


IT MANAGEMENT TITLES
FROM AUERBACH
PUBLICATIONS AND CRC PRESS

.Net 4 for Enterprise Architects and Developers
Sudhanshu Hate and Suchi Paharia
ISBN 978-1-4398-6293-3

A Tale of Two Transformations: Bringing Lean and Agile
Software Development to Life
Michael K. Levine
ISBN 978-1-4398-7975-7

Antipatterns: Managing Software Organizations and
People, Second Edition
Colin J. Neill, Philip A. Laplante, and Joanna F. DeFranco
ISBN 978-1-4398-6186-8

Asset Protection through Security Awareness
Tyler Justin Speed
ISBN 978-1-4398-0982-2

Beyond Knowledge Management: What Every Leader
Should Know
Edited by Jay Liebowitz
ISBN 978-1-4398-6250-6

CISO’s Guide to Penetration Testing: A Framework to
Plan, Manage, and Maximize Benefits

2



James S. Tiller
ISBN 978-1-4398-8027-2

Cybersecurity: Public Sector Threats and Responses
Edited by Kim J. Andreasson
ISBN 978-1-4398-4663-6

Cybersecurity for Industrial Control Systems: SCADA,
DCS, PLC, HMI, and SIS
Tyson Macaulay and Bryan Singer
ISBN 978-1-4398-0196-3

Data Warehouse Designs: Achieving ROI with Market
Basket Analysis and Time Variance
Fon Silvers
ISBN 978-1-4398-7076-1

Emerging Wireless Networks: Concepts, Techniques and
Applications
Edited by Christian Makaya and Samuel Pierre
ISBN 978-1-4398-2135-0

Information and Communication Technologies in
Healthcare
Edited by Stephan Jones and Frank M. Groom
ISBN 978-1-4398-5413-6

Information Security Governance Simplified: From the
Boardroom to the Keyboard
Todd Fitzgerald
ISBN 978-1-4398-1163-4

3



IP Telephony Interconnection Reference: Challenges,
Models, and Engineering
Mohamed Boucadair, Isabel Borges, Pedro Miguel Neves,
and Olafur Pall Einarsson
ISBN 978-1-4398-5178-4

IT’s All about the People: Technology Management That
Overcomes Disaffected People, Stupid Processes, and
Deranged Corporate Cultures
Stephen J. Andriole
ISBN 978-1-4398-7658-9

IT Best Practices: Management, Teams, Quality,
Performance, and Projects
Tom C. Witt
ISBN 978-1-4398-6854-6

Maximizing Benefits from IT Project Management: From
Requirements to Value Delivery
José López Soriano
ISBN 978-1-4398-4156-3

Secure and Resilient Software: Requirements, Test Cases,
and Testing Methods
Mark S. Merkow and Lakshmikanth Raghavan
ISBN 978-1-4398-6621-4

Security De-engineering: Solving the Problems in
Information Risk Management
Ian Tibble
ISBN 978-1-4398-6834-8

4



Software Maintenance Success Recipes
Donald J. Reifer
ISBN 978-1-4398-5166-1

Software Project Management: A Process-Driven
Approach
Ashfaque Ahmed
ISBN 978-1-4398-4655-1

Web-Based and Traditional Outsourcing
Vivek Sharma, Varun Sharma, and K.S. Rajasekaran, Infosys
Technologies Ltd., Bangalore, India
ISBN 978-1-4398-1055-2

5



Data Mining
Tools for Malware
Detection

Mehedy Masud, Latifur
Khan,
and Bhavani Thuraisingham

6



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an
Informa business

No claim to original U.S. Government works
Version Date: 20120111

International Standard Book Number-13: 978-1-4665-1648-9
(eBook - ePub)

This book contains information obtained from authentic and
highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify
in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this
book may be reprinted, reproduced, transmitted, or utilized in
any form by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or

7



retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically
from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a
variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be
trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

8

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com


Dedication

We dedicate this book to our respective families for their
support that enabled us to write this book.

9



Contents

PREFACE

Introductory Remarks

Background on Data Mining

Data Mining for Cyber Security

Organization of This Book

Concluding Remarks

ACKNOWLEDGMENTS

THE AUTHORS

COPYRIGHT PERMISSIONS

CHAPTER 1: INTRODUCTION

1.1 Trends

1.2 Data Mining and Security Technologies

1.3 Data Mining for Email Worm Detection

1.4 Data Mining for Malicious
Code Detection

1.5 Data Mining for Detecting Remote Exploits

10



1.6 Data Mining for Botnet Detection

1.7 Stream Data Mining

1.8 Emerging Data Mining Tools for Cyber Security
Applications

1.9 Organization of This Book

1.10 Next Steps

PART I: DATA MINING AND SECURITY

Introduction to Part I: Data Mining and Security

CHAPTER 2: DATA MINING TECHNIQUES

2.1 Introduction

2.2 Overview of Data Mining Tasks and Techniques

2.3 Artificial Neural Network

2.4 Support Vector Machines

2.5 Markov Model

2.6 Association Rule Mining (ARM)

2.7 Multi-Class Problem

2.7.1 One-vs-One

2.7.2 One-vs-All

11



2.8 Image Mining

2.8.1 Feature Selection

2.8.2 Automatic Image Annotation

2.8.3 Image Classification

2.9 Summary

References

CHAPTER 3: MALWARE

3.1 Introduction

3.2 Viruses

3.3 Worms

3.4 Trojan Horses

3.5 Time and Logic Bombs

3.6 Botnet

3.7 Spyware

3.8 Summary

References

CHAPTER 4: DATA MINING FOR SECURITY
APPLICATIONS

12



4.1 Introduction

4.2 Data Mining for Cyber Security

4.2.1 Overview

4.2.2 Cyber-Terrorism, Insider Threats, and External Attacks

4.2.3 Malicious Intrusions

4.2.4 Credit Card Fraud and Identity Theft

4.2.5 Attacks on Critical Infrastructures

4.2.6 Data Mining for Cyber Security

4.3 Current Research and Development

4.4 Summary

References

CHAPTER 5: DESIGN AND IMPLEMENTATION OF
DATA MINING TOOLS

5.1 Introduction

5.2 Intrusion Detection

5.3 Web Page Surfing Prediction

5.4 Image Classification

5.5 Summary

13



References

CONCLUSION TO PART I

PART II: DATA MINING FOR EMAIL WORM
DETECTION

Introduction to Part II

CHAPTER 6: Email Worm Detection

6.1 Introduction

6.2 Architecture

6.3 Related Work

6.4 Overview of Our Approach

6.5 Summary

References

CHAPTER 7: DESIGN OF THE DATA MINING TOOL

7.1 Introduction

7.2 Architecture

7.3 Feature Description

7.3.1 Per-Email Features

7.3.2 Per-Window Features

14



7.4 Feature Reduction Techniques

7.4.1 Dimension Reduction

7.4.2 Two-Phase Feature Selection (TPS)

7.4.2.1 Phase I

7.4.2.2 Phase II

7.5 Classification Techniques

7.6 Summary

References

CHAPTER 8: EVALUATION AND RESULTS

8.1 Introduction

8.2 Dataset

8.3 Experimental Setup

8.4 Results

8.4.1 Results from Unreduced Data

8.4.2 Results from PCA-Reduced Data

8.4.3 Results from Two-Phase Selection

8.5 Summary

15



References

CONCLUSION TO PART II

PART III: DATA MINING FOR DETECTING MALICIOUS
EXECUTABLES

Introduction to Part III

CHAPTER 9: MALICIOUS EXECUTABLES

9.1 Introduction

9.2 Architecture

9.3 Related Work

9.4 Hybrid Feature Retrieval (HFR) Model

9.5 Summary

References

CHAPTER 10: DESIGN OF THE DATA MINING TOOL

10.1 Introduction

10.2 Feature Extraction Using n-Gram Analysis

10.2.1 Binary n-Gram Feature

10.2.2 Feature Collection

10.2.3 Feature Selection

16



10.2.4 Assembly n-Gram Feature

10.2.5 DLL Function Call Feature

10.3 The Hybrid Feature Retrieval Model

10.3.1 Description of the Model

10.3.2 The Assembly Feature Retrieval (AFR) Algorithm

10.3.3 Feature Vector Computation and Classification

10.4 Summary

References

CHAPTER 11: EVALUATION AND RESULTS

11.1 Introduction

11.2 Experiments

11.3 Dataset

11.4 Experimental Setup

11.5 Results

11.5.1 Accuracy

11.5.1.1 Dataset1

11.5.1.2 Dataset2

17



11.5.1.3 Statistical Significance Test

11.5.1.4 DLL Call Feature

11.5.2 ROC Curves

11.5.3 False Positive and False Negative

11.5.4 Running Time

11.5.5 Training and Testing with Boosted J48

11.6 Example Run

11.7 Summary

References

CONCLUSION TO PART III

PART IV: DATA MINING FOR DETECTING REMOTE
EXPLOITS

Introduction to Part IV

CHAPTER 12: DETECTING REMOTE EXPLOITS

12.1 Introduction

12.2 Architecture

12.3 Related Work

12.4 Overview of Our Approach

18



12.5 Summary

References

CHAPTER 13: DESIGN OF THE DATA MINING TOOL

13.1 Introduction

13.2 DExtor Architecture

13.3 Disassembly

13.4 Feature Extraction

13.4.1 Useful Instruction Count (UIC)

13.4.2 Instruction Usage Frequencies (IUF)

13.4.3 Code vs. Data Length (CDL)

13.5 Combining Features and Compute Combined Feature
Vector

13.6 Classification

13.7 Summary

References

CHAPTER 14: EVALUATION AND RESULTS

14.1 Introduction

14.2 Dataset

19



14.3 Experimental Setup

14.3.1 Parameter Settings

14.2.2 Baseline Techniques

14.4 Results

14.4.1 Running Time

14.5 Analysis

14.6 Robustness and Limitations

14.6.1 Robustness against Obfuscations

14.6.2 Limitations

14.7 Summary

References

CONCLUSION TO PART IV

PART V: DATA MINING FOR DETECTING BOTNETS

Introduction to Part V

CHAPTER 15: DETECTING BOTNETS

15.1 Introduction

15.2 Botnet Architecture

20



15.3 Related Work

15.4 Our Approach

15.5 Summary

References

CHAPTER 16: DESIGN OF THE DATA MINING TOOL

16.1 Introduction

16.2 Architecture

16.3 System Setup

16.4 Data Collection

16.5 Bot Command Categorization

16.6 Feature Extraction

16.6.1 Packet-Level Features

16.6.2 Flow-Level Features

16.7 Log File Correlation

16.8 Classification

16.9 Packet Filtering

16.10 Summary

21



References

CHAPTER 17: Evaluation and Results

17.1 Introduction

17.1.1 Baseline Techniques

17.1.2 Classifiers

17.2 Performance on Different Datasets

17.3 Comparison with Other Techniques

17.4 Further Analysis

17.5 Summary

References

CONCLUSION TO PART V

PART VI: STREAM MINING FOR SECURITY
APPLICATIONS

Introduction to Part VI

CHAPTER 18: STREAM MINING

18.1 Introduction

18.2 Architecture

18.3 Related Work

22



18.4 Our Approach

18.5 Overview of the Novel Class Detection Algorithm

18.6 Classifiers Used

18.7 Security Applications

18.8 Summary

References

CHAPTER 19: DESIGN OF THE DATA MINING TOOL

19.1 Introduction

19.2 Definitions

19.3 Novel Class Detection

19.3.1 Saving the Inventory of Used Spaces during Training

19.3.1.1 Clustering

19.3.1.2 Storing the Cluster Summary Information

19.3.2 Outlier Detection and Filtering

19.3.2.1 Filtering

19.3.3 Detecting Novel Class

19.3.3.1 Computing the Set of Novel Class Instances

23



19.3.3.2 Speeding up the Computation

19.3.3.3 Time Complexity

19.3.3.4 Impact of Evolving Class Labels on Ensemble
Classification

19.4 Security Applications

19.5 Summary

Reference

CHAPTER 20: EVALUATION AND RESULTS

20.1 Introduction

20.2 Datasets

20.2.1 Synthetic Data with Only Concept-Drift (SynC)

20.2.2 Synthetic Data with Concept-Drift and Novel Class
(SynCN)

20.2.3 Real Data—KDD Cup 99 Network Intrusion Detection

20.2.4 Real Data—Forest Cover (UCI Repository)

20.3 Experimental Setup

20.3.1 Baseline Method

20.4 Performance Study

24



20.4.1 Evaluation Approach

20.4.2 Results

20.4.3 Running Time

20.5 Summary

References

CONCLUSION TO VI

PART VII: EMERGING APPLICATIONS

Introduction to Part VII

CHAPTER 21: Data Mining for Active Defense

21.1 Introduction

21.2 Related Work

21.3 Architecture

21.4 A Data Mining-Based Malware Detection Model

21.4.1 Our Framework

21.4.2 Feature Extraction

21.4.2.1 Binary n-Gram Feature Extraction

21.4.2.2 Feature Selection

25



21.4.2.3 Feature Vector Computation

21.4.3 Training

21.4.4 Testing

21.5 Model-Reversing Obfuscations

21.5.1 Path Selection

21.5.2 Feature Insertion

21.5.3 Feature Removal

21.6 Experiments

21.7 Summary

References

CHAPTER 22: DATA MINING FOR INSIDER THREAT
DETECTION

22.1 Introduction

22.2 The Challenges, Related Work, and Our Approach

22.3 Data Mining for Insider Threat Detection

22.3.1 Our Solution Architecture

22.3.2 Feature Extraction and Compact Representation

22.3.3 RDF Repository Architecture

26



22.3.4 Data Storage

22.3.4.1 File Organization

22.3.4.2 Predicate Split (PS)

22.3.4.3 Predicate Object Split (POS)

22.3.5 Answering Queries Using Hadoop MapReduce

22.3.6 Data Mining Applications

22.4 Comprehensive Framework

22.5 Summary

References

CHAPTER 23: DEPENDABLE REAL-TIME DATA
MINING

23.1 Introduction

23.2 Issues in Real-Time Data Mining

23.3 Real-Time Data Mining Techniques

23.4 Parallel, Distributed, Real-Time Data Mining

23.5 Dependable Data Mining

23.6 Mining Data Streams

23.7 Summary

27



References

CHAPTER 24: FIREWALL POLICY ANALYSIS

24.1 Introduction

24.2 Related Work

24.3 Firewall Concepts

24.3.1 Representation of Rules

24.3.2 Relationship between Two Rules

24.3.3 Possible Anomalies between Two Rules

24.4 Anomaly Resolution Algorithms

24.4.1 Algorithms for Finding and Resolving Anomalies

24.4.1.1 Illustrative Example

24.4.2 Algorithms for Merging Rules

24.4.2.1 Illustrative Example of the Merge Algorithm

24.5 Summary

References

CONCLUSION TO PART VII

CHAPTER 25: SUMMARY AND DIRECTIONS

28



25.1 Introduction

25.2 Summary of This Book

25.3 Directions for Data Mining Tools for Malware Detection

25.4 Where Do We Go from Here?

APPENDIX A: DATA MANAGEMENT SYSTEMS:
DEVELOPMENTS AND TRENDS

A.1 Introduction

A.2 Developments in Database Systems

A.3 Status, Vision, and Issues

A.4 Data Management Systems Framework

A.5 Building Information Systems from the Framework

A.6 Relationship between the Texts

A.7 Summary

References

APPENDIX B: TRUSTWORTHY SYSTEMS

B.1 Introduction

B.2 Secure Systems

B.2.1 Introduction

29



B.2.2 Access Control and Other Security Concepts

B.2.3 Types of Secure Systems

B.2.4 Secure Operating Systems

B.2.5 Secure Database Systems

B.2.6 Secure Networks

B.2.7 Emerging Trends

B.2.8 Impact of the Web

B.2.9 Steps to Building Secure Systems

B.3 Web Security

B.4 Building Trusted Systems from Untrusted Components

B.5 Dependable Systems

B.5.1 Introduction

B.5.2 Trust Management

B.5.3 Digital Rights Management

B.5.4 Privacy

B.5.5 Integrity, Data Quality, and High Assurance

B.6 Other Security Concerns

30



B.6.1 Risk Analysis

B.6.2 Biometrics, Forensics, and Other Solutions

B.7 Summary

References

APPENDIX C: SECURE DATA, INFORMATION, AND
KNOWLEDGE MANAGEMENT

C.1 Introduction

C.2 Secure Data Management

C.2.1 Introduction

C.2.2 Database Management

C.2.2.1 Data Model

C.2.2.2 Functions

C.2.2.3 Data Distribution

C.2.3 Heterogeneous Data Integration

C.2.4 Data Warehousing and Data Mining

C.2.5 Web Data Management

C.2.6 Security Impact

C.3 Secure Information Management

31



C.3.1 Introduction

C.3.2 Information Retrieval

C.3.3 Multimedia Information Management

C.3.4 Collaboration and Data Management

C.3.5 Digital Libraries

C.3.6 E-Business

C.3.7 Security Impact

C.4 Secure Knowledge Management

C.4.1 Knowledge Management

C.4.2 Security Impact

C.5 Summary

References

APPENDIX D: SEMANTIC WEB

D.1 Introduction

D.2 Layered Technology Stack

D.3 XML

D.3.1 XML Statement and Elements

32



D.3.2 XML Attributes

D.3.3 XML DTDs

D.3.4 XML Schemas

D.3.5 XML Namespaces

D.3.6 XML Federations/Distribution

D.3.7 XML-QL, XQuery, XPath, XSLT

D.4 RDF

D.4.1 RDF Basics

D.4.2 RDF Container Model

D.4.3 RDF Specification

D.4.4 RDF Schemas

D.4.5 RDF Axiomatic Semantics

D.4.6 RDF Inferencing

D.4.7 RDF Query

D.4.8 SPARQL

D.5 Ontologies

D.6 Web Rules and SWRL

33



D.6.1 Web Rules

D.6.2 SWRL

D.7 Semantic Web Services

D.8 Summary

References

INDEX

34



Preface

Introductory Remarks
Data mining is the process of posing queries to large
quantities of data and extracting information, often previously
unknown, using mathematical, statistical, and machine
learning techniques. Data mining has many applications in a
number of areas, including marketing and sales, web and
e-commerce, medicine, law, manufacturing, and, more
recently, national and cyber security. For example, using data
mining, one can uncover hidden dependencies between
terrorist groups, as well as possibly predict terrorist events
based on past experience. Furthermore, one can apply data
mining techniques for targeted markets to improve
e-commerce. Data mining can be applied to multimedia,
including video analysis and image classification. Finally,
data mining can be used in security applications, such as
suspicious event detection and malicious software detection.
Our previous book focused on data mining tools for
applications in intrusion detection, image classification, and
web surfing. In this book, we focus entirely on the data
mining tools we have developed for cyber security
applications. In particular, it extends the work we presented in
our previous book on data mining for intrusion detection. The
cyber security applications we discuss are email worm
detection, malicious code detection, remote exploit detection,
and botnet detection. In addition, some other tools for stream
mining, insider threat detection, adaptable malware detection,

35



real-time data mining, and firewall policy analysis are
discussed.

We are writing two series of books related to data
management, data mining, and data security. This book is the
second in our second series of books, which describes
techniques and tools in detail and is co-authored with faculty
and students at the University of Texas at Dallas. It has
evolved from the first series of books (by single author
Bhavani Thuraisingham), which currently consists of ten
books. These ten books are the following: Book 1 (Data
Management Systems Evolution and Interoperation)
discussed data management systems and interoperability.
Book 2 (Data Mining) provided an overview of data mining
concepts. Book 3 (Web Data Management and E-Commerce)
discussed concepts in web databases and e-commerce. Book 4
(Managing and Mining Multimedia Databases) discussed
concepts in multimedia data management as well as text,
image, and video mining. Book 5 (XML Databases and the
Semantic Web) discussed high-level concepts relating to the
semantic web. Book 6 (Web Data Mining and Applications in
Counter-Terrorism) discussed how data mining may be
applied to national security. Book 7 (Database and
Applications Security), which is a textbook, discussed details
of data security. Book 8 (Building Trustworthy Semantic
Webs), also a textbook, discussed how semantic webs may be
made secure. Book 9 (Secure Semantic Service-Oriented
Systems) is on secure web services. Book 10, to be published
in early 2012, is titled Building and Securing the Cloud. Our
first book in Series 2 is Design and Implementation of Data
Mining Tools. Our current book (which is the second book of
Series 2) has evolved from Books 3, 4, 6, and 7 of Series 1
and book 1 of Series 2. It is mainly based on the research

36



work carried out at The University of Texas at Dallas by Dr.
Mehedy Masud for his PhD thesis with his advisor Professor
Latifur Khan and supported by the Air Force Office of
Scientific Research from 2005 until now.

