = 3) V (Z? = 4) V (c = 2) = 1, 
(a = 2) V (Z) = 1) V (Z) = 2) V (c = 1) = 1, 
(a = 3)v(b = 2)v(c = 2)=\ 

or as one equation with a CNF in the left part: 

((a = 3)v(Z> = 3)) A ((a = l)v(a = 2)v(Z> = 3)v(Z) = 4)v(c = 2)) A 
A ((a = 2Mb = 1Mb = 2)v(c =\))A((a = 3)v(Z) = 2)v(c = 2)) = 1. 

3. DATA MINING - INDUCTIVE INFERENCE 

3.1 Extracting Knowledge from the Boolean Space of 
Attributes 

A very important part of the pattern recognition problem is obtaining 
knowledge from data [Frawler, Piatetsky-Shapiro, et al., 1991]. The data 
could be represented by a sampling population F - a set of some randomly 
selected elements from the regarded world W. 
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As it was formulated above, we solve that problem by analyzing the 
distribution of elements of set F in the Boolean space M and revealing 
implicative regularities which are reflected by empty intervals (not 
intersecting with F). That operation can be reduced to observing a Boolean 
data matrix K and looking for such combinations of attribute values which 
do not occur in the matrix. 

The number of attributes coming into an implicative regularity is called 
its rank. It coincides with the rank of the corresponding interval. The less 
attributes are tied with a regularity, the stronger is the tie, as will be shown 
below. So, it is worthwhile to look for regularities of smaller rank. 
Consider, for example, the following data matrix: 

a b c d e f 

"l 0 0 1 1 O" 

0 1 1 1 0 0 

110 10 1 

0 0 0 110 

0 10 110 

0 0 10 10 

1 1 1 1 0 0 

10 0 0 11 

There are no empty intervals of rank 1, because each column contains Is 
and Os. So we look further for empty intervals of rank 2 and find five of 
them, corresponding to the following combinations: (a = 0 , / = 1), (Z)= 1, 
d= 0), (Z? = 0, ^ = 0), (c = 1,/= 1), {d= 0,e = 0). In a more compact form 
these intervals may be represented by conjuncts a'f, bd\ b 'e \ cf, d'e \ Can 
we consider that these found empty intervals reflect real regularities inherent 
in the world from which the data were extracted? Such conclusions could be 
accepted if only they are plausible enough. 

Consider the general case of n binary attributes and m elements in the 
sampling population (selection) F. Suppose, we have found an empty 
interval of rank r (comprising 2"'' elements of the Boolean space M) and put 
forward the corresponding hypothesis, affirming that this interval is free of 
any elements from the regarded world W. May we rely on it and derive with 
its help some logical conclusions when recognizing an object with the 
unknown value of the goal attribute? The problem is to estimate the 
plausibility of that hypothesis. 

We should take into account that the regarded interval could be empty 
quite accidentally, as in reality the selection F is taken by random from the 
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whole space M. In that case there could be no regularities in the disposition 
of the elements from F in M 

It would be useful to find the probability/? of such an event as a function 
p{n, m, r) of the parameters n, m, r. The hypothesis can be accepted and 
used further in procedures of deductive inference only if this probability is 
small enough. Its calculation is rather difficult, so it was proposed in 
[Zakrevskij, 1982] to approximate it by the mathematical expectation 
E{n, m, r) of the number of empty intervals of rank r. 

That value can be calculated by the formula 

E{n,m,r) = C:r{\-rT, (1) 

where CJ is the number of r-element subsets of an w-element set, CJ1^ is 
the number of intervals of rank r in the space M, and (1-2'X is the 
probability of some definite interval of rank r being empty, not containing 
any elements from F. 

Some empty intervals could intersect, hence E{n, m, r) >p{n, m, r). The 
question is how big could be the difference E{n, m, r) - p(n, m, r)l It was 
shown, that it becomes negligible small for small values of E{n, m, r). But 
that is just the case of interest for us. 

It turns out that the value of the function E{n, m, r) grows very rapidly 
with rising r. That is evident from Table 1 of the dependence E onr under 
some fixed values of the other parameters: « = 100 and m = 200. 

Table 1. The Dependency of £ on r Under Fixed n and m. 

R 

E(100,200,r) 1.24x10"̂ ^ 2.04x10'̂ ^ 3.26x10"̂  1.56x10^ 4.21x10^ 3.27x10^ 

It is clear that searching for empty intervals and putting forward 
corresponding hypotheses can be restricted in this case by the relation r < 4. 
If an empty interval of rank r < 4 is found, we have good reasons to 
formulate the corresponding regularity, but there are no grounds for that if 
r > 4. So, when /? = 100 and m = 200, there is no sense in looking for empty 
intervals of ranks more than 3. The search for regularities could be strongly 
restricted in that case by checking for emptiness only intervals of rank 3, 
which number is Cioô x2̂  = 1,293,600. This is not much, compared to the 
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number 3̂ ^̂  of all intervals in the Boolean space of 100 variables, 
approximately 5.15x10"̂ .̂ 

A threshold co may be introduced to decide whether it is reasonable to 
regard an empty interval as presenting some regularity: the positive answer 
should be given when E <(£>. Its choice depends on the kind of problems to 
be solved on the base of found regularities. 

Suppose CO = 0.01. Then the maximum rank rmax of intervals which 
should be analyzed when looking for regularities could be found from Table 
2, showing its dependence on n and m : 

Table 2. The Dependency of the Maximum Rank r̂ x̂ on the Parameters 
n and m. 

n\m 

10 

30 

100 

20 

1 

1 

1 

50 

2 

2 

1 

100 

3 

2 

2 

200 

4 

3 

3 

500 

5 

4 

4 

1,000 

6 

5 

5 

Two conclusions, justified for the regarded range of parameters, could 
follow from this table. First, in order to increase r^ax by one it is necessary 
to double the size of the experiment, measured by the number m of elements 
in F. Second, approximately the same result could be achieved by reducing 
by a factor of 10 the number of attributes used for the description of the 
regarded objects. 

Suppose Vmax = 2 which is justified when the selection F is rather small. 
In that case we have to pay attention only to pairs of attributes, looking for 
some forbidden combinations of their values. This task can be executed by 
an incremental algorithm. Such an algorithm analyzes the elements of the 
selection F consecutively, one by one, and fixes such two-element 
combinations which have occurred. This is done by using a symmetrical 
square Boolean 2nx2n matrix S for that, with rows and columns 
corresponding to the values x/ = 0, xy = 1, ^2= 0, X2= 1, etc. This matrix is 
presented in a convenient form in Tables 3 and 4. Its elements corresponding 
to occurring combinations are marked with 1. The rest of the combinations 
(not occurring) are presented by zero (empty) elements and are accepted as 
forbidden. The regularities presented by them connect some attributes in 
pairs and are called syllogistic regularities [Zakrevskij, 1988]. 
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For example, let us consider the following selection of data F from the 
world W (only to illustrate the algorithm, despite the fact that the selection is 
too small for r^nax = 2): 

abode 

"010 0 r 
110 11 

10 0 11 

0 110 0 

10 0 11 

0 110 0 

1 

2 

3 

4 

5 

6 

Begin with its first element 01001 and fix occurring combinations of 
values for C5^= 10 different pairs of attributes, marking with Is 
corresponding elements of matrix 5 (Table 3). Note that they are presented 
there in symmetric pairs, besides, to facilitate further operations, additional 
formal pairs (Xj = 1, X/ = 1) and (xt = 0, X/ = 0) are included into that set and 
have found their place on the main diagonal. So the whole set (5^ = 25 
pairs) is presented by a minor produced by the vector multiplication of 
definite rows and columns corresponding to argument values in the vector 
01001. 

By considering in the same way other elements of the selection F and by 
taking into account new pairs generated by them we can find all occurring 
pairs of attribute values obtained by the analysis of the selection F. The 
result is shown in Table 4. 
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Table 3. Finding All the Occurring Pairs of the Attribute Values 
Generated by the Element 01001. 

b c d e a 

V\ 

1 

1 

1 

1 

1 

1 

1 

1 

1 

\ \ 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

a 

Table 4. Finding All the Occurring Pairs of the Attribute Values 
Generated by the Selection F. 

b c d e a 

f l 

1 

] 

1 

1 

] 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

l ] 
1 

1 

1 

] 

] 

] 

1 1 

a 
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The zero elements of the resulting matrix point to the found syllogistic 
regularities. These regularities can be presented in another form, by the 
following ternary knowledge matrix D. 

D 

a b c d e 

0 0 

0 - - 1 -

1 - 1 - -

1 0 

- 0 1 - -

- 0 - 0 -

- 0 - - 0 

- - 1 1 -

- - 1 - 1 

1 0 

When the selection F is noticeably bigger compared with the number of 
attributes, the maximum rank Vmax of implicative regularities could be 3, 4 
or even more. The run-time for their finding swiftly increases. Nevertheless 
it is restricted, because the number of intervals to be checked could be 
approximated by C„̂  2^ C / 2^, etc. 

3.2 The Screening Effect 

Assume that we have found an empty (not intersecting with F) interval 
of the Boolean space M, and the mathematical expectation E corresponding 
to it is small enough. Then the logic of reasoning given above enables us to 
reject (according to the modus tollens rule, i.e. by means of finding 
contradictions) the supposition that this interval is empty accidentally, when 
in reality no regularity exists in the subject area W. In that case the 
probability of selecting elements from Mfor including them into Wis evenly 
distributed, as well as the probability of using them as elements of the 
selection F and elements of intervals of the given rank. The hypothesis 
about the existence of an implicative regularity corresponding to a found 
empty interval is compared with the hypothesis confirming the absence of 
any regularities, and as a result of that comparison, the first hypothesis is 
accepted. 
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The character of probability distribution could be changed substantially 
when a set of existing regularities is known a priori and when as a result of 
the selection F analysis additional hypotheses are put forward, based on 
'experimentally' proved emptiness of some intervals. In this case the known 
regularities forbid some s combinations of attribute values and that leads to 
reducing the number of possible combinations from 2̂ " (admitted by the 
hypothesis of the absence of any regularities) to w = 2^- s. 

Let us consider a conjunct of rank r corresponding to an interval of the 
space M which intersects with the subject area W. Suppose that a large part 
of this interval (comprised of u elements) belongs to the forbidden region 
formed by the union of intervals corresponding to known regularities. As a 
result the number of possible elements of the interval is reduced from 2^'^ to 
q = 2^'^- u. It follows from here that the probability of a random hit of some 
definite (not forbidden) point of the space M into the considered interval 
changes from 2'^ to q/w, which could sometimes perceptibly reduce the 
probability of this interval intersection with the random selection F. Such an 
effect is called a screen effect. It is equivalent to a conventional rise of the 
rank of the analyzed conjunct and, consequently, could lead to a 
considerable increase of the value E. In turn, that increase can distort the 
results of inductive inference, and that leads to obtaining some fictitious 
regularities. 

Consider for example the Boolean space of four attributes a, b, c, d. 
Suppose that the subject area is characterized by three conjunct-regularities 
a 'bd\ a 'cd and acd'. The corresponding intervals are shown in Figure 2. 

a c 

a'bd' 

bd' 

a'cd 

acd' 

Figure 2. Illustrating the Screening Effect. 

Look at the interval corresponding to conjunct a'c. It contains four 
elements presented by vectors 0010, 0011, 0110 and 0111. The three last 
elements belong to the forbidden region (they are screened by the given 
conjuncts), and only the first one does not contradict them. In this case 
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r = 2,p= 10, q= I. As a result, the above probability decreases from 1/4 to 
1/10, and that is equivalent to raising the rank of the regarded conjunction 
(in comparison with the case of absence of any regularities) to more than 
one. Similar conclusions follow from considering two other intervals which 
correspond to conjuncts bd'and be. 

Experimental research has confirmed that the effect of generating 
fictitious regularities during inductive inference could be rather big. One 
can compensate that screening effect by increasing the volume m of 
selection F or by putting an additional restriction on the rank r of the 
analyzed intervals. 

3.3 Inductive Inference from Partial Data 

It was supposed above that all objects of an experimental selection are 
described by their complete abstract models, with defined values of all 
attributes. A more general case of partial data presenting incomplete 
information about these objects was investigated in [Zakrevskij and 
Vasilkova, 1997]. For instance, we can know that some object has the 
attribute a and has not b, but we do not know if it has c. 

Next suppose that the selection contains m objects which should be 
represented by some points of the Boolean space of n attributes, in other 
words by Boolean vectors with n components. However, as a result of a 
certain fuzziness of the data the values of several attributes (different for 
diverse objects) could remain unknown. It follows from here that the 
disposition of those points is defined to approximation of some intervals, and 
it is confirmed only that these intervals are not empty. 

Suppose also that the degree of fuzziness is given by the parameter w, the 
same for all objects and attributes probability of the event "the value of a 
current attribute of a current object is unknown". 

Such uncertainty can be marked by the symbol "-" in corresponding 
components of the vectors describing the regarded objects, changing in such 
a way the Boolean vectors for ternary ones. However, it is more convenient, 
from the computer point of view, to use sectional Boolean vectors with two-
component sections in the case of binary attributes. 

As a result, the information about the experimental data set is presented 
by a Boolean data matrix K of size mx2n, in which columns are divided into 
sections, two columns in each. The regularities are extracted just from this 
matrix. 

During inductive inference, disjuncts presented by 27i-component 
Boolean vectors are checked one by one, and those of them which are 
satisfied by every element of the given selection are accepted. The search 
begins with disjuncts of the minimum rank (1) and terminates by disjuncts of 
a certain "critical" rank. The current disjunct is compared with all rows of 
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matrix K and, if it does not contradict with any of them (that is, if the 
component-wise conjunction of the compared vectors differs from the 
vector 0), it is considered as satisfied. Then it can be accepted as a 
regularity on the condition that the probability of its accidental origin is 
small enough. 

Computation of that probability is rather complicated, but in the case of 
small values it can be well approximated by the mathematical expectation 
E{m, n, r, u) of the number of disjuncts of rank r, which are satisfied by 
every element of the data. Note that the latter is a random selection from M 
represented by the corresponding mx2n Boolean matrix K eroded according 
to the parameter u. 

The value oiE is defined as the product of the number C/1"" of different 
disjuncts of rank r in the space of n binary attributes and the probability 

( l -aZ^)" that one of them (arbitrarily chosen) does not contradict the 

data presented by the matrix K\ 

E{m,n,r,u) = C:Y{\-^-^r. (2) 

It is evident, that E swiftly increases with rising the rank r. The strong 
dependence of J? on r facilitates finding the critical rank r* for disjuncts 
checked during inductive inference. Knowing that value restricts the volume 
of computations performed while looking for regularities: it is defined by the 
number N of checked disjuncts for which ranks must not exceed r*. This 
number can be obtained by the formula 

Â  = Sc/2^ (3) 
r= 1 

3.4 The Case of Multi-Valued Attributes 

It is a little more difficult to extract knowledge from the space of n 
multi-valued attributes x/, X2, ..., x«, see for example [Zakrevsky, 1994]. 
To begin with, define the probability p that a disjunct will be satisfied by an 
accidentally chosen element of the space. It could be calculated by the 
formula 

P = ̂ -Y[ ^ . (4) 
/=i -y, 
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where Si is the number of all values of the attribute X/, and r, is the number 
of those of them which do not enter this disjunct. For instance, for the 
disjunct 00.1000.101 p = I - (2/2)x(3/4)x(l/3) = 3/4. Let us divide all 
disjuncts into classes Dj, forming them from disjuncts with the same value 
of p. Next let us number these classes in order of increasing p and 
introduce the following conventional signs: qj is the number of disjuncts in 
the class Dj, pj is the value of p for elements from Dj. 

Find now the mathematical expectation Ej of the number of disjuncts 
from the class Dj, which do not contradict the random m-element selection 
from the regarded space: 

Ej = qMr, (5) 

and introduce the analogous quantity £"/ for the union of classes Du D2, 

k 

E:=Y.EJ. (6) 
/ = 1 

Inductive inference is performed by consecutively regarding classes Dj 
in order of their numbers and summarizing corresponding values Ej until the 
sum surpasses a threshold /, which is introduced by taking into account the 
specific of the considered subject area. All disjuncts belonging to these 
classes are accepted as regularities if they do not contradict the data, i.e. if 
they are satisfied by any element of the selection F, 

An expert may fix several thresholds and assign accordingly different 
levels of plausibility to the found regularities. For example, regularities 
obtained by thresholds 10'̂ ,̂ 10'̂ , 10"̂  could be estimated as absolutely 
plausible, usually, most likely, respectively. This differentiation gives some 
flexibility to recognition procedures. Choosing a proper level of plausibility 
one can use only some of regularities contained in the knowledge base and 
vary in such a way the plausibility of the logical conclusions obtained during 
recognition. For example, using only the most plausible regularities can 
result in obtaining a small number of logical conclusions, but more reliable 
ones, while extending the used part of the knowledge base extends the set of 
obtained logical conclusions, at the expense of their plausibility. 
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4. KNOWLEDGE ANALYSIS AND 
TRANSFORMATIONS 

4.1 Testing for Consistency 

Any disjunctive knowledge matrix D is consistent if the corresponding 
conjunctive normal form (CNF) D is satisjiable, i.e. if there exists at least 
one solution of the equation D= I. Checking D for consistency is a hard 
combinatorial problem [Cook, 1971]. In the general case it involves an 
unavoidable exhaustive procedure, which could be significantly reduced by a 
tree searching technique, taking into account the specific features of the 
regarded problem. 

In the case of binary attributes the knowledge matrix D could be 
presented as a ternary matrix, and checking it for consistency is equivalent to 
looking for a Boolean vector, which satisfies every row dj of matrix /) , 
either having 1 in some component where dj has 1 or having 0 in some 
component where dj has 0. 

This task is equivalent to another one, over a ternary matrix C that 
represents the disjunctive normal form (DNF) of the characteristic Boolean 
function V for the prohibited area of the Boolean space M (taking value 1 
on the area elements). That function Vis called a, veto function. Evidently, 
the equations D= I and F = 0 are equivalent, and matrix C could be easily 
obtained from matrix D by the component-wise inversion illustrated below. 

D = 

'O - 1 1 -" 

- 1 0 - -

1 0 

- 1 - - 1 

0 - - 0 -

0 1 0 0 0 

c = 

'1 - 0 0 -" 

- 0 1 - -

0 1 

- 0 - - 0 
1 _ _ 1 __ 

0 1 0 0 0 

In this case the function V should be checked for identity (the relation 
V= I is verified by that), and that corresponds to checking C for 
degeneration. Matrix C is called degenerate ternary matrix if and only if no 
Boolean vector exists orthogonal to every row of the matrix. Remind that 
two vectors are orthogonal if a component exists where one vector has the 
value 0 and the other has the value 1. For the regarded example we can find 
such a vector (it is shown under Q , and the same vector (shown under D) 
satisfies matrix/). That proves the consistency of the latter. 
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The discussed problem is well known; it is enough to say that it lies in 
the base of the theory of computational complexity. Many methods and 
algorithms were developed for its solution, for example [Davis, Longemann, 
et ah, 1962], [Zhang, 1997], so we shall not go here in detail. 

A rather efficient method of checking a ternary matrix C for 
degeneration has been suggested in [Zakrevskij, 1988]. It realizes the idea 
"to try and find a Boolean vector w orthogonal to every row of matrix C " 
and uses the tree searching technique described in [Nilsson, 1971]. By that 
the tree vertices present current situations and edges proceeding from them 
point to possible choices of some component values. The sought-for vector 
w is constructed by assigning definite values to its components (when 
moving forward) one by one, and reassigning them (after it moves 
backward). So during the search process it is a variable ternary vector 
changing with time. A current situation is presented by a current value of 
the vector w and a minor T of matrix C obtained from C by deleting the 
satisfied rows (orthogonal to w) and columns which correspond to the 
variables having accepted some values. To reduce calculations some rules 
are used that allow avoiding alternative situations as much as possible. 

That method implements the deductive inference of the modus tollens 
rule, illustrated with the following example of a matrix C and a search tree 
(see also Figure 3) which shows that matrix C is degenerate. 

abed 

1 

1 - 1 -

1 0 - -

1 

1 1 0 -

0 1 - -

0 

0 0 - -

0 - - 0 

0 1 - 1 

0 1 - -

0 - 1 -

0 0 0 -

e 

-

1 

1 

0 

-

-

0 

1 

1 

1 

0 

0 

0 

/ 

o" 
-

1 

1 

1 

1 

1 

-

0 

0 

0 

0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
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Figure 3. A Search Tree. 

The tree presents the following reasoning. Suppose that a vector w 
exists orthogonal to every row of matrix C. Consider the variable a 
corresponding to the most defined column (i.e., the one with the minimum 
number of don Y care elements). It could have the value either 1 or 0. If a = 
1, then the rows from 6 to 13 are satisfied. Now in order to satisfy row 1 it 
is necessary for w to have /= 1, otherwise w cannot be orthogonal to that 
row. For the same reason it is necessary to accept e = 1 (look at row 4), then 
c = 0 (row 2), then b = 1 (row 3). After that it becomes impossible to satisfy 
row 5, so we have to return to the beginning of the produced chain and try 
the other value of the variable a. 

If a = 0, then the rows from 1 to 5 are satisfied and we have to satisfy the 
remaining rows, from 6 to 13. Consider now the variable e.lf e = I, then 
from necessity b = 1 (row 8) , /= 0 (row 6) and d = 1 (row 9), after which it 
is impossible to satisfy row 10. Else if e = 0, then follow/= 0 (row 7), Z> = 0 
(row 11), c = 0 (row 12), after that it is impossible to satisfy row 13. 

So, we have to admit that the value 0 of the variable a is also invalid, 
and it is impossible to construct a vector w orthogonal to every row of matrix 
C. Hence, that matrix is degenerate. 

In the case of multi-valued attributes the knowledge is presented by a 
sectional disjunctive Boolean matrix D. Any solution of the equation D = 1 
corresponds to a column minor, which includes exactly one column from 
each domain and has at least one 1 in every row. Checking D for consistency 
is more difficult now. The tree searching technique is necessary here. To 
facilitate the regarded task some rules formulated below can be used for 
reducing the size of matrix D. 

Let u and v be some rows of matrix 2), while p and q are some of its 
columns. Consider vectors a and b be satisfying the relation a>b if the 
latter is satisfied component-wise. Let us say in this case that a covers b. 

The following reduction rules enable us to simplify matrix D by 
expelling some rows or columns. 

Rule 1: If « covers v, then row u is expelled. 
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Rule 2: If a column/? is empty (not having Is), then it is expelled. 

Rule 3: If there exists a row u having Is only in one domain, then 
all columns of that domain which have 0 in row u are 
expelled. 

These rules define the equivalence transformations of D which do not 
change the set of solutions of equation D = I. When checking D for 
consistency two more rules may be added. Their application can change the 
set of roots but does not violate the property of consistency: any consistent 
matrix remains consistent, and any inconsistent matrix remains inconsistent. 

Rule 4: If p covers q and these columns belong to the same 
domain, then column q is expelled. 

Rule 5: If a row u has a section without Os, then it can be expelled. 

Rules 1 and 4 are the most useful. For example, regarding the 
knowledge matrix 

/) = 

aja2a^ 

"O 1 1 

1 0 0 

1 0 1 

1 0 0 

0 1 1 

0 1 0 

* i * 2 * i 

. 0 0 1 

. 1 0 1 

. 0 1 0 

. 0 1 0 

. 0 1 0 

. 1 0 1 

^1^2^3^4 

. 0 0 0 0 ^ 

. 0 1 0 0 

. 1 0 0 1 

. 1 0 1 0 

. 0 1 0 1 

. 1 0 0 0 

d, 

d^ 

ds 
d, 

ds 

de 

we can use these rules for deleting one by one the following columns and 
rows: column bi (covered by Aj), column Cs (covered by Cy), row ds 
(covering now rf^), column C4 (covered by C2), column as (covered by « )̂ and 
row de (covering di after deleting as). Executing these operations, we get a 
more compact matrix shown below: 

^1^2 *2*i ^1^2 

0 1 . 0 1 . 0 0 ' 

1 0 . 0 1 . 0 1 

1 0 . 1 0 . 1 0 

0 1 . 1 0 . 0 1 
d4 

d. 

It is not difficult now to be convinced of the consistency of this matrix. For 
instance, it is satisfied by vector 10.01.01, presenting one of the solutions of 
the regarded system of disjunctive equations. 
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4.2 Simplification 

Using a disjunctive knowledge matrix D in some expert system of 
logical recognition, it is natural to simplify it beforehand in order to facilitate 
subsequent repeated computations on its base. The simplification can 
consist in reducing the number of disjuncts as well as the number of Is in the 
matrix in such a way that does not change the set of the matrix roots. So, 
there arises the problem of practical importance to look for a minimum 
disjunctive matrix equivalent to the given one. 

That is the well-known problem of minimization of Boolean functions 
(or their DNFs, to be more correct), and hundreds of publications were 
devoted to it [Quine, 1952], [Karnaugh, 1953], [Nelson, 1955], [McCluskey, 
1956], [Urbano and Mueller, 1956], [Zakrevskij, 1965], etc. We have no 
place to discuss them here. However, we would like to note that this 
problem was expanded onto finite predicates, which is vital for solving 
combinatorial tasks in the space of multi-valued attributes. 

The problem of Boolean function minimization could be regarded both 
in exact and approximate formulations. Of course, looking for minimum 
DNFs is rather time-consuming, but suboptimal solutions could be very 
often quite satisfactory for practical purposes. For example, much less run
time is necessary to find some irredundant DNF which could serve as a good 
approximation to a minimum DNF. One can obtain it from an arbitrary DNF 
deleting from it some terms. Besides, some terms could be simplified by 
deleting some literals from them. The following algorithm for checking a 
ternary matrix for degeneration is very useful for these operations. 

Let us regard the ternary matrix C presenting the DNF 

acf V be/v a'd'ew de/v b 'c/v b 'dfw c'e/v b 'c'd\ 

a b c d e f 

1 - 1 - - 0 

- 1 - - 0 1 

0 - - 0 1 -

1 0 1 

- 0 0 - - 1 

- 0 - 1 - 1 

- - 0 - 0 1 

- 0 0 0 - -

Checking its terms one by one we can see that some of them are 
implicants of the remaining part of the DNF and so can be deleted. Suppose 
the term represented by a row C/ of matrix C should be checked. Then this 

C = 
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Operation is reduced to checking for degeneration of a certain minor of 
matrix C. That minor (denoted as C: C/) is obtained by deleting from C row 
Ci together with all rows orthogonal to C/ and also columns where C/ has 
definite values (1 or 0). If the minor C: C/ turns out to be degenerate, then 
row Ci (and corresponding term) should be deleted. 

For example, the row ( 10 1) can be deleted from C but the row 
( - 1 - - 0 1 ) cannot, because the minor C : ( — 1 0 1 ) is degenerate and 
the minor C: (- 1 - - 0 1 ) is not. 

C:(- 1 0 1): 

a b c 

'- 1 -" 

- 0 0 

- 0 -

- - 0^ 

C : ( - l 0 1) = 

a c d 

0 1 -• 

- - 1 

- 0 1 

Checking all rows one by one, we find that three rows can be deleted 
from C. As a result, we get an irredundant matrix C*. The corresponding 
irredundant knowledge disjunctive matrix D* is easily obtained from C* by 
the component-wise inversion. 

C* 

a b c d e f 

1 - 1 - - 0' 

- 1 - - 0 1 

0 - - 0 1 -

- 0 - 1 - 1 

- 0 0 0 - -

Z)* = 

a b c d e f 
0 - 0 - - r 
- 0 - - 1 0 
1 - - 1 0 -
- 1 - 0 - 0 
- 1 1 1 - -

5. PATTERN RECOGNITION 
INFERENCE 

DEDUCTIVE 

5.1 Recognition in the Boolean Space 

The recognition problem can be formulated as the problem of a closer 
definition of qualities of some observed object not belonging to the 
experimental selection from the subject area [Zakrevskij, 1999]. Suppose 
that we know the values of s from n attributes of this object. That is 
equivalent to locating the object in a certain interval of the Boolean space M 
presented by the corresponding elementary conjunction k of rank s. The 
problem is to define by logical reasoning, as well as possible, the values of 
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the remaining n- s attributes, using for that the information contained in the 
knowledge ternary matrix D and in the corresponding veto function V. 

Let us regard the set Xk of attributes with known values and the set of all 
forbidden combinations of values of the remaining attributes - for the 
considered object. The latter set can be described by a proper Boolean veto 
function V{k) that could be easily obtained from V. Indeed, it is sufficient 
for that to transform the formula representing the function V by changing 
symbols of attributes presented in k for values (0 or 1) satisfying the 
equation k= \. Denote this operation as V{k) = V\k. 

Suppose that we want to know the value of an attribute x, which does 
not come into Xk. The necessary and sufficient condition for the prohibition 
of the value 1 of that attribute is presented by the formal implication 
kxi^> F, i.e. belonging of the interval presented by conjunction kxi to the 
prohibition region described by the function V. Analogously, the necessary 
and sufficient condition for the prohibition of the value 0 is presented by 
kXi' => V. 

It is not difficult to deduce from here forecasting rules to define the 
value of the goal attribute Xt of the object characterized by k. These rules are 
shown in a compressed form in Table 5 presenting the decision (a set of 
possible values of Xt, the bottom row) as a function of predicates kxt => V 
and kXi' => V. 

Table 5. Forecasting the Value of the Attribute x,. 

kx,:^ V 
foe,' => V 

Xi 

0 
0 

{0,1} 

0 
1 

{1} 

1 
0 

{0} 

1 
1 

0 

Note that four outcomes could appear at this approach. On a level with 
finding the only value (0 or 1) for the attribute X/, such situations could be 
met when both values are acceptable or neither of them satisfies the veto 
function V. At the later case the existence of the object a characterized by k 
contradicts the knowledge base, and that could stimulate some correction of 
the latter. However, the probability of such an event is low enough, taking 
into account the way of forming the knowledge base. 

For example, if 

V=acfvbe'fva'd'e vb'dfvb'c'd' 

and k = abf, then V(k) = V:abf= e \ It could be concluded from this that the 
regarded object a has value 1 in attribute e, but there are no restrictions on 
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the other attributes (c and d). If by the same function V the object a is 
characterized by k = c'ey, then 

V(k) = bvb'dvb'd'=l (all are forbidden), 

and that means that the object contradicts the knowledge. 
Predicates kxi => V and kxi' => F are accordingly equivalent to 

predicates V\kXi=\ and V:kxi'=l, and that allows reducing their 
calculation by checking the corresponding submatrices of the knowledge 
matrix D for consistency. Fixing the values of some attributes in function V 
is changed for selecting a corresponding minor of matrix D by deleting 
some rows and columns, which could be followed by further possible 
simplification. 

Suppose that we regard the same (already minimized) knowledge matrix 
D corresponding to the veto function F= acf v be / v a'd'evb 'dfv b'c'd' 
and know that for the observed object a = 1 and c = I. Taking into account 
this new information we transform matrix D as follows. First we delete from 
it the columns marked with a and c because these variables became constant, 
and delete also the rows 3 and 5 now satisfied by these constants. Further 
simplification is rather evident, by using the following rule: x(x' v H) = x H, 
where x is a Boolean variable and H is an arbitrary Boolean formula. 

D* = 

a b c d e f 
0 - 0 - - r 
- 0 - - 1 0 
1 - - 1 0 -
- 1 - 0 - 0 
- 1 1 1 - -

1 

2 

3 

4 

5 

b d e f 

' f 
0 - 1 0 

1 0 - 0 

b d e f 
'— r 
0 - 1 -

1 0 - -

We can conclude now t h a t / = 1, by necessity. As to the remaining 
attributes, their values cannot be forecasted uniquely. They obey the next 
two conditions: b' w e=\ and bvd'= 1. This system of logical equations 
has two solutions. Either b = d = 0 (with an arbitrary value of e), or 
b = e= I (with an arbitrary value ofd). 

Suppose the values of all attributes are known except the goal one. In 
that case solving the recognition problem could be facilitated by preliminary 
partitioning the Boolean space of attributes into four regions. After that it 
would be sufficient only to conclude to which of them the regarded object 
belongs and make the corresponding conclusion. 

The characteristic Boolean functions of these regions are obtained on the 
base of the rules shown in Table 5. The region where the value of the 
attribute Xi remains unknown is described by the function V(Xi) = 
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(V:XIYA(V:X')\ the region where Xt receives the value 1 is presented by the 
function V^(xd = (V:x,yA(V:xt'l the region where X/ receives the value 0 -
by the function J^ixi) = (F:X/)A(F:X/')', and the region of contradiction - by 
the function F*(x,) = (F:;C,)A(F:X/). 

By using the same example we obtain: 

V=acf V be'f\/ a'd'e v b'dfw b'c'd\ 

V'.f = be' V a'd'ev b'dv b'c'd\ 

V:f = acva'd'evb'c 'd\ 

V{f) = (be'va'd'e vb'dvb'c'dy A (ac v a'd'e vb'c'dy, 

V^(f) = (be'va'd'evb'dvb'c 'dy A(acv a'd'e v b'c 'd'), 

V^{/) = (be'va'd'e vb'dvb'c'd') A (ac v a'd'e vb'c'dy, 

V^if) = (be'va'd'e vb'dvb'c'd') A (ac v a'd'e vb'c'd'). 

5.2 Appreciating the Asymmetry in Implicative 
Regularities 

So far it was silently assumed that every implicative regularity is 
symmetrical for all attributes included in it. In other words, all these 
attributes have equal rights. It was assumed, for example, that the disjunct 
av bv c can be transformed into any of the sequents a'b' -> c, a'c' -> b and 
b'c' -^ a, which could be used under recognition. It was assumed, therefore, 
that all these expressions are equivalent. 

However, sometimes the symmetry of implicative regularities could be 
subjected to doubt. More accurate means may be suggested for their 
representation as well as the appropriate rules for using them in deductive 
inference. 

Denote by w(k) the number of elements from selection F which have 
sets of attribute values satisfying the equation k= I with a conjunctive 
term k (for example, the vector 10011 of values of the attributes a, b, c, d, 
e satisfies the equation c'e=l). 

Let us consider some irredundant disjunct, av bv c for instance, 
representing a regularity obtained as a result of the selection analysis 
fulfilled according to the formulated above rules. Evidently, w(a'b'c') = 0, 
but it could be that wiab'c') ^ 0, wia'bc') ^ 0 and w(a'b'c) ^ 0. Admit that 
the three last quantities can greatly differ by taking either too large or too 
small values, which is represented by the corresponding linguistic constants 
L and S. 
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Suppose that some object is observed and it is established that it has 
neither attribute a nor b. If it is known also that w{a'b'c) = L, there are 
rather weighty reasons for the logical conclusion that the subject possesses 
the attribute c. Indeed, there are many subjects in the selection that also 
have neither a nor b and all of them have c. In other words, the hypothesis 
following from the observation has many confirmations and no refutation, 
hence it can be accepted as a regularity. But if w(a'b'c) = S, the reasons for 
accepting this hypothesis seems to be flimsy and unconvincing, because the 
number of confirming examples is too small in this case. It can be said that 
the regarded situation itself has a low probability. 

Hence, the transformation of the disjunct av bv c into the sequent 
a'b'-^c seems to be reasonable when w(a'b'c) = L and not reasonable 
when w(a'b'c) = S. Let us say that in the first case c is derived in the 
disjunct av bv c and the sequent a'b' ^y c'ls valid, and in the second case 
c is not derived and the sequent a'b' -^ c\s not valid. 

All that resembles the formalism of association rules [Agrawal, 
Imielinski, et al, 1993]. However, unlike the latter, arbitrary (not only 
positive) conjunctive terms k are regarded. Besides, a set of formal 
transformations is suggested below for deriving new valid sequents from the 
given ones. 

Consider a multiplace disjunct-regularity Z), and choose in it a literal x*, 
meaning that x* could be either x or x'. Splitting D represent it as x* v Z)y. 
Let Ki be the conjunctive term equal to the inversion of D/. For instance, if 
Dj = a' V b, then Kj = ab\ 

Affirmation 1. A literal x* is derived in the disjunct D =x'^v Dj if and 
only if w(Ki) = L. 

Characterize any disjunct by a list of derived literals marking them by 
an appropriate underlying in the formula. For example, avbyc is a 
disjunct that can be transformed into the sequents a'b' -^ c and a'c' -^ b, 
but not into b'c' -> a. A disjunct is called complete if all its literals are 
derived. 

According to the well-known resolution rule [Chang and Lee, 1973] it is 
possible under certain conditions to draw from some two disjuncts a third 
one that is their logical conclusion. This rule can be fully applied to 
complete disjuncts, but demands more precise definition in the general case. 

Affirmation 2. The disjunct D3 = bv c follows logically from 
D] = av b and D2 = a'v c. By that the literal c is derived in D3 if and 
only if a is derived in Dj, and b is derived in D3 if and only if a' is derived 
in D2. 
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Proof: It follows from the existence of the disjuncts Dj and D2 that 
w{a 'b') = 0 and w(ac') = 0. If a is derived in Z);, then w{ab ') = L. This 
follows from the obvious equality w(ab') = w(ab 'c) + w(ab 'c') and the 
above obtained w{ac') = 0, that w{ab 'c) = L and w(b 'c) = L, i.e. c is derived 
in D3 = b V c. On the other hand, if c is derived in D3, then w(b 'c) = L, and 
it follows from w(a 'b') = 0 and w(b 'c) = w(ab 'c) + w(a 'b 'c) that 
w(ab 'c) = L and w{ab') = L, i.e. a is derived in Dj. The proof of the second 
part of the theorem, concerning derivability of b in D3, is quite similar. 
End of proof. 

Corollary. The complete disjunct bvc follows from the disjuncts 
qv b and a' v c. 

More complicated disjuncts can be characterized by lists of derived 
fragments - individual literals present only at a specific case. For the 
general case these fragments are represented by the right parts of valid 
sequents Kj -> D2 which could be generated by the corresponding disjuncts 
D=Dj\/ D2. 

Affirmation 3. The sequent Ki -> D2 generated by the disjunct 
DJ V D2 is valid if and only if w(Kj) = L. 

For example, acd'-> b' v e generated by a'vb'vc'vdve is valid 
if and only if there are rather many subjects in F that have attributes a, c and 
have not d. 

Affirmation 4. If the sequent Ki is valid, then any other sequent 
obtained from it by transferring (with inversion) some literals from Ki into 
D2 is also valid. 

For instance, if the sequent a'b'c'-> dv e is valid, then 
a'b' -^ cv dv e, a'c' -^ bv dv e, b' -^ av cv dv e, etc. (called 
derivatives of a'b'c' -> dv e) are also valid. 

It follows from Affirmation 4 that it is sufficient to mark in the 
characteristic of a disjunct only the minimum derived parts, because their 
arbitrary extensions will also be derived. For example, if av b, bvcvd 
and cvdve v / are marked in the disjunct av bv cv dv e v / , then 
av bv e, bvcvd v / , av cv dv e v / , etc. are derived too. In this case 
only the sequents c'd'e'f -> av b, a'e'f -> bv cv d and 
a'b' -> cv dv e vf as well as their derivatives are valid according to this 
marking. 

Affirmation 5. The set of possible characteristics of a disjunct is 
isomorphic to the set of all monotonic Boolean functions of the disjunct 
literals. 
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Affirmation 6. For any disjuncts D^ =xwDi and Z)** = x 'v i )^ the 
disjunct D = D]V D2 follows from them. By that Dj is derived in D if and 
only if x ' is derived in /)**, and D2 is derived in D if and only if x is 
derived in Z)*. 

This affirmation can be regarded as a generalization of Affirmation 2 
and can be proved in a similar way. 

So, any system of implicative regularities constructed in accordance 
with the suggested definitions can be represented by boundary sequents, 
when it is not allowed to transfer symbols from the right part into the left 
one. In such a form it can be used in a system of deductive inference, 
facilitating the fulfillment of its procedures. Then the recognition of any 
observed subject is carried out by inserting into these sequents the values of 
some attributes obtained while observing the subject and by appropriate 
reducing the system. 

5.3 Deductive Inference in Finite Predicates 

In the case of multi-valued attributes the disjunctive knowledge matrix Z> 
turns out to be a sectional Boolean matrix presenting a finite predicate. 
There are some specifics in dealing with it as described in [Zakrevskij, 
1990], [Zakrevskij, 1993]. 

Let us state the central problem of deductive inference: a disjunctive 
matrix D and a disjunct d mated with D (that means defined on the same 
pattern) are given, the problem is to find out whether rf is a logical 
consequence of 2). In other words, the question is if the conjunctive term d 
is derived in CNF D7 That is, does it become equal to 1 on all elements of 
the space M where CNF D takes value 1? 

Two ways for solving such problems are known: the direct inference and 
the back inference. 

When the direct inference is executed, the initial set of disjuncts is 
expanded consecutively by including new disjuncts following from some 
pairs of disjuncts existing already in the set. This procedure continues until 
the disjunct d is obtained or the set expansion is exhausted without obtaining 
d - in the last case it is proved that d does not follow from D. 

Any pair of disjuncts u and v can generate several disjuncts-consequents 
Wi, obtained formally by the operation Wi = u<Xi>v which may be called the 
resolution in regard with the variable Xt and which can be considered as the 
generalization of the well-known in the theory of Boolean functions 
resolution operation onto finite predicates. It is defined as follows: the 
domain (section) of Wi corresponding to the variable Xi equals the 
component-wise conjunction of the corresponding domains from u and v 
(this can be considered as the unification by the variable X/), and the rest 



Chapter 1: A Common Logical Approach to Data Mining 35 

domains equal the component-wise disjunction of the corresponding 
domains from u and v. 

However, not every disjunct obtained in such a way deserves subsequent 
consideration. There is no sense in including into the regarded set a disjunct 
which follows from some other disjunct belonging to the set, because it 
represents only some expansion of the latter one. For example, disjunct 
110.0111.00 follows from disjunct 010.0110.00. It is reasonable to look 
only for non-trivial consequents. Such is a disjunct which follows from 
some pair of disjuncts u and v but does not follow from w or v taken 
separately. Let us call it a re^o/vew/of disjuncts u and v, and determine the 
rules for its obtaining. 

Disjuncts u and v are called adjacent by the variable x, if and only if the 
corresponding domains are incomparable (their component-wise disjunction 
differs from each of these domains) and there exists in each of the remaining 
domains a component with the value 0 in both vectors. Note that by 
violating the first condition a disjunct is obtained which follows either from 
u or from v, whereas by violating the second condition a trivial (identical 
to 1) disjunct is found, which follows from any other disjunct. 

Affirmation?. If disjuncts u and v are adjacent by the variable X/and 
>v = «<X/>v, then the disjunct w is a resolvent of the disjuncts u and v. 

For example: 

a b c 

u = 1 0 0 . 1 0 . 0 0 1 1 
V = 0 1 0 . 0 0 . 0 1 10 

It is easy to see that these disjuncts are adjacent by a and also by c, but 
not by b. Hence, they give rise to the following two resolvents 

u<a>v = 0 0 0 . 1 0 . 0 1 1 1 
u<c>v = 1 1 0 . 1 0 . 0 0 1 0 

The direct inference is simple but time-consuming because the number 
of obtained consequents could be very large. The back inference is more 
efficient. It solves the problem by transforming the initial system of 
disjuncts into such a system which is consistent if and only if d does not 
follow from D. So, the problem is reduced to the regarded above problem of 
checking some disjunctive matrix for consistency. 

Denoting by -id the vector obtained from d by its component-wise 
negation, and by D A -i rf the matrix obtained from D by the component
wise conjunction of each of its rows with vector -i rf , the following rule 
may be formulated. 



36 Data Mining & Knowledge Discovery Based on Rule Induction 

Affirmation 8. A disjunct d follows from a disjunctive matrix D if and 
only if the disjunctive matrix D A-id is not consistent. 

Checking this condition is rather easy: Is are expelled from all columns 
of D which correspond to components of the vector d having value 1, then 
the obtained disjunctive matrix is checked for consistency. For instance, if 

D = 

and 

0 0 1 . 0 0 1 0 . 0 0 

1 1 0 . 0 0 1 1 . 0 1 

0 1 0 . 1 1 0 0 . 1 0 

0 0 1 . 0 1 0 0 . 0 1 

0 1 1 . 1 0 0 0 . 0 0 

then the following disjunctive matrix should be checked for consistency 

DA-nd = 

0 0 0 

1 0 0 

0 0 0 

. 0 0 1 0 

, 0 0 1 1 

0 1 0 0 

. 0 0 

0 1 

1 0 

0 0 0 . 0 1 0 0 . 0 1 

This matrix is not consistent. Hence, the disjunct d follows from D. 

5.4 Pattern Recognition in the Space of Multi-Valued 
Attributes 

Let us describe a typical situation, where the problem of recognition 
arises, and some ways to solve it [Zakrevskij, 1992], [Zakrevskij, 1994], 
[Zakrevskij,2001]. 

Suppose that an object from the world W is considered and some partial 
information about it is known, which can be represented by a set S of 
elementary prohibitions that are simplest information quanta of the type 
Xi^ Vj: the value of attribute Xi in the object differs from Vj. In particular, 
this value is determined uniquely if all values except one are prohibited by 
such quanta. Suppose also that some definite attribute called a goal attribute 
is indicated, and its value should be found, without immediate measurement. 
This means that it must be calculated on the basis of the given information 
about the object and the known regularities inherent in the world W, to 
which the object belongs. Remember that these regularities are presented in 
the matrix D. 
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Let us represent the partial information about the object by a vector-
conjunct r, where all elementary prohibitions are mapped as Os in the 
corresponding components. This vector can be regarded as the interval of an 
initial localization of the object in the space M Taking into account the 
regularities of the world W, one can make it more precise by reducing the 
area of the possible location of the object in the space of attributes. 

It is easy to see that this area is defined as the intersection of the interval 
r with the set of solutions of the disjunctive matrix D. 

Affirmation 9. Let a vector-conjunct r present an object from the world 
^ t h e regularities of which are represented by a disjunctive matrix D. Then 
the area of possible location of the object is equal to the set of solutions of 
the disjunctive matrix D* =_Z> A r. 

The disjunctive matrix D* is found rather easily by deleting from matrix 
D all Is in the columns which correspond to the elementary prohibitions. 
Getting matrix Z)*, we in a sense completely solve the recognition problem, 
by converting the knowledge about the world as a whole to the knowledge 
about a definite object. The latter knowledge can be reduced to a more 
compact form by the reduction rules described above. The values of some 
attributes, including the goal one, could be determined by that uniquely. 

Rather general seems to be the formulation of the recognition problem as 
the problem of maximal expansion of the set of elementary prohibitions S. 
This problem can be interpreted as the interval localization of the object 
under recognition, the essence of which is that the area of its possible 
location should remain an interval after the reduction. It is convenient to 
decompose the process of such localization into the search for separate 
elementary prohibitions x, ̂  y,, following from matrix Z>*. 

Let us put in correspondence to the elementary prohibition x, ^ v, the 
sectional Boolean vector s(i, Vj), in which all components of the domain /, 
except those which correspond to the value v,, have value 1 and all 
components of the other domains have value 0. 

Affirmation 10. The prohibition Xt ^ v, follows from matrix 2>* if and 
only if the disjunctive matrix Z>* A -i 5(/, v,) is not consistent. 

It can happen that matrix D* is not consistent itself. That would testify 
the existence of some contradictions between regularities inherent in the set 
^and a partial information about the object. Otherwise solving the problem 
of the set S expansion leads to obtaining the minimum interval containing 
the area of possible location of the observed object, and this solution is 
always unique. 

For example, if it is known that some object possesses value 1 of the 
attribute c, then by using vector r =111.1111.10 we transform D into 
D* and by simplifying the latter we get an equivalent matrix: 
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D = 

a b c 
0 0 1 . 0 0 1 0 . 0 0 
0 0 0 . 0 0 1 1 . 0 1 
0 1 0 . 1 1 0 0 . 1 0 
0 0 1 . 0 1 0 0 . 0 1 

D* = 

0 0 0.0011.00 

000.0000.10 

001.0000.00 

It follows from here that the initial vector-conjunct r transforms into 
001.0011.10, which means that the regarded object is located in the space M 
to an accuracy of only two elements. 

Sometimes expert systems of logical recognition must not only give 
correct logical conclusions but also provide them with clear explanations of 
some form. One such form can be a chain of consecutively executed 
resolutions leading to a sought-for disjunct-consequent. Of course, it can be 
found via direct inference of the regarded consequent, but in this case the 
chain as a rule turns out to be too long and inconvenient for visual 
perception. The problem of looking for minimized chains of logical 
inference arises in connection with that. A proper method for solving it was 
suggested in [Zakrevskij and Vasilkova, 1998]. It uses information 
contained in the search tree constructed when checking for consistency 
corresponding minors of the knowledge matrix D. 

6. SOME APPLICATIONS 

Several expert systems were constructed based on the suggested 
approach. For example, the system DIES was developed for running 
diagnostic tests on various engineering objects [Zakrevskij, Pechersky, et al., 
1988]. It uses the technique of logical inference in finite predicates. 

The instrumental system EDIP was developed, based on the previous 
results and intended for running diagnostic tests on electric devices used in 
everyday life, for instance an iron [Zakrevskij, Levchenko, et al., 1991]. It 
works in the dialogue mode: it first asks for some measurements and then it 
uses the results (together with knowledge provided by experts and presented 
by sectional Boolean matrices) to decide what is wrong with the device. 

An experimental system for recognition of spoken words was developed 
in [Zakrevsky and Romanov, 1996]. The data for it are given in digital form 
and present the distribution of energy in the space "time x frequency" (see 
also Figure 4). 
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a) The Spectral Image of the Word 

000000000000000000000000 
000000000100000010000000 
000000000100000110000000 
000000001111111121000000 
000000001211111222111100 
000000001111111112222210 
000000011111100011111100 
000000001111111101111000 
000000000111112222211000 
000000001111112334322100 
000000001111011234443210 
000000000111011123444310 
000000000111001124443200 
000000001111011244321000 
000000002333234443210000 
000000002444444442110000 
000000001344444433210000 
000000001244444432110000 
000000000233333332110000 
000000001233434343310000 
000000001334444444432100 
001111111244444444443210 
011222222233444444444310 
001111112223333333333210 

b) The Matrix of the Energy 
Levels 

Figure 4. The Energy Distribution of the Pronunciation of the Russian Word 
"noor (meaning "zero''). 

The information given by that distribution is reflected preliminary into a 
space of binary attributes, which present some specially selected geometrical 
characteristics of the image. That enables to apply the procedures of 
inductive and deductive inference described above. 

The experimental system EXSYLOR for logical recognition in different 
areas was constructed [Zakrevskij, 1992]. That system is modeling subject 
areas in a finite space of multi-valued attributes. It can be tuned to any 
subject area (World) by enumerating names of essential attributes and their 
values and by forming in such a way a World model. Information about 
separate objects composing a representative selection from the World can be 
introduced into the system and fill a database. Description of regular 
connections between attributes represents information about the World as a 
whole; it is regarded as knowledge and constitutes the contents of a 
knowledge base. The knowledge is given in the form of sequents (if..., 
then...), prohibitions or disjuncts introduced into the system by an expert or 
deduced from the data. It is used in deductive procedures of computing 
values of the goal attributes of the objects under recognition. 

The system EXSYLOR analyses data, produces and optimizes 
knowledge, extrapolates partial information about observed objects, and 
helps in planning measurements. If asked, it prepares information explaining 
its decisions. It is also provided with expert and recognizer interfaces. 

The complete cycle of solving the problem of logical recognition by that 
system includes the following procedures: 

• constructing the attribute space (defining all attributes and all their 
values); 
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• obtaining a representative selection of data, describing some set of 
objects from the investigated "World"; 

• executing inductive inference w ĥich enables to find some 
regularities inherent in the "World", revealing them from that 
selection; 

• fulfilling deductive inference, that is, finding possible values of goal 
attributes from the revealed regularities and partial description of the 
regarded object; 

• demonstrating the chain of logical inference conducted by the 
system during computation of a logical conclusion. 

7. CONCLUSIONS 

The proposed common logical approach to solving problems of data 
mining and pattern recognition combines two powerful tools of modern 
logic: the inductive inference and the deductive inference. The first one is 
used for extracting knowledge from data. The second is applied when that 
knowledge is used for calculation of the goal attribute values. 

In a simple case the data are given as a set of points in the space M of 
Boolean attributes. This set is considered as a small part of some larger set 
defining a subject area. In the suggested method, the knowledge is presented 
by implicative regularities, as are called equations A: = 0 with elementary 
conjunctions k. The search for knowledge is reduced to looking for empty 
(not containing data points) intervals of M and putting forward 
corresponding hypotheses which suggest that the revealed intervals do not 
contain any other elements of the subject area. Such hypotheses can be 
accepted as implicative regularities if they are plausible enough. There have 
been proposed some formulas for plausibility evaluation. The accepted 
regularities are presented by ternary vectors constituting a knowledge 
matrix. 

That form of knowledge representation is convenient for use in the 
second stage of the problem, when the values of goal attributes should be 
found from the partial information about the observed object. This task is 
reduced to solving a system of logical equations. 

In the more complicated case of multi-valued attributes finite predicates 
are used instead of Boolean functions, and sectional Boolean vectors and 
matrices are suggested for their representation. 

The proposed means were used when constructing several expert 
systems of various purposes where the pattern recognition problem was the 
central one. The computer experiments testified a high efficiency of the 
proposed approach. 
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1. INTRODUCTION 

In many scientific and engineering problems one often needs to study 
the operation of some system or phenomenon of interest. As input data we 
consider observations regarding the performance of this system under different 
situations. Moreover, we assume that these observations belong to disjoint 
classes. These observations may describe the different states of nature of the 
system under consideration. That is, each observation is comprised by a set of 
variables or attributes along with their corresponding values. Often there are 
only two types of states of nature or classes of observations. The first class 
may correspond to failures of the system and similarly, the second class may 
correspond to its successes. Then, a central problem is to utilize the above 
information (i.e., the observations grouped into different classes) and construct 
a set of classification rules (also known as decision rules or just rules) which 
can explain the behavior of the system. 

Such situations may arise in many settings. For instance, the system 
of interest may be some kind of a mechanical device. Then observations are 
descriptions of the operation of this device. Such descriptions may provide 
information on the noise level, vibration level, temperature of different parts 
of the device, fluid levels, revolution speed of certain parts, etc. The different 
classes may be the properly fimctioning and malfiinctioning states of this 
device. Then one may be interested in studying data that describe different 
conditions when the device is fimctioning properly and also when it is 
malfiinctioning and extract any patterns that might be embedded in these data. 
Such patterns may be used later to accurately predict the state of this device 
when one has not determined yet if it is fimctioning properly or not, but has 
information on some key performance characteristics as described above. 

As another example, one may wish to consider observations that 
describe certain clinical and non-clinical characteristics associated with 
studies to determine whether a given patient has a certain medical condition 
such as breast cancer. Observations may now describe family history facts, 
the presence or not of lesions in mammographic images, blood analysis 
results, etc. The two disjoint classes, roughly speaking, may be the benign or 
malignant nature of any lesions present in a patient's breasts. Usually, such 
final diagnosis takes place after a specimen from the lesion is analyzed in a lab 
(i.e., by performing a biopsy). In such cases one may wish to identify any 
patterns in collections of such observations which may lead to an accurate 
diagnosis without having to perform an invasive and costly procedure such as 
a biopsy. 

Similar situations, like the ones described above, may arise when one 
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Studies other medical conditions, the reliability of mechanical and electronic 
systems, weather phenomena, characterization of images into different classes 
(for digital image analysis), prediction of financial events (for example, for 
investing type of decision-making), prediction of buying behaviors of 
consumers, and so on. 

Until recently such inference problems have been studied by 
statistical models, such as regression and factor analysis. However, the 
proliferation of effective and efficient computing power, along with the easy 
availability of magnetic storage media and new ways for gathering data fast 
and efficiently, created the need for developing new methods for analyzing 
large amounts of data. Moreover, data may now be highly heterogeneous and 
also highly unstructured. The later is the case more and more now with the 
advent and proliferation of the World Wide Web (WWW). 

The above are the main reasons for the emergence of the new 
computational discipline called data mining and knowledge discovery from 
databases (DM&KDD) [Fayyad, et al., 1996]. This new discipline is based on 
the use of many computational methods formally known as artificial 
intelligence (AI) classification methods. Currently, such classification 
methods include standard back-propagation neural networks, nearest neighbor 
methods, discriminant analysis, cluster analysis, and linear programming 
based methods. Such techniques attempt to generalize from collections of 
available classified data. Therefore, they rely on the supposition that the more 
representative the data are, the more accurate the performance of these 
methods is. 

However, there are some basic weaknesses in using these techniques. 
For example, according to Johnson [1991] the use of Bayesian models may be 
controversial, if not unethical (for instance, in medical diagnosis), because the 
fundamental requirement of strict randomness rarely occurs in reality. Also, 
standard back-propagation neural networks techniques are problematic 
because they do not provide an explanation of their decision-making process 
[Fu, 1993]. In summary, there are two closely related fundamental 
weaknesses with most of the existing classification methods: 

First weakness: 
The way these classification methods work and produce 
recommendations may not be appealing to domain experts. For 
instance, the decision-making process inside a standard back-
propagation neural network might be awkward to many users with no 
engineering or computer science background. 

Second weakness: 
The available training data are often insufficient to guaranty 
statistically significant results. This is especially true for data which 
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describe applications in diagnostic systems. As result these methods 
may be unreliable for some of the real life applications or their 
reliability cannot be scientifically guaranteed. 

The severity of the first weakness is increasingly recognized lately 
and some hybrid systems try to combine rule based systems with neural 
network techniques. Such hybrid systems produce a set of decision rules 
which in turn can be used for the classification of new instances. Newly 
developed intelligent hybrid systems, and in particular knowledge based 
neural networks [Fu, 1993, Galant, 1988; Bradshaw, et al, 1989; Hall and 
Romanyuk, 1990; Towell, et al, 1990; and Sun and Alexandre, 1997], appear 
to be more promising. Unfortunately, these systems have the potential to 
create an exponential number of rules [Shavlik, 1994]. Moreover, they may 
even produce contradictory rules because they are not built in a complete 
logic-based framework. 

The second weakness is usually treated by a brutal force approach. 
That is, by collecting huge amounts of training data. However, this may be a 
too time and cost consuming remedy. More importantly, when one considers 
the number of all possible states of nature, then millions, or even billions, of 
observations may represent only a tiny fraction of the entire state space. This 
may cause severe concerns regarding the reliability of the extracted 
knowledge, especially for medical diagnostic systems (see, for example, 
[Kovalerchuk, et al, 2000]). For instance, a system described on 50 binary 
attributes corresponds to 2̂ ^ = 1.12589x10^^ different states of nature. In that 
case, even a few billions of observations may be considered as been 
statistically too few. 

This chapter presents some developments for inferring a compact 
Boolean function from collections of positive and negative examples and also 
some related subjects. This chapter is organized as follows. The next section 
describes the main problems to be examined and some related developments 
from the literature. Section 3 defines the notation to be used throughout this 
chapter. Section 4 focuses on the problem of inferring a small number of 
classification rules from two collections of training (positive and negative) 
examples. These rules are first extracted in the form of a compact Boolean 
function. Some optimal algorithms and fast heuristics are described. It also 
describes a data transformation method for converting multi-valued data into 
binary ones. Section 5 describes a guided learning approach. Section 6 
presents the notion of a special graph which can be easily built from the 
training examples. Section 7 describes how that graph can be used to 
decompose a large size data mining problem. A detailed illustrative example 
is presented in Section 8. Section 9 is the last one and describes some 
conclusions and possible future research topics. 
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2. SOME BACKGROUND INFORMATION 

We assume that some observations are available and they describe the 
behavior of a system of interest. It is also assumed that the behavior of this 
system is fully described by a number, say n, of attributes (also know n̂ as 
atoms, parameters, variables, characteristics, predicates, or just features). 
Thus, each observation is defined by a vector of size n. The /-th (for / = 1,2, 
3,..., w) element of such a vector corresponds to the value of the z-th attribute. 
These attributes may be of any data type. For instance, they may take 
continuous, discrete, or binary (i.e., 0/1) values. Each observation belongs to 
one and only one of AT distinct classes. It is assumed that the observations are 
noise free. Furthermore, it is also assumed that the class membership 
associated with each observation is the correct one. 

One may assume that some observations, say m, are already available. 
New observations (along with their class membership) may become available 
later but the analyst has no control on their composition. In addition to the 
previous scenario, the analyst may be able to define the composition of new 
observations (i.e., to set the values of the n attributes) and then perform a test, 
or ask an expert or ''oracle '\ to determine the class membership of a new 
observation. The main goal is to use the available classified observations to 
extract the underlying behavior of the target system in terms of a pattern. 
Next, this pattern is used to, hopefully, accurately infer the class membership 
of unclassified observations. 

The extraction of new knowledge in the form of a set of logical 
decision rules from collections of classified data is a particular type of 
learning from examples. The related literature is vast and is increasing rapidly 
and thus it will not be exhaustively discussed. One of the most recent 
contributions is the book by Truemper [2004] which discusses methods for 
inferring the logic of a system of interest from sampled observations and then 
use it towards building intelligent systems. Complexity issues of this type of 
learning can be found in [Valiant, 1984; and 1985], [Keams, et al, 1987], and 
[Pitt and Valiant, 1988]. 

A considerable amount of related research is today known as the PAC 
(for Probably Approximately Correct) learning theory (see, for instance, 
[Angluin, 1988] and [Haussler and Warmuth, 1993]). Conjunctive concepts 
are properly PAC leamable [Valiant, 1984]. However, the class of concepts in 
the form of the disjunction of two conjunctions is not properly PAC leamable 
[Pitt and Valiant, 1988]. The same is also true for the class of existential 
conjunctive concepts on structural instance spaces with two objects [Haussler, 
1989]. The classes of ^-DNF, ^-CNF, and ^-decision lists are properly PAC 
leamable for each fixed k [Valiant, 1985; Rivest, 1987; and Keams, et al, 
1987], but it is unknown whether the classes of all DNF, or CNF functions are 
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PAC leamable [Haussler and Warmuth, 1993] and [Goldman, 1990]. In 
[Mansour, 1992] an ^̂^̂^̂siogw) algorithm is given for learning DNF formulas 
(however, not of minimal size) under a uniform distribution using membership 
queries. 

Another issue is the sample complexity of a learning algorithm. That 
is, the number of examples needed to accurately approximate a target concept. 
The presence of bias in the selection of a hypothesis from the hypothesis space 
can be beneficial in reducing the sample complexity of a learning algorithm. 
Usually the amount of bias in the hypothesis space H is measured in terms of 
the Vapnik'Chernovenkis dimension, denoted as VCdim(H) [Haussler, 1988]. 

There are many reasons why one may be interested in inferring a 
Boolean function with the minimum (or near minimum) number of terms. In a 
circuit design environment, a minimum size Boolean representation is the 
prerequisite for a successful VLSI application. In a learning from examples 
environment, one may be interested in deriving a compact set of decision rules 
which satisfy the requirements of the input examples. This can be motivated 
for achieving the maximum possible simplicity (Occam's razor) and easy 
validation of the derived new knowledge. 

Since the very early days it was recognized that the problem of 
inferring a Boolean function with a specified number of clauses is NP-
complete (see, for instance, [Brayton, etal, 1985] and [Gimpel, 1965]). Some 
early related work in this area is due to [Bongard, 1970]. The classical 
approach to deal with this Boolean function inference problem as a 
minimization problem (in the sense of minimizing the number of CNF or DNF 
clauses) was developed in [Quine, 1952 and 1955] and [McCluskey, 1956]. 
However, the exact versions of the Quine-McCluskey algorithm cannot handle 
large scale problems. Thus, some heuristic approaches have been proposed. 
These heuristics include the systems MINI [Hong, et al, 1974], PRESTO 
[Brown, 1981], and ESPRESSO-MV [Brayton, et al, 1985]. Another widely 
known approach in dealing with this problem is the use of Karnaugh maps 
[Karnaugh, 1953]. However, this approach cannot be used to solve large scale 
problems [Pappas, 1994]. Another application of Boolean function 
minimization can be found in the domain of multicast [Chang, et al, 1999] 
where one needs a minimum number of keys. 

A related method, denoted as SAT (for satisfiability), has been 
proposed in [Kamath, et al, 1992]. In that approach one first pre-assumes an 
upper limit on the number of clauses to be considered, say k. Then a clause 
satisfiability (SAT) model is formed and is solved by using an interior point 
method developed by Karmakar and his associates [Karmakar, Resende, and 
Ramakrishnan, 1992]. If the clause satisfiability problem is feasible, then the 
conclusion is that it is possible to correctly classify all the examples with k or 
fewer clauses. If this SAT problem is infeasible, then one must increase k 
until feasibility is reached. In this manner, the SAT approach yields a system 
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with the minimum number of clauses. It is important to observe at this point 
that from the computational point of view it is much harder to prove that a 
given SAT problem is infeasible than to prove that it is feasible. Therefore, 
trying to determine a minimum size Boolean function by using the SAT 
approach may be computationally too difficult. Some computational results 
indicate that the branch-and-bound (B&B) approach proposed in 
[Triantaphyllou, 1994] is significantly more efficient than the previous 
satisfiability based approach (5,500 times faster on the average for those tests). 

In [Felici and Truemper, 2002] the authors propose a different use 
of the SAT model. They formulate the problem of finding a clause with 
maximal coverage as a minimum cost satisfiability (MINSAT) problem and 
solve such problem iteratively by using the logic SAT solver Leibniz, which 
was developed by Truemper [Truemper, 1998]. That method is proved to be 
computationally feasible and effective in practice. The same authors also 
propose several variants and extensions to that system, some of which are 
discussed in Chapter 6 of this book. Further extensions on this learning 
approach are also discussed in [Truemper, 2004]. 

A closely related problem is to study the construction of a partially 
defined Boolean function (or pdBf), not necessarily of minimal size, given 
disjoint sets of positive and negative examples. That is, now it is required that 
the attributes of the function be grouped according to a given scheme (called a 
decomposition structure) [Boros, et ah, 1994]. Typically, a pdBf may have 
exponentially many different extensions. 

In summary, the most recent advances in distinguishing between 
observations in two or more classes can be classified into six distinct 
categories. These developments are; the clause satisfiability approach to 
inductive inference by Kamath, et al [1992; and 1994]; some B&B and 
heuristic approaches of generating a small set of logical decision rules 
developed in [Triantaphyllou, et al, 1994], and [Triantaphyllou, 1994]; some 
improved polynomial time and NP-compIete cases of Boolean function 
decomposition by [Boros, et al, 1994]; some MINSAT formulations [Felici 
and Truemper, 2002]; decision tree based approaches [Quinlan, 1979; and 
1986]; linear programming based approaches by [Wolberg and Mangasarian, 
1990], [Mangasarian, et al, 1990] and [Mangasarian, et al, 1995]; some 
approaches which combine symbolic and connectionist machines (neural 
networks) as proposed by [Sun and Alexandre, 1997], Shavlik [1994], Fu 
[1993], Goldman and Sloan [1994] and Cohn, et al [1994] and finally, some 
nearest neighbor classification approaches by Hattori and Torri [1993], Kurita 
[1991], Kamgar-Parsi and Kanal [1985]. 

The main challenge in inferring a target set of discriminant decision 
rules from positive and negative examples is that the user can never be 
absolutely certain about the correctness of the decision rules, unless he/she has 
processed the entire set of all possible examples which is of size 2" in the 
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binary case. In the general case this number is far higher. Apparently, even 
for a small value ofn, this task may be practically impossible to realize. 

Fortunately, many real life applications are governed by the behavior 
of a monotone system or they can be described by a combination of a small 
number of monotone systems. In data mining and knowledge discovery 
research monotonicity offers some unique computational advantages. By 
knowing the value of certain examples, one can easily infer the values of more 
examples. This, in turn, can significantly expedite the learning process. This 
chapter discusses the case of inferring general Boolean functions from disjoint 
collections of training examples. The case of inferring a monotone Boolean 
function is discussed in Chapter 4 of this book as written by Torvik and 
Triantaphyllou [2006]. 

3. DEFINITIONS AND TERMINOLOGY 

Let {Ai, A2, As, ..., At) be a set of / Boolean attributes. Each 
attribute At (/ = 1, 2, 3, ..., /) can be either true (denoted by 1) or false 
(denoted by 0). Let F be a Boolean function over these attributes. For 
instance, the expression {Ai VAT) A {A3 VA4) is such a Boolean function, 
where "v" and "A" stand for the logical "OR" and "AND" operators, 
respectively. That is, F is a mapping from {0,1}' -> {0,1} which 
determines for each combination of truth values of the attributes Ai, A2, A3, 
..., At of F, whether F is true or false (denoted as 1 or 0, respectively). 

For each Boolean function F, the positive examples are the vectors 
VG{0,1,} ' such that F(v) = 1. Similarly, the negative examples are the 
vectors ve {0,1,}' such that F(v) = 0. Therefore, given a function F defined 
on the / attributes {Ai, A2, A3, ..., At}, then a vector VG{0,1,} ' is either a 
positive or a negative example. Equivalently, we say that a vector ve {0,1,}' 
is accepted (or rejected) by a Boolean function F if and only if the vector v 
is a positive (or a negative) example of F. For instance, let F be the Boolean 
function {Ai VA2) A {A3 VA4). Consider the two vectors vy = (1,0,0,0) and 
V2 = (1,0,0,1). Then, it can be easily verified that F(v]) = 1. That is, the 
vector Vy is a positive example of the function F. However, the vector V2 is 
a negative example of F (since F(v2) = 0). 

At this point some additional definitions are also introduced. Let 
^G {0,1,}' be an example (either positive or negative). Then, ^G {0,1,}' is 
defined as the complement of the example e. For instance, \i e -
(0,1,1,0,0,0), then e = (1,0,0,1,1,1). Similarly, let F be a collection of 
examples. Then, E is defined as the complement of the collection E. A 
Boolean expression is in CNF or DNF if it is in the form (/) or (//), 
respectively: 
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k 

k 

and \/(A''i)^ 0*0 
7=1 i^Pj 

where at is either At or At and py is the set of indexes. 

In other words, a CNF expression is a conjunction of disjunctions, while a 
DNF expression is a disjunction of conjunctions. 

It is known [Peysakh, 1987] that any Boolean function can be 
transformed into the CNF or DNF form. The following theorem proved in 
[Triantaphyllou and Soyster, 1995a] states an important property which 
exists when CNF and DNF systems are inferred from collections of positive 
and negative examples. 

Theorem 1: 
Let E^ and ET be the sets of positive and negative examples, respectively. A 
CNF system given as (i) satisfies the constraints of the E^ and ET sets if and 
only if the DNF system given as (ii) satisfies the constraints of FT 
(considered as the positive examples) and E^ (considered as the negative 
examples). 

This theorem is stated here because the graph theoretic 
developments throughout this chapter assume that a system is derived in 
CNF form. However, since a clause inference algorithm which derives 
DNF expressions (such as, for instance, the SAT approach described in 
[Kamath, et al, 1992; and 1994]) can also derive CNF expressions (by 
applying the previous theorem), the methods in this chapter are applicable 
both to CNF and DNF cases. 

In summary, a set of positive examples is denoted as E"^ and a set of 
negative examples is denoted as FT. Given these two sets of positive and 
negative examples, the constraints to be satisfied by a system (i.e., a 
Boolean function) are as follows. In the CNF case, each positive example 
should be accepted by all the disjunctions in the CNF expression and each 
negative example should be rejected by at least one of the disjunctions. In 
the case of DNF systems, any positive example should be accepted by at 
least one of the conjunctions in the DNF expression, while each negative 
example should be rejected by all the conjunctions. 
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4. THE ONE CLAUSE AT A TIME (OCAT) 
APPROACH 

The main ideas are best described via a simple illustrative example. 
Suppose that the data in Table 1 represent some sampled observations of the 
function of a system of interest. Each observation is described by the value of 
two continuous attributes denoted as A\ and Ai. Furthermore, each 
observation belongs to one of two classes, denoted as Class 1 and Class 2. A 
number of problems can be considered at this point. The main problem is how 
to derive a pattern, in the form of a set of rules, that is consistent with these 
observations. As set of rules we consider here logical clauses in the CNF 
(conjunctive normal form) or DNF (disjunctive normal form). That is, we 
seek the extraction of a Boolean function in CNF or DNF form. 

Although, in general, many such Boolean functions can be derived, 
the focus of the proposed approach is the derivation of a function of minimum 
size. By minimal size we mean a Boolean function which consists of the 
minimum number of CNF or DNF clauses. We leave it up to the analyst to 
decide whether he/she wishes to derive CNF or DNF functions. The proposed 
methodology can handle both cases when Theorem 1, as described in the 
previous section, is used. 

Table 1. Continuous Observations for Illustrative Example. 

Example 

1 ̂ •̂ 
1 

2 

3 

4 

5 

6 

7 

S 

9 

10 

11 

Ax 

0.25 

0.75 

1.00 

0.50 

1.25 

0.75 

1.25 

1.50 

1.75 

2.25 

0.25 

A2 

1.50 

1.50 

1.50 

1.25 

1.25 

1.00 

1.00 

1.00 

1.00 

1.00 

0.75 

Class 
No. 

1 

1 

1 

1 

2 

1 

1 

2 

1 

2 

1 

Example 
1 No. 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Ax 

1.00 

1.50 

1.75 

0.50 

1.25 

2.25 

2.75 

1.25 

1.75 

2.25 

A2 

0.75 

0.75 

0.75 

0.50 

0.50 

0.50 

0.50 

0.25 

0.25 

0.25 

Class 
No. 1 

1 

1 

2 

1 

2 

2 

2 

2 

2 

2 

4.1 Data Binarization 
Next it is demonstrated how the continuous data depicted in Table 1 

can be represented by equivalent observations with only binary attributes. 
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This is achieved as follows. First we start with the first continuous attribute, 
i.e., attribute A\ in this case, and we proceed until we cover all the attributes. 
It can be observed from Table 1 that the ordered set, denoted as Val{A\\ with 
all the values of attributed] is defined as the following ordered list: 

Val{A{)= {F;(^i),forz=l,2,3,...,9} = 
= {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.25, 2.75}. 

Obviously, the cardinality of this set is less than or at most equal to the 
number of all available observations. In this instance, the cardinality is equal 
to 9. Next, we introduce 9 binary attributes A\j (for / = 1, 2, 3, ..., 9) as 
follows: 

^ / _ J 1 , iff A,<V,(A,), for i = l,2J,...,9, 
^'^ 10, otherwise. 

In general, the previous formula becomes for any multi-valued attribute Aj: 
^ / ^ j l iff Aj< Vi(Aj), for i = l,2,3,...,M, 

'̂' 10, otherwise. 

For instance, by using the above introduced binary attributes, from the second 
observation (i.e., vector (0.75, 1.50) we get: 

{Aj.AjaJ.AjaJ.AeUujUJ^AiJ} = {1, 1, 1, 0, 0, 0, 0, 0, 0}. 

Similarly, for the second continuous attribute A2 the set Val{A2) is defined as 
follows: 

Val{A2) = {Vt{A2\ for / = 1, 2, 3,..., 6} = 
= {0.25, 0.50, 0.75, 1.00,1.25, 1.50}. 

Working as above, for the second observation we have: 
{^2,/, ̂ 2,2 ,̂ ^2,/ , A / , ^ 2 / , ̂ 2,6^} = { 1 , 1 , 1 , 1 , 1 , 1 } . 

The above transformations are repeated for each one of the non-binary 
attributes. In this way, the transformed observations are defined on at most 
mxn binary attributes (where m is the number of observations and n is the 
original number of attributes). The precise number of the transformed 
attributes can be easily computed by using the following formula: 

^\Val(Ai)\, 
i = I 

where \s\ denotesthecardinality of set^. 
The binary attributed observations which correspond to the original data (as 
presented in Table 1) are presented in Table 2 (parts (a) and (b)). 
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Table 2 (a). The Binary Representation of the Observations in the Illustrative 
Example (first set of attributes for each example). 

Example 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

First set of attributes: 

.41,1̂  AJ AJ AIA' 

1 0 0 0 

1 1 1 0 

1 1 0 0 

1 0 0 0 

1 1 0 0 

Au\ 

AJ 
0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

1 

1 

1 

1 

1 

1 

for / = 

Al,6' 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

1 

= 1,2,3, 

Ai^ 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

1 

1 

0 

1 

1 

. . . ,9. 

Aus^ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

AJ 
~0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 
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Table 2 (b). The Binary Representation of the Observations in the Illustrative 
Example (second set of attributes for each example). 

Example 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Second set of attributes: AiJ, 
. . . ,6. 

Aiy A2,2' A2,3' 

1 1 0 

1 1 0 

1 1 0 

1 1 0 

1 0 0 

1 0 0 

1 0 0 

AIA' 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

for / = 1, 

A2,5' 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 ,3 , 

A2,6^ 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Class 

No. 

1 

1 

1 

1 

2 

1 

1 

2 

1 

2 

1 

1 

1 

2 

1 

2 

2 

2 

2 

2 

2 

From the way the binary attributes have been defined, it follows that 
the two sets of observations are equivalent to each other. However, the 
observations in Table 1 are defined in continuous attributes while the 
observations in Table 2 are defined in binary ones. 

Given the above considerations, it fDllows that the original problem 
has been transformed into the binary problem depicted in Table 2 (parts (a) 
and (b)). This problem has the following two sets of positive and negative 
examples, denoted as E^ and E~, respectively. 
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E- = 

0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 
1 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 

1 0 0 0 0 1 
1 1 1 0 0 1 

0 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 
1 1 0 0 0 1 

0 0 0 0 0 0 0 1 

1 
1 
1 1 
1 1 
1 
1 1 
1 1 

0 0 0 0 1 
1 0 0 0 1 

1 0 1 
0 0 1 

0 0 0 0 1 
1 0 1 
1 1 1 

1 1 
1 1 

1 0 
1 0 
1 0 

1 1 1 
1 1 1 
1 1 1 
1 1 0 
1 0 0 
1 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 Oj 

1 1 O" 
1 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

1 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 

1 1 0 0 0 0 0 0 

and 

Finally, it should be stated here that Chapter 7 of this book [Bartnikowski, et 
al, 2006] presents a detailed study of the binarization problem. 

4.2 The One Clause At a Time (OCAT) Concept 
As it was mentioned in the previous section, the problem of deriving a 

Boolean function from sets of observations has been extensively studied in the 
literature. In our setting each example was a binary vector of size n (number 
of binary attributes). The proposed method employs an approach which 
constructs one clause at a time, called the OCAT (for One Clause At a Time) 
approach. That approach is greedy in nature in the sense that the first clause 
(in the CNF case) accepts all the positive examples while it rejects as many 
negative examples as possible. The second clause also accepts all positive 
examples, but rejects as many negative examples from the ones not rejected so 
far. Consecutive clauses are generated in a similar manner until all the 
derived clauses reject the entire set of negative examples. The operation of 
the OCAT approach is best described in Figure 1. In this figure E" represents 
the set with the positive examples while ET is the set with the negative ones. 

The core of the OCAT approach is step 2, in Figure 1. In 
Triantaphyllou, et al [1994] a branch-and-bound (B&B) based algorithm is 
presented which solves the problem posed in step 2. A more efficient B&B 
algorithm, along with other enhancements, are described in Triantaphyllou 
[1994]. The OCAT approach returns the set of desired clauses (i.e., the CNF 
system) as set C 
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/ = 0 ; C = 0 ; {initializations} 
DO WHILE {ET ^ 0) 

Step 1: 
Step 2: 

Step 3: 

Step 4: 
Step 5: 

REPEAT; 

/ <— / + 1 ; 
Find a clause d 
while it rejects as 

which accepts all members of E^ 
many members ofE" as possible ; 

Let E~ (ci) be the set of members of E~ which are 
rejected by d; 

Let C <- C A /̂ 
Let E~ <r- E~ -

? 

-£r(c,); 

Figure 1. The One Clause At a Time (OCAT) Approach (for the CNF case). 

4.3 A Branch-and-Bound Approach for Inferring Clauses 
This B&B algorithm is best described in [Triantaphyllou, 1994]. The 

basic steps are described next in terms of an illustrative example. Consider 
the following two sets of positive and negative examples: 

1 0 10" 

0 1 0 0 

1 1 0 0 

0 0 1 1 

1 0 0 1. 

and E- = 

0 0 0 1 

1 1 1 1 

0 0 0 0 

1 0 0 0 

1 1 1 0 

These examples are defined on four attributes (and their negations). 
Recall that for the CNF case, the requirement is that the clause to accept all 
the positive examples, while rejecting as many negative examples as possible. 
Next, define as POS{Ai) the set of the positive examples which are accepted 
by a CNF clause when the attribute At is included in that clause. For instance, 
for the previous examples, one has (please note that for simplicity only the 
indexes of these examples are used): POS{A2) = {1,2}, POSiAs) = {1,2,4}, 
etc. That B&B algorithm also uses the concept of the NEG(Ai) set which is 
defined in a similar manner. 

The search states are described in terms of two sets. The first set 
refers to the positive examples which are accepted by the attributes which 
correspond to the arcs which connect that state (node) with the root node. 
Similarly, the second set refers to the negative examples which are accepted 
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by the attributes which correspond to the arcs which connect that state with 
the root node. Suppose that we are at state Si = [Pt, Ni] (where Pi, Ni 
correspond to the previous two sets of positive and negative examples, 
respectively). Now assume that the search considers the state (node) which is 
derived by following the arch which corresponds to attribute Ak. Then, the 
new state is: *Ŝ  = [Pj, Nj], where the new sets Pj and Nj are defined as follows: 

Pj = Pi U POS(Akl and 
Nj = NiUNEG{Ak). 

Therefore, the search continues until terminal states are reached. A 
state Si = [Pi, Ni] is a terminal state if and only if: Pi = E^ (i.e., it refers to all 
positive examples). Apparently, a terminal state with a minimum cardinality 
of the set Ni is optimal (in the OCAT sense). In the light of the previous 
considerations, the problem (for the CNF case) to be solved by the B&B 
search can be summarized as follows (where a/ is either J/ or^'): 

Find a set of attributes S such that the following two conditions are true: 

= minimum, 
a eS 

i 

and I U POS(ai)\ =£", 
a eS 

i 

The attributes in the S set are the ones that correspond to the attributes 
of the CNF clause to be constructed. Given the above definitions some useful 
derivations are possible. We say that a state Si absorbs another state Sj if by 
expanding the state Sj, we cannot reach any better terminal state than the ones 
derived by expanding the state Si. In such a case we call that the state S} is an 
absorbed state. From the previous considerations it becomes obvious that 
once a state can be identified to be an absorbed state, then it can be dropped 
from further consideration. Then the following two theorems [Triantaphyllou, 
1994] are applicable (only) when a CNF clause is to be generated and they 
provide some conditions for identifying absorbed states. 

Theorem 2: 
The state Si = [Pi, NJ absorbs the state Sj = [Pj, NJ if the following condition 
is true: Pj c: Pi and N ^ Nj. 

Theorem 3: 
Suppose that Si = [Pi, NJ is a terminal state. Then, any state Sj = [Pj, NjJ, 
such that \Nj\ > \Ni\, is absorbed by the state Si. 
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From the previous considerations it follows that there is a great 
advantage to reach terminal nodes early in the search process. In this way, the 
minimum size of their Â  sets can be used to effectively fathom search states. 
For these reasons that B&B search can be applied in two phases. During the 
first phase only a very small number (say, 10) of active states is maintained. If 
there are more than 10 active states, then they are ranked according to their Pi 
and Ni sizes. In this way, the states with the highest potential of being optimal 
are kept into memory. This is the principle of beam search in artificial 
intelligence (see, for instance, [Dietterich and Michalski, 1983]). At the end 
of phase one, a terminal state of small cardinality becomes available. Next, 
phase two is initiated. During the second phase a larger number (say, 50) of 
active states is allowed. However, states now can be fathomed more 
frequently because the size of a small Ni set of a terminal state is known. 

An important issue with the previous two phases is to be able to 
decide when a terminal state is optimal (in the OCAT sense). As it was 
mentioned above, memory limitations may force the search to drop states 
which are not absorbed by any other state. Therefore, there is a possibility to 
drop a state which could had lead to an optimal state (and thus to determine 
an optimal clause). 

Suppose that L non-absorbed states had to be dropped because of 
memory limitations. Let K\, Ki, K3, ..., KL represent the cardinalities of their 
corresponding Ni sets. Next, define the quantity KMIN as the minimum of the 
previous L numbers. Similarly, suppose that the B&B process has identified 
N terminal states. Let 7i, Y2, Y3, ..., YN represent the cardinalities of their 
corresponding Ni sets. Define as YMIN the minimum of the previous Â^ 
cardinalities. Then, the previous considerations lead to the proof of the 
following theorem [Triantaphyllou, 1994] which states a condition for 
establishing optimality. 

Theorem 4: 
A terminal state Si = [Pi, Ni] is also an optimal state if the following two 
conditions are true: 

\Ni\ = YMIN, and KMIN >. YMIN 

Note that this theorem can be applied after each one of the two phases. 
Obviously, if it is applicable after the first phase, then the second phase does 
not need to be initiated. The following lemma states a condition when 
optimality is not provable. 

Lemma 1: 
If KMIN < YMIN, then an optimal clause accepts no less than KMIN negative 
examples. 
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This lemma indicates that if optimality camiot be proven, then it is still 
possible to establish a lower limit on the number of negative examples which 
can be accepted by an optimal clause (or, equivalently, an upper limit on the 
number of negative examples which can be rejected hy an optimal clause). 

4.4 Inference of the Clauses for the Illustrative Example 
When the OCAT algorithm, with the B&B approach described in 

[Triantaphyllou, 1994] is used in step 2, two Boolean functions can be 
derived. The first function is derived when the examples in set E^ are used as 
the positive examples while the examples in E~ are used as the negative 
examples. We call the set of these clauses the positive rules (because the 
positive examples evaluate these clauses as true). 

The Boolean function derived from the previous E^ and K" examples 
has the following form (note that the attribute names have been slightly altered 
to reflect the adjusted notation): 

(J"l,8 A ^2,2 A Ai5 ) V (^2,3 A ^ 1,8 A A 2,5 A A 1,6 ) V 

(^2,3 A ^1,6 A A 18 AA\J A ^2,4 ) V (A \j A ^1,6 A A 2,4 )• 

Similarly, the second function is derived when the examples in set E~ 
are used as the positive examples while the examples in E^ are used as the 
negative examples. Thus, we call these clauses the negative rules. The 
Boolean function derived from the previous E~ and E^ examples is: 

(^1,5 A -^2,3) V (A\^5 A ^1,6 A ^1,7 A ^ l . s ) V 

(A\^5 A ^2 ,5 ) V (^1,6 A ^1,7 A ^2 ,4 ) V (^1,6 A ^1,7 A ^2,4 )• 

When the definitions of the Boolean attributes A\J (for / = 1, 2, 3,..., 
9) and A2J (for7 = 1, 2, 3, ..., 6) are used, then it is easy to verify that the 
previous two functions yield the following two sets of rules defined on the two 
original continuous attributes A\ andA2: 

(0 Positive Classification Rules: 
(^1 < 1.00 and A2 >0.5) (Rule/?^) 
(^1 < 1.25 and 1.00 > ^2 > 0.75) (Rule/?^2) 
(Ai = 1.75 and A2 > 1.00) (Rule/?^) 
(Ai = 1.50 and 0.75 > ^2 ) (Rule/?^) 

(ii) Negative Classification Rules: 
(Ai> 1.25 and 0.50 > A2 ) (Rule/?~i) 
(^i>2.25) (Rule/?~2) 
(^i>1.25 and ^2 > 1.25) (Rulei?~3) 
(^i>1.75 and 0.75 >^2 ) (Rule/?"4) 
(Ai = 1.50 and ^2 > 1.00) (Rule R "5) 
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Figure 2. Continuous Data for Illustrative Example and Extracted Sets of 
Classification Rules. 

When dealing with DNF clauses (as is the previous case), decision 
rules can be derived by observing that for an example to be positive, it must 
satisfy at least one clause. Thus, for the first of the previous clauses (i.e., for 
clause (^1^ A 2̂,2̂  A A\J) and by noting that: As <~ AiJ , Au^ AiJ. 
and A I 

5 ' ^ ^1,5 ) the corresponding decision rule is: 
IF (As and An and As are all true), 
THEN (this example is a positive one). 

For the CNF case, a conjunction can be transformed into an equivalent logical 
decision rule by observing that the following two expressions are equivalent: 

{A\ V Ai) is equivalent to: {A\ -> A2). 

From the above discussion it follows that any CNF or DNF 
expression with k clauses (conjunctions or disjunctions) can be described in 
terms of the same number k of decision rules. In the CNF case the attribute(s) 
which compose the "IF" parts of these rules are not uniquely determined. 
Therefore, it is the task of the field expert to decide which attributes are 
allowed to be present in the "IF" part of a rule (or antecedent part) or in the 
"THEN" part of a rule (or consequent part). It can be easily shown that given 
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two classes of observations, then one can derive as many CNF conjunctions as 
the number of negative examples [Triantaphyllou, Soyster, and Kumara, 1994; 
or Triantaphyllou, 1994] (similar results hold for the DNF case). Therefore, 
for cases in which the negative examples are numerous one may be interested 
in determining a minimal (or at least very small) number of such logical 
decision rules. This is an issue of significant practical importance, since 
compact sets of decision rules are easier to validate and use. 

The previous two sets of rules, along with the positive and negative 
examples (as defined in terms of the two continuous attributes A\ and A2) are 
depicted in Figure 2. The same figure also indicates some of the reasons why 
the proposed approach, at least for the binary case, delivered more accurate 
results when it was compared in [Deshpande and Triantaphyllou, 1998] with 
some other approaches (neural networks and separating planes via the LP 
approach developed by Mangasarian and his associates [Mangasarian, et al., 
1991]). When both sets of decision rules are used, then for a new observation 
to be classified as positive, it must be both accepted by the positive rules and 
also rejected by the negative rules (analogously for an observation to be 
classified as negative). 

However, many existing classification techniques consider only one 
set of rules. Therefore, in the proposed approach there are three different 
classification decisions: "Positive," "Negative," and "Undecided" Many 
traditional approaches do not consider the third type (i.e., "Undecided"). By 
forcing the derived sets of decision rules to be as compact as possible, the 
proposed approach has a tendency to isolate and "close-in" observations into 
compact groups defined in the same class. Many methods simply try to 
determine separating planes (borders) of some sort which are in the middle of 
some type of distance. Usually, such a distance reflects how apart the two 
classes of observations are. In this chapter the population space is actually 
partitioned into four types of areas: "positive areas," "negative areas," "areas 
of conflict" between the two sets of rules, and "areas not covered" by any 
rules. In Figure 2 the case "areas of conflict" between the two sets of rules 
does not occur (by coincidence). 

To offset the drawback of the exponential time complexity of the 
B&B algorithm in step 2 of the OCAT approach, in [Deshpande and 
Triantaphyllou, 1998] a heuristic of polynomial time complexity is proposed. 
Under that heuristic the clause which is formed during a single iteration rejects 
many (as opposed to as many as possible) negative examples. This heuristic 
seems to offer an alternative approach when the problem size is very large. It 
can also be combined with the previous B&B approach and is also randomized 
as a GRASP (Greedy Random Adaptive Search Procedure [Feo and Resende, 
1995]) approach. 
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4.5 A Polynomial Time Heuristic for Inferring Clauses 
To offset the drawback of the exponential time complexity of the 

B&B algorithm in step 2 of the OCAT approach, in this heuristic clauses are 
formed in a manner such that each clause accepts all the examples in the E^ 
set while it attempts to reject many (as opposed to as many as possible in 
the B&B approach) examples in the E~~ set. Note that this is the main 
procedural difference between the B&B algorithm and the proposed 
heuristics. In the proposed heuristic this is achieved by choosing the 
attributes to form a clause based on an evaluative function (to be described 
later). Only attributes with high values in terms of the evaluative function 
are included in the current clause. A single clause is completely derived 
when all the examples in the E^ set are accepted. The clause forming 
procedure is repeated until all the examples in the E~ set are rejected by the 
proposed set of clauses. As some computational results in [Deshpande and 
Triantaphyllou, 1998] indicate, this strategy may often result in Boolean 
functions with a small number of clauses. 

Observe that if always the attribute with the highest value of the 
evaluative function is included in the clause, then there is an inherent danger 
of being trapped in a local optimal point. To prevent this undesirable 
behavior, a randomized approach is used. In this randomized approach, 
instead of a single attribute being included in a clause due to its highest 
value of the evaluative function, a candidate list is formed of attributes 
whose values in terms of the evaluative function are close to the highest 
value as derived from the evaluative fixnction. Next, an attribute is randomly 
chosen out of the candidate list and is included in the CNF clause being 
derived. 

Please note that it is possible for a CNF clause to reject as many 
negative examples as possible (and, of course, to accept all positive 
examples) but the entire system not to have a small (ideally minimum) 
number of clauses. Recall that the proposed heuristics follow the OCAT 
approach (see also Figure 1). That is, sometimes it may be more beneficial 
to have a less "effective" clause which does not reject a large number of 
negative examples, and still derive a system with very few clauses. Such 
systems are possible to derive with the use of randomized algorithms. A 
randomized algorithm, with a sufficiently large number of random 
replications, is more difficult to be trapped by a local optimal point. 

A heuristic approach, termed RAl (for Randomized Algorithm 7), 
was proposed in [Deshpande and Triantaphyllou, 1998] to solve the first 
research problem considered in this chapter. Before the RAl heuristic is 
formally presented, some new definitions and terminology are summarized 
next. 
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Definitions: 
C = 

POS(Ak) = 

NEG(Ak) = 

1 = 
ITRS-

The set of attributes in the current clause 
(disjunction). 
An attribute such that AkeA, where A is the set of 
all attributes ^7, ..., An. 
The number of all positive examples in E^^ which 
would be accepted if attribute Ak is included in the 
current clause. 
The number of all negative examples in ET which 
would be accepted if attribute Ak is included in the 
current clause. Please note that the last two 
definitions are slightly different from the previous 
definitions of POS and NEG as sets of examples. 
Now we are interested in the sizes of these sets 
only. 
The size of the candidate list. 
The number of times the clause forming procedure 
is repeated. 

As an illustrative example of the above definitions, consider the following 
sets of positive and negative examples (which were also given in Section 
3.3). 

E'-

0 1 0 0 

1 1 0 0 

0 0 1 1 

1 0 0 1 

and̂ "-

1 0 1 0 

0 0 0 1 

1 1 1 1 

0 0 0 0 

1 0 0 0 

1 1 1 0 

The set^ of all attributes for the above set of examples is: 

A = {Ai, A2, A3, A4, A], A2, A3, A4}. 

Therefore, the POS(Ak) and the NEG(Ai^ values are: 

POS(Ai) = 2 NEG(Ai) = 4 POS(Ai) = 2 NEG(Ai) = 2 

POS(A2) = 2 NEG(A2) = 2 POS(A2) = 2 NEG(A2) = 4 
P0S(A3) = 1 NEG(A3) = 3 POS(A3) = 3 NEG(A3) = 3 
POS(A4) = 2 NEG(A4) = 2 POS(A4) = 2 NEG(A4) = 4 



Chapter 2: The OCAT Approach for Inferring Classification Rules 67 

DO for ITRS number of iterations 
BEGIN; 

DO WHILE (fr i. 0 ) 
C = 0 ; {initialization} 

DO WHILE fE i. 0) 
Step 1: Rank in descending order all 

attributes ate a (where at is either 
Ai or Ai) according to their 
POS(ai)/NEG(ai) value. If NEG(ai) 
= 0, then POS(ai)/NEG(ai) = 1,000 
(i.e., an arbitrarily high value); 

Step 2: Form a candidate list of the 
attributes which have the / top 
highest POS(ai)/NEG(ai) values; 

Step 3: Randomly choose an attribute ak 
from the candidate list; 

Step 4: Let the set of attributes in the 
current clause be C ^C v ak; 

Step 5: Let E^(ak) be the set of members of 
E"^ accepted when ak is included in 
the current CNF clause; 

Step 6: Let E+ ^E^— E'^(ak); 
Step 7: Let a ^— a — ak\ 
Step 8: Calculate the new POSfat) values 

for all at e a\ 
REPEAT 

Step 9: Let Er(C) be the set of members of ET 
which are rejected by C; 

Step 10: LetJ^T <^ Er — Er(C)\ 
Step 11: Resets ; 

REPEAT 
END; 

CHOOSE the final Boolean system among the previous ITRS systems 
which has the smallest number of clauses. 

Figure 3. The RAl Heuristic [Deshpande and Triantaphyllou, 1998]. 
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The problem now is to derive a small set of logical clauses which 
would correctly classify all the above examples. Suppose that there exists a 
"hidden" system given by the following Boolean function: 

(A2 VA4) A (A2 vAs) A (Ai vAs VA4). 

It can be easily seen that the above Boolean function correctly 
classifies all the previous examples. Therefore, the first problem is to 
accurately estimate the above "hidden" system. This is accomplished by 
using heuristic RAl, as described in Figure 3. 

The following theorem [Deshpande and Triantaphyllou, 1998] states 
an upper bound on the number of clauses which can be inferred by RAl 
(where m2 is the number of negative examples). 

Theorem 5: 
77?̂  RAl approach terminates within at most m2 iterations. 

Next, let n be the number of attributes in the data set, mi be the 
number of examples in the E^ set and m2 be the number of examples in the 
E~ set. Then Theorem 6 [Deshpande and Triantaphyllou, 1998] states the 
time complexity of the RAl algorithm. 

Theorem 6: 
The RAl algorithm has a polynomial time complexity of order 
0(n(mi+m2)mi m2 ITRS). 

From the way the POS(Ak) and NEG(Ak) values were defined, some 
critical observations can be made. When an attribute with a rather high 
value of the POS function is included in the CNF clause being formed, then 
chances are that some additional positive examples will be accepted by that 
clause as result of the inclusion of that attribute. Similarly, attributes which 
correspond to low NEG values, are likely not to cause many new negative 
examples to be accepted as result of the inclusion of that attribute in the 
current clause. Therefore, it makes sense to include as attributes in the CNF 
clause under formation, the ones which correspond to high POS values and, 
at the same time, to low NEG values. 

In this chapter the notations POS(ai)/NEG(ai) and ?OS(Ak)/NEG(Ak) 
will be used interchangeably to denote the same concept. For the current 
illustrative example, the values of the POS(Ak)/NEG(Ak) ratios are: 

POS(Ai)/NEG(Ai) =^0.5 POS(Ai)/NEG(Ai) = 1.0 
POS(A2)/NEG(A2) = 1.0 POS(A2)/NEG(A2) = 0.5 
POS(A3)/NEG(A3) = 0.33 POS(A3)/NEG(A3) = 1.0 
POS(A4)/NEG(A4) = 1.0 POS(A4)/NEG(A4) =0.5 
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The above discussion illustrates the motivation for considering as 
possible candidates for the evaluative function, the functions: POS/NEG, 
POS'NEG, or some type of a weighted version of the previous two 
expressions. Some exploratory computational experiments indicated that 
the evaluative function POS/NEG was the most effective one. That is, it led 
to the formation of Boolean functions with less clauses than when the other 
evaluative functions were considered. 

The randomization of the RAl algorithm is done as follows. In step 
2, the first / attributes with the highest value of the POS(Ak) / NEG(Ak) ratio 
are chosen as the members of the candidate list and an attribute in the list 
was randomly chosen out of the candidate list in step 3. This is done in 
order to obtain different solutions at each iteration and prevent the system 
from being trapped by a locally optimal point. 

In choosing a fixed value for the size / of the candidate list, there is 
a possibility that an attribute with a very low value of POS(Ak) / NEG(Ak) 
ratio could be selected if the value of / is large enough (how large depends 
on the current data). That could occur if there are not / attributes with a 
sufficiently high value of the POS(Ak) / NEG(Ak) ratio. If an attribute with a 
low value of POS(Ak) / NEG(Ak) is chosen to be included in the clause, then 
the clause would accept less examples from the E^ set or accept more 
examples from the ET set, or both. All these three situations should be 
avoided as it would lead to an increase in the number of attributes in a 
clause (if it accepts less examples from the E"^ set) or, to an increase in the 
number of clauses (if the attribute accepts more examples from the K~ set), 
or both. To prevent the above situation from happening, a candidate list is 
formed of attributes, each of whose POS(Ak) / NEG(Ak) value is within a 
certain percentage, say a %, of the highest value of the POS(Ak) / NEG(Ak) 
value in the current candidate list. This ensures that the attribute (randomly 
chosen out of the candidate list) to be included in the clause has a value 
close to the highest value of the POS(Ak) /NEG(Ak) ratios. 

The above idea of using randomization in a search algorithm has 
been explored recently by other researchers as well. For instance, Feo and 
Resende in [1995] have successfully used randomization to solve clause 
satisfiability (SAT) problems. Also, in a book Motwani and Raghavan 
[1995] provide a comprehensive presentation of the theory on randomized 
algorithms. Randomization also offers a natural and intuitive way for 
implementing/7ara//e//5m in algorithms. 

To obtain a system with a very small number of clauses, the whole 
procedure is subjected to a certain number of iterations (denoted by the 
value of the ITRS parameter) and the system which has the least number of 
disjunctions is chosen as the final inferred Boolean system. 

Referring to the previous illustrative example, if / = 3, then the 
values of the 3 best POS(Ak) /NEG(Ak) ratios are: {1.0, 1.0, 1.0} (note that it 
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is a coincidence that the three values are identical) which correspond to the 
attributes Aj, A2 and A4, respectively. Let attribute A2 be the randomly 
selected attribute from the candidate list. Note that attribute A2 accepts 
examples number 2 and 3 from the current E^ set. Therefore, at least one 
more attribute is required to complete the formation of the current clause. 
The whole process of finding a new attribute (other than attribute A2 which 
has already been selected) with a very high value of POS/NEG is repeated. 
Now, suppose that the attribute with a high POS/NEG value happened to be 
A4. It can be observed now that, when attributes A2 and A4 are combined 
together, they accept all the elements in the E^ set. Therefore, the first 
clause is (A2 VA4). 

This clause fails to reject examples number 2, 3 and 6 in the E~ set. 
Therefore, examples number 2, 3 and 6 in the original £^set constitute the 
reduced (and thus new) ET set. The above process is repeated until a set of 
clauses are formed which, when combined together, reject all the examples 
in the original ET set. Therefore, a final Boolean function for this problem 
could be as follows (recall that the algorithm is a randomized one and thus it 
may not return the same solution): 

(A2 VA4) A (A2 vAs) A (A I vAs VA4). 

5. A GUIDED LEARNING APPROACH 

The above partitioning of the population of all possible examples into 
the previous four disjoint regions (also recall Figure 2), suggests a natural way 
to select the next example to classify by the expert ("oracle'') when new 
examples are selected for training. If the new (and thus unclassified) example 
is selected from the region which represents "areas of conflict," then when it is 
classified by the expert it will indicate that at least one of the positive or 
negative sets of rules needs to be changed (since it has to be either positive or 
negative). Similarly, when the new example is selected from the region which 
represents "areas not covered," then again when it is classified by the expert it 
will indicate that at least one of the positive or negative sets of rules needs to 
be changed. This realization is in direct agreement with the guided learning 
approach recommended in [Triantaphyllou and Soyster, 1995b]. 

The above observations are better formalized as follows. Let us 
consider two sets of positive and negative examples, denoted as E^ and E7~, 
respectively, defined on t (binary or multi-valued) attributes. Let SSAMPLE 

denote the set of rules (systems) derived from the sample data, i.e. when the 
examples in E^ are classified as positive and the examples in ET are classified 
as negative. Similarly, define as SRSAMPLE the set of rules (system) derived 
when ET is used as the positive examples while E^ as the negative examples. 
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That is SsAMPLE is the set with the positive rules while SRSAMPLE is the set with 
the negative rules. Also, define SHIDDEN as the "hidden logic" system and 
SHIDDEN (please note the "'^" symbol on top of "5") as the complement of 
SHIDDEN' The guided learning strategy proposed in [Triantaphyllou and 
Soyster, 1995b] is based on the following theorem (which is valid for the 
binary and also the multi-valued case): 

Theorem 7: 
Suppose that there exists an example v such that: 

SSAMPLE(V) + SR.SAMPLE(V) = 0, or: (1) 

SSAMPLE(V) + SR.SAMPLE(V) = 2. (2) 

Furthermore, suppose that the example v is classified by the expert as either 
positive or negative. Then, one and only one of the following is true : 

a) If(l) holds and v is a positive example, 
then system SSAMPLE is not valid. 

b) If(l) holds and v is a negative example, 
then system SRSAMPLE is not valid. 

c) If (2) holds and v is a positive example, 
then system SRSAMPLE is not valid. 

d) If (2) holds and v is a negative example, 
then system SSAMPLE is not valid. 

Therefore, the overall strategy, starting with two sets of rules, is to 
attempt to generate a sequence of new examples Vk+i, Vk+2, Vk+s, ..., Vm, where 
each example is appropriately classified. Each additional example should 
have the property that it invalidates either SSAMPLE or SRSAMPLE, i.e. one of the 
two sets of rules must be modified. In doing so, it is expected that SSAMPLE and 
SRSAMPLE become more closely aligned with SHIDDEN and SHIDDEN, respectively. 
Finally, as it was shown in [Triantaphyllou and Soyster, 1995b], the next 
example can be determined by solving a clause satisfiability problem. 

During this guided learning approach one may observe that the 
current Boolean functions need to be modified only when a new training 
example indicates that a Boolean function is inaccurate (by misclassifying it). 
In [Nieto Sanchez, et al, 2002] some algorithms are proposed which modify a 
Boolean function in a way that the new function correctly classifies the new 
example (and also all the previous training examples) and does so by 
performing a minimal (kind of "surgical") modification. That is, these 
algorithms select a clause of the current function and modify it. The 
algorithms in [Triantaphyllou and Soyster, 1995b] and [Nieto Sanchez, et al., 
2002] have the potential to expedite the guided learning process both in terms 
of the number of the new training examples needed to accurately infer a 
''hidden " logic but also in terms of the time required to update the inferred 
Boolean functions. 
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6. THE REJECTABILITY GRAPH OF TWO 
COLLECTIONS OF EXAMPLES 

This section presents the motivation and definition of a special 
graph which can be easily derived from positive and negative examples. To 
understand the motivation for introducing this graph, consider a situation 
w îth t = 5 attributes. Suppose that the vector v/ = (1,0,1,0,1) is a positive 
example w ĥile the two vectors V2 = (1,0,1,1,1) and vs = (1,1,1,0,1) are 
negative examples. For the positive example vy, note that Aj, A2, A3, A4, 
and A5 are true (or, equivalently, Ai, A2, A3, A4 and A5 are false). Similar 
interpretations exist for the remaining two examples V2 and vj. 

6.1 The Definition of the Rejectability Graph 
Denote by ATTRIBUTES(v) the set of the attributes that are true 

(have value "1") for a particular (either positive or negative) example v. 
With this definition, one obtains from the above data: 

ATTRIBUTES(vi) = ATTRIBUTES{{\fi,\fi,\)) = {Aj, A2, A3, A4, A5} 
ATTRIBUTES(V2) = ATTRIBUTES{{\fi,\,\,\)) = {Aj, A2, A3, A4, A5} 
ATTRIBUTES(V3)= ATTRIBUTES{{\,\,\,0,\)) = {Ai, A2, A3, A4, As). 

Next consider a single CNF clause (i.e., a disjunction), denoted as 
C, of the general form: 

M 
C = y/ ai (where a, is either Ai or At). 

i = l 

The clause C accepts an example v (i.e., v is a positive example of C) if 
and only if at least one of the attributes in the set ATTRIBUTESfv) is also 
one of the attributes in the expression: 

M 
W a, 
i = l 

Otherwise, the example v is not accepted (i.e., v is a negative example of 
C). For instance, if the clause C is defined as: C = {A2 v A4), then the 
examples vy and V2 are accepted by C, while the example vj is not accepted. 

Now observe that there is no single CNF clause which can 
simultaneously reject the two negative examples V2 and vj, while at the same 
time accept the positive example vy. This is true because any clause which 
simultaneously rejects the two examples V2 and V5, should not contain any of 
the attributes in the union of the two sets given as ATTRIBUTES(v2) and 
ATTRIBUTES(V3). But, if none of the attributes of the set {Ai, A2, A2, A3, 
A4, A4, As) = ATTRIBUTES(V2) U ATTRIBUTES(v3) is present in the 
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clause, then it is impossible to accept the positive example vy = (1,0,1,0,1). 
Therefore, given any clause which accepts the positive example vi, the 
previous tŵ o negative examples V2 and vj cannot also be rejected by such 
clause. 

From the above considerations it follows that given three examples 
vi, V2, and vj, then the examples V2 and vs are rejectable by a single clause 
(disjunction), subject to the example vy, if and only if the following 
condition is true: 

ATTRIBUTES(vi) ^ ATTRIBUTES(v2) U ATTRIBUTES(v3). 
In general, given a set of positive examples E^, then two negative examples 
vy and V2 are rejectable by a single clause if and only if the condition in the 
following theorem [Triantaphyllou and Soyster, 1996] is satisfied: 

Theorem 8: 
Let E^ be a set of positive examples and vj , V2 be two negative examples. 
There exists a CNF clause which accepts all the positive examples and 
rejects both negative examples vi and V2 if and only if: 

ATTRIBUTES(Vi) ^ ATTRIBUTES(vi) U ATTRIBUTES(v2), 
for each positive example v/ E E^. 

The above theorem follows directly from the previous 
considerations. Given two collections of positive and negative examples, 
denoted as E^ and ET, respectively. Theorem 8 motivates the construction 
of a graph G = (V, E) as follows: 

V={Vi, V2, Vs,,.., VMI}, 
where M2 is the cardinality of ET (i.e., each vertex corresponds to one 
negative example in ET), and 

ee E, where e = (Vi, Vj), 
if and only if the z-th and they-th examples in ET are rejectable by a single 
clause (subject to the examples in E^). 

We denote this graph as the rejectability graph (or the R-graph) of 
E^ and E~. The previous theorem indicates that it is computationally 
straightforward to construct this graph. If there are M2 negative examples, 
then the maximum number of edges is M2(M2 — l)/2. Therefore, the 
rejectability graph can be constructed by performing M2{M2 — l)/2 simple 
rejectability examinations. 

An Illustrative Example 
Consider the following E^ and ET sets (given earlier and repeated 

here): 
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0 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

0 

o' 
0 

I 

1_ 

and E = 

10 10 

0 0 0 1 

1 1 1 1 

0 0 0 0 

10 0 0 

1 1 1 0 

Since there are 6 negative examples, there are 6(6 — l)/2 = 15 
possible pairwise comparisons (i.e., single rejectability tests). For instance, 
the first (vy) and third (vj) negative examples correspond to the vertices Vi 
and Fi, respectively. Next one can observe that because: 

ATTRIBUTES(vi) UATTRIBUTES(v3) = {Aj, A2, A3, A4, A2, A4}, 
and ATTRIBUTES(vi) $ {Ai, A2, A3, A4, J'2,^"4}, for each v, eE\ 

it follow ŝ that there is an edge which connects the vertices Vi and V3 in the 
rejectability graph. The rejectability graph G, which corresponds to this 
illustrative example, is presented in Figure 4. • 

Figure 4. The Rejectability Graph for ^ and FT. 

6.2 Properties of the Rejectability Graph 
The rejectability graph G of a set of positive and a set of negative 

examples possesses a number of interesting properties. Two of these 
properties refer to the cliques of the rejectability graph. A clique of a graph 
is a subgraph in which all the nodes are connected with each other. The 
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minimum clique cover number (denoted as k(G)) is the smallest number of 
cliques needed to cover the vertices of G (see, for instance, [Golumbic, 
1980] and [Bollobas, 1979]). The following theorem [Triantaphyllou and 
Soyster, 1996] refers to any clique of the rejectability graph. 

Theorem 9: 
Suppose that the two sets E^ and ET are given and p is a subset of k 
negative examples from E~ (k<size of set E~) with the property that the 
subset can be rejected by a single CNF clause which also accepts each one 
of the positive examples in E^. Then, the vertices corresponding to the k 
negative examples in the rejectability graph G form a clique of size k. 

The previous theorem states that any set of negative examples which 
can be rejected by a single clause corresponds to a clique in the rejectability 
graph. However, the converse is not true. That is, not every clique in the 
rejectability graph corresponds to a set of negative examples which can 
be rejected by a single clause. To see this consider the following illustrative 
example. 

Figure 5. The Rejectability Graph for the Second Illustrative 
Example. 

An Illustrative Example 
Consider the following sets E^ and E~\ 

E^ = [l 1 \\ mdE-
fl 
0 
0 

0 
1 
0 

o] 
0 
1 

It can be easily verified that any pair of the three negative examples 
in E~ can be rejected by a single clause which also accepts the positive 
example in E^. For instance, the first and second negative examples are 
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rejected by the clause (A3), which also accepts the positive example in E^. 
Similarly, the first and third negative examples can be rejected by (A2), 
whilQ (Ai) rejects the second and third examples. In all cases, these clauses 
accept the single example in E^. Therefore, the corresponding rejectability 
graph is a triangle (i.e., a clique with three nodes, see also Figure 5). 
However, a clause which would reject all the three negative examples 
should not include any attributes from the following set: 

ATTRIBUTES(vi) UATTRIBUTES(v2) UATTRIBUTES(v3) = 
= ATTRIBUTES((l 0, 0)) UATTRIBUTES((0, 1, 0)) U 

U ATTRIBUTES((0, 0, 1)) = 
= {A J, A2, A3, A J, A2, A3}. 

Obviously, no such clause exists when n = 3. Therefore, a 
minimum size set of CNF clauses which satisfy the requirements of the 
current examples is: (A3) v (A2), which is of size 2. • 

6.3 On the Minimum Clique Cover of the Rejectability Graph 
Consider two sets of positive and negative examples E^ and ET, 

respectively. Let G be the comp/emew/of the rejectability graph G of the 
two sets of examples. Recall that the complement of a graph is constructed 
as follows: The complement graph has exactly the same vertices as the 
original graph. There is an edge between any two vertices if and only if 
there is no edge between the corresponding vertices of the original graph. 
Next, define (o(&) as the size of the maximum clique of the graph G and 
k(G) as the minimum clique cover number of the rejectability graph G. Let 
r be the minimum number of CNF clauses required to reject all the 
examples in E~, while accepting all the examples in E^. Then, the 
following theorem [Triantaphyllou and Soyster, 1996]] states a lower bound 
(i.e., the minimum clique cover k(G)) on the minimum number of clauses 
required to reject all the negative examples in ET, while accepting all the 
positive examples in E^. 

Theorem 10: 
Suppose that E^ and ET are the sets of the positive and negative examples, 
respectively. Then, the following relation is true: r > k(G) > co(G). 

At this point it should be stated that according to this theorem the 
gap between r and k(G) can be positive. The same is also true with the gap 
between k(G) and co(G). Therefore, there is a potential for the gap between 
r and co(G) to be large (since the value of co(G) can be arbitrarily large, 
see for instance [Golumbic, 1980] and [Bollobas, 1979]). Results from 
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some related computational experiments in [Triantaphyllou and Soyster, 
1996] seem to indicate that when the value of co(G) is large, then the bound 
is rather tight. 

Although finding k(G) is NP-complete, the determination of co(G) 
is also NP-complete, but there are more efficient enumerative algorithms. 

In Carraghan and Pardalos [1990] a survey of algorithms which can find the 
maximum clique in any graph is presented. They also present a very 
efficient algorithm which uses a partial enumeration approach which 
outperforms any other known algorithm. In that treatment random problems 
with 3,000 vertices and over one million edges were solved in rather short 

times (less than one hour on an IBM ES/3090-600S computer). Some other 
related developments regarding the maximum clique of a graph can be found 
in [Pardalos and Xue, 1994], [Babel and Tinhofer, 1990], [Babel, 1995], 
[Balas and Xue, 1993], and [Balas and Niehaus, 1994]. 

7. PROBLEJM DECOJVTPOSITION 

The rejectability graph provides an interesting framework for 
decomposing the determination of a lower bound for the number of clauses 
into a set of smaller problems. The decomposition is obtained through a 
partitioning of the rejectability graph. We consider two processes: 

• Decomposition via Connected Components, and 
• Decomposition via the Construction of a Clique Cover. 

7.1 Connected Components 
In this case, one inspects the rejectability graph for a natural 

decomposition. A connected component of a graph is a maximal subgraph 
in which there is a path of edges between any pair of vertices. Hence, the 
vertices of the connected components are mutually exclusive and their union 
is exhaustive. The following corollary is derived from Theorem 9 and 
illustrates the relation of the connected components of G and the clauses 
which can be inferred from two collections of positive and negative 
examples. 

Corollary 1: 
Suppose that E^ and ET are the sets of the positive and negative examples, 
respectively. Then, any subset of negative examples in ET which is 
rejected by a single CNF clause, subject to the examples in E^, corresponds 
to a subset of vertices of the rejectability graph G which belong to the same 
connected component of the graph G. 
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Pardalos and Rentala in [1990] present an excellent survey of 
algorithms which determine the connected components of a graph. 
Furthermore, they also propose a parallel algorithm which runs on an IBM 
ES/3090-400E computer (with four processors). That algorithm determines 
the connected components in super linear time. 

The importance of Corollary 1 emerges when the sets of positive 
and negative examples are very large. First, one constructs the rejectability 
graph G. Next, one determines all the connected components of the 
rejectability graph by applying an algorithm (such as the one described in 
Pardalos and Rentala [1990]) for finding the connected components. Then, 
one solves the smaller clause inference problems which are formed by 
considering all the positive examples and the negative examples which 
correspond to the vertices of the individual and distinct connected 
components in G. 

In other words, if a graph has two or more connected components, 
then one can decompose the original problem into separate problems and the 
aggregation of the optimal solutions (minimum number of CNF clauses) of 
the separate problems is an optimal solution to the original problem. 
Observe that each such sub-problem (in the CNF case) is comprised of the 
negative examples for that component and all the positive examples, i.e. the 
positive examples are identical for each sub-problem. 

7.2 Clique Cover 
The second approach is also motivated by partitioning the vertices 

of the rejectability graph into mutually disjoint sets. However, in this 
second approach, vertices are subdivided via a sequential construction of 
cliques. 

First, the maximum clique of the rejectability graph is determined. 
The negative examples which correspond to the vertices of the maximum 
clique, along with all the positive examples, form the first sub-problem of 
this decomposition. Next, the maximum clique of the remaining graph is 
derived. The second sub-problem is formed by the negative examples 
which correspond to the vertices of the second clique and all the positive 
examples. This process continues until all the negative examples (or, 
equivalently, all the vertices in the rejectability graph) are considered (i.e., 
they are covered). 

We note that this sequence of cliques does not necessarily 
correspond to a minimum clique cover of the rejectability graph. This 
procedure is simply a greedy approach which approximates a. minimum 
clique cover. Furthermore, it is possible that a single sub-problem (in 
which all the vertices in the rejectability graph form a clique) may yield 
more than one clause. 
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It should be noted at this point that the clique cover derived by using 
the above greedy approach may not always yield a minimum clique cover. 
Therefore, the number of cliques derived in that way, cannot be used as a 
lower bound on the number of clauses derivable from positive and negative 
examples. Obviously, if the number of cliques is equal to (X)(^), then the 
previous clique cover is minimal. However, even if the previous clique 
cover is not of minimum size, it can still be very useful as it can lead to a 
decomposition of the original problem into a sequence of smaller problems. 
Some computational tests described in Section 8, provide some insight into 
the effectiveness of such decomposition approach. 

The two problem decomposition approaches described in this 
section can be combined into one approach as follows. One first 
decomposes the original problem in terms of its connected components. 
Next, a clique cover, as described above, is derived for the individual 
problems which correspond to the connected components of the rejectability 
graph. This approach is further illustrated in the demonstrative example 
presented in the following section. 

8. AN EXAMPLE OF USING THE REJECTABILITY 
GRAPH 

Next we consider the following sets of positive and negative examples: 

0 1 0 0 0 1 0 1 1 1 
0 1 1 1 1 1 0 0 0 0 
0 0 1 0 1 1 1 0 1 
0 1 0 0 1 1 0 1 
1 0 1 0 0 0 1 0 1 
1 1 1 0 0 0 0 0 1 
1 1 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 1 1 0 1 
0 1 1 0 1 1 0 0 1 
0 0 1 1 0 1 1 0 0 1 
1 1 1 1 0 0 0 0 0 1 
1 0 1 0 1 0 1 0 1 0 
1 1 1 0 1 0 0 0 1 0 

0 
1 0 

1 
1 

0 

, and 

1 0 0 1 1 0 1 1 0 0 
0 0 0 1 1 1 1 1 0 0 
1 0 1 1 0 0 1 0 0 1 
0 0 0 0 1 1 1 1 1 0 
1 1 0 1 1 0 0 1 0 0 
1 1 0 0 1 0 0 1 1 0 
0 0 0 0 0 1 1 1 1 1 
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Figure 6. The Rejectability Graph for the New Sets E^ and ET. 

One may use any method for inferring clauses from two disjoint 
classes of examples. An application of the OCAT approach in this 
illustrative example yields the following CNF system of four clauses: 

(A2 vAs vAs) A (Aj vAs vAs) A (AJ VA2 VA4 vAs) A 

A (AI vA2 vAs VA4). 

Of course the question addressed in this section is whether it is possible to 
derive another system Wiih fewer clauses. 

To help answer the previous question, we apply Theorem 8 to this 
illustrative example. Since there are 13 positive and 7 negative examples, 
the construction of the rejectability graph requires 21 simple rejectability 
examinations. When Theorem 8 is applied to these data, the rejectability 
graph shown in Figure 6 is derived. For instance, there is an edge between 
vertices Vi and V6 because the first and sixth negative examples can be 
rejected by a single disjunction without violating the constraints imposed by 
the positive examples in E^. A similar interpretation holds for the remaining 
edges in graph G. 

The rejectability graph in the current illustrative example has two 
connected components (see also Figure 6). One component is comprised by 
the vertices Vi, V2, V4, V5, V6, V7 and the second component has only the 
vertex V3. Therefore, the original problem can be partitioned into two 
independent clause inference sub-problems. 

Both sub-problems have the same positive examples. The first sub-
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problem has the same negative examples as in ET except for the third 
negative example. The second problem has only the third negative example. 
The lower bound for the minimum number of CNF clauses required to 
appropriately classify the 20 examples is derived from the sum of the lower 
bounds for the two separate components. Since the rejectability graph of the 
second sub-problem contains only a single vertex, the size of the minimum 
clique cover is one. A minimum clique cover is also obvious for the first 
sub-problem, namely, the two sets {Vi, V5, V6} and {V2, V4, V?}. Hence, a 
minimum clique cover is two for the second sub-problem. Thus, an overall 
lower bound for the minimum number of CNF clauses required is three. 
Hence, it may well be possible that only three clauses are needed to 
appropriately classify all 20 examples. 

As it was also mentioned in Section 2 of this chapter there is 
another clause inference approach which can be used to determine a 
minimum size set of clauses. This method, denoted as SAT (for 
satisfiability), has been proposed in Kamath, et al [1992]. In that approach 
one first specifies an upper limit on the number of clauses to be considered, 
say k. That is, the value of k must be pre-assumed. Next a clause 
satisfiability (SAT) model is formed and solved using an interior point 
method developed by Karmakar and his associates [1992]. If the clause 
satisfiability problem is satisfied, it is possible to correctly classify all the 
examples with k or fewer clauses. If this SAT problem is infeasible, then 
one must increase k until feasibility is reached. In this manner, the SAT 
approach yields a system with the minimum number of clauses. It is very 
important one to observe at this point that computationally it is much harder 
to prove that a given SAT problem is infeasible than it is feasible. 
Therefore, trying to determine a minimum size Boolean function by using 
the SAT approach may be computationally too difficult. In this illustrative 
example, the SAT approach with A: = 3, is feasible and returns the Boolean 
function with the following 3 clauses: 

(A2 vA2 vAs) A (Al vA2 vAs VA4) A (AJ VAS VAS). 

However, when the value A: = 2 is used, then the corresponding 
SAT formulation is infeasible. Therefore, this set of clauses is optimal in 
the sense of this chapter. The last statement also follows from Theorem 10 
since there exists a clique cover of 3 and a set of clauses has been derived 
with exactly this number of members. 
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9. CONCLUSIONS 

This chapter presented an approach for inferring a Boolean function 
from two classes of disjoint observations. The observations can be defined 
on multi-valued or binary valued attributes. A straightforward binarization 
approach is described as well. A minimization algorithm based on a branch-
and-bound approach and a fast heuristic are also described. 

A graph based approach for decomposing a large data mining 
problem into a series of smaller problems is described too. This graph based 
approach can also provide some bounds on the size of the inferred Boolean 
functions (when they are expressed in CNF or DNF format). A method for 
guided learning is also discussed. 

Some of the results are specific to the proposed approach, termed 
OCAT (for One Clause At a Time) and other results can be combined with 
any data mining and knowledge discovery method. The presented methods 
have been tested on simulated and actual data as described in the cited 
papers with highly promising results. 

Of particular interest are some extensions into text mining as 
described in [Nieto Sanchez, Triantaphyllou and Kraft, 2002]. Another 
interesting extension is the application of the OCAT approach to the mining 
of association rules [Yilmaz, Triantaphyllou, et al, 2003]. In the later paper 
the application of a modified version of the OCAT approach significantly 
alleviates some computational problems that are caused by the huge number 
of the association rules that are usually returned by traditional methods. 
Finally it should be stated that some extensions into cases of having data 
with noise (stochastic data) seem to be possible with the use of monotone 
Boolean functions as discussed in Chapter 4 of this book authored by Torvik 
and Triantaphyllou [2006]. A recent book by the author [Triantaphyllou, 
2006] describes in great detail all the previous issues, and much more, on 
data mining and knowledge discovery by means of a logic-based approach. 

Future research in this area may be related to new ways for 
decomposing large size problems and also on the development of 
specialized methods for particular applications of data mining and 
knowledge discovery from databases. Another possible research direction 
might be the use of fuzzy logic and also on how to do all the above with 
multi-valued data directly without having to go through the binarization 
process first. Inferring Boolean functions from examples is a prominent 
area in data mining and knowledge discovery methods and more research in 
the future is almost guaranteed to be a hot area. 
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1. INTRODUCTION 

The incremental approach in developing machine learning algorithms is 
one of the most promising directions for creating intelligent computer 
systems. Two main considerations determine the interest of researchers to 
the incrementality as an instrument for solving learning problems. 

The first consideration is related to the nature of tasks to be solved. In a 
wide range of problems, a computer system must be able to learn 
incrementally for adapting to changes of the environment or user's behavior. 
An example of incremental learning can be found in (Maloof and Michalski, 
1995) where a dynamic knowledge-based system for computer intrusion 
detection is described. Incremental clustering for mining in a data-
warehousing environment is another interesting example of incremental 
learning (Ester, et al., 1998). 

The second consideration is related to the intention of researchers to 
create more effective and efficient data mining algorithms in comparison 
with non-incremental ones. This goal implies the necessity to answer the 
following questions: how to select the next training example in order to 
minimize the number of steps in the learning process? How to select the 
relevant part of hypotheses already induced in order to bring them in 
agreement with a certain training example? The problem of how to best 
modify an induced Boolean function when the classification of a new 
example reveals that this function is inaccurate is considered in (Nieto et al., 
2002). In this paper, the problem is solved by minimizing the number of 
clauses that must be repaired in order to correctly classify all available 
training examples. An efficient algorithm for discovering frequent sets in 
incremental databases is given in (Feldman, 1997). 

The distinction between an incremental learning task and an incremental 
learning algorithm is clarified in (Giraud-Carries, 2000). A learning task is 
incremental if the training examples used to solve it become available over 
time, usually one at a time. A learning algorithm is incremental if for given 
training examples eu ei,..., e-x, ^i+i,..., n̂ it produces a sequence of 
hypotheses h\, hi,..., h, hi+u..., K, such that /?i+i depends only on h[ and 
current example €[. As it has been shown in (Giraud-Carries, 2000), it is 
possible to use an incremental algorithm for both non-incremental and 
incremental tasks. 

The analysis of existing learning algorithms shows that non-incremental 
data processing can be a part of an incremental algorithm (see the example 
in (Nieto, et al., 2002)) while incremental data processing can be embodied 
in a non-incremental algorithm. From the more general point of view, the 
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incrementality is a mode of inductive reasoning for creating learning 
algorithms. 

Induction allows extending the solution of a sub-problem with lesser 
dimension to the solution of the same problem but with greater dimension 
(forward induction) and vice versa (backward induction). There does not 
exist only one way of applying induction to the same problem, but many 
different ways that lead to different methods of constructing algorithms. 

Traditionally, the inductive hypothesis in machine learning problems is 
described as follows: we know how to solve a learning problem for the 
training set ofnA examples, thus we know how to solve the same problem 
for the training set ofn examples. But another induction hypothesis might be 
the following: we know how to solve a learning problem with n/k training 
examples where k is the number of subsets into which the set of training 
examples is partitioned. Therefore, we can solve the same task with n 
training examples. Namely this inductive hypothesis is used in (Wu and Lo, 
1998) for a multi-layer induction algorithm. The initial data set in this 
algorithm is divided into a number of subsets of equal size. In the first step, a 
set of rules is learned from the first subset of examples by the help of a 
generalization operation. The rules thus obtained (which might be 
redundant) are refined with the use of the other subsets of data. Successive 
application of the generalization and reduction operations allows for more 
accurate and more complex rules to be constructed. 

In the present chapter, the following inductive hypothesis (backward 
induction) is used: we know how to solve a learning problem for the training 
set of n examples, thus we know how to solve the same problem for the 
training set ofn-\ examples. 

We focus on the incrementality as a technique of human thinking. 
Common sense human reasoning is by its nature an incremental process. It 
combines deductive and inductive steps of thinking. Deductive steps consist 
of using already known facts and statements of the form "if-then" for 
inferring consequences from them. For this goal, deductive rules of 
reasoning are applied. The main form of deduction is syllogism, for which 
are known four forms: modus ponens, modus tollens, modus ponendo 
toUens, and modus tollendo ponens. Inductive steps consist of using already 
known facts and statements, observations and experience for inferring new 
statements or correcting those that turn out to be false. For this goal, 
inductive rules of reasoning are applied. The main forms of induction are the 
canons of induction that have been formulated by English logician Mille 
(1900). These canons are known as the five induction methods of reasoning: 
method of only similarity, method of only distinction, joint method of 
similarity-distinction, method of concomitant changes, and method of 
residuum. 
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In real human reasoning, deductive and inductive steps alternate and 
support each other. The following mental acts are revealed in applying any 
reasoning rule (deductive or inductive): formulating new statements, 
choosing a new relevant part of knowledge or/and data for future steps of 
reasoning and choosing a new reasoning rule (deductive or inductive). It is 
difficult to consider this process to be algorithmic. It is impossible to plan a 
control mechanism in advance. But it is possible to speak about some 
preference of applying certain rules under certain conditions. 

Modeling of on-line human reasoning is a key problem in creating 
intelligent computer systems. However, any attention is hardly paid to this 
topic in computer science. Knowledge engineering has arisen from a 
paradigm in which knowledge is considered as something to be separated 
from its bearer and to function autonomously with a problem solving 
application. This paradigm ignores the very essential feature of intelligence, 
namely, its continuous cognitive activity. Knowledge is corrected constantly. 
This means that the mechanism of using knowledge cannot be separated 
from the mechanism of discovering knowledge. Figure 1 illustrates the thesis 
that deductive reasoning (extending data about a situation) and inductive 
reasoning (modifying or extending knowledge) might be realized with the 
use of one and the same inference mechanism. 

The idea to integrate two complementary processes - inductive learning 
from examples and deductive reasoning - has been advanced in (Giraud-
Carrier and Martinez, 1995). That paper introduces an Incremental Learning 
Algorithm (ILA). The ILA stores its knowledge in the nodes of a network 
that is a balanced binary tree. Data are presented incrementally and the 
system adapts by dynamically adding nodes to the network. The execution 
part of the algorithm implements a simple form of rule-based reasoning 
augmented with similarity-based reasoning. The ILA's inductive learning is 
similar to the Nearest Hyperrectangle Learning Method (NGE) (Salzberg, 
1991). A brief comparison of the ILA with other related models is given too. 

A fruitful approach is incorporating data mining procedures into object-
oriented databases (OODB). There are many research issues on knowledge 
discovery in OODBs (see, for example, (Han, et al., 1998), (Han, 1998)). 
The main goals of these contributions are the substantial enhancement of the 
power and flexibility of browsing a database, and organizing effective 
querying on data and knowledge. The technology of on-line analytical 
mining (OLAM) is based on the Data Cube technology (Han, 1998), (Han, et 
al., 1998) for efficient representation and processing data in OODBs. The 
OLAM approach requires a good data mining query language. A data mining 
language, called DMQL (Han, et al., 1996), has been proposed and partially 
implemented in the DBMiner system. The language adopts a SQL-like 
syntax and provides primitives for specification of different data mining 
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tasks. 
A well-known researcher, Michalski, proposed a new type of knowledge 

representation, called Dynamic Interlaced Hierarchies (DIH), which is 
relevant to the development of multi-strategy task-adaptive learning and 
facilitates all kinds of inference. 

a) 

Extended data about 
situation consistent 

with knowledge 

b) 

Modified knowledge 
consistent with 

current situation 

Figure 1. Model of Reasoning a) Under Pattern Recognition, b) Under Learning. 
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This type of knowledge representation is given in (Alkharaouf and 
Michalski, 1996), (Michalski and Ram, 1995). Statements or facts are stored 
as links between concepts and they are considered to be dynamic, as these 
links are constantly being created and modified. 

These approaches to data mining are very promising. However, none of 
them possesses all the main features of human reasoning. No one of them 
considers any subtask of machine learning (ML) or data mining as a model 
of human reasoning. 

In order to transform ML methods into a model of common sense 
reasoning it is necessary to do the following: 
- Decompose ML algorithms into operations and subtasks that can be, by 

their content, considered as operations of high level conceptual reasoning 
including various kinds of reasoning rules: diagnostic rules, 
generalization rules, classification rules, association rules, rules involving 
known regularities, rules of refuting hypotheses, rules resolving 
contradictions, rules of inferring possible consequences or causes, and so 
on; 

- Create a multilevel inference control mechanism that must provide the 
interaction between all types of rules and data in reasoning. 
Our approach to machine learning problems is based on the concept of a 

good diagnostic (classification) test. This concept has been advanced firstly 
in the framework of inferring functional and implicative dependencies from 
relations (Naidenova and Polegaeva, 1986). But later the fact has been 
revealed that the task of inferring all good diagnostic tests for a given set of 
positive and negative examples can be formulated as the search of the best 
approximation of a given classification on a given set of examples and that it 
is this task that all well known machine learning problems can be reduced to 
(Naidenova, 1996). It is interesting that, on the one hand, the problem of 
inferring implicative logical rules from examples turns out to be equivalent 
to the problem of finding good diagnostic tests. On the other hand, the 
process of finding good diagnostic tests realizes one of the induction canons 
of reasoning - a joint method of similarity-distinction given in (Mille, 1900). 

We have chosen the lattice theory as a model for inferring good 
diagnostic tests from examples from the very beginning of our work in this 
direction. We believe that it is the lattice theory that must be the 
mathematical theory of common sense reasoning. One can come to this 
conclusion by analyzing both the fundamental work in the psychological 
theory of intelligence (Piaget, 1959), and the experience of modeling 
thinking processes in the framework of artificial intelligence. The process of 
objects' classification has been considered in (Shreider, 1974) as an 
algebraic idempotent semi group with the unit element. An algebraic model 
of classification and pattern recognition based on the lattice theory has been 
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advanced in (Boldyrev, 1974). A lot of experience has been obtained on the 
application of algebraic lattices in machine learning: the works of Finn and 
his disciples (Finn, 1984), (Kuznetsov, 1993), the model of conceptual 
knowledge of Wille (1992), the works of the French group (Ganascia, 1989). 
The following works are devoted to the application of algebraic lattices for 
extracting classifications, functional dependencies and implications from 
data: (Demetrovics and Vu, 1993), (Mannila and Raiha, 1992), (Mannila and 
Raiha, 1994), (Huntala, et al., 1999), (Cosmadakis, et al., 1986), (Naidenova 
and Polegaeva, 1986), (Megretskaya, 1988), (Naidenova, et al., 1995a), 
(Naidenova, et al., 1995b), and (Naidenova, 1992). 

An advantage of the algebraic lattices approach is based on the fact that 
an algebraic lattice can be defined both as an algebraic structure that is 
declarative and as a system of dual operations with the use of which the 
elements of this lattice can be generated. This approach allows us to 
investigate the processes of inferring good classification tests as inductive 
reasoning processes. In the following part of this chapter we shall describe 
our decomposition of the inductive inferring process into subtasks and 
operations that conform with the operations and subtasks of the natural 
human reasoning process. 

This chapter is organized as follows. Section 2 describes the forms of an 
expert's rules (rules of the first type) and the structure of the conceptual 
knowledge base in which an expert's rules are stored. Then we describe 
reasoning operations or rules of the second type, also providing an example 
of executing rule-based reasoning for inferring the value of a target attribute. 

In Section 3, the concept of a good diagnostic test is introduced and the 
problem of inferring all good diagnostic tests for a given classification on a 
given set of examples is formulated. Section 3 also contains the description 
of a mathematical model underlying algorithms of learning reasoning. In 
order to transform inductive learning algorithms into the common sense 
reasoning process we propose a decomposition of learning algorithms into 
operations and subtasks that are in accordance with human reasoning 
operations. The concepts of an essential value and an essential example are 
also introduced. 

Section 4 describes the proposed non-incremental and incremental 
learning algorithms: NIAGaRa, DIAGaRa, and INGOMAR. The chapter 
ends with a brief summary section. 
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2. A MODEL OF RULE-BASED LOGICAL 
INFERENCE 

Here we describe a model of common reasoning that has been acquired 
from our numerous investigations on the human reasoning modes used by 
experts for solving diagnostic problems in diverse areas such as pattern 
recognition of natural objects (rocks, ore deposits, types of trees, types of 
clouds e.t.c), analysis of multi-spectral information, image processing, 
interpretation of psychological testing data, medicine diagnosis and so on. 
The principal aspects of this model coincide with the rule-based inference 
mechanism that is embodied in the KADS system (Ericson, et al., 1992), 
(Gappa and Poeck, 1992). More details related to our model of reasoning 
and its implementation can be found in (Naidenova and Syrbu, 1984), 
(Naidenova and Polegaeva, 1985a), and (Naidenova and Polegaeva, 1985b). 

We need the following three types of rules in order to realize logical 
inference: 

INSTANCES or relationships between objects or facts really observed. 
Instance can be considered as a logical rule with the least degree of 
generalization. On the one hand, instances serve as a source of an expert's 
knowledge. On the other hand, instances can serve as a source of a training 
set of positive and negative examples for inductive inference of generalized 
rules. 

RULES OF THE FIRST TYPE. These rules describe regular 
relationships between objects and their properties and between properties of 
different objects. The rules of the first type can be given explicitly by an 
expert or derived automatically from examples with the help of some 
learning process. These rules are represented in the form "if-then" assertions. 
They accumulate generalized knowledge in a problem domain. 

RULES OF THE SECOND TYPE or inference rules with the help of 
which rules of the first type are used, updated and inferred from data 
(instances). The rules of the second type are reasoning rules. 

Using the rules of the first type is artificially separated from the learning 
process. But it is clear that there is no reason to separate the process of 
learning rules from the process of using these rules for class identification or 
pattern recognition problems: both processes are interdependent and 
interconnected. Anyone of these processes can require executing the other. 
Anyone of these processes can be built into the other. 

Any model of reasoning must also include STRATEGIES or the 
sequences of applying rules of all types in reasoning. The application of 
rules is conditioned by different situations occurring in the reasoning process 
and it is necessary to identify these situations. Strategies have a certain 
freedom as so it is possible to apply different rules in one and the same 
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situation and the same rule in different situations. The choice of a strategy 
determines the speed, completeness, deepness and quality of reasoning. 

2.1 Rules Acquired from Experts or Rules of the First 
Type 

An expert's rules are logical assertions that describe the knowledge of 
specialists about a problem domain. Our experience in knowledge elicitation 
from experts allows us to analyze the typical forms of assertions used by 
experts. As an example, we give the rules of an expert's interpretation of 
data obtained with the use of Pathological Character Accentuation Inventory 
for Adolescents. This psycho-diagnostic method was elaborated by Lichko 
(1983) and is a classical example of an expert system. 

Some examples of the expert's rules are: 

"If (D - F) > 4, then DISSIMULATION decreases the possibility to 
reveal any character accentuation and completely excludes the CYCLOID 
and CONFORM types of character". 

"If the index E > 4, then the CYCLOID and PSYCHASTENOID types 
are impossible". 

"If the type of character is HYPERTHYMIA, then ACCENTUATION 
with psychopathies is observed in 75%, with transit disturbances - in 5%, 
and with stable adaptation - in 5% of all cases". 

"If the index A > 6 and the index S > 7 and the index Con = 0 and the 
index D > 6, then the LABILE type is observed". 

"If the index E > 6, then the SCHISOID and HYSTEROID types are 
observed frequently". 

"If after the application of rules with the numbers x, y, z the values of at 
least two indices are greater than or equal to the minimal diagnostic 
threshold, then the mixed types are possible with the following consistent 
combinations of characters: Hyp - C, Hyp - N, Hyp - Hyst, C - L, L - A, 
L - S, and L - Hyst". 

We used the following abbreviations: Hyp - hyperthymia, C - cycloid, 
L - labile, A - asthenia, N - neurotic, S - schizoid, Con - conformable, 
Hyst - hysteroid. Sens - sensitive, D - dissimulation, F - frankness, 
E - emancipation, and P - psychasthenia. 

It is clear that an expert's assertions can be represented with the use of 
only one class of logical rules, namely, the rules based on implicative 
dependencies between names. 

Implication: a, Z?, c -> d. This rule means that if the values standing in 
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the left side of the rule are simultaneously true, then the value in the right 
side of the rule is always true. 

An implication x -> J is satisfied if and only if the set of situations in 
which X appears is included in the set of situations in which d appears. 

Interdiction or forbidden rule (a special case of implication) 
a, b, c -> false (never). This rule interdicts a combination of values 
enumerated in the left side of the rule. The rule of interdiction can be 
transformed into several implications such as a, b -^ not c; a,c -^ not b; and 
b,c ^> not a. 

Compatibility: a, b, c -^ rarely; a, b, c -^frequently. This rule says that 
the values enumerated in the left side of the rule can simultaneously occur 
rarely (frequently). The rule of compatibility presents the most frequently 
observed combination of values that is different from a law or regularity 
with only one or two exceptions. 

Compatibility is equivalent to a collection of assertions as follows: 

a, b,c -^ rarely a, b, c -^frequently, 
a, b -^ c rarely a,b -^ c frequently, 
a, c -^ b rarely a,c-^ b frequently, 
b,c ^' a rarely b,c -> a frequently. 

Diagnostic rule: x, d -^ a; x, b -^ not a; d, b -> false. For example, d 
and b can be two values of the same attribute. This rule works when the truth 
of 'x' has been proven and it is necessary to determine whether 'a' is true or 
not. If 'x & d' is true, then 'a' is true, but if 'x & b' is true, then 'a' is false. 

Rule of alternatives: a or b ^^ true (always); a, b -^ false. This rule 
says that 'a' and 'b' cannot be simultaneously true, either 'a' or 'b' can be 
true but not both. 

2.2 Structure of the Knowledge Base 

We describe a very simple structure of a knowledge base that is sufficient 
for our illustrative goal. The knowledge base (KB) consists of two parts: the 
Attribute Base (AtB), containing the relations between problem domain 
concepts, and the Assertion Base (AsB), containing the expert's assertions 
formulated in terms of the concepts. 

The domain concepts are represented by the use of names. With respect 
to its role in the KB, a name can be one of two kinds: name of attribute and 
name of attribute value. However, with respect to its role in the problem 
domain, a name can be the name of an object, the name of a class of objects 
and the name of a classification or collection of classes. A class of objects 
can contain only one object hence the name of an object is a particular case 
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of the name of a class. In the KB, names of objects and of classes of objects 
become names of attribute values, and names of classifications become 
names of attributes. 

For example, let objects be a collection of trees such as asp, oak, fir-tree, 
cedar, pine-tree, and birch. Each name calls the class or the kind of trees (in 
a particular case, only one tree). Any set of trees can be partitioned into the 
separate groups depending on their properties. 'Kind of trees' will be the 
name of a classification, in which 'asp\ 'oak\ 'fir-tree\ 'cedar\ 'pine-tree', 
and 'birch' are the names of classes. Then, in the KB, 'kind of trees' will be 
used as the name of an attribute the values of which are 'asp', 'oak', 'fir-
tree', 'cedar', 'pine-tree', and 'birch'. The link between the name of an 
attribute and the names of its values is implicative. It can be expressed by 
the following way: 

(<name of valuei>, <name of value2>, ..., <name of value k^) -> <name 
of attribute>, 

where the sign "->" denotes the relation "is a". 
In our example {asp, oak, fir-tree, cedar, pine-tree, birch) -> kind of trees, 
and, for each value of 'kind of trees', the assertion of the following type can 
be created: "asp is a kind of trees". 

The set of all attributes' names and the set of all values' names must not 
intersect. This means that the name of a classification cannot simultaneously 
be the name of a class. However, this is not the case in natural languages: the 
name of a class can be used for some classification and vice versa. For 
example, one can say that 'pine-tree', 'fir-tree', 'cedar' are 'conifers'. But 
one may also say that 'conifers', 'leaf-bearing' are 'kinds of trees'. Here the 
word 'conifers' serves both as the name of a classification and as the name 
of a class. In this setting, class is a particular case of classification like object 
is a particular case of class. 

By using names in the way we do in real life we permit the introduction 
of auxiliary names for the subsets of the set of an attribute's values. Let^ be 
an attribute. The name of a subset of values of ̂  will be used as the name of 
a new attribute which, in its turn, will serve as the name of a value with 
respect to v4. 

The AsB (Assertion Base) contains the expert's assertions. Each assertion 
links a collection of values of different attributes with a certain value of a 
special attribute {SA) that evaluates how often this collection of values 
appears in practice. The values of a special attribute are: always, never, 
rarely, and frequently. Assertions have the following form: 

(<name of value>, <name of value>, ... , <value of SA>) = true. 

TLFeBOOK
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For simplicity, we omit the word 'true\ because it appears in any 
assertion. For example, the assertion "pine-tree and cedar can be found 
frequently in the meadow type of forest" will be expressed in the following 
way: {meadow, pine-tree, cedar, frequently). We also omit the sign of 
conjunction between values of different attributes and the sign of disjunction 
(separating disjunction) between values of the same attribute. For example, 
the assertion in the form {meadow, pine-tree, cedar, often) is equivalent to 
the following expression of formal logic: P((type of forest = meadow) & 
((kind of trees = pine-tree) V (kind of trees = cedar)) & {SA = frequently)) = 
true. 

Only one kind of requests to the KB is used: SEARCHING VALUE OF 
<name of attribute> [ ,<name of attribute>,...] IF (<name of value>, <name 
of value>, ...), where "name of value" is the known value of an attribute, 
"name of attribute" means that the value of this attribute is unknown. For 
example, the request "to find the type of forest for a region with plateau, 
without watercourse, with the prevalence of pine-tree" will be represented as 
follows: SEARCHING VALUE OF the type of forest IF {plateau, without 
watercourse, pine-tree). 

2.3 Reasoning Operations for Using Logical Rules of the 
First Type 

The following rules of the second type (operations) lie in the basis of the 
reasoning process for solving diagnostic or pattern recognition tasks. Let x 
be a collection of true values observed simultaneously. 

Using implication. Let r be an implication, left(r) be the left part of r 
and right(r) be the right part of r. If left(r) c x, then x can be extended by 
right(r): x<r-xKj right(r). 

For example, x='a,b,c,d\r='a,d-^k\x<-xuk. 
Using implication is based on modus ponens: if ̂ , then B; A; hence B. 
Using interdiction. Let r be an implication y -^ not k. If left(r) c x, then 

A: is a forbidden value for all the extensions of x. 
Using interdiction is based on modus ponendo tollens: 
either A or B {A, B - alternatives); A; hence not B; 
either A or B; B; hence not ^ . 
Using compatibility. Let r='a, b,c ^' k, rarely {frequently)'. 
If left(r) c X, then k can be used for an extension of x with the value of 

SA equal to 'rarely' {'frequently'). The application of several rules of 
compatibility leads to the appearance of several values 'rarely' and/or 
'frequently' in the extension of x. Computing the value of SA for the 
extension of x requires special consideration. In any case, the appearance of 
at least one value 'rarely' means that the total result of the extension will 
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have the value of SA equal to 'rarely'. Two values equal to 'frequently' lead 
to the result 'less frequently', three values equal to 'frequently' lead to the 
result 'less less frequently' and hence the values 'rarely' and 'frequently' 
must have the ordering scale of measuring. 

Using compatibility is based on modus ponens. 
Using diagnostic rules. Let r be a diagnostic rule such as 'x, d^> a\ 

x^h ^> not a', where 'x' is true, and 'a ' , 'not a' are hypotheses or possible 
values of some attribute. There are several ways for refuting one of the 
hypotheses: to infer either doxh with the use of knowledge base {AtB, AsB); 
to involve new instances from the database and/or new assertions from the 
knowledge base for inferring new diagnostic rules distinguishing the 
hypotheses 'a' and 'not a'; or, eventually, ask an expert which of the values 
d or b is true. 

Our experience shows that generally the experts have in their disposal 
many diagnostic rules corresponding to the most difficult diagnostic 
situations in their problem domain. 

Using a diagnostic rule is based on modus ponens and modus ponendo 
tollens. 

Using rule of alternatives. Let 'a', 'b' be two alternative hypotheses 
about the values of some attribute. If one of these hypotheses is inferred with 
the help of reasoning operations, then the other one is rejected. 

Using a rule of alternatives is based on modus tollendo ponens: either^ 
or B {A,B- alternatives); not A; hence B; either A or B; not B; hence A. 

The operations enumerated above can be named as "forward reasoning" 
rules. Experts also use implicative assertions in a different way. This way 
can be named as "backward reasoning". 

Generating hypothesis. Let r be an implication y -> k. Then the 
following hypothesis is generated "if k is true, then it is possible that y is 
true". 

Using modus tollens. Let r be an implication >* ^^ k. If 'not k' is inferred, 
then 'notj;' is also inferred. 

Natural diagnostic reasoning is not any method of proving the truth. It 
has another goal: to infer all possible hypotheses about the value of some 
target attribute. These hypotheses must not contradict with the expert's 
knowledge and the situation under consideration. The process of inferring 
hypotheses is reduced to extending maximally a collection x of attribute 
values such that none of the forbidden pairs of values would belong to the 
extension of x. 
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2.4 An Example of the Reasoning Process 

Let X be a request to the KB equal to: 
SEARCHING VALUE OF type of woodland IF {plateau, without 

watercourse, pine-tree). 
Let the content of the Knowledge Base be the following collection of 

assertions: 
AtB: 

\.{meadow, bilberry wood, red bilberry wood ....)-> types of woodland; 

2.(pine-tree, spruce, cypress, cedars, birch, larch, asp, fir-tree) -> dominating kinds of trees; 

3. (plateau, without plateau) -^presence of plateau; 

4. (top of slope, middle part of slope, ....) -^ parts of slope; 

5. (peak of hill, foot of hill) -^ parts of hill; 

6.(height on plateau, without height on plateau) -^presence of a height on plateau; 

7. (head of watercourse, low part of watercourse, ...) -^ parts of water course; 

8. (steepness > 4°, steepness < 3°, steepness < 3°, ...) -^features of slope; 

9. (north, south, west, east) -> the four cardinal points; 

\0.(water course, without watercourse) -^presence of a watercourse. 

AsB. 

W.(meadow,pine-tree, larch, frequently); 

\2.(meadow,pine-tree, steepness < 4°, never); 

13.(meadow, larch, steepness > 4°, never); 

l4.(meadow, north, west, south, frequently); 

15.(meadow, east, rarely); 

\6.(meadow, fir-tree, birch, asp, rarely); 

11 .(meadow, plateau, middle part of slope, frequently); 

IS.(meadow, peak of hill, watercourse heads, rarely); 

19.(plateau, steepness < 3°, always); 

20.(plateau, watercourse, rarely); 

21.(red bilberry wood, pine-tree, frequently); 

22.(red bilberry wood, larch, rarely); 

23.(red bilberry wood, peak of hill, frequently); 

24.(red bilberry wood, height on plateau, rarely); 

25.(meadow, steepness < 3°, frequently). 

The process of reasoning evolves according to the following sequence of 
steps: 

Step 1. Take out all the assertions t in AsB containing at least one value 
from the request, i.e. / e AsB and t n x ^ 0, where x is the request. These 
are assertions 1, 2, 7, 9, 10, 11, and 14. 

Step 2. Delete (from the set of selected assertions) all the assertions that 
contradict the request. Assertion 10 contradicts the request because it 
contains the value of attribute 'presence of water course' which is different 
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from the value of this attribute in the request. The remaining assertions are 1, 
2,7,9, 11, and 14. 

Step 3. Take out the values of attribute 'type of woodland' appearing in 
assertions 1, 2, 7, 9, 11, and 14. We have two hypotheses: 'meadow' and 
'red bilberry'. 

Step 4. An attempt is made to refute one of the hypotheses (the 
application of a diagnostic rule). For this goal, it is necessary to find an 
assertion that has the value of SA equal to 'never' and contains one of the 
hypotheses, some subset of values from the request and does not contain any 
other value. There is only one assertion w îth the value of SA equal to 
'never'. This is assertion 2: {meadow, pine-tree, steepness < 4°, never). 
However, we cannot use this assertion because it contains the value 
'steepness < 4°' which is not in the request. 

Step 5. An attempt is made to find a value of some attribute that is not in 
the request (in order to extend the request). For this goal, it is necessary to 
find an assertion with the value ofSA equal to 'always' that contains a subset 
of values from the request and one and only one value of some new attribute 
the values of which are not in the request. Only one assertion satisfies this 
condition. This is assertion 9: {plateau, steepness < 3"̂ , always). 

Step 6. Forming the extended request: 
SEARCHING VALUE OF the type of woodland IF {plateau, without 

watercourse, pine-tree, steepness < 3°). 
Steps 1, 2, and 3 are repeated. Assertion 15 is involved in the reasoning. 
Step 4 is repeated. Now assertion 2 can be used because the value 

'steepness < 4° is in accordance with the values of 'feature of slope' in the 
request. We conclude now that the type of woodland cannot be 'meadow'. 
The non-refuted hypothesis is "the type of woodland = red bilberry". 

The process of pattern recognition can require inferring new rules of the 
first type from data, when it is impossible to distinguish inferred hypotheses. 
In general, there exist two main cases to learn rules of the first type from 
examples in the process of pattern recognition: i) the result of reasoning 
contains several hypotheses and it is impossible to choose one and only one 
of them (uncertainty), and ii) there does not exist any hypothesis. 

3. INDUCTIVE INFERENCE OF IMPLICATIVE 
RULES FROM EXAMPLES 

3.1 The Concept of a Good Classification Test 

Our approach for inferring implicative rules from examples is based on 
the concept of a good classification test. A good classification test can be 
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understood as an approximation of a given classification on a given set of 
examples (Naidenova, 1996). On the other hand, the process of inferring 
good tests realizes one of the known canons of induction formulated by 
J. S. Mille, namely, the joint method of similarity-distinction. 

A good diagnostic test for a given set of examples is defined as follows. 
Let R he a table of examples and S be the set of indices of examples 
belonging to R. Let R(k) and S(k) be the set of examples and the set of 
indices of examples from a given class k, respectively. 

Denote by FM = R/R(k) the examples of the classes different from class 
k. Let U be the set of attributes and T be the set of attributes values (values, 
for short) each of which appears at least in one of the examples of R. Let n 
be the total number of examples of 7?. We denote the domain of values for an 
attribute Atr by dom{Atr), where Atr e U. 

By s(a), a e T, WQ denote the subset {i e S: a appears in //, // e 7?}, 
where 5'= {1,2,.. ,«}. 

Following (Cosmadakis, et al., 1986), we call s(a) the interpretation of 
a e r in i?. It is possible to say that s(a) is the set of indices of all the 
examples in R which are covered by the value a. 

Since for all a, b e dom{Atr), ai^ b implies that the intersection 
s{a) n s{b) is empty, the interpretation of any attribute in 7? is a partition of iS' 
into a family of mutually disjoint blocks. By P(Atr), we denote the partition 
of S induced by the values of an attribute Atr. The definition of s(a) can be 
extended to the definition of s(t) for any collection t of values as follows: for 
/, / c r, if / = ai ^2... ^m, then s(t) = s(ai) n s(a2) n ... n s(am). 

Definition 1. A collection t e T(s(t) ^ 0 ) of values, is a diagnostic test 
for the set R(k) of examples if and only if the following condition is 
satisfied: / ct /*, V /*, r*G FM(the equivalent condition is s(t) c S(k)). 

To say that a collection / of values is a diagnostic test for the set R(k) is 
equivalent to say that it does not cover any example belonging to the classes 
different from k. At the same time, the condition s(t) c S(k) implies that the 
following implicative dependency is true: 'if t, then k' and, consequently, a 
diagnostic test, as a collection of values, makes up the left side of a rule of 
the first type. 