Background on Data Mining
Data mining is the process of posing various queries and
extracting useful information, patterns, and trends, often
previously unknown, from large quantities of data possibly
stored in databases. Essentially, for many organizations, the
goals of data mining include improving marketing
capabilities, detecting abnormal patterns, and predicting the
future based on past experiences and current trends. There is
clearly a need for this technology. There are large amounts of
current and historical data being stored. Therefore, as
databases become larger, it becomes increasingly difficult to
support decision making. In addition, the data could be from
multiple sources and multiple domains. There is a clear need
to analyze the data to support planning and other functions of
an enterprise.

Some of the data mining techniques include those based on
statistical reasoning techniques, inductive logic programming,
machine learning, fuzzy sets, and neural networks, among
others. The data mining problems include classification
(finding rules to partition data into groups), association
(finding rules to make associations between data), and
sequencing (finding rules to order data). Essentially one
arrives at some hypothesis, which is the information extracted
from examples and patterns observed. These patterns are

37



observed from posing a series of queries; each query may
depend on the responses obtained from the previous queries
posed.

Data mining is an integration of multiple technologies. These
include data management such as database management, data
warehousing, statistics, machine learning, decision support,
and others, such as visualization and parallel computing.
There is a series of steps involved in data mining. These
include getting the data organized for mining, determining the
desired outcomes to mining, selecting tools for mining,
carrying out the mining process, pruning the results so that
only the useful ones are considered further, taking actions
from the mining, and evaluating the actions to determine
benefits. There are various types of data mining. By this we
do not mean the actual techniques used to mine the data but
what the outcomes will be. These outcomes have also been
referred to as data mining tasks. These include clustering,
classification, anomaly detection, and forming associations.

Although several developments have been made, there are
many challenges that remain. For example, because of the
large volumes of data, how can the algorithms determine
which technique to select and what type of data mining to do?
Furthermore, the data may be incomplete, inaccurate, or both.
At times there may be redundant information, and at times
there may not be sufficient information. It is also desirable to
have data mining tools that can switch to multiple techniques
and support multiple outcomes. Some of the current trends in
data mining include mining web data, mining distributed and
heterogeneous databases, and privacy-preserving data mining
where one ensures that one can get useful results from mining
and at the same time maintain the privacy of the individuals.

38



Data Mining for Cyber
Security
Data mining has applications in cyber security, which
involves protecting the data in computers and networks. The
most prominent application is in intrusion detection. For
example, our computers and networks are being intruded on
by unauthorized individuals. Data mining techniques, such as
those for classification and anomaly detection, are being used
extensively to detect such unauthorized intrusions. For
example, data about normal behavior is gathered and when
something occurs out of the ordinary, it is flagged as an
unauthorized intrusion. Normal behavior could be John’s
computer is never used between 2 am and 5 am in the
morning. When John’s computer is in use, say, at 3 am, this is
flagged as an unusual pattern.

Data mining is also being applied for other applications in
cyber security, such as auditing, email worm detection, botnet
detection, and malware detection. Here again, data on normal
database access is gathered and when something unusual
happens, then this is flagged as a possible access violation.
Data mining is also being used for biometrics. Here, pattern
recognition and other machine learning techniques are being
used to learn the features of a person and then to authenticate
the person based on the features.

However, one of the limitations of using data mining for
malware detection is that the malware may change patterns.
Therefore, we need tools that can detect adaptable malware.
We also discuss this aspect in our book.

39



Organization of This Book
This book is divided into seven parts. Part I, which consists of
four chapters, provides some background information on data
mining techniques and applications that has influenced our
tools; these chapters also provide an overview of malware.
Parts II, III, IV, and V describe our tools for email worm
detection, malicious code detection, remote exploit detection,
and botnet detection, respectively. Part VI describes our tools
for stream data mining. In Part VII, we discuss data mining
for emerging applications, including adaptable malware
detection, insider threat detection, and firewall policy
analysis, as well as real-time data mining. We have four
appendices that provide some of the background knowledge
in data management, secure systems, and semantic web.

Concluding Remarks
Data mining applications are exploding. Yet many books,
including some of the authors’ own books, have discussed
concepts at the high level. Some books have made the topic
very theoretical. However, data mining approaches depend on
nondeterministic reasoning as well as heuristics approaches.
Our first book on the design and implementation of data
mining tools provided step-by-step information on how data
mining tools are developed. This book continues with this
approach in describing our data mining tools.

For each of the tools we have developed, we describe the
system architecture, the algorithms, and the performance

40



results, as well as the limitations of the tools. We believe that
this is one of the few books that will help tool developers as
well as technologists and managers. It describes algorithms as
well as the practical aspects. For example, technologists can
decide on the tools to select for a particular application.
Developers can focus on alternative designs if an approach is
not suitable. Managers can decide whether to proceed with a
data mining project. This book will be a very valuable
reference guide to those in industry, government, and
academia, as it focuses on both concepts and practical
techniques. Experimental results are also given. The book will
also be used as a textbook at The University of Texas at
Dallas on courses in data mining and data security.

41



Acknowledgments

We are especially grateful to the Air Force Office of
Scientific Research for funding our research on malware
detection. In particular, we would like to thank Dr. Robert
Herklotz for his encouragement and support for our work.
Without his support for our research this book would not have
been possible.

We are also grateful to the National Aeronautics and Space
Administration for funding our research on stream mining. In
particular, we would like to thank Dr. Ashok Agrawal for his
encouragement and support.

We thank our colleagues and collaborators who have worked
with us on Data Mining Tools for Malware Detection. Our
special thanks are to the following colleagues.

Prof. Peng Liu and his team at Penn State University for
collaborating with us on Data Mining for Remote Exploits
(Part III).

Prof. Jiawei Han and his team at the University of Illinois for
collaborating with us on Stream Data Mining (Part VI).

Prof. Kevin Hamlen at the University of Texas at Dallas for
collaborating with us on Data Mining for Active Defense
(Chapter 21).

42



Our student, Dr. M. Farhan Husain, for collaborating with us
on Insider Threat Detection (Chapter 22).

Our colleagues, Prof. Chris Clifton (Purdue University), Dr.
Marion Ceruti (Department of the Navy), and Mr. John
Maurer (MITRE), for collaborating with us on Real-Time
Data Mining (Chapter 23).

Our students, Muhammad Abedin and Syeda Nessa, for
collaborating with us on Firewall Policy Analysis (Chapter
24).

43



The Authors

Mehedy Masud is a postdoctoral fellow at The University of
Texas at Dallas (UTD), where he earned his PhD in computer
science in December 2009. He has published in premier
journals and conferences, including IEEE Transactions on
Knowledge and Data Engineering and the IEEE International
Conference on Data Mining. He will be appointed as a
research assistant professor at UTD in Fall 2012. Masud’s
research projects include reactively adaptive malware, data
mining for detecting malicious executables, botnet, and
remote exploits, and cloud data mining. He has a patent
pending on stream mining for novel class detection.

Latifur Khan is an associate professor in the computer
science department at The University of Texas at Dallas,
where he has been teaching and conducting research since
September 2000. He received his PhD and MS degrees in
computer science from the University of Southern California
in August 2000 and December 1996, respectively. Khan is (or
has been) supported by grants from NASA, the National
Science Foundation (NSF), Air Force Office of Scientific
Research (AFOSR), Raytheon, NGA, IARPA, Tektronix,
Nokia Research Center, Alcatel, and the SUN academic
equipment grant program. In addition, Khan is the director of
the state-of-the-art DML@UTD, UTD Data Mining/Database
Laboratory, which is the primary center of research related to
data mining, semantic web, and image/video annotation at
The University of Texas at Dallas. Khan has published more
than 100 papers, including articles in several IEEE
Transactions journals, the Journal of Web Semantics, and the

44



VLDB Journal and conference proceedings such as IEEE
ICDM and PKDD. He is a senior member of IEEE.

Bhavani Thuraisingham joined The University of Texas at
Dallas (UTD) in October 2004 as a professor of computer
science and director of the Cyber Security Research Center in
the Erik Jonsson School of Engineering and Computer
Science and is currently the Louis Beecherl, Jr., Distinguished
Professor. She is an elected Fellow of three professional
organizations: the IEEE (Institute for Electrical and
Electronics Engineers), the AAAS (American Association for
the Advancement of Science), and the BCS (British Computer
Society) for her work in data security. She received the IEEE
Computer Society’s prestigious 1997 Technical Achievement
Award for “outstanding and innovative contributions to
secure data management.” Prior to joining UTD,
Thuraisingham worked for the MITRE Corporation for 16
years, which included an IPA (Intergovernmental Personnel
Act) at the National Science Foundation as Program Director
for Data and Applications Security. Her work in information
security and information management has resulted in more
than 100 journal articles, more than 200 refereed conference
papers, more than 90 keynote addresses, and 3 U.S. patents.
She is the author of ten books in data management, data
mining, and data security.

45



Copyright Permissions

Figure 21.2; Figure 21.3

B. Thuraisingham, K. Hamlen, V. Mohan, M. Masud, L.
Khan, Exploiting an antivirus interface; in Computer
Standards & Interfaces, Vol. 31, No. 6, p. 1182−1189, 2009,
with permission from Elsevier.

Figure 7.4; Table 8.1; Table 8.2; Table 8.3; Table 8.4;
Figure 8.2; Table 8.5; Table 8.6; Table 8.7, Table 8.8

B. Thuraisingham, M. Masud, L. Khan, Email worm
detection using data mining, International Journal of
Information Security and Privacy, 1:4, 47−61, Copyright
2007, IGI Global, www.igi-global.com.

Figure 23.2; Figure 23.3; Figure 23.4; Figure 23.5; Figure
23.6; Figure 23.7

L. Khan, C. Clifton, J. Maurer, M. Ceruti, Dependable
real-time data mining, Proceedings ISORC 2005, p. 158−165,
© 2005 IEEE.

Figure 22.3

M. Farhan Husain, L. Khan, M. Kantarcioglu, Data intensive
query processing for large RDF graphs using cloud
computing tools, IEEE Cloud Computing, Miami, FL, July
2010, p. 1−10, © 2005 IEEE.

46

http://www.igi-global.com


Figures 15.2; Table 16.1; Figure 16.2; Table 16.2; Figure
16.4; Table 17.1; Table 17.2; Figure 17.2; Figure 17.3

M. Masud, T. Al-khateeb, L. Khan, K. Hamlen, Flow-based
identification of botnet traffic by mining multiple log files, in
Proceedings of the International Conference on Distributed
Frameworks & Applications (DFMA), Penang, Malaysia, Oct.
2008, p. 200–206, © 2005 IEEE.

Figure 10.2; Figure 10.3; Table 11.1; Table 11.2; Figure
11.2; Table 11.3; Table 11.4; Table 11.5; Table 11.6; Table
11.7; Table 11.8; Table 11.9

M. Masud, L. Khan, A scalable multi-level feature extraction
technique to detect malicious executables, Information
Systems Frontiers (Springer Netherlands), 10:1, 33−45,
March 2008, © 2008 Springer, With kind permission of
Springer Science+Business Media.

Figure 13.2; Figure 13.3; Table 14.1; Figure 14.2; Table
14.2; Figure 14.3

M. Masud, L. Khan, X. Wang, P. Liu, S. Zhu, Detecting
remote exploits using data mining, Proceedings IFIP Digital
Forensics Conference, Kyoto, January 2008, p. 177–189, ©
2008 Springer. With kind permission of Springer
Science+Business Media.

Figure 19.2; Figure 19.3; Figure 20.2; Table 20.1; Figure
20.3; Table 20.2

M. Masud, J. Gao, L. Khan, J. Han, Integrating novel class
detection with classification for concept-drifting data streams,

47



ECML PKDD ‘09 Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases: Part II, September 2009, pp. 79−94,
Springer-Verlag Berlin, Heidelberg © 2009. With kind
permission of Springer Science+Business Media.

48



1

INTRODUCTION

1.1 Trends
Data mining is the process of posing various queries and
extracting useful and often previously unknown and
unexpected information, patterns, and trends from large
quantities of data, generally stored in databases. These data
could be accumulated over a long period of time, or they
could be large datasets accumulated simultaneously from
heterogeneous sources such as different sensor types. The
goals of data mining include improving marketing
capabilities, detecting abnormal patterns, and predicting the
future based on past experiences and current trends. There is
clearly a need for this technology for many applications in
government and industry. For example, a marketing
organization may need to determine who their potential
customers are. There are large amounts of current and
historical data being stored. Therefore, as databases become
larger, it becomes increasingly difficult to support
decision-making. In addition, the data could be from multiple
sources and multiple domains. There is a clear need to
analyze the data to support planning and other functions of an
enterprise.

Data mining has evolved from multiple technologies,
including data management, data warehousing, machine

49



learning, and statistical reasoning; one of the major
challenges in the development of data mining tools is to
eliminate false positives and false negatives. Much progress
has also been made on building data mining tools based on a
variety of techniques for numerous applications. These
applications include those for marketing and sales, healthcare,
medical, financial, e-commerce, multimedia, and more
recently, security.

Our previous books have discussed various data mining
technologies, techniques, tools, and trends. In a recent book,
our main focus was on the design and development as well as
to discuss the results obtained for the three tools that we
developed between 2004 and 2006. These tools include one
for intrusion detection, one for web page surfing prediction,
and one for image classification. In this book, we continue
with the descriptions of data mining tools we have developed
over the past five years for cyber security. In particular, we
discuss our tools for malware detection.

Malware, also known as malicious software, is developed by
hackers to steal data and identity, causes harm to computers
and denies legitimate services to users, among others.
Malware has plagued the society and the software industry for
almost four decades. Malware includes viruses, worms,
Trojan horses, time and logic bombs, botnets, and spyware. In
this book we describe our data mining tools for malware
detection.

The organization of this chapter is as follows. Supporting
technologies are discussed in Section 1.2. These supporting
technologies are elaborated in Part II. The tools that we
discuss in this book are summarized in Sections 1.3 through

50



1.8. These tools include data mining for email worm
detection, remote exploits detection, malicious code
detection, and botnet detection. In addition, we discuss our
stream data mining tool as well as our approaches for inside
threat detection, adaptable malware detection, real-time data
mining for suspicious event detection, and firewall policy
management. Each of these tools and approaches are
discussed in Parts II through VII. The contents of this book
are summarized in Section 1.9 of this chapter, and next steps
are discussed in Section 1.10.

1.2 Data Mining and
Security Technologies
Data mining techniques have exploded over the past decade,
and we now have tools and products for a variety of
applications. In Part I, we discuss the data mining techniques
that we describe in this book, as well as provide an overview
of the applications we discuss. Data mining techniques
include those based on machine learning, statistical reasoning,
and mathematics. Some of the popular techniques include
association rule mining, decision trees, and K-means
clustering. Figure 1.1 illustrates the data mining techniques.

Data mining has been used for numerous applications in
several fields including in healthcare, e-commerce, and
security. We focus on data mining for cyber security
applications.

51



Figure 1.1 Data mining techniques.

Figure 1.2 Malware.

While data mining technologies have exploded over the past
two decades, the developments in information technologies
have resulted in an increasing need for security. As a result,
there is now an urgent need to develop secure systems.
However, as systems are being secured, malware technologies
have also exploded. Therefore, it is critical that we develop

52



tools for detecting and preventing malware. Various types of
malware are illustrated in Figure 1.2.

In this book we discuss data mining for malware detection. In
particular, we discuss techniques such as support vector
machines, clustering, and classification for cyber security
applications. The tools we have developed are illustrated in
Figure 1.3.

1.3 Data Mining for Email
Worm Detection
An email worm spreads through infected email messages. The
worm may be carried by an attachment, or the email may
contain links to an infected website. When the user opens the
attachment, or clicks the link, the host gets infected
immediately. The worm exploits the vulnerable email
software in the host machine to send infected emails to
addresses stored in the address book. Thus, new machines get
infected. Worms bring damage to computers and people in
various ways. They may clog the network traffic, cause
damage to the system, and make the system unstable or even
unusable.

53



Figure 1.3 Data mining tools for malware detection.

We have developed tools on applying data mining techniques
for intrusion email worm detection. We use both Support
Vector Machine (SVM) and Naïve Bayes (NB) data mining
techniques. Our tools are described in Part III of the book.

1.4 Data Mining for
Malicious Code Detection
Malicious code is a great threat to computers and computer
society. Numerous kinds of malicious codes wander in the
wild. Some of them are mobile, such as worms, and spread
through the Internet causing damage to millions of computers
worldwide. Other kinds of malicious codes are static, such as
viruses, but sometimes deadlier than their mobile counterpart.

54



One popular technique followed by the antivirus community
to detect malicious code is “signature detection.” This
technique matches the executables against a unique telltale
string or byte pattern called signature, which is used as an
identifier for a particular malicious code. However, such
techniques are not effective against “zero-day” attacks. A
zero-day attack is an attack whose pattern is previously
unknown. We are developing a number of data mining tools
for malicious code detection that do not depend on the
signature of the malware. Our hybrid feature retrieval model
is described in Part IV of this book.

1.5 Data Mining for
Detecting Remote Exploits
Remote exploits are a popular means for attackers to gain
control of hosts that run vulnerable services or software.
Typically, a remote exploit is provided as an input to a remote
vulnerable service to hijack the control-flow of
machine-instruction execution. Sometimes the attackers inject
executable code in the exploit that is executed after a
successful hijacking attempt. We refer to these code-carrying
remote exploits as exploit code.

We are developing a number of data mining tools for
detecting remote exploits. Our tools use different
classification models, such as Support Vector Machine
(SVM), Naïve Bayes (NB), and decision trees. These tools are
described in Part V of this book.

55



1.6 Data Mining for Botnet
Detection
Botnets are a serious threat because of their volume and
power. Botnets containing thousands of bots (compromised
hosts) are controlled from a Command and Control (C&C)
center, operated by a human botmaster or botherder. The
botmaster can instruct these bots to recruit new bots, launch
coordinated distributed denial of service (DDoS) attacks
against specific hosts, steal sensitive information from
infected machines, send mass spam emails, and so on.

We have developed data mining tools for botnet detection.
Our tools use Support Vector Machine (SVM), Bayes Net,
decision tree (J48), Naïve Bayes, and Boosted decision tree
(Boosted J48) for the classification task. These tools are
described in Part VI of this book.

1.7 Stream Data Mining
Stream data are quite common. They include video data,
surveillance data, and financial data that arrive continuously.
There are some problems related to stream data classification.
First, it is impractical to store and use all the historical data
for training, because it would require infinite storage and
running time. Second, there may be concept-drift in the data,
meaning the underlying concept of the data may change over
time. Third, novel classes may evolve in the stream.

56



We have developed stream mining techniques for detecting
novel cases. We believe that these techniques could be used
for detecting novel malware. Our tools for stream mining are
described in Part VI of this book.

1.8 Emerging Data Mining
Tools for Cyber Security
Applications
In addition to the tools described in Sections 1.3 through 1.7,
we are also exploring techniques for (a) detecting malware
that reacts and adapts to the environment, (b) insider threat
detection, (c) real-time data mining, and (d) firewall policy
management.

For malware that adapts, we are exploring the stream mining
techniques. For insider threat detection, we are applying
graph mining techniques. We are exploring real-time data
mining to detect malware in real time. Finally, we are
exploring the use of association rule mining techniques for
ensuring that the numerous firewall policies are consistent.
These techniques are described in Part VII of this book.

57



1.9 Organization of This
Book
This book is divided into seven parts. Part I consists of this
introductory chapter and four additional chapters. Chapter 2
provides some background information in the data mining
techniques and applications that have influenced our research
and tools. Chapter 3 describes types of malware. In Chapter 4,
we provide an overview of data mining for security
applications. The tools we have described in our previous
book are discussed in Chapter 5. We discuss the three tools,
as many of the tools we discuss in this current book have been
influenced by our early tools.

Part II consists of three chapters, 6, 7, and 8, which describe
our tool for email worm detection. An overview of email
worm detection is discussed in Chapter 6. Our tool is
discussed in Chapter 7. Evaluation and results are discussed
in Chapter 8. Part III consists of three chapters, 9, 10, and 11,
and describes our tool for malicious code detection. An
overview of malicious code detection is discussed in Chapter
9. Our tool is discussed in Chapter 10. Evaluation and results
are discussed in Chapter 11. Part IV consists of three
chapters, 12, 13, and 14, and describes our tool for detecting
remote exploits. An overview of detecting remote exploits is
discussed in Chapter 12. Our tool is discussed in Chapter 13.
Evaluation and results are discussed in Chapter 14. Part V
consists of three chapters, 15, 16, and 17, and describes our
tool for botnet detection. An overview of botnet detection is
discussed in Chapter 15. Our tool is discussed in Chapter 16.