It is clear that the set of all diagnostic tests for a given set R{k) of 
examples (call it 'DT(ky) is the set of all the collections / of values for 
which the condition s(t) c S(k) is true. For any pair of diagnostic tests ti, /j 
from DT(k) only one of the following relations is true: s(ti) c s{tj), s{ti) 3 
s(tj), s(ti) » (̂̂ j), where the last relation means that s(ti) and s(tj) are 
incomparable, i.e. (̂̂ i) ct ^(/j) and s(tj) (t s{t[). This consideration leads to the 
concept of a good diagnostic test. 

Definition 2. A collection t c T{s{t) ^ 0 ) of values is a good test for the 
set R{k) of examples if and only if the following condition is satisfied: 
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s(t) e S(k) and simultaneously the condition s(t) cz ^(/*) c S(k) is not 
satisfied for any /*, ^*e T, such that t* ^ t. 

Good diagnostic tests possess the greatest generalization power and give 
a possibility to obtain the smallest number of implicative rules of the first 
type for describing examples of a given class k. 

3.2 The Characterization of Classification Tests 

Any collection of values can be irredundant, redundant or maximally 
redundant. 

Definition 3. A collection t of values is irredundant if for any value vet 
the following condition is satisfied: s(t) e s(t/v). 

If a collection t of values is a good test for R(k) and, simultaneously, it is 
an irredundant collection of values, then any proper subset of t is not a test 
for7?(A:). 

Definition 4. Let X-^v be an implicative dependency which is satisfied 
in R between a collection X c T of values and the value v,v e T. Suppose 
that a collection t c 7 of values contains X. Then the collection t is said to be 
redundant if it contains also the value v. 

If t contains the left and the right sides of some implicative dependency 
X-> V, then the following condition is satisfied: s(t) = s(t/v). In other words, 
a redundant collection t and the collection t/v of values cover the same set of 
examples. 

If a good test for R(k) is a redundant collection of values, then some 
values can be deleted from it and thus obtain an equivalent good test with a 
smaller number of values. 

Definition 5. A collection t e T of values is maximally redundant if for 
any implicative dependency X - > v which is satisfied in R the fact that 
t contains X implies that t also contains v. 

If / is a maximally redundant collection of values, then for any value 
V ̂  /, V G r the following condition is satisfied: s(t) z) s(t KJ V). In other 
words, a maximally redundant collection t of values covers the number of 
examples greater than the collection (/ u v) of values. 

Any example Mn i? is a maximally redundant collection of values 
because for any value v ^ /, v G r5(/ u v) is equal to 0 . 

If a diagnostic test for a given set R(k) of examples is a good one and it is 
a maximally redundant collection of values, then by adding to it any value 
not belonging to it we get a collection of values which is not a good test for 
R(k). 

For example, in Table 1 the collection 'Blond Bleu' is a good irredundant 
test for class 1 and simultaneously it is maximally redundant collection of 
values. The collection 'Blond Embrown' is a test for class 2 but it is not good 
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test and simultaneously it is maximally redundant collection of values. 

Table 1. Example 1 of Data Classification (this example is adopted from (Ganascia, 1989)). 
INDEX OF HEIGHT COLOR OF COLOR OF CLASS 
EXAMPLE HAIR EYES 
1 
2 
3 
4 
5 
6 
7 
8 

Low 
Low 
Tall 
Tall 
Tall 
Low 
Tall 
Tall 

Blond 
Brown 
Brown 
Blond 
Brown 
Blond 
Red 
Blond 

Bleu 
Bleu 
Embrown 
Embrown 
Bleu 
Embrown 
Bleu 
Bleu 

1 
2 
2 
2 
2 
2 
1 
1 

The collection 'Embrown' is a good irredundant test for class 2. The 
collection 'Red' is a good irredundant test for class 1. The collection 'Tall 
Red Bleu' is a maximally redundant collection of values and it is a good test 
for class 1. 

It is clear that the best tests for pattern recognition problems must be 
good irredundant tests. These tests allow construction of the shortest rules of 
the first type with the highest degree of generalization. 

3.3 An Approach for Constructing Good Irredundant 
Tests 

Let R, T, s{t\ / c r b e as defined earlier. 

PROPOSITION 1: 

The intersection of maximally redundant collections of values is a 
maximally redundant collection. 

Proof: Let X, 7 c T be maximally redundant collections of values and 
Z = X n Y. Suppose that Z is not maximally redundant. Then there exists a 
value V e T,v € Z such that 

s{Zv)=s{Z). (1) 

We can write X= ZX and Y= Z F . 
Therefore, we have s{ZX) = s(Z) n s(X) and s(Z F ) = s(Z) n ^(F). 
By (1), we get s(Z X) = s(Z v) n siX) = s(Z X v). Hence, hyX=ZX, 

we get that s(X) = s(X v) and X is not a maximally redundant collection of 
values. Similarly we get that s(Y) = s(Y v) and 7 is not a maximally 
redundant collection of values. Thus we have a contradiction. End of Proof 
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Every subset X c T of values generates one and only one interpretation 
s(X) in R which follows from the definition of interpretations for a value and 
for a collection of values. It is clear that every collection of values is 
contained in one and only one maximally redundant collection of values 
with the same interpretation. 

PROPOSITION 2: 

Every collection of values is contained in one and only one 
maximally redundant collection with the same interpretation. 

Proof: L e t X c The a collection of values and s{X) be the interpretation 
of X in R. Suppose that there are two different maximally redundant 
collections of values Y\, Yi^T such that siYi) = s{Y2) = s{X). Construct the 
intersection t of the examples of i? of which the indices belong to s(X). We 
know that the examples of 7? are maximally redundant collections of values 
(see Section 3.2). Thus t must be a maximally redundant collection of values 
(Proposition 1). Yi is included in all the examples of which the indices 
belong to s(X), therefore, 7i e /. Similarly Y2 c t. But if 7i and Y2 are the 
proper subsets of t, then they are not maximally redundant collections of 
values containing X with the interpretation equal to s(X). Consequently, Y\ 
must be equal to Y2 and to /. End of Proof. 

One of the possible ways for searching for good irredundant tests for a 
given class of examples is the following: first, find all good maximally 
redundant tests; second, for each good maximally redundant test, find all 
good irredundant tests contained in it. This is a convenient strategy as each 
good irredundant test belongs to one and only one good maximally 
redundant test with the same interpretation. 

A good maximal redundant test for R(k) either belongs to the set R(k) or 
it is equal to the intersection of q examples from R(k) for some q,2<q <nt, 
where nt is the number of examples in R(k). 

3.4 Structure of Data for Inferring Good Diagnostic 
Tests 

The structure of data given in Table 2 underlies algorithms of searching 
for good diagnostic tests. Here S = {1, 2, ... , w} - the set of indices of 
examples, T = {Au ^2? •••? ĵ? .-.^m} - the set of values of attributes. An 
example is a collection of values of T represented by a row of the data table. 
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Table 2. Structure of the Data. 
S/T Ai A2 .. . Aj .. . AM 

N 

In order to construct algorithms for finding good diagnostic tests for a 
given class of examples we use correspondences of Galois G on SxT and 
two relations S-^ T, T-> S (Ore, 1944), (Riguet, 1948). Let s ^ S, t ^ T. 
We define the relations as follows: 

S-> T: t(s) = {intersection of all ti. tiO^T.i e s) and 
T-^S\s(J)= {/: ieS.t^ti). 

Operations t{s), s{t) have the following properties (Birkhoff, 1948): 

5i e 5j => t{s^ Q t{s^ for all 5i, 5j c S\ 
t{^t]=> s{tj) c s{t^ for all /i, /j c T; 
s c s{t{s)) & t(s) = t(s(t(s))) for all s^S; 
t c t{s{t)) & ^(0 = s{t{s{f))) for all / c T\ 
t(usj) = n /(5j) for all ĵ c 5*; 5(u /j) = n '̂(/j) for all t^ e T. 

Extending s by an index y* of some new example leads to receiving a 
more general feature of examples: 

(s uy*) 3 ^ implies /(^ uy*) c ^(5). 

Extending ^ by a new value A leads to decreasing the number of examples 
possessing the general feature 'tA' in comparison with the number of 
examples possessing the general feature 'f: 

(tuA)^t implies s(t uA)a, s(t). 

We introduce the following generalization operations (functions): 

generalization_of(0 = /' = ^(^(0); 
generalization_of(5) = s' = s(t(s)). 

As a result of the generalization of s, the sequence of operations 
s -> t(s) -> s(t{s)) gives that s(t(sy) 3 s. This generalization operation gives 
all the examples possessing the feature t(s). 
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As a result of the generalization of /, the sequence of operations 
/ -> s(t) -> t(s{t)) gives that t(s(t)) 3 t. This generalization operation gives 
the maximal general feature for examples the indices of which are in s(t). 

These generalization operations are not artificially constructed 
operations. One can perform mentally a lot of such operations during a short 
period of time. We give some examples of these operations. Suppose that 
somebody has seen two films (s) with the participation of Gerard Depardieu 
(t(s)). After that he tries to know all the films with his participation (s(t(s))). 
One can know that Gerard Depardieu acts with Pierre Richard (t) in several 
films (s{t)). After that he can discover that these films are the films of the 
same producer Francis Veber ^(^(0)-

3.5 The Duality of Good Diagnostic Tests 

We implicitly used two generalization operations in all the 
considerations of diagnostic tests (see Sections 3.1, 3.2, and 3.3). Now we 
define a diagnostic test as a dual object, i.e. as a pair (5i, TA), SL c S, 
TA ̂ T,SL = s(TA) and TA = t(SL). 

The task of inferring tests is a dual task. It must be formulated both on 
the set of all subsets ofS, and on the set of all subsets of T. 

Definition 6. Let PM= {si, 52, ..., ̂ m} be a family of subsets of some set 
M Then PM is a Spemer system (Spemer, 1928) if the following condition 
is satisfied: î ct Sj and Sj (t S{, y(ij), i ̂ y, ij= 1, ..., m. 

Definition 7. To find all Good Maximally Redundant Tests (GMRTs) for 
a given class R{k) of examples means to construct a family PS of subsets 
su S2y.'., Snp of the set S such that: 

l)s^QS(k%\/j=\,...,np; 
2) PS is a Sperner system; 
3) each Sj is a maximal set in the sense that adding to it the index i of the 

example ti such that / ^ ^j, / e S implies (̂ j u /) (t S(k). Putting it in another 
way, /(̂ j u 0 is not a test for the class k, so there exists such example /*, 
/* e FMthat t(s^ u /) c /*. 

The set of all GMRTs is determined as follows: 
{t: t(sy), 5j e PS, \/jJ = 1,..., np}. 
Definition 8. To find all GMRTs for a given class R{k) of examples 

means to find a family PT of subsets ti, ti,..., /nq of T such that: 
1) /j CT: / yjj = 1,."? nq,\/t, t e i^Mand, simultaneously, \/tj,j = 1,..., 

nq, s(tj) ^ 0 there does not exist such a collection 5* ^ s{tj), s"^ a, S of 
indices for which the following condition is satisfied 5(/j) c: 5* c S(k); 

2) PT is a Spemer system; 
3) each tj is a maximal set in the sense that adding to it any value A ^ 

tj,A e Timpliess(tj KJA)C:s(tj). 
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Definition 9. To find all Good Irredundant Tests (GITs) for a given class 
R{k) of examples means to find a family Pi?r of subsets t\, h,..., /nq of the set 
T such that: 

1) /j ct / y/,7 = 1,..., nq, \/t, te FMand, simultaneously, V/j,y = 1,..., nq, 
s(tj) ^ 0 there does not exist such a collection s"^ ^ s(tj), s"^ ^S of indices for 
which the following condition is satisfied s(tj) c: 5"* c S(k); 

2) PRT is a Spemer system; 
3) each /j - a minimal set in the sense that removing from it any value A 

belonging to it implies s{tj without^) z) s(tj). 

3.6 Generation of Dual Objects with the Use of Lattice 
Operations 

Let MUT be the set of all dual objects, that is, the set of all pairs (s, t), 
s <^S,t Q,T,s = s(t) and t = t{s). This set is partially ordered by the relation 
<, where (s, t) < (5*, /*) is satisfied if and only if 5 e 5* and 13 /̂ *. 

The set !P = (MUT, u , n ) is an algebraic lattice, where operations u , n 
are defined in the following way (Wille, 1992): 

(^*, /*) n (s, t) = ((^* n s\ (/* u /)), 

for all pairs (5*, /*), {s, t) e MUT 
The unit element and the zero element are (S, 0 ) and (0 , 7), 

respectively. 
Inferring good tests requires inferring for any element (5*, /*) G MUT all 

the elements nearest to it in the lattice with respect to the ordering <, that is, 
inferring all (s, /), that (5"*, /*) < (s, t) and there does not exist any (5**, /**) 
such that (5*, /*) < (^**, /**) < (5, 0, or inferring all (5, 0, that (̂ *, /*) > {s, t) 
and there does not exist any (5**, ^**) such that (5*, /*) > (5**, /**) > {s, t). 
Inferring the chains of lattice elements ordered by the inclusion relation lies 
in the foundation of generating all types of diagnostic tests: 

(1) 5o c ... e 5i e î+i e ... e 5m (̂ (̂ o) 3 (̂̂ 1) 3 ... 3 ^(^0 3 ^( î+i) ^ ... 

(2) 0̂ Q . . . Q î Q î+l ^ . . . C m̂ (^(^0) ^ ^̂ (̂ 1) ̂  . . . ^ '̂ (^i) ^ ^(/i+i) 3 .. . 3 

The process of generating chains of form (1) is defined as an ascending 
process of generating lattice chains. The process of generating chains of 
form (2) is defined as a descending process of generating lattice chains. 
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3.7 Inductive Rules for Constructing Elements of a Dual 
Lattice 

Let i? be a table of examples and S be the set of indices of examples 
belonging to R. Let Tbe the set of attributes values each of which appears at 
least in one of the examples ofR. By Sq = (/i, 12,..., /q), we denote a subset of 
S, containing q indices from S. By tq = (A\, A2, ..., ^q), we denote a subset of 
r, containing q values from T. It should be more convenient in the following 
considerations to denote the set R{k) as i?(+) (the set of positive examples) 
and the set RIR{k) as R{-) (the set of negative examples). 

There are four possible variants of inductive transition from one element 
of a chain to its nearest element in the lattice: 

(i) from Sq = (zi, ii, ..., /q) to ^ i = (/i, /2, ..., /q+i); 
(ii) from/q = (Ji,^2, ...Mq) to ^ i = (^i,.42, ...,^q+i); 
(iii) from Sq = (iu h, ..., /q) to Sq.x = (/'i, /'i, • • •, ̂ q-i); 
( i v ) from /q = ( ^ 1 , ^ 2 , . . . , ^ q ) t o /q.l = ( ^ 1 , ^ 2 , . . . , ^ q . l ) . 

Variant (i) can be used for inferring GMRTs for a given set i?(+) of 
examples. Variant (ii) is a way for inferring GITs for a given set 7?(+) of 
examples directly from the set T without previously constructing the set 
GMRTs. Variants (iii) and (iv) are linked with variants (i) and (ii) by the 
duality relation. 

Consider the variant (i) for inferring GMRTs. 
Let 5'(test) be the partially ordered set of elements s = {iu i2,..., iq}, 

q = 1,2, ..., nt, obtained as a result of chain construction and satisfying the 
condition that t{s) is a test for i?(+). Here nt denotes the number of positive 
examples. Let STGOOD be the partially ordered set of elements s satisfying 
the condition that t(s) is a good test for i?(+). 

Next we will use an inductive rule for extending elements of 5'(test) and 
constructing {/'i, /2, ..., iq+i} from {/i, /2? •••? iq}, ^ = 1, 2, ..., nt-l. This rule 
relies on the following consideration: if the set {/'i, 12,..., iq+\} corresponds to 
a test for i?(+), then all its proper subsets must correspond to tests too and, 
consequently, they must be in iS'(test). Thus the set {/'i, /2? "-, Vi) ^^^ ^^ 
constructed if and only if *S'(test) contains all its proper subsets. Having 
constructed the set Sq+i = {/'i, /2, ..., /q+i}, we have to determine whether it 
corresponds to the test or not. If (̂̂ q̂+i) is not a test, then Sq+i is deleted, 
otherwise Sq+\ is inserted in iS'(test). Each element s of ^^(test) can have 
several extensions. If all the extensions of s do not correspond to tests (the 
set of extensions of s is empty), then s corresponds to a GMRT and it is 
inserted in the set STGOOD, 

Consider variant (ii) for inferring GITs. Let TGOOD be the partially 
ordered set of elements t satisfying the condition that / is a good irredundant 
test for 7?(+). We will use a rule of inductive transition from an element 
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/q = (Au A2, ..., ^q) of a chain to another element /q+i = (Ai, A2, ..., ^q+i). But 
now each element of the chain is an irredundant collection of values and not 
a test for i?(+). If q̂+i = (^1, A2, ..., A^+i) is irredundant, then all its proper 
subsets must be irredundant too. 

Having constructed the set q̂+i = {Ai.Aj, ..., ^q+i), we have to determine 
whether it is an irredundant collection of values or not. If /q+i is redundant, 
then it is deleted, if/q+i is a test, then /q+i is inserted in the set TGOOD. If/q+i 
is irredundant but not a test, then it is a candidate for extension. 

Using inductive rules for generating extensions of collections of indices 
or values requires the implementation of special reasoning operations as 
shown next. 

3.8 Special Reasoning Operations for Constructing 
Elements of a Dual Lattice 

The special reasoning operations are operations that help to perform 
inductive extension rules effectively. These operations are described in 
detail in the following subsections. 

3.8.1 The Generalization Rule 

Consider the variant (i) (see Section 3.7) for inferring GMRTs. The 
inductive extension rule requires generating for each element s in 5'(test) the 
set of all its subsets. The generalization rule must provide a method that 
allows for each element s the following: 
- To avoid constructing the set of all its subsets, 
- To avoid the repetitive generations of it. 

Some different variants of this rule are possible but any of them must 
contain a way for choosing indices admissible for extending s. Consider one 
of the possible generalization rules. 

Suppose that ^ (̂test) and STGOOD are not empty and s G 5'(test). We 
construct the set V: V= {u s\ s^s\s 'e {5'(test) u STGOOD}}. 

The set V is the union of all the collections of indices in iS'(test) and 
STGOOD containing s, hence s is in the intersection of these collections. If 
we want to get an extension of s which will not be in any element of 
{iS'(test) u STGOOD}, then we have to use for extending s the indices which 
do not appear simultaneously with s in the set V. The set of indices -
candidates for extending s-is the set CAND(s) = ntlV. 

An index y* E CAND(S) can be deleted from CAND(s) if at least for one 
index / from s the pair {/, 7*} either does not correspond to a test or it 
corresponds to a good test (it belongs to STGOOD). 

Let Q be the set of forbidden indices for extending s: 
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Q = {{y}- Klv}) is not a test for i?(+)}. 

Then the set of admissible indices will be equal to the set 

selectis) = {/, / G CAND{s): (\/j)(j e s), {ij} € {STGOOD orQ}}. 

Table 1 contains a small collection of data to be classified. Consider an 
example of using the generalization rule. 

Suppose that STGOOD contains an element s = {2,3,5} such that t(s) is a 
test for the second class. Suppose that 5'(test) = {{3,4},{3,5},{3,6},{4,6}} 
and Q = {{2,4},{2,6},{4,5},{5,6}}. We try to extend s = {3,4} in order to 
get a new test for the second class. The set select{s) of indices for extending 
s is {5, 6}. But only index 6 is an admissible one. The collection {3,4,6} 
corresponds to a good test - 'Embrown'. 

The extending of s results in obtaining the subsets of positive examples 
of more and more power with more and more generalized features (set of 
values). This operation is analogous to the generalization rule applied for 
star generation under conceptual clustering (Michalski, 1983). The 
theoretical framework and an algorithm for partitioning data into conjunctive 
concepts can be found in (Michalski, 1980). 

The generalization rule with searching only admissible variants of 
generalization is not an artificially constructed operation. A lot of examples 
of using this rule in human thinking can be given. For example, if your child 
were allergic to oranges, then you would not buy not only these fruits but 
also orange juice and also products that contain orange extracts. A good 
gardener knows the plants that cannot be adjacent in a garden. A lot of 
problems related to placing personnel, appointing somebody to the post, 
finding lodging for somebody e.t.c, deal with partitioning a set of objects or 
persons into groups by taking into account forbidden pairs of objects or 
persons. 

3.8.2 The Diagnostic Rule 

The diagnostic rule is intended for getting a collection of values 
î+i = {A\, A2, ... ^q, -̂ q+i} from a collection // = {Ai, A2, ... , A^} such that tt 

is not a test but ti+i is a test for a given class of positive examples. 
In the general case, the extended set ti+\ is not a GIT, so we use the 

ascending process î+i 3 ... 3 /m (̂ (̂ i+i) ^ ••• Q ^(O) for inferring GITs 
contained in ti+i. 

Consider an example of the diagnostic rule (see also Table 1). 
Let s be equal to {1,2,5,7,8}, then t(s) = 'Bleu\ where t(s) is not a test for 

both classes 1 and 2. We can extend t(s) by choosing values which appear 
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simultaneously with it in the examples of the first class and do not appear in 
any example of the second class and vice versa. These values are to be said 
essential ones. 

The set of essential values for class 1 is {Blond, Red), the set of essential 
values for class 2 is {Brown}. The values 'Low' and 'TaW can be deleted 
from consideration because they occur with the value 'Bleu' in the examples 
of both classes. We have two tests containing the value 'Bleu' for class 1 -
'Bleu Red' (good but redundant one) and 'Bleu Blond' (good and irredundant 
one), and only one test (although not a good one) for class 2 - 'Bleu Brown'. 

This diagnostic rule is the rule of the second type with the help of which 
the diagnostic rules of the first type are inferred. In our previous example, 
the following diagnostic rules of the first type have been inferred: 

'Bleu, Brown' -> 'class 2', 'Bleu, Blond' -> 'class 7', 
'Bleu, Red' —> 'class I', 'Red, Brown' -> 'false', and 
'Blond, Brown' -> 'false'. 
The diagnostic rule for extending a collection of values is analogous to 

the specialization rule already defined in (Michalski, 1983), (Ganascia, 
1989). If a newly presented training example contradicts an already 
constructed concept description, the specialization rule is applied to generate 
a new consistent concept description. A specialization method has been 
given in (Michalski and Larson, 1978). 

The diagnostic rule can be applied also for searching essential values in a 
collection t of values that is a test for positive examples. In this case we are 
interested in determining such values in t whose deletion from it implies that 
the remaining collection of values will not be a test for positive examples. 
With this point of view, we will use the following definition of an essential 
value. 

Definition 10. Let / be a collection of values that is a test for a given 
class of positive examples. We say that the value ^ in n s essential if (t/A) is 
not a test for a given class of positive examples. 

3.8.3 The Concept of an Essential Example 

By analogy with an essential value, we define an essential example. 
Definition 11. Let shQ a, subset of indices of positive examples; assume 

also that t(s) is not a test. The example tj,j € i- is to be said an essential one 
ift(s/j) proves to be a test for a given class of positive examples. 

For instance, the set s = {1,7,8} contains the indices of examples of the 
first class (Table 1). However, t(s) that is equal to the value 'Bleu' is not a 
test for the first class. Deleting index 7 of example tj from s implies that 
t(sn) equal to 'BlondBleu' is a test for the first class. So example t-j is found 
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to be an essential one in the collection of examples {̂ i, tq, t^}. The index 7 in 
s is the index of an essential example. 

4. ALGORITHMS FOR CONSTRUCTING ALL 
GOOD MAXIMALLY REDUNDANT TESTS 

4.1 NIAGaRa: A Non-Incremental Algorithm for 
Constructing AH Good Maximally Redundant Tests 

Consider one of the possible non-incremental algorithms for inferring all 
GMRTs for a given set of positive examples. We use the ascending process 

(/(5o) 3 ... 3 t{s^ ^ (̂̂ i+i) 3 ... 3 t{Sr^). This 
process is a sequence of applications of the generalization rule (see Section 
3.8.1) for generating dual elements (5'i, t{si)), beginning with two initial sets 
^(+) = {tu 2̂, ..., î, ..., U and S{+) = {s(til s(t2% ..., s(hX ..., s(tnt)} = 
{{1}, {2}, ...,{/}, ..., {«^}}, where «/is the number of positive examples. 

The procedure DEBUT (see also Figure 2) produces the extensions of 
elements of the initial set *S'(+) = {{1}, {2}, ...,{/}, {/}v? {^0} and, as 
result, constructs the set {su, ^n, ..., -̂y, ..., }, where ŷ = {ij}, 1 < / <j < nt. 

Every element Si^ = {Uj}:> such that /(^y) is not a test for a given set of 
positive examples, is recorded in the set Q of forbidden pairs of indices. 
Every element ŷ = {i,j}, such that /(^y) is a test for a given set of positive 
examples, is generalized by the use of the function generalization_of (̂ y) and 
after that the result s = generalization_of(^y) is inserted in the set ^(test). 

When DEBUT terminates, it is possible to check whether an element s of 
/^(test) corresponds to a GMRT for a given set of positive examples or not. 
For this goal, we use the following rule: if some indexy, fory = 1, ..., w/, 
belongs to one and only one element s of ^^(test), then s can not be extended 
and, consequently, s corresponds to a GMRT and it is deleted from iS'(test) 
and is inserted into STGOOD. 

In its main part, the algorithm NIAGaRa infers, for every s in iS'(test), the 
set ext{s) of all possible extensions ois which correspond to tests for a given 
set of positive examples. The algorithm realizes a directional choice of 
indices for extending s with the use of the generalization rule considered in 
Section 3.8.1. The procedure SELECT(^) (see also Figure 3) serves this goal. 
It returns the set select{s) of indices that are admissible to produce 
extensions ofs corresponding to tests. 
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The Procedure DEBUT 

llnput: R(+l R(-X nt, S(+) = {{1}, ,{nt}}. 
|Output: ^ (̂test) - the set of collections of indices to be extended, 

Q - the set of forbidden pairs of indices, STGOOD. 

Begin 
STGOOD < - 0 ; Q < - 0 ; 5'(test) <r-0; 
for /• = 1, , nt: sum(f) <— 0; 
begin do 
i = S[ll...,S[nt] 
j-S[i+ll...,S[nt] 
ifto_be_test(r({v})) = false then Q <r-Qu{iJ}; 

else s' <- generalization_of({/j/}); 
for (V/), i e s': sum{i) <-sum(i) + 1; 
insert s' into iS(test) under lexicographic order; 

endy 
end/ 
end 
begin do 
(V/) (/ = 1, nt) iisum{i) = 1 then find s,i e s,s e 5'(test); 

insert s into STGOOD under lexicographic order; /* 5 is a GMRT */ 
Delete s from *S'(test); 
end 
nts <r-(^s,s e S(tQSt)); 
end 

Figure 2. The Beginning of the Procedure for Inferring GMRTs. 

The following sets are used in this procedure: s, not(s), F, CAND{s), Q, 
S{tQSt\ and STGOOD. 

S{tQsX) is the partially ordered set containing all s = {i\, 12, ..., /q}, 
q = 1,2, ..., nt, satisfying the condition that t{s) is a maximally redundant test 
for a given set of positive examples but not a good one. 

STGOOD is the partially ordered set containing all s = {i\, i2, ..., /q}, 
q = 1,2, ..., nt, satisfying the condition that t{s) is a GMRT for a given set of 
positive examples. 



Chapter 3: A Learning Algorithm for Inferring Logical Rules 117 

The Procedure SELECT(5) 

llnput: s, nts, Q, S(test), STGOOD. 
Output: the set select{s) of indices for possible extension s. 

\not{s) = {/: i e nts, i > "the last index of the collection ^ " } ; 
Begin do 

\inot{s) = 0 then select{s) <- 0 ; 
else 

V= {us\sQs',s' e {S(test)u STGOOD}}; 
if V = 0 then CAND(s) <^ not(s); 

else 
CAND(s) <r- not{s) \V\ 
if CAND{s) = 0 then select{s) <r- 0 

else 
select(s) = {/, / G CAND(s): {yj)(j e s), 
{iJ}^{STGOOD or Q}}, 
where Q = {{ij}: to_ be_ test (t({ij})) = false}; 

end 

Figure 3. The Procedure for Determining the Set of Indices for Extending s. 

Let nts be the union of all s in iS'(test). Under lexicographically ordering 
the elements of *S'(test), the restricted range of searching is the set 

not(s) = {/; / e nts, i > "the last index of the collection 5"}. 

The set V is determined as the set of indices which must be deleted from 
nts in order not to repeat the generation of the same tests: 

V={yjs\s(^ s\ s' G {^(test) u STGOOD}}. 

The set of indices CAND(s) of candidates for extending s is equal to 
not{s)IV. If V is empty, then CAND(s) is equal to not(s). Finally, we have 
thatselect(s) = {/, / G CAND(S): (Vj)(j e s), {ij} ^ {STGOODorQ}}. 

The procedure EXTENSI0N(5) (see also Figure 4) takes select(s) and 
returns the set ext(s) of all possible extensions of ^ in the form (s uj) for all 
jj G select{s). This procedure executes the function generalization_of (5). 
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The Procedure EXTENSION(5) 

llnput: s, select(s), S(tQst), STGOOD. 
Output: ext(s) - the set of all extensions s' of s such that| 
\t(s') is a test and I U11 = I Ul I + 1. 
\snew - a current extension of s. 

Begin 
ext(s) = 0 ; 
while select{s) ^ 0 
snew <— s uJJ e select(s); 
if to_be_test(r(^/7^w)) = false then eliminate snew; else 

Begin do 
snew <- generalization_of(^«ew); 
insert snew into ext(s) under lexicographic order; 
end 

end while 

end 

Figure 4. The Procedure for Generating All Possible Extensions of ̂ . 

The procedure ANALYSIS_OF_EXTENTIONS(5) (see also Figure 5) 
checks the set ext(s). If ext(s) is empty and V is empty, then s corresponds to 
a GMRT and s is transferred from iS'(test) to STGOOD. If ext(s) contains one 
and only one element snew, then snew corresponds to a GMRT, snew is 
inserted into STGOOD and s is deleted from 5'(test). In all other cases, the set 
ext(s) substitutes s in ^(test). 

The set nts is modified during the process of inferring GMRTs and it may 
happen that the function to_hQ_tQSt(t(nts)) = true. This condition indicates 
that the process of inferring GMRTs is over. The task also stops when ^^(test) 
is empty. 

Finally, the set TGOOD of all GMRTs for a given set of positive 
examples is formed as follows: TGOOD = {t{s)\ s e STGOOD}. 

The procedure NIAGaRa (see also Figure 6) uses the procedures 
DEBUT, SELECT(^), ESTENSI0N(5), and ANALYSIS, 0 F _ 
EXTENSI0N(5). 
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The Procedure ANALYSIS_OF_EXTENSION (s) 
[Input: ext(s), S(test), STGOOD. 
jOutput: the modified sets 5'(test) and STGOOD. 

Begin 
if ext(s) = 0 and F = 0 then 

Begin /* s corresponds to a GMRT */; 
do 
inserts- into STGOOD under lexicographic order; 
end 

if ||ejc^(^)||= 1 then 
Begin do /* snew corresponds to a GMRT */; 
insert snew into STGOOD under lexicographic order; 
end 

Begin do 
(V snew) (snew e ext(s)) 
insert snew into iS(test) under lexicographic order; 
end 
5'(test) <-5(test)/^; 
end 

Figure 5. The Procedure for Analyzing the Set of Extensions ofs. 

The following Tables 3 and 4 illustrate the work of the procedure 
NL\GaRa for inferring all the GMRTs for the examples of class 2 (see also 
Table 1). In this example, the set STGOOD is empty after the procedure 
DEBUT is over. We give the other example of how the algorithm NIAGaRa 
works in the Appendix. Next we turn to consider the computational 
complexity of the algorithm and procedures described. 

The problem of generating all GMRTs for a given set of positive 
examples is NP-complete because the number of GMRTs may be 
exponentially large. In the worst case, the number of GMRTs is 0(2'̂ '/|71^^^). 

The algorithm NIAGaRa is optimal in the sense that it generates each 
element s only once. 

In essence, the number of elements of the set Q determines "virtually" 
the computational complexity of the algorithm. The increase of this number 
is equivalent to the decrease of the number of positive examples. Since class 
2 contains 5 positive examples (lines 2, 3, 4, 5, and 6 in Table 1), it is 
possible to generate only 10 pairs of examples of this class. But 4 of these 
pairs are forbidden ones (Q has 4 elements). Therefore, only 6 pairs of 
positive examples determine the number of dual lattice elements to be 
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generated by the algorithm. Thus, we have a "virtual" set of positive 
examples with 4 elements (6 pairs can be generated by four elements). As 
€4^ = 4, it is possible to construct only 4 triples from the set of four 
elements. 

This estimation is very rough because we deal with the sets .SCtest) and Q 
which are not compact. Actually only two triples have been constructed in 
the illustrative example (Table 3). 

I n p u t : /?(+) , 
0 u t p u t : the 

T h e P r o c e d u r e N I A G a R a 

R(--),nt,S( + ) 
set TGOOD 0 

for p o s i t i v e e x a m p l e s . 

D E B U T ; 
B e g i n do 
w h i l e 5 '(test) 

S E L E C T ( ^ ) ; 

?t 0 or to_be_ 

E X T E N S I O N ( 5 ) ; 
A N A L Y S I S , 

nts::= ( u s, s 

e n d w hi le 

= { { 1 } , ,{ 
f a l l G M R T s 

_tQSt(t(nts)) = 

_ O F _ E X T E N S I O N ( ^ ) ; 

e 5 ( t e s t ) ) ; 

c o n s t r u c t TGOOD from STGOOD; 
e n d 

nt}}. 

false do 

Figure 6. The Main Procedure NIAGaRa for Inferring GMRTs. 

Table 3. The Results of the Procedure DEBUT for the Examples of Class 2 
(see also Table 1). 

s 
{2,3} 
{2,4} 
{2,5} 
{2,6} 
{3,4} 
{3,5} 
{3,6} 
{4,5} 
{4,6} 
{5,6} 

t(s) 
Brown 
0 
Brown Bleu 
Low 
Tall Embrown 
Tall Brown 
Embrown 
Tall 
Blond Embrown 
0 

Test? 
Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
No 

Generalization_of(s) 
{2,3,5} 

{2,5} 

{3,4} 
{3,5} 
{3,4,6} 

{4,6} 

Q 

{2,4} 

{2,6} 

{4,5} 

{5,6} 

S(test) 
{2,3,5} 

{2,5} 

{3,4} 
{3,5} 
{3,4,6} 

{4,6} 
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In our illustrative example in the Appendix, the initial set iS'(test) contains 
25 elements (admissible pairs of indices of positive examples). It roughly 
corresponds to decreasing the number of positive examples from 14 to 8. 

Table 4. The Result of Inferring GMRTs for the Examples of Class 2 (see also Table 1). 

S not(s) V CAND(s) select(s) ext(s) Results 
{2,3,5} 
{2,5} 
{3,4} 
{3,4,6} 
{3,5} 
{4,6} 

If we 
then we 
elements 

{6} 
{6} 
{5,6} 
0 
{6} 
0 

0 
{2,3,5} 
{3,4,6} 
0 
{2,3,5} 
{3,4,6} 

know the number 

{6} 
{6} 
{5} 
0 
{6} 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

{2,3,5} -> STGOOD 
{2,5} -^delete 
{3,4} -> delete 
{3,4,6} -> STGOOD 
{3,5} -> delete 
{4,6} -^ delete 

of pairs of elements of some set with N elements, 
can compute the number of subsets of this set with 3, 4, ... , A -̂l 
as follows: CN^ '• - CN (A^-- 2)/3; CN — CN [(A^-3)/4][(A^-2)/3]; 

; CN^ = CN^ 2 (A^ - 2)!/[(A^-^)!^!]. Table 5 shows the number of 
combinations CN^, CN^, CN"̂  as a function of Â . For the set of N elements 
when A^= 14 the number of pairs of its elements is equal to 91, the number 
of triples of its elements is equal to 364 and the number of its subsets 
containing 4 elements is equal to 1001. Decreasing the number of pairs by 2 
times (which is equivalent to decreasing Â  from 14 to 10) implies decreasing 
the number of triples by 3 times and the number of subsets containing 4 
elements - by 5 times. 

Table 5. 
N 4 
CN 6 
CN' 4 
CN' 1 

The Number of Combinations CN^, CN' 
5 
10 
10 
5 

6 
15 
20 
15 

7 
21 
35 
35 

8 
28 
56 
70 

9 
36 
84 
126 

, CN ! 
10 
45 
120 
210 

as a Function ofN. 

11 
55 
165 
330 

12 
66 
220 
495 

13 
78 
286 
715 

14 
91 
364 
1001 

The computational complexity of the procedures DEBUTE, SELECT(^), 
ESTENSION(5) and ANALYSIS_OF_EXTENSION(^) depends on the 
computational complexity of the functions generalization_of (s), 
to_be_test(/(5)) and the operation which inserts an element s into one of the 
sets ext(s), 5'(test) or STGOOD. 

The function generalization_of (s) is of time complexity of order 0{nt), 
where nt is the number of positive examples. The function to_be_test(/(^)) 
can be reduced to checking whether s(t) contains at least one index of 
negative example or not. It can be implemented by the use of radix sorting 
which sorts n integers in time 0(n) (Aho et al., 1974). Therefore, the 
function to_be_test(/(5)) is of time complexity of order 0(nt + nf), where nt 
and nf the number of positive and negative examples, respectively. 



122 Data Mining & Knowledge Discovery Based on Rule Induction 

The operation of inserting an element s into the sets ext(s), iS'(test) or 
STGOOD under lexicographically ordering of these sets is reduced to 
lexicographically sorting a sequence of /r-element collections of integers 
(element s is considered as a collection of integers). A sequence of n 
collections, the components of which are represented by integers from 1 to 
m, is sorted in time of 0{m + Z), where L is the sum of lengths of all the 
collections of this sequence (Aho et al., 1974). Consequently, liLext, Lstest, 
Lgtest are the sums of lengths of all the collections s of ext{s), ^ (̂test) and 
STGOOD, respectively, then the time complexity of inserting an element s 
into ext{s) is of order 0(|7] + Lext), the time complexity of inserting an 
element s into iS'(test) is of order 0(|7] + Lstesi), and the time complexity of 
inserting an element s into STGOOD is of order 0(|7] + Lgtest). 

The procedure DEBUT has a polynomial time complexity of order 
0{nt\nt + nf) + nt^)-^ 0(nt^ (17] + Lstest)) + 0(nt (\T\ + Lgtest)). The 
procedure SELECT(^) has a polynomial time complexity of order 
0{{mt+mg) + nt^), where mt - the number of elements of *S'(test), mg - the 
number of elements oi STGOOD. 

The procedure EXTENSI0N(5) has a polynomial time complexity of 
order 0(nt {nf + nt)) + 0{nf) + 0{nt {\T\ + Lext)). The procedure 
ANALYSIS_0F_EXTENSI0N(5) has a polynomial time complexity of 
order 0{nt (|7] + Lstest + Lgtest)). 

The algorithm NIAGaRa finds all the GMRTs for a given set of positive 
examples but the number of these GMRTs can be exponentially large. In this 
case, this algorithm will be not realistic. Now we consider some 
decompositions of the problem that provide the possibility to restrict the 
domain of searching, to predict, in some degree, the number of tests, and to 
choose tests with the use of essential values and/or examples. 

4.2 Decomposition of Inferring Good Classification 
Tests into Subtasks 

We consider two kinds of subtasks: for a given set of positive examples 
(1) given a positive example /, find all GMRTs contained in t\ (2) given a 
non-empty collection of values X (maybe only one value) such that it is not a 
test, find all GMRTs containing X. Each example contains only some subset 
of values from T, hence each subtask of the first kind is simpler than the 
initial one. Each subset X of T appears only in a part of all examples, hence 
each subtask of the second kind is simpler than the initial one. 
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4.2.1 Forming the Subtasks 

The subtask of the first kind. We introduce the concept of an example's 
projection proj(i?)[^] of a given positive example ^ on a given set R(+) of 
positive examples. The proj(i?)[/] is the set Z = {z: (z is non empty 
intersection of t and t") & {f e i?(+)) & (z is a test for a given class of 
positive examples)}. 

If the proj(J?)[/] is not empty and contains more than one element, then it 
is a subtask for inferring all GMRTs that are in /. If the projection contains 
one and only one element equal to t, then /is aGMRT. 

To make the operation of forming a projection perfectly clear we 
construct the projection of /2 = 'Low Brown Bleu' on the examples of the 
second class (Table 1). This projection includes t2 and the intersections of ̂ 2 
with the other positive examples of the second class, i.e. with the examples 
h, U, ts, h (Table 6). 

Table 6. The Intersections of Example 2̂ with the Examples of Class 2. 

INDEX OF HEIGHT COLOR OF COLOR OF TEST? 

EXAMPLE HAIR EYES 

2 Low Brown Bleu Yes 

3 Brown Yes 

4 No 

5 Brown Bleu Yes 

6 Low No 

In order to check whether an element of the projection is a test or not we 
use the function to_be_test(/) in the following form: 

to_be_test(/) = if ^(^ Q s{+) then true else false, 

where ^(+) is the set of indices of positive examples, s{t) is the set of indices 
of all positive and negative examples containing t. If 5(-) is the set of indices 
of negative examples, then 5' = 5'(+) u 5(-) and s{t) = {i: tQti, i G S}. 

Table 7. The Projection of the Example 2̂ on the Examples of Class 2. 

INDEX OF HEIGHT 
EXAMPLE 
2 Low 
3 
5 

COLOR OF 
HAIR 
Brown 
Brown 
Brown 

COLOR OF 
EYES 
Bleu 

Bleu 

TEST? 

Yes 
Yes 
Yes 
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The intersection ti r\ U is the empty set. Hence the row of the projection 
with the number 4 is empty. The intersection 2̂ ^ h is not a test for the 
second class because s{Low) = {1,2,6} ct ^(+), where ^(+) is equal to 
{2,3,4,5,6}. Finally, we have the projection of 2̂ on the examples of the 
second class in Table 7. 

The subtask turns out to be very simple because the intersection of all the 
rows of the projection is a test for the second class: /({2,3,5}) = 'Brown\ 
s{Brown) = {2,3,5} and {2,3,5} e s{+). 

The subtask of the second kind. We introduce the concept of an 
attributive projection proj(7?)[^] of a given value ^ on a given set 7?(+) of 
positive examples. 

The projection pro}(R)[A] = {t: (t e R(+)) & (A appears in t)}. Another 
way to define this projection is: proj(i?)[^] = {/,: / e (s(A) n 5(+))}. If the 
attributive projection is not empty and contains more than one element, then 
it is a subtask of inferring all GMRTs containing a given value A. If A 
appears in one and only one example, then A does not belong to any GMRT 
different from this example. 

Forming the projection of A makes sense if A is not a test and the 
intersection of all positive examples in which A appears is not a test too, i.e. 
s(A) (X ̂ (+) and t'= t(s(A) n 5(+)) is not a test for a given set of positive 
examples. 

Denote the set {s(A) n s(+)} by splus(A). In Table 1, we have: 
5'(+) = {2,3,4,5,6}, splus{Low) -> {2,6}, splus(Brown) -> {2,3,5}, 

splus{Bleu) -> {2,5}, splus(Tall) -^ {3,4,5}, splus{Embrown) -> {3,4,6}, 
and splus{Blond) -^{4,6}. 

For the value 'Brown' we have: 
s{Brown) = {2,3,5} and s{Brown) = splus(Brown), i.e. s{Brown) e s{+). 
Analogously for the value 'Embrown' we have: s(Embrown) = {3,4,6} 

and s{Embrown) - splus{Embrown), i.e. s(Embrown) c 5'(+). 

Table 8. The Result of Reducing the Projection after Deleting the 

Values 'Brown' and 'Embrown'. 

INDEX OF HEIGHT COLOR OF COLOR OF TEST? 
EXAMPLE HAIR EYES 

Bleu No 
No 

Blond No 
Bleu No 

Blond No 

These values are irredundant and simultaneously maximally redundant 
tests because /({2,3,5}) = 'Brown' and /({3,4,6}) = 'Embrown', It is clear 

2 
3 
4 
5 
6 

Low 
Tall 
Tall 
Tall 
Low 
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that these values cannot belong to any test different from them. We delete 
'Brown' and 'Embrown' from further consideration with the following result 
as shown in Table 8. 

Now none of the remaining rows of the second class is a test because 
s(Low, Bleu) = {1,2}, s(Tair) = {3,4,5,7,8}, s(Tall, Blond) = {4,8}, 
s(Tall, Bleu) ={5,7,8}, s(Low, Blond) = {1,6} ct s(+). The values 'Brown' 
and 'Embrown' exhaust the set of the GMRTs for this class of positive 
examples. 

4.2.2 Reducing the Subtasks 

The following theorem gives the foundation for reducing projections both 
of the first and the second kind. 

THEOREM 1: 

Let A be a value from T, X be a maximally redundant test for a 
given set i?(+) of positive examples and s{A) e s{X). Then A does 
not belong to any maximally redundant good test for R{+) different 
fromX. 

Proof: Case 1. Xis a good maximally redundant test (GMRT) for 7?(+). 
Suppose that A appears in 7, 7 is a GMRT for R{+) different from X. Then 
s{Y) is a proper subset ois{A). However, we have that s{A) e s{X) and hence 
s{Y) is a proper subset of s{X). However, it is impossible as the set of 
GMRTs is a Sperner system and hence s{Y) and s{X) does not contain each 
other. 

Case 2. X is a maximally redundant test for 7?(+) but not a good one. 
Suppose that there exists a GMRT Y such that A appears in Y. Next observe 
that s{Y) is a proper subset of ^(^) and s{Y) is a proper subset ofs{X). Then 
X e 7 and X is not a maximally redundant test. We have a contradiction. 
End of Proof. 

Table 9. Example 2 of a Data Classification. 
INDEX OF 
EXAMPLE 
1 
2 
3 
4 
5 
6 
7 
8 

HEIGHT 

Low 
Low 
Tall 
Tall 
Tall 
Low 
Tall 
Tall 

COLOR OF 
HAIR 
Blond 
Brown 
Brown 
Blond 
Brown 
Blond 
Red 
Blond 

COLOR OF 
EYES 
Bleu 
Bleu 
Embrown 
Embrown 
Bleu 
Embrown 
Bleu 
Bleu 

CLASS 

"1 ' 
1 
1 
2 
2 
2 
2 
2 
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To illustrate the way of reducing projections, we consider another 
partition of the rows of Table 1 into the sets of positive and negative 
examples as shown in Table 9. 

Let s(+) be equal to {4,5,6,7,8}. The value 'Red' is a test for positive 
examples because s{Red) = splus{Red) = {7}. Delete 'Red' from the 
projection. The value 'TalV is not a test because s{TalI) = {3,4,5,7,8} and it 
is not equal to splus{TaH) = {4,5,7,8}. Also t{splus{TalJ)) = 'TaW is not a 
test. The attributive projection of the value 'TalV on the set of positive 
examples is in Table 10. 

Table 10. The Projection of the Value 'TalV on the Set R{+). 

INDEX OF 
EXAMPLE 
4 
5 
7 
8 

HEIGHT 

Tall 
Tall 
Tall 
Tall 

COLOR OF 
HAIR 
Blond 
Brown 

Blond 

COLOR OF 
EYES 
Embrown 
Bleu 
Bleu 
Bleu 

CLASS 

2 
2 
2 
2 

In this projection, splus{Bleu) = {5,7,8}, t{splus{Bleu)) = 'Tall Bleu\ 
s(Tall Bleu) = {5,7,8} = splus{Tall Bleu) hence 'Tall Bleu' is a test for the 
second class. We have also that splus{Brown) = {5}, but {5} e {5,7,8} and, 
consequently, there does not exist any good test which contains 
simultaneously the values 'Tall' and 'Brown'. 

Delete 'Bleu' and 'Brown' from the projection as shown in Table 11. 

Table 11. The Projection of the Value 'Tail' on the Set R{-\-) without the 

Values 'Bleu' and 'Brown'. 

INDEX OF 
EXAMPLE 
4 
5 
7 
8 

HEIGHT 

Tall 
Tall 
Tall 
Tall 

COLOR OF 
HAIR 
Blond 

Blond 

COLOR OF 
EYES 
Embrown 

CLASS 

2 
2 
2 
2 

However, now the rows 5̂ and t-j are not tests for the second class and 
they can be deleted as shown in Table 12. 

The intersection of the remaining rows of the projection is 'Tall Blond'. 
We have that s(Tall Blond) = {4,8} c s(+) and this collection of values is a 
test for the second class. 
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Table 12. The Projection of the Value 'TalV on the Set R{+) without the Examples t^ and t^. 

INDEX OF HEIGHT COLOR OF COLOR OF CLASS 
EXAMPLE HAIR EYES 
4 Tall Blond Embrown 2 

J Tall Blond 2 

As we have found all the tests for the second class containing 'TaW we 
can delete 'TalV from the examples of the second class as shown in Table 
13. Next we can delete the rows ts, /?, and /g. The result is in Table 14. 

The intersection of the remaining examples of the second class gives a 
test'Blond Embrown' because 

s{BlondEmbrown) = splus{BlondEmbrown) = {4,6} c 5(+). 
The choice of values or examples for forming a projection requires 

special consideration. 
In contrast to incremental learning, where the problem is considered of 

how to choose relevant knowledge to be best modified, here we come across 
the opposite goal to eliminate irrelevant knowledge not to be processed. 

Table 13. The Result of Deleting the Value 'Tair from the Set R(+). 
INDEX OF HEIGHT COLOR OF COLOR OF CLASS 
EXAMPLE HAIR EYES 
1 
2 
3 
4 
5 
6 
7 
8 

Low 
Low 
Tall 

Low 

Blond 
Brown 
Brown 
Blond 
Brown 
Blond 

Blond 

Bleu 
Bleu 
Embrown 
Embrown 
Bleu 
Embrown 
Bleu 
Bleu 

1 
1 
1 
2 
2 
2 
2 
2 

Table 14. The Result of Deleting ts, t-j, and t^ from the Set R{+). 
INDEX OF HEIGHT COLOR OF COLOR OF CLASS 
EXAMPLE HAIR EYES 
1 
2 
3 
4 
6 

Low 
Low 
Tall 

Low 

Blond 
Brown 
Brown 
Blond 
Blond 

Bleu 
Bleu 
Embrown 
Embrown 
Embrown 

1 
1 
1 
2 
2 

4.2.3 Choosing Examples and Values for the Formation of Subtasks 

Next it is shown that it is convenient to choose essential values in an 
example and essential examples in a projection for the decomposition of the 
main problem of inferring GMRTs into the subtasks of the first or second 
kind. 
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An Approach for Searching for Essential Values: 

Let ^ be a test for positive examples. Construct the set of intersections 
{t nf: f e R(-)}. It is clear that these intersections are not tests for positive 
examples. Take one of the intersections with the maximal number of values 
in it. The values complementing the maximal intersection in t is the minimal 
set of essential values in /. 

Return to Table 9. Exclude the value 'Red' (we know that 'Red' is a test 
for the second class) and find the essential values for the examples U, ts, t^, 
tj, and /8- The result is in Table 15. 

Consider the value 'Embrown' in te'. 
splus{Embrown) = {4,6}, ^({4,6}) = 'BlondEmbrown' is a test. 
The value 'Embrown' can be deleted. But this value is only one essential 

value in 4 and, therefore, 4 can be deleted too. After that splus{Blond) is 
modified to the set {4,8}. 

^̂ ^̂ Table ̂ ^̂ 1̂5. The Essential ̂  Values ̂ for̂ the ̂ Examples t^, ̂  ts,^ t^, .,fe.,.̂ g,j jg-
INDEX OF HEIGHT COLOR OF COLOR OF ESSENTIAL CLASS 
EXAMPLE HAIR EYES VALUES 
1 
2 
3 
4 
5 
6 
7 
8 

Low 
Low 
Tall 
Tall 
Tall 
Low 
Tall 
Tall 

Blond 
Brown 
Brown 
Blond 
Brown 
Blond 

Blond 

Bleu 
Bleu 
Embrown 
Embrown 
Bleu 
Embrown 
Bleu 
Bleu 

Blond 
Bleu, Tall 
Embrown 
Tall, Bleu 
Tall 

1 
1 
1 
2 
2 
2 
2 
2 

We observe that /({4,8}) = 'Tall Blond' is a test. Hence the value 'Blond' 
can be deleted from further consideration together with the row t^. Now the 
intersection of the rows /s, h, and h produces the test'Tall Bleu'. 

An Approach for Searching for Essential Examples: 

We need the set STGOOD to find indices of essential examples in some 
subset 5-* of indices for which /(5*) is not a test. Let 5** = {/'i, ii, ... , /q}. 
Construct the set of intersections {s"^ r\ s': s'e STGOOD}. Any obtained 
intersection ^* n ^' corresponds to a test for positive examples. Take one of 
the intersections with the maximal number of indices. The subset of 5"* 
complementing in 5* the maximal intersection is the minimal set of indices 
of essential examples in 5*. For instance, 5* = {2,3,4,7,8}, s' = {2,3,4,7}, 
s' e STGOOD, hence 8 is the index of essential example t^. 
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In the beginning of inferring GMRTs, the set STGOOD is empty. Next 
we describe the procedure with the use of which a quasi-maximal subset of 
5* that corresponds to a test is obtained. 

We begin with the first index i\ of ^*, then we take the next index /i of ^* 
and evaluate the function to_be_test (/({/i, 2̂}))- If the value of the function 
is "true", then we take the next index h of 5* and evaluate the function 
to_be_test (^({/i, /'i, h)))- If the value of the function is "false", then the 
index ii of 5"* is skipped and the function to_be_test (/({/'i, h})) is evaluated. 
We continue this process until we achieve the last index of ^*. 

For example, in Table 9, 5(+) = {4,5,6,7,8}. The value 'Red' is a test for 
positive examples because of s(Red) = splus{Red) = {7}. Delete 'Red' from 
the projection. Find the quasi-minimal subset of indices of essential 
examples for 5(+). Using the procedure described above we get that 
/({4,6}) = 'Blond Embrown' is a test for the second class and 5,7,8 are the 
indices of essential examples in s{+). Consider row 5̂. We know that 'Bleu' 
is essential in it. We have t{splus{Bleu}) = /̂ ({5,7,8}) = 'Tall Bleu', and, 
consequently, 'Tall Bleu' is a test for the second class of examples. Delete 
'Bleu' and ts. Now tq is not a test and we delete it. After that splus(Tall) is 
modified to be the set {4,8}, and ^({4,8}) = 'Tall Blond' is a test. Hence the 
value 'Tall' together with row /g cannot be considered for searching for new 
tests. Finally 5(+) = {4,6} corresponds to the test already known. 

4.2.4 An Approach for Incremental Algorithms 

The decomposition of the main problem of inferring GMRTs into 
subtasks of the first or second kind gives the possibility to construct 
incremental algorithms for this problem. The simplest way to do it consists 
of the following steps: choose example (value), form subproblem, solve 
subproblem, delete example (value) after the subproblem is over, reduce 
R(+) and T and check the condition of ending the main task. This process 
involves deductive reasoning as its inherent part: one must choose examples 
or values for a subproblem by using different criteria or considerations. 

A recursive procedure for using attributive subproblems for inferring 
GMRTs has been described in (Naidenova et al., 1995b). Some complexity 
evaluations of this algorithm can be found in (Naidenova and Ermakov, 
2001). In the following part of this chapter, we give an algorithm for 
inferring GMRTs the core of which is the decomposition of the main 
problem into the subtasks of the first kind combined with searching essential 
examples. 
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4.3 DIAGaRa: An Algorithm for Inferring All GMRTs 
with the Decomposition into Subtasks of the First 
Kind 

The algorithm DIAGaRa for inferring all the GMRTs with the 
decomposition into subproblems of the first kind is briefly described in 
Figure 7. 

4.3.1 The Basic Recursive Algorithm for Solving a Subtask of the 
First Kind 

The initial information for the algorithm of finding all the GMRTs 
contained in a positive example is the projection of this example on the 
current set i?(+). Essentially the projection is simply a subset of examples 
defined on a certain restricted subset /* of values. Let 5* be the subset of 
indices of examples from 7?(+) which have produced the projection. 

s* <r- si+) ={l, , nt}; 
t* <r- T; 

Do 
Begin 

Find all the G M R T s for a given set of posi t ive examples 
with the use of the basic algori thm of solving subtask of the 
first kind; 

End 

Figure 7. The Algorithm DIAGaRa. 

It is useful to introduce the characteristic W(t) of any collection / of 
values named by the weight of t in the projection: W(t) = \\s* n s(t)\\ is the 
number of positive examples of the projection containing t. Let WMINhQ the 
minimal permissible value of the weight. 

The basic algorithm consists of applying the sequence of the following 
steps: 

Step 1. Check whether the intersection of all the elements of projection is 
a test and if so, then s* is stored in STGOOD if 5* corresponds to a good test 
at the current step; in this case the subtask is over. Otherwise the next step is 
performed. 

Step 2. For each value A in the projection, the set splus{A) = {5"* n s{A)} 
and the weight W{A) = l|5/7/w5(̂ )|| are determined and if the weight is less 
than the minimum permissible weight WMIN, then the value A is deleted 
from the projection. We can also delete the value A if W{A) is equal to 
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WMIN and t{splus{A)) is not a test - in this case A will not appear in a 
maximally redundant test t with W{f) equal to or greater than WMIN. 

Step 3. The generalization operation is performed: t' = t(splus(A)), 
^ G /*; if rMs a test, then the value A is deleted from the projection and 
splus{A) is stored in STGOOD if splus{A) corresponds to a good test at the 
current step. 

Step 4. The value A can be deleted from the projection if splus(A) e s' 
for somQs' e STGOOD. 

Step 5. If at least one value has been deleted from the projection, then the 
reduction of the projection is necessary. The reduction consists of deleting 
the elements of projection that are not tests (as a result of previous 
eliminating values). If, under reduction, at least one element has been 
deleted from the projection, then Step 2, Step 3, Step 4, and Step 5 are 
repeated. 

Step 6. Check whether the subtask is over or not. The subtask is over 
when either the projection is empty or the intersection of all elements of the 
projection corresponds to a test (see Step 1). If the subtask is not over, then 
the choice of an essential example in this projection is performed and the 
new subtask is formed with the use of this essential example. The new 
subsets 5* and t* are constructed and the basic algorithm runs recursively. 
The important part of the basic algorithm is how to form the set STGOOD. 

4.3.2 An Approach for Forming the Set STGOOD 

Let L(S) be the set of all subsets of the set S. L(S) is the set lattice 
(Rasiova, 1974). The ordering determined in the set lattice coincides with 
the set-theoretical inclusion. It will be said that subset î is absorbed by 
subset S2, i.e. Si < S2, if and only if the inclusion relation is hold between 
them, i.e. î c ^2. Under formation of STGOOD, a collection s of indices is 
stored in STGOOD if and only if it is not absorbed by any collection of this 
set. It is necessary also to delete from STGOOD all the collections of indices 
that are absorbed by ^̂  if ^ is stored in STGOOD. Thus, when the algorithm is 
over, the set STGOOD contains all the collections of indices that correspond 
to GMRTs and only such collections. Essentially the process of forming 
STGOOD is an incremental procedure of finding all maximal elements of a 
partially ordered set. The set TGOOD of all the GMRTs is obtained as 
follows: TGOOD ={t.t = t{sl (\/s) (s e STGOOD)}. 

4.3.3 The Estimation of the Number of Subtasks to Be Solved 

The number of subtasks at each level of recursion is determined by the 
number of essential examples in the projection associated with this level. 
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The depth of recursion for any subtask is determined by the greatest 
cardinality (call it 'CAR') of set-theoretical intersections of elements 
s e STGOOD corresponding to GMRTs: 

CAR = max (\\si n 5j||, \/(si, s^) Si, Sj e STGOOD). 

In the worst case, the number of subtasks to be solved is of order 0(2 '̂̂ ^). 

4.3.4 CASCADE: Incrementally Inferring GMRTs Based on the 
Procedure DIAGaRa 

The algorithm CASCADE serves for inferring all the GMRTs of 
maximal weight. At the beginning of the algorithm, the values are arranged 
in decreasing order of weight such that W{Ai) > W(A2) > > W(Am), where 
Ai, Ai, , ^m is a permutation of values. The shortest sequence of values 
A\, A2, Aj,j < m is defined such that it is a test for positive examples and 
WMIN is made equal to W{A^. The procedure DIAGaRa tries to infer all the 
GMRTs with weight equal to WMIN. If such tests are obtained, then the 
algorithm stops. If such tests are not found, then WMIN is decreased, and the 
procedure DIAGaRa runs again. 

4.4 INGOMAR: An Incremental Algorithm for 
Inferring All GMRTs 

In this section, we consider an incremental learning algorithm useful 
when a new portion of observations or examples becomes available over 
time. Suppose that each new example comes with the indication of its class 
membership. The following actions are necessary with the arrival of a new 
example: 
- Check whether it is possible to perform generalization of some existing 

GMRTs for the class to which the new example belongs (class of positive 
examples), i.e., whether it is possible to extend the set of examples 
covered by some existing GMRTs or not. 

- Infer all the GMRTs contained in the new example. 
- Check the validity of the existing GMRTs for negative examples, and if it 

necessary: 
- Modify tests that are not valid (test for negative examples is not valid if it 

is included in a positive example, i.e., in other words, it accepts an 
example of positive class). 
Thus the process of inferring all the GMRTs is divided into three 

subtasks. 
These three subtasks conform to three acts of reasoning: 
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1) pattern recognition or using already known rules (tests) for 
determining the class membership of a new positive example and 
generalization of these rules (deductive reasoning); 

2) inferring new rules (tests) that are generated by a new positive 
example (inductive reasoning a new knowledge); 

3) diagnostic operation or correcting rules (tests) of alternative 
(negative) classes that accept a new positive example (these rules 
do not permit to distinguish a new positive example from some 
negative examples). 

The first act is performed by the procedure GENERALIZATION 
{STGOODJ'') (Figure 8). 

The second act is reduced to the subtask of the first kind. The procedure 
FORMSUBTASK(/*) is intended for preparing initial data for inferring all 
the GMRTs contained in the example with the index y*: the set iS'(test)(+) -
the set of collections of indices to be extended and the set Q{+) - the set of 
forbidden pairs of indices. This procedure is presented in Figure 9. The 
procedure NIAGaRa can be used for inferring all the GMRTs contained in 
the example with the indexy *. 

The P r o c e d u r e 
G E N E R A L I Z A T I O N (STGOOD(+)J*) 

Input:y* , the set STGOOD(-\-) of k n o w n 
G M R T s for the class of pos i t ive e x a m p l e s , 
the set R(-) of nega t ive e x a m p l e s . 
O u t p u t : STGOOD{+) 
modif ied by the gene ra l i za t ion . 

Begin 
(V5) {s 6 STGOOD(+)) 

if to_be_tes t ( / (5 u y * ) ) = true then 
s <- genera l iza t ion (s u 7*); 

end 

Figure 8. The Procedure for Generalizing the Existing GMRTs. 
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The Procedure FORM SUBTASK(/*) 

I n p u t : ; * , Ri+), R(-), s{+), STGOOD{+). 
O utput: iS'(test)(+); the set of collections of indices 
to be extended, and 2 (+) ; the set of forbidden 

|pairs of indices. 

Begin 
5(test)(+) <- {j*};Q(+) ^ 0;nts <- s{+); 
(V/) / e nts, i i^ J* 

if to_be_test({y*, /}) = true then do 

Begin 
s = generalization_of({y *, /}); 
insert s into 5'(test)(+) under 
lexicographic order; 
end 

e l s e e ( + ) ^ e ( + ) u {y*,/•}; 
end 

Figure 9. The Procedure for Preparing the Data for Inferring the GMRTs 

Contained in a New Example. 

The third action of incremental learning is reduced either to the 
diagnostic rule (please, see Section 3.8.2) and the subtask of the first kind or 
to the subtask of the second kind. We may use the algorithm NIAGaRa or 
the algorithm DIAGaRa (like any non-incremental algorithm) for solving 
subtasks of both the first and the second kind. Next we use the procedure 
NIAGaRa. 
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The Procedure INGOMAR 

Input :7*, R, S, STGOOD, Q. Output: R, S, STGOOD, Q. 
begin 
yc^class(/*);^(+) ^ S{k)\ R{+) <r-R(k);R(-) <r-R/R(+); 
N <-A^+l ;7* <r-N, where Â  is the number of examples; 
Si+) <-7*u^(+); R(+) <-t.^uR(+y, 

STGOOD{+) <- STGOOD(k); 
STGOODi') <r- u STGOOD(kl), \/kh kl ^ k, 
if Â  = 1 then STGOOD(+) ^ {/*} uSTGOOIX+)\ else 
if TV ^ 1 and ||S(+)|| = 1 then 

begin 
STGOOD{+) <r- {j*} u STGOOD{-\-); 
if (3^), s e STGOODi'l tis) c t.^ 

then CORRECT(^(^)); end 
else 
if TVT̂  land S(-) = 0 then 

CONCEPTGENERALIZATION [/*](5(+), STGOOD{-\-))\ 
else /* Â  9t 1 and ||5'(+)|| ̂  1 and 5'(-) 9̂  0 */ 
begin 
if5'rG(9OZ)(+);6 0 then 
GENERALIZATION(5'rGOOZ)(+),7*); end 
FORMSUBTASK(/*); 
NIAGaRa [y* ] (5'(test)(+), R, S, STGOOD (+), Q (+)); 
if (3 s\ s G STGOOD (-), t(s) e /.̂  

then CORRECT (t(s)); 
end 

Figure 10. The Incremental Procedure INGOMAR. 

Let / be an invalid test for some negative example. Correcting t consists 
of two steps: 

1) Apply the diagnostic rule in order to find the set of essential 
values with the use of which t can be extended and constructing the 
extensions of t; 

2) Form a subtask of the first kind for each extension tnew of t in 
order to find all the GMRTs for the negative examples contained in tnew and 
solving the subtask with the use of the procedure NIAGaRa. Let 
CORRECT(0 be the procedure for correcting the invalid test t and finding 
new tests for negative examples. 
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We must consider four possible situations that can take place when a new 
example comes to the learning system: 

a) The knowledge base is empty and does not contain any example of 
the class to which a new example belongs and any alternative 
example; 

b) The knowledge base contains only examples of the positive class 
to which a new example belongs; 

c) The knowledge base contains only examples of the negative class; 
d) The knowledge base contains examples both of the positive and 

the negative classes. 
Case 2 conforms to the generalization process taking into account only 

the similarity relation between examples of the same class. This problem is 
known in the literature as inductive inference of generalization hypotheses or 
unsupervised generalization> An algorithm for solving this problem in the 
framework of a mathematical model based on Galois's connections can be 
found in (Kuznetzov, 1993). 

Table 16. The Data for Processing by the Incremental Procedure INGOMAR. 
INDEX OF 
EXAMPLE 

OUTLOOK TEMPERATURE HUMIDITY WINDY CLASS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Sunny 

Sunny 

Overcast 

Rain 

Rain 

Rain 

Overcast 

Sunny 

Sunny 

Rain 

Sunny 

Overcast 

Overcast 

Rain 

Hot 

Hot 

Hot 

Mild 

Cool 

Cool 

Cool 

Mild 

Cool 

Mild 

Mild 

Mild 

Hot 

Mild 

High 

High 

High 

High 

Normal 

Normal 

Normal 

High 

Normal 

Normal 

Normal 

High 

Normal 

High 

No 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

No 

Yes 

1 

1 

2 

2 

2 

1 

2 

1 

2 

2 

2 

2 

2 

1 

Let CONCEPTGENERALIZATION [/•*](5'(+), STGOOD{-^)) be the 
procedure of generalization of positive examples in the absence of negative 
examples. 

The procedure INGOMAR (for INcremental inferring GOod MAximal 
Redundant tests) is presented in Figure 10. 
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The data in Table 16 are intended for processing by the incremental 
learning procedure INGOMAR. This table is adopted from (Quinlan and 
Rivest, 1989). 

In Tables 17a and 17b, Q(l) and Q(2) are the sets of forbidden pairs of 
indices for the examples of class 1 and class 2, respectively. 

The sets STGOOD(\) and STGOOD{2) in these tables accumulate the 
collections of indices that correspond to the GMRTs for the examples of 
class 1 and class 2, respectively, at each step of the algorithm. 

Table \la. The Records of the Step-by-Step Results of the Incremental Procedure 
INGOMAR (part a). 

J* CLASS(J*) Q(1X Q(2) STGOOD(l), STG00D(2) 
{1} 
{2} 
{3} 
{4} 
{5} 
{6} 
{7} 
{8} 
{9} 

1 
1 
2 
2 
2 
1 
2 
1 
2 

Q(1)=EMPTY 

Q(1)=EMPTY 

Q(2) =EMPTY 

Q(2)u{{3,4}} 
Q(2)u{{3,4},{3,5}} 
Q(l)u{{l,6},{2,6}} 
Q(2)u{{4,7},{5,7}} 
Q(l)u{{6,8}} 
Q(2)u{{3,9},{4,9},{7,9}} 

STGOOD(l): {1} 
STG00D(1):{1,2}; 
STGOOD(2):{3} 
STGOOD(2):{3}, {4} 
STGOOD(2):{3}, {4,5}; 
STG00D(1):{1,2}, {6} 
STGOOD(2):{3,7},{4,5} 
STG00D(1):{1,2,8}, {6} 
STGOOD(2):{3,7},{4,5},{5,9} 

Table lib. The Records of the Step-by-Step Results of the Incremental Procedure 
INGOMAR (part b). 

J* CLASS(J*) Q(1) , Q ( 2 ) STGOOD(l), STG00D(2) 
{10} 

{11} 

{12} 2 

{13} 2 

{14} 1 

Q(2)u{{3,10},{7,10}} 
Q(2)u{{3,ll}, 
{4,11},{5,11},{7,11}} 
Q(2)u{(4,12), 
(5,12), (9,12), (10,12)} 
Q(2)u{{4,13}, 
{11,13}} 
Q(l )u{{l ,14}, 
{2,14}, {8,14}} 
{11,12} is invalid 
for the class 2 

STGOOD(2):{3,7},{4,5,10},{5,9,10} 
STGOOD(2):{3,7},{4,5,10}, 
{5,9,10},{10,11},{9,11} 
STG00D(2): {3,7,12},{4,5,10}, 
{5,9,10},{10,11},{9,11},{11,12}; 
STG00D(2): {3,7,12,13},{4,5,10}, 
{5,9,10,13},{10,11},{9,11},{11,12} 
STG00D(1):{1,2,8}, {6,14} 

STG00D(2): {3,7,12,13},{4,5,10}, 
{5,9,10,13},{10,11},{9,11}, 

Table 18. The Sets TGOODjl) and TG00D(2) Produced by the Procedure INGOMAR. 

TGOOD(l) 
Sunny High 
Rain Yes 
-
-
-

TG00D(2) 
Rain No 
Normal No 
Mild Normal 
Sunny Normal 
Overcast 
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5. CONCLUSIONS 

The chapter is an attempt to show that both deductive reasoning based on 
acquired knowledge and inductive reasoning for learning new knowledge 
from examples proceed with the use of the same common sense reasoning 
operations. The main operations involved in deductive and inductive 
reasoning are the following: generalization, refinement (specialization), 
diagnostics, searching essential values and examples, eliminating values, 
cutting off examples, choosing values or examples for subtasks, extending or 
narrowing collections of values, extending or narrowing collections of 
examples, using forbidden rules, forming subtasks and some others. 

We proposed a unified model for combining inductive reasoning with 
deductive reasoning in the framework of inferring and using implicative 
logical rules. The key concept of our approach is the concept of a good 
diagnostic test. We define a good diagnostic test as the best approximation 
of a given classification on a given set of examples. The task of inferring 
good diagnostic tests from examples serves as an ideal model of inductive 
reasoning because this task realizes one of the canons of induction that has 
been originally formulated by English logician J.-S. Mille. 

We have given some examples of the decomposition of inferring all good 
maximally redundant tests for a given set of examples into operations and 
subtasks that are in accordance with main human common sense reasoning 
operations. This decomposition allows, in principle, to transform the process 
of inferring good tests into a "step by step" reasoning process. Incremental 
algorithms of inferring good classification tests from examples demonstrate 
the possibility of this transformation in the best way. 

We have used the lattice theory as the mathematical model for the 
construction of good classification tests. We have described some inductive 
algorithms for inferring good maximally redundant tests. These algorithms 
are: NIAGaRa, DIAGaRa, and INGOMAR. We did not focus on the 
efficiency of our algorithms, although we understand that the questions of 
computational complexity of reasoning are very important. We intend to 
give more attention to the complexity problems in future contributions. 

The development of full on-line model integrating deductive and 
inductive reasoning is of great interest but it requires the cooperative efforts 
of many researchers. The main problem in this direction is the choice of a 
data structure underlying the algorithms of inferring good diagnostic tests. 
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APPENDIX: 

The data to be processed are in Table 19 (the set of positive examples) 
and in Table 20 (the set of negative examples). Tables 21, 22, and 23 contain 
the resuhs of the procedure DEBUT, i.e. the sets Q, ^(test), and STGOOD 
respectively. Table 24 presents the extensions of the elements of 5'(test). 
Table 25 contains the results of the procedure NIAGaRa, i.e. the sets 
STGOOD and TGOOD. 

Table 19. The Set of the Positive Examples R(-\-). 

INDEX OF 

EXAMPLE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

R(+) 

^ 1 ^ 2 ^ 5 ^ 6 ^ 2 1 ^ 2 3 ^ 2 4 ^ 2 6 

A4 Aj As AgAuAi^A^s A22 ̂ 23 ^24 ^26 

^ 3 ^ 4 ^ 7 ^ 1 2 ^ 1 3 ^ 1 4 ^ 1 5 ^ 1 8 ^ 1 9 ^ 2 4 ^ 2 6 

A1A4AS As A-jAuAx^Ais ^ le ̂ 20 ^21 ^24 ^26 

^ 2 ^ 6 ^ 2 3 ^ 2 4 

^ 7 ^ 2 0 ^ 2 1 ^ 2 6 

^3 ^4 As AeAnAi^Ais ^20 ^22 ^24 -̂ 26 

A2 Ae Aj As A9A12 AuAisAig A20 ^21 ^22 

Ai^AisAig A20 A2\ A22 A26 

A2 A2 A4 As Ae As AgAu A^s ^20 ^21 ^26 

Ai A2 A2 AjA^g A20 ̂ 21 ^22 ^26 

^ 2 ^ 3 ^ 1 6 ^ 2 0 ^ 2 1 ^ 2 3 ^ 2 4 ^ 2 6 

^ 1 ^ 4 ^ 1 8 ^ 1 9 ^ 2 3 ^ 2 6 

^23 ^24 ^26 

Table 20a. The Set of the Negative Examples R(-) (part a). 

INDEX OF 

EXAMPLE 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

R(-) 

^ 3 ^ 8 ^ 1 6 ^ 2 3 ^ 2 4 

. 4 7 ^ 8 ^ 9 ^ 1 6 ^ 1 8 

^ 1 ^ 2 1 ^ 2 2 ^ 2 4 ^ 2 6 

^ 1 ^ 7 ^ 8 ^ ^ 1 3 ^ 1 6 

^ 2 ^ 6 ^ 7 ^ 9 ^21 ^23 

AioAig A20 ^21 ^22 ^24 

v4i ^10^^20 ^21 ^22 ^23 ̂ 24 

^ 1 ^ 3 ^ 6 ^ 7 ^ 9 ^ 1 0 ^ 1 6 

^ 2 ^ 6 ^ 8 ^ ^ 1 4 ^ 1 5 ^ 1 6 

.4i ^ 4 . 4 5 ^ 6 ^ 7 ^ 8 ^11 ^16 

^ 7 ^ 1 0 ^ 1 1 ^ 1 3 ^ 1 9 ^ 2 0 ^ 2 2 ^ 2 6 

^ 1 ^ 2 ^ 3 ^ 5 ^ 6 A ^ 1 0 ^ 1 6 

^ 1 ^ 2 ^ 3 ^ 5 ^ 6 ^ 1 0 ^ 1 3 ^ 1 6 
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Table 20b. The Set of the Negative Examples R(-) (part b). 

INDEX OF R(-) 

EXAMPLE 

28 AiA2A',AioAuAuAxgA2i 

29 AxA^AsAeA'jA^Ax2,Aie 

3 0 ^ 1 ^ 2 ^ 3 ^ 6 ^ 1 1 ^ 1 2 ^ 1 4 ^ 1 5 ^ 1 6 

31 AiA2AsAeAuAi4AisAieA26 
32 AiA2A2A'jAgAioAuAuAi^ 

33 AiAs Ae ^8 AgAioAig A20 A22 

34 A2 A^ Ag ^18 A20 A2\ A22 A23 A26 

35 A1A2 A4 As Ae A-j AgAu ^i6 

36 AiA2AeA'jAsAioAuAi2AieAis 

37 A1A2 A-i A4 As Ae A-jAnA^^Ais ^i6 

38 AiA2A2A4AsAeAgAuAi2AuAie 

39 A1A2 A2 A4 As AeAx4 ^15 ^19 ^20 ^23 ^26 

40 ^2 ^3 ^4 ^s^eA-jAu ^12^13 ^ H ^15 ^ I 6 

4 1 ^ 2 ^ 4 ^ 5 ^ 6 ^ 7 ^ 9 ^ 1 0 ^ 1 1 ^ 1 2 ^ 1 3 ^ 1 4 ^ 1 5 ^ 1 9 

4 2 ^ 1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 1 2 ^ 1 6 ^ 1 8 ^ 1 9 ^ 2 0 ^ 2 1 ^ 2 6 

43 A4AsAeA'jAsAgAioAuAi2AuAuAisAie 

4 4 ^ 3 . 4 4 ^ 5 ^ 6 ^ 8 ^ 9 ^ 1 0 ^ 1 1 ^ 1 2 ^ 1 3 ^ 1 4 ^ 1 5 ^ 1 8 ^ 1 9 

45 ^ 1 ^ 2 ^ ^ 4 ^ 5 A ^ 7 ^ 8 A ^10 ^11 ^12 ^13 ^14 ^15 

4 6 ^ 1 ^ 3 / 1 4 . 4 5 7 ^ 6 ^ 7 ^ 1 0 ^ 1 1 ^ 1 2 ^ 1 3 ^ 1 4 ^ 1 5 ^ 1 6 ^ 2 3 ^ 2 4 

47 AiA2A2A4AsAeAsAgAioAuAuAi4AieAisA22 

48 A2AsAgAioAuAi2Ai4AisAie 

Next we provide the results of applying the algorithm NIAGaRa on 
the training set of examples (Tables 19 and 20). 

Input:*S={{l}, {2}, ..., {U}};T={Au-...A26};STGOOD = 0;S{tQSt) 
= 0;Q = 0. 

Output: After implementation of the procedure DEBUT we have the 
following sets 5'(test), STGOOD and Q (Tables 21, 22, 23). 

Table 21. The Content of ^Sftest) after the DEBUT of the Algorithm NIAGaRa. 

1,4 
2,10 
4,7 
8,11 

1,4,7 
3,7 
4,8 

1,5 
3,7,12 
4,11 

1,5,12 
3,8 
4,12 

1,12 
3,10 
7,8 

2,3,4 
3,11 
7,11 

2,7 
4,6,8,11 
7,12 

2,8 
4,6,11 
8,10 

Table 22. The Contents of STGOOD after the DEBUT of the Algorithm NIAGaRa. 

1,2,12,14 9,11 13 
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Table 23. The Set Q after the DEBUT of the Algorithm NIAGaRa. 
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1,3 
2,9 
4,9 
5,11 
7,9 
9,13 
12,13 

1,6 
2,11 
4,10 
5,13 
7,10 
9,14 
12,14 

1,8 
2,13 
4,13 
5,14 
7,13 
10,11 
13,14 

1,9 
3,5 
4,14 
6,7 
7,14 
10,12 

1,10 
3,6 
5,6 
6,9 
8,9 
10,13 

1,11 
3,9 
5,7 
6,10 
8,12 
10,14 

1,13 
3,13 
5,8 
6,12 
8,13 
11,12 

2,5 
3,14 
5,9 
6,13 
8,14 
11,13 

2,6 
4,5 
5,10 
6,14 
9,10 
11,14 

Next, Table 24 presents the extensions of the elements of 5'(test). 

Table 24. 

J^ 
1,4, 

1,4,7 
1,5 
1,5,12 
1,12 
2,3,4 

2,7 

2,8 
2,10 
3,7 
3,7,12 
3,8 
3,10 
3,11 
4,6,8,11 
4,6,11 
4,7 

4,8 
4,11 
4,12 
7,8 

7,11 
7,12 
8,10 
8,11 

The Extensions of the Elemen 
Not(^) 
5,6,7,8,10, 
11,12 
8,10,11,12 
6,7,8,10,11,12 
0 
0 
6,7,8,10,11,12 

8,10,11,12 

10,11,12 
11,12 
8,10,11,12 
0 
10,11,12 
11,12 
12 
12 
12 
8,10,11,12 

10,11,12 
12 
0 
10,11,12 

12 
0 
11,12 
12 

V 
1,4,7 

0 
1,5,12 
0 
0 
0 

2,3,4,7 

2,7,8 
0 
2,3,4,7,12 
0 
0 
0 
0 
0 
4,6,8,11 
2,3,4,7 

4,6,8,11 
4,6,8,11 
4,7,12 
2,7,8 

7,8,11 
3,4,7,12 
0 
4,6,7,8,11 

ts of ^(test). 
cand(5) 
5,6,8,10, 
11,12 
8,10,11,12 
6,7,8,10,11 
0 
0 
6,7,8,10, 
11,12 
8,10,11, 
12 
10,11,12 
11,12 
8,10,11 
0 
10,11,12 
11,12 
12 
12 
12 
8,10,11, 
12 
10,12 
12 
0 
10,11,12 

12 
0 
11,12 
12 

select{s) 
12 

12 
0 
0 
0 
7,8,12 

8,12 

10 
0 
8,11 
0 
10,11 
0 
0 
0 
0 
8,11,12 

0 
0 
0 
11 

0 
0 
0 
0 

Result 
Delete s 

s - GMRT 
Delete s 
s - GMRT 
Delete s 
{2,3,4,7} -
GMRT 
{2,7,8} -
GMRT 
Delete s 
s - GMRT 
Delete s 
s - GMRT 
s - GMRT 
s - GMRT 
5 - GMRT 
s - GMRT 
Delete s 
{4,7,12} -
GMRT 
Delete s 
Delete s 
Delete 5 
{7,8,11}-
GMRT 
Delete s 
Delete s 
s - GMRT 
Delete s 

In the following Tables, A+ denotes the collection of values Au, A\s and A* 
denotes the collection of values A^, Ag. 
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Table 25. The Sets STGOOD and TGOOD for the Examples in Tables 19 and 20. 
No 

1 
2 
3 
4 
5 
6 
7 
8 

STGOOD 
13 
2,10 
3,10 
8,10 
9,11 
3,11 
3,8 
1,4,7 

TGOOD 

^ 1 7 ^ 4 ^ 1 8 ^ 1 9 ^ 2 3 ^ 2 6 

^ 4 ^ * ^ 2 6 

^ 3 . 4 4 ^ 1 3 ^ 1 8 ^ 2 6 

v43v46^*^13^20^21 

^ 1 9 ^ 2 0 ^ 2 1 ^22^26 

^ 3 ^ 7 ^ 1 9 7̂ 26 
A2 A-j Ai2 A+ Aig 

^ 5 ^ 6 ^ 2 4 ^ 2 6 

JVfo 

9 
10 
11 
12 
13 
14 
15 
16 

STGOOD 
2,7,8 
1,5,12 
4,7,12 
3,7,12 
7,8,11 
2,3,4,7 
4,6,8,11 
1,2,12,14 

TGOOD 

A+A22 

A2 -^23 -^24 

A20 A24 A26 

A2A24A26 

AT, A20A22 

A4AUA+A24A26 

A ^20-^21 

^ 2 3 ^ 2 4 ^ 2 6 

Splus{A22) -^ 

Splus{A23) -^ 

splus(A2) -^ 
splus(A4) -^ 

^{2,7,8,9,11} 
^{1,2,5,12,13,14} 
{3,7,8,10,11,12} 
{2,3,4,7,10,13} 

Table 26. The Set SPLUS of the Collections splusjA) for all A's in Tables 19 and 20. 
SPLUS = {splus{A{): sjA-;) n s(+), A-.eT}: 
splus(A*)-> {2,S,10} 
splusiAu)^ {3,8,10} 
splus{Axe)-^ {^,9,12} 
splus{Ax)^{\ AW,U) 
splus{As) -^ {1,4,7,10} splusiAe) -^ {1,4,5,7,8,10} 
splus(An) -> {2,3,4,7} splusiAj) -^ {2,3,4,6,8,11} 
splus(Ai^) -> {3,9,10,13} splus{A24) -> {1,2,3,4,5,7,12,14} 
5pMy42)-^ {1,5,10,11,12} 5 P M 7 4 2 O ) ^ {4,6,7,8,9,10,11,12} 
splus{A+) -^ {2,3,4,7,8} splus(A2i) -^ {1,4,6,8,9,10,11,12} 
^pMyJi9)^ {3,8,9,11,13} ^pto(7J26)^ {1,2,3,4,6,7,9,10,11,12,13,14} 

An Example of Using the Algorithm DIAGaRa 

We use the algorithm DIAGaRa for inferring all the GMRTs having a 
weight equal to or greater than WMIN = 4 for the training set of the 
examples represented in Table 19 (the set of positive examples) and in Table 
20 (the set of negative examples). 

We begin with ^* = 5'(+)={{l}, {2}, ..., {14}},/* = T - { ^ 1 , ^2, , 
A26}. SPLUS = {splus(Ai): ^i e ^*} (see SPLUS in Table 26). 

Please observe that spIusiAu) = {2,3,4,7} and /({2,3,4,7}) is a test, 
therefore, Au is deleted from /* and splus{Au) is inserted into STGOOD. 
Then W{A^\ W{A^\ W{Ax^\ and W{Axe) are less than WMIN, hence we can 
delete A^, Ag, Au, and Axe from ^*. Now tio is not a test and can be deleted. 
After modifying splus{A) for As, ^is, ^2, ^3, ^4? Ae A20, Aiu and Aie we find 
that splus(As) = {1,4,7} and ^({1,4,7}) is a test, therefore, A5 is deleted from 
/* and splus{As) is inserted into STGOOD. Then W{A\^) turns out to be less 
than WMIN and we delete Ax^ which implies deleting t^. Next we modify 
splus{A) for Ax, Axg, A23, A4, Aie and find that splus(A4) = {2,3,4,7}. A4 is 
deleted from /*. Finally, W(Ax) turns out to be less than WMIN and we delete 
Ax. 
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We can delete also the values Aj, A\9, and Ae because W(A2% WiAig), and 
W(Ae) are equal to 4, t{splus{A^), t(splus(Aig)X and t{splus{Ae)) are not tests 
and, therefore, these values will not appear in a maximally redundant test / 
with W{t) equal to or greater than 4. After deleting these values we can 
delete the examples tg, ts because A\g is essential in t% and Ai is essential in 
ts. Next we can observe that splus{A2z) = {1,2,12,14} and /({1,2,12,14}) is a 
test, thus ^23 is deleted from /̂ * and splus{A2^) is inserted into STGOOD. 
Now tu and t\ are not tests and can be deleted. We can delete the value A22 
because ^(^22) is now equal to 4, t{splus{A22)) is not a test and this value 
will not appear in a maximally redundant test with weight equal to or greater 
than 4. 

Now choose 4 as a subtask because this positive example is more difficult 
to be distinguished fi*om the negative examples. By resolving this subtask we 
find that 4 produces a new test t with s{t) equal to {4,6,8,11}. Delete 4. We 
can also delete the value ^21 because W(A2\) is now equal to 4, t{splus{A2\)) 
is not a test and this value will not appear in a maximally redundant test with 
weight equal to or greater than 4. 

Now choose ^ as a subtask because it is essential in the current projection 
with respect to the subset {2,3,4,7} that corresponds to one of the GMRTs 
already obtained. By resolving this subtask we find that h does not produce 
any new test. Delete /g After that we can delete the values A+, A-j, A3, and A20 
and these deletions imply that all of the remaining rows /2? 3̂5 U, h, hi, and 
t\2 are not tests. 

The list of all the GMRTs for the training set of positive examples is 
given in Table 25. 
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Abstract: Unlocking the mystery of natural phenomena is a universal objective in 
scientific research. The rules governing a phenomenon can most often be 
learned by observing it under a sufficiently large number of conditions that are 
sufficiently high in resolution. The general knowledge discovery process is not 
always easy or efficient, and even if knowledge is produced it may be hard to 
understand, interpret, validate, remember, and use. Monotonicity is a 
pervasive property in nature: it applies when each predictor variable has a non-
negative effect on the phenomenon under study. Due to the monotonicity 
property, being able to observe the phenomenon under specifically selected 
conditions may increase the accuracy and completeness of the knowledge at a 
faster rate than a passive observer who may not receive the pieces relevant to 
the puzzle soon enough. This scenario can be thought of as learning by 
successively submitting queries to an oracle which responds with a Boolean 
value (phenomenon is present or absent). In practice, the oracle may take the 
shape of a human expert, or it may be the outcome of performing tasks such as 
running experiments or searching large databases. Our main goal is to pinpoint 
the queries that minimize the total number of queries used to completely 
reconstruct all of the underlying rules defined on a given finite set of 
observable conditions F= {0,1}". We summarize the optimal query selections 
in the simple form of selection criteria, which are near optimal and only take 
polynomial time (in the number of conditions) to compute. Extensive unbiased 
empirical results show that the proposed selection criterion approach is far 
superior to any of the existing methods. In fact, the average number of queries 
is reduced exponentially in the number of variables n and more than 
exponentially in the oracle's error rate. 
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1. INTRODUCTION 

The process of extracting new knowledge from large amounts of data is 
often called Knowledge Discovery or Data Mining. The general knowledge 
discovery process is not always easy or efficient, and even if knowledge is 
produced it may he hard to understand, interpret, validate, remember, and use. 
This chapter addresses the problem of learning monotone Boolean functions 
with the underlying objective to efficiently acquire simple and intuitive 
knowledge that can be validated and has a general representation power. The 
following key properties strengthen the argument in favor of this objective: 

Key Property 1: Monotone Boolean functions are inherently frequent in 
applications. 

The following three examples illustrate the versatility of the monotonicity 
property and how it applies to practical situations. A) Suppose a computer 
tends to crash when it runs a particular word processor and web browser 
simultaneously. Then, the computer will probably crash if it, in addition, runs 
other software applications. Further, suppose this computer does not tend to 
crash when it runs a particular CD player and web browser simultaneously. 
Then, it will probably not crash when it only runs the web browser (or the CD 
player). B) If a keyword search in a database gives interesting hits, then hits for 
a proper superset of these keywords is also probably going to be interesting. On 
the other hand, if a keyword search in a database does not give interesting hits, 
then hits for a proper subset of these keywords is probably not going to be 
interesting either. C) With all other factors constant, a student with a high 
Grade Point Average (GPA) is more likely to be accepted into a particular 
college than a student with a low GPA. 

Recent literature contains a plethora of phenomena that can be modeled by 
using monotone Boolean functions. Such diverse phenomena include, but are 
not limited to, social worker's decisions, lecturer evaluation and employee 
selection (Ben-David, 1992), chemical carcinogenicity, tax auditing and real 
estate valuation (Boros et al, 1994), breast cancer diagnosis and engineering 
reliability (Kovalerchuk et al, 1996), signal processing (Shmulevich, 1997), 
rheumatology (Bloch and Silverman, 1997), voting rules in the social sciences 
(Judson, 1999), financial systems (Kovalerchuk and Vityaev, 2000b), record 
linkage (in administrative databases (Judson, 2001), and in bibliographic 
databases (Torvik et al, 2004)). 
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Key Property 2: Monotone Boolean functions are simple and intuitive. 
This property is perhaps the most important one when human interaction is 

involved since people tend to make very good use of knowledge they can easily 
interpret, understand, validate, and remember. Due to the increasing 
computational efficiency and storage capacity, the recent trend has been to 
increase the knowledge representation power in order to capture more complex 
knowledge. For example, the popular neural networks are capable of 
representing very complex knowledge. Unfortunately, even small neural 
networks can be hard to interpret and validate. 

Key Property 3: Monotone Boolean functions can represent relatively 
complex knowledge and still be validated. 

Validating knowledge that is generalized from a set of specific 
observations, which may be noisy and incomplete, is based on philosophical 
arguments and assumptions. Traditional statistical approaches tend to require 
specific modeling in small dimensions, to gain a theoretical justification for the 
final model. This justification is obtained at the cost of eliminating the 
computational feasibility of learning higher dimensional rules. On the other 
hand, the more general the knowledge representation is, the more one tends to 
lose the handle on its validation. 

In practice, a great deal of time and effort is put into the knowledge 
discovery process. Software applications are tested, diseases are researched, 
database search engines are trained to be intelligent, and so on. The inference 
process generally involves gathering and analyzing data. Gathering the data 
often involves some sort of labor that far outweighs the computations used to 
analyze the data in terms of cost. Therefore, the main objective in this chapter 
is to minimize the labor associated with gathering the data, as long as it is 
computationally feasible. 

Monotone Boolean functions lay the ground for a simple and efficient 
question asking strategy, where it may be easy to pinpoint questions whose 
answers make incomplete knowledge more general or stochastic knowledge 
more accurate. Due to the underlying monotonicity property, this learning 
strategy may significantly increase the learning rate, as an unguided learner 
might not receive the relevant pieces of information early enough in the 
inference process. Therefore, it is highly desirable not only to be able to pose 
questions, but also to pose "smart" questions. The main problem addressed in 
this chapter is how to identify these "smart" questions in order to efficiently 
infer monotone Boolean functions. This chapter focuses on the case when the 
monotone Boolean functions are defined on the set of ^-dimensional Boolean 
vectors {0,1}''. This does not necessarily limit the application domain as the 
methodology developed in this chapter can be applied to any finite set of 
vectors V c M", and any monotone function can be represented by a set of 
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monotone Boolean functions. 
This chapter is organized as follows: The background information and the 

relevant literature is reviewed in section 2. Formal definitions of the problems 
and their solution methodology are given in section 3. In section 4, 
experimental results are provided, for which a summary and discussion is 
given in section 5. Section 6 concludes the paper with a few final remarks. 

2. BACKGROUND INFORMATION 

2.1 Problem Descriptions 

Let F denote a finite set of vectors defined on n variables. A vector v E V 
is said to precede another vector w E V, denoted hy v < w, if and only if (iff) 
V, < Wj for/= 1,2,..., n. Here, v, and w^ denote the /-th element of vectors v and 
TV, respectively. Similarly, a vector v 6 Fis said to succeedanothQY vector w E 
V, iff Vy > Wi for / = 1, 2,..., w. When v precedes (or succeeds) w, and the two 
vectors are distinct (i.e., v ^w), then the vector v is said to strictly precede (or 
strictly succeed, respectively) w, denoted hyv>w{prv<w, respectively). If 
a vector v either precedes or succeeds w, they are said to be related or 
comparable. A Boolean function defined on the set of vectors {0,1}" is simply 
a mapping to {0,1}. A monotone Boolean function/is called non-decreasing 
iffXv) < fiw) \/v,wE{0,l}":v<w, and non-increasing ifffiv) > f{w) V v, w 
6{0,1}" : V ^ M̂. This chapter focuses on non-decreasing functions, which are 
referred to as just monotone, as analogous results hold for non-increasing 
functions. 

Monotone Boolean functions lay the ground for a simple question asking 
strategy, which forms the basis of this chapter. More specifically, the problem 
of inferring monotone Boolean functions by successive and systematic/wwc/Zow 
evaluations {membership queries submitted to an oracle) is addressed. The 
monotone Boolean function can be thought of as a phenomenon, such as breast 
cancer or a computer crash, together with a set of predictor variables. The 
oracle can be thought of as an entity that knows the underlying monotone 
Boolean function and provides a Boolean function value in response to each 
membership query. In practice, it may take the shape of a human expert, or it 
may be the outcome of performing tasks such as running experiments or 
searching large databases. 

This inference problem is broken down by the nature of the oracle: whether 
it is deterministic or stochastic, and whether it is two-valued or three-valued. 
The simplest variant considers the guided inference of a deterministic 
monotone Boolean function defined on at most n Boolean variables. This case 
is referred to as Problem 1 which is generalized into two different problems. 
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The first generalization includes a pair of nested monotone Boolean functions 
and is referred to as Problem 2. Since this problem includes two oracles, it is 
further broken down into three subproblems 2.1,2.2, and 2.3, differing only in 
the manner in which these two oracles are accessed. The second generalization 
includes stochastic membership queries and is referred to as Problem 3. 

Problem 1: Inferring a Monotone Boolean Function from a Deterministic 
Oracle 

Initially, the entire set of 2" Boolean vectors {0,1}" is considered to be 
unclassified. That is, the values of the underlying monotone Boolean function 
/are all unknown and may be 0 or 1. A vector v is then selected from the set of 
unclassified vectors U and is submitted to an oracle as a membership query. 
After the vector's function value X^) is provided by the oracle, the set of 
unclassified vectors is reduced according to the following monotonicity 
constraints: f{w) = Q,\/ w E U\ w < v, when fiy) = 0, or the following 
monotonicity constraints:y(>^) = 1, V w 6 t/: v ^ M̂ , whenXv) = 1. Here, the 
relationship v <w holds if and only if v, < w,, for / = 1, 2,..., n, where v, and 
Wj denote the /-th Boolean elements of the vectors v and w, respectively. 
Vectors are then repeatedly selected from the unclassified set until they are all 
classified (i.e., C/= {}). Given the classification of any unclassified vector, 
other vectors may be concurrently classified if the underlying Boolean function 
is assumed to be monotone. Therefore, only a subset of the 2" vectors need to 
be evaluated in order to completely reconstruct the underlying function. Thus, 
a key problem is to select "promising" vectors so as to reduce the total number 
of queries (or query complexity). 

Problem 2: Inferring a Pair of Nested Monotone Boolean Functions from 
Deterministic Oracle(s) 

A pair of monotone Boolean functions/i and^ are called nested v^\itn the 
following relationship holds: / (v ) yf^iy) (or/i(v) </2(v)) V v 6 {0,1 }^ The 
case when/i > ̂  is addressed in this chapter as analogous results hold for the 
case when/i < ^ . A single monotone Boolean function does not capture the 
idea of a classification intermediate to 0 and 1. However, a pair of nested 
monotone Boolean functions can do so. For example, some vectors might 
belong to a class with a high probability (i.e., where/i = 1 and^ =1), and some 
might belong to the other class with a high probability (i.e., where/j = 0 and 
/2 = 0). Other instances might not be classifiable with a satisfactorily high 
probability. A pair of nested monotone Boolean functions allows for this 
intermediate classification (i.e., where/ = 1 and/2 "̂  0) to be incorporated. 
This makes the monotone Boolean function model more powerful. 

Since the inference of a pair of nested monotone Boolean functions may 
include two oracles, it is further broken down into three subproblems 2.1, 2.2, 
and 2.3, differing only in the manner in which the oracle(s) are accessed. These 
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three problems were defined to capture the main inference scenarios that may 
arise in real world applications. 

Problem 2.1: Sequentially Inferring Nested Functions from Two Oracles 
For this problem the two functions are considered to be available via their 

two respective oracles where the inference situation dictates that, for example, 
function/i should be completely reconstructed before the inference of function 
f2 begins. In other words, the two functions are to be sequentially inferred. 
This approach may simply be the only feasible or reasonable one or it may be 
dictated by the cost of querying the oracle associated with^ far surpassing the 
cost of querying the other oracle. 

Problem 2.2: Inferring Nested Functions from a Three-Valued Oracle 
For this problem the two nested monotone Boolean functions are viewed as 

a single function/taking on the three values 0, 1, and 2, corresponding to (/I, 
^ ) = (0,0), (1,0) and (1,1), respectively. Notice that (/i,^) cannot take on the 
values (0,1) due to the nestedness constraint/ > ^ . The single three-valued 
function is used to emphasize that the Boolean function values arrive in pairs, 
for each vector, from a single oracle. 

Problem 2.3: Inferring Nested Functions from Two Unrestricted Oracles 
This problem is similar to Problem 2.1, in that two oracles are queried 

separately. Unlike Problem 2.1, no restrictions are put on the manner in which 
the two oracles are queried. At each inference step, a vector can be submitted 
to either of the two oracles. In this sense, this is the least restrictive of the 
three problems, and it is therefore expected that this approach will be the more 
efficient. 

Problem 3: Inferring a Monotone Boolean Function from a Stochastic 
Oracle 

This problem is identical to Problem 1, except that the membership values 
are now stochastic in nature. As in Problem 1, vectors are selected from {0,1}" 
and are submitted to an oracle as membership queries. Unlike Problem 1, it is 
assumed that the oracle misclassifies each vector v with an unknown 
probability ^(v) 6 (0, V2). That is, for a given monotone Boolean function/, the 
oracle returns 1 for vector v with probability p{v) = q(y)><{\- fiy)) + (1-
^(v)) xy(̂ )? and it returns 0 with probability 1 -/7(v). It is assumed that the oracle 
is not misleading the inference process and is better at classifying the vectors 
than completely random guessing, hence the oracle's misclassification 
probability is assumed to be less than one half. 

The stochastic inference problem involves estimating the misclassification 
parameter ^(v) for each vector v, as well as reconstructing the underlying 
function/ In this chapter, these two tasks are based on a maximum likelihood 
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framework. A monotone Boolean function that is the most likely to match the 
underlying function, given the observed queries, is referred to as the inferred 
function and is denoted by/*. Associated with a function/** are the estimated 
misclassification probabilities which are denoted by ^*(v) for each vector v. 

The inference process consists of two steps that are repeated successively. 
In the first step, a vector is submitted to the oracle as a query. After a vector's 
function value is provided by the oracle, both ^* (v) and/* may have to be 
updated, according to the following monotonicity property:/?(v) < p{w) if and 
only \fv <w,\/ v,wE{Q,\Y. These two steps are repeated until the likelihood 
of the inferred function/•" matching the underlying function/is high relative 
to the likelihood of any of the other monotone Boolean functions matching/ 
In other words, the underlying function is considered completely inferred when 
the maximum likelihood ratio for the inferred function, denoted by A(/*), 
reaches a value that is close to 1. Again, the key problem is to select 
"promising" vectors so as to reduce the total number of queries required in this 
process. 

2.2 Hierarchical Decomposition of Variables 

In some applications, the variables may be monotone Boolean functions 
defined on a set of Boolean variables at a lower level. Kovalerchuk et al 
(1996) decomposed five breast cancer diagnostic variables in a hierarchical 
manner as follows. Function/(v) describes their "biopsy subproblem" and is 
defined as 1 if a biopsy is recommended for a tumor with the features described 
by vector v, and 0 otherwise. Function / (v ) describes their "cancer 
subproblem" and is defined as 1 if a tumor with the features described by v is 
highly suspicious for malignancy, and 0 otherwise. The first variable v̂  is 
defined as 1 if the amount and volume of calcifications is "pro cancer", and 0 
if it is "contra cancer". In reality, this variable was inferred (through queries to 
the radiologist) as the following monotone Boolean function: Vi(xi, X2, X3) = ̂ 2 
V X1X3. Here, the extra variables are defined as follows: 

x^ = 1 if the number of calcifications/cm^ is "large", 0 if "small", 
X2 = 1 if the volume of calcifications (cm^) is "small", 0 if "large", and 
X3 = 1 if the total number of calcifications is "large", 0 if "small". 

The second variable V2 is defined as 1 if the shape and density of 
calcifications is "pro cancer", and 0 if it is "contra cancer". In reality, this 
variable was inferred (through queries to the radiologist) as the following 
monotone Boolean function: Vjix^, X5, x ,̂ Xy, Xg) = X4 V X5 V x^x-jX^. Here, the 
extra variables are defined as follows: 

X4 = 1 if the irregularity in the shape of individual calcifications is 
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"marked", 0 if "mild", 
x^=\ if the variation in the shape of calcifications is "marked", 0 if "mild", 
x^=\ if the variation in the size of calcifications is "marked", 0 if "mild", 
X7 = 1 if the variation in the density of calcifications is "marked", 0 if 

"mild", and 
Xg-l if the density of calcifications is "marked", 0 if "mild". 

In general, one can construct a hierarchy of the sets of variables, where each 
set of variables corresponds to an independent inference problem. Figure 1 
shows this hierarchy for the breast cancer diagnostic variables. The upper level 
consists of the set {v̂ , V2, V3, V4, V5} which is linked to the sets of variables {jĉ , 
X2, X3}, and {̂ 4, ^5, ^6, X7, Xg} at the lower level. Here, the variables Vj and V2 
have to be defined before the inference problem defined on the set variables 
{Vi, V2, V3, V4, V5} can begin. In general, the inference problems at the lower 
level have to be completed before the inference problems at the upper levels 
can begin. 

{Vi V, V3 V4 V5} 

\X\ X'y -^3/ 1 4 5 6 7 8 J 

Figure 1. Hierarchical Decomposition of the Breast Cancer 
Diagnosis Variables. 

The breast cancer inference problem is defined on the set of Boolean 
variables {xj, ^2, X3, X4, X5, jCg, X7, Xg, V3, V4, V5,/}. This problem includes a total 
of 2̂ ^ = 4,096 vectors to choose from. However, it can be approached 
hierarchically, as three independent problems defined on the sets {xj, ̂ 2, X3}, 
{X4, X5, ̂ 6, X7, Xg}, and {Vj, V2, V3, V4, V5,/}, respectively. These problems include 
a total of 2̂  + 2̂  + 2̂  = 104 possible vectors to choose from. The hierarchical 
approach to this problem reduces the number of possible vectors to choose 
from by a factor of 4,096/104 « 39.4. Please notice that a single monotone 
Boolean function is to be inferred for each of the sets {xi, ̂ 2, X3}, and {̂ 4, X5, 
A:̂ , X7, Xg}. This corresponds to Problem 1 defined on the sets {0,1Y and {0,1 } \ 
respectively. In contrast, a pair of nested monotone Boolean functions defined 
on the set {vi, V2, V3, V4, V5} are to be sequentially inferred. This corresponds to 
Problem 2.1 and includes the query domain {0,1}^. 
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2.3 Some Key Properties of Monotone Boolean 
Functions 

An ordered set of related vectors v̂  ^ v̂  ^ ...^ v^ is sometimes called a 
chain, while an antichain (or layer) consists of a set of mutually unrelated 
vectors. When a set of vectors is partitioned into as few layers as possible, a 
layer partition is formed. Similarly, when a set of vectors is partitioned into as 
few chains as possible, a chain partition is formed. For a particular layer 
partition, the layers can be ordered as Z^ Z ,̂ ..., U so that a vector V E V 
cannot succeed another vector v^ 6 L\ \f I<j. Let {0,1}'' denote the set of 
vectors defined on n Boolean variables. The layer partition for the set {0,1}'' 
is unique, while its chain partition is not unique. In fact, the way one partitions 
{0,1}'' into chains can be used effectively in the inference of monotone 
Boolean functions. An example is the symmetric chain partition used by Hansel 
(1966) and Sokolov (1982) as described in section 2.4. 

A directed graph G is often written in the form (F, £), where F denotes its 
set of vertices, and E denotes its set of directed edges. Here, a directed edge 
from vertex v to vertex w is written as (v, w). A directed graph (F, £) is called 
cyclic if it has a sequence of edges that starts and ends with a vector v: (v, v^), 
(v^ v^), ...,(v'' ,v) e E. Figure 2 shows di partially ordered set (or poset for 
short). In general, posets can be formed by a set of vectors ^together with the 
precedence relation <, and are written as (F, :<). 

Figure 2. The Poset Formed by {0,1}^ and the Relation <. 

A poset can be viewed as a directed graph where each vertex corresponds 
to a vector and each directed edge (v, w) represents the precedence relation v 
:< w. When drawing a poset as a directed graph, its edges' directions are often 
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omitted without loss of information. The graph of a poset is acyclic and so all 
the directions can be forced upwards on a page by ordering the vertices by 
layers, as in Figure 2. Precedence relations that are transitively implied by 
other relations are considered redundant. For example, the precedence relation 
(0000) < (1100) is redundant because it is implied by the two precedence 
relations (0000) < (1000) and (1000) < (1100). For the purpose of reducing 
storage and simplifying the visualization of posets, redundant precedence 
relations are generally omitted, as in Figure 2. 

Two posets P^ and P^ are said to be isomorphic if there exists a one-to-one 
mapping of the vectors in P^ to the vectors in P^, where the precedence 
relations are preserved. That is, if v̂  -̂  v̂  and w^ ^ w ,̂ then v̂  < w^ iff v̂  < w^, 
V v^ w^ E P^ and v̂ , w^ 6 P^. For example, the poset formed by the vectors 
{0000, 1001, 0100} is isomorphic to the poset formed by the vectors {1110, 
1100, 1101}. Here, one possible isomorphic mapping is as follows: (0000) -* 
(1100), (1001) - (1110) and (0100) - (1101). 

A vector v* is called an upper zero of a Boolean function/ify(v*) = 0 and 
fiv) = 1 V V 6 {0,1}"": V > V*. Similarly, a vector v* is called a lower unit if 
Xv*) = 1 andfiy) = 0 V v 6 {0,1}" : v ^ v*. Lower units and upper zeros are 
also referred to as border vectors. For any monotone Boolean function/, the 
set of lower units LU(/), and the set of upper zeros, UZ(/) are unique and either 
one of these two sets uniquely identifies/ Boolean functions are often written 
in Disjunctive Normal Form (DNF) or in Conjunctive Normal Form (CNF) 
using the AND, OR, and NOT operations, denoted by A, V, and --, respectively. 
A DNF or a CNF representation is minimal if removing any of its clauses 
results in a different mapping {0,1}" -̂  {0,1}. For any monotone Boolean 
function/there is a one-to-one relationship between its lower units and its 
minimal DNF representation, as follows: 

/Vi, V„ ..., V„) = V ( A V,). 
weLU(f) i:w^=l 

Similarly, there is a one-to-one relationship between the upper zeros of a 
monotone Boolean function/ and its minimal CNF representation as follows: 

XVi, Vj, ..., V„) = A ( V v.). 

For example, the monotone Boolean function defined by its lower units {110, 
101} can be written in minimal DNF as V1V2 V V1V3. The corresponding upper 
zeros are {Oil, 100} and its minimal CNF representation is Vi(v2 V V3). Often 
the operation A is omitted when writing out Boolean functions, as in the 
previous two examples. Since the lower units and upper zeros are unique to a 
monotone Boolean function, so are its minimal representations in DNF and 
CNF. Another nice property of monotone Boolean functions is that they can be 
written in minimal CNF or DNF without using the NOT operation. 
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The set of all monotone Boolean functions defined on {0,1}'' is denoted by 
M„. For example, the set of all monotone Boolean functions defined on {0,1 }̂  
is given by M2 = {F, v^V2, v̂ , V2, v̂  V V2, T). Here the functions Tand F are 
defined by/v) = 1, V v e{0,l}", and/v) = 0, V v 6{0,l}", respectively. 

Let m(f) denote the number of border vectors associated with a Boolean 
function/ It is well known (e.g., Engel, 1997) that m(f) achieves its maximum 
value for a function that has all its border vectors on two of the most populous 
layers of {0,1}". That is, the following equation holds: 

- - - ( / ) = (L«y ^(L«/2>I feM„ 

The borders of any monotone Boolean function / are the only vectors that 
require evaluations in order to completely reconstruct the function. Therefore, 
the value of m(f) works as a lower bound on the number of queries for Problem 
1. 

The number of monotone Boolean functions defined on {0,1}" is denoted 
by T(w). That is, T(/7) is equal to the dimension of the set M„. All of the 
known values for ^(n) are given in Table 1. For larger values of n the best 
known asymptotic is due to Korshunov (1981): 

-Anil) W2-1/I 2n/2 2«*5 2"*^j r 

l\nii) ^ \z 1 ^ / , for even «. 
/ „ \ / « \{ 1 _ n^ _ n\ I n \( 1 ^ «̂  

•Xnll-Ml]^^ \ w/2-3/2 /1 2(«+3V2 2"+̂  2"''^/ \«/2-l/2 /1 2(»+i)/2 2"*^ 

for o d d « . 

T(«) 

The number of pairs of nested monotone Boolean functions defined on 
{0,1}" is simply T(w+1). This fact can be observed by constructing the poset 
connecting two posets P^ = ({0,1}", ^) and P2 "= ({0,1}", <) associated with 
functions / and / respectively, by adding the edges corresponding to the 
precedence relations/i(v) >^(v), V v 6 {0,1}". 

Table 1. History of Monotone Boolean Function Enumeration. 

T(1) = 3,T(2) = 6,T(3) = 20 
T(4)=168 
T(5) = 7,581 
T(6) = 7,828,354 
T(7) = 2,414,682,040,998 
T(8) = 56,130,437,228,687,557,907,788 

byDedekind(1897) 
by Church (1940) 
by Ward (1946) 
by Church (1965) 
by Wiedeman(1991) 
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2.4 Existing Approaches to Problem 1 

Let (p(A,f) denote the number of queries performed by an algorithm A, 
when reconstructing the monotone Boolean function / A Teacher can be 
thought of as an inference algorithm that knows the function ahead of time. It 
simply verifies that the function is correct by querying only the border vectors. 
Thus, (^{Teacher,/) = m{f), V / e M„. Please recall that m{f) denotes the 
number of border vectors associated with a function/ 

For any monotone Boolean function inference algorithm A, the value of 
m(f) can be considered as a lower bound on the number of queries. Thus, 
(p(A,f) > m(fX \/fE M„. It turns out that it is possible to achieve fewer or the 
same number of queries as the upper bound on m(/), for all monotone Boolean 
functions defined on {0,1}". This can be achieved by partitioning the set of 
vectors into chains as described in Hansel (1966). In general, there are a total 
of (L„/2J) chains in n dimensions. An inference algorithm that searches these 
chains in increasing length is referred to as Hansel's algorithm. A key property 
of the Hansel chains is that once the function values are known for all the 
vectors in all the chains of length k, the function values are unknown for at 
most two vectors in each chain of the next length k+2. Proof of this property 
can be found in both Hansel (1966) and Sokolov (1982). As a result. Hansel's 
algorithm results in fewer or the same number of queries as the upper bound 
on m(f) as follows. When n is odd, the shortest chains contain two vectors each, 
and there are a total of [L„/2J) chains. In this case, the maximum number of 
queries used by Hansel's algorithm is 2 (L„/2J) =(L«/2J] " (LW/TJ+I). Similarly, when 
n is even, there are [„/2j " («/2+i) chains of length one, and [„/2+iJ chains of length 
greater than one. In this case, the maximum number of queries is [„^ -
(/i/2+i) + 2 („/2+i) = („/2] +(„/2+i) . That is, the following inequality holds: 

ipiHansehf) ^ max m( g ) = [ ^ j j ^ (L«/2J + I ) ' "̂  ̂ ^ ^«-

The algorithm described in Sokolov (1982) is also based on the Hansel 
chains. In contrast to Hansel's algorithm, it considers the chains in the reverse 
order (i.e., in decreasing length) and performs the binary search within each 
chain. It turns out that Sokolov's algorithm is much more efficient for functions 
that have all their border vectors in the longer Hansel chains. As an example, 
consider the monotone Boolean function T. This function has only one border 
vector (00...0), which is located in the longest chain. For this function, 
Sokolov's algorithm performs at most \jog2(n)j + 1 evaluations, while Hansel's 
algorithm needs at least [innjj evaluations. For instance, when n = 20 this 
translates into at least 184,756 evaluations performed by Hansel's algorithm 
and at most 5 evaluations performed by Sokolov's algorithm. 

Sokolov's algorithm does not satisfy the upper bound, as the following 
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example shows. Suppose that n > 4 and even, and the monotone Boolean 
function to be inferred is defined by^v) = 1 V v G {0,1}" : |v| > n/2, and 0 
otherwise. Then the set of border vectors is {v, |v| = n/2 or n/2A} and m(f) = 
[L„/2JJ + [L«/2J+I] • I^ Sokolov's algorithm, the first vector w^ submitted for 
evaluation is a border vector since \w^\ = n/2. The second vector w^ is not a 
border vector because \w^\ = [311/4] ^ n/2 and n/2-\. Therefore, the following 
inequality holds: 

(^{SokolovJ) > (L„/2J) " (L«/2J+I)' f̂^ ^̂  '̂ ^^^ one/E M„. 

In an attempt to provide a unified efficiency testing platform, Gainanov 
(1984) proposed to compare inference algorithms based on the number of 
evaluations needed for each border vector. To that end, he presented an 
algorithm that searches for border vectors one at a time, and we refer to this 
algorithm as FIND-BORDER. At the core of the algorithm is a subroutine that 
takes as input any unclassified vector v, and finds a border vector by 
successively evaluating adjacent vectors. This subroutine is also used in the 
algorithms of Boros et al (1997), Makino and Ibaraki (1995), and Valiant 
(1984). As a result, any inference algorithm^ that feeds unclassified vectors 
to this subroutine satisfies the following upper bound: 

( p (^ , / )<^ ( / ) ( / 7+ l ) ,V /eM, . 

For the majority of monotone Boolean functions, the expression m{f){n^\) is 
greater than or equal to 2", in which cases the bound is trivial. 

Earlier work on monotone Boolean function inference (such as Hansel, 
1966; Sokolov, 1982; Gainanov, 1984) focuses on reducing the query 
complexity. More recent work (like Boros et al, 1997; Makino and Ibaraki, 
1997; Fredman and Khachiyan, 1996) considers both the query complexity and 
the computational complexity. The problem of inferring a monotone Boolean 
function via membership queries is equivalent to many other computational 
problems in a variety of fields (see, for instance, Bioch and Ibaraki, 1995; Eiter 
and Gottlob, 1995). In these applications, algorithms that are efficient in terms 
of query and computational complexity are used. 

In practice, queries often involve some sort of effort, such as consulting 
with experts, performing experiments or running simulations. For such 
applications, queries far surpass computations in terms of cost. Therefore, this 
chapter focuses on minimizing the query complexity as long as it is 
computationally feasible. 
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2.5 An Existing Approach to Problem 2 

Kovalerchuk et al (1996) considered the problem of inferring a pair of 
nested monotone Boolean functions. Their algorithm, which exhibited a 
promising efficiency in their cancer diagnosis application, is an extension of 
Hansel's inference algorithm for a single monotone Boolean function. 
However, the algorithm performance analysis is far from conclusive as a single 
application represents a single pair of nested monotone Boolean functions. 

2.6 Existing Approaches to Problem 3 

The problem of guided inference in the presence of stochastic errors is 
referred to as sequential design of experiments in the statistics community. The 
field of optimal experiment design (Federov, 1972) contains various optimality 
criteria that are applicable in a sequential setting. The most common vector 
selection criterion is based on instantaneous variance reduction. Other selection 
criteria, such as the maximum information gain used in MacKay (1992), and 
Tatsuoka and Ferguson (1999), have been studied. However, no guided 
inference studies using a maximum likelihood framework were found in the 
literature. 

The theory of optimal experiment design is the most extensive for simple 
regression models (Federov, 1972). Fortunately, efficient guided inference for 
more complex models have been studied, such as the feed forward neural 
networks in Cohn (1996), even though a sound theory has not been established. 
In fact, the same article reported a convergence problem for which a partial 
remedy was introduced in Cohn (1995). 

2.7 Stochastic Models for Problem 3 

Suppose a set of observed vectors F= {v\ v̂ , ..., v̂ } is given. For a given 
number of queries m, let w/v) be the number of times the oracle classified 
vector V as z (for z = 0 and 1, and vE V). Associated with a monotone Boolean 
function/ the number of errors it performs on the set of observations is given 

e(f) = i l (Kv >o(v 0 + (1 -Av '))m,(v '))• 

It is assumed that the oracle misclassifies each vector v with a probability 
q(v) E (0, Yi). That is, for a given monotone Boolean function/ the oracle 
returns for vector v : 

1 with probabilityj9(v) = ^(v)x(l - /v) ) + (1 - ?(v))x/(v), and 
0 with probability l-piv). 
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A key assumption is that the misclassification probabilities are all less than 
V2, otherwise it would not be possible to infer the correct monotone Boolean 
function. If the sampled values are considered fixed, their joint probability 
distribution function can be thought of as the likelihood of function/matching 
the underlying function as follows: 

The likelihood value of a particular monotone Boolean function decreases 
exponentially as more observations are added and therefore this value is 
generally very small. However, the likelihood ratio given by: 

feFiV) 

measures the likelihood of a particular functiony* relative to the likelihood of 
all possible monotone Boolean functions F(V), defined on the set of vectors V. 
Note that when the set of vectors V is equal to {0,1}'', then the set of all 
possible monotone Boolean functions F(V) is equal to M„. 

The goal of the maximum likelihood problem is to find a monotone Boolean 
function/* E F(V), so that L(f) > L{f) \/ f E F{V), Assuming that the 
misclassification probabilities q{v) are all less than Vi, this problem is 
equivalent to identifying a monotone Boolean function/* that minimizes the 
number of errors e(f^) (Boros et al, 1995). Note that if ^ can take on values 
greater than I/2, then the maximum likelihood solution may maximize the 
number of errors, as demonstrated by Boros et al (1995). In this chapter, error 
maximization is avoided by restricting q to be less than /4; existence of such 
a solution is shown in Torvik and Triantaphyllou (2004). 

The error minimization problem can be converted into an integer 
maximization problem as follows: 

' « ' « i ( / ( v > o ( ^ ' ) + ( l- /v '))m,(v ')) = 

min e{f) = 

'nin(-^{/(y%m,(y') - m,(v')) + ^m, (v ' ) ) . 

Since the term L'WiCv' is constant, it can be removed from the optimization 
objective. Furthermore, maximizing a particular objective function is 
equivalent to minimizing the negative of that objective function, resulting in 
the following simplified integer optimization problem: 

1=1 
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subject tofiy') <fiy) V v\ V E V: v' < V, and 
XvO = O o r l . 

This problem is known as a maximum closure problem, which can be 
converted into a maximum flow problem (Picard, 1976). The most efficient 
algorithms developed for the maximum flow problem use the idea of preflows 
developed by Karzanov (1974). For example, the lift-to-front algorithm (e.g., 
Cormen et al, 1997) takes 0( F )̂ time. The fact that this problem can be solved 
in polynomial time is a nice property of the single q parameter model. For two 
dimensional problems (i.e., F c W), the minimum number of errors can also 
be guaranteed via a dynamic programming approach (Bloch and Silverman, 
1997). 

A more complex error model can potentially maintain as many parameters 
as the size of the domain V. That is, each vector v may have an associated 
unique parameter j!?(v). In this case, minimizing the weighted least squares: 

t^ 
where 

minl^(p{v') - piv'))(m,(v') + m,(v')) 
/=1 

subject top{V) < p(V) V v\ V E V:v'< V, 

/w,(vO 
P(v') = - ^ ^ ^ - , for i = h 2, ..., k, 

'WiCv') + mo(vO 

yields a maximum likelihood solution (Robertson et al., 1988). This is a hard 
optimization problem, and several algorithms have been developed to solve it 
optimally and near optimally. The Pooled Adjacent Violators Algorithm 
(PAVA) by Ayer et al. (1955) only guarantees optimality when (V, <) forms 
a chain poset (also referred to as a simple order). The Min-Max algorithm 
developed by Lee (1983) and the Isotonic Block Class with Stratification 
(IBCS) algorithm by Block et al. (1994) guarantee optimality for the general 
poset but both algorithms can potentially consume exponential time. 
Unfortunately, no polynomial algorithm for the general poset was found in the 
literature. 

In addition to the full parametric model, there are models of intermediate 
parametric complexity. One example is the logistic regression model with non-
negativity constraints on its parameters, as used for record linkage in databases 
by Judson (2001). A monotone decision tree approach can be found in Makino 
et al. (1999), and a sequential monotone rule induction approach can be found 
in Ben-David (1992 and 1995). 

It should be noted that the single parameter error model considered in this 
chapter is somewhat restrictive, in the sense that it does not estimate 
misclassification probabilities that vary across the vectors. However, the goal 
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of this chapter is to efficiently uncover the underlying monotone Boolean 
function and not necessarily come up with accurate estimates for the individual 
errors. The fixed misclassification probability assumption does not affect the 
capability of the inference methodology as will be demonstrated in the 
subsequent sections. The assumption is simply used to estimate the error rate 
and the confidence in having inferred the correct function, and a more accurate 
estimate of the maximum likelihood ratio may require a substantial increase in 
computational complexity, as for the full parametric model described above. 

3. INFERENCE OBJECTIVES AND 
METHODOLOGY 

3.1 The Inference Objective for Problem I 

An inference algorithm that performs fewer queries than another algorithm 
when reconstructing a particular deterministic monotone Boolean function is 
considered more efficient on that particular function. However, it has not been 
clear how to compare algorithms on the entire class of monotone Boolean 
functions defined on {0,1}". 

The main existing algorithms by Hansel (1966), Sokolov (1982), and 
Gainanov (1984) focus on the upper bounds of their query complexities. 
Unfortunately, the worst case scenario reflects the algorithm performance on 
a few specific functions. It does not reflect what to expect when executing the 
algorithm on an arbitrary monotone Boolean function. For example, algorithms 
that implement Gainanov's subroutine (which we refer to as FIND-BORDER) 
indirectly suggest minimizing the upper bound on the number of evaluations 
per border vector. These algorithms greatly favor the simplest functions (which 
mav only have a single border vector) over the complex functions (with up 
to (L«/2JJ "̂  [L«/2J+I] border vectors). Kovalerchuk et al (1996) demonstrated 
promising results for a Hansel based inference algorithm on a real world 
application. However, their performance analysis is far from conclusive as a 
single application represents a single pair of monotone Boolean functions. 

With no prior knowledge (other than monotonicity) about the inference 
application, each function is equally likely to be encountered and should 
therefore carry the same weight in the objective. The objective for this problem 
is to develop an algorithm that minimizes the average number of queries over 
the entire class of monotone Boolean functions defined on the set {0,1}". This 
objective can be expressed mathematically as follows: 

A Y(«) 
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The objective Q{n) represents the entire class of monotone Boolean functions 
M„. As such, it provides a better indication of what to expect when executing 
an algorithm on an arbitrary monotone Boolean function. 

3.2 The Inference Objective for Problem 2 

The approach taken to this problem is analogous to that of Problem 1. The 
minimum average number of queries for Problem 2.k (for k= 1,2, and 3) can 
be expressed mathematically as follows: 

E ^(Ak^ fv fi) 
QJji) = min -^-^ —^— . 

Here, (p(A,^fi,f2) denotes the number of queries performed by algorithm^^, 
in reconstructing the pair of nested monotone Boolean functions / and fj 
defined on the set {0,1}". Here, A^, A2, and 7̂ 3 denote algorithms designed for 
Problems 2.1, 2.2, and 2.3, respectively. Please recall from section 2 that the 
number of pairs of nested monotone Boolean functions defined on the set 
{0,1}" is equal to T(w+1), the number of monotone Boolean functions defined 
on the set {0,1 }"^^ 

Since these three problems differ in the way the oracles are queried, it 
should be clarified that a query unit pertains to the membership value from one 
of the two functions/i and^. This definition is intuitive for Problems 2.1 and 
2.3, where two oracles are accessed individually. For Problem 2.2, the 
membership values are provided in pairs from a single three-valued oracle. To 
make the definition ofQ2(n) comparable to Qi(n) and Qsin), each query to the 
three-valued oracle will be counted as two queries. 

3.3 The Inference Objective for Problem 3 

The approach taken to Problem 3 is similar to that of Problems 1 and 2. The 
goal is to minimize the average number of queries needed to completely 
reconstruct the underlying monotone Boolean function, expressed 
mathematically as follows: 

5^ (p(A, f, q) 
min —^ . 

A T(Al) 

Here, (p(A, / , q) denotes the expected number of queries performed by 
algorithm A in completely reconstructing the underlying monotone Boolean 
function / from an oracle with a fixed misclassification probability q. 
Completely reconstructing the underlying function translates into making the 
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likelihood ratio A(/*) for the inferred function/" reach a sufficiently high value 
(e.g., 0.99). 

It should be stressed that the misclassification probability q is unknown and 
ranges from 0 up to V2. However, it is expected that the average number of 
queries will increase significantly with q, since, by definition, it approaches 
infinity as q approaches /4, and it is finite when q is equal to 0. Therefore, the 
average over a large range q may not be an accurate prediction of how many 
queries to expect for a particular application. The average query complexity 
will therefore be evaluated as a function oin and q, even though q is unknown. 

3.4 Incremental Updates for the Fixed Misclassification 
Probability Model 

Suppose the error minimizing function /QI^* and its misclassification 
parameter ?oid*? associated with a set of vectors V= {v̂ , v̂ , ..., v̂ } and their 
mo(v) and fn^{v) values, are given. When a new vector is classified by the oracle 
(i.e., mj^v) ̂  mjiy) +1), the function^oid* ^^^ its misclassification parameter 
ôid* ^^y have to be updated. Since the new error minimizing function is likely 

to be close to the old function, it may be inefficient to solve the entire problem 
over again. 

Simply stated the incremental problem consists of finding Xew* ^^^ 
consequently q^^J^ when mjiy) ^ mj(v) + 1. If the new classification is 
consistent with the old function (i.e.,/,id*(^) "̂  ̂ )? then the old function remains 
error minimizing (i.e.,/,!^* "/lew*)- Therefore, the number of errors remains the 
same and the misclassification estimate is reduced to ^̂ ew* ~ (̂/oid*y(̂ oid "̂  !)• 
Note that this case is the most likely one since it occurs with an estimated 
probability of 1- ^ î̂ * > Vi, If, on the other hand, the new classification is 
inconsistent with the old function (i.e.,Xid*(^) ~ 1- )̂? the old function may or 
may not remain error minimizing. The only case in which the old function does 
not remain error minimizing is when there is an alternative error minimizing 
function fj^ on the old data for which fa^iy) = z. In this case X* is error 
minimizing for the new data. 

The number of possible error minimizing functions may be exponential in 
the size of the set F, and therefore storing all of them may not be an efficient 
solution to this problem. To avoid this computational burden an incremental 
algorithm such as the one described in Torvik and Triantaphyllou (2004) can 
be used. 

3.5 Selection Criteria for Problem 1 

When computing the optimal solutions, many different and complex posets 
are encountered. The optimal vectors of these posets seemed to display two 
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general properties (Torvik and Triantaphyllou, 2002). First, the optimal vectors 
tend to be in the vertical middle. More specifically, all posets observed in the 
inference process when « is 4 or less have at least one optimal vector in the 
most populous (middle) layer. This observation alone is not sufficient to 
pinpoint an optimal vector. The second property observed is that the optimal 
vectors also tend to be horizontal end points. 

Now^ consider creating a selection criterion based on the ideas of vertical 
middle and horizontal end points. Suppose a subset of unclassified vectors, V 
= {v\ v̂ , ...,v^} is given. Let K^iV) and KQ{V') be the number of vectors that are 
concurrently classified whenXvO equals to 1 and 0, respectively. Invariably 
selecting a vector v with the minimum \Ki(v) - ^o(^)l value guarantees the 
minimum average number of queries for inference problems with n strictly less 
than 5 (Torvik and Triantaphyllou, 2002). 

Unfortunately, this selection criterion is not optimal for all the posets 
generated for n equal to 4. It is only optimal for the subset of posets 
encountered when using the criterion min\K^ - ^QI- Another drawback is that it 
is not optimal for the inference problem when n is equal to 5. However, the 
criterion is probably close to optimal since the larger posets eventually 
decompose into smaller posets. 

It is important to note that what may look like intuitive criteria (without the 
consultation of optimal solutions) may lead to poor performance and 
ambiguous choices. For example, it may seem reasonable to attempt to classify 
as many vectors as possible for each query. The two criteria max{Ki(v) + KQ{V)) 

and max(Ki(v)KQ(v)) are consistent with this philosophy (see Judson, 1999). 
However, they are extremely counterproductive to minimizing the average 
query complexity and should be avoided. As an example, consider the set of 
vectors {0,1 j"^. The criterion max{K^{v) + KQ{V)) selects either the (0000) or the 
(111 1) vector, which happens to maximize the average number of queries. The 
criterion max{K^{v)KQ{v)) ties the entire set of vectors, and is therefore the 
choice of vector is ambiguous. 

There is a logical explanation for why these two selection criteria are 
counterproductive. Vectors that are able to concurrently classify more vectors 
are also more likely to be classified by others. Following this line of thought, 
the selection criterion min(Ki(v) + ^o(^)) seems reasonable. This criterion is 
similar to min\Ki(v) - KQ(V% but it does not satisfy the same optimality 
conditions for the inference problem when n is equal to 4. 

3.6 Selection Criteria for Problems 2.1, 2.2, and 2.3 

The minimum average number of queries for the unrestricted problem Q^in) 
is equal to that of the single function case in one dimension higher Q(n+l). 
That is, Qs(n) = Q{n+\). To see this connection consider a pair of nested 
monotone Boolean functions/i and^ defined on {0,1}". The query domain for 
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the nested case can be viewed as the product: {0,1}" x{/2,/i}. Each of the 
vertices in the resulting poset ({0,1}"^^ :<), may take on function values of 0 
or 1, where the monotonicity property is preserved. In other words, a pair of 
nested monotone Boolean functions defined on {0,1}" are equivalent to a single 
monotone Boolean function defined on {0,1}''^^ 

The selection criterion min\K^{vyKQ{v)\ was shown to be very efficient in 
minimizing the average number of queries in Problem 1. It will therefore be 
used for the three nested problems with a slight modification. The query 
domain for the nested case is made up of the set of vectors {0,1}" x {^,/i}. For 
a vertex labeled (v / ), let J^/v, f) be the number of vertices that are 
concurrently classified when the value of/ (v) is queried and the answer is/(v) 
= z, for z = 0 and 1. When the access to the oracles is unrestricted (i.e.. Problem 
2.3), vertices are selected based on the criterion mm\K^{v,f^ - KQ(v,f^\. This 
criterion is equivalent to the criterion min\Ki(vyKQ(v)\ for the single function 
case. The only change is in the notation since the oracle that is to provide the 
answer has to be identified for Problem 2.3. 

For sequential oracles (i.e.. Problem 2.1), queries of the form/(v) are 
infeasible until all of the queries of the form/i(v) are classified. In this case, the 
criterion used during the first phase is min\Ki{v,fi) - iCo(v,/i)|, after which the 
criterion mm\K^{v,f^ - iQ)(v,/)| is used. 

For the three-valued oracle (i.e.. Problem 2.2), the queries are of the form 
(/i(v),/2(v)) and are selected using the criterion min\K^^{vyKQQ{y)\. Here the 
value of the function K^Jiv) equals the number of vertices concurrently 
classified when vertex v is queried and the result of the query is/i(v) =/(v) = 
z, for z = 0 and 1. Once there are no pairs of vertices of the form (/l(v),y2(^)) 
left unclassified, the criterion min\K^(v,f^ - KQ(v,f)\ is used for the remaining 
of the query selections. 

3.7 Selection Criterion for Problem 3 

The status of the inference process will be considered to be in one of three 
stages. Stage 1 starts with the first question and lasts until a deterministic 
monotone Boolean function is obtained. During Stage 1 only vectors that may 
take on both 0 and 1 values are queried. As a result, no (identifiable) errors are 
observed in Stage 1, and thus the monotone Boolean function inferred during 
Stage 1 is deterministic. This function, however, may or may not be the correct 
function. In fact, the probability that it is the correct function is equal to the 
probability that no misclassifications were made: (1- q)"^, where m is the 
number of questions used during Stage 1 and q is the true misclassification 
probability. This probability decreases rapidly with m, regardless of the value 
of q. Therefore, the queries performed after Stage 1 will benefit greatly from 
a reduction in the number of Stage 1 queries. Please note that since no 
inconsistencies have been observed, there is no way to properly estimate q at 
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this point. 
After a deterministic monotone Boolean ftinction is obtained in Stage 1, the 

inference process enters Stage 2. At this point it is unclear as to how to select 
queries for Stage 2, so a random selection procedure will be used for this stage. 
After the first error occurs in Stage 2, the inference process enters Stage 3, in 
which it will remain until termination. Stage 3 is the focus of this chapter, 
because it is the only stage in which the likelihood ratio can be properly 
evaluated and q can be estimated based on the observed vectors. 

Please recall that the likelihood function is given by: 

Z( / ) = ^̂ </>(l q)' in-e(n 

and the likelihood ratio is given by: 

X(/-*) = - LU* ) 

f^F{V) 

As an example of the likelihood ratio computations consider the example 
data given in Table 2. The likelihood values for the all the possible monotone 
Boolean functions are given in Table 3. The function/* = v^v-^ V V2V3 produces 
16 errors. Its associated estimated misclassification probability g* is 16/36 = 
4/9, since the total number of observations is m = 36. Therefore, the likelihood 
value of this function L(f) is (4/9)^^(1 - 4/9)''-^' = 1.818x10"^^ Notice how 
small this value is after only 36 observations. Adding up the likelihood values 
the monotone Boolean functions yields (13x1.455+ 2x1.536+ 5xl.818)x 10-̂ ^ 
=3.107x10"^^. Then the maximum likelihood ratio is computed as follows: A(/*) 
= 1.818x10-^73.107 xlO-^'= 0.0585. 

1 ^ 
111 

no 
101 
11 
100 
10 
1 

0 

Table 2. A Sample 

m,{v) 
0 
3 
4 
3 
4 
2 
3 
1 

Data Set for Problem 

7Mn(v) 

1 
5 
1 
1 
5 
0 
3 
0 

3. 

m,(v)-mn(v) 
-1 
-2 
3 
2 
-1 
2 
0 
1 
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1 ^ 1 ^ 
1 V.VjVj 

1 v^v^ 
1 v.Vj 

1 V1V2 V V,V3 

1 '̂ 
1 V2V3 

1 V, V V2V3 

1 V,V3 V V2V3 

VyVj V V,V3 V V2V3 

V,V2 V V2V3 

V2 

Vi V V2 

V2 V V,V3 

V3 

V2 V V3 

V, V V2 V V3 

V, V V3 

V3 V V,V2 

T 

e{f) 

20 

21 

23 

18 

20 

21 

19 

19 

16 

18 

21 

19 

17 

16 

16 

16 

17 

19 

18 

16 

q(f) 

V2 

V2 

V2 

V2 

V2 

V2 

V2 

V2 

36989 

V2 

V2 

V2 

\1I36 

36989 

36989 

36989 

17/36 

V2 

V2 

36989 

Uf) 
1.455x10-" 

1.455x10"" 

1.455x10-" 

1.455x10"" 

1.455x10"" 

1.455x10-" 

1.455x10"" 

1.455x10"" 

1.818x10"" 

1.455x10"" 

1.455x10"" 

1.455x10-" 

1.536x10-" 

1.818x10"" 

1.818x10"" 

1.818x10"" 

1.536x10-" 

1.455x10-" 

1.455x10-" 

1.818x10-" 

\Uf) 1 
0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 1 
0.0585 1 
0.0468 

0.0468 

0.0468 

0.0495 

0.0585 

0.0585 

0.0585 

0.0495 1 
0.0468 1 
0.0468 

0.0585 1 

Now let us return to the vector selection (or guided inference) problem. As 
shown above, the probability that the correct function is inferred during Stage 
1 decreases rapidly with the number of queries used during that stage. 
Therefore, the selection criterion min\KQ{v) - K^{v)\ will be used as a standard 
for Stage 1, when comparing different approaches for the following Stage 3. 
This avoids bias in the sense that all Stage 3 approaches will benefit from using 
min\KQ{v) - Ki(v)\ during Stage 1. 

One important property of the selection criterion for Stage 3 is that the 
maximum likelihood ratio converges to 1. It is possible to define selection 
criteria that do not converge. If, for example, the same vector is invariably 
selected, the estimated value of ^ will converge to its true value. In this case, 
the likelihood values may remain equal for several monotone Boolean 
functions and hence the maximum likelihood ratio will never converge to 1. 

Intuition may lead to an inefficient selection criterion. For example, let £'/v) 
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be defined by the number of errors associated with assigning the function value 
Xv) to z, as follows: 

Then, consider defining the vector v which "contributes the most errors" by 
max(EQ(v)+Ei(v)). This vector selection criterion may lead to the same vector 
being invariably queried and hence it might suffer from convergence problems, 
as will be demonstrated empirically in section 4. 

The likelihood framework seems to form a great basis for defining a Stage 
3 vector selection criterion. Since the goal is to make the likelihood ratio 
converge to 1 as fast as possible, a reasonable approach would be to select the 
vector that maximizes the expected maximum likelihood ratio at each inference 
step. To do this, the expected maximum likelihood ratio AX(v) =p(v)Xi(v) + 
(1 ' P(V))XQ(V) has to be estimated for each vector v. Here A/v) denotes the 
resulting maximum likelihood ratio when^v) = zis observed. Please recall that 
p(v) is the probability of observing Xv) = 1. That is, it can be estimated by 
;7*(v) = ?*(!-Av)) + ( l - ? * F ( v ) . 

As an example consider observing the vector (001). Table 4 gives the 
updated likelihood ratios for each monotone Boolean function when w/001) 
= m/001) + 1, for z = 0 and 1. For a monotone Boolean function/, and a 
classification z, eXOO\,f) and A/OOl,/) here denote the updated number of 
errors and the likelihood ratio, respectively. The updated maximum likelihood 
ratios are Ai(OOl) = Ai(001, 7) = 0.0649 and Ao(OOl) = Ao(001, V1V3 V V2V3) = 
0.0657. Since the optimal function assigns the vector (001) to 0 (i.e.,/''(001) 
= 0), the estimated probability of observing^OO 1) = 1 is given by j9*(001) = ̂ * 
= 4/9. Therefore, the expected maximum likelihood ratio when querying vector 
001 is given by AA(OOl) = ;?*(001)Ai(001) + (1-;?*(001))Ao(001) = 4/9 
xO.0649 + 5/9 xO.0657 = 0.0653. 

Similar computations for the other vectors yield AA(OOO) = 0.0651, 
AA(OIO) = 0.0654, AA(011) = 0.0592, AA(IOO) = 0.0652, AA(lOl) = 0.0592, 
AA(110) = 0.0654, and finally AA(111) = 0.0592. The vectors with the largest 
expected likelihood ratio value are (010) and (110). Since no further 
improvements of the selection criterion is immediately obvious, ties are broken 
arbitrarily. 

The simulations in section 4 reveal the efficiency of the selection criterion 
max AA(v) in terms of the query complexity. In terms of computational 
complexity it may take an exponential time (in the size of V) to compute max 
AX(v). Since the computational time for incrementally finding the inferred 
function is of 0()^), it would be nice to find a selection criterion that does not 
take more time than this and still makes the likelihood converge to 1 at a faster 
rate than randomly selecting vectors. 
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Table 4. Updated Likelihood Ratios for /w/OOl) = m/001) + 1. 

1 ^ 1 ^ 
1 V,V2V3 

V,V2 

1 V1V3 

V1V2 V V1V3 

1 ^̂  
V2V3 

Vj V V2V3 

V1V3 V V2V3 

V1V2 V V1V3 V V2V3 

V1V2 V V2V3 

V2 

Vj V V2 

V2 V V1V3 

V3 

V2 V V3 

Vj V V2 V V3 

Vi V V3 

V3 V VjV2 

T 

Uf) 
0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0468 

0.0585 

0.0468 

0.0468 

0.0468 

0.0495 

0.0585 

0.0585 j 

0.0585 

0.0495 

0.0468 

0.0468 

0.0585 

^.(001,/) 

21 

22 

24 

19 

21 

22 

20 

20 

17 

19 

22 

20 

18 

17 

16 

16 

17 

19 

18 

16 

A,(001,/) 

0.0462 

0.0462 

0.0462 

0.0462 

0.0462 

0.0462 

0.0462 

0.0462 

0.0522 

0.0462 

0.0462 

0.0462 

0.0469 

0.0522 

0.0649 

0.0649 

0.0522 

0.0462 

0.0469 

0.0649 

en(001,./) 

20 

21 

23 

18 

20 

21 

19 

19 

16 

18 

21 

19 

17 

16 

17 
17 

18 

20 

19 

17 

Ao(ooi,./i 
0.0468 

0.0468 

0.0468 

0.0474 

0.0468 1 
0.0468 1 
0.0468 1 
0.0468 1 
0.0657 1 
0.0474 1 
0.0468 1 
0.0468 1 
0.0529 1 
0.0657 1 
0.0529 1 
0.0529 1 
0.0474 1 
0.0468 1 
0.0468 1 
0.0529 1 

One such possibility may be based on the inferred border vectors. For the 
sake of argument suppose that the underlying monotone Boolean function/to 
be inferred is known. Then randomly selecting vectors from its corresponding 
border vectors will make the maximum likelihood ratio converge to 1. As the 
number of queries m goes to infinity, the ratios mo(v)/(mo(v) + m^{v)) V v 6 
LU(/) and m^{w)l{mQ{w) + m^{w)) \/ w E UZ(f) all converge to q. The number 
of errors performed by any other monotone Boolean function g is at least x = 
min{mm{mi(v) - mQ{v),v E LU(/)}, min{mQ(w) - mi(wX w E UZ(/)}} greater 
than the number of errors performed by function/ Furthermore, x ^ qm - (\-
q)m = m{2q -1) for large m. That is, the number of additional errors increases 
at least linearly with m. Then, as m goes to infinity, so does the number of 
additional errors performed by each of the other monotone Boolean functions. 
That is, the relative likelihoods L(f)/L(g) > {ql{\- q)f converge to 0 as m goes 
to infinity. Since the number of other monotone Boolean functions is a finite 
number that does not depend on m, the likelihood ratio X(f) = L(f) I (L(/) + 
^Z(g)) converges to 1 as w goes to infinity. 

Focusing the queries at the border vectors of the underlying function 
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probably allows this convergence to occur at a faster rate than randomly 
selecting from all the vectors. In situations where the underlying function is 
unknown, it may be that focusing the queries on the border vectors of the 
inferred function (i.e., v 6 LU(/*) u UZ(f^)) is better than completely random 
selection. In the long run, an inferred border vector will not prevail if it is not 
an underlying border vector. Since the misclassification rate is less than V2, the 
rate at which the incorrectly classified inferred border vectors become correctly 
classified is greater than the rate at which correctly classified inferred border 
vectors become incorrectly classified. Therefore, in the long run all the 
classifications become correct when the queries are selected from the set of 
border vectors of the inferred function. 

Notice that this convergence holds even if the misclassification probability 
is different for each vector, as long as they are all less than Vi. Another added 
benefit is that finding the border vectors is easy, since they are readily available 
from the inferred function/*. In fact, a simple modification of the incremental 
maximum flow algorithm can store each of these vectors as they are found. For 
each monotone Boolean function there are at most 0(F) border vectors in a set 
of vectors V. During the inference process the inferred function may take on 
any of these monotone Boolean functions. Therefore, randomly selecting one 
of the border vectors takes 0(V) time. 

4. EXPERIMENTAL RESULTS 

4.1 Experimental Results for Problem 1 

The preexisting inference algorithms described in section 2 do not specify 
which vector to select when there are ties. In particular, the Sokolov and 
Hansel algorithms may have to choose between two vectors that make up the 
middle of a particular chain. Furthermore, the subroutine FIND-BORDER 
needs to be fed unclassified vectors, of which there may be many. Even the 
selection criterion mm\Ki-KQ\ may result in ties. For the purpose of comparing 
the algorithms on the same ground and without introducing another aspect of 
randomness, ties were broken by selecting the first vector in the list of tied 
vectors. 

The results in Figure 3 are based on an exhaustive analysis (i.e., all the 
monotone functions were generated) for n up to and including 5. Random 
samples of 2,000 functions were generated for /7 = 6, 7, and 8; while for n = 
9, 10, and 11 they were composed of 200 functions; the functions were 
generated using the algorithm described in Torvik and Triantaphyllou (2002). 

The Horvitz-Thompson (1952) estimator is used to compute the averages 
for n greater than 5. The average number of queries is normalized by the 
maximum possible number of queries 2" so that the magnitudes of the averages 
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in Figure 3 are not overshadowed by the large values obtained for n equal to 
11. As a consequence, two algorithms that result in parallel curves in such a 
plot, have an exponential (in n) difference in the average number of queries. 
Also, the gap between the curves in Figure 3 and the horizontal line Average 
Number of Queries IT =\ (not shown in the figure) can be thought of as the 
benefit of the monotone assumption. This is due to the fact that T is the 
number of required queries when the underlying function is not necessarily 
monotone. 
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Figure 3. The Average Query Complexities for Problem 1. 

The curve titled "Teacher" represents the lower bound on the number of 
queries for every single function. Therefore, it is expected that a few extra 
queries are required on the average. Since the heuristic based on the selection 
criterion min\K^-KQ\ achieves the minimum average number of queries for n up 
to 4, it can be thought of as a lower bound on the average, and its gap between 
Teacher quantifies the benefits of knowing the actual function beforehand. 

Figure 3 paints a clear picture of how the preexisting inference algorithms 
fare against each other. Hansel's algorithm was the best performer by far, 
Sokolov's came in second, and an algorithm using the subroutine FESfD-
BORDER (which is also used by Gainanov, 1984; Valiant, 1984; Makino and 



176 Data Mining & Knowledge Discovery Based on Rule Induction 

Ibaraki, 1995; Boros et al, 1997) was a distant third. In fact, since the curve 
differences between Hansel and Sokolov, and Sokolov and the subroutine 
FIND-BORDER implementation, seem to increase with n, the corresponding 
difference in the average number of queries increases at rate greater than 
exponentially with n. 

The difference between the curves for Hansel and "Teacher" decreases as 
n increases. The algorithm based on the criterion mm\Ki-KQ\ has a curve that is 
almost parallel to Hansel's curve, indicating that the selection criterion 
performs about 2% better than Hansel's algorithm. This decrease is especially 
clear in Figure 3 for n up to and including 8. For larger values of/?, the high 
variance of our estimates makes it hard to distinguish the two curves, but the 
overall decreasing trends remain intact. It might seem that a 2% decrease is 
insignificant, but writing it as 2"" x0.02 shows its real magnitude. 

Another nice characteristic of this selection criterion is that it is the most 
consistent of all the algorithms. For example, it performs between 10 and 18 
queries for 99.6% of the monotone Boolean functions in My In contrast, the 
algorithm based on the subroutine FIND-BORDER is the least consistent with 
between 8 and 25 queries for 99.6% of the monotone Boolean functions. 

4.2 Experimental Results for Problem 2 

The results in Figures 4, 5, and 6 are based on an exhaustive analysis (i.e., 
all the monotone functions were generated) for n up to and including 4. For n 
= 4, 5, ...,12 random samples of functions were generated and the Horvitz-
Thompson (1952) estimator is used to compute the averages for n greater than 
4. The number of pairs of nested monotone Boolean functions generated were 
2,000 for « = 5, 6, 7, and 200 for w = 8, 9, 10, and 100 for w = 11 and 12. 

Figure 4 shows the average number of queries for Problem 2 when using the 
selection criteria. The lower curve corresponds to the unrestricted case 
(Problem 2.3), which achieves the fewest number of queries on the average. 
The sequential case (Problem 2.1), corresponding to the middle curve, is not 
as efficient as the unrestricted oracles in general, although they are very close 
for n = 1, 2, 3, and 4. The least efficient of the three types of oracles is the 
three-valued (Problem 2.2) corresponding to the upper curve. 

The gap between the curves in Figure 4 and the horizontal line Average 
Number of Queries 12"^^ = 1 (the uppermost line of the box around the curves) 
can be thought of as the benefit of the monotone and nestedness assumptions 
together. This is due to the fact that 2"̂ ^ is the number of required queries when 
the underlying pair of functions are neither nested or monotone. For example, 
when w = 12 in the unrestricted problem {k=3) the average number of queries 
is reduced to about 20% of the maximum number of queries 2̂ ^ = 8,192 due to 
the monotone and nestedness assumptions. 

Figure 5 quantifies the increase in the average number of queries due to the 
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two restrictions on the oracles for n = 1,2, ..., 12. As mentioned earlier, the 
sequential oracles are practically unrestrictive for ^ = 1,2, 3, and 4. For n 
greater than 4, the increase in average query complexity oscillates between 
12% and 33% due to odd and even n, being much greater for odd n. In contrast, 
the three-valued oracle is much more restrictive across all the observed n, 
where the increase in the average number of queries oscillates between 35%) 
and 55%, again due to odd and even n, being greater for odd n. In summary, the 
increases in the average number of queries for the sequential and three-valued 
cases are dramatic. This is probably due to the fact that the average number of 
queries increases exponentially with the number of variables. 
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Figure 4. The Average Query Complexities for Problem 2. 

If the nested property of the two functions defined on {0,1}" is ignored, the 
minimum total number of questions is, on average, 2Q(n). The benefit from the 
nestedness assumption for Problem 2 is quantified by the ratio of Q2(n)/2Q(n) 
which is given in Figure 6 for « = 1, 2, ..., 12. Therefore, the curves given in 
Figure 6 show the reduction in the average number of queries due to the 
nestedness assumption. This reduction decreases with the number of variables. 
It starts out at 20%) for w = 1, and oscillates between 1% and 10%) for n greater 
than 7. 
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Figure 5. Increase in Query Complexities Due to Restricted Access to the Oracles. 
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4.3 Experimental Results for Problem 3 

For the purpose of comparing the efficiency of the different selection 
criteria for Stage 3 on the same basis, ties resulting from the selection criteria 
{inin\KQ{v) - Ki(v)\ for Stage 1, and max(EQ(v) + E^(v)), max AA(v), and v E 
LU(/*) u UZ(/*), the set of border vectors for Stage 3) were broken randomly. 
The four different inference processes using max AA(v), v E LU(/*) u UZ(/*), 
max(EQ(v) + £'i(v)), or random selection for Stage 3 were simulated on the set 
of vertices {0,1}". For all three Stage 3 selection criteria, the selection criterion 
mm\KQ(v) - i^i(v)| was used for Stage 1 and random selection was used for 
Stage 2. The resulting simulations were repeated 100, 50, 25, and 10 times for 
each of 6 representative functions of M„, with misclassification probabilities 
0.1, 0.2, 0.3, and 0.4, for w = 2, 3, 4 and 5, respectively. 

The representative functions are given in Table 5. For n = 4 and 5, these 
representative functions were randomly generated from a uniform distribution 
with individual probabilities of 1/Y(«) = 1/168 and 1/7581, respectively. For 
/? = 3, the representative functions consist of non-similar functions (one from 
each similar subset of M3). These functions represent all the functions in M3, 
since the average case behavior is the same for a pair of similar monotone 
Boolean functions. 

Table 5. The Representative Functions Used in the Simulations of Problem 3. 

n = 2 

1 ̂  
V,V2 

Vi 

V2 

Vj V V2 

T 

n = 3 

F 

V1V2V3 

V,V2 

V1V2 V 

V,V3 

1̂ 

VjV2 V 

V,V3 V V2V3 

n = A 

V1V2 V V2V4 V V1V3V4 

V1V2 V V1V3 V V2V3 V V2V4 

V V3V4 

V2V3 V V2V4 

V1V2V3 V V1V3V4 V V2V3V4 

V1V2 V V2V4 V V3V4 

V3 V V1V2 V V1V4 

~n^5 1 

V1V4 V V1V5 V V2V4 V V2V5 

V1V3 V V2V3 V V2V4 V V1V2V5 

V2 V V1V3V4 V V1V4V5 

V1V3 V V2V4 V V3V5 V V1V4V5 

V2V4 V V2V5 V V3V5 V V4V5 

V2V5 V V1V2V3 V V1V3V4 V 

V1V4V5 V V3V4V5 

To compute the overall average for a given q, the individual curves were 
weighted by the number of similar functions the representative function has 
(including itself) in M3. The individual curves for the monotone Boolean 
functions F, V1V2V3, V1V2, V1V2 V V1V3, Vi, and V1V2 V V1V3 V V2V3, were therefore 
weighted by 2, 2, 6, 6, 3, and 1, respectively. For ?? = 2, 4, and 5, the overall 
averages were computed without weights. The overall averages fovn = 2 and 
3 benefit from a reduced variance, since no additional errors are added due to 
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the sampling of functions as done for w = 4 and 5. 
Figure 7 shows the resulting average maximum likelihood curves for the 

inference problem defined onn = 2, 3, 4, and 5, and ^ = 0.1, 0.2, 0.3, and 0.4. 
Each curve is the average of 600, 300, 150, and 60 simulated inference 
processes observed for « = 2, 3, 4, and 5, respectively. In each plot, the 
horizontal axis corresponds to the number of Stage 3 queries, and the vertical 
axis corresponds to the maximum likelihood ratio. The curves are shown for 
the range of Stage 3 queries where the curves corresponding to the selection 
criterion max AA(v) has a maximum likelihood ratio that is less than 0.99. 

Not only do the curves corresponding to the guided selection criteria max 
AX(v) and V E LlJ(f^) u UZ(/*) converge to 1 but they do so at a much faster 
rate than the curves corresponding to unguided random selection. In fact, the 
random selection achieves a maximum likelihood ratio of only about 0.7 after 
the same number of queries as the criterion max AA(v) uses to reach 0.99, and 
the criterion v E LU(/*) u UZ(/*) uses to reach about 0.9, for n = 4. 

The difference between the curves for unguided selection and these two 
guided selections grows with the misclassification probability q and with the 
dimension n. That is, the benefits from actively selecting vectors over passively 
receiving observations are greater when the values of ̂  and n are large. In other 
words, the higher the misclassfication probability and the dimension of the 
problem are, the greater become the benefits of guiding the inference process. 

The curves associated with criterion max(EQ(v) + ̂ i(v)) seems to converge 
to a value significantly less than 1. For example, when n = 3 and q = 0.3, the 
maximum likelihood ratio converges to about 0.4, and this value decreases as 
the values of ^ and n increase. Therefore, the larger error rate and the vector 
domain is, the more important it becomes to define an appropriate vector 
selection criterion. 
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Table 6 gives the average number of queries needed by the selection 
criterion max AX(v) to converge to a maximum likelihood ratio of 0.99 for n 
= 2, 3, 4, and 5, and for ^ = 0.1, 0.2, 0.3, and 0.4. For a given n, these numbers 
increase dramatically as q increases. In fact, there seems to be more than a 
doubling in the numbers for fixed increments of q. For a given q, these 
numbers do not increase in such a dramatic fashion when n increases. 
However, they do increase faster than linearly with n. 

Horizontal Axis = Number of Stage 3 Queries 

Vertical Axis = Maximum Likelihood Ratio 
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Figure 7. Average Case Behavior of Various Selection Criteria for Problem 3. 
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Table 6. The Average Number of Stage 3 Queries Used by the Selection Criterion 
max AX(v) to Reach X > 0.99 in Problem 3 Defined on {0,1}" with Fixed 
Misclassification Probability q. 

\ n = 2 

\ n = 3 

n = 4 

1 n = 5 

^ = 0.1 

22 

27 

33 

45 

^ = 0.2 

54 

65 

85 

HI 

q = 0.3 

125 

170 

241 

277 

q = 0.4 1 

560 1 

710 1 

951 1 

1167 1 

Randomly selecting the inferred border vectors (i.e., v 6 LU(/* )̂ u UZ(/*)) 
makes the maximum likelihood ratio converge to 1, as long as the 
misclassification probabilities are all less than Y2. That is, the misclassification 
probabilities do not necessarily have to be fixed. To see whether this holds for 
the selection criterion max AA(v), consider an unrestricted model w ĥere the 
misclassification probability q(v) is a random variable distributed uniformly on 
the interval [q(l- 6), q(\ + 6)], where 6 6 [0,1], for each vector v E {0,1}^ 

The case when 6 = 0 corresponds to the fixed misclassification probability 
model, that is, when q(v) is equal to q for all vectors v E {0,1 j ' ' . The range of 
values for q(v) increases with 6, but the expected value of ^(v) is always equal 
to q. Therefore, the estimate of the maximum likelihood ratio based on the 
fixed q model is worse for larger values of 6. To compare this estimate to an 
unrestricted estimate, the inference process was simulated 200 times for each 
6 = 0, 0.5, and 1, holding constant n = 3 and the expected q = 0.2. Figure 8 
shows the average maximum likelihood ratio curves for the unrestricted model 
(dotted curves) and the fixed model (solid curves) when using the selection 
criterion max AX(v). 

The regular and the unrestricted maximum likelihood ratios both converge 
to 1, though at slower rates as 6 increases. In other words, the selection 
criterion max AX{v) is appropriate in situations where the misclassification 
probability is not necessarily fixed. In general, the unrestricted maximum 
likelihood ratio is much smaller than the regular one. For the case when ^(v) 
is fixed at 0.2 (i.e., 6 = 0), the regular maximum likelihood ratio should be 
used, and when 6 > 0 it is an overestimate of the true maximum likelihood 
ratio. For the case when 6 = 1, the unrestricted maximum likelihood ratio 
should be used, and when 6 < 1 it may be an underestimate. The true likelihood 
ratio lies somewhere in between the two. 
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Figure 8. The Restricted and Regular Maximum Likelihood Ratios Simulated 
with Expected q = 0.2, and « = 3. 

SUMMARY AND DISCUSSION 

5.1 Summary of the Research Findings 

The recent focus on the computational complexity has come at the expense 
of a drastic increase in the query complexity for Problem 1. In fact, the more 
recent the inference algorithm is, the worse it performs in terms of the average 
query complexity. The subroutine, here referred to as FIND-BORDER, is the 
most commonly used in the recent literature (Gainanov, 1984; Valiant, 1984; 
Makino and Ibaraki, 1995; Boros et al, 1997), and its performance was by far 
the worst. Therefore, the framework for unbiased empirical comparison of 
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inference algorithms described in this chapter seems to be long overdue. 
Even though guaranteeing the minimum average number of queries is 

currently only computationally feasible for relatively few variables (i.e., up to 
5 or 6), the recursive algorithm used for Problem 1 revealed the non-intuitive 
nature of the optimal solutions. These solutions paved the way for the new 
selection criterion inin\K^-KQ\ . This criterion would probably not have been 
developed (due to its non-intuitive nature) without the consultation of the 
optimal solutions. 

The inference algorithm based on this selection criterion extends the 
feasible problem sizes to up to about 20 variables (which involves about 1 
million vectors) for Problem 1. When the number of variables exceeds 20, 
computing the selection criterion might become intractable, while Hansel's 
algorithm will most likely still perform the best on the average. When creating 
the chain partition used in Hansel (1966) and Sokolov (1982) becomes 
intractable, perhaps finding border vectors one at a time by using the 
subroutine FIND-BORDER is still computationally feasible. 

Problem 2 focused on the extension of the single monotone Boolean 
function inference problem to the inference of a pair of nested monotone 
Boolean functions. The benefits of this research are manyfold. First, it shows 
how the optimal and selection criterion approach to minimizing the average 
query complexity is extended to three different inference applications using a 
pair of nested monotone Boolean functions. The selection criteria seem to be 
good choices for the nested inference problem. They result in a slight increase 
in the average query complexity for the chain poset. For the poset {0,1}", they 
are optimal for ^ = 1, 2, 3 and are probably very close to optimal for n greater 
than 3. 

Second, it demonstrates how the nested monotone Boolean function model 
often is sufficient (i.e., a more complex model is not needed) and necessary 
(i.e., simpler models are not sufficient) for a wide variety of real world 
applications. Suppose a simpler model, such as a single monotone Boolean 
function, is used for these applications. At best, the simpler model will provide 
a poor approximation of the phenomenon under study. At worst, it will be 
unable to model the phenomenon. Suppose a more complex model, such as a 
pair of independent monotone Boolean functions, is used for these applications. 
Then, at the very least, the query complexity will increase. In addition, the 
inferred functions may lead to conflicting knowledge and are more likely to 
contain errors. 

Third, it quantifies the reduction in query complexity due to the nestedness 
assumption. The improvement due to the nestedness assumption is between 6% 
and 8% for larger chain posets (h > 50). This improvement is greater for 
smaller chain posets, reaching its maximum of 20% for /z = 2. In general, the 
average query complexity on the chain poset is 0(log(h)), so this improvement 
is not very significant. For the poset {0,1}", this improvement is a few percent 
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points for n> 8. This improvement decreases with the number of variables, 
reaching its maximum of 20% for w = 1. The average query complexity on the 
poset {0,1}" is exponential in n. This fact makes this improvement far more 
dramatic than for the chain poset. 

Fourth, it compares the efficiency of the three major types of oracles. The 
three-valued oracle provides the most significant restriction on the oracles. It 
causes up to 84% and 55%) increase in the average number of queries for the 
chain poset and the poset {0,1}", respectively. It is interesting to observe that 
the sequential oracles are just as efficient as the unrestricted oracles on the 
chain poset and for the poset {0,1}" for w up to 4. This implies that the pair of 
nested monotone Boolean functions defined on these posets can be inferred 
sequentially without losing optimality. For the poset {0,1}" with n> 1, the 
sequential oracle causes a significant increase in the average query complexity 
of 12-33%. 

The maximum likelihood ratio approach to modeling the inference process 
of Problem 3 yielded a number of benefits. It was demonstrated that an 
appropriately defined guided learner, such as maximizing the expected 
maximum likelihood ratio {max AA(v)) or randomly selecting inferred border 
vectors (v 6 LU(^) u UZ(/*)), allowed the maximum likelihood ratio to 
converge to 1, even when the misclassification probability was not fixed. This 
avoids the bias problems associated with the variance approach reported in 
Cohn (1996), and also observed with the selection criterion max(EQ(v) + Ei(v)) 
which is based on the number of errors. 

For complete reconstruction of monotone Boolean functions, the guided 
approach showed a dramatic reduction in the average number of queries over 
a passive learner. The simulations also indicated that this improvement grows 
at least exponentially as the number of variables n and the error rate q increase. 
Thus, defining an appropriate and efficient selection criterion is even more 
beneficial for large problems and applications with a high error rate. 

For large problems (i.e., n > 5), it may not be possible to compute the 
selection criterion max AX(v) since it takes exponential time (in the size of the 
query domain V) to do so. For such problems, queries can be selected randomly 
from the border vectors (v E LU(/*) u UZ(f^)). This only takes 0(F) time, and 
results in much fewer queries than completely random selection on the average. 

Hierarchical decomposition provides a way to address a large inference 
problem as a set of smaller independent inference problems. Even though it 
was not mentioned earlier, this decomposition is applicable to all three 
Problems 1, 2, and 3 where it can dramatically reduce the query complexity. 
Perhaps the greatest benefit of this decomposition is its simplified queries. This 
fact may not only improve the efficiency but also reduce the number of human 
errors, and hence increase the likelihood of inferring the correct function. 
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5.2 Significance of the Research Findings 

The single most important discovery described in this chapter is the near 
optimal selection criteria which take polynomial time to evaluate. This leads 
to the efficient inference of monotone Boolean functions. The significance of 
these criteria is further strengthened by the scope of real-life problems that can 
be modeled by using monotone Boolean functions. Even though only one (or 
a pair of nested) monotone Boolean function(s) defined on the set of Boolean 
vectors {0,1}" were studied here, the selection criterion approach to guiding the 
learner is appropriate for any monotone mapping V-* F, where the sets FcR" 
and F ciW are both finite. The query domain can be viewed as a finite poset by 
using the monotonicity constraints:/(v) </(w) iff v < w, for/= 1,2,..., r, and 
whatever the relationships between the functions are, such as the nestedness 
constraints:/i(v) >^(v) V v E F. The selection criteria can be evaluated for any 
such poset in order to pinpoint "smart" queries. 

Once the border vectors have been established for each monotone function, 
they can be used to classify new observations. In addition, they can be 
represented by a (set of) monotone Boolean function(s) defined on a set of 
Boolean variables. Representing the inferred knowledge in this intuitive 
manner is perhaps the most important aspect of this problem when human 
interaction is involved since people tend to make better use of knowledge they 
can easily interpret, understand, validate, and remember. 

The use of Boolean functions for analyzing fixed datasets has recently 
gained a momentum due their simple representation of intuitive knowledge. 
See Triantaphyllou and Soyster (1996b), Boros et al (1995), Torvik et al 
(1999), and Yilmaz et al. (2003) for example. Boolean models are also 
becoming more popular because methods for solving their related hard logical 
optimization problems are emerging (e.g., Triantaphyllou (1994), Chandru and 
Hooker (1999), Hooker (2000), and Felici and Truemper (2002)). Some initial 
studies on guided inference of Boolean functions from fixed datasets are 
provided in Triantaphyllou and Soyster (1996a) and Nieto-Sanchez et al 
(2002). 

The narrow vicinity hypothesis proposed by Kovalerchuk et al (2000a) 
suggests that the use of the monotonicity assumption is often necessary and 
sufficient. As such, it can greatly improve upon knowledge representations that 
are too simple or too complex. This chapter demonstrated that the problem of 
guided inference in the presence of monotonicity can be of great benefit in a 
wide variety of important real-life applications. 
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5.3 Future Research Directions 

As mentioned in section 5.2 the selection criterion approach to learning 
monotone Boolean functions defined on {0,1}" is applicable in the much more 
general monotone setting: V -^ F, where the sets V c]R" and F czW are both 
finite. The monotone mapping V-* F, where the set Vc^-W" is infinite and the 
set F cM"̂  is finite, forms another intriguing problem. It is well known that 
binary search is optimal when the query domain Fis a bounded subset of the 
real line, and F = {0,1}. However, when the set Fis multidimensional and 
infinite (e.g., V = [a, bf), pinpointing the optimal queries is a much more 
complex problem. The selection criterion min \Ki - KQ\ can be modified to 
accommodate this case too. Let C/denote the unclassified set (i.e., a subset of 
V) and let the parameters KQ(V) and ̂ i(v) now denote the size of the subsets {w 
G U:w <v} and {w G U:v <w}, respectively. For example, K^v) is measured 
in terms of distance, area, volume, etc. when « = 1,2,3, etc., respectively. The 
selection criterion min \K^ - ^ol is then optimal for « = 1. How well this 
criterion performs when n> 1, is an open question. 

For the problems considered in this chapter, the selection criteria attempt 
to minimize the average query costs. This objective is based on certain 
assumptions of the query costs (fixed cost of querying an oracle in Problems 
1,2, and 3, and highly disproportionate or equal query costs for the two oracles 
in Problems 2.1 and 2.3, respectively). It would be interesting to see how the 
dialogue with the oracle(s) changes as these assumptions are modified. When 
dealing with two oracles, it may be that the cost of querying the first oracle 
may be less than, yet of similar magnitude as, the cost of querying the second 
oracle. In this case, the first few queries should be directed at the first oracle. 
After a few queries it may be cost beneficial to begin alternating between the 
two oracles. It could also be that the order of the queries has an effect on the 
total inference cost. In some applications, additional properties may be known 
about the underlying function. Some applications may put a limit on the 
number of lower units, shifting the focus of the optimal vertices from the 
vertical center to the vertical edge of the poset. It may be that the underlying 
function belongs to a subclass of monotone Boolean functions, such as 
threshold functions, 2-monotonic functions, etc. 

6. CONCLUDING REMARKS 

The methodologies presented in this chapter provide a framework for 
solving diverse and potentially very important real-life problems that can be 
modeled as guided inference problems in the presence of monotonicity. The 
benefits of these methodologies were shown to be dramatic for the specific 
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studied here. However, these research findings are just the tip of the iceberg. 
The interested reader is referred to Torvik and Triantaphyllou (2002, 2003, 
2004) for further details on the methodology for Problems 1, 2, and 3, 
respectively. 
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Abstract: This chapter describes a method for learning logic formulas that cor
rectly classify the records of a given data set consisting of two classes. 
The method derives from given training data certain minimum cost 
satisfiability problems, solves these problems, and deduces from the so
lutions the desired logic formulas. There are at least two ways in which 
the results may be employed. First, one may use the logic formulas 
directly as rules in application programs. Second, one may construct 
vote-based rules, where the formulas produce votes and where the votes 
are combined to a vote-total. The latter approach allows for assessment 
and even control of prediction errors, as follows: Once the method has 
produced the logic formulas, it computes from the training data esti
mated distributions for the vote-totals without use of any additional 
data. Prom these distributions the method estimates probabilities for 
prediction errors. That information supports assessment and control 
of errors. Uses of the method include data mining, knowledge acquisi
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recognition systems.Computational tests indicate that the method is 
fast and effective. 
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1. INTRODUCTION 

The human brain has an astonishing capacity for extracting salient features 
from masses of data, in particular, for identifying differences that separate one 
set of data from a second set of data. Much research has been done toward 
duplicating such capability on computers, known in the literature as supervised 
learning or learning from examples. 

A general approach to learning problems represents the objects to be recog
nized by vectors in some geometric space. Here the separation of the data into 
sets or classes is obtained by separating surfaces; mathematical programming 
techniques are often used with the objective of minimizing some measure of the 
error in the separation ([Freed and Glover, 1981, 1986], [Mangasarian et al., 
1990], [Mangasarian and Wolberg, 1990], [Mangasarian, 1993], [Bennett and 
Mangasarian, 1995], [Bradley et al., 1999]). 

In this chapter we focus on a particular type of learning problems that are 
expressed in logic domains, also referred to as problems of inductive inference 
[Chandru and Hooker, 1999]. In such learning, the objects to be recognized are 
described by the presence or absence of certain features; the learning method 
uses logic formulas to express separations among groups of data, and is intended 
to learn logic relations connecting features with classes. Theoretical and prac
tical interest in this type of learning is extensively discussed in [Muggleton, 
1999]. 

The literature describes several methods that address learning in logic do
mains. Some of these methods solve the problem via some other combinatorial 
problem or technique ([Crama et al., 1988], [Kamath et al., 1992], [Trianta-
phyllou et al., 1994], [Fehci, 1995], [Boros et al., 1996], [Triantaphyllou and 
Soyster, 1996], [Makino et a l , 1997], and [Boros et al., 1999]). Other methods 
rely on special algorithms for the logic separation problem ([Breiman et al., 
1984], [Valiant, 1985], [Shavlik et al., 1991], [Thrun et a l , 1991], [Cohen, 1995], 
[Golea, 1995], [Bhargava, 1999]). The learning problem in the logic domain can 
also be formulated as a neural network computation problem, as described in 
[Nelson and Illingworth, 1990], [Domany et al., 1991], [Hertz at al., 1991]. 

This chapter provides a comprehensive description of the logic domain method 
of [Felici and Truemper, 2002]. The method has been used in diverse appli
cations; see, for example, "Learning to Find Context-Based Spelling Errors" 
included in this volume, or [Di Giacomo et al., 2001]. The input for the method 
consists of {0,±1} vectors of two sets A and B. We call the {0,±1} vectors 
records of logic data. A 1 in a record means that a certain Boolean variable, 
say ic;, has the value True^ a - 1 means that w has the value False, and a 0 
depicts the situation where the True/False value for w is not known. 

The method deduces {0,±1} vectors that may be used to decide for each 
record whether it belongs to A or B. Since the {0, ±1} vectors essentially 
separate the records of A from those of ^ , we call them separating vectors. 
Collectively, the separating vectors constitute a separating set. One may derive 
from any separating set an equivalent logic formula that uses the {0, ±1} values 
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of a record to compute a True/False value that decides membership in A or JB. 
The separating sets are determined in an iterative scheme. In each iteration, 

two logic minimization problems are solved to obtain one separating vector. 
The solution algorithms for the minimization problems are created with the 
Leibniz System (see [Leibniz System, 2000]). 

Our approach is related to prior work by [Kamath et al., 1992] and [Tri-
antaphyllou et al., 1994]. These references assume that the given logic data 
are complete in the sense that, in our notation, they do not contain Os. When 
our problem formulation is simplified to that special case, it becomes similar 
to those of the two references. However, the solution methods of the references 
are quite different from ours. 

Specifically, [Kamath et al., 1992] require an a priori estimate of the num
ber of separating vectors, then formulate one logic satisfiability problem and 
solve it via an interior point method of linear programming to get the desired 
separating set. The problem size can grow substantially as the number of sepa
rating vectors increases. [Triantaphyllou et al., 1994] use the iterative approach 
employed here, but in each iteration solve just one satisfiability problem where 
the number of satisfied clauses is to be maximized, using a branch and bound 
method. We solve that problem as well, reformulated here as a logic mini
mization problem. The latter problem assures that the separating sets have 
a minimum number of nonzeros. We also solve a second minimization prob
lem that produces as many nonzeros in the separating sets as possible. The 
two types of separating sets correspond to logic formulas with minimum and 
maximum number of literals respectively. 

The results of the steps described so far are not symmetric in A and B, That 
is, if A is relabeled as B and conversely, then in general two different separating 
sets are produced. Thus, a total of four separating sets can be constructed from 
two given sets that are to be separated. We use such elaborate computations 
for the following reason. The sets A and B almost always are randomly chosen 
subsets of two populations A and 6, respectively. In that setting, A and B 
are training sets, and the separating vectors are used to predict membership 
in the populations A and B and not just in the training sets A and B. Ideally, 
one would desire completely accurate predictions. Of course, generally this is 
not possible, so instead we want predictions that involve errors in a controlled 
fashion. The four separating sets allow such control in a limited way. That 
is, two of the four separating sets tend to make few errors when predicting 
membership in A, while the remaining two separations do so for B. 

So far, we have covered the basic approach, which provides for a modest 
amount of error control . Next, we embed that approach into a more elaborate 
scheme that applies the basic approach to ten subset pairs A and B taken from 
A and B, respectively. The scheme thus produces 4 • 10 = 40 separating sets, 
each of which effectively produces a vote for membership in A or B. We view 
the vote to be -j-1 or - 1 . A +1 (resp. —1) vote predicts membership in A (resp. 
B). Define the vote-total to be the sum of the 40 votes. 

The scheme is so structured that the vote-total for any record of A (resp. B) 



196 Data Mining &; Knowledge Discovery Based on Rule Induction 

is always positive (resp. negative). Thus, the scheme correctly predicts mem
bership for all records of A and B. Of course, that conclusion generally does not 
extend to the populations A and B. To estimate the accuracy of predictions for 
the latter sets, the scheme re-uses the training data and estimates conditional 
probability distributions for the vote-total on A and B. Prom these estimated 
distributions, the scheme estimates probabilities that are useful for error con
trol. We emphasize that the calculations of the estimated distributions require 
just the training data and no additional data. This aspect is important when 
it is too costly or even impossible to obtain records of A and B beyond the 
given training data A and B, 

There are at least two ways in which the results may be employed. First, one 
may express the separating sets as logic formulas, which are then used directly 
as rules in application programs. Second, one may construct rules using the 
vote-totals and certain thresholds. An example rule is: If the vote-total is 
greater that a specified threshold value, then the given record is estimated to 
be in A. These rules can then be used in application programs. 

How well does the scheme work? In extensive tests, it has been shown that 
the scheme is as accurate as the best prior methods. Without exception, those 
methods do not handle the case of unknown entries of records, require some 
manual preparation or selection of parameters, and do not estimate errors by 
just using the training data. In contrast, the scheme described here processes 
records with missing entries, does not require setting of parameters, tuning 
for data structure, or manual adjustment of data sets. The scheme also pro
duces accurate estimates of the related probability distributions without use of 
additional data. 

The chapter is organized as follows. Section 2 states some basic definitions, 
introduces the main ideas, and treats a simple example. Section 3 develops the 
iterative scheme for finding a separating set and the equivalent logic formula. 
Sections 4 and 5 describe the implementation of the method using the Leibniz 
System. In Section 6, the given logic data are viewed as training data, and the 
resulting logic formula is used to predict outcomes for additional logic data. 
We show that one may specify objective functions for the logic minimization 
problems so that the resulting logic formula tends to minimize errors in a 
desired direction. Section 7 introduces a much more elaborate method for 
controlling errors. The method computes a number of separation sets each of 
which generates one vote for membership in 4̂ or S. Decisions are based on 
the sum of the votes. We call that sum the vote-total Section 8 estimates 
probability distributions for the vote-total and establishes probabilities useful 
for error control. Section 9 discusses the results computed with our method for 
several learning problems. These results show that our method is a versatile, 
precise, and computationally efficient learning tool. Section 10 summarizes the 
main results of the chapter. 
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2. LOGIC DATA AND SEPARATING SET 

We use basic concepts of prepositional logic such as Boolean variable, Boolean 
formulas and their satisfiability, conjunctive normal form system (CNF), dis
junctive normal form system (DNF), satisfiability problem (SAT), and mini
mum cost satisfiability problem (MINSAT). We omit for brevity the definitions 
of these concepts, which can be found in logic textbooks; see, for example, 
[Chandru and Hooker, 1999], or [Truemper, 1998]. 

We introduce a simple extension. An extended (tertiary) logic variable v may 
take on the value True, False, or 0. We interpret the three possible values as 
our state of knowledge about a Boolean variable, say w. That is, v = True 
(resp. V = False) means that we know that w has the value True (resp. False). 
The case v = 0 depicts the situation where we do not know the True/False 
value of w. 

We expand the customary evaluation of logic formulas to extended logic 
variables. For each variable v with value 0 that appears in a given logic formula, 
we replace each occurrence of v or -^v in the formula by False, and then evaluate 
it in the usual way. For example, a conjunction has the value True if all terms 
have the value True, and has the value False if there is at least one term with 
the value False or 0. 

2.1 Logic Data 

We define logic data to be vectors r G {0,±1}"^. We call such vectors records 
to differentiate them from other vectors introduced later. 

In a slight abuse of notation, we associate with each record r three index 
sets r'^,r~, and r^, containing the indices i for which the elements r̂  are equal 
to 1, - 1 , and 0, respectively. Evidently, the three sets are disjoint, and their 
union is the index set of the elements of r, which is {1 ,2 , . . . , n} . We associate 
a True/False outcome with each record of given logic data. The outcome is 
considered to be the value of a Boolean variable t. The case t = True (resp. 
t = False) typically indicates presence/absence of a certain property. We collect 
the records r for which the property t is absent in a set A, and those for which t 
is present in a set B. For ease of recognition, we usually denote a member of A 
by a, and of B by b. Analogously to the sets r'^,r~, and r^ for r, we define sets 
a+, a~, and a^ for a, and 6+, b~, and b^ for b. For example, a'^ = {i\ai = 1}. 

The records r may be produced by different situations and encodings in 
logic variables; we sketch below the most straightforward case. Suppose that 
we have extended logic variables vi, f2,. • •, Vn, and that we collect in vectors 
of length n True/False/^ values for these variables. We convert these vectors 
to records r by replacing True by 1, and False by —1. The Os are not changed. 
We introduce an example situation that makes use of the above concepts. 

Let the universe of discourse be the collection of creatures living on earth. 
We use the extended logic variables walks, swims, speaks, and the property 
t = human. Suppose we observe a cat, and note that the animal walks, does 
not speak, and is not human. Assume that we do not know whether the cat 
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can swim. We encode our knowledge about that cat by the record (1,0, - 1 ) , 
where the 1 encodes the fact that the cat can walk; the 0 that we do not know 
whether that particular cat can swim; and the —1 that it cannot speak. Since 
the cat is not human, we declare the record (1,0, —1) to be in set A. Suppose 
observations about two other animals result in additional records ( 1 , - 1 , - 1 ) 
and (1,1, —1) for A. Assume we observe three human beings, and summarize 
our observations in B = {(1,1,1), (1,0,1), (1, - 1 , 1 ) } . For example, the third 
record of B may result from us seeing a person who can walk, cannot swim, 
and can speak. At this point, we have 

A = { ( 1 , 0 , - 1 ) , ( 1 , - 1 , - 1 ) , ( 1 , 1 , - 1 ) } (1) 

and 
B = {(1,1,1), (1,0,1), (1 , -1 ,1)} (2) 

2.2 Separating Set 

We want to differentiate the records of a given set B from the records of a given 
set A, by using a set 5 of {0, ±1} vectors. Such a separation makes sense only 
if both A and B are nonempty, and if each record of ^ or ^ contains at least 
one {±1} entry. Hence, from now on we always assume this to be the case. 
Next, we introduce some definitions. 

A {0,±1} vector / is nested in a {0, ±1} vector g if for any entry fi of / 
equal to 1 or - 1 , the corresponding entry gi of g satisfies gi = f^. By this 
definition, / is not nested in g if and only if there is some fi = ±lo{f for 
which gi = —fi or gi = 0. Let A and B be sets of {0, ±1} records of the same 
length, say n > 1. For any b E B, a, vector s G {0, ±1}^ separates b from A if 

s is not nested in any a £ A (3) 

and 
s is nested in b (4) 

As an example case, let b be the vector (1,1,1) of B of (2). Then the vector 
s = (0,0,1) separates b from all a G ̂  of definition (1) since the only nonzero 
entry of 5, which is 53 = 1, corresponds to 63 = 1, and since, for all a e A, 
as = —1. Indeed, s = (0,0,1) separates each b E B oi definition (2) from all 
a G ̂  of definition (1). 

One could consider other separation conditions. A seemingly appealing ver
sion is as follows. One replaces the condition (3) by the condition that, for 
each a e A, there is an index i for which ai and Si are nonzero and have op
posite sign. That condition is more demanding than (3) and thus may rule 
out the existence of a separating vector where (3) allows for one. For example, 
the revised condition does not admit a separating vector for a — (1,0) and 
b = (0 , -1) , while (3) allows for the separating vector s = (0 , -1) . For this 
reason, we prefer (3). 

Since A is nonempty, condition (3) implies that s is nonzero. A set S of 
{0, ±1} vectors separates B from A, for short, is a separating set^ if each s £ S 
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satisfies (3), and if, for each b E B, there is at least an s G 5 that satisfies (4). 
We have seen that s = (0,0,1) separates each b e B of definition (2) from all 
a G A of definition (1). Thus, the set S = {(0,0,1)} separates B from A. 

We establish necessary and sufl^icient conditions for the existence of separat
ing sets. 

Theorem 2.1. Let A and B be sets of {0,±1} records of the same length. 
Then a separating set S exists if and only if no record b E B is nested in any 
record a e A. 

Proof: For the proof of the "if" part, suppose that no & G ^ is nested in any 
a ^ A. Take S = B. Any vector s G 5 equal to a vector 6 G J5 is nested in 
that 6, and is not nested in any a E A. Thus, such s satisfies (3) and (4), and 
separates b from A, and 5 is a separating set. 

We prove the "only if" part by contradiction. Suppose that a separating set 
S is at hand, and that there exist a E A and b E B such that b is nested in a. 
The set S contains an s that separates b from A, so by (4), s is nested in b. 
The latter fact and the assumption that b is nested in a imply that s is nested 
in a, which contradicts (3). • 

Note that conditions (3) and (4) for the existence of a separating set admit 
the case where a record a E A is nested in a record b E B. The separating 
sets introduced later are to separate B from A oi A from B. Indeed, for some 
subsets A C A and B C B^ we will determine separating sets that separate B 
from Aov A from B. By Theorem 2.1, all such separating sets exist if and only 
if no record of one of the two sets A and B is nested in any record of the other 
set. Thus, one would like to impose the latter condition on A and B. There is 
good reason for invoking that condition, as follows. 

Suppose a record a e A is nested in a record b E B. Then the information 
encoded in record a, by itself, cannot be sufficient to establish membership in A. 
Indeed, the record 6, which by the nestedness of a in 6 contains all information 
of a, is in B and not in A. Accordingly, we do not want to use that a e A 
when we learn distinguishing characteristics that tell A from B. 

These considerations motivate the following definition. Training sets A and 
B are consistent if no record of one of the two sets is nested in any record of the 
other set. For example, the example sets A and B of (1) and (2) are consistent. 
Evidently, consistency of A and B implies that, for any A C A and B C B, A 
and B are consistent as well. Accordingly, any such A can be separated from 
B and vice versa. We emphasize that consistency of A and B does not rule out 
nestedness of records within A or within B. 

We interpret the notion of separating set in terms of extended logic variables 
vi, 1̂25 •• -J ^n- Suppose A and B are sets of records of length n > 1, and S 
is the corresponding separating set. For each vector s e S, define the index 
sets 5+, s~, and s^ analogously to the earlier definition of r~ ,̂ r~, and r^. For 
example, 5"̂  = {i\si = 1}. Derive from S the DNF system 

\/i/\viA /\-^Vi) (5) 
ses ies+ ies-
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Since each 5 € 5 is nonzero, each DNF clause of (5) is nonempty. 
The next theorem links membership in ^ or ^ with True/False values of the 

DNF system (5). 

Theorem 2.2. Let r be a record that is equal to some a e A or b e B. For 
i = 1, 2 , . . . , n, define 

{ True if Tj = 1 
False if rj = - 1 (6) 

0 if ri == 0 
If r = a, (resp. r = b), then these values of Vi, V2^ - --, Vn produce the value 

False (resp. True) for the DNF system of (5). 

Proof: Suppose r = a. Let s be any vector of 5. By condition (3), s is not 
nested in a. Thus, there exists an index A; for v^hich 5̂ ; = ±1 and either 
ak = —Sk or ak = 0. Define True/False/0 values for Vi, '̂2J • • .5 Vn using r = a 
in (6). Since Sk = ±1 and either a^ = —Sk or ak = 0, the value assigned to v^ 
forces the clause Azes+ ^̂  ̂  /\ies- "''̂ ^ ^^ ̂ ^^ DNF system (5) to have the value 
False. Since the above argument applies to each 5 G 5, the DNF system (5) 
must have the value False. 

Suppose r — b. Since 5 is a separating set, it contains a vector s that 
is nested in b. Thus, for each z, si = ±1 impHes bi = si. Hence, if we assign 
True/False/0 to each Vi using r = 6 in (6), then the clause Ai€s+ '̂ z A Aigs- ~''^i 
of (5) evaluates to True. Thus, the DNF system (5) has the value True. D 

Given a set 5* that separates a nonempty set B* C B from A and which 
does not separate any be (B-B*) from A, we can use the corresponding DNF 
formula to classify records. That DNF formula correctly classifies the records 
in AU B* and fails on those in B — B*. 

We return to the example sets A and B of (1) and (2). We have seen that 
the set S consisting of the single vector s — (0,0,1) separates B from A. 
Accordingly, the DNF system (5) consists of the single clause speaks^ which 
effectively says that a creature is human if and only if it does speak. Indeed, 
that DNF system has the value False (resp. True) when the True/False/0 value 
for the extended logic variable speaks is defined using any record r of A (resp. 
B) in (6). 

3. PROBLEM FORMULATION 

Let A and B be nonempty sets of {0, ±1} records of length n > 1. We decom
pose the problem of finding a separating set into a sequence of subproblems, 
each of which demands that we determine a vector s that separates a nonempty 
subset of B from A. For the moment, we focus on the subproblems. Later, we 
compose the solutions s of the subproblems to a separating set S. 
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3.1 Logic Variables 

For i = 1, 2 , . . . , n, we introduce Boolean variables pi and qi. We link these 
variables with the elements Si of the vector s to be found, by declaring Si = 1 
ii Pi = True and qi = False, si = —1 ii Pi = False and qi = True, and 5̂  = 0 
ii Pi = qi = False. We have no interpretation for the case pi = qi = True, and 
rule it out by enforcing 

-^Pi^-^Qu i = 1, 2 , , . , , n (7) 

3.2 Separation Conditions for Records in A 

Condition (3) requires that s is not nested in any a ^ A, Hence, for each a G A, 
there must be an index i such that 5̂  = ±1 and either â  = — 5j or â  = 0. We 
expand that condition for that index i to as follows: â  = 1 implies Si = —1; 
ai = -1 implies ŝ  = 1; and â  = 0 implies Si = 1 ov Si = -1, In terms of our 
encoding of Si by pi and qi, the condition becomes: â  = 1 implies -^Pi A qi] 
ai = -1 implies pi A -^qi; and â  = 0 implies {->pi Aqi)\/ (pi A -^qi). 

Since (7) requires -np̂  V -^qi, we can simplify the condition to: ai = 1 implies 
qi] ai = —1 implies pi; and â  = 0 implies Pi\/ qi. 

For each a £ A, the latter condition must hold for at least one i, so we can 
summarize condition (3) by the following disjunctions: 

( V ^̂ ) ^ ( V ^̂ ) f̂ ^ all a G A (8) 

3.3 Separation Conditions for Records in B 

Let b be any record of B. By (4), if s separates b from A, then s is nested in 
b, that is, for all i, Si = ±1 implies bi = Si. An equivalent condition holding 
for all i is: bi = 1 implies Si ^ —1] bi = —1 implies Si ^ 1; and 6̂  = 0 implies 
Si = 0. In terms of pi and qi, the condition is: bi = 1 implies -i^^; bi = -1 
implies -ip^; and bi = 0 implies -^pi A -^qi. 

We introduce a Boolean variable dt that determines whether s must separate 
b from A. That is, d̂ , = True means that s need not separate b from A, while 
db = False requires that separation. For the given b e B, the separation 
condition is therefore: for all z G 6"̂ , -^qi V dt; for all i e b~, -^pi V df, and for 
all i e b^, {-^Pi A -i^i) V db' Using the distributive law, we get 

-^qi V db for all i G (6+ U 6°) 
-ypi V 4 for all i G (&" U 6 )̂ (9) 

Note that (9) with db = False for at least one record b e B implies (7). 
As we shall see, this fact allows us to omit (7) from the MINSAT problems 
introduced below. 
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3.4 Selecting a Largest Subset 

Suppose we want a vector s that separates as many b e B from A as possible. 
Equivalently, we want a satisfying solution for (7)-(9) that assigns the value 
True to as few variables dt as possible. For each b e B, define a cost function 
Cb{db) that is equal to 1 if d^ is True, and equal to 0 otherwise. Using these 
cost functions and (8) and (9), but omitting (7), the desired s may be found 
by solving the following MINSAT problem, with variables d^ for b e B, and pi 
and Qi for i == 1, 2 , . . . , n. 

inin EteB^bidb) 
(a-UaO)Pi) f̂ ^ all a G A 

^Qi V dt for all be B, for all i G {b+ U & )̂ 
^Pi V 4 for all be B, for all z G (6~ U &°) 

(10) 

We argue that (7) is not needed. Suppose we have a solution for (10). Define 
B' = {be B\db = False}. If B' is empty, then the addition of (7) to (10) would 
not change the conclusion that no vector of b can be separated from A. If B' is 
nonempty, then for each b e B' we have dt = False, and (7) holds due to (9). 

The next theorem characterizes the situation when B' is nonempty. 

Theorem 3.1. The following statements are equivalent. 

(i) B' is nonempty. 

(ii) There exists a vector s that separates some b e B from A. 

(lii) There exists an element b e B that is not nested in any a e A. 

Proof: (i)=:^(ii): The vector s' implied by the True/False solution values of the 
Pi and Qi of (10) separates every b e B' from A. 
(ii) ̂  (iii) =^ (i): Use Theorem 2.1. D 

Suppose A and B are consistent. Since no vector b e B \s nested in any 
a e A, Theorem 3.1 assures that B' is nonempty. Thus, the {0, ±1} vector s' 
derived from the solution of (10) may be one of many vectors that separate B' 
from A. Frequently, we have a preference among the possible choices. The issue 
of preference arises, for example, in situations where we want to use the vector 
to classify records that do not occur in A or B. We address that issue later, in 
Section 6. Here, we only observe that often we either want a separating vector 
with minimum number of nonzero entries, or want one with maximum number 
of nonzero entries. We say that a vector with the former (resp. latter) property 
has min (resp. max) support. 

Next, we formulate the problem of selecting the appropriate separating vector 
as another MINSAT problem. 
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3.5 Selecting a Separating Vector 

To identify a separating vector with the desired features, say s", we define, for 
i = 1, 2 , . . . , n, appropriate cost functions Cp.{pi) and Cq.{qi). For example, 
if we want s" to have min (resp. max) support, we demand that each cost 
function produces the value 1 (resp. 0) if the Boolean variable of its argument 
has the value True^ and to have the value 0 (resp. 1) otherwise. Once the cost 
functions have been established, we derive the desired s" from the solution 
of the following MINSAT problem, with variables pi and qi^ i — 1, 2 , . . . , 
n. Recall that the nonempty set B' is defined from the solution of (10) by 
B' = {be B\di, = False}. 

1i) V (Vie(a- uao) Pi) &! all a 6 A 
--^i for all b e B', for all i e {b+U 6°) 
-npi for all b € B', for all i € {b' U 6°) 

(11) 
Arguments almost identical to those validating (10) establish that (11) has a 

satisfying solution, and that any optimal solution of (11) defines a separating 
vector s" with the desired features. That is, s" separates B' from A, and is of 
the desired kind according the chosen cost functions. In the two example cases 
mentioned earlier, s" has min or max support. 

We note that, by proper manipulation and scaling of the objective function 
coefficients, one can trivially combine the two solution steps involving (10) and 
(11) into one single step. In our solution approach, we choose to solve (10) and 
(11) in two steps; that choice is based on computational results for our solution 
method. 

We use the above results in the following iterative algorithm for finding a 
separating set 5* that separates the largest possible subset B* of B from A. It 
takes as input the sets A and B of {0, ±1} records, and for i = 1, 2 , . . . , n, cost 
functions Cp. (pi) and c .̂ (qi). The output is the largest subset B* oi B that can 
be separated from A, and a set 5* that accomplishes that separation. If A and 
B are consistent, we know that B* = B. 

Program FIND SEPARATING SET: 

1. Initialize B* = S* = 0. 

2. Solve (10) to get a largest possible subset B' of B that can be separated 
from A. If B' — 0, output B* and 5*, and stop. 

3. Solve (11). Derive from the solution a separating vector s", and add it 
to 5*. Add the records of B' to JB*. Redefine B ^s B - B'^ and go to 
Step 2. 

The separating vector s" found in the first iteration through Steps 2 and 3 
separates a largest subset of the initial B from A^ and thus may be regarded 
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as the most significant explanation why the records B have the property t and 
those of A do not. Correspondingly, the second iteration produces the second 
most significant explanation given the choice of the first one, and so on. 

3.6 Simplification for 0/1 Records 

Suppose all records of A and B contain no - I s , and thus are {0,1} vectors. This 
case may arise when for each extended logic variable Vi, we either know that 
the corresponding variable Wi has value True^ or do not know the True/False of 
Wi and permit the outcome of the record to change if the value for Wi becomes 
known. We emphasize that this situation is different from the case where all 
records are { i l } vectors. 

We reduce (10) and (11) using the following observations. For any a e A and 
6 G J5, a - = 6- = 0, which implies a" U a° = a^ and 6+ U 6̂  = {1 ,2 , . . . , n} . 
Assuming that at least one element in B can be separated from the elements 
in A, any optimal solution assigns the value False to at least one variable df,. 
For such a d ,̂ the clauses -^qi V dt with i G (&"̂  U b^) force g'l, ^2, • •., ^n to have 
the value False. Hence, we can eliminate gi, 2̂? • • •, Qn from (10), and get the 
following reduced problem. 

inin J2teB^b{db) 
^ieaoPi for all aG A (12) 
-^Pi V db for all be B, for all i G 6° 

Analogously, the MINSAT problem (11) becomes 

Mi^^oPi for all aG A (13) 
-^Pi for all beB', for all i G 6° 

We use the solution of (13) to define s" as follows. For i = 1, 2 , . . . , n, sj' = 1 
\ipi =• True, and s'^ = 0 otherwise. 

4. IMPLEMENTATION OF SOLUTION ALGORITHM 

The MINSAT problems (10) and (11), as well as their simplified versions (12) 
and (13), are potentially difficult since the AfP-complete problem SET COVER 
(see [Garey and Johnson, 1979]) may be reduced to (12) and (13). We omit 
the trivial reductions. 

We solve the possibly difficult problems (10) and (11) as follows. Let A, B, 
and the cost functions Cp. {pi) and c .̂ (qi) he given. Note that the cost functions 
Cb{db) never vary. 

Consider the instance of (10) defined by the original B. It is easy to see 
that deletion of some clauses can reduce that instance to any instance of (10) 
encountered by Program FIND SEPARATING SET of Section 3.5. Indeed, 
the deletion involves clauses of the type -^qi V db and -^pi V db. Equivalently, 
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we could fix certain dt to True. Hence, any MINSAT instance of (10) may 
be derived from the instance of (10) defined by the original B by the fixing of 
some variables. For this reason, we call the latter instance a MINSAT master 
instance for (10). 

Suppose we delete from (11) all clauses of the form -yqi or -ip^, getting 

^i) V (ViG(a-UaO) Pi) ^OV all a € A ^ ^ 

Clearly, any MINSAT instance of (11) encountered by Program FIND SEPA
RATING SET may be derived from the MINSAT instance (14) by fixing some 
variables to False. Hence, we call (14) a MINSAT master instance for (11). 

We emphasize that the MINSAT master instances for (10) depend on A and 
B, and that the MINSAT master instances for (11) depend on A, B^ and the 
cost functions Cp.{pi) and Cq^{qi). 

We solve the MINSAT instances encountered in the iterative algorithm with 
the aid of the Leibniz System, which is a software system for Logic Program
ming, described in the next section. The mathematics underlying the Leibniz 
System is described in [Truemper, 1998]. 

5. LEIBNIZ SYSTEM 

The Leibniz System is an advanced tool for . Next, we describe its main 
features. Suppose one wants to solve a class of MINSAT instances where each 
class member is derived from a given MINSAT master instance by the fixing 
of some variables. One can direct the Leibniz System to construct a solution 
algorithm that can solve all instances of the class. The construction is based 
on an analysis of the structure of the MINSAT master instance that relies on 
various combinatorial methods. An analogous approach is used for any class 
of SAT instances where each class member is derived from a given SAT master 
instance by the fixing of some variables. That is, the Leibniz System analyzes 
the structure of the SAT master instance, and based on that insight constructs 
a solution algorithm that can solve all instances of the class. 

The Leibniz System also establishes a performance guarantee for the MIN
SAT or SAT solution algorithm, in the form of an upper time bound on the 
run time required for solving any one of the instances of the class. In the 
MINSAT case, the time bound is used by the system as follows. If the time 
bound exceeds a user specified value, the Leibniz System considers the solution 
algorithm to be too slow, and instead creates a solution algorithm that carries 
out approximate instead of exact minimization for the instances. 

The iterative method adopted here may be viewed as a greedy algorithm that 
produces a separating set of small cardinality. Of course, the set 5* found may 
not have minimum cardinality. Clearly, if exact minimization is carried out and 
S* consists of one or two vectors, then that set does have minimum cardinality. 
It turns our that the conclusion remains valid if approximate minimization is 
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used, due to the way that process is done via linear programming and a certain 
rounding method. 

Once more suppose that exact minimization is used. If the separating vector 
found in the first iteration separates k vectors of B from A, and if B has m 
vectors in total, then [ y ] is a lower bound on the number of vectors required 
to separate B from A. [Triantaphyllou and Soyster, 1996] go beyond these 
elementary considerations and develop substantially tighter lower bounds on 
the minimum cardinality of separating sets. 

The Leibniz System handles SAT or MINSAT problems with up to 10,000 
variables and 10,000 clauses. That range has been ample for solving (11) in 
Step 3 of Program FIND SEPARATING SET of Section 3.5 for the practical 
problems we have processed so far. But that range has not been sufficient for 
solving some instances of (10) in Step 2 of Program FIND SEPARATING SET. 
The reason is that in (10), each entry of each record of B creates at least one 
clause. For example, a B with 300 records having 60 entries each creates at 
least 18,000 clauses, which exceeds the Leibniz System limit. We describe a 
simple way to overcome that difficulty. 

We compile with the Leibniz System an algorithm for the SAT problem 

(Vie(a+UaO) (li) V (Vi6(a-UaO) Pi) ^ ^ all a € A (15) 

and derive via a greedy method that fixes/unfixes the pi and qi variables, a 
maximal subset B' of B for which 

(Vi€(a+UaO) ^i) V (Vi€(a-UaO)Pi ) ^^r al l a E A 

-^qi for all b e B', for all z G (&+ U h^) 
^Pi for all b e B', for all i G (&~ U 6°) 

(16) 
has a solution. That B' is used in Step 3 of Program FIND SEPARATING SET. 
Of course, B' need not correspond to an optimal solution of (10). Nevertheless, 
one may easily verify that the modified Program FIND SEPARATING SET 
still finds a separating set 5* that separates the largest possible subset ^* of 
B from A. 

6. SIMPLE-MINDED CONTROL 
OF CLASSIFICATION ERRORS 

In almost all settings, one views the sets A and B as training sets and considers 
them to be randomly selected subsets of two sets A and B where A consists of 
all {0, ±1} records of length n without property ,̂ and B consists of all such 
records with property t. One then determines a set S that separates B from 
A^ and uses that set to guess whether a given {0, ±1} vector r of length n is in 
A or B. That is, we guess r to be in B if at least one 5 G 5 is nested in r, and 
to be in A otherwise. 

Of course, the classification of r based on S is correct if r is in A or 5 , but 
otherwise need not be correct. Specifically, we may guess a record of ^ - A to 
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be in B, and a record of S - j5 to be in A. Let us call an error of the first kind 
a type A error, and one of the second kind a type B error. 

The utility of S depends on which type of error is made how many times. 
In some settings, an error of one of the two types may be annoying, but may 
not be nearly as objectionable as an error of the other type. For example, a 
non-invasive diagnostic system for cancer that claims a case to be benign when 
a malignancy is present has failed badly. On the other hand, prediction of a 
malignancy for an actually benign case triggers additional tests, and thus is 
annoying but not nearly as objectionable as an error of the first type. 

We can influence the extent of type A errors versus type B errors by an ap
propriate choice of the objective function Yll^=:i [^vi iPi)'^^qi (Qi)] ^f ^^^ MINSAT 
problem (11). In connection with that problem, we have seen that a certain 
choice leads to a separating vector s" with min support, and that another 
choice produces an s" with max support. Specifically, the first choice defines 
the cost functions Cpi{pi) and Cq.{qi) to have value 1 (resp. 0) if the argument 
if True (resp. False). The second choice consists of the opposite rule. When 
each s" determined for S has min (resp. max) support, we say that S itself has 
min (resp. max) support. 

If we use a single vector s" to classify a vector r, then we guess r to be 
in B if s" is nested in r. The latter condition tends to become less stringent 
when the number of nonzero entries in s" is reduced. Hence, we heuristically 
guess that a solution vector s" with min support tends to avoid type B errors. 
Conversely, an s" with max support tends to avoid type A errors. We apply 
this heuristic argument to the separating set S produced under one of the two 
choices of objective functions for (11), and thus expect that a set 5 with min 
(resp. max) support tends to avoid type B (resp. ^4) errors. Computational 
results for various logic data sets have proved that heuristic argument to be 
valid. Section 9 includes details. 

The above control of errors is rather simple-minded since it does not allow the 
user to specify the level of accuracy with which vectors are to be classified. The 
subsequent sections introduce a much more elaborate control scheme that relies 
on several votes and that supports error control. We begin with a discussion 
of the construction of separations that are used for the votes. 

7. SEPARATIONS FOR VOTING PROCESS 

The basic idea is superficially similar to, but ultimately quite different from, the 
notion of the stacked generalization originally described in [Wolpert, 1992], (see 
also [Breiman, 1996a, 1996b]). In that setting, one constructs several classifiers 
from given training data. When an additional record is to be evaluated, one 
applies each one of the classifiers, computes a consensus of the results, and 
classifies the record accordingly. Here, we construct the classifiers as follows. 

We select an integer d > 5 and partition A into d nonempty subsets A^, 
^4^, . . . , A^ of essentially equal cardinality. We justify the bound d > 5 in 
Section 8. We use d = 10 in the implemented system, which is called Lsquare 
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(Learning Logic). The assignment of the records of ^ to the subsets ^^, A^, . . . , 
A^ is done randomly. But if A itself was selected randomly from X, it suffices 
that we assign records sequentially to the subsets. 

Let m be the smallest integer that is larger than d/2; thus, m — [(i/2j + 1 . For 
the moment, view 4^, A^, . . . , ^^ as a circular list. We use indices in agreement 
with that convention. In particular, A^^^ denotes the j-th. successor of A^. For 
z = 1, 2 , . . . , c?, we take the union of A^ and of the (m — 1) subsequent A^ and 
call that union Ai\ that is, Ai = U j i ^ " "̂̂ - Thus, we obtain Ai, A2 , . . . , Ad. 
Applying the analogous process to B, we obtain via B^, B ^ , . . . , B^ the sets 
Bi, ^ 2 , . . . , Bd, where Bi = [j^T~^ BK The derivation of Ai, A2 , . . . , Ad 
and Bi, B2,'. >, Bd from A and B is the type of process employed in stratified 
cross-validation; for example, see the book by [Efron, 1993]. However, we use 
m = [d/2\ + 1 instead of m = d — 1 of the cross-validation case. As we shall see 
in the next section, the different choice of m is crucial for the estimation of the 
probability distributions. For each {Ai, Bi), we compute four separating sets of 
{0, ±1} vectors using the basic scheme described in Section 3. We denote the 
four sets by Sj, Sf, Sf, and Sf. When 5 | declares a record r to be in A (resp. 
B), we say that 5j outputs a vote of 1 (resp. —1). Since i ranges from 1 to d, 
the entire collection of separating sets produces a total of 4 • d votes. We add 
them up to the vote-total, which thus is even and ranges from -4t - d to A - d. 

The vote-totals for the records of ^ — ^ (resp. B — B) may be considered 
as samples of a random variable Zj^ (resp. ZQ). We want to estimate the 
probability distributions of Z^ and ZB since such estimates allow prediction 
of the accuracy and reliability of the method. The next section shows how 
these distributions, as well as probabilities related to classification errors, can 
be estimated without use of any record beyond those of A and B. 

8. PROBABILITY DISTRIBUTION OF VOTE-TOTAL 

We present the results of this section in such a way that they may be used 
in other data mining tools. Accordingly, for i = 1, 2 , . . . , cJ, we define Ci to 
be any classification method that for any record r outputs the sum of e > 1 
votes as vote-count Let C be the collection of Ci, C2 , . . . , Cd- The sum of 
the vote-counts of the Ci is the vote-total produced by C. Since that vote-total 
essentially decides the classification, we permit a minor abuse of notation and 
let the just defined C also denote the classification method. Since each Ci 
produces e votes, the vote-total of C ranges from —d-eiod-e and is always 
odd or always even. The vote-totals of C for the records oi A- A (resp. B-B) 
are samples of the random variableZ^ (resp. Z5). Due to the symmetry, it 
suffices that we treat the case of Z^. 

Here, d essentially consists of the four separating sets S}, Sf, Sf, and Sf, 
and the vote-count is the sum of the four votes of those sets. Thus e = 4. Since 
we have d = 10, the vote-total ranges from -10 • 4 == -40 to 10 • 4 == 40 and is 
always even. 
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We need the notion of unseen records for any member d of C. That is, if a 
record k oi Ais not used in the training of C ,̂ then it is unseen for d. 

The computation of the estimated probability distribution for Z^ is suffi
ciently complicated that we have broken up the description into several steps, 
sometimes with substeps. 

First, we estimate the mean and variance of Zj^. For this, we view the vote-
counts of Ci on the records of A unseen for Ci as samples of a random variable 
Xi. Estimation of the mean of Zj, is then straightforward. The estimation 
of the variance of Zj^ relies on several substeps where covariance results are 
obtained for the Xi. 

Second, we define random variables Yi, each of which is the sum of several 
Xi, and estimate probability distributions for the Yi. 

Third, we define a random variable Y to be the average of the Yi. Prom 
the estimated probability distributions of the F^, we estimate the probability 
distribution of Y using a certain hypothesis. Computational results included 
in Section 4 lend strong experimental support to that hypothesis. 

Fourth, we derive from the estimated probability distribution for Y an esti
mated probability distribution for Zj^. 

Due to the symmetry, the same approach produces an estimated probability 
distribution for ZB- Suppose both estimated distributions have been computed. 
Standard techniques produce estimated probabilities related to classification 
errors. For completeness, we include the relevant formulas in a fifth step, 
where we also discuss an example case. 

We begin with the first step, where the mean and variance of Zj, are esti
mated. 

8.1 Mean and Variance for Zj\ 

We denote the vote-count of Ci for one of its unseen records k by xi^k- Let Xi 
be the random variable representing the vote-count of Ci for records of A that 
are unseen for d. 

Mean and Variance for Xi 

Since the proper subset Ai of A was used in the training of C ,̂ the records k of 
Ai = A-Ai are precisely the unseen records of A for C ,̂ and the corresponding 
vote-counts Xi^k are sample values for Xi that may be used to estimate via 
standard formulas the mean and variance of Xi as 

Ax. = [l/\Ai\] J2 ^i,k (17) 
k€Ai 

a%=[l]{\Ai\-l)]Y^[xi,k-{ix,f (18) 

respectively. 

Mean for Zj, 



210 Data Mining Sz Knowledge Discovery Based on Rule Induction 

Since Z^ is the vote-total of C and thus is the sum of the vote-counts of the 
Ci, we have 

ZA = J2^i (19) 

Hence, the mean value for Z^ is estimated by 

d 

= T.f^^i (20) 

covariance Matrix for the Xi 

The variance of Zj[ is the sum of the entries of the covariance matrix for Xi, 
X 2 , . . . , Xd' We estimate the entries of that matrix as follows. For the diagonal 
entries of that matrix, which are the variances, we already have the estimates 
from (18). To estimate the other entries of the matrix, we note that, for i ^ j , 
the set Aij = Aid Aj is the set of records that are unseen for both Ci and Cj. 
We proceed depending on whether A^j is nonempty. The details for the two 
subcases are as follows. 

Subcase 1: Aij nonempty 

We estimate the covariance of Xi and Xj as 

^XiXj = [l/|^zj|] J2 [̂ '̂̂  ~ P'Xi][Xj,k - AxJ (21) 

We address a minor point concerning the denominator \Aij\ of (21). Except 
for that denominator, (21) is the standard formula for unbiased estimation of 
the covariance. The denominator should be \Aij\ — 1 if jiXi and jlx^ were 
computed using just the records of Aij. But here we estimate fixi and jiXj 
using the sets Ai and Aj, respectively, which properly contain Aij. We are not 
aware of results covering that situation, and have chosen the denominator 1̂ ^̂  |, 
which seems more appropriate than \Aij\ — 1. At any rate, the cardinalities of 
Aij occurring in practical applications are usually large enough that the two 
choices produce very similar estimates. 

Subcase 2: Aij empty 

Compared with the number of covariance values that are computed under Sub
case 1, the number of values to be estimated here is not large unless d is 
small. Indeed, it is easily checked that the ratio of the number of covariance 
values estimated via (21) divided by the total number of covariance values is 
2{d — m — l)/{d — 1), which, for example, is 2/3 for d — 10, and which rapidly 
approaches 1 as d increases. On the other hand, that ratio is 0 for 0? = 4 and 
1/2 for d = 5, which justifies the condition d>b introduced in Section 7. 
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One can expect that Xi and Xj with empty Aij are highly and positively 
correlated if the training subsets Ai and Aj from which Ci and Cj were pro
duced have a relatively large intersection Ai n Aj. Based on that observation, 
we estimate the remaining covariance values via a linear function of the form 
a-lAiOAjl + b. We use ridge regression [Hoerl and Kennard, 1970a, 1970b] and 
the aXiXj values computed via (21) to determine a and b. As just observed, 
increasing values of |Aj D Aj\, which reflect a larger common subset of training 
data for d and Cj, should produce a larger covariance estimate. Accordingly, 
we would want the coefficient a of the linear function to be nonnegative. If ridge 
regression produces such a coefficient a, then for each empty Aij we use the 
cited linear function to estimate the covariance of Xi and Xj. If the coefficient 
a produced by ridge regression is negative, as we have observed occasionally, 
then the linear function is not appropriate. In that case, we force a to be 0. 
This effectively means that we average all &XiXj values obtained via (21) to 
obtain the estimated covariance for all Xi and Xj with empty Aij. 

We are ready to estimate the variance of Z^. 

Variance of Z^ 

At this point, we have estimates of the variances aj^. and the covariances aXiXj 
that make up the covariance matrix of Xi , X 2 , . . . , X^. The sum of these entries 
is an estimate of the variance a%^ of Zj[. That is, 

d 

^L=E^x<+2-E^^<^.- (22) 

We turn to the second step, where we define random variables Yi and estimate 
their distributions. 

8.2 Random Variables Yi 

When d is not small, say when d > 10, then one may be tempted to guess 
that Z^, which is the sum of the d random variables Xi, X 2 , . . . , X^, has a 
distribution that can be approximated by the normal distribution. But exam
ination of a few test examples quickly dispels that notion. So we discard that 
untenable assumption and obtain a reasonable approximation via some other 
sample distributions, as follows. 

In Section 7, we viewed ^^, ^ ^ , . . . , A^ as a circular list. We now do this 
for Ai, 'A2,..., 'Ad, for Ci, C 2 , . . . , Cd, and for Xi, X 2 , . . . , X^ as well. As 
before, we use indices in agreement with this definition. In particular, A^~^ 
is the immediate predecessor of A\ and Xi-^j is the j-th successor of Xi. For 
i = 1, 2 , . . . , d, define Yi to be the sum of random variable Xi and the next 
(d-m - 1) random variables Xj. We use Ci to denote the method that to a 
given record applies Ci and the next (d — m — l) members Cj and that outputs 
the sum of the vote-counts so obtained. We call that output the vote-sum of 
Ci. We define a record to be unseen for Ci if it is unseen for d and the next 
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{d — m — 1) members Cj. Evidently, the vote-sums of Ci on unseen data are 
samples of Yi that may be used to estimate the distribution of Y .̂ 

We know that, for each j , Aj contains the records of A that are unseen for 
Cj. Hence, the intersection of Ai and the next (d - m - 1) Aj contains the 
records of A that are unseen for Ci. It is easily checked that A^~^ is that 
intersection. Hence, the vote-sums of Ci for the records of A^~^ may be used 
to estimated the distribution of Yi. 

We are ready for the third step, where we estimate the distribution of the 
average Y of the Yi. 

8.3 Distribution for Y 

Since Y is the average of the Yi, we have 

= [id-m)/d\ZUXi 
= [id-m)/d\-ZA 

(23) 

Hence, we effectively have an estimate of the distribution of Z^ once we have 
an estimate for the distribution of Y. 

Since no record of A is unseen for all Ci, we cannot compute samples of 
Y directly from the records of A and estimate the distribution of Y from 
these samples. But there is an intuitive argument that supports estimation 
of that distribution from estimated distributions of the 1^, as follows. First, 
for any k ^ I, Xk and Xi are likely to be positively correlated since Ck and C/, 
which were trained on partially identical training data, presumably are similarly 
voting classifiers. Second, each Yi is the sum of {d — m) X^, and several pairs Yi 
and Yj contain common Xk^ These facts support the conjecture that any two 
Yi and Yj are positively correlated and have similar distributions. Accordingly, 
one is justified to guess that a reasonable estimate of the distribution of Y can 
be obtained by averaging the estimated distributions for the Yi. In Section 4, 
we report empirical evidence that provides strong support for this guess. 

We proceed to estimate the distribution for Y using the just described ap
proach. Since the records of A unseen for Ci constitute the set A*~^, each 
one of the sets A^, A^, . . . , A^ may be used to obtain samples for a different 
Yi. Furthermore, the sets A^, A^, . . . , A^ are essentially of equal cardinality. 
This implies that we may estimate the distribution of Y as an average of the 
distributions of the Yi by simply taking each record of A, applying the unique 
Ci for which that record is unseen to obtain a vote-sum, and finally view the 
vote-sums so found as samples of Y. Accordingly, we compute from these sam
ples by standard formulas an estimated mean py, an estimated variance ay, 
and an estimated probability density function h{y) for Y. 

We come to the fourth step, where the distribution of Z^ is estimated. 
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8.4 Distribution for Zj^ 

We could use the relationship Y — \{d - m)ld] • Z^ of (23) to convert the 
estimated density function for Y to one for Z^, but shall not do so. Instead, we 
derive from the estimated density function for Y an estimated density function 
for Zj^ that has as mean and variance the estimated values JIZA. ^^^ ^1 of 
(20) and (22). One might argue that the two possible ways of estimating a 
distribution for Zj^ should produce the same outcome. But this need not be 
the case since the variance estimate of (22) is partially based on estimation 
via a linear function and thus need not match the variance of Zj, computed 
directly from the estimated variance of Y. This has been confirmed by test 
calculations. We should note, however, that these tests also showed that the 
difference between the two variance estimates for Zj\^ was at most moderate. 

The derivation of the estimated distribution for Z^ is therefore done as 
follows. We take each value y oi Y for which we have a positive estimated 
probability density value h{y) and transform it to a value z using 

z = {y- M{^ZA/^Y) + fizA (24) 

We round the z of (24) to the nearest integer for which Zj[ may have a positive 
probability density and assign h{y) as the estimated probability density value 
to z. It may happen that several probability density values of Y are assigned 
to the same z value. In particular, this is possible for the largest or smallest 
possible value z that Z^ may take on with positive probability. For each such 
case, the h{y) values assigned to the same z are added together. Note that the 
rounding of z values causes the resulting probability density function to have 
mean and variance not exactly equal to /x^^ and a^^ of (20) and (22). In tests, 
the differences were small enough to be of no concern. 

At this point, we have obtained an estimated probability density function 
/ A ( ) for ZA' By letting B play the role of A in the above process, we also 
obtain an estimated probability density function /^() for Z^. 

The next, fifth, step provides standard formulas that derive from /^( ) and 
/BO estimated probabilities for classification errors. 

8.5 Probabilities of Classification Errors 

For the discussion below, define an A-record (resp. B-record) to be a record in 
A (resp. B). Furthermore, Z is random variable of the vote-total of records in 
AU B. In the definition and use of probabilities, we always use odd integer 
values as lower or upper bounds on Z. Indeed, as we assume that the vote-
total is always even, the probability of Z being odd is 0, and any lower or 
upper bound can always be expressed as a strict inequality Z > z ov Z < z 
with odd-valued z. We use the following notation for the estimated distribution 
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functions and power functions. 

GA{Z) = E.>J[A{X) ^ ^ 

GB{Z) = Ex>zMx) 

Let PA and pB be estimates of the prior probabilities that a record is in A 
or B, That is, 

PA = P [ ^ record] .^6) 
PJ3 =: P[B record] ^ ^ 

Then by Bayes' theorem, 

P [ ^ record I Z < ;̂ ] ^ PA'FA{Z)I\PA'FA{Z) ^-pB - FB{Z)] . 
P [ ^ record I Z > z] ^ PB ' GB{Z)/\PA'GAiz) + PB ' GB{Z)] ^ ^ 

Suppose we select a value z and classify any record as follows. If the vote-total 
is greater than z, we declare the record to be in A. If it is less than z, we 
declare the record to be in B. Then the probability of a type A error given 
that Z > z is 0, and the probability of that error given Z < z is as follows. 

P[type A error \ Z < z] = P[A record \ Z < z] (28) 

On the other hand, the probability of a type B error given that Z < 2; is 0, and 
the probability of that error given Z > 2; is as follows. 

P[type B error \ Z > z] = P[B record \ Z > z] (29) 

Hence, the formulas of (27) allow us to estimate the probabilities of such errors. 
Moreover, the same scheme can be used to choose the value of z in an optimal 
way with respect to the estimated probability of the two types of error and to 
the specific requirements of an application. 

As an example, consider the hepatocellular carcinoma data described in 
[Di Giacomo et al., 2001]. Each record represents a patient and contains 56 
{0,±1} entries representing various symptoms and test results. The original 
training data set A contains 64 records of patients with the disease, while B 
contains 64 records of patients free of the disease. One record of A is nested 
in a number of records of B. Removal of that record from A results in two 
training data sets where no record of one set is nested in a record of the other 
set, as required for consistency. 

The estimated probabihty distribution FAO and power function GB{) of 
Table 1 are part of the output of Lsquare for this case. 

Suppose we classify a record as being in A if the vote-total exceeds 9. Then 
using the line of Table 1 for z = 9, we have 

P[Z < ;̂  I ^ record] ^ FA{9) = 0.1095 . . 
P[Z > ;̂  I B record] ^ GB{9) - 0.0266 ^ ^ 
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Table 1. Estimated Fj^{z) and GB{Z). 

z 

rir -39 
-37 
-35 
-33 
-31 
-29 
-27 
-25 
-23 
-21 
-19 
-17 
-15 
-13 
-11 
-9 
-7 
-5 
-3 
-1 

FA{Z) 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0016 
0.0079 
0.0143 
0.0206 
0.0270 
0.0317 
0.0317 
0.0317 
0.0508 

GB{Z) 

1.0000 
0.8031 
0.6937 
0.5938 
0.4938 
0.4313 
0.3812 
0.3359 
0.3047 
0.2734 
0.2375 
0.2000 
0.1641 
0.1328 
0.1016 
0.0797 
0.0609 
0.0469 
0.0469 
0.0469 
0.0422 

z 

~T~ 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 

FA{Z) 
0.0762 
0.0952 
0.0952 
0.0952 
0.1095 
0.1286 
0.1476 
0.1667 
0.1857 
0.2048 
0.2238 
0.2460 
0.2778 
0.3095 
0.3603 
0.4175 
0.4651 
0.4841 
0.5032 
0.6556 
1.0000 

GB{Z) 

0.0359 
0.0313 
0.0313 
0.0313 
0.0266 
0.0203 
0.0141 
0.0078 
0.0016 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

Suppose a family doctor or general practitioner in a routine examination 
determines that a patient possibly has hepatocellular carcinoma and refers the 
patient to a clinic for expert diagnosis. Let the probability of the clinic making 
a positive diagnosis of carcinoma be about 5% for such a referral. Thus, we 
have the estimated prior probabilities 

PA = 0.05 
pB = I-PA = 0.95 

(31) 

li z = 9 is used to classify each patient, then the above formulas allow us to 
estimate probabilities of diagnostic errors as follows. 

P[type A error \ Z < 9] = P[A record \ Z < 9] 
^ 0.0059 

P[type B error \ Z > 9] = P[B record \ Z > 9] 
^ 0.3625 

(32) 

We used z = 9 just for example calculations and are not suggesting that this 
value actually be employed for diagnostic decision making. Indeed, let x (resp. 
y) be the the largest (resp. smallest) value of z for which P[A record \ Z < z] 
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(resp. P[B record \ Z > z]) is estimated to be 0. By (27), x (resp. y) is the 
largest (resp. smallest) z for which Fj[{z) = 0 (resp. GA{Z) — 0). From Table 1, 
a; = —19 and y = 19. Suppose that the record of a patient is to be evaluated, 
and that the vote-total Zp has been computed, li Zp < x (resp. Zp > y), 
then the disease is estimated to be absent (resp. present) with probability 
1, and treatment is not needed (resp. should be initiated), li x < Zp < y, 
P[type A error \ Z < Zp] and P[type B error \ Z > Zp] are estimated by (27) 
and (28) and may be used to select the course of action. The estimates of 
the probabilities P[type A error \ Z < Zp] and P[type B error \ Z > Zp] allow 
the physician and patient to assess the situation rationally and to arrive at 
appropriate decisions that account for the attendant risks and benefits. 

8.6 Summary of Algorithm 

We summarize the entire scheme. 

Program CONSTRUCT VOTING SYSTEM: 

1. Prom A and B, construct 10 subsets pairs {Ai, Bi). For each pair (A^, J5j), 
compute with Program FIND SEPARATING SET the 4 separating sets 

s\. 
2. Declare each of the 40 separating sets S\ to be a rule for producing a ±1 

vote for the evaluation of records. Define the vote-total to be the sum of 
these votes. 

3. Compute the probability distributions. They are used to certify the reli
ability of classifications made with the vote-total. 

The next section presents computational results. 

9. COMPUTATIONAL RESULTS 

We have tested the accuracy of the estimated distribution functions using the 
six well-known data sets Australian Credit Card, Breast Cancer, Congressional 
Voting, Heart Disease, Diabetes, and Boston Housing, which may be obtained 
from the UCI Machine Learning Repository ^. 

The logic-based approach requires the records of A and B of each data set 
to contain {0,±1} entries only. We call these {0,±1} entries logic entries to 
differentiate them from other types of entries such as Boolean, integer, nominal, 
or rational. A nominal entry is a member of a finite set of descriptive terms. 
The interpretation associated with the logic entries -fl, and - 1 does not matter, 
while 0 is reserved for "Do not know value." For example, one might associate 
-f-1 with True or Yes and - 1 with False or No. Some entries of the six data 
sets are not in the {0,±1} form and require transformations. We summarize 

http://www.ics.uci.edu/~mlearn/MLRepository.html 
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that step in the following subsections when we cover the results for each data 
set. But first we use the data sets to provide empirical justification for the 
estimation of the distribution of Y in Section 8, where that distribution is 
estimated to be the average of the estimated distributions for Yi, y2, • • •, ^d-

For each of the six data sets A and B, we randomly select as A and B half the 
data and construct a family C. To establish validity of the estimating procedure 
for the distribution of Z = Zj\^ or Z = ZB via estimated distributions of the 
Yi, we apply CtoA — AorB — B, respectively, to get estimated distributions 
for Z and for the Yi. We emphasize that we apply C to A — Aov B — B 
and not to any subsets of ^ or B. The reason is that we want to establish 
the validity of guessing the distribution of Z from those of the Yi and thus 
want to eliminate any variability not related to that comparison. For the same 
reason, we estimate the mean fiz and variance a^ of Z from the just determined 
distribution. 

We average the estimated distributions for the Yi to obtain an estimated 
distribution for Y. Let fty and ay be the mean and variance of the latter 
distribution. We transform the estimated distribution for Y using equation 
(24) and the rounding process described in Section 8. We denote by Z' the 
random variable represented by the resulting distribution. Finally, we compare 
the distribution of Z' with the estimated distribution of Z. A close match 
would empirically justify the approximation of the distribution of Z via those 
of the r^. 

For each pair of A and B derived from the six data sets, we get two cases 
of Z and Z'. Hence, we have a total of twelve pairs Z and Z'. In each case, 
the distribution of Z' turned out to be virtually identical to the estimated 
distribution of Z. In Figure 1 we show graphs of the distributions for the pairs 
obtained from the Austrahan Credit Card data set. 

Figure 1. Distributions for Z — Zj^ (left), Z — Z^ (right), and related Z'. 

-40 -30 -20 -10 10 20 30 40 -40 -30 -20 -10 10 20 30 40 

These results empirically justify the estimation of the distribution of Y by 
the average of the estimated distributions for Fi, ^2, • • • ? ^d-

We are ready to discuss the computational results obtained for A and B of 
each data set. We obtain from A and B randomly selected subsets A and B^ 
each containing 50% of the respective source set. We apply Lsquare to A and 
B, obtain the family C of classification methods, and compute the estimated 
functions F^O and GB{Z) of i^h). Then we apply C to ^ - ^ and B - B 
to verify the accuracy. From Fj^{z) and GB{Z), the functions of (27) can be 
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estimated. The latter estimates have good accuracy if this is so for F^{z) and 

In the drawings below, the curves plotted with diamonds give the estimated 
values Fj[{z) and G^(z) produced by Lsquare, while the curves plotted with 
crosses provide the values computed produced by C using the verification sets 
A — A and B — B. Close agreement of the two curves means that the estimates 
are quite accurate and that the estimated functions are useful. 

9.1 Breast Cancer Diagnosis 

[Mangasarian et al., 1990] (see also [Mangasarian and Wolberg, 1990], and 
[Mangasarian et al., 1995]) provide breast cancer data for 699 patients. We 
view the data as rational data where each record corresponds to a patient. A 
record has 9 entries that are produced by some tests. The possible values for 
each entry are 1, 2 , . . . , 10. Of the 699 records, 16 have missing entries. The 
outcome of each record may be viewed as the value of a Boolean variable t that 
indicates whether the case is benign or malignant. We convert the rational 
data to logic data and obtain {0, ±1} logic records representing a patient with 
45 entries. 

In Figure 2 are the results. Evidently, the agreement between the estimated 
and verified curves is very good. 

Figure 2. Estimated and verified F4(left) •t) 
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A predecessor paper [Felici and Truemper, 2002] compares other methods 
with a version of Lsquare that differs slightly from the present one and does not 
have the statistical prediction process. The comparison is based on 10 randomly 
selected 50% training subsets of the given data set. For the prediction, a record 
with positive (resp. negative) vote-total is claimed to be in A (resp. B). A vote-
total of 0 is predicted consistently to be in ^ or 6, based on a prior random 
selection of either A or B. Below, we include these results with each case. For 
the Breast Cancer Data, the best prior prediction accuracy for 50% training 
sets reported in [Boros et al., 1996] is 96.9%. That accuracy is achieved for a 
reduced data set where all records containing missing data have been deleted. 
Lsquare has 97.1% accuracy without deletion of any records. 
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9.2 Australian Credit Card 

The data were collected by R. Quinlan (see [Quinlan, 1993]). They represent 
690 MasterCard applicants of which 307 are declared as positive and 383 as 
negative. The data contain 37 records with missing entries. Each record con
sists of 15 attributes, of which 4 are Boolean, 5 nominal, and 6 rational. For 
prior computational results, see [Carter and Catlett, 1987], and [Boros et al., 
1996]. 

The representation of the 15 attributes requires a total of 67 logic variables. 
With this transformation, A and B had one record in common. We have 
removed that record from A. 

The graphs in Figure 3 show the results. Evidently, there is very good 
agreement between the curves. 

Figure 3. Estimated and verified F4(left) and GB (right) for Australian Credit 
Card. 
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[Boros et al., 1996] show that the best prior recognition rate is 85.4% for 
training sets of size 50%. Lsquare has 86.0% accuracy. 

9.3 Congressional Voting 

The problem concerns the prediction of party afl[ihation from 435 voting records 
of 267 Democrats and 168 Repubhcans. The data were collected by J. Schlim-
mer. Each record contains 16 entries of the form "for", "against", and "did 
not vote". For prior computational results, see [Holte, 1993] and [Boros et al., 
1996]. 

In the logic data, we represent "for" by 1, "against" by - 1 , and "did not 
vote" by 0. We define A (resp. B) to be the set of records of the Republicans 
(resp. Democrats). 

In Figure 4 are the results. The agreement among the curves is excellent. 
The best prior result in [Boros et al, 1996] for 50% training sets has 96.2% 

accuracy, achieved after removal of 6 records with missing entries. Lsquare has 
95.8% accuracy without removal of any records. 

9.4 Diabetes Diagnosis 

This problem concerns the diagnosis of diabetes based on observations for 768 
patients, of which 268 had signs of diabetes, while 500 did not. The data were 
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Figure 4. Estimated and verified ^^(left) and GB (right) for Congressional 
Voting. 
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collected by V. Sigillito. There are 8 attributes, of which 2 have discrete values, 
and 6 are rational. For prior computational results, see [Smith et al., 1988], 
[Murthy at al., 1994], and [Boros et al., 1996]. 

The transformations adopted produce a total of 55 logic variables. With 
these transformations, A and B had one record in common. We have removed 
one such record from A to achieve consistency. 

Results are reported in Figure 5. The agreement among the curves is very 
good. 

Figure 5. Estimated and verified ^^(left) and GB (right) for Diabetes. 
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The best prior rate for 50% training sets according to [Boros et al., 1996] is 
71.9%. Lsquare has 73.3%. 

9.5 Heart Disease Diagnosis 

Observations for 303 patients are given, of which 165 are healthy, while 139 
have some heart disease. Of the 303 records, 6 have some missing entries. 
Each record provides 13 attributes, of which 3 are Boolean, 4 nominal, and 6 
rational. For prior computational results, see [Gennari et al., 1989], [Shavlik et 
al., 1991], [Holte, 1993], and [Boros et al., 1996]. 

We transform the records to logic data and obtain a total of 50 logic variables. 
We collect in A (resp. B) the logic records corresponding to the healthy patients 
(resp. the patients with heart disease). 

The computational results are given In Figure 6. The agreement among the 
curves is good. 
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Figure 6. Estimated and verified ^^(left) and GB (right) for Heart Disease. 
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The best result for 50% training sets cited in [Boros et al., 1996] is a recog
nition rate of 82.3%. Lsquare has 80.7%. 

9.6 Boston Housing 

The data set is taken from [Harrison and Rubinfeld, 1978]; see also [Quinlan, 
1993]. The data consist of 506 records concerning housing values in the Boston 
area. Each record is composed of 13 attributes, of which 12 have rational 
values, while one is Boolean. The median value of the owner-occupied houses 
is used as a threshold to split the entire set of records into two sets. For prior 
computational results, see [Boros et al., 1996]. 

After the transformations, the total number of logic variables is 109. It turns 
out that the sets A and B so defined from the original two data sets have two 
records in common. We delete these records from A to achieve consistency. 

In Figure 7 are the results. The agreement among the curves is good. 

Figure 7. Estimated and verified ^^(left) and GB (right) for Boston Housing. 
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The best prior result reported by [Boros et al, 1996] for 50% training sets is 
84.0% accuracy, compared with 83.5% by Lsquare. 

10. CONCLUSIONS 

The computational results show that the estimated probability distributions 
have good to excellent accuracy, and that the overall accuracy matches the 
best prior results. These results are achieved without use of any additional data 
beyond those employed for the training. Moreover, the results are produced 
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without any tuning or other adjustment or manual intervention. A potentially 
useful fact is that the estimating formulas derived in Section 8 are sufficiently 
general so that they may be employed in other data mining systems. Suppose 
such a system already produces votes or results that can be converted to votes. 
Given training data A and B, one only needs to apply the system to the pairs 
composed of Ai and Bi and to proceed as described in Section 8, to obtain 
estimated distribution functions and related error probabihties. 
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Abs t r ac t : 
Feature Selection methods in Data Mining and Data Analysis problems 
aim at selecting a subset of the variables, or features, that describe the 
data in order to obtain a more essential and compact representation 
of the available information. The selected subset has to be small in 
size and must retain the information that is most useful for the spe
cific application. The role of Feature Selection is particularly impor
tant when computationally expensive Data Mining tools are used, or 
when the data collection process is difficult or costly. Feature Selection 
problems are typically solved in the literature using search techniques, 
where the evaluation of a specific subset is accomplished by a proper 
function (filter methods) or directly by the performance of a Data Min
ing tool (wrapper methods). In this work we show how the Feature 
Selection problem can be formulated as a subgraph selection problem 
derived from the lightest /c-subgraph problem, and solved as an Inte
ger Program. The proposed formulation is very flexible, as additional 
conditions on the solution can be added in the formulation. Although 
optimal solutions for such problems are difficult to find in the worst 
case, a large number of test instances have been solved efficiently by 
commercial tools. Finally, an application to a database on urban mobil
ity is presented, where the proposed method is integrated in the Data 
Mining tool named Lsquare and is compared with other approaches. 

Keywords : Feature Selection, Data Mining, Integer Programming. 
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1. INTRODUCTION 

The abundance of large bodies of structured and semi structured information 
is a direct effect of the many ways that are now available to collect data. 
Nevertheless, it is common opinion that the rate of growth of the information 
available is not matched by the development of methods that properly use this 
information. 

For this reason, the field of Data Mining (DM) has seen rising interest both 
in the scientific community and in the market, and several methods are being 
developed to try and extract high quality information hidden in data. 

Typical problems tackled by Data Mining are a) the identification of associ
ation rules, that is, rules that express particular combinations of factors that 
are present in the data with high frequency or probability; and b) classification, 
where one is given "objects" belonging to different classes and is to find a rule 
able to tell elements of one class from elements of another class. 

When dealing with large data sets, it is often the case that the information 
available is somehow redundant for the scopes of the DM application; many 
mining tools deal with this issue by trying to provide classification or asso
ciation rules that are as compact as possible. The reduction of the original 
feature set to a smaller one preserving the relevant information while discard
ing the redundant one is referred to as feature selection (FS). It is appropriate 
here to point out that with feature we intend the original attributes or vari
ables associated with each record of the data set rather than some particular 
transformation of such attributes. 

In many cases FS can be looked at as an independent task in the DM process, 
that pre-processes the data before they are treated by a DM method, that often 
may fail or have significant computational problems in treating directly data 
set with a large number of features. 

The main benefits in using FS in DM may thus be outlined as follows: 

• 

• 

• 

reduction in the amount of information needed to train a DM algorithm; 

better quality of the rules learned from data; 

easier acquisition and storage of the information related to a smaller 
number of "useful" features; 

reduced cost for acquiring the information (often FS aims at defining 
a good subset of the available features by minimizing a cost function 
derived from the effective economical cost of acquiring that feature in the 
real world). 

A very extensive treatment of the use of FS in DM applications is given 
by [Liu and Motoda, 2000]. These authors provide a complete overview of the 
methods developed since the 70s, confronting the results of several applications 
and providing suggestions on how to orient the choice of the proper method for 
each problem. 
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In this chapter we consider the main approaches to FS, and then propose a 
method which is based on a well known subgraph selection problem. 

The chapter is organized as follows. In Section 2 we present the main meth
ods and results currenlty available in the literature, founding our analysis on 
the well estabUshed distinction between Filter Methods and Wrapper Meth
ods. Section 3 considers the linkage between the FS problems and the lightest 
fc-subgraph selection problem, and addresses some computational complexity 
issues related to this problem. Then, in Section 4, the mathematical program
ming formulation adopted to model a FS problem is presented, taking into 
account some of the possible variants that may be required for a correct use 
of the model in the applications. Computational experience and results ob
tained on real data are reported in Section 5. Finally, Section 6 proposes some 
conclusions. 

2. THE MANY ROUTES TO FEATURE SELECTION 

Feature Selection is a non trivial task. Its main difficulty is the fact that its 
goal is to select a subset of a larger set that has some desiderable properties, 
where such properties strongly depend on the whole subset and is thus not 
always appropriate to measure them by means of simple or low order functions 
in the elements. Moreover, the number of candidate subsets is exponential 
in the size of the initial set. Many successful methods thus propose heuristic 
approaches, typically greedy, where the final subset is not guaranteed to be the 
best possible one, but is verified, by some proper method, to function "well". 
On the other hand, optimal approaches, that guarantee the minimization of 
some quality function, need some approximation in the evaluation function to 
become tractable. 

In order to give a general overview of the methods avaiable, we refer to the 
work of [Langley, 1994], according to whom a FS method is based on four main 
steps, as follows: 

1. generation procedure; 

2. evaluation function; 

3. stopping criterion; 

4. validation procedure. 

The generation procedure is in charge of generating the subsets of features 
to be evaluated. From the computational standpoint, the number of possible 
subsets from a set of N features is 2^ . It is therefore very crucial to generate 
good subsets by trying to avoid the exploration of all the search space, using 
heuristic strategies, that at each step select a new feature amongst the available 
ones to be added to the existing set, or random strategy, where a given number 
of subsets is generated at random, and the one with the best evaluation value 
is chosen. The generation starts with the empty set, and then adds a new 
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feature at each iteration {forward strategy). Alternatively, it may start from 
the complete set of features removing one at each step [backward strategy) . 
Finally, some methods propose to start from a randomly generated subset to 
which forward or backward strategy is applied. 

The evaluation function is used to measure the quality of a subset. Such 
value is then confronted with the best available value obtained, and the latter 
is updated if appropriate. More specifically, the evaluation function measures 
the classification power of a single feature or of a subset of the features. An 
interesting classification is given by [Dash and Liu, 1997], who propose four 
classes based on the type of evaluation functions: 

• distance measures: given 2 classes Ci and C2, feature X is preferred to 
Y if P{Ci\X) - P{C2\X) > P{Ci\Y) - P (C2 | r ) , that is, if X induces a 
larger increase in the class conditional probabilities with respect to Y; 

• information measures, that tend to indicate the quantity of information 
retained by a given feature. For example, feature X is preferred to feature 
Y if the improvement in the entropy function obtained by adding X is 
larger that the one obtained by adding Y] 

• dependance or correlation measures: they indicate the capability of a 
subset of features to predict the value of other features. In this setting, 
X is preferred to Y if its correlation with the class to be predicted is 
larger. These measures may also indicate redundancies in the features, 
based on the cross-correlation between the features themselves; 

• consistency measures: their purpose is to evaluate the capacity of the 
selected feature to separate the objects in different classes. For example, 
a particular feature may be considered uninteresting if two elements of 
the data set have the same value for that feature but belong to different 
classes. 

The stopping criterion is needed to avoid time consuming exhaustive 
search of the solution space without a significant improvement in the evalu
ation function. The search may be stopped if a given number of attributes 
has been reached, or when the improvement obtained by the new subset is not 
relevant. 

Finally, the evaluation procedure measures the quality of the selected 
subset. This is typically accomplished by running the DM algorithm by using 
only the selected features on additional data. 

According to the type of evaluation function adopted, FS methods are di
vided into two main groups: filter methods and wrapper methods. In the former, 
the evaluation function is independent from the DM algorithm that is to be 
applied. In the latter, the DM algorithm is, to a certain extent, the essence 
of the evaluation function: each candidate subset is tested by using the DM 
algorithm and then evaluated on the basis of its performances. 
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In Figure 1 below the general design of a filter and a wrapper method is 
depicted, where the DM algorithm is represented by a generic Classifier. The 
opinion that wrapper methods can provide better results in term of final accu
racy is widely shared in the scientific community. However, these methods are 
extremely expensive from the computational standpoint, and also suffer from 
the limitations of having their acccuracy limited to the classification or the DM 
algorithm used. 

Filter Control Strategy 

Features 

Search 
Algorithm 

Evaluation 
Function 

Selected 
Features 

Classifier 

Wrapper control Strategy 

Features 

Search 
Algorithm 

Classifier 

Figure 1. Wrappers and Filters. 
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On the other hand, the filter approach appears to be more general, and 
indeed faster, although it presents several weak points, amongst which are: 

• several methods are not designed to deal appopriately with noisy data; 

• they often leave the choice amongst a number of "good" subsets to the 
user; 

• in most methods the user is asked to specify the dimension of the final 
set of features, or to define a threshold value of some sort that drives the 
stopping condition of the algorithm; 

• some methods pose some constraints on the format of the data (e.g., they 
may require all data to be in binary format), introducing potential noise 
and furtherly increasing the number of features to start from. 

Nevertheless, the contained computational complexity of filter methods turns 
out to be very important in the application of DM techniques to large datasets, 
where the dimensions involved forbid the application of certain sophisticated 
classification techniques which use the complete set of features. In such cases, 
wrapper methods could not be applied in the first place. In order to strengthen 
these considerdations, we provide below some additional insight into the two 
classes of methods and also some examples. 

2.1 Filter methods 

Filter methods are characteterized by the use of an evaluation function that 
is based on the general properties of the data to be analyzed. As anticipated, 
they are typically faster than wrapper methods and are thus more indicated 
on very large data sets. Below, we list some of the filter methods proposed in 
the literature, according to the nature of the evaluation function adopted. 

Methods based on consistency. The main idea behind this class of 
methods is searching for the smallest subset of the available features that is as 
consistent as possible. In [Almuallim and Dietterich, 1991] propose FOCUS, 
a method conceived for Boolean domains. The method searches the solution 
space until the feature subset is such that each combination of feature values 
belongs to one and only one class. Starting from the selected subset, the 
learning task is then performed using decision trees. The main drawback of 
this approach, as pointed out by [Caruana and Freitag, 1994], is the explosion 
of the dimension of the search space when the number of original features 
increases. They also propose some variants of the original algorithm to speed 
up the search procedure. One of them, based on entropy, is skecthed below. 

Given a subset of features 5, the training data is divided into a number of 
groups, each of them having the same values for the features in 5. Assuming 
that Pi and ui represent the number of positive and negative examples in the 
i — th group respectively, A'' is the dimension of the training set, the formula: 
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2 l 5 | _ i 

1=0 

Pi , Pi , f^i ] ^ i 
• l0g2 + l0g2 

Pi-\-ni pi-\- Tii Pi -\-ni Pi + m 
(1) 

is used to avaluate all candidate features that may be added to the current 
subset and then select the one that shows the lowest value of E{S). 

A similar approach has been exploited by [Liu and Setiono, 1996] with the 
LVF algorithm, where they measure inconsistency through the following for
mula: 

iis)=Y:^^^, (2) 

where Gs is the number of different groups of objects defined by the features 
in 5, Ug is the number of objects in group g, fg is the number of objects in 
group g that belong to the most frequent class, and n is the total number of 
objects in the training set. 

The LVF algorithm then proceeds with the following steps: 

• the best subset B is filled with all the original features, and I{B) is then 
computed; 

• a random subset S of the features is chosen; 

• if the cardinality of S is less than or equal to the cardinality of B, then 
I{S) is computed; 

• if 7(5) < I{B), then B ^ S, and iterate. 

This method can have good behavior in the presence of noisy data, and 
may be efficient in practice. It may although be misled by features that take 
on a large number of different values in the training set; in these cases such 
a feature would provide a high contribution to the consistency measure, but 
would not be particularly effective for generalization. Similar techniques have 
been investigated also by [Schlimmer, 1993] and [Oliveira and Vincitelli, 1992]. 

Methods based on Information Theory. This class of filter methods 
uses a measure of the information conveyed by a subset to direct the search 
of the final features. Good examples of such methods are the Minimum De
scription Length Method (MDLM) [Sheinvald et al., 1992] and the probabilistic 
approach by [Roller and Sahami, 1997], that we briefly describe below. 

The main idea in [Roller and Sahami, 1997] is that a good subset of the 
features should present a class probability distribution as close as possible to 
the distribution obtained with the original set of features. More formally, let 
C be the set of classes, V the set of the features, X is a subset oi V, v = 
{vi,.,.,Vn) the values taken on by the features V, and Vx the projection of v on 
X. Then, FS should aim at finding a subset S such that Pr{C\X = Vx) is as 
close as possible to Pr{C\V = v). 
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The proposed algorithm starts with all the features and applies backward 
elimination. At each step, it removes the feature that minimizes the distance 
between the original and the new class probability distribution. Such distance 
is measured by means of cross-entropy , defined as follows: 

D{Pr{C\Vi = Vi,Vj = Vj),Pr{C\Vj = Vj)) = 

Features are then removed iteretively until the desired number of features is 
reached. Given the nature of the formulas involved, the method must operate 
on binary features, and thus may require additional transformations of the 
data. 

Methods based on Correlation. The FS process for classification prob
lems is strongly related to the correlation among the features and to the correla
tion of the features with the class attribute, as in [Gennari et al., 1989]. Thus, 
a feature is useful if it is highly correlated with the class attribute. In this case, 
it will have a good chance of correctly predicting its value. Conversely, a feature 
will be redundant if its value can be predicted from the values of other features, 
that is, if it is highly correlated with other features. Such considerations lead to 
the claim that a good subset of features is composed of those features that are 
strongly correlated with the class attribute and very poorly correlated amongst 
themselves. One example of such methods is the Correlation-based Feature Se
lector method (CFS), proposed in [Hall, 2000], where features are selected on 
the basis of the correlation amogst nominal attributes. 

Combinational Approaches to FS. In [Charikar et al., 2000] it is ana
lyzed and discuss the following combinatorial problem: given a set 5, select 
a subset K such that a number of properties 11^,^ = l , . . . n held by S are 
mantained in K, According to the nature of the problem, the dimension of K 
is to be maximized or minimized. They consider such problem a fundamental 
model for FS, and state two main variants: 

1. subspace selection: S does not satisfy some 11; identify the largest subset 
K E S such that S\K {S projected onto K) satisfies all H; 

2. dimension reduction: 5 satisfies all 11; identify the smallest subset K such 
that S\K satisfies all 11. 

Such setting appears to be very interesting from the formal point of view, and 
is inspiring the features selection method later proposed in this chapter. 

2.2 Wrappers methods 

The strategy adopted by wrapper methods is based on the use of an induction 
algorithm that, while performing the DM task of interest, implicitely provides 
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an evaluation of the set of features that have been submitted to the algorithm. 
Such a strategy may easily provide better final results when it is compared with 
filter methods; nevertheless, its efficacy is strongly related to the DM algorithm 
used. Such algorithm may be invoked a very large number of times, and the 
overall computational time required could be excessive. Several techniques have 
been considered to reduce the computational complexity of Wrappers, some of 
them will be referred and outlined below. 

Wrappers based on decision trees. The majority of the methods in 
this class are based on the classic induction algorithms IDS, C4.5 and ID4.5 
for decision trees, originally introduced by [Quinlan, 1993]. Amongst the most 
interesting contributions are [John et al., 1994, Cherkauer and Shavlik, 1996, 
Langley and Sage, 1994, Vafaie and De Jong, 1995, Caruana and Freitag, 1994]. 

[John et al., 1994] were the first to assess the validity of Wrapper methods 
for FS problems. They consider that features can be relevant in the strong 
sense, when the class probability distribution obtained with all features changes 
when the feature is removed; and in the weak sense, when the class probability 
distribution obtained with a given subset of the features changes when the 
feature is removed from that subset. All attributes that are not strongly or 
weakly relevant may be removed from the feature set without damage. The 
class probability distribution for a given subset is evaluated with a full-blown 
call to the decision tree algorithm. 

[Cherkauer and Shavlik, 1996] made use of a genetic algorithm to guide the 
search for the best subset while using decision trees. Their SET-gen algorithm 
is based on the fitness function below: 

Fitness{X)=(JJA + [ l - ( ^ ^ y (4) 

where X is a subset of the features, A is the accuracy obtained with cross-
vahdation after the appUcation of C4.5, S is the average dimension of the trees 
produced by C4.5, and F is the cardinality of X. Formula (4) directs the search 
towards those feature subsets for which the computed trees are small in size 
but show high accuracy on the available data. 

[Langley and Sage, 1994] investigated the role of nearest neighbour algorithms 
in determining non-relevant features. They showed, with large experimental ev
idence, that the dimension of the training data needed for good classification 
increases exponentially with the number of non-relavant features. The algo
rithm proposed by these authors proved able to remove most of redundant 
features and to speed up the training process of standard C4.5 when tested on 
simulated data. 

Context-based Wrappers methods. In classification problems it is fre
quently the case that some of the features are relevent to discrimination only for 
some portion of the training data, while they may be non-relevant elsewhere. 
Another possible cause of poor quality on the classification results arises when 
some features are relevant only if they are combined with particualar values of 
other features, and non-relevant otherwise. All these cases are, up to a certain 
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extent, dealt with when Wrapper methods are used in a backward elimination 
scheme, as the elimination of useful features may be avoided when the accuracy 
in the vahdation decreases. Some methods that attempt to exploit these con
siderations are the RC algorithm, introduced by [Domingos, 1997], the method 
proposed by [Moore and Hill, 1992] and the one by [Skalak, 1994]. In order to 
provide insight into this class of methods, we sketch below the main steps of 
the RC algorithm: 

1. the algorithm is initialized by running a classification algorithm on all 
the features, and its accuracy is estimated via cross-validation; 

2. an element of the training set is chosen, and its nearest neighbor of the 
same class is identified; then, all features where the two elements differ 
are removed; 

3. a classification algorithm is run with the reduced set of features, and its 
accuracy estimated via cross-validation; 

4. if the accuracy has not decreased with respect to the previous feature set, 
the element is accepted, otherwise it is restored in its pristine state and 
flagged not to be chosen in the next iterations; 

5. if all elements are flagged, stop. Otherwise, go to step 1. 

Experiments conducted on simulated data have shown no particular contri
bution of context sensitive approaches, in particual when the majority of the 
features are either relevant or non relevant. Moreover, when the number of 
features is limited, or the data is noisy, standard wrapper methods tend to 
perform better in identifying non-relevant features. It must also be pointed 
out that these approaches iterate on the number of pairs of elements in the 
training data, and that the number of iterations is thus bound by a quadratic 
function on the dimension of the training set. 

Wrappers methods for Bayesian Classifiers. The important role of FS 
has not been overlooked by the experts in Bayesian classification. In particular, 
[Pazzani, 1995] introduced two alternative methods that use a Bayesian Classi
fier in a Wrapper scheme; the first based on a forward strategy and the second 
on a backward strategy. In the first case, features are added to the (initially 
empty) current set based on the performances of the classification algorithm. 
When a good feature is found, additional artificial features are also created 
by combining the new feature with the ones already in the current set. The 
second algorithm inverts this scheme, by eliminating non-relevant features and 
substituting pairs of old features with single artificial features obtained as the 
union of the two features in the pair. Experiments reported show that both 
techniques improve the performance of the standard Bayesian classifier. 

Other Wrapper Methods. As already mentioned, one of the main draw
backs of wrapper methods is their computational cost. Several methods have 
been proposed with the specific objective of containing this cost. 
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[Moore and Lee, 1994] designed a strategy where different feature subsets 
race against each other, their performance being computed using leave-one-out 
cross validation. If, based on this validation, a subset is considered unlikely to 
lead to new subsets better than the best current one, then the evaluation of that 
subset is terminated; moreover, if two subsets are very similar to each other 
(in terms of the features they contain) one of them is terminated as well, and 
cancelled from the race. This racing scheme is embedded in forward selection; 
the algorithm stops when then set of racing subsets is made of only one subset. 

Another interesting contribution is the one by [Kohavi and John, 1996], who 
introduced the notion of compound operators, with the aim of improving the 
computational efficiency of the selection strategy. First, all possible local 
changes (insertion or elimination of features) are consider as operators. Then, 
each operator is applied to the current set and the result is evaluated. The two 
operators that provided the best accuracy are now combined into a new opera
tor, that is applied to the training set. The modified set of operators will then 
be considered in the next iteration, combining the two best current operators 
into a new one. The authors claim that the use of compound operators results 
in a much faster identification of strongly relevant features. Experimental ev
idence based on ID3, C4.5 and naive Bayes classifiers showed that compound 
operators are effective with backward selection strategies, while their effect 
when combined with forward selection strategies appears to be negligible. 

3. FEATURE SELECTION AS A SUBGRAPH 
SELECTION PROBLEM 

Subgraph selection problems have been studied under different angles in the 
graph theoretical and mathematical programming community, and have been 
used in many contextes to model real life problems. Here we overview the dif
ferent models of such type, the computational problems associated, and sketch 
the main ideas related to the application of such models to FS. 

We start by introducing some general notation and few definitions. Let 
G = {V, E) be a graph, defined by the set of vertices V and the set of edges 
E. Given V C V, then G' = {V',E') is the subgraph induced by V on G 
if E' = (vi.Vj) : Vi e V'.Vj G V, {vi.Vj) £ E. We define do = 2 |E | / | y | is the 
density of G, and also say that G is complete if and only if, for each pair of 
vertices u,v G F , there exists e E E connecting them. One of the possible 
formulations of a subgraph selection problem is the following: 

Given a graph G = (V^E) and weights wij = Wji on the edges 
{i,j) G E, the lightest k-subgraph problem is solved by determin
ing a subset S C. V with dimension k such that the sum of the 
weights associated to the edges of the subgraph induced by S on G 
is mimimum. 

When unit weights are associated to the edges, the lightest fc-subgraph prob
lem amounts to the selection of the subgraph of dimension k with the minimum 
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number of edges, namely, the sparsest fc-subgraph problem. By switching the 
sense of the objective functions of the two problems above, it is then easy 
to obtain the heaviest fc-subgraph and densest fc-subgraph problems. Equiva-
lently, heaviest /c-subgraph and densest A:-subgraph can be obtained from the 
lightest A:-subgraph and the sparsest fc-subgraph, respectively, with a trivial 
transformation of the objective function coefficients. 

We model a generic FS problem by starting from one of the lightest k-
subgraphs on the complete graph G = (F, E) where the set V is indexed by the 
original features, and the weight of edge (^i, Vj) is proportional to the degree of 
association (correlation, concordance, distance) between features i and j . Some 
additional conditions need to be added to this model to make it interesting for 
the purpose of FS, as it will be described in Section 4. First, we consider the 
main computational complexity issues related to this class of problems. 

Feige and Seltser ([Feige and Seltser, 1997, Feige et al., 2001]) propose a re
duction of the densest fc-subgraph to the Clique problem, that in turn has 
been shown to belong to the NP-complete class in [Garey and Johnson, 1979]. 
Moreover, the same authors show with additional arguments that the densest 
/u-subgraph problem is in the NP-complete class even for bipartite graphs with 
the node degree bounded by 3. For these reasons, they have also analyzed effi
cient approximation schemes for the densent A:-subgraph problem, and, under 
the condition that G contains a clique on k nodes, provide an approximation 
algorithm that, for each 0 < e < 1 determines a subgraph on k verteces with at 
least (1 — ^)(2) edges with computational complexity equal to n^^^^+^^s f)/^). 

The authors of [Charikar et al., 2000], in the framework of combinatorial 
feature selection, are interested in the solution of a max distinct points prob
lem that reduces to he problem of the densest fc-subgraph. They also provide 
evindence that an a-approximated algorithm for the max distinct points prob
lem results in a 2a-approximated algorithm for the densest fc-subgraph prob
lem, and that an a-approximated algorithm for the min-l distinct dimension 
problem gives an a{a + 1)-approximated algorithm for the densest subgraph 
problem. On the other hand, the greedy algorithm with backward selection 
has been shown to provide an approximation ratio of 0{k/n) for any k by 
[Asahiro et al., 1996]. [ye and Zhang, 1999] studied the case of the heaviest fc-
subgraph problem where fc = n/2 and produces an algorithm with worst case 
approximation equal to 0.519 when n is large. 

The same case has been considered by [Goemans, 1996] with a randomized 
technique that produces an approximation ratio of 0.25. In general, all approx
imated ratios obtained for this class of problems are constant in fc and linear 
in n. 

4. BASIC IP FORMULATION AND VARIANTS 

We start by describing the plain Integer Programming formulation for the ligth-
est fc-subgraph problem. Let N = {l , . . . ,n} be the set of nodes, and fc the 
cardinality of the set to be selected. We define the binary variable xi^ i E N 
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such that 

-{I: 
if node i is chosen 
otherwise. 

Then, let yij be a binary variable associated to the edge connecting nodes i 
and j , with the following meaning: 

={J: 
_ , if {i,j) is in the subgraph induced by the selected nodes 

^̂ •? ~ 1 n otherwise. 

Finally, each edge {i,j) is associated with a cost Cij. 
The constraints needed to represent the problem are then: 

J^^i^^k, (5) 

where it is required thast exaclty k nodes are chosen, and: 

Vij >Xi + Xj-l, V«, j e N (6) 

that link coherently the value of the 2/-variables to to the values of the x-
variables. Then, by also considering the objective function (linear in yij) and 
the binary constraints, the complete formulation is as follows: 

n n 

CijVij 

i=l 3=1 

S.t. 
n 

y Xi ^̂=̂  rvy K ^ /u 

i=l 

Vij > Xi + Xj -1, yij e N 

Xie (0,1), ieN 

VijE (0,1), iJeN 

As already anticipated, the model above can be used for FS by associating 
each node with one of the original features and each edge with a similarity mea
sure between the two features connected by that edge. The standard lightest 
A;-subgraph would then represent the subset of k features with the mimumum 
total cross-correlation. Such characteristic is indeed desirable, as discussed in 
Section 2. Nevertheless, it is not sufficient to guarantee a good quality of the 
selected subset for the DM task. Two main aspects are not treated in a satisfac
tory way, and precisely: the number of node to be selected, and the modeling 
of the linkage among the features and the class value. Below we discuss some 
variants to address such issues. 
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Feature Selection Model 1. Some additional constraints must be acti
vated to take into account the quality of each feature with respect to its ability 
to explain the class variable. If we assume h to be an additional feature repre
senting the class variable, yih to represent the similarity measure of feature i 
with the class variable, and A a properly calibrated threshold, then constraint 
(7) below 

n 

X ) ^ihVih > A, (7) 
i=l 

enforces the selection of a subset of features that are likely to perform better in 
the DM application. Another appropriate modification is to relax the constraint 
on the number of features to be selected. We do so by the introduction of the 
additional constraint: 

X^^z>A;, (8) 

The standard lighest fc-subgraph model with the modifications proposed here 
will be referred to as FSMl. 

Fea ture Selection Model 2. The introduction of the additional constraints 
of FSMl may lead to the undesirable case of solutions with too large feature 
subsets. It is thus appropriate to also provide an upper bound on the dimension 
of the set. Such modification may contribute to the stabilization of the solutions 
for particular combinations of the parameters k and A. The new model is as 
follows: 

m i n ^ J2 ' 
i= 

S.t. 
n 

n 

i=zl 
n 

y ^ cihVih 

Vij 

Xi G 

Vij ^ 

1 j=i+l 

> 

< 

> 

> 

(0,1), 
(0,1), 

CijVij 

kuh e z+ 

fe,^ € Z-^^ki < k2 

A 

Xi-\-Xj -I, yij e N,i < j 

ieN 
ij eN 

(9) 

This is model FSM2. 
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Feature Selection Model 3. Both FSMl and FSM2 may be misled in 
the identification of a good feature subset. For example, consider a subset for 
which X)r=i ^ihVih > A, with a certain value of the objective function, say z*. 
Such subset will be preferred to subsets with objective function z' = z* + e 
but a much larger value of J27=i ̂ ihUih- In other words, subsets with better 
explanatory power may be discarded for neglibigle gain in the cross-similarity 
amongst the features. The modification below has been designed with the 
intention of overcoming this problem, bringing the measure of the explanatory 
power of the subset directly in the new objective function: 

n n n 

i=l j=l i—1 

where 7 is the weight to be given to the new component with respect to the 
total cross-similarity. As the magnitude of the two terms is measured on the 
same scale, the tuning of 7 must take into account that the number of terms in 
the positive component of the objective function increases quadratically with 
the number of the selected features, while the negative component increases 
only linearly. With the modified objective function the constraints added in 
model FSMl and FSM2 must obviously be dropped. The model, reproduced 
below, will be referred to as FSM3. 

n n n 

S.t. 
n 

Y^Xi > fci,fci € Z+ 
i=l 

n 

Yxi < k2,k2eZ'^,ki<k2 (10) 
i=l 

Vij > Xi + Xj - 1, Vi, j G Â  

Xi e (0,1), i e N 

Vije (0,1), ijeN 

The application and the discussion of the computational experience with the 
above models will be the topic of the next section. 

5. C O M P U T A T I O N A L E X P E R I E N C E 

In this section we consider some experiments conducted with FS approach 
described in the previous section. First, we run a set of experiments by us
ing randomly generated data, in order to test specifically the behavior of the 
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Table 1. Functions used to compute the target variable 
Type 

Logic 
Logic 

Math. 
Math. 
Math. 
Math. 

Function 

{Xi A X2) V (X3 A - X 5 ) V (X9 A X i i ) 
{Xi A Xz) V (X4 A -1X5 A Xs)y 
V(Xio A Xi3 A -nXis) V (X16 A X18 A --X20) 
10X1 + 35X7 - I8X3 
5 + 10X1 + 35X7 - I8X3 + rand(100)/100 * 50 
5 + Xi * X2 
5 + X3/X4, if X4 7^0 
54-X3/IOO, if X4 = 0 

Name 

A 

B 
C 
D 
E 
F 

method in particularly interesting situations. Second, we have applied the pro
posed FS method to a database derived from a large survey on urban mobility 
conducted in Italy in 2002. 

5.1 Test on Generated Data 

The experiments consider data sets composed by a set of randomly gener
ated features. Different target function have been obtained with particular 
logic or mathematical functions on the generated features. The training data 
was generated using independent uniform distributions for each of the features 
considered. The target functions were constructed ad hoc, and are described 
in Table 1 above. In the following they will be referred to also as classifi
cation functions. The mathematical classification functions were constructed 
with the specific objective of representing different possible situations, some of 
which particularly simple (fucntion C) and some other with different degrees of 
complexity (D, E, F). Logic functions (A,B) were intended to represent propo-
sitional formulas thay would be difficult to learn in a real application. 

We thus consider our method to be successful if it is able to select, with some 
degree of approximation due to the incompleteness of the knowledge contained 
in the training sample, the subset of features that effectively are the argument 
of the function that computes the target variable. 

As far as feature dissimilarity is concerned, we adopt standard correlation for 
the cases where the features are quantitative, and standard concordance index 
for logic data. The tables that follow report some of the results obtained. 
Extensive computations have been conducted to assess the performances of 
the proposed three different models (i.e., FSMl, FSM2, and FSM3). These 
experiments provided sohd evindence that FSM3 outperforms the other two, is 
not computationally more demanding and does not require excessive tuning for 
the objective function parameters. We omit such results here for brevity and 
confine to model FSM3. All experiments were run using the IP solver CPLEX 
version 7.2 on a 2.0 GHz Pentium-4 processor with 512 Mb RAM running 
Debian Linux 3.0. 

The first column of each table contains the name of the experiments, which 
is defined by 4 parameters (as in Table 2): the type of objective function, the 
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number of elements in the training set, the number of original features, and 
finally a letter associated to the particular seed used to start up the random 
generator for that experiment. In the second column, named "model", other 
configuration parameters are defined: the mathematical model adopted (3 for 
FSM3), the upper and lower bound on the number of features to be selected, 
and the weight assigned to the second term of the objective function. Then, 
the dimensions of the associated IP are reported: number of rows (R), number 
of columns (C), and the number of non-zero elements (NZ). Some parameters 
related to the solution process follow, namely, solution time in seconds (S), 
number of nodes in the branch-and-bound tree (N) and optimality gap (Gap), 
which is equal to 0% when the optimal solution is found. Finally, we use a 
synthetic index to assess, ex post the quality of a subset, based on the proportion 
of the selected features that are also argument of the classification function: 

Q(S) = 
n(5, C) 

min{n{S),n{C)) 
*100, (11) 

where n{S, C) is the number of features selected that are also in the classifica
tion fucntion; n{S) is the number of features selected, and n{C) the number of 
features in the classification function. Such quality measure is reported in the 
last column of the tables. 

According to this scheme, in Table 2 the behavior of the solution is consid
ered when the dimension of the trainings sample and the weight 7 vary for 
classification function A. Table 3 considers the same type of experiment for 
different initial random seeds. Table 4 considers problems with larger training 
data and feature sets. 

Table 2. Results for increasing values of 7 for classification function A. 
EXP 

A.200.30.a 
A.400.30.a 
A.600.30a 
A.eOO.SO.a 
A.eOO.SO.a 
A.SOO.SO.a 

Model 

3.7.7.1 
3.7.7.1 
3.7.7.1 

3.7.7.1,50 
3.7.7.2 
3.7.7.1 

IP Dimensions 
R 

356 
342 
332 
332 
332 
330 

C 

385 
371 
361 
361 
361 
359 

NZ 

1095 
1053 
1023 
1023 
1023 
1017 

Solution 
S 

0.17 
0.13 
0.01 
0.00 
0.00 
0.12 

N 

51 
24 
0 
0 
0 
2 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

57.14% 
85.71 
85.71% 
100% 
100% 
100% 

Table 5 reports some of the results obtained for the other classification func
tions described in Table 1. 

Another set of tests have been conducted to verify the effectivess of this 
approach to exclude correlated features. We have thus introduced some con
straints in the data generation procedure, imposing: 

• for classification function k\ X2 — X^\ 

• for classification function C: X3 = X7. 
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Table 3. Results for different random seeds for classification function A. 
EXP 

A.500.30.a 
A.500.30.b 
A.500.30.C 
A.500.30.d 
A.500.30.e 

Model 

3.7.7.2 
3.7.7.2 
3.7.7.2 
3.7.7.2 
3.7.7.2 

IP Dimensions 
R 

358 
356 
372 
373 
357 

C 

387 
385 
401 
402 
386 

NZ 

1101 
1095 
1143 
1146 
1098 

Solution 
S 

0.00 
0.13 
0.08 
0.02 
0.16 

N 

0 
9 
2 
0 
18 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

85.71% 
100% 
100% 
100% 
100% 

Table 4. Results for large 
EXP 

A.lOOO.SO.a 
A.1000.50.a 
A.2000.50.a 
A.2000.50.b 
A.2000.50.C 
A.2000.50.a 
A.2000.50.b 
A.2000.50.C 

Model 

3.7.7.1 
3.7.7.2 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.2 
3.7.7.2 
3.7.7.2 

r instances for classification function A. 
IP Dimensions 

R 

890 
890 
772 
759 
758 
772 
759 
758 

C 

939 
939 
821 
808 
807 
821 
808 
807 

NZ 

2717 
2717 
2363 
2324 
2321 
2363 
2324 
2321 

Solution 
S 

0.42 
0.41 
0.38 
0.22 
0.00 
0.02 
0.11 
0.01 

N 

8 
8 
3 
5 
0 
0 
3 
0 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

85.71% 
85.71% 
85.71% 
85.71% 
85.71% 
100% 
100% 
100% 

Table 5. Results for classification functions B, C and D. 
EXP 

B.1000.30.a 
B.1000.30.b 
B.1000.30.a 
B.1000.30.b 
B.1000.30.C 
B.1000.30.d 

B.1000.30.e 
C.600.30.a 
C.2000.50.a 
C.2000.50.b 
C.2000.50.C 
C.2000.50.d 

D.2000.50.a 
D.2000.50.b 
D.2000.50.C 
D.2000.50.d 
D.2000.50.e 

Model 

3.11.11.2 
3.11.11.2 
3.11.11.3 
3.11.11.3 
3.11.11.3 
3.11.11.3 

3.11.11.3 
1.3.1,50 
3.3.3.1 
3.3.3.1 
3.3.3.1 
3.3.3.1 

3.3.3.1 
3.3.3.1 
3.3.3.1 
3.3.3.1 
3.3.3.1 

IP Dimensions 
R 

321 
312 
321 
312 
329 
328 

314 
436 
743 
814 
803 
801 

743 
809 
813 
789 
814 

C 

350 
341 
350 
341 
358 
357 

343 
465 
792 
863 
852 
850 

792 
858 
862 
838 
863 

NZ 

990 
963 
990 
963 
1014 
1011 

969 
1335 
2276 
2489 
2456 
2450 

2276 
2474 
2486 
2414 
2489 

Solution 
S 

0.23 
0.18 
0.01 
0.01 
0.02 
0.08 

0.02 
0.01 
0.01 
0.02 
0.00 
0.00 

0.00 
0.01 
0.01 
0.02 
0.01 

N 

10 
2 
0 
0 
0 
2 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

90.90% 
90.90% 
100% 
90.90% 
90.90% 
90.90% 

100% 
100% 
100% 
100% 
100% 
100% 1 

100% 
100% 
100% 
100% 
100% 
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Next we verify if the solutions provided, beside expressing good overall qual
ity, do not select the two identical variables in the same subset. This is exactly 
what happened in the experiments reported in Table 6. 

Table 6. Performances with duplicated features on classification function A. 
1 EXP 

1 A.500.30.a 
A.2000.50.a 
A.2000.50.b 
A.2000.50.C 
A.2000.50.d 
A.2000.50.e 
A.2000.50.a 
A.2000.50.b 
A.2000.50.C 
A.2000.50.d 
A.2000.50.e 
C.2000.50.a 
A.5000.50.a 
A.5000.50.b 
A.5000.50.C 
A.5000.50.d 
A.5000.50.e 
A.5000.50.f 

Model 

3.7.7.2 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.2 
3.7.7.2 
3.7.7.2 
3.7.7.2 
3.7.7.2 
3.3.3.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 
3.7.7.1 

IP Dimensions 
R 

425 
1050 
1079 
1070 
1074 
1093 
1050 
1079 
1070 
1074 
1093 
1226 
1226 
1059 
1050 
1087 
1051 
1065 

C 

455 
1100 
1129 
1120 
1124 
1143 
1100 
1129 
1120 
1124 
1143 
1275 
1275 
1109 
1100 
1137 
1101 
1115 

NZ 

1303 
3198 
3285 
3258 
3270 
3327 
3198 
3285 
3258 
3270 
3327 
3725 
3725 
3225 
3198 
3309 
3201 
3243 

Solution 
S 

0.11 
0.03 
0.92 
0.03 
0.05 
0.01 
0.00 
0.02 
0.02 
0.02 
0.01 
0.02 
0.06 
0.09 
0.03 
0.01 
0.07 
0.06 

N 

2 
0 
13 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

83.33% 
83.33% 
100% 
83.33% 
83.33% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
83.33% 
83.33% 
100% 
100% 

100% 1 

Another relevant aspect that needs investigation is the behavior of the so
lution algorithm. As previously stated, in the worst possible case the problem 
may not be easy to solve according to its combinatorial structure; however, the 
efforts for solving practical cases with reasonable dimensions must be evaluated. 

In Table 7 are synthetized some of the results for FSM3 for classification 
function A when then number of features is increased. Similar results can be 
found in Table 8 for classification functions D, E, and F. 

Table 7. Times for diflFerent size instances and parameters for function A. 
EXP 

A.5000.50.a 
A.5000.100.a 
A.5000.200.a 
A.5000.500.a 
A.SOOO.lOOO.a 
A.5000.1000.a 
A.5000.1000.a 

Model 

3.5.15.1 
3.5.15.1 
3.5.15.1 
3.5.15.1 
3.5.15.1 

3.45.55.1 
3.90.110.1 

IP Dim. 
R 

1226 
4951 
19901 
124751 
499501 
363221 
363221 

C 

1275 
5050 
20100 
125250 
500500 
364221 
364221 

Solution 
S 

0.02 
0.71 
14.87 
267.18 
2103.83 
739.64* 
1978.34* 

Gap 

0.00% 
0.0% 
0.00% 
0.00% 
0.00% 
121.46% 
107.72% 

Quality 

85.71% 
85.71% 
85.71% 
71.43% 
85.71% 
85.71% 
85.71% 
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Table 8. Times for instances and parameters for functions D, E, F. 
EXP 

D.2000.50.a 
D.2000.50.b 
D.2000.50.C 
D.2000.50.d 
D.2000,50.e 

E.2000.50.a 
E.2000.50.b 
E.2000.50.C 
E.2000.50.d 

I E.2000.50.e 

F.2000.50.a 
F.2000.50.b 
F.2000.50.C 
F.2000.50.d 
F.2000.50.e 

Model 

3.3.10.1 
3.3.10.1 
3.3.10.1 
3.3.10.1 
3.3.10.1 

3.2.10.1 
3.2.10.1 
3.2.10.1 
3.2.10.1 
3.2.10.1 

3.2.10.1 
3.2.10.1 
3.2.10.1 
3.2.10.1 
3.2.10.1 

IP Dimensions 
R 

743 
809 
813 
789 
814 

1051 
1051 
1064 
1042 
1066 

1051 
1056 
1034 
1030 
1059 

C 

792 
858 
862 
838 
863 

1100 
1100 
1113 
1091 
1115J 

1100 
1105 
1083 
1079 
1108 

NZ 

2276 
2474 
2486 
2414 
2489 

3249 
3249 
3288 
3222 
3294 

3249 
3264 
3198 
3186 
3273 

Solution 
S 

0.02 
0.02 
0.02 
0.03 
0.00 

0.07 
0.06 
0.08 
0.07 
0.05 

0.31 
0.06 
0.37 
0.31 
0.34 

N 

0 
0 
0 
0 
0 

1 
2 
3 
2 
0 

4 
1 
6 
7 
4 

Gap 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Quality 

100% 
100% 
100% 
100% 
100% 

100% 
100% 
100% 
100% 
100% 

100% 
100% 
100% i 
100% 
100% 

The experiments described allow to draw some conclusions, that, although 
may not be extended with complete confidence to other settings, appear to be 
quite general. 

• The solution time are contained; in very few cases they exceeded 90 sec
onds. Such behavior is to be accounted both to the power of the latest 
commercial solvers and to the effect of the constraints added to the stan
dard lightest fc-subgraph; 

• The results are stable with respect to different samples; 

• The subsets obtained are, in most cases, correct; in more than 60% of the 
experiments conducted the quality index is equal to 100%, while only in 
one case is below 85%; 

• The quality of the subsets is affected by the dimension of the training 
data. When this set is small compared to the number of features, the 
information available may not be sufficient to identify the currect subset. 
Such behavior may be also affected by the sampling procedure; 

• The quality of the subsets is affected by the value of the objective function 
parameter 7; higher values of this parameter push the model to find 
solutions that are more correlated with the target variable. 

5.2 An Application 

We have considered the database of the 14,003 questionnaires of the quar
terly survey on Italian urban mobility conducted by ISFORT in year 2002 
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[Alleva et al., 2002] and kindly made available by the Department of Geo-
economical, Linguistic, Historical Studies for Regional Analysis of the Uni
versity of Rome "La Sapienza". The variables that describe each questionnaire 
(a record of the database) are both of qualitative and quantitative nature, and 
are 59 in total. The objective of this application is to identify explanatory 
models that use Boolean logic data to express the relation that links the type 
of urban mobility with the other variables. In particular, the FS method has 
been applied as a pre-processor for the Logic Data Miner Lsquare, described 
in [Felici and Truemper, 2002], and also in Chapter 5 of this book. For this 
purpose, the original data set has been transformed by stardard binarization 
techniques to obey the input format for such method. We have then adopted 
model FSM3 as defined in the previous sections. 

The similarity measure between features (or variables) is then measured by 
concordance; from the complete set of binary variables available, we remove 
those that have a value of concordance with the target variables not significantly 
diflFerent from zero. We thus derive a graph with 76 nodes, and apply the 
described optimization model with different parameters. The most interesting 
results are summarized in Tables 9 and 10, for diflPerent values of the bounds 
imposed on the dimension of the feature subset. 

Table 9. Logic variables selected by FSM3-B with fci:::^5, fc2=20 and 7:^2.00. 
1 Obj.Function: -1.9740 

Node 
1 
5 
10 
22 
60 

Time: 22.24 sec. 

Description 
sex(female) 
age(36-50) 
number _of_vehicles(0-1) 
marital-status(not married) 
activity(others) 

Similarity with target 
0.237 
0.242 
0.250 
0.210 
0.603 

Table 10. Logic variables selected by FSM3-B with ki^^lO, k2=20 and 7:^2.00. 
F.O: 1.1620 

Node 
1 
5 
7 
10 
22 
25 
28 
51 
61 

Time: 168.83 sec. 

Description 
sex(female) 
age(36-50) 
family _dimension(3-4) 
number_of_vehicles(0-1) 
marital_status(not married) 
education (diploma) 
professional-status(employed) 
position_in_profession(others) 
family Jncome(0-5) 

Similarity with target 
0.237 
0.242 
0.150 
0.250 
0.210 
0.234 
0.603 
0.603 
0.155 

The selected features have been used to project the training data on a smaller 
dimension logic space, and we have then applied Lsquare. The system was able 
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to determine separation formulas for the target variable type of daily mobility = 
{regular, irregular} from subsets of 500 records sampled from the available data, 
obtaining, on average, a percentage of correct recognition on the remaining data 
of approximately 75%. These results were compared with those obtained with 
Discriminant Analysis and Classification Trees. They show several points of 
interest, as reported in [Felici and Arezzo, 2003]: while their precision level is 
comparable, if not better, to the one of the other two methods, the formulas 
obtained are more compact with respect to the decision trees, are obtained 
with smaller training sets, and use, on average, smaller subsets of the original 
features. 

6. CONCLUSIONS 

In this chapter we have considered the main issues related to feature selection 
for data mining problems. Such issues arise when the data to be analyzed 
presents a large number of features, and one is to select a small subsetof them 
in order to efficiently perform the mining process. We have considered different 
methods based on search procedures, that are divided into two main categories: 
the filter methods and the wrapper methods. We have then modeled the prob
lem as an optimization problem, defining an objective function and constraints 
that, altoghter, express an integer programming problem. Such problem is 
straight-forwardly related to a well studied NP-complete problem, the lightest 
fc-subgraph problem, known to be a computationally challenging problem. We 
have then presented the results of some experiments run to test the proposed 
model and discussed the results obtained, both in term of computational effi
ciency and solution quality. The results show that the method is effective and 
stable, and can provide a flexible tool to determine good subsets of features for 
data mining applications. 
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!• INTRODUCTION 

One often desires to apply classification methods that in principle require 
records with True/False values, such as decision trees and logic formula con
structors, to records that besides True/False values contain rational numbers 
and/or nominal values. An entry of the latter kind is an element or subset of 
some finite set. To differentiate among the cases, we call True/False entries 
logic data, rational number entries rational data, and nominal entries set data. 

In such situations, all rational and set data must first be converted to logic 
data. This chapter covers several methods for that transformation. The meth
ods are such that the transformed data allow complete classification when logic 
formulas are constructed. Though the discussion of the transformation meth
ods exclusively assumes that context, the reader should have little difficulty to 
adapt the methods to other classification schemes such as decision trees. 

We focus here on the case where the records of two training classes A and B 
have been randomly selected from two populations A and B, respectively. The 
logic formulas are to be derived from the records of A and B and later are to 
be applied to records oi A — A and B — B. 

For the purpose of a simplified discussion in this section, we assume for the 
moment that the records have no missing entries. That restriction is removed 
in the next section. Thus, all transformation methods of this chapter handle 
records with missing entries. 

1.1 Transformation of Set Data 

For nominal data, the transformation depends on the size of the underlying 
finite set and on whether the entries are elements or subsets of that set. When 
the given set is small and element entries are to be transformed, then the 
approach is simple and well known. One associates with each element a logic 
variable and encodes presence of an element by True/False values in the obvious 
way. When the given set is large or when subset entries must be transformed, 
different schemes are used. In the particular case of subsets, the entries are 
first converted to rational numbers, which are then transformed to True/False 
values using the scheme sketched next. 

1.2 Transformation of Rational Data 

For rational data, the conversion to logic data may be accomplished by the 
following, well-known approach. One defines for a given attribute A; > 1 break
points and encodes each rational number of the attribute by k True/False 
values where the j th value is True if the rational number is greater than the 
jt\i breakpoint, and is False otherwise. The selection of the k breakpoints re
quires care if the logic formulas are to classify the records oi A- A and B - B 
with good accuracy. 

A number of techniques for the selection of the breakpoints have been pro
posed. Subsections 1.4-1.6 give a review. Suffice it to say here that the most 
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effective methods to-date are based on the notion of entropy. In these methods, 
the breakpoints are so selected that the rational numbers of a given attribute 
can be most compactly classified by a decision tree as coming from A or B. 
Here, we describe a method called Cutpoint that is based on a different goal. 
Recall that the records of the sets A and B are presumed to be random sam
ples of the populations A and B. Taking a different viewpoint, we may view 
each record oi A — A and S — B to be a random variation of some record of 
A or J5, respectively. The goal of the selected breakpoints is then that these 
random variations largely leave the True/False values induced by the selected 
breakpoints unchanged. 

Cutpoint aims for the stated goal by selecting breakpoints called markers 
that correspond to certain abrupt changes in classification patterns, as follows. 
First, for a given attribute, the rational numbers are sorted. Second, each value 
is labeled as A or JB depending on whether the value comes from a record of 
A ov B^ respectively. For the sake of a simplified discussion, we ignore for the 
moment the case where a rational number occurs in both a record of A and a 
record of B. Third, each entry with label A (resp. B) is assigned a class value 
of 1 (resp. 0). Fourth, Gaussian convolution is applied to the sequence of class 
values, and the midpoint between two adjacent entries where the smoothed 
class values change by the largest amount, is declared to be a marker. 

For example, if the original sorted sequence, with class membership in paren
theses, is . . . , 10.5(A), 11.7(A), 15.0(A), 16.7(A), 19.5(^), 15.2(^), 24.1(5), 
30.8(-B), . . . , then the sequence of class values is . . . , 1, 1, 1, 1, 0, 0, 0, 0, — 
Note the abrupt transition of the subsequence of Is to the subsequence of Os. 
When a Gaussian convolution with small standard deviation a is performed on 
the sequence of class values, a sequence of smoothed values results that exhibits 
a relatively large change at the point where the original sequence changes from 
Is to Os. If this is the largest change for the entire sequence of smoothed class 
values, then the original entries 16.7(A) and 19.5(5), which correspond to that 
change, produce a marker with value (16.7 4-19.5)/2 = 18.2. 

Evidently, a large change of the smoothed class values corresponds in the 
original sorted sequence of entries to a subsequence of rational numbers mostly 
from A followed by a subsequence of numbers mostly from 5 , or vice versa. 
We call such a situation an abrupt pattern change. Thus, markers correspond 
to abrupt pattern changes. 

We differentiate between two types of abrupt pattern changes. We assume, 
reasonably, that an abrupt change produced by all records of the populations 
A and B signals an important change of behavior and thus should be used to 
define a True/False value. The records of the subsets A and B may exhibit 
portions of such pattern changes. We say that these pattern changes of the 
records of A and B are of the first kind. The records of A and B may also have 
additional abrupt pattern changes that do not correspond to abrupt pattern 
changes in the records of the populations A and B. This is particularly so if 
A and B are comparatively small subsets of the populations A and B, as is 
typically the case. We say that the latter pattern changes are of the second 
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kind. 
There is another way to view the two kinds of pattern changes. Suppose we 

replace records r of A |J ^ by records f of ( ^ - ^ ) |J {B — B), respectively, where 
f is similar to r. Then abrupt pattern changes of the first (resp. second) kind 
produced by the records r likely (resp. unlikely) are abrupt pattern changes 
produced by the records r. 

There is a third interpretation. Suppose we extract from the sorted sequence 
of numerical values just the A and B labels. For example, the above sequence 
. . . , 10.5(A), 11.7(A), 15.0(A), 16.7(A), 19.5(^), 15.2(B), 24.1(JB), 3 0 . 8 ( B ) , 

. . . becomes . . . , A, A, A, A, B, J5, B, J9, We call this a label sequence. 
Then for an abrupt pattern change of the first (resp. second) kind, the random 
substitution of records r by records f is unlikely (resp. likely) to change the 
label sequence. 

Outpoint relies on the third interpretation in an attempt to distinguish be
tween the two kinds of pattern changes, as follows. The method estimates the 
probability that A or JB is selected in label sequences of abrupt pattern changes 
of the second kind, by assuming p = |A|/(|A| + \B\) (resp. q = |B|/(|A| + \B\)) 
to be the probability for the label A (resp. B) to occur. Then the standard 
deviation of the Gaussian convolution process is so selected that the following 
is assured. Suppose there is at least one abrupt pattern change that according 
to the probabilities p and q has low probability and thus is estimated to be of 
the first kind. Then the largest change of the smoothed class values and the 
associated marker tends to correspond to one such abrupt pattern change. In
formally, one may say that the standard deviation a is so selected that marker 
positions corresponding to abrupt pattern changes of the first kind are favored. 

Outpoint has been added to a version of the Lsquare method [Felici and 
Truemper, 2002]; see also [Truemper, 2004] and Ohapter 5 "Learning Logic 
Formulas and Related Error Distributions." The method computes DNF (dis
junctive normal form) logic formulas from logic training data. Outpoint ini
tially determines one marker for each attribute of the original data as described 
above. Let the transformation of A and B via these markers produce sets A' 
and B'. If A' and B' cannot be separated by logic formulas, then Outpoint 
recursively determines additional markers. The Outpoint/Lsquare combina
tion is so designed that it does not require user specification of parameters or 
rules except for a limit on the maximum number of markers for any attribute. 
To-date, that maximum has been fixed to 6 in all tests, and that limit likely is 
appropriate in general. 

1.3 Computational Results 

The methodology described in this chapter is rather new, and to-date we have 
only preliminary computational results. First, in several application projects 
such as credit rating, video image analysis, and word sense disambiguation we 
have found the transformations to be effective and reliable. Second, in tests on 
four standard datasets, Outpoint/Lsquare usually achieved somewhat higher 
accuracy than combinations of entropy-based methods and Lsquare. For these 
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tests, the classes A and B were randomly selected from populations A and B, 
and the testing was done on records of A —A and B — B. Also, the classification 
accuracy usually declined more slowly when the size of the training sets A and 
B was reduced. 

In the remainder of this section, we review prior work on the transformation 
of rational data to logic data. Though work has been done for rule extraction 
from set data—see, for example, [Hand et al, 2001]— there has been little 
work on the conversion to logic data. Indeed, as far as we know, just the 
trivial case has been treated where the entries are elements of a small set. For 
completeness, we cover that case here, too, but then focus on the two additional 
cases where the entries are elements of a large set or are subsets of a set. 

Prior work on the conversion of rational data to logic data typically uses the 
word discretization. Since we also treat the conversion of set data, which by the 
assumption of finiteness of the underlying set are discrete already, we use terms 
such as transformation or conversion instead of the term discretization. An 
exception is the subsequent review of prior work, where the term discretization 
has generally been employed. 

1.4 Entropy-Based Approaches 

The concept of entropy, as used in information theory, measures the purity 
of an arbitrary collection of examples [Mitchell, 1997]. Suppose we have two 
classes of data, labeled N and P. Let n be the number of Â  instances, and 
define p to be the number of P instances. An estimate of the probability that 
class P occurs in the set is p/{p-hn), while an estimate of the probability that 
class N occurs is n/{p + n). Entropy is then estimated as 

entropy {p, n) := -— log2 - 7 ^ log2 — ^ (1) 
p-\-n p-\-n p + n p-\-n 

Another value, called gain, indicates the value of separating the data records 
on a particular attribute. Let V be an attribute with two possible values. 
Define pi (resp. ni) to be the number of P (resp. N) records that contain one 
of the two values. Similarly, let p2 (resp. 77,2) be the number of P (resp. N) 
records that contain the second value. Then 

gain = entropy{p,n)-[ entropy{pi,ni)-\ entropy{p2,n2)] (2) 

In generating decision trees, for example, the attribute with the highest gain 
value is used to split the tree at each level. 

The simplest approach to transforming rational data to logic data is as fol
lows. Assume that each record has a rational attribute, V. The records are first 
sorted according to F , yielding rational values vi, V2," -, Vk- Thus, for each 
pair of values, Vi and Vi+i, the average of the two can be computed, indicating 
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a potential marker to separate the P records from the N records. For each pos
sible marker, the associated gain can be computed. The highest gain indicates 
the best marker that separates the two classes of data [Quinlan, 1986]. 

The entropy-based method has been further developed to separate rational 
data into more than just two classes. In [Fayyad and Irani, 1992, 1993], a 
recursive heuristic for that task is described. The multi-interval technique first 
chooses a marker giving minimal entropy. It then recursively uses a princi
ple called the Minimum Description Length Principle (MDLP) to determine 
whether additional markers should be introduced. 

Another concept, called minimum splits^ is introduced in [Wang and Goh, 
1997]. Minimum splits minimize the overall impurity of the separated intervals 
with respect to a predefined threshold. Although, theoretically, any impurity 
measurement could be used, entropy is commonly chosen. Since many mini
mum splits can be candidates, the optimal split is discovered by searching the 
minimum splits space. The candidate split with the smallest product of entropy 
and number of intervals is elected to be the optimal split. 

Entropy-based methods compete well with other data transformation tech
niques. In [Dougherty et a/., 1995], it is shown not only that discretization prior 
to execution of Naive Bayes decision algorithms can significantly increase learn
ing performance, but also that recursive minimal entropy partitioning performs 
best when compared with other discretization methods such as equal width 
interval binning and Holte's IR algorithm [Holte, 1993]. More comparisons 
involving entropy-based methods can be found in [Kohavi and Sahami, 1996], 
which demonstrates situations in which entropy-based MDLP methods slightly 
outperform error-minimization methods. The error-minimization methods used 
in the comparison can be found in [Maass, 1994] and [Auer et a/., 1995]. For 
information regarding the performance of entropy-based methods for learning 
classification rules, see [An and Cercone, 1999]. 

1.5 Bottom-Up Methods 

Bottom-up methods initially partition the data set, then recombine similar 
adjacent partitions. The basic method is introduced in [Srikant and Agra-
wal, 1996]. Major problems are low speed and bloating of the produced rule 
set. To offset long execution times, the number of intervals must be reduced. 
Uninteresting excess rules may be pruned using an interest measure. Data 
clustering has been used [Miller and Yang, 1997] to generate more meaningful 
rules. Yet another approach to merging related intervals is used in the so-called 
contrast set miner [Bay and Pazzani, 1999]. The use of one such machine, called 
STUCCO, is illustrated in [Bay, 2000]. 

1.6 Other Approaches 

Bayes' Law has also been utilized to discretize real-valued data into intervals. 
[Wu, 1996] demonstrates one such method. In it, curves are constructed based 
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upon the Bayesian probabihty of a particular attribute's value in the data set. 
Markers are placed where leading curves differ on two sides. 

A number of investigations have focused on simultaneous analysis of at
tributes during the transformation process. [Dougherty et al, 1995] coin the 
term dynamic to refer to methods that conduct a search through the space of 
possible k values for all features simultaneously. For an example method, see 
[Gama et a/., 1998]. 

Relatedly, publications tend to use the term multivariate with different in
terpretations. [Kwedlo and Kr§towski, 1999] refer to a multivariate analysis as 
one that simultaneously searches for threshold values for continuous-valued at
tributes. They use such an analysis with an evolutionary algorithm geared for 
decision rule induction. [Bay, 2000], however, declares that a multivariate test 
of differences takes as input instances drawn from two probability distributions 
and determines if the distributions are equivalent. This analysis maintains the 
integrity of any hidden patterns in the data. 

[Boros et al, 1997] explore several optimization approaches for the selection 
of breakpoints. In each case, all attributes of the records of the training sets 
A and B are considered simultaneously. For example, minimization of the 
total number of breakpoints is considered. The reference provides polynomial 
solution algorithms for some of the optimization problems and establishes other 
problems to be AfV-haid, 

2. DEFINITIONS 

We need a few definitions for the discussions of the methods of this chapter. 

2.1 Unknown Values 

At times, the records of A and B may be incomplete. Following [Truemper, 
2004], we consider two values signaling that entries are unknown. They are 
Absent dLiid Unavailable. The value Absent mea.ns that the value is unknown but 
could be obtained, while Unavailable means that the value cannot be obtained. 
Of course, there are in-between cases. For example, a diagnostic value could 
be obtained in principle but is not determined since the required test would 
endanger the life of the patient. Here, we force such in-between cases to be 
classified as Absent or Unavailable. For the cited diagnostic case, the choice 
Unavailable would be appropriate. 

Another way to view Absent and Unavailable is as follows. Absent means 
that the value is unknown, and that this fact is, in some sense, independent 
from the case represented by the given record. On the other hand. Unavailable 
tells that the reason why the value is not known is directly connected with the 
case of the record. Thus, Unavailable imphcitly is information about the case 
of the record, while Absent is not. This way of differentiating between Absent 
and Unavailable implies how irrelevant values are handled. That is, if a value 
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is declared to be irrelevant or inapplicable, then this fact is directly connected 
with the case of the record and thus is encoded by the value Unavailable. 

In prior work, the treatment of unknown values typically does not depend on 
whether the unknown value could be obtained. For example, the average value 
of the attribute is often used for missing values [Mitchell, 1997]. As another ex
ample, database methods such as SQL use NULL to represent unknown entries 
[Ramakrishnan and Gehrke, 2003]. In applications, we have found the distinc
tion between Absent and Unavailable to be useful. For example, a physician 
may declare that it is unnecessary that a certain diagnostic value be obtained. 
In that case, we call the value irrelevant and encode it by assigning the value 
Unavailable. Conversely, if a diagnostic value is deemed potentially useful but 
is not yet attained, we assign the value Absent. 

It is convenient that we expand the definition of the three data types so that 
Absent and Unavailable are allowed. Thus, logic data have each entry equal to 
True, False, Absent, or Unavailable; rational data have each entry equal to a 
rational number, Absent, or Unavailable, and set data have each entry equal to 
an element of a finite set, a subset of a finite set. Absent, or Unavailable. 

2.2 Records 

A record contains any mixture of logic data, rational data, and set data. There 
are two sets A and B of records. Each record of the sets has the same number of 
entries. For each fixed j , the j th entries of all records are of the same data type. 
We want to transform records of A and B to records containing just logic data, 
with the objective that logic formulas determined by any appropriate method 
can classify the records correctly as coming from A or B. 

2.3 Populations 

Typically, the sets A and B come from populations A and B, respectively, 
and we want the transformations and logic formulas derived from A and B to 
classify the remaining records of A — A and B — B with high accuracy. 

There is a multipopulation version where several populations and sets are 
given. Say, population Ai, A2," -, Am containing sets Ai, A2,..., Am, re
spectively, are given. One desires to classify the records by logic formulas. This 
problem can be reduced to one two-population case or to m two-population 
cases where in the ith case Ai and Ai play the role of A and A and where 
\Jk->ci Ak and [jj^^i Ak play the role of B and B. [Truemper, 2004] includes 
details for the situation where Lsquare is used. 

2.4 D N F Formulas 

A literal is the occurrence of a possibly negated variable in a logic formula. 
A disjunctive normal form (DNF) formula is a disjunction of conjunctions of 
literals. For example, {xi A -10:2) V (^2 A 0:3) V {xi A -1X3) is a DNF formula. 
The evaluation of DNF formulas requires the following adjustments when the 
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values Absent and Unavailable occur. Let D be the DNF formula D — Di\J 
1̂ 2 V • • • V Dfc, where the Dj are the DNF clauses. For example, we may have 
Dj = X A 2/ A -iz, where x, y and -^z are the literals of logic variables x, 2/, and 
z. 

The DNF clause Dj evaluates to True if the variable of each literal has been 
assigned a True/False value so that the literal evaluates to True, For example, 
Dj = xAy A-^z evaluates to True iix = y = True and z = False. The clause Dj 
evaluates to False if, for at least one variable occurring in Dj, the variable has 
a True/False value so that the corresponding literal evaluates to False, or if the 
variable has the value Unavailable. For example, x =False or x ^Unavailable 
cause Dj = X Ay A-iZ to evaluate to False. If one of the above cases does not 
apply, then Dj has the value Undecided. Thus, the Undecided case occurs if 
the following three conditions hold: (1) Each variable of Dj has True, False, 
or Absent as values; (2) there is at least one Absent case; and (3) all literals for 
the True/False cases evaluate to True. For example, Dj — x Ay A-^z evaluates 
to Undecided if x —Absent, y —True, and z =False. 

The DNF formula D = JDI V Z)2 V • • • V D̂ ^ evaluates to True if at least one Dj 
has value True, to False if all Dj have value False, and to Undecided otherwise. 
Thus in the Undecided case, each Dj has value False or Undecided, and there 
is at least one Undecided case. 

As an aside, prior rules on the treatment of unknown values effectively treat 
them as Absent. For example, the above evaluation of DNF formulas for Absent 
values is consistent with the evaluation of logic formulas of SQL for NULL 
values [Ramakrishnan and Gehrke, 2003]. 

2.5 Clash Condition 

We assume that the desired classifying formulas are to be in DNF, and that 
two such formulas must exist, where one of them evaluates to True on the 
records derived from A and to False on the records derived from B, and where 
the second formula achieves the opposite True/False values. We call these 
formulas separating. Note that the outcome Undecided is not allowed. That 
value may occur, however, when a DNF formula evaluates records of {A-A) U 
(B-B). Effectively, a formula then votes for membership in A or B, or declares 
the case to be open. We associate with the vote for A and B a numerical value 
of 1 or - 1 , resp., and assign to the Undecided case the value 0. This rule is 
useful when sets of formulas are applied, since then the vote total expresses the 
strength of belief that a record is in A or B. 

There is a simple necessary and sufficient condition for the existence of the 
separating formulas. We call it the clash condition. For the description of the 
condition, we assume for the moment that the records of A and B contain just 
logic data. We say that an A record and a B record clash if the A record 
has a True/False entry for which the corresponding entry of the B record 
has the opposite True/False value or Unavailable, and if the B record has a 
True/False entry for which the corresponding entry of the A record has the 
opposite True/False value or Unavailable. 
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For example, let each record oi AUB have three entries xi, X2, and Xs^ and 
suppose that an A record is {xi — True, x^ = Unavailable, xs = False) and that 
a B record is {xi = False, X2 = True,x^ — False), Then the entry xi — True of 
the A record differs from xi = False of the B record, and thus the two records 
clash. On the other hand, take the same A record, but let the B record be 
{xi — True,X2 == Unavailable,xs = Unavailable). Then there is no True/False 
value in the B record for which the A record has the opposite True/False value 
or Unavailable, and thus the two records do not clash. 

Define the clash condition to be satisfied by sets A and B containing only 
logic data if every record of A clashes with every record of B, The following 
theorem links the existence of separating DNF formulas and the clash condition. 
We omit the straightforward proof. 

Theorem 2.1. Let sets A and B contain just logic data. Then two separating 
DNF formulas exist if and only if the clash condition is satisfied. 

3. OVERVIEW OF TRANSFORMATION PROCESS 

Let sets A and B of records be given. In the general case, the records con
tain a mixture of logic data, rational data, and set data. We accomplish the 
transformation to records having only logic data in two main steps. First, we 
convert the set data to logic data and/or to rational data. This step is covered 
in Section 4. Second, we convert in the resulting records the rational data to 
logic data. This step is described in Sections 5-7. 

4. SET DATA TO LOGIC DATA 

In this section, we describe the transformation of set data to logic data or 
rational data. The conversion is carried out separately for each index j for 
which the jth entries of A and B are set data. Thus, for such j , there is a 
finite set W such that all j th entries different from Absent or Unavailable are 
elements or subsets of W, We do not allow a mixture of elements and subsets, 
so either all entries in jth position and different from Absent or Unavailable 
are elements, or all such entries are subsets. The transformation to logic data 
depends on which of the two cases is at hand. 

4.1 Case of Element Entries 

Suppose the set W has m element, say W = {wi,W2,... ^Wm}- Thus, each 
entry in j th position that is different from Absent and Unavailable is some 
Wi G W, 

If m is small, say m < 5, we use a well-known approach. We introduce k — m 
logic variables xi, 0:2, •. •, Xk and encode occurrence of entry wi by 

_ J True if i = I ,^. 
^ "" ]̂  False otherwise 
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For example, let W = {wi^W2^ws}. Then fc = m = 3, and Wi is encoded by 
Xi = True, X2 = False, Xs = False, W2 is encoded by xi = False, x^ = True, 
xs = False, and w^ is encoded by xi — False, X2 = False, xs = True. 

If m is large, we select an integer / > 1 and derive from W two sets WA and 
WB where WA (resp. WB) contains the Wi e W that occur at least / times 
as j th entry in records of A (resp. B) and never as j th entry in records of B 
(resp. A). We use a single logic variable x and encode wi by 

{ True if wi G WA 

False if Wi G WB (4) 
Unavailable otherwise 

Note that this encoding introduces the value Unavailable. 
For example, let W = {wi,W2,... , 1̂ 50} and / = 5. Suppose W4, w^, wio are 

the Wi £W that occur at least five times as jth entry in records of A and that 
never occur as ^th entry in records of B. Thus, WA = {'W4,W5,wio}. Assume 
that, similarly, WB = {w7,W9,wi7,ws5}. We encode three example cases w^, 
wir, and w^i using these sets. The entry w^ is in WA^ SO it is represented by 
X = True. The entry W17 is in WB and is encoded by a; = False. The entry 
wsi is not in WA or WB, and is encoded by a; = Unavailable. 

An alternative method for the case of large m combines the ideas of the 
above two schemes. We define a small integer fc > 1 and collect in a set W' 
the k elements of W that occur most frequently as jth entry in the records of 
AUB. Supposed = {wi,W2,... ,Wk}. LetW" = W-W'. liwiEW', 
we represent Wi by True/False values of variables xi, ^ 2 , . . . , x^ as described 
above for small m. We also assign the value Unavailable to an additional 
variable Xk-^-i- If wi G W", we define xi = X2 = " - = Xk = Unavailable and 
assign a True/False/Unavailable value to Xk-^i according to the above method 
for large m. The set W and variable x used there are W" and Xk-\-i here. 

For example, let W — {I(;I,K;2, . . . ,^^50} and A; = 3. Suppose the k most 
frequently occurring entries in j th position are w\, W2, W3. Then W' = 
{wi,W2,W3} and W = W — W' = {w4,wr,,... ,w^o}. We show the encoding 
for example cases W2 G W' and wg G W". Using the above scheme for small m, 
the encoding for W2 G W' is xi = False, X2 = True, X3 = False. We add to that 
encoding Xfc+i = X4 = Unavailable. For the encoding of it's G W, suppose that 
the above method for large m determines from W" the sets WA = {w4,w^,W8} 
and WB = {w7,W9,wi'r,ws5}. Then ws G W" is encoded by X4 = True plus 
xi = X2 = X3 = Unavailable. 

Another transformation appears to be interesting, provided the elements of 
W can be interpreted as approximate descriptions of values on a numerical 
scale. In such a situation, we sort the elements Wi of W so that the corre
sponding implied values are in increasing order. Let the order he wi, W2," -•, 
Wm- Then we replace each j th entry Wi by an integer yi = i. 

For example, suppose the speed of a car is characterized by the elements of 
the set w = {slow, medium, fast}. We let wi = slow, W2 = medium, W3 = fast 
and encode Wi by yi — i. Thus, slow, medium, fast are replaced by 1, 2, 3, 
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respectively. 
Once all the j th entries wi have been transformed to the integer entries yi, 

we replace those rational data yi by logic data as described in Sections 5-7. 
In the above methods, each Wi eW is replaced by / > 1 True/False/Unavailable 

values xi,X2,''' 'iXi or by an integer y^. Now suppose that a j th entry is not 
some Wi £ W but is Absent or Unavailable, Then we assign to all variables 
introduced for the j th entry, that is, to the xi or yi, that value. 

4.2 Case of Set Entries 

Suppose subsets Vi, V2,..., Vm of a set W may occur as j th entry. We could 
define W = {^1, V2,... , Vm} and use one of the methods of the preceding sub
section to encode each Vi. That approach ignores possible relationships among 
the Vi and thus may be unsatisfactory. For example if 1^ = {red, green, blue] 
and Vi = {red, blue}, V2 — {red, green}, and V3 :== {blue, green}, then Vi and 
V2 have the element red in common, while V2 and V3 have the element green 
in common. The following method recognizes such relationships and uses them 
for the encoding. 

Define WA (resp. WB) to be the union of the Vi occurring as jth entry in 
records of A (resp. B) and never in records of B (resp. A). We define a strength 
of membership value s(Vi) by 

_ \VinwM-\VinWB\ 
'^^'>- \v,niWAVWs)\ ^^> 

Since \Vi 0 WA\ and \Vi f) WB\ cannot be larger than |V̂  D (WA U WB)\, we have 
— 1 < s{Vi) < 1. In the records of A and B, we replace each Vi occurring as 
jth entry by the rational value s{Vi). If instead of a set Vi we have Absent or 
Unavailable as jth entry, we leave that entry unchanged. 

For example, let WA = {u)i,W2,.. • , w;io} and WB = {wn,wi2,... ,̂ t̂ 3o}• If 
the j th entry of a record is Vi = {W2','W7,WIQ,WI^,W3Q,W^4}, then Vi fl WA = 
{w2,W7,wio}, ViHWB = {wu}, and Vi n (WA U WB) = {w2,W7,wio,wi4}. 
Thus, s{Vi) = {\Vi n WA\ - \Vi n WB\)/\Vi n {WA U WB)\ - (3 - l ) /4 = 0.5. 

Once all j th entries Vi have been transformed to rational entries s{Vi), we re
place those rational data by logic data. Sections 5-7 cover that transformation 
for the general case. 

5. RATIONAL DATA TO LOGIC DATA 

We summarize algorithm Outpoint, which carries out the conversion of rational 
data to logic data. Let J be the set of indices j for which the j th entries of the 
given records contain rational data. 

Initially, we analyze the j th entries of each j G J in isolation and replace 
such entries by logic data. Specifically, we select one marker and encode each 
rational j t h entry by one True/False value defined via the marker. Let A' and 
B' be the two sets of records with True/False values obtained that way from 



Chapter 7: Transformation of Rational and Set Data to Logic Data 265 

the records of the original training sets A and J5, respectively. If A' and B' 
satisfy the clash condition of Section 2.5, then they can be separated, and we 
stop. Otherwise, we begin a recursive process where in each pass an index j 
is selected and one additional marker is defined for that index. We refine the 
logic data for the jth entries accordingly and check if the latter data allow full 
separation. If this is so, the process stops, and the desired transformation has 
been accomplished. Otherwise, we begin another pass. The next two sections 
describe Outpoint in detail. First, we cover the selection of the initial markers. 

6. INITIAL M A R K E R S 

Since the initial markers are determined for each j G J in isolation, we only need 
to describe the process for a fixed j G J . For that index j , we denote the rational 
numbers in jth position, sorted in increasing order, hy zi < Z2 < " - < ZN-
For the moment, we ignore all Absent and Unavailable values that may occur 
in the jth position. 

6.1 Class Values 

We associate with each Zi a class value Vi that depends on whether Zi is equal 
to any other Zh, and whether Zi is in a record of set A or B. Specifically, if 
Zi is unique and thus not equal to any other Zh, then Vi is 1 (resp. 0) if the 
record with Zi as j th entry is in A (resp. B). If zi is not unique, let H be the 
set of indices h for which Zh = zi. Note that i e H. Let HA (resp. HB) be the 
subset of the h E H for which Zh is the jth entry of a record in set A (resp. B). 
If /i G HA (resp. h G HB), we say that Zh produces a local class value equal to 
1 (resp. 0). The class value vi is then the average of the local class values for 
the Zh with he H. Thus, Vi = [1 - \HA\ + 0 • \HB\]/\H\ or, compactly, 

Vi = \HA\/\H\ (6) 

The formula also covers the case of unique Zj, since then H — {i} and either 
HA = {i} or HA = 0 depending on whether the record with Zi as j th entry is 
in A or B, respectively. 

For example, suppose zi = 2^ Z2 = 5, and z^ = 10 occur in records of set A, 
and Z3 = 7 and Z4 = 10 occur in records of set B. Since zi and Z2 are unique 
and occur in records of set A, we have t;i = i;2 = 1. Similarly, uniqueness of zs 
and occurrence in a. B record produce î s = 0. The values z^ and z^ are equal 
and exactly one of them, z^, occurs in a record of set A. Thus for both Z4 and 
2:5, we have H — {4,5} and HA = {5}, and by (6), V4 = v^ = \HA\/\H\ = 0.5. 

Recall that a marker corresponds to an abrupt change of classification pat
tern. In terms of class values, a marker is a value c where many if not all Zi close 
to c and satisfying Zi < c have high class values, while most if not all Zi close to 
c and satisfying zi > c have low class values, or vice versa. We identify markers 
following a smoothing of the class values by Gaussian convolution, a much used 
tool. For example, it is employed in computer vision for the detection of edges 
in digitized images; see [Forsyth and Ponce, 2003]. 
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6.2 Smoothed Class Values 

Gaussian convolution uses the normal distribution with mean equal to 0 for 
smoothing of data. For completeness, we include the relevant formulas. For 
mean 0 and standard deviation cr > 0, the probability density function of the 
normal distribution is 

f{y) = -l^e-y"^^^^'\ 0 < 2 / < o o (7) 

In our case, we always choose cr to be a positive integer. We cover the selection 
in a moment. 