58



Evaluation and results are discussed in Chapter 17. Part VI
consists of three chapters, 18, 19, and 20, and describes our
tool for stream mining. An overview of stream mining is
discussed in Chapter 18. Our tool is discussed in Chapter 19.
Evaluation and results are discussed in Chapter 20. Part VII
consists of four chapters, 21, 22, 23, and 24, and describes our
tools for emerging applications. Our approach to detecting
adaptive malware is discussed in Chapter 21. Our approach
for insider threat detection is discussed in Chapter 22.
Real-time data mining is discussed in Chapter 23. Firewall
policy management tool is discussed in Chapter 24.

The book is concluded in Chapter 25. Appendix A provides
an overview of data management and describes the
relationship between our books. Appendix B describes
trustworthy systems. Appendix C describes secure data,
information, and knowledge management, and Appendix D
describes semantic web technologies. The appendices,
together with the supporting technologies described in Part I,
provide the necessary background to understand the content
of this book.

We have essentially developed a three-layer framework to
explain the concepts in this book. This framework is
illustrated in Figure 1.4. Layer 1 is the data mining techniques
layer. Layer 2 is our tools layer. Layer 3 is the applications
layer. Figure 1.5 illustrates how Chapters 2 through 24 in this
book are placed in the framework.

59



1.10 Next Steps
This book provides the information for a reader to get familiar
with data mining concepts and understand how the techniques
are applied step-by-step to some real-world applications in
malware detection. One of the main contributions of this book
is raising the awareness of the importance of data mining for
a variety of applications in cyber security. This book could be
used as a guide to build data mining tools for cyber security
applications.

60



61



Figure 1.4 Framework for data mining tools.

We provide many references that can help the reader in
understanding the details of the problem we are investigating.
Our advice to the reader is to keep up with the developments
in data mining and get familiar with the tools and products
and apply them for a variety of applications. Then the reader
will have a better understanding of the limitation of the tools
and be able to determine when new tools have to be
developed.

62



63



Figure 1.5 Contents of the book with respect to the
framework.

64



PART I

DATA MINING AND SECURITY

Introduction to Part I: Data
Mining and Security
Supporting technologies for data mining for malware
detection include data mining and malware technologies. Data
mining is the process of analyzing the data and uncovering
hidden dependencies. The outcomes of data mining include
classification, clustering, forming associations, as well as
detecting anomalies. Malware technologies are being
developed at a rapid speed. These include worms, viruses, and
Trojan horses.

Part I, consisting of five chapters, discusses supporting
technologies for data mining for malware detection. Chapter 1
provides a brief overview of data mining and malware. In
Chapter 2, we discuss the data mining techniques we have
utilized in our tools. Specifically, we present the Markov
model, support vector machines, artificial neural networks,
and association rule mining. In Chapter 3, we discuss various
types of malware, including worms, viruses, and Trojan
horses. In Chapter 4, we discuss data mining for security
applications. In particular, we discuss the threats to the
computers and networks and describe the applications of data
mining to detect such threats and attacks. Some of our current

65



research at The University of Texas at Dallas also is
discussed. In Chapter 5, we discuss the three applications we
have considered in our previous book on the design and
implementation of data mining tools. These tools have
influenced the work discussed in this book a great deal. In
particular, we discuss intrusion detection, web surfing
prediction, and image classification tools.

66



2

DATA MINING TECHNIQUES

2.1 Introduction
Data mining outcomes (also called tasks) include
classification, clustering, forming associations, as well as
detecting anomalies. Our tools have mainly focused on
classification as the outcome, and we have developed
classification tools. The classification problem is also referred
to as Supervised Learning, in which a set of labeled examples
is learned by a model, and then a new example with an
unknown label is presented to the model for prediction.

There are many prediction models that have been used, such
as the Markov model, decision trees, artificial neural
networks, support vector machines, association rule mining,
and many others. Each of these models has strengths and
weaknesses. However, there is a common weakness among
all of these techniques, which is the inability to suit all
applications. The reason that there is no such ideal or perfect
classifier is that each of these techniques is initially designed
to solve specific problems under certain assumptions.

In this chapter, we discuss the data mining techniques we
have utilized in our tools. Specifically, we present the Markov
model, support vector machines, artificial neural networks,
association rule mining, and the problem of

67



multi-classification, as well as image classification, which is
an aspect of image mining. These techniques are also used in
developing and comparing results in Parts II, III, and IV. In
our research and development, we propose hybrid models to
improve the prediction accuracy of data mining algorithms in
various applications, namely, intrusion detection, WWW
prediction, and image classification.

The organization of this chapter is as follows. In Section 2.2,
we provide an overview of various data mining tasks and
techniques. The techniques that are relevant to the contents of
this book are discussed in Sections 2.2 through 2.7. In
particular, neural networks, support vector machines, Markov
models, and association rule mining, as well as some other
classification techniques are described. The chapter is
summarized in Section 2.8.

2.2 Overview of Data
Mining Tasks and
Techniques
Before we discuss data mining techniques, we provide an
overview of some of the data mining tasks (also known as
data mining outcomes). Then we discuss the techniques. In
general, data mining tasks can be grouped into two categories:
predictive and descriptive. Predictive tasks essentially predict
whether an item belongs to a class or not. Descriptive tasks,
in general, extract patterns from the examples. One of the
most prominent predictive tasks is classification. In some

68



cases, other tasks, such as anomaly detection, can be reduced
to a predictive task such as whether a particular situation is an
anomaly or not. Descriptive tasks, in general, include making
associations and forming clusters. Therefore, classification,
anomaly detection, making associations, and forming clusters
are also thought to be data mining tasks.

Next, the data mining techniques can be either predictive,
descriptive, or both. For example, neural networks can
perform classification as well as clustering. Classification
techniques include decision trees, support vector machines, as
well as memory-based reasoning. Association rule mining
techniques are used, in general, to make associations. Link
analysis that analyzes links can also make associations
between links and predict new links. Clustering techniques
include K-means clustering. An overview of the data mining
tasks (i.e., the outcomes of data mining) is illustrated in
Figure 2.1. The techniques discussed in this book (e.g., neural
networks, support vector machines) are illustrated in Figure
2.2.

69



2.3 Artificial Neural
Network

Figure 2.1 Data mining tasks.

70



Figure 2.2 Data mining techniques.

Artificial neural network (ANN) is a very well-known,
powerful, and robust classification technique that has been
used to approximate real-valued, discrete-valued, and
vector-valued functions from examples. ANNs have been
used in many areas such as interpreting visual scenes, speech
recognition, and learning robot control strategies. An artificial
neural network (ANN) simulates the biological nervous
system in the human brain. Such a nervous system is
composed of a large number of highly interconnected
processing units (neurons) working together to produce our
feelings and reactions. ANNs, like people, learn by example.
The learning process in a human brain involves adjustments
to the synaptic connections between neurons. Similarly, the
learning process of ANN involves adjustments to the node
weights. Figure 2.3 presents a simple neuron unit, which is
called perceptron. The perceptron input, x, is a vector or
real-valued input, and w is the weight vector, in which its
value is determined after training. The perceptron computes a
linear combination of an input vector x as follows (Eq. 2.1).

71



Figure 2.3 The perceptron.

Notice that wi corresponds to the contribution of the input
vector component xi of the perceptron output. Also, in order
for the perceptron to output a 1, the weighted combination of
the inputs

must be greater than the threshold w0.

Learning the perceptron involves choosing values for the
weights w0 + w1x1 + … + wnxn. Initially, random weight
values are given to the perceptron. Then the perceptron is
applied to each training example updating the weights of the
perceptron whenever an example is misclassified. This
process is repeated many times until all training examples are

72



correctly classified. The weights are updated according to the
following rule (Eq. 2.2):

where η is a learning constant, o is the output computed by
the perceptron, and t is the target output for the current
training example.

The computation power of a single perceptron is limited to
linear decisions. However, the perceptron can be used as a
building block to compose powerful multi-layer networks. In
this case, a more complicated updating rule is needed to train
the network weights. In this work, we employ an artificial
neural network of two layers and each layer is composed of
three building blocks (see Figure 2.4). We use the back
propagation algorithm for learning the weights. The back
propagation algorithm attempts to minimize the squared error
function.

73



Figure 2.4 Artificial neural network.

Figure 2.5 The design of ANN used in our implementation.

A typical training example in WWW prediction is 〈[kt–τ+1,
…, kt–1, kt]T, d〉, where [kt–τ+1, …, kt–1, kt]T is the input to the
ANN and d is the target web page. Notice that the input units
of the ANN in Figure 2.5 are τ previous pages that the user
has recently visited, where k is a web page id. The output of
the network is a boolean value, not a probability. We will see
later how to approximate the probability of the output by
fitting a sigmoid function after ANN output. The
approximated probabilistic output becomes o′ = f(o(I) = pt+1,
where I is an input session and pt+1 = p(d|kt–τ+1, …, kt). We
choose the sigmoid function (Eq. 2.3) as a transfer function so

74



that the ANN can handle a non-linearly separable dataset
[Mitchell, 1997]. Notice that in our ANN design (Figure 2.5),
we use a sigmoid transfer function, Eq. 2.3, in each building
block. In Eq. 2.3, I is the input to the network, O is the output
of the network, W is the matrix of weights, and σ is the
sigmoid function.

We implement the back propagation algorithm for training the
weights. The back propagation algorithm employs gradient
descent to attempt to minimize the squared error between the
network output values and the target values of these outputs.
The sum of the error over all of the network output units is
defined in Eq. 2.4. In Eq. 2.4, the outputs is the set of output
units in the network, D is the training set, and tik and oik are
the target and the output values associated with the ith output

75



unit and training example k. For a specific weight wji in the
network, it is updated for each training example as in Eq. 2.5,
where η is the learning rate and wji is the weight associated
with the ith input to the network unit j (for details see
[Mitchell, 1997]). As we can see from Eq. 2.5, the search
direction δw is computed using the gradient descent, which
guarantees convergence toward a local minimum. To mitigate
that, we add a momentum to the weight update rule such that
the weight update direction δwji(n) depends partially on the
update direction in the previous iteration δwji(n – 1). The new
weight update direction is shown in Eq. 2.6, where n is the
current iteration, and α is the momentum constant. Notice that
in Eq. 2.6, the step size is slightly larger than in Eq. 2.5. This
contributes to a smooth convergence of the search in regions
where the gradient is unchanging [Mitchell, 1997].

In our implementation, we set the step size η dynamically
based on the distribution of the classes in the dataset.
Specifically, we set the step size to large values when
updating the training examples that belong to low distribution
classes and vice versa. This is because when the distribution
of the classes in the dataset varies widely (e.g., a dataset
might have 5% positive examples and 95% negative
examples), the network weights converge toward the
examples from the class of larger distribution, which causes a
slow convergence. Furthermore, we adjust the learning rates
slightly by applying the momentum constant, Eq. 2.6, to
speed up the convergence of the network [Mitchell, 1997].

76



2.4 Support Vector
Machines
Support vector machines (SVMs) are learning systems that
use a hypothesis space of linear functions in a high
dimensional feature space, trained with a learning algorithm
from optimization theory. This learning strategy, introduced
by Vapnik [1995, 1998, 1999; see also Cristianini and
Shawe-Taylor, 2000], is a very powerful method that has
been applied in a wide variety of applications. The basic
concept in SVM is the hyper-plane classifier, or linear
separability. To achieve linear separability, SVM applies two
basic ideas: margin maximization and kernels, that is,
mapping input space to a higher dimension space, feature
space.

For binary classification, the SVM problem can be formalized
as in Eq. 2.7. Suppose we have N training data points {(x1,y1),
(x2,y2), …, (xN,yN)}, where xi ∈ Rd and yi ∈ {+1,–1}. We
would like to find a linear separating hyper-plane classifier as
in Eq. 2.8. Furthermore, we want this hyper-plane to have the
maximum separating margin with respect to the two classes
(see Figure 2.6). The functional margin, or the margin for
short, is defined geometrically as the Euclidean distance of
the closest point from the decision boundary to the input
space. Figure 2.7 gives an intuitive explanation of why
margin maximization gives the best solution of separation. In
part (a) of Figure 2.7, we can find an infinite number of
separators for a specific dataset. There is no specific or clear
reason to favor one separator over another. In part (b), we see

77



that maximizing the margin provides only one thick separator.
Such a solution achieves the best generalization accuracy, that
is, prediction for the unseen [Vapnik, 1995, 1998, 1999].

Figure 2.6 Linear separation in SVM.

Figure 2.7 The SVM separator that causes the maximum
margin.

78



Notice that Eq. 2.8 computes the sign of the functional margin
of point x in addition to the prediction label of x, that is,
functional margin of x equals wx – b.

The SVM optimization problem is a convex quadratic
programming problem (in w, b) in a convex set Eq. 2.7. We
can solve the Wolfe dual instead, as in Eq. 2.9, with respect to
α, subject to the constraints that the gradient of L(w,b,α) with
respect to the primal variables w and b vanish and αi ≥ 0. The
primal variables are eliminated from L(w,b,α) (see [Cristianini
and Shawe-Taylor, 1999] for more details). When we solve αi
we can get

and we can classify a new object x using Eq. 2.10. Note that
the training vectors occur only in the form of a dot product
and that there is a Lagrangian multiplier αi for each training
point, which reflects the importance of the data point. When
the maximal margin hyper-plane is found, only points that lie
closest to the hyper-plane will have αi > 0 and these points are
called support vectors. All other points will have αi = 0 (see
Figure 2.8a). This means that only those points that lie closest

79



to the hyper-plane give the representation of the hypothesis/
classifier. These most important data points serve as support
vectors. Their values can also be used to give an independent
boundary with regard to the reliability of the hypothesis/
classifier [Bartlett and Shawe-Taylor, 1999].

Figure 2.8a shows two classes and their boundaries, that is,
margins. The support vectors are represented by solid objects,
while the empty objects are non-support vectors. Notice that
the margins are only affected by the support vectors; that is, if
we remove or add empty objects, the margins will not change.
Meanwhile, any change in the solid objects, either adding or
removing objects, could change the margins. Figure 2.8b
shows the effects of adding objects in the margin area. As we
can see, adding or removing objects far from the margins, for
example, data point 1 or −2, does not change the margins.
However, adding and/or removing objects near the margins,
for example, data point 2 and/or −1, has created new margins.

80



Figure 2.8 (a) The α values of support vectors and
non-support vectors. (b) The effect of adding new data points
on the margins.

2.5 Markov Model
Some recent and advanced predictive methods for web
surfing are developed using Markov models [Pirolli et al.,
1996], [Yang et al., 2001]. For these predictive models, the
sequences of web pages visited by surfers are typically
considered as Markov chains, which are then fed as input.
The basic concept of the Markov model is that it predicts the
next action depending on the result of previous action or
actions. Actions can mean different things for different
applications. For the purpose of illustration, we will consider
actions specific for the WWW prediction application. In
WWW prediction, the next action corresponds to prediction
of the next page to be traversed. The previous actions
correspond to the previous web pages to be considered. Based
on the number of previous actions considered, the Markov
model can have different orders.

81



The zeroth-order Markov model is the unconditional
probability of the state (or web page), Eq. 2.11. In Eq. 2.11,
Pk is a web page and Sk is the corresponding state. The
first-order Markov model, Eq. 2.12, can be computed by
taking page-to-page transitional probabilities or the n-gram
probabilities of { P1, P2 }, { P2, P3 },…, { Pk–1, Pk}.

In the following, we present an illustrative example of
different orders of the Markov model and how it can predict.

Example Imagine a web site of six web pages: P1, P2, P3,
P4, P5, and P6. Suppose we have user sessions as in Table
2.1. Table 2.1 depicts the navigation of many users of that
web site. Figure 2.9 shows the first-order Markov model,
where the next action is predicted based only on the last
action performed, i.e., last page traversed, by the user. States
S and F correspond to the initial and final states, respectively.
The probability of each transition is estimated by the ratio of
the number of times the sequence of states was traversed and
the number of times the anchor state was visited. Next to each
arch in Figure 2.8, the first number is the frequency of that
transition, and the second number is the transition probability.
For example, the transition probability of the transition (P2 to
P3) is 0.2 because the number of times users traverse from
page 2 to page 3 is 3, and the number of times page 2 is
visited is 15 (i.e., 0.2 = 3/15).

Notice that the transition probability is used to resolve
prediction. For example, given that a user has already visited
P2, the most probable page she visits next is P6. That is
because the transition probability from P2 to P6 is the highest.

Table 2.1 Collection of User Sessions and Their Frequencies

82



SESSION FREQUENCY
P1,P2,P4 5
P1,P2,P6 1
P5,P2,P6 6
P5,P2,P3 3

Figure 2.9 First-order Markov model.

Notice that that transition probability might not be available
for some pages. For example, the transition probability from
P2 to P5 is not available because no user has visited P5 after
P2. Hence, these transition probabilities are set to zeros.
Similarly, the Kth-order Markov model is where the
prediction is computed after considering the last Kth action
performed by the users, Eq. 2.13. In WWW prediction, the
Kth-order Markov model is the probability of user visit to Pk

th

page given its previous k-1 page visits.

83



Figure 2.10 Second-order Markov model.

Figure 2.10 shows the second-order Markov model that
corresponds to Table 2.1. In the second-order model we
consider the last two pages. The transition probability is
computed in a similar fashion. For example, the transition
probability of the transition (P1,P2) to (P2, P6) is 0.16 = 1 ×
1/6 because the number of times users traverse from state
(P1,P2) to state (P2,P6) is 1 and the number of times pages
(P1,P2) is visited is 6 (i.e., 0.16 = 1/6). The transition
probability is used for prediction. For example, given that a
user has visited P1 and P2, she most probably visits P4
because the transition probability from state (P1,P2) to state
(P2,P4) is greater than the transition probability from state
(P1,P2) to state (P2,P6).

84



The order of Markov model is related to the sliding window.
The Kth-order Markov model corresponds to a sliding
window of size K-1.

Notice that there is another concept that is similar to the
sliding window concept, which is number of hops. In this
book we use number of hops and sliding window
interchangeably.

In WWW prediction, Markov models are built based on the
concept of n-gram. The n-gram can be represented as a tuple
of the form 〈x1, x2, …, xn〉 to depict sequences of page clicks
by a population of users surfing a web site. Each component
of the n-gram takes a specific page id value that reflects the
surfing path of a specific user surfing a web page. For
example, the n-gram 〈P10, P21, P4, P12〉 for some user U states
that the user U has visited the pages 10, 21, 4, and finally
page 12 in a sequence.

2.6 Association Rule Mining
(ARM)
Association rule is a data mining technique that has been
applied successfully to discover related transactions. The
association rule technique finds the relationships among
itemsets based on their co-occurrence in the transactions.
Specifically, association rule mining discovers the frequent
patterns (regularities) among those itemsets, for example,
what the items purchased together in a super store are. In the
following, we briefly introduce association rule mining. For

85



more details, see [Agrawal et al., 1993], [Agrawal and
Srikant, 1994].

Assume we have m items in our database; define I = {i1, i2,…,
im} as the set of all items. A transaction T is a set of items
such that T ⊆ I. Let D be the set of all transactions in the
database. A transaction T contains X if X ⊆ T and X ⊆ I. An
association rule is an implication of the form X → Y, where X
⊂ I, Y ⊂ I, and X ∩ Y = ϕ. There are two parameters to
consider a rule: confidence and support. A rule R = X → Y
holds with confidence c if c% of the transactions of D that
contain X also contain Y (i.e., c = pr(Y|X)). The rule R holds
with support s if s% of the transactions in D contain X and Y
(i.e., s = pr(X,Y)). The problem of mining association rules is
defined as the following: given a set of transactions D, we
would like to generate all rules that satisfy a confidence and a
support greater than a minimum confidence (σ), minconf, and
minimum support (ϑ), minsup. There are several efficient
algorithms proposed to find association rules, for example,
the AIS algorithm [Agrawal et al., 1993], [Agrawal and
Srikant, 1994], SETM algorithm [Houstma and Swanu,
1995], and AprioriTid [Agrawal and Srikant, 1994].

In the case of web transactions, we use association rules to
discover navigational patterns among users. This would help
to cache a page in advance and reduce the loading time of a
page. Also, discovering a pattern of navigation helps in
personalization. Transactions are captured from the
clickstream data captured in web server logs.