For any integer g and the selected cr, let Pg denote the probability that the 
random variable defined by f{y) falls into the open interval {g - 0.5,^^ 4- 0.5). 
Since g is the midpoint of the open unit interval {g — 0.5, g + 0.5), we have 

09 = / fiy)dy = f{9) (8) 

The smoothing process uses the /Ĵ  values to derive, from the class values Vi^ 
smoothed values v'^ by the formula 

^ i = E 1^9-^i+g, l<i<N (9) 
g=-oo 

The formula relies on the convention that each Vi^g without defined value, that 
is, with i -{- g < 1 or i + g > N, is declared to be 0. For the values of a of 
interest and for \g\ > 2cr + 1, the Pg are suflftciently small that they can be 
ignored. That fact and the relation /3g = /3_^, for all g, allow us to simplify (9) 
for each actual computation to 

2(7 

vl=0O'Vi + Y.l3g'{Vi+g+Vi-g), l<i<N (10) 

9=1 

The assumption of Vi = 0 outside the known values vi, 1^2,..., VN results in 
biased or, rather, unusable values v'^ values for 1 < z < 2a and Â  — 2cr + 1 < 
i < N. As a consequence, we ignore these values and declare the remaining v'^ 
values usable. 

6.3 Selection of Standard Deviation 

We select the standard deviation a via an analysis of classification patterns. 
Suppose we produce sequences made up of the letters A and B. We construct 
a given sequence by randomly selecting one letter at a time, choosing the letter 
A with probability p and the letter B with probability q = 1 - p. In the 
construction of a sequence, we begin with the sequence AB. For given k > 1 
and / > 1, we adjoin A; — 1 >ls in front of AB and I — 1 Bs behind AB. At this 
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point, we have k As followed by / Bs. Finally, we add a JB in front and an A at 
the end. What is the probability that such a sequence S is constructed from 
AB when we randomly select letters and add them first in front and then at 
the end, until a sequence of the described form is achieved? Since the initial 
sequence AB is given, the probability is 

P [ 5 ] = P V (11) 

For m > 1, consider the event Em where the above process constructs any S 
for which k > m or I > m. We add up the appropriate probabilities of (11) 
to get the probability am that Em occurs. Using the fact that the sum of the 
probabilities of all possible cases is 1, that is, 

E P V = 1 (12) 
fc>l 
/ > 1 

we compute a ^ as 

k>m fc>l A!>Tn 
/ > 1 l>m l>m 

fc>i fc>i fc>i 
/>i i>i i>i 

= p^-i + ̂ ^-1 _ (pg)m-i (13) 

Define the length of S to be the number of ^ s and Bs minus 2, which is k-\-l. 
Effectively, we do not count the initial B of S and the final A of S. The 
expected length L of 5 is 

L = Y.{k + l)p''q' 
fc>l 

k>l 1>1 k>l (>1 

( l - p ) 2 1-q 1-p {l-q)2 

pq 
(14) 

Suppose we have a sequence T of N randomly selected As and Bs. What is the 
expected number of the above sequences S occurring in T? For our purposes, 
a sufficiently precise estimate is 

N/L = Npq (15) 

Of the expected number of sequences S occurring in T, the fraction of se
quences that qualify for being sequences of event Em is approximately equal to 
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am- Thus, a reasonable estimate of the expected number of sequences of Em 
occurring in T, which we denote by K{N,m), is 

K{N, m) = {N/L)am - Npq [p—^ + p — ^ - (pq)^-'] (16) 

Each S occurring in T is a potential case for a marker that corresponds to 
the point where k As transition to / Bs. We do not want markers to result 
from sequences S that likely can be produced by randomness. Thus, we avoid 
considering sequences 5 of any event Em for which the expected value K{N, m) 
is greater than or equal to 1. Since K{N,m) decreases as m increases, there 
either is a largest value m* > 1 for which K{N,m*) > 1, or K{N^ 1) < 1. In 
the latter case, we define m* := 1. 

We select the standard deviation a of the Gaussian convolution so that se
quences of Em with m < m* likely do not produce a marker if there is a 
sequence 5 ' with length greater than m*. 

By the above arguments, the latter sequence S' is unlikely to have been 
produced by randomness, and thus is likely due to a particular behavior of the 
values of the attribute under consideration. In terms of the discussion in the 
introduction, we estimate that we have an abrupt pattern change of the first 
kind. 

We achieve this desired effect by selecting a = m*. Indeed, that choice 
produces significant probabilities Pg for g^m < g < 2m, and these probabilities 
tend to smooth out the classification values vi associated with the ^s and Bs 
of randomly produced sequences 5 of Em* • 

When Â  is not large, certain boundary eflFects should be addressed. We de
scribe the adjustment and then justify it. Instead of demanding that K{N, m*) > 
1, we ignore the first and last m* As and Bs of the sequence T, and demand 
that K{N — 2m*^m*) > 1. Using (16), m* is thus the largest value m satisfying 

K{N - 2m, m) = {N - 2m)pg[p^-^ -\-p"^'^ - {pq)"^'^] > 1 (17) 

unless we have, for m = 1, K{N — 2m, m) < 1. In the latter case we select 
m* — 1. We motivate the adjustment as follows. When Gaussian convolution 
is performed with cr = m*, the first smoothed class value is computed using 
the values vi of the 4(j -f- 1 As and ^ s at the beginning of T. Denote that 
subsequence by T'. If the central 2a -\-l As and Bs of T' contain an 5 of some 
Em with m < m*, then the class values of the As and ^ s of any such S tend 
to be smoothed out. Thus, S is unlikely to result in a marker if a subsequence 
S' with length greater than m* exists. 

In the implementation of the algorithm, we modify the rule for m* slightly, 
by selecting m* to be the integer for which K{N - 2m, m) of (17) is closest to 
1. This choice avoids the case where K{N - 2m*,m*) is greater than 1 while 
K{N — 2(m* - l),m* - 1) is less than but also very close to 1. In such a case, 
m* — 1 should be the preferred value of a. The rule also covers the case where 
K{N - 2m, m) < 1 for m := 1. 
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We establish the probability p and compute m* via (17) as follows. We take 
p to be the fraction of the number of training records of class A divided by the 
total number of training records, and we find m* by dichotomous search. 

We note that, due to the symmetry of the formula K{N -m^m), the choice 
of m* implicitly also considers subsequences in which the roles of A and B are 
reversed. Table 1 shows cr as a function of N, for cr < 10 and p = ^ = 0.5. 

Table 1. cr as function of N ior a < 10 and p = ^ = 0.5 

N 
[FT 

8-11 
12-15 
16-31 
32-54 
55-99 
100-186 
187-359 
360-702 
703-1387 

a 

~T~ 
2 
3 
4 
5 
6 
7 
8 
9 

10 

There is an exceptional case where the selected a must be reduced. As we 
argue shortly—see the discussion following (19)—we do not consider a marker 
between Zi and Zi-i iivi = Vi-i. Thus, no marker can be placed if no i satisfies 
2a + 2<i<N — 2a and Vi ^ Vi-.i. If that case occurs, several corrective 
actions are possible. We have found that reduction of cr to 1 is a good choice. 
If for the reduced a there still is no index i satisfying 2a-\-2<i<N — 2a 
and Vi ^ Vi-i, then we declare that no intervals should be created for the jth 
entry; as a consequence, we delete the ^'th entry from all records of A and B. 
Otherwise, we proceed with the reduced a = 1. 

For example, if N = S7,a = 6, and vis = 1, f 14 = 'yis = • • • ̂ 30 = 0,1^31 = 1, 
then no i satisfies 2a + 2 = 14 < i < N — 2a = 2b and Vi ^ vi-i. Thus, a 
should be reduced to 1. For that value, both i = 14 and z = 31, and possibly 
other values of i, satisfy 2cr + 2 = 4 < i < Â  - 2cr = 35 and Vi ^ vi-i. Thus, 
cr = 1 should be used. On the other hand, let N = 37 and cr = 6 as before, 
but suppose t̂ i = 1, t;2 = '̂ 3̂ = • • • = ^35 = 0, vze = 1, '̂ 37 = 0. For a = 6, 
no i satisfies 2cr -|- 2 = 14 < z < iV — 2a = 25. Reduction of a to 1 produces 
the same negative conclusion. Thus, no intervals should be created for the j th 
entries, and we delete these entries from all records of A and B, 

6.4 Definition of Markers 

Suppose we have selected a as described above and have computed the smoothed 
class values v^. As we move along the sequence of usable values v'^, the absolute 
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difference 5i between adjacent v[_i and v[^ 

Si = Wi-v[_,\ (18) 

measures the abruptness with which class values change. We call di a difference 
value. The largest such value, say J^*, produces a marker c between Zi*-i and 
Zi*. That is, 

c^[zi*-i-\-Zi*)l2 (19) 

The selection rule for c requires a small adjustment due to a quirk that may 
be introduced by the convolution process. It is possible that, for the selected 
c, the corresponding original class values Vi*-i and vi* are equal. In case all zi 
are distinct, the values Zi*-i and Zi* separated by c come both either from A 
records or from B records. If several zi are equal, more complex interpretations 
are possible. However, all of them reflect unattractive cases. 

To rule out all such situations, we restrict the selection of the difference 
values 8i* by considering 8i values only if vi ^ Vi-i. Thus, 

5i* = max{(5^ | Vi and Vi^i usable, vi ^ Vi-\\ (20) 
i 

If the maximum is attained by several i*, we pick one closest to A^/2, breaking 
any secondary tie by a random choice. 

For example, if cr = 6 and A/" = 60, then the v\ with index i satisfying 2crH-1 = 
13 < z < A/" — 2(7 — 48 are usable. Suppose these values are t̂ Jg — 0.3214, 
^14 = 0.3594, v{^ = 0.4042, V[Q = 0.4439, v[^ = 0.4760, v[^ = 0.4986,..., 
v'^^ = 0.4740, v'^Q = 0.4410, <7 = 0.4007, and <§ = 0.3612. For these values, 
formula (18) produces S14 = 0.0380, Si^ = 0.0448, SIQ = 0.0397, 617 = 0.0321, 
Si8 = 0.0226,..., 546 = 0.0330, 4̂7 = 0.0403, and 64s = 0.0395. Suppose 
the largest Si for which Vi ^ Vi-i, is unique and is 1̂5 = 0.0448. Thus, 
i* = 15. If Zi* =2:15 — 7 and Zi*-i = 2̂14 = 5, the marker c is defined by 
c = {zi*.i + Zi*)/2 = (5 + 7)/2 = 6. 

The next scheme summarizes the computation producing the initial marker 
c. The scheme also outputs the standard deviation a of the convolution process 
since that information is needed later in another application of the algorithm. 

Algorithm INITIAL MARKER 
Input: Rational numbers zi < Z2 < " - < ZN of the jth attribute of the records 
of A and B. 
Output: Either: Marker c for the j th attribute, standard deviation a of the 
convolution process, and the difference value 5* associated with the marker. 
Or: "Marker cannot be determined." 
Procedure: 

1. (Check if N is too small or if a == 1 cannot produce a marker.) If Â  < 6 
or if, for cr = 1, there is no index i satisfying 2a + 2 < i < N - 2a and 
Vi ^ Vi-i, then output "Marker cannot be determined," and stop. (In 
that case, one should delete the j th entries from all records of A and B.) 
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2. (Compute class values.) For i = 1,2,...,AT, define iJ^ z= {h \ Zh = zi}, 
H\ = {/i G iJ I 2;/j is taken from an A record}, and compute the class 
Y^lnevi^\H\\l\H% 

3. (Define p, g, and a.) Define p — \A\I(\A\ + \B\) and q= I-p. Let m* be 
the value of m > 1 for which K{N — 2m, m) is closest to 1. Let a = m*. 
If there is no index i satisfying 2a-\-2<i<N-2a and Vi ^ Vi-i, lower 
a to 1. 

4. (Compute smoothed class values.) For i = 1,2,...,A/', use the class 
values Vi, the standard deviation cr, and the (3g values of (8) to compute 
the smoothed class values v^ = PQ • Vi + Y^li Pgi'^i+g + '^i-g)-

5. (Select marker.) For i = 2cr + 2,2cr + 3 , . . . , Â  - 2a, let 6i = \Vi - vl_-^\. 
Select i* so that Si* = max^{(5i | Vi ^ Vi-i}. If i* is not unique, select an 
i* closest to A /̂2 and break any secondary tie by random choice. Define 
the marker c by c = {zi*-i + Zi*)/2. Output the marker c, the standard 
deviation a, and the difference value St. 

6.5 Evaluation of Markers 

For each j G J, we carry out Algorithm INITIAL MARKER and thus get either 
a marker, say Cj, or conclude that a marker cannot be obtained. In the latter 
case, attribute j is deleted from all records of A and B. To the reduced sets, 
which we again denote by A and B, we apply the transformations implied by 
the markers, and get sets A' and B'. If A' and B' satisfy the clash condition, 
the sets can be separated by logic formulas and thus the desired transformation 
has been found. Otherwise, at least one record of A' and one record of B' do 
not clash. In that case, we compute one additional marker for some j G J; 
details are given in the next section. When we get the additional marker, 
we proceed recursively as described above. That is, we derive from A and B 
sets A' and B', test if the clash condition is satisfied, and so on. The process 
stops either when A' and B' satisfy the clash condition, or when an additional 
marker cannot be determined. In the implementation of the method, we also 
stop introducing additional markers for a j G J when the number of markers 
reaches a specified maximum. In tests to-date, that limit has been set to 6, 
and this limit likely is appropriate in general. 

Regardless of the cause of termination, we output the collection of markers 
on hand as well as the final A' and B^. If the latter sets do not satisfy the 
clash condition, we also output the warning message "A and B cannot be fully 
separated." 

7. ADDITIONAL MARKERS 

This section describes how an additional marker is determined. 
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7.1 Critical Interval 

The markers on hand define intervals of the rational line for each index j E J, 
and these markers produce a transformation of A and B to A' and B'. Define 
such an interval to be critical if a properly chosen subdivision can lead to a 
transformation of A and B to, say, A" and B'' such that A" and B" have 
more clashing pairs of records than A' and B'. Clearly, each critical interval 
is associated with a particular attribute j G J, and all critical intervals are 
readily determined via the nonclashing pairs of records of A' and B'. We 
omit the obvious process. For each critical interval, we compute an additional 
marker using a method virtually identical to Algorithm INITIAL MARKER. 
Specifically, the input sets A and B of the algorithm are now the subsets A C A 
and B C B of records for which the values of the associated attribute j £ J 
falls into the critical interval. 

The algorithm either outputs a marker together with the associated standard 
deviation a and the difference value (Ĵ *, or it declares that a marker cannot 
be found. In the latter case, we do not delete any attribute values from A and 
JB, but instead record that the interval cannot be refined, and thus exclude it 
from further consideration. 

When all critical intervals have been processed, two cases are possible. Either 
we have at least one additional marker, or no additional markers could be 
determined. In the latter case, the transformation process outputs A'^ B' ̂  
the markers on hand, and the warning message "A and B cannot be fully 
separated," and then stops. 

If at least one additional marker has been determined, we select one of them 
and proceed recursively as described above. The selection of the marker is 
based on a measure that considers the attractiveness of pattern change at the 
point of the marker and on the number of nonclashing pairs of records of A' 
and B' that determine the interval to be critical. The latter number is called 
the relevance count. We first discuss the attractiveness of the pattern change. 

7.2 Attractiveness of Pattern Change 

The attractiveness of a pattern change is based on a lower bound e on the dif
ference values 5i of (18) for certain label subsequences. Each such subsequence 
has, for some n > 1 yet to be specified, k > n -\- 1 As followed by / > n -f 1 
J5s, and 5i is the difference value produced by the last A and the first B of the 
sequence. We estabhsh a lower bound e for 5i. 

Theorem 7.1. Let a label sequence he given for which the original rational 
numbers zi are all distinct. For some n > 1, let a label subsequence have 
k > n + 1 As followed by I >n-{-l Bs. Then e = fio — 2^n+i is a lower bound 
for Si 0/(18). 

Proof: Since Si > 0, the claim is trivial if /3o - 2/?n+i < 0. Hence we suppose 
that Po > 2/?n+i. Using the formula (10) for v'^ in the definition of Si of (18), 
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we have 

oo oo 

Si = I [̂ Ô i + X^ ^^ {Vi+9 + Vi-g) ] - [PoVi-1 +Y1^9 i^i+9-1 + '^i-g-l). 
9=1 9=1 

oo 

= | I ] ( ^ 5 - / ? P + l ) ( ^ ^ + p - ^ ^ - p - l ) | (21) 
9=0 

Consider Si produced by the last A and first B of the label sequence. Due 
to the k > n -{- 1 As (resp. I > n -\- 1 Bs) in the label subsequence, we have 
Vi-i = Vi-2 = ' = Vi-n-i = 1 (resp. Vi = Vi + 1 = • -- = Vi^n = 0). We use 
these class values in (21) and simplify to get 

oo 

Pn+1-P0+ 5 3 ip9-p9+l){Vi+3-Vi-g-l)\ (22) 
9=n+l 

Since po > 2/?n+i and, for all g > 0, /3g > Pg+i^ the right hand side of (22) 
is minimum if, for all ^ > n + 1, we have vij^g = 1 and vi-g-i = 0. For that 
case, 6i becomes 6i = |2^n+i - M = Po - 2/3n+i = e. • 

If n is sufficiently large, then the label subsequence of Theorem 7.1 is quite 
unlikely to be a random occurrence. Thus, if the label subsequence does occur, 
we estimate that it corresponds to an abrupt pattern change of the first kind. 
Indeed, the discussion of Section 6 states that, as n grows beyond a, the above 
conclusion tends to become valid. For example, n = [1.6a\ is large enough 
for the desired conclusion, and we choose this value of n to compute the lower 
bound €. Thus, 

e - ^ o - 2 ^ L i - 5 . J + i (23) 

Let c be a marker, and define 6i* to be the change of smoothed class values 
corresponding to the marker c. To measure how likely the marker c corresponds 
to a pattern change of the first kind, we compare Si* with e. Specifically, if the 
ratio 

J,./^ = J,./(^o-2/?Li.5.j+i) (24) 

is near or above 1, then we estimate that we likely have a pattern change of 
the first kind. Thus, the ratio Si* /e measures the attractiveness of the marker. 
We say that the marker c has attractiveness Si* /e, 

7.3 Selection Of Marker 

For each critical interval for which we have determined an additional marker, 
define the potential of the marker to be the product of the relevance count 
of the interval and the attractiveness of the marker. Letting 7 and R denote 
the potential and relevance count, respectively, we have, for each marker, the 
potential 7 as 

7 ^ RSi./e = RSi*/{l3o - 2/3Li.5crj+i) (25) 
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We select the marker with highest potential, add that marker to the list of 
markers on hand, and proceed recursively as described earlier. 

For example, suppose we have two critical intervals. For the first interval, 
we have (j = 6, A/" = 58, Si* = 0.037, and R = 12. For cr = 6, we have e = ^Q -
2^Li.5^J+i = 0-^^^' ^^^ ^^^ potential is 7 = RSi*/e = 12(0.037/0.035) = 12.7. 
If the second critical interval has a smaller potential, then we refine the first 
interval. Suppose that for the first interval we have Zi* = 17 and Zi*-i = 14. 
Then the new marker is p = {zi*-i + Zi*)/2 = (14 + 17)/2 =^ 15.5. 

We summarize the selection process. 

Algorithm ADDITIONAL M A R K E R 
Input: List of critical intervals. 
Output: Either: "No critical interval can be refined." or: Additional marker 
for one critical interval. 
Procedure: 

1. For each critical interval, do Algorithm_INITIAL MARKER where the 
input sets are the subsets A C A and B C B of records for which the 
value of the associated attribute j E J falls into the critical interval. If 
the algorithm declares that no marker can be determined, remove the 
interval from the list of candidates. 

2. If the list of critical intervals is empty, output "No critical interval can 
be refined," and stop. 

3. For each critical interval, use the value 6i* and a determined in Step 1 
and the relevance count R to compute the potential 7 = RSi*/{Po -

4. Select the critical interval with maximum potential. In case of a tie, favor 
the interval with larger number of Zi values, and break any secondary 
tie randomly. Using i* of the associated Si*, output the marker p = 
{zi*-i + Zi*)/2 for the selected interval, and stop. 

8. COMPUTATIONAL RESULTS 

So far, the transformation methods have been used in several projects in areas 
such as credit rating, video image analysis, and word sense disambiguation. In 
these projects, the methods have proved to be effective and reliable. Results 
will be reported in separate papers. 

We also have conducted some experiments where the Cutpoint/Lsquare com
bination and two Entropy/Lsquare combinations have been applied to four 
standard data sets. In the Entropy/Lsquare combinations, we used either 
entropy plus the recursive refinement method of Outpoint or the minimum 
description length principle of [Fayyad and Irani; 1992, 1993] as methods to 
determine the markers. Compared with either one of the Entropy/Lsquare 



Chapter 7: Transformation of Rational and Set Data to Logic Data 275 

Table 2. Performance of Outpoint vs. Entropy 

Dataset 
Heart 
Australian 
Hepatitis 
Horse Colic 

Cutpoint 
78.43 
84.68 
81.54 
85.29 

Entropy 
77.13 
84.44 
82.31 
83.82 

Entropy (MDLP) 
78.82 
84.27 
80.51 
83.82 

combinations, Cutpoint/Lsquare had modestly better performance in three of 
the four cases. Table 2 shows the results. 

The datasets were taken from the UC Irvine repository of machine learning 
databases. For each of the Cleveland heart, Australian credit card, and the 
Hepatitis datasets, five iterations of 50% training and 50% testing were tested 
and averaged to give the results shown in Table 2. For the Horse Colic data, 
the results are for the training and testing file as given in the database. Missing 
entries were declared to have the value Unavailable. 

Similar conclusions are obtained when the training sets are reduced. That 
is, in almost all cases, Cutpoint/Lsquare is more accurate than the two En
tropy/Lsquare combinations. 

At this time, we have no test results about the use of Cutpoint as a prepro
cessing tool for other classification methods such as decision trees, neural nets, 
or support vector machines. 

9. SUMMARY 

The transformations of set data and rational data to logic data detailed in this 
chapter are computationally fast and easy to implement and use. No manual 
eflFort is needed beyond decisions concerning the transformation of set data, 
where several transformation approaches are available. 

When the transformations of this chapter are combined with the Lsquare 
method, a complete system for the extraction of logic formulas is at hand that 
does not require tuning or other adjustment or manual intervention. 
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Abstract: A typical data mining project uses data collected for various purposes, ranging 
from routinely gathered data, to process improvement projects, and to data 
required for archival purposes. In some cases, the set of considered features 
might be large (a wide data set) and sufficient for extraction of knowledge. In 
other cases the data set might be narrow and insufficient to extract meaningful 
knowledge or the data may not even exist. 

Mining wide data sets has received attention in the literature, and many 
models and algorithms for feature selection have been developed for wide data 
sets. 

Determining features for which data should be collected in the absence of 
an existing data set or when a data set is partially available has not been 
sufficiently addressed in the literature. Yet, this issue is of paramount 
importance as the interest in data mining is growing. The methods and process 
for the definition of the most appropriate features for data collection, data 
transformation, data quality assessment, and data analysis are referred to as 
data farming. This chapter outlines the elements of a data farming discipline. 
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1. INTRODUCTION 

Data farming is concerned with methods and processes used to define 
the most appropriate features for data collection, data transformation, data 
quality assessment, and data analysis. The experience indicates that the 
magnitude of a data farming effort often outweighs the data mining task, 
especially in an industrial setting. This might be due to the fact that the 
industrial data is often collected for reasons other than decision-making. 
This data may involve a wide range of attributes (features) that go beyond 
traditional models. The lack of analysis tools, the limited awareness of data 
mining and data farming tools, and the cost reduction initiatives have 
contributed to scaling down some data collection efforts. Data farming 
mitigates this "loss" of information by enhancing the data on hand and 
determining the most relevant data that need to be collected. 

Many data mining projects are based on data sets collected for various 
purposes, ranging from routinely collected data to process improvement 
projects and data required for archival purposes. In some cases, the set of 
considered features might be large (a wide data set) and sufficient for 
extraction of knowledge. In other cases the data set might be narrow and 
insufficient to extract meaningful knowledge, or the data may not even exist. 

The mining of wide data sets has received the most attention in the 
literature. Numerous feature selection models and algorithms have been 
developed for such data sets. The feature selection methods can be divided 
into two classes: 

Open-loop methods. These methods are also called filter, preset bias, 
and front-end methods [Cios, et al, 1998]. Features are selected based 
on between-class reparability criteria, e.g., covariance defined for 
different classes [Duda and Hart ,1973] and [Fukunaga, 1990] 
Closed-loop methods. These methods are also referred to as wrapper, 
performance bias, and classifier feedback methods [John, et al, 1994]. 
Features are selected based on the performance criteria, e.g., 
classification accuracy. 

Examples of methods for feature selection include the principle 
component analysis [Duda and Hart, 1973] and a branch-and-bound 
algorithm [Fukunaga, 1990]. The feature selection problem is 
computationally complex as the total number of subsets for a set with n 
features is 2", and the number of subsets with m features is n!/(n - m)!m! 
[Cios.etal, 1998]. 
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Determining the most appropriate features for which data should be 
collected in the absence of a data set or its partial availability (a narrow set) 
has not been sufficiently addressed in the literature. Yet, this issue is of 
paramount importance as the interest in data mining is growing. Feature 
selection and data farming cover the opposite ends of the data spectrum. The 
former deals with a redundant number of features and the latter begins with a 
potentially empty set of features that gradually leads to a set of features 
satisfying the selected performance criteria. Feature extraction supports a 
push approach to data mining as the selected features determine the quality 
of the extracted knowledge. On the other hand, data farming pulls the data 
necessary for knowledge extraction. 

One of the goals of data farming is to define metrics capturing the 
quality of the data in terms of the performance criteria, e.g., the prediction 
accuracy. Some of these metrics are listed next. 

Section 2 of this chapter outlines elements of data farming methods. The 
data farming process is discussed in Section 3. The case study of Section 4 
illustrates the benefits of data farming. Conclusions are drawn in Section 5. 

2. DATA FARMING METHODS 

The most important criteria of data farming are to obtain data that: 
Maximize performance measures (e.g., prediction accuracy, knowledge 
utility), and 
Minimize the data collection cost. 

The two criteria directly translate into cost savings and other tangible or 
non-tangible benefits. 

The basic methods of data farming are categorized as follows: 
Feature evaluation 
Data transformation 
Knowledge transformation 
Outcome definition 
Feature definition 

Each of these data farming methods is discussed next. 
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2.1 Feature Evaluation 

The appropriateness of data sets for knowledge extraction can be 
directly evaluated by the following metrics: 

Upper and lower approximation measures (defined in [Pawlak, 1991]). 
Classification quality [Pawlak, 1991]. 
Entropy measure [Quinlan, 1986]. 
Gini index [Breiman, ^^a/., 1984]. 
Correlation, distribution type, and so on. 
Other metrics such as percentage of missing values, data error, 
discretization parameters, and so on. 

Cross-validation [Stone, 1974] is a widely used indirect method for 
feature evaluation. However, this method is computationally expensive, as it 
requires multiple uses of learning and decision-making algorithms [Vafaie 
and De Jong, 1998]. 

The feature evaluation metrics are of interest to data farming as they 
assess the quality of the data set without knowledge extraction, which is 
computationally complex. An ideal direct feature evaluation method should 
be able to determine whether a given data set will satisfy the required 
classification accuracy or any other performance measure without the 
repetitive knowledge extraction process. 

2.2 Data Transformation 

Data sets can be mined in their raw collected form or they can be 
transformed. The following transformation methods can be used: 

Filling in missing values 
Discretization 
Feature content modification (generalization, specialization) 
Feature transformation 
Data evolution 

The data engineering methods are illustrated next. The first three data 
engineering methods have received some coverage in the data mining 
literature. 

2.2.1 Filling in Missing Values 

Examples of methods and algorithms for filling in missing values 
include: 

The removal of examples with missing values. 
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The most common value method. The missing values are replaced with 
the most frequent values. 
The data set decomposition method. The data set is partitioned into 
subsets without missing values that are in turn used for mining [Ragel 
and Cremilleux, 1998], [Kusiak, 2000]. 

Other methods for handling missing values are surveyed in [Han and 
Kamber,2001]. 

2.2.2 Discretization 

The most widely referenced discretization methods (also referred to as 
binning methods) are as follows: 

Equal width interval. The range of observed values is divided into k 
intervals of equal size. This method is vulnerable to outliers that may 
dramatically skew the value range, e.g., accidental typo of one value 
may significantly change the range. 
Equal frequency interval. The continuous values are grouped into k 
intervals with each interval containing m/k (possibly duplicated) 
adjacent values, where m is the number of examples. This method may 
lead to the inclusion of the same values in adjacent intervals. Both 
methods, the latter and the former fall into the category of unsupervised 
discretization methods as they do not consider decision values 
[Dugherty, e/a/., 1995]. 
Clustering. The intervals are created by clustering the examples [Tou 
and Gonzalez, 1974]. 
Recursive minimal entropy. The intervals are established by considering 
the class information entropy [Carlett, 1991], [Fayyad and Irani, 1993]. 
Recursive minimal Gini index. Similar to the entropy, the Gini index 
characterizes the impurity of an arbitrary collection of examples 
[Breiman, ^/a/., 1984]. 
Recursive minimal deviance: The deviance measure aims at selecting the 
best binary split [Venables and Ripley, 1998]. 

Other discretization methods are discussed in [Cios, et al, 1998] and [Han 
and Kamber, 2001]. 

2.2.3 Feature Content Modification 

The feature content modification method is illustrated with the data 
set in Figure 1, which is representative of numerous data sets considered in 
medical and industrial applications. 
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Example 1 

Consider the data set with five features and the decision shown in Figure 1. 

Number Index Color Material Time 
1 
2 
3 
4 
5 
6 

TN-01 
NM-02 
NM-05 
TN-04 
TN-14 
NM-03 

Blue 
Red 
Orange 
Orange 
Red 
Red 

C-O-01 
C-R-30 
C-R-12 
C-O-02 
C-O-03 
C-R-11 

12 
78 
123 
15 
45 
77 

Temperature 
289.5 
333 
228 
321.7 
423 
630 

Decision 
Good 
Bad 
Bad 
Good 
Good 
Bad 

Figure 1. A Data Set with Five Features. 

A set of decision rules extracted from the data set in Figure 1 is shown in 
Figure 2. 

Rule 1. IF ( Index 
[ 1 , 33.33%, 100 

Rule 2. IF ( Index 
[ 1 , 33.33%, 100 

Rule 3. IF ( Index 
[ 1 , 33.33%, 100 
Rule 4. IF ( Index 
[ 1 , 33 .33%, 100 

Rule 5. IF ( Index 
[ 1 , 33.33%, 100 

Rule 6. IF ( Index 
[ 1 , 33.33%, 100 

= TN-01) 
00%] [1] 
= TN-04) 
00%] [4] 
= TN-14) 
00%] [5] 
= NM-02) 
00%] [2] 
= NM-05) 
00%][3] 
= NM-03) 
00%][6] 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

(Quali ty = 

(Quali ty = 

(Quali ty = 

(Quali ty = 

(Quali ty = 

(Quali ty = 

Good); 

Good); 

Good); 

Bad) ; 

Bad) ; 

Bad) ; 

Figure 2. Rule Set Obtained from the Data Set in Figure 1. 

The decision rules in Figure 2 are presented in the following format: 

IF (Condition) THEN (Outcome)/ [Rule support, Relative rule 
strength, Confidence] [Objects represented by the rule]. 
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The metrics characterizing each rule are defined next: 

285 

• Rule support is the number of all objects in the data set that share the 
property described by the conditions of the rule; 

• Rule strength is the number of all objects in the data set that have the 
property described by the conditions and the action of the rule; 

• Relative rule strength is the ratio of the rule strength and the number of 
all objects in a given class; 

• Confidence is the ratio of the rule strength and the rule support. 

The support of each rule in Figure 2 is only 1. These rules can be easily 
generalized by modifying the content of the feature "Index" in Figure 1 from 
TN-xx to TN and NM-xx to NM (see Figure 3). 

Number 
1 
2 
3 
4 
5 
6 

iBdex Color 
TN 
NM 
NM 
TN 
TN 
NM 

Blue 
Red 
Orange 
Orange 
Red 
Red 

Material 
C-O-01 
C-R-30 
C-R-12 
C-O-02 
C-O-03 
C-R-11 

Time 
12 
78 
123 
15 
45 
77 

Temperature 
289.5 
333 
228 
321.7 
423 
630 

Decision 
Good 
Bad 
Bad 
Good 
Good 
Bad 

Figure 3. Modified Data Set with Five Features. 

The rules in Figure 4 have been extracted from the modified data set in 
Figures. 

Rule 1; 
IF (Index = TN) THEN (Quality = Good); 

[3, 100.00%, I00.00%][1, 4, 5] 
Rule 2; 
IF (Index = NM) THEN (Quality = Bad); 

[3, 100.00%, 100.00%][2, 3, 6] 

Figure 4. Two Rules Generated from Data Set of Figure 3. 
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The feature generalization method is of interest to mining temporal data 
sets as the value of generalized features tend to be time invariant. The one-
out-of w (n = 5) cross-validation scheme has been applied to the data sets in 
Figures 1 and 3. The results of cross-validation are presented in Figure 5. 

As it is visible in Figures 5(c) and (d) the average classification 
accuracy for the data set in Figure 1 is 0% while for the modified data set of 
Figures is 100%. 

2.2.4 Feature Transformation 

Constructive induction is a process of describing objects for improved 
classification [Wnek and Michalski, 1994] and [Bloedorn and Michalski, 
1998]. New features are built from the existing ones, and some features 
(attributes) of objects are modified or deleted. It should be noted that the 
deletion of features is related to the feature selection problem [Yang and 
Honavar, 1998]. 

In this chapter, the data transformation aspect of constructive induction 
will be emphasized in order to improve usability, transparency, and the 
decision-making accuracy of the extracted rules. 

While traditional data mining concentrates on establishing associations 
among feature values, temporal data farming is to determine the nature of 
feature behavior in time. In some cases, the temporal behavior of a singular 
feature might be difficult to capture and may not be appropriate for making 
predictions. Rather than concentrating on individual features, the data 
mining approach presented in this chapter advocates capturing relationships 
among feature functions. 

(a) 

Good 
Bad 

Good Bad None 
0 
2 

2 
0 

1 
1 

(b) 

Good 
Bad 

Good Bad None 
3 
0 

0 
3 

0 
0 

Figure 5 (Part 1). Cross-validation results: (a) Confusion Matrix for the Data 
Set in Figure 1, (b) Confusion Matrix for the Modified Data 
Set of Figure 3. 
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(c) (d) 

Good 

Bad 

Average 

iiililiii 
0% 

0% 

0% 

llillilill _ _ _ 

66.67% 

66.67% 

iiiiiiiliiii 
3333% 

33.33% 

33.33% 

Correct Incorrect None 
Good 

Bad 

Average 

100% 

100% 

100% 

0% 

0% 

0% 

0% 

0% 

0% 

Figure 5 (Part 2). Cross-validation Results: (c) Classification Accuracy for the 
Data Set in Figure 1, (d) Classification Accuracy for the 
Data Set of Figure 3. 

Most data mining algorithms establish associations among individual 
feature values. The approach proposed in this chapter captures relationships 
among features in the form of feature functions. Examples of feature 
functions include [Kusiak, 2001]: 

Logic expression of features F i , F j , . . . . , Fn, w^here the <logic 
operator> = {AND, OR, NOT, EXOR}. Note that an ordered set of 
features linked by the AND operator becomes a sequence, e.g., the 
expression F2 AND F9 AND F4 is denoted as the sequence F2_F9_F4. 
Arithmetic expression of features F i , F j , . . . . , Fn, where the 
<arithmetic operator> = {+, - , / , x , /" , "", | } , e.g., F3 -

4 . 5 X F 8 , |F3 - 4 .2XF8I , ( .7xF2^ -
Note that the inequality relation Fi > 
F i / F j > 1. 

F 4 ) / {2.1xF5^ + .2XF8). 
Fj is equivalent to the ratio 

A rule involving two feature functions, a sequence 5_7_2 (a set of 
features F2_F4_F9), and an inequality relation is shown next. 

IF (F2_F4_F9 = 5_7_2) AND (F3 < F7) THEN (D = Hot) 

The feature transformation method is illustrated using Example 2. In 
this example the term classification quality will be used. Classification 
quality of a feature is a measure used in rough set theory to expresses the 
degree of association between the feature values and the outcome. It can be 
loosely defined as the number of objects with non-conflicting values to the 
total number of object in the data set. For a formal definition of the 
classification quality the reader may refer to [Pawlak, 1991]. 
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Example 2 

Consider the "as-is" data set in Figure 6. 

No. 
1 
2 
3 
4 

1 5 

Fi F2 
0 
1 
0 
0 
0 

1 
1 
0 
1 
0 

F3 F4 D 
0 
0 
0 
1 
1 

2 
2 
0 
1 
3 

0 
2 
0 
1 
0 

Figure 6. A Data Set with Four Features. 

The classification quality (CQ) of each feature in Figure 6 is as follows: 
CQ(Fl) = 1/5 =.2, CQ(F2) = 2/5 = .4, CQ(F3) = 0/5 = 0, CQ(F4) = 3/5 = 
0.6. 

The data set in Figure 6 has been transformed in the data set of Figure 
7, where two features F2, F4 have been replaced with the feature sequence 
F2 F4 denoted for short as F2 4. 

No. 
1 
2 
3 
4 
5 

llllllll̂ ^̂ ^̂ ^ 
0 
1 
0 
0 
0 

1_2 
L2 
o_i 
i_o 
0_3 

0 
0 
0 
1 
1 

0 
2 
0 
1 
0 

Figure 7. Transformed Data Set of Figure 6. 

The classification quality of the feature sequence F2_4 has the value 
CQ(F2_4) = .6, which is higher than the individual features F2 and F4. The 
one-out-of n (n = 5) cross-validation scheme has been applied to the rules 
generated from the data sets in Figures 6 and 7. The cross-validation results 
of the original data set (Figure 6) and the transformed dataset (Figure 7) are 
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presented in Figure 8. The average classification accuracy has increased 
from 20% for the rules extracted from the data set in Figure 6 to 60% for the 
transformed data in Figure 7. 

(a) 

Average 

(b) 

Average 

Correct 
20% 

Correct 
60% 

Incorrect 
60% 

Incorrect 
40% 

None 
0% 1 

Nose 
0% 1 

Figure 8. Cross Validation Results: (a) Average Classification Accuracy for 
the Data Set in Figure 6, (b) Average Classification Accuracy for 
the Transformed Data Set of Figure 7. 

Example 2 illustrates one of many feature transformation methods 
involving sequences (sets) of features. The need for more elaborate feature 
transformations discussed earlier in this section leads to the evolutionary 
computation methods. Both, the feature transformation method and the 
previously discussed feature content modification method can be applied 
simultaneously. Moreover, numerous data farming methods can be 
combined for the same application. 

2.2.5 Data Evolution 

In a typical data mining process the knowledge is extracted from the 
historical data. The values of each feature can be described with various 
statistics, e.g., the probability density function as symbolically illustrated in 
Figure 9. The relationships between the features (columns Fl - F4) 
themselves and the decision D can be also characterized by appropriate 
metrics, e.g., a correlation coefficient. 

Rather than extracting knowledge from the original data a derived data 
set could be used. The latter data set could be created by using the statistical 
and other properties of the original data set. Changing the parameter values 
of these measures would evolve the source data and the extracted 
knowledge. 
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2.3 Knowledge Transformation 

Structuring knowledge may result in the discovery of patterns useful in 
understanding the knowledge content and may lead to its generalization. The 
need for knowledge structuring is supported by the notion of cognitive maps 
and mental models discussed in [Caroll and Olson, 1987] and [Wickens, et 
ah, 1998]. Structured decision rules are easier to evaluate by a user. 

As an alternative to evolving the source data, the knowledge extracted 
from such data could be evolved. 

Figure 9. Data Set and the Corresponding Statistical Distributions. 

One of the main reasons for extracting knowledge from data sets is 
decision-making - an area that has not received sufficient attention in the 
literature in the context of data mining. Most decision-making algorithms 
are rather simplistic and are usually based on partial or full matching 
schemes [Kusiak, et al, 2000]. Many users have difficulty accepting 
decision rules that are non-intuitive and algorithms making decisions based 
on non-transparent matching. Here we address a gap in the presentation of 
knowledge for effective decision-making. 

The rule-structuring concept illustrated in Example 3 generates 
knowledge in a form that meets user expectations. 

Example 3 

Consider the eight rules Rl - R8 represented as the rule-feature 
matrix in Figure 10. 
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• • I I I 
B_C_D 

C_F 

E_F_G 

Bl 
a 

b 

IIHI 

<4 

(2,6] 

>=2 

iMi 

>2 

(2,9] 

<2 

iiiiiiiip 

=<8 

(2,5] 

[1,3] 

illlHill 
Low 

Medium 

Medium 

Medium 

High 

Low 

Low 

High 

RUIQ 

Rl 

R8 

R5 

R2 

R3 

R7 

R4 

R6 

Algorithm 

Al 

Al 

Al 

A2 

A2 

A3 

A3 

A3 

Figure 10. Rule-Feature Matrix with Eight Rules. 

Three different learning algorithms Al - A3 were used to extract the 
eight decision rules Rl - R8 from a data set. To simplify our considerations 
the information pertinent to each rule such as support, classification quality, 
and so on has not been included. The first row (beside the header) in Figure 
10 reads as follows: IF (Fl_ F6_ F7 = B_ C_ D) AND (F2 = a) 
THEN (D = Low). The last entry of this row indicates that this rule has been 
derived with algorithm Al. 

Though the rule set in Figure 10 is small, its analysis is not simple. 
Transforming the matrix in Figure 10 into the structured matrix in Figure 11 
significantly improves interpretation and understanding of this rule set. 
Solving the model (1) - (5), presented later in this section, for the data in 
Figure 10 has resulted in the matrix of Figure 11. Two rules, R7 and R8, 
have been removed from the structured matrix as they are dissimilar to the 
rules Rl through R6. 

n 
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F5 
sss<g 
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F2 F1_F6__F7 
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M«5#iiiiiJ 

Rule 

R3 

R6 

Rl 

R4 

R2 

R5 

Algorithm 

A2 

A3 

Al 

A3 

A2 

Al 

Figure 11. Structured Rule-Feature Matrix. 
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The contents of the matrix in Figure 11 are structured and they allow 
drawing numerous conclusions, for example: 

The decisions D = High, Medium, and Low are totally separated by 
features, i.e., decision D = High is made based on values of two 
features F3 and F5 that do not appear in the other two decisions. 
The rules R3 and R6 are good candidates for the following 
generalization IF (F3 > 2) AND (F5 < 8) THEN (D = High). 

• The decision D = Low can be reached in alternative ways, using the 
feature values F2 = a, or F1_F6_F7 = B_C_D, or F2 = b, or 
F1_F6_F7 =E_F_G. 
Rule R2 is more general than rule R5. 

Example 3 illustrates only a few of the users' requirements that can be 
incorporated in the rule-structuring algorithm, such as: 

Classification accuracy. The knowledge included in the structured 
matrix is cross validated and tested to ensure the required level of 
classification accuracy. 
Matrix structure. To help the user better understand the rule-feature 
matrix, different structures may be considered, e.g., a block-diagonal 
(see Figure 11), a block-diagonal matrix with overlapping features, the 
block-diagonal matrix with overlapping rules, a triangular (for 
dependency analysis among rules), an L-shape matrix, a T-shape matrix, 
etc. 
Differentiation of decisions on features. This occurs when each decision 
value is associated with an independent subset of features. 
Differentiation of decisions on feature values. This occurs when any two 
decision values are discemable on a unique subset of feature values. 

• Inclusion of user preferences. To increase confidence in the rules, a user 
may wish to have her/his feature preferences included in the selected 
rules, to exclude some features, to establish a lower bound on the 
number of features, and so on. 
Contrasting positive rules against negative ones. 

The learning classifier systems (e.g., [Wilson, 1995] and [Kovacs, 
2001]) and other learning concepts such as decision tree and decision rule 
algorithms are perceived as different. The former is based on concepts from 
evolutionary biology and the latter draws from information theory and 
mathematical logic. It appears that the two classes of algorithms share more 
commonality than indicated in the current literature. This unifying view 
results from the fact that the "machine learning school" assumes that the 
learning data set remains static. Filling in missing data, discretization, and 
feature content modification are the only three methods of data 
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transformation. The two data transformation methods of data engineering 
discussed in this chapter (i.e., feature transformation and data evolution) 
involve the evolutionary computation concepts. For example, a typical 
learning algorithm produces a decision rule as follows: 

I F (F3 = 7) AND (F5 € [ 7 . 1 , 1 2 . 4 ] ) AND (F6 = 4) 
THEN (D = No) 

Each term in the above rule is concerned with a single feature. 

The data and knowledge transformation concepts advocated in this 
chapter lead to richer decision rules that may contain relationships between 
feature functions, in particular the feature sequence Seq illustrated by the 
following rule: 

I F (F3 < F4) AND ( F 5 / F 8 > 3) AND ( S e q = f 7 _ f 9 _ f l l ) THEN 
(D = No) 

The computational experience presented in [Cattral, et al, 2001] 
indicates that the classification accuracy of the decision rules involving 
relationships between features exceeds those of the traditional decision rules. 

To generate these robust and high quality results, the learning 
algorithms may remain essentially unchanged or in some cases require only 
minor modifications. 

A user is interested in viewing the context of the knowledge used for 
decision-making from different perspectives, even if a decision is reached 
autonomously. The variability among knowledge viewing preferences 
grows with the number of users. Potential knowledge visualization patterns 
include a decision table, a decision rule, a decision tree, a graph, a bar chart, 
a pie chart, and a data cube that can be expressed with a Voronoi diagram, a 
Gabriel graph, Delaunay's approach, a relative neighborhood graph, a 
minimum spanning tree [Preparata and Shamos, 1985]. Note that one 
pattern, e.g., a decision tree, can be transformed into another pattern, e.g., a 
decision table. The decision table provides a multitude of knowledge 
visualization patterns (views) such as: 

Rule - feature view (see Figure 11). 
Rule - feature function view. 
Object - feature view. 
Cluster of objects - feature view. 
Cluster of objects - group of features view. 
Rule - rule view. 
Chain of rules view (for multistage decision processes). 
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• Rule performance metric (e.g., rule strength, confidence, discrimination) 
view. 

The rules themselves can be illustrated graphically. One possible 
representation of a cluster of two rules is shown in Figure 12. 

L 

SB l y 

Qu-::,-, Context & 
Select Me 

2 rules of cluster 1 
100% of cluster 1 
3 clusters total 

Figure 12. Visual Representation of a Cluster of Two Rules. 

The above views call for knowledge structuring to be accomplished by 
solving various models. One of such models, the generalized /^-median 
model, is illustrated next [Kusiak, 2002]. 
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the minimum number of rules to be selected for rule category k 
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the performance index of rule j 
constants used in the objective function 
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1, if rules j is selected, otherwise Xj= 0 
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The objective of the generalized j9-median model is to minimize the 
total weighted distance between the rules and the rule performance index. 
The two constants a and p are used as the weights. 

(1) 

(2) 

(3) 

(4) 

(5) 

Constraint (2) ensures that for each rule category at least qk rules are 
selected. Constraint (3) imposes a lower bound on the number of rule 
clusters. Constraint (4) ensures that a pair of rules, i and j , can be selected 
only when the corresponding cluster is formed. Constraint (5) imposes the 
integrality of the decision variable. 

The input to the/^median model is a set of rules of different categories. 
For example, a rule category can be based on the learning algorithm type, 
decision type, rule type (positive, negative, etc.), feature transformation 
method, and so on. 

Solving the generalized/^-median model for the data in Figure 10 has 
resulted in the structured matrix in Figure 11. The/?-median model has been 
solved with the LINDO software [LINDO, 2003]. 

2,4 Outcome Definition 

Some outcomes may be either not defined or assigned in error, e.g., 
misclassified by one or two classes. For unsupervised learning (not defined 
outcomes), clustering methods can be applied to define and validate the 
outcome values. For cases with the outcomes assigned in error, unsupervised 
and supervised learning may be warranted. An outcome definition method is 
illustrated in Example 4. 

Example 4 

Consider the data in Figure 13 with five features (e.g., maximum torque, 
temperature, and number of hours and corresponding rules (Figure 14) 
derived using a rough set algorithm. 
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No. 
1 
2 
3 
4 
5 

•III 
0 
2 
0 
1 
0 

• I 
0 
1 
0 
0 
0 

•III 
1 
1 
0 
1 
0 

• 1 
0 
0 
0 
1 
1 

•III 
2 
2 
1 
0 
3 

• 1 
0 
1 
0 
1 
0 

Figure 13. A Data Set with Five Features. 

Rule 1: 
IF(F1=0)THEN(D = 0); 

[3, 100.00%, 100.00%][1,3, 5] 
Rule 2; 
IF(F1 e {1,2})THEN(D=1); 

[2, 100.00%, 100.00%][2,4] 

Figure 14. Rules from the Data Set of Figure 13. 

Assume that some values of the outcome D in Figure 13 w êre assigned 
in error, e.g., the fault type was improperly coded. The analysis of the data in 
Figure 13 and other background information has lead to changing the value 
of the decision for object 2 from D = 1 to D = 2. The rules extracted from 
the data set with the modified outcome are shown in Figure 15. 

Rule 3: 
IF (Fl = 0) THEN (D = 0); 
Rule 4: 
IF(F1 = 1)THEN(D=1); 
Rule 5: 
IF(F1=2)THEN(D = 2); 

[3, 100.00%, 100.00%][1,3,5] 

[1, 100.00%, 100.00%][4] 

[1, 100.00%, 100.00%][2] 

Figure 15. Rules Extracted from the Transformed Data Set of Figure 13. 
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The one-out-« (n = 5 objects) cross-validation scheme was applied to the 
data set in Figure 13 and its transformed form. The results of cross-
validation are shown in Figure 16. 

(a) 

Coirect lacorr^^ot 
Average 1 40% | 0% 

None 
60% 

(b) 

CoiT^Ct 
Average | 60% 

Incorrect None 
0% 1 40% 1 

Figure 16. Cross Validation Results: (a) Average Classification Accuracy for 
the Modified Data Set in Figure 13; (b) Average Classification 
Accuracy of the Data Set with Modified Outcome. 

Figure 16, parts (a) and (b), shows that the data set with modified 
outcome provided better classification accuracy than the source data set of 
Figure 13. 

2.5 Feature Definition 

The previously discussed data farming methods enhance the data and 
knowledge of an existing set of features. The feature definition approach is 
concerned with the definition of new features for which the data must be 
collected. In this setting, the maximization of the performance of the 
extracted knowledge and the minimization of the data collection cost are 
extremely important. 

Methods of defining candidate features include: 
• Parameters and variables of equations 
• Object and environment descriptions 

Design of experiments 

The ultimate goal of data farming is to extract useful knowledge that 
represents associations among features and decisions. Science offers 
expressions (e.g., reliability formula) that might be helpful in the definition 
of new features. In some cases it may be useful to map the associations as a 
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methodology, e.g., the process methodology presented in [Kruchten et al 
2000]. 

The newly defined features should allow for building strong associations 
with the outcome. The data mining experience with numerous data sets 
indicates that the most promising feature types include: 

Chemistry based features (e.g., calcium content) 
• Biology based features (e.g., genetics) 

Time and frequency (e.g., number of years in use, number of tasks 
performed) 
Control parameters (e.g., temperature) 

3. THE DATA FARMING PROCESS 

Data mining applications call for the definition of appropriate 
features and data collection at minimal cost. The data farming process 
includes the following steps: 

Step 1. Setting a data farming goal. 
Step 2. Definition of candidate features and dependency analysis (discussed 

later in this section). 
Step 3. Selection and application of suitable data farming methods. 
Step 4. Data mining process. 
Step 5. Evaluation of the data farming goal. 

These steps can be implemented sequentially or in parallel. 

Step 2 above has not been discussed thus far. It involves determining a 
candidate set of features and the identification of the dependencies between 
them. These features may be targeted for data collection. Dependencies 
among features, though not absolutely essential in data farming, may be 
important for understanding the data set. Some of the methods for feature 
dependency analysis are discussed in the following paragraphs. 

Numerous methods and tools have been developed for the analysis of 
systems. The primary methods that can be used for feature dependency 
recording and analysis are as follows: 

Feature map. For example, a graph showing relationships between 
features that may take different forms, e.g., a fish bone diagram used in 
statistics and a link analysis graph [Barry and Linoff, 1997]. 
Structure breakdown methods for a problem, a process, or a product. For 
example, a diagram visualizing hierarchical representation of the studied 
phenomenon (a problem, a process, or a product). 
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Process models. Numerous process models and tools developed in the 
context of process engineering can be used to analyze dependencies 
among features (see [Kusiak, 1999] for review of process modeling tools 
and methods). 
Semantic networks. Though primarily used to represent knowledge, 
semantic networks can be applied to represent concepts, including the 
relationships between features. 

In addition to the above tools, methodologies and software used to 
model information systems or processes can be used to analyze 
dependencies among features, e.g., Yourdon, Gane-Sarson, Express-G, and 
Rumbaugh diagrams. 

The dependency among features can be analyzed in two modes: 
Forward mode (feature - decision direction) 
Reverse mode (decision - feature direction) 

Most often the two modes are combined while analyzing features. 

The type of data farming method used depends on the purpose of data 
mining. The main purposes of data mining are as follows: 

Gaining insights into the problem studied 
Learning 
Decision-making with the discovered knowledge 

While the first purpose may be accomplished with a rather small data 
set, the last two call for sufficiently wide and long data sets that are typically 
obtained at a higher cost. 

4. A CASE STUDY 

Some of the data farming concepts discussed in this chapter have been 
applied to an equipment diagnosis application. A database with the 
maintenance records in excess of 1 GB was available for analysis. The data 
collected on more than 300 features was distributed over 26 different 
Microsoft Access tables. The number of objects in each table varied from 
twenty to about 100,000. The goal of the study was to predict the duration 
MAINTTIME of a service action performed on different types of equipment. 
The analysis of the data with dependency diagrams has revealed that most 
features were irrelevant to the study as the data was collected over many 
years to meet operational requirements imposed over time. 
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For the purpose of prediction of MAINT_TIME a data set with 644 
objects was extracted by merging three data tables with maintenance related 
features. The length of the shortest data set dictated the number of objects. 
Some objects were missing most feature values and therefore the number of 
objects was reduced to 599 and 17 features (15 categorical and integer, and 
two continuous) and the decision MAINTTIME which was continuous. The 
data set was discretized with three intervals resulting in the following classes 
(1, 2, and 3) for the decision MAINTTIME : 

MAINT_TIME: (< 0 . 2 5 ) ~ 1 , [ 0 . 2 5 , 0 . 3 5 ) ~ 2 , [ > 0 . 3 5 ) - 3 , 

where (<0.25) -- 0 means that the maintenance time of less than .25 [hour] 
was labeled as category 0, the maintenance time in the interval [0.25, 0.35) 
was labeled as category 1, and the maintenance time greater than 0.35 
[hour] was labeled as category 2. 

Different learning algorithms have been applied to extract rules and the 
number of rules was generally large. A rough set algorithm [Pawlak, 1982; 
and 1991] produced some of the most interesting rules (102 exact and 19 
approximate rules). 

The A: = 10 fold validation with the rough set algorithm has produced 
the results in Figure 17, which are encouraging considering the nature of the 
data considered in this study. 

Average 
Correct Incon-ect 
68.45% 31.38% 

None 
0.17% 1 

Figure 17. Average Classification Accuracy for the 599-Object Data Set. 

Further analysis of the 599-object data set has revealed that some 
maintenance actions involved multiple elementary actions. The resuhs in 
Figure 17 include both types of actions. The MAINTTIME for multiple 
maintenance actions in the 599-object data set were aggregated thus 
resulting in 525 objects. 

The 525-object data set was discretized with the previously used 
scheme and produced the cross validation results in Figure 18. These results 
are not substantially different from the results in Figure 17. 
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Average 
^^^^^H 

69.19% I^^^II^HII 30,61% j 0.19% 1 

Figure 18. Average Classification Accuracy for the 525-Object Data Set. 

Creating sequences of two variables at a time produced some of the 
most interesting results. Tŵ o such results are illustrated in Figure 19 for the 
following MAINT_TIME discretization scheme: 

MAINT TIME: (<0.25) - 0, [0 .25 , 4.75) - 1, [>4.75) - 2 

Average 
Correct 
79.52% 

iBcoireet 
20.48% 

None 
0.00% 1 

Figure 19. Average Classification Accuracy for the 525-Object Data Set with the 
Feature Sequence. 

Please also notice that the results in Figure 19 indicate that the average 
classification accuracy is much better than that of Figure 18. 

The main goal of this case study was to prove that the maintenance data 
collected during regular operations contained some useful patterns that could 
be used to predict values of parameters, including the maintenance time. 
Some of the data farming methods applied in this study enhanced the value 
of this data set. Extensions of the classification quality measure and some 
statistical metrics will be used to define more relevant features for which the 
data should be collected. 

CONCLUSIONS 

The purpose of knowledge discovery is to gain insights into the 
problem studied, or using the discovered knowledge for decision-making. 
These objectives can be realized, if proper data is collected. The 
appropriateness of data and the data collection cost are the goals of data 
farming that, among others, offers tools for the definition of appropriate 
features for which the data is to be collected at an acceptable cost. The data 
farming methods presented in this chapter are intended to enhance the data 
collection process, add value to the collected data, and define new features 
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for which the data should be collected. The data farming concepts presented 
in this chapter were illustrated with numerical examples and a case study. 
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Abstract: We present a rule induction method based on decision trees for classification 
and prediction problems. Our approach to tree construction relies on a discrete 
variant of support vector machines, in which the error is expressed by the 
number of misclassified instances, in place of the misclassification distance 
considered by traditional SVMs, and an additional term is included to reduce 
the complexity of the generated rule. This leads to the formulation of a mixed 
integer programming problem, whose approximate solution is obtained via a 
sequential LP-based algorithm. The decision tree is then built by means of a 
multivariate split derived at each node from the approximate solution of the 
discrete SVM. Computational tests on well-known benchmark datasets 
indicate that our classifier achieves a superior trade-off between accuracy and 
complexity of the induced rules, outperforming other competing approaches. 

Key Words: Classification, Decision Trees, Support Vector Machines, Rule Induction. 

^ Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery 
Approaches Based on Rule Induction Techniques, Massive Computing Series, 
Springer, Heidelberg, Germany, pp. 305-326, 2006. 

^ Corresponding Author. 



306 Data Mining & Knowledge Discovery Based on Rule Induction 

1. INTRODUCTION 

The ability to extract general rules from a set of observed data is a 
fundamental requirement of knowledge acquisition. For this reason, rule 
induction algorithms have been widely adopted to solve classification and 
prediction tasks in machine learning and data mining applications in such 
diversified fields as marketing, credit approval and medical diagnosis. For 
example, suppose we are investigating the behavior of the customers of an 
insurance company to understand which features determine their loyalty. 
Hence, we know for each customer a binary target class indicating whether 
the customer has remained loyal or has switched to a competitor. 
Furthermore, we are given the values of a number of attributes, such as age, 
income, number of owned cars, for each customer in our database. We are 
then required to learn from the available data and to predict with the 
maximum accuracy the unknown class for new customers in the future. The 
logical structure of this example can be easily generalized. In classification 
problems a dataset is given, composed by a set of instances whose 
associated class is already known. It is asked to learn from the existing data, 
discovering hidden patterns useful to predict the class of new unseen 
instances. Although this prediction process could derive from a black-box 
approach, in most applications of data mining it is also required the 
classification rules generated be simple, modular, intuitive, intelligible and 
easy to understand by decision makers and domain experts. 

Decision trees have been widely recognized as one of the most effective 
techniques for rule induction in classification problems, particularly when 
dealing with business oriented applications, such as those arising in the 
frame of customer relationship management. Indeed, it has been empirically 
observed that for most classification problems decision trees easily lead to 
discrimination rules which can be well understood by marketing managers, 
without a relevant loss in accuracy with respect to alternative classification 
approaches, such as neural networks or statistical discriminant analysis. The 
reader is referred to (Murthy, 1998), (Safavin and Landgrebe, 1991) for 
comprehensive surveys on classification trees. Most authors focused on 
myopic univariate splits, based on information theoretic concepts, for 
deriving the ramifications at each node of a decision tree, as in CART 
(Breiman, et al., 1984) or C4.5 (Quinlan, 1993); more sophisticated 
approaches based on a multivariate split at each node have been recently 
proposed, aimed at achieving an overall better accuracy. Again, refer to 
(Murthy, 1998) for a review of the most significant contributions in this 
field. 
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In this chapter we propose a rule induction method based on decision 
trees for binary classification problems. The optimization problem 
formulated at each node of the tree to derive a multivariate linear split is a 
minimum features discrete support vector machine (FDVM). By this term 
we refer to a variant of discrete support vector machines (DSVM), a family 
of optimization models in which the classification error is expressed by the 
count of misclassified instances, denoted as misclassification rate, in place 
of the misclassification distance considered by traditional SVM approaches. 
From the solution to model FDVM, obtained at each node of the tree, we 
derive a linear combination of the attributes, representing the best 
hyperplane which separates the instances belonging to the node. The first 
contribution within the DSVM framework has been proposed in (Orsenigo 
and Vercellis, 2004), where the generation of an optimal separating 
hyperplane is based on the simultaneous maximization of the accuracy and 
the generalization capability of the classifier, by solving a mixed integer 
problem (MIP) via a tabu search heuristic. An extension of this model has 
been provided in (Orsenigo and Vercellis, 2003), where a third term into the 
objective function is introduced, in order to reduce the number of active 
attributes utilized for discrimination, and a new approximate algorithm based 
on the iterative solution of a fipite sequence of linear programming problems 
is developed to solve the resulting MIP model. 

The methodology described in this chapter significantly extends previous 
mathematical programming approaches to multivariate splits for the 
construction of classification trees, due to differences in the objective 
function and in the solution technique. The minimization of the 
misclassification rate has been considered previously in the literature. From 
one side, some papers (Mangasarian, 1994, 1996; Chunhui Chen and 
Mangasarian, 1996; La Torre and Vercellis, 2003) focused on the 
misclassification rate alone, not in conjunction with the generalization 
capability, and transformed the discrete problem into a nonlinear 
optimization model by means of appropriate smoothing techniques. On the 
other hand, some MIP models were formulated (Koehler and Erenguc, 1990; 
Lam, et al., 1996), but again without including generalization concepts into 
the objective function. Furthermore, several linear and quadratic 
programming models to build classification trees were proposed 
(Mangasarian, et al., 1990; Mangasarian 1993; Bennett and Mangasarian 
1992, 1994), but they were confined to the minimization of the 
misclassification distance. More recently, Bennett et al. (2000) considered 
the combined inclusion into the objective function of both generalization and 
misclassification distance; however, they did not consider the 
misclassification rate, which leads to remarkable improvements in both 
classification accuracy and complexity of the generated rules, as the 
computational experiences discussed in section 6 seem to show. 

To obtain an empirical validation of the proposed algorithm, we have 
tested it on several well-known datasets used in the literature for 
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benchmarking alternative classifiers. The comparison with other 
classification approaches, particularly those based on decision trees, shows 
that our classifier is able to generate trees that are more accurate, capable of 
good generalization and characterized by simple rules, where rule 
complexity is evaluated by counting both the number of leaves of the 
resulting decision trees and the number of active attributes utilized for 
discrimination. In particular, we show that even when our algorithm is 
forced to build trees with only one rule and two leaves, yet it still achieves 
the highest accuracy among all competing techniques. Furthermore, the 
empirical evidence indicates also that the inclusion of the term accounting 
for the generalization capability into the objective function brings an 
advantage over the approach in which only the misclassification rate is 
minimized. Finally, trees generated by means of the misclassification rate 
are significantly more accurate than their counterparts obtained by taking 
into the objective function the misclassification distance. 

2. LINEAR SUPPORT VECTOR MACHINES 

In classification we are required to extract rules for discriminating 
between distinct pattern sets. A classification problem can be formally stated 
as follows. Given m points (x,,;i;.), / G M = {l,2,...m}, in the (n+1)-
dimensional real space R"^^ where x. =(x.j,x.2,...x.„) is a 77-dimensional 
vector and y. a scalar, we are required to determine a discriminant function 
/^ from R'' into the real line R, such that /^ (x. ) = y.Je M. Here a is a 
vector of adjustable parameters by which the discriminant function is 
labeled. Each point can be interpreted as an instance, the coordinates of the 
vector X. as the values of the attributes, and the target y. as the class to 
which the instance belongs. It is further assumed that the m points are 
independently drawn from some common unknown probability distribution 
P{x,y). The attention in this chapter is confined to the two-class 
classification problem, in which the target y. can assume only two different 
values, labeled by {-1,+1}; that is, y. G {-1,-1-1}. Let also A and B denote 
the two sets of points represented by the vectors x. in the space R"" and 
corresponding respectively to the classes y. --\ and y^--\-\. If the two 
point sets A and B are linearly separable at least a discriminating hyperplane 
fa (^) = >̂ ^ - ^ exists separating the points in A from those in B, i.e. 

wx. - 6 > 0, X. G A, and wx- - ^ < 0, x. G B. (1) 

In this case, arising whenever the convex hulls of the point sets A and B 
do not intersect, the coefficients w^W and fe G R can be determined from 
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the solution of a linear programming problem, as in (Mangasarian, 1965). If 
the point sets A and B are not linearly separable, more complex 
classification algorithms have to be designed, such as decision trees, neural 
networks and support vector machines. All these approaches are aimed at 
deriving a discriminant function which minimizes some measure of violation 
for inequalities (1). In order to assess the accuracy of a classification 
method, and to identify the best classifier among alternative competing 
techniques, the point set A u B is usually partitioned into two disjoint 
subsets, termed respectively as the training and the validation set. For a 
given classifier, the discriminant function is then computed using only 
instances from the training set, and then applied to predict the class of each 
instance in the validation set, in order to estimate the accuracy of the 
classifier against unseen data. 

In this section we summarize the basics of linear support vector machines 
(SVM), an effective approach to classification based upon the structural risk 
minimization (SRM) principle formulated by Vapnik (1995, 1998). The 
SRM principle, described below, formally establishes that a good classifier 
trained on a given dataset should minimize a weighted sum of the empirical 
classification error and the generalization error, in order to achieve a high 
discrimination capability on unseen data. The SVM approach approximates 
the misclassification error with the sum of the slacks of the training points 
from the canonical supporting hyperplanes, as described below, albeit in a 
classification problem the error should be evaluated by a discrete function 
counting the number of misclassifled instances. However, the continuous 
proxy of the error has the computational advantage of avoiding the 
overwhelming complexity of mixed integer programming models, permitting 
to apply efficient techniques of linear programming (LP). 

The actual risk associated to a discriminant function /^ is defined as the 
expectation of the test error for the given trained machine /^ 

R{a)^\\\y-f,{x)\dP{x,y). (2) 

The mean error rate evaluated over the training set is called instead 
empirical risk, and is defined as 

1 m 

^e.,(^)=—Zl>^,-/a(^.)|. (3) 

The expression Wy^- fa {^t) I is called loss, and can assume only the values 

0 and 1 in binary classification problems, so that mR^^^(a) counts the 

number of misclassified points. Let h be an assigned nonnegative integer 
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parameter, called the Vapnik-Chervonenkis (VC) dimension. It can be 
shown that the VC dimension h for the class of linear discriminating 
functions, represented by the hyperplanes in R", equals n + \. Given a 
desired probability level 1 - //, 0 < 77 < 1, the following fundamental bound 
was shown to hold (Vapnik, 1995): 

R{a)<, 
h{\ogi2m/h) + \)-\ogir]lA) 

m 
+ ^e..(«) (4) 

According to the SRM principle, in order to reduce the expected error 
R{a), at least in a probabilistic sense, we are led to minimize the right hand-
side in (4), called risk bound. The first term in this bound is called VC 
confidence, and expresses a measure of the generalization capacity of the 
discriminant function. 

For the particular case of linear discriminating functions, the 
minimization of the VC confidence is related to the maximization of the 
margin of separation, defined as the distance between the pairs of the 
parallel canonical supporting hyperplanes wx-Z?-1 = 0 and wx-b + \ = 0 . 
The margin of separation, whose geometric interpretation is provided in 
Figure 1 for two linearly inseparable point sets, is given by: 

\\w\\ 
where w denotes the 2-norm (Â  = {1,2,... n}). (5) 

•^2 t 

Figure 1. Margin Maximization for Linearly non Separable Sets. 

The problem of determining the best separating hyperplane is formulated as 
follows in the SVM framework. For each instance of the dataset define a 
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nonnegative variable d., IGM, representing the slack between the point x. 
and the canonical supporting hyperplane corresponding to its class. Notice 
that the slack can be geometrically interpreted as the distance along the 
vertical axis between the point itself and the canonical hyperplane, as shown 
in Figure 1. It is clear that d. > 1 whenever point / is misclassified. One can 
therefore determine the optimal hyperplane by solving the following 
quadratic programming model, where y5G[0,l] is a parameter available to 
users in order to control the trade-off between the misclassification error and 
the generalization capability of the classifier: 

w,b,d 7 " ""̂  ^rr 

s.to y.{wx^-b)>\-d^, ieM (6) 

d. > 0, / G M . 

The two addends in the objective function of model QSVM correspond to 
the two terms in the right hand side of (4). We have already seen that the 
reciprocal of the margin of separation translates the VC confidence, whereas 
the second term is introduced in the SVM context as a continuous proxy of 
the discrete empirical error. Thus, what is actually minimized in QSVM is a 
weighted sum of the reciprocal of the margin and a concept of 
misclassification distance, which only approximately measures the empirical 
error, actually represented by the misclassification rate. 

Notice that problem QSVM can be reformulated as a linear programming 
model if the 2-norm is replaced by the 1-norm ||w| = ^ e;̂ P̂ y ? introducing 
at the same time the upper bounding variables u., j G N, to obtain 

min 4l«.+(l->^)S^' (LSVM) 
^ jeN leM 

S.to y.(wx. -b)>l-d., isM (7) 

-Uj<Wj<u^., jeN (8) 

d. >0,iGM, Uj>0,jeN. 
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3. DISCRETE SUPPORT VECTOR MACHINES 
WITH MINIMUM FEATURES 

In this section we propose a mathematical programming model for 
deriving a linear discriminant function. This technique will be applied to 
obtain a multivariate split at each node of a decision tree, as described in 
section 5, using a sequential LP-based heuristic developed in section 4. Our 
model is based on a discrete version of linear support vector machines. 
Model LSVM in section 2 attains the benefits of a linear programming 
formulation: very fast computation of the optimal solution, and hence a high 
degree of scalability towards large scale classification problems. However, 
as already noticed for its predecessor QSVM, problem LSVM evaluates the 
empirical error using the slack variables J . , / G M , instead of the 
misclassification rate. This latter is given by the count of misclassifled 
points, and appears to be the most appropriate measure of inaccuracy, as the 
definition of the empirical risk in (3) suggests. 

We therefore propose a discrete variant of model LSVM, in which the 
misclassification rate is used in the objective function in place of the second 
term; subsequently, a third term is introduced to reduce the number of 
attributes that actively contribute to the definition of the optimal separating 
hyperplane. In order to count the number of misclassified points, define the 
binary variables 

Jo if x̂  is correctly classified 

[l ifx, is misclassified 

and let c., / G M , denote the misclassification cost associated to instance 
/. The proper setting of the cost parameters c. will be discussed in section 6. 
Let also <g be a sufficiently large constant value. We can now formulate the 
following optimization problem, aimed at minimizing a weighted sum of the 
reciprocal of the margin and the misclassification rate, and indicated as 
linear discrete support vector machine: 

T«n ^Y.^j+{^-P)Y.^>e, (LDVM) 

s.to y^{wx,-b)>\-Qe,, iBM (9) 

-Uj<Wj<Uj, jeN (10) 

6*,. e{0,l} ieM,Uj>0, JsN. 
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Model LDVM does not consider the number of attributes that directly 
contribute, with nonzero coefficient, to the discriminating hyperplane 
generated. In order to take into account the complexity of the rule model 
LDVM can be extended as follows. Define the binary variables 

0 i{w=0 
J^N, 

and let pj, j e N, denote the penalty cost for using attributey. Let also R 
be a sufficiently large constant value and p^,p^,P^ the parameters to control 
the trade-off among the objective function terms. The following minimum 
features discrete support vector machine model can therefore be formulated: 

^i^ ^H^'j^ PiY'^fii^ P^UPJ^J (FDVM) 

s.to y.{wx.-b)>\-Qe., IGM (11) 

-Uj<Wj<Uj, JGN (12) 

UJ<RT^., JGN (13) 

^ .G{0 ,1} / G M , UJ>0, TJG{0,1} j e N . 

Models LDVM and FDVM are linear mixed integer programming 
problems, which are notoriously much more difficult to solve to optimality 
than the continuous linear programming model LSVM. However, the 
increase in solution complexity is balanced by a more accurate 
representation of the misclassification error. In the next section we will 
propose an efficient sequential LP-based heuristic for obtaining suboptimal 
solutions to problems LDVM and FDVM. 

Many authors who proposed mathematical programming models for 
discrimination have devoted some efforts to preventing trivial solutions with 
w = 0, corresponding to degenerate separating hyperplanes. Often, this issue 
determined the inclusion into the proposed models of special purpose 
constraints, in quadratic or linear form (Koehler and Erenguc, 1990; Bennett 
and Mangasarian, 1992). However, we believe that what is thought to be a 
trivial solution w = 0 actually represents an acceptable optimal solution to 
the classification concept, when no better discrimination can be achieved: a 
solution with w = 0 corresponds to labeling all instances with the same 
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class, and arises when any separating hyperplane (with w^O) causes the 
objective function in LDVM and FDVM to increase. 

4. A SEQUENTIAL LP-BASED HEURISTIC FOR 
PROBLEMS LDVM AND FDVM 

In order to generate a feasible suboptimal solution to models LDVM and 
FDVM we apply a finite sequence of linear programs. Since model LDVM 
can be derived from FDVM by simply letting J3^=0 and removing the set 
of constraints (13), the following heuristic can be applied to both problems. 
The sequence starts by considering the LP relaxation of problem FDVM, 
denoted as FDVMLPQ. Each subsequent linear program FDVMLP^+i is 
obtained from its predecessor FDVMLP/ by fixing to zero the relaxed binary 
variable with the smallest fractional value in the optimal solution to 
FDVMLP^ More formally, let t be the iteration index in the sequence of 
linear programs, and let Z^.Zf be the set of indices of the vectors of binary 
variables i9,r respectively, fixed to zero up to iteration t. Define the t -th LP 
problem in the sequence as follows: 

min ~ll^j+/^2Z^A+fi,TPj^j (FDVMLP,) 

s.to y.(wx.-b)>l-Qd,, i&M (14) 

-Uj<Wj<Uj, jeN (15) 

Uj<Rtj, jeN (16) 

0<d.<l,i€M , e, = 0, / e Z,', 0 < tj < 1, tj - 0,7 e Zf 

Uj>0,j&N. 

Assume first that FDVMLP, is feasible, and let {w''''y^,$''''y y ) 
be any of its optimal solutions. If this optimal solution is integer feasible, 
then it is feasible and suboptimal for problem FDVM as well. In this case the 
procedure is stopped, and the solution generated at iteration t is retained as 
an approximation to the optimal solution of problem FDVM. Otherwise, 
suppose that at least one component of the vectors O^'', r^^ is not integer. 
Hence, let K\K^ be the set of indices such that the corresponding variables 
ej-'', zf are basic and fractional: K^ ={i,\<i<m:(i<Oj''' < 1}, 
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K^ ={j\\<j <n:0< Tj^ < 1}. Let also s\s^ be the indices of the variables 
in K^,K^ assuming the smallest values: s^ = argmin{^^^.IGK^} , 
^̂  =argmin{rj^^,7 G^^} . Possible ties in the definition of s\s^ are 
arbitrarily broken. We then distinguish two cases: if 0\^ < T\^ , we impose 
that the variable 9^,^ be fixed to zero in the subsequent LP problem 
FDVMLPr+i, and update the set Z^ according to Z/̂ ^ =Zl ^{s^}, whereas 
Zf̂ j = Zf; otherwise, if 6^,^ > T^[ , variable r^^ is fixed to zero in problem 
FDVMLP,+i, updating Zl,=Z^^{s^}, zl,=Z]. Finally, if problem 
FDVMLP^ is unfeasible, we go back to the previous LP problem 
FDVMLP^.j, and redefine FDVMLP^ by fixing to one all fractional 
variables. This involves the substitution of the conditions 0. = 0, z G Z] , 
Tj = 0, 7 G Z/ with the conditions 6. = 0, / G Z]_^ , TJ = 0, 7 G Z^_^ , 
9. =IJGK\ TJ =1,JGK^. It is clear that problem FDVMLP^ redefined in 
this way admits of a feasible solution, and also that any of its optimal 
solutions is integer. In this case, we therefore reach an alternative stopping 
rule for the sequential procedure, and the solution found for FDVMLP^ is 
retained as an approximation to the optimal solution of FDVM. 

To show that the proposed iterative procedure is finite, simply observe 
that at each iteration one new variable is fixed to zero, and therefore no more 
than m-\-n iterations can take place. The actual number of iterations is much 
lower in practice, since fixing one of the variables 9^^ to zero at the generic 
iteration t has the consequence of implicitly fixing to either zero or one a 
number of other variables. There is an intuitive explanation to this behavior: 
fixing variable 9, to zero implies that the separating hyperplane must 
correctly classify the corresponding instance. However, if the point 
corresponding to ^, is correctly classified, it usually happens that some 
other points are also necessarily well classified whereas some others have to 
be misclassified. In our computational experiences we observed that the 
actual number of iterations performed rarely exceeds one tenth of the total 
number of instances in the training set. 

Sequential LP-based algorithm SLP 

1. Set the iteration counter ^ = 0, consider the LP relaxation of problem 
FDVM, denoted as FDVMLPo, and empty the sets of indices of the 
variables fixed to zero, Z/={0},Z,^ ={0}. Let (w^Z)^6>^w^rO 
indicate the approximation to the optimal solution of problem 
FDVM. 

2. Solve problem FDVMLP^ If it is not feasible go to step 3; otherwise, 
if any of its optimal solutions (w^^ ,b^^ ,9^^ ,u^^ ,T^^) is integer 
feasible, then set (w\b\9\u\T') = (w''^,9''y^r'') and 
stop. Otherwise, if one of the components of vectors 9^^ ,T^^ is not 
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integer, set 5̂  =argmin{6^^^,/Gi^^} and ^̂  =argmin{r^^^,y G A:^} 

where i^^-{ / , l< /<m:0<^ .^ ' '< l} , K^ ={j,\< j<n:0<TY <1} ^ 

If ef <T^J, fix <9/=0 and update the collections Z],Z^ 

according to Z]^^ -Z] ^{s'^.Z]^^ =^f J otherwise, set x^^ =0 and 

Z]^^ = Zf u{s^}, Z/̂ i = Z/. Then, set ^ = ̂  +1 and repeat step 2. 
3. Modify the formulation of problem FDVMLP/ by imposing the 

conditions ^, = 0 , / G Z 

Tj =1,JGK^. Return to step 2. 

5. BUILDING A MINIMUM FEATURES DISCRETE 
SUPPORT VECTOR DECISION TREE 

Rule induction by means of decision trees is relatively simple, readable 
and fast. Unlike many statistical alternative approaches, tree generation does 
not rely on critical assumptions about distribution and independence of the 
attribute values, leading to an overall robustness of the learning process. 

Top-down induction of decision trees (TDIDT) (Quinlan, 1993) 
represents a general framework in which a partitioning of the instances is 
recursively applied for the construction of classification trees. Starting from 
the root node, that includes all the instances, the points of the training set are 
repeatedly subdivided at each node, by deriving appropriate splitting rules. 
The growth of the tree is stopped when no admissible splits can be applied to 
the tree leaves. At the end, the discriminant function is obtained by applying 
a simple majority voting scheme: a leaf is labeled as {-1} if most of its 
points belong to A, and is labeled as {1} when most of its points belong to 
B. When the class of new instances has to be predicted, the tree is traversed 
from the root to the appropriate leaf by applying the splitting rule at each 

^m 

^u,\ 
Figure 2. Axis Parallel versus Oblique Splits. 
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node along the path, and the new instance is classified according to the label 
of the leaf reached by this way. 

The most significant difference among specific algorithms fitting into the 
outlined framework is due to the way splits are derived at each node. Early 
approaches to tree induction have confined themselves to single-attribute 
splits, in which the attribute and its threshold value are selected for the split 
in a way to minimize some information theoretic measure of "confusion" 
among the partitions determined by the split itself. For instance, Quinlan's 
(1993) well-known C4.5 algorithm picks up the attribute k, and its threshold 
value b, maximizing the information gain determined by the subsequent 
split. This means that the rule for splitting instances at the given node 
becomes x.̂  >b or x.̂  < b, with the tie x.̂  = b arbitrarily broken. However, 
the accuracy achieved by these simple univariate classifiers, also termed 
axis-parallel due to their geometric interpretation in the point space R", is 
not always satisfactory. This led to consider more general multivariate splits, 
in the form of linear combinations of the attributes, i.e. in the form wx. > b. 
These approaches, that in many cases are based upon mathematical 
programming models (Mangasarian, et al., 1990; Mangasarian, 1993; 
Bennett and Mangasarian, 1992; 1994), have been called oblique trees 
(Murthy, et al., 1994), ox perceptron trees (Bennett, et al., 2000), according 
to different authors. 

A graphical representation of decision rules produced by TDIDT 
classifiers is given in Figure 2 for the two-dimensional space. The regions 
for classification determined by the leaves in axis-parallel approaches 
correspond to hyperrectangles in the space R". If instead oblique splits are 
allowed, by means of linear combinations of attributes, a single powerful 
separating hyperplane like the one in Figure 2 may achieve a higher 
accuracy with much less effort, growing trees with fewer leaves and 
generating simpler rules. Actually, axis-parallel splits try to approximate 
nonorthogonal nonlinear patterns with a sequence of hyperrectangles, so that 
classification easily becomes a complex task, with a large number of 
cumbersome rules and presumably an even larger error on unseen test data. 
On the other side, it has been argued that axis-parallel rules may be easier to 
accept by the user, due to their simple structure in the form x.j^ >b or 
Xjj^ < b. Oblique rules, on the contrary, may involve powerful but complex 
linear combinations of attributes. To partially overcome this objection, we 
have introduced in model FDVM the binary variables r^, j G N, to keep the 
number of active attributes utilized in the linear combination low. 

Below we outline the scheme of the proposed minimum features discrete 
support vector decision tree classifier, denoted as FDSDTSLP? based on 
optimal multivariate splits: 
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Algorithm FDSDTSLP 

1. Include all instances of the training dataset into the root node, and 
put it into the list L of pending nodes. 

2. If the list L is empty or the maximum number of iterations is reached, 
then stop. Otherwise, select any node from Z, remove it from Z, and 
set it as the current node J. 

3. Determine the optimal separating hyperplane by solving the mixed 
integer problem FDVM. Dichotomize the instances /belonging to the 
current node J according to the side of the hyperplane they belong. 
Specifically, let 

/j ={X.JGI \wx^ -b>0}, and I^ ={^1, IGI :wx. -b<0}, 

be the sets of instances falling respectively above or below the given 
hyperplane. If one of the two sets I^ and I^ is empty, then J is a leaf 
of the tree, and it is labeled on the basis of majority voting. 
Otherwise, derive from J two child nodes J^ and J^ including 
respectively the sets of instances /, and I^. 

4. For each child node J^,/z = l,2, perform the following: if the 
percentage of instances in I^^ belonging to the same class falls above 
a given threshold, or if the number of points contained in /^ is below 
a predefined minimum value, then the child node J^ is a leaf of the 
tree, and it is labeled according to majority voting. Otherwise, the 
child node J^ is appended to the list L. Repeat from step 2. 

As noticed above, the solution of problem FDVM at each node of the tree 
keeps the number of attributes utilized for the splitting rule low. This is due 
to the role of variables TJ, j e N. However, it may happen that at each node 
a different set of attributes is chosen, with the undesirable effect that a large 
number of attributes are selected for some split along the whole tree. To 
address this issue we dynamically update the penalty costs Pj.jeN, at 
each child node by increasing the penalty of those attributes that were not 
selected for the split at the father node. In general, the best results were 
achieved by applying a percentage increase of the penalty factors ranging 
between 50% and 100%. 

To determine an optimal separating hyperplane, different classifiers can 
be derived by introducing variants into the above procedure FDSDTSLP, 

either by solving different models at step 3 or by adopting alternative 
solution methods. In this chapter we consider two additional algorithms, 
denoted respectively as LDSDTSLP and LSDTL?: in the first case, model 
LDVM is considered at step 3 in place of model FDVM and solved by the 
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sequential LP-based heuristic; in the second case, model LSVM is solved at 
step 3 by standard linear programming. This latter approach is equivalent to 
framing a traditional linear SVM within the TDIDT algorithm, using the 
misclassification distance instead of the misclassification rate in the 
objective function. 

6. DISCUSSION AND VALIDATION OF THE 
PROPOSED CLASSIFIER 

To validate the proposed classifier FDSDTSLP we have compared it with 
four well-known classification techniques based on decision trees, in terms 
of accuracy as well as simplicity of the induced rules. Specifically, the 
complexity of the derived rules is evaluated by the number of leaves of the 
classification trees generated and the number of active attribute utilized for 
discrimination along the whole tree. The methods were selected since they 
represent a broad range of classification approaches, including the univariate 
algorithm C4.5 (Quinlan, 1993), the multivariate algorithm OCl (Murthy, et 
al., 1994), its variant M0C2 based on margin maximization (Bennett, et al., 
2000) and the version of Quest (Loh and Shih, 1997) employing linear splits; 
furthermore, these methods generally appear rather accurate, as pointed out 
by a recent benchmark of thirty-three classification algorithms (Lim, et al., 
2000). 

In Table 1 and Table 2 respectively we compare the accuracy of 
algorithm FDSDTSLP with the four alternative classifiers indicated above and 
with four of its possible variants: LDSDTSLP and LSDTL?, already described 
in section 5; FDSDTĝ LP ? derived from FDSDTSLP by imposing that only one 
split with two leaves be generated, leading therefore to a perceptron 
classifier; FDSDTg^p ,̂ obtained from FDSDTSLP by dropping the margin of 
separation from the objective function of model FDVM, letting J3^=0. 
Whereas the accuracy of method FDSDTSLP and its four variants has been 
directly computed using our implementation, the remaining results from 
Table 1 are derived from the literature. 

The classifiers were tested on six publicly benchmark datasets, available 
from the UCI Machine Learning Repository of the University of California 
at Irvine (http://www.ics.uci.edu/'-mleam/). The datasets used were: 
Cleveland Heart Disease (Heart), Wisconsin Breast Cancer (Cancer), Johns 
Hopkins University Ionosphere (Ionosphere), Pima Indians Diabetes 
(Diabetes), Bupa Liver Disorders (Liver), and 1984 United States 
Congressional Voting Records (House). Notice that the original Pima 
Indians Diabetes dataset was filtered, to remove the noisy attribute "serum 
insulin", together with some records containing several missing values. The 
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actual size and the number of attributes of each dataset are then given in 
Tables 1 and 2. To measure the learning ability of the alternative classifiers, 
for each dataset WQ applied ten-fold cross-validation (Kohavi, 1995); the 
average testing set accuracy across the ten partitions of each dataset is 
reported in Tables 1 and 2. In particular, for the datasets marked with (°) we 
used the same ten-fold partition as in (Lim, et al., 2000). Our tests were 
conducted on Intel Pentium 4 2400 and AMD 2600 CPUs, under Windows 
2000 OS. 

In applying method FDSDTSLP and its four variants we have performed a 
scaling of the numeric values in the datasets, so that the resulting 
coefficients varied in the range [-1,-1-1]. This was done to avoid numeric ill-
conditioning and singularities in the formulation of problems FDVM, 
LDVM and LSVM. Furthermore, we have noticed that a great benefit in 
accuracy is achieved when the cost of misclassification c.,ieM, appearing 
in the formulation of models FDVM, LDVM and LSVM, is taken equal to 
the percentage of instances of the opposite class. That is, if the class of 
instance / is y. =-l, take its cost equal to the percentage of instances of 
class {+1}, and vice versa. The threshold percentage of instances of one 
class for a node to be considered as a leaf at step 4 of procedure FDSDTSLP 

and its variants ranges in our tests between 60% and 99%. At the same time, 
the threshold for the number of instances belonging to a node ranges 
between 5 and 10. 

Table 1. Accuracy Results - Comparison among FDSDT^j^p and Alternative Classifiers. 

Dataset 

Heart° 

Cancer° 

Ionosphere 

Diabetes^ 

Liver° 

House 

Points X 
Attributes 

270x13 

699x9 

351x34 

532x7 

345x6 

435x16 

Accurac> 

FDSDTSLP 

87.2 
0.8s 

98.8 
0.5s 

97.1 
1.6s 

84.7 
1.3s 

79.1 
0.8s 

97.5 
0.7s 

' results (%) - Computational times (sec, min) 

Method 

C4.5 

80.4 
4s 

95.7 
4s 

93.7 
3s 

75.8 
8s 

70.8 
6s 

95.2 
2s 

OCl 

77.8 
4.2m 

95.9 
13.3m 

89.5 

75.3 
17.2m 

72.1 
8.3 

94.2 
4.2m 

M0C2 

77.8 

95.9 

--

72.5 

70.2 

--

Quest 

84.8 
1.2m 

96.9 
1.5m 

-

77.7 
2.3m 

69.4 
1.4m 

96.4 
1.5m 
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The accuracy results presented in Table 1 show that algorithm FDSDTSLP 

outperforms the competing classification techniques on all datasets 
considered for these tests. For the most difficult classification datasets, such 
as those denoted as Diabetes, Liver and Heart, the improvement in accuracy 
achieved by classifier FDSDTSLP is noteworthy large, driving the empirical 
conclusion that our approach appears particularly suited to discover hidden 
patterns in hard classification problems. The results presented in Table 2 
point out a number of other interesting issues. First, the comparison with 
algorithm FDSDT^^p^ shows that the inclusion of the margin of separation 
into the objective function of model FDVM leads to a notably greater 
accuracy with respect to the approach in which only the misclassification 
rate is minimized. Therefore, the margin plays a crucial role in increasing the 
generalization capability of the classifier. Moreover, the comparison with 
algorithm LSDTL? indicates that trees generated by means of the 
misclassification rate are significantly more accurate than their counterparts 
obtained using traditional support vector machines, in which the 
misclassification distance is considered as a continuous proxy for the 
empirical risk. Furthermore, since classifier FDSDTSLP achieves a higher 
accuracy than its variant LDSDTSLP we may conclude that the inclusion of 
the third term in model FDVM with respect to model LDVM leads to a 
better generalization capability on test data. Finally, albeit the superimposed 
simplicity of the trees it can generate, algorithm FDSDTĝ p̂ achieves a quite 
excellent score: on all tests its prediction accuracy is greater or equal than 
the accuracy of competing approaches. We also notice that the computing 
time required by algorithm FDSDTSLP and its variants is quite low. 

In Table 3 we turn our attention to rule complexity. For each classifier 
and for each problem we provide the number of leaves of the resulting trees 
and the number of active attributes selected along the tree for discrimination, 
averaged over the ten-fold datasets. The results presented allow to conclude 
that algorithm FDSDT^^L? attains an ideal trade-off between accuracy and 
complexity, since in front of the high accuracy performances displayed in 
Tables 1 and 2 it grows the simplest trees by construction. The number of 
active attributes is also kept reasonably low, below half the total number of 
available attributes for almost all datasets. As an alternative which might be 
preferable in some cases, FDSDTSLP achieves the best accuracy, at the 
expense of a slight increase in the number of leaves. 

To further demonstrate that the rules derived by our classifier FDSDTSLP 

are intrinsically powerful in discrimination, we performed the following 
exercise. We selected the two datasets that appeared most difficult for the 
classification task, i.e. Diabetes and Liver. From Table 1 one can see that the 
average improvement in accuracy achieved by FDSDTSLP over the axis-
parallel classifier C4.5 equals 8.9% and 8.3%, respectively. Then, for each 



322 Data Mining & Knowledge Discovery Based on Rule Induction 

of the partitions generated by the ten-fold cross validation, we derived a new 
variable as a linear combination of the original dataset variables, by using as 
coefficients the same coefficients found by algorithm FDSDTSLP for the 
optimal separating hyperplane at the root node. For each dataset this new 
variable was then added to the original ones and fed into the C4.5 classifier, 
to see if an improvement in accuracy could be obtained by this way. 
Interestingly, we found that the accuracy on the dataset Diabetes, again 
averaged over the ten-fold cross partitions, raised from 75.8% to 79.9%, 
whereas for Liver the increase was from 70.8% to 74.1%). From these results 
one is tempted to further speculate on the apparent strength exhibited by 
oblique splits over axis-parallel splits. It is also worth to mention that we 
conducted a similar exercise using the principal component analysis (PCA) 
technique for generating the new derived variables. The increase in accuracy 
obtained by including these new set of variables in the input to C4.5 was not 
so relevant as for the optimal separating hyperplanes derived from our 
approach. 

Table 2. Accuracy Results - Comparison among FDSDT^j^p and its Variants. 

Dataset 

Heart° 

Cancer° 

Ionosphere 

Diabetes^ 

Liver° 

House 

Points X 
Attributes 

270x13 

699x9 

351x34 

532x7 

345x6 

435x16 

Accuracy results (%) - Computational times (sec, min) 

Method 

FDSDTSLP 

87.2 
0.8s 

98.8 
0.5s 

97.1 
1.6s 

84.7 
1.3s 

79.1 
0.8s 

97.5 
0.7s 

FDSDTS'LP 

84.8 
0.6s 

97.6 
0.4s 

93.8 
1.1s 

80.6 
1.1s 

75.8 
0.4s 

96.4 
0.6s 

FDSDTs^;' 

82.2 
0.8s 

97.3 
0.5s 

88.0 
1.6s 

76.6 
1.3s 

69.9 
0.8s 

90.1 
0.7s 

LDSDTsLp 

86.7 
0.7s 

97.8 
0.5s 

94.0 
1.5s 

83.9 
1.3s 

78.3 
0.8 / 

96.5 
0.7s 

LSDT^p 

84.8 
0.4s 

97.6 
0.3s 

92.0 
1.2s j 

77.9 
Is 

69.3 
0.5s 

96.5 
0.5s 

CONCLUSIONS 

A rule induction method for binary classification problems based on decision 
trees has been proposed in this chapter. At each node of the tree, a 
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multivariate linear split is obtained as an optimal separating hyperplane by 
solving a mixed integer programming problem, whose formulation derives 
from a new discrete version of support vector machines (FDVM). The way 
of representing the misclassification error determines the difference between 
SVM and FDVM: in our approach the inaccuracy measure is based on the 
discrete count of misclassified instances, whereas in traditional SVMs the 
misclassification distance is considered, as a continuous proxy of the 
discrete error. Although misclassification distance has clear computational 
advantages, permitting to apply fast techniques of linear programming, we 
have shown that the complexity of the MIP problem formulated at each node 
in our classifier can be efficiently tackled by a sequential LP-based heuristic. 
Computational comparisons performed on well-known benchmark datasets 
indicate that our classifier achieves a trade-off between accuracy and the 
complexity of the derived rules considerably superior with respect to other 
competing methods. 

Future extensions will be concerned with multi-category classification 
problems. In particular, discrete support vector machines models will be 
framed within one-against-all and pairwise decomposition schemes, to 
derive multiclass discrimination algorithms. Furthermore, a probabilistic 
version of the FDVM classifier will be developed. 

Table 3. Rule Complexity - Comparison among Alternative Classifiers. 

Dataset 

Heart° 

Cancer° 

Ionosphere 

Diabetes^ 

Liver° 

House 

Points X 
Attributes 

270x13 

699x9 

351x34 

532x7 

345x6 

435x16 

Number of 1 

FDSDTsLP 

6.2 
8 

5 
5 

11.9 
17 

13.9 
6 

18.6 
5 

2.4 
8 

FDSDTS'LP 

2 
5 

2 
3 

2 
10 

2 
4 

2 
4 

2 
6 

eaves - Number of active attributes 

Method 

LSDTsLP 

3.2 
13 

2.7 
9 

3.1 
33 

5.3 
7 

5.1 
6 

2.3 
15 

C4.5 

23 

11 

12 

18 

26 

6 

OCl 

3 

5 

6 

5 

5 

2 

M0C2 

2.1 

2.9 

--

11.4 

7.4 

-

Quest 

2 

2 

" 

2 

4 

2 
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1. INTRODUCTION 

Data mining and knowledge discovery in databases has recently received 
a great deal of interest from both academia and industry. Research in the 
field is rapidly evolving and drawls on numerous disciplines, including 
statistics, data warehousing, visualization, machine learning, decision 
support systems, and optimization (Fayyad, et al., 1996; 1998; Witten and 
Frank, 1999). The increased attention to this field may be partially attributed 
to the explosion of large and relatively inexpensively databases that can be 
accessed from almost anywhere. In particular, with the widespread use of 
databases and the tremendous growth of their sizes, individuals and 
organizations are faced with the problem of making intelligent use of large 
amounts of data. 

Knowledge discovery in databases may be defined as the automated or 
semi-automated process of discovering meaningful and useful information in 
large databases (Fayyad, et al., 1996; 1998). Within this larger process, the 
term data mining is often used to describe the particular step that involves 
the use of algorithms to extract patterns from the data, but there are many 
other steps in the process that are also important. This includes data 
preparation, data selection, data cleaning, incorporating appropriate prior 
knowledge, and interpretation and deployment of the data mining results 
(Fayyad, et al., 1996). The data mining step itself may take various forms 
depending on the type of patterns to be extracted from the data. The most 
common types are: classification, where the objective is to induce a model 
that can accurately predict the value of a given class attribute based on the 
remaining attributes; clustering, where the objective is to identify natural 
groups or clusters of data instances; and association rule discovery, where 
the objective is to identify meaningful correlations in the database. This 
chapter focuses on the first of those, namely classification. 

There are two types of methods that can be used to induce classification 
models from data: black box methods, where the logic of the model is 
effectively incomprehensible, and transparent box methods, where the 
construction reveals some structural patterns (Witten and Frank, 1999). 
Many black-box methods, such as artificial neural networks, have been 
found to be very effective in terms of making accurate predictions, but they 
have the serious drawback of not providing any additional insight into why 
the prediction is made. On the other hand, from a transparent method such 
as top-down induction of decision trees, it is possible to infer exactly how a 
particular prediction is made. As one of the most popular data mining 
methods, decision tree induction has received a great deal of attention, but 



Chapter 10: Multi-Attribute Decision Trees and Decision Rules 329 

most research into decision tree induction has focused on inducing decision 
trees that use one attribute at a time (Witten and Frank, 1999; Quinlan, 1986; 
1993; Quinlan and Rivest, 1989; Breiman et al., 1984). Although a few 
researchers have considered multi-attribute decision making for numerical 
attributes only (Benett and Mangasarian, 1994; Brodley and Utgoff, 1995; 
Heath, Kasif, and Salzberg, 1993), very little research has been done to date 
related to the disjunctive descriptions or logic combinations of multiple 
nominal attributes (Murphy and Pazzani, 1991). 

In this chapter, we focus on decision tree induction and in particular on 
second-order decision trees for nominal attributes. We discuss a new 
algorithm called Second Order Decision tree Induction (SODI) proposed by 
Lee and Olafsson (2003), and compare this new algorithm to three other 
methods: the classic ID3 decision tree algorithm, the popular C4.5 decision 
tree algorithm, and the PART decision rule induction algorithm of Frank and 
Witten (1998). Our results demonstrate that while the hypothesis description 
for each decision node becomes more complex in SODI, the size of the 
decision tree tends to be less than the more conventional decision trees. This 
implies that the SODI decision tree generates fewer decision rules and in 
many cases these decision rules have more intuitive appeal. Furthermore, the 
accuracy of the SODI generated trees and rules compares very favorably to 
the other methods. 

2. DECISION TREE INDUCTION 

Many classification techniques have been proposed by the statistics and 
machine learning communities, including decision trees, artificial neural 
networks, and statistical methods. Probably the best-known and most widely 
used method is the induction of decision trees (Quinlan, 1986; Breiman et 
al., 1984). A decision tree is a top-down tree structure consisting of internal 
nodes, leaf nodes, and branches. Each internal node represents a decision on 
a data attribute or a function of data attributes, and each outgoing branch 
corresponds to a possible outcome. The internal nodes are usually referred 
to as decision nodes or split nodes. Each leaf node represents a class. In 
order to classify an unlabeled data sample (a record in the database), the 
classifier tests the attribute values of the sample against the decision tree. A 
path is traced from the root to a leaf node, which holds the class predication 
for that sample. Decision trees can easily be converted into IF-THEN 
decision rules. 

A great deal of both theoretical and empirical research has been devoted 
to top-down induction of decision trees, and how to make the process and 
final results accurate, reliable, efficient, and valuable. One of the key issues 
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is the order in which attributes are selected to be used in the decision or split 
nodes. This selection affects the performance of the tree in almost every 
vŝ ay, including its accuracy, size, and interpretability. 

2.1 Attribute Evaluation Rules 

The basic idea of all decision tree induction algorithms is to select the 
attributes used for splitting the data in decreasing order of importance. 
However, measuring what makes an attribute important is far from trivial 
and many methods have been proposed in the literature. One framework that 
is useful in thinking about these methods is the taxonomy proposed by Ben-
Bassat (1987). According to this taxonomy, attribute evaluation rules are 
divided into three categories: 
- Rules based on information theory. 
- Rules based on distance measures. 
- Rules based on dependence measures. 

Information theory based rules are derived from Shannon's entropy 
concept (Shannon, 1948), and several algorithms use this approach for 
decision tree construction. The basic idea of most of these methods is to 
maximize the global mutual information. In other words, at each node an 
attribute should be selected that contributes to the largest gain in average 
mutual information of the whole tree (Sethi and Sarvarayudu, 1982; Talmon, 
1986). Tree construction that locally reduces the entropy as much as 
possible, which can also be thought of as maximizing information gain, has 
been explored in several of the diverse fields that contribute to the data 
mining literature, including pattern recognition (Casey and Nagy, 1984), 
machine learning (Quinlan, 1986), and sequential fault diagnosis (Varshney, 
Hartmann, and De Faria, 1982). Other work drawing on the entropy concept 
includes the G-statistic, an information theoretic measure that approximates 
the distribution for tree construction (Van De Merckt, 1993), and the 
combination of geometric distance with information gain for attribute 
evaluation, which is particularly effective for numeric attribute spaces. As 
information theory based measures are used in the algorithms to be 
introduced later in this chapter, such measures are discussed further in 
Section 2.2. 

Other measures focus on the distance between the probability 
distributions of the class, and in particular take the attribute evaluation 
criteria as separability or the divergence between classes. Perhaps the most 
widely used measure in this category is the Gini diversity index. Similarly to 
the entropy concept, this popular approach has been used for decision tree 
construction in numerous fields, including statistics (Breiman, et al., 1984), 
pattern recognition (Gelfand, Ravishankar, and Delp, 1991), and sequential 
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fault diagnosis (Pattipati and Alexandridis, 1990). However, it has been 
suggested that the Gini index has some difficulty when there are a relatively 
large number of classes (Breiman et al., 1984; Murphy, Kasif, and Salzberg, 
1994), and that it overemphasizes equal sized branches and purity of these 
branches (Taylor and Silveramn, 1993). Thus, as for other measures it has 
certain biases and may not be appropriate for all situations. 

The final category in the Ben-Basset taxonomy includes rules that measure 
the statistical dependence between two random variables. This can be taken as 
a separate category, but it is possible to interpret all dependence-based 
measures as belonging to one of the other two categories (Ben-Bassat, 1987). 

Although the Ben-Basset taxonomy covers a large class of attribute 
selection criteria and includes the most commonly used measures, there are 
also some attribute selection criteria that do not clearly belong to any one of 
the categories, and in particular many combination measures have been 
proposed that cut across the categories. For example, by combining mutual 
information and a distance measure, a criterion has been suggested that first 
measures the gain in average mutual information due to a new split and then 
quantifies the probability that this gain is due to chance (Talmon, 1986). 

Another category of measures that has been used for decision tree 
construction uses the activity of an attribute (Miyakawa, 1989). The activity 
of an attribute is defined in this context as the testing cost of the attribute 
multiplied by the a priori probability that it will be tested. For example, the 
well-known Minimum Description Length (MDL) principle (Risannen, 
1989) has been used to select attributes for splits and for pruning decision 
trees (Quinlan and Rivest, 1989). This is particularly significant as it has 
been noted that criteria such as the information gain and the Gini index are 
concave and thus are not able to assure an improvement after split, which 
implies that there is no natural way of assessing where to stop splitting a 
node (Kalkanis, 1993). This is where the MDL can prove particularly 
useful. 

The simplest of all attribute selection criteria is to base the selection 
directly on the number of misclassified instances. Following this line of 
thought, two measures, the max minority and sum minority have been 
suggested, respectively denoting the maximum and the sum of the number of 
misclassified points on either side of a binary split (Heath, Kasif, and 
Salzberg, 1993). An important theoretical property of the max minority is 
that the depth of the tree constructed using this measure is at worst 
logarithmic in the number of training instances. 

From this brief survey it should be clear that many measures have been 
suggested for defining split nodes in decision trees. Furthermore, each of 
those has certain strengths but also biases and weaknesses. Several studies 
have been conducted to compare the various criteria for selecting split 



332 Data Mining & Knowledge Discovery Based on Rule Induction 

attributes but conclusive recommendations cannot be drawn regarding the 
best attribute selection method for an arbitrary problem. For example, an 
experiment comparing eleven attribute evaluation criteria concluded that the 
attribute rankings induced by various rules are very similar (Baker and Jain, 
1976). In this study several attribute evaluation criteria, including entropy 
(Shannon, 1948) and divergence measures (Murthy, Kasif, and Salzberg, 
1994; Pattipati and Alexandridis, 1990; Gelfand, Ravishankar, and Delp, 
1991), are compared using simulated data on a sequential, multi-class 
classification problem (Ben-Bassat, 1978). The conclusions are that no 
attribute selection rule is consistently superior to the others, and that no 
specific strategy for alternating different rules seems to be significantly more 
effective. 

2,2 Entropy-Based Algorithms 

As noted above, several decision tree algorithms incorporate information 
theory based measures for attribute selection. The earliest of those is the IDS 
algorithm (Quinlan, 1986), an inductive algorithm that constructs a decision 
tree consistent with a set of data instances as follows. The tree is constructed 
in a recursive top-down manner. At each step in the tree's construction, the 
algorithm works on the instances associated with a node in the partial tree. If 
the instances at the node all have the same class value for the attribute to be 
predicted, the node is made into a leaf node. Otherwise, a set of tests is 
evaluated to determine which test best partitions the instances down each 
branch. The metric used to evaluate the partition made by a particular test is 
the information gain. Once a test is selected for a node, the cases are 
partitioned down each branch, and the algorithm is recursively called on the 
instances at the end of each branch. The algorithm terminates once all 
branches have been terminated in a leaf node. The IDS algorithm has been 
widely used and studied in the past but has some very well known 
weaknesses that limit its applicability. For example, in the form described 
here the algorithm can only deal with nominal attributes and since the 
splitting is not terminated until each branch becomes a leaf node, it is prone 
to reflect the training data too closely, that is to overfit the data, and thus 
may result in a decision tree that does not generalize well to new data. 

Several researchers have also pointed out that the information gain is 
biased towards attributes with a large number of possible values. Quinlan 
suggested the gain ratio as a remedy for this bias of the information gain, 
and this is the attribute selection method used by the C4.5 algorithm 
(Quinlan, 1993; Quinlan and Rivest, 1989). Mantaras (1991) argued that the 
gain ratio approach had its own set of problems, and suggested using an 
information theory-based distance between partitions for tree construction. 
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He formally proved that his measure is not biased towards multiple-valued 
attributes. However, White and Liu (1994) present experiments to conclude 
that information gain, gain ratio and Mantaras' measure are worse than a 
measure based on the chi-square distribution in terms of their bias towards 
multiple-valued attributes. A hypergeometric distribution has been proposed 
as a means to avoid this bias (Martin, 1995). Kononenko (1995) also pointed 
out that Minimum Description Length (MDL) based attribute evaluation 
criteria have the least bias towards multi-valued attributes. 

2.3 Other Issues in Decision Tree Induction 

The selection of attributes for the decision nodes is probably the 
dominant issue in decision tree construction, but there are several other 
issues of great importance. For example, in general one of the potential 
weaknesses of decision tree induction is the variance of its construction, a 
problem that is particularly acute when there are few instances and many 
attributes (Dietterich and Kong, 1995). The source of the variance can be the 
random selection of training and testing instances, having numerous equally 
good attributes at each node, the cross-validation process, and other reasons. 
To address this issue, a few authors have suggested that a collection of 
decision trees might be used instead of just one, which presumably reduces 
the variance in classification performance (Kwok and Carter, 1990; Buntine, 
1992). This approach involves building multiple trees, for example using 
randomness (Heath, Kasif, and Salzberg, 1993) or by using different subsets 
of attributes for each tree (Shlien, 1990; 1992), and then combining the 
results. The combination can for example be done by using simple voting 
procedures ((Heath, Kasif, and Salzberg, 1993) or by using statistical 
methods for combining evidence (Shlien, 1990; 1992). 

Related to this idea is also the decision forest, which consists of all the 
decision trees that can be induced from a training data set generated from a 
series of experiments. In analyzing this decision forest. Murphy and Pazzani 
(1994) present a relationship between the size of a decision tree consistent 
with some training data and accuracy of the tree on test data. They show 
empirically that smaller decision trees are more recommendable for simpler 
problem domains. However, the average accuracy of smaller consistent 
decision trees is less than that of slightly larger trees for many real problems 
(Pazzani et al., 1994). This implies that a slightly larger decision tree can be 
recommended for more complex problems even thought its reliability may 
be slightly less than smaller decision trees. 

Another idea is the fulfringe constructive induction algorithm, which 
belongs to a family of constructive induction algorithms that identify 
patterns near the fringes of the decision tree and uses them to build new 
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attributes (Oliveria and Vincentelli, 1993). Learning from interpretations has 
also received increased interest in recent years, and an example of this is the 
HYDRA algorithm that automatically learns concept descriptions consisting 
of rules with relational and attribute-value conditions (Ali and Pazzani, 
1995; Blocked and De Raedt, 1998). In order to reduce the prediction errors, 
this approach builds more complex decision nodes than a single attribute-
value approach. However, it only builds them after the construction of a 
decision tree. An additional relatively recent approach is the Top-down 
Induction of Logical Decision Trees (TILDE) that uses the concept of 'first-
order logic', which is defined as simple logical combinations of attribute-
value descriptions (Bioch, Van der Meer, and Potharst, 1997). TILDE 
employs logical queries and first-order upgrades of existing attribute-value 
descriptions, rather than just using simple attribute-value tests in the nodes 
of a decision tree. 

3. MULTI-ATTRIBUTE DECISION TREES 

From the last section it is clear that a great deal of research has been 
devoted to how attributes should be selected for split nodes in decision trees. 
However, this has mainly focused on determining which single attribute to 
select, and one of the potential weaknesses of most traditional decision tree 
algorithms is that there is no accounting for interactions between attributes. 
When attributes are used one at a time for the split nodes any resulting 
decision rules can only combine them in a conjunctive manner. All other 
potential interactions between attributes are not taken into account, which 
may lead to large trees with very deep branches and multiple replicated 
subtrees. Such trees are difficult to interpret and may therefore loose a key 
advantage that is inherent in transparent decision tree models, namely 
simplicity and interpretability. Multi-attribute trees offer a way in which this 
difficulty can be overcome, and several researchers have recently considered 
this type of decision trees. 

3.1 Accounting for Interactions between Attributes 

As opposed to traditional decision trees, multi-attribute decision trees can 
use splits that contain more than one attribute at each internal node. 
Recently, a number of methods for constructing decision trees with multi-
attribute tests have been suggested. Murphy and Pazzani (1991) showed a 
conceptual approach of the constructive induction of multi-attribute decision 
trees that have better performance than single attribute trees. They 
introduced the m-of-n concepts that are also known as Boolean threshold 
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functions. The 'm-of-n concepts' means all possible logical combinations of 
m attributes among n total attributes. They developed the GS algorithm (m-
of-n concept construction) to compare multi-attribute decision trees to 
conventional ones. However, the drawback is that the problem of generating 
all possible combinations of multi-attribute decision-making descriptions is 
NP-complete and no adequate pruning method was suggested. 

Most of the existing work on multi-attribute splits considers linear trees 
(Brodley and Utgoff, 1995; Murthy, Kasif, and Salzberg, 1994). These are 
trees that have tests based on a linear combination of the attributes at some 
internal nodes. The problem of finding an optimal linear split with respect to 
any of the attribute evaluation measures is more difficult than that of finding 
the optimal single attribute split. In fact, finding optimal linear splits is 
known to be intractable for some attribute evaluation rules. Thus, heuristic 
methods are required for finding good, partially sub-optimal, linear splits. 
Multi-attribute decision trees are often more accurate and smaller than single 
attribute trees. However, a linear combination of attributes at each split node 
is not always easy to interpret and understanding how many such linear 
combinations interact in a decision tree can be very complex. Thus, the use 
of linear combinations of the attributes may result in trees that are hard to 
interpret, again loosing the inherent advantage of transparency. To address 
this issue, some research on combinations of at most two attributes has been 
done, and it has been shown that such bi-attribute decision trees can often 
take advantage of both single attribute and multi-attribute trees (Bioch, Van 
der Meer, and Potharst, 1997). However, this work focused on classification 
with numerical attributes only. 

3.2 Second Order Decision Tree Induction 

To illustrate the advantages of multi-attribute decision trees, we consider 
the recently proposed Second-Order Decision-tree Induction (SODI) 
algorithm. More details regarding SODI, including the proofs of the 
theorems included here for completeness, can be found in Lee and Olafsson 
(2003). SODI generates a top-down decision tree with the consideration of 
the second-order decision-making of nominal attributes, and uses the 
information gain-ratio suggested by Quinlan (1993) as measure of the 
quality of attributes or combination of attributes. The intuitive motivation 
behind SODI is the desire to take advantage of multi-attribute splits to obtain 
smaller and higher accuracy decision trees, while at the same time limiting 
the possible combinations to at most two attributes so that the result decision 
trees can be easily interpreted. 

To motivate the SODI algorithm mathematically some terminology needs 
to be introduced. We let 7 be a random variable, with density p(Y), that 
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represents the class attribute, and Aj,A2, ...,AN represents the other (decision) 
attributes. The values of these attributes are denoted with the corresponding 
lower case letter, e.g. a^^, a^^ v s /̂„ ^^^ ̂ ^^ values of attribute At. We let Nu 
denote the subset of instances at ttie f^ internal node or end-leaf of the t 
tree, where i=l,2,...,n, and j=l,2,...k. We let P(Nij) denote the empirical 
probability of instances that are discovered at the/^ node of the /* tree, that 
is. 

We let H(Y) denote the entropy of classes without any attribute 
information, that is, 

H(Y) = -Y,p(y)'\og,p(y). 

and similarly, H^ (Y) is the average entropy of classes when the attribute Ai 
is known, and if ^^ (Y) is the average entropy of classes when both Ai and 
Aj are known. The information gain of the tree that branches at an attribute At 
is denoted with G(Ai), that is, 

G(A,) = H(Y)-H,^{Y). 

We let S(Ai) denote the split entropy of a tree T that is branched by an 
attribute, Aj, that is. 

S(AJ = -^piA,=a,\T)-log,p(A,=^a,\n 

Finally, GR(Ai) denotes the information gain ratio of a tree due to At, that is, 
GR(AI) = G(Ai) I S(Ai). Consistent with the above notation, we let H{Ai, Aj), 
G{Ai, Aj), S{Ai, AJ), GR{AU AJ) denote the entropy, information gain, split 
entropy, and gain ratio, respectively, of a tree due to both At and Aj. 
Furthermore, we define the mutual information of the two attributes as 

M(^ , ,Aj) = H{A,) + HiAj) - H(A^ ,Aj). 

As mentioned above, entropy related measures such as these are 
commonly used in decision tree induction. The ID3 algorithm aims at 
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quickly reducing entropy by selecting at each split node the attribute that has 
the highest information gain. Other algorithms, such as the C4.5 algorithm 
that selects the attribute with the highest gain ratio, work in a similar 
fashion. The basic motivation behind the SODI algorithm is that such 
entropy reduction can be better achieved by sometimes using two attributes 
simultaneously in the decision node. In particular, the information gain of 
knowing two attributes is larger than or equal to the sum of the information 
gain of knowing each attribute independently, and the equality holds if and 
only if the attributes are independent. Thus, any two dependent attributes 
could reduce entropy faster if used together, either conjunctively or 
disjunctively, in a split node. This is formalized in the following theorem. 

THEOREM 1: 

a) The average information entropy when two attributes are known is 
less than or equal to the entropy of knowing either one of the 
attributes'. 

H,^,iY)<mm{H^{Y),HAS^)}. 

b) The information gain of knowing two attributes is larger than or 
equal to the gain of knowing each of the thee attributes separately. 

max{G(4),G(.4,)}<G(4,^,) . 

c) The information gain of knowing two attributes can be calculated 
using the following relation: 

G{A,,Aj) = G{A,) + G{Aj\A,)<G{A,) + G{Aj). 

d) Independent attributes can be characterized in terms of the 
following relationship between their joint information gain and split 
entropy. Two attributes A. and A are independent if and only if 
G{A,,A^)^G{A,) + G{A.) and S{A,,A.) = S{A,) + S{A.). 

e) If the mutual information of knowing two attributes is zero, then the 
gain ratio of the two attributes is less than or equal to the larger of 
the two individual gain ratios: 

M(r 14, r 14) = 0 => G , ( 4 , 4 ) < max{G«(4),G,(4)}. 

Proof: See Lee and Olafsson (2003). 
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Theorem 1(a) implies that any pair of two attributes has less uncertainty 
than any of individual attributes. Similarly, Theorem 1(b) proves the 
information gain of a bi-attribute split is always larger than any of single 
attribute split. It also provides a lower bound on the information of a bi-
attribute split. On the other hand, Theorem 1(c) provides an upper bound on 
the information of bi-attribute splits, and thus provides a weak condition for 
eliminating unnecessary pair-combinations among all attributes. 
Specifically, suppose that there exist two smallest information gains from 
any single attribute. From these two attributes the joint information gain can 
be computed. If the sum of single information gains of a pair of other two 
attributes is larger than the joint information gain, then the computation of 
this joint information gain of that pair is not necessary. Theorem 1(d) shows 
the characteristics of a pair of independent attributes with respect to their 
information gain and split entropy. If M(7| J,, Y\Aj) = 0, the classification is 
independent on these two attributes. Theorem 1(e) shows that the 
information gain-ratio of two independent attributes is always less than that 
of any individual attribute. From this result the following corollary can be 
concluded. 

COROLLARY 1: 

If all attributes affect the class attribute independently, the single 
attribute or first-order decision tree has the greatest gain ratio. 

Proof: See Lee and Olafsson (2003). 

On the other hand, a second-order decision tree is possibly better than 
any single attribute decision tree if some attributes are correlated. Indeed, 
there exists an optimal decision tree with multi-attribute decision nodes, 
which is optimal in the sense that it has the greatest gain ratio among all 
possible decision trees. However, it is NP-complete to find an optimal 
solution by searching all possible combinations (Heath, Kasif, and Salzberg, 
1993). Therefore, a second-order decision tree induction algorithm may be 
considered a heuristic approach to quickly obtain a good solution for the 
classification. 

Suppose Ai is a node in the n^^ depth of a first-order decision tree, and Aj 
is the only child node of ^/. If these consequent attributes are correlated to 
the classification, the number of branches of the joint condition, At and Ap is 
less than the product of individual branches of these two attributes. By 
aggregating two correlated attributes the split entropy can be reduced even if 
the information gain remains the same. Therefore, the following corollary 
gives us a stronger motivation for the SODI algorithm. 
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COROLLARY 2: 

If the class attribute is simultaneously correlated to a consequent 
attribute from a first-order decision tree, then there is a second-
order decision tree that has better gain ratio than any other first-
order decision tree. 

Proof: See Lee and Olafsson (2003). 

3.3 The SODI Algorithm 

The new SODI algorithm does not only employ conjunctive expressions 
('AND'), but also disjunctive expressions ('OR') to aggregate similar results 
from training instances. Furthermore, SODI adopts a new logical concept of 
'OTHERWISE', which forces the aggregation of all trivial instances that are 
not included in any other logical conditions. The motivation for this is that it 
is important to aggregate trivial attributes that have very little information 
gain by the current split rules, so that the next split node may be introduced 
to obtain higher information gain. 

More flexible logical description than 'AND' logic can reduce the 
number of decision rules or branches, resulting in simpler and easier to 
interpret decision trees, and fewer decision rules generated from the tree. To 
see this, note that the decision boundaries of conventional single attribute 
methods are orthogonal to each attribute, and intuitively it is clear that this 
requires more branches to approximate the ideal decision boundaries if only 
orthogonal approximations can be used. In other words, adopting a pair of 
attributes can be a better approximation to describing nonlinear classification 
than conventional single attribute methods. This also motivates the fact that 
SODI is able to improve the classification accuracy over single attribute 
decision trees. 

To state a detailed description of the SODI algorithm, a few more terms 
and mathematical notations are required. We let 7/ denote the decision sub
tree of the f" evolution, and Ltj be the y* internal node or end-leaf of the /̂ ^ 
evolution of trees i=l,2, ...,n, j=l,2, ...k. Consistent with our prior notation, 
G{Lnk) is the information gain of an end-leaf (Ẑ :̂) from a tree (r„), that is, 

G{L„,) = -Y,^^^P{Y = c\L„,)\og,P{Y = c\L„,), 

and G{Tn) is the average information gain of the decision tree r„, that is, 
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Similarly, S(Tn) is the split entropy of the decision tree r„, that is, 

and GR(T„) is the gain ratio of the tree, that is, GR(T„) = G(T„) I S(T„). 
The information gain of constructive decision trees is recursively 

computed using the relation: 

T„.i=nN„,\A^=a,)Jor /7 = 0,1,2,..., 

where To is the whole tree with the root. No = the whole set of training 
instances, and p{Tn+i) is the empirical probability that instances among Nnk 
belong to the sub-tree Tn+i. Furthermore, 

. \G{N^,\A)\ 

A^ =argmax< —->, 
" ir„ \S{N„,\A)\ 

and 

S(N„,\A;) = -Y^p{N„,\A^=a,y\og,p{N„,\A^=a,\ 

where T{N„k | Ap=ak) is a sub-tree of T„ branched at Ap=ak, and {N„k \ Ap=ak) 
is the subset of instances with the value ofAp=ak among N„k. The probability 
p{N„k I Ap=ak) can be computed empirically as follows: 

p[N,\Ap=a,) = 
[^nk\\=ak\ 

\K,\ 

There are two primary components to define SODI. The first is the 
selection of an attribute or a pair of attributes for splitting, and the second is 
the pruning process that eliminates and combines branches while the tree is 
being constructed (that is, pre-pruning or forward pruning). We start by 
describing how attributes are selected and then discuss the pruning process. 

Figure 1 shows the pseudo code for the main function of the SODI 
algorithm. As in any decision tree algorithm, the key issue is to select the 
order in which to use the attributes in the split nodes. To this end, SODI first 
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constructs a list of attributes sorted according to their information gain. To 
find the best pair, the algorithm starts by considering the first two attributes 
from the list. If the gain ratio of the pair is higher than any of single attribute, 
the value becomes a lower bound for the gain ratio of all remaining pairs. 
The expected upper bound of the information gain ratio of a pair is the sum 
of the information gains of these two attributes divided by the maximum 
split information between those attributes. If it is lower than the current 
lower bound, this pair of attributes can be skipped. This process continues 
through the list of attributes until the best pair of attributes has been 
identified. In the worst-case scenario, n(n-\)/2 information gain ratio 
calculations are required to traverse the entire list. In practice, however, 
many candidate pairs can be eliminated by the bound of the best gain ratio, 
and finding the best pair is thus likely to take much fewer iterations. 

Function SODI(R,S,DC) 
R: a set of attributes={Ai, A2,..., AN) ; 
S: a set of training instances; 
C: a default class value; 

|Begin 
If S is empty, return NULL; 

Let C be the dominant class index; 
If Pr(C)=Pr(DC), then C:=DC, else DC:=C; 
If H(R)<a, return a single node with class C; 
Sort by Gain Ratio: G^(Ai)> Gĵ (A2)>...> GK(AN); 
(Ai,Aj) :=Find_Best_Pair (AI,A2,...,AN) ; 
Let dj:=description of decision-making. 
Let Sj:=subset of S corresponding to dj. 
If G^(Ai)> G^(Ai,Aj) 

{ (dj,Sj) Ij=l..m}:=SODI_Rules(S,Ai) ; 
Let T be a tree with the root labeled Ai; 
Rnew:=R-{Ai}; 

Else 
{ (dj,Sj) I j=l. .m} :=SODI_Rules (S,Ai,Aj) ; 
Let T be a tree with the root labeled (Ai,Aj) ; 
Rnew:=R-{Ai, Aj}; 

End If 
For j=l to m 

Add an arc labeled dj to T; 
Branch T from the arc with SODI(Rnew,C, DC) ; 

End For 
return T; 

lEnd. 

Figure 1. The SODI Decision Tree Construction Algorithm. 

In SODI, branches or decision arcs are aggregated while a decision tree is 
constructed using a set of rules that we call the second-order logic 
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descriptions (see Figure 2). These rules can be thought of as a pre-pruning 
process. The first three rules attempt to reduce the size of the tree by 
combining branches or decision arcs where there is no or little information 
gain in keeping all the branches. These three rules should be applied in order 
and if the first rule is satisfied there is no need to check the last two, and so 
forth. The fourth and final rule deals with small branches with little 
information gain and combines all such trivial branches into a single 
"OTHERWISE" branch. The details of the four pre-pruning rules are as 
follows: 

Rule 1. Start by eliminating all arcs or branches where there is no or little 
reduction in entropy. Specifically, aggregate all decision arcs 
where the entropy after splitting relative to the entropy before 
splitting is less than some pre-specified constant a > 0, that is, 

H{N„,\T„)IH{T„)<a. 

Note that here N^k is the subset of instances obtained by the k^^ 
branch from r„. Also note that the larger the constant a, the more 
aggressive the pruning is, and vice versa. The default value of a in 
our implementation of SODI is set to a = 0.25, which from 
numerical experience appears to give good performance. 

The extreme case of this rule is H{N^j^ | Z"̂ ) = 0, which means the 
instances in this subset have the same class and the decision node 
becomes a leaf node. This rule generalizes this concept to merging 
branches with almost pure classification. 

Rule 2. If there are no more instances that satisfy Rule 1, then a majority 
dominance rule will be considered. Let p{cn \ Nnk) be the 
proportion of instances with class c„ in the Nnk- If for some subsets 
of instances a given class c„ is more prevalent than all the others 
combined, that is, if p{c^\N^,)>Y,^^,p{cJN^,). then these 
subsets can be merged. 

Rule 3. If Rule 1 and Rule 2 do not apply, but the proportion of a class is 
significantly larger than any other classes (by some discrimination 
parameter, P), these subsets are still merged. The default value of 
p = 0.2 is used in our implementation of SODI. 

Rule 4. The final rule combines small subsets that have negligible 
information gain. In particular, any subset of small size (as 
determined by some constant e) with gain ratio smaller than a can 
be considered trivial and an overfitting problem may occur if such 
branches are included in the decision tree. Thus, all such branches 
are aggregated in an "OTHERWISE" branch, which could be split 
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further in the next iteration using different attributes. We use the 
default value of 8 = 3 in our SODI implementation. 

Global Parameters: 

a: Approximation level (default:0.25); 

P: Discrimination level (default:0.2); 

s: Minimum attractive number of instances (default: 3); 

Function SODI_Rules(S,A,B) 
S: a set of training instances; 
A,B: decision attributes such that Q^(A)>GR(B); 

Begin 
If B is erapty 

Let {dk=(ak) ia^GA} be the mutual decision; 
Let Sk be the subset of S corresponding to d̂ . 

Else 

Let {dk=(ai,bj) | k=(i, j) ,aiGA,bjGB} be the mutual decision; 
Let Sk be the subset of S corresponding to d̂ . 

Endif 
Let Sp be the group of {S^}; 
Let dp be the condition of attributes,(A,B), corresponding to Sp; 
For each class Ci: 
p:=l; dp:=FALSE; Sp:=0; 
For rule_no = 1 to 3 

Repeat 

Find Sk such that it satisfies the Rule(rule_no) 
Sp := Sp u Sk; dp := dp OR d,,; 

Until Rule(rule_no) cannot satisfy all remained S^; 
{ (dj,Sj) I j=l. .k} := Refine_Logics (Sp,dp) ; p:=p+k; 

End For 
End For 
For all ungrouped subsets, 

If (sizeOf (Sk)>s) or (sizeOf (Sj,) <=s and G(Sk)/H(S) >a) 
p:=p+l; dp=(ai,bj) OR a^; Sp=Sk; 

Endif 
End For 
p:=p+l; dp:='OTHERWISE'; 
Aggregate all ungrouped subsets {Ski to Sp; 
return {(dj,Sj)|j=l..p}; 

End; 

Figure 2. The SODI Rules for Pre-Pruning. 
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4. AN ILLUSTRATIVE EXAMPLE 

In this section, we illustrate the SODI algorithm described in Section 3.3 
through a very simple classification problem with a class attribute Y that can 
take two values 7 G { X , 0 } , and four additional decision attributes 
74p^2 5^3? and ^̂ 4 that can take values 1,2, and 3. There are 25 instances in 
the training data set and those are shown in Table 1. 

Table 1. A Simple Classification Problem. 
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The global SODI parameters are set as a = 0.05, p = 0.10, and s = 3. 
Figure 3(a) and 3(b) shows the results of ID3 and SODI, respectively; and 
both algorithms classify all of the training instances correctly (no training 
error). The tree size for ID3 is 22, the number of decision rules is 13, and the 
split entropy is 2.9778. On the other hand, the tree size for SODI is 11, the 
number of decision rules is 8, and the split entropy is 2.6970. (Thus in this 
example, SODI results in a much smaller decision tree and fewer decision 
rules). 

To understand how SODI achieves the reduction in tree size through the 
use of bi-attribute split nodes and a pre-pruning process, we consider the 
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construction of the tree more closely. Start by noting that the information 
gain ratios of A^,A^,A^, and^4are 0.2486, 0.0015, 0.2274, and 0.0107, 
respectively. Therefore, A^ and A^ are the first two attributes on the ordered 
list of all attributes and are considered first. 

Representing the two highest gain ratio attributes, the pair(^i,^3)is a 
candidate attribute pair for the first split node. The information gain 
of(^i,v43)is 0.5792, and its split entropy is 2.2774. Its gain ratio is thus 
0.2543, which is bigger than 0.2486, the gain ratio of A^, and the current 
lower bound of gain ratios for the first split is therefore taken as 0.2543. The 
next candidate is (y4j, ̂ 4 ) . The approximate upper bound of the gain ratio of 
(y4i, ^4) can be computed as follows: 

(a) 

O;0,X:1 0:1,X:0 0:1,X:0 O:0,X:1 O:0,X:1 O:1,X:0 

(b) 
Al=3 AND A3=2 

OTHERWISE 

O:7,X:0 

O:0,X:3 
O:0,X:2 

A2=a OR A4=: =1 AND A4=2 

O:0,X:3 0:1,X:0 

Figure 3. Decision Trees Built by (a) ID3, and (b) SODI. 
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0.2486 + 0.0107 ^ _^^ 
= = 0.1693 

1.5690 

This is less than the current lower bound and the candidate (^1,^4) is thus 
rejected. Furthermore, similar calculations show that the upper bounds of 
gain ratios from any other combinations are all less than the current lower 
bound. Therefore, the first decision node is selected to be (yij, ^3) . 

Now that the split node has been selected, the next step is to consider all 
its possible values: 

( 4 , 4 ) = (1,1) (4,^3) = (2,l) ( 4 , 4 ) = (3,1), 
( 4 , 4 ) = (1,2) (4,4)^(2,2) ( 4 , 4 ) = (3,2), 
( 4 , 4 ) = (1,3) ( 4 , 4 ) = (2,3) ( 4 , 4 ) = (3,3). 

At first glance this might indicate nine branches, but the pre-pruning rules 
must also be applied. First, let's consider the three cases where A^=2 . 
From Table 1 we observe that there is no instance where both A^=2 and 
^ 3 = 3 . Furthermore, for the other two potential branches with A^=^2 both 
have all instances classified as Y = 0 . Therefore, (^^ = 2 AND A^ = l)and 
(^j = 2 AND ^3 = 2 ) have zero entropy and can be combined by Rule 1. 
Thus, the three branches can be simplified to ̂ ^ = 2 as shown in Figure 
3(b). Secondly, the decision arc^3 = 3 from the decision node (^A^,A^) is 
aggregated from ( 4 =1 AND 4 =3) and ( 4 = 3 AND 4 =3) for the 
same reason. Thirdly, the sets of instances corresponding to 
( 4 = 1 AND 4 = 2) and ( 4 = 3 AND 4 = l) are both determined to be 
small as they have only two instances each, which is less than the threshold 
of s = 3. They also have zero information gain and are thus combined in an 
"OTHERWISE" condition according to Rule 4, which aggregates all small 
subsets of trivial unclassified instances. Thus, the nine potential branches 
become five branches as pre-pruning is applied. 

From this example it is clear that the reason why the SODI decision tree 
is appealing is two-fold: First, the use of bi-attribute splits allows for 
modeling of interactions between attributes. For example, 13 of the 25 
instances are completely classified by the value of 4 ( 4 ~ 2 ) or 4 
( 4 = 3 ) , but the remaining 12 instances require considering interactions. 
Second, the disjunctive and "OTHERWISE" logic allows for simplification 
of the tree. For example, two branches are combined into an 
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"OTHERWISE" branch at the top level, which is then classified perfectly 
by A^ at the next level. Also, for both of the split nodes involving A2 and 
A^ as a bi-attribute split, the use of a disjunctive OR branch allows us to 
combine what would otherwise be four branches into two. Thus, the 
combination of bi-attribute splits and extended logic descriptions makes for 
a simpler, easier to interpret, and potentially more useful tree. 

5. NUMERICAL ANALYSIS 

The simple example in Section 4 provides some intuition into why the 
SODI algorithm may perform well when compared to the IDS algorithm and 
shows how it classifies the same dataset using a much simpler decision tree 
and fewer rules. In this section we present extensive numerical results that 
compare SODI with C4.5 and PART along two dimensions: the 
improvement in simplicity and the improvement in accuracy. The C4.5 
algorithm is chosen for comparison because just like SODI it uses the gain 
ratio to select attributes (see Section 2.2), and the PART algorithm is chosen 
because it infers rules by repeatedly generating partial C4.5 decision trees. 

We analyzed eight classification problems that are widely used in the 
data mining literature (see e.g., Witten and Frank, 1999): 
1. Fitting contact lenses (5 attributes, 3 classes, 24 instances) 
2. Balance scale weight and distance (4 attributes, 3 classes, 625 instances) 
3. Breast cancer (9 attributes, 2 classes, 286 instances) 
4. Chess end-game (36 attributes, 2 classes, 3196 instances) 
5. 1984 United States Congressional voting (17 attributes, 2 classes, 435 

instances) 
6. Lymphography domain (17 attributes, 4 classes, 148 instances) 
7. Mushroom records (22 attributes, 2 classes, 8124 instances) 
8. Zoo classification (17 attributes, 7 classes, 101 instances) 

We are interested in two quality measures for each of the classification 
methods: accuracy and simplicity. The prediction error of each method is 
estimated by randomly dividing the data set into a training dataset (2/3 of 
data) and a test dataset (1/3 of data). The simplicity is measured by the 
number of classification rules, or leaf nodes in the decision tree, generated 
by the model. 

The reduction in the estimated error rate of the three more advanced 
models relative to the ID3 decision tree is shown in Figure 4. All of the 
methods achieve considerable reduction in error rate except for the 
'Mushroom' databases, where all four methods have estimated error rate of 
zero, and PART for the 'Chess End-Game' database, where the estimated 
error rate of PART is actually worse that the estimated error rate of ID3. 
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Furthermore, the error rate of SODI is very competitive. Only for the 
'Contact Lenses' database is the error rate of SODI worse than both of the 
other methods, and for four of the databases ('Balance Scale', 'Breast 
Cancer', 'Chess End-Game', and 'Lymphography') it is strictly better than 
both. In comparison, the C4.5 decision tree is strictly better than both for 
only the '1984 USA Voting' database, and the estimated accuracy of the 
PART decision rules is never strictly better than both of the other models. 
We conclude that the accuracy of SODI compares very favorably to the two 
other methods, which have both been found to be useful in data mining 
practice. 

Accuracy Improvement over ID3 
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Figure 4. Improvement of Accuracy over 1D3 for SODI, C4.5, and PART. 

The simplicity of the tree types of models, as measured by the number of 
decision rules (leaves in the decision trees), relative to the number of ID3 
generated rules is shown in Figure 5. All of the methods achieve an 
improvement for each of the eight test problems. However, although SODI 
has impressive improvements over ID3 for all the test problems, it does not 
compare quite as favorably as before relative to C4.5 and PART, as its 
improvement is less than the two other algorithms for four of the test 
problems ('Contact Lenses', 'Breast Cancer', '1984 USA Voting', and 
'Lymphography'). It should be noted that for two of these problems ('Breast 
Cancer' and 'Lymphography'), SODI had better accuracy than either of the 
other methods, so at least to some extend there is a tradeoff between 
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simplicity and accuracy. However, there is also simply a difference in the 
applicability of the methods to individual problems. For example, both C4.5 
and PART perform better than SODI on both measures for the 'Contact 
Lenses' database and C4.5 performs better on both for the '1984 USA 
Voting' database. Vice versa, SODI is for example clearly better than both 
for the 'Balance Scale' database and clearly better than PART for the 'Chess 
End-Game' database. We conclude that while SODI performs competitively 
in terms of the simplicity of the decision tree, the lack of post-pruning rules 
may result in slightly larger trees than those generated by C4.5 and PART. 

To further compare the three techniques, the actual models induced for 
the lymphography data (test problem 6) are shown in the Appendix of this 
chapter, along with the confusion matrices that illustrate what types of error 
are made by each model. 

Improvement in Simplicity over IDS 
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Figure 5. Reduction in the Number of Decision Rules over ID3 for SODI, C4.5, and PART. 

6. CONCLUSIONS 

As no single classification method can be shown to be superior to all 
others, it is very common in data mining practice that multiple classification 
methods must be tried. Each application has its own characteristics and no 
algorithm performs best for all situations. Thus, many useful decision tree 
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algorithms have been proposed in the literature but most of those use single 
attribute splits. In this chapter we have argued for the value of using multi-
attribute splits and also presented the SODI algorithm that takes advantage 
of second-order information or bi-attribute splits. We believe that this 
approach is an important addition to the available classification algorithms. 

We compared SODI to IDS, C4.5, and PART using numerical 
experiments on vs^ell-known test problems and concluded that SODI 
performs quite well. Taking ID3 as a benchmark, we evaluated the 
improvements of the three more advanced algorithms along two dimensions: 
accuracy and simplicity. All the algorithms improve on IDS on both of these 
quality measures, and SODI compares favorably relative to both C4.5 and 
PART. For some problems we observed a tradeoff between simplicity and 
accuracy, but for others one approach clearly outperformed the others on 
both measures. Thus, our numerical results support the claim that the relative 
performance of each of these methods is application dependent and for a 
given problem it is recommended to try multiple approaches. However, these 
results also clearly illustrate that there is a clear advantage to multi-attribute 
decision tree construction. 

Although SODI has been demonstrated to be a viable alternative for 
decision tree induction, considerable work remains to be done with respect 
to its development. In particular, although the pre-pruning rules appear to 
work effectively, the trees generated by SODI tend to be slightly larger than 
the models generated by both C4.5 and PART. Thus, we are investigating 
post-pruning processes for SODI. Also, SODI has only been developed for 
nominal attributes and we are currently investigating how to use support 
vector machines (SVM) to extend SODI to numeric and mixed attribute 
problems. 
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APPENDIX: DETAILED MODEL COMPARISON 

In order to further compare the three main methods discussed in this chapter (SODI, C4.5, 
and PART), this appendix presents the actual models for the lymphography problem. The 
performance of the algorithms on this problem was reported in Section 3.5. To compare how 
the different models make classification error, the confusion matrices for this problem are 
also shown. Recall from Section 3.5 that for this problem, the SODI decision tree is more 
complicated than the C4.5 tree and the PART decision rules, but the estimated accuracy of the 
SODI model is much better. 

The lymphography data set has 9 attributes that are Boolean valued (yes/no): 
block_of_affere, bl_of_lymph_c, bl_of_lymphjs, by_pass, extravasates, regeneratioof, 
earlyjuptakejn, dislocation_of, exclusion_of_no. There are 9 others nominal attributes: 
lymphatics e {normal, arched, deformed, displaced}, changesJnjym e {bean, oval, round}, 
defect_in_node G {no, lacunar, lac_margin, lac_central}, changes_innode e {no, lacunar, 
lac_margin, lac_central}, changesJnjstru e {no, grainy, drop_like, coarse, diluted, reticular, 
stripped, faint}, special^forms e {no, chalices, vesicles}, lym_nodes_dimin G {1, 2, 3}, 
lym nodes_enlar e {1, 2, 3, 4}, no_of_nodesJn G {1, 2, 3, 4, 5, 6, 7, 8}. The class attribute 
is nominal and takes one of five values: normal, metastases, malign_lymph, and fibrosis. 

C4.5 D E C I S I O N TREE 

lym_nodes_dimin = 1 
changes_in_node = no 

defect_in_node = no: normal (3.0/1.0) 
defect_in_node = lacunar: malign_lymph (2.0) 
defect_in_node = lac_margin: normal (0.0) 
defect_in_node = lac_central: normal (0.0) 

changes_in_node = lacunar 
exclusion_of_no = no: metastases (10.0/1.0) 
exclusion_of_no = yes 
I special_forms = no: metastases (3.0/1.0) 
I special_forms = chalices 
I I changes_in_lym = bean: malign_lymph (0.0) 
I I changes_in_lym = oval: malign_lymph (3.0) 
I I changes_in_lym = round: metastases (2.0) 
I special_forms = vesicles: malign_lymph (19.0/1.0) 

changes_in_node = lac_margin 
block_of_affere = no 
I extravasates = no 
I I lymphatics = normal: metastases (0.0) 

lymphatics = arched 
I early_uptake_in = no: metastases (5.0/1.0) 
I early_uptake_in = yes: malign_lymph (4.0/1.0) 

I I lymphatics = deformed: metastases (5.0) 
lymphatics = displaced: malign_lymph (1.0) 

I extravasates = yes: malign_lymph (4.0) 
block_of_affere = yes: metastases (56.0/3.0) 

changes_in_node = lac_central: malign_lymph (25.0/2.0) 
lym_nodes_dimin = 2: metastases (3.0/2.0) 
lym_nodes_dimin = 3: fibrosis (3.0) 
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P A R T DECISION R U L E S 
1. lym_nodes_dimin = 1 AND changes_in_node = lac_margin AND block_of_affere 

= yes: metastases (56.0/3.0) 
2. lym_nodes_dimin = 1 AND exclusion_of_no = yes AND early_uptake_in = yes 

AND speciaI_forms = vesicles: malign_lymph (42.0/2.0) 
3. regeneratio_of = no AND changes_in_lym = round: metastases (11.0/1.0) 
4. regeneratio_of = no AND defect_in_node = lacunar AND changes_in_node = 

lacunar AND exclusion_of_no = no: metastases (7.0/1.0) 
5. regeneratio_of = yes: fibrosis (5.0/1.0) 
6. exclusion_of_no = no AND special_forms = vesicles: malign_lymph (3.0) 
7. exclusion_of_no = yes AND no_of_nodes_in = 2: malign_lymph (9.0/1.0) 
8. exclusion_of_no = yes AND special_forms = no: metastases (6.0) 
9. lymphatics = arched: metastases (3.0/1.0) 
10. lymphatics == deformed: malign_lymph (3.0) 
11. : normal (3.0/1.0) 

SODI DECISION TREE 
lym_nodes_dimin = 1 

changes_in_node = lac_central: malign_lymph (23)/ metastases (2) 
changes_in_node = lac_margin 

(block_of_affere, extravasates) = (no, no) 
lymphatics = arched 
I (changes_in_lym, defect_in_node) 
I = {(oval, lac_margin), (round, lacunar)}: malign_lymph (4) 
I (changes_in_lym, defect_in_node) 
I = {(oval, lac_central), (oval, lacunar), (round, lac_margin)}: metastases (5) 
I (changesjnjym, defectJn_node) = OTHERWISE: N/D (Not Defined) 
lymphatics = deformed: metastases (5) 
lymphatics = displaced: malign_lymph (1) 
lymphatics = normal: N/D (Not Defined) 

(block_of_affere, extravasates) = {(no, yes), (yes, no)} : malign_lymph (25) 
(block_of_affere, extravasates) = (yes, yes) 

early_uptake_in = no: metastases (14) 
early_uptake_in = yes 
I bl_of_lymph_c = yes: metastases (8) 
I bl_of_lymph_c = no 
I I no_of_nodes_in ={1,2}: metastases (8) 
I I no_of_nodes_in = {3, 4} 
I I I changes_in_stru= {grainy}: metastases (2) 
I I I changes_in_stru = {diluted, stripped, faint}: malignjymph (3) 
I I I changes_in_stru = OTHERWISE: N/D (Not Defined) 
I I no_of_nodes_in = OTHERWISE: N/D (Not Defined) 

changes_in_node = lacunar 
exclusion_of_no = no: metastases (9) / malign_lymph (1) 
exclusion_of_no = yes 

special_forms = chalices 
I changes_in_lym = oval: malign_lymph (3) 
I changes_in_lym = round: metastases (2) 
I changesjnjym = OTHERWISE: N/D (Not Defined) 
special_forms = no 
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I dislocation_of = no: malign_lymph (1) 
I dislocation_of = yes: metastases (2) 
special_forms = vesicles: malign_lymph (18) / metastases (1) 

changes_in_node = no 
dislocation_of = yes 
I early_uptake_in = yes: malign_lymph (2) 
I early_uptake_in = no: metastases (1) 
dislocation_of = no: normal (2) 

lym_nodes_dimin = 2 
(regeneratio_of, early_uptake_in) = (yes, yes): N/D (Not Defined) 
(regeneratio_of, early_uptake_in) = (yes, no): fibrosis (1) 
(regeneratio_of, early_uptake_in) = (no, yes): malign_lymph (1) 
(regeneratio_of, early_uptake_in) = (no, no): metastases (1) 

[ym_nodes_dimin = 3: fibrosis (3) 

The detailed accuracy of the three models as estimated by 10-fold cross validation is 
shown in the following confusion matrices: 
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PART DECISION RULES 

Estimated prediction accuracy 88.3% 
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Abstract: The ability to acquire knowledge from empirical data or the environment is an 
important requirement in better understanding many natural and artificial 
organisms. This ability relies heavily on the quality of the raw information 
available about the target system. In reality, these raw information/data may 
contain uncertainty and fuzziness, that is, it may be imprecise or incomplete. A 
number of techniques, such as the Dempster-Shafer theory of belief functions 
and fuzzy set theory, have been developed to handle knowledge acquisition in 
environments that exhibit uncertainty and fuzziness. However, the advent of 
the rough set theory in the early 80's provides a novel and promising way of 
dealing with vagueness and uncertainty. This chapter will address the issue 
systematically by covering a broad area including knowledge acquisition / 
extraction, uncertainty in general, and techniques for handling uncertainty. The 
basic notions of rough set theory as well as some recent applications are also 
included. Two simple case studies related to fault diagnosis in manufacturing 
systems are used to illustrate the concepts presented in this chapter. 

Key Words: Rough Sets, Rule Induction, Knowledge Acquisition, Fuzzy Reasoning, Fault 
Diagnosis. 
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1. INTRODUCTION 

The ability of acquiring decision rules from empirical data or the 
environment is an important requirement for both natural and artificial 
organisms. For example, in an intelligent system, decision rules can be 
extracted by performing inductive learning (Wong et al., 1986). Many 
techniques such as decision tree learning (Quinlan, 1986b), neural network 
learning (Fausett, 1994), and genetic algorithm-based learning (Goldberg, 
1989), have been developed to carry out such a task. With the rapid advent 
of IT technology, it has often been said that we live in the information age'. 
This verdict is best manifested by the immense creation, availability, and use 
of enormous volumes of data (Triantaphyllou et al, 2002). As a result, the 
ability to automatically and efficiently extract knowledge from the huge 
amount of raw data has become an important research area. In reality, the 
raw data gleaned from a specific environment may contain uncertainty, that 
is, the data may be imprecise or incomplete. Imprecise data refer to 
information that is fuzzy or even conflicting. For example, the opinions 
about the performance of a machine as assessed by two engineers can be 
different. This will introduce inconsistency in the knowledge concerning the 
performance of the machine. On the other hand, incomplete data refer to 
missing data in the data records and may be caused by the unavailability of 
equipment or oversight of operators. This imprecise and incomplete nature 
of raw data is obviously the greatest obstacle to the task of rule extraction. 

Over the past decades, many theories and techniques have been 
developed to deal with uncertainty in rule induction, for example, fuzzy set 
theory (Zadeh, 1965) and the Dempster-Shafer theory of belief functions 
(Shafer, 1976; 1982). Rough set theory, which was introduced by Pawlak 
(1982) in the early 80's, provides a novel and powerful way of dealing with 
vagueness and uncertainty. It focuses on the discovery of patterns in 
imprecise data and can be used as a basis to perform formal reasoning, 
machine learning and rule discovery. In less than two decades, rough set 
theory has rapidly established itself in many real-life applications such as 
medical diagnosis, control algorithm acquisition and process control, and 
information retrieval (Pawlak, 1992; 1994a; 1994b). The main advantages of 
rough set theory are as follows: 

• It does not need any preliminary or additional information about data; 
• It is easy to handle mathematically; 
• Its algorithms are relatively simple. 
Furthermore, rough set theory is more justified for situations in which the 

set of experimental data is too small to employ standard statistical methods 
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(Pawlak, 1991); it demonstrates great advantages when dealing with 
inconsistent information (Khoo et al., 1999). 

This chapter will review the various techniques used to deal with 
uncertainty, including a brief outline of fuzzy set theory and Dempster-
Shafer theory of belief functions. The basic notions of rough set theory as 
well as some recent applications of rough sets are also included. Two simple 
case studies related to fault diagnosis of manufacturing systems are used to 
illustrate the concepts presented. 

2. AN OVERVIEW OF KNOWLEDGE DISCOVERY 
AND UNCERTAINTY 

Human beings acquire knowledge through learning, which is also true in 
intelligent systems. Since its advent, knowledge discovery has been of 
growing interest to researchers in intelligent reasoning, statistics and, 
especially, in machine learning. 

2.1 Knowledge Acquisition and Machine Learning 

Automated knowledge acquisition and machine learning are two 
important areas in intelligent systems. Knowledge acquisition focuses on 
improving and partially automating the acquisition of knowledge from 
human experts by knowledge engineers. Machine learning research 
concentrates on developing autonomous algorithms for the acquisition of 
knowledge from data and improving the organization of the obtained 
knowledge (Tecuci and Kodratoff, 1995). However, as machine learning 
moves into more complex domains, and knowledge acquisition attempts to 
automate the acquisition process even more, the two fields increasingly find 
themselves addressing common issues with different approaches and become 
more and more complementary in many applications. 

2.1.1 Knowledge Representation 

Knowledge representation is a common issue concerned by both machine 
learning and knowledge acquisition techniques. Basically, knowledge 
representation must take a form where its structure becomes meaningful and 
easy to be manipulated by a computer. Many schemes have been proposed to 
represent knowledge. The more popular ones are rule-based representation, 
frame-based representation, multiple context-based representation, model-
based representation, and blackboard representation. The first two schemes 
are widely used for representing knowledge in many intelligent systems. 
Rule-based (If-Then rules) representation, in particular, is the most popular. 
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The main advantages of employing rule-based representation in intelligent 
systems are as follows (Morik, 1989): 

• Rules are relatively easy to construct; 
• It enables rapid prototyping, and tests can begin with just a few 

rules; 
• It is a natural way to summarize human knowledge. 

2.1.2 Knowledge Acquisition 

Knowledge acquisition is an integral process in the development of 
intelligent systems. As the process of acquiring knowledge is labor intensive, 
it has also been identified as a bottleneck in building intelligent systems. 
Knowledge acquisition techniques can be broadly classified into two 
categories, namely the manual method and the computer-based method 
(Figure 1). 

ttCnowIedge Acquisition Techniques 

^ 
Manual Techniques I I Computer-based Techniques I 

Z X 
Interactive Techniques i Learning-based Techniques 

Figure 1. Knowledge Acquisition Techniques (Grzymala-Busse, 1991b). 

Briefly stated, the manual method involves interview, knowledge 
gathering and elicitation session with domain experts. The computer-based 
method, on the other hand, attempts to automate the process of acquiring 
knowledge (Mrozek, 1992). It can be implemented using the interactive 
technique (semi-automated) or a learning-based technique (automated). 
There is a continuing and growing research interest in these areas. 

2.1.3 Machine Learning and Automated Knowledge Extraction 

Machine learning plays a critical role in automated knowledge 
acquisition. It is the study of computational methods to automate the process 
of knowledge acquisition using the information (training data) gleaned from 
a process or domain experts. It aims at replacing the much time-consuming 
human activity in acquiring knowledge with automated techniques that can 
possibly improve the accuracy or the efficiency of the process by 
discovering and exploiting regularities in a training data set. 
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The empirical learning approach might be the most popular method 
among those methods developed to perform machine learning. The empirical 
learning method comprises four different modes of learning namely, rote 
learning, learning by being told, learning by analogy and inductive learning 
(Figure 2). Inductive learning can be further classified into learning from 
examples and learning from observations. Between the two, learning from 
examples, also known as concept acquisition, which uses a set of 'positive' 
and a set of 'negative' training examples to induce a set of high-level 
concept descriptions, has been investigated by many researchers. It appears 
to be the most practical and is widely used in many intelligent systems. 
Using such a technique, knowledge in the form of rules and decision trees 
that is easy for human to comprehend, can be induced from training 
examples. Besides, the rules obtained may be incorporated into the 
knowledge base of a rule-based intelligent system and subsequently, used for 
reasoning. 

Empirical Machine Learning I 

Rote 
Learning 

Learning by 
Being Told | 

Learning by 
Analogy 

Learning from 
Observations 

Learning from 
Examples 

Figure 2. Machine Learning Taxonomy. 

On the other hand, knowledge extraction, which can be considered as a 
sub-field or an application area of machine learning, is primarily concerned 
with finding and extracting useful knowledge from a depository of raw data 
which may be incomplete, imprecise and noisy (Ziarko, 1994a). In other 
words, knowledge extraction attempts to search for hidden regularities in a 
training data set. These hidden regularities form the basis for making 
decisions. Knowledge extraction tools are able to find the trends and 
generate rules to explain these regularities. Prediction can also be made 
based on the rules generated. Figure 3 presents the main processes involved 
in knowledge extraction. In this sense, machine learning methods can be 
viewed as a useful tool to implement the knowledge extraction tasks. 
Essentially, the differences between the two are more historical than 
scientific. 
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Figure 3. Processes for Knowledge Extraction. 

2.1.4 Inductive Learning Techniques for Automated Knowledge 
Extraction 

One important step in applying a machine learning technique is to decide 
an effective representation scheme for both the training data and the 
knowledge to be learned. Using attributes to describe training data or 
characterize the results is one of the most widely used methods. In this case, 
knowledge is expressed in the form of rules generated from a set of training 
data by a learning algorithm. The quality of the rules and hence the 
knowledge discovered is very much dependent upon the algorithm used. In 
other words, central to the problem of knowledge extraction is the technique 
or method used to generate such rules. 

There have been many inductive learning techniques emerged in recent 
years to automate the process of knowledge acquisition. Quinlan (1990) 
grouped these techniques into two broad categories, namely the covering 
technique and the divide-and-conquer technique. For the covering technique, 
the so-called AQ (Algorithm Quasi-optimal) family approaches and their 
derivatives (Michalski et ah, 1983; Pham and Dimov, 1997) are available. 
However, the AQ family approaches have not been widely used mainly 
because of their complexity. On the contrary, the divide-and-conquer 
technique has received considerable attention by most researchers (Quinlan, 
1986b; Fournier and Cremilleux, 2002; Triantaphyllou, 2003), and the most 
representative algorithm should be the ID3 system developed by Quinlan 
(1986b). ID3 attempts to learn decision trees from labeled training examples. 
The algorithm learns decision trees by constructing them top-down. The 
general idea behind the decision tree approach is to recursively separate data 
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into sub-classes using the Concept Learner Systems (CLS) algorithm 
proposed by Hunt (Quinlan, 1986b). Briefly, the procedure of the algorithm 
is as follows: 

1. Select a random subset (called a window) of the training examples; 
2. Use the CLS algorithm to build a decision tree that correctly classifies 

all the training examples in the current window; 
3. Scan all the training instances serially to find exceptions to the current 

rules; 
4. Form a new window by combining some of the training examples 

from the current window with some of the exceptions obtained in Step 
3; 

5. Repeat Steps 2 through 4 until there is no exception to the rule set. 
It is known that computationally it is impractical to find the smallest 

decision tree for a given training data set. ID3 uses a procedure that tends to 
build smaller trees by ordering or ranking the attributes: attributes that 
discriminate best are selected for evaluation first. This implies that each 
node should be associated with the attribute that is the most informative 
among the attributes not yet considered in the path from the root. This 
enables the algorithm to produce a smaller decision tree that can correctly 
classify all of the training examples. In other words, preference (inductive) 
bias is used to find a small tree consistent with the training examples. 

In ID3, nodes are selected according to the entropy or information 
content of associated object attributes. The application of entropy provides a 
rational and effective means to construct decision trees. Besides, the 
algorithm has some other advantages: 

• The results are comprehensible; 
• The classification can be done quite fast; 
• The technology involved is mature. 
On the other hand, there are also some problems with the ID3 algorithm. 

The ID3-like algorithms (Quinlan, 1986b; Mingers, 1989), during the 
process of inducing decision trees as well as refining the induced decision 
trees, implicitly assume that enough information is available in the data to 
decide exactly how each object should be classified. This implies that there 
is a single correct label for any given combination of attribute values 
describing objects in the training set. Such an assumption has limited the 
capability of ID3-like algorithms in dealing with uncertainty in the training 
data set. The drawbacks include: 

• The decision trees produced may not be very general. Some of the 
decision rules represented by them may contain unnecessary or 
irrelevant conditions; 

• The algorithm has to break up a larger set of training examples into 
subsets during the 'windowing' process. Such a process does not 
always yield the same decision; 

• The algorithm is very sensitive to noise. As previously mentioned, it 
cannot deal with uncertainty. 
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Since the advent of ID3, many researchers have attempted to improve 
this algorithm and have produced new ones called ID4 and IDS. A 
comparison of the three ID-series of algorithms can be found in the work by 
Utgoff (Pham and Dimov, 1997). Quinlan (1992) had also improved the 
algorithm under the name of C4.5 and C5.0 (http://wvvw.rulequest.com/). 

2.2 Uncertainties in Fault Diagnosis 

Uncertainty occurs in many real-life problems. It may be caused by the 
information used for problem solving being unavailable, incomplete, 
imprecise, unreliable, contradictory, and changing. Human beings are 
equipped with the ability to apply qualitative reasoning techniques to deal 
with it. In the case of a computerized system, uncertainty is frequently 
managed by using quantitative approaches that are computationally 
intensive. For example, a binary or crisp system that processes 'TRUE or 
FALSE\ or 'YES or NO' type of decisions, is likely to arrive at a conclusion 
or a solution faster than one that needs to handle uncertainty. 

Managing uncertainty is a big challenge to knowledge-processing 
systems. IDS, for example, failed when subjected to inconsistent inputs 
(Khoo et ah, 1999; Khoo and Zhai, 2001a). Uncertainty management and 
related topics such as plausible reasoning are always active research areas. In 
some problem domains, uncertainty can possibly be neglected, though at the 
risk of compromising the performance of a decision support system. 
However, in most cases, the management of uncertainty becomes necessary 
because of critical system requirements or more complete rules are needed. 
In these cases, eliminating inconsistent or incomplete information when 
extracting knowledge from an information system may introduce inaccurate 
or even false results, especially when the available source information is 
limited. In general, the nature of uncertainty comes from the following three 
sources: inconsistent data, incomplete data, and noisy data. 

2.2.1 Inconsistent Data 

In general, an object (or observation) can be described or characterized 
in a universe using the values attained by a set of attributes {attribute-value 
pairs). The category that an object (observation) belongs to is defined as a 
class {concept). Hence, a concept may be viewed as a set of objects with the 
same decision values. When the description of all the objects with respect to 
a particular concept (class) is complete and precise enough, it is possible to 
describe the concept unambiguously. Inconclusive {conflicting or 
inconsistent) data in a training data set are objects having the same 
description but belonging to different concepts (Uthurusamy et al., 1991). 
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For example, Patients 1 and 2 in Table 1 are in a conflicting situation. They 
have the same attribute-value pairs, but belong to two different concepts 
(classes). Concepts in an inconsistent information table cannot be precisely 
defined. By incorporating the confidence level when classifying the objects, 
these concepts can be reasonably described or approximated. Many methods 
were proposed to deal with the approximation of a concept. Fuzzy set theory, 
for example, characterizes a concept approximately by a membership grade, 
which ranges from 0 to 1. Another approach is to use rough set theory that 
provides the lower and upper approximations of a concept. Details of fuzzy 
sets and rough sets are presented in Sections 2.3.4 and 3.1, respectively. 

Table 1. Information Table with Inconsistent Data (Pawlak et al, 1995). 

Patient 

1 
2 
3 
4 
5 
6 

Headache 
yes 
yes 
yes 
no 
no 
no 

Attributes 

Muscle Pain 
yes 
yes 
yes 
yes 
No 
Yes 

Temperature 
High 
High 

Very high 
Normal 

High 
Very high 

Decision 

Flu 
no 
yes 
yes 
no 
no 
yes 

2.2.2 Incomplete Data 

In practice, information about a manufacturing system is usually 
organized and collected around the needs of organizational activities. At 
times, some of the information may not be recorded, be mistakenly erased, 
or be forgotten. This may result in imprecise and incomplete data being 
collected and thus hamper the rule discovery task. In an information system, 
such unknown attribute-value pairs are called null or missing values. Table 2 
show ŝ an information table with some null attribute values (denoted as '?'). 
This phenomenon is fairly common in the domain of learning from 
examples. 

Table 2. Information Table with Missing Data (Grzymann-Busse, 1991a). 

Object 

1 
2 
3 
4 
5 

n 

Feel 
soft 
hard 
soft 
? 

hard 

soft 

Attributes 
_ Cuddliness 

Smooth 
9 

Furry 

smooth 

fuzzy 

Fuzzy 

Material 
plastic 
plastic 
wool 
plastic 
9 

wool 

Decision 
Attitude 
negative 
positive 
neutral 
negative 
positive 

positive 
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Recent years have seen a lot of efforts made to address the null-attribute 
problem [Luba and Lasocki, 1994; Grzymala-Busse, 1991a; Thiesson, 
1995]. Normally w ĥen a data set contains missing attribute values, either the 
corresponding observations are discarded or an attempt is made to replace 
the unknow^n values with the most likely ones. Quinlan (1986b) employed 
this approach in his inductive decision tree algorithm. In a separate work, 
Quinlan (1989) suggested to construct rules that predict the value of the 
missing attributes, based on the values of other attributes in the set of 
training examples, and the classification information. These values can then 
be used to 'fill in' the missing attribute values and the resulting data set 
could then be used for classification 

Grzymala-Busse (1991a) cited the drawbacks of the above approaches 
adopted by Quinlan. In his work, a given information table with unknown 
attribute values has been transformed into a new and possibly inconsistent 
information table, in which every attribute value is known. The unknown 
value of an attribute is replaced with all possible values attainable by that 
attribute. In order words, the so-called missing value problem has been 
transformed into one that concerns learning from inconsistent examples. 

In a similar manner, Barbara et al. (1992) treated missing attribute 
values as uninteresting values and associated them with probability 
measures. On the other hand, Thiesson (1995) solved the missing value 
problem using the so-called EM algorithm. Basically, the EM algorithm 
assumes that the missing values happen at random. The importance of this 
method lies in its underlying message, that is, even when the data are 
complete, it is often useful to treat the data as a missing value problem for 
computational purposes (Elder-IV and Pregibon, 1995). Felici and Truemper 
(2002) proposed a learning system for logic domains that models the 
learning problem via minimum cost satisfiability problems and deals with 
incomplete data and missing values using ternary variables (i.e., logic 
variables that can assume the values True / False / Unknown). 

2.2.3 Noisy Data 

Non-systematic errors, which can occur during data entry or collection of 
data, are usually referred to as noise. Erroneous data pose a significant 
problem in real-world data mining or knowledge discovery work. This 
problem has been extensively investigated for a variety of inductive decision 
trees (Quinlan, 1986a). 

If a training data set is corrupted with noise, the diagnostic system should 
be able to identify and deal with it. The presence of noise in the training data 
set may affect the accuracy of the generated diagnostic rules. An attempt 
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should therefore be made to eliminate or manage noise that affects the 
classification of the objects in the training data set. Quinlan (1986a) 
performed a series of experiments to investigate the effect of noise on 
classifying training examples from the testing data set. The results indicate 
that for some systems, adding substantial noise to the training data may 
produce a lower level of misclassification of unseen examples in testing 
data. It is also interesting to note that the rules gleaned from the corrupted 
training data set perform better in classifying noisy testing data than those 
obtained from noise-free training data set. Chan and Wong (1991) used 
statistical techniques to analyze the effect of noise. Their approach involved 
estimating the class conditional density in the presence of noise, comparing 
it with the true class density and then determining a classifier whose level of 
confidence is appropriately set. 

2.3 Traditional Techniques for Handling Uncertainty 

Many techniques have been proposed to deal with uncertainty and 
vagueness in the past decades. In this section, some typical approaches 
widely used for handling uncertainty are reviewed, including MYCIN'S 
model of certainty factors, Bayesian probability theory, the Dempster-Shafer 
theory of belief functions, and fuzzy set theory. 

2.3.1 MYCIN'S Model of Certainty Factors 

The model of certainty factors was proposed and implemented in 
MYCIN, a medical diagnostic expert system (Shortliffe and Buchanan, 
1975), as a basis for the system to deal with uncertainty. A certainty factor is 
a relatively simple and ad-hoc concept for handling uncertainty. It was 
developed in an attempt to model more closely the reasoning process 
adopted by medical practitioners in diagnosing patients. In traditional 
probabilistic theory, the sum of the confidence for a hypothesis and the 
confidence against that hypothesis must add to 1. However, it is often the 
case that an expert may agree that his/her confidence in a particular 
conclusion is 0.7, but may not be prepared to say that his/her confidence in 
not achieving the conclusion is 0.3. He/she may think that it is 0. More 
specifically, the certainty measure can be defined as follows. 

For di proposition, A, a number called certainty measure (C(A)) is 
associated. C(A) = 1 if 4̂ is known to be true, C(A) = -1 if ^ is 
known to be false, and C(A) = 0 if nothing is known about ^ . 
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Thus, every rule can be associated with a number from the interval 
[-1, 1]. This number is known as the certainty factor (CF). The 
rules can then be expressed as follows (where 1 > x > -1): 

I f^Then5wi thCF = jc. 

The certainty factor concept is simple to use and implement. It is intuitive 
in some domains such as manufacturing diagnosis. In addition, it is ad-hoc 
and has no strong mathematical basis or foundation. However, the 
application of combining the function for obtaining the measure of belief 
and disbelief can lead to erroneous results if the two observations are related. 
Lack of sound supporting theory for certainty factors is considered as a 
disadvantage. Certainty factors, with some modifications, may be interpreted 
by probability theory. However, pieces of evidence must be conditionally 
independent. The hypothesis and its negation, and the inference network 
must have a tree structure. However, all these assumptions are seldom 
satisfied in the real world (Nevv1:on et al, 1987). 

2.3.2 Bayesian Probability Theory 

Among all the numerical approaches to deal with uncertainty, probability 
theory is one of the oldest. Although probability theory is viewed as an 
inadequate model for managing uncertainty in intelligent systems, many 
researchers still think that it is the best tool (Rao, 1984). Some intelligent 
systems such as PROSPECTOR and AL/X, used Bayes' rule as the tool to 
handle uncertainty (Grzymala-Busse, 1991b). 

The probability theory based method for handling uncertainty adopts 
probability as a measure of subjective belief. It uses the Bayes' Theorem for 
uncertain evidence. The probability of a hypothesis //, P[H], is a real 
number between 0 and 1, which represents a measure of belief in that 
hypothesis. The conditional probability P[H/E], is the probability of 
Hypothesis / / in the light of Evidence E. The degree of belief in a hypothesis 
is subject to change when new evidence becomes available. For a given 
hypothesis, /4 , there is a prior probability, PfHfJ, that Hk could be true. 
Given some evidence, E, the belief is altered to produce a posterior 
probability, P[Hk\E], for the hypothesis Hk- Using Bayes' Theorem, P[Hk\E] 
can be computed from PfHjJ. However, Bayes' Theorem cannot be directly 
used when the evidence itself is doubtful. The uncertain evidence, £", can be 
expressed as the evidence E with probability P[E\E'J, or as its complement 
E^ with probability P[E^ \E'J. With some assumptions, the formula for 
uncertain evidence can be obtained. 

The Bayesian probability theory has a well-established and sound 
mathematical basis; however, its applicability is limited by the requirement 
of knowing the prior probabilities. Furthermore, the assumption of 
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conditional independence may introduce errors. Another limitation of this 
method is that any alteration made to an event will require recalculation of 
all probabilities to preserve coherence and consistency. 

2.3.3 The Dempster-Shafer Theory of Belief Functions 

The Dempster-Shafer theory of belief functions also known as the 
evidence theory, is an extension of the classical theory of probability. It 
originated from Dempster's work on multi-valued mapping (Dempster, 
1967) and was later reformulated by Shafer (1976; 1982). In his original 
work, Dempster related belief functions to the so-called upper and lower 
probabilities, which provide a very general framework for modeling 
uncertainty. The theory uses a number between 0 and 1 to indicate the 
degree of belief or evidence for a proposition. Reasoning is then carried out 
using the rule of combination of the degrees of belief. 

A sample space in the Dempster-Shafer theory is called a frame of 
discernment (F), and a belief function {BEL) is a function on the power set of 
F with certain properties. BEL(A) measures the degree of belief in Event ̂ 4. 
Unlike probability functions in the Bayesian approach, belief functions are 
not additive in general, that is BEL(A) + BEL(B) T^BEL (AUB) when^n5 = 
0. The 'non-additive' nature also captures the fact that a person's degree of 
belief in an event A does not necessarily give the information on his belief in 
-nA (i.e., negation of ^ ) . 

One of the basic strategies of the Dempster-Shafer theory is to 
decompose a set of evidence into two or more unrelated sets of evidence, 
make probability judgments separately on these sets of evidence, and then 
combine these judgments by the Dempster's Rule. In addition, the 
Dempster-Shafer theory provides a way to discount one's belief, which is 
convenient to express doubts about the evidence. 

The Dempster-Shafer theory of belief functions is very flexible and can 
be applied to a given situation in different ways. The theory is appealing 
because it is a natural mathematical generalization of the classical 
probability theory. It captures the fact that beliefs are generally non-additive. 
Furthermore, the Dempster-Shafer theory is not as demanding as probability 
theory: for example, it does not need prior probabilities or conditional 
probabilities. It permits the sum of the belief for a proposition and the belief 
for its negation to be smaller than one. However, the computational 
complexity of the Dempster's rule of combination is enormous, and some 
suggestions have been given to remove this obstacle (Shafer and Logan, 
1987). Critics of the theory argue that it is inadequate for empirical data 
(Lemmer, 1986) or that in some cases the Dempster's rule of combination 
should not be applied at all (Zadeh, 1986), for example, when there are 
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considerable disagreements among the evidence. Moreover, the numerical 
stability of the theory has not been analyzed in great detail. In some cases, a 
small variation in the basic probability assignments can produce a large 
variation in the results (Dubois and Prade, 1985). 

2.3.4 The Fuzzy Sets Theory 

The fuzzy sets theory is based on the generalization of set theory and was 
formalized by Zadeh (1965). It has been developed so extensively that 
currently an entire spectrum of fuzzy theories has evolved. Fuzzy set theory 
was introduced to represent uncertainty, especially the type of uncertainty 
that arises from imprecision and ambiguity, in the sense of vagueness rather 
than incomplete information. A fuzzy set is a class of objects characterized 
by a membership function which assigns to each object a grade of 
membership which is a number in the interval [0, 1] (Kaufmann, 1988). The 
basic notions of a crisp set such as union, intersection, complement, etc., can 
be extended to fuzzy sets. 

Each element, x, of a/wzzy subset, A, on a universe of discourse [/can be 
characterized by the value (yC/̂ ) of a function known as membership function. 
A fuzzy subset A has no sharp boundary. The value, IJA(U), for UEU, is a 
number in the real interval [0,1] and is called the grade of membership ofu. 
Therefore, a fuzzy set is characterized by the membership function JL/A: 
U-^[0,1]. In other words, the membership function, yC/̂ (jc), expresses the 
grade of membership of each element, X/, in the fuzzy subset, A. For 
example, 'IJA{X^ = 0' denotes no membership, and '//^(x/) = 1' represents full 
membership, while )C/̂ (x/) with a value between 0 and 1 denotes partial 
membership. An ordinary (crisp) set is the special case of a fuzzy set with 
either IJA(U) - 1 OX /JA(U) = 0. Some definitions and operations of fuzzy set 
theory are as follows: 

Two fuzzy subsets A and B are equal (denoted by ̂  = B), if and only 
if for all ueUwQ have /UA(U)= IJB(U). 

An empty set, 0 , is defined as follows: 
For all ueU, we have lJ0(u)=O. 

For the universe, ^, iJu(u)=l, foranywef/ 

The union and intersection of two fuzzy subsets, A and B, are 
defined as follows: 

IJAUB(X)= Max(lL/A(x),JLJB(x)% and fJAnB(x)= Mm{lJA(x),fJB(x)\ 
for every x eU. 

The complement -A of a fuzzy set A is defined by the membership 
function: 

M-A(X)= 1-IJA(X), for every xe/4. 
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Fuzzy set theory is controversial. On one hand, it is an extremely 
popular area of research. The idea of fuzzy sets seems appealing because it 
allows imprecise linguistic terms such as iarge', 'very small', and 'more or 
less equal' to be represented and manipulated in a well-defined mathematical 
way. Traditional logic is extended to incorporate uncertainties by the 
introduction of fuzzy implication {IF A THEN B ELSE Q and fuzzy 
quantifiers such as 'some', 'most', and 'not many'. Many successful real-life 
systems based on fuzzy set theory have been implemented (Bandemer and 
Gottwald, 1995; Zimmermann, 1996). Moreover, possibility theory, which is 
based on fuzzy set theory, is the most popular approach used to handle 
uncertainty in intelligent systems. Some new applications of fuzzy set theory 
in intelligent systems can be found in the work by di Nola et al., (1989). On 
the other hand, there is also opposition to fuzzy set theory in the intelligent 
system community. In a mild form of criticism, fuzzy set theory is prohibited 
from describing uncertainty at all and instead, it is assumed to be able to deal 
with ambiguity in describing events (Pearl, 1988). In a stronger form of 
criticism (Cheeseman, 1986), the fundamental rules of fuzzy set theory are 
seen as false. Some other problems of fuzzy set theory are associated with 
assigning values for a membership function. Moreover, membership 
functions are context sensitive (Lee et al., 1987). 

2.3.5 Comparison of Traditional Approaches for Handling 
Uncertainty 

Newton et al. (1987) presented a comparison among the four 
approaches based on six aspects, namely the theoretical background, the 
complexity of computation, the model set-up, the model execution, the 
complexity of theory, and the ease of application. It provides the basic 
guidelines for the selection of an appropriate technique to solve problems 
associated with uncertainty (Table 3). 

Table 3. A Comparison of the Four Approaches (Newton et al, 1987). 

MYCIN'S 
Model 

Bayesian 
Probability 

Dempster-
Shafer Theory 

Fuzzy Set 
Theory 

Theoretical Background Weak 

Computational Complexity Low 

Model Set-up Low 

Model Execution Low 

Complexity of Theory Low 

Ease of Application Easy 

Strong 

Low 

Moderate 

Low 

Low 

Easy 

Strong 

Moderate 

Moderate 

Moderate 

Moderate 

Difficult 

Moderate 

Moderate 

Moderate 

Moderate 

Moderate 

Easy 
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2.4 The Rough Sets Approach 

2.4.1 Introductory Remarks 

The rough sets theory was proposed by Pawlak (1982) as a novel and 
powerful mathematical tool for reasoning about imprecision, vagueness and 
uncertainty. It overlaps, to some extent, with many other theories dealing 
with uncertainty and vagueness, especially with the Dempster-Shafer theory 
of belief functions (Slowinski and Stefanowski, 1992) and the fuzzy set 
theory (Wygralak, 1989; Dubois and Prade, 1990; 1992). Nevertheless, 
rough set theory can be viewed on its own right, as an independent, 
complementary, and not competing discipline (Pawlak, 1991). The main 
difference between rough sets and the Dempster-Shafer theory is that the 
latter uses belief functions as the main tool, while the rough set theory makes 
use of a set of lower and upper approximations. The relationship between 
rough sets and fuzzy sets are rather complicated and is discussed in Section 
2.4.2. Furthermore, some relationships exist between rough sets theory and 
statistics (Krusinska et al., 1990), Boolean reasoning methods (Skowron and 
Rauszer, 1992), and decision analysis (Pawlak, 1994b). 

The philosophy of rough sets theory is based on the idea of classification. 
The ability to classify is a fundamental feature of any living organism, a 
robot or an agent, which, in order to behave rationally in the external world, 
must constantly classify concrete or abstract objects such as entities, events, 
processes, and signals. In order to do so, one has to ignore minor differences 
between objects, thus forming classes of objects that are not noticeably 
different. These indiscernible classes can be viewed as elementary concepts 
used by an agent to build up its knowledge about reality. Consider, for 
example, the task of monitoring and diagnosing a group of machine tools in 
a workshop. Normally a domain expert will check a set of data such as the 
operating temperature, noise level, and the overall vibration level, to 
evaluate the condition of each one of the machines. All the machines having 
the same symptoms are discernible (similar) in view of the available 
information can be classified in blocks, which can be understood as 
elementary granules (atoms) of knowledge about machines (or conditions of 
machines). These granules are called elementary sets or concepts, and can be 
considered as elementary building blocks of knowledge about these 
machines. Elementary concepts can be combined into compound concepts 
that are uniquely defined in terms of elementary concepts. Any union of 
elementary sets is called a crisp {or precise) set. However, the granularity of 
knowledge results in situations in which some notions cannot be expressed 
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precisely within the available knowledge and can be defined only 
approximately. Such sets are referred to as rough {vague, imprecise). 

In rough set theory, for every set X, it is possible to associate it with two 
crisp sets known as the lower and the upper approximation of X. Thus, each 
vague concept is replaced by a pair of precise concepts. The lower 
approximation of a concept consists of all the objects that surely belong to 
the concept, whereas the upper approximation of a concept consists of all the 
objects t]\2ii possibly belong to the concept. For example, the concept of odd 
(even) number is precise, because for every number it can be decided 
whether it is odd (even) or not. However, based on visual inspection, the 
concept of the good working condition of a machine is vague unless it is 
thoroughly examined. Between the lower and upper approximations of a 
concept is a boundary region of the concept. It consists of all the objects that 
cannot be classified with certainty under the concept or its complement 
employing the available knowledge. The greater the boundary region, the 
more vague is the concept. As a special case, if the boundary region of a 
concept is empty, the concept is precise. In other words, approximations are 
the basic and most important tools (operators) in the rough-set philosophy to 
deal with uncertainty and vagueness. 

2.4.2 Rough Sets and Fuzzy Sets 

The similarity of the terms 'rough set' and 'fuzzy set' tends to create a 
misunderstanding. More specifically, a fuzzy set is a class with a blurred 
boundary whereas a rough set is a crisp set that is coarsely defined. There is 
a close connection, however, between the concept of a rough set and that of 
a fuzzy graph (Pawlak, 1985). A fuzzy graph is a disjunction of granules that 
collectively approximate to a function or a relation, with a granule being a 
clump of points that are drawn together by the indiscemibility, similarity or 
functionality. In the case of rough sets, the granules are equivalence classes 
that are the elements of a partition. When the concept of equivalence is 
generalized to that of similarity, as was done in some of the recent 
extensions of the rough set theory, the concept of a rough set and that of a 
fuzzy graph become very close in meaning. 

Although there is this point of contact between the theories of rough sets 
and fuzzy sets, these two theories evolved in different directions and are 
largely complementary rather than competitive. However, the recent 
extensions of rough set theory in which the focus moves away from 
indiscemibility - a crisp concept - to similarity, which is a fuzzy concept, 
bring the two theories closer together (Dubois and Prade, 1992). What is 
more fundamental is that both theories address, each in its own way, the 
basic issues of information granulation, with the rough set theory focused on 
crisp information granulation and the fuzzy set theory focused on fuzzy 
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information granulation. What is true of both theories is that information 
granulation plays a central role in most of their applications. 

Thus, the theories of rough sets and fuzzy sets are distinct and a 
complementary generalization of set theory. They are two independent 
approaches to handle imperfect knowledge. There have been extensive 
studies on the relationship between rough sets and fuzzy sets (Pawlak, 1985; 
Wygralak 1989; Chanas and Kuchta, 1992; Lin, 1994). Many proposals have 
been made for the combination of rough sets and fuzzy sets, which lead to 
the introduction of the notions of fuzzy rough sets and rough fuzzy sets 
(Dubois and Prade, 1990; 1992; Nanda and Majumdar, 1992). 

2.4.3 Development of Rough Sets Theory 

Since the origination of rough set theory in the early 80's, within less 
than two decades it has turned out that the theory is of substantial 
importance to intelligent systems and cognitive sciences. In particular, to 
intelligent systems, decision support systems, machine learning, knowledge 
acquisition, pattern recognition, decision tables and inductive reasoning 
(Slowinski R., 1992; Ziarko, 1994b; Lin, 1995; Lin and Cercone, 1997). It 
has a wide spread of applications, which include medicine, pharmacology, 
industry, engineering, control, social sciences and earth sciences (Slowinski 
R., 1992). Several computer systems based on rough sets were implemented 
on personal computers and workstations such as LERS (Grzymala-Busse, 
1992), ROUGHDAS and ROUGH-CLASS (Slowinski and Stefanowski, 
1992), and INFER (Wong and Ziarko, 1987). By now, rough set theory has 
been mainly used for vague data analysis. Machine learning is another 
important area where rough sets can be applied. 

In general, the basic problems in data analysis that can be tackled using a 
rough set approach are as follows. 

• Characterization of a set of objects in terms of attribute values; 
• Finding the dependencies (total or partial) between attributes; 
• Reduction of superfluous attributes (data); 
• Finding the most significant attributes; 
• Generation of decision rules. 
Rough set theory offers simple algorithms to handle the above domains 

and allows straightforward interpretation of the results. 

2.4.4 Strengths of Rough Sets Theory and Its Applications in Fault 
Diagnosis 

Over the years, much work has been done enabling rough set theory to 
handle imprecise information analysis problems (Slowinski and 
Stefanowski, 1989). Compared with other techniques dealing with 
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uncertainty and vagueness, rough set theory has its unique advantages and 
thus reveals its robust abilities in solving such problems (Pawlak, 1996; 
1997). Generally, the most outstanding advantage of rough set theory is that 
it does not require: 

• Any preliminary or additional information about data such as the 
probability distribution in statistics; 

• The basic probability assignment in the Dempster-Shafer theory, or 
the grade of membership or the value of possibility in the fuzzy set 
theory (Pav^lak et al, 1995). 

Another advantage of rough set theory is that it is more suitable when the 
data set is too small to employ statistical methods, as mentioned earlier. 
Mathematically, there are tŵ o other advantages of using rough sets as a tool 
to deal with information analysis. First, the theory provides a collection of 
mathematical techniques to deal, with full mathematical rigor, with data 
classification problems, particularly when the data are noisy, incomplete or 
imprecise. Second, the rough set theory includes a formal model of 
knowledge defined as a family of indiscemibility relations so that the 
knowledge has a clearly defined mathematical sense, and can be analyzed 
and manipulated using mathematical techniques (Ziarko, 1994b). 

Rough set theory can also be applied to fault diagnosis. A diagnostic 
system is basically a classification system that is trained to classify a given 
record (Pawlak, 1984). The intelligence of a trained system may be 
materialized in the form of weights (neural networks and statistical methods) 
or a set of rules (rule-based and fuzzy rule-based systems). The rough set 
approach was initially employed to solve some diagnostic problems by 
Nowicki et al. (1992), where the data analyzed were not suitable for 
statistical methods as the size of the sample was rather small and the 
traditional methods failed to produce any conclusive result. Many 
researchers have also employed rough set theory for medical data analysis 
and medical diagnosis (Slowinski K., 1992). Nowicki et al. (1992) 
demonstrated the possibility of using rough sets to solve the following 
problems: 

• Evaluating the usefulness of a fault symptom to the condition of a 
system; 

• Pruning a set of fault symptoms to arrive at a subset of relevant fault 
symptoms for the evaluation of the condition of a system; 

• Classifying the condition of a system. 
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3. ROUGH SETS THEORY IN CLASSIFICATION 
AND RULE INDUCTION UNDER UNCERTAINTY 

3.1 Basic Notions of Rough Sets Theory 

The approximation space and the lower and upper approximations of a 
set form two important notions of rough set theory. The approximation space 
of a rough set is the classification of the domain of interest into disjoint 
categories (Pawlak, 1991). Such a classification refers to the ability to 
characterize all the classes in a domain. The upper and lower approximations 
represent the classes of indiscernible objects that possess sharp descriptions 
on concepts but with no sharp boundary. 

3.1.1 The Information System 

In general, the data to be analyzed using rough set theory comprise a set 
of objects whose properties can be described by multi-valued attributes. The 
data that describe the objects can be represented by a structure called the 
information system (S). An information system can be viewed as an 
information table with its rows and columns corresponding to objects and 
attributes, respectively (Table 4). 

Table 4. A Typical Information System. 

Object 

(U) 
X, 

X2 

X3 

X, 

X, 

Xe 
X7 

^8 

"̂ 10 

q^ 
1 

1 

1 

0 

0 

0 

0 

0 

1 

0 

Attributes 

^2 
0 

1 

2 

0 

1 

2 

1 

2 

0 

0 

Decision 

id) 
0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

Thus, an information system {S) with 4 tuples can be represented as 
follows: 

S = <C/, 0 V,p\ 
where C/is the universe which consists of a finite set of objects, 
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g is a finite set of attributes, 
V^ is a domain of the attribute q, 

^=U, , e F,,and 

p'.Ux Q->Vis the information function 
such that p{x, q) e V^ for every qeQ and xeUand any pair (q, v), 

qe Q, ve V^ is called a descriptor in iS'. 

Table 4 shows a typical information system used for rough set analysis 
with the x^{i = 7, 2, ...10) representing the objects of the set, U, to be 
classified; the q^{i =1, 2) denoting the condition attributes', and d 
representing the decision attribute. As a result, the q^ (i =7, 2) and d form 
the set of attributes, Q. 

3.1.2 Approximations 

Indiscernibility is one of the most important concepts in rough set theory. 
It is caused by imprecise information about the observed objects. The 
indiscernibility relation (7?) is an equivalence relation on the set U and can 
be defined in the following manner: 

If X, jv G ?7, P G g, then it is said that x and y are indiscernible by 
the set of attributes P in S, that is, 

xP y iff p(x, q) = p{y, q) for every q e P. 
An approximation space can be defined by an ordered pair {U, R). 

Equivalent classes of relation P are known as P-elementary sets in S. Any 
finite union of P-elementary sets is called a P-definable set in S. Q-
elementary sets are termed atoms in S. Concepts can be represented by the 
decision-elementary sets. 

For example, in the information system depicted in Table 4, the { î }-
elementary sets, atoms and concepts are expressed as follows: 

{^j}- elementary sets: 

^ 1 \ ^l > ^2 > "^3 ' "^9 J 5 2 *• 4 ' 5 ' 6 ' 7 ^ 8 ' 10 / 

Atoms: 
A^={x^,Xg}, A2— {X2}, A^ — XXT^}, A^={X^,X^Q}, 

Concepts: 
iw^i \Xi , X A , X c , X o ^ X (\ , X IQ j r̂  V-'ldiJO \J yCl ^ / ? 

C2 = {x2,X3,x^,x-7} => Class=l (d=\). 
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Obviously x^ and x^ in Table 4 are indiscernible by the condition 

attributes q^ and q^^iS they have different decision attributes {ds). This 

shows that there exists a conflict (or inconsistency) between X5 and x^. 

Similarly, another conflict also exists between objects x^ and Xg. 

Rough set theory offers a means to deal with this inconsistency. For a 
concept, called C, the greatest definable set contained in the concept is called 
the lower approximation of C (denoted as R (C)). This greatest definable set 
represents the set of objects in U which can be certainly classified as 
belonging to concept C by the set of attributes, i?, such that 

R{C)=[j{Y E:UIR\Y<^C}. 
The least definable set containing concept C is called the upper 

approximation of C (denoted as R (Q). This least definable set represents 
the set of objects in U which can be possibly classified as belonging to 
concept C_by the set of attributes, 7?, such that 

R{C)=[j{Y eUIR\YnC^0 }, 
where U/R represents the set of all atoms in the approximation space {U, R). 

Elements belonging only to the upper approximation compose the 
boundary region ( BNj^) or the doubtful area. Mathematically, a boundary 
region can be expressed as: 

BNj^ (C)= R{C)- R (Q, i.e., all elements from R (C) that are not 

in R(C). 

A boundary region represents the set of objects that cannot be certainly 
classified as belonging to concept C by the set of attributes R. Such a 
concept, C, is called a rough set. In other words, rough sets are sets having 
non-empty boundary regions. Based on rough set theory, the approximations 
of concepts Cj and C2 can be easily obtained. For example, the lower 
approximation of concept Cj is given by: ^ ( Q ) = {x^, X4, X9, XJQ }; 

while its upper approximation can be expressed as: 

xv(^C| J = | X | jX^ , X ^ , X ^ , X y jXgjX^ , X | Q / . 

Thus, the boundary region of concept Cj is given by: 

BN^(C,)=R(C,)- R(C,)= {x„x„x,,x,}. 

For concept C2, the approximations can be similarly obtained as follows: 

BN,(C,) = R(C,)- R(C,)={x„x„x,,x,} = BN,(C,). 
An intuitive description to the basic notions of rough sets for this 

illustrative example is depicted in Figure 4. 
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Figure 4. Basic Notions of Rough Set Theory for Illustrative Example. 

3.2 Rough Sets and Inductive Learning 

3.2.1 Inductive Learning, Rough Sets and the RClass 

As already mentioned, Quinlan's IDS was once the most successful 
decision tree based inductive learning system before superseded by its later 
versions. The IDS algorithm develops a decision tree from training data by 
constructing it top-down. The general idea behind decision tree learning is to 
recursively split data into sub-populations. Such an approach can also be 
seen in the Concept Learner Systems (CLS) algorithm that was developed by 
Hunt (Quinlan, 1986b). One great advantage of IDS is that the algorithm 
used is simple but effective. The IDS algorithm first orders or ranks the 
attributes that discriminate best and then evaluates them in that order. This 
enables IDS to produce a smaller decision tree that can correctly classify the 
given training data. IDS employs the principle of information gain to choose 
the best attribute to construct the decision tree recursively. However, IDS 
requires the training data to be perfect and consistent and cannot handle 
incomplete, inconsistent or imprecise training data. Nevertheless, IDS has 
later influenced many other inductive learning systems and was modified by 
many researchers under the name of ID4 and ID5 (Pham and Aksoy, 1995; 
Pham and Dimov, 1997). C4.5 (Quinlan, 1992) and later C5 
(http://www.rulerequest.com), are commercial software packages developed 
based on IDS. 



382 Data Mining & Knowledge Discovery Based on Rule Induction 

Grzymala-Busse (1992) proposed a system called LERS for inductive 
learning based on rough set theory, aiming at handling inconsistencies in 
training data. However, as observed by the author, LERS becomes not so 
practical w ĥen the size of the input data is very large. This is largely due to 
the computational complexity of its algorithm. Furthermore, the rules 
induced by LERS are more complicated and difficult to understand. 
Attempts to make comparisons between the IDS-family of algorithms and 
rough set based inductive learning algorithms can be found in the work by 
Wong et al. (1986) and Grzymala-Busse D. M. and Grzymala-Busse J. W. 
(1995). 

Different from LERS, the prototype system described in this chapter, 
called the RClass, integrates rough set theory with an ID3-like learning 
algorithm. The ID3's algorithm was modified by incorporating rough set 
principles to handle the inconsistency in the training data. 

3.2.2 Framework of the RClass 

The framework of the RClass is depicted in Figure 5. It comprises three 
main modules: a consistency analyzer, a rough classifier and an induction 
engine. The consistency analyzer analyses the training data and performs 
two tasks: 

• Elimination of redundant data items; 
• Identification of conflicting training data. 

The rough classifier has two approximators, namely the upper 
approximator and the lower approximator. The rough classifier is employed 
to treat inconsistent training data. Using the approximators, the lower and 
upper approximations of a concept ( Q can be respectively derived. As 
already explained in Section 3.1.2, the lower approximation of C contains 
the greatest definable set that can be certainly classified as belonging to C, 
that is, the certain training data set. Similarly, the upper approximation of C 
is the least definable set that can be possibly classified as belonging to C, 
that is, thQ possible training data set. 

The induction engine module has an IDS-like learning algorithm based 
on the minimum-entropy principle. The concept of entropy is used to 
measure how informative an attribute is. For clarity, the basic notions of 
information entropy used in this work are explained as follows. 

In information theory, if there are n messages, then it needs log2(«) bits to 
identify each message (Gray, 1990). As a special case, if there are n equally 
probable messages, then the probability p of each of the messages is lln. 
Thus, the information conveyed by a message is - log2(7/î ) bits. It is 
apparent that the more probable a message is, the less information it 
conveys. In general, given a probability distribution, P = (phP2, --'^Pn), the 
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information conveyed by the distribution is called the Entropy of P and is 
denoted as: 

- {P^ log(/?j) + ^2 '^§(^2^ ^ "• ^ ^n ̂ ^^^Py?"^' 
The basic principles mentioned above can be applied to classification 

problems. It is assumed that a set of n objects can be classified into two 
classes namely/̂ o -̂zY/v^ and negative. Let hi represent the fraction of objects 
that belong to class C/. The minimum information needed to classify the set 
of objects is then given by: 

^,=-2:{^iog2(^-)}. 

Consistency 
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Classifier 

Induction 
Engine 

Input Data 

N 
Calculate Approximations 

± 
Lower 

Approximation 

W-
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Approximation 

Rule Induction 

Certain Rules 
I 

Possible Rules 

I 
Reliability 

Output 

Figure 5. Framework of the RClass System. 
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In the next step, a specific attribute is used to break the set of objects into 
subsets. Suppose that an attribute, Aj, which can take k different values, ajj, 
cij2,..., cijh can be used to separate the set into subsets. Then the information 
needed to classify the subset of objects with attribute value % is given by 

^jk = E^-(^uk '^jk)X log2{c.j, Irij,)}, 

where Cyk is the number of objects that belong to class d and whose attribute 

Aj has value ajk, and % is the total number of objects having value aŷ . 
The greater the value oiHjk is, the more information it takes to break the 

sub-groups down to their component levels. 
The average information of//, is defined as: 

where n is the total number of objects. 
Then the gain Gj of attribute Aj is given by: Gj = H^ - E(Hj ) . 
The value of Gj shows how informative the corresponding attribute is. 

The algorithm chooses the attribute with the largest gain value to construct 
the branches of the decision tree at each level. Such an approach can ensure 
a smaller decision tree to be built without loss of accuracy. 

In the induction engine module, a routine is designed to read the decision 
tree constructed and output the result in form of production rules. Compared 
to a decision tree, decision rules are more user friendly and easier to 
understand. Another task of this routine is to calculate the confidence level 
of each possible rule. The calculation can be mathematically expressed as: 

Confidence level = 

Number of examples correctly classified by the rule 
Number of examples with same condition attribute-value pairs 

Details of the calculation will be illustrated in the example validated below. 

3.3 Validation and Discussion 

The efficient use of critical machines or equipment in a manufacturing 
system requires reliable knowledge about their current operating condition. 
This knowledge is often used as a basis for machine condition monitoring 
and diagnosis (Mitchell, 1981). Traditionally, diagnosis is carried out by 
practicing engineers who have accumulated vast knowledge or experience 
about a manufacturing system. In general, when a manufacturing system or a 
machine deviates from its nominal operating condition, it is considered to 
exhibit symptoms of malfunction, that is, there are rules to follow. These 
rules can possibly be induced from the empirical data gathered from the 
process. 
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3.3.1 Example 1: Machine Condition Monitoring 

It is assumed here that an engineer is tasked to monitor the condition of 
a reciprocating machine. Preliminary observations show that the condition of 
the machine (normal or faulty) is related to its cooling water temperature 
(attribute Temperature) and machine vibration (attribute Vibration). A set of 
observations are assumed to have been recorded as shown in Table 5. 

Table 5. Machine Condition and Its Parameters. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Attributes 
Temperature 

High 
High 
High 

Normal 
Normal 
Normal 
Normal 
Normal 

High 
Normal 

Vibration 

Low 
High 

very high 
Low 
High 

very high 
High 

very high 
Low 
Low 

Decision 
State 
Normal 
Faulty 
Faulty 

Normal 
Normal 
Faulty 
Faulty 

Normal 
Normal 
Normal 

In order to process the information in Table 5, the linguistic descriptions 
of the conditions (both attributes and decision) need to be transformed into 
real values (Table 6). This is done by using the following conversion 
scheme: normal, low => 0; high, faulty => 1; very high =^ 2. 

Table 6. Machine Condition after Transformation. 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Attributes 

Temperature 
1 
1 
1 
0 
0 
0 
0 
0 
1 
0 

Vibration 
0 
1 
2 
0 
1 
2 
1 
2 
0 
0 

Decision 

State 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
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Clearly, observations 6 and 8 contradict each other. Using the RClass 
system, two sets of rules, the certain rules and the possible rules, can be 
induced (Table 7). 

As already mentioned, the values recorded in the parentheses following 
each possible rule represent the confidence level (reliability) of the rule. For 
example, for the first possible rule in Table 7, IF (Temperature < high) 
THEN State = normal, there are in total 6 examples in Table 5 that have the 
condition-attribute pair 'Temperature < high', i.e., examples 4, 5, 6, 7, 8, and 
10, but only examples 4, 5, 8, and 10 can be correctly classified by the rule. 
Therefore the confidence level of this possible rule should be 4/6, namely 
66.7%. 

Table 7. Rules Induced by ID3 and the RClass System. 

IDS No solution. System hung. However, by removing the inconsistent incidents, 

IDS is able to produce rules identical to the certain rules induced by the 

RClass system. 

RClass Certain Rules: 

IF (Vibration < high) THEN State = normal; 

IF (Temperature>= high) & (Vibration >= high) THEN State = faulty; 

Possible Rules: 

IF (Temperature < high) THEN State = normal; (66.7%) 

IF (Vibration >= high) THEN State - faulty; (66.7%) 

3.3.2 Example 2: A Chemical Process 

It is assumed that the product quality of a chemical process (Rojas-
Guzman, 1993) is dependent upon three parameters (attributes), namely 
atomization quality, injector tip quality and plugging. Nine observations 
were recorded and are summarized in Table 8. 

Table 8. Process Quality and Its Parameters. 

Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Atomization 
Poor 
poor 
Normal 
Poor 
Poor 
normal 
Poor 
normal 
Poor 

Attributes 

Injector Tip 
Not broken 
broken 
Not broken 
broken 
broken 
broken 
broken 
broken 
broken 

Plugging 
moderate 
none 
severe 
severe 
moderate 
severe 
none 
none 
moderate 

Decision 

Quality 
normal 
normal 
normal 
abnormal 
abnormal 
abnormal 
abnormal 
normal 
abnormal 
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Similarly, Table 8 can be transformed into Table 9 for ease of processing. 

Table 9. Process Quality (after Transformations). 

Observation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Atomization 
1 
1 
0 
1 
1 
0 
1 
0 
1 

Attributes 
Injector Tip 

0 
1 
0 

Plugging 
1 
0 
2 
2 
1 
2 
0 
0 
1 

Decision 
Quality 

0 
0 
0 
1 
1 
1 
1 
0 
1 

Notes: Plugging: none=>0, moderate=>J, severe=>2;Injector Tip: not broken^^O; broken^^I; 

Atomization: normal=>0, poor=>]; Quality: normal=>0, abnormal=>l. 

Observations 2 and 7 contradict each other. Based on rough set theory 
discussed in Section 3.1, the concepts and approximations can be 
represented as follows and rules induced are summarized in Table 10. 

Class = 0 (process quality = normal); 
Class = 1 (process quality = abnormal). 

Concepts: 
Ci={ei,e2,e^,e^} 

Approximations: 

R(C2) = {e4,e^,e^,eg}; R{C2) = {e2,e^,e^,e^,e^,eg}\ 

BNj,{C,) = BN^{C2) = {e2.e,}. 
Where the ei s denote the observation numbers show n̂ in Table 8. 
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Table 10. Rules Induced by ID3 and the RClass System for the Second Illustrative Example. 

IDS No solution. System hung. By removing the inconsistent incidents, IDS can 
produce rules identical to the certain rules induced by the RClass system. 

RClass Certain Rules: 
IF (Injector Tip=broken)&(Plugging>=moderate) THEN Quality=abnormal; 
IF (Injector Tip=not broken) THEN Quality=normal; 
IF (Atomization=normal)&(Plugging<=moderate) THEN Quality=normal; 
Possible Rules: 
IF (Atomization=poor)&(Injector Tip=broken) THEN Quality=abnormal; (80%) 
IF (Plugging>=moderate) THEN Process Quality=abnormal; (66.7%) 
IF (Atomization=normal) THEN Process Quality=normal; (66.7%) 
IF (Plugging=none) THEN Process Quality=normal; (66.7%)) 

4. CONCLUSIONS 

Rule induction from training examples seems to be the most practical 
way of knowledge discovery and data mining. However, such a task is often 
forced to deal with uncertainty. Rough set theory provides a new and 
powerful mathematical notion to deal with this issue. The prototype system 
developed in this chapter, RClass, successfully integrated the advantages of 
both rough set theory and an inductive learning algorithm to yield a new 
approach for rule induction under uncertainty, especially inconsistent 
information. Two sets of rules, certain rules and possible rules, can be 
induced by the RClass system from the training data set containing 
conflicting information. The two simple examples presented in this chapter 
are for the purpose of illustrating the basic idea of the proposed approach. 
When dealing with more complicated cases, effectiveness and computational 
complexity of the induction process should be taken into consideration and 
some modifications should be done to improve the system. 

Compared with other competing methods presented in Table 3, rough set 
theory shows its advantages in rule induction when dealing with 
uncertainties, especially inconsistent information. It has sound theoretical 
background and low computational complexity. Setting up and execution of 
the model (information system) is easy as the theory itself is very simple. 
Rough set theory can be easily applied in many areas and the last decade has 
seen its development in data mining and knowledge discovery. However, 
like the advent of any other new theory or technology, there are still some 
issues facing the research on rough set theory. For example, the 
discretization of continuous-valued attributes (Khoo and Zhai, 2001b), the 
treatment of missing values in the information table (Khoo and Zhai, 2001c), 
and so on, are issues that need to be addressed immediately. Despite these 
challenges, rough set methodology is believed to be going to shine in 
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application areas such as system control, decision support, and pattern 
classification, while it may also impact the design and operations of future 
computing devices. 
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several criteria. The majority of the rule induction literature focuses on 
discovering accurate, comprehensible rules. In this chapter we also take these 
two criteria into account, but we go beyond them in the sense that we aim at 
discovering rules that are interesting (surprising) for the user. Hence, the 
search for rules is guided by a rule-evaluation function that considers both the 
degree of predictive accuracy and the degree of interestingness of candidate 
rules. The search is performed by two versions of a genetic algorithm (GA) 
specifically designed to the discovery of interesting rules - or "knowledge 
nuggets." The algorithm addresses the dependence modeling task (sometimes 
called "generalized rule induction"), where different rules can predict different 
goal attributes. This task can be regarded as a generalization of the very well 
known classification task, where all rules predict the same goal attribute. This 
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1. INTRODUCTION 

There are several kinds of data mining tasks that can be addressed by 
data mining algorithms. Some of the most well-known and investigated tasks 
include classification, clustering, and discovery of association rules [Fayyad, 
etal., 1996]. 

The classification task consists of predicting the class of an example out 
of a predefined set of classes, given the values of predictor attributes for that 
example [Hand, 1997], The classes to be predicted can be considered values 
of a goal attribute, so that the objective is to predict the value of the goal 
attribute for an example based on the values of the other attributes (the 
predictor attributes) for that example. We emphasize that classification is a 
predictive task. The challenge is to predict the class of new, unknown-class 
examples, by using a classification model that was trained with known-class 
examples. 

This Chapter addresses a kind of generalization of the classification task, 
called dependence modeling, where there are several goal attributes to be 
predicted, rather than just one goal attribute. In this context, we addresses 
the discovery of prediction rules of the form: 

IF some conditions on the values of predicting attributes are verified 
r/ffiTV predict a value for some goal attribute. 

In our approach for dependence modeling the user specifies a small set of 
potential goal attributes, which she/he is interested in predicting. Although 
we allow more than one goal attribute, each prediction rule has a single goal 
attribute in its consequent (THEN part). However, different rules can have 
different goal attributes in their consequent. 

Note that the dependence modeling task is very different from the well-
known task of discovery of association rules. For instance, in the latter the 
task is completely symmetric with respect to the attributes, i.e., any attribute 
can occur either in the antecedent or in the consequent of the rule. In 
contrast, in the above-described dependence modeling task, just a few user-
selected attributes can occur either in the antecedent or in the consequent of 
the rule. All the other, non-goal attributes can occur only in the rule 
antecedent. In addition, and even more important, the discovery of 
association rules do not involve prediction, whereas the concept of 
prediction is essential in the above-described dependence modeling task. For 
a more comprehensive discussion about the differences between the task of 
association-rule discovery and tasks involving prediction, such as 
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classification and dependence modeling, the reader is referred to [Freitas, 
2000]. 

In principle, the prediction rules discovered by a data mining algorithm 
should satisfy three properties, namely: predictive accuracy, 
comprehensibility and interestingness [Freitas, 2002a]. Among these three 
properties, overall predictive accuracy seems to be the most emphasized in 
the literature. In any data mining task involving prediction, which includes 
the dependence modeling task addressed in this Chapter, discovered 
knowledge should have high predictive accuracy. 

Discovered knowledge should also be comprehensible to the user. 
Assuming that the output of the data mining algorithm will be used to 
support a decision ultimately made by a human being, knowledge 
comprehensibility is an important requirement [Spiegelhalter, et al., 1994]. 
Knowledge represented as high-level rules, as in the above-mentioned IF-
THEN format, has the advantage of being closely related to natural 
language. Therefore, the output of rule discovery algorithms tends to be 
more comprehensible than the output of other kinds of algorithms, such as 
neural networks and various statistical algorithms. This is the case 
particularly when the number of discovered rules and the number of 
conditions per rule is relatively small. 

Discovered knowledge should also be interesting to the user. Among the 
three above-mentioned desirable properties of discovered knowledge, 
interestingness seems to be the most difficult one to be quantified and to be 
achieved. By "interesting" we mean that discovered knowledge should be 
novel or surprising to the user. We emphasize that the notion of 
interestingness goes beyond the notions of predictive accuracy and 
comprehensibility. Discovered knowledge may be highly accurate and 
comprehensible, but it is uninteresting if it states the obvious or some pattern 
that was previously-known by the user. A very simple, classical example 
shows the point. Suppose one has a medical database containing data about a 
hospital's patients. A data mining algorithm could discover the following 
rule from such a database: IF (patient is pregnant) THEN (patient is female). 
This rule has a very high predictive accuracy and it is very comprehensible. 
However, it is uninteresting, since it states an obvious, previously-known 
pattern. 

In this Chapter we focus on the issue of interestingness of discovered 
prediction rules, but we are also interested in the predictive accuracy and the 
comprehensibility of the rules. In essence, our approach consists of 
developing data mining algorithms designed to discover a few rules that are 
both interesting (according to a given interestingness measure) and accurate. 
Both these criteria are directly taken into account by a function used to 
evaluate the quality of the candidate rules produced by the algorithm. The 
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issue of comprehensibility is addressed in a more indirect manner. Instead of 
incorporating a comprehensibility measure in the rule evaluation function 
(which is already quite complex due to the need for measuring both 
predictive accuracy and interestingness), we follow the approach of 
designating, as the output of the algorithms, a small set of rules. We can 
think of the discovered rules as valuable "knowledge nuggets" extracted 
from the data. 

It should be noted that, in general, there is a trade-off between predictive 
accuracy and interestingness. It is not so difficult to "discover" accurate 
knowledge if the algorithm is allowed to discover previously-known 
patterns, as the above example involving pregnancy and gender shows. On 
the other hand, the discovery of truly interesting knowledge often requires 
some sacrifice in either the predictive accuracy or the generality of the 
discovered rules. 

As a real-world example of how the discovery of truly interesting 
knowledge may require some sacrifice in predictive accuracy (as estimated 
by the algorithm), we can quote the following result of a case study reported 
by [Wong & Leung, 2000; p. 166] concerning rules for scoliosis 
classification: 

"...the system found rules with confidence factors around 40% to 60% [a 
relatively low accuracy]. Nevertheless, the rules ... show something different 
in comparison with the rules suggested by the clinicians. ... After discussion 
with the domain expert, it is agreed that the existing rules are not defined 
clearly enough, and our rules are more accurate than theirs. Our rules 
provide hints to the clinicians to re-formulate their concepts." 

Despite the above successful example of relatively low predictive 
accuracy but high degree of interestingness, in many cases there is a danger 
of reducing too much predictive accuracy without necessarily discovering 
highly interesting knowledge. Hence, it seems that a safer approach to 
discover interesting knowledge consists of sacrificing a discovered rule set's 
generality (rather than predictive accuracy) in order to increase its 
interestingness. This is the approach followed in this Chapter. The basic idea 
is that, instead of trying to discover rules predicting goal attribute values for 
all examples, one focuses on discovering a few interesting rules (the 
"knowledge nuggets"), each of them possibly covering a few examples. This 
kind of rule has a good potential to represent knowledge that is not only 
accurate but also interesting (novel, surprising), because it focuses on 
exceptions, rather than very general relationships. In general users are 
already familiar with general relationships in the underlying application 
domain, and rules covering few examples, representing more specific 
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relationships in the data, are more likely to be previously-unknown by the 
user. 

The term small disjuncts is used in the literature to refer to rules covering 
a few examples [Holte, et al , 1989], [Weiss, 1995], [Weiss, 1998], [Weiss & 
Hirsh, 2000], [Carvalho & Freitas, 2000], [Carvalho & Freitas, 2002]. The 
potential of small disjuncts to represent interesting knowledge has also been 
pointed out by other authors, such as [Provost & Aronis, 1996]: 

"... small disjuncts are often of most interest to scientists and business 
analysts, since they are precisely the rules that were unknown previously; 
analysts usually know the common cases. " 

It should be noted, however, that in the majority of the literature on small 
disjuncts the rule discovery algorithm uses an evaluation function which is 
based on predictive accuracy only. Whether or not a discovered rule is 
interesting is manually determined by the analyst, by looking at each of the 
discovered rules. In this Chapter we prefer to use the term "knowledge 
nuggets" rather than the term "small disjuncts" to reflect the fact that our 
rule discovery algorithms use an evaluation function based on both 
predictive accuracy and a measure of rule interestingness. 

The remainder of this Chapter is organized as follows. Section 2 reviews 
the motivation for genetic algorithm-based rule discovery. Sections 3 and 4 
describe two versions of a genetic algorithm and a greedy rule induction 
algorithm, respectively, for discovering knowledge nuggets. Section 5 
presents computational results comparing these two kinds of algorithm in 
four public domain, real-world data sets. Finally, section 6 concludes the 
Chapter. 

2. THE MOTIVATION FOR GENETIC 
ALGORITHM-BASED RULE DISCOVERY 

This section is divided into three parts. Subsection 2.1 presents an 
overview of Genetic Algorithms, in order to make this Chapter self-
contained. Subsection 2.2 reviews the basic idea of greedy rule induction 
algorithms and discusses its associated drawback of not coping well with 
attribute interactions. This subsection paves the way for the discussion 
presented in subsection 2.3, where it is argued that in general Genetic 
Algorithms tend to cope better with attribute interactions than greedy rule 
induction algorithms. 
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2.1 An Overview of Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) are perhaps the most well known class of 
algorithms belonging to the broad paradigm of evolutionary computation 
[Back, et al., 2000]. A GA is essentially a search algorithm inspired by the 
principle of natural selection. The basic idea is to evolve a population of 
individuals (also called "chromosomes"), where each individual represents a 
candidate solution to a given problem. Each individual is evaluated by a 
fitness function, which measures the quality of its corresponding solution. At 
each generation (iteration) the fittest (the best) individuals of the current 
population survive and produce offspring resembling them, so that the 
population gradually contains fitter and fitter individuals - i.e., better and 
better candidate solutions to the underlying problem. In GAs the population 
of individuals usually evolves via a selection method, which selects the best 
individuals to reproduce, and via genetic operators such as crossover and 
mutation, which produce new offspring out of the selected individuals 
[Michalewicz, 1996], [Mitchell, 1996], [Goldberg, 1989]. At a high level of 
abstraction, a GA can be described by the pseudocode shown in Figure 1. 

create (usually at random) an initial population of individuals; 
compute the fitness (a quality measure) of each individual; 
REPEAT 

select individuals based on fitness; 
apply genetic operators to selected individuals, creating offspring; 
compute fitness of each offspring individual; 
update the current population; 

UNTIL (stopping criterion) 

Figure 1. Pseudocode for a Genetic Algorithm at a High Level of Abstraction. 

The central step of the REPEAT-UNTIL loop of the algorithm in Figure 
1 is the selection of individuals based on fitness. In general the better the 
fitness of an individual (i.e., the better the quality of its candidate solution) 
the higher the probability of an individual being selected. Among the several 
selection methods available in the literature, here we mention just one, 
namely tournament selection [Blickle, 2000], since this is the one used in our 
GA - to be described in section 3. Tournament selection can be considered a 
simple and effective selection method. For a more comprehensive discussion 
of selection methods the reader is referred to [Back, et al., 2000]. In 
tournament selection the GA randomly chooses k individuals from the 
current population, where k is the tournament size, a user-specified 
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parameter. Then the k individuals "play a tournament", whose winner is the 
individual with the best fitness among the k individuals playing the 
tournament. 

Once individuals are selected, the next step of the algorithm in Figure 1 
is to apply genetic operators to the selected individuals (parents), in order to 
produce new individuals (offspring) that, hopefully, will inherit good genetic 
material from their parents. This step will be discussed below. Then the 
fitness of each of the new individuals is computed, and another iteration of 
the REPEAT-UNTIL loop is started. This process is repeated until a given 
stopping criterion is satisfied. Typical stopping criteria are a fixed number of 
iterations (generations) or the generation of an individual representing a very 
good solution. The solution returned to the user is the best individual 
produced by the GA. 

Recall that an individual corresponds to a candidate solution to a given 
problem. In GAs an individual is usually a linear string of "symbols", often 
called "genes". A gene can be any kind of symbol, depending on the kind of 
candidate solution being represented. For instance, in GAs for prediction-
rule discovery (such as our GA described in section 3) a gene can be a 
condition (an attribute-value pair) of a rule antecedent. 

In general the main genetic operator of GAs is the crossover operator. It 
essentially consists of swapping genes between (usually two) individuals 
[Goldberg, 1989]. Figure 2 illustrates a well-known kind of crossover, called 
uniform crossover [Syswerda, 1989]. In this kind of crossover, in addition to 
the user-specified probability for applying crossover to a pair of individuals, 
there is another probability for swapping each gene's value in the genome of 
two individuals. (This second probability is often implicitly assumed to be 
0.5 in the literature.) Whatever the value of this second probability, the main 
point is that it is the same for each gene in the genome, so that each gene has 
the same probability of having its value swapped, independent of the gene's 
position in the genome. 

In order to illustrate the action of uniform crossover, Figure 2(a) shows 
two individuals, called the parents, before crossover. Suppose that the 
second and fifth genes (marked with a box in the figure) are randomly 
chosen to have their values swapped. As a result, uniform crossover 
produces the new individuals (offspring) shown in Figure 2(b). 

In addition to crossover, it is also common to use some kind of mutation. 
In essence mutation replaces the value of a gene with a new randomly-
generated value (among the values that are valid for the gene in question). 
Note that mutation can yield gene values that are not present in the current 
population, unlike crossover, which swaps existing gene values between 
individuals. Therefore, mutation helps to increase population diversity. 
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Figure 2. An Example of Uniform Crossover in Genetic Algorithms. 

Both crossover and mutation are stochastic operators, applied with user-
defined probabilities. In GAs the probability of mutation is usually much 
lower than that of crossover. This is at least in part due to the use of the 
biological metaphor, since in nature mutations tend to be harmful much 
more often than they are beneficial. 

For a comprehensive review of GAs in general the reader is referred to 
[Michalewicz, 1996], [Mitchell, 1996], [Goldberg, 1989]. For a 
comprehensive review of GAs applied to data mining the reader is referred 
to [Freitas, 2002a]. 

2.2 Greedy Rule Induction 

There are many kinds of rule induction algorithm. However, the majority 
of them use a greedy rule induction procedure, whose basic idea is described 
in the pseudocode of Figure 3. This procedure starts with a rule containing 
an empty set of conditions, and it incrementally constructs a rule by adding 
one-condition-at-a-time to the rule until a given stopping criterion is 
satisfied. This procedure is greedy because it constructs a candidate solution 
(a candidate rule) in a sequence of steps and at each step the best possible 
local choice is made - i.e., the "besf rule condition is added to the current 
rule. 

Rule = (|); 
DO /* specialize the rule */ 

add the "best" condition to the rule; 
UNTIL (stopping criterion) 

Figure 3. The Basic Idea of a Greedy Rule Induction Procedure. 

Note that the pseudocode in Figure 3 shows the top-down version of a 
greedy rule induction procedure. Of course, there is a dual bottom-up 
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version, which starts with a full set of conditions and incrementally 
constructs a rule by deleting one-condition-at-a-time. It should also be noted 
that, although the pseudocode in Figure 3 refers to the construction of a rule, 
most decision tree induction algorithms use the same basic idea of greedy 
search. The difference is that, instead of adding one-condition-at-a-time to 
the current rule, greedy decision tree induction algorithms add one-attribute-
at-a-time to the current decision tree. 

This greedy rule (or tree) induction procedure tries to find a global 
optimum in the search space by a series of local optimizations. However, 
there is no guarantee that a series of local optimizations will lead the search 
to the global optimum. In particular, the greedy search performed by most 
rule induction algorithms makes them quite sensitive to attribute interaction 
problems [Freitas, 2001]. 

As a very simple example of the fact that greedy rule induction 
procedures do not cope well with attribute interaction, consider the 
exclusive OR (XOR) problem, shown in Figure 4. The value of the XOR 
function is true if and only if exactly one of two attributes Ai and A2 take on 
the value true. Hence, knowing the value of a single attribute, either Ai or 
A2, is useless for determining the value of the XOR function. Unfortunately, 
any greedy procedure that tries to evaluate the predictive power of attributes 
Ai and A2 separately, one-attribute-at-a-time, will conclude that these two 
attributes are irrelevant for determining the value of the XOR function. This 
conclusion is wrong, because Ai and A2 are entirely relevant for determining 
the value of the XOR function. The caveat is that we have to evaluate the 
predictive power of Ai and A2 together, considering the interaction between 
these two attributes. 

Figure 4. Attribute Interaction in a XOR (exclusive OR) Function. 

In passing, we note that the XOR problem is in reality a particular case of 
parity problems, where the target function returns true if and only if an odd 
number of predictor attributes is true. The complexity of attribute interaction 
in parity problems increases very fast with the number of predictor 
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attributes, which makes this kind of problem very difficult for greedy rule 
induction algorithms, as shown, e.g., by [Schaffer, 1993]. 

2.3 The Global Search of Genetic Algorithms (GAs) 

In general, GAs tend to cope better with attribute interaction problems 
than greedy rule induction algorithms [Dhar, et al., 2000], [Papagelis & 
Kalles, 2001], [Freitas, 2001], [Freitas, 2002a], [Freitas, 2002b]. This has to 
do with the fact that, in contrast to the local search performed by greedy rule 
induction algorithms, GAs performs a global search. This is due to several 
factors, as follows. 

First of all, GAs work with a population of candidate rules (individuals), 
rather than working with a single candidate rule at a time. At a given 
moment during the search, a population of individuals is concurrently 
exploring different parts of the search space. Second, the fitness function 
evaluates an individual (a complete candidate rule) as a whole, which is in 
contrast with the fact that greedy rule induction algorithms evaluate only a 
partial rule when they are considering the insertion of a new condition into a 
rule. Third, the crossover operator, which is the major genetic operator used 
to create new individuals out of the current individuals, modifies individuals 
on a several-genes (conditions)-at-a-time basis, rather than on a single-gene 
(condition)-at-a-time basis. Finally, GAs use stochastic search operators, 
which contributes to make them more robust and less sensitive to noise. 

3. GA-NUGGETS 

This section presents our genetic algorithm (GA) designed for 
dependence modeling, called GA-Nuggets. We have developed two versions 
of GA-Nuggets, whose main differences are as follows. The first version, 
described in subsection 3.1, maintains a single, centralized population of 
individuals where different individuals can represent rules predicting 
different goal attributes. The second version, described in subsection 3.2, 
maintains a distributed population, consisting of several subpopulations, 
each of them evolving in an independent manner (although from time to time 
some individuals can migrate from one subpopulation to another). In this 
version, each subpopulation is associated with a different goal attribute to be 
predicted, so that in each subpopulation all individuals represent rules 
predicting the same goal attribute. These differences, as well as other aspects 
of the two versions, are described in the next two subsections. 
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3.1 Single-Population GA-Nuggets 

This subsection describes the main characteristics of the single-
population GA-Nuggets [Noda, et al., 1999], more precisely, its individual 
representation, fitness function, selection method and genetic operators. 

3.1.1 Individual Representation 

Each individual represents a candidate prediction rule of the form: IF Ant 
THEN Cons, where Ant is the rule antecedent and Cons is the rule 
consequent. Ant consists of a conjunction of conditions, where each 
condition is an attribute-value pair of the form At = F/,, where Ai is the i-th 
attribute and Vy is the j-th value of the domain of ^/. The current version of 
the system handles only categorical attributes. Hence, continuous attributes 
are discretized in a preprocessing step. Cons consists of a single attribute 
value pair of the form Gk = VM, where Gk is the k-th goal attribute and Vki is 
the I'th value of the domain of Gk. The user selects, among all attributes 
available in the data being mined, a set of goal attributes whose prediction is 
considered interesting or useful. The other attributes are used only as 
predictor attributes, and can occur only in a rule antecedent. 

Of course, when a goal attribute occurs in the consequent of a rule it 
cannot occur in its antecedent. However, if a goal attribute does not occur in 
the consequent of a rule, it can occur in the antecedent of that rule - in this 
case that goal attribute would be acting as a predictor attribute, in the context 
of that rule. In other words, only a goal attribute specified by the user can 
occur in a rule consequent, but a rule antecedent can contain predictor 
attributes and/or goal attributes, as long the antecedent's goal attribute(s) do 
not occur in the rule consequent. 

An individual is encoded as a fixed-length string containing z genes, 
where z is the number of attributes (considering both predictor and goal 
attributes), as shown in Figure 5. The i-th gene, / = 1,..., z, represents the 
value that the i-th attribute takes on in the corresponding rule antecedent, if 
the attribute occurs in that rule's antecedent. Only a subset of the attribute 
values encoded in the genome will be decoded into attribute values 
occurring in the rule antecedent. In order to implement this we use the flag 
" - 1 " to indicate that a given attribute value is not decoded into a rule 
antecedent's condition. More precisely, the i-th gene can take on either the 
value " - 1 " or one of the values belonging to the domain of the i-th attribute. 
The gene is decoded into a rule antecedent's condition if and only if the gene 
value is different from " - 1 " . Therefore, although the genome length is fixed, 
its decoding mechanism effectively represents a variable-length rule 
antecedent. 
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Ai A2 A3 ... ... ... A. 

Figure 5. Individual Representation. 

Once the rule antecedent is formed, the algorithm chooses the best 
consequent for each rule in such a way that maximizes the fitness of an 
individual (candidate rule). In effect, this approach gives the algorithm some 
knowledge of the data mining task being solved. A similar approach has 
been used by some GAs designed for discovering classification rules - see 
e.g. [Green & Smith, 1993]. 

This approach also has the benefit of being, in a certain sense, an 
efficient way of implementing a genetic search for rules, as follows. For 
each new rule antecedent produced by the GA - as a result of the creation of 
the initial population or the application of any genetic operator - the system 
performs a single scan of the training set in order to compute the fitness that 
the individual would have for each goal attribute value, and then chooses the 
goal attribute value maximizing the fitness of the individual. Hence, for a 
given rule antecedent, with a single scan of the training set the system is 
actually evaluating several different candidate rules (one different rule for 
each different goal attribute value being considered) and choosing the best 
one. This is an efficient use of a genetic search, because the bottleneck of 
fitness evaluation - viz., scanning the training set - is performed just once in 
order to evaluate multiple candidate rules. 

3.1.2 Fitness Function 

The fitness function consists of two parts. The first one measures the 
degree of interestingness of the rule, while the second measures its 
predictive accuracy. The degree of interestingness of a rule, in turn, consists 
of two terms. One of them refers to the antecedent of the rule and the other 
to the consequent. 

The degree of interestingness of the rule antecedent is calculated by an 
information-theoretical measure, which is a normalized version of the 
measure proposed by [Freitas, 1998]. Initially, as a preprocessing step, the 
algorithm calculates the information gain of each attribute (InfoGain) [Cover 
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& Thomas, 1991]. Then, the degree of interestingness of the rule antecedent 
{Antint) is given by: 

Antint = 1 

^ InfoGain{A^) n 
/=i 

\o%,i\dom{G,)\) 
(1) 

where n is the number of attributes occurring in the rule antecedent and 
\dom{Gj)\ is the domain cardinality (i.e. the number of possible values) of the 
goal attribute Gk occurring in the consequent. The log term is included in 
formula (1) to normalize the value of Antint, so that this measure takes on a 
value between 0 and 7. The InfoGain is given by: 

where 

and 

InfoGain(Ai) - Info{Gk) - Info(Gk\Ai), 

mk 

InMG,)= -2;(Pr(Fj log,(Pr(Fj)) , 

(2) 

(3) 
/=1 

InMGMd= I P r l F ^ j - Z P r K l^)log2(Pr(f^« 1^)) 
y=i 

(4) 
JJ 

where nik is the number of possible values of the goal attribute Gk , ni is the 
number of possible values of the attribute At, Pr(X) denotes the probability of 
Xand Pr(Z|y) denotes the conditional probability of X given Y. 

T\iQ Antint mQdiSUYQ can be justified as follows [Freitas, 1998]. In general, 
if a given predictor attribute At has a high information gain with respect to a 
given goal attribute Gk, this leads us to believe that At is a good predictor of 
the value of Gk, when At is considered individually - i.e., ignoring its 
interaction with other predictor attributes. (Note that in formulas (2), (3) and 
(4) - as well as in the vast majority of rule induction algorithms using an 
evaluation function based on information theory - the computation of the 
information gain of a predictor attribute is independent from the computation 
of the information gain of other predictor attributes.) 

However, from a rule interestingness point of view, as discussed in the 
Introduction, it is likely that the user already knows what are the best 
predictors (individual attributes) for its application domain, and rules 
containing these attributes would tend to have a low degree of 
interestingness for the user. 
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On the other hand, the user would tend to be more surprised if she/he saw 
a rule antecedent containing attributes with low information gain. The user 
probably considered these attributes as irrelevant, and they are kind of 
irrelevant for prediction when considered individually, one at a time. 
However, attribute interactions can render an individually irrelevant attribute 
into a relevant one, and this phenomenon is intuitively associated with rule 
interestingness. 

Therefore, all other things (such as the predictive accuracy) being equal, 
it can be argued that rules whose antecedent contain attributes with low 
information gain are more interesting (surprising) than rules whose 
antecedent contain attributes with high information gain. 

The computation of the rule consequent's degree of interestingness is 
based on the idea that the prediction of a rare goal attribute value tends to be 
more interesting to the user than the prediction of a very common goal 
attribute value [Freitas, 1999]. In other words, the larger the relative 
frequency (in the training set) of the value being predicted by the 
consequent, the less interesting it tends to be. Conversely, the rarer a value 
of a goal attribute, the more interesting a rule predicting it tends to be. For 
instance, all other things being equal, a rule predicting a rare disease is much 
more interesting than a rule predicting a healthy condition, when 99% of the 
patients are healthy. More precisely, the formula for measuring the degree of 
interestingness of the rule consequent (Consint) is: 

ConsInt= ( l -Pr (G, , )y '^ (5) 

where Vr{Gki) is the prior probability (relative frequency) of the goal 
attribute value Gki, and y9 is a user-specified parameter. The value of P was 
set to 2 in our experiments, since this value - resulting in an exponent of Vi 
in formula (5) - was empirically determined as a good value to reduce the 
influence of the rule consequent interestingness in the value of the fitness 
function. In any case, we make no claim that this value is an optimal value 
for this parameter. 

To illustrate the use of formulas (l)-(5), consider the following very 
simple example, involving a goal attribute Gk called Credit, indicating 
whether the Credit of a customer is good or bad, and a predictor attribute Ai 
called Income, indicating whether the Income of a customer is low, medium 
or high. Suppose that the current candidate rule is: IF {Income = low) THEN 
(Credit = bad). Suppose also that we have the following probabilities for the 
two goal attribute values: Fr(Credit=good) = 0.4, Fr(Credit =bad) = 0.6; and 
the following conditional probabilities for the goal attribute values given the 
predictor attribute values: 
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Vr{Credit = good 
Vv{Credit = bad 
?T{Credit = good 
?r(Credit= bad 
?Y(Credit = good 
?Y(Credit = bad 

Income = low) = 0, 
Income = low) = 1, 
Income = medium) = 0.4, 
Income = medium) = 0.6, 
Income^ high) = 1, 
Income=high) = 0. 

Then we have Info{Credit) = 0.97 (using formula (3)), 
Info(Credit\Income) = 0.485 (using formula (4)), and 
InfoGain{Credit\Income) = 0.485 (using formula (2)). Finally, using formula 
(1) we would have Antint = 1 - (0.485 / 1) = 0.515. This reflects the fact 
that the rule antecedent is not very interesting, since there is an obvious 
correlation (probably previously-known by the user) between Income = low 
and Credit = bad. The degree of interestingness of the rule consequent 
would be computed by formula (5) as Consint = (1 - 0.6)̂ ^̂  = 0.63. Again, 
this rule consequent does not have a high degree of interestingness, 
reflecting the fact that the predicted goal attribute value is relatively 
common in the data set (occurring in 60% of the examples). Note that a rule 
predicting Credit = good would have a somewhat higher Consint, namely 
0.77, since the value good is somewhat less common in the data set 
(occurring in 40% of the examples). 

The second part of the fitness function measures the predictive accuracy 
(PredAcc) of the rule, and it is given by: 

\A&C\-l/2 
PredAcc = TT"̂  (6) 

where \A&C\ is the number of examples that satisfy both the rule antecedent 
and the rule consequent, and \A\ is the number of examples that satisfy only 
the rule antecedent. The term V2 is subtracted in the numerator of formula (6) 
to penalize rules covering few training examples - see [Quinlan, 1987]. 

Finally, the fitness function is: 

w^ [Antint + Consint)/2 + w^ Pr edAcc 
Fitness = \ ~ ^ (7) 

wl + wl ^ ^ 

where wi and W2 are user-defined weights. In a real-world scenario the 
values ofwi and W2 should be chosen by the user, in order to incorporate into 
the algorithm the preferences of the user. In our scientific experiments there 
is no direct "user". Hence, we performed the role of the user, and we have 
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chosen the weight values of wj = 1 and W2 = 2 according to our own 
evaluation about the relative importance of interestingness and predictive 
accuracy. Although interestingness is certainly important, in general there is 
little point in discovering an interesting rule if its estimated accuracy is low, 
i.e., a good predictive accuracy is a basic requirement of any prediction rule. 
This justifies the choice of a W2 value larger than the wj value. Note also that 
formula (7) returns a value normalized in the range [0...1], since the three 
terms Antint, Consint, and PredAcc are normalized. 

3.1.3 Selection Method and Genetic Operators 

GA-Nuggets uses a well-known tournament selection method with 
tournament size 2 - see section 2.1 -and it uses uniform crossover extended 
with a "repair" procedure. As mentioned in section 2.1, in uniform crossover 
there is a probability for applying crossover to a pair of individuals and 
another probability for swapping each gene (attribute)'s value in the genome 
(rule antecedent) of two individuals. After this crossover is done, the 
algorithm analyses if any invalid individual was created. If so, a repair 
procedure is performed to produce valid-genotype individuals. The rates 
used in our experiments were 0.7 for the crossover operator and 0.5 for 
attribute value swapping. The mutation operator randomly transforms the 
value of an attribute into another value belonging to the domain of that 
attribute. The mutation rate used in our experiments was 0.05. We made no 
attempt to optimize these settings, as they represent relatively common 
settings in the literature. 

In addition to crossover and mutation, there are two operators, called 
condition-insertion and condition-removal operators, which control the size 
of the rules being evolved by randomly inserting/removing a condition 
into/from a rule antecedent. The probability of applying each of these 
operators depends on the current number of attributes in the rule antecedent. 
The larger the number of conditions in the current rule antecedent, the 
smaller the probability of applying the condition-insertion operator. In 
particular, this operator is not applied if the rule antecedent has the 
maximum number of conditions (as specified by the user). Conversely, the 
larger the number of conditions in the current rule antecedent, the larger the 
probability of applying the condition-removal operator. This operator is not 
applied if the rule antecedent has just one condition. 

The condition-insertion and condition-removal operators are 
implemented by replacing the " - 1 " flag with a value F̂  and by replacing the 
value Vij with the " - 1 " flag in a gene, respectively. In order to illustrate the 
application of these operators, Figure 6(a) shows an individual's genome 
with five genes representing a rule antecedent with three conditions, since 
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only three of the five genes have a value Vy different from the flag " - 1 " . 
Figure 6(b) shows the result of applying the condition-insertion operator into 
the individual of Figure 6(a), by replacing the " - 1 " flag with a value Vy in 
the third gene, so that the number of rule conditions is increased to four. 
Figure 6(c) shows the result of applying the condition-removal operator into 
the individual of Figure 6(a), by replacing the value Vy with the " - 1 " flag in 
the fourth gene, so that the number of rule conditions is reduced to two. 

1 Ai = Vij A2 = V2j A3 = - l A4 = V4j A 5 = - l 

(a) Original individual 

1 A, = V,j A2 = V2j A3=V3j A4=V4j A 5 = - l 

(b) Inserting a condition in the third gene of the individual 

Ai = V,j A2=V2j A3 = - l A4 = - l A5 = - l 

(c) Removing a condition in the fourth gene of the individual 

Figure 6. Examples of Condition Insertion/Removal Operations. 

3.2 Distributed-Population GA-Nuggets 

This subsection describes the main characteristics of the distributed-
population GA-Nuggets [Noda, et al., 2002], more precisely, its individual 
representation, distributed population issues, fitness function, selection 
method and genetic operators. 

3.2.1 Individual Representation 

As mentioned before, the distributed population of GA-Nuggets consists 
of several subpopulations, each of them evolving independently from the 
others (except for some occasional migrations of individuals between 
subpopulations). Each subpopulation is associated with a different goal 
attribute to be predicted, so that in each subpopulation all individuals 
represent rules predicting the same goal attribute. 

As a result, the individual representation of the distributed-population 
version of GA-Nuggets is similar to the individual representation of the 
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single-population version of GA-Nuggets, described in subsection 3.1. The 
only difference is that the goal attribute is fixed for all individuals of the 
same subpopulation - only the predicted value of the goal attribute can vary 
between individuals in the same subpopulation. The goal attribute value 
predicted by each individual (rule) is chosen by the same deterministic 
procedure used to choose the rule consequent of single-population GA-
Nuggets, namely, by choosing the goal attribute value that maximizes the 
fitness of the individual. 

3.2.2 Distributed Population 

The entire population is divided into p subpopulations, where p is the 
number of goal attributes. In each subpopulation all individuals are 
associated with the same goal attribute. As mentioned before, each 
consequent consists of a single goal attribute-value pair of the form Gk = Vki, 
where Gk is the k-th goal attribute and V^i is the l-th value of the domain of 
Gk. For instance, suppose there are two goal attributes, Gj and G2, with Gy 
having the domain {Vu, V12} and G2 having the domain {F27, V22, V23}. In 
this case there would be two subpopulations. The first subpopulation would 
contain some individuals predicting Gj = Vu and some individuals 
predicting G; = F72; whereas the second subpopulation would contain some 
individuals predicting G2 = ¥21, some individuals predicting G2 = V22, and 
some individuals predicting G2 = V23. (Recall that the value Vy predicted by 
an individual of the i-th subpopulation is chosen as the value that maximizes 
the fitness of the individual, as mentioned in the previous subsection.) 

One advantage of this distributed population approach, with a fixed goal 
attribute for each subpopulation, is to reduce (on average) the number of 
crossovers performed between individuals predicting different rules 
consequents. Since crossover is restricted to individuals of the same 
subpopulation, one makes sure that crossover swaps genetic material of two 
parents which represent candidate rules predicting the same goal attribute. 
Note that this is not the case with single-population GA-Nuggets, where 
crossover can swap genetic material between parents representing rules 
predicting different goal attributes. 

Note that this idea of distributing goal attributes across multiple 
subpopulations could be taken further, by associating with each 
subpopulation a single goal attribute-value pair (a specific rule consequent) 
to be predicted, rather than a goal attribute, as in the current version. This 
would further restrict crossover, so that in this case crossover would always 
swap genetic material between two parents representing rules predicting the 
same goal attribute value, avoiding the problem of crossover between two 
individuals predicting different values for the same goal attribute which 
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occurs in the current version of distributed-population GA-Nuggets. 
However, this alternative approach would have one disadvantage related to a 
smaller search efficiency. More precisely, it would not have the benefit of, in 
a single scan of the training set, considering different goal attribute values to 
be associated with the individual and then choosing, as the value predicted 
by the individual (rule), the value that maximizes the fitness of the 
individual. 

As usual in distributed-population GAs, GA-Nuggets has a migration 
procedure where, from time to time, an individual of a subpopulation is 
copied into another subpopulation. In the case of GA-Nuggets, we have 
developed a migration procedure tailored for our prediction-rule discovery 
task, as follows. 

The subpopulations evolve in a synchronous manner, so that in each 
subpopulation the i-th generation is started only after the (/ - l)-th generation 
has been completed in all subpopulations, for / = 2,...,g, where g is the 
number of generations (which is the same for all subpopulations). 

Migration takes place every m generations, where m is a user-specified 
parameter. Each population sends individuals to all the other subpopulations. 
More precisely, in each subpopulation Si, i = 1,...,/? (recall that/? is the 
number of subpopulations), the migration procedure chooses (p - I) 
individuals to be migrated. Each of those/^ - 1 migrating individuals will be 
sent to a distinct subpopulation. Only a copy of the individual is sent, i.e. the 
original individual remains in its subpopulation. 

The choice of the individuals to be migrated is driven by the fitness 
function, taking into account the fact that different subpopulations are 
associated with different goal attributes. In each subpopulation Si the 
migration procedure knows, for each individual, not only the actual value of 
its fitness in that subpopulation (associated with the i-th goal attribute), 
which is called its home fitness, but also what would be the value of the 
fitness of that individual if it were placed in another subpopulation Spj ^ /, 
predicting a value of they-/// goal attribute. We call this the foreign fitness of 
the individual in the j-th subpopulation. 

It is important to note that the computation of the foreign fitness of an 
individual in each of the other subpopulations Sj, j ^ /, is computationally 
cheap, for the following reason. In order to compute the actual fitness of an 
individual in its home subpopulation, the system has to scan the entire 
training set and, for each training example, to determine whether or not the 
example satisfies all conditions of the rule antecedent associated with the 
individual. The set of examples satisfying the rule antecedent is called the 
coverage of the rule. The actual fitness of the individual in its home 
subpopulation involves a measure of the predictive accuracy of its associated 
rule, and this measure depends on the frequency distribution of the goal 
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attribute values in the rule's coverage. Once the coverage of a rule has been 
computed, that same coverage is also used to compute the foreign fitness of 
the individual in the other subpopulations, by computing the frequency 
distribution of the values of the other goal attributes associated with the 
other subpopulations. In other words, both the individual's home fitness and 
its foreign fitness in each of the other subpopulations can be computed in a 
single scan of the training set, which is required for the computation of the 
individual's home fitness, anyway. (In an efficient implementation, both the 
home fitness value and all the foreign fitness values of an individual can be 
computed along with the computation of its rule's coverage, by incrementing 
appropriate frequency counters right after a training example is found to 
belong to the rule's coverage. This efficient implementation is used in our 
system.) 

Once all the foreign fitness values of each individual of every 
subpopulation have been computed, the migration procedure is finally ready 
to choose the (p - 1) individuals to be migrated from each subpopulation. 
Each subpopulation Si, i = I,...,/?, sends to the j-th subpopulation,7 = 1,...,/? 
andy ^ /, the individual that has the maximum foreign fitness value for they-
th subpopulation. 

As a result of this process, each subpopulation 5/, / = 1,...,/?, receives/> -
1 individuals, each of them coming from a different subpopulation Sj, j = 
l,...,j9 and 7 ^ i. Among these p - 1 individuals, only one is accepted by 
subpopulation St. The accepted individual is the one with the largest fitness 
value. (At this point the distinction between foreign fitness and home fitness 
is irrelevant. Once a copy of an individual is sent from subpopulation Si to 
subpopulation Sj by the migration procedure, the corresponding foreign 
fitness of that copy is immediately considered as its actual fitness in 
subpopulation Sj.) This is equivalent to a tournament selection among the 
incoming individuals. Only the tournament winner is accepted, and the other 
p - 2 incoming individuals are discarded. The selected individual replaces 
the worst-fitness individual in the subpopulation Si. 

3.2.3 Fitness Function 

The fitness function of distributed-population GA-Nuggets is the same as 
the fitness function of single-population GA-Nuggets (see subsection 3.1.2). 
Therefore, the fitness function of distributed-population GA-Nuggets is 
given by formula (7), which is in turn computed by formulas (1) through (6). 
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3.2.4 Selection Method and Genetic Operators 

In the distributed-population version of GA-Nuggets the application of 
the selection method and genetic operators is independently performed in 
each of the subpopulations. Each subpopulation uses the same selection 
method and genetic operators (described in subsection 3.1.3), which are 
applied only to the local individuals in that subpopulation. 

4. A GREEDY RULE INDUCTION ALGORITHM 
FOR DEPENDENCE MODELING 

Dependence modeling is a data mining task far less investigated than 
classification in the rule induction literature. As a result, there are relatively 
few rule induction algorithms for dependence modeling, such as ITRULE 
[Smyth & Gooodman, 1991]. However, a direct comparison between GA-
Nuggets and IT-RULE or another rule induction algorithm for dependence 
modeling would not be very fair, for the following reasons. 

First, in general rule induction algorithms use an evaluation function 
different from the one used by GA-Nuggets. More precisely, the vast 
majority of rule induction algorithms use an evaluation function designed for 
estimating the predictive accuracy of a rule, whereas GA-Nuggets' 
evaluation function (the fitness function) was designed for estimating both 
the predictive accuracy and the degree of interestingness of a rule. One of 
the goals of our experiments is to compare the global search strategy of a 
GA with the local search strategy of a greedy rule induction algorithm, by 
using the same evaluation function and the same model for the two kinds of 
algorithm. 

Second, there is also a subtle difference in the model of GA-Nuggets and 
the model of most rule induction algorithms. GA-Nuggets' output consists of 
a set of rules where each rule predicts a different goal attribute value. This 
restriction is not usually incorporated into rule induction algorithms for 
dependence modeling, where different discovered rules can predict the same 
goal attribute value and some goal attribute may be missing in the 
discovered rule set. 

Hence, we decided to develop a greedy rule induction algorithm with 
exactly the same model and the same evaluation function as GA-Nuggets. 
Fixing these characteristics, we can effectively evaluate the differences in 
performance associated with the differences between the global search 
typically performed by a GA and the local search typically performed by a 
greedy rule induction algorithm. 
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The developed rule induction algorithm performs a greedy search by 
selecting rule conditions one-at-a-time (see section 2.2). In order for this 
algorithm to discover the same number of rules as GA-Nuggets (so that their 
comparison is as fair as possible) we run it once for every possible goal-
attribute value to be predicted. More precisely, the greedy algorithm works 
as follows. 

The rule consequent is fixed with the goal-attribute value corresponding 
to the current run of the algorithm. The algorithm starts with an empty rule 
antecedent (i.e., with 0 conditions), which covers all the training examples. 
Then it iteratively adds to the current rule antecedent the rule condition 
(attribute-value pair) which leads to the largest value of the evaluation 
function for the extended rule antecedent. This iterative procedure is 
repeated until no new rule condition can improve the value of the evaluation 
function or there are no more attributes to be chosen to compose the rule 
antecedent. Note that each attribute can be chosen only once to compose a 
rule condition for a given rule antecedent, since the occurrence of two or 
more conditions with the same attribute in the same rule antecedent would 
correspond to an invalid rule antecedent - e.g., "IF sex = male AND sex = 
female...''. 

5. COMPUTATIONAL RESULTS 

This section reports the results of computational experiments with some 
public domain data sets. Subsection 5.1 describes the data sets used in the 
experiment, whereas subsection 5.2 reports the computational results with 
respect to both predictive accuracy and interestingness. Subsection 5.3 
summarizes the results and discussions of this section. 

5.1 The Data Sets Used in the Experiments 

The data sets used to evaluate the previously-described algorithms were 
obtained from the UCI repository of machine learning databases 
(http://www.ics.uci.edu/AI/Machine-Leaming.html). The data sets used are 
Zoo, Car Evaluation, Auto Imports and Nursery. They are normally used for 
evaluating algorithms performing the classification task. In the absence of a 
specific benchmark data set for the dependence modeling task, these data 
sets were chosen because they seem to contain more than one potential goal 
attribute. The main characteristics of these four data sets are as follows: 

• The Zoo data set contains 101 instances and 18 attributes. Each 
instance corresponds to an animal. In the preprocessing phase the 
attribute containing the name of the animal was removed, since 
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this attribute has no generalization power. The attributes in the 
Zoo data set are all categorical. The attribute names are as 
follows: hair, feathers, eggs, milk, predator, toothed, domestic, 
backbone, fins, legs, tail, catsize, airborne, aquatic, breathes, 
venomous and type. Except type and legs, the attributes are 
Boolean. In our experiments the set of potential goal attributes 
used wsis predator, domestic and type. Predator and domestic are 
Boolean attributes, whereas the type attribute can take on seven 
different values. 

• The Car Evaluation data set contains 1728 instances and 6 
attributes. All attributes are categorical and there are no missing 
values. The attribute names are buying, maint, doors, persons, 
lug_boot, safety and car acceptability. The attributes buying and 
car acceptability, with 4 values each, were used as potential goal 
attributes. 

• The Auto Imports data set contains 205 instances and 26 
categorical attributes. The attribute normalized-losses and 12 
instances were removed because of missing values. This 
simplifies the computation of the probabilities involved in 
formulas (3) and (4) - subsection 3.1.2 - and makes sure that the 
information gain of all attributes is computed with respect to the 
same number of examples. Attributes symboling, body-style and 
price, with 7, 5, and 3 values, were chosen as goals. 

• The Nursery data set contains 12960 instances and 9 attributes. 
The attributes are all categorical. The attribute names are as 
foWovj^: parents, health, form, children, finance, housing, social, 
hasjiurs and recommendation. In our experiments, the attributes 
used as potential goal attributes were finance, social and health, 
with 2, 3 and 5 values, respectively. 

5.2 Results and Discussion 

The target of this work is the dependence modeling task which, as 
mentioned before, is a generalization of the classification task where 
different rules can predict different attributes. In both tasks the evaluation of 
the discovered rules must take into account their predictive accuracy on a 
separate test set. The difference is as follows. In classification we usually 
aim at discovering a rule set that can classify any test instance that appears in 
the future. Hence it makes sense to compute an accuracy rate or related 
measure over all instances in the test set. 

In dependence modeling, in the sense addressed in this Chapter, we do 
not aim to classify the whole test set. Rather, the goal is to discover a few 
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interesting rules to be shown to a user (see Introduction). We can think of 
the discovered rules as the most valuable "knowledge nuggets" extracted 
from the data. These knowledge nuggets are valuable even if they do not 
cover the whole test set. In other words, the value of the discovered rules 
depends on their predictive accuracy on the part of the test set covered by 
those rules, but not on the test set as a whole. After all, there are several goal 
attributes, and we do not expect that the discovered rules can predict the 
value of all goal attributes for all instances in the test set. In fact, we could 
mine such a large rule set by running one classification algorithm for each 
goal attribute, but we would get too many rules, and the task being solved 
would be simply "multiple classification". In contrast, in the dependence 
modeling task addressed in this Chapter we aim at discovering a much 
smaller set of interesting rules. 

Hence, it does not make much sense to evaluate the performance of the 
discovered rule set as a whole in test set, and the discovered rules are better 
evaluated on a rule-by-rule basis. Within this spirit, for each data set (Zoo, 
Car Evaluation, Auto Imports, and Nursery), the experiment consisted of 
using 10-fold cross-validation to evaluate the quality of the rules discovered 
by three algorithms, namely: single-population GA-Nuggets (section 3.1), 
distributed-population GA-Nuggets (section 3.2), and the greedy rule 
induction algorithm (section 4). Hereafter these algorithms will be denoted 
by GA-Nuggets, Distributed GA-Nuggets and the greedy algorithm, for 
short. The 10-fold cross-validation procedure works as follows. First, the 
data set is divided into 10 mutually exclusive and exhaustive partitions. Then 
each of the three algorithms is run 10 times. Each time a different partition is 
used as the test set and the other 9 partitions are merged and used as the 
training set. The results (in the test set) of the 10 runs are then averaged for 
each algorithm. 

In order to make the comparison between GA-Nuggets and Distributed 
GA-Nuggets as fair as possible, both GAs use the same total population size, 
as follows. For each data set, each GA is allocated 30 individuals for each 
goal attribute value to be predicted. For instance, in the case of the Nursery 
data set, there are three goal attributes, with 2, 3 and 5 values, so that in total 
there are 10 goal attribute values to be predicted. Therefore, GA-Nuggets 
uses a single population with 300 individuals, whereas Distributed GA-
Nuggets uses three subpopulations having 60, 90 and 150 individuals, 
respectively (with total size of 300). Both GAs are run for 100 generations. 
The parameter m of Distributed GA-Nuggets was set to 10, so that migration 
happens every 10 generations. We make no claim that these parameter 
settings are optimal. Actually, so far we have made no attempt to optimize 
these parameters. Such a parameter optimization might be tried in the future. 
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but for now it is worth noting that even with the current non-optimized 
parameters the GAs are already obtaining good results, as will be seen later. 

5.2.1 Predictive Accuracy 

In this subsection we compare the predictive accuracy of the three above-
mentioned algorithms in all the four data sets. The results are reported in 
Tables 1 through 4. In each of these tables, each row represents the results 
for a given rule consequent - i.e., a combination of a goal attribute and one 
of its values, as indicated in the first two columns. The remainder of each 
table is divided into three parts. Each part contains the results for one of the 
three algorithms, and it consists of two columns. The first one reports the 
coverage (Cov.) of the rules discovered by that algorithm. The coverage of a 
rule is the number of examples (in the test set) covered by the rule - i.e., the 
number of examples satisfying all the conditions of the rule antecedent. The 
second column reports the accuracy rate (in the test set) of the rules 
discovered by that algorithm. The coverage of the rules is shown for 
completeness, but the main performance measure analyzed in this section is 
the accuracy rate. 

In the columns reporting the accuracy rate of each algorithm, the 
numbers after the "±" are standard deviations. In order to compare the three 
algorithms, we have considered the greedy algorithm as a "baseline", since it 
is the simplest of the three algorithms. Hence, for each of the two GAs, the 
table cells where the GA's accuracy rate is significantly better (or worse) 
than the greedy algorithm's accuracy rate are indicated by the symbol "(+)" 
(or "(-)"). The accuracy rate of a GA was considered significantly better 
than the accuracy rate of the greedy algorithm if and only if the 
corresponding accuracy rate intervals (taking into account the standard 
deviations) do not overlap. Let us now analyze the results of Tables 1 to 4. 

• In Table 1 (Zoo data set) both GAs obtained rules with 
significantly higher accuracy rate than the rules obtained by the 
greedy algorithm in four cases. GA-Nuggets obtained rules with 
significantly lower accuracy rate than the rules obtained by the 
greedy algorithm in just one case, whereas Distributed GA-
Nuggets did not obtain rules with significantly lower accuracy 
rate than the rules obtained by the greedy algorithm in any case. 

• In Table 2 (Car Evaluation data set) GA-Nuggets and Distributed 
GA-Nuggets obtained rules with significantly higher accuracy 
rate than the rules obtained by the greedy algorithm in two cases 
and three cases, respectively. There was no case where the GAs 
obtained rules with significantly lower accuracy rate than the 
rules obtained by the greedy algorithm. 
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Table 1. Accuracy Rate (%) in the Zoo Data Set. 

13 o 
O 

o 

O 

Q 

r 

Attnb. 
Value 

False 

True 

False 

True 

1 

2 
3 

4 

5 
6 

7 

Greedy algorithm 

Gov 
1.8 

1.6 

4.4 

0.4 

17.6 

6.6 
3.6 

0.4 

2.2 
0.4 

0.7 

Accuracy 
43.2+12.9 

48.0 ±15.2 

88.3 ±4.8 

0.0 ±0.0 

0.0 ±0.0 

100.0 ±0.0 
100.0 ±0.0 

0.0 ±0.0 

100.0 ±0.0 
20.0 ±13.7 

60.0 ±16.3 

GA-Nuggets 

Gov 
4.4 

2.8 

5.2 

0.8 

6.4 

3.6 
0.2 

2.2 

0.5 
1.1 

2.0 

Accuracy 
50.5 + 8.9 

75.0 ±11.2 
(+) 

97.1 ±5.2 

0.0 ± 0.0 

100.0 ±0.0 
(+) 

100.0 ±0.0 
0.0 ± 0.0 

(-) 
100.0 ±0.0 

(+) 
100.0 ±0.0 
90.0 ± 10.0 

(+) 
83.3 ± 10.2 

Distributed 
GA-Nuggets 

Gov 
3.2 

2.4 

6.2 

0.8 

6.4 

3.6 
1.1 

2.2 

0.8 
1.1 

2.0 

Accuracy 
48.0 ±8.2 

84.0±11.1 
(+) 

90.5 ±4.4 

0.0 ± 0.0 

100.0 ±0.0 
(+) 

100.0 ±0.0 
95.0 ±13.8 

100.0 ± 0.0 
(+) 

100.0 ±0.0 
90.0 ±10.0 

(+) 
85.0±11.0 1 

Table 2. Accuracy Rate (%) in the Car Evaluation Data Set. 

1 ^ 
I O 

i 
CO 

o 
o 
< 

Attrib. 
Value 

V-high 
High 

Med 

Low 

Unacc 
Ace 

Good 
V-good 

Greedy algorithm 

Gov 

1.2 
2.0 

1.7 

2.3 

12.6 
0.0 
0.0 
0.0 

Accuracy 

60.0 ±16.3 
0.0 ±0.0 

0.0 ±0.0 

80.0 ±13.3 

100.0 ±0.0 
0.0 ±0.0 
0.0 ±0.0 
0.0 ±0.0 

GA-Nuggets 

Gov 

1.2 
2.5 

2.5 

2.3 

10.4 
0.1 
0.0 
0.0 

Accuracy 

60.0 ±16.3 
4.5 ±3.0 

(+) 
2.5 ±2.5 

100.0 ±0.0 
(+) 

100.0 ±0.0 
0.0 ±0.0 
0.0 ±0.0 
0.0 ±0.0 

Distributed 
GA-Nuggets 1 

Gov 

1.0 
2.2 

2.3 

2.0 

10.4 
0.0 
0.1 
0.1 

Accuracy 

50.0 ±16.7 
7.5 ±3.8 

(+) 
5.0 + 3.3 1 

100.0 ±0.0 1 
(+) 

100.0 ±0.0 1 
0.0 ±0.0 
0.0 ±0.0 
0.0 ±0.0 1 
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• In Table 3 (Auto Imports data set) both GAs obtained rules with 
significantly higher accuracy rate than the rules obtained by the 
greedy algorithm in seven cases. GA-Nuggets and Distributed 
GA-Nuggets obtained rules with significantly lower accuracy 
rate than the rules obtained by the greedy algorithm in two cases 
and one case, respectively. 

o 
O 

o 
no 

O 

CM 

Table 3. 
Attrib. 
Value 

-3 
-2 

-1 

0 

1 
2 

3 

Hardtop 
Wagon 

Sedan 

Hatch 

Convert. 
Low 

Average 

High 

Accuracy Rate (%) m 
Greedy algorithm 

Cov 
0.0 
1.2 

0.0 

2.0 

1.4 
0.0 

0.6 

0.2 
0.4 

0.1 

1.3 

0.6 
10.4 
2.6 

0.5 

Accuracy 
0.0+ 0.0 

20.0 ±13.3 

0.0 ± 0.0 

85.0+ 7.6 

80.0 ±13.3 
0.0 ±0.0 

20.0 ±13.3 

0.0 ± 0.0 
10.0 ±6.7 

10.0 ±10.0 

30.0 ±15.3 

20.0 ±13.3 
100.0 ±0.0 
77.5 ± 6.9 

50.0 ±16.7 

the Auto Imports Data Set. 
GA-Nuggets 

Cov 
0.0 
0.0 

1.2 

2.2 

1.7 
1.2 

1.2 

0.6 
0.6 

0.6 

2.6 

0.6 
11.4 
3.2 

1.4 

Accuracy 
0.0 ± 0.0 
0.0 ± 0.0 

(-) 
55.0 ±13.8 

(+) 
96.0 ± 2.7 

(+) 
70.0 ±15.3 
63.3 ± 14.4 

(+) 
70.0 ±15.3 

(+) 
0.0 ±0.0 
0.0 ±0.0 

(-) 
60.0 ±16.3 

(+) 
76.7 ± 6.7 

(+) 
40.0 ±16.3 
100.0 ±0.0 
90.0 ±4.1 

(+) 
72.5 ± 12.6 

Distributed 
GA-Nuggets 

Cov 
0.0 
0.8 

1.6 

2.0 

2.3 
1.3 

1.9 

0.4 
1.6 

2.1 

2.8 

1.0 
13.4 
3.7 

1.3 

Accuracy 
0.0 ± 0.0 
0.0 ± 0.0 

(-) 
63.3 ± 14.4 

(+) 
98.0 ±2.0 

(+) 
70.0 ± 10.2 
90.0 ± 10.0 

(+) 
70.0 ±12.6 

(+) 
0.0 ±0.0 
13.3 ±5.4 

82.5 ±9.9 
(+) 

71.7 ±5.4 1 
(+) 

25.0 ±8.3 
100.0 ±0.0 
81.7 ±9.7 

90.0 ±10.0 

(+) 

In Table 4 (Nursery data set) GA-Nuggets and Distributed GA-
Nuggets obtained rules with significantly higher accuracy rate 
than the rules obtained by the greedy algorithm in three cases and 
two cases, respectively. There was no case where the GAs 
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obtained rules with significantly lower accuracy rate than the 
rules obtained by the greedy algorithm. 

o 
O 

a 

•2 
o 

Attrib. 
Value 

Conv 

Inconv 

Non-
prob 

Slightly 
Prob 

Problem 

Recomm 
Priority 

Not 
Recomm 

Spec 
Priority 
Very 

Recomm 

Table 4. Accuracy Rate (%) 
Greedy 

algorithm 
Cov 
0.6 

4.1 

3.2 

3.4 

6.0 

0.0 
0.1 
0.0 

4.8 

14.4 

Accuracy 
22.2 ±13.1 

100.0 ± 0.0 

0.0 ± 0.0 

0.0 ± 0.0 

100.0 + 0.0 

0.0 ±0.0 
0.0 ± 0.0 
0.0 ± 0.0 

100.0 ± 0.0 

100.0 ±0.0 

in the Nursery 1 
GA-Nuggets 

Cov 
2.2 

3.4 

3.2 

27.7 

4.4 

0.0 
291.6 
54.5 

4.6 

10.8 

Accuracy 
80.0 ±13.3 

(+) 
100.0 ± 0.0 

1.11±1.1 

6.4 ±4.3 
(+) 

100.0 ±0.0 

0.0 ±0.0 
0.0 ± 0.0 
12.8 ±9.8 

(+) 
100.0 ±0.0 

100.0 ±0.0 

Data Set. 
Distributed 

GA-Nuggets 
Cov 
3.4 

3.9 

2.2 

2.0 

10.2 

0.0 
0.2 
15.8 

10.0 

8.6 

Accuracy 
100.0 ±0.0 

(+) 
100.0 ±0.0 

0.0 ±0.0 

0.0 ±0.0 

100.0 ±0.0 

0.0 ±0.0 
0.0 ±0.0 

41.8 ±14.4 
(+) 

100.0 ±0.0 

100.0 ±0.0 

Overall, considering the results in the four data sets, both GA-Nuggets 
and Distributed GA-Nuggets obtained better results than the greedy 
algorithm, with respect to predictive accuracy. (These results will be 
summarized in subsection 5.2.3.) The three algorithms obtained rules with a 
low coverage, in general. As explained in the Introduction, this can be 
considered part of the price to pay for obtaining rules that are both accurate 
and interesting. From the perspective of an algorithm searching for 
knowledge nuggets, predictive accuracy and interestingness are considered 
more important than coverage. 

5.2.2 Degree of Interestingness 

In this subsection we compare the degree of interestingness of the rules 
discovered by the three algorithms in all the four data sets. The results are 
reported in Tables 5 through 8. Similarly to the previous subsection, in each 
of these tables each row represents the results for a given rule consequent -
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i.e., a combination of a goal attribute and one of its values, as indicated in 
the first two columns. The third column of these tables reports the value of 
the degree of interestingness of the rule consequent (as measured by formula 
(5)). Note that this value is independent of the algorithm, since all algorithms 
discover rules with the same rule consequents. On the other hand, the degree 
of interestingness of the rule antecedent depends on the algorithm, since 
different algorithms discover rules with different rule antecedents. Hence, 
the fourth, fifth and sixth columns of Tables 5 through 8 report the degree of 
interestingness of the rule antecedent (as measured by formula (1)) for the 
greedy algorithm, GA-Nuggets and Distributed GA-Nuggets, respectively. 

Again, similarly to the previous subsection, the greedy algorithm was 
considered as a baseline algorithm, the numbers after the "±" symbol in the 
last three columns are standard deviations, and the table cells where the 
degree of interestingness of the rule antecedents discovered by the GA is 
significantly better (worse) than the greedy algorithm's ones are indicated by 
the symbol "("^)" ("(")")• Let us now analyze the results of Tables 5 to 8. 

• In Table 5 (Zoo data set) the degree of interestingness of the rule 
antecedent discovered by GA-Nuggets was significantly better 
than the greedy algorithm's one in three cases, whereas the 
opposite was true in four cases. The degree of interestingness of 
the rule antecedent discovered by Distributed GA-Nuggets was 
significantly better than the greedy algorithm's one in two cases, 
whereas the opposite was also true in two cases. 

• In Table 6 (Car Evaluation data set) the degree of interestingness 
of the rule antecedent discovered by GA-Nuggets was 
significantly better than the greedy algorithm's one in three 
cases, whereas the opposite was true in two cases. Distributed 
GA-Nuggets had a better performance. The degree of 
interestingness of the rule antecedent discovered by Distributed 
GA-Nuggets was significantly better than the greedy algorithm's 
one in four cases, whereas the opposite was true in just one case. 

• In Table 7 (Auto Imports data set) the degree of interestingness 
of the rule antecedent discovered by GA-Nuggets was 
significantly better than the greedy algorithm's one in just one 
case, whereas the opposite was true in six cases. Distributed GA-
Nuggets had a considerably better performance. The degree of 
interestingness of the rule antecedent discovered by Distributed 
GA-Nuggets was significantly better than the greedy algorithm's 
one in five cases, whereas the opposite was true in three cases. 
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Goal 

Predator 

Domestic 

Type 

Tables. Ri 
Attrib. 
Value 

False 
True 
False 
True 

1 
2 
3 
4 
5 
6 
7 

Cons. 
Inst. 

74.4 
66.8 
35.7 
93.3 
77.1 
89.0 
97.5 
94.3 
97.9 
95.9 
94.9 

lie Interestingness (%) in the Zoo Data Set. 
Antecedent Interestingness 

Greedy 

96.1+0.9 
97.2 ± 0.6 
95.7 ±0.4 
97.9 ± 0.2 
99.1 + 0.0 
94.1+0.1 
93.8 + 0.3 
95.1+0.3 
93.6 + 0.2 
92.9 + 0.3 
93.5 + 0.2 

GA-Nuggets 

97.5 + 0.4 (+) 
94.9 ± 0.5 (-) 
96.3 + 0.5 
96.9 + 0.7 (-) 
94.7 + 0.2 (-) 
93.9 + 0.3 
93.2 + 0.6 
93.4 +0.2 (-) 
94.3 + 0.4 
93.4 + 0.3 (+) 
95.3 +0.1 (+) 

Distrib. 
GA-Nuggets 

95.9+1.0 
96.4 + 0.4 
96.9 +0.6 (+) 
97.9 + 0.4 
94.6 + 0.1 (-) 
93.9 + 0.3 
92.3 +0.2 (-) 
94.7 ± 0.3 
94.0 + 0.3 
92.4 + 0.4 
95.1 +0.2 (+) 

Table 6. Rule Interesting 
Goal 

Buying 

Accept. 

Attrib. 
Value 

V-high 
High 
Med 
Low 

Unacc 
Ace 

Good 
V-good 

Cons. 
Inst. 

86.6 
86.6 
86.6 
86.6 
54.7 
88.3 
97.9 
98.1 

ness (%) in the Car Evaluation Data Set. 
Antecedent Interestingness 

Greedy 

99.3 + 0.0 
99.3 + 0.0 
99.4 + 0.0 
98.8 + 0.0 
93.2 + 0.0 
94.3 + 0.0 
94.3 + 0.0 
94.3 + 0.0 

GA-Nuggets 

99.4 + 0.0 (+) 
99.4 + 0.0 (+) 
99.3 + 0.0 (-) 
98.8 + 0.0 
96.5 ± 0.0 (+) 
93.2 + 0.0 (-) 
94.3 + 0.0 
94.3 + 0.0 

Distrib. 
GA-Nuggets 

99.4 + 0.0 (+) 
99.4 + 0.0 (+) 
99.4 + 0.0 
99.0 + 0.0 (+) 
96.4 + 0.0 (+) 
93.3 ± 0.0 (-) 
94.3 + 0.0 
94.3 + 0.0 

• In Table 8 (Nursery data set) the degree of interestingness of the 
rule antecedent discovered by GA-Nuggets was significantly 
better than the greedy algorithm's one in three cases, whereas the 
opposite was true in two cases. Again, Distributed GA-Nuggets 
had a considerably better performance. The degree of 
interestingness of the rule antecedent discovered by Distributed 
GA-Nuggets was significantly better than the greedy algorithm's 
one in six cases, whereas the opposite was not true in any case. 
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Table 7. Rule Interestingness (%) in the Auto Imports Data Set. 
Goal 

Simb. 

Body 

Price 

Attrib. 
Value 

-3 
-2 
-1 
0 
1 
2 
3 

Hardtop 
Wagon 
Sedan 
Hatch 

Convert. 
Low 

Average 
High 

Cons. 
Inst. 

100.0 
99.2 
94.1 
82.1 
85.8 
91.6 
93.8 
97.9 
93.6 
72.3 
82.1 
98.4 
64.8 
80.8 
96.3 

Antecedent Interestingness 
Greedy 

100.0 ±0.0 
97.7 ±0.1 
97.5 ±0.1 
97.8 ±0.1 
98.0 ±0.0 
98.8 ±0.1 
98.9 ± 0.2 
97.8 ±0.8 
97.9 ±0.1 
98.1 ±0.1 
98.0 ±0.3 
98.5 ±0.2 
94.6 ± 0.2 
93.9 ±0.3 
95.0 ±0.5 

GA-
Nuggets 

99.3 ± 0.1 (-) 
98.3 ± 0.1 (+) 
97.7 ±0.1 
97.7 ± 0.2 
97.8 ± 0.2 
97.4 ± 0.2 (-) 
98.1 ± 0.1 (-) 
97.5 ±0.3 
97.6 ± 0.2 
96.5 ± 0.5 (-) 
97.1 ± 0.3 (-) 
98.1 ±0.2 
94.2 ± 0.5 
92.9 ± 0.9 
90.8 ± 0.4 (-) 

Distrib. 
GA-Nuggets 

100.0 ±0.0 
99.0 ± 0.3 (+) 
97.8 ± 0.1 (+) 
97.5 ± 0.1 (-) 
97.9 ±0.1 
98.1 ± 0.1 (-) 
98.7 ±0.1 
98.3 ± 0.4 
98.1 ±0.3 
97.8 ±0.5 
97.5 ± 0.1 (-) 
98.6 ±0.1 
96.8 ± 0.1 (+) 
95.1 ± 0.3 (+) 
96.1 ± 0.2 (+) | 

o 
O 

o 

s 

'o o 
00 

ID 

X 

Table 8. Rule Interestingness (%) in the Nursery Data Set. 
Attrib. Value 

Conv. 

Inconv. 

Non-prob 
Slightly prob 

Problem. 
Recomm. 
Priority 

Not recomm. 
Spec priority 

Very recomm. 

Cons. 
Inst. 

71.1 

70.3 

81.7 
81.6 
81.6 
81.7 
99.9 
98.7 
81.9 
82.9 

Antecedent Interestingness (%) 
Greedy 

99.9 ± 0.0 

99.8 ± 0.0 

99.8 ± 0.0 
99.8 ± 0.0 
99.7 ± 0.0 
94.9 ± 0.0 
95.8 ±0.0 
94.6 ±0.0 
93.7 ± 0.0 
92.6 ±0.0 

GA-Nuggets 

99.8 ± 0.0 (-) 

99.8 ± 0.0 

99.7 ± 0.0 (-) 
99.8 ± 0.0 
99.7 ±0.0 
94.9 ± 0.0 
99.7 ± 0.0 (+) 
96.3 ± 0.7 (+) 
93.5 ± 0.3 
94.1 ± 0.3 (+) 

Distrib. 
GA-Nuggets 
99.9 ± 0.0 

99.9 ± 0.0 (+) 

99.9 ± 0.0 (+) 1 
99.9 ± 0.0 (+) 
99.8 ± 0.0 (+) 
94.9 ± 0.0 
99.9 ± 0.0 (+) 
94.6 ±0.4 
93.4 ±0.3 
94.3 ± 0.3 (+) 

Overall, considering the results in the four data sets, the greedy algorithm 
obtained better results than GA-Nuggets. More precisely, in three data sets 
(Zoo, Car Evaluation and Nursery) the two algorithms had a similar level of 
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performance, but the greedy algorithm obtained considerably better results 
than GA-Nuggets in the Auto Imports data set. On the other hand, overall 
Distributed GA-Nuggets obtained better results than the greedy algorithm. In 
particular, the performance of the former was considerably better than the 
latter particularly in the Nursery data set. 

5.2.3 Summary of the Results 

Table 9 contains a summary of the results presented in subsections 5.2.1 
and 5.2.2. Again, the greedy algorithm was considered as a baseline 
algorithm. Hence, Table 9 summarizes how many times the results of each 
GA was significantly better or worse than the result of the greedy algorithm, 
with respect to both accuracy rate (in the test set) and degree of 
interestingness of the antecedents of the discovered rules. 

More precisely, the results for each of the two GAs are reported in two 
columns, titled "Accuracy" and "Interestingness". For each of the two GAs, 
each cell of the Accuracy column reports three numbers following the 
format of the formula X - Y = Z, where X (Y) is the number of cases where 
the accuracy rate of the GA was significantly better (worse) than the 
accuracy rate of the greedy algorithm, for the corresponding data set 
indicated by the first column. Hence, the values of X and Y are the number 
of occurrences of the symbols "+" and "-" in the corresponding Tables 1 
through 4. The value of Z can be thought of as the "overall score" of the GA. 
The larger the value of this score, the better the results of the GA by 
comparison with the results of the greedy algorithm, with respect to 
predictive accuracy. The values of the cells of the Interestingness columns 
have an analogous meaning, summarizing the number of times that the result 
of each GA was significantly better than the results of the greedy algorithm, 
i.e., the number of occurrences of the symbols "+" and "-" in the 
corresponding Tables 5 through 8. The last row of Table 9 contains the total 
score of each GA over the four data sets, for each performance criterion. 

Note that reporting the average value of the predictive accuracy or degree 
of interestingness over the four data sets would not be very meaningful, 
since each data set represents a completely different problem for a data 
mining algorithm. By contrast, the total score reported in the last row of 
Table 9, based on the number of significantly better (worse) results obtained 
by each GA, is more meaningful. 

As shown in Table 9, both GA-Nuggets and Distributed GA-Nuggets 
obtained large positive values in their total scores of Accuracy (13 and 15, 
respectively), indicating that overall the two GAs considerably outperformed 
the greedy algorithm in these four data sets, with respect to predictive 
accuracy. 



Chapter 12: Discovering Knowledge Nuggets with a Genetic Algorithm 427 

Table 9. Summary of the Results. 
Data set 

Zoo 
Car 

Evaluation 
Auto 

Imports 
Nursery 
Totals 

GA-
Accuracy 
4 - 1 = 3 
2 - 0 = 2 

7 - 2 = 5 

3 - 0 = 3 
16-3 = 13 

Nuggets 
Interestingness 

3 - 4 = -l 
3 - 2 = 1 

1 - 6 = -5 

3 - 2 = 1 
10-14 = -4 

Distributed GA-Nuggets 
Accuracy 
4 - 0 = 4 
3 - 0 = 3 

7 - 1 = 6 

2 - 0 = 2 
16-1 = 15 

Interestingness 
2 - 2 = 0 
4 - 1 = 3 

5 - 3 = 2 

6 - 0 = 6 
17 -6=11 

With respect to the degree of interestingness of the discovered rules, GA-
Nuggets obtained a negative total score of -4, indicating that the greedy 
algorithm outperformed GA-Nuggets with respect to interestingness. The 
explanation for this relatively bad result of GA-Nuggets is as follows. First 
of all, note that this result was mainly determined by a single data set, 
namely the Auto Imports data set. Note also that in this data set the greedy 
algorithm obtained in general a low predictive accuracy, i.e., it sacrificed too 
much predictive accuracy in order to increase the degree of interestingness. 
Indeed, GA-Nuggets clearly outperformed the greedy algorithm in the Auto 
Imports data set with respect to accuracy, as can be seen in Table 9. In the 
other three data sets GA-Nuggets and the greedy algorithm have a similar 
performance with respect to rule interestingness. Distributed GA-Nuggets 
obtained a large positive score of 11, indicating that it significantly 
outperformed the greedy algorithm with respect to the degree of 
interestingness of the discovered rules. 

Finally, a comment about computational time is appropriate here. Both 
versions of GA-Nuggets are about two orders or magnitude slower than the 
greedy algorithm. This is a well-known disadvantage of GAs. However, 
there are two mitigating factors. First, predictive data mining is typically an 
off-line task, and it is well-known that in general the time spent with running 
a data mining algorithm is a small fraction (less than 20%) of the total time 
spent with the entire knowledge discovery process [Michalski & Kaufman, 
1998]. Data preparation is usually the most time consuming phase of this 
process. Hence, in many applications, even if a data mining algorithm is run 
for several hours or several days, this can be considered an acceptable 
processing time, at least in the sense that it is not the bottleneck of the 
knowledge discovery process. In addition, if necessary the time taken by one 
run of GA-Nuggets can be considerably reduced by using parallel processing 
techniques, since in general GAs can be easily parallelized in an effective 
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way [Freitas & Lavington, 1998]. Hence, the increase in computational time 
associated with GAs is a small price to pay for the overall increase in both 
predictive and interestingness, as obtained particularly by the distributed 
version of GA-Nuggets. 

6. CONCLUSIONS 

We have presented three algorithms for discovering "knowledge 
nuggets" - rules that have both a good predictive accuracy and a good 
degree of interestingness. The algorithms were developed for discovering 
prediction rules in the dependence modeling task of data mining. This task 
can be regarded as a generalization of the very well-known classification 
task. In classification there is a single goal attribute to be predicted, whereas 
in dependence modeling there are several goal attributes to be predicted. 

We believe that the three main characteristics of the research described in 
this Chapter are: (a) to address the dependence modeling task, which, despite 
its importance, has been little explored in the literature on prediction-rule 
discovery; (b) the focus on the discovery of "knowledge nuggets", which can 
also be considered a relatively little explored area in the literature on 
prediction-rule discovery, particularly in the context of the dependence 
modeling task; and (c) performing controlled-experiments comparing two 
paradigms of algorithms for prediction-rule discovery, namely genetic 
algorithms and greedy rule induction algorithms, as explained in the 
following. 

Two of the three algorithms presented in this Chapter are actually two 
different versions of a genetic algorithm (GA). One of these versions uses a 
single population of individuals (candidate rules), whereas the other version 
uses a distributed population of individuals. With the exception of this major 
difference, the other characteristics of the GA were kept the same, as much 
as possible, in the two versions, in order to allow us to compare the two 
versions in a manner as fair as possible. 

The third algorithm is a greedy rule induction algorithm. It was designed 
to discover rules expressed in the same knowledge representation used by 
the GA and to evaluate candidate rules by using the same rule-quality 
measure used by the GA. This has allowed us to compare the performance of 
the two versions of the GA with the performance of the greedy rule 
induction algorithm in a fair way as well. 

This comparison was performed across four public-domain, real-world 
data sets. The computational experiments measured both the predictive 
accuracy (accuracy rate in the test set) and the degree of interestingness of 
the rules discovered by the three algorithms. 
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As discussed in subsection 5.2.3, overall the computational results 
indicate that both versions of the GA considerably outperformed the greedy 
rule induction algorithm in those four data sets, with respect to predictive 
accuracy. With respect to the degree of interestingness of the discovered 
rules, the single-population version of the GA obtained results somewhat 
worse than the results of the greedy algorithm, whereas the distributed-
population version of the GA obtained results considerably better than the 
greedy algorithm. 

One direction for future research consists of developing a new version of 
the distributed-population GA where each subpopulation is associated with a 
goal attribute value, rather than with a goal attribute as in the current 
distributed version. It is interesting to compare the performance of this future 
version with the performance of the current distributed version, in order to 
empirically determine the cost-effectiveness of these approaches, 
considering their pros and cons discussed in subsection 3.2.2. It would also 
be useful to extend the computational experiments reported in this Chapter 
to other data sets, to further validate the reported results. 
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1. INTRODUCTION 

The information age thrives and evolves on knowledge. Knowledge is 
derived from information gleaned from a wide variety of reservoirs of data 
(databases). Not only does the data itself directly contribute to information 
and knowledge, but also the trends, patterns and regularities existing in the 
data files. Consequently, the ability to automatically discover knowledge 
from databases, that is, extract useful information from the data and the 
associated properties of the data, is both an attractive and challenging task. 

Rule discovery is one of the most important data mining tasks. In this 
chapter we focus on a specific subset of rule discovery - rules for 
classification. In a classification task, the goal is to use previously observed 
data to construct a model, which is able to predict the categorical or nominal 
value (the class) of a dependent variable given the values of the independent 
variables. In this context, we want the discovered model to have a high 
predictive accuracy. The process of building this model is undertaken by 
presenting a sample (training set) of instances, formed by the independent 
variables and the corresponding dependent variable, to the classification 
algorithm. Typically, an algorithm searches for a model which can 
accurately map the values of the independent variables to their 
corresponding value of the dependent variables. When the algorithm finds a 
suitable model, the training phase terminates and the model is tested using 
some unseen data (test set) to examine its performance (generalization) 
beyond the training set. 

A classification model can take different representations. We may 
distinguish between two broad categories of classification models: inner and 
outer models. In inner models, each class is clustered into groups, where 
each group is defined by some prototype such as its mean or median. When 
a new instance is presented to the classifier, the distance between the 
instance and each prototype is measured. The instance is then given the class 
of the closest prototype to it. In outer classification, the objective is to 
approximate the boundaries of each class. This approximation can be 
undertaken using a neural network, a linear programming model, a decision 
graph, a classification tree, or a set of classification rules. 

A number of studies have been undertaken in the literature for modeling 
classification as an optimization problem (Bradley, Fayyad, & Mangasarian, 
1999) including discriminant analysis for classification, which uses an 
unconstrained optimization technique for error minimization (Ragsdale, 
2001). Neural networks and nonlinear optimization methods may be more 
accurate than other models; however they are often difficult to understand. 
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Often there is a trade-off between the accuracy and the comprehensibility of 
a set of classification rules. Nevertheless, in many real life problems, 
classification rules are the preferred choice for a decision-maker keen to 
understand the model. 

Traditionally, rule discovery has been based on deterministic approaches 
such as decision tree learning. Evolutionary classifier systems (Holland, 
1998) belong to an alternative class of techniques, which have proven to be 
competitive with other machine learning techniques (Abbass, Sarker, & 
Newton, 2002). Evolutionary classifier systems are idealized computational 
versions of neo-Darwinian evolution; they gain reinforcement from the 
environment based on an evolving set of condition-action rules. A 
population of individuals (or solutions), each of which represents a specific 
set of parameters, is placed under a selective regime that favours the survival 
and reproduction of the "best" individuals. A simulated natural selection 
process builds on past innovations, adopting those genetic changes that 
provide improved fitness. In this way, an endless process of change replaces 
one solution with another, with each solution somewhat better suited to the 
environment than were its immediate predecessors. The primary motivation 
for applying simulated evolutionary processes to data mining tasks is their 
robustness and adaptability as search methods, performing a global search in 
the space of candidate solutions (that is, rule sets or some other form of 
knowledge representation). 

Evolutionary classifier systems for rule discovery can be divided into two 
broad approaches, based on how rules are encoded in the population of 
individuals (See section 3 for further discussion): 

• the Michigan approach - each individual encodes a single prediction 
rule, 

• the Pittsburgh approach - each individual encodes a set of prediction 
rules. 

There are a number of identifiable shortcomings in each of the models, 
such as limitations of the attribute encoding chosen, or high sensitivity to 
parameter values (Holland et al., 2000). The so called "credit-assignment 
problem", that is, determining the way in which a classifier is rewarded for 
its performance is common to both models (Riolo, 1987; Smith, 1994). In 
classification tasks, we usually evaluate the quality of the rule set as a whole, 
rather than the quality of a single rule. Therefore, the Pittsburgh model 
seems a more natural choice for rule induction, and as such will be the 
model investigated in this chapter. 

When using evolutionary classifier systems, the objective is to evolve 
individuals (rules or rule sets) with high predictive accuracy. Ideally, the 
population should maintain diversity to sample the search space effectively. 
In addition, a related objective is to maximize the coverage of the data, that 
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is, the percentages of data classified by each rule. Unfortunately, 
evolutionary classifier systems suffer from the same fate as evolutionary 
algorithms in the optimization domain - the problem of premature 
convergence and loss of genetic diversity. To date, however, diversity has 
been investigated more widely in the evolutionary optimization domain, and 
very few studies have investigated diversity in evolutionary data mining. 
Recently, in related fields such as machine learning, there has been 
increasing emphasis on diversity mechanisms, to ensure that the individual 
solutions are well separated and do not simply replicate each other (Burke, 
Gustafson, & Kendall, 2002). 

In evolutionary systems techniques for maintaining and/or promoting 
diversity fall naturally into two classes: mechanisms which subdivide the 
population into separately evolving populations with limited interactions 
(non-correlation mechanisms); and mechanisms which in some way alter the 
local fitness landscape to encourage a wider spread of individuals over the 
landscape (anti-correlation mechanisms). In this chapter, we investigate the 
efficacy of alternative diversity mechanisms in Pitt-style (Pittsburgh 
approach) evolutionary classifiers. Our underlying hypothesis is that non-
correlation and anti-correlation mechanisms will improve the quality of 
solutions found in Pitt-style classifier systems. 

The remainder of this chapter is organized as follows: In Section 2 a brief 
introduction to genetic algorithms is presented. In Section 3 the Michigan 
and Pitt models are described in more detail. Background material relating to 
diversity mechanisms in evolutionary computation follows in Section 4. In 
Section 5 we expand our discussion of diversity mechanism to incorporate 
classifiers systems. Section 6 describes our evolutionary classifiers, the 
experimental set up and the results obtained. Section 7 discusses the results 
and examines the relationship and interaction between diversity and solution 
quality. This chapter concludes with the implications of the findings and 
future research directions. 

2. BACKGROUND - GENETIC ALGORITHMS 

Evolutionary computation and algorithms (Goldberg, 1989; Holland, 
1998; Mitchell, 1996) embrace a range of approaches, inspired by natural 
selection, to optimize the parameters of a system in order to satisfy certain 
performance criteria. They have been applied successfully to many problems 
in diverse fields including social systems, optimisation, planning and 
scheduling, pattern recognition, data mining, and design (Abbass et al., 
2002; Gen & Chang, 2000; Mitchell, 1996). 

Genetic Algorithms (GAs) (Goldberg, 1989; Holland, 1998; Mitchell, 
1996) are perhaps the best known evolutionary algorithms for finding good 
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solutions to many search and optimisation problems. GAs can be considered 
a "generate-and-test" metaheuristic, based on the foundations of natural 
selection and genetic recombination. The major advantage GAs have over 
other stochastic, iterative methods is that they work with a population of 
individuals (potential solutions to the problem) rather than adapting a single 
solution. The basic outline of a simple GA is described in Figure 1. 

begin 

t = 0 
initialize P(t) 
evaluate P(t) 
while( not termination condition ) do 

t = t + 1 
select P(t) from P(t-l) 
alter P(t) 
evaluate P(t) 

end do 

end 

Figure 1. Outline of a Simple Genetic Algorithm. Here P(t) denotes the 
population of solutions at time t. Other terms have their intuitive 
meaning. 

In GAs specifying the fitness function and encoding scheme are essential 
aspects of problem definition. For a given problem, there will be many 
different ways to construct the search space, and some of the resultant search 
spaces will be easier to search than others (Mitchell, 1996). Traditionally, 
GAs have used binary encoding for all kinds of problems. In binary 
encoding, each chromosome is a vector of zeroes and ones, with each bit 
representing a gene. Alternative binary encoding schemes, such as Gray 
encoding, (which preserves the adjacency relation of the genes with respect 
to the Hamming distance^ - a measure of similarity between binary strings), 
have also been used with success. 

Almost any space can form the genotype space, as long as it supports 
appropriate crossover and mutation operators (see next section). It is well 

^ The Hamming distance between two binary vectors is the number of corresponding 
elements in the two vectors with different values. 



438 Data Mining & Knowledge Discovery Based on Rule Induction 

known that the choice of proper representation is crucial for the success of 
evolutionary algorithms. Recently there has been a trend toward using a 
higher-level of representation, more related to the problem domain. 
However, there is still no consensus about the properties of high-quality 
representations, and exactly how representations affect the performance of 
evolutionary algorithms. 

There is abundant literature on a wide range of variants of crossover and 
mutation, and their relative importance. In the classical GA view, crossover 
is the fundamental operator and mutation only plays an ancillary role. The 
encoding of individuals dictates the format of the genetic operators that are 
used. For binary representations, n point crossover is typically used. The 
operator is performed with a probability pcross • If the operator is not 
performed, one of the parents is returned as the offspring. Another common 
implementation is uniform crossover. Here, the bits of the parents are 
swapped with a given probability pcwss, position by position. In GAs, a 
mutation usually refers to a change in a gene's value - for instance, in binary 
encoding a gene with value 1 may be mutated to value 0. Typically, this 
bitwise inversion mutation is implemented with probability pmut (often the 
reciprocal of the string length). 

It is clear that different operators play different roles at different stages of 
the evolutionary process. Within the evolutionary computation community 
there is often debate about how often each operator should be used, what 
mutation rate should be used, and which crossover style should be chosen. 
Although there are standard rates and implementations, for many problems 
empirical trials are required to determine the most effective combination. 

For both natural and artificial systems, the fitness value of an individual 
(solution) measures how well the individual has adapted to the current 
environmental conditions. Individuals that do well (i.e. have higher fitness 
values) have a greater probability of passing their genetic information on to 
the next generation. The fitness value can be calculated by any method that 
gives a good estimate of the quality of the solution. Typically, the fitness 
value allocated to a solution is the value of the objective function 
(phenotype) based on the decoded genotype. 

The identification of the GA population itself is not as simple as it first 
seems. At the simplest level, there is the question of how one population is 
created from another. GAs have a selection mechanism to identify the fittest 
individuals of the current population to serve as parents of the next 
generation. The selection mechanism can take many forms, but it always 
ensures that the best individuals have a higher probability to reproduce and 
breed to form the new generation. Mechanisms can be deterministic or 
stochastic; threshold, linear or non-linear functions; and based on rank, 
actual fitness values, or more complicated features (Goldberg, 1989). 
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There are a range of different algorithms for population update. The most 
common scheme in GAs is the generational approach, where the new 
population is created from the old one. This scheme is often referred to as 
the |Li = A- update scheme, where |LI is the current population and X is the 
children composing the new population generated via the selection-
recombination process). At the other extreme, a steady state GA typically 
replaces only a small number of the most poorly performing individuals (i.e., 
A.= 1 or 2) in the current population. Other GAs employ variants of the 
generational approach where A. < |LI. Alternatively, offspring and parents can 
be combined into the one pool (|LI + X) and the fittest |LI individuals are 
selected to form the next generation. 

Given the stochastic nature of GAs, it is possible that individuals with 
very high fitness values disappear from the population forever. To combat 
this problem, elitist models may be used. An elitist model maintains the best 
individuals from one generation to the next. Elitism is not itself a selection 
mechanism, but rather it is an optional feature of many selection methods. 
Elitism is simply the guarantee that the fittest individuals found to date will 
remain within the evolving population. 

3. EVOLUTIONARY CLASSIFIER SYSTEMS 

3.1 The Michigan Style Classifier System 

Perhaps the best-known evolutionary data mining techniques are 
Learning Classifier Systems (Holland et al., 2000; Lanzi & Riolo, 2000). In 
these, a GA creates a production system that searches for many classifiers at 
the same time, rather than maintaining a single 'best' classification structure. 
Each individual in the evolving population is represented by a fixed-length 
string, and corresponds to a partial concept description (or single rule). The 
target concept is represented by a whole set of individuals in the population. 
It is only through cooperation with the other rules in the population that the 
problem is solved. Here, the objective is to discover a set of rules, rather 
than a single rule. 

This model is a hierarchical adaptive system in which schemata (building 
blocks) are combined (by the recombination operator) to make classifiers, 
and the classifiers are combined (by a choice mechanism) to make firing 
sequences. Adaptation in the lower levels of the hierarchy is achieved by a 
GA. Adaptation in the higher levels is achieved by a local reward scheme 
based on an explicit credit assignment method, traditionally a bucket brigade 
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(Riolo, 1987), though Q-learning and other methods are possible. A variant 
called XCS (Wilson, 1995) differs from the traditional Michigan style 
classifiers systems in two main respects: 
• the definition of fitness, which is based on the accuracy of the payoff 

prediction rather than on the prediction itself; 

• the application of the GA to the environmental niches defined by the 
action sets. 

3.2 The Pittsburgh Style Classifier System 

In the Pitt-style classifier system (DeJong, 1988; Smith, 1980) the issue 
of credit assignment is side-stepped to some extent, by explicitly requiring 
the evaluation of entire rule sets. In this model, each individual is 
represented by a variable-length string, and corresponds to a whole target 
concept. Here, the GA acts on a population of concatenated rules. This 
approach leads to syntactically-longer individuals, which tends to make 
fitness evaluation computationally expensive. However, it directly takes into 
account rule interaction when computing the fitness function of an 
individual. The recombination process has the effect of allowing migration 
of classifiers between concatenated rule sets. 

There is an on-going debate in the evolutionary computation community 
about the relative merits of the evolutionary classifier models. In this 
chapter, we are primarily interested in investigating the relative merits of 
alternative diversity mechanisms in evolutionary classifier systems. Many of 
the techniques examined are more amenable to the Pitt-style system. 
Consequently, the Michigan model will not be discussed further. 

4. DIVERSITY MECHANISMS IN EVOLUTIONARY 
ALGORITHMS 

In evolutionary algorithms, genetic diversification is akin to an 
experimental approach - testing a range of alternatives along the way. An 
individual's ability to thrive depends on its own genetic composition as well 
as the genetic composition of the other individuals present. The purpose of 
the selection mechanism is to reward individuals that perform well; that is, 
individuals with higher fitness. The right selection pressure is critical in: 

• ensuring sufficient progress towards the target; 
• preserving genetic diversity such that the algorithm is able to escape 

from local optima. 
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Selection pressures directly affect the level of heterogeneity in the 
evolving population. Unfortunately, a common problem associated with 
evolutionary algorithms is that the evolving population may converge 
prematurely to a "suboptimal solution" if selection pressure is too intense. 
Consequently, one of the major challenges when applying evolutionary 
algorithms is the preservation of genetic diversity. 

A wide range of mechanisms to preserve diversity, and delay 
convergence, has been proposed in the literature. The approaches fall into 
two main classes: 

• mechanisms based on fitness evaluation; 
• mechanisms that constrain reproduction. 
One important difference between them lies in the degree of diversity 

promotion. The fitness evaluation mechanisms typically reward diversity; 
that is, they promote anti-correlation in the object population. Mechanisms 
which constrain reproduction, on the other hand simply permit diversity by 
limiting the effect of the fitness pressure towards uniformity; that is, they 
promote non-correlation in the object population. 

In the following sections, we will review the more common techniques in 
detail. This discussion will provide a suitable framework for developing 
diversity mechanisms appropriate for Pitt-style classifiers in the later 
sections of this chapter. 

4.1 Niching 

Niching in evolutionary algorithms is inspired by the natural phenomena 
of speciation and specialisation in natural ecosystems. Niching modifies the 
way fitness is distributed, so that solutions are rewarded both for being fit 
relative to the problem solved, and also for being distinct from other 
solutions. Consider multi-modal optimisation problems. Here, the aim is to 
find all of the optima, or to find all optima that are above some threshold 
value, or to find a certain number of local optima. For such problems, it is 
necessary to prevent the best individuals in the population from replacing all 
copies of competing rivals. Niching techniques can be used to help meet this 
goal. Niching induces restorative pressure (Horn, 1997), to balance the 
convergence pressure of selection. 

4.2 Fitness Sharing 

Fitness sharing, and variants thereof, modifies the search landscape by 
reducing the payoff in densely populated regions. Here, the fitness value of 
an individual is scaled by some measure of similarity among individuals. 
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Explicit fitness sharing uses the distance metric dij between two individuals / 
and 7; the distance is used to calculate how much reward has to be shared 
between / and 7, with nearer individuals sharing more (and hence suffering 
greater reduction in their fitness). Usually, the similarity measure is based on 
either: 

• genotypic properties - generally the Hamming distance for binary 
strings or 

• phenotypic properties - usually linked to real parameters of the search 
space. 

Deb and Goldberg (Deb & Goldberg, 1989) suggest that sharing based on 
phenotypic properties may give slightly better results than sharing with 
genotypic similarity. Typically, the shared fitness f^ of an individual / with 
fitness f^ is defined as: 

where m- is the niche count which measures the approximate number of 
individuals with whom fitness / is shared. It is usually calculated by 
summing up a sharing function over all members of the population: 

where N is the population size and dij the distance between individuals / and 
j . The sharing function sh returns one if the elements are identical, zero if 
their distance exceeds the threshold of dissimilarity, and an intermediate 
value otherwise. 

Fitness sharing is highly effective in many cases, but nevertheless suffers 
from a number of difficulties: 

• Defining the sharing function sh requires a priori knowledge; 

• The scheme is computationally expensive; 

• Reducing the fitness at fitness peaks may make it difficult for fitness 
sharing to find an exact optimum, as a deceptive fitness landscape is 
introduced. 

The last problem is usually handled by the use of fitness scaling (Darwen 
& Yao, 1995), using a formula such as: 
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/ = 
m. 

where (3 determines the level of dominance - or the amount of genetic drift 
within the population. However choosing P appropriately is not simple: 
high values are likely to cause premature convergence, while low values 
leave the problem of deceptive fitness landscapes. 

Implicit Fitness Sharing 

Smith, Forrest, and Perlson (1992) introduced implicit fitness sharing to 
address problems associated with explicitly stating the value of the sharing 
function. The underlying assumption, that fitness is calculated as a sum of 
rewards for particular instances, is particularly suitable for learning problems 
such as those considered here: 

/mv.(0= Y.^eward{i{c)). 
cecases 

In implicit fitness sharing, the reward is divided amongst all population 
individuals giving the same prediction for a given instance: 

. / . \ _ V reward (/(c)) 
^ r^war(i 0'(^)) cecases 

i':i'{c)=i(c) 

When rewards are computed with this approach, there is no need to 
calculate the distance between the individuals. 

4.3 Crowding 

Another very common diversity mechanism is crowding (DeJong, 1975). 
In crowding, a large number of recombination pairs are generated at random 
from the population, without regard to fitness. These pairs are then subjected 
to a form of selection where each of the children competes against one of its 
parents in order to enter the new population. An alternative is to choose 
certain individuals as dominant individuals and, each generation, clear out 
all solutions that do not fall within a certain (phenotypic) radius of the 
individual according to some domain-specific metric. Mahfoud's (Mahfoud, 
1995) deterministic crowding - where offspring replace their most similar 
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parent if they have a better fitness value - has performed better than the 
original crowding scheme on a variety of problems. Unfortunately, a 
problem with this technique is that the "similarity" measure is typically 
problem dependent and computationally expensive, because each individual 
has to be compared with all other individuals in the population. 

4.4 Isolated Populations 

The benefit of isolating subpopulations has long been known (Cohoon, 
Hegde, Martin, & Richards, 1987; Manderick & Spiessens, 1989; Tanese, 
1989). Once subpopulations are isolated, they may genetically diverge due 
either to random drift, or to differences in the selective pressures of their 
separate environments. This approach encapsulates the genetic dynamics of 
populations evolving in space, offering ways to improve the performance of 
evolutionary algorithms through niching. 

The stochastic nature of the algorithms potentially permits different 
solutions being identified. However, there is no guarantee that different 
subpopulations will converge on different optima. If migration is allowed, 
the influx of good solutions may lead to all subpopulations converging to the 
same solution. 

The Fine-grained Model 
In fine-grained parallel GAs (or cellular GAs), individuals are usually 

placed on a large toroidal two-dimensional grid, one individual per grid 
location (Manderick & Spiessens, 1989; Mlihlenbein, Gorges-Schleuter, & 
Kramer, 1988; Whitley, 1994). Fitness evaluation is done simultaneously for 
all individuals. Selection and reproduction take place within a local 
neighbourhood (deme). The spatial structure of the population provides a 
mechanism for restricting mating to a local neighbourhood. A mate from the 
local neighbourhood is typically chosen either by proportional or linear 
ranking selection. One of the offsprings is randomly chosen to replace the 
parent in the current grid location. 

In (Kirley, 2002), a novel fine-grained parallel genetic algorithm with 
flexible population sizes was introduced. Here, the introduction of a 
"disturbance-colonization" cycle provided a mechanism for maintaining 
flexible subpopulation sizes and self-adaptive controls on migration, and 
consequently population diversity. Unfortunately, the synchronisation 
constraints embedded in fine-grained models limits their application in 
parallel systems. Serial implementations are possible, but they are 
computationally expensive. 
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The Course-grained Model 
Coarse-grained parallel GAs (also known as distributed or "island" 

models) rely on spatial separation of the evolving populations (Belding, 
1995; Cantii-Paz, 2000; Cohoon et al., 1987; Tanese, 1989). This approach 
divides the entire evolutionary system into separate subpopulations, which 
evolve separately on different processors, with small numbers of individuals 
being migrated asynchronously between populations. The segregation into 
separate populations can permit the survival of genetic structures which 
would be removed by selective pressure from a single large population, 
helping to avoid premature convergence. 

The subpopulations can be arranged in various topologies - chain 
(circle), grid (toroidal) or hypercube. Perhaps the most common topology is 
where migration takes place between nearest neighbour subpopulations - the 
stepping stone model (See also Figure 2). In the majority of cases, migration 
is synchronous, occurring at predetermined constant intervals. However, 
migration can also be asynchronous, with communication between demes 
taking place only after some events have occurred. The parameters of 
course-grained models (topology, population size, migration rate, migration 
policy) have received close attention (Cantu-Paz, 2001), and the benefits and 
limitations are well known in the optimisation domain. 

The loose synchronisation between subpopulations in coarse-grained 
models particularly suits them for distributed memory parallel architectures 
(MIMD), and for workstation clusters with limited communication 
bandwidth. Compared with fine-grained approaches, coarse-grained 
parallelism imposes low communication requirements. 
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Individuals in 
subpopulations _ 

Figure 2. The Island Model. Each subpopulation evolves independently. 
Selected individuals are migrated from one subpopulation to 
another subpopulation in the neighborhood of the first. 

5. CLASSIFIER DIVERSITY 

The previous section discussed a range of techniques commonly used to 
foster diversity in evolutionary computation. Typically, some measure of 
diversity is used to quantify the variety in the population, or to measure the 
differences between individuals, and then to modify the selection pressure. 
Alternatively, a spatially distributed population structure may be used to 
slow the rate of convergence. In the case of evolutionary classifier systems, 
it is not at all obvious which technique (or combination of techniques) is the 
most appropriate. Classifier evolution requires the generation of "rule sets" 
that can accurately predict target attributes, rather than convergence to a 
single global optimum. 

An important related issue is generalization. Over-fitting occurs when 
the induced model reflects idiosyncrasies of the particular data set, which do 
not generalize reliably for predictions involving new data. Ensembles of 
classifiers, with mechanisms to combine their decisions, form an important 
approach to reducing over-fitting. Theoretical and experimental results have 
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clearly shown that classifier combinations are effective only when the 
individual classifiers are "accurate" and "diverse", that is, if they exhibit low 
error rates and make different errors (Hansen & Salamon, 1990; Kuncheva, 
Whitaker, Shipp, & Duin, 2000; Sharkey, 1999; Tumer & Ghosh, 1999). 
Several mechanisms to differentiate members of an ensemble have been 
proposed. The most common approach is to train members on different 
subsets of the training data. This can be done systematically by 
bootstrapping (sampling with replacement) different training sets from the 
training data. Such an approach has been applied with great success in 
learning systems such as artificial neural networks (NNs) (Hansen & 
Salamon, 1990) or decision trees (Breiman, 1996; Quinlan, 1993). 

Negative correlation learning provides an alternative approach, which has 
proven to be a competitive training method for artificial neural networks and 
genetic programming (McKay & Abbass, 2001). The idea of negative 
correlation learning is to encourage different individual networks to learn 
different parts or aspects of the training data, so that the ensemble can better 
learn the entire training data. Here, the individual networks are trained 
simultaneously, rather than independently or sequentially. This provides an 
opportunity for the individual networks to interact with each other and to 
specialize. This technique incorporates a measure of diversity into the error 
function of networks, so that each network increases not only its accuracy, 
but also its diversity from other network errors. It is widely recognized that 
negative correlation should be considered when designing ensembles of NN 
classifiers, and many such designs have been proposed - predominantly 
altering the individual training set to build the classifiers. 

When we talk of diversity in machine learning and evolutionary 
computation we are really talking about heterogeneity between the elements 
which make up the system. In rule discovery, diversity is obviously an 
important issue. However, as alluded to in the introduction, rule 
comprehensibility is also an important factor. In genetic programming, the 
issue of code "bloat" - that is, the rate of growth of the tree structures - has 
received considerable attention (Burke et al., 2002). The growth in the size 
of the rule set in Pitt-style classifier systems has also received attention. The 
most common technique used to address this problem has been to introduce 
a parsimony pressure into the fitness function so that the fitness of larger 
individuals is decreased (Basset & Jong, 2000; Mansilla, Mekaoche, & 
Garrell, 1999; Garell, Golobardes, Mansilla, & Llora, 1999). In this 
approach, when the number of rules encapsulated by an individual exceeds a 
certain maximum, its fitness is decreased abruptly. 

The difficulty lies in setting the threshold to an appropriate value. It has 
been observed that shorter rule sets tend to have more generalization 
capabilities (Mansilla, Mekaoche, & Garrell; Nordin & Banzhaf, 1995). 



448 Data Mining & Knowledge Discovery Based on Rule Induction 

Llora and co-workers (Llora & Garrell, 2001) have extended the genetic 
programming work of Bleuler and colleagues (Bleuler, Brack, Thiele, & 
Zitzler, 2001) into the learning system domain. They introduced a multi-
objective technique where two objectives, accuracy and compactness of the 
individual, provided the selection pressures. Here, the first objective 
corresponds with "how good is the solution" and the second objective with 
generalized pressure toward compact solutions. 

6. EXPERIMENTS 

The primary objective of this study was to investigate the performance 
and utility of alternative mechanisms for promoting and maintaining 
diversity in Pitt-style classifier systems. To our knowledge, there has not 
been a study that has systematically analysed implicit fitness sharing and 
course-grained parallel models using a Pitt-style classifier system. 

Theoretical and experimental studies in evolutionary computation 
suggest that anti-correlation mechanisms will exhibit slower convergence, 
and consequently greater resistance to premature convergence to local 
minima, than non-correlation mechanisms (Liu & Yao, 1999). In this study, 
we test this hypothesis and examine what impact the diversity level has on 
the ability of the Pitt-style classifier to evolve accurate rule sets. 

6.1 Architecture of the Model 

The system is based on the Pitt model for classifier systems. In this 
model, each individual in the evolving population represents a candidate 
complete solution to the classification problem. Each individual consists of a 
set of rules, each of which specifies the classification to be recorded when its 
antecedents are satisfied. The Pitt model is relatively simple and 
comprehensible, and hence its behavior is relatively straightforward to 
analyze. The downside is the computational cost, arising from the need to 
train a full classifier system for each fitness evaluation. 

There have been several proposals of genetic operators designed 
specifically for rule discovery (Freitas, 2002). We have tested five different 
enhanced crossover operators - cloning, rule deletion, rule split, rule 
generalization, rule specialization - as well as conventional crossover 
operators. Empirical studies using the data sets below indicate that the 
selectdrop, a uni-sexual crossover which operates on a single parent by 
selecting a condition and dropping it, was the most effective one. 
Consequently, the results reported in section 6.4 have used this operator. 
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Diversity is a difficult concept to measure in the Pitt model. The 
Hamming distance between two rule sets can be very misleading, because 
two rule sets may be the same but with different Hamming distances. For 
example, assume five rules per a rule set. Assume two rule sets xi and X2. 
Now, let us assume that there are three rules with coverage 0 in Xi and X2; 
these three rules are the first of the five in Xi and the last in X2. The other two 
rules in each are the same. The Hamming distance will give a misleading 
value if used to measure the distance between xi and X2. Therefore, our 
diversity measure starts by re-ordering the rules within a rule set before 
applying the Hamming distance measure. This is a computationally very 
expensive process. Diversity is measured as the total of the minimum 
Hamming distances between each chromosome and the rest of the 
population. 

6.2 Data Sets 

We have used five standard data sets taken from the UCI Repository of 
Machine Learning (Merz & Murphy, 1998): the Wisconsin Diagnostic 
Breast Cancer, Diabetes, Hepatitis, Liver, and Tic Tac Toe data sets. 

6.3 Treatments 

Four alternative diversity promotion/maintenance mechanisms were 
compared in this study. 

1. No diversity mechanisms; 
2. fitness sharing; 
3. island model; and 
4. a combined treatment with both fitness sharing and the island 

model. 

In the island model, four separate populations were maintained. In the 
combined treatment, fitness sharing was carried out within each island, 
potentially combining some of the key advantages of the island model 
(intrinsically parallel) and fitness sharing (increased diversity pressure). 

6.4 Model Parameters 

Each treatment was evaluated using 10 fold cross-validation; the data set 
was divided into training and test data sets (90% training, 10% test). Class 
distribution was maintained in each subset. Each subset was run 50 times. A 
100% crossover probability and 10%) mutation probability were adopted. 
The population size was set to 200. When the island model was used, each 
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island contained 50 individuals. The Roulette Wheel Selection method was 
used. 

7. RESULTS 

In Tables 1 to 4, we present the results obtained on the five data sets. 
Diversity preserving mechanisms do not seem to play a significant role in 
improving the performance of the Pitt-style classifier. It is also interesting to 
note that implicit fitness sharing resulted in degradation in performance. A 
closer examination of Tables 1-4, columns labeled "Training Coverage" and 
"Test Coverage", reveals that a significant decrease in coverage occurred 
with fitness sharing. This resulted in a corresponding downgrade in 
accuracy. Note that coverage here is the percentage of the data that at least 
one base classifier can classify correctly. Cases not covered by the rule set 
are classified using the default rule (majority class). Therefore, we may 
encounter zero coverage with a considerable accuracy level because of the 
default class. 

Table 1. Results for the five data sets - percentage and standard deviations for 
accuracy, coverage and diversity from the stratified ten-fold cross-validation runs 
using island model and fitness sharing. 

Breast 
Cancer 

Diabetes 
Hepatitis 

Liver 
Tic Tac Toe 

Training 
Accuracy 

0.74±0.04 

0.65±0 

0.87±0.02 

0.59±0.01 

0.46±0.04 

Training 
Coverage 

0.09±0.04 

0±0 

0.03±0.01 

O.OliO.Ol 

0.16±0.05 

Test 
Accuracy 

0.73±0.07 

0.65±0 

0.86±0.09 

0.58±0.03 

0.48±0.07 

Test 
Coverage 

0.07±0.03 

0±0 

0.01±0.04 

0.01±0.02 

0.15±0.08 

Population 
Diversity 

196.23±5.07 

635.20±17.84 

518.22±27.16 

486.14±16.55 

51.43±1.05 
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Table 2. Results for the five data sets - percentage and standard deviations for 
accuracy, coverage and diversity from the stratified ten-fold cross-validation runs 
using island model without fitness sharing. 

Breast 
Cancer 
Diabetes 

Hepatitis 

Liver 

Tic Tac Toe 

Training 
Accuracy 

0.90±0.01 

0.66±0.02 

0.88±0.02 

0.62±0.02 

0.69±0.12 

Training 
Coverage 

0.37±0.05 

0.04±0.04 

0.05±0.01 

0.13±0.09 

0.74±0.22 

Test 
Accuracy 

0.86±0.04 

0.67±0.01 

0.83±0.05 

0.61±0.06 

0.70±0.09 

Test 
Coverage 

0.37±0.08 

0.03±0.04 

0.06±0.08 

0.17±0.14 

0.73±0.23 

Population 
Diversity 

197.10±4.02 

747.40±111.04 

520.17±64.57 

484.07±22.72 

53.82±6.24 i 

Table 3. Results for the five data sets - percentage and standard deviations for 
accuracy, coverage and diversity from the stratified ten-fold cross-validation runs 
using fitness sharmg without island model. 

Breast 
Cancer 
Diabetes 

Hepatitis 

Liver 

Tic Tac Toe 

Training 
Accuracy 

0.74±0.03 

0.67±0.01 

0.88±0.02 

0.59±0 

0.51±0.08 

Training 
Coverage 

0.10±0.02 

0.03±0.02 

0.04±0.01 

O.OliO.OO 

0.23±0.23 

Test 
Accuracy 

0.74±0.05 

0.68±0.03 

0.84±0.07 

0.59±0.04 

0.50±0.08 

Test 
Coverage 

0.10±0.05 

0.04±0.03 

0.03±0.05 

0.01±0.02 

0.24±0.23 

Population 
Diversity 

201.52±5.66 

664.90i:35.05 

504.77±5.95 

485.42±14.49 | 

52.34±1.67 1 
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Table 4. Results for the five data sets - percentage and standard deviations for 
accuracy, coverage and diversity from the stratified ten-fold cross-validation runs 
without fitness sharing or island model. 

Breast 
Cancer 

Diabetes 
Hepatitis 

Liver 
Tic Tac Toe 

Training 
Accuracy 

0.89±0.02 
0.67±0.01 
0.88±0.01 
0.62±0.03 
0.72±0.01 

Training 
Coverage 

0.40±0.04 
0.04±0.02 
0.05±0.01 
O.lOiO.08 
0.82±0.07 

Test 
Error 

0.88±0.04 
0.66±0.01 
0.83±0.05 
0.60±0.05 
0.70±0.04 

Test 
Accuracy 

0.41±0.07 
0.03±0.02 
0.06±0.08 
0.14±0.11 
0.82±0.08 

Population 
Diversity 

201.74±6.03 
751.48±107.25 
525.26±60.21 
474.05±7.02 
52.98±6.97 | 

Interestingly, the diversity value recorded does not change significantly 
when using diversity maintaining/promotion mechanisms. Fitness sharing 
does not appear to improve the performance of the algorithm for the given 
data sets. This can be attributed to the high diversity pressure imposed by 
this method on the rule set. This diversity pressure simply forces the rules to 
specialize, and therefore a decrease in coverage may be experienced. In 
contrast, the use of spatially distributed subpopulations resulted in an 
improved performance in some cases although the difference is not 
significant. 

8. CONCLUSIONS 

In evolutionary optimization, diversity is usually a crucial factor in 
obtaining the global optimum for the problem in hand. In data mining, 
obtaining the global optimum on the training set is mostly seen as over-
fitting the data. The model that yields the best accuracy on the training set 
may not be the ideal model for the test set. Consequently, we may question 
whether evolutionary optimization and evolutionary data mining share the 
same objectives. 