In many applications, there is one main problem in using
association rule mining. First, a problem with using global
minimum support (minsup), because rare hits (i.e., web pages

86



that are rarely visited) will not be included in the frequent sets
because it will not achieve enough support. One solution is to
have a very small support threshold; however, we will end up
with a very large frequent itemset, which is computationally
hard to handle. [Liu et al., 1999] propose a mining technique
that uses different support thresholds for different items.
Specifying multiple thresholds allow rare transactions, which
might be very important, to be included in the frequent
itemsets. Other issues might arise depending on the
application itself. For example, in the case of WWW
prediction, a session is recorded for each user. The session
might have tens of clickstreams (and sometimes hundreds
depending on the duration of the session). Using each session
as a transaction will not work because it is rare to find two
sessions that are frequently repeated (i.e., identical); hence it
will not achieve even a very high support threshold, minsup.
There is a need to break each session into many
subsequences. One common method is to use a sliding
window of size w. For example, suppose we use a sliding
window w = 3 to break the session S = 〈A, B, C, D, E, E, F〉,
then we will end up with the subsequences S′ = {〈A,B,C〉,
〈B,C,D〉, 〈C,D,E〉, 〈D,E,F〉}. The total number of
subsequences of a session S using window w is length(S) – w.
To predict the next page in an active user session, we use a
sliding window of the active session and ignore the previous
pages. For example, if the current session is 〈A,B,C〉, and the
user references page D, then the new active session becomes
〈B,C,D〉, using a sliding window 3. Notice that page A is
dropped, and 〈B,C,D〉 will be used for prediction. The
rationale behind this is that most users go back and forth
while surfing the web trying to find the desired information,
and it may be most appropriate to use the recent portions of

87



the user history to generate recommendations/predictions
[Mobasher et al., 2001].

[Mobasher et al., 2001] propose a recommendation engine
that matches an active user session with the frequent itemsets
in the database and predicts the next page the user most
probably visits. The engine works as follows. Given an active
session of size w, the engine finds all the frequent itemsets of
length w + 1 satisfying some minimum support minsup and
containing the current active session. Prediction for the active
session A is based on the confidence (ψ) of the corresponding
association rule. The confidence (ψ) of an association rule X
→ z is defined as ψ(X → z) = σ(X ∪ z)/σ(X), where the length
of z is 1. Page p is recommended/predicted for an active
session A, if

The engine uses a cyclic graph called the Frequent Itemset
Graph. The graph is an extension of the lexicographic tree
used in the tree projection algorithm of [Agrawal et al., 2001].
The graph is organized in levels. The nodes in level l have
itemsets of size l. For example, the sizes of the nodes (i.e., the
size of the itemsets corresponding to these nodes) in level 1
and 2 are 1 and 2, respectively. The root of the graph, level 0,

88



is an empty node corresponding to an empty itemset. A node
X in level l is linked to a node Y in level l + 1 if X ⊂ Y. To
further explain the process, suppose we have the following
sample web transactions involving pages 1, 2, 3, 4, and 5 as in
Table 2.2. The Apriori algorithm produces the itemsets as in
Table 2.3, using a minsup = 0.49. The frequent itemset graph
is shown in Figure 2.11.

Table 2.2 Sample Web Transaction

TRANSACTION ID ITEMS
T1 1,2,4,5
T2 1,2,5,3,4
T3 1,2,5,3
T4 2,5,2,1,3
T5 4,1,2,5,3
T6 1,2,3,4
T7 4,5
T8 4,5,3,1

Table 2.3 Frequent Itemsets Generated by the Apriori
Algorithm

89



Suppose we are using a sliding window of size 2, and the
current active session A = 〈2,3〉. To predict/recommend the
next page, we first start at level 2 in the frequent itemset
graph and extract all the itemsets in level 3 linked to A. From
Figure 2.11, the node {2,3} is linked to {1,2,3} and {2,3,5}
nodes with confidence:

and the recommended page is 1 because its confidence is
larger. Notice that, in Recommendation Engines, the order of
the clickstream is not considered; that is, there is no
distinction between a session 〈1,2,4〉 and 〈1,4,2〉. This is a
disadvantage of such systems because the order of pages
visited might bear important information about the navigation
patterns of users.

90



Figure 2.11 Frequent Itemset Graph.

2.7 Multi-Class Problem
Most classification techniques solve the binary classification
problem. Binary classifiers are accumulated to generalize for
the multi-class problem. There are two basic schemes for this
generalization, namely, one-vs-one, and one-vs-all. To avoid
redundancy, we will present this generalization only for
SVM.

2.7.1 One-vs-One

The one-vs-one approach creates a classifier for each pair of
classes. The training set for each pair classifier (i,j) includes

91



only those instances that belong to either class i or j. A new
instance x belongs to the class upon which most pair
classifiers agree. The prediction decision is quoted from the
majority vote technique. There are n(n – 1)/2 classifiers to be
computed, where n is the number of classes in the dataset. It
is evident that the disadvantage of this scheme is that we need
to generate a large number of classifiers, especially if there
are a large number of classes in the training set. For example,
if we have a training set of 1,000 classes, we need 499,500
classifiers. On the other hand, the size of training set for each
classifier is small because we exclude all instances that do not
belong to that pair of classes.

2.7.2 One-vs-All

One-vs-all creates a classifier for each class in the dataset.
The training set is pre-processed such that for a classifier j,
instances that belong to class j are marked as class (+1) and
instances that do not belong to class j are marked as class
(–1). In the one-vs-all scheme, we compute n classifiers,
where n is the number of pages that users have visited (at the
end of each session). A new instance x is predicted by
assigning it to the class that its classifier outputs the largest
positive value (i.e., maximal marginal), as in Eq. 2.15. We
can compute the margin of point x as in Eq. 2.14. Notice that
the recommended/predicted page is the sign of the margin
value of that page (see Eq. 2.10).

92



In Eq. 2.15, M is the number of classes, x = 〈x1, x2,…, xn〉 is
the user session, and fi is the classifier that separates class i
from the rest of the classes. The prediction decision in Eq.
2.15 resolves to the classifier fc that is the most distant from
the testing example x. This might be explained as fc has the
most separating power, among all other classifiers, of
separating x from the rest of the classes.

The advantage of this scheme (one-vs-all), compared to the
one-VS-one scheme, is that it has fewer classifiers. On the
other hand, the size of the training set is larger for one-vs-all
than for a one-vs-one scheme because we use the whole
original training set to compute each classifier.

2.8 Image Mining
Along with the development of digital images and computer
storage technologies, huge amounts of digital images are
generated and saved every day. Applications of digital image
have rapidly penetrated many domains and markets, including
commercial and news media photo libraries, scientific and
non-photographic image databases, and medical image
databases. As a consequence, we face a daunting problem of
organizing and accessing these huge amounts of available
images. An efficient image retrieval system is highly desired
to find images of specific entities from a database. The
system is expected to manage a huge collection of images
efficiently, respond to users’ queries with high speed, and
deliver a minimum of irrelevant information (high precision),

93



as well as ensure that relevant information is not overlooked
(high recall).

To generate such kinds of systems, people tried many
different approaches. In the early 1990s, because of the
emergence of large image collections, content-based image
retrieval (CBIR) was proposed. CBIR computes relevance
based on the similarity of visual content/low-level image
features such as color histograms, textures, shapes, and spatial
layout. However, the problem is that visual similarity is not
semantic similarity. There is a gap between low-level visual
features and semantic meanings. The so-called semantic gap
is the major problem that needs to be solved for most CBIR
approaches. For example, a CBIR system may answer a query
request for a “red ball” with an image of a “red rose.” If we
undertake the annotation of images with keywords, a typical
way to publish an image data repository is to create a
keyword-based query interface addressed to an image
database. If all images came with a detailed and accurate
description, image retrieval would be convenient based on
current powerful pure text search techniques. These search
techniques would retrieve the images if their descriptions/
annotations contained some combination of the keywords
specified by the user. However, the major problem is that
most of images are not annotated. It is a laborious,
error-prone, and subjective process to manually annotate a
large collection of images. Many images contain the desired
semantic information, even though they do not contain the
user-specified keywords. Furthermore, keyword-based search
is useful especially to a user who knows what keywords are
used to index the images and who can therefore easily
formulate queries. This approach is problematic, however,
when the user does not have a clear goal in mind, does not

94



know what is in the database, and does not know what kind of
semantic concepts are involved in the domain.

Image mining is a more challenging research problem than
retrieving relevant images in CBIR systems. The goal of
image mining is to find an image pattern that is significant for
a given set of images and helpful to understand the
relationships between high-level semantic concepts/
descriptions and low-level visual features. Our focus is on
aspects such as feature selection and image classification.

2.8.1 Feature Selection

Usually, data saved in databases is with well-defined
semantics such as numbers or structured data entries. In
comparison, data with ill-defined semantics is unstructured
data. For example, images, audio, and video are data with
ill-defined semantics. In the domain of image processing,
images are represented by derived data or features such as
color, texture, and shape. Many of these features have
multiple values (e.g., color histogram, moment description).
When people generate these derived data or features, they
generally generate as many features as possible, since they are
not aware which feature is more relevant. Therefore, the
dimensionality of derived image data is usually very high.
Some of the selected features might be duplicated or may not
even be relevant to the problem. Including irrelevant or
duplicated information is referred to as “noise.” Such
problems are referred to as the “curse of dimensionality.”
Feature selection is the research topic for finding an optimal
subset of features. In this section, we will discuss this curse
and feature selection in detail.

95



We developed a wrapper-based simultaneous feature
weighing and clustering algorithm. The clustering algorithm
will bundle similar image segments together and generate a
finite set of visual symbols (i.e., blob-token). Based on
histogram analysis and chi-square value, we assign features of
image segments different weights instead of removing some
of them. Feature weight evaluation is wrapped in a clustering
algorithm. In each iteration of the algorithm, feature weights
of image segments are reevaluated based on the clustering
result. The reevaluated feature weights will affect the
clustering results in the next iteration.

2.8.2 Automatic Image Annotation

Automatic image annotation is research concerned with
object recognition, where the effort is concerned with trying
to recognize objects in an image and generate descriptions for
the image according to semantics of the objects. If it is
possible to produce accurate and complete semantic
descriptions for an image, we can store descriptions in an
image database. Based on a textual description, more
functionality (e.g., browse, search, and query) of an Image
DBMS could be implemented easily and efficiently by
applying many existing text-based search techniques.
Unfortunately, the automatic image annotation problem has
not been solved in general, and perhaps this problem is
impossible to solve.

However, in certain subdomains, it is still possible to obtain
some interesting results. Many statistical models have been
published for image annotation. Some of these models took
feature dimensionality into account and applied singular value

96



decomposition (SVD) or principle component analysis (PCA)
to reduce dimension. But none of them considered feature
selection or feature weight. We proposed a new framework
for image annotation based on a translation model (TM). In
our approach, we applied our weighted feature selection
algorithm and embedded it in image annotation framework.
Our weighted feature selection algorithm improves the quality
of visual tokens and generates better image annotations.

2.8.3 Image Classification

Image classification is an important area, especially in the
medical domain, because it helps manage large medical
image databases and has great potential as a diagnostic aid in
a real-world clinical setting. We describe our experiments for
the image CLEF medical image retrieval task. Sizes of classes
of CLEF medical image datasets are not balanced, and this is
a really serious problem for all classification algorithms. To
solve this problem, we re-sample data by generating
subwindows. k nearest neighbor (kNN) algorithm, distance
weighted kNN, fuzzy kNN, nearest prototype classifier, and
evidence theory-based kNN are implemented and studied.
Results show that evidence-based kNN has the best
performance based on classification accuracy.

2.9 Summary
In this chapter, we first provided an overview of the various
data mining tasks and techniques and then discussed some of
the techniques that we will utilize in this book. These include

97



neural networks, support vector machines, and association
rule mining.

Numerous data mining techniques have been designed and
developed, and many of them are being utilized in
commercial tools. Several of these techniques are variations
of some of the basic classification, clustering, and association
rule mining techniques. One of the major challenges today is
to determine the appropriate techniques for various
applications. We still need more benchmarks and
performance studies. In addition, the techniques should result
in fewer false positives and negatives. Although there is still
much to be done, the progress over the past decade is
extremely promising.

References
[Agrawal et al., 1993] Agrawal, R., T. Imielinski, A. Swami,
Mining Association Rules between Sets of Items in Large
Databases, in Proceedings of the ACM SIGMOD Conference
on Management of Data, Washington, DC, May 1993, pp.
207–216.

[Agrawal et al., 2001] Agrawal, R., C. Aggarwal, V. Prasad,
A Tree Projection Algorithm for Generation of Frequent Item
Sets, Journal of Parallel and Distributed Computing Archive,
Vol. 61, No. 3, 2001, pp. 350–371.

[Agrawal and Srikant, 1994] Agrawal, R., and R. Srikant,
Fast Algorithms for Mining Association Rules in Large
Database, in Proceedings of the 20th International

98



Conference on Very Large Data Bases, San Francisco, CA,
1994, pp. 487–499.

[Bartlett and Shawe-Taylor, 1999] Bartlett, P., and J.
Shawe-Taylor, Generalization Performance of Support Vector
Machines and Other Pattern Classifiers, Advances in Kernel
Methods—Support Vector Learning, MIT Press, Cambridge,
MA, 1999, pp. 43–54.

[Cristianini and Shawe-Taylor, 2000] Cristianini, N., and J.
Shawe-Taylor, Introduction to Support Vector Machines,
Cambridge University Press, 2000, pp. 93–122.

[Houstma and Swanu, 1995] Houtsma, M., and A. Swanu,
Set-Oriented Mining of Association Rules in Relational
Databases, in Proceedings of the Eleventh International
Conference on Data Engineering, Washington, DC, 1995, pp.
25–33.

[Liu et al., 1999] Liu, B., W. Hsu, Y. Ma, Association Rules
with Multiple Minimum Supports, in Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, CA, 1999, pp.
337–341.

[Mitchell, 1997] Mitchell, T. M., Machine Learning,
McGraw-Hill, 1997, chap. 4.

[Mobasher et al., 2001] Mobasher, B., H. Dai, T. Luo, M.
Nakagawa, Effective Personalization Based on Association
Rule Discovery from Web Usage Data, in Proceedings of the
ACM Workshop on Web Information and Data Management
(WIDM01), 2001, pp. 9–15.

99



[Pirolli et al., 1996] Pirolli, P., J. Pitkow, R. Rao, Silk from a
Sow’s Ear: Extracting Usable Structures from the Web, in
Proceedings of 1996 Conference on Human Factors in
Computing Systems (CHI-96), Vancouver, British Columbia,
Canada, 1996, pp. 118–125.

[Vapnik, 1995] Vapnik, V.N., The Nature of Statistical
Learning Theory, Springer, 1995.

[Vapnik, 1998] Vapnik, V.N., Statistical Learning Theory,
Wiley, 1998.

[Vapnik, 1999] Vapnik, V.N., The Nature of Statistical
Learning Theory, 2nd Ed., Springer, 1999.

[Yang et al., 2001] Yang, Q., H. Zhang, T. Li, Mining Web
Logs for Prediction Models in WWW Caching and
Prefetching, in The 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD,
August 26–29, 2001, pp. 473–478.

100



3

MALWARE

3.1 Introduction
Malware is the term used for malicious software. Malicious
software is developed by hackers to steal data identities, cause
harm to computers, and deny legitimate services to users,
among others. Malware has plagued society and the software
industry for almost four decades. Some of the early malware
includes Creeper virus of 1970 and the Morris worm of 1988.

As computers became interconnected, the number of
malwares developed increased at an alarming rate in the
1990s. Today, with the World Wide Web and so many
transactions and acuities being carried out on the Internet, the
malware problem is causing chaos among the computer and
network users.

There are various types of malware, including viruses,
worms, time and logic bombs, Trojan horses, and spyware.
Preliminary results from Symantec published in 2008 suggest
that “the release rate of malicious code and other unwanted
programs may be exceeding that of legitimate software
applications” [Malware, 2011]. CME (Common Malware
Enumeration) was “created to provide single, common
identifiers to new virus threats and to the most prevalent virus

101



threats in the wild to reduce public confusion during malware
incidents” [CME, 2011].

In this chapter we discuss various types of malware. In this
book we describe the data mining tools we have developed to
handle some types of malware. The organization of this
chapter is as follows. In Section 3.2, we discuss viruses. In
Section 3.3, we discuss worms. Trojan horses are discussed in
Section 3.4. Time and logic bombs are discussed in Section
3.5. Botnets are discussed in Section 3.6. Spyware is
discussed in Section 3.7. The chapter is summarized in
Section 3.8. Figure 3.1 illustrates the concepts discussed in
this chapter.

Figure 3.1 Concepts discussed in this chapter.

3.2 Viruses
Computer viruses are malware that piggyback onto other
executables and are capable of replicating. Viruses can exhibit

102



a wide range of malicious behaviors ranging from simple
annoyance (such as displaying messages) to widespread
destruction such as wiping all the data in the hard drive (e.g.,
CIH virus). Viruses are not independent programs. Rather,
they are code fragments that exist on other binary files. A
virus can infect a host machine by replicating itself when it is
brought in contact with that machine, such as via a shared
network drive, removable media, or email attachment. The
replication is done when the virus code is executed and it is
permitted to write in the memory.

There are two types of viruses based on their replication
strategy: nonresident and resident. The nonresident virus does
not store itself on the hard drive of the infected computer. It is
only attached to an executable file that infects a computer.
The virus is activated each time the infected executable is
accessed and run. When activated, the virus looks for other
victims (e.g., other executables) and infects them. On the
contrary, resident viruses allocate memory in the computer
hard drive, such as the boot sector. These viruses become
active every time the infected machine starts.

The earliest computer virus dates back to 1970 with the
advent of Creeper virus, detected on ARPANET [SecureList,
2011]. Since then, hundreds of thousands of different viruses
have been written and corresponding antiviruses have also
been devised to detect and eliminate the viruses from
computer systems. Most commercial antivirus products apply
a signature matching technique to detect a virus. A virus
signature is a unique bit pattern in the virus binary that can
accurately identify the virus [Signature, 2011]. Traditionally,
virus signatures are generated manually. However, automated

103



signature generation techniques based on data mining have
been proposed recently [Masud et al., 2007, 2008].

3.3 Worms
Computer worms are malware but, unlike viruses, they need
not attach themselves to other binaries. Worms are capable of
propagating themselves to other hosts through network
connections. Worms also exhibit a wide range of malicious
behavior, such as spamming, phishing, harvesting and
sending sensitive information to the worm writer, jamming or
slowing down network connections, deleting data from hard
drive, and so on. Worms are independent programs, and they
reside in the infected machine by camouflage. Some of the
worms open a backdoor in the infected machine, allowing the
worm writer to control the machine and making it a zombie
(or bot) for his malicious activities (see Section 3.6).

The earliest computer worm dates back to 1988, programmed
by Robert Morris, who unleashed the Morris worm. It
infected 10% of the then Internet, and his act resulted in the
first conviction in the United States under the Computer
Fraud and Abuse Act [Dressler, 2007]. One of the three
authors of this book was working in computer security at
Honeywell Inc. in Minneapolis at that time and vividly
remembers what happened that November day.

Other infamous worms since then include the Melissa worm,
unleashed in 1999, which crashed servers; the Mydoom worm
released in 2004, which was the fastest spreading email

104



worm; and the SQL Slammer worm, founded in 2003, which
caused a global Internet slowdown.

Commercial antivirus products also detect worms by scanning
worm signature against the signature database. However,
although this technique is very effective against regular
worms, it is usually not effective against zero-day attacks
[Frei et al., 2008], polymorphic, and metamorphic worms.
However, recent techniques for worm detection address these
problems by automatic signature generation techniques [Kim
and Karp, 2004], [Newsome et al., 2005]. Several data mining
techniques also exist for detecting different types of worms
[Masud et al., 2007, 2008].

3.4 Trojan Horses
Trojan horses have been studied within the context of
multi-level databases. They covertly pass information from a
high-level process to a low-level process. A good example of
a Trojan horse is the manipulation of file locks. Now,
according to the Bell and La Padula Security Policy
(discussed in Appendix B), a secret process cannot directly
send data to an unclassified process, as this will constitute a
write down. However, a malicious secret process can covertly
pass data to an unclassified process by manipulating the file
locks as follows. Suppose both processes want to access an
unclassified file. The Secret process wants to read from the
file while the unclassified process can write into the file.
However, both processes cannot obtain the read and write
locks at the same time. Therefore, at time T1, let’s assume
that the Secret process has the read lock while the unclassified

105



process attempts to get a write lock. The unclassified process
cannot obtain this lock. This means a one bit information say,
0, is passed to the unclassified process. At time T2, let’s
assume the situation does not change. This means one bit
information of 0 is passed. However, at time T3, let’s assume
the Secret process does not have the read lock, in which case
the unclassified process can obtain the write lock. This time
one bit information of 1 is passed. Over time a classified
string of 0011000011101 could be passed from the Secret
process to the unclassified process.