In this chapter, our objective was to examine the relative efficacy of 
alternative diversity promotion / maintenance mechanisms using Pitt-style 
evolutionary classifier systems. A motivating factor behind this work was 
the belief that diversity in the evolving population would help to evolve 
individuals (rules or rule sets) with high predictive accuracy. We have 
presented a comparative study between two diversity preserving mechanisms 
- implicit fitness sharing, and island parallel models - and a combination of 
the two. A systematic analysis of the models using five benchmark data sets 
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suggests that there are no performance advantages - accuracy of the rule sets 
and coverage - when diversity enhancing mechanisms are used; and 
moreover, the more effective the diversity mechanisms used, the worse the 
results. This result is somewhat surprising. 

Diversity mechanisms have proven highly effective in GA research (Deb 
& Goldberg, 1989). Classifier systems differ from GA in not having a fixed 
size genotype, but diversity mechanisms have also been shown to enhance 
performance in a range of variable sized representations, such as genetic 
programming and neural networks (e.g. (McKay & Abbass, 2001)). It should 
be noted that a relatively large population size and mutation rate were used 
in the experiments. In this case, the model parameters may help to maintain 
a certain diversity level. In addition, the level of noise inherited in a learning 
problem adds stochasticity to the fitness landscape. Nevertheless, diversity 
did not seem to be a crucial factor when evolving rules for the five data sets 
that we used in this chapter. One plausible explanation is that the naive 
application of diversity mechanisms to Pitt-style classifier systems is 
imposing diversity at the wrong level. In Pitt-style classifiers, each 
individual effectively comprises a committee, so that internal diversity 
within each individual is perhaps as important as population diversity; 
imposing a diversity measure on the population may act to increase the 
diversity between individuals in the population, at the cost of internal 
diversity within individuals. 

It is interesting to note that the results obtaining using the island model 
were better that the results obtained using implicit fitness sharing for some 
of the data sets. This raises the important question of implementation details 
and parallelism. The island model is inherently parallel, and the 
computational cost of the model is usually less than simply running the 
algorithm on a single population. This is an advantage, not only in terms of 
the accuracy as evident in this chapter, but also of the generalization ability 
of the model. In their standard forms, anti-correlation mechanisms are poorly 
amenable to parallel implementation, as the calculation of population-wide 
properties imposes unacceptable synchronization requirements. In future 
research, we will investigate alternative techniques for combining anti-
correlation and non-correlation methods in evolutionary classifier systems. 

Classification rules have no causal semantics. They represent correlations 
in data, and correlation is not necessarily causation. When mining a real life 
database, we sometimes have initial domain knowledge which we need to 
bias or initialize the rule miner with. Domain knowledge can help to bias the 
miner with some causal semantics that otherwise are difficult to incorporate 
in classification. Knowledge initialization for inducing rules in an 
evolutionary environment is still an open area of research. 



454 Data Mining & Knowledge Discovery Based on Rule Induction 

REFERENCES 

Abbass, H. A., Sarker, R., & Newton, C. (Eds.). (2002). Data Mining: A Heuristic Approach. 
Hershey, PA: IGP publishing. 

Basset, J. K., & Jong, K. A. D. (2000). Evolving Behaviours for Cooperating Agents. Paper 
presented at the Twelfth International Symposium on Methodologies for Intelligent 
Systems, Lecture Notes in Artificial Intelligence 1932, Berlin, Springer. 

Belding, T. C. (1995). The Distributed Genetic Algorithm Revisited. Paper presented at the 
Sixth International Conference on Genetic Algorithms. 

Bleuler, S., Brack, M., Thiele, L., & Zitzler, E. (2001). Multiobjective genetic programming: 
Reducing blot using SPEA2. Paper presented at the IEEE 2001 Congress on Evolutionary 
Computation. 

Bradley, P. S., Fayyad, U. M., & Mangasarian, O. L. (1999). Mathematical Programming for 
Data Mining: Formulations and Challenges. INFORMS Journal on Computing, 11, 217-
238. 

Breiman, L. (1996). Stacked Regressions. Machine Learning, 24, 49-64. 
Burke, E., Gustafson, S., & Kendall, G. (2002). A Survey and Analysis of Diversity Measures 

in Genetic Programming. In W. B. Langdon et al. (eds) GECCO 2002: Proceedings of the 
Genetic and Evolutionary Computation Conference. Morgan Kaufmann Publishers, pp 
716-723 

Cantu-Paz, E. (2000). Efficient Parallel Genetic Algorithms'. Kluwer Academic Publishers. 
Cantu-Paz, E. (2001). Migration Policies, Selection Pressure, and Parallel Evolutionary 

Algorithms. Journal of Heuristics, 7(3), 311-334. 
Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated Equilibria: a 

Parallel Genetic Algorithm. Paper presented at the Second International Conference on 
Genetic Algorithm. 

Darwen, P., & Yao, X. (1995). A dilemma for fitness sharing with a scaling function. Paper 
presented at the IEEE Conference on Evolutionary Computation. 

Deb, K. and Goldberg, D.E. (1989). An investigation of niche and species formation in 
genetic function optimisation. In J.D. Schaffer (ed.) Proceedings of the Third International 
Conference on Genetic Algorithms, pp 42-50. 

DeJong, K. (1975). An analysis of the behavior of a class of genetic adaptive systems. 
Unpublished PhD, University of Michigan. 

DeJong, K. (1988). Learning with Genetic Algorithms: An Overview. Machine Learning, 
i(2), 121-138. 

Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and knowledge 
discovery. In A. Ghosh & S. Tsutsui. (Eds.), Advances in Evolutionary Computation: 
Springer-Verlag. (pre-print, unformatted version available at 
http://www.ppgia.pucpr.br/~alex/papers.html) 

Garell, J. M., Golobardes, E., Mansilla E.B., & Llora, X. (1999). Automatic Diagnosis with 
Genetic Algorithms and Case-Based Reasoning. Artificial Intelligence in Engineering, 13, 
367-372. 

Gen, M., & Chang, R. (2000). Genetic Algorithms and Engineering Applications. New York, 
N.Y., USA: John Wiley & Sons. 

Goldberg, D. (1989). Genetic algorithms: in search optimization and machine learning: New 
York, N.Y., Addison Wesley. 

Hansen, L., & Salamon, P. (1990). Neural Network Ensembles. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 12, 993-1001. 

Holland, J. (1998). Adaptation in natural and artificial systems: MIT press. 



Chapter 13: Diversity Mechanisms in Pitt-Style Evolutionary Classifiers 455 

Holland, J., Booker, L. B., Colombetti, M., Dorigo, M., Goldberg, D., Forrest, S., Riolo, R. 
L., Smith, R. E., Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (2000). What is a Learning 
Classifier System? In P. Lanzi & W. Stolzmann & S. Wilson (Eds.), Learning Classifier 
Systems, From Foundations to Applications (Vol. LNAI 1813, pp. 3-32): Springer-Verlag. 

Horn, J, (1997). The nature of niching: Genetic Algorithms and the evolution of optimal, 
cooperative populations (PhD): University of Illinois at Urbana-Champaign. 

Kirley, M. (2002). A Cellular Genetic Algorithm with Disturbances: Optimisation Using 
Dynamic Spatial Interactions. Journal of Heuristics, 8(3), 321-242. 

Kuncheva, L. I., Whitaker, C. A., Shipp, C. A., & Duin, R. P. W. (2000, 3-8 September). Is 
independence good for combining classifiers? Paper presented at the 15th International 
Conference on Pattern Recognition, Barcelona, Spain. 

Lanzi, P. L., & Riolo, R. L. (2000). A Roadmap to the Last Decade of Learning Classifier 
System Research. In P. Lanzi & W. Stolzmann & S. Wilson (Eds.), Learning Classifier 
Systems, From Foundations to Applications (Vol. LNAI 1813, pp. 33-62): Springer-
Verlag. 

Liu, Y., & Yao, X. (1999). Simultaneously training of negatively correlated neural networks 
in an ensemble. IEEE Trans. Syst. Man. Cybern. B., 296, 716-725. 

Llora, X., & Garrell, J. M. (2001). Knowledge-Independent Data Mining With Fine-Grained 
Evolutionary Algorithms. Paper presented at the Genetic and Evolutionary Computation 
Conference, pp 461-468, Morgan Kaufmann. 

Mahfoud, S. (1995). A comparison of parallel and sequential niching methods. Paper 
presented at the Sixth International Conference on Genetic Algorithms. 

Manderick, B., & Spiessens, P. (1989). Fine-Grained Parallel Genetic Algorithms. Paper 
presented at the Third International Conference on Genetic Algorithms. 

Mansilla, E.B., Mekaouche, A Guiu, J. M. G. (1999). A Study of a Genetic Classifier System 
Based on the Pittsburgh Approach on a Medical Domain In I. F. Imam et al. (eds). 
Multiple Approaches to Intelligent Systems. 12th International Conference on Industrial 
and Engineering Applications of Artificial Intelligence and Expert Systems IEA/AIE-99. 
Lecture Notes in Computer Science. Vol. 1611, pp. 175-184 

McKay, R. I., & Abbass, H. A. (2001). Anti-correlation: A Diversity Promoting Mechanisms 
in Ensemble Learning. The Australian Journal of Intelligent Information Processing 
Systems, 7(3/4), 139-149. 

Merz, C. J., & Murphy, P. M. (1998). UCI repository for Machine Learning Data Base. 
Irvine CA., University of California. Department of Information and Computer Science. 
Retrieved, from the World Wide Web: 
http://www.ics.uci.edu/~mleam/MLRepository.html 

Mitchell, M. (1996). An Introduction to Genetic Algorithms: MIT Press. 
Mlihlenbein, H., Gorges-Schleuter, M., & Kramer, O. (1988). Evolutionary algorithms in 

combinatorial optimization. Parallel Computing, 7, 65-88. 
Nordin, P., & Banzhaf, W. (1995). Complexity Compression and Evolution. Paper presented 

at the Sixth International Conference. 
Quinlan, R. (1993). C4.5: Programs for Machine Learning: Morgan Kaufmann. 
Ragsdale, C. T. (2001). Spreadsheet Modeling and Decision Analysis. USA: South-Western 

College Publishing. 
Riolo, R. L. (1987). Bucket Brigade Performance: I Long Sequences of Classifiers. Paper 

presented at the Second International Conference on Genetic Algorithms (ICGA87), 
Cambridge, MA. 

Scott, D. W. (1992). Mutivariate Density Estimation. New York: John Wiley and Sons. 
Sharkey, A. J. C. (1999). Multi-Net Systems, Combining Artificial Neural Nets Ensemble and 

Modular Multi-Net Systems (pp. 1-27): Springer. 



456 Data Mining & Knowledge Discovery Based on Rule Induction 

Smith, R. E. (1994). Memory Exploitation in Learning Classifier Systems. Evolutionary 
Computation, 2(3), 199-220. 

Smith, R. E., Forrest, S., & Perlson, A. S. (1992). Searching for diverse cooperative 
populations with genetic algorithms. Evolutionary Computation, 12, 127-149. 

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. Unpublished 
PhD, University of Pittsburgh, Pittsburgh, PA, U.S.A. 

Tanese, R. (1989). Distributed genetic algorithms. Paper presented at the third International 
Conference on Genetic Algorithms. 

Tumer, K., & Ghosh, J. (1999). Linear and order statistics combiners for pattern 
classification. Combining Artificial Neural Nets Ensemble and Modular Multi-Net Systems 
(pp. 127-157). Berlin: Springer. 

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4, 65-85. 
Wilson, S. W. (1995). Classifier Fitness Based on Accuracy. Evolutionary Computation, 32, 

149-175. 



Chapter 13: Diversity Mechanisms in Pitt-Style Evolutionary Classifiers 457 

AUTHORS' BIOGRAPHICAL STATEMENTS 

Dr. Michael Kirley is currently a Lecturer in the Department of 
Computer Science and Software Engineering, University of Melbourne. 
Previously, he was a Lecturer in the School of Environmental and 
Information Sciences, Charles Sturt University. Michael's qualifications 
include a BEd (Mathematics) and PhD (Information Systems). His research 
interests include complex systems science, multi-agent systems, and the 
theory and application of evolutionary computation. In particular, Michael's 
work has examined the implications of connectivity and diversity 
mechanisms within a natural computation framework. He has published 
several papers on related topics. 

Dr. Hussein A. Abbass is a Senior Lecturer at the School of 
Information Technology and Electrical Engineering, University of New 
South Wales at ADFA, Canberra, Australia, where he leads the artificial life 
and adaptive robotics lab. Dr. Abbass holds six academic degrees and has 14 
years experience in industry and academia. His research focus is on 
traditional and evolutionary multiobjective optimization and machine 
learning techniques for multi-agent systems and robotics. He served as a 
guest editor for a number of books and journals. Dr. Abbass is the chair of 
the Task Force on Artificial Life and Complex Adaptive Systems by IEEE 
Neural Network Society EC committee. He has chaired a number of 
conferences and is on the program committee of several conferences such as 
CEC, GECCO, and ALife. 

Dr. Robert I. (Bob) McKay graduated with a PhD in Mathematical 
Logic from Bristol University (UK) in 1976. Since 1985 he has been an 
academic in the University of New South Wales at ADFA, researching 
logic-based artificial intelligence, applications of AI in ecological modeling, 
and more recently, genetic programming and evolutionary computation. 



Chapter 14 ^ 

FUZZY LOGIC IN DISCOVERING 
ASSOCIATION RULES: AN OVERVIEW 

Guoqing Chen and Qiang Wei 
School of Economics and Management 
Tsinghua University, Beijing 100084, China 
Email: chensqCcp^em. tsinghua. edii. en 

Etienne E. Kerre 
Department of Applied Mathematics and Computer Sciences 
University of Gent, Krilgslaan 281/S9, 9000 Gent, Belgium 
Email: eekerreCa),^ent. edii. be 

Abstract: Associations reflect relationships among items in databases, and have been 
widely studied in the fields of knowledge discovery and data mining. Recent 
years have witnessed many efforts on discovering fuzzy associations, aimed at 
coping with fuzziness in knowledge representation and decision support 
processes. This chapter focuses on associations of three kinds: association 
rules, functional dependencies and pattern associations. Accordingly, it 
overviews major fuzzy logic extensions. Primary attention is paid (1) to ftizzy 
association rules in dealing with partitioning quantitative data domains, crisp 
taxonomic belongings, and linguistically modified rules, (2) to various fuzzy 
mining measures from different perspectives such as interestingness, statistics 
and logic implication, (3) to fuzzy/partially satisfied functional dependencies 
for handling data closeness and noise tolerance, and (4) to time-series data 
patterns that are associated with partial degrees. 

Key Words: Data Mining, Association Rules, Functional Dependency, Pattern Association, 
Fuzzy Logic. 

^ Triantaphyllou, E. and G. Felici (Eds,), Data Mining and Knowledge Discovery 
Approaches Based on Rule Induction Techniques, Massive Computing Series, 
Springer, Heidelberg, Germany, pp. 459-493, 2006. 

Partly supported by China's National Natural Science Foundation (79925001/70231010), 
and the Bilateral Scientific & Technological Cooperation Programmes between China and 
Flanders/Czech. 



460 Data Mining & Knowledge Discovery Based on Rule Induction 

1. INTRODUCTION 

Data mining is regarded as a non-trivial process of identifying valid, 
novel, potentially useful, and ultimately understandable know l̂edge in large 
scale databases (Fayyad & Piatesky-Shapiro et al., 1996). Many research 
attempts and applications concentrate on clustering, classification, 
association, regression, summarization, change and deviation detection, etc., 
in order to discover know l̂edge that is of interest and of different forms to 
support decision makers. Of particular interest in this chapter is the 
discovery of associations that reflect relationships among items in databases. 
Generally speaking, associations may be categorized into several kinds, such 
as association rules, functional dependencies, and pattern associations, each 
one expressing specific semantics in linking data items together. 

1.1 Notions of Associations 

Usually, associations of a typical kind are association rules (AR% which 
have also been extensively investigated in the field. An example of an 
association rule is "Apples & Bananas => Pork, with degree of support = 
20% and degree of confidence = 80%" meaning that "20% of all the 
customers bought Apples, Bananas and Pork simultaneously, and 80% of the 
customers who bought Apples and Bananas also tended to buy Pork". If both 
the degree of support (Dsupport) and the degree of confidence 
(Dconfidence) of a rule are large enough, then the rule could be regarded as 
a valid rule (or interchangeably referred to as a qualified rule, otherwise 
indicated where necessary). In general, an association rule X=>7 expresses 
the semantics that "occurrence of X is associated with occurrence of T\ 
where X and 7 are collections of data items. Such association rules are also 
called Boolean association rules, as the association concerned is the 
correspondence of the states, each being a binary value 7 or 0 (e.g., X occurs 
or X does not occur). Since Agrawal et al. introduced the notion of (Boolean) 
association rules in 1993 (Agrawal & Imielinski et al., 1993), mining of 
association rules has attracted many research efforts along with a large 
number of ^i? applications in various fields, such as finance, stock market, 
aerography, marketing, medicine, manufacturing, e-business, etc (Fayyad & 
Piatesky-Shapiro et al., 1996; Brin & Motwani et al., 1997; Delgado & 
Sanchez etal., 2001) 

Furthermore, the approach proposed by Agrawal & Srikant et al. (1994) 
to discovering association rules is considered as a basic mining approach 
with their Apriori algorithm being deemed as a typical mining algorithm. 
Two directions of research have then been emerged (Chen & Wei, et al., 
1999): 
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1) One is to improve the efficiency of the mining process as discussed 
in (Houtsma & Swarmi, 1993; Fayyad & Uthurusamy, 1994; Mannila & 
Toivonen, 1994; Savasere & Omiecinski et al., 1995; Agraw^al & Mannila, 
1996; Rastogi & Shim, 1998). Moreover, some methods also construct their 
algorithms upon sampling operations (Yilmaz & Triantaphyllou et al., 2003) 
In addition to the above serial algorithms, some parallel and distributed 
algorithms are also presented (Mueller, 1995; Agrawal & Shafer 1996). 

2) The other direction is to extend the semantics and expressions of 
rules from a number of perspectives. For example, Srikant & Agravŝ al 
(1995) presented a method to discover generalized association rules (GAR), 
by which more abstract rules could be derived. Srikant & Agrawal (1996) 
extended Boolean association rule mining for quantitative association rule 
mining using partitioning for quantitative data domains. Some other studies 
focused on mining association rules with constraints and contexts (Fukuda & 
Morimoto et al, 1996; Han & Fu, 1995; Klemettinen & Mannila et al., 1994; 
Srikant & Vu et al., 1997; Wei & Chen, 2000) Instead of the previous 
Dsupport and Dconfidence measures, some other interestingness measures, 
based on statistics and information theory, have also been proposed aimed at 
making the discovered rules more understandable and simpler (Tseng, 2001; 
Maimon & Kandel et al., 2001). Chen & Wei et al. (2002) introduced simple 
association rules {SAR) and related rule derivation notions, based on which 
the set of other qualified association rules could be obtained without 
scanning the transaction dataset. 

In addition to association rules, functional dependencies {FD) are 
another kind of associations of interest. Functional dependency is an 
important notion in relational databases and has been widely discussed as 
integrity constraints and semantic knowledge for database modeling (Codd, 
1970; Chen, 1998). Generally speaking, a functional dependency X-^ 7 states 
that values of Tare uniquely determined by values of X, where Xand 7are 
collections of data items (attributes). Notably, for the sake of clarity and 
notational convention, -> is used for functional dependency, while => for 
association rule throughout the chapter. An example of an FD is "equal 
student numbers lead to equal student ages (Student # determines Student 
Age)". Classically, functional dependencies could be assumed or constructed 
logically, based on which relation schemas are designed. On the other hand, 
in the context of data mining as a type of reverse engineering, the discovery 
of functional dependencies has received considerable attention (Castellanos 
& Saltor, 1993; Bell & Brockhausen, 1995; Huhtala & Karkkainen, 1998a, 
1998b; Liao & Wang et al., 1999; Savnik & Flach, 2000; Bosc & Pivert et 
al., 2001; Wei & Chen et al., 2002). The basic idea behind is that numerous 
database applications over decades have generated and maintained a huge 
amount of data stored in distributed environments and with diversified 
structures. Many functional dependencies might not originally be known or 
thought of being important, or have been hidden over time, but may be 
useful and interesting as integrity constraints and semantic knowledge. 
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Finally, pattern associations are a third kind of associations. Consider 
time-series patterns that are commonly encountered in real applications in 
the form of, for example, production, sales, economics, and stock data (Chen 
& Wei et al., 2001) Discovering the relationships among time-series data is 
of particular interest since the time-series patterns reflect the evolution of 
changes in data values with sequential factors such as time. A time series 
pattern is a series of values of an attribute over time, denoted as S{su S2, ..., 
5in), where St (t = \, 2, ..., m) is the value of attribute S at time point t. 
Usually, time series patterns are associated with each other in various ways. 
For instance, pattern similarity is a case of pattern association. Patterns S and 
5" may be regarded similar to each other based upon similarity measures or 
matching criteria. An example of such a case is "Firm ^ ' s IT expenditure 
pattern is similar to Firm 5's IT expenditure pattern" in the context of IT 
organizational learning/diffusion. Another case of pattern association is 
pattern movement. Patterns S and S' may be regarded associated in change 
directions. An example of such a case is "Firm A's stock price increase is 
associated with Firm 5's stock price decrease" in the context of stock price 
movement. Apparently, discovering such pattern associations can be useful. 

However, it will be shown in later sections that in many situations 
discovering the above-mentioned associations involves uncertainty and 
imprecision, particularly fuzziness. The necessity of applying fuzzy logic in 
data mining is twofold: one is that fuzziness is inherent in many problems of 
knowledge representation and discovery, and the other is that high-level 
managers or complex decision processes often deal with generalized 
concepts and linguistic expressions, which are generally fuzzy in nature. 

1.2 Fuzziness in Association Mining 

Treatment of uncertainty is considered as one of the key issues in data 
mining (Fayyad & Uthurusamy, 1994; Kruse & Nanck et al., 2001; Mitra & 
Pal et al., 2001; Rifqi & Monties, 2001). For instance, in finding the "truth" 
of rule X=^7 with massive datasets, relative frequencies are used to estimate 
the corresponding probabilities. More concretely, the Dsupport value of an 
association rule X=>7 could be regarded as the estimation of probability 
Pr(Xr), while the Dconfidence value of X=>7 as the estimation of 
conditional probability Pr(71X) (Aumann & Lindell, 1999) In this way, one 
may find out the knowledge that X=>7 holds in a statistically significant 
fashion. 

On the other hand, a different type of uncertainty is fuzziness in concept. 
A typical example of fuzziness is to define "large numbers" in the domain of 
real numbers. In association rule mining, for instance, rules like "If the 
customers are at ages in the interval [20, 30], then they tend to buy 
electronics at prices in the interval [$5000, $70000]", and "Young customers 
tend to buy Expensive electronics" may all be meaningful depending on 
different situations. However, while the former is more specific and the 
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latter is more general in semantic expressions, the former has a so-called 
"boundary problem" that, for example, a customer aged 31 w îth a purchase 
of $15000 may not be identified/discovered. By contrast, the latter is more 
flexible and could reflect this customer's buying behavior. Notably, here 
"young customers" and "expensive electronics" are linguistic terms that are 
fuzzy in nature. 

Furthermore, as data items may be categorized in classes upon specific 
properties, w ĥich can be represented in hierarchies or taxonomies in terms of 
subclass and super-class (e.g., apple, fruit, food, etc.), data mining may refer 
to data items at different levels of taxonomies. For instance. Generalized 
Association Rules (Srikant & Agrawal, 1995) deals with the relationships 
across taxonomic nodes of higher levels, reflecting more general semantics, 
such as "Fruit => Meat" instead of "Apple => Beef. However, there are 
situations where a subclass belongs to its super-class at a partial degree in [0, 
7], resulting in fuzzy taxonomies. For example. Tomato may be regarded to 
belong to both Fruit and Vegetable with membership degrees at 0.7 and 0.6, 
respectively. Moreover, fuzziness may prevail in many other association 
cases in which imprecision, matching, similarity, implication, partial truth or 
the like is present. 

Fuzzy logic plays an important role in dealing with fuzziness and 
therefore fuzzy data mining. Fuzzy logic, or interchangeably referred to as 
fuzzy set theory, had its inception by Lofti Zadeh (1965). A fuzzy set is a 
generalization of an ordinary set. Formally, let U be the universe of 
discourse (domain), a fuzzy set i^ on U is characterized by a membership 
function jup. U ^ [0, 7], which associates each element u of U with a 
number jup(u) representing the grade of membership of u in F. The 
expression JUF{U) = 0 means non-membership, JUF{U) = 1 means full 
membership, and iup{u) in (0, 7) means partial membership. 

For example, a fuzzy set "Young'' fox Age on UAge (domain of Age) may 
be defined by the following membership function: /Uyomg- ^Age "^ [0, 7], 
where UAge is the set of positive numbers. Then for any a e UAge, 

1 0 < a < 25 

40-a 
Mvom2\^) ' 25 < a < 40 , 

15 

0 40 < a 

If U is discrete, a fuzzy set can be denoted as F = {/dp{u)lu \ueU}. 

Another important notion in fuzzy logic is that of linguistic variables 
(e.g.. Age), which take linguistic terms as their values (e.g.. Young, Old, 
Middle-aged). Usually, a linguistic variable can be modeled using fuzzy sets 
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and it can be further modified with linguistic hedges. Linguistic hedges, such 
as "very", ''more-or4ess'\ "sort-of\ are not themselves modeled by fuzzy 
sets as primary terms are, but rather are modeled as operators acting on the 
fuzzy sets representing the primary terms. Consider a hedge operator Hx, 
which can be used to deal with a number of linguistic hedges. Let F(JJ) be 
the class of all fuzzy sets on domain t/, and Hx be a hedge operator with X e 
[0, 00). Then Hx is a mapping from F(U) to F(U) such that \/A e F(U) 
(Chen, 1998): 

HxiA) = A^eF(U) or^aeU, MH^^^^(a) = [MA(ci)f G[0,1]. 

When X> l,Hx reduces the membership degrees for the elements of the 
fuzzy set being modified, which is called a concentration operator. When X < 
7, Hx increases the membership degrees for the elements of the fuzzy set 
being modified, which is called a dilation operator. For example, H1/2 is 
referred to as a concentration operator for hedge "sort-of semantically. 
Given a linguistic hedge h = sort-of and a fuzzy term (item) w = "Fruit" = 
{1/Apple, 0.7/Tomato, 1/Banana}, then hw = sort-of Fruit = {1/Apple, 
0.84/Tomato, 1/Banana}. In addition, given a fuzzy item w = "Young", hw = 
"very Young" could be constructed along with membership function /u^ery-
young{ci) a s foUoWS! 

1 0 < a < 25 

Mvery-youn2\^) ' ( i ^ b ^ ) 2 2 5 < a < 4 0 , 
15 

0 40 < a 

As will be seen in later sections, many other concepts and techniques of 
fuzzy logic are relevant to discovering associations, and will be referred to in 
certain detail. More detailed discussions of these concepts and techniques 
can be found in (Zadeh, 1965; Kerre, 1993; Chen, 1998; De Cock & Kerre, 
2002). 

1.3 Main Streams of Discovering Associations with 
Fuzzy Logic 

As indicated already, existing efforts on fuzzy logic extensions can be 
distinguished into three main streams, namely, fuzzy association rules 
(FAR), fuzzy/partial satisfied functional dependencies {FFD/FD^, and fuzzy 
logic in pattern associations (FPA). While the other two streams {FFD/FDd 
and FPA) are attracting more and more attention (Huhtala & Karkkainen et 
al., 1998a, 1998b; Chen & Wei et al., 2001; Wei & Chen et al., 2002; Wang 
& Shen et al., 2002), the stream of fuzzy association rules {FAR) has 
accounted for most of the existing efforts and is continuously attracting 
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considerable attention by researchers and practitioners. The FAR research 
and applications center around issues of partitioning quantitative data 
domains, fuzzy taxonomies, FAR with linguistic hedges, fuzziness-related 
interestingness measures, and degree of fuzzy implication, e.g., Lee & 
Hyung (1997), Kuok & Fu et al. (1998), Cai & Fu et al. (1998), Wei & Chen 
et al. (1999, 2000), Hong & Kuo (1999a, 1999b), Gyenesei (2000a, 2000b, 
2001), Shu & Tsang et al. (2000), Dubois & Hullermeier et al. (2001), 
Ishibuchi & Nakashima et al., (2001), Hullermeier (2001a, 2001b), Bosc & 
Pivert (2001); Chen & Wei (2002). 

The chapter is organized as follows. Sections 2 and 3 will concentrate on 
two main directions of fuzzy logic extension in association rules mining: one 
is to discover fuzzy quantitative association rules, and the other is to 
discover fuzzy association rules with fuzzy taxonomies. In section 4, some 
other fuzzy extensions and considerations on fuzzy association rules will be 
introduced, such as fuzzy logic in interestingness measures, fuzzy extensions 
of Dsupport/Dconfidence measures, weighted fuzzy association rules, etc. 
More specifically, section 5 will discuss fuzzy association rules in a more 
logic-oriented perspective, namely, fuzzy implication based association 
rules. Additionally, section 6 will deal with the problem of mining functional 
dependencies with uncertainties, including fuzzy functional dependencies 
and functional dependencies with degrees. Finally in section 7, the third type 
of associations, i.e., pattern associations, will be discussed in terms of 
pattern matching and similarities. 

2. FUZZY LOGIC IN QUANTITATIVE 
ASSOCIATION RULES 

This section starts with Boolean association rules, followed by efforts on 
crisp partitioning for quantitative association rules. Then, fuzzy extensions 
in dealing with quantitative association rules will be discussed. 

2.1 Boolean Association Rules 

Originally, association rules often dealt with binary databases, in which 
values of each attribute are O's or 7's, and are usually referred to as Boolean 
association rules (or simply, association rules, otherwise indicated where 
necessary). A binary database D can exist for its own or can be converted 
from a transaction dataset T. A symbolic example of T and D is provided as 
shown in Table 1. Concretely, /y, I2,13, and I4 can be, for instance, products 
sold in a supermarket with five transactions. 
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Table 1. Example of a Transaction Dataset T and a Binary Database D. 

(a) (b) 

T 
IDl 
1D2 
1D3 
ID4 
1D5 

Ii I3 
I2 
I, 
I2 
I3 

I3 
I3 
I4 

I4 

D 
IDl 
ID2 
ID3 
ID4 
ID5 

// 
1 
0 
1 
0 
0 

I2 
0 
1 
0 
1 
0 

h 
1 
0 
1 
1 
1 

I4 
0 
0 
1 
0 
1 

Let / = {II, I2, ..., Im] be a set of attributes (also called items), Z) be a 
relational database of n tuples (or records) with respect to schema /?(/), in 
which each tuple d is represented as a binary vector with d[Ik\ e {0 J} (k = 
1,2, ..., m), and Xbe a subset of/ (also referred to as an itemset), then d is 
called to support X if for all items J in X, d[J\ = 7. An association rule is of 
the form: X=i> F, where X and 7 are two disjoint itemsets of/, i.e., X^Yal 
and X n Y= 0. The degree of support for itemset X is defined as follows: 
Dsupport{X) = \\X\\/\D\ (Agrawal & Imielinski et al., 1993; Agrawal & 
Srikant, 1994; Agrawal & Mannila et al., 1996). As an example in Table 1, 
Dsupport(Ij) = 2/5, and Dsupportils) = 4/5. 

Furthermore, the degree of support and degree of confidence for rule 
X=>Y are defined as: Dsupport{X^Y) = \\XuY\\/\Dl and Dconfidence(X=>Y) 
= ||Xuy||/||X||, respectively, where ||X|| is the number of tuples in D that 
supports, IIXUFll is the number of tuples in D that support X and 7, and \D\ 
is the number of tuples in D. Given a threshold a for minimal support and a 
threshold P for minimal confidence, X=>7is called a valid association rule if 
Dsupport(X:=^Y) > a and Dconfidence(X=>Y) > p. Statistically, Dsupport 
could be regarded as the significance of a rule supported by a dataset, while 
Dconfidence could be regarded as the certainty of a rule. For example, in 
Table 1, Dsupport{Is^=>Ii) = 2/5 and Dconfidence{Is:=>Ii) = 21 A. A typical 
algorithm for discovering such association rules based on binary databases is 
the well-known Apriori algorithm proposed in (Agrawal & Imielinski et al., 
1993; Agrawal & Srikant, 1994; Agrawal & Mannila et al., 1996). 

2.2 Quantitative Association Rules 

Though Boolean association rules are meaningful in real-world 
applications, there are many other situations where data items concerned are 
usually categorical or quantitative. Examples of such items are Month, Age, 
Income, Quantity of Product, and so on. Without loss of generality, we 
consider here only quantitative items. Apparently, association rules linking 
quantitative items are meaningful as well, giving rise to so-called 
quantitative association rules. Usually, quantitative items are represented in 
a database as attributes whose values are elements of continuous domains 
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such as Real Number Domain K Such a database is exemplified as D in 
Table 2. 

Table 2. Database D with Continuous Domains. 

D 
IDl 
ID2 
ID3 
ID4 
ID5 

Age 
30 
25 
19 
47 
68 

Income 
8890 
12500 
79000 
1500 
5000 

It can easily be seen that the typical Apriori algorithm is incapable of 
dealing directly with such databases for quantitative association rules. 
Therefore, Srikant & Agrawal (1996) proposed an approach that is 
composed of two steps: (1) transforming D into a binary database D' by 
partitioning continuous domains, and (2) applying the Apriori algorithm on 
D\ For example, if attribute Age takes values from (0, 700], then one could 
partition (0, 100] into three intervals such as (0, 30], (30, 60], and {60, 100], 
resulting in three new attributes, namely, Age{(),3G], Age{3Q,6G], and 
^g^(60,100], respectively. Likewise, if one partitions the domain oi Income 
into (0, 5000], (5000,15000], (15000, oo), then three new attributes related to 
Income are lncome(0, 5000], Income(5000, 15000], Income(15000, oo). As a 
result, D' becomes a binary database with 7 attributes as shown in Table 3. 

Table 3. Database D' Transformed from D by Partitioning Domains. 

D' 

IDl 
ID2 
ID3 
ID4 
ID5 

Age 
(0, 30] 

1 
1 
1 
0 
0 

Age 
(30, 60] 

0 
0 
0 
1 
0 

Age 
(60, 100] 

0 
0 
0 
0 
1 

Income 
(0, 5000) 

0 
0 
0 
1 
1 

Income 
(5000, 15000] 

1 
1 
0 
0 
0 

Income 
(15000, oo) 

0 
0 
1 
0 
0 

Differently from Boolean AR that represents semantics "Occurrence of X 
is associated with Occurrence of Y\ quantitative AR represents semantics 
"Quantity of Zis associated with Quantity of Y\ 

More formally, for / = {/y, I2, ..., /,„} and D with d being a tuple oiD 
and (i[4] belonging to a continuous domain (1 <k< m), suppose that each 4 
is partitioned into pk intervals (pk > 1). Then D' is with respect to schema 
if(/') where r = {l\, ..., I(\ ..., l\, . . . , / f S ..., li, ..., / ^ ' " } . For any 
tuple d' inD' and I'k in / ' , if d[Ik] in D belongs to interval/^^t, we have d'[I'k] 
= 1, otherwise (i'[/';fc] = 0. 

Apparently, the way of partitioning domains affects the mining 
outcomes. Several efforts have been made for improvement. Instead of equal 
intervals, average partitioning (Srikant & Agrawal, 1996) and clustering 



468 Data Mining & Knowledge Discovery Based on Rule Induction 

(Mazlack, 2000) have been proposed, attempting at reaching certain balance 
between information loss and granularity. However, "sharp boundary" 
remains a problem, which may under-emphasize or over-emphasize the 
elements near the boundaries of intervals in the mining process (Gyenesei, 
2000a), and may therefore lead to an inaccurate representation of semantics. 
This gives rise to a need for fuzzy logic extensions due to the fact that "sharp 
boundary" is of a typical fuzziness nature. 

2.3 Fuzzy Extensions of Quantitative Association Rules 

Fuzzy sets defined on the domains are used to deal with the "sharp 
boundary" problem in partitioning (Fu et al., 1998; Wu, 1999; Mazlack, 
2000; Chien & Lin et al., 2001; Gyenesei, 2001), such sets are usually 
expressed in forms of labels or linguistic terms. For example, for attribute 
Age, some fuzzy sets may be defined on its domain UAge such as Young, 
Middle and Old. In this way, such new attributes (e.g., Young-Age, Middle-
Age and Old-Age in place of Age) will be used to constitute a new database 
D " with partial belongings of original attribute values (in D) to each of the 
new attributes (in D''). Table 4 illustrates an example of D'' (in part) 
obtained from D of Table 2, given fuzzy sets Young(Y), Middle(M) and 
Old(0) as characterized by membership functions shown in Figure 1. 

Table 4. Database D" (in part) with Fuzzy Items. 

D" 
IDl 
ID2 
ID3 
ID4 
ID5 

Young-Age 
0.8 
0.9 
1 

0.4 
0 

Middle-Age 
0.7 
0 
0 
1 
0 

Old-Age 
0.2 
0.1 
0 

0.6 
1 

Figure 1. Fuzzy Sets Young(Y), Middle(M) and Old(O) 
with Y(20, 65), M(25, 32, 53, 60), 0(20, 65). 
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Generally, for original / = {/y, I2, ..., 4 } and Z), eachIk{l <k<m) can 
be associated with qu fuzzy sets defined on the domain of Ik, and usually 
labeled as qu new attributes. That is, the new database D" is with respect to 

schema J f ( n where/" = {//, ..., /f', ..., 4 , ..., Il^, ..., l]^, ..., II^}. 
For any d'' mD" and F'k in / ' ' , ^ ' ' [ / 'y is the degree that d[Ik\ in D belongs 
to r\ in D'\ i.e., <i''[/'y = l^i"k{d\Ik\) G [0, 7] where iLij»k is the membership 
function of r\. In other words, J " supports /'V with a (partial) degree in 

Several attempts have been made in defining fuzzy sets on continuous 
domains. For instance, fuzzy clustering methods are used such as fiizzy c-
mean based clustering (Chien & Lin et al., 2001), goodness index based 
clustering (Gyenesei, 2000a), CLARANS clustering (Fu et al, 1998; 
Gyenesei, 2000a), self-organized learning based clustering (Shu & Tsang, et 
al., 2000), and other methods (Liu, 1998; Roychowdhury & Pedrycz, 2001), 
as well as the method used by Kovalerchuk, Triantaphyllou et al. (1997). 
Many clustering methods are sensitive on the initiative values, so the 
clustering process may usually run several times on adjusted initiatives in 
order to select the mostly appropriate results. However, the expert's 
evaluation is highly recommended after the process. 

With the above extended database Z)'', conventional notions of degrees of 
support and of confidence need to be extended as well. Though a few 
measures have been proposed, they are in a similar spirit that Icount 
operator is used for fuzzy cardinality (Concretely, for example, given a 
fuzzy set A on U, i.e., A = { |Lii/ui | ui G U, 1< i < n}, Ucountuieuf^J = 
^i<i^(Mi))' A more detailed treatment is represented in section 3.2. 
Subsequently, with these extended measures incorporated, several mining 
algorithms have been proposed as extensions of the conventional one, such 
as the method by Lee & Hyung (1997), the FTDA method by Kuok & Fu et 
al. (1998), the algorithm by Hong & Kuo (1999a, 1999b), the fuzzy 
extensions by Gyenesei (2000a, 2001), the SQL-based fuzzy extended 
method by Shu & Tsang et al. (2001), and the work by Chan & Au (2001). 

3. FUZZY ASSOCIATION RULES WITH FUZZY 
TAXONOMIES 

This section will discuss fuzzy extensions on association rules, 
particularly on fuzzy association rules with fuzzy taxonomies as well as with 
linguistic hedges. The motivation was to represent and discover knowledge 
with more general semantics and natural language expressions. 
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3,1 Generalized Association Rules 

Srikant & Agrawal (1995) presented a method to discover the so-called 
generalized association rules based on concept taxonomies as the ones 
shown in Figure 2 (a). 

Vegetable dishes Meat 

Fruit Vegetable Mutton 

Apple Cabbage 

Vegetable dishes Meat 

y \ ^-y 
Emit Vegetable Sausage 

/ \̂ 7 \ 
Apple Tomato Cabbage 

(a) (b) 

Pork 

1 

Pork 

Figure 2. Exact Taxonomies and Fuzzy Taxonomies. 

The algorithm in (Srikant & Agrawal, 1995) allows the discovery of 
generalized association rules that represent the relationships between 
original items, as well as between items at all levels of related taxonomies, 
e.g., "Fruit-=^Meaf\ which is more general and have more potential to be 
discovered. Formally, generalized association rules could be illustrated as 
follows. 

For original / = {//, h, ..., Im) and database D with respect to schema 
R(J), \/d e A d[Ik] belongs to {0, ]}, k= 1, 2, ..., m. Given a collection G of 
taxonomies, in which all leaf items belong to /, then adding all the interior 
items (nodes) of G into / will result in a new set of items IG. Subsequently, a 
new database Do with respect to R(IG) can be derived, in which each tuple d' 
in DG is also a binary vector. For any J e IG, if J is also in /, then d'[J] = 
d[J]. If J e IG-I, then (i) d'[J] = 1 if there exists any descendant J' of 7 that 
d[J'] = 1; and (ii) d\J] = 0 otherwise. Likewise, letXbe a subset of IG (also 
referred to as an itemset), then a tuple d' is called to support X if for any item 
J in X, d'[J\ - I. Thus, mining generalized association rules in D on R(I) 
with taxonomies G becomes equivalent as discovering Boolean association 
rules in DG on R(IG)-

As an example. Table 5 shows a database DG with respect to scheme 
R(Apple, Fruit, Cabbage, Vegetable, Vegetable-dishes, Mutton, Pork, Meat) 
in accordance with G in Figure 2(a). Notably, DG degenerates to D when 
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projecting R{Apple, Fruity Cabbage, Vegetable, Vegetable-dishes, Mutton, 
Pork, Meat) on {Apple, Cabbage, Mutton, Pork). 

Table 5. Example of Extended Database DQ in Accordance with G in Figure 2(a). 

J>c, 
IDl 
ID2 
IDS 

Apple 
1 
0 
1 

Fruit 
1 
0 
1 

Cabbage 
0 
1 
0 

Vegetable 
0 
1 
0 

Vegetable-dishes 
1 
1 
1 

Mutton 
1 
0 
1 

Pork 
0 
0 
1 

Meat 
1 
0 
1 

3.2 Generalized Association Rules with Fuzzy 
Taxonomies 

In 1999, Wei & Chen extended generalized association rules with fuzzy 
taxonomies, by which partial belongings could be incorporated. For 
example, given fuzzy taxonomies in Figure 2(b), Tomato not only belongs to 
Fruit with degree 0.7, but also belongs to Vegetable with degree 0.6, which 
may be semantically meaningful. 

Generally, given fuzzy taxonomies G^ as exemplified in Figure 2(b), the 
degree that any node y belongs to its ancestor x can be obtained as follows 
(Chen & Wei, 1999, 2002; Wei & Chen, 1999): 

vl:x-^y veonl 

where /.* x->y is one of the accesses (paths) of attributes jc and j ^ , e on lis one 
of the edges on access /, juie is the degree on the edge e on / If there is no 
access between x and y, then ju^y = 0. Notably, what specific forms of the 
operators to use for ® and 0 depends on the context of the problems at hand. 
Possible operators include max for © and min for ®. Then based on all the 
jUjcy derived between any two nodes, an interior item in G^ could be 
represented as a fuzzy set, each element of which is a leaf item with its 
membership degree to the interior item. For example. Fruit = {I/Apple, 
0.11 Tomato], Vegetable dishes = {I/Apple, 0.1/Tomato, \/Cabbage) in 
Figure 2(b). 

Then, with original / , D, and given Cf, the newly obtained set of items 
/o/is in the same form as IQ discussed in section 3.1, except for the fact that 
any interior item in IGJ- is generally a fuzzy set, not an ordinary super-class. 
Moreover, it is worth mentioning that an interior item in IQ/ is different from 
an item in F' of section 2.3 for fuzzy quantitative association rules. The 
former is a fuzzy set in terms of leaf items of taxonomies, while the latter is 
a fuzzy set on a continuous domain. 
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Correspondingly, the extended database DGJ can be derived from D on 
R(J) such that V/ G DG/, V J G /G/, t[J\ =max(//j^). An example of Dof in 

VLe/ 

accordance with Figure 2(b) and Table 5 is tabulated in Table 6. 

Table 6. Example of Extended Database Dofin Accordance with G/in Figure 2(b). 

DG/ 

IDl 
ID2 
IDS 

Apple 

1 
0 
1 

Fruit 

1 
0.7 
1 

Tomato 

1 
1 
0 

Cabbage 

0 
1 
0 

Vegetable 

0.6 
1 
0 

Vegetable-
dishes 

1 
1 
1 

Sausage 

1 
0 
1 

Pork 

0 
0 
1 

Meat 

0.6 
0 
1 

In addition, let X be a fuzzy itemset in /G/, then a tuple Z' in DGJ is called 
to support X with a certain degree t{X\ = /\ /rj], where A is an operator 

JsX 

representing "and". Furthermore, a fuzzy association rule is of the form: X 
=> 7, where X and Y are fuzzy itemsets. The degree of support for X is 
extended as follows (Chen & Wei, 2002): 

y count ( A t\J\) 
Dsupport{X) = P | / |Z )G/ | = _ ^-^o^^-^ 

IA 'Gf\ 

where |Z)G/| is the number of all tuples in Z)G/, and |̂ Y|| is Zcount values of 
tuples in Z)G/supporting X, also called fuzzy cardinality of X (Chen & Wei, 
2002). In real applications, the 11 (product) and min operators are often used 
for A. For instance, in (Chen & Wei, 2002) the min operator is used, while in 
(Kuok & Fu, 1999; Gyenesei, 200a), the FI (product) operator is used, 
depending on different contexts. Moreover, the Dsupport and Dconfidence 
for rule X=:>7 are defined as follows: 

Dsupport{X:=>Y) = Dsupport{X^Y) •• 
T count {t{X]At[Y]) 

lA Gf 

Dconfidence(X=>Y) = Dsupport(X^^Y) I 
Dsupport{X) = Dsupport(XuY) I Dsupport(X). 

Accordingly, these extended measures have been incorporated into the 
extended algorithm so as to discover generalized association rules with fuzzy 
taxonomies (Chen & Wei, 2002). 
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3.3 Fuzzy Association Rules with Linguistic Hedges 

In this section, we will consider the work on linguistic hedges used to 
modify fuzzy association rules, aimed at generalizing and enriching 
knowledge representation semantically. A recent effort has been made as 
described in (Wei & Chen et al., 2000; Chen & Wei et al., 2002) where Chen 
& Wei et al present an approach to incorporate linguistic hedges on existing 
fuzzy taxonomies. The basic idea is that, if in the fuzzy taxonomies Ĝ  an 
interior node could be expressed as a fuzzy set on its child-nodes, then the 
interior node could also be modified in forms of hedges with the same child 
nodes. Then after applying all the proper hedges in a given linguistic pool H 
onto the items in G% new fuzzy taxonomies G with all modified items could 
be derived, as shown in Figure 3. In so doing, the problem of mining 
linguistic association rules with hedges pool Hon fuzzy taxonomies G^could 
be transferred to the problem of mining fuzzy association rules on the new 
taxonomic structures G^. 

Vegetable dishes 

Sort o/Fruit Fruit Fresh Vegetable Very Fresh Vegetable 
0.83 

0.6 / \ l 

Apple Tomato Cabbage 

Figure 3. Part of a Linguistically Modified Fuzzy Taxonomic Structure. 

Note that, though the approach to integrating linguistic hedges proposed 
in (Chen & Wei, 2002) focuses on fuzzy generalized association rules, 
clearly it could also be easily applied to fuzzy quantitative association rules. 
In general, let f = {//, 7̂ , ..., Im) be a set of fuzzy items, each with a 
membership function^(^ = 7, 2, ..., m), and 7/be a database with scheme 
R{f) and a pool of hedges 77 (where assuming that 77 contains a certain 
hedge h (e.g., "same") with X= 1 such that for any primary linguistic term 
hw = w). After applying 77 on / , then /^ could be derived as follows: 7^= 
{hJ I /z/ is a linguistic item modified hyhonJ with membership function 
(fjf, h e H, and J G / } . It can be seen that all the original items and the 
modified items are contained in /^. Moreover, not every h in H can be 
applied onto J in / . This is due to the semantic constraints of linguistic 
terms. For example, given / = {Young, Fruit}, 77= {(Same, 1), (Very, 2), 
(Sort-of, 1/2)}, then F = {Young, Very Young, Sort-of Young, Fruit, Sort-of 
Fruit}. Further, let L^ be the extended database on schema R(f\ in which 
each tuple / is represented as a vector with t[hJ] = [fjit)f. After filtering with 
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thresholds a and P given by experts or decision-makers, the discovered rules 
could look like ''Expensive Electronics => Very Cool Jeans'\ etc. Generally 
speaking, this extension of knowledge representation of fuzzy association 
rules could be represented as rules in forms of HxX => HyY, where X and Y 
are fuzzy sets and Hx and Hy are linguistic hedges onto X and 7, 
respectively. 

Accordingly, Chen et al. (1999) proposed an extended Apriori-based 
mining algorithm to discover fiizzy association rules with linguistic terms. 
Further, they introduced a method to integrate linguistic hedges (Wei & 
Chen et al., 2000; Chen & Wei, 2002). Since an itemset containing two 
fuzzy items resulting from the same original item is usually considered 
meaningless (e.g., an itemset containing Young-Age and Old-Age), this may 
be integrated in the mining process as an optimization strategy (Wei & Chen 
et al., 2000). Their method shows that the computational complexity is linear 
with the number of transactions and polynomial to the number of items, 
which is similar to the non-fuzzy association rule mining. Synthetic 
experiments revealed that the system consumption of fuzzy association rule 
mining is stably a bit higher than that of a classical method, but at the same 
level of computational complexity due to the computations in calculating 
fuzzy degrees. 

4. OTHER FUZZY EXTENSIONS 
AND CONSIDERATIONS 

In this section, some other fuzzy extensions and considerations will be 
discussed, such as fuzzy extensions on interestingness measures, other fuzzy 
extensions on Dsupport/Dconfidence and weighted fuzzy association rules, 
etc. 

4.1 Fuzzy Logic in Interestingness Measures 

Though in general degrees of support and confidence (Dsupport and 
Dconfidence) could be viewed as measures of interestingness of particular 
kinds, many existing studies on interestingness have centered around 
measures used to filter the association rules discovered based upon Dsupport 
and Dconfidence. In other words, interestingness measures usually deal with 
issues of semantic concerns for valid association rules obtained upon 
Dsupport or Dconfidence. These measures reflect interestingness in different 
perspectives such as Laplace (Clark & Boswell, 1991), p-s measure 
(Piatesky-Shapiro, 1991), lift (IBM, 1996), intense of implication (Suzuki & 
Kodratoff, 1998), improvement (Roberto & Bayardo et al., 1999), gain 
(Fukuda & Morimoto, 1996), R-interest (Srikant & Agrawal, 1995), item 



Chapter 14: Fuzzy Logic in Discovering Association Rules: An Overview 475 

constraint (Srikant & Vu, 1997), etc, and may also be incorporated with 
domain knowledge in relation to application contexts. 

Similarly, in fuzzy association rule mining, some of the interestingness 
measures are worth being considered and therefore extended. An attempt is 
made with R-interest (also called interesting degree), based on the notion of 
conditional probability in the context of fuzzy taxonomic structure (Wei & 
Chen, 1999). For example, consider the taxonomies as shown in Figure 2(b), 
and suppose that there are 100 transactions containing Fruit and 50 
transactions containing Tomato in the database. Since Tomato belongs to 
Fruit at 0.7, then for a discovered rule Fruit => Pork (Dsupport = 20%, 
Dconfidence = 80%), it could be expected readily that Tomato =^ Pork has 
Dsupport of 7% (0.2x(50/100)x0.7) and 80% Dconfidence, If such a rule 
{Tomato => Pork at 1% and 80%)) is really generated from the database in 
the mining process, it can be considered redundant since it does not convey 
any additional information and is less general than the first rule {Fruit => 
Pork). 

Generally, the interesting degree for ruleX=>7is defined as: 

Interest{X^ Y) = D^^^PPorKX^Y) Dsupport{Y) 
Dsupport{X) IDI 

The measure can be seen as an estimation of Pr(7|J0 - Pr(7), which is 
the increase in probability of 7 caused by the occurrence of X(Hullermeier, 
2001b). With ifuzzy taxonomic structures, it can be extended for fuzzy 
association rule mining. Briefly speaking, given a threshold i?, a rule of 
interest will be the rule whose Dsupport is more than R times or less than 
\IR times of the expected Dsupport (or whose Dconfidence is more than R 
times or less than 1/7? times of the expected Dconfidence). Further, Graff & 
Kosters et al. (2001) calculate the expected Dsupport for X=e> 7 upon X^:=>Y 
{X^ is a super-class oiX) as follows: 

Dsupportr^.y^^y. {X=>Y) = Dsupport{X'' =>Y)x —^^PP^^ ^ ^ , /<p E(x=>v)K J FF y J Dsupport{X^) 

and then compare this number with the real Dsupport{X^=>Y) in terms of 
given 7? to decide whether X=^ 7 is redundant or not against X'̂ => 7. 

Moreover, Chen & Wei et al. (1999) have dealt with R-interest in a 
more general fashion. Consider a rule X=>7, where X={xi, X2, ..., Xp) and 
7={y7,y2, ...,yq}.X^ and Y^ are called the ancestors ofXand 7respectively, 
\iX^={x^i, jĉ 2? ..•? ^%] where jc^ is an ancestor of or identical to x,, \ <j < 
p, and 7^= [y^y, y \ ..., y^q), where y^j is an ancestor of or identical to y^ 1 < 
j < q. Then the rules X^=>7, X^:=^Y^ and X=>7^ are called the ancestors of 
the ruleX=::>7. Let DsupportE{x^^Y'^){X^=>Y) denote the "expected" value of the 
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Dsupport of X=>F on X^^:=>Y^ and DconfidenceE{x'^Y'^){X^=>Y) denote the 
"expected" value of Dconfidence of X^=>Y on X^z=>Y\ then with fuzzy 
taxonomic structures, we have: 

Dsupport{{x^^ }) X... X Dsupport({x^p }) 

Dsupport ({j^i}) X... X Dsupport ({y^}) 

Dsupport({y^^}) x... x Dsupport({y^^}) 

and 

X Dsupport (X'':=>Y^)^ 

Dconfidence ̂ (^^r.^Y^)i^ z=> 7) = 
Dsupport {{y^}) x... x Dsupport {{y q}) 

Dsupport{{y^^ })x...xDsupport({y^}) 
X DconfidenceiX'' => 7̂ )̂ • 

Then with threshold R, the extended measures may be used to filter out 
redundant rules. 

4.2 Fuzzy Extensions of Dsupport / Dconfidence 

In recent years, some methods differing from the fuzzy extensions of 
Dsupport and Dconfidence discussed in section 3.2 have also been proposed. 
In 1997, Lee & Hyung (1997) used a threshold co for each item / as a 
filtering criterion. That is, given a threshold co e [0, 1], t[I] is replaced by 
r [ / | , where /'[7] = 1 if r[7] > co; t'[I] = 0 otherwise. In doing so, the extended 
fuzzy database Z/(e.g., D" and DG/^S shown in Tables 4 and 6) becomes an 
6>cut binary database, based on which the non-fuzzy mining approach can 
be applied. Further, Kuok & Fu et al. (1998) proposed that t'[I] = t[I] if t[I] > 
co; r[7] = 0 otherwise, maintaining a new fuzzy database. The purpose is to 
handle those items of tuples with too low membership degrees that 
contribute no votes to Dsupport. However, these attempts need to consider a 
trade-off, as the number of such thresholds (co's) (which are mostly 
qualitative in nature) would itself be a problem of concern if the number 
becomes large. 

In addition, Hullermeier (2001b) has recently defined Dsupport{X^=>Y) 
by using min for A in A(^[JL], t[Y\) in a similar form to that of the notion 
described in section 3.2. However, it can generally be regarded as a special 
case of that notion. Another extension is by Shragai & Scgreider (2001), 
who introduced three measures for a fuzzy AR\ Dsupport, Dstrength and 
Dconfidence. While Dsupport is defined similarly, frequency Number{X) is 
used to count the occurrence of fuzzy itemset X, with which Dstrength and 
Dconfidence are defined: 
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Dstrength{X) = Dsupport{X) I Number{X), 

Dstrength(X=>Y) = Dstrength{XuY) = Dsupport{XKjY) I Number(XuY), 

Dconfidence(X^Y) = Number(XuY) I Number(X). 

The value of Dstrength of a rule represents the mean level of agreement 
(the support intersection) between the items in the itemset concerned, and 
the value of Dconfidence of a rule reflects the part of the relevant database 
that fulfils the rule. Thus the distinction between the small number of 
occurrences with high agreement and the large number of occurrences with 
bad agreement could be discovered to some extent. Furthermore, the 
corresponding mining method can be developed upon these measures, which 
is also an Apriori-type extension. 

Recently, Gyenesei & Teuhola (2001) discussed a series of measures to 
replace Dconfidence (which are still based on Dsupport), namely. Fuzzy 
Covariance Measure, Fuzzy Correlation Measure, Fuzzy I-Measure, Fuzzy 
Unconditional Entropy (UE) Measure, Fuzzy Conditional Entropy (CE) 
Measure, and Fuzzy J-Measure. The first three measures stem from statistics 
theory, while the last three are based on information theory, especially on 
entropy. More in-depth investigations are expected to emerge in the light of 
theoretical properties and algorithmic concerns. 

Another attempt to mention is the work by Au & Chan (1997, 1998), 
who proposed a certainty measure, called adjusted difference. The notion of 
adjusted difference is defined as: 

adjusted_diff(X.Y) = .^*-'^^ff^^'^) 
^max_ est(X, Y) 

where st_diff(X, Y) is the standardized difference between X and Y, and 
max_est(X, Y) is the maximum likelihood estimation of variance of 
standardized difference between X and Y. 

If \adjusted_diffiX, Y)\ > 1.96 (the 95% of the normal distribution), X=>7 
is considered valid. An adjusted difference based method for fuzzy AR, 
called F-APACS, is proposed, which could distinguish positive associations 
\f adjusted_dvff{X, Y) > 1.96 (or negative associations \f adjusted_diff{X, Y) < 
-1.96). Subsequently, such valid rules may be further evaluated using a 
measure, called weight of evidence, defined as: 

..r . ,. r. . , XT. rrx 1 DconfidenceiX => Y) 
Weight_of _Evidence{X ^Y) = log ^̂  -^ 

Dsupport{X => Y) 

which provides a measure of the difference in the gain of information. 
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4.3 Weighted Fuzzy Association Rules 

Sometimes, one may think of users paying more attention to certain 
attributes than to others. For example, a CFO (Chief Financial Officer) of a 
company may be more interested in "Return on Equity" than "Number of 
Employees", while a manager of human resources may have just the 
opposite interest. Therefore, if w^eights could be assigned to items in 
advance, then the rules associating more heavily weighted items will receive 
more attention. As a result, those rules will have more chances to come to 
front, and the mining efficiency could also improve due to the fact that fewer 
frequent itemsets (i.e., the itemsets whose degrees of support are greater than 
or equal to threshold a) will be involved in the mining process. 

Similarly, in fuzzy association rule mining, weights could also be 
applied to distinguish the importance of different items. Some approaches by 
Cai & Fu et al. (1998), Gyenesei (2000b), Shu & Tsang et al. (2000) etc. 
have already been proposed, which are thought of to be basically similar. For 
instance, for / = {Ij, I2, ..., Im) and Z/on R{f), each A (A: = 1, 2, ..., w) is 
assigned a certain weight Wk, Q < Wk < \. Thus, the extended support (in 
number) forXis defined as follows: 

W_Support(X) = [ Â ;̂̂  (w^)] X Dsupport {X), 

where the A operator is used to account for the total weight of X, say E is 
used in (Cai & Fu et al., 1998), and 11 is used in (Shu & Tsang et al., 2000). 
Based on W_Support(X), W_Support(X:=>Y) and W_Dconfidence{X=>Y) can 
be defined as: 

W_Support(X=>Y) = W_Support{XKjY), 

W_Dconfidence{X:=>Y) = W_Support{X:=>Y) I W_Support{X) = 
W_Support(XuY) I W_Support{X). 

Further, when considering degrees of support (rather than support in 
number), WJDsupport can be further defined. For the E operator, the 
arithmetic mean may be applied (Cai & Fu et al., 1998), while for the O 
operator, geometric mean may be applied (Shu & Tsang et al., 2000), which 
are described below, respectively: 

W_Dsupport„(X) = [Xxex (^^ ̂ ] ^ Dsupport (X), 
I I 

W_Dsupportn(X) = [[l^^^(w^)f^ X Dsupport(X) . 
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A concern with these measures is that the Apriori-based mining methods 
could not be applied directly, because the property that W_Dsupport(V) < 
W_Dsupport{U) for t / c Fwill not hold in general. In this regard, when the 
n is used, Gyenesei (2000b) introduced a notion of the so-called z-potential 
frequent subset, i.e., X is a z-potential frequent subset if: 

fn.e;r (^^) >< n ^ . y (^;^)]^ "" Dsupport(X) > min-support, 

where z is the difference between \X\ and the maximum possible size of the 
frequent itemset, and Y (Y ^ X) is the remaining itemset with maximum 
weights. Thus, a mining algorithm could be developed with certain 
optimization strategies applied to the itemsets generation. 

When the S operator is used, Cai & Fu et al. (1998) introduced another 
notion called the maximum possible weight for a k-itemset (i.e., the itemset 
with k items) that contains Xas follows: 

^^xeX ^^1=1 to k-\X\ 

Based on this, the minimum support needed for a frequent k-itemset 

which contains X is given hy B(Y)= k x ££—, which is called the k-
^ ^ ^ ^ W(X) 

bound of itemset X. In this way, the optimized mining algorithm of itemsets 
generation could be achieved to certain extent. 

Differently from the above W-Dsupport and WJDcorifidence, Shu & 
Tsang et al. (2000) have proposed the following notions: 

W_Dsupport(X) = Ecount^.jnx.xKx^^xt)]^ 
| D | 

W_Dsupport(X^Y) = Icount^.o{[a.x(^x x ^ J ] A[n , . , (w, x^^)]} 
|D| 

W_Dconfidence{X^Y) = W_Dsupport(X:=^Y) I W_Dsupport{X). 

The corresponding mining algorithm is then of Apriori-type with certain 
optimization properties. 

However, there may exist two issues of weighted fuzzy association rules 
(WFAR), which are worthy to mention. One is related to the nature of data 
mining, and therefore limiting the applicability of WFAR Since data mining 
deals with hidden knowledge and assumes little about the data beforehand, 
there may be some items (data attributes) whose usefulness and importance 
is unclear until being discovered. That is, an uneven treatment of items (such 
as weights) may result in overlooking certain items and therefore the 
associations that are potentially important and useful. The other issue is 
related to the determination of the weights. Like many thresholds that are 
qualitative and heuristic involving human judgment, weights are of similar 
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nature. In the case of many attributes (i.e., many weights) and highly 
sensitive weight settings, the measures and then the discovery outcomes can 
be too unstable or strongly dependent on the settings, which may not be 
desirable. 

5. FUZZY IMPLICATION BASED 
ASSOCIATION RULES 

As indicated previously, traditionally a rule of X=>ris referred to as an 
association between X and Y and it is modeled by conditional probability 
(e.g., Dconfidence) forX-to-7. In further investigating X-to-7 relationships, a 
more logic-oriented view may be taken so as to reflect, to certain extent, 
implication from X to Y. Still in terms of association rules and in fuzzy 
contexts, a few efforts have been made to consider partial degrees that X 
implies Y. For instance, in (Chen & Wei et al., 1999; Dubois & HuUermeier 
et al., 2001; HuUermeier, 2001a), fuzzy implication is introduced to 
represent the degree that a tuple supports X-to-7. Specifically, Chen & Wei 
et al. (1999) presented a new notion of Dsupport{X^:^Y) based on fuzzy 
implication as follows: 

Dsupportt{X^=>Y) = Truth_yalue{Dsupportt{X)^=>Dsupportt{Y)) = 
FIO{Dsupportt{X), DsupporttiY)), 

DsupportiX^Y) = Hcount^JDsupportXX^Y)] 

\D\ 

Here, FIO stands for fuzzy implication operator, which is a mapping 
from [0, l]x[0, 1] to [0, 1] (Chen, 1998), whose specific forms need to be 
determined according to concrete situations at hand. Since FIO is generally 
not symmetric, X^=>Y and 7=>X could be distinguished. Notably, if the min 
operator is used instead of the FIO, fuzzy implication based association rules 
are degenerated to conventional fuzzy association rules. 

Furthermore, in order to avoid the situation that Dsupportt{X) is too 
small (or even equal to 0) where semantically X=>7 can hardly be regarded 
as being supported by such a tuple t, Dsupportt(X^=>Y) has been defined as 
follows: 

Dsupportt{X^:^Y) = A{Dsupportt{X), FIO{Dsupportt{X), Dsupportt{Y)), 

in generally with A, and in particular with the min operator (Chen & Wei, 
1999). Note that Dubois & HuUermeier et al. (2001) and HuUermeier (2001) 
used the O operator for A. 
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Based on the Dsupport measure, the Dconfidence measure could also be 
extended in a fuzzy implication context. For instance, Chen & Wei et al. 
(1999) introduced the following extension: 

^count [Dsupport f(X)] 

Similar attempts are found in Dubois & Hullermeier et al. (2001), 
Hullermeier (2001). Further, in (Hullermeier, 2001) another possibility is to 
relate Dsupport(X:=>Y) to Dsupport(X:=>-^Y). In this case rule X=>7 should 
be supported much better than rule X=^-^Y\ 

Dconfidence{X^Y)= T'ourit^^^[Dsuppor^X ^ Y)] 
^count [Dsupport ^{X i=> -iT)] 

Hullermeier (2001) further considers to represent an implication-based 
fuzzy ruleX=>7as a convex combination: 

Dsupport{X^Y) = YPm>< Truth _ value(Dsupport{X) =>̂  Dsupport (Y)) 
X=>„YeG 

~ ^Pm^ ^^^m (Dsupport{X), Dsupport{Y)) ? 

where G is a class of (modified) pure gradual rules andj!?;„'s are weights that 
might be interpreted as probability degrees. FlOm is the modified Rescher-
Gaines implication operator with FIOm{a, b) = a^=>mb = 1, if m{a) < b and 0 
otherwise, where m is a mapping [0, 1] -^ [0, 1]. Based on the definition, a 
fuzzy association rule X=>7 can be regarded as an implication-based 
(gradual) fuzzy rule, and can be seen as a convex combination of simple or 
pure gradual association rules, each of which in turn corresponds to a 
collection X;t =^ ^W(A) (^ ^ ^? where L is an underlying finite scale of 
membership degrees and Ax is the A-cut of ̂ ) of ordinary association rules. 

Recently, Chen & Yan et al. (2002) introduced a notion called degree of 
implication (denoted as Dimp) to evaluate the strength of association rules 
from a more logic-oriented viewpoint. That is, Dimp is used to reflect the 
logic relationship between Xand 7as follows: 

Dimpt(X:=>Y) = FIO{Dsuppt{X\ Dsuppt{Y)\ Dimp(X:=>Y) 

\D\ 
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An association rule satisfying Dsupport and Dimp is denoted as ARsi 
For Dimp, a proper selection of FIO and t-norm combinations could help 
avoid database scanning, and therefore improve the efficiency of rule 
generation. In doing so, certain properties are proven so as to form rule 
derivation and pruning strategies. Moreover, desirable properties of simple 
association rules {SAK) are incorporated in optimizing the mining process 
(Chen & Wei, et al., 2002). 

6. MINING FUNCTIONAL DEPENDENCIES WITH 
UNCERTAINTIES 

In this section, another type of association, namely, functional 
dependency, will be discussed in a viewpoint of data mining as well as 
uncertainties. Two aspects of consideration are fuzzy functional 
dependencies and functional dependencies with degrees. 

6.1 Mining Fuzzy Functional Dependencies 

A functional dependency {FD) is considered as a piece of semantic 
knowledge in terms of integrity constraints, and also an important notion in 
database modeling. Classically, for attribute collections X and F in a 
relational schema of database Z), a FD, X-^Y, represents "equal rvalues are 
dependent on e^wa/Xvalues". More concretely, 

X->7<=> for any two tuples / and r in D, \it[X\ = t\X\ then t[Y\ = t\Y\. 

This section focuses on two types of efforts in discovering fuzzy 
functional dependencies (FFD), and discovering functional dependencies 
with partial degrees (FDd), respectively. 

First, fuzzy functional dependencies (FFD) are extensions of classical 
FD, aimed at dealing with fuzziness in databases and reflecting the 
semantics that close values of a collection of attributes are dependent on 
close values of a collection of different attributes. During the past couple of 
decades, considerable attention has been attracted to fuzzy databases and 
FFD. Please refer to a recent overview by Chen (1999) for more details. It is 
worthwhile to notice that various FFD extensions are related to their 
corresponding frameworks of data representation (i.e., fuzzy database 
models). Generally, fuzzy functional dependencies have different forms, 
depending on the different aspects of integrating fuzzy logic in classical 
functional dependencies. 

Somewhat differently from the ways that are of a typical data mining 
nature, Cubero et al. (1995, 1999) presented a method of data summarization 
through fuzzy functional dependencies in both crisp and fuzzy databases, in 
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which projection operations are applied to reduce the amount of data in 
databases without loss of information. 

Recently, Wang & Shen et al (2002) presented a method to discover 
fuzzy functional dependencies in similarity-based relational databases with 
an incremental strategy, which has an advantage in dealing with non-static 
databases. Thus fuzzy functional dependency mining could tolerate noises 
which exist mostly in real databases. Generally speaking, the discovered 
fuzzy functional dependencies expressed the semantics that "similar Xs infer 
to similar 7s" to some extent. Moreover, Yang & Singhal (2001) attempted 
to present a framework of linking fuzzy functional dependencies and fUzzy 
association rules in a closer manner. Generally, functional dependencies and 
association rules are both associations between data, but in different forms. 
More attempts in this direction are expected to emerge in the near future. In 
the next subsection we will discuss the other type of efforts on data mining 
to discover FDd. 

6.2 Mining Functional Dependencies with Degrees 

In massive databases where noisy or incomplete/imprecise information 
exists, classical FD may be too restrictive to hold, since the correspondence 
of equal X-7 values must be 100% satisfied, by definition. However, it may 
be meaningful to take into account partial satisfaction of FD, being capable 
of tolerating the noisy or incomplete/imprecise information at certain 
degrees. 

Huhtala et al. (1998a, 1998b) have explored a notion called approximate 
dependency so as to represent functional dependency that "almost holds". 
For example. Gender is approximately determined by First Name, taking 
consideration of nulls, errors or exceptions. Though this approximation can 
be modeled with fuzzy logic in the light of FFD, they concentrated on FD in 
terms of error rates. In particular, the following is true: 

min{|S|| S c D and X-> Y holds in (D-S)} 
error(X -> Y) = ' ? 

|D | 

which has a natural interpretation as the fraction of transactions with 
exceptions or errors affecting the dependency. Given an error threshold s e 
[0, 1], we say that X->7 is a valid approximate (functional) dependency if 
and only if error(X->y) < s. Thus the task of mining an approximate 
dependency could be done by means of mining classical functional 
dependencies with an efficient algorithm, called TANK, proposed in (Huhtala 
& Karkkainen et al. 1998a). 

Recently, Wei & Chen et al. (2002) presented the notion of functional 
dependency with degree of satisfaction, which is another measure for degree 
of satisfaction that a functional dependency holds in D, For a classical 
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database D in schema R{I) where / = (//, I2, ..., /m), and X, Yare collections 
of attributes (items) in /, then Y is called to functionally depend on X for a 
tuple pair (/, t') of A denoted as ^tri^-^Y). if ^M = ^ 'M then t[Y\ = r [ ^ -
Let TRUTH^t, niX-^Y) denote the truth value that (,, r)(X->10 holds. 
Apparently, TRUTH^t, t'){^'^Y) e {0, 7}, which is consistent with truth 
values of classical logic. In other words, (t, t') satisfies X-^Y if 
TRUTH^t,n(X-^Y) = 1, and (/, t') disssLtisfiQs X-^Y if TRUTH^t,tiX^y) = 0. 
Consequently, the degree that D satisfies X->7, denoted as JUD(X-^Y), is 
TRUTHD(X^Y): 

Vt.t'eD 

TRUTHo(X -» Y) = -̂ ^^— 
IPDI 

where \PD\ is the number of pairs of tuples in D. Clearly, \Po\ = n(nA)/2. 
Thus, a functional dependency with degree of satisfaction (FD^i) is of a form: 
X->7at JUD(X-^Y) e [0, 1]. It can be easily seen that FD is a special case of 
FDd. Furthermore, several desirable properties of FD^ have been obtained, 
some of which can be incorporated into the extended mining algorithm as 
computational optimization strategies. 

7. FUZZY LOGIC IN PATTERN ASSOCIATIONS 

Discovering relationships among time-series data is of particular interest 
since time-series patterns reflect the evolution of changes in attribute values 
(values of variables) with sequential factors such as time, and have often 
been encountered in real applications in forms of, say, sales, production, 
economics, and stock data. There may exist many types of relationships 
among time series data and therefore the methods used to study the 
relationships can be different (Agrawal & Srikant, 1995; Srikant & Agrawal, 
1996; Bemdt & Clifford, 1996; Ketterlin, 1997; Das et al., 1998; Gavrilov & 
Anguelov et al., 2000; Last & Klein, 2001). Unlike the relationships studied 
by traditional approaches such as time series analysis and econometrics, the 
relationship represented by the similarities of time series patterns was the 
focal point of the efforts (Agrawal & Srikant, 1995; Srikant & Agrawal, 
1996; Bemdt & Clifford, 1996). In other words, the value evolution of each 
time-series variable is viewed as a pattern over time, and the similarity 
between any two such patterns is measured by pattern matching. 

Before discussing pattern similarities, a different attempt is worth 
mentioning, which deals with pattern association in terms of association 
rules. A straightforward approach is to use periodic segments and then 
transfer the time series dataset into the conventional binary database (Lu & 
Han et al., 1998). This is in a similar spirit to domain partitioning in 
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discovering quantitative AR, as discussed in previous sections, such that 
conventional association rules mining methods can be applied. 

In this section, instead, we will briefly discuss the approaches to 
discovering pattern associations according to similarities of time series data. 
Two major issues are involved in dealing with similar time-series patterns. 
One is the measurement for pair-wise similarities. The problems related to 
this issue center around how to define the difference between any two 
patterns, say, in terms of "distance" and how to match the series in points of 
time. The other issue is the grouping of the similar patterns, in which fuzzy 
relations and clustering may play an important role. Usually, static 
similarities relationship are studied, which could be obtained by computing 
the "distance" pair-wisely in a fixed matching fashion as shown in Figure 4. 
In this case, the matching scheme for curves a and b cannot be applied to the 
matching between curves b and c; and vice versa. Thus, any pair of curves a, 
b and c reflects a certain matching scenario, which is static schematically. 

Figure 4. Static Matching Schemes. 

Furthermore, the way to discover the similarities among the curves could 
be improved by matching the patterns dynamically. This can be done by 
using the Dynamic Time Warping (DTW) method, a method used in speech 
recognition (Bemdt & Clifford, 1996). Chen & Wei et al. (2001) presented a 
method based on DTW to discover pattern associations. 

Given two series S(sj, S2, ..., Sm) and T(ti, t2, ..., O J S and T can be 
matched point to point, where (/, j) represents that St matches tj, which is 
called a matching pair. The matching distance ofst and tj is defined as: S(i,j) 
= \Si - tj\ or di^ij) = (Si - t]f. Then, 5/ min-matches tj, if in su •ŝ i? • • • ? ^i and tu 
t2, ..., tj, the sum of matched distances of all the matching pairs (denoted as 
r{ij)) is minimal. Formally, 

r{iJ) = mm2^d{i,J,), 
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where 4 = 1, ..., i,jk= 1, ...J,p = max{ij). Since Sand Tare time series, so 
pairs should be matched continuously, which means 0 < 4 - h-i ^ 1 , 0 <jk -
jk-i < 1. Thus, S matching T means that Sn min-matches Tm. Therefore the 
distance between S and T'\s\ 

DTW(S, T) = Tin, m) = min ^S{i,, y j , 

where 4 = 1 , . . . , ^̂ 5A = 1, ..., /w,/? = max{n, m\ 0 < 4 - 4-y ^ 1 , 0 <jk -jk-i ^ 
1. Furthermore, based on the notion of dynamic optimization, one may have: 

r{ij) = S{iJ) + min{r{i'\J\ r{iJA\ r{i-\J-\)). 

Thus, with the DTW method, any two time-series patterns are matched 
dynamically in distance. There are a number of techniques to convert 
"distance" into "closeness", which is then normalized on [0, 1]. Furthermore, 
with fuzzy clustering methods based on the relationship set, whose elements 
are the closeness degrees, a complete graph could be derived. 

Finally, it is worthwhile to indicate that, though at the inception stage, 
discovering pattern associations is deemed a promising area of theoretical 
and practical explorations and many attempts are expected to emerge, in that 
fuzzy logic will play an important role. 

8, CONCLUSIONS 

This chapter has aimed at providing readers with a state-of-the-art 
overview on discovering fuzzy associations. Discussions have centered 
around fuzzy association rules in dealing with partitioning quantitative data 
domains; crisp taxonomic belongings and linguistically modified rules; 
various fuzzy mining measures from different perspectives such as 
interestingness, statistics and logic implication; fuzzy/partially satisfied 
functional dependencies for handling data closeness and noise tolerance; and 
time-series data patterns that are similar with partial degrees. 

Fuzzy association mining has been regarded as a promising area for 
both researchers and practitioners, due to its advantage in expressing natural 
language and coping with uncertainty of knowledge. In addition to 
theoretical explorations, some applications and pilot systems have been 
developed or used. Examples include fuzzy AR for medical cases (Delgado 
& Sanchez et al., 2001), fuzzy AR for web access (Wong & Shiu et al., 
2001), fuzzy associations for dynamic financial forecasting with FAR ACS 
(Romahi & Shen, 2001), and fuzzy AR in intrusion detection (Luo et al., 
1999, 2000), etc. 

Future research in the field may emerge from various perspectives by 
broadening and deepening explorations of the issues discussed in this 
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chapter. While a remarkable number of theoretical investigations including 
knowledge representation, uncertainty models, properties, computational 
complexity and algorithmic improvement are expected to appear 
continuously in forthcoming years, an increasingly rich variety of 
applications and implementations will be motivated. More concretely, fuzzy 
association rules may still be one of the focal points of research interest, 
where partitioning or clustering for continuously valued data, as well as 
semantic summarization, linguistic modification and logic implication for 
rule expressiveness, will attract considerable attention. In addition, 
interestingness and related measures will be another track of efforts. Major 
focus may be on the incorporation of measure-related properties into the 
mining process so as to improve the algorithmic efficiency and rule 
usefulness, which may further be coupled with domain knowledge and real 
contexts. Moreover, increasing attempts will be witnessed at discovering 
uncertainty-related data dependencies. Particularly, FFD and FDd will be 
further explored to address issues of semantic expression (notions, extension 
operators, properties, etc.) and optimization strategies (massive data nature 
and corresponding mining algorithms). Finally, discovering pattern 
associations is considered a promising area of future research. Time-series 
data and sequence behaviors are expected to be of primary interest. A 
characteristic of the efforts is the multi-disciplinary nature in that various 
techniques and theories may combine, including fuzzy logic (e.g., in 
matching, similarity, clustering, etc.). 

It is worth mentioning, as far as fuzzy extension and knowledge 
discovery is concerned, that fuzzy logic may be applied when fuzziness 
appears in the problem at hand (whereas other kinds of uncertainty may 
require to apply different approaches, e.g., probability theory for 
randomness), and that data mining techniques and conventional methods 
sometimes are supplements, rather than substitutes, for each other (e.g., 
pattern associations vs. time-series analysis and econometrics). 
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1. BACKGROUND 

Zadeh [1965] proposed the idea of fuzzy sets and subsequently 
introduced this very idea into systems theory [1973]. A new class of 
systems called fuzzy systems was thus created. Since then, based on 
Zadeh's ideas successful applications of fuzzy sets and systems have been 
reported in many areas. Other than their effectiveness in problem solving, 
the attractiveness of fuzzy sets and systems lies mainly in their ability to 
capture human thinking and understanding. 

The issues of modeling, control, and optimization are important to any 
system concept, and fuzzy systems are no exception. The modeling issue 
must be addressed first because a good system model is essential to 
successful system control and optimization. The importance of fuzzy system 
modeling is well recognized by the research communities, evidenced by the 
high activity in this area. Entering "fuzzy models" as the keyword, the 
Science Citation Index (SCI) database generates close to 15,000 records. 
Research in this area has been and still is very active. 

Fuzzy modeling efforts were largely started by researchers in fuzzy 
control where fuzzy sets and fuzzy logic found early success. Since then, 
continuous developments were made and never ceased. The bulk of fuzzy 
models comprise a set of If-Then rules. Roughly speaking, there are two 
major categories of such fuzzy model forms: linguistic models based on 
collections of If-Then rules with vague predicates and operated on 
Mamdani-like fuzzy reasoning [Mamdani and Assilian, 1975] and TSK 
models based on the Takagi-Sugeno-Kang (TSK) method of reasoning 
[Takagi and Sugeno, 1985; Sugeno and Kang, 1986]. A rule of a MISO 
(multi-input and single output) linguistic system model has the following 
form: If {xi is Aij) and {x2 is A2j) and ... and (x„ is Anj) Then y is Bk, where Xi 
is the /-th input (/ = 1, . . . ,«); Aij is they-th linguistic term defined on Xi and 
Bk is the k't\v linguistic term defined on the output y. For classification 
problems, Bk is simply a constant and is treated as a fuzzy singleton. A rule 
of a TSK model can be described as If (xy is Aij) and {x2 is A2j) and ... and 
{Xn is Anj) Then y =J{x^, in which the mapping function,/, could be linear, 
nonlinear, or simply a constant. Among the two, linguistic models are better 
suited for the discovery of human understandable knowledge from real 
world data. Therefore, this study will focus only on fuzzy linguistic models. 
It should be noted that there are other special forms of fuzzy rules and 
generation methods. For example, Kim [1997] presented an algorithmic 
method to generate rules taking the form "If..., else if..., else if..., end if" 
Such rules resemble a decision tree in which the branch points indicate the 
divided search route. Special fuzzy models such as this one are outside the 
scope of this review. 
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Two major aspects in the identification of a fuzzy model are structural 
identification and parameter identification. The number of variables, the 
number and shape of fuzzy terms of each variable, and the number of rules 
constituting the model determine the structure of a fuzzy model. In a fuzzy 
model, the parameters are those associated with the membership functions of 
the fuzzy terms. Guillaume [2001] recently performed an interpretability-
oriented review of three families of automatic rule generation methods (i.e., 
grid partitioning, clustering, and hybrid methods) and two structural 
optimization issues (i.e., variable selection and rule reduction). In that, he 
defined three necessary conditions for a set of fuzzy rules to be interpretable 
as follows: 

1) The fuzzy partition must be readable, in the sense that the fuzzy sets 
can be interpreted as linguistic labels. 

2) The set of rules must be as small as possible. 
3) The rules should allow for the definition of the if-part by using a 

subset of independent variables rather than the full set. 

Pedrycz [1998] envisioned an important synergy between fuzzy models 
and methods of knowledge discovery, especially where data mining leads to 
a multivariable model in the form ofy =fixj, X2, ..., JC„) and this model needs 
to be easily comprehensible and fully interpretable. Following this thinking, 
this chapter intends to give an overview of those fuzzy modeling methods 
that produce human understandable knowledge, in the form of either fuzzy 
If-Then rules or fuzzy decision trees, from data. As mentioned above, the 
TSK models successfully used in control but not as comprehensible are 
excluded here. To prevent the loss of interpretability, the number of rules or 
the size of a tree should not be too large. Therefore, studies to control or 
reduce the size of a rule base and a tree are also of interest. This review 
differs from Guillanume's [2001] in several aspects. First, the scope of this 
review is wider in the sense that not only rule generation and structural 
optimization, but also parameter identification and tuning are considered. In 
addition, many papers not covered by Guillanume are reviewed here. 
Secondly, other than fuzzy If-Then rules, fuzzy decision trees are also 
included. As a result of this enlarged scope, we propose to add one more 
necessary condition below to make it four for a set of fuzzy rules to be 
interpretable. 

The fuzzy partitions for each variable should not be too many (to the 
point that is difficult to comprehend) and commonly shared by all rules. To 
minimize performance degradation, the fuzzy partitions and the associated 
parameters should be data-driven and optimized using some algorithm. 

This review will examine the following fuzzy modeling issues: 
1) Number of variables; 
2) Number of fuzzy terms per variable; 
3) Subset of variables per rule; 
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4) Rule weight; 
5) Number of rules (initial/selection); 
6) Shape of fuzzy terms; 
7) Parameters of fuzzy terms (initial/tuned). 

The first six are structural identification issues, while the last one is 
related to parametric identification and tuning. Most papers addressed part of 
the above-mentioned issues in various ways. For better identify their 
differences, a summary table is also provided. Due to the plenteous works in 
this area, it is nearly impossible not to let out a few of them. Our apologies 
go to all authors contributing to this field of research that have been 
unintentionally missed. 

The next section briefly summarizes the basic concepts used in nearly all 
fuzzy modeling methods. Section 3 surveys those methods developed for the 
generation of fuzzy If-Then rules. Section 4 is devoted to those methods 
developed for the generation of fuzzy decision trees. Section 5 summarizes 
the applications that have been selected for fuzzy modeling. The discussion 
is given in Section 6, followed by the conclusions. 

2. BASIC CONCEPTS 

Two fundamental issues that every fuzzy modeling method must address 
are how to represent the fuzzy concepts in the appropriate level of 
granularity, and how to use the fuzzy model to derive a conclusion. 
According to the fuzzy set theory, the fuzzy concepts are represented as 
membership functions. The decisions to be made include what function 
form, how many, and what parameter values to use. Commonly used 
membership function forms are triangular, trapezoidal, Gaussian, sigmoidal, 
and B-spline for real-valued variables, and singletons for discrete-valued 
variables. 

Most fuzzy modeling studies assumed that all variables have the same 
form and the form was often arbitrarily chosen. One exception is the work of 
Shi et al [1999]. They allowed the algorithm to select any one of the six pre
selected types of membership functions for each variable appearing in a rule. 
The number of membership functions used determines the granularity of 
fuzzy partitions. The simplest and naive approach is to arbitrarily pick a 
number and assume that all the membership functions are uniformly 
distributed in the universe of discourse of each variable. A more 
sophisticated approach is to fix a different number of membership functions 
for each variable and allow the parameters to be tuned by some methods 
such as genetic algorithms, gradient descent, and fuzzy clustering based on 
the training data. Liao [2001] proposed generalized n functions for fitting the 
membership functions defined by fuzzy c-medians. The most sophisticated 
approach is to allow the algorithm to determine the optimal number of 
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membership functions for each variable and to tune the associated 
parameters as well. While most studies define membership functions for 
each variable separately, it should be pointed out that some studies define n-
dimensional membership functions for the entire input product space instead. 
Such a treatment is desirable if the interdependency between variables 
cannot be ignored and/or the system dimension is high. The problem is that 
it is difficuh to interpret ^-dimensional membership functions, especially 
when n is large. We are not aware of any fuzzy decision tree that uses n-
dimensional membership functions. Such use might require the aggregation 
of features leading to the reduction of tree size. 

One common task that every fuzzy modeling method has to perform is to 
check the performance of the fuzzy model generated during the construction 
process. To this end, every method must employ a fuzzy inference method 
in order to derive the solution for a test datum. In the following we describe 
the basic components of a fuzzy inference method. 
A. Pattern matching - This step matches a membership function in a rule 

(or a tree) with the input value of an unknown vector for which an 
output is to be determined. If the input value is crisp, this step is also 
called fuzzification. If the input value is fuzzy, this operation is 
performed based on some concept to compute the similarity between the 
two fuzzy sets being compared. The result is a crisp value called the 
matching degree. The input and membership functions could be one-
dimensional or w-dimensional, depending upon what type of rules are 
induced in the first place. 

B. Aggregation of matching degrees - This step combines the matching 
degrees of all variables appearing in the if-part of a rule (or all the 
branch nodes leading to a leaf in a tree) together. It is unnecessary if n-
dimensional fuzzy sets are defined. This operation can be accomplished 
by any t-norm operator such as the "product" operator or the "minimum" 
operator. 

C. Implication operation - This step computes the result of a rule (or a leaf) 
by linking its if-part (or all branch nodes leading to the leaf) with the 
then-part (or the leaf itself). A number of operators have been proposed 
in the past. Some t-norm operators such as the "product" operator and 
the "minimum" operator are commonly used in this operation. If there is 
a rule weight, it is also included in this operation as well. The result 
could be fuzzy or crisp, depending upon whether the rule consequent is 
fuzzy or crisp (singleton). To simplify the calculation, a fuzzy rule 
consequent is often reduced to a singleton of its center value using some 
defuzzification method. 

D. Aggregation of rule results - This step consolidates all the rule results 
(or leaf results in the case of fuzzy trees) into one. Any s-norm (or t-
conorm) operator can be used for this operation. Among them, the 
"maximum" operator or the "sum" operator is often used. In the case 
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that the rule consequent (or the leaf) is a crisp value (treated as 
singleton), the resultant fuzzy set simply comprises all singletons if the 
"sum" operator is used, or all dominant singletons if the "maximum" 
operator is used. The singleton could represent (i) the center value of a 
fuzzy set, or (ii) a constant denoting some class in a pattern recognition 
application. 

E. Defuzzification - This step is used to determine the crisp output for the 
test datum. Many methods have been proposed for this operation. 
Among them, the centroid defuzzifier is the most popular. Let |Li(y) be 
the aggregated fuzzy rule result for some fuzzy variable y. If |Li(y) is a 
piecewise continuous membership function, then 

,_ \Ky)ydy 

\iu{y)dy 

(1) 
On the other hand, if \x(y) is discrete comprising singletons, then 

By dropping the denominator, Eq. (2) becomes a linear defuzzifier. 

3. GENERATION OF FUZZY IF-THEN RULES 

Methods developed for the generation of Mamdani-like form of linguistic 
models can be roughly divided into six categories: grid partitioning, fuzzy 
clustering, genetic algorithms, neural networks, hybrid methods, and others. 
These methods differ in how each aspect of constructing a fuzzy model is 
accomplished. Each method has a fuzzy inference component for predicting 
the outcome of an unseen datum. All neural fuzzy systems build the network 
structures around the chosen fuzzy inference method. The fuzzy inference 
method employed might differ from one method to another. The commonly 
used ones have been reviewed in Section 2. The representative method in 
each category and concise summaries of subsequent improvements are 
discussed in detail below. Hybrid methods usually employ more than one 
method. Each of them is reviewed under the category of the primary method 
employed. Most methods consider only numeric attribute data with a few 
taking fuzzy data as input. Some methods can be easily modified to handle 
nominal attribute data as well by using the concept of fuzzy singleton, 
whereas others cannot be easily adapted and require a total different 
approach. 
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3.1 Grid Partitioning 

The WM method, short for Wang and Mendel, is one famous grid 
partitioning method [Wang and Mendel, 1992]. It consists of five steps, as 
summarized below. 

Step 1 - Divide the Input and Output Spaces into Fuzzy Regions 

Given is a set of examples with multiple inputs and a single output, 
denoted as (x/ ; / ) where / = 1, ...,n and t= I, ...,Nwith n andNdenote the 
number of variables and examples, respectively. Define the universe of 
discourse of each input variable as [xf; Xt^] and the output variable as [y"; y^]. 
Divide each universe of discourse into m regions, which can be different for 
different variables. The lengths of the regions are usually set to be equal; and 
the shape of each membership function associated with each region that 
defines a fuzzy term is assumed triangular, denoted as (/, c, r) for (left 
bound, center, and right bound). Two special properties of fuzzy terms so 
defined are: (1) Adjacent terms have Vi overlap; and (2) For the middle 
terms, the left bound of termy is the center of termy-l and the right bound of 
term j is the center of term y+l. Therefore, knowing term centers is 
sufficient to determine all the fuzzy triangular terms. 

For implementation, the minimal and maximal values of each variable are 
often used to define its universe of discourse. That is, [x/; X/̂ ] = [min(x/), 
max(A:/)]. They are also considered to be the center of the most-left term and 
the most-right term, respectively. That is, Cu = min(:v/) and Cim = max(X;„). 
Accordingly, the other term center, C/,, can be computed as follows: 

Cij = min(jC7) + (/-1) (max(x/) - mm(Xi))/(m-1), wherey = 2, ..., m-1. (3) 

Step 2 - Generate Fuzzy Rules from the Given Examples 

First, determine the membership degrees of each example belonging to 
each fuzzy term defined for each region, variable by variable (including the 
output variable). Secondly, associate each example with the term having the 
highest membership degree, variable by variable, denoted as mdt. Finally, 
obtain one rule for each example using the term selected in the previous step. 
The rules so generated are "and" rules, meaning that the antecedents of the 
if-part must be met simultaneously in order for the consequent of the rule to 
occur. Letting Txt be a term selected for variable Xi of an example, a rule 
could look like: 

If x/ is Txi (with mdi) and X2 is Tx2 (with md2) and ... and Xn is Txn 
(with mdn) Then y'lsTy (with mdy). (4) 
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Step 3 - Assign a Degree to Each Rule 
The rule degree is computed as the product of the membership degree of 

all variables. Let D^ be the degree of the rule generated by example /. 
Mathematically, 

^ ' = ni=l,...nandyW<^/. ( 5 ) 

The degree of a rule generated by an example indicates our belief of its 
usefulness. 

Step 4 - Create a Combined Fuzzy Rule Base 
When the number of examples is high, it is quite possible that the same 

rule could be generated by more than one example with different degrees: 
such rules are referred to as "redundant" rules. In addition, rules with the 
same if-part but a different then-part could also be generated; such rules are 
then called "conflicting" rules. The redundant and conflicting rules must be 
removed to maintain the integrity of the rule base. This is achieved by 
keeping only the rule with the highest degree for each fuzzy region. (The 
one with the highest degree is deemed most useful; therefore, it is kept.) 

Up to this step, the fuzzy rule base is complete. Next, the usefulness of 
the rule base must be shown. This requires a fuzzy inference as given in the 
next step. 

Step 5 - Determine a Mapping Based on the Combined Fuzzy Rule Base 
To predict the output of an unseen example denoted as x,, the centroid 

defuzzification formula is used. Accordingly, the predicted output, y, is 
computed as 

R 

^amd'' •c'' 

y^^amd"^ 
(6) 

where amd ^ = Y[i=i,n^d[\ d is the center value of the consequent term of 
rule r\ and R denotes the total number of rules after the combination 
operation. 

The WM method assumes a priori knowledge about the number of 
variables, the number of fuzzy terms per variable, and the shape of fuzzy 
terms. The parameters of the fuzzy terms are determined based on the 
uniform grid-partition assumption. The if-part of each rule uses all input 
variables. The rule weight equals to the aggregated matching degree based 
on the "product" operator. Redundant rules are removed by keeping only 
the one with the highest rule weight. 

Three improvements of the WM method have been reported. Chan et al 
[1995] improved the accuracy of the WM method by incorporating a new 
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concept called "virtual fuzzy set" in the then-part of the rule. A virtual fuzzy 
set is determined from the centroid of the consecutive fuzzy sets. Instead of 
processing all the examples in one pass, only one single data point is 
processed at one time. This method thus allows incremental learning when 
new samples become available. Cordon and Herrera [2000] suggested two 
ways to increase the accuracy: (i) by allowing a specific combination of 
antecedents to have two consequents, the first and second in importance (i.e., 
Step 4 of the WM method is modified), and (ii) by following the WM 
method with a genetic algorithm as a rule selection method to keep only 
those good cooperating rules. Our preliminary study indicates that the WM 
method could be improved by applying a fuzzy c-means variant algorithm 
[Liao et al. 2003] to derive a better partition of the domain space or by using 
a genetic algorithm to determine the optimal number of terms per variable, 
separately. A joint use is expected to improve more, but is hampered by the 
long computation time due to the iterative nature of both genetic and fuzzy 
c-means algorithms. 

Another well-known grid partitioning method is the ESTT method 
developed by Ishibuchi et al [1992] for classification problems in which the 
output variable takes on discrete values (or singletons in the sense of fuzzy 
sets). Consider a classification problem with M classes. The INT method 
has three steps, as described below. 

Step 1 - Uniformly Partition the Input Space 
This step is identical to the WM method, except that the output space is 

not partitioned. 

Step 2 - Generate Fuzzy Rules from Given Examples 

For each hyperspace cell, a fuzzy If-Then rule is defined as follows: 

Ifxi is Txi and X2 is Tx2 and ... and x„ is Txn Then y belongs 
to Class C* with CF. 

For each rule, the class, C*, and the grade of certainty, CF, must be 
determined. To identify C*, one first calculates ac, the sum of compatibility 
of all Vs in class C, as follows: 

x'eC M 

C* is determined as the class that has the maximal sum of compatibility. 
That is, 

a^. = m a x { « i , . . . , a c , . . . , a ^ ) . (8) 
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If two or more classes take the maximum value or all the ac's are zero, 
the rule cannot be determined uniquely, and thus it is not induced. If a single 
class takes the maximum value, then the CF is determined as follows: 

M 

CF = (ac,-a)/J^ac, (9) 
C=l 

where 

«= I ]«c / (^ - l ) - (10) 

Step 3 - Determine the Class for an Unseen Test Datum Based on the Fuzzy 
Rule Base 

Let R denote the set of rules. Each test datum, x = {jc/, ... , x„}, is 
classified according to the following procedure: 

1) Calculate Pc for each class C {C= 1, ..., M) as 

Pc = max^.^c {/u^^, {x,) • //̂ ^2 (^2) I^Txn M'CF} (11) 
2) Find the class for the test datum, C , such that 

,0c,=max{A,...,y9c,...,y^^}. (12) 
If more than one class take the maximum value or Pc*=0? then the test 

datum cannot be classified. 
To cope with the difficulty in deciding the granularity of a fuzzy partition 

(or the number of fuzzy terms per variable), the concept of distributed fuzzy 
If-Then rules was proposed, where several partitions were simultaneously 
used. It was reported that high performance and its robustness with respect 
to the number of fuzzy terms in each axis are the main advantages of 
distributed fuzzy rules over ordinary fuzzy rules. However, one undesirable 
consequence is that the number of rules explodes quickly, especially when 
the dimension is high. To alleviate this problem, Ishibuchi et al [1995] 
employed a genetic algorithm to remove the irrelevant and unnecessary 
rules. To increase the accuracy without increasing the number of rules, 
Nozaki et al [1996] proposed an adaptive method that introduced an 
additional error-based procedure to adjust the grade of certainty of each rule 
according to its classification performance. 

By allowing a variable to take on a "don't care" value (with membership 
of one for all values in the universe of discourse), Ishibuchi et al [1997] 
were able to obtain rules using subsets of variables. The rule selection 
problem was formulated as a single objective and multi-objective problem, 
and was solved by genetic algorithms. They presented three ways to obtain a 
set of non-dominated rule subsets for the single objective case: employing 
variable weights, introducing a constraint condition on the number of rules. 
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and introducing a constraint condition on the number of correctly classified 
patterns. Ravi et al [2001] slightly modified the INT method by using some 
well-known aggregators such as the "compensatory and", "fuzzy and", and a 
convex combination of "min" and "max" operators in place of the traditional 
"min" and "product" operators to generate the initial set of rules. They then 
applied a modified threshold-accepting (TA) algorithm to find the smallest 
rule subset that maximizes the number of correctly classified patterns. They 
modified the original threshold accepting algorithm (a variant of the 
simulated annealing algorithm) proposed by Dueck and Scheuer [1990], by 
generating each neighborhood solution vector in a deterministic fashion 
from the given candidate solution vector, rather than chosen 
deterministically or randomly. 

Ishibuchi et al [1993] proposed a sequential subdivision method that 
starts with a rough partition and then refines only the subspace rule with low 
grade of certainty until 100% classification performance is attained or the 
maximum number of iterations is reached. Lin et al [1997] partitioned the 
input space in a similar fashion, but added a fuzzy neural network, similar to 
a four-layer radial basis function network, to refine the parameters. Kbir et 
al [2000] proposed a hierarchical fuzzy partition method based on 2^-tree 
decomposition. The decomposition is controlled by the grade of certainty of 
the generated rules for each fuzzy subspace and the deeper hierarchical level 
allowed. 

Abe and Lan [1995] defined fuzzy rules with variable regions by 
activation hyper-boxes which show the existence region of data for a class 
and by inhibition hyper-boxes which inhibit the existence of data for that 
class. These rules are extracted from numerical data by recursively 
resolving the overlaps between two classes. An input variable is deleted if 
the same rule set is obtained without it. Mikhailov et al [1996] partitioned 
the input space into activation rectangles, corresponding to certain output 
intervals. Based on those activation rectangles, trapezoidal or triangular 
membership functions and fuzzy rules with no rule weight are generated. To 
remove the redundant rules generated this way, a real-valued genetic 
algorithm method was employed [Lekova et al, 1998]. The values coded in 
the chromosome are the sensitivity parameters, defining the slope of the 
trapezoid or triangle. 

Zhang and Knoll [1999] proposed a learning approach to designing fuzzy 
controllers based on the B-spline model. The B-spline basis functions are 
automatically determined after each input is partitioned with a pre-specified 
order of the B-spline functions. Learning of a fuzzy controller based on B-
spline basis functions is then equivalent to the adaptation of a B-spline 
interpolator. They proposed to adapt the parameters of the controller output 
of each rule by using a gradient descent method. Optimal placements of the 
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B-spline basis functions for specifying each input is found by an algorithm 
working similarly to a self-organizing neural network. 

Castro et al [1999] proposed a procedure for generating fuzzy rules 
having a maximal structure from a set of examples, in the sense that fewer 
components are in the if-part of the rule and large numbers of examples are 
correctly identified. Starting from an empty set of definitive (maximal) rules 
and the set of examples, each example is first converted into one rule to form 
the initial set of rules based on a predefined set of fuzzy terms for each 
variable. Each initial rule is checked whether it is subsumed by some rule in 
the set of definitive rules. If yes, it is ignored; otherwise, perform a process 
of amplification in each variable. To reduce the number of rules, Castro et 
al [2001] subsequently proposed two improvements to the above procedure: 
ordering the input variables in the training examples based on their 
correlation with the output variable and removing the noise present in the set 
of training examples based on two measures, the distance with respect to the 
examples of the same type and with the examples of different types. After 
the initial set of rules is obtained, a genetic algorithm is applied to generate a 
minimal set of maximal rules which identify the evident knowledge in the 
set of examples. 

3. 2 Fuzzy Clustering 

The paper by Sugeno and Yasukawa [1993] is probably the first fuzzy 
clustering-based modeling method. They proposed to apply the fuzzy c-
means (FCM) algorithm to the output data only. The number of clusters, c, 
is determined so that S(c) reaches a minimum as c increases, in which S(c) is 
defined as: 

^(^)=i;z(/^")'"(ii^'-^/ii'-ii^'-^ii')' (13) 
where fiu is the membership grade of the Mh data belonging to the /-th 

cluster; Xt is the /-th data vector, V/ is the /-th cluster center vector; and x is 
the average value of all data. Consequently, every output y is assigned a 
membership grade belonging to each fuzzy cluster Bk (k = 1, ..., Af). By 
projecting ^^onto the input axes, one induces an input cluster for each axis. 
The projected input cluster is approximated with a convex fuzzy set. Each 
input and output cluster is then approximated with a fuzzy set of the 
trapezoidal type. For any data point in a cluster, we have A]{x/) = A2{x2) = 
... = An(xn) = Bk(y^). Thus, each cluster results in a fuzzy rule: 

If x/ is A J and X2 is A2 and ... and x„ is A^, Then;; is Bk . (14) 
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In some special cases, one might have more than one fuzzy cluster in any 
dimension of the input space corresponding to one fuzzy cluster in the output 
space. Therefore, the number of rules might not be equal to the number of 
fuzzy clusters. 

Emami et al [1998] proposed a three-step structural identification and 
two-step parameter identification methodology. The first step of structural 
identification is done by using the FCM algorithm to derive the fuzzy 
partition of the output space from the data in order to obtain the required 
number of rules for explaining the system behavior. The optimal fuzzy 
weight and number of clusters were determined by an iterative process. An 
agglomerative hierarchical clustering algorithm was implemented as an 
introductory procedure to find properly identified hard-cluster centers as the 
initial locations of cluster prototypes in the FCM algorithm. The second step 
selects significant input variables using an overall measure of the non-
significance of input variables. The third step employs a clustering technique 
called fuzzy line clustering to construct convex input membership functions 
from the output partitions one variable at a time. The first step of parameter 
identification specifies the "best" inference mechanism for the system with 
parameters optimized using the constr function of MATLAB, which is based 
on the sequential quadratic programming method. The second step tunes the 
parameters of input and output membership functions (trapezoidal) by 
applying the tuning algorithm of Segeno-Yasukawa [1993] with one 
modification, i.e., by using a variable adjustment value at each tuning step. 
Kilic et al [2002] modified the above-mentioned methodology for modeling 
pharmacological data. The modifications include (i) selecting the cluster size 
contingent upon the training error, (ii) projecting the output clusters into n-
dimensional input space and building input clusters without any assumptions 
of convexity, (iii) determining the similarity of the test data with respect to 
these input clusters via a k-nearest-neighbor search algorithm, and (iv) 
determining the significance of an input variable by degree in according with 
their weight in predicting the output, etc. 

Klawonn and Kruse [1997] discussed how two modified fuzzy clustering 
algorithms could construct better fuzzy models from data than FCM. Other 
than the prototypes and the membership degrees for each cluster, each 
algorithm also computes a (positive-definite) diagonal covariance matrix. 
The two algorithms were applied to the input-output data, rather than the 
output data only, as done in [Sugeno and Yasukawa, 1993]. One rule was 
obtained from each cluster by projecting the fuzzy cluster to the one-
dimensional coordinate spaces. To convert a discrete fuzzy set to a 
continuous one, the convex hull that covers all discrete data points is 
computed. The convex hull is then approximated to a trapezoidal function by 
using a heuristic algorithm that aims at minimizing the sum of quadratic 
errors. Hirota and Pedrycz [1996] proposed a directional clustering 
algorithm that takes the directionality requirement into account by 
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incorporating the nature of the functional relationships as part of the 
objective function to guide the formation of the clusters. The clustering 
process is carried out in a bottom-up manner. The minimum number of 
clusters that does not lead to substantial performance degradation is taken as 
the "plausible" number of clusters. To generate the fuzzy model from pairs 
of input-output data, the original space is discretized using triangular 
membership functions with V2 overlap level between two consecutive terms. 
The modal values of these terms are situated at the cluster prototypes. 
Gomex-Skarmeta and Jimenez [1999] proposed a hybrid method that uses a 
fuzzy clustering method like the FCM to generate the initial fuzzy rules from 
pairs of input-output data and then applies a genetic algorithm to tune the 
rule parameters. Once the pre-specified number of clusters is found, fuzzy 
clusters in each domain are projected. Then the extensional hull of each 
projected fuzzy set is obtained, and approximated with a trapezoidal fuzzy 
set. Each individual in the GA is a rule set with each rule denoted by a 
sequence of four parameters associated with each trapezoidal fuzzy set in the 
if- or then-part of the rule. For comparison purpose, the GA can also be used 
alone to generate and refine rules from data with or without some priori 
information. More details about this version of GA are given in the next 
section. 

Along the same line of generating fuzzy models from input-output data, 
Espinosa and Vandewalle [2000] presented an algorithm called the 
autonomous fuzzy rule extractor with linguistic integrity (AFRELI), which is 
complemented with the FuZion algorithm for merging consecutive 
membership functions while guaranteeing the distinguish ability between 
fuzzy sets. The AFRELI algorithm is a two-step approach to extracting rules, 
which allows the incorporation of a priori knowledge. The first step uses 
clustering and projection techniques to find good initial positions for the 
fuzzy sets in the input domains. Given pairs of input-output data, find the 
pre-specified number of clusters by using the mountain clustering method to 
initialize the centers and number of clusters and refine them using FCM. 
Taking the projected value of each prototype as the modal value of a 
triangular membership function together with two extreme values, construct 
the triangular membership functions with overlap of 1/2 for each variable. 
The second step reduces the complexity of the model (number of 
membership functions) using the concept of semantic integrity as a 
framework and the FuZion algorithm as the implementation tool. The 
FuZion algorithm is a routine that merges triangular membership functions 
whose modal values are "too close" to each other, determined by a preset 
minimum acceptable distance between modal values. 

Yao et al [2000] proposed an entropy-based fuzzy clustering (EFC) 
method and used it for fuzzy modeling. The EFC method calculates the 
entropy of each data point and selects the data point with minimum entropy 
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as the first cluster center. Next, it removes all data points having similarity 
larger than a threshold p with the chosen cluster center. This process is 
repeated till all data points are removed. If outliers are present, another 
parameter y is set (e.g., at 5% of the total number of data points). Before 
selecting a data point as a cluster center, count the number of data points that 
have similarity with this data point greater than p. If this number is less than 
Y, then the data point is deemed unfit to be a cluster center and is rejected. 
Once the cluster centers are found, they are used to obtain a fuzzy model 
with a collection of rules equal to the number of clusters. Each fuzzy set 
appeared in each rule is assumed to be defined as a standard deviation 
estimated by using a simple formula. 

Delgado et al [1997] presented different approaches to the problem of 
fuzzy rule extraction by using fuzzy clustering as the main tool. These 
approaches range from a pure approximate approach, which obtains more 
precise fuzzy rules in the form of "if JC is ^ , then ;; is B'\ to a pseudo-
descriptive one, which obtains more "linguistic" ones in the form of "if xi is 
Au X2 is A2, ..., and x^ is A^, then y is 5 " in the sense that they can be 
interpreted by an expert. The x in "if jc is ^ then y is 5" is a Cartesian 
product of A:I, :v:2, ..., and x„ while A denotes a multi-dimensional fuzzy set. 
These methods form clusters by working either with input-output data all 
together, input and output separately, or each individual variable one at a 
time. 

3.3 Genetic Algorithms 

Genetic algorithms (GAs) have been applied to fuzzy modeling in 
different modes: structural identification only, parameter identification only, 
and structural identification as well as parameter identification. Early works 
focused mainly on the parameter tuning of fuzzy inference systems used in 
control. Today, a genetic algorithm is often part of a hybrid fuzzy modeling 
method. Since the complete fuzzy modeling process addresses both 
structural identification and parameter identification, our review in this 
section will consider only those works addressing both issues. The 
sequential approach and the simultaneous approach are two general 
approaches often considered to address both structural identification and 
parameter identification. In either case, the GA approach considers the fuzzy 
modeling process as optimization or search processes in a high dimensional 
hyperspace. It should be noted that as part of their paper Carse et al. [1996] 
presented an overview of research that applied genetic algorithms to fuzzy 
rule based control. In addition. Cordon et al. [1997] provided a short review 
and gave a detailed bibliography on evolutionary fuzzy modeling up to 1996. 

Generally speaking, genetic algorithms may be implemented for fuzzy 
modeling in three different ways: the Michigan, Pittsburg, and iterative rule 
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learning (IRL) approach. In the Michigan approach, each chromosome 
encodes an individual rule and all rules are evolved as a v\̂ hole, w^hereas in 
the Pittsburg approach, each chromosome encodes a complete rule set and 
only the best individual is considered as the solution. In the IRL approach, 
as in the Michigan one, each chromosome in the population represents a 
rule, but contrary to the Michigan one, only the best individual is taken as 
the solution, discarding the remaining chromosomes in the population. A 
covering method is thus necessary in order to generate a complete rule set. 
The papers reviewed below are grouped based on the implementation 
approach taken and whether the modeling task is done in stages or 
simultaneously. 

3.3.1 Sequential Pittsburg approach 

Cho et al [1997] proposed a two-part procedure for rule generation: 
genetic learning of initial rules and genetic fine-tuning of fuzzy rules. The 
learning of initial rules determines the linguistic values of rules consequent 
under the assumption that the number (set at 7 in their study) and shape 
(triangular) of fuzzy terms for each variable is known. A fuzzy rule base is 
represented as a string, which consists of cells where each cell is further 
divided into a number of binary bits. The integer part of the decoded real 
number indicates a specific linguistic term. One-point crossover and a 
simple flip mutation scheme were employed as the genetic operators. The 
fine-tuning part adjusts the membership functions of the rules obtained in the 
previous step. The chromosome is a string having the length equal to the 
total number of parameters with each parameter value binary coded. Several 
cost functions were employed to select the best chromosome, including 
minimum rooted mean square error, improved controller response, smoother 
fuzzy rule base, and minimum control energy. 

Heider and Drabe [1997] proposed a cascaded genetic algorithm, which 
is made up of two loops or cascades. An outer and an inner cascade 
alternatively determine and improve the structure and parameters of a fuzzy 
system. Each individual in the outer GA represents a complete fuzzy system 
structure consisting of flags for input and output fuzzy sets and of rules. The 
individuals from the inner GA represent only parameters of active (flagged) 
trapezoidal fuzzy sets. For the starting population, flags are set randomly. 
For the following populations activation or deactivation of rules and 
membership functions is determined by genetic operators. The individual 
fitness is measured according to the least-squares method. The routine is 
repeated until a global stopping criterion in the structure GA is fulfilled. The 
best individual is taken as the optimization result. 
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3.3.2 Sequential IRL+Pittsburg approach 

Cordon and Herrera [1997] presented an evolutionary process based on 
genetic algorithms and evolution strategies for learning the fuzzy-logic-
controller knowledge base from examples in three different stages. The first 
stage is an evolutionary process for generating fuzzy control rules, with two 
components. The fuzzy rule generation method finds the best rule in every 
run over the set of examples according to the features included in a fitness 
function. The iterative covering method allows the iterative use of the fuzzy 
rule generation method to obtain a set of fuzzy rules covering the set of 
examples. In each iteration the covering method runs the generation method 
for choosing the best fuzzy control rule, considers the relative covering value 
that this rule yields over the example set, and removes the examples with a 
covering value greater than a value provided. The second stage is a genetic 
simplification process for selecting rules, based on a binary-coded genetic 
algorithm. The individuals are selected based on the stochastic universal 
sampling procedure together with an elitist selection scheme, and the 
generation of the offspring population is put into effect by using the classical 
binary two-point crossover and uniform mutation operators. The third stage 
is a genetic tuning process, which has two variants differing in the coding 
scheme, depending upon whether the fuzzy model is approximate or 
descriptive. In either case, the GA uses real-coded chromosomes, stochastic 
universal sampling together with an elitist scheme as the selection 
procedure, Michalewicz's non-uniform mutation and the max-min 
arithmetical crossover operators. 

Herrera et al [1998] presented a three-stage genetic process for learning 
fuzzy rules from examples. The first stage is a fuzzy rule generating process 
based on an iterative rule learning approach. It consists of a rule generation 
method and an iterative covering method. The rule generation method is 
developed by means of a real coding GA (RCGA) that codes a single fuzzy 
rule (or each chromosome) as a vector of floating point numbers. The fitness 
function is defined with the objective to select fuzzy rules that (i) cover a lot 
of positive examples but a few negative examples, (ii) have small or fixed 
membership function width, and (iii) associate with highly symmetrical 
membership functions (the product operator was selected for combining all 
the above criteria). The evolution process uses the non-uniform mutation, 
the max-min-arithmetical crossover, and the stochastic universal sampling as 
the selection procedure. In each iteration, the covering method runs the 
RCGA to find the best chromosome (rule) over a set of examples, assigns 
the relative covering value to every example, and removes the examples with 
a covering value greater than s (a set value). The second stage combines 
expert rules, if there are any, with those generated in the first stage, and 
removes the redundant rules. This process is based on a binary-coded GA. 
The fitness function considers the squared errors as well as the completeness 
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property. The selection procedure is the same as in the first stage. The 
genetic operators used are two-point crossover and uniform mutation. The 
third stage is a tuning process for adjusting the membership functions of the 
fuzzy rules. In this stage, a fuzzy rule set is represented as a real coding 
chromosome. A rule is represented by a piece of chromosome with the 
number of positions equal to the number of rule parameters. The fitness 
function is the sum of the square errors of the associated rule set. The 
genetic operators and parameters are the same as in the generating process. 
The number of fuzzy terms (triangular or trapezoidal) for each variable was 
assumed. 

Cordon et al [1998] introduced a multistage genetic learning process to 
obtain linguistic fuzzy rule-based classification systems. It is based on a 
specific genetic learning methodology called MOGUL (methodology to 
obtain genetic fuzzy rule-based systems imder the iterative rule /earning 
approach). According to this methodology, the learning algorithm can be 
divided into three stages: an iterative rule learning process that obtains a set 
of linguistic classification rules from the training examples, a genetic multi-
selection process that generates several simplified rule sets by selecting the 
rules that best cooperate from the initial fuzzy rule set and by selecting the 
best hedges for them, and a genetic tuning process that optimizes the 
parameters that define the triangular membership functions. Cordon and 
Herrera [2001] proposed a three-stage hybrid evolutionary algorithm for 
learning constrained approximate Mamdani-type knowledge bases from 
examples. The first stage is an evolutionary process for generating fuzzy 
rules with constrain-free semantics. The process has two components: a 
fuzzy rule generation method comprised of a hybrid GA-ES process which 
uses a phenotypic niche criterion to obtain the best possible cooperation 
among the fuzzy rule generated, and an iterative covering method identical 
to that employed by Herrera et al [1998]. A chromosome encoding a 
candidate rule is composed of two parts with the first part encoding the 
composition of the fuzzy rule and the second part the membership functions 
associated with it. The fitness function is the product of four criteria. Other 
than mutation and crossover operations, an (1+1)-ES operator was also 
applied. The second stage is a genetic multi-simplification process for 
selecting rules, based on a binary coded GA with a Hamming distance-based 
genotypic sharing function and a measure of the system performance. The 
third stage is a genetic tuning process based on a real coding GA and the 
same performance measure used as the one in the second stage. It uses the 
same chromosome representation, selection procedure, and genetic operators 
as that used in the third stage of Herrera et al [1998]. 
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3.3.3 Simultaneous Pittsburg approach 

Homaifar and McCormick [1995] studied the applicability of genetic 
algorithms in the simultaneous design of membership functions (only the 
base lengths of triangular fuzzy sets are determined, not the location of the 
peaks) and rule sets. They arbitrarily fixed the number of terms for 
input/output variables and the base length of the output variable. The 
chromosome is integer-based with the number of alleles equal to the number 
of rules plus the number of base lengths. The value of each allele is either 
one possible value of output fuzzy sets or one possible base length. To 
simplify the genetic operations, the same number of values was used for 
each allele. A procedure was used to decode base length values to the actual 
universe of discourse. For the fuzzy control applications shown in their 
study, two fitness functions were used at two different stages of the control 
process: the evolution stage and the refinement stage. The first stage intends 
to find a satisfactory controller whereas the second stage attempts to 
minimize the time needed. In developing a fuzzy model for control, Tamg et 
al [1996] applied a GA to simultaneously determine the scaling factors, 
parameters of membership functions, and fuzzy rules under the assumption 
of known number and shape (trapezoidal) of membership functions. The 
chromosome is a long binary string because all real values are binary coded. 
A fuzzy rule is not selected if it takes on an empty set as its outcome. The 
fitness function is the difference between a large value and the summation of 
the square root errors due to the force error and the force error change, 
specially tailored for the subject application - adaptive force control in 
turning. Carse et al. [1996] proposed a Pittsburgh Fuzzy Classifier System 
#1 (P-FCSl), which is based on the Pittsburgh model of learning classifier 
systems and employs variable length rule-sets that simultaneously evolves 
fuzzy set membership functions and relations. Both rule and fuzzy set 
membership encodings are real-numbered rather than using bit strings. All 
membership functions were initialized randomly with the uniform 
distribution. The membership functions are encoded locally within 
individual rules, which could complicate linguistic interpretation if they are 
too many. They introduced a new crossover operator that respects the 
functional linkage between fuzzy rules with overlapping input fuzzy set 
membership functions. The mutation operator applies real-number creep to 
the centers as well as the widths of fuzzy set membership functions. The 
rule-set fitness was calculated as the inverse of the mean square error of the 
predicted outputs. 

The GA developed by Gomex-Skarmeta and Jimenez [1999] for 
generating and refining rules is also a simultaneous approach for fuzzy 
modeling. A chromosome is represented as RiR2.. .RMAxdid2.. .dMAx, where Rj 
= {A/AJ. . .Ajff} consists of fuzzy terms for n input variables and one output 
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variable and dj is a control digit corresponding to Rj,j = 1, ..., MAX. Each 
fuzzy term is assumed to be trapezoidal-shaped and is denoted by a four-
tuple. The dj value is binary with one (zero) indicating that the rule is active 
(inactive) in the rule set. Therefore, the number of rules is the number of 
ones in the dj values. Due to the different representation, genetic operators 
used in the rule set are different from those used in the control set. Three 
crossover operators and two mutation operators are used for the rule set 
whereas simple binary crossover and mutation operators are used for the 
control set. The evaluation function was given as 

^ if s = 0 
eval = ^MSE^{NrlMAX) (15) 

0 if s^O. 
In (15), s is the number of uncovered examples and Nr denotes the 

number of rules generated. The evaluation function is designed to choose a 
small and accurate set of rules that covers all examples. 

Russo [1998] developed a fuzzy genetic neural system (FuGeNeSys) for 
fuzzy modeling from input-output data. Each individual in the population is 
made up of a set of user-specified R number of rules, each of which 
comprises / number of inputs and O number of outputs. The membership 
functions are assumed Gaussian denoted by two parameters: the center and 
the width (the inverse of sigma). For each antecedent it is thus necessary to 
code the two parameters with 16 bits each. An antecedent is considered 
irrelevant if the width value is zero. The consequents are coded in two 
different ways depending upon how the defuzzification is done. One 
consequent coding method uses two parameters: the center and the area of 
fuzzy set symmetrical with the center, both coded with 16 bits. The other 
method codes only the center using 16 bits. An apomictic, continuous, and 
fine-grain evolution algorithm was used. The populations were divided up 
into a certain number of subpopulations. Selection and crossover were local 
in an area with a pre-established radius. Other than a single-cut crossover 
operator and a simple mutation operator, a hill-climbing operator was 
introduced, which starts whenever an individual is generated with a fitness 
value higher than the best one obtained so far. The hill-climbing operation is 
done on a transformed neuro-fuzzy system with a backpropagation 
procedure. The trained system is then retransformed back into a genetic 
individual. The fitness function of an individual was derived based on four 
considerations, that we omit here for brevity; interested readers may refer to 
the original paper. 

Subsequently, Russo [2000] introduced another hybrid learning algorithm 
called GEFREX, which stands for genetic fuzzy rule extractor. In this 
algorithm, the genetic coding involves only the premises of the rules. Each 
individual consists of two parts. The first part codes the Gaussians of all 
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antecedents. The second part is dedicated to the enable bits for feature 
selection. As a result of this mixed coding (real part and binary part), 
additional genetic operators for real genes were introduced. The 
consequents are singletons derived through a least-squares solution of an 
over-determined system using the singular value decomposition algorithm. 
The fitness function was also modified by removing one consideration (out 
of the four mentioned above). If the fitness of the new individual improves 
the best fitness found so far, the new individual is transformed into a neuro-
fuzzy system. Then the neuro-fuzzy system is trained. This neural-based 
genetic operator improves the performance of GEFREX with respect to 
learning speed and error. The premises extracted from the neuro-fuzzy 
system are retransformed into a genetic individual and reintroduced in the 
genetic population. 

Shi et al [1999] used a genetic algorithm to evolve the membership 
function shapes and types and the fuzzy rule set (including the number of 
rules). A total of six types of functions were used as the membership 
function candidates; each is represented by an integer from 1 to 6. A 
membership function was completely determined by three values: the start 
point, the end point, and the function type. The total length of each 
chromosome coding the entire fuzzy system is determined based on a given 
maximum number of rules in the rule set. A rule with a zero antecedent or 
consequent part is infeasible and is not included in the rule set. The fitness 
function is a relative error function. Each time an element is chosen to be 
mutated it is increased or decreased by one randomly within its range. The 
crossover and mutation rates of the evolutionary algorithm were adapted via 
a fuzzy system with eight fuzzy sets. This fuzzy system has three input 
variables: the best fitness, the number of generations for unchanged best 
fitness, and the variance of fitness. For simplicity, each variable has three 
possible fuzzy values: low, medium, and high. Surmann and 
Selenschtschitow [2002] used a genetic algorithm for the optimization of 
fuzzy rule-based systems with some initial structure. The membership 
functions were assumed to be Gaussian-like defined by two parameters if 
symmetrical, or three parameters if asymmetrical. Every chromosome 
contains all the fuzzy set parameters in the entire rule set. The fitness 
function has two parts. The first part, reflecting the model performance, is 
the maximization of the reciprocal of the mean square error. The second 
part, relating the structure and complexity of the resuhing fuzzy system, has 
three items: the entropy of the system, the number of membership functions, 
and the number of membership functions never activated and always 
completely activated. Besides the well-known mutation and crossover 
operators, they introduced two new operators: Set zero/one is used to 
produce membership functions which are always one (activated) or always 
zero (not activated); Set similar selects randomly for each input/output 
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variable a membership function and makes it equal to the membership 
function that is most similar to it. 

Xiong and Litz [2002] employed a GA to learn the premises (or if-part) 
of rules together with fuzzy set membership functions at the same time in 
order to design an optimal fuzzy controller. The GA encodes each rule set as 
a hybrid string consisting of two substrings: binary coding of the premise 
structure of a rule base and integer coding of the membership functions of 
individual variables. The fitness value of each rule set is computed in 
consideration of its control performance and its consistency index. Each 
member in the population is given a probability proportional to its fitness 
value for being selected as parent. The selected parents then undergo the 
genetic operations (crossover and mutation) to produce their offspring. A 
three-point crossover is first used. One breakpoint of this operation is fixed 
to be the splitting point between both substrings, and the other two 
breakpoints can be randomly selected within the two substrings. For the 
binary substring, mutation is simply to inverse a bit. Each bit in the integer 
substring undergoes a disturbance with magnitude determined by a Gaussian 
distribution function. The rules with invalid premises are removed. There are 
two cases that could lead to an invalid rule premise when all the bits in the 
binary substring are all one (meaning "don't care") or they are all zero 
(meaning "empty"). 

Kang et al [2000] used evolutionary programming to simultaneously 
evolve the structure and the parameters of a fuzzy rule base. The connection 
matrix representing the fuzzy rule base structure is a 2-D matrix with each 
element, ntip taking a positive real value indicating the relative importance of 
they-th input variable in the /-th rule. Zero importance implies its irrelevance 
in the rule. Another 2-D matrix is used to represent the parameters for 
defining the membership functions within the fuzzy rule base. Trapezoidal 
or triangular functions were assumed for the input variables whereas fuzzy 
singletons for output variables. The mutation operation updates the original 
value in the structure and parameter matrices by adding a Gaussian random 
number adjusted in proportional to the fitness value. The fitness function is 
tailored to the control purpose by considering the modeling error, the control 
performance, and by penalizing the occurrence of null sets in the universe of 
discourse. 

Nawa and Furuhashi [1999] proposed the bacterial evolutionary 
algorithm (BEA) for the discovery of the parameters of fuzzy systems from 
numeric data. Each chromosome encodes the rules of the fuzzy model as 
well as the membership functions of the variables. The isosceles triangular-
shaped membership functions are assumed with each is encoded as a center-
width pair. The length of chromosomes is not fixed, which means that the 
number of rules encoded by a chromosome could be varied. The encoding 
method provides a high degree of freedom in modeling the system, but 
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results in non-uniformity of membership functions (every rule has a different 
set of membership functions to refer to), posing an interpretability problem. 
Considering both system performance and structural complexity, the 
chromosome performance index was defined as: 

w ĥere n is the number of data; yt and;;/' are the actual and predicted value 
of the /-th datum; NumRules and NUMMAX are the number of rules in the 
model and the maximum number allowed in a chromosome; and w,^ is an 
assigned weight value. Two special genetic operators were applied: the 
bacterial mutation and the gene transfer operation, inspired by the processes 
that occur in the bacterial genetics level. The aim is to improve parts of the 
chromosome, instead of the whole chromosome. 

Pena-Reyes and Sipper [2001] introduced a cooperative co-evolutionary 
approach to fuzzy modeling, named Fuzzy CoCo. In Fuzzy CoCo, the fuzzy 
modeling problem is solved by two coevolving, cooperating species. The 
individuals of the first species encode values which define completely all the 
membership functions for all system variables. The individuals of the second 
species define a set of rules of the Mamdani form. The relevant variables 
are searched for implicitly by letting the algorithm choose nonexistent 
membership functions as valid antecedents. A variable choosing a 
nonexistent membership function is considered irrelevant. The two 
evolutionary algorithms used to control the evolution of the two populations 
are instances of a simple genetic algorithm. The genetic algorithms apply the 
fitness-proportionate selection procedure to choose the mating pool and 
apply an elitist strategy with an elitism rate to allow some of the best 
individuals to survive into the next generation. The crossover and mutation 
operators employed are standard ones. An individual undergoing fitness 
evaluation establishes cooperation with one or more representatives of the 
other species, i.e., it is combined with individuals from the other species to 
construct a fuzzy model. The representatives, or cooperators, of either 
species are selected both fitness-proportionally and randomly from the last 
generation in which they were already assigned a fitness value. The fitness 
combines two criteria: classification performance and maximum number of 
variables in the longest rule. Fuzzy CoCo assumes that the number of 
membership functions and the number of rules are predefined. 

3.4 Neural Networks 

Several attempts have been made to integrate fuzzy systems and neural 
networks with a view to designing systems which are interpretable, robust, 
and leamable. Three groups of unification schemes can be generally 
classified: fuzzy neural systems, neural fuzzy systems, and cooperative 
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systems. Fuzzy neural networks are neural networks capable of handling 
fuzzy information. The cooperation systems are those which use different 
paradigms (neuro or fuzzy) to solve various facets of the same problem. 
Neural fuzzy systems are fuzzy systems implemented by neural networks. It 
has been shown that under simple conditions a fuzzy inference system could 
be viewed as a neural network and vice versa. Therefore, neural fuzzy 
systems are the dominant form of fuzzy modeling. Mitra and Hayashi [2000] 
surveyed various neuro-fuzzy models used for rule generation (including 
rule extraction and rule refinement) and organized them, based on their level 
of integration, under a unified soft computing framework. In their paper, 
rule extraction refers to extracting knowledge from the artificial neural 
network, using the network parameters in the process. On the other hand, 
rule refinement pertains to extracting refined knowledge from the artificial 
neural network that was initialized using crude domain knowledge. 

Without exception, the neural networks approach to fuzzy modeling 
attempts to take advantage of the adaptability and learning ability of neural 
networks. Various neural networks with regular or special tailored 
architectures have been applied in the past. To avoid redundancy as much as 
possible, the following review will focus more on the latest papers. Note that 
the training data could be real or fuzzy valued. However, no attempt was 
made to subdivide them further in order to minimize the number of 
subsections. 

3.4.1 Fuzzy neural networks 

Enbutsu et al [1991] presented a three-stage procedure for fuzzy rule 
extraction using a three-layered neural network. The number of nodes in the 
input (output) layer equals the total number of fuzzy terms associated with 
all fuzzy input (output) variables. The membership function is used in the 
input nodes and conventional sigmoid functions are used in the hidden and 
output nodes. First, training data are learned by error backpropagation. 
Secondly, the acquired weights are used to calculate the "Causal Index" 
between each input node and output node, which was derived from the 
differential. Using the relative casual indices, the extraction of fuzzy rules is 
accomplished in three consecutive steps: selecting a fuzzy output variable, 
selecting a fuzzy term for the selected output variable, and selecting a fuzzy 
term for each input variable. 

Mitra et al [1997] proposed a new scheme of rule generation using a 
fuzzy multilayer perceptron (MLP) for classification problems. They 
formulated a methodology for encoding a priori initial knowledge in the 
fuzzy MLP in a way that both positive and negative rules can be generated. 
The network architecture, so encoded, is then refined by training on the 
pattern set supplied. The trained network is used for rule generation using 
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two Strategies described below. The first method treats the network as a 
black box and uses the training set input and network output to generate the 
if-part and then-part of rules. The second method backtracks along maximal 
weighted paths using the trained net and utilizes its input and output 
activations to obtain the antecedent and consequent clauses. 

Li et al [2002] proposed a feature-weighted detector (FWD) network, 
which consists of input (I), matching (M), detecting (D), and output (O) 
layers. It is capable of solving simultaneously two major problems in pattern 
recognition: pattern classification and feature selection. The activation 
functions in the M, D, and O layers are comparative, Gaussian (with fixed 
a), and linear, respectively. In FWD networks, there are two types of 
learning when input is presented to the input layer. One is unsupervised 
memory learning based on the fuzzy learning law. It updates the memory 
vector associated with each neuron, i.e., the backward connection weights 
from the D layer to the neuron in the M layer. The other is supervised weight 
learning. It updates the connection weights between the M neurons and the 
D neurons based on the chain rule of differential calculus. A feature has no 
contribution to a cluster if the associated connection weight is zero. The 
trained network can be directly converted to fuzzy rules. 

Huang and Xing [2002] presented an approach to represent continuous-
valued input parameters using linguistic terms (discretization) and then 
extract fuzzy rules from the trained binary single-layer neural network. Their 
definition of linguistic terms is based on M number of equally divided crisp 
intervals, not based on the fuzzy set theory. Based on their scheme, the 
original problem with n continuous-valued input parameters is converted 
into a new problem with «-M binary input parameters. They developed an 
algorithm to extract the most dominant fuzzy rules, one from each neuron. 
The number of output nodes determines the number of rules to be extracted. 

3.4.2 Neural fuzzy systems 

The papers in this category are organized in three groups, following the 
similar idea of Nauck et al [1997]: 1) the system starts without rules, and 
creates new rules as training patterns are learned; 2) the system starts with 
all possible rules and may delete those insignificant ones based on their 
performances; and 3) the system starts with an initial set of rules, given by 
domain experts or extracted by a unsupervised method, and then optimized 
by using some algorithm. 

3.4.2.1. Starting empty 

Lin and Lee (1991) proposed a fuzzy neural network model, called 
Falcon-ART, which effectively combines the fuzzy ART algorithm for 
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Structural learning (formulation of the fuzzy rules) and the backpropagation 
algorithm for parameter learning (tuning of the membership functions). The 
trained Falcon-ART network has five layers to represent fuzzy rules: input 
variable layer, input term layer, fuzzy rule layer, output term layer, and 
output variable layer. The input/output linguistic terms are represented as 
trapezoidal fuzzy sets. Prior to training, the Falcon-ART network has only 
the input layer and the output layer to represent the variables. The hidden 
layers for the input and output term nodes and the fuzzy rules are grown as 
the learning cycle progresses. The training data are the complementarily 
coded input-output vector. The Falcon-ART network has several 
shortcomings: (i) poor network performances when the classes of input data 
are closely similar to each other, (ii) weak resistance to noisy/spurious 
training data, (iii) strong dependence of the termination of network training 
process on a preset error parameter, and (iv) possible deterioration of 
learning efficiency as a result of using complementary coded training data. 
Quek and Tung (2001) modified the Falcon-ART (called Falcon-MART) in 
order to remove the above-mentioned shortcomings. The weighted averaging 
method was used to determine rule-firing strengths, which magnifies the 
membership value difference between the same attribute of different 
membership sets. A more progressive learning rule was adopted to minimize 
the effects of noisy data. To ensure the convergence, they introduced a new 
stopping criterion. The learning terminates when the change in the total error 
between two consecutive epochs is smaller than a preset small value. The 
problem of complementary coding was overcome by using absolute-valued 
data. 

3.4.2.2 Starting full 

Hiraga et al [1995] described a procedure for acquiring a ship operator's 
control rules for collision avoidance using a fuzzy neural network with six-
layer structure that realizes a simplified fuzzy inference method. Three sets 
of connection weights are adjusted by the BP algorithm. Two of them 
determine the positions and the gradients of the sigmoid functions, 
respectively. The third set corresponds to the singletons in the rule 
consequence. The tracks of the ship obtained from the simulations were 
used to train the FNN. 

Lin and Cunningham [1995] introduced a four-layer fuzzy neural 
network for modeling a complex system from input-output data. The 
network has an N-NxR-R-1 architecture (for N input nodes, NxR 
fuzzification nodes, R rule nodes, and 1 defuzzification node). The 
activation functions in the fuzzification, rule, and defuzzification layer are 
special-type fuzzy membership functions for input variables, multiplication 
functions, and weighted sum functions, respectively. A fuzzy curve was 
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plotted for each variable using a procedure developed by the authors. The 
importance of input variables is ranked according to the range covered by 
their fuzzy curves (an input variable is insignificant if the fuzzy curve is flat, 
having a range of zero). The number of rules is estimated by the maximum 
and minimum points on the curve. The connection weights are initialized 
and adapted with a backpropagation technique. If a fuzzy membership 
function is always near zero over its input range, then the output of the rule 
using this fuzzy membership function is always near zero. Thus, this rule can 
be deleted. If a fuzzy membership function is always near one over its input 
range, then one can remove this node without affecting the performances. 

Lin and Lu [1995] proposed a five-layered neural network similar to the 
one proposed by Lin and Lee [1991] for the connectionist realization of a 
fuzzy inference system that is capable of processing and learning the hybrid 
of numerical and linguistic information through the use of fuzzy singletons. 
They used a-level sets of fuzzy numbers to represent linguistic information. 
The inputs, outputs, and weights of the proposed network can be fuzzy 
numbers of any shape. An initial network structure is first constructed. It is 
then trained by a two-phase supervised learning algorithm. In phase one, a 
BP-based parameter learning scheme is used to adjust fuzzy weights 
connecting to fuzzy terms (between layers 1 & 2 and layers 3 & 4); In phase 
two, a two-part structure learning scheme is used. The first part merges the 
fuzzy terms of input/output linguistic variables, while the second part 
combines rules in order to reduce the number. A fuzzy reinforcement 
learning scheme was also developed for the same network, but not covered 
here because it learns by criticizing rather than by teaching. 

Nauck and Kruse [1997] used NEFCLASS (a neuro-fuzzy model for 
pattern classification) to derive fuzzy classification rules together with the 
shape of triangular membership functions from a set of data that can be 
separated into different crisp classes. A NEFCLASS is a 3-layer fuzzy 
perceptron with some special characteristics. The first layer contains the 
input units representing the pattern features. The hidden layer holds rule 
units representing the fuzzy rules. The third layer consists of output units, 
one for each class. Each connection between an input unit and a rule unit is 
labeled with a linguistic term. The connections coming from the same input 
unit and having identical labels bear the same weight all the time (called 
shared weight) to ensure that for each linguistic value there is only one 
representative fuzzy set. A user has to define the number of initial fuzzy sets 
for partitioning the domains of the input features, and must specify the 
maximum number of rule nodes that may be created in the hidden layer. 
Compared to neural networks, NEFCLASS uses a much simpler learning 
strategy. Fuzzy rule creation can be seen as a selection from an initially 
given rule base, specified by a fuzzy grid in the input domain. The fuzzy 
sets are trained by a backprogagation-like algorithm that requires no gradient 
information. 
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Zhang and Kandel [1998] developed a crisp-fuzzy neural network 
(CFNN), a general fuzzy reasoning-oriented fuzzy neural network that is 
capable of extracting high level knowledge such as fuzzy If-Then rules from 
either crisp data or fuzzy data. A CFNN consists of five layers: input layer, 
compensation and linear combination layer (with two types of fuzzy 
neurons), fuzzy reasoning layer (the number of nodes in this layer 
corresponds to the number of fuzzy rules), summation layer (with a 
compensatory summation neuron and a fuzzy rule summation neuron), and 
output layer. To optimize the network, they proposed a knowledge 
discovery-based learning algorithm (KDBLA) based on heuristic gradient-
descent learning. They assumed trapezoidal-type fuzzy sets and proposed a 
procedure to compress a CFNN with a big fuzzy rule base to a small one. 

Su and Chang [2000] presented a class of fuzzy degraded hyper-
ellipsoidal composite neural networks (FDHECNNs) that are trained by a 
real-valued genetic algorithm to generate If-Then rules on the basis of pre
selected meaningful features. A FDHECNN is a two-layer feedforward 
neural network. There is only one output node and the number of hidden 
nodes corresponds to the number of fuzzy sets (or fuzzy rules). The 
antecedent of each rule is an ^-dimensional hyper-ellipsoid with three 
parameters. The term "degraded hyper-ellipsoidal" refers to a hyper-
ellipsoid of which principal axes are parallel to the input coordinates. The 
rule consequent is a crisp value denoted by the connection weight between 
the hidden node and the output node. Each chromosome represents a vector 
which is composed of the parameters of the entire fuzzy rule set. Refer to the 
paper for the three main operators (reproduction, crossover, and mutation) 
used to manipulate real-valued parameters. 

Chen and Chang [2000] presented a novel learning algorithm of fuzzy 
perceptron neural networks (FPNNs) for classifiers that utilize expert 
knowledge represented by fuzzy If-Then rules as well as numerical data as 
inputs. Owing to the quest for a nonlinear discriminant boundary rather than 
just a linear one, they used a second order perceptron neural network. In 
order to handle (symmetrical-triangular) fuzzy numbers, level sets of fuzzy 
input vectors are incorporated into perceptron neural learning. At different 
levels of the input fuzzy numbers, updating the weight vectors depends on 
the minimum of the output of the fuzzy perceptron neural network and the 
corresponding non-fuzzy target output that indicates the correct class of the 
fuzzy input vector. This minimum is computed efficiently by employing the 
modified vertex method to lessen the computational load and the training 
time required. Moreover, they introduced the fuzzy pocket algorithm into the 
learning scheme to solve the non-separable problems. 

Azeem et al [2000] proposed a generalized fuzzy model (GFM) that 
encompasses both the Takagi-Sugeno (TS)-model and the compositional rule 
of inference (CRI)-model. They showed that the proposed GFM is 
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functionally equivalent to a generalized radial basis function (GRBF) 
network. The basic function in GRBF is a generalized Gaussian function of 
three parameters (center, width, and power). The GRBF network is a three-
layered architecture, where each node in layer 1 has exactly n inputs (from 
w-dimensional feature vector) and is a special type of radial basis function 
processor. Each node in layer 2 has m inputs, which is the weighted outputs 
of nodes in layer 1 with connection weights. The only one node in the output 
layer performs the summation of all the inputs weighted with the 
corresponding local models, which are functions of the input vector. They 
demonstrated through examples how an unnecessary rule from a rule base of 
the learned model could be eliminated and how an insignificant variable 
from a learned rule could be removed using the parameters of the learned 
GRBF network. They assumed that initial rules were obtained by using the 
fuzzy curve idea [Lin and Cunningham III, 1995]. 

Quek and Zhou [2001] proposed a Pseudo Outer-Product based Fuzzy 
Neural Network (POFNN) as an integrated fuzzy neural network that 
accomplishes the whole process from fuzzification, fuzzy inference to the 
defuzzification process. The POFNN network has five layers: layer 1 - the 
input layer, layer 2 - the condition layer, layer 3 - the rule-base layer, layer 
4 - the consequence layer, and layer 5 - the output layer. The number of 
nodes in the input/output layer equals the size of numeric input/output 
feature vector. The number of nodes in the condition/consequence layer 
equals the number of (bell-shaped) linguistic labels for all input/output 
variables. The number of nodes in the rule-base layer is initially set to the 
product of the number of linguistic labels for each input variable. The 
network learning process consists of three phases. The Kohonen self-
organization map is first used to initialize the membership functions of both 
the input and output variables by determining their centroids and widths; in 
the second phase, the Pseudo Outer-Product (POP) or Lazy Pseudo Outer-
Product (LazyPOP) learning algorithm is performed to identify the fuzzy 
rules that are supported by the set of training data. Both algorithms remove 
irrelevant rules, but differ in starting with all the possible rules (POP) or not 
(LazyPOP). The derived structure and parameters are then fine-tuned using 
the backpropagation algorithm in the final phase. 

Chakraborty and Pal [2001] proposed a neuro-fuzzy system that performs 
feature analysis and system identification in an integrated manner. The 
neural fuzzy system was realized as a five-layered network. Layer 1 is the 
input layer, with as many nodes as the number of input features. Each node 
in layer 2 represents the (bell shaped) membership functions of a linguistic 
value associated with an input feature (acts as the fuzzifier and also performs 
the feature analysis). To this end, a modulator function was defined, which 
has one tunable parameter, indicating whether the associated feature is good 
or not. Thus, layer 2 can be better realized using two layers of neurons, the 
first one for the computation of the membership value and second layer for 
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the modulated output. All connection weights between the nodes in layers 1 
and 2 are unity. Layer 3 is called the AND layer. Each node in this layer 
represents the if-part of a fuzzy rule. The "product" operator was chosen for 
the intersection (AND) operation. All connection weights between the nodes 
in layers 2 and 3 are unity. Layer 4 is the OR layer and it represents the 
then-part of the fuzzy rules. The connection weights between layers 3 and 4 
represent the certainty factors of fuzzy rules. Every node of this layer picks 
up only one rule from all the associated rules based on the maximum 
agreement with facts in terms of the product of the firing strength and the 
certainty factor (i.e., realized by the "maximum" operator). The connection 
weights are modeled as the square of tunable parameters to ensure the 
positiveness of certainty factors. Layer 5 is the defuzzification layer. Each 
node in this layer represents an output linguistic variable and performs 
centroid defuzzification. All connection weights between the nodes in layers 
4 and 5 are unity. The concept of backpropagation was used to train the 
network in three phases. Phase 1 is called the feature selection phase, where 
the training is done on the initial network with all possible nodes and links. 
Once phase 1 is completed, the redundant nodes are pruned and the 
modulation function is disabled. Phase 2 involves retraining the new reduced 
network. The incompatible rules are then removed and the network is again 
allowed to learn in this new architecture (phase 3). However, the parameters 
of different membership functions used were not tuned. 

3.4.2.3 Starting with an initial rule base 

Rutkowska [1998] mapped a fuzzy inference system into a 4-layer 
feedforward neural network. A hybrid procedure, consisted of two learning 
stages, was developed for training the neural network. In the first stage, a 
genetic algorithm is applied to find the near-optimal fuzzy rules and to learn 
the parameters of Gaussian membership functions. In the second stage, 
gradient descent procedures (i.e., error backpropagation) are used for final 
tuning of the membership functions. The number of fuzzy terms for each 
variable was assumed and allowed to vary from one variable to another. 

Kaur and Lin [1998] built a neural network-based fuzzy logic control 
model trained by a two-phase process. The NN-FLC model has five layers 
with neurons in each layer implementing different functions of the fuzzy 
logic system. Layer one is the input layer. It transmits input signals to the 
next layer without any change. The link weight of this layer is set at one. 
Layer two is the input membership function layer. Each neuron in layer two 
performs a simple membership function. The link weight in this layer is 
learned. Layer three encodes the rules. Each neuron in this layer represents 
one rule. The links between this layer and the second layer are the 
antecedents of the rules. Each neuron in this layer performs a fuzzy AND 
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Operation such as "minimum". Layer four is the output membership function 
layer. Each neuron in this layer represents a simple membership function, 
usually identical to that in the second layer. The links at this layer perform 
the fuzzy OR operation, with link weights set at one. Layer five is the output 
layer. It transfers the fuzzy output to crisp signal used for control. The 
neurons and the links in this layer act as the defuzzifier of the FLC, 
performing the center-of-area defuzzification method based on the 
information of the output membership functions. To construct the network, 
the number and form of membership functions must be assumed before 
hand. The first phase of the learning process employs Kohonen's self-
organizing feature maps learning to locate input and output membership 
functions (triangular) and competitive learning to find the correct 
consequence of each rule. In order to reduce the size of the fuzzy rule base, 
those rules which provide the same output are combined into one. The 
second phase uses backpropagation to adjust link weights between layers 
and to fine-tune the membership functions for desired output. 

Yang et al [1998] proposed a self-learning 4-layered fuzzy neural 
network for real-time stable control. They assumed that the antecedent 
fuzzy sets are bell-shaped membership functions with two parameters 
whereas the consequent fuzzy sets are fuzzy singletons. For fuzzy 
operations, they chose the product-inference logic and center-average 
defuzzifier. By assuming that the initial FNN controller is constructed from 
rough fuzzy If-Then rules provided by human experts and some arbitrary 
rules, a GA is then used to adjust the two parameters of antecedent fuzzy 
sets and the center of the consequent fuzzy sets, in search for the optimal 
fuzzy rules that satisfy the performance index specified by the designer. 
They used one byte real numbers that take a value between 0 and 1 to code 
the string in order to reduce its length. The fitness was defined as 
l/(l+je(t)^dt), where e(t) is the tracking error important to the control task. 

Chen and Likens [2001] proposed a systematic neural-fuzzy modeling 
framework for self generation of the initial fuzzy model, selection of 
significant inputs, partition validation, parameter optimization, and rule-
based simplification. The fuzzy system model is represented as a three-
layered RBF network with the number of hidden nodes equaling to the 
number of fuzzy rules. The fuzzy modeling procedure comprises of three 
main phases. First, a collection of fuzzy rules is created by a self-organizing 
network with each rule being represented by a cluster center. Second, 
important input variables are selected on the basis of the initial fuzzy model. 
The importance of the /-th input variable is defined as the change range of 
the corresponding output vector divided by the maximum change range 
among all input variables. An input variable is removed when its importance 
is less than the set threshold. The less important variable of closely related 
input variables is also removed. In addition, they used the FCM algorithm to 
determine the optimal number of fuzzy rules (hidden neurons) and the 
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corresponding receptive fields based on the proposed validity measure that 
maximizes the compactness within clusters and minimizes the separation 
betw^een clusters. Finally, the model optimization phase (including parameter 
learning and structure simplification) is executed on the basis of back-
propagation learning and similarity analysis. If the similarity betw^een two 
fuzzy sets characterized by Gaussian functions is higher than the set 
threshold, they are merged into one new fuzzy set. If the similarity between 
a fuzzy set and the universal set is higher than the set threshold, then it is 
removed from the antecedent. 

Behloul et al [2002] presented an efficient method to design 3-layered 
radial basis function neural networks for extracting rules with ^-dimensional 
fuzzy sets. Advanced fuzzy clustering was used to design an optimal RBFN 
with smaller number of hidden nodes and to generate adequate shapes of 
kernel function that yields high accuracy. Each hidden node corresponds to a 
cluster and a fuzzy rule. The RBF centers correspond to the cluster 
prototypes; and the shape and width of the kernels are determined by the 
fuzzy covariance matrix of the corresponding cluster. The connection 
weights between the hidden layer and the output layer are considered as the 
truth degrees of the rules. 

3.5 Hybrids 

Many forms of hybrid fuzzy modeling methods have been proposed in 
the past. Unfortunately, there seems to be no widely accepted definition of 
what constitutes a hybrid method. We are not aware of any attempt made to 
classify different hybrid methods and have considered each hybrid method 
under the category of the primary method used. 

Broadly speaking, three general categories of hybrid methods can be 
distinguished. One category of hybrid methods uses more than one 
technique at various stages of the fuzzy modeling process in sequence to 
generate the final model. The techniques used in such works, however, are 
not integrated. Another category of hybrid methods integrates more than one 
technique together. The neural-fuzzy approach reviewed in Section 2.5.2 that 
integrates the fuzzy model into the neural network framework falls into this 
category. The third category refers to those methods that use one technique 
to tune the parameters of another. For instance, genetic algorithms are 
popularly used to tune the parameters of membership functions after the 
structural identification is completed. 

3.6 Others 

The fuzzy modeling methods in this category are grouped according to 
whether the training data is numeric or fuzzy. For the sake of brevity, a 
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detailed review of each method in this category is omitted. Interested readers 
may refer to the original papers to fully understand the uniqueness of each 
method. 

3.6.1 From exemplar numeric data 

Other techniques used to construct fuzzy models from numeric training 
data include evidence theory [Delgado and Gonzalez, 1993], fuzzy learning 
based on the a-cuts of equivalence relations and the a-cuts of fuzzy sets 
[Wu and Chen, 1999], utilization of an assumption-based truth maintenance 
system [Castro and Zurita, 1997], merging decision table first [Hong and 
Chen, 1999], merging membership function first [Hong and Chen, 2000], 
and so on. 

3.6.2 From exemplar fuzzy data 

Wang et al [1999] proposed a fuzzy learning algorithm based on the 
PRISM learning strategy that learns fuzzy rules from "soft" instances. The 
"soft" instances differ from the conventional instances in that they have class 
membership values. Strictly speaking, they are not fuzzy data per se, but 
more like numeric data which have been matched with the relevant 
membership fimctions. Wang et al. [2001a] proposed a new approach called 
fuzzy extension matrix, which is a generalization of the concept of crisp 
extension matrix that was first proposed by Hong [1985] by incorporating 
the fuzzy entropy concept. They discussed paths of the fuzzy extension 
matrix and introduced a new heuristic algorithm for generating fuzzy rules. 

4. GENERATION OF FUZZY DECISION TREES 

Many methods including the famous IDS [Quinlan, 1986] have been 
developed for constructing a decision tree from a collection of examples 
with nominal or numeric attribute data [Safavian and Landgrebe, 1991]. 
There is no doubt that the decision trees generated by these methods are 
useful in building knowledge-based expert systems. However, they often 
suffer from inadequacy in expressing and handling the vagueness and 
ambiguity associated with human thinking and perception. To overcome this 
shortcoming, several different approaches have been proposed. This review 
groups them into two categories: those fuzzifying a crisp tree with 
discretized intervals, and variants of fuzzy IDS methods. 
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4.1 Fuzzy interpretation of crisp trees with discretized 
intervals 

This group of methods basically replaces the crisp cut points decided by a 
discretization method by some kind of curves (membership functions) 
serving as fuzzy borders. With these fuzzy borders, a value can then be 
classified into a few different intervals at the same time, with varying 
membership degrees. Categorical data can be similarly handled using a 
fuzzy relation table. Following this idea, Chi and Yan [1996] fuzzified an 
ID3-derived tree to obtain a compact set of fuzzy rules. To derive the 
classification of a test datum, a defuzzification method was proposed and a 
two-layered perceptron was used to optimize defuzzification parameters (wy 
denoting the contribution of rule / to classy). Wu [1999] constructed and 
used the fuzzy borders at deduction time only when a "no match" occurs (no 
rule matches with the current conditions) in the crisp sense. They tried three 
different functions to fuzzify the borders, which include a linear function, a 
third-degree polynomial, and an arctangent function. Jeng et ah [1997] 
converted a decision tree induced by a regular method into a fuzzy decision 
tree in which the hurdle values for splitting branches and the classes 
associated with leaves are fuzzy. Major problems with their method are how 
to determine the optimum Yager's aggregator parameter w and how to 
choose a proper membership function for an attribute. Wang and Hong 
[1998] handled the fuzziness by revising the best cut point, which is 
computed as the cross point of two membership functions which describe 
two families (assuming binary partition). They proved that the decision tree 
generation does not depend on the selection of membership functions in a 
symmetrically distributed family. 

Pal and Chakraborty [2001] proposed a method to construct a fuzzy rule-
based classifier system from an ID3-type decision tree (DT) for real-valued 
data. Their method has three major steps: rule extraction using IRID3, 
genetic algorithm-based tuning of the rule-base, and performance-based 
pruning of the rule-base. IRID3 is an improved version of RID3, which in 
turn is an ID3-like DT that deals with real valued data. IRID3 employs a GA 
using the fitness function, E = M + r|L, where M denotes that percentage of 
misclassification, L is the average depth of classification, and r| is an 
adaptive parameter set high initially and decreased with the number of GA 
iterations. To generate fuzzy rules from the tree, each tree node was 
associated with a membership function of Gaussian type. The two 
parameters of all Gaussian functions were tuned by a gradient descent 
method to minimize a pre-defined error function. The performance-based 
pruning involves the deletion of rules that produce too few correct 
classifications or fewer correct classifications than incorrect classifications. 
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4.2 Fuzzy ID3 Variants 

Methods in this category replace the heuristic algorithm used to derive a 
crisp tree with something that can handle the fuzzy concept. The heuristic 
algorithm contains two components: an attribute selection criterion for 
expanding the tree and an approximate reasoning mechanism. Some 
methods in this category take crisp data of nominal-valued and real-valued 
examples as input whereas others deal with learning from fuzzy vector-
valued examples. 