As stated in [Trojan Horse, 2011], a Trojan horse is software
that appears to perform a desirable function for the user but
actually carries out a malicious activity. In the previous
example, the Trojan horse does have read access to the data
object. It is reading from the object on behalf of the user.
However, it also carries out malicious activity by
manipulating the locks and sending data covertly to the
unclassified user.

3.5 Time and Logic Bombs
In the software paradigm, time bomb refers to a computer
program that stops functioning after a prespecified time or
date has reached. This is usually imposed by software
companies in beta versions of software so that the software
stops functioning after a certain date. An example is the
Windows Vista Beta 2, which stopped functioning on May
31, 2007 [Vista, 2007].

106



A logic bomb is a computer program that is intended to
perform malicious activities when certain predefined
conditions are met. This technique is sometimes injected into
viruses or worms to increase the chances of survival and
spreading before getting caught.

An example of a logic bomb is the Fannie Mae bomb in 2008
[Claburn, 2009]. A logic bomb was discovered at the
mortgage company Fannie Mae on October 2008. An Indian
citizen and IT contractor, Rajendrasinh Babubhai Makwana,
who worked in Fannie Mae’s Urbana, Maryland, facility,
allegedly planted it, and it was set to activate on January 31,
2009, to wipe all of Fannie Mae’s 4,000 servers. As stated in
[Claburn, 2009], Makwana had been terminated around 1:00
pm on October 24, 2008, and planted the bomb while he still
had network access. He was indicted in a Maryland court on
January 27, 2009, for unauthorized computer access.

3.6 Botnet
Botnet is a network of compromised hosts, or bots, under the
control of a human attacker known as the botmaster. The
botmaster can issue commands to the bots to perform
malicious actions, such as recruiting new bots, launching
coordinated DDoS attacks against some hosts, stealing
sensitive information from the bot machine, sending mass
spam emails, and so on. Thus, botnets have emerged as an
enormous threat to the Internet community.

According to [Messmer, 2009], more than 12 million
computers in the United States are compromised and

107



controlled by the top 10 notorious botnets. Among them, the
highest number of compromised machines is due to the Zeus
botnet. Zeus is a kind of Trojan (a malware), whose main
purpose is to apply key-logging techniques to steal sensitive
data such as login information (passwords, etc.), bank account
numbers, and credit card numbers. One of its key-logging
techniques is to inject fake HTML forms into online banking
login pages to steal login information.

The most prevailing botnets are the IRC-botnets [Saha and
Gairola, 2005], which have a centralized architecture. These
botnets are usually very large and powerful, consisting of
thousands of bots [Rajab et al., 2006]. However, their
enormous size and centralized architecture also make them
vulnerable to detection and demolition. Many approaches for
detecting IRC botnets have been proposed recently ([Goebel
and Holz, 2007], [Karasaridis et al., 2007], [Livadas et al.,
2006], [Rajab et al., 2006]). Another type of botnet is the
peer-to-peer (P2P) botnet. These botnets are distributed and
much smaller than IRC botnets. So, they are more difficult to
locate and destroy. Many recent works in P2P botnet analyzes
their characteristics ([Grizzard et al., 2007], [Group, 2004],
[Lemos, 2006]).

3.7 Spyware
As stated in [Spyware, 2011], spyware is a type of malware
that can be installed on computers, which collects information
about users without their knowledge. For example, spyware
observes the web sites visited by the user, the emails sent by
the user, and, in general, the activities carried out by the user

108



in his or her computer. Spyware is usually hidden from the
user. However, sometimes employers can install spyware to
find out the computer activities of the employees.

An example of spyware is keylogger (also called keystroke
logging) software. As stated in [Keylogger, 2011], keylogging
is the action of tracking the keys struck on a keyboard,
usually in a covert manner so that the person using the
keyboard is unaware that their actions are being monitored.
Another example of spyware is adware, when advertisement
pops up on the computer when the person is doing some
usually unrelated activity. In this case, the spyware monitors
the web sites surfed by the user and carries out targeted
marketing using adware.

3.8 Summary
In this chapter, we have provided an overview of malware
(also known as malicious software). We discussed various
types of malware, such as viruses, worms, time and logic
bombs, Trojan horses, botnets, and spyware. As we have
stated, malware is causing chaos in society and in the
software industry. Malware technology is getting more and
more sophisticated. Developers of malware are continuously
changing patterns so as not to get caught. Therefore,
developing solutions to detect and/or prevent malware has
become an urgent need.

In this book, we discuss the tools we have developed to detect
malware. In particular, we discuss tools for email worm
detection, remote exploits detection, and botnet detection. We

109



also discuss our stream mining tool that could potentially
detect changing malware. These tools are discussed in Parts
III through VII of this book. In Chapter 4, we will summarize
the data mining tools we discussed in our previous book
[Awad et al., 2009]. Our tools discussed in our current book
have been influenced by the tools discussed in [Awad et al.,
2009].

References
[Awad et al., 2009] Awad, M., L. Khan, B. Thuraisingham, L.
Wang, Design and Implementation of Data Mining Tools,
CRC Press, 2009.

[CME, 2011] http://cme.mitre.org

[Claburn, 2009] Claburn, T., Fannie Mae Contractor Indicted
for Logic Bomb,
InformationWeek, http://www.informationweek.com/news/
security/management/
showArticle.jhtml?articleID=212903521

[Dressler, 2007] Dressler, J. “United States v. Morris”: Cases
and Materials on Criminal Law, St. Paul, MN, Thomson/
West, 2007.

[Frei et al., 2008] Frei, S., B. Tellenbach, B. Plattner, 0-Day
Patch—Exposing Vendors(In)security Performance,
techzoom.net Publications, http://www.techzoom.net/
publications/0-day-patch/index.en

110

http://cme.mitre.org
http://www.informationweek.com/news/security/­management/showArticle.jhtml?articleID=212903521
http://www.informationweek.com/news/security/­management/showArticle.jhtml?articleID=212903521
http://www.informationweek.com/news/security/­management/showArticle.jhtml?articleID=212903521
http://www.techzoom.net/publications/0-day-patch/index.en
http://www.techzoom.net/publications/0-day-patch/index.en


[Goebel and Holz, 2007] Goebel, J., and T. Holz, Rishi:
Identify Bot Contaminated Hosts by IRC Nickname
Evaluation, in USENIX/Hotbots ’07 Workshop, 2007.

[Grizzard et al., 2007] Grizzard, J. B., V. Sharma, C.
Nunnery, B. B. Kang, D. Dagon, Peer-to-Peer Botnets:
Overview and Case Study, in USENIX/Hotbots ’07
Workshop, 2007.

[Group, 2004] LURHQ Threat Intelligence Group, Sinit p2p
Trojan Analysis, LURHQ, http://www.lurhq.com/sinit.html

[Karasaridis et al., 2007] Karasaridis, A., B. Rexroad, D.
Hoeflin, Wide-Scale Botnet Detection and Characterization,
in USENIX/Hotbots ’07 Workshop, 2007.

[Keylogger, 2011] http://en.wikipedia.org/wiki/
Keystroke_logging

[Kim and Karp, 2004] Kim, H. A., and Karp, B. (2004).
Autograph: Toward Automated, Distributed Worm Signature
Detection, in Proceedings of the 13th USENIX Security
Symposium (Security 2004), pp. 271–286.

[Lemos, 2006] Lemos, R. Bot Software Looks to Improve
Peerage, http://www.securityfocus.com/news/11390

[Livadas et al., 2006] Livadas, C., B. Walsh, D. Lapsley, T.
Strayer, Using Machine Learning Techniques to Identify
Botnet Traffic, in 2nd IEEE LCN Workshop on Network
Security (WoNS’2006), November 2006.

[Malware, 2011] http://en.wikipedia.org/wiki/Malware

111

http://www.lurhq.com/sinit.html
http://en.wikipedia.org/wiki/Keystroke_logging
http://en.wikipedia.org/wiki/Keystroke_logging
http://www.securityfocus.com/news/11390
http://en.wikipedia.org/wiki/Malware


[Masud et al., 2007] Masud, M., L. Khan, B. Thuraisingham,
E-mail Worm Detection Using Data Mining, International
Journal of Information Security and Privacy, Vol. 1, No. 4,
2007, pp. 47–61.

[Masud et al., 2008] Masud, M., L. Khan, B. Thuraisingham,
A Scalable Multi-level Feature Extraction Technique to
Detect Malicious Executables, Information System Frontiers,
Vol. 10, No. 1, 2008, pp. 33–45.

[Messmer, 2009] Messmer, E., America’s 10 Most Wanted
Botnets, Network World, July 22, 2009,
http://www.networkworld.com/news/2009/
072209-botnets.html

[Newsome et al., 2005] Newsome, J., B. Karp, D. Song,
Polygraph: Automatically Generating Signatures for
Polymorphic Worms, in Proceedings of the IEEE Symposium
on Security and Privacy, 2005, pp. 226–241.

[Rajab et al., 2006] Rajab, M. A., J. Zarfoss, F. Monrose, A.
Terzis, A Multifaceted Approach to Understanding the Botnet
Phenomenon, in Proceedings of the 6th ACM SIGCOMM on
Internet Measurement Conference (IMC), 2006, pp. 41–52.

[Saha and Gairola, 2005] Saha, B., and A. Gairola, Botnet: An
Overview, CERT-In White Paper CIWP-2005-05, 2005.

[SecureList, 2011] Securelist.com Threat Analysis and
Information, Kaspersky Labs, http://www.securelist.com/en/
threats/detect

112

http://www.networkworld.com/news/2009/072209-botnets.html
http://www.networkworld.com/news/2009/072209-botnets.html
http://www.securelist.com/en/threats/detect
http://www.securelist.com/en/threats/detect


[Signature, 2011] Virus Signature, PC Magazine
Encyclopedia, http://www.pcmag.com/encyclopedia_term/
0,2542,t=virus+signature&i=53969,00.asp

[Spyware, 2011] http://en.wikipedia.org/wiki/Spyware

[Trojan Horse, 2011] http://en.wikipedia.org/wiki/
Trojan_horse_(computing)

[Vista, 2007] Windows Vista, http://windows.microsoft.com/
en-us/windows-vista/products/home

113

http://www.pcmag.com/encyclopedia_term/0,2542,t=virus+signature&i=53969,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=virus+signature&i=53969,00.asp
http://en.wikipedia.org/wiki/Spyware
http://en.wikipedia.org/wiki/Trojan_horse_(computing)
http://en.wikipedia.org/wiki/Trojan_horse_(computing)
http://windows.microsoft.com/en-us/windows-vista/products/home
http://windows.microsoft.com/en-us/windows-vista/products/home


4

DATA MINING FOR SECURITY
APPLICATIONS

4.1 Introduction
Ensuring the integrity of computer networks, both in relation
to security and with regard to the institutional life of the
nation in general, is a growing concern. Security and defense
networks, proprietary research, intellectual property, and
data-based market mechanisms that depend on unimpeded
and undistorted access can all be severely compromised by
malicious intrusions. We need to find the best way to protect
these systems. In addition, we need techniques to detect
security breaches.

Data mining has many applications in security, including in
national security (e.g., surveillance) as well as in cyber
security (e.g., virus detection). The threats to national security
include attacking buildings and destroying critical
infrastructures, such as power grids and telecommunication
systems [Bolz et al., 2005]. Data mining techniques are being
investigated to find out who the suspicious people are and
who is capable of carrying out terrorist activities. Cyber
security is involved with protecting the computer and network
systems against corruption due to Trojan horses and viruses.
Data mining is also being applied to provide solutions such as

114



intrusion detection and auditing. In this chapter, we will focus
mainly on data mining for cyber security applications.

To understand the mechanisms to be applied to safeguard the
nation and the computers and networks, we need to
understand the types of threats. In [Thuraisingham, 2003] we
described real-time threats as well as non-real-time threats. A
real-time threat is a threat that must be acted upon within a
certain time to prevent some catastrophic situation. Note that
a non-real-time threat could become a real-time threat over
time. For example, one could suspect that a group of terrorists
will eventually perform some act of terrorism. However,
when we set time bounds, such as that a threat will likely
occur, say, before July 1, 2004, then it becomes a real-time
threat and we have to take actions immediately. If the time
bounds are tighter, such as “a threat will occur within two
days,” then we cannot afford to make any mistakes in our
response.

115



Figure 4.1 Data mining applications in security.

There has been a lot of work on applying data mining for both
national security and cyber security. Much of the focus of our
previous book was on applying data mining for national
security [Thuraisingham, 2003]. In this part of the book, we
discuss data mining for cyber security. In Section 4.2, we
discuss data mining for cyber security applications. In
particular, we discuss the threats to the computers and
networks and describe the applications of data mining to
detect such threats and attacks. Some of our current research
at the University of Texas at Dallas is discussed in Section
4.3. The chapter is summarized in Section 4.4. Figure 4.1
illustrates data mining applications in security.

4.2 Data Mining for Cyber
Security
4.2.1 Overview

This section discusses information-related terrorism. By
information-related terrorism, we mean cyber-terrorism as
well as security violations through access control and other
means. Trojan horses as well as viruses are also
information-related security violations, which we group into
information-related terrorism activities.

116



Figure 4.2 Cyber security threats.

In the next few subsections, we discuss various
information-related terrorist attacks. In Section 4.2.2 we give
an overview of cyber-terrorism and then discuss insider
threats and external attacks. Malicious intrusions are the
subject of Section 4.2.3. Credit card and identity theft are
discussed in Section 4.2.4. Attacks on critical infrastructures
are discussed in Section 4.2.5, and data mining for cyber
security is discussed in Section 4.2.6. Figure 4.2 illustrates
cyber security threats.

117



4.2.2 Cyber-Terrorism, Insider Threats,
and External Attacks

Cyber-terrorism is one of the major terrorist threats posed to
our nation today. As we have mentioned earlier, there is now
so much information available electronically and on the web.
Attack on our computers, as well as networks, databases, and
the Internet, could be devastating to businesses. It is estimated
that cyber-terrorism could cost billions of dollars to
businesses. For example, consider a banking information
system. If terrorists attack such a system and deplete accounts
of the funds, then the bank could lose millions and perhaps
billions of dollars. By crippling the computer system, millions
of hours of productivity could be lost, and that also equates to
money in the end. Even a simple power outage at work
through some accident could cause several hours of
productivity loss and, as a result, a major financial loss.
Therefore, it is critical that our information systems be secure.
We discuss various types of cyber-terrorist attacks. One is
spreading viruses and Trojan horses that can wipe away files
and other important documents; another is intruding the
computer networks.

Note that threats can occur from outside or from the inside of
an organization. Outside attacks are attacks on computers
from someone outside the organization. We hear of hackers
breaking into computer systems and causing havoc within an
organization. There are hackers who start spreading viruses,
and these viruses cause great damage to the files in various
computer systems. But a more sinister problem is the insider
threat. Just like non-information-related attacks, there is the
insider threat with information-related attacks. There are

118



people inside an organization who have studied the business
practices and develop schemes to cripple the organization’s
information assets. These people could be regular employees
or even those working at computer centers. The problem is
quite serious, as someone may be masquerading as someone
else and causing all kinds of damage. In the next few sections,
we examine how data mining could detect and perhaps
prevent such attacks.

4.2.3 Malicious Intrusions

Malicious intrusions may include intruding the networks, the
web clients, the servers, the databases, and the operating
systems. Many of the cyber-terrorism attacks are due to
malicious intrusions. We hear much about network intrusions.
What happens here is that intruders try to tap into the
networks and get the information that is being transmitted.
These intruders may be human intruders or Trojan horses set
up by humans. Intrusions can also happen on files. For
example, one can masquerade as someone else and log into
someone else’s computer system and access the files.
Intrusions can also occur on databases. Intruders posing as
legitimate users can pose queries such as SQL queries and
access data that they are not authorized to know.

Essentially cyber-terrorism includes malicious intrusions as
well as sabotage through malicious intrusions or otherwise.
Cyber security consists of security mechanisms that attempt
to provide solutions to cyber attacks or cyber-terrorism. When
we discuss malicious intrusions or cyber attacks, we may
need to think about the non-cyber world—that is,
non-information-related terrorism—and then translate those

119



attacks to attacks on computers and networks. For example, a
thief could enter a building through a trap door. In the same
way, a computer intruder could enter the computer or network
through some sort of a trap door that has been intentionally
built by a malicious insider and left unattended through
perhaps careless design. Another example is a thief entering
the bank with a mask and stealing the money. The analogy
here is an intruder masquerades as someone else, legitimately
enters the system, and takes all of the information assets.
Money in the real world would translate to information assets
in the cyber world. That is, there are many parallels between
non-information-related attacks and information-related
attacks. We can proceed to develop counter-measures for both
types of attacks.

4.2.4 Credit Card Fraud and Identity
Theft

We are hearing a lot these days about credit card fraud and
identity theft. In the case of credit card fraud, others get hold
of a person’s credit card and make purchases; by the time the
owner of the card finds out, it may be too late. The thief may
have left the country by then. A similar problem occurs with
telephone calling cards. In fact, this type of attack has
happened to one of the authors once. Perhaps phone calls
were being made using her calling card at airports, someone
must have noticed, say, the dial tones and used the calling
card, which was a company calling card. Fortunately, the
telephone company detected the problem and informed the
company. The problem was dealt with immediately.

120



A more serious theft is identity theft. Here one assumes the
identity of another person, for example, by getting hold of the
social security number and essentially carries out all the
transactions under the other person’s name. This could even
be selling houses and depositing the income in a fraudulent
bank account. By the time the owner finds out, it will be too
late. The owner may have lost millions of dollars due to the
identity theft.

We need to explore the use of data mining both for credit card
fraud detection and identity theft. There have been some
efforts on detecting credit card fraud [Chan, 1999]. We need
to start working actively on detecting and preventing identity
theft.

Figure 4.3 Attacks on critical infrastructures.

121



4.2.5 Attacks on Critical Infrastructures

Attacks on critical infrastructures could cripple a nation and
its economy. Infrastructure attacks include attacks on the
telecommunication lines; the electronic, power, and gas
reservoirs; and water supplies, food supplies, and other basic
entities that are critical for the operation of a nation.

Attacks on critical infrastructures could occur during any type
of attack whether they are non-information-related,
information-related, or bio-terrorist attacks. For example, one
could attack the software that runs the telecommunications
industry and close down all the telecommunications lines.
Similarly, software that runs the power and gas supplies could
be attacked. Attacks could also occur through bombs and
explosives; for example, telecommunication lines could be
attacked through bombs. Attacking transportation lines such
as highways and railway tracks are also attacks on
infrastructures.

Infrastructures could also be attacked by natural disasters,
such as hurricanes and earthquakes. Our main interest here is
the attacks on infrastructures through malicious attacks, both
information-related and non-information-related. Our goal is
to examine data mining and related data management
technologies to detect and prevent such infrastructure attacks.
Figure 4.3 illustrates attacks on critical infrastructures.

4.2.6 Data Mining for Cyber Security

Data mining is being applied for problems such as intrusion
detection and auditing. For example, anomaly detection

122



techniques could be used to detect unusual patterns and
behaviors. Link analysis may be used to trace the viruses to
the perpetrators. Classification may be used to group various
cyber attacks and then use the profiles to detect an attack
when it occurs. Prediction may be used to determine potential
future attacks depending on information learned about
terrorists through email and phone conversations. Also, for
some threats, non-real-time data mining may suffice, whereas
for certain other threats such as for network intrusions, we
may need real-time data mining. Many researchers are
investigating the use of data mining for intrusion detection.
Although we need some form of real-time data mining—that
is, the results have to be generated in real time—we also need
to build models in real time. For example, credit card fraud
detection is a form of real-time processing. However, here,
models are usually built ahead of time. Building models in
real time remains a challenge. Data mining can also be used
for analyzing web logs as well as analyzing the audit trails.
Based on the results of the data mining tool, one can then
determine whether any unauthorized intrusions have occurred
and/or whether any unauthorized queries have been posed.

Other applications of data mining for cyber security include
analyzing the audit data. One could build a repository or a
warehouse containing the audit data and then conduct an
analysis using various data mining tools to see if there are
potential anomalies. For example, there could be a situation
where a certain user group may access the database between 3
am and 5 am. It could be that this group is working the night
shift, in which case there may be a valid explanation.
However, if this group is working between 9 am and 5 pm,
then this may be an unusual occurrence. Another example is
when a person accesses the databases always between 1 pm

123



and 2 pm, but for the past two days he has been accessing the
database between 1 am and 2 am. This could then be flagged
as an unusual pattern that would require further investigation.

Insider threat analysis is also a problem from a national
security, as well as a cyber security, perspective. That is,
those working in a corporation who are considered to be
trusted could commit espionage. Similarly, those with proper
access to the computer system could plant Trojan horses and
viruses. Catching such terrorists is far more difficult than
catching terrorists outside of an organization. One may need
to monitor the access patterns of all the individuals of a
corporation even if they are system administrators, to see
whether they are carrying out cyber-terrorism activities. There
is some research now on applying data mining for such
applications by various groups.

124



Figure 4.4 Data mining for cyber security.

Although data mining can be used to detect and prevent cyber
attacks, data mining also exacerbates some security problems,
such as the inference and privacy problems. With data mining
techniques one could infer sensitive associations from the
legitimate responses. Figure 4.4 illustrates data mining for
cyber security. For more details on a high-level overview, we
refer the reader to [Thuraisingham, 2005a] and
[Thuraisingham, 2005b].

4.3 Current Research and
Development
We are developing a number of tools on data mining for
cyber security applications at The University of Texas at
Dallas. In our previous book we discussed one such tool for
intrusion detection [Awad et al., 2009]. An intrusion can be
defined as any set of actions that attempt to compromise the
integrity, confidentiality, or availability of a resource. As
systems become more complex, there are always exploitable
weaknesses as a result of design and programming errors, or
through the use of various “socially engineered” penetration
techniques. Computer attacks are split into two categories:
host-based attacks and network-based attacks. Host-based
attacks target a machine and try to gain access to privileged
services or resources on that machine. Host-based detection
usually uses routines that obtain system call data from an
audit process that tracks all system calls made on behalf of
each user.

125



Network-based attacks make it difficult for legitimate users to
access various network services by purposely occupying or
sabotaging network resources and services. This can be done
by sending large amounts of network traffic, exploiting
well-known faults in networking services, overloading
network hosts, and so forth. Network-based attack detection
uses network traffic data (i.e., tcpdump) to look at traffic
addressed to the machines being monitored. Intrusion
detection systems are split into two groups: anomaly detection
systems and misuse detection systems.

Anomaly detection is the attempt to identify malicious traffic
based on deviations from established normal network traffic
patterns. Misuse detection is the ability to identify intrusions
based on a known pattern for the malicious activity. These
known patterns are referred to as signatures. Anomaly
detection is capable of catching new attacks. However, new
legitimate behavior can also be falsely identified as an attack,
resulting in a false positive. The focus with the current state
of the art is to reduce false negative and false positive rates.

Our current tools, discussed in this book, include those for
email worm detection, malicious code detection, buffer
overflow detection, and botnet detection, as well as analyzing
firewall policy rules. Figure 4.5 illustrates the various tools
we have developed. Some of these tools are discussed in Parts
II through VII of this book. For example, for email worm
detection, we examine emails and extract features such as
“number of attachments” and then train data mining tools
with techniques such as SVM (support vector machine) or
Naïve Bayesian classifiers and develop a model. Then we test
the model and determine whether the email has a virus/worm
or not. We use training and testing datasets posted on various

126



web sites. Similarly, for malicious code detection, we extract
n-gram features with both assembly code and binary code.
We first train the data mining tool using the SVM technique
and then test the model. The classifier will determine whether
the code is malicious or not. For buffer overflow detection,
we assume that malicious messages contain code whereas
normal messages contain data. We train SVM and then test to
see if the message contains code or data.

Figure 4.5 Data mining tools at UT Dallas.

4.4 Summary
This chapter has discussed data mining for security
applications. We first started with a discussion of data mining
for cyber security applications and then provided a brief
overview of the tools we are developing. We describe some
of these tools in Parts II through VII of this book. Note that
we will focus mainly on malware detection. However, in Part
VII, we also discuss tools for insider threat detection, active
defense, and real-time data mining.

127



Data mining for national security as well as for cyber security
is a very active research area. Various data mining techniques,
including link analysis and association rule mining, are being
explored to detect abnormal patterns. Because of data mining,
users can now make all kinds of correlations. This also raises
privacy concerns. More details on privacy can be obtained in
[Thuraisingham, 2002].

References
[Awad et al., 2009] Awad, M., L. Khan, B. Thuraisingham, L.
Wang, Design and Implementation of Data Mining Tools,
CRC Press, 2009.

[Bolz et al., 2005] Bolz, F., K. Dudonis, D. Schulz, The
Counterterrorism Handbook: Tactics, Procedures, and
Techniques, Third Edition, CRC Press, 2005.

[Chan, 1999] Chan, P., W. Fan, A. Prodromidis, S. Stolfo,
Distributed Data Mining in Credit Card Fraud Detection,
IEEE Intelligent Systems, Vol. 14, No. 6, 1999, pp. 67–74.

[Thuraisingham, 2002] Thuraisingham, B., Data Mining,
National Security, Privacy and Civil Liberties, SIGKDD
Explorations, 2002, 4:2, 1–5.

[Thuraisingham, 2003] Thuraisingham, B., Web Data Mining
Technologies and Their Applications in Business Intelligence
and Counter-Terrorism, CRC Press, 2003.

[Thuraisingham, 2005a] Thuraisingham, B., Managing
Threats to Web Databases and Cyber Systems: Issues,

128



Solutions and Challenges, Kluwer, 2004 (Editors: V. Kumar,
J. Srivastava, A. Lazarevic).

[Thuraisingham, 2005b] Thuraisingham, B., Database and
Applications Security, CRC Press, 2005.

129



5

DESIGN AND IMPLEMENTATION
OF DATA MINING TOOLS

5.1 Introduction
Data mining is an important process that has been integrated
in many industrial, governmental, and academic applications.
It is defined as the process of analyzing and summarizing data
to uncover new knowledge. Data mining maturity depends on
other areas, such as data management, artificial intelligence,
statistics, and machine learning.

In our previous book [Awad et al., 2009], we concentrated
mainly on the classification problem. We applied
classification in three critical applications, namely, intrusion
detection, WWW prediction, and image classification.
Specifically, we strove to improve performance (time and
accuracy) by incorporating multiple (two or more) learning
models. In intrusion detection, we tried to improve the
training time, whereas in WWW prediction, we studied
hybrid models to improve the prediction accuracy. The
classification problem is also sometimes referred to as
“supervised learning,” in which a set of labeled examples is
learned by a model, and then a new example with an
unknown label is presented to the model for prediction.

130



There are many prediction models that have been used, such
as Markov models, decision trees, artificial neural networks,
support vector machines, association rule mining, and many
others. Each of these models has strengths and weaknesses.
However, there is a common weakness among all of these
techniques, which is the inability to suit all applications. The
reason that there is no such ideal or perfect classifier is that
each of these techniques is initially designed to solve specific
problems under certain assumptions.

There are two directions in designing data mining techniques:
model complexity and performance. In model complexity,
new data structures, training set reduction techniques, and/or
small numbers of adaptable parameters are proposed to
simplify computations during learning without compromising
the prediction accuracy. In model performance, the goal is to
improve the prediction accuracy with some complication of
the design or model. It is evident that there is a tradeoff
between the performance complexity and the model
complexity. In this book, we present studies of hybrid models
to improve the prediction accuracy of data mining algorithms
in two important applications, namely, intrusion detection and
WWW prediction.

Intrusion detection involves processing and learning a large
number of examples to detect intrusions. Such a process
becomes computationally costly and impractical when the
number of records to train against grows dramatically.
Eventually, this limits our choice of the data mining technique
to apply. Powerful techniques, such as support vector
machines (SVMs), will be avoided because of the algorithm
complexity. We propose a hybrid model, which is based on
SVMs and clustering analysis, to overcome this problem. The

131



idea is to apply a reduction technique using clustering
analysis to approximate support vectors to speed up the
training process of SVMs. We propose a method; namely,
clustering trees-based SVM (CT-SVM), to reduce the training
set and approximate support vectors. We exploit clustering
analysis to generate support vectors to improve the accuracy
of the classifier.

Surfing prediction is another important research area upon
which many application improvements depend. Applications
such as latency reduction, web search, and recommendation
systems utilize surfing prediction to improve their
performance. There are several challenges present in this area.
These challenges include low accuracy rate [Pitkow and
Pirolli, 1999]; sparsity of the data [Burke, 2002], [Grcar et al.,
2005]; and large number of labels, which makes it a complex
multi-class problem [Chung et al., 2004], not fully utilizing
the domain knowledge. Our goal is to improve the predictive
accuracy by combining several powerful classification
techniques, namely, SVMs, artificial neural networks
(ANNs), and the Markov model. The Markov model is a
powerful technique for predicting seen data; however, it
cannot predict the unseen data. On the other hand, techniques
such as SVM and ANN are powerful predictors and can
predict not only for the seen data but also for the unseen data.
However, when dealing with large numbers of classes/labels,
or when there is a possibility that one instance may belong to
many classes, predictive power may decrease. We use
Dempster’s rule to fuse the prediction outcomes of these
models. Such fusion combines the best of different models
because it has achieved the best accuracy over the individual
models.

132



Figure 5.1 Data mining applications.

In this chapter, we discuss the three applications we have
considered in our previous book, Design and Implementation
of Data Mining Tools [Awad et al., 2009]. This previous book
is a useful reference and provides some background
information for our current book. The applications are
illustrated in Figure 5.1. In Section 5.2, we discuss intrusion
detection. WWW surfing prediction is discussed in Section
5.3. Image classification is discussed in Section 5.4. More
details in broader applications of data mining, such as data
mining for security applications, web data mining, and image/
multimedia data mining, can be found in [Awad et al., 2009].

5.2 Intrusion Detection
Security and defense networks, proprietary research,
intellectual property, and data-based market mechanisms,
which depend on unimpeded and undistorted access, can all

133



be severely compromised by intrusions. We need to find the
best way to protect these systems.

An intrusion can be defined as “any set of actions that
attempts to compromise the integrity, confidentiality, or
availability of a resource” [Heady et al., 1990], [Axelsson,
1999], [Debar et al., 2000]. User authentication (e.g., using
passwords or biometrics), avoiding programming errors, and
information protection (e.g., encryption) have all been used to
protect computer systems. As systems become more complex,
there are always exploitable weaknesses due to design and
programming errors, or through the use of various “socially
engineered” penetration techniques. For example, exploitable
“buffer overflow” still exists in some recent system software
as a result of programming errors. Elements central to
intrusion detection are resources to be protected in a target
system, i.e., user accounts, file systems, and system kernels;
models that characterize the “normal” or “legitimate”
behavior of these resources; and techniques that compare the
actual system activities with the established models,
identifying those that are “abnormal” or “intrusive.” In
pursuit of a secure system, different measures of system
behavior have been proposed, based on an ad hoc
presumption that normalcy and anomaly (or illegitimacy) will
be accurately manifested in the chosen set of system features.

Intrusion detection attempts to detect computer attacks by
examining various data records observed through processes
on the same network. These attacks are split into two
categories: host-based attacks [Anderson et al., 1995],
[Axelsson, 1999], [Freeman et al., 2002] and network-based
attacks [Ilgun et al., 1995], [Marchette, 1999]. Host-based
attacks target a machine and try to gain access to privileged

134



services or resources on that machine. Host-based detection
usually uses routines that obtain system call data from an
audit process, which tracks all system calls made on behalf of
each user.

Network-based attacks make it difficult for legitimate users to
access various network services by purposely occupying or
sabotaging network resources and services. This can be done
by sending large amounts of network traffic, exploiting
well-known faults in networking services, and overloading
network hosts. Network-based attack detection uses network
traffic data (i.e., tcpdump) to look at traffic addressed to the
machines being monitored. Intrusion detection systems are
split into two groups: anomaly detection systems and misuse
detection systems. Anomaly detection is the attempt to
identify malicious traffic based on deviations from
established normal network traffic patterns [McCanne et al.,
1989], [Mukkamala et al., 2002]. Misuse detection is the
ability to identify intrusions based on a known pattern for the
malicious activity [Ilgun et al., 1995], [Marchette, 1999].
These known patterns are referred to as signatures. Anomaly
detection is capable of catching new attacks. However, new
legitimate behavior can also be falsely identified as an attack,
resulting in a false positive. Our research will focus on
network-level systems. A significant challenge in data mining
is to reduce false negative and false positive rates. However,
we also need to develop a realistic intrusion detection system.

SVM is one of the most successful classification algorithms
in the data mining area, but its long training time limits its
use. Many applications, such as data mining for
bioinformatics and geoinformatics, require the processing of
huge datasets. The training time of SVM is a serious obstacle

135



in the processing of such datasets. According to [Yu et al.,
2003], it would take years to train SVM on a dataset
consisting of one million records. Many proposals have been
submitted to enhance SVM to increase its training
performance [Agarwal, 2002], [Cauwenberghs and Poggio,
2000], either through random selection or approximation of
the marginal classifier [Feng and Mangasarian, 2001].
However, such approaches are still not feasible with large
datasets where even multiple scans of an entire dataset are too
expensive to perform or result in the loss, through
oversimplification, of any benefit to be gained through the use
of SVM [Yu et al., 2003].

In Part II of this book we propose a new approach for
enhancing the training process of SVM when dealing with
large training datasets. It is based on the combination of SVM
and clustering analysis. The idea is as follows: SVM
computes the maximal margin separating data points; hence,
only those patterns closest to the margin can affect the
computations of that margin, while other points can be
discarded without affecting the final result. Those points lying
close to the margin are called support vectors. We try to
approximate these points by applying clustering analysis.

In general, using hierarchical clustering analysis based on a
dynamically growing self-organizing tree (DGSOT) involves
expensive computations, especially if the set of training data
is large. However, in our approach, we control the growth of
the hierarchical tree by allowing tree nodes (support vector
nodes) close to the marginal area to grow, while halting
distant ones. Therefore, the computations of SVM and further
clustering analysis will be reduced dramatically. Also, to
avoid the cost of computations involved in clustering

136



analysis, we train SVM on the nodes of the tree after each
phase or iteration, in which few nodes are added to the tree.
Each iteration involves growing the hierarchical tree by
adding new children nodes to the tree. This could cause a
degradation of the accuracy of the resulting classifier.
However, we use the support vector set as a priori knowledge
to instruct the clustering algorithm to grow support vector
nodes and to stop growing non-support vector nodes. By
applying this procedure, the accuracy of the classifier
improves and the size of the training set is kept to a
minimum.

We report results here with one benchmark dataset, the 1998
DARPA dataset [Lippmann et al., 1998]. Also, we compare
our approach with the Rocchio bundling algorithm, proposed
for classifying documents by reducing the number of data
points [Shih et al., 2003]. Note that the Rocchio bundling
method reduces the number of data points before feeding
those data points as support vectors to SVM for training. On
the other hand, our clustering approach is intertwined with
SVM. We have observed that our approach outperforms pure
SVM and the Rocchio bundling technique in terms of
accuracy, false positive (FP) rate, false negative (FN) rate,
and processing time.

The contribution of our work to intrusion detection is as
follows:

1. We propose a new support vector selection technique
using clustering analysis to reduce the training time
of SVM. Here, we combine clustering analysis and
SVM training phases.

137



2. We show analytically the degree to which our
approach is asymptotically quicker than pure SVM,
and we validate this claim with experimental results.

3. We compare our approach with random selection and
Rocchio bundling on a benchmark dataset and
demonstrate impressive results in terms of training
time, FP (false positive) rate, FN (false negative) rate,
and accuracy.

5.3 Web Page Surfing
Prediction
Surfing prediction is an important research area upon which
many application improvements depend. Applications such as
latency reduction, web search, and personalization systems
utilize surfing prediction to improve their performance.

Latency of viewing with regard to web documents is an early
application of surfing prediction. Web caching and
pre-fetching methods are developed to pre-fetch multiple
pages for improving the performance of World Wide Web
systems. The fundamental concept behind all these caching
algorithms is the ordering of various web documents using
some ranking factors such as the popularity and the size of the
document according to existing knowledge. Pre-fetching the
highest ranking documents results in a significant reduction of
latency during document viewing [Chinen and Yamaguchi,
1997], [Duchamp, 1999], [Griffioen and Appleton, 1994],
[Teng et al., 2005], [Yang et al., 2001].

138



Improvements in web search engines can also be achieved
using predictive models. Surfers can be viewed as having
walked over the entire WWW link structure. The distribution
of visits over all WWW pages is computed and used for
re-weighting and re-ranking results. Surfer path information is
considered more important than the text keywords entered by
the surfers; hence, the more accurate the predictive models
are, the better the search results will be [Brin and Page, 1998].

In Recommendation systems, collaborative filtering (CF) has
been applied successfully to find the k top users having the
same tastes or interests based on a given target user’s records
[Yu et al., 2003]. The k Nearest-Neighbor (kNN) approach is
used to compare a user’s historical profile and records with
profiles of other users to find the top k similar users. Using
Association Rule Mining (ARM), [Mobasher, et al., 2001]
propose a method that matches an active user session with
frequent itemsets and predicts the next page the user is likely
to visit. These CF-based techniques suffer from well-known
limitations, including scalability and efficiency [Mobasher et
al., 2001], [Sarwar et al., 2000]. [Pitkow and Pirolli, 1999]
explore pattern extraction and pattern matching based on a
Markov model that predicts future surfing paths. Longest
Repeating Subsequences (LRS) is proposed to reduce the
model complexity (not predictive accuracy) by focusing on
significant surfing patterns.

There are several problems with the current state-of-the-art
solutions. First, the predictive accuracy using a proposed
solution such as a Markov model is low; for example, the
maximum training accuracy is 41% [Pitkow and Pirolli,
1999]. Second, prediction using Association Rule Mining and
LRS pattern extraction is done based on choosing the path

139



with the highest probability in the training set; hence, any
new surfing path is misclassified because the probability of
such a path occurring in the training set is zero. Third, the
sparsity nature of the user sessions, which are used in
training, can result in unreliable predictors [Burke, 2002],
[Grcar et al., 2005]. Finally, many of the previous methods
have ignored domain knowledge as a means for improving
prediction. Domain knowledge plays a key role in improving
the predictive accuracy because it can be used to eliminate
irrelevant classifiers during prediction or reduce their
effectiveness by assigning them lower weights.

WWW prediction is a multi-class problem, and prediction can
resolve into many classes. Most multi-class techniques, such
as one-VS-one and one-VS-all, are based on binary
classification. Prediction is required to check any new
instance against all classes. In WWW prediction, the number
of classes is very large (11,700 classes in our experiments).
Hence, prediction accuracy is very low [Chung et al., 2004]
because it fails to choose the right class. For a given instance,
domain knowledge can be used to eliminate irrelevant classes.

We use several classification techniques, namely, Support
Vector Machines (SVMs), Artificial Neural Networks
(ANNs), Association Rule Mining (ARM), and Markov
model in WWW prediction. We propose a hybrid prediction
model by combining two or more of them using Dempster’s
rule. Markov model is a powerful technique for predicting
seen data; however, it cannot predict unseen data. On the
other hand, SVM is a powerful technique, which can predict
not only for the seen data but also for the unseen data.
However, when dealing with too many classes or when there
is a possibility that one instance may belong to many classes

140



(e.g., a user after visiting the web pages 1, 2, 3, might go to
page 10, while another might go to page 100), SVM
predictive power may decrease because such examples
confuse the training process. To overcome these drawbacks
with SVM, we extract domain knowledge from the training
set and incorporate this knowledge in the testing set to
improve prediction accuracy of SVM by reducing the number
of classifiers during prediction.

ANN is also a powerful technique, which can predict not only
for the seen data but also for the unseen data. Nonetheless,
ANN has similar shortcomings as SVM when dealing with
too many classes or when there is a possibility that one
instance may belong to many classes. Furthermore, the design
of ANN becomes complex with a large number of input and
output nodes. To overcome these drawbacks with ANN, we
employ domain knowledge from the training set and
incorporate this knowledge in the testing set by reducing the
number of classifiers to consult during prediction. This
improves the prediction accuracy and reduces the prediction
time.

Our contributions to WWW prediction are as follows:

1. We overcome the drawbacks of SVM and ANN in
WWW prediction by extracting and incorporating
domain knowledge in prediction to improve accuracy
and prediction time.

2. We propose a hybrid approach for prediction in
WWW. Our approach fuses different combinations of
prediction techniques, namely, SVM, ANN, and
Markov, using Dempster’s rule [Lalmas, 1997] to
improve the accuracy.

141



3. We compare our hybrid model with different
approaches, namely, Markov model, Association
Rule Mining (ARM), Artificial Neural Networks
(ANNs), and Support Vector Machines (SVMs) on a
standard benchmark dataset and demonstrate the
superiority of our method.

5.4 Image Classification
Image classification is about determining the class in which
the image belongs to. It is an aspect of image data mining.
Other image data mining outcomes include determining
anomalies in images in the form of change detection as well
as clustering images. In some situations, making links
between images may also be useful. One key aspect of image
classification is image annotation. Here the system
understands raw images and automatically annotates them.
The annotation is essentially a description of the images.

Our contributions to image classification include the
following:

• We present a new framework of automatic image
annotation.