4.2.1 From fuzzy vector-valued examples 

Yuan and Shaw [1995] studied the fuzzy classification problem, in which 
both objects and classes are fuzzy. An object is said to be fuzzy if at least 
one of its features (attributes) is fuzzy. A class is fuzzy if it can be 
represented in fuzzy terms. Accordingly, the training data set is fuzzy in 
which each feature and class could have more than one linguistic value to a 
different membership degree. Those membership degrees can be 
subjectively assigned or transferred from numeric values by a set of 
membership functions defined over the range of all numeric values. The self-
organizing map method was used for the latter. The method used to 
construct a fuzzy decision tree is similar to the non fuzzy decision tree 
induction method such as IDS where the use of information entropy as the 
heuristic induction criterion is replaced by the measurement of classification 
ambiguity. The classification ambiguity directly measures the quality of 
classification rules at the decision node. The induction process is effectively 
controlled with the use of two parameters: significant level of evidence and 
truth level threshold. However, no guideline was given pertaining to their 
selection. 

Wang et al. [2000] proved that the generation of an optimal fuzzy 
decision tree (with the minimum total number of leaves) is NP-hard and 
proposed a merging-branches (MB) algorithm for fuzzy decision tree 
generation. The experimental results showed that the size of each tree and 
the test accuracy of the MB algorithm were superior to that of the fuzzy IDS, 
but the training speed of the former algorithm was slightly slower than that 
of the latter. 

Tsang et al. [2000] proposed a hybrid neural network (HNN) to refine the 
fuzzy decision tree (FDT) learnt from fuzzy vector-valued examples. This 
HNN, designed according to the generated FDT and trained by an algorithm 
derived by the authors, results in a FDT with parameters, thus called 
weighted FDT. A weighted FDT refers to a FDT in which several 
parameters are attached to each leaf node. These parameters include 
certainty factor (the degree of truth of the classification corresponding to the 
leaf node), local weights (the degree of importance of each segment in one 



530 Data Mining & Knowledge Discovery Based on Rule Induction 

path contributing to the classification of the leaf node), and global weights 
(the degree of importance of the leaf node contributing to the conclusion of 
classification). The local weights and global weights are refined by a HNN 
to improve the learning accuracy. To this end, the weighted FDT is first 
converted into an equivalent set of production rules and then it is mapped to 
a three-layer neural network comprising the term layer, the rule layer, and 
the classification layer. The local weights are regarded as the connection 
weights between the term layer and the rule layer whereas the global weights 
are regarded as the connection weights between the rule layer and the 
classification layer. The "minimum" operator and the "maximum" operator 
are used as the activity function in the rule layer and the classification layer, 
respectively. To modify the weights, a backpropagation algorithm was 
formulated for the HNN. The fuzzy reasoning mechanism is similarity 
based. 

Wang et al. [2001b] analyzed and compared three heuristic algorithms 
for generating fuzzy decision trees: one using the fuzzy entropy of a 
possibilistic distribution, labeled 1̂^ [Umanol et al, 1994], another using the 
minimum classification ambiguity, labeled 2"̂  [Yuan and Shaw, 1996], and 
the third based on the degree of importance of attribute contributing to the 
classification, labeled 3̂ ^ [Yeung et al, 1999]. The comparisons were two
fold. One was the analytic comparison based on the expanded attribute 
selection criterion and the reasoning mechanism. For the complexity, a non
rigorous relation was shown: 1̂^ < 2"̂  < y^. For the comprehensibility, the 
relation was 1̂* < 3*̂^ < 2" .̂ The max-min operator used in the 2"̂  method has 
worse reasoning accuracy than the sum-product operator used in the 1̂* and 
3̂ ^ methods. The second comparison was experimental based on the size of 
trees (number of nodes and leaves), the learning accuracy (training and 
testing), and the robustness (prediction accuracy by dropping an attribute). 
The 3'^ method was found to be better in terms of both learning accuracy and 
robustness. 

Dong and Kothari [2001] proposed a fuzzy decision tree induction 
algorithm that utilizes look-ahead to produce smaller decision trees and as a 
result better generalization (test) performance. The algorithm is based on 
establishing the decision at each internal node by jointly optimizing the node 
splitting criterion (information gain or gain ratio) and the classifiability of 
instances along each branch of the node. The classifiability of instances is 
evaluated in terms of the smoothness of the class label surface of instances 
assigned to that branch, based on a modified co-occurrence matrix. 

4.2.2 From nominal-valued and real-valued examples 

While most methods require the partition of real-valued variables prior to 
tree construction, Janikow [1996] introduced a methodology that optimizes 
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the partition of real-valued attributes while building the fuzzy tree. The 
optimization is based on genetic algorithms capable of processing 
constraints. All constraints are explicitly utilized to reduce the search space. 
Each chromosome is represented as a vector of four trapezoidal comers 
(parameters) denoting the fuzzy sets (values) of a known number of fuzzy 
attributes. The fuzzy tree quality is measured using the sum of squared 
errors between the acquired and the actual function on a dense sampling 
grid. Janikow [1998] proposed a tree building procedure same as that of 
ID3, but differing in that a training example can be found in a node to any 
degree. To calculate the number of examples falling to a node, norms used 
in fuzzy logic were adapted to deal with conjunctions of fuzzy propositions. 
To deal with missing attribute values, an example is evenly split into all 
children if the needed feature value is not available, and then to reduce the 
attribute's utilization by the percentage of examples with unknown value. He 
also defined a number of alternatives for knowledge inference based on rule-
based systems and fuzzy control. 

Chen and Yeh [1997] presented a fuzzy concept learning system (FCLS) 
algorithm for constructing a fuzzy decision tree from a relational database 
system. For attribute selection, the fuzziness of attribute (FA) concept was 
used. For every path from the root to a leaf in the fuzzy decision tree created 
by the proposed FCLS algorithm, if there are some null paths, then a 
hypothetical certainty factor ( HCF) node is created for each null path to 
make the fuzzy decision tree complete. 

Ichihashi et al [1996] introduced the random set notion to the fuzzy ID3 
in order to cope with expert's ignorance due to partial knowledge about the 
class information. The information entropy was defined using the evidence 
theory (instead of the Bayesian probability), and solved as a linear 
programming problem. The fuzzy attribute values were assumed to be B-
spline functions of degree 2. The fuzzy decision tree which consists of B-
spline membership functions was regarded as a three-layered neural 
network. They developed an algebraic learning method to tune the fuzzy 
rules. It varies the learning rate depending upon the square sum of 
compatibility degrees of the rules. 

Boyen and Wehenkel [1999] described an algorithm able to infer fuzzy 
decision trees in domains where most of the input variables are numerical 
and the output information is best characterized as a fuzzy set. The 
algorithm is composed of three complimentary steps: growing (selecting 
relevant attributes and fuzzy thresholds), pruning (determining the 
appropriate tree complexity), and refitting (tuning the tree parameters in a 
global fashion). The fuzzy tree is grown in a top-down recursive 
partitioning approach, similar to growing a classical tree, using some ad hoc 
score function. At each step of the pruning procedure, a test-node is selected 
and the subtree starting at this node is replaced by a terminal node, and the 
resulting simpler tree is stored. The process terminates upon reaching the 
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trivial single-node tree. The generalization capabilities of all the intermediate 
trees are evaluated on the independent pruning sample (not used for tree 
growing) and the best tree is chosen. The refitting step tunes the location 
values as well as the shape parameters of the test node discriminators (such 
as piecewise linear) and of the labels installed at the leaves using a mean 
square error type of criterion. 

Chiang and Hsu [2002] defined a fuzzy entropy function based on the 
possibility concept and presented a learning algorithm for constructing a 
fuzzy classification tree (FCT) from a set of training instances containing 
real-valued attributes. The FCM algorithm was used to determine the 
membership function from a data set. 

5. APPLICATIONS 

Previous fuzzy models were developed primarily for five major 
categories of applications: function approximation, classification, control, 
time series prediction, and other decision-making problems. The studies that 
address various problems in each category are summarized below. To save 
space, the data sets are not described. Interested readers may refer to the 
original papers for data sources and descriptions. 

5.1 Function Approximation Problems 
• Exclusive OR [Enbutsu et a/., 1991 ] 
• Seven-dimensional nonlinear function [Nawa and Furuhashi, 1999] 
• Single-input single-output nonlinear system [Chan et al, 1995] 
• Three-D functions [Cordon and Herrera, 2000], [Lin et al, 1997], 

[Zhang and Knoll, 1999], [Sugeno and Yasukawa, 1993], [Emami et 
al, 1998], [Kilic et al., 2002], [Klawonn and Kruse, 1997], 
[Delgado et al, 1997], [Cordon and Herrera, 1997], [Herrera et al, 
1998], [Cordon et al, 1998], [Russo, 1998], [Russo, 2000], [Kang et 
al, 2000], [Lin and Cunningham, 1995], [Azeem et al, 2000], 
[Chakraborty and Pal, 2001] 

5.2 Classification Problems 
• 2-input functional classification [Ishibuchi et al, 1992], [Chen and 

Chang, 2000] 
• Benchmark data such as iris [Li et al, 2002], [Ishibuchi et al, 

1995], [Ishibuchi et al, 1997], [Ravi et al, 2001], [Ishibuchi et al, 
1993], [Kbir et al, 2000], [Ishibuchi and Nakashima, 2001], [Abe 
and Lan, 1995], [Espinosa and Vandewalle, 2000], [Yao et al, 
2000], [Russo, 2000], Shi et al [1999], [Surmann and 
Selenschtschikow, 2002], [Pefia-Reyes and Sipper, 2001], [Li et al. 
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2002], [Huang and Xing, 2002], [Quek and Tung, 2001], [Nauck 
and Kruse, 1997], [Behloul et al., 2002], [Castro and Zurita, 1997], 
[Wu and Chen, 1999], [Castro et al, 1999], [Castro et ah, 2001], 
[Hong and Chen, 1999], [Hong and Chen, 2000], [Wang et al, 
1999], [Wu, 1999], [Jeng et al, 1997], [Pal and Chakraborty, 2001], 
[Tsang et al, 2000], [Wang et al, 2001], [Dong and Kathari, 2001], 
[Chiang and Su, 2002] 

• Recognition of handwritten numeral [Chi and Yan, 1996], 
handwritten Chinese characters [Wang et al, 2000] 

• Classification of radar returns from the Ionosphere [Surmann and 
Selenschtschikow, 2002], [Chiang and Su, 2002] 

• License plate recognition [Abe and Lan, 1995] 
• Medical diagnosis such as hepatobiliary disorders [Mitra et al, 

1997], diabetes mellitus [Su and Chang, 2000], Sleep states [Wang 
^/^/.,2000] 

• Rice taste evaluation [Cordon and Herrera, 2000], [Wang et al, 
2001], [Tsang et al, 2000], [Wang et al, 2001] 

• Speech recognition [Mitra et al, 1997], [Quek and Tung, 2001] 
• Fault diagnosis of welds [Ravi et al, 2001], turbine generators 

[Wang ê  a/., 2000] 

5.3 Control Problems 
• Backing a truck to a loading dock [Wang and Mendel, 1993], 

[Homaifar and McCormick, 1995], [Su and Chang, 2000] 
Cart-centering [Carse et al, 1996] 
Cart-pole balancing [Heider and Drabe. 1997], [Lin and Lu, 1995], 
[Zhang and Kandel, 1998], [Kaur and Lin, 1998] 
Collision avoidance [Hiraga et al, 1995] 
Inverse pendulum [Delgado et al, 1997], [Gomex-Skarmeta and 
Jimenez, 1999], [Delgado et al, 1998], [Xiong and Litz, 2002], 
[Rutkowska, 1998] 
Laser tracking [Zhuang and Wu, 2001] 
Machining operation [Tamg et al, 1996] 
Mobile robot navigation [Russo, 1998] 
Network routing control [Carse et al, 1996] 
Polymerization control [Sugeno and Yasukawa, 1993], [Russo, 
2000], [Lin and Cunningham, 1995], [Chakraborty and Pal, 2001] 
Traffic intersection control [Lekova et al, 1998] 
Water purification process control [Sugeno and Yasukawa, 1993] 
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5.4 Time Series Prediction Problems 
• Box and Jenkins gas furnace data [Lin et ai, 1997], [Zhang and 

Knoll, 1999], [Sugeno and Yasukawa, 1993], [Emami et al., 1998], 
[Delgado et al., 1997], [Gomex-Skarmeta and Jimenez, 1999], 
[Delgado et al., 1998], [Surmann and Selenschtschikow, 2002], 
[Kang et al., 2000], [Lin and Cunningham, 1995] 

• Health related monitoring such as plasma alprazolam concentrations 
[Kilic^/a/.,2002] 

• Stock prices [Lin et al., 1997], [Sugeno and Yasukawa, 1993], [Lin 
and Cunningham, 1995], [Azeem et al., 2000] 

• The Mackey-Glass chaotic time series [Wang and Mendel, 1993], 
[Espinosa and Vandewalle, 2000], [Russo, 2000] 

• Traffic flow [Quek and Tung, 2001 ], [Quek and Zhou, 2001 ] 

5.5 Otlier Decision-Making Problems 
• Electricity network length [Cordon and Herrera, 2001] 
• Mechanical property prediction [Chen and Linkens, 2001] 
• Power system transient stability [Boyen and Wehenkel, 1999] 
• Surface roughness estimation [Ichihashi et al., 1996] 

6. DISCUSSION 

Among all the papers reviewed in this chapter, we are interested in those 
that satisfy all the four necessary conditions for a fuzzy model (either a set of 
fuzzy rules or a fuzzy decision tree) to be interpretable, as set forth in the 
Introduction. We will highlight only those studies satisfying all the four 
conditions or the first three in the case that there is no study satisfying all 
four in some category and point out possible topics for future study. 
Furthermore, some general comments about each category of fuzzy 
modeling methods will also be made. 

None of the above-reviewed papers in the grid partitioning category 
satisfy all the four necessary conditions. Two studies satisfying the first three 
conditions are Ishibuchi et al. [1997] and Castro et al. [2001]. Both of them 
arbitrarily set the number of fuzzy partitions and did not attempt to optimize 
the parameters. One major difference between the two studies is that the 
latter allows a variable to have a subset of fuzzy terms as its value as a result 
of the amplification process in their rule generation algorithm. Future studies 
should investigate how to improve them by addressing the two 
shortcomings. The grid partitioning methods will work fine for a low-
dimensional system, but not a high-dimensional system due to the explosion 
of the model size (i.e., the number of rules). 
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By nature, the fuzzy clustering methods that project to the Cartesian 
input-space will never be able to satisfy all the four conditions because the 
projected w-dimensional fuzzy sets are difficult to interpret. The work of 
Emami et al [1998] loosely satisfies all the four necessary conditions. Their 
method could be more complete if a parameter tuning step is added. How 
the projected fuzzy sets are approximated seems to play a key role in 
determining the tradeoff between interpretability and performance. 

Unfortunately, studies are lacking in this area. Recently it was showed 
how the fuzzy exponent, m, could affect the shape of membership function if 
fuzzy c-means [Liao et al, 2003] or fuzzy c-medians [Liao, 2001] is used to 
define fuzzy concepts from data. Will the m value affect the way projected 
fuzzy sets should be approximated? Kilic et al [2002] pointed out the 
potential problems of projecting one dimension at a time, especially for 
clusters with irregular shapes, such as ring-shaped clusters. 

A more detailed examination of the problem identified by Kilic et al is 
warranted as well. It is our opinion that such a study should also examine the 
effects of using various types of fuzzy clustering algorithm specially 
designed for non-spherical or other unique cluster shapes. Generally 
speaking, fuzzy clustering methods are better suited for modeling high-
dimensional systems than any other methods and can work with a small 
amount of training examples. 

Six GA-based fuzzy modeling papers satisfy all the four necessary 
conditions. They include Heider and Drabe [1997], Shi et al [1999], Xiong 
and Litz [2002], Kang et al [2000], Nawa and Furuhashi [1999], Surmann 
and Selenschtschitow [2002]. Among them, the first one models the system 
in stages. Since membership functions and rule sets are co-dependent, the 
final model obtained by modeling the system in stages might not be really 
optimal. The other five took the simultaneous approach by allowing the GA 
to evolve fuzzy sets and rules at the same time. The downside of the 
simultaneous approach is that it increases the size of the search space in the 
sense that there are more parameters to adapt. This makes modeling 
potentially more difficult and more training data might be needed. GAs are 
known to be computationally expensive. 

The problem becomes much acute in modeling a high dimensional 
system. It is informative to conduct a comparative study of both approaches 
(sequential vs. simultaneous) for different problem sizes and training data 
sizes. Unlike the first three, the last three studies model the membership 
functions locally, meaning that each membership function defined for a 
particular variable is unique to each rule and not shared by other rules. This 
could complicate the interpretation task, especially when there are many 
membership functions defined in this way. There is also a lack of 
comparative studies of different implementations of the simultaneous 
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approach. Among the five methods cited above, which one is the best? A 
study that answers this question would definitely be useful. 

In the neural network category the methods proposed by Azeem et al 
[2000], Chakraborty and Pal [2001], Lin and Cunningham [1995], Lin and 
Lu [1995], Quek and Zhou [2001], and Chen and Linkens [2001] satisfy all 
the four conditions. The last method uses a modified competitive learning 
algorithm to construct the initial rule set whereas the rest start with all 
possible fuzzy rules. In some way, the last method works similarly to the 
fuzzy clustering methods, except that the fuzzy set parameters are optimized 
by backpropagation rather than by approximation. Each neural fuzzy system 
implements some fuzzy inference system. However, rarely there is a 
justification why such a fuzzy inference system is chosen. It is desirable to 
first figure out what is the best fuzzy inference system for a particular 
application (if not for all applications) and then design a corresponding 
neural fuzzy system. Without exception, the learning processes all take place 
in phases for each method mentioned above. The method of Lin and Lu and 
the method of Quek and Zhou identify parameters first whereas the other 
three methods identify the structure first. Therefore, they operate much like 
the sequential approach of genetic algorithm methods, but based on different 
learning principles: in fact, network learning could be done by GA. In this 
sense, it will be interesting to compare the final fuzzy models obtained by 
neural fuzzy systems versus those generated by genetic algorithms. A high-
dimensional system generally cannot be handled well by the neural network 
approach because large network size could greatly hamper network learning. 

By the nature of tree induction, all fuzzy decision tree generation 
methods use a subset of variables in some branches of the tree. Among all 
those reviewed, both the studies of Pal and Chakraborty [2001] and Boyen 
and Wehenkel [1999] satisfy all four conditions. The former method starts 
with inducing a crisp tree first, whereas the latter method induces a fuzzy 
tree directly. Once the tree is grown, the former method tunes the parameters 
first and then prunes the tree. The latter method does the opposite. It is 
unclear which order is preferable, and we are not aware of any study 
addressing this issue. In spirit, the fuzzy decision tree methods are closer to 
symbolic machine learning than other fuzzy modeling methods. It is 
interesting to know how fuzzy decision tree methods compare with crisp 
decision tree methods in terms of performance and computational cost. 
Another possible future study is to investigate the resulting 
interpretability/accuracy tradeoff if several attributes are combined at a test 
node. 

Overall, there is a lack of information regarding the relative effectiveness 
and the efficiency of different fuzzy modeling methods across category. 
This seems to be a difficult task for a single researcher to undertake. A 
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coordinated team effort from a group of researchers might be the best way to 
address this issue. The results are potentially useful to researchers so that 
their efforts can be better directed to advance the field. This information is 
also indispensable to potential users so that best results can be obtained with 
economic use of their resources. 

Lastly, the bulk of the studies were shown to work by using relatively 
small amount of training data, from the perspective of data mining research. 
To the best of our knowledge, none of the fuzzy modeling methods reviewed 
in this chapter has been put to the test for any real-world data mining task. 
Such a task is what each one of these fuzzy modeling methods needs to pass 
for it to become a viable data mining tool. A conscientious effort is needed 
here. Some parallel versions of GAs have been proposed, but we are not 
aware of any use in fuzzy modeling yet. A similar development for each 
category of methods is desirable in order to scale up the methods for 
handling a large volume of data. The interactions between instance selection 
and fuzzy modeling also warrant investigations. For a high-dimensional 
system, attribute selection might be needed to reduce the dimensionality of 
the system before applying a fuzzy modeling method. 

7. CONCLUSIONS 

This chapter has given a review of fuzzy modeling methods proposed for 
the generation of human-understandable fuzzy If-Then rules or fuzzy 
decision trees. One common feature of these methods is that they all can 
handle imprecise and ambiguous data, an issue that is somewhat neglected 
by the data mining community at this juncture. The underlying principle is 
the fuzzy set theory first proposed by Zadeh in 1965. Even though Section 2 
described some of the basic concepts, this chapter was written with the 
assumption that the readers already possess some basic knowledge about the 
fuzzy set theory. Moreover, readers are assumed to be familiar with the 
numerous technical terminologies mentioned in this review chapter. 

Each fuzzy modeling method reviewed in this chapter was analyzed in 
view of the seven fuzzy modeling issues laid out in the Introduction. For 
easy comparison, a summary is also provided in Table 1. In addition, we 
introduced one more condition to complement the three conditions originally 
set forth by Guillaume [2001] for a fuzzy model to be interpretable. Those 
methods that satisfy all four conditions were identified in the Discussion. A 
number of possible topics for future study to advance those methods for data 
mining purpose were also identified. We sincerely hope that this review 
chapter will kindle greater interest in further advancement of fuzzy modeling 
for data mining and knowledge discovery in the future. 
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Appendix 1. A Summary of Grid Portioning Methods for 
Fuzzy Modeling. 
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Notes: a) TPV (number of terms per variable), TS, (term shape), IPMF/T 
(initial parameter of membership functions/parameter tuning), 
MV (missing variables), RW (rule weight), ESfOR/S (initial 
number of rules/rule selection) 
b) 5.1 - adapted by performance 

Appendix 2. A Summary of Fuzzy Clustering Methods for Fuzzy 
Modeling. 
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Appendix 3. A Summary of GA Methods for Fuzzy Modeling. 
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Appendix 4. A Summary of Neural Network methods for Fuzzy Modeling. 
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Appendix 5. A Summary of Fuzzy Decision Tree Methods for Fuzzy 
Modeling. 
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1. INTRODUCTION 

Health care is becoming increasingly data-driven. With the current rate 
of widespread use of medical information systems that include databases 
(which have recently experienced an explosive growth in size), health care 
providers, physicians and medical researchers are faced with the problem of 
making use of the stored data [Adibi, 2000]. These databases store a wide 
variety of data, including gene pools, patient's records, bedside monitoring 
information and physician diagnoses, and range in extent from physician 
office databases to hospital database management systems. Health care 
information is increasingly being made available on line. The rapid 
proliferation of vast amounts of data has led to a set of medical applications 
that manipulate massive amounts of dynamic, heterogeneous clinical data. 
Presently, physicians have at their disposal many different instruments, each 
providing a different modality, which provide complementary views of the 
patient. These modalities include ECG recordings, EMG, EEG and MEG 
signals, x-ray images, Doppler ultrasound, CAT- and PET-scans, and thus 
range from ID to 4D datasets. While single modality views are sometimes 
sufficient to diagnose a patient (e.g., using x-rays to diagnose a simple 
fracture), many conditions require multi-modal information to enable a 
physician to diagnose a condition with confidence. When integration and 
fusion of data is necessary, the most suitable representation is that which can 
be manipulated by computer [Tang, 1999]. While the number of medical 
databases (and even more importantly, the amount of data within them) 
grows daily, both researchers and application developers have been 
responding to the problem of analysis and use of electronic data. Knowledge 
discovery and data mining in databases (KDD) is an area of common interest 
to researchers in machine learning, pattern recognition, statistics, intelligent 
databases, data visualization, high performance computing, but also signifies 
an important trend in medical informatics [Prather, 1997][Han, 2001]. 

Pattern-identification tasks, such as detecting associations between 
certain risk factors and outcomes, ascertaining trends in health care 
utilization, or discovering new models of disease in populations rapidly 
become daunting, even to the most experienced biomedical researcher or 
health care manager [Holmes, 2000]. In many systems, databases have 
become so large that they overwhelm traditional statistical approaches for 
performing these tasks. An alternative approach uses a variety of methods 
drawn from statistics and machine learning disciplines to mine databases for 
patterns that may be missed with traditional techniques. Until recently, much 
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of the work of data mining has been the domain of a small number of 
computer scientists, programmers, database administrators, and management 
information specialists. With the amount of information and issues in 
healthcare industry (not to mention pharmaceutical industry and biomedical 
research), opportunities for data mining applications are extremely 
widespread, and benefits from the results are potentially enormous. The 
increasing development of electronic patient records and medical 
information systems allow a large amount of clinical data to be available 
online [Kohane, 1996]. Regularities, trends, and unexpected events extracted 
from these data by data mining methods are important in assisting clinicians 
to make informed decisions, and to thereby improve health services. 

For medical domain understanding, the challenge is to continue 
developing more sophisticated techniques that can assist users in analyzing 
discovered knowledge easily and quickly. This paper has attempted to 
provide the reader with some issues of rule-based modeling techniques, an 
important approach to symbolic modeling. While some aspects of this 
technology have reached maturity and become stable, there are also many 
aspects that remain open. Symbolic modeling approaches are consistently 
robust across a wide variety of data sets, and they are based on very simple, 
readable, and accurate models. Therefore, they seem to be very appropriate 
methodologies for medical data mining. 

Data mining is an iterative process with several important phases. 
While many researchers and practitioners recognize application of data 
mining tools in discovering new knowledge, less attention is given to careful 
and systematic preparation and integration of medical data as a source for 
data mining. Successful data mining applications, especially in medical 
domains with multimedia data, require clean, integrated medical records. In 
this review paper, the current methods and techniques for medical data 
preprocessing and integration will be reviewed. We describe characteristics 
of patient records, limitations, barriers, and technical challenges and 
successes in meeting the data requirements of a broad spectrum of clinical 
users employing data mining applications. Section 2 gives a brief 
explanation of the common phases in a data mining process. Basic 
characteristics and possible standards of an integrated patient record, as a 
source for data mining, are given in Section 3. Section 4 highlights patient 
record preprocessing, while Section 5 continues with methods and 
techniques for data transformation. Finally, Section 6 explains possibilities 
for dimensionality reduction in a database of patient records, and Section 7 
describes some challenges and important research directions for successful 
preparation of patient records in a data mining process. 
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2. THE DATA MINING PROCESS 

The need for understanding large, complex, information-rich data sets is 
common to virtually all fields of business, science, and engineering. The 
ability to extract useful knowledge hidden in these data and to act on that 
knowledge is becoming increasingly important. The entire process of 
applying computer-based methodology, including new techniques for 
discovering various models, summaries and derived values from a given 
collection of data, is often called data mining [Hand, 2001]. The word 
"process" is very important here. Even in some professional environments, 
there is an apparent belief that data mining simply consists of picking and 
applying a computer-based tool to match the presented problem, and in 
obtaining a solution automatically. This is a misconception, based on an 
artificial idealization of the world. There are several reasons why this is 
incorrect. 

First, the data mining is not simply a collection of isolated tools, each 
completely different from the other, that needs to be matched to the problem. 
Second, only very rarely is a research question stated with sufficient 
precision that a single, simple application of the method will suffice. In fact, 
in practice, data mining is an iterative process. One studies the data, 
examines it using some analytic technique, decides to look at it another way, 
perhaps modifying it, and then goes back to the beginning and applies 
another data analysis tool reaching either better (or different) results. The 
process can be repeated many times. Each technique is used to probe slightly 
different aspects of data - to ask a slightly different question of the data. 
What is essentially being described is a voyage of discovery. The general 
approach to data mining process involves the phases represented in Figure 1 
[Han, 2001][Kantardzic, 2002]. 

Domain-specific knowledge and experience are usually necessary in 
order to formulate a meaningful problem statement in the first phase of a 
mining process. An observational data setting is assumed in most of data 
mining applications, where the amount of raw data is large. Typically, the 
sampling distribution for a data set is completely unknown after the data are 
collected, or it is partially given implicitly in the data collection procedure. 
Preprocessing includes several common tasks with a raw data set such as 
outlier detection (and perhaps removal), scaling, encoding, and feature 
selection. Generally, a good preprocessing method provides an enhanced 
representation for a data mining technique. Selection and implementation of 
an appropriate data mining technique is the main task in the phase of model 
estimation. 
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T H E D A T A M I N I N G P R O C E S S 

h l̂ 

Figure 1. Phases of the Data Mining Process. 

Although the potential advantages and disadvantages of utilizing each 
data mining method have been defined theoretically (given certain 
assumptions about data distribution, characteristics of the task, data-to-noise 
ratio etc.), it is often the case in practice that these assumptions cannot be 
verified. Under these circumstances, empirical comparison of data mining 
performances using standard metrics to describe discrimination and 
calibration is necessary. A final selection of the "best model" and 
corresponding data mining technique can only be concluded after 
considering the tradeoffs between algorithm performance, costs, and model 
interpretability. For example, for a typical mining task such as classification, 
we can compare the performance and results of methods such as ^-nearest 
neighbor, logistic regression, artificial neural networks, and support vector 
machines. This task is not straightforward. Different approaches in 
verification and validation of models are available in the final phase of a 
data mining process assuming the trade-off between interpretability and 
complexity of the model. 

Vast quantities of data are generated through the health care process. 
While technological advancements in the form of computer-based patient 
record software and personal computer hardware are making the collection 
of and access to health care data more manageable, new data mining 
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techniques and tools are needed to evaluate and analyze large quantities of 
clinical data after it has been captured. Evaluation of stored clinical data may 
lead to the discovery of trends, patterns, and relationships hidden within the 
data that could significantly enhance our understanding of disease 
progression and management [Prather, 1997][Shortliffe, 2000]. 

The data mining process based on patient record data is focused on 
finding "interesting" and meaningful patterns within the multimedia data 
collection consisting of different texts, images, and laboratory data. It is 
assumed that a domain expert provides a distance function or a similarity 
function. The idea is to extract a few features out of every multimedia 
record, map it to a point in an w-dimensional space, and then to use fast 
searching methods based on available distances to discover patterns. A 
collection of multimedia patient records represents a specific problem for 
successful data mining. Extracting n features from multimedia documents 
has to preserve the distances between the original data. Therefore, when 
mapping the patents' records into points in a low /^-dimensional space, the 
basic semantic relations between records should remain constant. This 
process of data transformation should be general and applicable not only for 
structured numerical features in patient records, but also to text documents, 
to time sequences (ID signals) or to 2D and 3D images which are an 
important part of multimedia representation. This entails transfer of the 
database from a comprehensive computer-based patient record system into a 
dataset suitable for analysis by extracting, cleaning, and preprocessing 
variables in the patient multimedia record. 

3. CLINICAL PATIENT RECORDS: 
A DATA MINING SOURCE 

In today's multimedia-based environment with a huge Internet 
infrastructure, different types of data are generated and digitally stored. To 
prepare adequate data mining methods, we must analyze the basic types and 
characteristics of data sets. One can classify data, usually served as a source 
for a data mining process, into three classes [Kantardzic, 2002]: 

1. Structured data, 
2. Semi-structured data, and 
3. Unstructured data. 

While structured data consist of well-defined fields with numeric or 
alphanumeric values, semi-structured data have only partial structure; parts 
are standard numeric or alphanumeric features, and the other parts are plain 
text, figures, or time domain signals. Examples of semi-structured data are 
laboratory reports, medical images, biosignal recordings, or physician 
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reports. The majority of web documents also fall into this category. An 
example of unstructured data is a video recorded by a surveillance camera in 
an emergency room. 

The complexity of the patient's record structure may be recognized by 
observing that these records include: encounters, historical data elements, 
individual lab results, subjective and physical findings, medical images, 
clinical laboratory, admit-discharge-transfer, pharmacy, discharge 
summaries, textual radiology reports, coded radiology findings, pathology, 
outpatient notes, and specific problems and procedures [Tang, 1999]. 
Obviously, some of the data are structured, but many very important 
components are represented in a semistructured or unstructured manner as 
represented in Figure 2. For example, some of the most valuable clinical 
data, such as admission notes, discharge summaries, progress notes, and 
radiology reports, are collected as a plain text. A large amount of clinical 
information stored in these narrative reports is inaccessible to automated 
data mining systems. To be useful, the information must be converted into a 
form that can be utilized effectively by any information system. Typically, 
the representation is in standardized codes, which represent not only 
information directly retrieved from the text, but also complex conclusions 
drawn from it. 

The clinical laboratory assigns a unique code to all the tests it can 
perform. Most tests are grouped into batteries (panels) [Hripcsak, 1997]. A 
single patient specimen usually undergoes a battery of tests and the results 
are reported together. Examples of tests are the serum sodium test, a 
hemoglobin measurement, and a hepatitis B surface antibody titer. Examples 
of batteries are the chemistry panel (which includes the sodium test), an 
automated blood count (which includes the hemoglobin measurement), and a 
hepatitis panel (which includes the antibody titer). The laboratory 
distinguishes among tests with a very fine level of granularity. For example, 
a serum potassium test performed at the main medical center has a different 
code than an otherwise identical test performed at a satellite hospital. 
Whenever the machines that analyze the specimen change, a new code is 
assigned. The same test performed as part of two different batteries is 
usually (but not always) given two different codes. The codes stored in the 
database are defined in the institution's vocabulary. The vocabulary serves 
not only to define the codes, but also to map the central database codes to the 
codes used in local departments. It is difficult to predict which of the 
laboratory's many distinctions are clinically relevant. For example, a change 
of equipment may result in a change of normal levels, which is clinically 
relevant. Therefore, the central patient database maintains all the laboratory 
distinctions by a one-to-one mapping of the laboratory codes to distinct 
central MED codes [Hripcsak, 1997]. 
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Figure 2. Multimedia Components of the Patient Record. 

Medical images, including x-ray images, CAT scans, MRI scans, and 
ultrasound images, will be managed through the same patient record system 
for acquisition, storage, and transmission throughout the hearth-care 
environment. The goal of image integration is to develop an integrated 
patient record based system for archival, analysis and information 
distribution. Medical image database issues include image management, 
image retrieval and archival, image storage, image flow and image indexing 
in a large distributed and heterogeneous database environment. Additional 
software tools with corresponding standards will enable integrating this 
imaging information into "virtual patient folder" that contains the patient's 
demographic and other medical information, as well as relevant doctor's 
analyses in a text form [Wilcox, 1999]. 

Clinicians evaluate a patient's condition over time. The analysis of large 
quantities of time-stamped data will provide doctors with important 
information regarding the progression of the disease. Therefore, a patient 
record system should be capable of performing temporal abstraction because 
temporal reasoning becomes crucial in this context. Although the use of 
temporal reasoning methods require an intensive knowledge acquisition 
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effort, they have found many successful medical applications, including data 
validation in intensive care, the monitoring of children's growth, analysis of 
diabetic patient's data, the monitoring of heart transplant patients, and 
intelligent anesthesia monitoring [Tang, 1999]. 

Medical research centers and other health care institutions should be 
interested in determining and developing data standards, vocabularies, and 
information infrastructure that will support mining of data collected through 
clinical trials. We need to understand the role of multimedia and image 
integration in health care, to gain a deeper understanding of the benefits of 
bringing these capabilities into their own clinical environments. To have 
access to real medical records that include images and text, and to perform 
data mining on these multimedia records requires a very difficult 
undertaking due to privacy issues and heavy bureaucratic hurdles [Mandl, 
2001]. This chapter emphasizes aspects of imaging and multimedia 
integration that enhance the clinical records capabilities while ensuring 
continuity and integrity of patient information. Integration needs to be 
addressed at the levels of storage formats and schemas in databases. Also, 
we need efficient means of sharing integrated patient information across the 
research medical community. 

Past efforts in this area have been limited primarily to epidemiological 
studies on administrative and claims databases [Porter, 1999]. These data 
sources lack the richness of information available in clinical databases. 
Clinical multimedia databases have accumulated large quantities of 
information about patients and their medical conditions in forms of medical 
images, lab and other measurements, narrative reports and explanations. 
Discovering relationships within this data may provide new medical 
knowledge. 

To date, the burden of synthesizing different multimedia data into a 
single, consistent view (i.e., data fusion) is placed on the mental 
visualization capabilities of the physician. These processes of synthesis are 
extremely difficult, time-consuming, and error-prone tasks. It is a goal to 
develop computer-assisted methodologies and tools that increase the 
likelihood of a correct diagnosis and effective treatment strategy, and reduce 
the risk of a catastrophic misdiagnosis [Lavrac, 1999]. The next generation 
of datasets will incorporate higher-level relationships among the various 
information primitives that populate the database. To address these 
challenging problems for multimedia medical datasets, development of new 
multi-modal models based on semantically enriched data is necessary and 
can be achieved using new technologies. 



560 Data Mining & Knowledge Discovery Based on Rule Induction 

3.1 Distributed Data Sources 

Currently, most of the medical organizations have independent 
processes for collecting, analyzing, presenting and using clinical data. There 
is no systematic interaction or information sharing betw^een different sources 
w^here the data are collected. The result is duplication of effort since some 
hospitals or even doctors might collect and analyze the same or similar 
information w îthout realizing that the information exists elsewhere. Further, 
due to the independent nature of the research community, as the data are 
available and used locally, researchers lose the benefit of accessing data in 
other places. To share the data across the Internet, it is necessary to establish 
a system of standards that are also supported by software implementation of 
a schema translator. This software translates the site-internal data 
representation (database or file format) to the specified standards and vice-
versa. The complexity of the translator includes resolving heterogeneity, 
autonomy, distribution and duplication issues in a distributed database of 
patient records. Heterogeneity needs to be addressed at three levels: storage 
formats, DBMS schema, and operating system [Kohane, 1996]. Concerning 
autonomy in patient records use, each site has the right to accept or reject 
requests for data or data by themselves, that are propagated from any other 
site. Making data available through the Internet, security cannot be 
compromised. Apart from the usual password protection, recent issues such 
as denial of service need to be addressed. 

Building the infrastructure for distributed medical data mining is an 
important step in discovering new knowledge from medical records. It is 
necessary to evaluate different middleware strategies, which integrate 
clinical data from a variety of hospital-based data sources together with 
patient-reported health information, and present the data via a secure web 
interface [CoUmann, 2001]. A promising trend in middleware organization is 
development of specialized Internet services that will take care not only of 
availability of data but also of quality, security and privacy 

3.2 Patient Record Standards 

A patients' medical records are generally fragmented across multiple 
treatment sites, posing an obstacle to clinical care, research, and public 
health efforts. Electronic medical records and the Internet provide a 
technical infrastructure on which to build longitudinal medical records that 
can be integrated across care sites. Choices about the structure and 
ownership of these records will have a profound impact on the accessibility 
and privacy of patient information [Tang, 1999]. The technology promising 
to unify the currently disparate pieces of a patient's medical record may 
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actually threaten the accessibility of the information and compromise 
patients' privacy. Integrated computerized medical record should have the 
characteristics presented in Table 1 [Mandl, 2001]. 

Two main impediments stand in the way of these requirements. Firstly, 
patients are becoming increasingly anxious about the privacy of their 
medical records. Secondly, most healthcare institutions do not provide 
effective access for patients to their own data and, despite technical 
feasibility; they show little willingness to share data with their competitors 
[Mandl, 2001]. Therefore, many current systems fragment medical records 
by using incompatible means of acquiring, processing, storing, and 
communicating data. These incompatibilities may result from a failure to 
recognize the need for interoperability, or they may be deliberate, with the 
aim of locking consumers into using a particular system. Either way, the 
practice precludes sharing of data across different applications and 
institutions. 

Patient record systems should be designed so that they can exchange all 
their stored data according to public standards and, at the same time, that 
patients should have control over access and permissions. Building software 
compliant with public standards will enable connectivity and interoperability 
even of diverse systems. Patients' control will allow protection of privacy 
according to individual preferences and help prevent some of the current 
misuses of personal medical information. However, views on the shape of 
standard records differ in emphasis: some anticipate records consisting of a 
collection of web documents, whereas others emphasize the importance of 
coded structured data that can be retrieved for aggregation, analysis, and 
decision support. 

A standard in creation and maintenance of an electronic health record 
providing individual patient information when and where needed is 
underpinned by two principles: the need for public standards, and the need to 
respect patients' right to privacy. We refer to the efforts of HL7 (Health 
Level Seven) to develop public standards for health communication [Mandl, 
2001]. The alternative to proprietary methods is the use of open standards. 
At minimum, open standards should be used in the exchange of information 
among different systems. For example, HL7 is a voluntary consensus 
standard for electronic data exchange in healthcare environments. 

It defines standard message formats for sending or receiving data on 
patient admissions, registration, discharge, or transfer; queries; orders; 
results; clinical observations; and billing. Using an open messaging standard 
such as HL7 allows different health applications, including a laboratory 
system and a record system, to "talk" to each other. In May of 1999, the 
Computer-based Patient Record Institute (CPRI) published the "CPRI 
TOOLKIT: Managing Information Security in Health Care" [Cooper, 2001]. 
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Table 1. Integrated Computerized Medical Record Characteristics. 

Comprehensiveness 

Medical care is normally provided to a patient by different doctors, 

nurses, pharmacists, and ancillary providers, and, with the passage of 

time, by different institutions in different geographical areas. With 

integrated medical record, each provider must be able to know what 

others are currently doing and what has previously been done. Record 

systems should be able to accept data (historical, radiological, laboratory, 

etc) from multiple sources, including physician's offices, hospital 

computer systems, laboratories, and patients' personal computers. The 

records must also span a lifetime, so that a patient's medical and treatment 

history is available as a baseline and for retrospective analysis. 

Accessibility 

Data about patient may be needed at a patient's usual place of care or 

far from home. In addition, with patients' permission, these records 

should be accessible to and usable by researchers and public health 

authorities. Electronic medical record systems should be designed so that 

they can exchange all their stored data according to public standards. 

Interoperability 

Currently, many existing electronic medical record systems fragment 

medical records by adopting incompatible means of acquiring, 

processing, storing, and communicating data. Therefore, it will be 

necessary to develop standards and tools in which different computerized 

medical systems should be able to share records: they should be able to 

accept data (historical, radiological, laboratory, etc) from multiple 

sources, including doctors' offices, hospital computer systems, 

laboratories, and patients' personal computers. 

Confidentiality 
Patients should have the right to decide who can examine and alter 

parts of their medical records. 

Accountability 
Any access to or modification of a patient's record should be recorded 

and visible to the patient. Thus, data and judgments entered into the 

record must be identifiable by their source. 

Flexibility 

We believe that most people want to make data about themselves 

available to those genuinely trying to improve medical knowledge, the 

practice of medicine, the cost effectiveness of care, and the education of 

the next generation of healthcare providers. Patients should therefore be 

able to grant or deny study access to selected personal medical data. 
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That toolkit was designed to assist healthcare organizations address 
their needs in this area. The Toolkit describes requirements in each area of 
confidentiality and security. In Europe, CEN TC251 (European Committee 
for Standardization, Technical Committee for Health Informatics) undertakes 
similar activities, and a four part, preliminary standard on communication of 
electronic healthcare records was adopted in June 1999 [Markwell, 1999]. 

Other standards have been adopted for various other data exchanges: 
DICOM defines messages for encoding and exchanging medical images, and 
X12 is a recent set of standards for exchanging authorization, referral, and 
billing records [Mandl, 2001]. For different systems to share data effectively 
they must all use at least a common set of communication protocols and 
message formats and allow the import and export of all their data. Common 
data structures and open source programming can foster the possibility of 
effective data exchange among systems. Standards such as CorbaMED try to 
define universal object models that can be widely used among different 
interoperating systems. Programs that exchange data according to open 
standards may nevertheless store and use those data internally in proprietary 
ways. 

4. DATA PREPROCESSING 

All raw data sets initially prepared for data mining process have the 
potential for being messy. One should expect missing values, distortions, 
misrecording, inadequate sampling, and so on in these initial data sets. Raw 
data, which do not exhibit any of these problems, should immediately arouse 
suspicion. The only real possibility for high quality is that the presented data 
have been cleaned and preprocessed before the application of any knowledge 
discovery technique. 

It is very important to examine the data thoroughly before undertaking 
any further steps in formal data mining analysis. Traditionally, the analysts 
have to familiarize themselves with their data before beginning to model it 
or to apply data mining tools. However, with the large size of modem data 
sets, this is less feasible or even entirely impossible in many cases. Here we 
must rely on computer programs to check the data. The preparation of data is 
sometimes dismissed as a topic in data mining literature, and as a phase in a 
data mining process. In a real world of data mining applications, the 
situation is reversed. More effort is expended preparing data than applying 
data mining methods. There are two central tasks for the preparation of data 
[Han, 2001][Kantardzic, 2002]: 
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• To organize data into a standard form that is ready for processing by 
data mining and other computer-based tools, and 

• To prepare data sets that lead to the best data mining performance. 

Some analyses showed that most of evaluated medical databases 
contained erroneous, poorly organized, unstructured, inconsistently recorded 
and frequently dichotomous data elements. For patient records, with their 
multimedia components, adequate preprocessing is important for the success 
of the entire data mining process. A breakdown of reasons why data in 
patient records could not be used directly for standard data mining can be 
summarized through the counts of unusable value occurrences. Free text and 
images, representing 64% of data, account for the largest amount of 
unusable data for direct application of data mining techniques. Missing 
values, with 34%, account for the second largest unusable set of data, and 
incomplete data, with 4%, as the third largest [Prather, 1997]. The other 
causes of unprepared data include out of range values such as invalid 
heights, format discrepancies such as text in a numeric field, and data 
inconsistencies such as two different values for the birth date. 

For structured elements of a patient record, standard data preprocessing 
techniques are used. As each variable (feature) is added to the dataset, it is 
cleansed of erroneous values, data inconsistencies, and formatting 
discrepancies. One of the most common processes is conversion of 
alphanumerical fields (coded values) into coded numerical quantities that 
permit more efficient data mining analyses. Data preprocessing also includes 
identifying missing values and prompting the user to either substitute them 
(for example with an average value for the variable), or to delete the record 
from the dataset. Cleansing and scrubbing are transformations concerned 
with ensuring consistent formatting and usage of a field or of related groups 
of fields [Prather, 1997] [Han, 2001]. This can include proper formatting of 
address information, for example. These transformations also include checks 
for valid values in a particular field, usually by range checking or by 
choosing from an enumerated list. 

For text and especially for medical images, specific procedures have to 
be implemented. Many medical images are difficult to interpret directly, and 
a preprocessing phase is necessary to improve the quality of the images and 
to make the later feature extraction phase more reliable. Pre-processing is 
always a necessity whenever the images to be mined are noisy, inconsistent, 
or incomplete. This phase significantly improves the effectiveness of the 
data mining techniques applied later. Two typical techniques for image 
preprocessing are a cropping operation, and image enhancement. The 
former is employed in order to cut the background image area as well as the 
existing artifacts such as written labels, etc. For many medical images, a 
large percentage of the whole image (sometimes more than 50%) is 
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comprised of a black background with a significant noise. Cropping should 
be performed prior to image enhancement to avoid additional noise from the 
non-data part of the image. Cropping is usually performed automatically by 
sweeping through the image and cutting horizontally and vertically the 
image segments with the mean and variance less than a specified threshold 
value [Antonie, 2001]. 

Image enhancement provides qualitative improvement in order to 
diminish the effect of over-bright or over-dark regions of the image, and 
also to accentuate the image features. One common technique to improve 
visual appearance is histogram equalization (HE). Applying HE increases 
the contrast range in an image by increasing the dynamic range of gray 
levels or colors [Lavrac, 1999][Adibi, 2000]. This improves directly the 
distinction of features of the image that are based on contours. The method 
proceeds by widening the peaks in the image histogram and by compressing 
the valleys. 

In an effort to explore data mining from breast cancer databases of 
digitized mammography, a novel rule-based image segmentation algorithm 
for masking the breast region from the background in digital mammograms 
is proposed [Rickard, Tourassi and Elmaghraby, 2003]. The algorithm uses a 
self-organizing map (SOM) to obtain an initial segmentation. In image 
segmentation, each element is simply a pixel from the input image described 
with different features. Though hundreds of types of features are available 
in the literature, nine multiscale features have been used in the proposed 
approach. Multiscale features are created from combinations of images 
convolved with Gaussian partial derivatives. After the features were 
extracted to create a pattern matrix P, a training set P' was created by 
selecting one sample from each 16x16 subimage. After the SOM had been 
trained, the entire pattern matrix was presented to the SOM to determine 
each pixel's best matching unit (BMU), or, node. 

SOMs may be visualized by methods such as the unified distance 
matrix (u-matrix) or using Sammon's mapping, but these visualizations only 
provide qualitative information about the underlying structure of the map. 
To obtain quantitative descriptions of data properties, the weight vectors of 
each SOM node were clustered by the ^-means method. Several indices 
have been developed in an attempt to quantify the quality of clustering, and 
the Davies-Bouldin index DB(K) was selected [Rickard et al. 2003]. 
Originally proposed as a way of deciding when to stop clustering data, the 
Davies-Bouldin index is a function of the ratio between the sum of within-
cluster distances and the between-cluster separation, which supposes that the 
minimum DB-index is for an optimal clustering. Given a partition of n 
objects into K clusters, the within-to-between cluster spread for all cluster 
pairs (/, k) is calculated as, 
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^ j,k = (e I + e , ) I m j^ k 

where Cj is the average error for the f" cluster and nij^k is the Euclidean 
distance between the centers of the/^ and li^ clusters. The index for the li^ 
cluster is: 

and the Davies-Bouldin index of the AT-cluster clustering is then, 

DB{K)^]-iR, 
A k=\ 

The K value with the minimum DB-index, ^DB? was used for the final 
clustering and to create a corresponding segmented grayscale image with 
XDB gray levels. 

Knowledge-based refinement provides the final binary mask that 
segments the image. Rule-based analysis was performed to determine the 
breast orientation, remove the markers (such as information plates), remove 
unexposed film regions, and to smooth the final segmentation. For example, 
the breast orientation is determined by a simple histogram analysis of the 
original mammogram. When the image is split vertically down the center, 
one side will contain most of the breast while the other contains most of the 
background, regardless of the level of overlap. A histogram is accordingly 
calculated for both the right and left half of the original image. Without loss 
of generality, an orientation rule is defined in the form: if the right half 
contains more pixels in the high intensity range and the left half contains 
more pixels in the low intensity range, the breast is oriented on the right. 
Rules pertaining to identifying location and orientation of the breast are 
followed by rules to eliminate unwanted background clusters. Successful 
application of these rules enables focusing on the actual breast and 
eliminating nameplates and unnecessary background in the image. 

The images used were obtained from 40 cases from the Digital Database 
for Screening Mammography (DDSM) [Heath, et al., 2000]. Each case 
contains four images, the medio-lateral oblique (MLO) and the cranio-caudal 
(CC) view of each breast, for a total of 160 images. Figure 3 (a) depicts an 
original mammogram with name plate and background noise. Figure 3 (b) 
shows the KoB-clustering results. Figure 3 (c) shows an initial binary mask, 
and Figure 3 (d) shows results of applying the rules to eliminate unwanted 
segments and refine the breast mask to allow further study. 
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(a) (b) (c) (d) 

Figure 3. Phases in Labels and Noise Elimination for Digitized 
Mammography Images. 

5. DATA TRANSFORMATION 

5.1 Types of Transformation 

Most experts in data mining agree that one of the essential steps in a data 
mining process is the preparation and transformation of the initial data set. 
This task often receives little attention in the research literature, mostly 
because it is considered too application-specific. But in most data mining 
applications, some parts of a data preparation process, or sometimes even the 
entire process, can be described independently of an application and a data 
mining method. 

Different transformations may be needed to produce medical records 
features more conducive to selected data mining methods such as prediction 
or classification. Counting in different ways, using different sampling sizes, 
taking important ratios, varying data window sizes for time-dependent data, 
and including changes in moving averages, may contribute to better data 
mining results. The computer will not find the best set of transformations 
without human assistance, and the transformations used in one data mining 
application are not necessarily best for another. Fundamental types of data 
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transformations that are partially or totally independent on application may 
be classified as [Prather, 1997][Han, 2001]: 

Simple transformations - These transformations are building blocks of 
all other more complex transformations. This category includes 
manipulations of data that is focused on one field at a time, without taking 
into account the values in related fields. Examples include changing the data 
type of a field or replacing an encoded field value with a coded value. 
Standard transformation procedures for numerical features in a patient 
record are: decimal scaling, min-max normalization, standard deviation 
normalization, and data smoothing. Processes for the replacement of missing 
values, and formatting of time-dependent data into standard windows belong 
to these elementary transformations. 

Integration - This is the process of taking operational data from one or 
more sources and mapping it, field by field, onto a new data structure. The 
common identifier problem is one of the most important and difficult 
integration issues in building an integrated patient record. Essentially, this 
situation occurs when there are multiple system sources for the same entities 
and there is no clear way to identify those entities as the same. This is a 
challenging problem, and in many cases it cannot be solved in an automated 
fashion. It frequently requires sophisticated algorithms to pair up probable 
matches. Another complex data integration scenario occurs when there are 
multiple sources for the same data element. In reality, it is common that 
some of these values are contradictory, and resolving a conflict is not 
straightforward process. Just as difficult is the problem of having no value 
for a data element. All these problems and corresponding automatic or 
semiautomatic solutions are always domain dependent. 

Aggregation and summarization - These are methods of condensing 
instances of data found in the operational environment into fewer instances 
in the data mining environment. Although the terms aggregation and 
summarization are often used interchangeably in the literature, we believe 
that they do have subtle differences in the data mining context. 
Summarization is a simple addition of values along one or more data 
dimensions. For example, adding up daily drug consumption to produce 
monthly total. Aggregation refers to the addition of different medical 
features into a common total; it is highly domain dependent. 

Differences and ratios - These provide an additional methodology for 
data preprocessing. In many data mining applications, mining for changes 
can be more important than producing accurate models. Sometimes a model 
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in itself, no matter how accurate, is a passive descriptor, and the only way of 
performing classification or prediction tasks is based on patterns mined in 
old data and compared with the new one to estimate the changes. These 
changes may follow a trend or may cause undesirable distortions in the trend. 
The analyst must understand that even in a relatively stable environment of 
data collection, changes are also inevitable, although at a slower pace, due 
to uncontrolled internal and external factors. Different types of changes 
could be detected, depending on the type of attributes in medical records. 
Common changes for medical images are boundary shift, join or split of 
regions, increasing/decreasing texture, and changes in a gray or color level. 
These techniques may also be included into the data transformation process, 
as they introduce new dimensions (features) of a data set based on initial 
features. 

Feature composition - There are transformations of data that can have a 
surprisingly strong impact on results of data mining methods. In this sense, 
the composition of features is a greater determining factor in the quality of 
data mining results than the specific mining technique. In most instances, 
feature composition is dependent on knowledge of the application, and 
interdisciplinary approaches to feature composition tasks provide significant 
improvements in the preparation of data. For example, our experience has 
showed that composing patient features weight and height into a new feature 
called body mass index (BMI) improves classification results in an 
applicability analysis of laparoscopic techniques [Kantardzic et al., 2001]. 

The following normalization process is an example of methods that will 
assign equal emphasis to each component of the feature vector describing 
medical images [Kantardzic, 2002]. Different components within the vector 
may be of totally different physical quantities. Therefore, their magnitudes 
may vary drastically and therefore bias the similarity measurement 
significantly. One component may overshadow the others just because its 
magnitude is relatively too large. Assuming a Gaussian distribution of 
feature values for a set of images, we can obtain the mean //i and standard 
deviation o; for the /th component of the feature vector across the entire 
image data set. Then we can normalize the original feature values Ai,j of the 
image into A't.j values with the range of [-1, 1] as follows: 

A'i.j = {Ai,j - iUi)l C7i . 

It can easily be shown that the probability of an attribute value falling 
into the range [-1, 1] is 68%. In practice, the algorithm may map all the data 
into the required range by forcing the out-of-range values to be border 
values: either -1 or 1. Shifting the normalized values into the A"i,j value with 
the range [0, 1] is very simple and can be achieved by using the formula: 
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A feature vector may be weighted globally or locally. A global weight 
indicates the overall importance of the feature vector in the patient record. 
Therefore, the same global weighting is applied to an entire row. A local 
weight is applied to each element indicating the importance of the 
component within the vector. Common local weighting techniques include 
binary and log of term frequency, whereas common global weighting 
include entropy measures. 

For structured, numerical parts of patient record, independent component 
analysis (ICA) is an effective method for removing artifacts and separating 
sources of the data from noise [Hand, 2001][Jung, 2001]. ICA is also a 
signal processing technique for modelling empirical data sets and for 
exploratory data analysis. It is particularly useful in blind source separation 
and feature extraction. 

,,^:::}:y 
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Figure 4. The Difference Between PGA and ICA Transforms. 

At the same time data are transformed in this process and the number of 
dimensions (features) for a data set is reduced. Mathematically, the ICA 
problem is as follows: Given a collection of A^-dimensional vectors x, 
typically there are diffuse and complex patterns of correlation between the 
elements of the vectors. ICA, like principal component analysis (PCA), is a 
method to remove those correlations by multiplying vector x by a matrix W 
as follows: 
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U = W x . 
We call the rows of W filters because they extract the independent 

components of the vector x. A matrix W is not an orthogonal transformation 
as it is a covariance matrix in the PCA method. While PCA only uses 
second-order statistics (the data covariance matrix), ICA uses statistics of 
higher order pursuing more ambitious objectives, and in general better 
results of transformation. The usefulness of a non-orthogonal transform 
sensitive to higher order statistics can be seen in Figure 4, where two main 
axes of maximum variance for N-dimensional data samples better fit the data 
if they are not orthogonal. 

5.2 An Independent Component Analysis: Example of an 
EMG/ECG Separation 

Some of the many applications of ICA include EEG signal processing 
and source localization [Vigario et al., 2000], suppressing noise and artifacts 
[Tong et al., 2001], and modelling retinal encoding [Milanova et al., 2001]. 
A recent application [Wachowiak et al., 2002a] addresses preprocessing 
issues of biosignals. Specifically, ICA was used to separate cardiac 
(electrocardiograph, or ECG) recordings from electromyography (EMG) 
signals. EMG tests the electrical activity of skeletal muscle. It is useful in 
detecting disorders that affect the muscles, and in diagnosing muscle 
problems caused by nerve dysfunction. EMG signals are collected with 
electrodes on the skin surface or by insertion of a needle electrode. Actual 
EMG data of the trunk and shoulder is the summation of the potential 
difference in muscle activity and ECG signal. For accurate clinical analysis, 
it is important to separate the mixture while retaining as much of the true 
EMG signal as possible. In ECG separation with ICA, three basic 
assumptions must be made: (1) EMG and ECG signals are independent and 
have non-Gaussian statistics; (2) EMG/cardiac mixtures are linear 
combinations of the true EMG and cardiac components; (3) It is possible to 
record at least two mixtures simultaneously from nearby locations. 

To provide ground truth, experiments were performed on simulated 
mixtures of real EMG and ECG signals. The fixed-point ICA algorithm 
[Hyvarinen and Oja, 1997] was used to maximize negentropy as a measure 
of non-Gaussianity. The procedure is shown in Figure 5. 

ICA was compared to high-pass filtering and noise removal with 
wavelet packets [Misiti et al., 1996]. For the latter two techniques, the two 
EMG signals used in each ICA trial were mixed only with ECG (not with 
each other), but in the same linear combination as for the ICA trials. 
Therefore, the EMG for both sets of experiments had the same degree of 
ECG artifact for corresponding trials. Three cardiac and 7 EMG signals from 
oblique muscles of a healthy male were collected. The signals were 
collected for 3 seconds at 1 KHz. Two time-synchronized EMG signals and 
one ECG signal were linearly combined with 3 x 3 mixing matrices that 
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simulate realistic mixtures. One thousand EMG/ECG mixtures, each 
containing three signals, were generated from the EMG and ECO 
combinations and mixing matrices. The fixed-point ICA algorithm was 
applied to the mixtures to extract the EMG and ECG components. 

The wavelet packets produced good results with low standard deviation, 
with transforms based on biorthogonal wavelets slightly outperforming the 
orthonormal filters. Also, the best results for high-pass filtering were 
obtained with a cut-off frequency of/c = 25 Hz, as the dominant frequency 
power of ECG is at 20 Hz, and at 25-250 Hz for EMG. However, the ICA 
method was the best overall performer in mean SNR improvement and 
consistency. 
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Figure 5. Three EMG/ECG Mixtures (left) Separated ino EMG and ECG Signals 
by ICA (right). Cardiac Artifacts in the EMG are Circled in Gray 
(upper left). 
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For ECG separation, ICA has the advantage that it is fully automatic. 
The method is robust with respect to choice of the specific non-Gaussian 
function being maximized. No thresholds (for wavelet packets) or filter 
order (for high-pass filtering) need to be chosen. Fixed-point ICA, although 
iterative, converges very rapidly. A disadvantage of the ICA approach is that 
at least as many signals, as independent components are required. Obtaining 
these signals in a localized area may be difficult, especially when needle 
electrodes are used [Wachowiak et al., 2002a]. 

ECG separation from EMG is an example of using ICA as a data 
preprocessing technique. In the data mining context, all separated source 
signals, or only sources considered to be relevant to the specific problem at 
hand, can be used in further data mining operations. 

5.3 Text Transformation and Representation: A Rule-Based 
Approach 

Electronic clinical information is typically stored either as structured, 
coded data or as images or full-text reports. Medical text reports represent a 
significant source of clinical data; especially data that are not available in 
other coded electronic forms. Recent studies found that coded information 
alone was not sufficient for different data mining tasks [Wilcox, 2000]. To 
be useful in data mining, the information, stored as narrative text, must be 
represented in such a way that it can be used effectively. 

Different structured representations are used for medical text. The 
simplest possibility is a vector of the frequency of each word in the text, 
after removing stop words. Additionally, a vector of words may be 
associated with weights rather than with raw frequencies. Some studies use a 
limited form of natural language processing to identify concepts rather than 
individual words in the document. Another approach uses only those words 
and phrases that occur in a dictionary of relevant terms prepared by experts, 
and then they are mapped to specific codes representing concepts. Aronow 
et. al [1999] also mapped words and phrases to concepts, but also included a 
specific method to detect negation of these concepts. The CAPIS system, 
developed at Stanford University, extracts findings or observations from a 
text report, and assigns one out of several state values to each finding: 
instantiated-positive, instantiated-negative, or not-instantiated [Lin, 1991]. 
Instead of identifying all observations in a text, the system only identifies 
target findings specified by a user. In all previous methodologies the basic 
structured representation of the text is a vector of words with or without 
modifiers. From the described studies, there exist several standards in text 
structuring, as a prerequisite for implementation and evaluation of data 
mining methods. These are [Wilcox, 2000] as follows: 
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• Text-keywords - with weights, 
• Text-bin - a vector of selected words without weights, 
• Concepts - For each document vector of in-advance specified 

observations is set with a binary coding of whether they were 
instantiated in the document or not, 

• Modified concepts - all concepts In the previous representation 
are with modifiers such as "low, "high" etc., 

• No-concepts - This is a slight variant of the concept 
representation that also includes negated concepts, 

• NLP-mod - represents vector of natural language processed 
observations with modifiers, 

• NLP-ref- a vector of observations with positive, negative, and 
not-occurring values, 

• NLP-neg - similar representation to NLP-ref only negative and 
not-occurring values represent same state. 

Based on these standard representations, some research tried to perform 
common data mining tasks, such as classification, to examine the quality of 
different structured representation of text [Wilcox, 1999]. Using Bayesian 
networks and decision trees. Chapman and Haug have analyzed 
classification of chest x-ray reports indicating pneumonia, where reports had 
different structures of the text [Chapman and Haug, 1998]. The analysis 
showed that each representation has advantages and disadvantages. Those 
that were based on raw text were easily implemented, and did not require 
natural language processing (NLP) [Wilcox, 2000]. However, those that use 
NPL could detect refuted concepts in the text and obtain better classification 
results. 

Unlike traditional numeric, categorical, or Boolean data types, textual 
resources must first be transformed to an alternative representation with 
fewer dimensions, before a data-mining technique can be applied. A rule 
based approach is well suited for preprocessing documents with medical text 
because it causes drastic dimensionality reduction for large textual corpus. 
The basic requirements in this reduction process are that each individual 
feature should be informative; that is, it clearly captures some aspects of the 
problem described in the text. Therefore, the quality of features is described 
in terms of semantic richness. For example, breast cancer is a disease 
occurring in a particular part of the body. In a text-mining system, if this 
phrase is represented using two individual features breast and cancer, it 
would not capture the meaning of the phrase. We say that the concept feature 
breast cancer is semantically richer than the individual features breast and 
cancer. By increasing the semantic richness of features used to represent text 
it will correspond to an increase in the plausibility and usefulness of the 
model of data produced in the data mining process. 
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To identify semantic patterns in the text, one approach proposed the use 
of the popular data mining technique for generating association rules [Blake 
et al., 2001]. An association rule has the form: 

A ^ B , 
which means that the presence of feature A in the text implies the presence 
of feature B in the same text. Each association rule has an associated level of 
support and confidence. The support is the probability that both A and B 
occur in a text. The confidence is the probability that B will occur in text 
given that A has already occurred. Selection of features in a text corpus is 
based on so-called "bi-directional association rules". The authors define a bi
directional association rule (indicated by A<=> B) as one that satisfies the 
support and confidence in both directions (A—> B, and B->A), and they use a 
modified a priori algorithm to generate bi-directional association rules. 

Significantly fewer features are required to represent medical text, 
compared with the number of isolated words. Bi-directional association rules 
may be generated based on word, keyword, and concept representation of 
the initial text features. Concept representation requires 90% fewer features 
than a word representation, and corresponding bi-directional association 
rules are more plausible and useful, because of their semantics, for further 
data mining process. Qualified physicians found only 25% of the rules based 
on word features to be useful and plausible, compared with 50% and 45%) 
for keyword and concepts. The methodology is especially suitable for the 
large medical text corpus, such as that available on the Web. 

5.4 Image Transformation and Representation: A Rule-Based 
Approach 

In the data-preprocessing phase of medical images it is important to 
transform low-level features into a higher-level image description with 
meaning. While current database systems retrieve and process images based 
on low-level features, advanced applications such as data mining expect a 
more abstract notion of what is satisfactory. Therefore, standard definitions 
of similarity and measurement using low-level features generally will not 
produce good data mining results. In reality, the correspondence between 
application-based (and user-oriented) semantic concepts and system-based 
low-level features is many-to-many. That is, the same semantic concept may 
usually be associated with different sets of low-level image features. Also, 
for the same set of image features, different applications and users could 
easily find dissimilar images relevant to their needs [Antonie, 2001]. 
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After cropping and enhancing the image, the next step is the most 
critical: to select the most important features for the given type of image, and 
how to extract the features from the cleaned image. The first part is highly 
subjective, and usually uses the knowledge from the corresponding medical 
domain, while the process of extraction is more often automated. The 
transformed data set now consists of feature set Fx, F2? •? «̂? where new 
features are obtained by merging previously existing features (i.e., the type 
of the tissue, the position of the image etc.) with automatically generated 
features from the image. Common extracted features are standard statistical 
parameters such as mean, variance, skewness, and kurtosis, and entropy 
[Rushing, 2001]. Frequency domain features, including wavelet statistics, 
are also useful. These parameters may be calculated for the entire image as 
a unique value, or for the image segments as a vector of values. 

While most features for medical images are based on structural, 
statistical, or spectral properties, a few methods extract image texture 
features that capture several of these. One of them, proposed recently, 
captures characteristics of a texture and automatically characterizes it as a 
set of association rules [Rushing et al., 2001]. The basic idea is to represent 
frequently occurring local intensity variation patterns in images as 
formalized association rules. An association rule has the form: 

Al A A2 A . . . A A;„ => A;„+l A Am+2 A . . . A A^+n 

where: 
A/ represent triple (X/, Y/, I/); X/ and Y/ are row and column offset of so 
called "rootpixer, and 1/ is the intensity of the pixel, 
A and => are the standard logical operators for AND and 
IMPLICATION, respectively. 

The root pixel is simply the pixel in the center of an nxn neighborhood; 
it represents a moving window through the image. There exist (N-n+lf root 
pixels in an image of size Â xÂ . 

Several characteristics are defined for this type of association rules. The 
cardinality CA of an association rule is the sum of the number of triples in 
the antecedent and the consequent parts of the rule. The support S for a rule 
is defined as the number of root pixels at which a rule appears, divided by 
the total number of root pixels. Finally, the confidence C of a rule is defined 
as the ratio of the number of root pixels at which all triples in the rule appear 
to the number of root pixels at which all triples in the antecedent appear. For 
example, consider the image shown in Figure 6 where the root pixel is 
defined with neighborhood 3x3. The total number of root pixels is (5-3+1)^ 
= 9. The association rule of the form: 

(0,0,2) A (1,1,2) => (1,0,0) 
has the following characteristics: 
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C4 = 2 + 1 = 3 , 
S = 3 / 9 = 33.33%, 

and C = 3 / 5 = 60% . 

Figure 6. Sample of an Image of Size 5x5. 

The objective of mining an image or a set of images for frequent 
association rules is to define the rules that satisfy user specified constraints. 
For a texture characterization application, the user may constrain the 
cardinality of the rules C4, the offset from the root pixel X and 7, the pixel 
values /, and minimum support S and confidence C levels. The rules with 
high support and confidence identified in images describe frequently 
occurring local image structures, which can be used for features 
characterizing texture. 

Since the number of possible triples and their combinations as rules is 
very large, the brute force approach in discovering frequent association rules 
is not practical. Therefore, it is desirable to limit the number of triples and 
their combinations to be considered. This can be done by using the minimum 
support level specified by the user, and the fact that a combination of triplets 
is frequent only when all its subsets are also frequent. The algorithm uses an 
efficient iterative approach in which all frequent logical combinations of 
triples with cardinality CA are generated using the frequent combinations of 
cardinality CA A. The approach is based on the adaptation of a well-known 
Apriori algorithm for the discovery of association rules in large data sets 
[Kantardzic,2002]: 

1. Find all frequent triples (support above a given threshold) of cardinality 
one. 

2. Iteratively, find all frequent logical combinations (only AND operation) 
of triples with cardinality F that are: 

generated from the frequent triples combinations of cardinality 
F-1, and 
their support is above threshold value. 
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3. Using frequent triples find in Steps 1 and 2, generate association rules of 
cardinality F consisting of F-1 triples in the antecedent and one triple in 
the consequent which have confidence above a given threshold value. 

For example, for the image given in Figure 6 assume that the minimum 
support level S is 0.3, the minimum confidence C is 0.8, and the offsets of 
interest are limited to points (0,0), (1,0), and (1,1). As results of the applied 
algorithm, frequent combinations of triples and corresponding association 
rules are given in Figure 7. 

Triples 

(0,0,0) 
(0,0,2) 
(1,0,0) 
(1,0,2) 
(1,1,2) 
(0,0,0) A(l,0,2) 
(0,0,2) A (1,0,0) 
(0,0,2)A(1,1,2) 

(1 ,0 ,0)A(1,1,2) 

| ( 0 , 0 , 2 ) A (1,0,0) A(1,1,2) 

Support 

3/9 
5/9 
3/9 
4/9 
5/9 
3/9 
3/9 
5/9 
3/9 
3/9 

Association Rules 

(0,0,0)^(1,0,2) 
(1,0,0)=>(0,0,2) 
(0,0,2)^(1,1,2) 
(1,0,0)=>(1,1,2) 
(0 ,0 ,2 )A(1 ,0 ,0 )=^ (1,1,2) 

(1,0,0)A (1,1,2)^(0,0,2) 

Confidencd 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

a) Triples identified by mining the 
sample image in Figure 6 

b) Association rules generated 
for the image in Figure 6 

Figure 7. Feature Extraction for the Image in Figure 6 by Using the 
Association Rules Method. 

Gray-level and color images pose a challenging problem for the use of 
the association rules approach to capture local image structure because of the 
large number of intensity values (7). Several algorithms for quantization 
exist, and one of the most promising is based on the computation of value 
distribution through root pixels. New values are based on the simple 
formula: 

f 0 r> ju- c a 
New value = i I ju- c a < r < ju + c a 

[ 2 r>/n+ c <j 
where: 
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c is a positive constant in the range [0.1, 0.5], 
jLi is the mean value for the distribution, 
cris standard deviation for the distribution , and 
r is the old value for the pixel. 

While rule-mining algorithms identify all of the rules that meet user-
defined criteria, not all rules may provide discriminatory information 
necessary to describe texture and distinguish texture classes. Final reduction 
of a rule set for image classification problems may be based on one of two 
approaches, widely used in the area of pattern recognition: 

a) For each texture class, one rule that best separates the class from 
remaining (M-1) classes is selected. This approach selects M rules, 
one for each class. 

b) For each pair of texture classes, one association rule is selected. 
Thus, for an M-class problem, a significant rule-set for describing 
any texture contains M(M-1)/2 rules. 

The association rule features are compared with other important 
methodologies for feature selection such as GLCM, GLRL, fractal 
dimension, Markov random field, and Gabor filter-base features [Rushing et 
al., 2001]. Experiments showed that association rule features are capable of 
distinguishing textures that other statistical methods cannot distinguish. 
They can even distinguish textures that are not discriminable by humans. 

6. DIMENSIONALITY REDUCTION 

6.1 The Importance of Reduction 

For small or moderate data sets, the previously discussed preprocessing 
steps in preparation for data mining are usually sufficient. For very large 
data sets, there is an increased likelihood that an intermediate, additional 
step, data reduction, should be performed prior to applying the data mining 
techniques. As it will be explained below, aspects reduction may also be 
considered as preprocessing. Whereas large data sets have the potential for 
better mining results, there is no guarantee that better knowledge will be 
discovered than in small data sets. Given high-dimensional data, a central 
question is whether it can be determined, prior to searching for all data 
mining solutions in all dimensions, that the method has exhausted its 
potential for mining and discovery in a reduced data set. The main theme for 
simplifying the data in this step is dimension reduction, and the main 
question is: Can some of these prepared and preprocessed data be discarded 
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without sacrificing the quality of the results? Also, can reduction potentially 
improve results in some cases? 

The three main dimensions of preprocessed data set are: a) columns 
(features), b) rows (cases or samples), and c) values of the features 
[Kantardzic, 2002]. Therefore, three basic operations in a data reduction 
process are: delete a column, delete a row, and reduce the number of values 
in a column (smooth a feature). These operations attempt to preserve the 
character of the original data by deleting nonessential data. There are other 
operations that reduce dimensions, but the relationship between the new, 
reduced data and the original data set is not obvious. These operations are 
briefly mentioned here because they are highly application dependent. One 
approach is a replacement of a set of initial features with a new composite 
feature. For example, if samples in a data set have two features: person-
height and person-weight, it is possible for some applications in a medical 
domain to replace these two features with only one: body-mass-index, which 
is proportional to the quotient of the initial two features. Final reduction of 
data does not reduce the quality of the results; some applications showed that 
the results of data mining are even improved [Porter, 1999]. The overall 
comparison involves the following parameters for analysis: computing time, 
predictive/descriptive accuracy, and interpretability of the data mining 
model. 

The feature reduction process is especially important for databases with 
multimedia patient records, resulting in [Tang, 1999]: 

1. Less data, so that the data mining algorithm can learn faster; 
2. Higher accuracy of a data mining process, so that the model can 

generalize better from data; 
3. Simpler results of a data mining process, so that they are easier to 

understand and to use; and 
4. Fewer features, so that in the next round of data collection, 

redundant or irrelevant features can be removed. 

A standard task associated with the production of a reduced set of 
features is termed feature selection. Based on the knowledge of the 
application domain and the goals of the mining effort, the human analyst 
may select a subset of the features found in the initial data set. The process 
of feature selection may be manual, or supported by automated procedures. 
Automated procedures are especially important for text-based and image-
based documents because of the potentially extremely large number of 
features. 

In order to make text data useable by data mining algorithms, it is 
necessary to flatten and model each text document as a vector of features 
representing the semantics of the document. To reduce the number of 
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features in the vector and to select only those that are relevant, additional 
expert knowledge in the form of expert rules is necessary. Selker has 
recommended that the number of variables in the vector used should not 
exceed 10% of the total number of training samples (text documents) in a 
data set [Selker, 1993]. One method calculates the predictive accuracy of 
each attribute present in the training set of text documents. Accuracy is 
determined by adding the conditional probabilities for each attribute. All 
attributes are then ranked by accuracy, and the top N attributes are selected 
for the document vector. 

There is an increasing demand for systems that can automatically analyze 
images and extract semantically meaningful information. The Latent 
Semantic Indexing (LSI) method, in conjunction with normalization and 
term weighting (which have been used for text retrieval for many years), is a 
promising technique for semantic description of images [Adibi, 
2000][Kantardzic, 2002]. In the text environment, this technique determines 
clusters of co-occurring keywords, sometimes called concepts. To extract 
these co-occurrences in the image domain, a singular value decomposition 
(SVD) technique is performed on the feature-image-matrix, where the 
features could be extracted from quantized color histograms. 

6.2 Data Fusion 

Data fusion techniques are applied in many areas of biomedicine, and 
are important in many data mining contexts, as they facilitate both 
dimension reduction and extracting more information from different 
modalities. One of the most important applications is medical image fusion 
after registration, or alignment, of 2D images or 3D volumes from the same 
or different modalities. In fact, fusion is the end-goal of registration. 

Decision fusion uses the output of data fusion as input to the decision
making process. Model fusion is the use of different models or modeling 
techniques to provide a better solution to a specific problem. An example 
from image processing is the edge detection problem, where numerical 
approaches, such as the well-known Canny algorithm, are combined with 
neural network techniques. In pattern recognition, mathematical models can 
be constructed at the pixel (picture element in a digital image) level with 
probabilistic approaches, combined with transforms, such as the Hough 
transform, that acts on the scene level. Information fusion is a combination 
of data fusion, decision fusion, and model fusion. It operates on a higher 
level than data fusion [Solaiman et al., 1999]. 

There are two main architectures for information fusion. In the 
monosensor architecture, data are obtained from a single sensor. New data 
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sets are generated from the acquired set by utilizing probability theory or 
fuzzy set theory. The multisensor architecture is most commonly understood 
as acquiring data from multiple sources, or from different parameters (or 
orientations) of a single sensor [Solaiman et al., 1999]. 

In multimodal imaging, if the images have gray scale intensities, a 
simple and often effective way to combine information after registration is to 
assign a color band to each of the images. For example, if three images have 
been registered, then the gray scales of the images can represent the red, 
green, and blue components, and the result is a pseudo-color, fused image 
[Robb, 2000]. A potential problem with this method is that the images may 
be difficult to interpret. In addition, the contributions of each gray scale 
image are considered to be equal, when this need not be the case in all 
applications. In many cases, the different modalities provide different 
information - information not present in one image may be present in 
another. There are also instances when information is provided by more 
than one modality for a given voxel (volume element in a volume, or 3D 
image, generated either directly or by stacking slices of 2D images). 
Specifically, the problem is to decide which pixel/voxel, or which 
aggregation should be used to combine the registered multimodal images, 
under imprecise and uncertain information. For this reason, probabilistic, 
fuzzy, and Dempster-Shafer approaches have found utility in image fusion 
[Bloch and Maitre, 1997] [Bloch et al., 1996][Bloch, 1996]. All three 
approaches are numerical (as opposed to symbolic). For the following 
discussion, the image fusion problem is stated as follows: given / images Ij 
consisting of heterogeneous data, a decision A is taken on an element jc, 
where x denotes a pixel/voxel or extracted object. A number, denoted as 
M / , / G {1,...,«}, represents the information relating x to each possible 
decision A- Next, the measures related to each decision i are combined as 
M^ = F[MJ,Mf,...,M-), where F (•) denotes a fusion operator. A final, 
global, decision is taken on the set {Mi} [Bloch and Maitre, 1997]. 

Three of the most popular image fusion approaches are based on 
probability theory (Bayesian approaches), fuzzy methods, and those based 
on the Dempster-Schafer theory. In the Bayesian paradigm, the M/ denote 
conditional probabilities, which are computed as features extracted from the 
images, such as gray level or texture characteristics. Bayes' Theorem is 
used to combine image information. The most common decision rule is the 
maximum a posteriori probability. Other rules include maximum posterior 
marginal, maximum likelihood, maximum entropy, and minimum expected 
risk [Bloch and Maitre, 1997]. 

In many medical applications, including biomedical imaging, it is 
important to represent imprecision. There is uncertainty in the spatial 
location of objects and whether those objects belong to a certain class. In 
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particular, the partial volume effect, wherein different tissues may be 
included in a single voxel, must be taken into account. Approaches based on 
fuzzy logic can numerically represent such imprecision, and in this sense, 
can closely model reality [Bloch and Maitre, 1997]. Using the notation and 
estimation-combination-decision schema described above, in the fuzzy logic 
paradigm, the M / ' s represent degrees of membership to a fuzzy set: 
M/(X) = JU- (x) , where the right-hand-side is the membership degree of x 
in class / from image y [Bloch and Maitre, 1997]. Fuzzy set theory also 
provides many combination, or aggregation operators for fusion. These 
operators are classified as conjunctive (like a logical or operator), 
disjunctive (logical and), and compromise (between or and and). A decision 
is usually made from the maximum membership value that results after 
combination. Fuzzy aggregation operators are also discussed in [Smolikova 
and Wachowiak, 2002]. 

Classification has traditionally been the most popular application of the 
fuzzy paradigm to image fusion. It can also be used for preprocessing, such 
as combining contrast homogeneity measures to smooth regions while 
preserving or sharpening edges. Recently, fuzzy logic has also been 
combined with neural networks for learning capability, and for using several 
combination operations [Bloch and Maitre, 1997]. The Dempster-Shafter 
(DS) theory has been popular in satellite image processing for many years. 
Like fuzzy logic, the DS theory can also represent imprecision and 
uncertainty. However, this uncertainty is modeled with belief and 
plausibility functions derived from a mass function, whose domain is a 
power set of a discernment set D. In image fusion, D may represent the set 
of all possible classes pertaining to the fused image, and any subset A may 
represent either one class (simple hypothesis) or a union of classes 
(compound hypothesis) [Bloch, 1996]. DS approaches can also be used 
where all information concerning a problem is known, as is the assumption 
with Bayesian techniques. More specific to multimodal image fusion, the 
DS theory may be used when a modality provides information concerning 
only a few of many classes, and when one modality can differentiate classes 
whereas others do not [Bloch and Maitre, 1997]. Finally, the DS theory 
provides mechanisms to deal with the partial volume effect. Fuzzy logic and 
DS theory are primarily differentiated by the fact that the former is very 
flexible because of a wide range of aggregation operators, while the latter 
provides flexibility in modeling situations such as those just described 
[Bloch and Maitre, 1997]. 
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6.3 Example 1: Multimodality Data Fusion 

As an example of multimodality data fusion, fusion of angiography and 
intravascular ultrasound (IVUS) images is presented [Wahle et al., 1999]. 
Both modalities are commonly utilized for the evaluation of atherosclerotic 
disease. The hypothesis is that data fusion can be used to determine correct 
rVUS image orientation in 3D space, which subsequently facilitates 
geometrically correct reconstruction of coronary vessels. Biplane 
quantitative coronary angiography (QCA) is a well-established standard for 
reconstructing any spatial structure visible in two different projections. 
However, QCA can only provide reconstructions of vessel lumen (the space 
inside vessels). IVUS, by contrast, permits analysis of the vascular wall and 
plaque deposits. However, because there is no available information about 
vessel curvature in IVUS, it lacks a correct 3D representation. Thus, the 
fusion of rVUS and biplane angiography is proposed to generate 
geometrically correct representations in 3D space, and to retain the 
relationships between image objects even in high-curvature vessels. 

6.4 Example 2: Data Fusion in Data Preprocessing 

In addition to providing a more integrated view from combining 
complementary imaging modalities, data and information fusion concepts 
can be applied to preprocessing operations, such as segmentation. In a 
recent study, data fusion was applied to detect the inner wall of the 
esophagus from ultrasound images [Solaiman et al., 1999]. An echo-
endoscope, consisting of an endoscope and an ultrasound transducer, was 
used to collect image slices. The authors used two primary systems in their 
architecture: fuzzy modeling and dynamic modeling. 

Data from different modalities can also be used to increase the 
usefulness of other modalities, although the data is not fused in the strict 
sense. An example is using statistical parameter maps to enhance the 
interpretation of 2D images [Smolikova et al., 2002]. Biomedical ultrasound 
is a popular modality for clinical diagnosis and treatment planning. In 
addition to low signal-to-noise ratio and numerous artifacts, ultrasound B-
scans are characterized by speckle, which is also present in the ultrasound 
radio-frequency (RF) signal. Although speckle makes human and 
computerized analysis difficult, its statistical properties make it potentially 
useful for clinical applications. Therefore, analysis of the ID RF signals can 
complement radiological analysis of the B-scans (brightness scans). Such 
approaches have been presented to characterize liver tissue and normal 
myocardial tissue [Molthen et al., 1998], and classify breast tissue [Shankar 
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et al., 2001]. Additionally, B-scans can be segmented based on the statistics 
of the ultrasound RF signals. Such a technique is desirable, as speckle and 
other artifacts limit the usefulness of traditional segmentation methods based 
on gray levels. The new approach, based on using RF characteristics to 
segment B-scans may be used to complement B-scans to convey additional 
information from ultrasonographic data. 

To illustrate, an envelope image, generated from simulated RF data, is 
shown in Figure 8a. The image was based on the MRI shoulder scan shown 
in Figure 8b. The data displayed as an image in Figure 8a has very low 
contrast and signal-to-noise ratio, and is difficult to interpret. Of course, a 
traditional ultrasound B-scan is generally of higher quality, but, as 
mentioned earlier, artifacts and especially speckle make processing and 
analysis difficult. 

(a) Simulated ultrasound 
envelope; 

Figure 8. Shoulder Scan. 

(b) MRI image. 

Much research has been performed into modelling scattering 
phenomena in ultrasound, manifested in B-scans as speckle patterns. It is 
now generally accepted that the amplitude of the RF signal of the ultrasound 
envelope (the logarithmic transformation of which results in the B-scan) 
follows specific statistical distributions, such as the Nakagami [Shankar, 
2001], K [Molthen et al., 1998][Wachowiak et al., 2000][Smolikova et al., 
2001][Wachowiak et al., 2002b], generalized K [Liu et al. 1997], 
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homodyned K [Dutt and Greenleaf, 1994][Hao et al., 2002], and generalized 
Nakagami distributions [Shankar, 2002]. The parameters of such models 
provide an indication of the density and regularity of tissue scatterers, which 
is subsequently used to classify and characterize tissue. 

Simple rules can be extracted from analyses of these parameters. For 
example, the Nakagami distribution is specified by the shape parameter m 
and the scale parameter Q (also the second moment of the distribution). An 
easy but robust method to estimate parameters from Â  samples x,, / = 1 ,..., 
N, is the inverse normalized variance estimator [Abidi and Kaveh, 2000]: 

ai ^ A /̂=l ' 

A2 

m = • 

^4~^2 
In ultrasound breast scans, malignant lesions are often characterized by 

speculations that act as sharp boundaries, thereby increasing the average 
level of the backscattered signal. The parameters are estimated in image 
regions of interest corresponding to the suspected lesion ("site") and away 
from the suspicious area ("away"). The differences in the parameters from 
benign lesions and from normal tissue can be stated as IF-THEN rules 
[Shankar etal., 2001]: 

IF THEN 

AND 

AND 

sue ^̂  I images contain benign lesions 
^ site^^^awayj 

'^site^'^away . . • t- .i • 
:5ii,î  n I images contam malignant lesions. 

site'^^^^awayj 

The rules can be further simplified by examining the two values mnorm == 
y/Wsite, and Q norm = ^ site/ ̂  away (notc the difference in the 

denominators) [Shankar et al., 2001]. These rules, in combination with other 
clinical tests, may be used to improve diagnosis and to better assess patient 
response to therapy. 

In addition, the numeric values of statistical parameters may be 
substituted for image gray levels at corresponding spatial locations as a 
segmentation mechanism. This approach, utilizing different parameter 
estimation techniques for the Nakagami and K distributions, is shown in 
Figure 9. 
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(a) (b) 

Figure 9. Parameter Maps: (a) INV (Nakagami Distribution); (b) TP 
(Nakagami Distribution); (c) SNR Values (K Distribution); (d) 
Fractional SNR (K Distribution). 

These results demonstrate that segmentation based on speckle model 
parameters can provide an alternative view of ultrasound data that 
complements B-scans. These parameter maps can highlight features not 
normally visible in B-scans. Areas of homogeneous density not clearly 
visible from the image are more apparent in the parameter maps. In a wider 
sense, the preceding approach may be considered as data preprocessing (as 
all segmentation is preprocessing) and as data reduction. Multiple 
modalities are "fused" to generate a more informative set of data that can 
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potentially facilitate data mining tasks, and to increase the quality of the 
results from these tasks. 

6.5 Feature Selection Supported By Domain Experts 

Many of the concepts discussed above are illustrated in a recent 
application of data mining in a picture archiving and communication system 
(PACS) for computer-assisted diagnosis [Perner, 2002]. Here, knowledge for 
image analysis and diagnosis ŵ as obtained from descriptions in an image 
database, and data mining techniques were employed to gain additional 
knowledge about specific image features. Normally, statistical tests are 
applied to regions of interest (ROIs) extracted from a large number of 
images to determine the significance of various features [Megalooikonomou 
et al., 1999][Burl and Lucchetti, 2000]. Clustering is next utilized to 
determine groups of similar objects [Eklund et al., 2000]. Finally, patterns 
are identified using association rules [Pemer, 2002] [Burl and Lucchetti, 
2000]. Another approach to an image representation and analysis is 
symbolic image description by experts. Domain experts often prefer this 
approach, as simple features (such as mean, standard deviation, entropy, 
etc.) cannot adequately describe complex objects. However, there are 
generally no standard vocabularies to provide such symbolic descriptions 
(the ARC-BIRADS code for analysis of mammograms is an attempt to 
standardize the vocabulary). Furthermore, a small number of relevant 
features, in contrast to a large, rich vocabulary, makes reasoning more 
effective [Pemer, 2002]. To address these issues, a tool was developed at 
the Institute of Computer Vision and Applied Computer Sciences in Leipzig, 
Germany, to facilitate learning a compact vocabulary for diagnostic 
reasoning [Perner, 2002]. The tool was specifically used for HEp-2 cell 
classification, which is useful in the identification of antinuclear antibodies. 

The entire image mining procedure consists of [Perner, 2002]: (1) 
Brainstorming, whereby the domain application is studied; (2) Interviewing, 
in which relevant attributes and their values are identified; (3) Collection of 
image descriptions into a database; (4) Conducting the actual data mining 
experiment, and (5) Review and analysis of the data mining results. 

In this methodology, some features are derived from numerical ROI low-
level statistical descriptions, such as mean, standard deviation, skewness, 
kurtosis, etc., features such as lines, edges, or blobs, and higher-level 
features derived from the lower-level features (data preprocessing and 
reduction). Experts determine symbolic features, representing the highest 
abstraction level. After a large number of images have been analyzed, a data 
mining tool performs decision-tree induction. A set of diagnostically 
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relevant rules and image features are then learned. Thus, induction serves 
not only in knowledge discovery, but also in selecting relevant features 
[Perner, 2002]. 

As it is often difficult to describe particular features by automatic 
procedures, descriptions by experts are still required, and will be for the 
foreseeable future. Once the relevant features and rules are identified, fully 
automated systems for specific conditions can be developed to aid 
physicians in their diagnostic work. 

7. CONCLUSIONS 

In the next few years, the pace of change for healthcare information 
management will accelerate substantially. Driven by the continuing 
increases in the cost of healthcare and the persistence of high rates of 
medical errors, the change will be aided by several factors such as: 

widespread application of the HIPAA (Health Insurance Portability and 
Accountability Act) on data privacy and security standards, 
the increasing penetration of sophisticated connectivity solutions, and 
the spread of intelligent computer-based medical devices and systems. 

These factors will result in the electronic storage of more and more 
health data, leading ultimately to the increasing use of electronic patient 
records by hospitals, medical groups and health plans. New sources generate 
not only numeric and symbolic data about patients, but also text, images, 
signals, and sound, all of them integrated in an electronic multimedia patient 
record. The increase in sources of data is already allowing new types of 
analytical tools to be developed that will ultimately reshape the way of how 
the quality and cost of medical care is managed. 

Applying data mining and knowledge discovery techniques to data from 
heterogeneous sources is often challenging. Difficulties are particularly 
apparent in the case of patient medical records, which consist of both 
descriptive and semi-structured qualitative information, and quantitative 
data, such as measurements, images, and a variety of biosignals. However, 
the quality and usefulness of data from quantitative sources are by no means 
easy to standardize, as they largely depend on the skill of medical personnel, 
acquisition equipment, and the specific data modality. Noise, imprecise 
measurements, and ambiguities in the representation of signals, text data and 
images underscore the importance of preprocessing, feature extraction and 
reduction in the preparatory phases of patient records data mining. In this 
chapter, we explained the importance of the preprocessing and feature 
extraction phases in mining a large collection of multimedia patient records. 
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Selected techniques with illustrative examples w êre given showing the 
applicability of rule-based methodologies in the preparation phases of a data 
mining process. Rule-based techniques are applicable not only for structured 
parts of patient records, but also for multimedia parts including medical 
images and medical texts. This approach tries to obtain a theoretical 
generalization automatically from the data by means of induction, deriving 
empirical models and learning from examples. The resultant theory, while 
maybe not expressed through fundamental physical laws, can yield a good 
understanding of the physical process and can have great practical utility. 
Various applications indicate that the rule-based algorithms offer numerous 
advantages over other approaches such as neural networks and regression 
analysis, namely: 

simplicity of representation and simplicity of interpretation of the 
discovered knowledge, 
relatively high accuracy of the rule-based models, 
low computational complexity, and 
model robustness with respect to missing and noisy data. 

Although the first generation of data mining algorithms works well with 
the numeric and symbolic features, and although some learning algorithms 
are available for learning to classify images, or to classify text, the fact is 
that we currently lack effective methodologies for learning from data that are 
represented by a combination of these various media. As a result, the current 
state of the art in a medical outcome analysis is to ignore the image, text, and 
raw sensor portion of the medical record, or at best to summarize these in 
some oversimplified form (e.g., labeling the complex ultrasound image as 
simply "normal" or "abnormal"). However, it is intuitively clear that if 
interpretation could be based on the full medical record, we would expect 
much greater accuracy. Therefore, a topic of considerable current research 
interest is the development of algorithms that can learn regularities over rich, 
mixed media data. The important challenges and future research directions 
for the successful application of data mining techniques in medicine are: 

Electronic medical records consisting of different multimedia data, 
based on semantically clean and structured knowledge representation, 
are needed. 

New and/or improved techniques for automated capture of clinical data 
from speech, natural language text, images, laboratory measurements, or 
structured entry in a standard but semantically rich format, are also 
needed. 
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Based on structured representation of clinical record, data should be 
universally accessible for different automated analysis. This includes 
solutions for standards and infrastructure for distributed databases with 
patient records. 

There is an expectation that new medical knowledge will be created with 
existing or improved data mining techniques, and here, the 
preprocessing phase will play an essential role. Having established the 
data infrastructure for clinical data, there will be unprecedented 
opportunities for gaining new knowledge. 

The wealth of unstructured and distributed data presents enormous 
opportunities for research related to information extraction from patient 
records and other medical reports, and discovering associations, patterns, 
trends, complex multi-attribute correlations, and other difficult tasks 
involving discovering knowledge from data. Medicine is a data rich field, 
and also medicine is a knowledge rich field. The basic problems here 
involve the interaction of raw data and discovered knowledge, and 
producing more human centered methodologies that increase the trust and 
confidence of medical staff in using intelligent systems for a clinical 
practice. 
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Abs t rac t : A context-based spelling error is a spelling or typing error that turns 
an intended word into another word of the language. For example, the 
intended word "sight" might become the word "site." A spell checker 
cannot identify such an error. In the English language—the case of in
terest here—a syntax checker may also fail to catch such an error since, 
among other reasons, the parts-of-speech of an erroneous word may per
mit an acceptable parsing. This chapter presents an effective method 
called Ltest for identifying the majority of context-based spelling errors. 
Ltest learns from prior, correct text how context-based spelling errors 
may manifest themselves, by purposely introducing such errors and an
alyzing the resulting text using a data mining algorithm. The output 
of this learning step consists of a collection of logic formulas that in 
some sense represent knowledge about possible context-based spelling 
errors. When, subsequently, testing text is examined for context-based 
spelling errors, the logic formulas and a portion of the prior text are 
used to analyze the case at hand and to pinpoint likely errors. 
Tests conducted on different text samples indicate that the method is 
effective for the recognition of the majority of context-based spelling 
errors; Ltest found 68% of context-based spelling errors in large texts 
and 87% of such errors in small texts. These detection rates are relative 
to words for which training was possible using the prior text. 
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1. INTRODUCTION 

Finding a spelling or typing error is easy if the erroneous word is not part of 
the language, since then a spell checker can point out such a non-word error. 
The detection problem is harder if the erroneous word is part of the language. 
An example is the misspelling of the intended word "sight" as "site." Such 
an error can be detected by examining the context of the word. Accordingly, 
it has been called a context-based spelling error (Golding (1995), Golding and 
Roth (1996, 1999), Golding and Schabes (1996)). 

It is convenient that throughout most of the chapter we make the following 
two assumptions. First, we assume that the event of a context-based spelling 
error is relatively rare, and that the user is unlikely to make the same mistake 
several times in the same document. For example, if the user misspells "sight" 
as "site," then this error is assumed to be due to a momentary lapse and not due 
to user ignorance regarding the spelling of "sight." Second, we assume that, for 
any erroneous word instance introduced by a context-based spelling error, the 
text also contains an instance of the correct word. The two assumptions are 
mostly but not always satisfied. For example, a person may confuse some words 
and make some errors repeatedly. For example, such confusion could exist 
about "its" versus "it's" or "complement" versus "compHment." As a second 
example, a word may occur just once in a text, and that single occurrence may 
be mistyped or misspelled. Toward the end of the chapter, in Sections 4 and 5, 
we describe extensions of the method that do not require the two assumptions. 

In contrast to spell checkers, a syntax checker may possibly detect a context-
based spelling error. However, there is no guarantee of such detection, since, 
among other reasons, the parts-of-speech of the erroneous word may permit 
an acceptable parsing of the sentence. For example, if "site" displaces "sight" 
in the sentence "It was a beautiful sight," then the resulting sentence "It was 
a beautiful site" has an acceptable parsing. Indeed, the latter sentence is 
meaningful and by itself gives no clue that the word "site" is out of place. 
Here are a few additional examples of intended and erroneous words: bay-pay, 
fair-fare, for-four, its-it's, lead-led, quiet-quite, them-then, there-three. 

Error detection by a syntax checker likely is difficult if the text contains many 
special terms, symbols, formulas, or conventions whose syntactic contribution 
cannot be established without a complete understanding of the text; examples 
are mathematical TgX or I^TgX texts. For such texts, as well as for texts 
that do not contain such complicating aspects, this chapter off'ers an effective 
technique for identifying the majority of context-based spelling errors without 
the need to fully understand the text. The main results are as follows. 
(1) A new way of encoding, for a given occurrence of a word w, the structure 

of the neighborhood of the occurrence and the connection with other oc
currences of w and their neighborhoods. The encoding uses the text under 
investigation as well as a second text that acts as a reference text. 

(2) A new way of learning from prior, correct text how context-based spelling 
errors can be recognized. This step uses the encoding of (1) and an existing 
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data mining algorithm. It produces a set of logic formulas that contain 
insight into context-based spelling errors. 

(3) A new way of employing the logic formulas of (2) to identify likely context-
based spelling errors in testing texts. The scheme accepts both small and 
large testing texts, and it handles unusual cases such as erroneous words 
never seen in the learning phase. 

The method is called Ltest {Logic test) as it uses logic formulas to test for 
errors. Ltest has been added to an existing spell and syntax checking system. 
We have conducted tests involving mathematical book chapters typeset in Ife^, 
technical papers typeset in WTj^, and newspaper texts in two subject areas. 
For the learning step we randomly selected prior texts from the given domain. 
These texts averaged 30,012 word instances. The testing texts consisted of some 
large texts averaging 7,138 word instances and some small texts averaging 105 
word instances. The latter texts were introduced to see if the method can find 
context-based spelling errors when a testing text does not provide much insight 
into the usage pattern of words. Although the average prior text had about 
four times the size of the average large testing text, roughly half the word usage 
in the testing texts was not sufficiently represented in the prior texts to allow 
learning of such usage and subsequent error checking. Such representation does 
not require much: If Ltest is to learn the difference between a given word and a 
given erroneous word, then both words must occur at least three times in both 
the training text and the history text, which Ltest obtains by splitting the prior 
text. Though this requirement is mild, for the average large text just 3,162 
possible error cases out of a total of 7,360 possible error cases, or 43%, could 
be tested. For the average small text, 12 possible error cases out of a total of 
28 possible error cases, or 43%, could be tested. It is shown later that these 
percentages can be boosted close to 100% by a suitable augmentation of the 
training text and the history text. We did not carry out such augmentation 
for the tests since such a change might have introduced a bias. Instead, we 
evaluated the performance of Ltest on the possible error cases for which the 
prior texts had allowed learning. We introduced such errors randomly into the 
testing texts. On average, Ltest detected 68% of these errors in large texts 
and 87% in small texts. The testing texts with the errors were also checked by 
the syntax checker of the system, in a separate step. The syntax checker, by 
itself, performed poorly, finding only 12% of the errors in large texts and 4% 
in small texts. Combined use of Ltest and the syntax checker—which is the 
way the entire process has been implemented—boosted the detection rate for 
large texts to 72%, but did not improve the rate of 87% for small texts. The 
difference in performance between samll and large texts is due to two factors: 
- large texts normally involve numerous special terms, symbols, formulas, and 
conventions that make error detection more complicated than small texts, -
small testing texts are examined by the classifiers that are created for large 
testing texts, so classifiers perform better on the small texts. 

Define a diagnosis to be false-positive if the method estimates a correct word 
instance to be in error. Clearly, user acceptance of the method requires that 
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at most a few false-positive diagnoses are made. This requirement was satis
fied in the test cases, since false-positive diagnoses occurred on average for 23 
word instances, or 0.7% of the 3,162 tested instances of a large text, and for 
1 word instance of a small text. The 1 false-positive diagnosis for the average 
small testing text represents 8% of the tested instances, which is high but not 
important since the number of such cases, which is 1, is small. We ran another 
experiment on the method using texts for which the two leading prior methods, 
which are BaySpell (Golding (1995)) and WinSpell (Golding and Roth (1999)), 
had produced results. In the experiment, Ltest outperformed both methods 
by classifying 95.6% of the considered word instances correctly. BaySpell and 
WinSpell achieved 89.9% and 93.5% accuracy, respectively. Testing time is 
very low in these experiments: in the order of 2 minutes for large texts, and in 
order of 10 seconds for small texts, more details in Section 4 and in tables 3 
and 6. 

Taken together, the high detection rates and the low number of false-positive 
diagnoses for both large and small texts make the method an effective tool. 

The rest of the chapter proceeds as follows. Section 2 discusses previous 
work. Section 3 describes the method. Section 4 discusses the implementation 
of the method and the computational results. Section 5 outlines extensions. 
Section 6 summarizes the main points of the chapter. Appendices A to D 
contain technical details of some of the steps. 

2. PREVIOUS WORK 

A number of methods have been developed for the detection of context-based 
spelling errors. The research up to 1992 is covered in the survey by Kukich 
(1992). The methods proposed since then use a Bayesian approach (Golding 
(1995)) that may be combined with part-of-speech trigrams (Golding and Sch-
abes (1996)), transformation-based learning (Mangu and Brill (1997)), latent 
semantic analysis (Jones and Martin (1997)), differential grammars (Powers 
(1997)), lexical chains (St-Onge (1995), Hirst and St-Onge (1995), Budanitsky 
(1999), Budanitsky and Hirst (2001)), and Winnow-based techniques (Gold
ing and Roth (1996, 1999), Roth (1998)). The two leading prior methods are 
the statistics-based BaySpell (Golding (1995)) and the Winnow-based WinSpell 
(Golding and Roth (1999)). 

The Bayesian method (Golding (1995)) handles context-based spelling cor
rection as a problem of ambiguity resolution. The ambiguity is modeled by 
confusion sets. The Bayesian method uses decision lists to choose the proper 
word from the confusion set. It also relies on classifiers for two types of fea
tures: context-words and collocations. The method learns these features from a 
training corpus of correct text. The testing process starts with a list of features 
sorted by decreasing strength and traverses the entire list to combine evidences 
from all matching features in a given context and target word. In the experi
ment reported in Golding (1995), 18 confusion sets are used. The performance 
ranges from 45% to 98% with an average of 82% of the words classified cor-
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rectly. Golding uses 1-Million-Word Brown corpus and the 3/4-Million-Word 
corpus of the Wall Street Journal 

The Winnow approach of Golding and Roth (1996) uses a multiplicative 
weight update algorithm that achieves a good accuracy and handles a large 
number of features. The method learns large set of features with the corre
sponding weight. The method performs better than Bayesian. The multi
plicative weight update algorithm represents the members of a confusion set 
as clouds of simple nodes corresponding to context words and collocation fea
tures. Winnow requires confusion sets to be known in advance. In the training 
phase, a feature extractor learns a set of features and produces a huge list of 
all features in the training text. Statistics of occurrence of features are also 
collected. Pruning is applied to eliminate unreliable features. The algorithm 
has been applied to 21 confusion sets taken from the list of "Words commonly 
confused" in the back of the Random House dictionary (Flexner (1983)). 

3. DETAILS OF Ltest 

For a given domain of texts, Ltest carries out two steps called the learning 
step and the testing step. In the learning step, Ltest learns from prior text 
that is known to be error-free how context-based spelling errors may manifest 
themselves. Ltest splits the prior text into a training text and a history text. 
We cover the splitting process in a moment. 

The idea of training text and history text is based on the following intuitive 
idea. Suppose we are not experts in some field, say in law. We are given 
some correct legal document to read. As we scan the text, we may not really 
understand the sense in which some words are used. But we can learn how 
words are used in connection with other words. Next, we are given another 
legal document and are asked to check it for errors. Strictly speaking, we 
cannot do so since we are not experts. But we can read the second text and 
see whether some words are used out of context, relative to the word usage in 
the first text. 

In terms of this intuitive discussion, let us view the history text as the first 
document and the training text as the second one. The reader may object to 
the latter choice since the training text is correct, as is, of course, the history 
text. But that changes now. We introduce errors into the training text, one at 
a time, and try to see how we could locate that error using both the training 
text and the history text. Using data mining, we compress that knowledge 
about finding errors into logic formulas. Later, when a new text that is not 
known to be correct is tested for errors, we analyze that new text using these 
logic formulas. At that time, the new text plays the role of the training text, 
while the history text plays the same role as before. 

Throughout this section, w is a. word that by a typical spelling or typing 
error may become another word, which we denote by v. We call the correct 
word w the intended word, while any incorrect v that is produced instead of w 
by a typical spelling or typing error, is an error word for w. We collect the error 
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words V for a given intended word w in the confusion set for w. For example, 
if the intended word w is there, then the possible error words v for w are three 
and their, and hence {three, their} is the confusion set for there. 

We call the possible alteration oi w to v di substitution and denote it by 
v^w. The substitutions linking the just-mentioned correct there and the error 
words their and three are three^there and their^there. Other example 
substitutions are must<r-just and its^ifs. To streamline the presentation, 
we skip here details of the construction of the substitutions. Those details are 
covered in Appendix A. 

We employ the notation vi to represent the ith instance of the word v in the 
given text. In connection with a given substitution v<~w, we use the adjectives 
good and bad in the obvious way. For example, if an instance Vi of î  in a text 
was intended to be an instance Wj of w, then we say that the instance Vi is bad 
and that the instance Wj is good. 

Next we discuss the learning step. 

3.1 Learning Step 

First, Ltest splits the prior text into a training text and a history text by 
assigning each sentence of the prior text to one of the two texts. The assignment 
is done by a heuristic method described in Appendix B. The method has the 
goal that, for each substitution v^^r-w for which both v and w occur in the prior 
text, the training text and the history text contain about the same number 
of instances of v as well as w. Of course, that goal may not be reached for a 
particular v and w, due to the way these words may occur in the sentences of 
the prior text. But according to experiments, the method typically gets close 
to that goal. 

With the training text and history text at hand, the learning step carries out 
the following process for each substitution vi-w. For each instance Vi oiv in the 
training text, a characteristic vector is computed. The vector has a total of 18 
±1 entries. The entries relate the words, parts-of-speech of words, punctuation 
marks, and special symbols near a given instance Vi in the training text to the 
words, parts-of-speech of words, punctuation marks, and special symbols near 
other instances Vj of v in either the training text or the history text. In terms 
of the earlier, intuitive discussion, the entries of the characteristic vector record 
the usage of the word v in the context of the training text and the history text. 

For example, suppose that the instance vi of v is preceded by two words 
p^ and p^, say in the sequence p^ p^ vi. If some other instance Vj of v in 
the training text is preceded by the same two words, in the same sequence, 
that is, p^ p^ Vj, then the 4th entry of the characteristic vector is +1 . If 
no such sequence p'^ p^ Vj exists in the training text, then the 4th entry is 
— 1. Analogously, if the history text contains a sequence p^ p^ Vj, then the 
13th entry of the characteristic vector is -f-l. If no such sequence exists in the 
history text, then that entry is —1. To unclutter the presentation, we omit 
here a detailed discussion of the remaining entries of the characteristic vector. 
Details are included in Appendix C. 
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The reader may wonder why we do not use 0 instead of - 1 to record absence 
of the sequence p^ p^ Vj. The reason is the encoding convention of the data 
mining tool Lsquare introduced shortly. That tool interprets +1 to mean that 
a certain fact, say X, holds, —1 to mean that fact X does not hold, and 0 to 
mean that it is unknown whether fact X holds, Felici and Truemper (2002). 

Suppose the characteristic vectors for each instance Vi of v have been com
puted. Then, for each instance Wj of w in the training text, Wj is replaced 
temporarily by an instance Vr of v, and a characteristic vector for that Vr is 
computed. Consistent with the earlier use of the terms good and bad, we are 
justified to call each vi good and each Vr bad. 

At this point, we have two classes of characteristic vectors. The first class 
consists of the vectors representing features of the good occurrences of v. Let 
us call this class G{v). The second class consists of the vectors representing 
features of the bad occurrences of v generated from the occurrences of w in 
the text. Let us call the second class By^-uj{v)- The subscript v^w in the 
notation By^u){v) is needed since the second class is the set of vectors of bad 
occurrences of v generated from occurrences of w according to the substitution 

With the two classes G{v) and By^uj{v) at hand, the learning step uses the 
data mining algorithm Lsquare to compute a set of logic formulas Ly^yj{v) that 
correctly classify each characteristic vector as being in one of the two classes 
G{v) or By^yj{v). Details of Lsquare are given in Chapter 5 "Learning Logic 
Formulas and Related Error Distributions" included in this volume. Thus, we 
only sketch here the features of Lsquare needed for the situation at hand. 

Lsquare accepts as input two sets A and j5 of {0, ±1} vectors, all having the 
same length, say n. An entry -fl means that a certain fact, say X, is known 
to hold, - 1 means that fact X is known not to hold, and 0 means that it is 
unknown whether fact X holds. For the cases considered in this chapter, the 
vectors are the above defined characteristic vectors, and thus do not contain any 
Os and are {±1} vectors. Lsquare outputs a set of 20 disjunctive normal form 
(DNF) logic formulas and 20 conjunctive normal form (CNF) logic formulas, 
each of which uses some subset of logic variables 2/I5 2/2? • • • ? 2/n- To classify 
an arbitrary {±1} vector x of length n, Lsquare first assigns True/False values 
to yi, 2/2, •. • 5 Vn according to the rule yi = True if a:̂  = 1 and yi = False if 
Xi = -1. The True/False values are used to evaluate each of the 20 DNF and 
20 CNF formulas. If a formula evaluates to True (resp. False), then we say that 
the formula produces a vote of 1 (resp. - 1 ) . Summing up the 40 votes produced 
by the 40 logic formulas, we get a vote-total that is even and may range from 
-40 to 40. Lsquare guarantees that, for each vector x of A (resp. B), the vote-
total is positive (resp. negative). When A and B are randomly drawn from two 
populations A and B, then a vote-total for a record of AUB close to 40 means 
that the vector is in A with high probability and thus is in B with very low 
probability. As the vote-total decreases from +40 and eventually reaches -40 , 
the probability of membership in A decreases while that of membership in B 
increases. 
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We interrupt the discussion of the training step for a moment and sketch how 
the constructed logic formulas Ly^-uj{v) are used in the testing step. Suppose 
we have a testing text with instances of v and w. We want to know whether, 
relative to the substitution v<^w, an instance Vk of v is good or bad. We com
pute, for that instance, a characteristic vector t{vk) using the testing/history 
texts instead of the training/history texts, and apply to that vector the set of 
logic formulas of Lv<r-w{'^)' Suppose the vote-total exceeds an appropriately 
selected threshold. We then estimate the vector t{vk) to be in the class G{v), 
which plays the role of A in the above discussion about Lsquare. Thus, we 
have evidence that the instance Vk may be good. On the other hand, if the 
vector t{vk) is declared to be in the class By^w{v), then this is evidence that 
the instance Vk may be bad. 

We continue the discussion of the training step. So far, we have learned to 
differentiate between good and bad instances of v relative to the substitution 
v<r-w. Next, the learning step trains how to classify the other word of the 
substitution, w, as good or bad. Analogously to the case of v, the training 
step constructs two classes of vectors for w. The first class, G{w), contains one 
vector for each good occurrence of w in the training text. The second class, 
By^yj{w)^ includes one vector for each bad occurrence of w generated from one 
occurrence of v in the training text. Once more, we use Lsquare to determine 
a set of 40 logic formulas Ly^^{w) that, using vote-totals, correctly assign 
the vectors to their sets G{'w) and By^y^){w). One may employ Ly^y^{w) for 
testing a text that contains both v and w^ as follows. Take an instance Vk of v 
in the text. To see whether vu was intended to be a w, temporarily replace Vk 
by an instance of w\ let that instance be Wq. Compute a characteristic vector 
fy^w{u)q) for Wq, and apply Ly^yj{w) to the vector fy^yj{wq). If fy^wi'^q) 
is declared to be in G{w) (resp. By^—y^ {w)) according to some appropriately 
selected threshold, then we have evidence that Wq likely is good (resp. bad) 
and thus Vk hkely is bad (resp. good). 

Here is an example, for the substitution there^three. We assume that the 
training text contains instances of there and instances of three. The learning 
step builds four classes of characteristic vectors: G(there), Bthere^three{there), 
G{three), and Btherei-three{three). Using the first two classes, Lsquare creates 
the set of logic formulas Lthere^r-three(there). This set is used to classify new 
vectors of there into the set G(there) or Bth€re<-three(there). Using the next 
two classes, namely G(three) and Bthere<-three(three), Lsquare builds the set 
of logic formulas Lthere<-three(ihree). The latter set is used to classify vectors 
of three into the set G(three) or Bthere^three(three). Note that the class 
G(there) consists of the vectors of the good occurrences of there, while the 
class Bthere^three(there) consists of the vectors of the bad occurrences oi there 
generated from the occurrences of three. 

The above discussion several times explicitly or implicitly refers to appro
priately selected thresholds for various vote totals. The computation of these 
thresholds is part of the testing step, which we cover next. 
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3.2 Testing Step 

We assume that the testing text has been processed by a spell checker and 
that, therefore, it does not contain any illegal words. For each word v of the 
text, we find all possible words w that by misspelling or mistyping may become 
V. That is, we construct the confusion set for v. We process each substitution 
v<r-w so determined as follows. If the text does not contain w, we cannot test 
the instances Vk with respect to the substitution vi-w. So assume that at least 
one instance of w is present. The processing depends on how often v occurs in 
the testing text. Declare the case to be regular if v occurs at least twice in the 
testing text, and define it to be special otherwise. We first treat the regular 
case. 

3.2.1 Testing regular cases 
If we do not have both sets Ly^^{v) and Ly^wi'^) of logic formulas, then 

the learning step did not provide sufficient insight into the relationship between 
V and w. Accordingly, we ignore each instance Vk of v in the testing text with 
respect to the substitution v<r-w. We call each such ignored Vk instance relative 
to v^w a discarded v(v^w) instance. 

Now suppose that both Ly^yj{v) and Ly^y^{w) are available. For each in
stance Vk of V in the testing text, we construct a characteristic vector t(vk) 
from the testing/history texts. For each instance wi of w in the testing text, 
we replace wi temporarily by Vp and construct a characteristic vector fy^wi^p)-
We handle each instance wi of w in the testing text analogously to Vk- Thus, 
for each wi, we construct a characteristic vector t(w[). For each Vk of the test
ing text, we replace Vk temporarily by Wq and construct a characteristic vector 
fvi-wi'^q)' At this point, we have the characteristic vectors t{vk), fv^wi^p), 
tiwi), and fv^wiwq). 

Let us assume that among the instances Vk in the testing text there is at 
most one in error. We make the corresponding assumption for w. Given these 
assumptions, we expect that, for all vectors t{vk) except at most one, the vote-
total r{t{vk),Ly^uji'^)) produced by Ly^^i'^) is positive. Correspondingly, 
we expect that, for all vectors fy^^wivp) except at most one, the vote-total 
s{fv<r-w{'^p)i Ly^yj{v)) computed via Ly^yj{v) to be negative. Thus, we expect 
that there is a threshold value ay^w{v) such that almost all, if not all, vote-
totals for the vectors t{vk) are greater than ay^yj{v), and such that almost all, 
if not all, vote-totals for vectors fv<-w{'^p) are less than ay^yj{v). 

We calculate an odd-valued threshold ay^yj{v) using the above considera
tions; the details of the computations are given in Appendix D. Given ay^u){v), 
we estimate an instance Vk of the testing text to be bad if its vote-total is less 
than the threshold, i.e., 
r{t{vk),Ly^y;{v)) < ay^yj{v) aud estimate Vk to be good otherwise. In the for
mer case, the difference di{vk) between the vote-total o{t{vk) and the threshold 
is a reasonable measure of the likelihood that Vk is bad. That is, a large diflFer-
ence corresponds to a high likelihood. 

We utihze Ly^uj{w) in analogous fashion. Each instance Vk is temporar
ily replaced by an instance Wq of the word t/;, and we get the vote-total 
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s{fv<r-w{'iJ^q),Ly^^{w)) for the characteristic vector fv<r-w{'^q) of the gener
ated Wq. The vote-total is computed by Ly^w{w). If the vote-total is above 
the threshold ay^^{w)^ then the generated occurrence Wq likely is good, the 
instance Vk is estimated to be bad, and the difference d2{vk) between the vote-
total and the threshold is a measure of the likelihood that Vk is bad. If the 
vote-total is less than the threshold, then the generated occurrence Wq likely 
is bad, and thus the instance Vk is estimated to be good. Notice that the 
threshold a^^uji'^) is computed analogously to ay^u){y) described above. 

The tests involving the two thresholds may produce agreeing or conflicting 
estimates for a given instance Vk- If at least one of the two tests estimates 
Vk to be good, then we estimate Vk to be good. On the other hand, if both 
tests estimate Vk to be bad, then we estimate Vk to be bad and take the sum 
ds{vk) of di{vk) and d2{vk) to be a measure of the likelihood that the estimate 
of Vk being bad is indeed correct. Accordingly, we sort all such bad instances 
Vk using their ds{vk) values. The Vk with the largest ds{vk) is the most likely 
one to be bad. In the implementation of the method, that instance Vk is posed 
to the user as a questionable word. If the user declares Vk to be correct, we 
assume that the other instances of v that we estimated to be bad, are actually 
good as well. On the other hand, if the user agrees that the Vk with largest 
ds{vk) is indeed bad, then we pose to the user the case of the Vk with the second 
largest ds{vk) as potentially bad and apply the above rule recursively. 

3.2.2 Testing special cases 
We have completed the discussion of the regular case where each of v and 

w occurs at least twice in the testing text. Now, we discuss two special cases 
where v occurs exactly once in the testing text. Since v occurs just once, it 
may well be that this instance of v is bad. Hence, this situation calls for careful 
analysis. Here are the two cases. 

Case (1) The word v occurs exactly once but w occurs at least twice in 
the testing text: We construct for each instance wi the characteristic vector 
t{wi), apply Ly^^u{w), and get the vote-total r{t{wi),Ly^uj{w)). Next, we 
temporarily replace the single Vk by Wq^ construct the characteristic vector 
fv^w{'i^q)i and apply Ly^yj{w). If the resulting vote-total 
s{fy^yj{wq), Ly^yj{w)) foT thc gcncratcd Wq is greater than the smallest of the 
r{t{wi),Ly^uj{w)), then we estimate the Wq that replaced Vk to be good and 
thus estimate Vk to be bad; otherwise, we estimate Vk to be good. 

Case (2) The word v occurs exactly once and w occurs only once in the 
testing text: We would like to construct a characteristic vector t{vk) for Vk as 
in the regular case, apply Ly^yj{v), and make a decision based on the vote-
total. However, the rules for construction of t{vk) demand that Vk occurs at 
least twice in the testing text, which does not hold here. Hence, t{vk) cannot 
be computed. We overcome this difficulty by a seemingly inappropriate step 
where the testing text is for the moment replaced by the history text appended 
by Vk and its neighborhood of the testing text. That temporary substitution 
allows computation of t{vk)^ since existence of Ly^w{v) implies that v occurs 
at least three times in the history text. We apply Ly^yj{v) to the vector t{vk), 
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get a vote-total r{t{vk),Ly^w{y))i and estimate Vk to be good or bad using 
a threshold of ay^u;{v) = - 19 . That is, if r{t{vk),Ly^w{v)) < -19 , then Vk 
is estimated to be bad. Otherwise, it is estimated to be good. The threshold 
choice is driven by the consideration that vote-totals below —19 almost always 
show Vk to be bad. 

3.2.3 An example 
Let us discuss an example where the word there is examined in a given testing 

text. First, Ltest constructs the set of confusion words for there. Let that set be 
{three, their}. Thus, we have two substitutions involving there: there^three 
and there^their. Each occurrence of there is examined twice. Once, there 
is examined relative to the substitution there^three. The second time, there 
is examined relative to the substitution there^their. Let us discuss the first 
case. When there is examined relative to the substitution therei-three, each 
occurrence therek of there in the testing text is tested twice as follows: 
(i) Compute the vector for therek. Based on the testing technique described 
above, the occurrence therek is estimated to be good or bad. 
(ii) Replace therek by an occurrence threeq of the word three, and construct 
a vector for that generated occurrence threeq. Then threeq can be classified 
as good (resp. bad), and thus the occurrence therek is estimated as bad (resp. 
good). If the two tests (i) and (ii) estimate therek as bad, then the occurrence 
therek is declared bad; otherwise therek is declared good. 

Declare each instance of v that in the testing step is ignored relative to a 
substitution v<r-w to be a discarded v{v<-w) instance. If an instance of v is 
not discarded relative to a substitution v<r-w, declare it to be a tested v{vi-w) 
instance. By these definitions, an instance of v may be discarded relative to a 
substitution vfr-w and may be tested relative to another substitution V'fr-z. 

Let Nd (resp. Nt) be the total number of discarded (resp. tested) v{vi-w) 
instances encountered in all iterations through the testing step. If the ratio 
Nt/{Nd + Nt) is close to 1, then the learning step has produced most of the 
logic formulas needed for checking the given testing text. On the other hand, 
a ratio close to 0 implies that the learning step has produced few of the logic 
formulas that are relevant for the testing text. For this reason, we call the 
ratio Nt/{Nd + Nt) the relevance ratio of the given prior text and the given 
testing text. Section 5 shows that relevance ratios close to 1 can be achieved 
by a suitable augmentation of the given training and history texts. 

4. IMPLEMENTATION AND 
COMPUTATIONAL RESULTS 

The learning step and the testing step of Ltest have been added to an existing 
software system for spell and syntax checking called Laempel. In this section, 
we review that system, describe how the method has been inserted, and re
port computational results that include a comparison with the prior methods 
BaySpell and WinSpell. 
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The spell checker of Laempel is described in Zhao and Truemper (1999). The 
key feature setting it apart from other spell checkers is the high probability with 
which Laempel suggests correct replacement words for misspelled words (96% 
for the top-ranked replacement word) and recognizes correct words that are 
not in the dictionary, as correct (82%). Laempel achieves this performance by 
learning user behavior and using that insight to make decisions. 

The syntax checker of Laempel is covered in Zhao (1996). It consists of three 
steps. In the first step, the given text is cleaned up by a screening process. In 
the second step, two logic modules check the cleaned text for local syntactic 
errors. A total of 27 different cases are considered. The third step is applied 
to each sentence that does not contain any local syntactic errors. A reason
ing process involving 18 logic modules analyzes each such sentence for global 
syntactic errors. If no such error is determined, the process attempts to parse 
the sentence. We say "attempts" since the process gives up on parsing if the 
sentence is so complex that the 18 logic modules become bogged down in the 
parsing process. In tests, the percentage of sentences that were parsed by the 
syntax checker ranged from 100% for simple texts and 76% for a mathematical 
text to 61% for a TV network news text. For the sentences that have been 
parsed, Laempel records for each word the assigned part-of-speech. That in
formation is utilized later to estimate whether a given word has a dominant 
part-of-speech. 

We are ready to discuss the implementation of the learning step of Ltest. 
Recall that the learning algorithm splits the prior text into a training text 
and a history text, and then deduces from these two texts a collection of logic 
formulas. Prior to the computation of the formulas, Laempel carries out spell 
checking and syntax checking for the two texts and asks the user to make 
corrections as needed. The learning algorithm processes the corrected texts to 
obtain the collection of logic formulas. 

We turn to the implementation of the testing step of Ltest. Let a testing text 
be given. Laempel first checks the text for spelling and syntax errors. Once the 
user has made appropriate corrections, the testing algorithm searches the text 
for context-based spelling errors. Whenever the algorithm has produced a list 
of likely errors for a substitution v<r-w, Laempel poses the top-ranked instance 
of the list to the user as possibly in error. If the user declares the instance to be 
correct, Laempel assumes that all other instances of the Ust are correct as well. 
On the other hand, if the user declares the instance to be in error, Laempel 
records that fact, removes the instance from the list, and applies the above 
rule recursively; that is, Laempel poses the currently top-ranked instance to 
the user as possibly being in error, and so on. Once a testing text has been 
checked for context-based spelling errors, Laempel records all sentences that 
do not contain any error acknowledged by the user. When the text is processed 
again after changes by the user, those sentences are presumed to be correct, and 
checking focuses on modified or new sentences. This rule reduces subsequent 
processing times of the testing file. 

We have evaluated the performance of Ltest. The texts consisted of mat he-
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Table 1. Text statistics. 

Text 
1-1 
1-2 
1-3 
1-4 
2-1 
2-2 
2-3 
3-1 
3-2 
3-3 
4-1 
4-2 
4-3 
5-1 
5-2 
5-3 

Used 
for 

training 
history 
history 
testing 

training 
history 
testing 

training 
history 
testing 

training 
history 
testing 

training 
history 
testing 

Type 
math book 

chapters 
in 

IfeX 
math book 
chapters in 

TfeX 
technical 
papers in 

WT^ 
newspaper 

articles about 
health 

newspaper 
articles about 

politics 

Number of 
different words 

1,922 
1,143 
1,827 
1,100 
1,826 
1,715 
1,216 
2,029 
2,817 
1,318 
1,968 
1,925 
1,334 
2,054 
2,086 
1,590 

Number of 
word instances 

2,4581 
8,291 
1,6443 
9,744 
1,6444 
1,5098 
6,491 
1,8773 
2,5881 
6,456 
6,645 
5,854 
4,667 
8,837 
8,645 
5,726 

matical book chapters formulated in IfeX, technical papers in I^TEK, and news
paper texts covering health and politics. Table 1 tells the number of words, 
the number of word instances of the texts, and the classification as training, 
history, or testing text. Note that the first group of texts consisting of texts 
1-1 to 1-4 contains two history texts 1-2 and 1-3. The smaller of the two 
history texts, 1-2, has 8,291 word instances, while the larger history text, 1-3, 
has 16,443 instances. We see in a moment how the difference in size of the two 
history texts affects the learning of logic formulas. 

Recall from the learning step that for a given substitution v<-w we attempt 
to derive two sets Ly^^i'i^) ctnd Ly^^i'^) of logic formulas, by first replacing 
each instance of tt; by t;, and then replacing each instance oi v hy w. Denote 
the first replacement by v-w and the second one by w~v. We need this nota
tion for the next table, which summarizes the results of applying the learning 
algorithm to the combinations of training/history texts shown in Table 4. The 
statistics include the number of replacements v-w evaluated, the distribution 
of the number of instances of v in the training text connected with the re
placements v-w, the total number of logic formulas learned from the texts, 
and the execution time. Computations were done on a Sun Ultra 1 (167 MHz) 
workstation, which by current standards is slow. 

The training time ranges from Ih 17m to 6h 14m, with an average of 3h 43m, 
mostly is required to compute the logic formulas by Lsquare. On present day 
computers, say with 1000 MHz, training time would be at most Ih. 
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Table 2. Learning cases. 

Texts 

Train
ing 

1-1 
1-1 
2-1 
3-1 
4-1 
5-1 

Avrg. 

Hist
ory 

1-2 
1-3 
2-2 
3-2 
4-2 
5-2 

Number 
of re

placements 
v-w 

119 
176 
178 
250 
48 
64 
139 

Distribution of 
number of instances of v 

in training text 
for replacements (%) 

3 
to 
10 
11 
27 
24 
31 
40 
30 
27 

11 
to 
20 
13 
16 
16 
19 
15 
23 
17 

21 
to 
50 
17 
15 
21 
15 
33 
25 
21 

51 
to 

100 
27 
18 
19 
18 
2 
8 
15 

101 
to 

200 
18 
13 
12 
6 
6 
11 
11 

v-w 

>200 
14 
11 
8 
10 
4 
3 
8 

Number 
of logic 

formulas 
learned 

4,760 
7,040 
7,120 
10,000 
1,920 
2,560 
5,567 

Training 
time 

4h 3m 
5h 58m 
3h 4m 

6h 14m 
Ih 17m 
Ih 40m 
3h 43m 

Line 1 of Table 4 shows that training text 1-1 and history text 1-2 led to 
learning of 4,760 logic formulas for 119 replacements. In contrast, the same 
training text paired with history text 1-3 results in learning 7,040 logic for
mulas for 176 replacements, an increase of 48%. The large increase in learned 
information is due to the larger size of history text 1-3 compared with history 
text 1-2. Note that on average 27% of the training samples contained 3 to 10 
instances of v in the training text, while 17% of the training samples contained 
11 to 20 instances. Thus, roughly half of the training samples had at most 20 
instances. 

Once training was completed, the testing algorithm was applied to both large 
and small testing texts in the domains of the training/history texts. The cases 
of large testing texts are given in Table 3. For each testing text, the table 
includes the related training/history texts, the number of discarded and tested 
v{v^w) instances, and the number of false-positive diagnoses incurred when 
algorithm processes the text. The percentage given with the number of tested 
v{v<r-w) instances is the relevance ratio, which in Section 3 is defined to be the 
number of tested v{v^'w) instances divided by the total number of discarded 
and tested v{v^w) instances. For testing text 1-4, the relevance ratio is 46% 
when 1-1/1-2 are used as training/history texts. The ratio increases to 54% 
when 1-1/1-3 are used instead. The improvement is due to the fact that history 
text 1-3 leads to increased learning when compared with history text 1-2, as 
discussed in connection with Table 4. The average relevance ratio, which is 
43%, is an undesirably small number that results from the random selection 
of training and history texts. In Section 5 it is described how relevance ratios 
close to 1 can be achieved by an appropriate augmentation of the training texts 
and history texts. We did not carry out such manipulation for the tests of this 
section so that the test results are unbiased. 

The percentage listed in Table 3 with the number of false-positive diagnoses 
is the ratio of that number divided by the number of tested v{v<r-w) instances. 
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Table 3. Large testing text cases. 

Testing 
1-4 
1-4 
2-3 
3-3 
4-3 
5-3 

Average 

Texts 

Training 
1-1 
1-1 
2-1 
3-1 
4-1 
5-1 

History 
1-2 
1-3 
2-2 
3-2 
4-2 
5-2 

Number of 
discarded 
v{v'(r-w) 
instances 

5,324 
4,535 
3,777 
2,911 
3,404 
5,239 
4,198 

Number of 
tested 

v(v-^w) 
instances 

4,610 (46%) 
5,399 (54%) 
3,061 (45%) 
3,258 (53%) 
891 (21%) 

1,756 (25%) 
3,162 (43%) 

Number of 
false-positive 

diagnoses 
18(0.4%) 
24(0.4%) 
28(0.9%) 
33(1.0%) 
20 (2.2%) 
17 (1.0%) 

23.4(0.7%) 

Testing 
time 

2m Os 
2m 35s 
2m 2s 

2m 32s 
Im 6s 

Im 25s 
Im 57s 

Table 4. Error detection for large testing texts. 

Testing 

1-4 
1-4 
2-3 
3-3 
4-3 
5-3 

Average 

Texts 

Training 

1-1 
1-1 
2-1 
3-1 
4-1 
5-1 

History 

1-2 
1-3 
2-2 
3-2 
4-2 
5-2 

Number of 
errors 

generated 

37 
163 
47 
53 
47 
33 

63.3 

Numbei 
syntax 
checker 
alone 

3 (8%) 
16 (10%) 
7 (15%) 
9 (17%) 
5 (11%) 
5 (15%) 

7.5 (12%) 

" of errors detected by 
Ltest 1 syntax 
alone checker 

1 and Ltest 
26 (70%) 
114 (70%) 
34 (72%) 
38 (72%) 
27 (57%) 
20 (61%) 

43.2 (68%) 

26 (70%) 
120 (74%) 
35 (74%) 
39 (74%) 
32 (68%) 
22 (67%) 

45.7 (72%) 

That percentage is small and ranges from 0.4% to 2.2%, with an average of 
0.7%. Much more important from a user standpoint is the fact that the number 
of false-positive diagnoses is uniformly small, ranging from 17 to 33, with an 
average of about 23. The testing time is on the order of 2m for each case. On 
current computers, that time would be on the order of 20s. 

Into each large testing text of Table 3, we randomly introduced context-based 
spelling errors and, for each such error, checked if the syntax checker or Ltest 
detected that error and posed it to the user as top-ranked candidate. Thus, 
the results characterize the error detection capability of Ltest for cases where 
learning is possible from the training/history texts. Table 4 summarizes the 
performance. The percentage figures in parentheses represent the portion of 
generated errors detected by the syntax checker or Ltest, as applicable. Note 
that the syntax checker on average found only 12% of the errors, while Ltest 
identified 68%. Combined, the two checks located 72% of the errors. 

We extracted several small testing texts consisting of at most a few sentences 
from the large testing texts. Table 5 contains the statistics about these small 
testing texts. The names of the texts are derived from those of the large ones 
by adding one or two primes. For example, the small testing texts 1-4' and 
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Table 5. Small testing texts. 

Text 
1-4' 
1_4// 
2-3 ' 
3-3' 
4-3 ' 
5-3' 

Number of 
different words 

81 
58 
36 
51 
78 
85 

Number of 
word instances 

184 
110 
50 
80 
106 
102 

Table 6. Small testing text cases. 

Testing 
1-4' 
1-4" 
2-3 ' 
3-3' 
4-3 ' 
5-3' 

Average 

Texts 

Training 
1-1 
1-1 
2-1 
3-1 
4-1 
5-1 

History 
1-2 
1-3 
2-2 
3-2 
4-2 
5-2 

Number of 
discarded 
v{v<—w) 
instances 

43 
11 
3 
7 

23 
7 
16 

Number of 
tested 

v(v<—w) 
instances 
32 (43%) 
20 (65%) 
3 (50%) 
4 (36%) 
7 (23%) 
7 (50%) 
12 (43%) 

Number of 
false-positive 

diagnoses 
0 (0%) 
1 (5%) 

2 (67%) 
1 (25%) 
2 (29%) 
0 (0%) 
1 (8%) 

Testing 
time 

12s 
7s 
4s 
5s 
3s 
5s 
6s 

1-4" are derived from the large testing text 1-4. 
Table 6 lists the training/history texts used in conjunction with the small 

testing texts and provides statistics analogously to Table 3. The average rele
vance ratio is 43% and thus equal to that for large testing texts. The number 
of false-positive diagnoses ranges from 0 to 2, with an average of 1. The aver
age false-positive rate is 8%. That percentage may seem high, but this is not 
important since the number of false-positive diagnoses is small. The execution 
times of Table 6 are far below the roughly 2m required for large testing texts 
and average 6s. On current (2001) computers, the average time would be about 
Is. 

As for the cases of large testing texts, we randomly inserted context-based 
spelling errors and determined how many of these errors were identified by 
the syntax checker or by Ltest. Table 7 contains the results. On average, the 
syntax checker finds only 4% of the errors, while Ltest locates 87%. In contrast 
to the large testing texts, the syntax checker does not help at all since Ltest 
finds all errors determined by the syntax checker. 

Table 8 summarizes the performance of the leading prior methods BaySpell 
(Golding (1995)) and WinSpell (Golding and Roth (1999)) and Ltest on the 
same prior text and testing text. D. Roth kindly made these texts available. 
They were obtained by a 80/20 split of the 1-Million-Words Brown corpus 



C h a p t e r 17: Learning to Find Context-Based Spelling Errors 613 

Table 7. Error detection for small testing texts. 

Testing 
1-4' 
1-A" 
2-3 ' 
3-3' 
4-3 ' 
5-3' 

Average 

Texts 

Training 
1-1 
1-1 
2-1 
3-1 
4-1 
5-1 

History 
1-2 
1-3 
2-2 
3-2 
4-2 
5-2 

Number of 
errors 

generated 
8 
10 
8 
6 
6 
2 

6.7 

Number of errors detected by 
syntax 1 Ltest 1 syntax checker 

checker alone alone | and Ltest 
0 (0%) 

2 (20%) 
0 (0%) 
0 (0%) 
0 (0%) 
0 (0%) 

0.3 (4%) 

6 (75%) 
10 (100%) 
6 (75%) 
5 (83%) 

6 (100%) 
2 (100%) 
5.8 (87%) 

6 (75%) 
10 (100%) 
6 (75%) 
5 (83%) 

6 (100%) 
2 (100%) 
5.8 (87%) 

(Kucera and Francis (1967)). The figures in the table represent the percent
ages of correctly classified word instances for the specified confusion sets. On 
average, Ltest achieved the best performance with 95.4% accuracy, compared 
with 89.9% for BaySpell and 93.5% for WinSpell. The testing times used by 
Ltest for the cases in Table 8 are comparable and very close to those reported 
in Table 3. 

The detection rate of 95.4% for Ltest is much higher than the 68% found 
earlier for large texts. How is this possible? First, the two rates concern 
different statistics. The 95.4% rate covers classification of correct words as 
correct and of erroneous words as incorrect. The 68% rate covers only the 
detection of erroneous words as incorrect. If we are to compare numbers, we 
must combine the 68% rate with the rate for classifying correct words as correct. 
The latter rate is 1 - (false-positive rate) == 1 - 0.007 = 99.3%. Using a 50/50 
weighting to combine rates, we see that (0.68 + 0.993)/2 = 83.7% should be 
compared with 95.4%. From our computational experience with Ltest, the gap 
between 83.7% and 95.4% is due to four factors: 

- First, the test using the Brown corpus relies on much larger training texts 
than we used in the earlier tests. 

- Second, most confusion words of Table 8 are con^en^ words—that is, nouns, 
verbs, adjectives, and adverbs. We have found confusion sets involving such 
words to be much easier to handle than sets involving function words such as 
prepositions, connectives, and articles. Such words were part of the earlier 
tests. Indeed, the tests even check for some errors in mathematical formulas 
such as misspelled mathematical variables. 

- Third, some of the large testing texts considered earlier involve numerous 
special terms, symbols, formulas, and conventions, which complicate the search 
for errors. 

- Fourth, the constraint of very low false-positive rate imposed on Ltest 
makes detection of errors much more diflScult. It would be interesting to see 
how the two leading prior methods perform when they are adapted so that they 
take all of these aspects into account. 

The experiments reported show that Ltest finds the majority of context-
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Table 8. Performance of Ltest compared with Bay Spell and WinSpell. 

Confusion set 
accept, except 
affect, effect 
being, begin 
cite, sight 
country, county 
its, it's 
lead, led 
passed, past 
peace, piece 
principal, principle 
quite, quiet 
raise, rise 
weather, whether 
your, you're 

average 

BaySpell 
92.0 
98.0 
95.2 
73.5 
91.9 
95.9 
85.7 
90.5 
92.0 
85.3 
89.4 
87.2 
98.4 
90.9 
89.9 

WinSpell 
96.0 
100 
97.9 
85.3 
95.2 
97.3 
91.8 
95.9 
88.0 
91.2 
93.9 
89.7 
100 
97.3 
93.5 

Ltest 
94.0 
97.9 
98.7 
81.3 
94.1 
98.3 
98.0 
94.7 
92.6 
94.7 
98.5 
98.2 
98.7 
95.9 
95.4 

based spelling errors, provided the error instances Vk can be tested. This is so 
if two conditions are satisfied: (1) For each erroneous instance Vk^ the correct 
word must occur in the testing text. (2) Logic formulas for the applicable 
substitutions v^w must have been learned. 

The first condition is typically met in large testing texts, but is not necessarily 
satisfied in small testing texts. There is a simple way to avoid this shortcoming 
for small testing texts. We take an additional, large text in the same domain 
area, test it, and correct it if necessary. Let us call the resulting text the core 
text Whenever a small text is to be tested, we adjoin it to the core text and 
test the resulting large expanded text. If an instance of v occurs in the small 
text portion, and if an instance of w occurs anywhere in the expanded text, 
then V is tested for possibly being the result of a context-based spelling error. 
As a result, almost any v that should be tested is indeed tested. 

The second condition is satisfied if the training/history texts are represen
tative of the testing texts. This is not the case for the above tests due to our 
random selection of training/history texts. In the next section, we see how 
representative texts can be obtained, as part of several extensions. 

5. EXTENSIONS 

Significant improvements in the error detection rate can be attained by a bet
ter syntax checker, since, in our tests, quite a few context-based spelling errors 
resulted in syntactically incorrect sentences that were not flagged by the Laem-



C h a p t e r 17: Learning to Find Context-Based Spelling Errors 615 

pel syntax checker. A better syntax checker would also lower the false-positive 
rate, for the following reason. Let vi-w be the currently processed substitution 
in the testing step. Suppose the testing step tentatively replaces an instance 
of V by w. If the syntax checker determines that the modified sentence is syn
tactically incorrect, then we need not consider ?; as a possibly misspelled or 
mistyped w, and thus ehminate a potential false-positive diagnosis. We tried 
this idea using the Laempel syntax checker and found that it reduced the num
ber of false-positive diagnoses insignificantly. A better syntax checker should 
produce substantially better results. 

Another improvement produces a relevance ratios very close to 1. Suppose 
we have sufficient text to determine the entire vocabulary used in the given 
domain. We compute the confusion set for each word of that vocabulary. Given 
a training text and a history text, we check if each of these texts contains, for 
each word occurring in one of the confusion sets, at least three instances each. 
If this is not the case for a given word, we add sentences from general text 
material to the training or history text, as needed, until each word is reasonably 
represented, say, by 10-20 instances. When training is done using the expanded 
training and history texts, then logic formulas are produced for each word of 
each confusion set. Accordingly, testing achieves a relevance ratio of close to 1. 

It is possible that a person makes an error repeatedly, for example, by con
fusing "its" and "it's" or "complement" and "compliment." Such behavior is 
contrary to one of the two assumptions made in Section 1, and it affects the 
reliability with which errors are detected via thresholds. One may remedy this 
shortcoming of Ltest as follows. Whenever an error involving a given substitu
tion v^w is found to occur more than once in a testing text, then that case is 
recorded as part of the performance history of the person who created the text. 
In subsequent tests, that fact is taken into account when characteristic vectors 
are constructed in connection with the substitution v<-w and evaluated via 
logic formulas. Space constraints prevent a detailed discussion, but the main 
idea is that, for the evaluation of v<-w, each sentence with an instance of v is 
viewed as separate small text, and that v is tested for correctness as described 
in Section 4 using a core text. The use of a performance history of a person 
may seem far-fetched. But the spell and syntax checker of the Laempel System, 
of which Ltest is now part, already uses such history information, with good 
results. 

This section discussed some of the future research directions which can be 
summarized as follows: -Improving the syntax checker to reduce the number 
of false-positive cases as mentioned earlier in this section. -Devise methods to 
derive certain generic formulas to be used whenever training is not possible due 
to small number instances. -Explore the usage of some core good text (see the 
last two paragraphs in section 4) to be adjoined to small testing texts where 
there may not be enough word instances to collect sufficient features of these 
words in the characteristics vector. 
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6. SUMMARY 

The chapter describes the method Ltest for finding context-based spelling er
rors. The key elements are as follows. 

(1) An encoding of the relationships of an instance of a word to other instances 
of that word, using the text under investigation and a history text that acts 
as a reference text for both training and testing. The encoding is based 
on neighborhoods of word instances and, if applicable, on the dominant 
parts-of-speech of such instances. 

(2) Representation of the relationships between words instances and 
correct/incorrect use by logic formulas that are extracted by a data mining 
algorithm. 

(3) A voting system based on the logic formulas. 
(4) A calibration of the voting system via thresholds for each testing text. 

Ltest has been added to an existing system for checking spelling and syntax 
errors. A number of tests have proved that the resulting system is eff"ective and 
robust. It detects the majority of context-based spelling errors while commit
ting few false-positive diagnoses. Execution times of the system are moderate 
for the learning step and are small for testing even large texts. 
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Appendix A: Construction of substitutions 
Recall that the substitution vi-w represents that the word w may by mis-

spelhng or mistyping become v. In this appendix, we summarize how, given 
V, all words w that may give rise to a substitution v<-w are computed. For 
complete details of the construction rules, see Al-Mubaid (2000). 

We collect the misspelling cases in four groups that involve the following 
situations. For each situation, we include some examples. 

• vowel combinations producing similar sounds: by<->buy, fairf^fare, 
weekoweak. 

• consonants having similar sounds: bayf>pay, cinef^sine, hidf^hit. 

• silent characters and substrings: kneeonee, rightf^rite, sight<->site, 
whereowere. 

• apostrophe use: he 's^his, it's^^its, let's-H-lets, they're<->there. 

A total of 61 rules create all cases of these four groups. We determined these 
rules as follows. First, in a combination of manual and computer search, we ex
tracted from Webster's Ninth Collegiate Dictionary (1989) a number of classes 
of different words with identical or nearly identical pronunciation. Second, we 
manually eliminated rare words. Third, we represented the remaining classes 
by rules. It turned out that 61 rules suffice to represent those classes. Due to 
space constraints, we omit a detailed listing of the rules; they are included in 
Al-Mubaid (2000). We use the shorthand notation v<r>w for the substitutions 
v^w and wi-v. 

The mistyping cases are taken from Zhao and Truemper (1999). Define 
a neighbor letter to be any letter that on the keyboard is close to a given 
letter. Then the typing errors considered in the cited reference are as follows: 
transposing two letters, repeating a letter, omitting a letter, inserting a letter 
that is a neighbor of a given letter, and typing an incorrect letter that is a 
neighbor of the required letter. Here are some examples for each type of error. 

1. Transposing two letters: byef^bey, formf^from, goalf^gaol, trial<->trail. 
2. Repeating a letter: latter<-later, tillerf-tiler. 
3. Omitting a letter: camf-scam, met^melt , see-f-seem, tale^table. 
4. Inserting a letter that is a neighbor of a given letter: definedf-define, 

care^car, 
trash^rash. 

5. Typing an incorrect letter that is a neighbor of the required letter: forf^foe, 
highf^nigh, intof^onto, jus t^must . 
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Appendix B: Construction of training and history texts 
Suppose we have a database of correct texts for the given domain. For 

example, the database may consist of a large number of working papers on 
graph theory, or of papers published in a combinatorics journal, or of some 
books on matrix algebra, or of a large collection of legal documents in one 
area of law. We assume that the words used in the database constitute the 
entire or almost entire vocabulary of the testing texts we intend to process in 
the same domain area. Prom the database, we want to derive reasonably sized 
training and history texts so that the learning step applied to them produces 
the logic formulas needed in subsequent testing of texts. The construction of 
the training text and history text from the given database proceeds as follows. 

Construction of training/history texts 

INPUT: A database of texts for the given domain area. 

OUTPUT: Training/history texts for the domain area. 

1. Initialize the training text and history text as empty texts. Determine the 
number n{v) of instances of each word v in the database. 

2. Derive all substitutions v^w for which both v and w occur in the database, 
and collect the words v and w of these v<-w in a set V. Sort the words 
of V using the counts n(-) so that the topmost word has the smallest n(-) 
value. 

3. Process the words vofV one by one and in the order determined in Step 2, 
as follows. Randomly select sentences of the database that contain at least 
one instance of v, and assign each selected sentence to the training text or 
the history text, whichever has at that time the fewest number of instances 
ofv. Stop the processing of v when all sentences of the database containing 
instances of v have been assigned, or when both the training text and the 
history text contain at least 1,000 instances of v each. 

4. Output the training/history texts on hand, and stop. 



Chapter 17: Learning to Find Context-Based Spelling Errors 621 

Appendix C: Structure of characteristic vectors 
Both the learning step and the testing step use characteristic vectors to 

encode the relationships connecting a given word instance with other instances 
of the same word. The characteristic vectors are based on two texts. The first 
text is the training text or testing text, depending on whether we are in the 
learning step or in the testing step, respectively. We denote either one of the 
two texts by T. The second text is the history text, regardless of whether we 
are in the learning step or in the testing step. We denote that text by if. It 
acts as a correct reference text during both the learning step and the testing 
step. 

Define a non-word token to be any symbol that occurs in text T or H that 
is not a word. Examples are the period, comma, exclamation mark, question 
mark, semicolon, colon, forward and backward slash, plus, minus, ampersand, 
and the signs for pound and dollar. 

Define the neighborhood of an instance Xm of a word x in text T or H to 
consist of the two words or tokens immediately preceding Xm and of the two 
words or tokens immediately following Xm- Let p^^p^, /^, and p denote words 
or tokens. Then Xm and its neighborhood in the text T or H may be depicted 
as a sequence p^ p^ Xm f^ P of words or tokens in the text. The neighborhood 
definition is modified in the obvious way if Xm occurs at or near the beginning 
or end of the text. That is, p^ and p^, or just p^, or p and /^, or just p are 
then absent from the sequence. 

Define a part-of-speech of a word to be the dominant part-of-speech of the 
word if in past usage of the word in the given domain that part-of-speech was 
the correct syntactic interpretation at least 90% of the time. In our implemen
tation, we use the output of the Laempel syntax checker to estimate whether 
a part-of-speech is dominant. Below, we assume that we have that estimate 
available. 

Both the learning step and the testing step require characteristic vectors for 
instances x^ of words x in text T. Such a vector, denoted by Z^^, has 18 
entries encoding 18 different features of that particular instance. The first half 
of the entries is produced from text T, while the second half is generated from 
text H. All but four of the entries of Z^^ relate tokens of the neighborhood 
of the instance Xjn of a given word x to the tokens of the neighborhood of 
other instances Xn of x. The remaining four entries of Z^^^ link the parts-
of-speech of words in the neighborhood of Xm to the parts-of-speech of words 
in the neighborhood of instances Xn- The 18 features are the result of a long 
series of experiments involving many different rule sets. In those experiments, 
we started out with elaborate rule sets. We discovered that such sets tend to 
produce erratic detection results and are unsuitable when both large and small 
texts are to be processed. By gradual simplification we arrived at the current 
rule set. Here are the details. 
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Construction of the characteristic vector 

Each of the entries Zf" ,̂ Z^^, . . . Z^^ is equal to ±1 . The rules below list 
explicitly for each entry the condition under which an entry takes on the value 
1. If that condition is not satisfied, then the entry implicitly has the value - 1 . 
We use the above notation for neighborhoods—that is, p^ p^ Xm f^ P—to 
denote the tokens immediately preceding or following a given instance Xm in a 
sentence. Here are the definitions. 
1. (p^ or p^ in text T, word case) Define Zf"" = 1 if (a) or (b) below hold. 

(a) p^ is a word and, for another instance Xn of x, the sequence p^ Xn 
occurs in text T. 

(b) p^ is a non-word token and p^ is a word, and, for another instance Xn 
of X and for another non-word token ^, the sequence p^ q Xn occurs in 
text T. 

2. {f or f in text T, word case) Define Z|"^ = 1 if (a) or (b) below hold. 
(a) /^ is a word and, for another instance Xn of x, the sequence Xn P 

occurs in text T. 
(b) /^ is a non-word token and p is a word, and, for another instance Xn 

of X and for another non-word token ^, the sequence Xn q P occurs in 
text T. 

3. {p^ and p in text T, word case) Define Z^"^ = 1 if both p^ and p are 
words and if, for another instance Xn of a;, the sequence p^ Xn P occurs in 
text T. 

4. {p^ and p^ in text T, word case) Define Z^"^ == 1 if both p^ and p^ are 
words and if, for another instance Xn of a;, the sequence p^ p^ Xn occurs in 
text T. 

5. {p and p in text T, word case) Define Z^"^ = 1 if both p and p are 
words and if, for another instance Xn of x, the sequence Xn P P occurs 
in text T. 

6. {p^ in text T, non-word token case) Define Zg"" = 1 if p^ is a non-word 
token and if, for another instance Xn of a;, the sequence p^ Xn occurs in 
text T. 

7. {p in text T, non-word token case) Define Z^"" = 1 if /^ is a non-word 
token and if, for another instance Xn of x, the sequence Xn P occurs in 
text T. 

8. (p^ in text T, part-of-speech case) Define Zg"" = 1 if the following two 
conditions are satisfied. First, p^ must be a word and is estimated to have 
a dominant part-of-speech. Second, a sequence q Xn must occur in text T 
where Xn is another instance of x and where qisa, word having an estimated 
dominant part-of-speech equa 

9. {p in text T, part-of-speech case) Define Zg"" = 1 if the following two 
conditions are satisfied. First, p must be a word and is estimated to have 
a dominant part-of-speech. Second, a sequence Xn q must occur in text T 
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where Xn is another instance of x and where ^ is a word having an estimated 
dominant part-of-speech equal to that estimated for /^. 

10.-18. (Text H) Define Z^^-Z^^ like Z^^-ZQ"^ except that, in each case, 
the specified sequences must be in text H instead of text T. 

The characteristic vectors of the sets G{v), By^uj{y), G{w)^ and By^yj{w) 
are constructed by the above rules when one takes Xm of the above rules to be Vi, 
Vj, Wj, and f̂;̂ , respectively, and selects the applicable texts. The characteristic 
vectors needed in the testing step are constructed analogously. 

Some previous work in word sense disambiguation (for example, see Bruce 
and Wiebe (1994, 1999), Pedersen, Bruce, and Wiebe (1997), Pedersen and 
Bruce (1998), Pedersen (1999)) uses similar encodings where words, parts-of-
speech, and morphological features near a given word instance are recorded. 
Here, our hst of parts-of-speech has 46 items that accommodate all morpholog
ical subcases. Ignoring that minor variation, the main difference between the 
cited methods and the one proposed here is the use of dominant parts-of-speech 
instead of just parts-of-speech, the use of a reference text for both learning and 
testing, and the way the characteristic vectors are evaluated. 
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Appendix D: Classification of characteristic vectors 

We describe how the set Ly^^jiv) (resp. Ly^u){w)) is used to estimate 
whether a given characteristic vector is in G{v) or By^^{v) (resp. G{w) or 
By^u){ui))' It suffices to examine how Ly^yj (v) is applied to the characteristic 
vector t{vk) of an instance Vk of v. The set Ly^yj{v) consists of 20 disjunctive 
normal form (DNF) logic formulas and 20 conjunctive normal form (CNF) logic 
formulas. Each of the 40 formulas produces for t{vk) a vote o f + l o r - 1 . A + 1 
(resp. —1) indicates that the logic formula estimates t{vk) to be in G{v) (resp. 
By^yj{v)). Let the sum of these 40 votes be the vote-total r{t{vk),Ly^y,{v)). 
Since each vote is equal to +1 or - 1 , the vote-total r{t{vk),Ly^yj{v)) is even 
and may range from -40 to 40. Furthermore, if r{t{vk), Ly^yj{v)) is close to 40 
(resp. —40), then t{vk) is likely to be in G{v) (resp. By^w{v)). For example, a 
vote-total r{t{vk)^ Ly^yj{v)) equal to 40 means that all of the 40 formulas has 
estimated t{vk) to be in G{v). But how are positive or negative vote-totals near 
0, or 0 itself, to be interpreted? The data mining algorithm Lsquare estimates 
probability distributions for the vote-totals that one may be tempted to use 
for the answer. But such use assumes that the testing text comes, statistically 
speaking, from the same population as the training text. But we only know 
that these two texts are in the same domain area. Thus, the two texts are not 
guaranteed to satisfy the assumption. A few test cases have confirmed that the 
assumption may indeed not be satisfied. For this reason, we do not make use 
of the probability distributions. Instead, we compute from the testing text an 
odd integer threshold ay^y}(v)^ —40 < ay^yu{'^) < 40, to decide if t{vk) should 
be declared to be in G{v) or By^yj{v). Recall that r{t{vk),Ly^u;{v)) is even, 
so r{t{vk),Ly^yj{v)) = ay^uj{v) is not possible. We estimate t{vk) to be in 
G{v), and thus to be good, if r{t{vk), Ly^wi'^)) > o^v^wi'^)^ ^^^ estimate t{vk) 
to be in By^uj{v), and thus to be bad, if r{t{vk),Ly^yj{v)) < ay^wiv)- The 
computation and use of ay^u,{w) mimics that of ay^yj{v), so we only discuss 
the case of ay^wiv)-

Given a substitution vi-w, for each instance Vk of a word v in the given 
testing text, the testing step determines a characteristic vector t{vk)- Fur
thermore, for each instance wi of a word w in the given testing text, wi is 
temporarily replaced by Vp and a characteristic vector fy^w{vp) is computed. 
Finally, the testing step applies Ly^yj{v) to each t{vk) and to each fv^wivp), 
getting vote-totals r{t{vk),Ly^yj{v)) and s{fy^w{vp),Ly^yj{v)), respectively. 
The threshold is derived from these vote-totals. Before we describe the com
putations, let us try to predict the behavior of the vote-totals. 