• We propose a dynamic feature weighing algorithm
based on histogram analysis and Chi-square.

• We present an image re-sampling method to solve the
imbalanced data problem.

• We present a modified kNN algorithm based on
evidence theory.

142



In our approach, we first annotate images automatically. In
particular, we utilize K-means clustering algorithms to cluster
image blobs and then make a correlation between the blobs
and words. This will result in annotating images. Our research
has also focused on classifying images using ontologies for
geospatial data. Here we classify images using a region
growing algorithm and then use high-level concepts in the
form of homologies to classify the regions. Our research on
image classification is given in [Awad et al., 2009].

5.5 Summary
In this chapter, we have discussed three applications that were
described in [Awad et al., 2009]. We have developed data
mining tools for these three applications. They are intrusion
detection, web page surfing prediction, and image
classification. They are part of the broader class of
applications: cyber security, web information management,
and multimedia/image information management, respectively.
In this book, we have taken one topic discussed in our prior
book and elaborated on it. In particular, we have described
data mining for cyber security and have focused on malware
detection.

Future directions will focus on two aspects. One is enhancing
the data mining algorithms to address the limitations, such as
false positives and false negatives, as well as reason with
uncertainty. The other is to expand on applying data mining
to the broader classes of applications, such as cyber security,
multimedia information management, and web information
management.

143



References
[Agarwal, 2002] Agarwal, D. K., Shrinkage Estimator
Generalizations of Proximal Support Vector Machines, in
Proceedings of the 8th International Conference Knowledge
Discovery and Data Mining, Edmonton, Canada, 2002, pp.
173–182.

[Anderson et al., 1995] Anderson, D., T. Frivold, A. Valdes,
Next-Generation Intrusion Detection Expert System (NIDES):
A Summary, Technical Report SRI-CSL-95-07, Computer
Science Laboratory, SRI International, Menlo Park,
California, May 1995.

[Awad et al., 2009]), Awad M., L. Khan, B. Thuraisingham,
L. Wang, Design and Implementation of Data Mining Tools,
CRC Press, 2009.

[Axelsson, 1999] Axelsson, S., Research in Intrusion
Detection Systems: A Survey, Technical Report TR 98-17
(revised in 1999), Chalmers University of Technology,
Goteborg, Sweden, 1999.

[Brin and Page, 1998] Brin, S., and L. Page, The Anatomy of
a Large-Scale Hypertextual Web Search Engine, in
Proceedings of the 7th International WWW Conference,
Brisbane, Australia, 1998, pp. 107–117.

[Burke, 2002] Burke, R., Hybrid Recommender Systems:
Survey and Experiments, User Modeling and User-Adapted
Interaction, Vol. 12, No. 4, 2002, pp. 331–370.

144



[Cauwenberghs and Poggio, 2000] Cauwenberghs, G., and T.
Poggio, Incremental and Decremental Support Vector
Machine Learning, Advances in Neural Information
Processing Systems 13, Papers from Neural Information
Processing Systems (NIPS) 2000, Denver, CO. MIT Press
2001, T. K. Leen, T. G. Dietterich, V. Tresp (Eds.).

[Chinen and Yamaguchi, 1997] Chinen, K., and S.
Yamaguchi, An Interactive Prefetching Proxy Server for
Improvement of WWW Latency, in Proceedings of the
Seventh Annual Conference of the Internet Society (INET’97),
Kuala Lumpur, June 1997.

[Chung et al., 2004] Chung, V., C. H. Li, J. Kwok,
Dissimilarity Learning for Nominal Data, Pattern
Recognition, Vol. 37, No. 7, 2004, pp. 1471–1477.

[Debar et al., 2000] Debar, H., M. Dacier, A. Wespi, A
Revised Taxonomy for Intrusion Detection Systems, Annales
des Telecommunications, Vol. 55, No. 7–8, 2000, pp.
361–378.

[Duchamp, 1999] Duchamp, D., Prefetching Hyperlinks, in
Proceedings of the Second USENIX Symposium on Internet
Technologies and Systems (USITS), Boulder, CO, 1999, pp.
127–138.

[Feng and Mangasarian, 2001] Feng, G., and O. L.
Mangasarian, Semi-supervised Support Vector Machines for
Unlabeled Data Classification, Optimization Methods and
Software, 2001, Vol. 15, pp. 29–44.

145

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Leen:Todd_K=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dietterich:Thomas_G=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tresp:Volker.html


[Freeman et al., 2002] Freeman, S., A. Bivens, J. Branch, B.
Szymanski, Host-Based Intrusion Detection Using User
Signatures, in Proceedings of Research Conference, RPI,
Troy, NY, October 2002.

[Grcar et al., 2005] Grcar, M., B. Fortuna, D. Mladenic, kNN
versus SVM in the Collaborative Filtering Framework,
WebKDD ’05, August 21, 2005, Chicago, Illinois.

[Griffioen and Appleton, 1994] Griffioen, J., and R.
Appleton, Reducing File System Latency Using a Predictive
Approach, in Proceedings of the 1994 Summer USENIX
Technical Conference, Cambridge, MA.

[Heady et al., 1990] Heady, R., Luger, G., Maccabe, A.,
Servilla, M., The Architecture of a Network Level Intrusion
Detection System, University of New Mexico Technical
Report TR-CS-1990-20, 1990.

[Ilgun et al., 1995] Ilgun, K., R. A., Kemmerer, P. A. Porras,
State Transition Analysis: A Rule-Based Intrusion Detection
Approach, IEEE Transactions on Software Engineering, Vol.
21, No. 3, 1995, pp. 181–199.

[Lalmas, 1997] Lalmas, M., Dempster-Shafer’s Theory of
Evidence Applied to Structured Documents: Modelling
Uncertainty, in Proceedings of the 20th Annual International
ACM SIGIR, Philadelphia, PA, 1997, pp. 110–118.

[Lippmann et al., 1998] Lippmann, R. P., I. Graf, D.
Wyschogrod, S. E. Webster, D. J. Weber, S. Gorton, The
1998 DARPA/AFRL Off-Line Intrusion Detection
Evaluation, First International Workshop on Recent Advances

146



in Intrusion Detection (RAID), Louvain-la-Neuve, Belgium,
1998.

[Marchette, 1999] Marchette, D., A Statistical Method for
Profiling Network Traffic, First USENIX Workshop on
Intrusion Detection and Network Monitoring, Santa Clara,
CA, 1999, pp. 119–128.

[Mobasher et al., 2001] Mobasher, B., H. Dai, T. Luo, M.
Nakagawa, Effective Personalization Based on Association
Rule Discovery from Web Usage Data, in Proceedings of the
ACM Workshop on Web Information and Data Management
(WIDM01), 2001, pp. 9–15.

[Mukkamala et al., 2002] Mukkamala, S., G. Janoski, A.
Sung, Intrusion Detection: Support Vector Machines and
Neural Networks, in Proceedings of IEEE International Joint
Conference on Neural Networks (IJCNN), Honolulu, HI,
2002, pp. 1702–1707.

[Pitkow and Pirolli, 1999] Pitkow, J., and P. Pirolli, Mining
Longest Repeating Subsequences to Predict World Wide Web
Surfing, in Proceedings of 2nd USENIX Symposium on
Internet Technologies and Systems (USITS’99), Boulder, CO,
October 1999, pp. 139–150.

[Sarwar et al., 2000] Sarwar, B. M., G. Karypis, J. Konstan, J.
Riedl, Analysis of Recommender Algorithms for
E-Commerce, in Proceedings of the 2nd ACM E-Commerce
Conference (EC’00), October 2000, Minneapolis, Minnesota,
pp. 158–167.

147



[Shih et al., 2003] Shih, L., Y. D. M. Rennie, Y. Chang, D. R.
Karger, Text Bundling: Statistics-Based Data Reduction,
Proceedings of the Twentieth International Conference on
Machine Learning (ICML), 2003, Washington, DC, pp.
696-703.

[Teng et al., 2005] Teng, W.-G., C.-Y. Chang, M.-S. Chen,
Integrating Web Caching and Web Prefetching in Client-Side
Proxies, IEEE Transaction on Parallel and Distributed
Systems, Vol. 16, No. 5, May 2005, pp. 444–455.

[Yang et al., 2001] Yang, Q., H. Zhang, T. Li, Mining Web
Logs for Prediction Models in WWW Caching and
Prefetching, in The 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD,
August 26–29, 2001, pp. 475–478.

[Yu et al., 2003] Yu, H., J. Yang, J. Han, Classifying Large
Data Sets Using SVM with Hierarchical Clusters, SIGKDD
2003, August 24–27, 2003, Washington, DC, pp. 306–315.

148



Conclusion to Part I

We have presented various supporting technologies for data
mining for malware detection. These include data mining
technologies, malware technologies, as well as data mining
applications. First, we provided an overview of data mining
techniques. Next, we discussed various types of malware.
This was followed by a discussion of data mining for security
applications. Finally we provided a summary of the data
mining tools we discussed in our previous book, Design and
Implementation of Data Mining Tools.

Now that we have provided an overview of supporting
technologies, we can discuss the various types of data mining
tools we have developed for malware detection. In Part II, we
discuss email worm detection tools. In Part III, we discuss
data mining tools for detecting malicious executables. In Part
IV, we discuss data mining for detecting remote exploits. In
Part V, we discuss data mining for botnet detection. In Part
VI, we discuss stream mining tools. Finally, in Part VII we
discuss some of the emerging tools, including data mining for
insider threat detection and firewall policy analysis.

149



PART II

DATA MINING FOR EMAIL
WORM DETECTION

Introduction to Part II
In this part, we will discuss data mining techniques to detect
email worms. Email messages contain a number of different
features such as the total number of words in the message
body/subject, presence/absence of binary attachments, type of
attachments, and so on. The goal is to obtain an efficient
classification model based on these features. The solution
consists of several steps. First, the number of features is
reduced using two different approaches: feature selection and
dimension reduction. This step is necessary to reduce noise
and redundancy from the data. The feature selection technique
is called Two-Phase Selection (TPS), which is a novel
combination of decision tree and greedy selection algorithm.
The dimension reduction is performed by Principal
Component Analysis. Second, the reduced data are used to
train a classifier. Different classification techniques have been
used, such as Support Vector Machine (SVM), Naïve Bayes,
and their combination. Finally, the trained classifiers are
tested on a dataset containing both known and unknown types
of worms. These results have been compared with published
results. It is found that the proposed TPS selection along with
SVM classification achieves the best accuracy in detecting
both known and unknown types of worms.

150



Part II consists of three chapters: 6, 7, and 8. In Chapter 6, we
provide an overview of email worm detection, including a
discussion of related work. In Chapter 7, we discuss our tool
for email worm detection. In Chapter 8, we analyze the results
we have obtained by using our tool.

151



6

EMAIL WORM DETECTION

6.1 Introduction
An email worm spreads through infected email messages. The
worm may be carried by an attachment, or the email may
contain links to an infected web site. When the user opens the
attachment or clicks the link, the host gets infected
immediately. The worm exploits the vulnerable email
software in the host machine to send infected emails to
addresses stored in the address book. Thus, new machines get
infected. Worms bring damage to computers and people in
various ways. They may clog the network traffic, cause
damage to the system, and make the system unstable or even
unusable.

The traditional method of worm detection is signature based.
A signature is a unique pattern in the worm body that can
identify it as a particular type of worm. Thus, a worm can be
detected from its signature. But the problem with this
approach is that it involves a significant amount of human
intervention and may take a long time (from days to weeks) to
discover the signature. Thus, this approach is not useful
against “zero-day” attacks of computer worms. Also,
signature matching is not effective against polymorphism.

152



Thus, there is a growing need for a fast and effective
detection mechanism that requires no manual intervention.
Our work is directed toward automatic and efficient detection
of email worms. In our approach, we have developed a
two-phase feature selection technique for email worm
detection. In this approach, we apply TPS to select the best
features using decision tree and greedy algorithm. We
compare our approach with two baseline techniques. The first
baseline approach does not apply any feature reduction. It
trains a classifier with the unreduced dataset. The second
baseline approach reduces data dimension using principal
component analysis (PCA) and trains a classifier with the
reduced dataset. It is shown empirically that our TPS
approach outperforms the baseline techniques. We also report
the feature set that achieves this performance. For the base
learning algorithm (i.e., classifier), we use both support vector
machine (SVM) and Naïve Bayes (NB). We observe
relatively better performance with SVM. Thus, we strongly
recommend applying SVM with our TPS process for
detecting novel email worms in a feature-based paradigm.

Figure 6.1 Concepts in this chapter. (This figure appears in
Email Work Detection Using Data Mining, International
Journal of Information Security and Privacy, Vol. 1, No. 4,

153



pp. 47–61, 2007, authored by M. Masud, L. Kahn, and B.
Thuraisingham. Copyright 2010, IGI Global,
www.igi-global.com. Posted by permission of the publisher.)

The organization of this chapter is as follows. Section 6.2
describes our architecture. Section 6.3 describes related work
in automatic email worm detection. Our approach is briefly
discussed in Section 6.3. The chapter is summarized in
section 6.4. Figure 6.1 illustrates the concepts in this chapter.

6.2 Architecture

Figure 6.2 Architecture for email worm detection. (This
figure appears in Email Work Detection Using Data Mining,
International Journal of Information Security and Privacy,
Vol. 1, No. 4, pp. 47–61, 2007, authored by M. Masud, L.
Kahn, and B. Thuraisingham. Copyright 2010, IGI Global,
www.igi-global.com. Posted by permission of the publisher.)

Figure 6.2 illustrates our architecture at a high level. At first
we build a classifier from training data containing both

154

http://www.igi-global.com
http://www.igi-global.com


benign and infected emails. Then, unknown emails are tested
with the classifier to predict whether it is infected or clean.

The training data consist of both benign and malicious
(infected) emails. These emails are called training instances.
The training instances go through the feature selection
module, where features are extracted and best features are
selected (see Sections 7.3, 7.4). The output of the feature
selection module is a feature vector for each training instance.
These feature vectors are then sent to the training module to
train a classification model (classifier module). We use
different classification models such as support vector machine
(SVM), Naïve Bayes (NB), and their combination (see
Section 7.5). A new email arriving in the host machine first
undergoes the feature extraction module, where the same
features, selected in the feature selection module, are
extracted and a feature vector is produced. This feature vector
is given as input to the classifier, and the classifier predicts
the class (i.e., benign/infected) of the email.

6.3 Related Work
There are different approaches to automating the detection of
worms. These approaches are mainly of two types: behavioral
and content based. Behavioral approaches analyze the
behavior of messages like source-destination addresses,
attachment types, message frequency, and so forth.
Content-based approaches look into the content of the
message and try to detect the signature automatically. There
are also combined methods that take advantage of both
techniques.

155



An example of behavioral detection is social network analysis
[Golbeck and Hendler, 2004], [Newman et al., 2002]. It
detects worm-infected emails by creating graphs of a
network, where users are represented as nodes, and
communications between users are represented as edges. A
social network is a group of nodes among which there exists
edges. Emails that propagate beyond the group boundary are
considered to be infected. The drawback of this system is that
worms can easily bypass social networks by intelligently
choosing recipient lists by looking at recent emails in the
user’s outbox.

Another example of behavioral approach is the application of
the Email Mining Toolkit (EMT) [Stolfo et al., 2006]. The
EMT computes behavior profiles of user email accounts by
analyzing email logs. They use some modeling techniques to
achieve high detection rates with very low false positive rates.
Statistical analysis of outgoing emails is another behavioral
approach [Schultz et al., 2001], [Symantec, 2005]. Statistics
collected from frequency of communication between clients
and their mail server, byte sequences in the attachment, and
so on, are used to predict anomalies in emails and thus worms
are detected.

An example of the content-based approach is the EarlyBird
System [Singh et al., 2003]. In this system, statistics on highly
repetitive packet contents are gathered. These statistics are
analyzed to detect possible infection of host or server
machines. This method generates the content signature of a
worm without any human intervention. Results reported by
this system indicated a very low false positive rate of
detection. Other examples are the Autograph [Kim and Karp,

156



2004] and the Polygraph [Newsome et al., 2005], developed
at Carnegie Mellon University.

There are other approaches to detect early spreading of
worms, such as employing “honeypot.” A honeypot
[Honeypot, 2006] is a closely monitored decoy computer that
attracts attacks for early detection and in-depth adversary
analysis. The honeypots are designed to not send out email in
normal situations. If a honeypot begins to send out emails
after running the attachment of an email, it is determined that
this email is an email worm.

Another approach, by [Sidiroglou et al., 2005], employs
behavior-based anomaly detection, which is different from
signature-based or statistical approaches. Their approach is to
open all suspicious attachments inside an instrumented virtual
machine looking for dangerous actions, such as writing to the
Windows registry, and flag suspicious messages.

Our work is related to [Martin et al., 2005-a]. They report an
experiment with email data, where they apply a statistical
approach to find an optimum subset of a large set of features
to facilitate the classification of outgoing emails, and,
eventually, detect novel email worms. However, our approach
is different from their approach in that we apply PCA and
TPS to reduce noise and redundancy from data.

157



6.4 Overview of Our
Approach
We apply a feature-based approach to worm detection. A
number of features of email messages have been identified in
[Martin et al., 2005-a) and discussed in this chapter. The total
number of features is large, some of which may be redundant
or noisy. So we apply two different feature-reduction
techniques: a dimension-reduction technique called PCA and
our novel feature-selection technique called TPS, which
applies decision tree and greedy elimination. These features
are used to train a classifier to obtain a classification model.
We use three different classifiers for this task: SVM, NB, and
a combination of SVM and NB, mentioned henceforth as the
Series classifier. The Series approach was first proposed by
[Martin et al., 2005-b].

We use the dataset of [Martin et al., 2005-a] for evaluation
purpose. The original data distribution was unbalanced, so we
balance it by rearranging. We divide the dataset into two
disjoint subsets: the known worms set or K-Set and the novel
worms set or N-Set. The K-Set contains some clean emails
and emails infected by five different types of worms. The
K-Set contains emails infected by a sixth type worm but no
clean email. We run a threefold cross validation on the K-Set.
At each iteration of the cross validation, we test the accuracy
of the trained classifiers on the N-Set. Thus, we obtain two
different measures of accuracy, namely, the accuracy of the
threefold cross validation on K-Set, and the average accuracy
of novel worm detection on N-Set.

158



Our contributions to this work are as follows. First, we apply
two special feature-reduction techniques to remove
redundancy and noise from data. One technique is PCA, and
the other is our novel TPS algorithm. PCA is commonly used
to extract patterns from high-dimensional data, especially
when the data are noisy. It is a simple and nonparametric
method. TPS applies decision tree C4.5 [Quinlan, 1993] for
initial selection, and thereafter it applies greedy elimination
technique (see Section 7.4.2, “Two-Phase Feature Selection
(TPS)”). Second, we create a balanced dataset as explained
earlier. Finally, we compare the individual performances
among NB, SVM, and Series and show empirically that the
Series approach proposed by [Martin et al., 2005-b] performs
worse than either NB or SVM. Our approach is illustrated in
Figure 6.3.

6.5 Summary
In this chapter we have argued that feature-based approaches
for worm detection are superior to the traditional
signature-based approaches. Next, we described some related
work on email worm detection and then briefly discussed our
approach, which uses feature reduction and classification
using PCA, SVM, and NB.

159



Figure 6.3 Email worm detection using data mining. (This
figure appears in Email Work Detection Using Data Mining,
International Journal of Information Security and Privacy,
Vol. 1, No. 4, pp. 47–61, 2007, authored by M. Masud, L.
Kahn, and B. Thuraisingham. Copyright 2010, IGI Global,
www.igi-global.com. Posted by permission of the publisher.)

In the future, we are planning to detect worms by combining
the feature-based approach with the content-based approach
to make it more robust and efficient. We are also focusing on
the statistical property of the contents of the messages for
possible contamination of worms. Our approach is discussed
in Chapter 7. Analysis of the results of our approach is given
in Chapter 8.

References
[Golbeck and Hendler, 2004] Golbeck, J., and J. Hendler,
Reputation Network Analysis for Email Filtering, in
Proceedings of CEAS 2004 First Conference on Email and
Anti-Spam.

[Honeypot, 2006] Intrusion Detection, Honeypots, and
Incident Handling Resources, Honeypots.net,
http://www.honeypots.net

[Kim and Karp, 2004] Kim, H.-A., and B. Karp, Autograph:
Toward Automated, Distributed Worm Signature Detection,
in Proceedings of the 13th USENIX Security Symposium
(Security 2004), San Diego, CA, August 2004, pp. 271–286.