Suppose no instance t? or ly in the testing text involves a context-based 
spelling error. Then the instances Vk are good, and the instances Vp, which are 
derived from instances wi, are bad. The learning step has created logic formulas 
that produce positive vote-totals for good instances and negative vote-totals 
for bad instances. Assuming that the testing text is similarly structured as the 
training text, we therefore expect that the vote-totals r{t{vk),Ly^w{v)) for the 
instances Vk are positive and that the vote-totals s{fy^u){yp),Ly^w{v)) for the 
instances Vp are negative. Of course, this need not be so. But at least one 
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may reasonably expect that most if not all r{t{vk), Lv^^{v)) values are greater 
than most if not all s{fy^u}{vp), J^v^wiv)) values. 

The above discussion supposes that no t? or tt; involves a context-based 
spelling error. In Section 1, we assumed that such errors are rare, so we may 
suppose rather reasonably that at most one instance of v and at most one 
instance of w is involved in a context-based spelling error. Regardless of the 
specific situation, any such error most likely involves a Vk with smallest vote-
total r{t{vk),Lv^u){v)) or a Vp with largest vote-total s{fy^^{vp),Ly^^{v)). 
Of course, we do not know if such an error is present. But we do not want the 
threshold computations to be aflFected by such errors. So, as a precautionary 
measure, we delete the smallest vote-total from the list of r{t{vk),Ly^w{v)) 
and sort the remaining entries. We end up with a sorted list of vote-totals, 
say, r i , r2, . . . Vm with ri largest, and know that these vote-totals very likely 
correspond to good instances of v. Similarly, we delete the largest vote-total 
from the list of s{fy^-uj{vp), Ly^u){'^)) and sort the remaining entries. We end 
up with a sorted list of vote-totals, say, 5i, ^2, . . . Sn with si largest, and 
know that these vote-totals very likely correspond to bad instances of v. Note 
that the above arguments crucially depend on the assumption of Section 1 
that errors involving a given word are rare. There may be situations where a 
person makes the same error repeatedly. For example, the person may repeat
edly confuse "it" and "it's" or "complement" and "compliment." In that case, 
the threshold computed next may still allow such errors to be caught. But 
the probability that this will take place is reduced. In Section 5, a modifica
tion of Ltest is described that, over time, leads to improved detection of such 
systematic errors. 

Recall that the testing step estimates an instance of v to be good (resp. bad) 
if the vote-total is above (resp. below) the threshold ay^yj{v). Hence, if the 
smallest n , which is r^ , is larger than the largest Sj, which is 5i, then we pick 
ay^yj{y) about halfway between Vm and si. Ifrm < si, we want a compromise 
value for ay^^i'^) that minimizes the sum of the number of Vi below ay^wi'^) 
and the number of Sj above ay^wiv)- The computations below reflect these 
ideas, but also rely on the notion that, in case several threshold values equally 
well achieve the stated goal, then, among these, the threshold value closest to 
0 is preferred. 

The above computations can be carried out only if each of the words v and w 
occurs at least twice in the testing text. In the situations where the testing step 
requires thresholds, two instances oiv are guaranteed to exist. However, w may 
occur just once, and thus the vote-totals 5i, 52, . . . Sn may not exist. In that 
exceptional case, the single instance of w may itself constitute a context-based 
spelling error, and we are reluctant to rely on that instance to make decisions 
regarding the instances of v. Instead, we define the threshold ay^wi^) to 
be equal to -39 . This means that we are very conservative in estimating an 
instance of v to be in error and that we do so only if the vote-total is equal to 
-40 . 
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Computation of threshold 

INPUT: Sorted vote-totals r i , r25 . . . r ^ and possibly 5i, 52, . . . Sn-

OUTPUT: Threshold ay^U'^). 

1. If 5i, S2, . . . 5n do not exist, define ay^^ji"^) = —39, and stop. 

2. If Vm > si: Define ay^yj{v) = {vm + si)/2. Reduce (resp. increase) 
ay^w{y) by 1 if (r^ + 5i)/2 is even and greater than (resp. less than 
or equal to) 0. Stop. 

3. {vm < si) Select an odd-valued ay^w{v) so that the number of r̂  below 
ay^wi'^) plus the number of Sj above ay^^i'^) is minimum. If there is a 
choice, pick among them the value closest to 0. Stop. 
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groups of textual documents in which the user is interested. We apply 
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1. INTRODUCTION 

Information Retrieval (IR) has been a subject of active study for quite some 
time. Today, with the advent of the information age and the explosive growth 
of the Internet and the World Wide Web, users of information retrieval sys
tems are faced with an ever increasing flood of information. In particular, Web 
retrieval poses great challenges and opportunities to information retrieval re
search. Everyday, millions of people all over the world surf the Web for their 
information needs. The Web can be seen as a huge database of textual docu
ments, with each Web page considered as a textual document. Web users use 
various search engines to retrieve information from this huge database. The 
challenges for Web/online retrieval come from the facts that the Web and on
line information sources are huge, complex, and dynamically changing, and 
that the users of online retrieval systems vary widely in terms of search inter
ests and experiences with Web retrieval. On the other hand, the instantaneous, 
interactive nature of the Web greatly enhances the possibility for Web retrieval 
systems to quickly adapt to a user's needs. Besides general search engines for 
searching the entire Web, we also need specialized retrieval software that sup
ports queries for document databases of specific topics and features. There is 
a great need for powerful, automated information retrieval systems to address 
these challenges and opportunities. 

We will consider textual information retrieval in general and Web retrieval 
in particular in this chapter. The two major components of a typical tex
tual retrieval system are: a text database which is a set of texts (often called 
documents), and a retrieval (query-answering) engine. A user of the retrieval 
system presents queries describing the documents desired. The retrieval en
gine matches the queries with the documents in the text database, and returns 
to the user a (ranked) list or collection of the documents which are "best 
matches". Obviously, uncertainty is quite common in both the document de
scription (namely, what a document is "about") and the query specification 
(what kind of documents for which the user is looking). For example, a docu
ment may be primarily about "Fuzzy Logic" and "Rule Induction", but it could 
also be relevant to "Humanity" and "Business". A query may target primarily 
documents on "Information Technology" and "Online Textual Retrieval", yet 
the user may also desire documents somewhat relevant to "Social Changes" and 
"Music". Given the fuzziness in specification of both user queries and docu
ment descriptions, the application of fuzzy set theory in information retrieval is 
quite natural [Kraft and Buell, 1983, Kraft et. al., 1999]. Fuzzy clustering and 
fuzzy rules are useful methods for handling textual document representation 
and user query adaptation for improved textual retrieval performance. 

In our work [Chen et. al., 1998, Kraft and Chen, 2000], we use fuzzy C-
means and hierarchical clustering methods to group textual documents into 
clusters. The clusters are useful for characterizing the documents and for an
swering subsequent queries. Fuzzy rules are then extracted from the cluster 
centers. These rules are then used to modify user queries according to a fuzzy 
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inference method [Chen and Kundu, 1996], which is found to be sound and 
complete. Other researchers [Akrivas et. al., 2002] have also developed meth
ods of applying to text retrieval. User profiles provide valuable information 
about the users of a retrieval system. In the Web retrieval setting, the con
struction and utilization of user profiles may be even more important for good 
retrieval performance, i.e., user satisfaction with the retrieval results. More
over, user profiles are very important for targeted advertisement and marketing 
in electronic commerce. 

The application of user profiles has received tremendous amount of attention 
recently with the advent of data mining technologies and the rapid expansion 
of the Web. [Pazzani and Billsus, 1997] develop a method for learning user 
profiles based on Naive Bayes classifier. 

The WEBKDD workshop [Masand and Spiliopoulou, 1999] is devoted to the 
issue of Web usage mining and user profiling. [Fu et. al., 1999] investigate the 
discovery of user groups characterized by similar access patterns. They use 
a hierarchical clustering approach to cluster Web access sessions generalized 
according to Web page generalization hierarchy. [Chan, 1999] considers the 
issue of user profiling with page interest estimators and Web access graphs. 
[Nasraoui et. al., 2000] use a fuzzy clustering approach to mine Web log files 
for user profiles. We have proposed to use a fuzzy clustering method combined 
with fuzzy inference for constructing user profiles already discussed in the paper 
by [Martin-Bautista et. al., 2002, Kraft et. al., 2002]. 

To a Web retrieval system (be it a search engine or a specialized information 
retrieval system), a user profile is generally the knowledge about the user's 
interests and characteristics acquired and maintained by the system. We can 
distinguish two types of profiles [Korfhage, 1997]. Simple profiles are essentially 
a set of keywords (document indexing terms) extracted from documents deemed 
interesting to the user. These terms represent the user's main interests in the 
relevant topics. On the other hand, extended profiles include other information 
about the user in addition to the knowledge in a simple profile. The additional 
information in extended profiles may include demographic information such as 
age group, education level, income, or location. A user's prior Web navigation 
patterns can also be included in the user profile. Profiles could be based on 
user queries or similar user queries or user characterizations. The imprecision 
of knowledge in both simple and extended profiles can be handled by fuzzy logic 
based approaches. In this chapter, we present an integrated approach to textual 
information retrieval with user profiles. Fuzzy clustering, fuzzy rule extraction 
and fuzzy inference are combined with conventional IR techniques in order to 
achieve optimal retrieval performance. The conventional IR techniques used are 
term frequency-inverted document frequency (TFIDF) measures as a basis for 
document vector representations, and the cosine measure for query-document 
similarity [Salton, 1989]. Fuzzy clustering methods are appHed in two cases: 
(1) application of fuzzy clustering to documents in the database serves the 
purpose of characterization and grouping of documents; (2) application of fuzzy 
clustering to subsets of documents related to user interests helps to build user 
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profiles. The clusters are subsequently used for query-answering and for rule 
discovery. Fuzzy logic rules are extracted from the fuzzy cluster centers. 

These rules capture the semantical connections among index terms. We use 
the fuzzy logic system generated by [Chen and Kundu, 1996], which is sound 
and complete, for fuzzy inferencing in order to derive useful modifications of the 
initial query, and use the modified query to guide the search for relevant docu
ments. Moreover, user profiles constructed by fuzzy clustering methods can be 
used to influence the retrieval results. The advantage of our approach is that 
semantic information embedded in the rules and the user profile information 
have been utilized, which should lead to superior retrieval performance. 

Several preliminary experiments have been performed using the Air Force 
EDC database [BoflF and Lincoln, 1988] and a Web retrieval dataset. We have 
also gotten evaluations for the clustering results from experts as reported 
in [Lincoln and Monk, 1997], and all results have shown that the method is 
promising. 

The chapter is organized as follows. In Section 2, we present a preliminary 
background for the vector space approach to information retrieval, for fuzzy 
set theory and the fuzzy clustering methods used in this study. In Section 
3, we describe the application of the two clustering algorithms to document 
clustering and fuzzy rule discovery, illustrated through our experiments using 
the documents from the US Air Force Engineering Data Compendium (EDC) 
database [BoflF and Lincoln, 1988]. The fuzzy logic inference method for de
riving new queries is also presented in this section. The application of user 
proflles via fuzzy clustering to Web retrieval is presented in Section 4, along 
with the preliminary experimental results using a collection of tourist Web 
pages. Conclusions are drawn in Section 5. 

2. PRELIMINARIES 

We briefly describe the (traditional) vector space approach to IR, the basic con
cepts of fuzzy sets theory, and the fuzzy clustering methods used. Throughout 
the chapter, we consider a flnite set of textual documents 

D = {i^i, D25 •••5 ^ N } 5 and a finite set of index terms T = {^1,̂ 2, •••,^s}-

2.1. The Vector Space Approach To Information Retrieval 

The vector space model is a representative of the ranked, "best-match" retrieval 
models. In this model, each document Di is represented as a vector of dimension 
s, the number of terms: 

Di = {Wii,Wi2, ..., Wis) (1) 

Here, each Wij is a real number (typically positive), characterizing the weight 
of the term tj in Di. These weights, called indexing weights, can be computed 
from the frequencies of occurrence of the terms as follows: 
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Wij = fij:^log{N/Nj) (2) 

where fij is the frequency with which term tj occurs in document D^, N is 
the number of documents in the collection, and Nj is the number of documents 
in which the term tj occurs at least once. Equation (2) is called the term 
frequency-inverted document frequency (TFIDF) model. Moreover, terms can 
be generated from the text itself as keywords; one can remove words that are 
too common and non-content bearing (e.g., "a", "the", "however") from the 
natural language of the texts, and can then stem the remaining words (e.g., 
"work", "worker", "worked", "working" all converted to "work"), before doing 
the frequency analysis [Salton, 1989]. 

A query q is represented in the same way as an s-dimension vector: 

= {Wql,Wq2, ..., Wqs) (3) 

Here, the weights Wqj are called query weights. 
The degrees of match between a query and the documents are obtained by 

comparing the vectors and computing similarity levels. For a given query, a 
ranked collection of "best match" documents according to the similarity mea
sure will be returned to the user. [Salton, 1989] suggests using the cosine 
measure as the criterion for document and query similarity. Given a document 
Di and a query q, as represented above in equation (1) and equation (3), the 
cosine similarity measure SIM(i^^, q) is defined to be: 

SIM{Du q) = ^3=^ r ^ ^ — (4) 

[Kraft and Boyce, 1995] propose a generalized retrieval scheme as follows. 
Given D, the set of textual documents in the database, and T, the set of index 
terms, the indexing function W is 

PF: Z ^ x T h-> [0,1]. 

Note that an W of 1 implies that a document is in the set of documents about 
the concept(s) of a term, an W of 0 implies that the document is not in the set, 
and values in the middle, if allowed, represent partial or weighted membership. 
One could subjectively estimate the W values; or one could use term frequency 
models, such as the TFIDF model described by equation (2). Of course, to 
make the W values occur in [0,1], we have to normalize each of the document 
vectors by dividing each Wij by the maximum weighty Wi}^ for each document 
Di. Moreover, consider Q — the set of user queries for information from the 
database, so that 

a : (5 X T i-> [0,1] 

is the query term weighting function. To process queries, we have 

^ : W x a Ĥ  [0,1] 
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to evaluate a given document along the dimensions of a single given keyword. 
Various forms for g have been developed, based on the query term weighting 
function a being representative of term importance, or being a term thresh
old, or viewing the query as an ideal document, or hybrids of these forms 
[Kraft and Boyce, 1995]. Finally, 

e: gi X g2 X ... x gs ^ [0,1] 

is the retrieval status value (RSV), the evaluation of the relevance of the given 
document based on the Boolean structure of the entire query. Often, the Max 
function is used for OR, the Min function for AND, and the 1 - (one minus) 
function for NOT. 

2.2. Fuzzy Set Theory Basics 

The theory of fuzzy sets was developed by [Zadeh, 1965]. A fuzzy subset A of 
a (crisp) set U is defined by a membership function: 

fiA: U ^ [0,1] 

where fiA{x), for x G U, defines x's degree of belonging to the fuzzy set A. 
Obviously, fuzzy sets are a generalization of the ordinary notion of sets. The 
set-theoretic operations, union, intersection, complementation, and Cartesian 
product, have been naturally extended to fuzzy sets. A number of fuzzy logics 
based on fuzzy sets have been defined in the literature [Chen and Kundu, 1996, 
Dubois et. al., 1997, Klir and Yuan, 1995, Klir and Folger, 1988]. 

2.3. Fuzzy Hierarchical Clustering 

By fuzzy hierarchical clustering we mean agglomerative hierarchical clustering 
(AHC) [Miyamoto, 1990, Rasmussen, 1992, Salton, 1989] based on a weighted 
similarity measure. The idea behind AHC is fairly simple. We start with the set 
of objects to be clustered and a similarity measure SlM{Oi, Oj) for any pair of 
objects (Oi, Oj) in the data set. The AHC algorithm will initially make every 
object a cluster. Then, the algorithm will repeatedly merge the two "most 
similar" clusters into one cluster until the similarity between any two clusters 
falls below some heuristic threshold. The measurement of similarity between 
two clusters can be done in a number of ways. For example, one can take the 
minimum of the similarities between any pair of objects, one from each cluster. 
This is the so-called complete link clustering (CLC) [Salton, 1989]. One can 
also use the maximum, or the average, pair-wise similarity measures. In the 
experiments done in this work, we use the CLC approach. 

2.4. Fuzzy Clustering by the Fuzzy C-means Algorithm 

The fuzzy C-means algorithm [Bezdek, 1980, Bezdek et. al., 1987] is a family 
of algorithms which form fuzzy clusters iteratively through optimizing an ob
jective function. Given a set of n sample data points pi = {xii,Xi2, ..., Xis): 
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1 < z < n, and the desired number of clusters C (> 2), the fuzzy C-means 
algorithm produces C fuzzy clusters, Ak, 1 < k < C, hy finding the mem
bership values fiki = fJ'kiPi) for each point pi and cluster Ak. The algorithm 
chooses the /Jki and Vk so that the following objective function (where m > 1 
is a parameter heuristically selected) is minimized: 

c n 

A ; = l ^ = l 

This is subject to the constraints that ^ ^ jiki = 1 for each i, and that every 
Hki > 0 . Here, Vk is visualized as the center of the cluster Ak- Moreover, 
\\pi — Vk\\ denotes the Euclidean distance between the points pi and Vk• 

The equations for determining the fiki that minimize Jm are given by: 

m = — ^ ^ ^ r r - , I < k < C and 1 <i < n. (6) 
T C 

E}=i[lbi-«.in ( m - 1 ) 

together with the following equations for Vk (which are to be considered 
coordinate-wise for pi and Vk)' 

The actual computation of fikt begins by initializing the iiki values randomly, 
subject to iiki > 0 and J2k l^^i — 1 for each i. One then iteratively uses equation 
(7) to first compute the Vk values, and then uses those values in equation (6) to 
update the jiui values. The process continues until the maximum of the absolute 
difference in the membership values (and the centers) in the current iteration 
and those in the previous iteration falls below some convergence threshold 
(5 > 0. The convergence proofs of the C-means algorithm are presented in 
[Bezdek, 1980, Bezdek et. al., 1987]. 

3. FUZZY CLUSTERING, 
FUZZY RULE DISCOVERY AND 
FUZZY INFERENCE FOR TEXTUAL RETRIEVAL 

We apply the Fuzzy C-means and hierarchical clustering methods described 
in the previous section to the Airforce EDC database and obtain very good 
results. Both methods give meaningful clusters which roughly correspond to 
the sections within the EDC database. We will present a method for extracting 
fuzzy rules from the cluster centers obtained by Fuzzy C-means. A fuzzy logic 
inference method is also described, which uses discovered fuzzy rules to derive 
modified user queries for better retrieval performance. This combination of 
fuzzy clustering, fuzzy rule extraction and fuzzy inference for retrieval is tested 
on the Airforce EDC database. 
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Table 1. Portions of the EDC database Used in This Study 

Sec. 2 Audit. Acqui. of Info Subsec. 2.1 Measurement of Sound 
Sec. 2 Audit. Acqui. of Info Subsec. 2.2 Physiology of the Ear 
Sec. 2 Audit. Acqui. of Info Subsec. 2.3 Detection 
Sec. 2 Audit. Acqui. of Info Subsec. 2.4 Discrimination 
Sec. 2 Audit. Acqui. of Info Subsec. 2.5 Temporal Resolution 
Sec. 2 Audit. Acqui. of Info Subsec. 2.6 Loudness 
Sec. 2 Audit. Acqui. of Info Subsec. 2.7 Pitch 
Sec. 2 Audit. Acqui. of Info Subsec. 2.8 Localization 
Sec. 6 Perceptual Organiz. Subsec. 6.4 Audit. Perceptual Organiz. 
Sec. 8 Human Lang. Proc. Subsec. 8.3 Intelligibility of Speech 
Sec. 8 Human Lang. Proc. Subsec. 8.4 Intelligibility of Alt. Speech 
Sec. 10 Effects of Env. Stress. Subsec. 10.3 Noise 

3.1. The Air Force EDC Data Set 

The Air Force EDC data set [Boff and Lincoln, 1988] is a text database, which 
is a part of the US Air Force's multimedia ergonomics database system, 
CASHE:PVS (Computer Aided Systems Human Engineering: Performance Vi
sualization System). The CASHE:PVS system consists of the complete Engi
neering Data Compendium (EDC) data set [Boff and Lincoln, 1988], the mili
tary standard (MIL-STD-1472D) Human Engineering Design Criteria for Mil
itary Systems, Equipment, and Facilities [DoD, 1994], and a unique visualiza
tion tool, the Perception and Performance Prototyper (P^). 

CASHE:PVS has been produced to define new approaches to communicate 
human factors data and to provide access to technical information relevant to 
human performance design problems. The goal is to enable ergonomics to be 
supported as a full partner among other design disciplines within a computer-
aided environment [Boff et. al., 1991a, Boff et. al., 1991b]. For example, a de
signer interested in the intelligibility of speech in a noisy environment, such as 
the cockpit of an airplane, can look up the appropriate data in CASHE:PVS 
and peruse them. However, to gain a deeper understanding of what the data 
really means, that designer can also use the P^ visualization tool to experience 
the data. Sample speech signals can be heard in varying amounts of back
ground noise, different noises can be used, and techniques to improve speech 
intelligibility are demonstrated. The reference data, coupled with interactive 
visualization, provide the designer with a synthesis and analysis capability for 
working with other designers. 

The EDC data set consists of 1136 documents containing engineering design 
and human factor data. A subset of the EDC related to audio topics has 
been selected in order to keep the dataset to a manageable size for this study. 
Table 1 illustrates the portion of the EDC which was used for this study. This 
represents N = 114 entries out of the 1136 in the entire EDC. 
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3.2. Clustering Results 

We have performed several experiments using these two clustering algorithms 
on the chosen subset of the EDC database. Before applying these clustering 
algorithms, some pre-processing has to be performed to extract the vector space 
representations. First, as noted above, stop words have to be eliminated, as 
they provide no useful characterization of the document. Subsequently, we need 
to apply a stemming algorithm to find the root form of the words. We use the 
stemming algorithm in [Frakes, 1992] for this task. Newly encountered words 
are added to a global word list, and the word frequency count is calculated for 
each word in each document. The 114 documents from the EDC database yield 
2857 keywords after using a stoplist and stemming. Finally, we need to reduce 
this list of terms to an even smaller size in order to be amenable to clustering. 
This is done by choosing the top s maximal-weighted keywords from the data 
set. The maximal weight Wj of term tj is obtained by taking the maximal 
weight of tj over all 114 documents, i.e., Wj = maxll^\wij. After finding Wj 
for each of the 2857 terms, we choose the top s terms from the term list when 
sorted in descending order of the Wj values. Here, for our experiment, s is set 
to be 100. Thus, after pre-processing, each of the 114 documents is represented 
as a vector of dimensionality of 100. 

We conduct two experiments on fuzzy hierarchical clustering: one uses word 
frequency counts as weights in the vector space representation, and the other 
uses inverted document frequencies. The heuristic threshold for the minimum 
similarity (above which to merge two clusters) was heuristically set to 0.01 
for the inverted document frequency case, and it was set to 0.1 for the word 
frequency case. In both cases, the algorithms formed 12 clusters out of the 
114 documents and the clusters obtained by the two experiments differ only 
slightly. 

In applying the fuzzy C-means algorithm, we set the convergence threshold 
5 to 0.001, and the number of clusters, C, to 12. This choice of C reflects our 
intention to show that fuzzy C-means algorithm can also find natural clusters in 
documents, just like the hierarchical clustering method can. The fuzzy C-means 
algorithm will produce "fuzzy" clusters in the sense that fiki, the membership 
of document Di in cluster Ak, is a value in the interval [0,1]. "Hardening" 
is performed to the fuzzy clusters obtained by the fuzzy C-means algorithm. 
That is, for each document JD^, we find the cluster index k (for cluster Ak) such 
that fiki is maximal over the /j^ji for all clusters Aj] we then set fiki to 1 and 
the other fiji values to 0 for j 7̂  k. 

We have performed several experiments with the C-means algorithm, varying 
the values of the parameter m > 1 in equation (5). We found that for the 
subset of EDC database, when m = 2.0 or m > 1.5, the cluster centers take 
on the same, or nearly the same value, so that the clusters look identical, 
and each document belongs to each of the 12 clusters with essentially the 
same membership value. Therefore, after "hardening", the clusters obtained 
are chaotic. On the other hand, for m < 1.4, the crisp clusters obtained 
after hardening seem to be more correct. This was verified by the experts 
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[Lincoln and Monk, 1997], when they were given the results of two fuzzy C-
means clusterings, one with m == 2.0 and the other with m = 1.1. Of course, 
the experts were also given the two hierarchical clustering results. 

The experts [Lincoln and Monk, 1997] indicate that in evaluating clusters, 
they considered both: 

1. Whether the entries within a given cluster were related enough to make 
a valid cluster, and 

2. Whether other entries that are equally related were missing from the 
cluster. 

They comment that "Both of the hierarchical methods did a much better 
job of clustering the entries than did the original fuzzy clustering method. 
Clustering using inverted frequency may have been a little bit better than 
clustering that considered the number of occurrences in each entry, but the 
difference was very slight ... Modified fuzzy clustering (C-means with m = 1.1) 
was at least as good as hierarchical clustering. It tended to generate fewer large, 
heterogeneous clusters (though it did have one extremely mixed, 39-member 
cluster!) ... The hierarchical/inverted matrix method was the best at avoiding 
outliers (items off the topic of the other cluster entries), but the modified fuzzy 
method also did a pretty good job at this. Both hierarchical methods (but not 
the fuzzy methods) also managed to create at least one "perfect" cluster (no 
misses and no outliers)." 

3.3. Fuzzy Rule Extraction from Fuzzy Clusters 

After finding the document clusters by the fuzzy C-means algorithm (with 
hardening), we can construct fuzzy rules of the form 

[ti > Wi] -> [tj > Wj] (8) 

from the clusters and their centers obtained by the fuzzy C-means algorithm. 
Here, ti and tj are terms, and Wi and Wj are positive real weights in the interval 
(0,1]. The intuitive meaning of the rule is that whenever term ^ '̂s weight (in 
a document or query) is at least Wi, the related term f/s weight (in the same 
document or query) should be at least Wj. These rules can be applied to derive 
useful modifications of the user's original query. 

The current implementation of our method uses the centers (centroids) ob
tained by the fuzzy C-means algorithm to construct the fuzzy logic rules. Our 
method proceeds as follows: First, we normalize the vectors representing the 
cluster centers. Then for each cluster center, we sort the terms in descend
ing order of term weights and focus on the first K (> 2) terms in this sorted 
list. Here the value of K is determined by trial and error. Subsequently, 
build term pairs from the chosen terms in each cluster center in the form of 
{[ti^'^i], [ij^'^j])' Moreover, multiple occurrence of the same pairs with differ
ent weights (obtained from different cluster centers) will be merged by selecting 
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the minimal weight for each term over all pair occurrences. Finally, from the 
pair of the form {[ti,Wi], [tj,Wj]), we build two rules: [ti > Wi] -> [tj > Wj] and 
[tj > Wj] -^ [ti > Wi]. 

3.4. Application of Fuzzy Inference for Improving Retrieval 
Performance 

The fuzzy logic rules obtained by fuzzy clustering and rule discovery (as de
scribed in Section 3.3) can be used to modify a user's original query, using the 
sound and complete fuzzy logic system [Chen and Kundu, 1996]. We note that 
each fuzzy rule extracted is of the form as in equation (8), which is a well-
formed formula in the fuzzy logic defined in [Chen and Kundu, 1996], where 
formulas are formed by using logical connectives {V, A, -i, ->}. the logical 
constant ± {= false), and propositions of the form [A < a], or of the form 
[A > a], where A is an ordinary atom in a propositional logic and a G [0, 1]. 
The rule in equation (8) is used to modify a user's query q as follows. Given 
the query q in the form 

q = {Wqi,Wq2, ..., Wqs), (9) 

the rule is applicable to q if Wqi > Wi and Wqj < Wj. The application of this 
rule to q will yield g*, which coincides with q on each dimension except Wq*j — 
Wj. Note that this application step precisely corresponds to the modus-ponens 
inference in the fuzzy logic in [Chen and Kundu, 1996], namely. 

From [ti > Wi] —> [tj > Wj] And [ti > Wi] Infer [tj > Wj]. 

Let R = {ri, r2, ..., r;^} be the set of all fuzzy rules extracted and query q be as 
in defined by equation (9). The final modified query q' is obtained from q by 
repeatedly applying the rules in R until no more applicable rules can be found. 
The modified query q' will be used to search for relevant documents. 

We have implemented the query modification method and performed several 
experiments with it. The preliminary results obtained in the experiments sug
gest that the modified queries are helpful to improve precision in most of the 
cases. For example, suppose we want to get documents regarding the topics of 
"pitch" and "adaptation", with more emphasis on "pitch". This is modeled by 
the query qi with weight for the term "adapt" set to 0.4, and the weight for 
"pitch" set to 0.8, and weights for all other terms set to 0. Here we did not 
use a weight of 1.0 for "pitch" because in the fuzzy retrieval setting, a term 
weight of 0.8 in a document already indicates quite a high degree of relevance 
of the document for the term. The term weight 0.4 for "adopt" is chosen to 
be half of the weight for "pitch". The intended target set of documents is for 
those in subsection 2.7 (with 11 documents), which is essentially captured by 
a cluster obtained by fuzzy clustering with m = 1.10, which is judged by the 
experts [Lincoln and Monk, 1997] as a "pretty good cluster". Starting with qi, 
we apply the query modification method and get the modified query q[, which 
has the same weights for "adapt" and "pitch" as in qi and several additional 
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terms with positive weights: term "interrupt" got weight 0.2029, term "modul" 
(root of "modulate", "modulation", etc.) got weight 0.2399 and term "tone" 
got weight 0.6155. Using both queries qi and q'l for the retrieval task, we have 
the following observations on the query results: 

(1) 
If we compare the top M documents obtained by query qi (according to their 

similarity to qi) versus the top M documents obtained by q[^ where M is a fixed 
number (say M = 10), then q[ fares better (or comparable) in both precision 
and recall. For example, when M = 11, gi produces 9 documents out of the 
11 documents in the cluster, giving rise to a 81.8 percent recall and precision; 
while q[ captures exactly the 11 documents in the cluster, resulting in a 100 
percent recall and precision. 

(2) 
If we compare the documents obtained by qi with similarities above some 

threshold 0 < 5 < 1 versus those obtained by q[ with the same similarity 
threshold, then q[ gives better precision with a comparable or slightly inferior 
recall. For example, for 5 = 0.1, qi produces 17 documents which contains all 
the 11 relevant documents, resulting in a 100 percent recall but a 68.7 percent 
precision; while q'l produces 12 documents including all 11 relevant ones, thus 
giving rise to a 100 percent recall and 91 percent precision. When we take S — 
0.15, gi presents 15 documents with 100 percent recall and 73 percent precision; 
while q'l presents 8 documents with 72 percent recall and 100 percent precision. 

The experiments we have performed on using the query modification method 
are still quite limited and the nature of the results reported here on the perfor
mance of the modified query should be considered preliminary. Further studies 
are needed to validate the query modification method. We would like to point 
out that some researchers [Horng et. al., 2002] further extended our approach 
of fuzzy clustering and fuzzy inference for textual retrieval, and experimented 
with our method on a larger dataset (with 200+ documents). Their results 
also indicate that our method may improve precision in textual retrieval. 

4. FUZZY CLUSTERING, FUZZY RULES 
AND USER PROFILES FOR WEB RETRIEVAL 

In this section, we present a fuzzy logic based approach to Web retrieval with 
user profiles. The method described in Section 3 that combines algorithms and 
fuzzy rule extraction is applied to construct user profiles for textual retrieval. 
One main difference is that fuzzy C-mean clustering is apphed separately to 
documents deemed interesting and uninteresting by a user. From the cluster 
centers, a simple user profile is constructed which indicates the user's general 
preference with respect to various terms. Fuzzy logic rules are also extracted 
from the cluster centers or from the user profiles. The user profiles and the fuzzy 
rules are subsequently used in personalized retrieval for better retrieval perfor
mance. We present some preliminary experimental results on a Web retrieval 
task. Additional non-topical information (demographic, navigational behavior 
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patterns) about the user can be added to form extended profiles. Moreover, 
fuzzy clustering can be applied to extended profiles of many users to extract 
knowledge about different user groups. The extracted knowledge is potentially 
useful for personalized marketing on the Web. 

4.1. Simple User Profile Construction 

User profiles provide useful information that can be exploited for better in
formation retrieval results. The consideration of user profiles is even more 
important for Web-page retrieval, because of the typical low precision of Web 
search partly due to the huge size of the Web. A classical or simple user profile 
for IR is a set of (possibly unweighted) terms extracted from the set of docu
ments relevant to a user. In dealing with fuzzy retrieval systems, we would like 
to consider fuzzy user profiles. Let P = {pi, ..., Pm} be the set of all profiles. 
The profile function G is defined by G: P x T -̂> [0, 1]. Here recall that T is 
the set of index terms of the form T = {ti, t2^ ... , tg}. 

Again, analogous to the indexing function F , the function G defines fuzzy 
membership functions fipi for all p G P and t e T, G{p,t) = /^p{t). The 
value G{p,t) denotes the degree of membership of the term t in profile p, 
which can be seen as the strength of the user interests in topics related to 
this term. Some existing works related to this topic of user profiles with fuzzy 
and genetic algorithm techniques include [Martin-Bautista et. al., 1999] and 
[Martin-Bautista et. al., 2000]. In [Martin-Bautista et. al., 1999], an intelli
gent agent for constructing adaptive user profiles using genetic algorithms and 
fuzzy logic is presented. 

The method to combine fuzzy clustering and fuzzy rule construction de
scribed in Section 3 of this chapter is also applied here to extract fuzzy user 
profiles. We first collect a number of queries and documents deemed relevant by 
a specific user. The number of such relevant documents should be reasonably 
large to avoid accidental patterns being extracted. Fuzzy clustering is applied 
to the document collection. A user profile is constructed from the cluster cen
ters. Fuzzy rules are extracted either from the cluster centers or from the final 
user profile. The user profiles and fuzzy rules can be used to rank and filter 
retrieved documents and to expand user queries, with the objective of better 
refiecting the user preferences and habits. 

In this work, we use the fuzzy C-means method [Bezdek, 1980] to discover 
simple user profiles from a set of documents relevant to a particular user. The 
input to the fuzzy C-means algorithm is the set of document vectors in either 
word frequency representation or inverted document frequency representation. 
The output of the fuzzy C-means algorithm consists of C clusters where each 
cluster Ak is characterized by the cluster center (prototype) Vk- We can derive 
a simple user profile from these clusters in two possible ways. One way is to 
simply consider the set of all these cluster centers vi, ..., vc as the user's profile 
with respect to various query terms, where each center Vk describes a topic of 
interest to the user. This is reasonable because a user may be interested in 
several topics. Such a profile is called union simple profile. The other way 
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to obtain a simple user profile is by combining all the cluster centers into one 
prototype. This can be done by taking, for example, the vector sum of all 
the ffc's and then normalizing the resulted vector. We call such a user profile 
aggregated simple profile. Other ways of deriving the aggregated simple user 
profile can also be tried. 

Prom cluster centers {vi^ ..., vc}^ fuzzy rules of the form 

[ti > Wi] -> [tj > Wj] 

are constructed, as described in Section 3 of this chapter. These rules can be 
applied to derive useful modifications of the user's original query. We can also 
use the aggregated simple user profile to construct the fuzzy logic rules. This 
can be done because a user profile is essentially of the same structure as the 
cluster centers. 

Once we establish profiles for many users, we can also apply the fuzzy C-
means clustering algorithm to cluster these profiles. This will lead to fewer 
number of user profiles being maintained. Moreover, fuzzy rules can be ex
tracted from the profile cluster centers, which represent valuable knowledge 
about groups of users. The fuzzy clustering method can also be applied to a 
set of uninteresting Web documents with respect to a user. The fuzzy clusters 
obtained characterize the types of Web pages that are not relevant to the user. 
In a more general setting, we can include information from these clusters in a 
simple user profile. 

4.2. Application of Simple User Profiles in Web Information 
Retrieval 

There are several ways in which we can apply the simple user profiles in Web 
information retrieval. 

4.21. Retrieving Interesting Web Documents 

Consider the scenario in which a user is surfing a Web site for some information-
seeking purpose. Assume that the adaptive IR system on the Web server has 
constructed a union simple user profile V based on some previous interaction 
with the user. Here V = {vi, ..., vc} is the set of prototypes for the user's 
relevant documents. Moreover, we also assume that the IR system has a set 
N — {ni, ..., Up} of prototypes for the user's irrelevant documents. Given 
the current user profile information V and TV", the adaptive IR system can 
push or suggest "interesting", unvisited Web documents to this user. For each 
document d ,̂ we define the interestingness of the document with respect to this 
user u by 

c p 
I[duu) = ^SIM{di,vj) -"^SIM{di,nj) (10) 
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This measure captures the degree of interest of the user u in document di. 
The intuition is that documents closer to the prototypes of known relevant ones 
and farther from prototypes of known irrelevant ones should be more likely 
to be more interesting to the same user. All the unvisited Web documents 
can be ranked by this interestingness measure, and those above some pre
defined threshold can be suggested to the user in decreasing order of the / 
measure. Another variation of this method is to classify a Web document as 
interesting/uninteresting based on a nearest neighbor method: a document d is 
considered interesting if the nearest neighbor of d to all the prototypes V U N 
is from V\ otherwise d is considered uninteresting. Here a distance measure can 
be easily defined as the inverse of the SIM measure. Again, all the interesting 
documents can be ranked. The union simple profiles can also be used to rank 
or filter retrieved documents with respect to a user's given query. 

In [Martin-Bautista et. al., 2000, Martin-Bautista et. al., 2001b], we have 
investigated the issue of document classification by extracting "discrimination 
terms" using techniques inspired by the feature selection problem in machine 
learning. The general idea is to include in the profile information related to 
the user preferences, both about relevant and irrelevant documents, reflecting 
what the user likes or does not like. We use extensions of the Jaccard score 
and Dice score in order to calculate the discrimination power of the terms. 
By using a Genetic Algorithm, the most discriminatory terms are kept in the 
first chromosomes. These most discriminatory terms are subsequently used to 
classify new documents into relevant and irrelevant categories. 

4.22. User Profiles for Query Expansion by Fuzzy Inference 

User profiles and the fuzzy logic rules extracted from them are used in this 
study to expand the user's original queries, with the expectation to improve 
retrieval performance, in particular, precision. The user's original queries will 
be modified using the fuzzy rules extracted from the user profile. This process 
is essentially the same as described in Section 3 of this chapter for modification 
of user queries based on rules extracted from document clusters. 

In this current study, we perform a number of experiments for user profile 
construction and its use in Web textual information retrieval. We compare 
the effectiveness of rules constructed from the aggregate simple profiles and 
rules constructed from the union simple profiles. We experiment with several 
different ways to build the aggregate simple profile from the cluster centers 
of the user's relevant documents. It would also be interesting to study the 
new form of rules which characterize the "negative" correlation among terms, 
i.e., when a term tis weight is at least wi^ another term tj^s weight can be at 
most Wj - this may need information from prototypes of documents deemed 
uninteresting to a user. Different ways of using user profiles will be explored 
as well. 



644 Data Mining & Knowledge Discovery Based on Rule Induction 

4.3. Experiments of Using User Profiles 

We have performed some preliminary experimental studies for user profile con
struction and its use in Web textual information retrieval. Due to time con
straint, we have not yet tested our method on many datasets. Instead, we 
tested our ideas on one dataset, which consists of 103 Web pages obtained 
from Web search with the search engine "looksmart" by using the keyword 
"yellowstone". The user in our study is a colleague of the authors. The Web 
search actually returned 500 pages, but the specific user in our study marked 
only those pages as the most typical "interesting/uninteresting" ones. Among 
the 103 Web pages, 62 Web pages are marked as intersting and the rest 41 
are marked as uninteresting. The user explained to us that the intersting Web 
pages match his needs to plan this summer's trip to the Yellowstone National 
Park, whereas the uninteresting ones do not match his desired ways to ex
plore Yellowstone. For example, some of the pages classified as "uninteresting" 
mainly describe guided tours or backcountry hiking that are not suitable for 
the specific user's plans. 

We first run the text processing program for lexical analysis and stemming 
on the Web page files with a stop word list containing the most common non-
meaning-bearing words. The stop word list also contains common html com
mands. This processing step produces 4878 keywords, which is too big for 
indexing the Web pages. So we use the most frequent 150 keywords to index 
these 103 files. To construct simple user profiles, we apply the fuzzy C-means 
algorithm to the 62 interesting Web pages. The number of clusters is set to 
be 3 after trial and error. The three clusters do share a number of common 
keywords in addition to the distinctive features in each. Each of the three clus
ters contains some Web pages for the common topic "general introduction to 
Yellowstone". Clusterl has more pages on "wildlife". Cluster2 contains most 
of the pages on "geysers". And Cluster3 has more pages on "lodging" and 
"transportation". We have also applied the fuzzy C-means algorithm to the 41 
uninteresting Web pages, with the number of clusters being equal to 2. The 
two clusters respectively focus on "hiking and trails" and "flyfishing". They 
also share common features such as pages describing guided tours and travel 
packages. 

Prom the cluster centers, simple user profiles are constructed. As we dis
cussed in Section 4.1, a union simple profile is just the collection of cluster cen
ters from the interesting class. As to aggregate simple profiles, we tried three 
ways to construct the aggregate simple profiles: the sum, max, and weighted-
sum. Since the cluster centers share a number of common features, the above 
three ways to create an aggregate simple profile do not make much diff"erence. 
Fuzzy rules are then extracted from the union simple profile, which is essen
tially the collection of cluster centers of interesting Web pages. We also tried 
to extract rules from aggregate profiles. 

As we discussed in Section 4.1, simple profiles obtained from cluster centers 
can be used to classify Web pages not visited by the user. In our experiments, 
we tried to predict the interestingness of a Web page. A subset of the 103 
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Table 2. The prediction of interestingness of unseen Web pages 
Number of training examples 
Prediction accuracy 

50 60 70 80 
72.2% 74.0% 83.5% 87.5% 

Table 3. The precisions of queries vs number of top Web pages 
Number of top Web pages considered 
Precision of qi 
Precision of q[ 

10 
90% 
100% 

20 
75% 
90% 

30 
71% 
77% 

40 
67.5% 
70% 

Web pages was used as the training data and the remaining pages were used as 
testing data. We varied the size of the training data sets for constructing the 
simple profiles, and then applied these profiles to classify the remaining Web 
pages. The results are quite encouraging. With 50 pages as the training set 
and using simple profiles constructed from both interesting and uninteresting 
Web pages, the prediction accuracy on the test data set is approximately 72 
percent. We tested training data sets of size 60, 70 and 80. The results are 
summarized in Table 2. One can see that the prediction accuracy is increased 
with the increase of training data set size. The prediction accuracy shown 
in Table 2 presents results using the nearest neighbor method. A new Web 
page is classified as interesting/uninteresting according to whether the page's 
nearest neighbor (using the similarity measure (4)) is a cluster center of either 
class. Several other measures for this prediction task were tested, including 
the / measure in Section 4.2, the nearest neighbor between the Web page and 
the interesting/uninteresting prototypes in the aggregate profile. The predic
tion accuracies with these alternative measures are quite similar to the ones 
presented in Table 2. 

We indicated in Section 4.2 that simple user profiles and the fuzzy rules 
extracted from them can be used to expand user queries for better performance. 
We experimented with query expansion using union simple profiles with the 
Yellowstone data set. We ran a number of queries which were intended for a 
subset of the interesting class Web pages. We observed that expanded queries 
seem to result in better precision with comparable recall. For example, consider 
the user's query qi with "airline" weighted 0.8, "gen-info" weighted 0.6 and 
"hotel" weighted 0.8, "lodge" weighted 0.9, and all other keywords weighed 
0. The expanded query q[ identified several additional keywords with positive 
weights: "road" weighted 0.554, "entrance" weighted 0.351, "geyser" weighted 
1.0, etc. This query is intended for general information about the Yellowstone 
Park, the airlines that serve the areas near Yellowstone, and more importantly, 
the lodgings at Yellowstone. According to the user, there are 30 Web pages 
among the 62 interesting ones relevant to this query. The modified query q[ 
is seen to give better precision compared with ^i, when we focus on the top 
M Web pages returned by both queries. Table 3 shows the precision of both 
queries vs. the number M of top Web pages returned. 
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Note that the precision goes down when the number of top Web pages consid
ered goes up for both qi and q[. This is actually not counter-intuitive, because 
when one considers more Web pages returned (say considers the top 40 pages 
instead of the top 30 pages), it is more likely that the additional top pages (in 
this case, the pages ranked 31 through 40) would include more non-relevant 
documents, and thus the precision goes down. 

4.4. Extended Profiles and Fuzzy Clustering 

We have defined [Martin-Bautista et. al., 2002] an extended user profile as a 
tuple ei = {Gi, Li, Ki, z^), where I < i < h, with h being equal to the 
number of the user's sessions considered. Here Gi = {gn, gi2, ..., gib) is a set of 
demographic variables such as age educational level, or gender. Li = (/ji, li2, 
..., lie) is the set of identification variables such as the host (domain name or 
IP address), or user agent (name and version of the browser). Ki = (fc î, ki2, 
..., kir) is the set of clickstream variables that represent the weights associated 
with each of the Web pages by the specific user during a session, typically 
represented as the elapsed time the user has spent on the Web page. And z[ 
= {til, ti2, •••, tip) is a session simple user profile, with each tij G T, indicating 
the interests of the user in these keywords during a session. 

We can apply the method of fuzzy clustering and fuzzy rule extraction to de
rive more general extended profiles for groups of users. The resulting extended 
profiles are not session-specific. This can be achieved by applying fuzzy cluster
ing (either C-means or hierarchical) to the (session-specific) extended profiles 
collected from the Web log files. The input to the fuzzy clustering algorithms 
typically omits the identification variables, because the main objective here is to 
discover the clusters in Web page access patterns, clusters in topical keywords, 
and the connection between these clusters to demographic classes. We have 
studied a general method of clustering [Gomez-Skarmeta et. al., 1999] applied 
to this task. We are in the process of performing more extensive experiments 
to validate the eff'ectiveness of the fuzzy clustering and fuzzy rule extraction 
method for user profile construction and usage. 

5. CONCLUSIONS 

In this chapter, we present an integrated approach to information retrieval 
which combines fuzzy clustering and fuzzy rule discovery for fuzzy inference 
with user profiles in textual document retrieval. Fuzzy clustering and hierar
chical clustering methods are applied for document classification and for find
ing natural clusters in documents. Fuzzy C-means clustering is also used to 
extract simple user profiles. From the fuzzy clusters, fuzzy logic rules are con
structed in an attempt to capture semantic connections between index terms. 
The fuzzy rules are subsequently used in fuzzy inference within a fuzzy logic 
system to modify user's queries in retrieval. Two sets of experiments, one 
for document clustering and query expansion with the Airforce EDC database 
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[Boff and Lincoln, 1988], in conjunction with expert evaluations (described in 
Section 3), the other for user profile construction and query expansion on a Web 
retrieval dataset (described in Section 4), have been conducted to validate our 
method. 

The experiments with clustering methods using the Air Force EDC data 
set show that both clustering methods can find reasonable natural clusters 
in documents. However, neither method is perfect, as judged by experts 
[Lincoln and Monk, 1997]. This is not surprising, considering the fact that 
only very primitive statistical information (word frequency or TFIDF) is used 
in the clustering methods, and no semantic information (e.g.word meaning and 
connections between words) is available. Nevertheless, the preliminary results 
obtained in fuzzy rule construction and fuzzy inference for query modification 
show good promise for retrieval precision improvement. 

User profiles provide useful information that should be exploited for better 
retrieval performance within a Web framework. We present our method using 
fuzzy clustering and fuzzy rule discovery for user profile extraction and usage in 
Web textual information retrieval. The preliminary experiments performed in 
this study indicate that simple user profiles are helpful for predicting the degree 
of user interest of unseen Web pages, and for improving retrieval precision. 

One limitation of the current work is that the experiments performed are on 
small datasets, and thus the results are preliminary in nature. More studies 
and experiments are needed to further validate or perhaps refine the proposed 
approach. 

We see several areas of future research related to the current work. As just 
mentioned, no semantic information is available or utilized in constructing the 
fuzzy clusters. One possible future research direction is to consider incorpo
rating semantic information in the clustering process. This may require some 
limited form of a natural language processing method. The challenge is to 
find a good balance between utilization of semantical information and compu
tational efficiency. Another future goal is to study fuzzy clustering and rule 
extraction for constructing extended user profiles using a combination of user 
session data, clickstream data, as well as user demographic data if available. 
The profiles we constructed so far are "flat" profiles without hierarchies. Fuzzy 
hierarchical clustering can be considered for building user profiles which have 
a hierarchical structure, and thus possibly better capture user characteristics 
at different levels of abstraction. 
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Abstract: This chapter appHes the theory of Bayesian logistic regression to the problem of 
inducing a classification rule. The chapter first describes the classification rule as 
a decision to link or not to link two records in different databases in the absence 
of a common identifier. When a training data set of classified cases is available, 
developing a rule is easy; this chapter expands the application of the technique to 
situations where a training data set of classified cases is not available. The steps 
are conceptually simple:first fit a logistic regression with latent dependent 
variable using Bayesian methods, then use the parameter estimates from the best 
fitting model to derive the equivalent record linkage rule. This chapter first 
describes the application area of record linkage, followed by a description of the 
Fellegi-Sunter model of record linkage. The chapter then shows how to estimate 
the appropriate Bayesian generalized linear model with latent classes, and, using 
the posterior kernels, determine the final decision rule. 
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1. INTRODUCTION 

Imagine two databases, database A and database B, each of which 
contain information on individual persons. (We note for the record that it is 
not important that the object of the database is a person; it could be housing 
units or establishments or any other object of interest.) Suppose that each of 
these databases contains some information not contained in the other. If the 
databases refer to the same population, it would be of some analytic value to 
combine the separate information on each person into a single record. 
Presumably, we can then tabulate data from the first database with data from 
the second, and we are able to make broader inferences from the joint 
database than we could make from either separately. 

In order to construct the single record for each person, however, we 
must first find a way to associate that person in database A with the same 
person in database B. On the surface, if the databases contain identifier 
information such as a person's Social Security Number (SSN), this appears 
to be a simple problem: We merely merge the two databases, using the SSN 
as the merge field. However, suppose that some SSNs are collected with 
error, that is, errors in the SSN field are distributed throughout database A, 
and, independently or with some correlation, errors in the SSN field are also 
distributed throughout database B. Now the problem is more challenging. 

Suppose further that each database does not contain a unique 
identifier—there is no SSN or comparable field in each database, but suppose 
that there are several fields which, when used together, might be sufficient to 
uniquely link cases. (Notably, this is the same problem as that of protecting 
the identity of an individual person in a microdata file release [Jabine, 1993], 
only in reverse~we want to identify the person uniquely.) Using just the 
fields in the two databases, rather than a unique identifier, can we identify 
which person records in database A should be associated with which records 
in database B so as to construct a merged database C consisting of all the 
information we have on that person? 

The most natural approach to linking records without a common 
identifier is to construct some sort of "decision rule" for linking, e.g., declare 
two records "linked" if the first name and the last name match. This 
immediately invites us to consider three questions [Leenen, Van Mechelen, 
and Gelman, 2000]: 

1) Can this rule be chosen in some optimal way? 
2) Can the statistical properties of this rule be established? and 
3) Can experts' prior knowledge about individual fields (e.g. sex is not very 

useful, but middle initial can be) be incorporated into this rule 
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construction? 

This chapter attempts to summarize research into these three questions. 
This chapter will proceed in five major parts: 

• We shall first describe some of the challenges of the record linkage 
problem, followed by the standard Fellegi-Sunter model for record 
linkage, and show how estimating Fellegi-Sunter weights is equivalent 
to constructing a decision rule. 

• Second, we will cast the entire problem as a logistic regression problem, 
which will reveal the deep links between the Fellegi-Sunter model and 
logistic regression, and continue to show how to construct a decision 
rule. 

• Third, we will show that this logistic regression framework can be used 
even for unlabeled data, that is, in the unsupervised learning situation. 

• Fourth, we will illustrate with an example how this framework can be 
used and interpreted in the unsupervised learning situation. 

• Fifth, we will make recommendations for future research in this area. 

2. WHY IS RECORD LINKAGE CHALLENGING? 

Record linkage can be considered simply an application of pattern 
classification [Duda, Hart, and Stork, 2001], concept learning [Davey and 
Priestly, 1990: 221-231] or, even more simply, finding a subset (all the pairs 
which we will declare linked) of a set (all possible pairs). The fundamental 
object in a record linkage problem is a. pair of records - to fix ideas, they 
could be considered a randomly drawn pair, one from each database. 
However, record linkage problems are particularly challenging for two 
reasons: 

First, as the number of records in either file increase, the number of 
possible comparisons increases as the product of the two file sizes. 
However, even assuming that neither file contains duplicate records, the 
number of matched pairs increases only as the minimum of the size of each 
file. 

Thus, for any reasonably-sized record linkage problem, the size of 
the target subset becomes proportionally smaller and smaller relative to the 
size of the search space. Imagine the two databases lined up in order: 



658 Data Mining & Knowledge Discovery Based on Rule Induction 

Record # 
1 
2 

3 
4 

5 

n 

1 
M 

2 

M 

3 

M 

4 

M 

5 

M 

,,, n 

M 

In practice, of course, the records are not lined up: 

Record # 
1 
2 
3 
4 
5 

n 

3 

M 

5 

M 

4 

M 

27 2 

M 

n 

M 

It should be clear from these two tables that the target subset (the 
M's) are a small subset of the total search space, that as the file sizes increase 
the proportion of blank (non M) cells increases very fast, and that the goal of 
record linkage is to find the characteristics of record pairs that predict 
whether the two records are a match or not. 

Second, in practice, one often does not have a labeled training data 
set. In machine learning language, this is an unsupervised learning problem. 
In statistical language, this means that the problem is fundamentally a latent 
class problem, with the two latent classes being those pairs that are indeed a 
match, and those that are not [Thibaudeau, 1993]. However, we do not have 
a data set of pairs marked with those labels - it is up to us to find the 
appropriate way to label pairs of records. 

3. THE FELLEGI-SUNTER MODEL OF RECORD 
LINKAGE 

We begin with terminology. A record can be considered as a 
collection of data about an external object in the empirical world. Fields in 
the record refer to individual items of information about the external object 
(e.g., first name, sex, street name, FIPS code). In the population of all 
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possible record pairs, we shall say that two records match if they refer to the 
same external object, even if they do so with error or variation; otherwise 
the two records are a non-match. After analyzing a pair of records, we shall 
declare the records linked if we decide that they are most likely a match, 
possibly linked if they might be a match, and non-linked if we decide that 
they are most likely not a matched pair. (Note that this terminology 
distinguishes matches in the population from link and nonlink decisions, 
which we make about record pairs.) 

The Fellegi-Sunter model [1969; hereafter F-S; see also Winkler, 
1995] is framed as a hypothesis test when two records are compared. The 
separate fields are compared on a field-by-field basis, and the F-S model 
uses information about the relative frequency of those fields to output one of 
three decisions: The records are declared to be a positive link; the records 
are declared to be a positive nonlink, or the decision possible link is 
returned. The possible link region is then sent to presumably expensive 
clerical review and resolution. If we (arbitrarily) label positive link with 1, 
possible link with 2, and positive nonlink with 3, and consider the set ̂  to be 
all records in the first file, while the set B is all records in the second file, 
then the Fellegi-Sunter model is a function from the space A x B into the 
space {1,2,3} . 

In the general F-S model, the problem is framed as an ordering of 
configurations by their "weight." For any collection of N individual fields 
—> 
X , that configuration gets a ratio of match weight and non-match weight, 
w{x) = m{x)lu\x). The configurations are presumed ordered by this ratio 
(ties broken arbitrarily), indexed in order from highest weight to lowest 
weight, and cutoffs are chosen by defining a function f{x) as: 

m)= 
Positive link if index for x > upper cutoff 

Positive nonlink if index for x < lower cutoff 

Possible link if upper cutoff > index for x > lower cutoff 

(Here we are using Fellegi and Sunter's corollary 1 to ignore randomized 
choices falling exactly on a boundary.) 

The only remaining task is to define the weights w. In the standard 
F-S model, denoting the event the records are in fact a match by M and the 

records are in fact a non-match by M , these weights are defined 
likelihood ratios, viz., 

/_\ P\x configuration I MI 
w{x) = - L ^ ^ I J 

X configuration \ M 
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The F-S paper [1969] demonstrated that these weights are optimal in 
the sense that, for a fixed false link rate a and fixed false non-link rate//, 
this decision rule, using these weights, minimizes the clerical review region. 

Typically, in practice researchers make the conditional 
independence assumption. This assumption allows the weights in the 
equation above to be factored into: 

P[x2 =\\M P[X^=\\M] 

^ ^ p[x^ =\\M\ P[X2 =1|MJ ' ' ' P[x^ =\\M\ 

When logarithms are taken, as is typically done in practice, this 
becomes a sum: 

+ ... + ln^i^^^^^ w*(x) = lnj !l^ +ln J !l̂ i-̂ ->>-̂ -m J ..r/i 
^ ^ P[X^=\\M\ P[X2=1\M\ P[XJ^=\\M\ 

The term P[x^ = 11 M] is typically called a match weight or m-probability; 

the termP[x^ =11 MJis typically called a non-match weight or 

u-probability, and these terms are summed to construct a total score, 
compared to upper and lower (user-defined) cutoffs, and a decision is made. 

4. H O W ESTIMATING M A T C H WEIGHTS AND 
SETTING THRESHOLDS IS EQUIVALENT TO 
SPECIFYING A DECISION RULE 

If we temporarily ignore the 'Mon't know" category of the F-S 
model, then the upper cutoff equals the lower cutoff and the F-S model 
partitions the data space into two zones, ''linked" and ''non-linked." In 
practice, the mechanism by which this is done is the sum of the logarithms 
of match weights and non-match weights. Under the (usual) conditional 
independence assumption, the F-S model postulates that if the sum of the 
"match weights" minus the "non-match weights" is greater than the upper 
cutoff, then the cases match, otherwise they do not. That is, if 
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N 

J^lnw^x^ + lnw.(l - x)> UPPER 

or 
N N 

5] ( ln t / , )+^ ( lnw , -lnt/ ,)x, >f/PP£i? 

or 
N N 

Y,{^nw,-^nu^h> UPPER-Y^i^nu^) 

where: 

^ = number of matching fields; 
x^ = the result of the comparison on the i-th matching field, 1 = matches, 

O=non-match; 
w^ = the match weight (m-probability) associated with the i-th matching 

field; 
u^ = the non-match weight (u-probability) associated with the i-th matching 

field; and 
UPPER = the cutoff for the "match" threshold in the F-S model. 

The conditional independence model fits the definition of a linear 
threshold: Based on the sum of the results of individual record comparisons, 
we either add weights (if fields match in the two databases) or subtract non-
match weights (if they do not) to the sum. If the sum is less than the pre-
specified cutoff point UPPER (shifted for the sum of non-match weights), 
we declare the comparison a positive non-match and do not link the records. 
If the sum is greater than the lower cutoff but less than the higher cutoff, we 
declare a "don't know" case. If the sum is greater than the upper cutoff, we 
declare a positive match and link the records. This is a decision rule. 

5. DEALING W I T H STOCHASTIC DATA: A 
LOGISTIC REGRESSION APPROACH 

The problem we are examining is to learn the optimal decision rule 
given data that provide evidence toward one or more decisions. Several 
authors (for instance, see [Judson, Bagchi and Quint, 2005, Boros, et. al., 
2000, Boros, et. al., 1996, and Triantaphyllou, et. al., 1997]) focus on the 
problem of learning a single structure given data about that structure. 
However, in the record linkage problem, the problem is generalized. 
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Previous authors have imagined a single deterministic structure in which we 
have an active agent deciding which configuration to test next until we have 
learned the entire structure. We now presume that we are sampling from a 
population of record linkage decisions (thus our training data set is "passive" 
rather than "active"), and we wish to infer the structure that best represents 
this population of record linkage decisions. That is, the outcome of the 
record linkage decision is now a random variable. We will begin with 
notation about linkage decisions and field matches: 

Definition 1: Let Y be the record linkage decision, Y e{0,l}, where 1 
denotes the "link" decision that the two records are matching, and 0 denotes 
the "nonlink" decision that the two records are not matching. 
Note: We will ignore "possible link" decisions in this chapter - the extension 
for link/nonlink to link/possible/nonlink is straightforward. 

Definition 2: Let X be a table of field match values, with a 1 in the i-th 
position denoting that the i-th field matches between two records, and a 0 in 
the i-th position denoting that the i-th field does not match between two 
records, or is missing on one or both. 

Therefore, X^ = the i-th comparison field between the two records, 
taking on the value 1 if the i-th field matches between the two records, 
otherwise 0 if the i-th field does not match between the two records. We 
will illustrate this definition with an example. Suppose records consist of 
five fields: First name, middle initial, last name, generational suffix (i.e. 
jr/sr/II/III, etc.), and age. Suppose we have two records in the following 
form: 

Table 1. An illustration of the comparison between 
two records. 

Record I 

Arthur 

F. 

Jones 

32 

Record 2 

Arthur 

Jones 

Jr. 

33 

X 

I 

0 

1 

0 

0 

There are N=5 matching fields X^ = X^ =\ and X2 = X^ = X^ = 0, 

and the third column provides the values of the vector X . In the machine 
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learning literature, this is referred to as a "feature vector" or sometimes a 
"bit pattern". We will also use the term "comparison vector". 

The decision rule that yields the decision 7 = 7 (these records refer 
to the same person) or Y = 0 (these records do not refer to the same person) 
remains to be determined. 

We shall denote the probability P/"7 = yj by /Uy, Similarly, WQ shall use 

the notation 7r^^y=P[X = x\Y = yJ ,md n- = P[X = x | 7 = >']. 

Definition 3: We shall assume that N is the number of fields being 
compared. We form a 2 x 2 x... x 2 cross-classification table of the N field 
matches. 

We index a cell in this table by x . The (full) likelihood of a case falling in 
the X cell in this table is: 

Obviously, there are far more parameters than can be identified (in 
the statistical sense; see, e.g., [Kaufman, 2001]). By placing constraints on 
the table, statistical identification can be achieved. The typical constraint is 
the "conditional independence" assumption, which can be represented as: 

P\X = x] = X ^y^x^\y^x2\y"'^x^\y->whcrc each random variable is 
;/e{0,l} 

independent of the next, conditional on the record's true latent status. 
Suppose that we construct a 2x 2x...x 2 cross classification table, 

where each margin takes on the value 0 or 1 if the corresponding match field 
is a non-match or a match, respectively. We wish to note that our space 

{0,l}^, and this cross-classification table are equivalent (strictly speaking, 
there is a set isomorphism between them). 

We will presume that we have a sampled collection of data in which 
we know the field match status for each field in the data; however, we do not 
know the record linkage status for each pair of records in the data. We will 
presume that all are drawn consistently from a population with a correct 
decision rule. But instead of observing the record linkage structure 
deterministically, we will assume that we observe the record linkage 
structure under a stochastic process. Judson [2001] showed that one could fit 
a generalized linear model (GLM, see [McCuUagh and Nelder, 1989]) that 
represents this decision rule, then demonstrated a Bayesian GLM that could 
also be fit to represent the rule. 

Our strategy for inferring the best fitting record linkage structure 
from a collection of observations of structures takes the following steps: 
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1) We sample a collection of candidate pairs of records from the space of 
all possible record pairs. 

2) For each cell in the 2x2x...x2cross-classification table, we will 
increment the count in that cell by one if the two records being 
compared have that particular field match configuration. This table will 
be the data from which inference shall be made. 

3) Using background (or expert) information, we first set priors on each 
individual parameter in the GLM for the given cross-classification table. 

4) Finally, using Markov-Chain Monte Carlo Gibbs sampling (hereafter, 
MCMC) methods and the data set, we generate parameter estimates from 
the best fitting posterior GLM. 

5) The posterior parameter estimates are used to define our best fitting 
record linkage rule. 

Definition 4: Let x be a boolean vector of length N, and Y^ e {0,l} be a 

random variable indexed by x . 

Given a collection of Â  fields on which we wish to match, there will 
be 2^ possible configurations of field matches or non-matches. For a 
particular configuration of field match/non-match results, we can presume 

that there exists some probability p- that the record linkage rule will declare 

that the two records are a match. Again, we index by x . 
Now, if each record linkage decision is independent of the next, then 

the decisions for the i-th configuration will form a sequence of Bernoulli 

trials, each with probability j^^^ of returning a match result. Clearly, 

Y^ ̂  BINOMIAL(\,p~). This is true for each and every configuration, for 

all 2^ X configurations. Thus, let Y^ - BINOMIAL{\,p^). for /?- e [0,l]. 

Obviously, P\Y^ = 3;] = ^^(l -p-J ' ^ , However, we believe that 

the probability of the two records being declared a match is a (generally 
monotonic) function of how many, and in what combination, the individual 
matching fields match. What we need at this point is a link between these 
two notions. 

For generalized linear models, the canonical link function for a 
dependent binomial random variable and a collection of independent 

variables is the logit link, ln(jr^j=Xy^, which of course implies that 

^k)-J e^^, which implies that p~ = -^-^, which is exactly what we are 

looking for (Harville and Moore [1999] developed a similar approach for 
business linkages). For the remainder of this chapter, we shall assume that 
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p~ is related to the boolean vector x in such a fashion. 

5.1 Estimation of the model 

As specified, our generalized linear model consists of: 

1) The structural component xft; 

2) the stochastic specification that Y^ - BINOMIAL(\,p^) ; 

3) the link / ? - = - ^ , and 

4) the latent class assumption that Y^ is in fact unobserved. 

With the exception of the last component, the problem is a standard logistic 
regression estimation problem. 

5.2 Finding the implied threshold and interpreting coefficients 
After estimating the conditional independence logistic regression 

equation, we have estimated parameters y^Q,y^i,y^2,...,>^^. The parameters 

may be considered voting weights in a voting (record linkage) rule. 
Obviously, the definitions given above imply that, with some collection of 
data drawn from the population and obeying the proposed logistic regression 
relationship, we can estimatePj^ for all A: G {l, 2,..., N\ But, at this point we 
ask, what do the /?^ mean in this context? It is the answer to this question that 

illustrates how we can use the logistic regression model to estimate Fellegi-
Sunter weights. 

For any collection of data drawn from a population satisfying the 
logistic regression model above, for k = 2,...,N, 

y?̂  P{thei-th field matches [Records are a match] 

P[thei-th field matches \ Records are a non-match] ^ 

that is, the regression coefficients are proportional to Fellegi-Sunter weights. 

Fix any ^G{2 , . . .A^} . 

We let the event M = {the i-th record is declared a match}, 

with M = {the i-th record is declared a non-match}. 

By assumption, I n ^ ^ = x^^, holds in the population, thus 

P[M\xm 
P[M\X^] 

= exp(^o )exp(^iXi )...exp(^^x^ ). 

We may set x^ = 1 and Xj = 0 for all j ^ k. Then: 

= exp(^o+y?iXi+... + /?^x^) 
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P[M I X 

P[M I X 
= exp(^o)exp(^,xJ. 

We solve for /3/^, and obtain: 

>[M|h}] 
In 

P[M\{X,}\ 
( ^ 
lexp(/?o). 

= A 

Now, by using the Bayes theorem, we may rewrite P[M \ xfi] and 

P[M\X^]. 

P[M\x,] = 

Similarly, 

P[M\x,] = -

P[jCi I M]P[M] 

P[x, I M]P[M] + P[x,^ I M]P[M] 

P[x, I M]P[M] 

P[x, I M]P[M] + P[x, I M]P[M] 

At this point we merely substitute and obtain: 

P[x,\M]P[M] 

In P[xi,\M]P[M]+P[xi^\M]P[M] 
( 

Pix^\~MP\M\ 

1 A 

exp(A), 
= A 

P\x^\M\P\M\^P\x^\M\P{M\ 

And, canceling equivalent denominators, 

In 
P[ jcJM]fp[M] A^ 

P[xJM]l ,P[M] 

1 \ 

exp(y?o). 
P. 

By exponentiating both sides, the theorem is proved, e^^ ^puWv ^^ 

Fellegi-Sunter weight. 
In this context, certain additional information is provided by 

parameter relationships. Obviously, if we set exp()ffo) = 77^? we obtain 

strict equality between Pj^ and the Fellegi-Sunter weight 
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{PJ^ = InP[Xj^ I M ] - l n P [ x ^ | M]). Clearly exp {J3Q) is an estimate of 

the prior odds ratio of a record being declared a match under the condition 

that 1̂ = ^2 = ... = X;̂  = 0 . In most populations, we would assume that 

exp{j3Q) is far less than one, indeed it approaches zero. Additionally, we 

can call F the vector representing some configuration of field match values, 

F = ( F I , . . . , F ^ ) for F^G{0,II i = l2...,N. Since /?^ represents the 

Fellegi-Sunter weight under the configuration Fj^ =1, F ^ = 0 for j ^ k, 

we can use the same methods to derive the following immediate corollary. 

Corollary: Given any vector of field match values F = ( F J , . . . , F ^ ) 

for F,e{0,ll i^l.2...,N, W:^ e'^'^'^^^^'r 

This corollary implies that, if we have a particular configuration F 
of match fields and we wish to evaluate their total weight toward a positive 
record linkage decision, then, consistent with the Fellegi-Sunter model, we 
merely sum the coefficients associated with fields that match, and 
exponentiate the sum. Again, for models containing no interaction terms, 
this is consistent with the original record linkage theory under conditional 
independence. 

Finally, how should the intercept be interpreted? The parallel 
question is: How to find the threshold? The answer to both questions is 
given in the following proposition. 

Proposition: After estimating the model In y(_ = Xy ,̂ fix p = 0.50. 

Assume that we desire misclassification (false negative and false positive) 

rates to be equal. Then r --P^xs the optimally predictive threshold for 

the nonlinear threshold record linkage rule, within the sample data. 

Proof: We begin by noting that p = 0.50 =>Xy5 = 0 and p = 0.50 is our 
optimal cutoff for classification under the logistic regression model. Thus, 
optimally, we make the decision to call the pair a match if 

0> PQ-^-^X^+..,-}• Pj^Xj^, and not if 0 < p^-hPx^-{-.,. +p^Xj^. Both 

inequalities imply that - p^ is the optimal split between link and non-link 

decision, as desired.D 
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6. DEALING WITH UNLABELED DATA IN THE 
LOGISTIC REGRESSION APPROACH 

Up to this point, development of the model implicitly assumed that a 
labeled training data set was available, and adopted no explicit Bayesian 
framew^ork or method. In this section, and henceforth, we will make two 
changes: 1) We will adopt an explicitly Bayesian point of view (see, e.g., 
Fortini, et. al. [2001], for what we believe to be the first analysis of record 
linkage from a fully Bayesian perspective), and 2) We will explicitly not 
assume that we have training data, thus transforming the problem into a 
latent class problem. Following Congdon [2001], we specify the model we 
will estimate as a two-class latent class model, and show that the latent class 
model we estimate is equivalent to the logistic regression model with latent 
dependent variable. 

The immediate question in this specification is: How does the latent 
class construction here relate to the logistic regression construction 
described above? Haberman [1979] demonstrated that the latent class model 
above is equivalent to the hierarchical log-linear model: 

Inm^ 3, = / / + / / ; + lull + I^Z + - + I^Z + l^'yl + l^'y% + - + < : ' ^here 

niy - is the expected cell count in the y, x cell under the right hand side 

model, and the terms on the right hand side are log-linear parameter 
estimates on the full table including the latent variable. The conditional 
independence assumption is imposed on the model by the exclusion of all 

interaction terms among the observed variables ^ i ? • • -^N- Typically, such 
a model would be estimated using some variation of the Expectation-
Maximization (EM) algorithm [Winkler, 1989; McLachlan and Krishnan, 
1997], by generating an expected table and then fitting a loglinear model by 
maximizing a Poisson or multinomial likelihood. In our application, of 
course, we will use Bayesian simulation methods rather than EM. 

Given this rewriting of the latent class model, the following theorem 
relates the conditional independence latent class model to the logistic 
regression model without interaction terms. 

Theorem: For any collection of data drawn from a population satisfying the 
logistic regression model above without interaction terms and the latent 
class conditional independence model, for i=],...,N fields, 

/?. = ju^=^'^' -ju^=^'^', where / = ^ ' ^ ' = InPfX, =:i\Y = y], 

Proof: First, we note that we can write: 

I n m n - = / / + /^^n 4-/^'''' +/ / ' ' ' ' + . . . + >^'''' + / / ' ^ ^ +U'\ + . . . + //'''^n 
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and 

Second, we recall that, if exp(/?o) = | | g | , 

> 0 , = l n P [ Z ^ = l | 7 = l ] - l n P [ X ^ = l | 7 = O]. 

Now, as is well known (see, e.g. Long, 1997: 261-263), using the loglinear 
model above, we can write an equivalent logistic regression equation: 

Since our earlier logistic regression specification is: 

ln(7[Ff|t)=A+A^.+"A%. 
it is apparent by equating like terms that 

and since 
yff, = l n P [ X ^ = l | r = l ] - l n P [ X . = 1 | 7 = 0], 

^^^j^ ^ = lnP[X^ = 11 7 = / ] , as desired. 

7. BRIEF DESCRIPTION OF THE SIMULATED 
DATA 

This section will report results from two sets of data: One, simulated 
record linkage data generated to test the ability of the logistic regression with 
latent classes approach to reconstruct "known" data, and a second involving 
a "real world" record linkage project. 

Judson [2001] developed simulated record linkage data following 
the ideas introduced by Belin [1993]. We take a similar approach with this 
simulated data set. First we establish the total number of simulated "pairs" 
we wish to consider, and what fraction of them will be considered to be 
matches in the "true" data. For example, if we fix 200 records in file A, and 
10,000 in file B (assuming no duplication in either file), then there are 
2,000,000 pairs to consider, and using a calculation based on section two, we 
expect that about 200/2,000,000=.01% of the pairs will be matches, the rest 
non-matches. (In the actual sample, 177 such pairs were true matches, 
leaving the remainder non-matches.) 

Starting with this "true" data set, consisting of about 200 matching 
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pairs, and 1,999,800 non-matching pairs, we first fix the true field matches 
to all ones for the matching pairs, and all zeros for the non-matching pairs. 
We then "perturb" the field match values with various levels of error. For 
the purposes of this demonstration, we perturbed the field match values 
using the following table of probabilities. 

Table 2. Parameters for the simulated data. 

Xi 

X2 

Z3 

X, 

P[X,=\\Y = \] 

[a] 
0.8 

0.7 

0.3 

0.5 

P[X, = 11 7 = 07 

[b] 
0.1 

0.1 

0.1 

0.1 

Ratio 

[a]/[b] 
8 

7 

3 

5 

In Ratio 

In [a]/[b] 
2.08 

1.95 

1.10 

1.61 

Finally, to reflect the "real world" limitation that we cannot compare 
all possible pairs in data sets of realistic size, we subsample the space of all 
possible pairs. In this study, our subsample consists of 20,086 individual 
record pairs, chosen randomly. 

The main advantage of using these simulated data is to demonstrate, 
if possible, that the Bayesian logistic regression with latent classes method 
can successfully reconstruct a known set of parameters, under various levels 
of error. 

8. BRIEF DESCRIPTION OF THE CPS/NHIS TO 
CENSUS RECORD LINKAGE PROJECT 

The second data set used for this analysis comes from a "real world" 
project known as the CPS/NHIS to Census record linkage project. In fall of 
1999, the CPS/NHIS to Census record linkage project began. Its goal was to 
link addresses and persons from the CPS (Current Population Survey) and 
NHIS (National Health Interview Survey) surveys into the decennial census 
files, with the goal of comparing responses at the household level and 
within-household coverage. 

The CPS is a monthly labor force survey, covering the civilian non-
institutionalized population of the U.S. The NHIS is a monthly health 
conditions survey, also covering the civilian non-institutionalized population 
of the U.S. Space precludes a detailed exposition of the characteristics of 
each survey, but in summary, the selected data sets contained 100,000 
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unique address records and 250,000 unique person records (for the CPS), 
and 52,000 unique address records and 100,000 unique person records (for 
the NHIS). 

These two sets of files were computer linked to the set of 100% 
Census Unedited File (also known as HCUF). The HCUF consisted of about 
290,000,000 person records and about 120,000,000 address records, 
including both residential and Group Quarters addresses but excluding 
commercial addresses. The HCUF file set is merely one step in the series of 
processing steps that lead from original census forms to final decennial 
census tabulations, but it was chosen for this project because it is sufficiently 
"close" to raw census data, yet sufficiently processed so as to make the file 
set amenable to computer matching. We chose a single state for this test of 
address matching. (The specific state shall remain nameless, for 
confidentiality protection purposes.) 

For purposes of the project, these files were pre-edited (to 
standardize name and address components, and clean certain anomalies in 
each data set), and linked using "standard" probabilistic techniques with the 

commercial package Automatch. However, for the purposes of testing the 
Bayesian approach, the files were also linked using the methods described 
here. A brief discussion of the specifics of the matching fields is in order. 

Addresses are an interesting object: The U.S. Census Bureau has 
several versions of address "standardizers" that will take as input a string 
representing an address and parse it into components. The components used 
in this project include: House Number Prefix, House Number 1, House 
Number Prefix 2, House Number 2, House Number Suffix, Prefix 
Directional, Prefix Type, Street Name, Suffix Type, Street Extension, Within 
structure identifier. State FIPS code. County FIPS code, and Zip5 (five digit 
zip code). 

For example. Table 3 illustrates three (completely fictional) parsings 
of records one, two, and three, and an illustration of the comparison vector 
that would occur if we compared records one and two on a field by field 
basis. 

As can be seen, addresses take a wide variety of forms, making them 
exquisitely difficult to parse and unduplicate properly. For our purposes, we 
assume that they have been standardized, cleaned, and pre-parsed, and we 

merely concern ourselves with the field by field comparison vector x, 
consisting of zeros (where fields do not match or are missing on either or 
both files) and ones (where fields are nonmissing and declared matched). 
Note that in this application, if a field is missing on both records (e.g., 
neither address has an apartment number), then by convention the 
comparison vector is set to zero. This is merely a convention, and the 
opposite convention (e.g. both missing implies the field match is set to one) 
could be adopted in particular applications. 
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Table 3. Three fictional address parsings, and the comparison vector 
between record one and record two. 

[Field 

iHouse number 
prefix 

House number 1 

[House number 2 

[House number 
suffix 
prefix 
directional 
[Prefix type 

Street name 

Suffix type 

Suffix 
directional 
Street extension 

Within structure 
Descriptor 

Within structure 
ID 
State FIPS code 

County FIPS 
code 
Zip5 

One 

45 

2 

N 

101st 

ST 

APT 

1 

01 

001 

12345 

Two 

45 

^ 
Ik 

HWY 

97 

STE 

2 

01 

001 

12345 

[Three 

101 

N 

South 
Temple 
ST 

E 

EXT 

PISO 

1 

02 

023 

12345 1 

Four 

A 

1201 

FISHPATTY 

# 

BSMT 

02 

510 

12345 

Comparison 
vector 
(Coll to2) 
0(1) 

1 

1 

0 

0 

0 

0 

0 1 
0(1) 

0(1) 
0 

0 

1 1 
1 

1 1 

9. RESULTS OF THE BAYESIAN LATENT CLASS 
METHOD WITH SIMULATED DATA 

We now present results of an approach using Markov-Chain Monte 
Carlo methods to generate posterior densities under a latent class model 
[Gelfand and Smith, 1990, Gelman and Rubin, 1992, Geyer, 1992]. In these 
analyses, implemented with the software package BUGS [Speigelhalter, 
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Thomas, and Best, 1999], we developed two models: One with relatively 
uninformative prior information, and a second with highly informative prior 
information. We compare the posterior results from these two sets of priors. 
Further information on MCMC methods for estimating Bayesian models can 
be found in Jackman [2000]. Computer notation relates to mathematical 
notation as follows (For programming reasons, the computer notation uses a 
1,2 index rather than a 0,1 index for Y). 

Table 4. Parameters, computer notation, and their interpretation for 
the simulated data. 
pParameter 

M,2 

M\,3 

>"l,4 

MZ' 

M'-" 

M ' - ' 

Computer Notation 
tnu[l,l] 

mu[2,l] 

niu[l,2] 

mu[2,2] 

mu[l,3] 

mu[2,3] 

mu[l,4] 

mu[2,4] 

YflJ 

Y[l] 

Interpretation 

In P[xi = 117 = 1 (non - match)] 

lnP[x, = l | 7 = 2(match)] 

In P[x^ = 11 7 = 1 (non - match)] 

lnP[x2=l | r = 2(match)] 

In P[x3 = 11F = 1 (non - match)] 

lnP[jC3=l|7 = 2(match)] 

In P[x^ = 11 r = 1 (non - match)] 

l n P [ x 4 = l | r = 2(match)] 

P[Y = 1 (non-match) " 

P[Y = 2 (match) " 

Case 1: Uninformative 
Prior densities for all ju coefficients except the intercept were chosen 

to be N(0,1). The hyperparameter mean of 0 indicates a prior centered on 

lnP[x̂ ^̂ ^ = 11 MJ= lnP[x^^ /̂ = 11 M\ indicating a field that provides no 

information. (By choosing all the priors to be the same and centered on zero, 
this is a relatively uninformative prior- it does nothing to help distinguish the 

predictive power of the four fields). For the (intercept) term / / " - / / " , a 
Dirichlet (2, \) (corresponding to a beta distribution when only two classes 
exist) prior was used, although one should expect that the posterior of the 
intercept will be substantially negative when converted to the logarithmic 
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scaled Two chains were simulated, and the Brooks-Gelman-Rubin 
(non)convergence diagnostics [Gelman and Rubin, 1992; Geyer, 1992] were 
performed, as well as visual examination of the time series. After a "burn-in" 
of 10,000 iterations, 32,000 simulated draws from the conditional 
distributions were performed. 

Results for the simulated data set are presented in Table 5. Note that 

in this table, (/>[YJ] =-f^-^4h] - Î  ^^^ be considered an estimate of the 

probability that X^ = 1 conditional on Y = y (1 or 2). (Recall that for 
programming reasons, a result of Y=2 is a match, and a result of Y=l is a 
non-match.) 

As can be seen, the juf^^U parameters are approximately 
recovering the structure that we specified in the simulation: exp(-
2.221)=0.1085, which is very close the correct value, 0.10. The same holds 
for all juflJJ. 

Correctly, the latent class analysis discovers that it is far more likely 
that a pair of records belongs to class 2 (the non-matches) than class 1 (the 
matches), conditional on all the fields not matching (recall that 
( ln r [2 ] - ln7 [ l ] ) represents the intercept term in the logistic regression 
model.) Also correctly, the exponentiated ju[\,ij and juflJJ parameter 
estimates for the i-th field (i=l,...,4) are in the appropriate direction. 
However, the recovered iLi[2,i] values are not on their population setting, 

and the likelihood ratios P[x, = 11 M]/P[x, =l\M] = ̂ f̂2,/]-/i[i,/] ^^^ ^^^ 

reproducing their population values, indicating that the latent class method, 
with relatively non-informative priors, is not able to differentiate the varying 
predictive power of each field separately. 

^This occurs for two reasons: First, Judson [2001] demonstrated that, treating 
the estimated model as a decision making voting rule, one should consider 
the intercept to be the negative of the voting threshold. As we expect the 
coefficients of the model to satisfy monotonicity constraints, this implies 
that the voting threshold should be positive and the intercept negative. 
Second, considering the space of all possible pairs, it is incredibly unlikely 
that a pair of records matching on no fields should in fact be declared a 
match. This implies that the intercept should be negative, as well. 
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Table 5. Results from the MCMC (Gibbs sampling) estimation of posterior 
distributions of simulated parameters. 

1 parameter 
Y[l] 
Y[2] 
OTM[1,1] 

mu[l,2] 
mu[l,3] 
mu[l,4] 
mu[2,l] 
mu[2,2] 
mu[2,3] 
mu[2,4] 
phi[l,l] 
phi[l,2] 
phi[\,3] 
phi[l,4] 
phi[2,l] 
phi[2,2] 
phi[2,3] 
phi[2,4] 

post. 

mean 
0.9786 
0.02137 
-2.221 
-2.193 
-2.243 
-2.237 
-1.026 
-0.8082 
-0.6417 
-0.9158 
0.09792 
0.1005 
0.09602 
0.09654 
0.286 
0.3282 
0.363 
0.3084 

post. 

sd 
0.0375 
0.0375 
0.0388 
0.0490 
0.0510 
0.0408 
0.8297 
0.8624 
0.9159 
0.8789 
0.0033 
0.0042 
0.0042 
0.0034 
0.1666 
0.1779 
0.1902 
0.1775 

post. 

2.50% 
0.8581 
0.0006 
-2.315 
-2.325 
-2.363 
-2.334 
-2.132 
-2.067 
-2.061 
-2.142 
0.0899 
0.0891 
0.0861 
0.0884 
0.1061 
0.1123 
0.1130 
0.1050 

post. 

median 
0.9934 
0.0066 
-2.216 
-2.185 
-2.234 
-2.232 
-1.191 
-0.9245 
-0.7321 
-1.047 
0.0983 
0.1011 
0.0967 
0.0969 
0.2331 
0.284 
0.3247 
0.2598 

post. 

97.50% 
0.9994 
0.1419 
-2.165 
-2.132 
-2.179 
-2.18 
0.9448 
1.155 
1.379 
1.11 
0.1029 
0.106 
0.1017 
0.1016 
0.7201 
0.7605 
0.7989 
0.7522 

MCMC 

start 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 

MCMC 

sample 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 
32000 -
32000 

Note: Parameter estimates are taken to be posterior medians output from MCMC 
(Gibbs Sampling) methods. N=20086 simulated pairs from a population of 
2,000,000 simulated pairs. Uninformative priors N(0,1) are used for /u parameters, 
Dirichlet(2,l) for Y parameters. MCMC specifications: 10,000 bum-in iterations, 
32,000 samples after bum-in. 

Nonetheless, a record linkage structure for decision making is being 
A 

constructed. The following table calculates P[Y = \\x] by transforming 
these parameter estimates into their logistic regression equivalents, 
extracting their posterior medians from the MCMC output, and then 

recovering P[Y = 11 x] = 
o^^P 

l + e xp 

Thus, the prediction equation is: 
\n{P[Y = 11 X] /1 - P[ r = 11 X]) = 

ln(r[2] - In Y[\]) + {mu[2,1] - mu{\, 1]) + 

{mu{2,2] - mu[l, 2]) + (mu[2,3] - mu[l 3]) + (mu[2,4] - mu[l 4]), 
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where: 
ln(Y[2] - In Y[\]) = -5.0141; 
(mu[2,lj-mufUJ) = 1.025; 
(mu [2,2] - mu[l2J) = 1.2605; 
(mu[2,3J'-mu[l,3J) = l.502; and 
(mu[2,4J-mu[lAJ) = l^S5. 

Table 6. Estimated posterior probability that the records 
are a match, for all possible field configurations and the 
estimated logistic regression parameters - Relatively 
uninformative priors condition. 

kY=l 1 X] 

0.007 
0.021 
0.029 
0.089 
0.023 
0.071 
0.095 
0.256 
0.018 
0.057 
0.077 
0.214 
0.061 
0.176 
0.227 
0.490 

xl 

0 
0 
0 
0 
0 
0 
0 
0 

x2 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

^ 1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

x4 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

1 1 
Note: Parameter estimates are taken to be posterior medians 
output from MCMC (Gibbs Sampling) methods. N=20086 
simulated pairs from a population of 2,000,000 simulated pairs. 
Uninformative priors (N(0,1) are used for ju parameters, 
Dirichlet(2,l) for Y parameters. MCMC specifications: 10,000 
bum-in iterations, 32,000 samples after bum-in. 

The appropriate comparison in this table is the partial ordering 
implied by thex's themselves. As can be verified in the table, as the number 
of field matches increase, the posterior probability that the records are a 
match increases to its maximum of 0.490. 
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9.2 Case 2: Informative 
In the informative case, we take the prior density for the mu\jj] 

coefficient (except for the one representing the intercept) were chosen to be 
N(\nP[X^ =l\Y = j]^V). That is, we center the prior information exactly 

where the simulation started. For the intercept term //^"^ - ju^^^, again we 

choose Dirichlet(2,l). Based on centering the ju priors we would expect this 
case to more accurately reproduce the population parameters. Results for 
the simulated data set are presented below. Note that in this case, after a 
"bum-in" if 10,000 iterations, only 22,000 simulated draws from the 
conditional distributions were performed. 

Table 7. Results from the MCMC (Gibbs sampling) 
distributions of simulated 

Parameter 
Y[l] 
Y[2] 
mu[\,\] 
mu[l,2] 
mu[l,3] 
mu[l,4] 
mu[2,l] 
mu[2,2] 
mu[2,3] 
mu[2,4] 
phi[hl] 
phi[h2] 
phi[h3] 
phi[lA] 
phi[2M 
phi[2,2] 
phi[2,3] 
phi[2A] 

post. 
mean 
0.929 
0.072 
-2.25 
-2.23 
-2.26 
-2.26 
-1.20 
-1.11 
-1.40 
-1.36 
0.096 
0.098 
0.094 
0.095 
0.26 
0.27 
0.22 
0.23 

post. 
sd 
0.087 
0.087 
0.078 
0.105 
0.076 
0.071 
0.888 
0.878 
0.662 
0.777 
0.006 
0.008 
0.006 
0.006 
0.173 
0.175 
0.124 
0.148 

parameters. 
post. 
2.50% 
0.724 
0.0003 
-2.45 
-2.51 
-2.48 
-2.45 
-2.18 
-2.13 
-2.18 
-2.19 
0.080 
0.076 
0.077 
0.080 
0.102 
0.106 
0.102 
0.100 

post. 
median 
0.985 
0.0152 
-2.23 
-2.20 
-2.24 
-2.24 
-1.46 
-1.36 
-1.59 
-1.62 
0.097 
0.100 
0.096 
0.096 
0.188 
0.204 
0.170 
0.166 

post. 
97.50% 
0.999 
0.276 
-2.17 
-2.14 
-2.18 
-2.18 
1.00 
1.02 
0.269 
0.641 
0.103 
0.106 
0.102 
0.101 
0.731 
0.735 
0.567 
0.655 

estimation of posterior 

MCMC 
start 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 
10001 

MCMC 
sample 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 
22000 

Note: Parameter estimates are taken to be posterior medians output from MCMC 
(Gibbs Sampling) methods. N=20086 simulated pairs from a population of 
2,000,000 simulated pairs. Informative priors (N(t,l)) are used for ju parameters, 
Dirichlet(2,l) for Y parameters, where t = true value. MCMC specifications: 10,000 
bum-in iterations, 22,000 samples after bum-in. 

As can be seen, again the juflJJ parameters are approximately 
recovering the structure that we specified in the simulation. Again, however, 
the recovered l^[2,i] values are not on their population setting, and the 
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likelihood ratios P[x. = 11 M] / P[x, = 11 M ] = ^^I2,/]-;.[i,] ^̂ ^ ^^^ 

reproducing their population values, indicating that the latent class method, 
w îth highly informative priors, is still not able to differentiate the varying 
predictive power of each field separately. 

How^ever, as with the noninformative case, the record linkage 
decision making structure is being constructed. These tables are mates, using 
posterior medians as point estimates, with informative priors. The prediction 
equation is equivalent in form as before. 

Table 8. Estimated posterior probability that the records are a match, for 
all possible field configurations and the estimated logistic regression 
parameters - Informative priors condition. 

P[Y=lTx] 

0.015 
0.028 
0.029 
0.053 
0.034 
0.062 
0.064 
0.113 
0.032 
0.058 
0.060 
0.106 
0.071 
0.125 
0.128 
0.216 

xl 

0 
0 
0 
0 
0 
0 
0 
0 

x2 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

x3 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

x4 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

N=20,086 simulated pairs from a population of 2,000,000 simulated pairs. 
Note: Parameter estimates are taken to be posterior medians. Output from 
MCMC (Gibbs Sampling) methods. Informative priors (N(t,l)) are used for /u 
parameters, Dirichlet(2,l) for Y parameters, where t is the true population 
value. MCMC specifications: 10,000 bum-in iterations, 22,000 samples after 
bum-in. 

9.3 False link and non-link rates in the population of all 
possible pairs 

A final test of this method with simulated data is to use the record 
linkage decision rule we have just estimated, apply that rule to our 
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population of all possible pairs, and assess false link and false non-link rates 
in the population. As noted above, if we assume that we desire the false link 
and the false non-link rates to be equal, then we can simply use the estimated 
intercept term as a threshold. 

However, such a formula would be heavily weighted toward 
choosing a non-link decision, because in the population the frequency of 
non-matches far exceeds the frequency of matches, and this is reflected in 
the intercept term. Instead, we would rather shift the threshold by adding or 
subtracting a constant from it, thus allowing ourselves to tune the threshold 
and not be swamped by the overwhelming prevalence of non-matches in the 
population of all possible pairs. In any case, in practice, the setting of the 
shift term would take the equivalent role of threshold setting in traditional 
(Fellegi-Sunter based) methods, and, like traditional methods, more than one 
shift could be defined (a link shift for positive matches and a lower possible 
link shift for clerical review, for example). 

The formula for implementing the threshold is as follows: 

JDeclare pair "LINKED" if 2;f^///2,/ " M . / M >-(In Y [2 J - In Y [I J) ± shift; 
[otherwise, declare pair" NOT LINKED". 

10. RESULTS FROM THE BAYESIAN LATENT 
CLASSS METHOD WITH REAL DATA 

The proposed tool (Bayesian latent class analysis) requires several 
data processing steps to implement. 

10.1 Steps in preparing the data 

In this implementation, we first used an internal program, 
"Bigmatch" [Yancey, 2002] to extract a set of about 27,000 Census 
addresses from the space of all possible Census addresses (about 2 million). 
This subset was chosen based on "blocking criteria" that limit the number of 
addresses extracted [Yancey, 2002]. 

Next we compared each CPS address with each address in this 
subset of probable links. (Note that we have reduced the search space 
considerably at this point.) For each comparison, we generate a Boolean 
feature vector - a 15 component vector with each element taking on the 
value 1 if the corresponding fields match, and 0 if either is missing or the 
fields do not match (the 15 components are described earlier). This Boolean 
feature vector is passed to our Bayesian data analysis program (WinBUGS). 
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CPS 
Address 

File 
^(1,500 records^ 

Census 
Address 

File 
. (2 million records^ 

Bigmatch 
(extracts subset of Census file 
that satisfy "blocking criteria") 

Subset of 
Census 
Address 

File 
(27,000 records)\ 

Compare all pairs, subsample as needed, 
generate Boolean feature vectors 

Boolean 
feature 
vectors 

I 
Estimate Bayesian latent class model, 

extract posterior medians 

Determine decision rule 
(from posterior medians) 

Figure 1. File processing flowchart for Bayesian record linkage 
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This program uses priors applied to the // parameters, updates the 
priors using the feature vector, and puts out posterior kernel densities and 
medians. As with the simulated data, the posterior medians are used to 
construct the decision rule. 

10.2 Priors and constraints 
For this analysis, we have 15 matching fields. Because the simulated 

results suggested that statistical identifiability was a potential problem, for 

each field /', we fixed the associated matching parameter j/^t to zero. This 

constraint implies that we are not, strictly speaking, estimating the quantity 

In P\x^ = 11 r = 1 (non - match)] with ///J', but the difference 

In P\x^ = 11 r = 1 (non - match)] - In P[x^ = 11 7 = 2 (matchj\. However, 

if we take care in interpretation, recalling that P\x^ = 117 = 2 (match)] is 

not exactly equal to one, we can then say that ///J' is approximately 

In P\x- = 11 7 = 1 (non - matchj\. 

The reader should be aware that these are somewhat tricky to 
interpret, because they are logarithms of probabilities; thus, they will always 
be negative. Further, because they represent probabilities 
lnP[x^=\\Y = l(non-match)], we expect them to be substantially 

negative, as the probability that a field will match in two randomly chosen 
pairs should be relatively small for most fields. As we shall see, a highly 
discriminating field will have a very negative estimate, while a less 
discriminating field will have only a moderately negative estimate. (Note 
that ln(.5) is about-0.693) 

For this analysis, we chose the following prior distributions. Since 
this is a Bayesian approach, we are making use of prior experience to choose 
these values. For example, for addresses that contain a within-structure 
identifier (e.g. an apartment number), that field is usually of quite crucial 
importance in address matching, so we give it a prior with a large negative 
mean. Similarly, many addresses have the same ZIP code, so it is not as 
important in address matching, so we give its prior a more moderate 
negative mean. In order to give the data greater weight than our priors, the 
standard deviations in our prior distributions are quite large, thus expressing 
our prior uncertainty regarding what the true values should be. The table 
below shows the parameter associated with each matching field. 
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Table 9. Associated matching fields, parameters, computer notation, and 
their interpretation for CPS address data. 
Field type 

1 House 
Number 
Prefix 
House 
Number 1 
House 
Number 
Prefix 2 
House 
Number 2 
House 
Number 
Suffix 
Prefix 
Directional 
Prefix Type 

Street Name 

Suffix Type 

Suffix 
Directional 
Street 
Extension 
Within 
Structure ID 
FIPS State 

FIPS County 

ZIP5 

Parameter 
for this 
field 

^If^ 

^If 

Kf^ 

Mlf 

Mif 

Kf^ 
Mlf^ 

M\,9 

y"l,10 

>"1,13 

A*l,14 

M\,\5 

Comput 
er 
Notation 

mu[l,\] 

mu[\,2] 

mu[\,3] 

mu[\,4] 

mu[l,5] 

mu[l,6] 

mu[l,l] 

ww[l,8] 

mu[l,9] 

ww[l,10] 

mw[l,ll] 

mu[l,l2] 

ww[l,13] 

ww[l,14] 

mw[l,15] 

Prior 

N(-l,10) 

N(.l,10) 

N(-2,10) 

N(-2,10) 

N(-.693,10) 

N(-.693,10) 

N(.l,10) 

N(-3,10) 

N(-.693,10) 

N(-.693,10) 

N(-3,10) 

N(-5,10) 

N(-.01,10) 

N(-.l,10) 

N(-.2,10) 

Implied mean: 
P[X,=\\Y = \] = 
exp(prior mean) 
.37 

.37 

.13 

.13 

.50 

.50 

.37 

.05 

.50 

.50 

.05 

.007 

.99 

.91 

.82 

10.3 Results 
Results from the Bayesian data analysis are given below. After a 

burn-in of 1,000 samples, we generated two chains (with different start 
values) of 5,000 samples each, and combine them. First, we display graphs 
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of selected posterior kernel densities derived from the Gibbs sampler. Then, 
we provide summary statistics on these posterior densities. 

0.9992 0.9996 1.0 

Figure 2. Posterior kernel for Y[l]. 

6.00&-3 

4.00&3 

2.00&3 

0.0 

Y[2]chains 1:2 sample: 10000 

1 r\ 
: j \ 
n 1 1 1 1 r 

-2.0&4 2.00&4 6.00&4 

Figure 3. Posterior kernel for Y[2]. 

As can be seen, while we started with a Dirichlet prior of beta(2,l), 
the posterior densities are heavily weighted toward what they should be: The 
marginal probability of a pair being a match in the population of pairs is very 
small (Y[2] is close to zero). 

As an example of two posterior densities, we present the posterior 
kernels for mu[l,l2] (the parameter associated with the important field, 
within-structure identifier) and for mu[l,l5] (the parameter associated with 
the relatively unimportant field, zip code). 

-8.0 -7.5 -7.0 -6.5 

Figure 4. Posterior kernel for mu[ 1,12]. 
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40.0 
30.0 
20.0 
10.0 
0.0 

mu[1,15] chains 1:2 sample: 10000 

-
y \ 

/ \ 
/ \ 

n 1 1 1 \ r 
-1.325 -1.275 -1.225 

Figure 5. Posterior kernel for WM[1,15]. 

Finally Table 10 presents the posterior statistics associated with these 
parameters. 

Table 10.1 Results 1 From the MCMC (Gibbs sampling) estimation of 
posterior distributions of CPS address field parameters. 

parameter 

™ W[2] 
mu[l,l] 
mu[l,2] 
mu[l,3] 
mu[\,4] 
mu[l,5] 
mu[l,6] 
mu[l,l] 
mu[l,S] 
\mu[l,9] 
mu[l,lO] 
^w[l , l l ] 
mu[l,l2] 
mu[l,l3] 
mu[l,l4] 
mu[\,\5] 

post. 
mean 
0.9997 
0.0003 
-11.02 
-4.98 
-11.15 
-11.16 
-8.04 
-5.71 
-3.33 
-2.46 
-0.0001 
-3.05 
-11.30 
-6.91 
-.00005 
-1.03 
-1.27 

post. 
sd 
0.0001 
0.0001 
1.12 
0.06 
1.18 
1.17 
0.28 
0.09 
0.03 
0.02 
0.0001 
0.03 
1.24 
0.17 
.00005 
0.01 
0.01 

post. 
2.50% 
0.9994 
0.0001 
-13.67 
-5.11 
-13.91 
-13.91 
-8.64 
-5.89 
-3.38 
-2.49 
-0.0005 
-3.1 
-14.24 
-7.26 
-.00002 
-1.05 
-1.30 

post. 
median 
0.9997 
0.0003 
-10.87 
-4.98 
-11.00 
-10.99 
-8.02 
-5.71 
-3.33 
-2.46 
-0.0001 
-3.05 
-11.13 
-6.91 
-.00004 
-1.03 
-1.27 

post. 
97.50% 
.9999 
0.0006 
-9.27 
-4.86 
-9.34 
-9.31 
-7.52 
-5.54 
-3.28 
-2.42 
0.0000 
-3.00 
-9.40 
-6.59 
-.00000 
-1.005 
-1.249 

MCMC 
start 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 
1001 

MCMC 
sample 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 

As an aid to interpretation, we can exponentiate these posterior 
medians, to provide information on the relative importance of different 
matching fields. Recalling that this are approximate, we see an estimate of 
the probability that particular fields will match, even if the records are not 
matching - this is the probability that fields match "by chance" in this 
selected subset. 
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Table 11. Posterior median estimates converted to approximate 
probabilities. 

Field: 
P[Y=1] 
House Number 
Prefix 
House Number 1 
House Number 
Prefix 2 
House Number 2 
House Number 
Suffix 
Prefix Directional 
Prefix Type 
Street Name 
Sufilx Type 
Sufiix Directional 
Street Extension 
Within Structure ID 
FIPS State 
FIPS County 
ZIPS 

Posterior Median 
lnPfX = l\Y = OJ 

almost zero 
-11.02 

-4.98 
-11.16 

-11.16 
-8.04 

-5.71 
-3.33 
-2.46 
-.0001 
-3.05 
-11.3 
-6.91 
-.000005 
-1.03 
-1.27 

Posterior Median 
P[X = l\Y = OJ 

.9998 
exp(-11.02)=.00002 

exp(-4.98)=.0069 
exp(-11.16)=.00001 

exp(-11.16)=.00001 
exp(-8.04)=.0003 

exp(-5.71)=.0033 
exp(-3.33)=.036 
exp(-2.46)=.085 
exp(-.0001)=0.9999 
exp(-3.05)=.047 
exp(-11.3)=.000012 
exp(-6.91)=.00099 
exp(-.000005)« 1.0000 
exp(-1.03)=0.36 
exp(-1.27)=0.28 

It is clear that these posterior medians make intuitive sense (they 
represent the probability of a matching field, conditional on the two records 
being from different addressees, and construct a decision rule. The equation 
below gives the rule, and the posterior probability that a pair with the given 
feature vector is indeed a match in the reduced space of candidate pairs is 

as before. As with the simulated data, the merely P[7 = l | x ] = ^ 
l-^e'f" 

posterior probabilities are small, in that the prior likelihood of any particular 
pair being a match is small, and this base rate affects the posterior 
probability. However, here is where the user-defined shift component, 
discussed earlier, is used. We move the threshold for declaring a pair of 
records to be linked up or down, so as to not be deterred by the low base rate 
of matched pairs. Confidentiality restrictions prohibit displaying the record-
level data here, but with a shift component, the effective decision rule is: 
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JDeclare pair "LINKED" if Z!!/y^2./ " A.zM ^ -(lnY[2] - InY [\])±sh\^; 
[otherwise, declare pair "NOT LINKED", 

which in our case translates into comparing: 
-(ln(m030n)-ln(.99969)) ± shift = 8.085 ± shift 

versus 
11.02xi +4.98x2 +11.16x3 +1116x4 +8.04x5 +5.71x6 +3.33x7 

+ 2.46x8 +.0001x9 +3.05xio +11.3X|i +6.91xi2 +.000005x^3 +1.03xi4 +l-27xi5, 

and declare the pair of records a link when this sum exceeds 8.085 ± the 
user-defined shift value. 

Table 12 calculates the posterior probabilities P[Y = 11 Xp] using 
posterior medians for point estimates and a table of actual comparison 
vectors from the data set used in this analysis. The individual components 
are labeled, thus, as can be seen in the first row, a pair of addresses that 
match only in the ZIP code field, and no other field (recalling that a missing 
value on one or both records is by convention treated as a non-match), have 
a probability of almost zero of referring to the same address in the 
population of address pairs. (The specific probability is 0.00059, rounding to 
.00 in two decimal places.) 

There are 4,793 such address pairs. Similarly, row number 11 (in 
bold) indicates that 1,155,256 pairs matched only in the suffix type field 
(Rd., Ln, etc.), and no other field matched; these pairs also have a posterior 
probability of almost zero of referring to the same address in the population. 
Alternatively, row 87 (bold) indicates that a pair of two address records that 
matches in the house number, street name, suffix type, suffix directional, 
county code and ZIP code have a probability of 0.99 of referring to the same 
address in the population, and there are 1,781 such pairs of records. 

In calculating these posterior probabilities, we did not make use of 
the shift value - if we were to pick a particular threshold, for example 0.95, 
and declare pairs with a posterior probability of 0.95 or higher to be linked, 
we would be, in effect, using the shift. Because there are 99 unique 
comparison vectors in the data set, we split this table across three pages. 
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Table 12. Posterior probability calculations for all 
obtained comparison vectors. 

1 ° 

X 
a, — O H C S 

z z 
X X 

s ^ ^ 
i g s 
^ tt. t l . 
3H P i OH 

Comparison vectoi 
FT 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32, 
33i 
34 

M 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

w 

H 
CO 

"o" 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

H 
X 
00 

"o" 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

"o" 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 

H 
X 
a 
H 
00 

T 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

S2 
H 
00 

"o" 
0 
1 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 

00 
O H 

T 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

H 

u 
00 

"o" 
1 
0 
1 
1 
0 
1 
1 
0 
1 
0 
0 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
0 
0 
1 
1 

IT) 

"T 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
1 

N 
4,793 
353K 
1,024 

73 
69 

45,182 
7,948 
7,331 

8 
28 

1.16M 
63 

67,079 
15,310 

94 
1 
4 

11,569 
2,486 
3,979 

32 
4 

94,210 
1 

5,498 
1,479 

9 
515 
204 
270 

24 
22,077 

11 
1,070 
9,204 

% 
0.3 

18.6 
0.1 
0.0 
0.0 
2.4 
0.4 
0.4 
0.0 
0.0 

61.0 
0.0 
3.5 
0.8 
0.0 
0.0 
0.0 
0.6 
0.1 
0.2 
0.0 
0.0 
5.0 
0.0 
0.3 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
1.2 
0.0 
0.1 
0.5 

Posteriori 
P[Y=1|X] 

0 ^ 
0.00 
0.24 
0.46 
0.76 
0.01 
0.02 
0.06 
0.87 
0.95 
0.00 
0.00 
0.00 
0.00 
0.24 
0.46 
0.76 
0.01 
0.02 
0.06 
0.95 
0.98 
0.00 
0.01 
0.01 
0.03 
0.78 
0.07 
0.18 
0.43 
1.00 
0.00 
0.01 
0.01 
0.031 
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Table 12, continued. Posterior probability calculations for all 
obtained comparison vectors. 

1 o 

S X 
PH (N 00 
g 2 Z 
izi izi CO 

sc Hi u 

Comparison vectot 

p? 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68' 
69 
W 

^ 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 0 
0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

_0_ 

H 
1/3 

T 1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
0 

>• 

00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
0 
1 
0 
0 

00 C/D 

~o" 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

_0_ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Q 

2 
H 
CO 

T 1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

T 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

>• 
0 
OH 

T 1 
0 
1 
1 
1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
0 
1 

OH 

~0~ 
1 
0 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 

N 
8 

40 
178 

4 
2,494 

40 
52,212 

7 
4,955 
1,549 

138 
2,470 

2 
308 

1,755 
80 

3,002 
165 
165 

1,568 
16 

245 
38 

3 
71 

317 
243 

30 
53 

8 
1 

16 
1 

2,780 
284 

% 
0.0 
0.0 
0.0 
0.0 
0.1 
0.0 
2.8 
0.0 
0.3 
0.1 
0.0 
0.1 
0.0 
0.0 
0.1 
0.0 
0.2 
0.0 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.0 

Posterior 
P[Y=1|X1 

078^ 
0.97 
0.07 
0.18 
0.43 
1.00 
0.01 
0.03 
0.02 
0.08 
0.15 
0.09 
0.26 
0.22 
0.50 
0.95 
0.09 
0.21 
0.48 
0.09 
0.21 
0.48 
0.52 
0.75 
0.52 
0.92 
0.49 
0.73 
0.49 
0.73 
0.90 
0.92 
0.92 
0.04 
O . l l l 
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Table 12, continued. Posterior probability calculations for all 
obtained comparison vectors 

k 
X X X c^ ^ 
|JH (in PH S >H 
pH 1-H OH (N 0 0 Q H 

g ^ g iz; ^ S >< 
00 00 00 00 C/5 ^2 ^^ 

LS S S S S & & H _ 
Comparison vector 

m 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
^ 

0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 0 
0 1 0 0 0 0 1 
0 1 0 0 0 0 1 
0 1 0 0 0 0 1 
0 1 0 0 0 0 1 
0 1 0 0 0 0 1 
0 1 0 0 0 0 1 
0 1 0 0 0 1 0 
0 1 0 0 0 1 0 
0 1 0 0 0 1 0 
0 1 0 0 0 1 0 
0 1 0 0 1 0 0 

on 

~ 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
0 
1 
1 
1 

^ g s s s I 
(JH (JH H 
0 0 0 0 0 0 

"o" 
0 
0 
1 
1 
1 
I 
1 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Q 

H 
00 

"T 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 

H 
00 00 
OH PH 

1 1 
1 1 
1 1 
1 0 
1 1 
1 1 
1 1 
1 1 
1 0 
1 1 
1 1 
1 1 
1 0 
1 1 
1 1 
1 1 
1 1 
1 1 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

OH 
H—1 

"T 
1 
1 
0 
0 
1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

N 
75 
2 

28 
567 
49 

742 
10 

398 
54 
3 

74 
21 
3 

15 
3,876 

328 
1,781 

252 
16 
1 
3 

380 
8 

40 
3 

62 
208 

8 
16 

% 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Posterior 
P|Y=1|X] 

oIT^ 
1.00 
0.90 
0.04 
0.11 
0.31 
1.00 
0.90 
0.34 
0.59 
0.84 
0.99 
0.34 
0.59 
0.84 
1.00 
0.99 
1.00 
0.56 
0.98 
0.98 
0.99 
1.00 
1.00 
0.99 
0.99 
1.00 
1.00 
i.ool 



690 Data Mining & Knowledge Discovery Based on Rule Induction 

11. CONCLUSIONS AND FUTURE RESEARCH 

Based on the ability of the Bayesian logistic regression with latent 
variables (Bayesian latent class) method to reconstruct appropriate decision 
rules in our sample of simulated record linkage data, and generate parameter 
estimates that make intuitive sense in the real record linkage data, we 
conclude that these results are promising. These results support further 
consideration of these methods, and development with an eye toward 
practical (that is, operational) applications. 

There are several directions that future research might take: 

• The particular strength of the Bayesian approach is that it allows us 
to incorporate information from previous record linkage studies into 
current record linkage work, thus incrementally improving our 
ability to develop record linkage rules for new data sets. More can 
be done with this notion, particularly since "expert opinion" can be 
elicited in modem ways [Meyer and Booker, 1991] and used 
directly. We envision formally incorporating "local knowledge" 
into our regression model via the tuning of priors on matching 
coefficients to reflect local conditions and via the incorporation of 
indicator variables much like fixed- and random-effects models. 

• Evaluating false positive and false negative error rates has been a 
challenging dilemma for record linkage researchers [see, e.g., Rogot, 
Sorlie and Johnson, 1986; Belin, 1991; Belin and Rubin, 1995], and 
a general statistical approach has not yet been found to outperform 
clerical review evaluation methods. Yet, false positives and false 
negatives have the potential to have a very biasing effect on analyses 
using the linked data set [Scheuren and Winkler, 1993; 1997]. The 
development of methods to estimate these quantities should be given 
high priority. 

• One of the vexing problems with the record linkage problem is that 
the space of matching pairs of records is a very small subset of the 
space of all possible pairs. The approach taken here, to sample from 
the space of all possible pairs, is conceptually simple, but 
annoyingly inefficient. King and Zeng [2001] faced a similar 
problem in their data sets, and developed "rare events logit" 
modelling to overcome it, in a maximum-likelihood framework. In 
their case, however, they had observed data rather than latent data. 
Can their framework be adapted to the Bayesian latent variable 
logistic regression modelling proposed here? If so, massive 
efficiency gains in improving the search space could be achieved. 

• Finally, the difficulty we had recovering the P[X^ =\\Y = \] 
structure in the simulated data situation suggests that one of the two 
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parameters, P[X^ =\\Y = \] and P[Xi = 11 7 = 07, is not 
estimable-perhaps the best that we can hope for is that the difference 
of the two parameters is estimable. Implicitly, we used that attempt 
in constraining our P[X^ = 11 7 = I7 values to one. Fortunately, 
we can construct an appropriate decision rule in either case. 

R E F E R E N C E S 

Belin, T. R. (1991). Using Mixture Models to Calibrate Error Rates in Record-Linkage 
Procedures, with Applications to Computer Matching for Census Undercount Estimation. 
Ph.D. Thesis, Harvard University Department of Statistics, Boston, MA, USA. 

Belin, Thomas R. (1993). Evaluation of sources of variation in record linkage through a 
factorial experiment. Survey Methodology, 19:13-29. 

Belin, Thomas R., and Rubin, Donald B. (1995). A method for calibration of false-match 
rates in record linkage. Journal of the American Statistical Association, 90: 694-707. 

Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., and Muchnik, I. (2000). An 
implementation of logical analysis of data. IEEE Transactions on Knowledge and Data 
Engineering, 12: 292-306. 

Boros, E., Ibaraki, T., and Makino, K. (1996). Boolean analysis of incomplete examples. In: 
Algorithm Theory - Proceedings of the 5th Scandinavian Workshop on Algorithm Theory 
(SWAr96), (Rolf Karlsson and Andrzej Lingas, eds., Reykjavik, Iceland, July 3-5,1996). 
Lecture Notes in Artificial Intelligence 1097 (1996) pp. 440-451. Berlin: Springer Verlag. 

Congdon, Peter J. (2001). Bayesian Statistical Modelling. New York, NY: John Wiley and 
Sons, Inc. 

Davey, B.A., and Priestly, H.A. (1990). Introduction to Lattices and Order. Cambridge, UK: 
Cambridge University Press. 

Duda, Richard O., Hart, Peter E., and Stork, David G. (2001). Pattern Classification, Second 
Edition. New York, NY: John Wiley and Sons, Inc. 

Fellegi, Ivan P., and Sunter, A. B. (1969). A theory for record linkage. Journal of the 
American Statistical Association, 64: 1183-1210. 

Fortini, M., Liseo, B., Nuccitelli, A., and Scanu, M. (2001). On Bayesian Record Linkage. 
ISBA. 

Gelfand, A. and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal 
densities. Journal of the American Statistical Association, 85:398-409. 

Gelman, A., and Rubin, D.B. (1992). Inference from iterative simulation using multiple 
sequences. Journal of the American Statistical Association, 7:457-472. 



692 Data Mining & Knowledge Discovery Based on Rule Induction 

Geyer, C.J. (1992). Practical markov chain monte carlo. Statistical Science, 7:473-483. 

Haberman, S. (1979). Analysis of Qualitative Data, Vol. 2, New Developments. New York, 
NY: Academic Press. 

Harville, D.S., and Moore, R.A. (1999). Determining record linkage parameters using an 
iterative logistic regression approach. Paper presented at the 1999 Joint Statistical Meetings, 
Baltimore, MD, August 11, 1999. 

Jabine, T. (1993). Procedures for restricted access. Journal of Official Statistics, 9:537-590. 

Jackman, S. (2000).Estimation and inference via Bayesian simulation: An introduction to 
markov chain monte carlo. American Journal of Political Science, 44:369-398. 

Judson, D.H., Bagchi, Sitadri, and Quint, Thomas C. (2005). On the Inference of Semi-
Coherent Structures from Data. Computers and Operations Research, 32:2853-2874. 

Judson, D.H. (2001). A partial order approach to record linkage. Proceedings of the 2001 
meetings of the Federal Committee on Statistical Methodology. Washington, DC: Federal 
Committee on Statistical Methodology. 

Kaufman, G.M. (2001). Statistical identification and estimability. In Neil J. Smelser and Paul 
B. Baltes (Eds.), International Encyclopedia of the Social and Behavioral Sciences. 
Amsterdam: Elsevier. 

King, Gary, and Zeng, Langche (2001). Logistic regression in rare events data. Political 
Analysis, 9:1-27. 

Long, J. Scott (1997). Regression Models for Categorical and Limited Dependent Variables. 
Thousand Oaks, CA: Sage Publications. 

Leenen, Iwin, Van Mechelen, Iven, and Gelman, Andrew (2000). Bayesian probabilistic 
extensions of a deterministic classification model. Computational Statistics, 15: 355-371. 

Meyer, Mary and Booker, Jane (1991). Eliciting and Analyzing Expert Judgment: A Practical 
Guide. Knowledge Acquisition for Knowledge-Based Systems series, vol. 5. London, United 
Kingdom: Academic Press. 

McLachlan, G.J, and Krishnan, T. (1997). The EM Algorithm and Extensions. New York, 
NY: Wiley. 

McCullagh, P., and Nelder, J.A. (1989). Generalized Linear Models, 2nd ed. London: 
Chapman and Hall. 

Rogot, E., Sorlie, P.D., and Johnson, N.J. (1986). Probabilistic methods in matching census 
samples to the national death index. Journal of Chronic Diseases, 39: 719-734. 

Scheuren, Fritz, and Winkler, William E. (1993). Regression analysis of data files that are 
computer matched. Survey Methodology, 19:39-58. 

Scheuren, Fritz, and Winkler, William E, (1997). Regression analysis of data files that are 
computer matched - Part II. Survey Methodology, 23:157-165. 



Chapter 19: The Bayesian Record Linkage 693 

Spiegelhalter, DJ., Thomas, A., and Best, N.G. (1999). WinBUGS Version 1.4 User Manual. 
MRC Biostatistics Unit. 

Thibaudeau, Yves (1993). The discrimination power of dependency structures in record 
linkage. Survey Methodology, 19:31-38. 

Triantaphyllou, E., Kovalerchuk, B., and Deshpande, A. (1997). Some recent developments 
of using logical analysis for inferring a boolean function with few clauses, pp. 215-236 in 
Barr, R., Helgason, R., and Kennington, J (Eds.), Interfaces in Computer Science and 
Operations Research: Advances in Metaheuristics, Optimization, and Stochastic Modelling 
Technologies. Boston, MA: Kluwer Academic Publishers. 

Winkler, William E. (1989). Near automatic weight computation in the Fellegi-Sunter model 
of record linkage. Proceedings of the Fifth Annual Research Conference, U.S. Census 
Bureau: Washington, D.C. 

Winkler, William (1995). Matching and record linkage. In: B.C. Cox, et. al., Eds., Business 
Survey Methods. New York, NY: John Wiley. 

Yancey, William (2002). Bigmatch: A Program for Extracting Probable Matches from a 
Large File for Record Linkage. Statistical Research Report Series RRC2002/01. U.S. Census 
Bureau: Washington, D.C. 



694 Data Mining & Knowledge Discovery Based on Rule Induction 

AUTHOR'S BIOGRAPHICAL STATEMENT 

Dr. Dean H. Judson is a Special Assistant for Administrative Records 
Research at the U.S. Census Bureau. In that role, he has worked on large 
scale record linkage projects and developed enhancements to existing 
methods for linking records across databases. Formerly, he was the Nevada 
State Demographer and has worked as a private consultant for Decision 
Analytics, Inc. Dr. Judson received his M.S. in Mathematics from the 
University of Nevada and his M.S. and Ph.D. in Sociology from Washington 
State University. 



Chapter 20 • 

SOME FUTURE TRENDS IN DATA MINING 

Xiaoting Wang*, 
Triantaphyllou* * * 

Peng Zhu*, Giovanni Felici**, and Evangelos 

*** . 

Abstract: 

Key Words: 

Department of Industrial Engineering 

3128 CEBA Building 

Louisiana State University 

Baton Rouge, LA 70803-6409, U.S.A. 

E-mail: {xwang8, pzhul} @lsu.edu 

Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti" 

Consiglio Nazionale delle Ricerche 

Viale Manzoni 30, 00J85 Rome, Italy 

E-mail: feliciCd-iasi. cnr. it 

Department of Computer Science 

298 Coates Hall 

Louisiana State University 

Baton Rouge, LA 70803-6409, U.S.A. 

E-mail: trianta@lsu. edu 

This chapter considers four key data mining areas which seem to have a 
promising future. These areas are: web mining, visual data mining, text data 
mining, and distributed data mining. The reason of their importance is to be 
found in the valuable applications they can support but also in the proliferation 
of the web and in the dramatic improvements in computing and storage media. 
Although they are currently limited by certain impediments, their future looks 
very exciting. 

Data Mining, Web Mining, Visual Data Mining, Text Data Mining, Distributed 
Data Mining, Obstacles in Data Mining Research and Applications. 

^ Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery 
Approaches Based on Rule Induction Techniques, Massive Computing Series, 
Springer, Heidelberg, Germany, pp. 695-716, 2006. 



696 Data Mining & Knowledge Discovery Based on Rule Induction 

1. INTRODUCTION 

Data Mining (DM) is the extraction of new knowledge from large 
databases. Many techniques are currently used in this fast emerging field, 
including statistical analysis and machine learning based approaches. With 
the rapid development of the World Wide Web and the fast increase of 
unstructured databases, new technologies and applications are continuously 
coming forth in this field. The purpose of this chapter is to offer a brief 
survey of some of the latest branches in data mining that can be regarded to 
have some potential on the present and the future of this discipline. These 
areas are Web mining, text mining, distributed data mining, and visual data 
mining. Of these four areas, the first two can be viewed as directly related to 
the Internet and the Web, while the other two are more related to new 
computational methods for carrying out data mining searches. 

This chapter is organized as follows. The second section is devoted to 
Web mining. It further splits into three subsections: Web content mining, 
Web usage mining, and Web structure mining. The third section describes 
the essentials of mining text documents. The fourth section discusses the 
basics of visual data mining, while the fifth section describes the main issues 
of distributed data mining. Some comments regarding current impediments 
and future possibilities for each area are discussed at the end of each section. 
The last section provides some concluding remarks. 

2. WEB MINING 

Since its advent the Internet and the World Wide Web have allowed 
people from all over the world to get closer together in search of new 
information and also in publishing new information. Resources on one side 
of the world can be shared by anyone on the other side of the world through 
the Internet and the Web. 

However, the accumulation of vast amounts of data on the Web often 
makes searching for the right answer too cumbersome. At the same time, it 
is also too often the case that the right answer is available but it may remain 
hidden because of the presence of lots of peripheral data and the inability of 
current search engines to adequately find what a user really wants. 

A new type of data mining techniques, as it applies to Web 
applications, may be the solution to some of the above problems. These 
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techniques are known as "Web mining". Enabling people to access the vast 
information resources of the Web efficiently and effectively and, at the same 
time, attracting even more users, are the main goals of Web mining. 

Web mining techniques can be classified into three categories [Madria, 
et al, 1999]: Web content mining, Web usage mining, and Web structure 
mining. Due to the network nature of the Internet, Web resources are 
distributed all over the world and the only way to organize and explore them 
efficiently is by using Web mining. Based on the goals of Web mining, 
several tools and techniques can be used for each one of the above three 
Web mining categories. For instance, Web usage mining may use 
association rules to better understand the behavior of Web users. Web 
structure mining may use statistical analysis to identify the potential 
relationships among hyperlinks, etc. In general, Web mining is one of the 
most promising areas in the general data mining field. Extracting unseen but 
potentially useful patterns from the Web in order to provide implicit 
information is becoming one of the hot research tasks in this field. 

2.1 Web Content Mining 

Web content mining is the process of automatically extracting content 
patterns that may be hidden in the Web. Such Web content patterns may help 
users to easier retrieve information that they are interested in. Furthermore, 
Web content is much more complex than the data in regular and structured 
databases. Thus, the extracted patterns may better facilitate a user to search 
what he/she needs by applying regular queries on these patterns. 

Ordinary Web content includes HTML or ASP pages, addresses of 
emails and even image and video files (this is also the objective of 
multimedia data mining). So far, widely used technologies are limited to 
determining key phrase frequency in target pages [Frank, et al, 1999] and 
statistical analysis. However, some new methods may be more complicated. 
For instance, in [Tumey, 2003] a more complex approach is discussed for 
mining coherent key phrases from Web pages, while Caramia, Felici, and 
Pezzoli in [2004] proposed a combined use of clustering techniques and a 
genetic algorithm to improve search results. 

There are two main approaches to Web content mining: the agent based 
approach and the database based approach [Cooley, et al, 1997]. The agent 
based approach for Web mining is aiming at building automatically or semi-
automatically systems to discover and organize Web-based information on 
behalf of certain users. For example, the search engine Googlexom uses this 
approach. Some other algorithms, such as Occam, have been developed to 
generate plans to gather and interpret information from agents [Kwok and 
Weld, 1996]. 
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The database approach, which was developed to mine semi-structured 
documents, uses many of the same techniques as the ones used for 
unstructured documents. However, this approach now reorganizes the semi-
structured files into a structured database such that standard queries can be 
used next. For example, in [Han, et al, 1995] a multi-layered database is 
used in which each layer is obtained via generalization and transformation 
operations performed on the lower layers. Also, in [Zhu and Triantaphyllou, 
2004] a multi-query engine was built for extracting publication patterns from 
the Citeseer digital library. 

2.2 Web Usage IMining 

Web usage mining involves the automatic discovery of pattern related 
to user access behaviors from one or more Web servers [Cooley, et al, 
1997]. As one of the most direct methods to mine users' information that 
best corresponds to their needs and behaviors, Web usage mining may offer 
extremely valuable information to businesses. Data filtering has been 
widely used to track the reports of a user's behavior such as the project of 
"Open web market reporter" carried by Open Market Inc. [1996]. Web 
servers usually record and accumulate data about their users' interactions 
whenever requests for resources are received. Then, Web usage mining tools 
analyze web access logs to better understand the users' behaviors. 

Based on the information gathered interactively from users, the Web 
resources will be redesigned and reallocated. Some of the tools are used to 
accumulate data and provide reports such as a CGI script that mainly counts 
the number of users and records user registration information. This type of 
tools also includes some DBMS (Database Management Systems) such as 
Oracle and SQL-Sever to track users' behavior and log accessing files for 
extracting knowledge. Other emerging tools are used to monitor and analyze 
the users' behavior. Mobasher, et al, in [1996] constructed a framework for 
Web usage mining which provided an engine named Webminer to 
automatically extract patterns such as association rules from log files. It also 
utilized an SQL like system to analyze the data. In general, such tools 
implement recording and basic analysis of the interaction between users and 
Web resources. 

2.3 Web Structure IMining 

Web structure mining is a type of mining activity that focuses on using 
the analysis of structures of links and hyperlinks on Web documents to 
identify the most preferable documents. Through the analysis of such Web 
structures, some more efficient Web schema may be constructed. Madria, et 
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al, in [1999] proposed some detailed descriptions on how to facilitate 
navigation by using a reference schema which is based on a tree structure. In 
this way, extracting any structural pattern hidden among hyperlinks may 
become the main goal of structure mining. In [1998] Page, et al, described a 
method named PageRank, which is used for rating Web pages and structures 
objectively and systematically in order to reflect human interest and 
attention. The intuitive explanation for Web structure mining is that a 
hyperlink from a keyword A to a, keyword B implies that there might be 
some potential relation between keyword A and keyword B 
(http://www.cs.ualberta.ca/-tszhu/webmining.htm). 

Usually, mining of Web structures is executed as a two-step process. 
First, such a method extracts patterns from Web transactions including the 
users' registration information. This step applies the most commonly used 
data mining techniques such as data preprocessing, clustering and the 
derivation of association rules. The second step analyzes structure patterns 
and it involves some more specific methods, depending on the nature of the 
Web files. Based on the database mechanism, the OLAP (for Online 
Analysis Processing) approach is one of the emerging tools for online 
databases analysis. Dyreson, in [1997] provided an approach that uses 
OLAP techniques on data warehouses and data cubes to simplify the 
analysis of Web usage statistics from server logs. Furthermore, some 
visualization techniques and standard database querying can be of powerful 
assistance in this direction as well. 

2.4 Current Obstacles and Future Trends 

Although the Web has invaded many aspects of modern life, it still 
lacks standardization. Some major companies (such as Microsoft and Sun 
Microsystems) are competing for whose standards should be accepted by the 
rest. The above flexibility and freedom provided a great impetus for large 
and small players to offer innovation and plurality in developing this new 
communication medium. At the same time, however, the lack of standards 
acceptable by Web developers creates a "Babel syndrome" that may hinder 
the rate of future developments. Standardization on the structures of Web 
pages will make it easier for search engines and computerized mobile agents 
to analyze them and locate context of potential interest to users. 
Furthermore, computer viruses, hacker attacks, security issues, and spam 
mailings, add more impediments for a wider and faster use of the Web. 
Better protection against hacker attacks and computer viruses will make 
access to the Web sources be more efficient by allowing the exchange of 
information to be both ways: from and to Web servers and also the end 
users. 
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Some other key research problems are how to differentiate between 
legitimate and illegitimate computer users and also detect potentially 
fraudulent computer transactions. Better understanding the usage profiles of 
particular users is a typical data mining task and may allow for a better 
design of Web pages with dynamic characteristics. 

Solving the above problems requires more time to reach maturity, more 
technological developments, and also new legislations. It also requires 
cooperation at the national and international levels. Data mining already 
plays a critical role in identifying unauthorized computer intruders (hackers) 
and also credit card fraud. One method for detecting fraud is to check for 
suspicious changes in users' behavior. Dokas, Qt al, in [2002] developed an 
Intrusion Detection System for cyber threat analysis by using the models of 
misuse detection and anomaly detection. Many of these data mining 
problems require a deep understanding of the phenomena under study, thus 
motivating the use of rule induction based methods. A rule-learning program 
has been used to uncover indicators of fraudulent behavior from a large 
database of customer transactions [Fawcett and Provost, 1997]. New 
methods for searching and analyzing multimedia content are also needed for 
a better utilization of the Web resources. 

3. TEXT MINING 

General data mining methods focus on the discovery of patterns and 
unknown knowledge from structured data, such as databases, data 
warehouses, etc. However, in reality there are huge amounts of unstructured 
or semi-structured data, such as text documents. Like any other information 
source, text data also includes vast and rich information. However, it is hard 
to analyze and get the information from text data in their original format. So 
the sub field of text mining was introduced to solve the problem. 

Text mining, also known as text data mining (or TDM) [Hearst, 1997] 
or knowledge discovery from textual databases [Feldman and Dagan, 1995], 
generally refers to the process of extracting interesting and non-trivial 
patterns or knowledge from unstructured text documents. Text mining is a 
nascent field and can be viewed as an extension of data mining or 
knowledge discovery from structured databases [Fayyad, et al., 1996]. Its 
goal is to look for nuggets of new knowledge in the mountains of text 
[Hearst, 1999]. 

3.1 Text IMining and Information Access 

It is necessary to firstly differentiate between information access (or 
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information retrieval) and text mining. Text mining focuses on how to use a 
body of textual information as a large knowledge base from where one can 
extract new, never-before encountered, information [Craven, et al, 1998]. 
While the goal of information access is to help users find the information 
that is currently of interest to them since there may be various types of 
information in a collection of documents. As it was pointed out by Hearst 
[1999], the fact that an information retrieval system can return a document 
that contains the information a user requested does not imply that a new 
discovery has been made. For a more detailed comparison between 
information retrieval and text mining, we refer to [Hearst, 1997]. 

3.2 A Simple Framework of Text IMining 

Text mining can be viewed as comprised of two phases. The first is 
text refining, which transforms free-form text documents into a chosen 
intermediate form. The second is knowledge distillation, which deduces 
patterns or knowledge from the intermediate form [Tan, 1999]. The 
intermediate form (or IF) can be semi-structured such as the conceptual 
graph representation, or structured such as the relational data representation. 
At the same time, the intermediate form can also be document-based (in 
which each entity represents a document) or concept-based, in which each 
entity represents an object or concept of interest in a specific domain 

3.3 Fields of Text Mining 

The main fields of text mining include feature extraction, text 
categorization, and text clustering. These three fields are briefly described in 
the following paragraphs. 

Feature extraction (or selection) attempts to find significant and 
important vocabulary from within a natural language text document [Hsu, 
2003]. Usually, it is the first step of text categorization which improves 
categorization effectiveness and reduces computational complexity by 
removing non-informative words from documents. Feature extraction has 
been proven to be a valuable technique in supervised learning for improving 
predictive accuracy while reducing the number of attributes considered in a 
task [Devaney and Ram, 1997]. Yang and Pedersen, in [1997] made an 
evaluation of five feature selection methods: Document Frequency 
Thresholding, Information Gain, x^ -Statistic, Mutual Information, and 
Term Strength. They found that the first three were the most effective in 
their experiment. Smith, et ah, in [1994] introduced a genetic feature 
selection for clustering and classification. 

Text categorization is the assignment of free text documents to one or 



702 Data Mining & Knowledge Discovery Based on Rule Induction 

more pre-determined categories based on their content. It belongs to the 
broader category of supervised data mining. A number of statistical 
classification and machine learning techniques have been applied to text 
categorization. Such techniques include regression models [Yang and 
Pedersen, 1997], nearest neighbor classifiers [Yang and Pedersen, 1997], 
decision trees [Lewis and Ringuette, 1994], Bayesian classifiers [Lewis and 
Ringuette, 1994], support vector machines (SVMs) [Joachims, 1998], rule 
learning algorithms [Cohen and Singer, 1996], relevance feedback [Rocchio, 
1971], voted classification [Apte, et al, 1999], and neural networks [Wiener, 
et ah, 1993]. A comparative study about fourteen commonly used text 
categorization methods is provided in [Yang, 1999]. Aas and Eikvil, in 
[1999] offered a detailed survey on text categorization. 

General text categorization does not lead itself to the discovery of new 
knowledge. However, there are two recent areas of inquiry that make use of 
text categorization to discover trends and patterns within textual data for 
more general purpose usage [Hearst, 1999]. One of them uses text category 
labels to find "unexpected patterns" among text articles [Feldman and Dagan, 
1995], [Dagan, et al, 1996], and [Feldman, et al, 1997]. Another 
contribution is that of the DARPA Topic Detection and Tracking initiative 
[Allan, et al, 1998]. This project describes an interesting mechanism called 
On-line New Event Detection, whose focus is on the discovery of the 
beginning of a new theme or trend [Hearst, 1999]. 

Compared to categorization, clustering is the process of grouping 
documents with similar contents into dynamically generated clusters. It is 
also part of the broader category of unsupervised data mining. 
Agglomerative hierarchical clustering and K-means are two widely used 
clustering techniques for text clustering. A study of these two clustering 
approaches and their variants can be found in [Steinbach, et al, 2000]. 

3,4 Current Obstacles and Future Trends 

Though people have made some progress in text mining, and some real-
life projects are on their way, there are still many issues that are waiting to 
be solved before this young area becomes mature. Some examples are 
automatic natural language processing by computer and copyright of text 
documents. 

Similar to Web mining, text mining also involves the analysis of 
published documents; text documents in this case. A typical Web page has 
special markers to denote its title, key words, links, etc. In this way, a text 
document may be considered more unstructured than a Web page. 
Furthermore, many text documents were generated long time before the 
advent of the Web or even computers. This creates special problems 
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regarding optical character recognition (OCR) [Mori, et al, 1999] and 
natural language processing (as some human languages change over time) 
[Jackson and Moulinier, 2002], just to name a few. The problems are also 
compounded with the legal aspects regarding copyright issues. 

Optical character recognition is itself a typical pattern recognition 
problem, thus data mining can play a pivotal role here as well. 
Understanding a natural language is based on parsing a text document or 
speech in terms of some human grammar, which is nothing but a collection 
of rules (grammar rules) designed to govern a particular language. 
Therefore, data mining approaches based on rule induction are the natural 
way for developing better natural language processors for better text mining 
and also Web context mining. 

4. VISUAL DATA JMINING 

As one of the most popular areas of knowledge discovery, visual data 
mining is a collection of interactive and reflective methods that support 
exploration of data sets by dynamically adjusting parameters to see how they 
affect the information being presented [Thearling, et al, 2001]. Visual data 
mining is the combination of data mining and visualization techniques which 
can help introduce user insights, preferences, and biases in earlier stages of 
the data mining life cycle to reduce its overall computation complexity and 
reduce the set of uninteresting patterns in the product [Ganesh, et al, 1996]. 

This emerging area of data analysis and mining is based on the 
integration of graphics, visualization metaphors and methods, information 
and scientific data visualization. It offers machine learning and data mining 
communities some powerful tools for the analysis of large and complex data 
sets that can assist in uncovering patterns and trends that are likely to be 
missed with other non-visual data mining methods. Keim, et al, in [1995] 
developed a visual data mining and databases exploration system that 
supported the exploration of large databases by implementing some visual 
data mining techniques. 

As it was pointed out by John W. Tukey, seeing may be believing or 
disbelieving [Tukey, 1965]. However, seeing is the key to knowing [Wong, 
et al, 1999] and leads to believing and understanding. The main purpose of 
visualization is to offer simplicity and make any vagueness in data easier to 
understand. Visualization methods use 2-D, 3-D graphics or just tabular 
forms for data analysis and prediction of the future. Visualization and data 
mining techniques can be combined together in order to extract any explicit 
knowledge from vague data structures. 
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4.1 Data Visualization 

Most of the data types in real world applications lack the ability to be 
directly illustrated by 2-D or 3-D graphics. There are several techniques that 
have been commonly used to visualize data types including point plots and 
histograms. However, these traditional techniques are too limited for 
analyzing highly dimensional data. During the last decade, a number of 
novel techniques have been developed and classified into the following types 
[Keim,2002]: 

1. Geometrically transformed displays, such as landscapes and 
parallel coordinates as in scalable framework (see also Figure 1). 

2. Icon-based displays, such as needle icons and star icons. 
3. Dense pixel displays, such as the recursive pattern, circle 

segments techniques and the graph sketches (see, for instance, 
Figure 2). 

4. Stacked displays, such as tree maps or dimensional stacking (see, 
for instance. Figure 3). 

Figure 1. Parallel Coordinate Visualization [Keim, 2002]. 

"'^'^m^i^« iaMf i^^^» i«^p»w#pr 

Figure 2. Dense Pixel Displays [Keim, 2002]. 
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Figure 3. Dimensional Stacking Visualization 
[Keim,2002]. 

4.2 Visualizing Data Mining Models 

A number of well developed data mining methods can be applied to 
visualize data mining models. Basically, there are two issues involved in 
visual data mining: understanding and trust [Thearling, et al, 2001]. 
Understanding newly discovered patterns is definitely the most fundamental 
motivation behind visualizing a model. Therefore, whether a given 
visualization is effective depends on the users' understanding of the 
visualized data mining model. For instance, clearly knowing the customer 
distribution might be the most important parameter in designing a local retail 
store. Moreover, visualizing a model could allow users to discuss and 
explain the logic behind the model with colleagues, customers, and other 
users based on trust. 

Kriegel in [2001] describes several projects which focused on 
integrating users in the KDD (knowledge discovery from databases) process 
in terms of effective and efficient visualization techniques, interaction 
capabilities, and knowledge transfer. The Interactive Data Mining (IDM) 
project constructed decision trees for users by using the PBC (Perception-
Based Classification) system (http://www.dbs.informatik.unimuenchen.de/ 
Forschung/KDD/VisualDM/). A new technique for visual data mining called 
Independence Diagrams is proposed in [Berchtold, et al, 1998]. That 
approach divides a given attribute into ranges and defines a grid to store a 
number of data items such that it could recognize the complexity between 
various attributes. 

4.3 Current Obstacles and Future Trends 

More visual data mining algorithms need to be developed since 
traditional data mining algorithms are not perfectly matched with the 
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requirement of data visualization [Joshi, 1997]. Visual data mining is still a 
young field. One of the challenges to better interpret visual patterns calls for 
matching such visual patterns with the etiology behind the behavior of the 
system under study [Zhu, 2003]. 

Meanwhile, being able to deal with highly dimensional datasets is 
another concern. Some artificial intelligence research laboratories have 
begun adjusting the focus to this issue [Cook and Buja, 1997]. Special care 
should be given such that not to overwhelm the end user with visual effects 
and ''miss the forest for the trees.'' 

New methods in this area should offer a two-way analysis. First, be able 
to interpret any visual findings into terms that explain the etiology of the 
behavior of the system under study. Second, be able to transfer any known 
or newly derived rules that govern the behavior of the system under study, 
into visual effects. This two-way approach may offer a better understanding 
of any newly derived knowledge. 

With the need for simplicity of data mining from non-professional users, 
visualization is becoming more and more popular in the field of data mining. 
Due to the research developments in techniques and methods especially for 
visualization, they have helped verify many of the research directions and 
business decision making in a variety of fields, including visual methods for 
data analysis, visual DM process models, etc. Some software packages have 
also been developed for visualizing data mining models such as the Tiberius 
system (http://www.philbrierlev.com/). 

Visual data mining is also connected with many other research areas, 
which comprehend the study of domain knowledge in visual reasoning, in 
virtual environments, visual analysis of large databases, and in generic 
system architectures and methods for visualizing semantic content [Han and 
Kamber, 2001]. With visual data mining, KDD is becoming more valid, 
useful and understandable to researchers and end-users alike. 

5. DISTRIBUTED DATA MINING 

Another important and attractive area of data mining is distributed data 
mining. Traditionally, most of data mining work is done at a database or data 
warehouse which is physically located at one place. However, often times 
data may be located at different places or at different physical locations. The 
mining of such distributed data that are located at heterogeneous sites is 
known as distributed data mining (DDM). 
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5.1 The Basic Principle of DDM 

When faced with distributed data, an obvious solution is to gather all 
the data at a central site which has enough storage capacity and apply some 
algorithms on these data. However, such an approach may not be feasible or 
efficient for some applications where the data are inherently distributed but 
global insights are required. For example, each site of a multinational 
company may manage its own operational data locally, but the data may also 
need to be analyzed for global patterns to allow company-wide activities 
such as planning, marketing, and sales to take place. Furthermore, 
centralized data mining may be associated with some other challenges. For 
instance, sometimes it may be too expensive to transfer all the required data 
to a central site. Also, the distributed data sets may not be transferable to a 
central site when considering the security and privacy of the individual data 
sources [Clifton, 2001]. 

In cases like the above ones, current research in DDM is more 
interested in developing new algorithms that can effectively combine data 
mining results from different local mining operations in an effort to gain a 
global perspective of the data. In more specific terms, this is defined as 
performing local data analysis for generating partial data models, and 
combining the local data models from different data sites in order to develop 
the global model [Hsu, 2003]. However, such a global model may become 
inaccurate when the individual data sources have data that are heterogeneous 
[Hsu, 2003]. 

Distributed data mining has attracted more interest in recent years. 
Many distributed approaches have been developed for classification [Guo 
and Sutiwaraphun, 2000], clustering [Johnson and Kargupta, 2000], and 
deriving association rules from transactional databases [Cheung, et al, 1996]. 
DDM has also gained wide applicability for many real life problems. For 
instance, credit card fraud detection [Chan, et al, 1999], facility 
management [Ariwa and Gaber, 2003], and distributed data mining 
management for e-commerce [Krishnaswamy, et al, 2000] etc. 

5.2 Grid Computing 

An emerging technique. Grid computing, is worth mentioning as for the 
development of distributed data mining. The development of high-speed 
Internet and powerful computers brought out the possibility of using 
distributed computers as a unified computing resource known as Grid 
computing. The concept of Grid computing started as a project to link 
geographically dispersed supercomputers, but now it has grown far beyond 
its original intent [Baker, et al, 2002]. Buyya in [2002] defines Grid as "a 
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type of parallel and distributed system that enables the sharing, selection, 
and aggregation of geographically distributed "autonomous" resources 
dynamically at runtime depending on their availability, capability, 
performance, cost, and users' quality-of-service requirements." The Grid 
can play a significant role in providing an effective computational support 
for knowledge discovery applications [Cannataro, et al, 2002]. Thus Grid 
computing can contribute a lot to distributed data mining. In [2002] 
Cannataro, et al, discuss how one kind of software architecture called 
"KNOWLEDGE GRID" which is based on computational grid mechanisms 
can be used to implement distributed data mining services. 

5.3 Current Obstacles and Future Trends 

As a newly emerging area, the field of distributed data mining still has 
many problems waiting to be solved. Since the essence and main task of 
distribute data mining is to mine large and distributed data sets, the 
efficiency of distributed data mining has been an attractive challenge for 
some researchers in the field. One case is to study how to reduce the 
response time of the DDM based on some kind of cost model 
[Krishnaswamy, et al, 2002]. Some other potential works include 
developments of new algorithms, design of better standardization among 
distributed databases for uniform / easier processing [Grossman, et al, 2002], 
better protection strategies against hackers, computer viruses, industrial 
espionage etc, and better identification of distributed computing resources. 

Meanwhile, the networked PC will be pervasive with the liberation of 
the confines of the individual PC and especially with the rapid emergence of 
Wi-Fi technologies [Battiti, et al, 2003]. In this way a user may have access 
to virtually unlimited computing resources from many different locations. 
Such development necessitates the need for developing new authentication 
protocols that can allow for the proper use of distributed computing 
resources by legitimate users. An excellent survey of distributed data 
mining techniques and a discussion of some other issues about DDM can be 
found in [Fu, 2001]. 

6. SUMMARY 

This chapter discussed four fast emerging and promising areas of data 
mining: Web mining, text mining, distributed data mining and visual data 
mining, including their technologies, applications, impediments and future 
trends. These four areas focus on different aspects of data mining. Web 
mining and text mining all deal with unstructured data. The first area aims 
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at hypertext data, HTML resources and other issues with general text 
documents. Therefore, they have some common issues to solve, like privacy 
of the data and their security. Similarly, such problems may also need to be 
solved in a distributed data mining setting which can offer tools for people to 
utilize distributed data and computing resources effectively. 

Data visualization can help end-users to analyze data from various 
resources. For instance, data obtained from a text document can include 
word frequency, relative frequency, time sequence, etc. An interactive data 
visualization process can greatly help users to find useful facts from various 
data mining analyses. 

Although it is a rapidly growing field, data mining is still a young field 
an as such it faces many challenges. The complexity of structured and 
unstructured databases urges more and more data mining technologies to be 
developed in related areas such as multimedia data mining, hypertext and 
hypermedia data mining, spatial, and geographic data mining. Meanwhile, it 
is still necessary to perform dedicated studies that could aim at developing 
new data mining algorithms and methods. In conclusion, the power of data 
mining in both research and industrial fields indicates, with strong evidence, 
that it has a bright and promising future. 



710 Data Mining & Knowledge Discovery Based on Rule Induction 

REFERENCES 

Aas, K., and L. Eikvil, (1999), Text Categorisation: A Survey, Report No. 
941, June, ISBN 82-539-0425-8. 

Allan, J., J. Carbonell, G. Doddington, J. Yamron, and Y. Yang, (1998), 
"Topic Detection and Tracking Pilot Study: Final Report," Proceedings 
of the DARPA Broadcast News Transcription and Understanding 
Workshop,^]?. 194-218. 

Apte, C , M. S. Weiss, and F. J. Damerau, (1999), "Maximizing Text Mining 
Performance," IEEE Intelligent Systems, July/August, pp. 3-8. 

Ariwa, E., and M. M. Gaber, (2003), "Information Systems and Application 
of Distributed Data Mining to Facilities Management," The Second 
Annual Conference: Hawaii International Conference on Statistics and 
Related Fields, Hawaii, USA. 

Baker, M., R. Buyya, and D. Laforenza, (2002), "Grids and Grid 
Technologies for Wide-Area Distributed Computing," Software: Practice 
and Experience, Vol. 32-15, pp. 1437-1466, Wiley Press, USA. 

Battiti, R., M. Conti, E. Gregori, and M. Sabel, (2003), "Price-Based 
Congestion-Control in Wi-Fi Hot Spots," Proceedings of WiOpt'03, 
Sophia-Antipolis, France, Vol. 3-5, March. 

Berchtold, S., H. V. Jagadish, and K. A. Ross, (1998), "Independence 
Diagrams: A Technique for Visual Data Mining," Proceedings of the 4th 
Int. Conf Knowledge Discovery and Data Mining, KDD. 

Buyya, R., (2002), Grid Computing Information Center, 
http://vv^w^.gridcomputing.com. 

Cannataro, M., D. Talia, and P. Trunfio, (2002), "Distributed Data Mining 
on the Grid," Future Generation Computer Systems, Vol. 18-8, pp. 1101-
1112. 

Caramia, M., G. Felici, and A. Pezzoli, (2004), "Improving Search Results 
with Data Mining in a Thematic Search Engine", Computers and 
Operations Research, Vol. 31, pp. 2387-2404. 

Chan, P., W. Fan, A. Prodromidis, and S. Stolfo, (1999), "Distributed Data 
Mining in Credit Card Fraud Detection," IEEE Intelligent Systems, Vol. 
14-6, pp. 67-74. 

Cheung, D., V. Ng, A. Fu, and Y. Fu, (1996), "Efficient Mining of 
Association Rules in Distributed Databases," IEEE Trans, on Knowledge 
and Data Engineering, Vol. 8, pp. 911-922. 

Clifton, C , (2001), "Privacy Preserving Distributed Data Mining," 
Department of Computer Sciences, Purdue University, November 9. 

Cohen, W. J., and Y. Singer, (1996), "Context-Sensitive Learning Methods 
for Text Categorization," Proceedings of 19th Annual Int. ACM SIGIR 



Chapter 20: Some Future Trends in Data Mining 711 

Conf. on Research and Development in Information Retrieval, pp. SOT-
SIS. 

Cook, D., and A. Buja, (1997), "Manual Controls for High-Dimensional 
Data Projections," Journal of Computational and Graphical Statistics, 
Vol. 6-4. 

Cooley, R., B. Mobasher, and J. Srivastava, (1997), "Web Mining: 
Information and Pattern Discovery on the World Wide Web," 
Proceedings of the 9th IEEE International Conference on Tools with 
Artificial Intelligence (ICTAIV?). 

Craven, M., D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, 
and S. Slattery, (1998), "Learning to Extract Symbolic Knowledge from 
the World Wide Web," Proceedings of the Fifteenth National Conference 
on Artificial Intelligence (AAAI98), pp. 509-516. 

Dagan, I., R. Feldman, and H. Hirsh, (1996), "Keyword-Based Browsing 
and Analysis of Large Document Sets," Proceedings of the Fifth Annual 
Symposium on Document Analysis and Information Retrieval (SDAIR), 
Las Vegas, NV, USA. 

Devaney, M., and A. Ram, (1997), "Efficient Feature Selection in 
Conceptual Clustering," Proceedings of the Fourteenth International 
Conference on Machine Learning (ICML-97). 

Dokas, P., L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N. Tan 
(2002), "Data Mining for Network Intrusion Detection," Proceedings of 
NSF Workshop on Next Generation Data Mining, Baltimore, MD, USA 

Dyreson, C, (1997), "Using an Incomplete Data Cube as a Summary Data 
Sieve," Bulletin of the IEEE Technical Committee on Data Engineering, 
pp. 19-26, March. 

Fayyad, U., G. Piatesky-Shapiro, and P. Smyth, (1996), "From Data Mining 
to Knowledge Discovery: An Overview," Advances in Knowledge 
Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, 
and R. Uthurusamy, editors, pp. 1-S6, MIT Press, Cambridge, Mass, 
USA. 

Fawcett, T., and F. J. Provost, (1997), "Adaptive Fraud Detection," Data 
Mining and Knowledge Discovery, Vol. 1-S, pp. 291-S16. 

Feldman, R., and I. Dagan, (1995), "Knowledge Discovery in Textual 
Databases (KDT)," Proceedings of the First International Conference on 
Knowledge Discovery and Data Mining (KDD-95), Montreal, Canada, 
August 20-21, AAAI Press, pp. 112-117. 

Feldman, R., W. Klosgen, and A. Zilberstein, (1997), "Visualization 
Techniques to Explore Data Mining Results for Document Collections," 
Proceedings of the Third Annual Conference on Knowledge Discovery 
and Data Mining (KDD), Newport Beach, CA, USA. 

Frank, E., G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-



712 Data Mining & Knowledge Discovery Based on Rule Induction 

Manning, (1999), "Domain-specific Keyphrase Extraction," Proceedings 
of the Sixteenth International Joint Conference on Artificial Intelligence 
(IJCAI'99), pp. 668-673, CA, USA, Morgan Kaufmann. 

Fu, Y., (2001), "Distributed Data Mining: An Overview," Newsletter of the 
IEEE Technical Committee on Distributed Processing, pp. 5-9. 

Ganesh, M., E. Han, V. Kumar, S. Shekhar, and J. Srivastava, (1996), 
"Visual Data Mining: Framework and Algorithm Development," 
Technical Report, TR-96-021, Department of Computer Science, 
University of Minnesota, Minneapolis, MN, USA. 

Grossman, R., M. Homick, and G. Meyer, (2002), "Data Mining Standards 
Initiatives," Communications of the ACM, Vol. 45-8, pp. 59-61. 

Guo, Y., and J. Sutiwaraphun, (2000), "Distributed Classification with 
Knowledge Probing," In H. Kargupta and P. Chan, Editors, Advances in 
Distributed and Parallel Knowledge Discovery, AAAI Press. 

Han, J., O. R. Zaiane, and Y. Fu, (1995), "Resource and Knowledge 
Discovery in Global Information Systems: A Multiple Layered Database 
Approach", Proceedings of A Forum on Research and Technology 
Advances in Digital Library, McLean, VA, USA. 

Han, J., and M. Kamber, (2001), Data Mining: Concepts and Techniques, 
San Mateo, CA, USA, Morgan Kaufmann. 

Hearst, M. A., (1997), "Text Data Mining: Issues, Techniques, and the 
Relationship to Information Access," Presentation notes for UW/MS 
workshop on data mining. 

Hearst, M. A., (1999), "Untangling Text Data Mining," Proceedings of 
ACL'99: the 37th Annual Meeting of the Association for Computational 
Linguistics, University of Maryland, MD, USA. 

Hsu, J., (2003), "Chapter XX: Critical and Future Trends in Data Mining: a 
Review of Key Data Mining Technologies/Applications," Data mining: 
opportunities and challenges. Idea Group Publishing, Hershey, PA, USA. 

Jackson, P, and I. Moulinier, (2002), Natural Language Processing for 
Online Applications, John Benjamins, Natural Language Processing 
Series. 

Joachims, T., (1998), "Text Categorization with Support Vector Machines: 
Learning with Many Relevant Features," In C. Nedellec and C. 
Rouveirol, Editors, Proceedings of ECML-98, 10th European Conference 
on Machine Learning, Springer-Verlag, Heidelberg, Germany. 

Johnson, E., and H. Kargupta, (2000), Collective, Hierarchical Clustering 
from Distributed, Heterogeneous Data, In M. Zaki and C. Ho, editors, 
Large-Scale Parallel KDD Systems, Vol. 1759, Springer-Verlag. 

Joshi, K. P., (1997), Analysis of Data Mining Algorithms, Copyright Karuna 
Pande Joshi. 

Keim, D. A., (2002), "Information Visualization and Visual Data Mining," 



Chapter 20: Some Future Trends in Data Mining 713 

IEEE Transactions on Visualization and Computer Graphics, Vol. 7-1, 
pp. 100-107, January-March. 

Keim, D. A., and H.-P. Kriegel, (1995), "Issues in Visualizing Large 
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