160

http://www.igi-global.com
http://www.honeypots.net


[Martin et al., 2005-a] Martin, S., A. Sewani, B. Nelson, K.
Chen, A. D. Joseph, Analyzing Behavioral Features for Email
Classification, in Proceedings of the IEEE Second Conference
on Email and Anti-Spam (CEAS 2005), July 21 & 22,
Stanford University, CA.

[Martin et al., 2005-b] Martin, S., A. Sewani, B. Nelson, K.
Chen, A. D. Joseph, A Two-Layer Approach for Novel Email
Worm Detection. Submitted to USENIX Steps on Reducing
Unwanted Traffic on the Internet (SRUTI).

[Newman et al., 2002] Newman, M. E. J., S. Forrest, J.
Balthrop, Email Networks and the Spread of Computer
Viruses, Physical Review E 66, 035101, 2002.

[Newsome et al., 2005] Newsome, J., B. Karp, D. Song,
Polygraph: Automatically Generating Signatures for
Polymorphic Worms, in Proceedings of the IEEE Symposium
on Security and Privacy, May 2005.

[Quinlan, 1993] Quinlan, J. R. C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, 1993.

[Schultz et al., 2001] Schultz, M., E. Eskin, E. Zadok, MEF:
Malicious Email Filter: A UNIX Mail Filter That Detects
Malicious Windows Executables, in USENIX Annual
Technical Conference—FREENIX Track, June 2001.

[Sidiroglou et al., 2005] Sidiroglou, S., J. Ioannidis, A. D.
Keromytis, S. J. Stolfo, An Email Worm Vaccine
Architecture, in Proceedings of the First International
Conference on Information Security Practice and Experience
(ISPEC 2005), Singapore, April 11–14, 2005, pp. 97–108.

161



[Singh et al., 2003] Singh, S., C. Estan, G. Varghese, S.
Savage, The EarlyBird System for Real-Time Detection of
Unknown Worms, Technical Report CS2003-0761, University
of California, San Diego, August 4, 2003.

[Stolfo et al., 2006] Stolfo, S. J., S. Hershkop, C. W. Hu, W.
Li, O. Nimeskern, K. Wang, Behavior-Based Modeling and
Its Application to Email Analysis, ACM Transactions on
Internet Technology (TOIT), February 2006.

[Symantec, 2005] W32.Beagle.BG@mm,
http://www.sarc.com/avcenter/venc/data/
w32.beagle.bg@mm.html

162

http://W32.Beagle.BG@mm
http://www.sarc.com/avcenter/venc/data/w32.beagle.bg@mm.html
http://www.sarc.com/avcenter/venc/data/w32.beagle.bg@mm.html


7

DESIGN OF THE DATA MINING
TOOL

7.1 Introduction
As we have discussed in Chapter 6, feature-based approaches
for worm detection are superior to the traditional
signature-based approaches. Our approach for worm detection
carries out feature reduction and classification using principal
component analysis (PCA), support vector machine (SVM),
and Naïve Bayes (NB). In this chapter, we first discuss the
features that are used to train classifiers for detecting email
worms. Second, we describe our dimension reduction and
feature selection techniques. Our proposed two-phase feature
selection technique utilizes information gain and decision tree
induction algorithm for feature selection. In the first phase,
we build a decision tree using the training data on the whole
feature set. The decision tree selects a subset of features,
which we call the minimal subset of features. In the second
phase, we greedily select additional features and add to the
minimal subset. Finally, we describe the classification
techniques, namely, Naïve Bayes (NB), support vector
machine (SVM), and a combination of NB and SVM.

The organization of this chapter is as follows. Our
architecture is discussed in Section 7.2. Feature descriptions
are discussed in Section 7.3. Section 7.4 describes feature

163



reduction techniques. Classification techniques are described
in Section 7.5. In particular, we provide an overview of the
feature selection, dimension reduction, and classification
techniques we have used in our tool. The chapter is
summarized in Section 7.6. Figure 7.1 illustrates the concepts
in this chapter.

Figure 7.1 Concepts in this chapter.

7.2 Architecture
Figure 7.2 illustrates our system architecture, which includes
components for feature reduction and classification. There are
two stages of the process: training and classification. Training
is performed with collected samples of benign and infected
emails, that is, the training data. The training samples are
first analyzed and a set of features are identified (Section 7.3).
To reduce the number of features, we apply a feature
selection technique called “two-phase feature selection”
(Section 7.4). Using the selected set of features, we generate

164



feature vectors for each training sample, and the feature
vectors are used to train a classifier (Section 7.5). When a
new email needs to be tested, it first goes through a feature
extraction module that generates a feature vector. This feature
vector is used by the classifier to predict the class of the
email, that is, to predict whether the email is clean or infected.

Figure 7.2 Architecture.

7.3 Feature Description
The features are extracted from a repository of outgoing
emails collected over a period of two years [Martin et al.,
2005-a]. These features are categorized into two different
groups: per-email feature and per-window feature. Per-email
features are features of a single email, whereas per-window
features are features of a collection of emails sent/received
within a window of time.

For a detailed description of the features, please refer to
[Martin et al., 2005-a]. Each of these features is either
continuous valued or binary. The value of a binary feature is

165



either 0 or 1, depending on the presence or absence of this
feature in a data point. There are a total of 94 features. Here
we describe some of them.

7.3.1 Per-Email Features

HTML in body: Whether there is HTML in the email body.
This feature is used because a bug in the HTML parser of the
email client is a vulnerability that may be exploited by worm
writers. It is a binary feature.

Embedded image: Whether there is any embedded image.
This is used because a buggy image processor of the email
client is also vulnerable to attacks.

Hyperlinks: Whether there are hyperlinks in the email body.
Clicking an infected link causes the host to be infected. It is
also a binary feature.

Binary attachment: Whether there are any binary attachments.
Worms are mainly propagated by binary attachments. This is
also a binary feature.

Multipurpose Internet Mail Extension (MIME) type of
attachments: There are different MIME types, for example.
“application/msword,” “application/pdf,” “image/gif,” “text/
plain,” and others. Each of these types is used as a binary
feature (total 27).

UNIX “magic number” of file attachments: Sometimes a
different MIME type is assigned by the worm writers to evade

166



detection. Magic numbers can accurately detect the MIME
type. Each of these types is used as a binary feature (total 43).

Number of attachments: It is a continuous feature.

Number of words/characters in subject/body: These features
are continuous. Most worms choose random text, whereas a
user may have certain writing characteristics. Thus, these
features are sometimes useful to detect infected emails.

7.3.2 Per-Window Features

Number of emails sent in window: An infected host is
supposed to send emails at a faster rate. This is a continuous
feature.

Number of unique email recipients, senders: These are also
important criteria to distinguish between normal and infected
host. This is a continuous feature too.

Average number of words/characters per subject, body,
average word length: These features are also useful in
distinguishing between normal and viral activity.

Variance in number of words/characters per subject, body,
variance in word length: These are also useful properties of
email worms.

Ratio of emails to attachments: Usually, normal emails do not
contain attachments, whereas most infected emails do contain
them.

167



7.4 Feature Reduction
Techniques
7.4.1 Dimension Reduction

The high dimensionality of data always appears to be a major
problem for classification tasks because (a) it increases the
running time of the classification algorithms, (b) it increases
chance of overfitting, and (c) a large number of instances is
required for learning tasks. We apply PCA (Principal
Components Analysis) to obtain a reduced dimensionality of
data in an attempt to eliminate these problems.

PCA finds a reduced set of attributes by projecting the
original dimension into a lower dimension. PCA is also
capable of discovering hidden patterns in data, thereby
increasing classification accuracy. As high-dimensional data
contain redundancies and noise, it is much harder for the
learning algorithms to find a hypothesis consistent with the
training instances. The learned hypothesis is likely to be too
complex and susceptible to overfitting. PCA reduces the
dimension, without losing much information, and thus allows
the learning algorithms to find a simpler hypothesis that is
consistent with the training examples, and thereby reduces the
chance of overfitting. But it should be noted that PCA
projects data into a lower dimension in the direction of
maximum dispersion. Maximum dispersion of data does not
necessarily imply maximum separation of between-class data
and/or maximum concentration of within-class data. If this is
the case, then PCA reduction may result in poor performance.

168



7.4.2 Two-Phase Feature Selection
(TPS)

Feature selection is different from dimension reduction
because it selects a subset of the feature set, rather than
projecting a combination of features onto a lower dimension.
We apply a two-phase feature selection (TPS) process. In
phase I, we build a decision tree from the training data. We
select the features found at the internal nodes of the tree. In
phase II, we apply a greedy selection algorithm. We combine
these two selection processes because of the following
reasons. The decision tree selection is fast, but the selected
features may not be a good choice for the novel dataset. That
is, the selected features may not perform well on the novel
data, because the novel data may have a different set of
important features. We observe this fact when we apply a
decision tree on the Mydoom.M and VBS.BubbleBoy dataset.
That is why we apply another phase of selection, the greedy
selection, on top of decision tree selection. Our goal is to
determine if there is a more general feature set that covers all
important features. In our experiments, we are able to find
such a feature set using greedy selection. There are two
reasons why we do not apply only greedy selection: First, it is
very slow compared to decision tree selection because, at
each iteration, we have to modify the data to keep only the
selected features and run the classifiers to compute the
accuracy. Second, the greedy elimination process may lead to
a set of features that are inferior to the decision tree-selected
set of features. That is why we keep the decision tree-selected
features as the minimal features set.

169



7.4.2.1 Phase I We apply decision tree as a feature selection
tool in phase I. The main reason behind applying decision tree
is that it selects the best attributes according to information
gain. Information gain is a very effective metric in selecting
features. Information gain can be defined as a measure of the
effectiveness of an attribute (i.e., feature) in classifying the
training data [Mitchell, 1997]. If we split the training data on
these attribute values, then information gain gives the
measurement of the expected reduction in entropy after the
split. The more an attribute can reduce entropy in the training
data, the better the attribute in classifying the data.
Information gain of a binary attribute A on a collection of
examples S is given by (Eq. 7.1):

where Values(A) is the set of all possible values for attribute
A, and Sv is the subset of S for which attribute A has value v.
In our case, each binary attribute has only two possible values
(0, 1). Entropy of subset S is computed using the following
equation:

where p(S) is the number of positive examples in S and n(S) is
the total number of negative examples in S. Computation of

170



information gain of a continuous attribute is a little tricky,
because it has an infinite number of possible values. One
approach followed by [Quinlan, 1993] is to find an optimal
threshold and split the data into two halves. The optimal
threshold is found by searching a threshold value with the
highest information gain within the range of values of this
attribute in the dataset.

We use J48 for building decision tree, which is an
implementation of C4.5. Decision tree algorithms choose the
best attribute based on information gain criteria at each level
of recursion. Thus, the final tree actually consists of the most
important attributes that can distinguish between the positive
and negative instances. The tree is further pruned to reduce
chances of overfitting. Thus, we are able to identify the
features that are necessary and the features that are redundant,
and use only the necessary features. Surprisingly enough, in
our experiments we find that on average, only 4.5 features are
selected by the decision tree algorithm, and the total number
of nodes in the tree is only 11. It indicates that only a few
features are important. We have six different datasets for six
different worm types. Each dataset is again divided into two
subsets: the known worms set or K-Set and the novel worm set
or N-Set. We apply threefold cross validation on the K-Set.

7.4.2.2 Phase II In the second phase, we apply a greedy
algorithm to select the best subset of features. We use the
feature subset selected in phase I as the minimal subset (MS).
At the beginning of the algorithm, we select all the features
from the original set and call it the potential feature set (PFS).
At each iteration of the algorithm, we compute the average
novel detection accuracy of six datasets, using PFS as the
feature set. Then we pick up a feature at random from the

171



PFS, which is not in MS, and eliminate it from the PFS if the
elimination does not reduce the accuracy of novel detection of
any classifier (NB, SVM, Series). If the accuracy drops after
elimination, then we do not eliminate the feature, and we add
it to MS. In this way, we reduce PFS and continue until no
further elimination is possible. Now the PFS contains the
most effective subset of features. Although this process is
time consuming, we finally come up with a subset of features
that can outperform the original set.

Algorithm 7.1 sketches the two-phase feature selection
process. At line 2, the decision tree is built using original
feature set FS and unreduced dataset DFS. At line 3, the set of
features selected by the decision tree is stored in the minimal
subset, MS. Then the potential subset, PFS, is initialized to
the original set FS. Line 5 computes the average novel
detection accuracy of three classifiers. The functions
NB-Acc(PFS, DPFS), SVM-Acc(PFS, DPFS), and
Series-Acc(PFS, DPFS) return the average novel detection
accuracy of NB, SVM, and Series, respectively, using PFS as
the feature set.

Algorithm 7.1 Two-Phase Feature Selection

1. Two-Phase-Selection (FS, DFS) returns FeatureSet

// FS : original set of features

// DFS : original dataset with FS as the feature set

2. T ← Build-Decision-Tree (FS, DFS)

172



3. MS ← Feature-Set (T) //minimal subset of features

4. PFS ← FS //potential subset of features

//compute novel detection accuracy of FS

5. pavg ← (NB-Acc(PFS, DPFS) + SVM-Acc(PFS, DPFS)

+ Series-Acc(PFS, DPFS)) /3

6. while PFS<>MS do

7. X ← a randomly chosen feature from PFS that is not in MS

8. PFS ← PFS – X

//compute novel detection accuracy of PFS

9. Cavg ← (NB-Acc(PFS, DPFS) + SVM-Acc(PFS, DPFS)

+ Series-Acc(PFS, DPFS)) /3

10. if Cavg ≥ pavg

11. pavg ← Cavg

12. else

13. PFS ← PFS ∪ {X}

14. MS ← MS ∪ {X}

15. end if

173



16. end while

17. return PFS

In the while loop, we randomly choose a feature X, such that
X ∈ PFS but X ∉ MS, and delete it from PFS. The accuracy
of the new PFS is calculated. If, after deletion, the accuracy
increases or remains the same, then X is redundant. So we
remove this feature permanently. Otherwise, if the accuracy
drops after deletion, then this feature is essential, so we add it
to the minimal set, MS (lines 13 and 14). In this way, we
either delete a redundant feature or add it to the minimal
selection. It is repeated until we have nothing more to select
(i.e., MS equals PFS). We return the PFS as the best feature
set.

7.5 Classification
Techniques
Classification is a supervised data mining technique in which
a data mining model is first trained with some “ground truth,”
that is, training data. Each instance (or data point) in the
training data is represented as a vector of features, and each
training instance is associated with a “class label.” The data
mining model trained from the training data is called a
“classification model,” which can be represented as a function
f(x): feature vector → class label. This function approximates
the feature vector-class label mapping from the training data.

174



When a test instance with an unknown class label is passed to
the classification model, it predicts (i.e., outputs) a class label
for the test instance. The accuracy of a classifier is determined
by how many unknown instances (instances that were not in
the training data) it can classify correctly.

We apply the NB [John and Langley, 1995], SVM [Boser et
al., 1992], and C4.5 decision tree [Quinlan, 1993] classifiers
in our experiments. We also apply our implementation of the
Series classifier [Martin et al., 2005-b] to compare its
performance with other classifiers. We briefly describe the
Series approach here for the purpose of self-containment.

NB assumes that features are independent of each other. With
this assumption, the probability that an instance x = (x1, x2,
…,xn) is in class c (c ∈ {1, …, C}) is

where xi is the value of the i-th feature of the instance x, P(c)
is the prior probability of class C, and P(Xj = xj|c) is the
conditional probability that the j-th attribute has the value xj
given class c.

So the NB classifier outputs the following class:

175



NB treats discrete and continuous attributes differently. For
each discrete attribute, p(X = x|c) is modeled by a single real
number between 0 and 1 which represents the probability that
the attribute X will take on the particular value x when the
class is c. In contrast, each numeric (or real) attribute is
modeled by some continuous probability distribution over the
range of that attribute’s values. A common assumption not
intrinsic to the NB approach but often made nevertheless is
that within each class the values of numeric attributes are
normally distributed. One can represent such a distribution in
terms of its mean and standard deviation, and one can
efficiently compute the probability of an observed value from
such estimates. For continuous attributes we can write

where

Smoothing (m-estimate) is used in NB. We have used the
value m = 100 and p = 0.5 while calculating the probability

where nc = total number of instances for which X = x given
Class c and n = total number of instances for which X = x.

SVM can perform either linear or non-linear classification.
The linear classifier proposed by [Boser et al., 1992] creates a

176



hyperplane that separates the data into two classes with the
maximum margin. Given positive and negative training
examples, a maximum-margin hyperplane is identified, which
splits the training examples such that the distance between the
hyperplane and the closest examples is maximized. The
non-linear SVM is implemented by applying kernel trick to
maximum-margin hyperplanes. The feature space is
transformed into a higher dimensional space, where the
maximum-margin hyperplane is found. This hyperplane may
be non-linear in the original feature space. A linear SVM is
illustrated in Figure 7.3. The circles are negative instances
and the squares are positive instances. A hyperplane (the bold
line) separates the positive instances from negative ones. All
of the instances are at least at a minimal distance (margin)
from the hyperplane. The points that are at a distance exactly
equal to the hyperplane are called the support vectors. As
mentioned earlier, the SVM finds the hyperplane that has the
maximum margin among all hyperplanes that can separate the
instances.

Figure 7.3 Illustration of support vectors and margin of a
linear SVM.

177



In our experiments, we have used the SVM implementation
provided at [Chang and Lin, 2006]. We also implement the
Series or “two-layer approach” proposed by [Martin et al.,
2005-b] as a baseline technique. The Series approach works
as follows: In the first layer, SVM is applied as a novelty
detector. The parameters of SVM are chosen such that it
produces almost zero false positive. This means, if SVM
classifies an email as infected, then with probability (almost)
100%, it is an infected email. If, otherwise, SVM classifies an
email as clean, then it is sent to the second layer for further
verification. This is because, with the previously mentioned
parameter settings, while SVM reduces false positive rate, it
also increases the false negative rate. So, any email classified
as negative must be further verified. In the second layer, NB
classifier is applied to confirm whether the suspected emails
are really infected. If NB classifies it as infected, then it is
marked as infected; otherwise, it is marked as clean. Figure
7.4 illustrates the Series approach.

7.6 Summary
In this chapter, we have described the design and
implementation of the data mining tools for email worm
detection. As we have stated, feature-based methods are
superior to the signature-based methods for worm detection.
Our approach is based on feature extraction. We reduce the
dimension of the features by using PCA and then use
classification techniques based on SVM and NB for detecting
worms. In Chapter 8, we discuss the experiments we carried
out and analyze the results obtained.

178



Figure 7.4 Series combination of SVM and NB classifiers
for email worm detection. (This figure appears in Email Work
Detection Using Data Mining, International Journal of
Information Security and Privacy, Vol. 1, No. 4, pp. 47–61,
2007, authored by M. Masud, L. Kahn, and B.
Thuraisingham. Copyright 2010, IGI Global,
www.igi-global.com. Posted by permission of the publisher.)

As stated in Chapter 6, as future work, we are planning to
detect worms by combining the feature-based approach with
the content-based approach to make it more robust and
efficient. We will also focus on the statistical property of the
contents of the messages for possible contamination of
worms. In addition, we will apply other classification
techniques and compare the performance and accuracy of the
results.

179

http://www.igi-global.com


References
[Boser et al., 1992] Boser, B. E., I. M. Guyon, V. N. Vapnik,
A Training Algorithm for Optimal Margin Classifiers, in D.
Haussler, editor, 5th Annual ACM Workshop on COLT,
Pittsburgh, PA, ACM Press, 1992, pp. 144–152.

[Chang and Lin, 2006] Chang, C.-C., and C.-J. Lin, LIBSVM:
A Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[John and Langley, 1995] John, G. H., and P. Langley,
Estimating Continuous Distributions in Bayesian Classifiers,
in Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann Publishers, San
Mateo, CA, 1995, pp. 338–345.

[Martin et al., 2005-a] Martin, S., A. Sewani, B. Nelson, K.
Chen, A. D. Joseph, Analyzing Behavioral Features for Email
Classification, in Proceedings of the IEEE Second Conference
on Email and Anti-Spam (CEAS 2005), July 21 & 22,
Stanford University, CA.

[Martin et al., 2005-b] Martin, S., A. Sewani, B. Nelson, K.
Chen, A. D. Joseph, A Two-Layer Approach for Novel Email
Worm Detection, Submitted to USENIX Steps on Reducing
Unwanted Traffic on the Internet (SRUTI).

[Mitchell, 1997] Mitchell, T. Machine Learning,
McGraw-Hill, 1997.

180

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[Quinlan, 1993] Quinlan, J. R. C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, 1993.

181



8

EVALUATION AND RESULTS

8.1 Introduction
In Chapter 6 we described email worm detection, and in
Chapter 7 we described our data mining tool for email worm
detection. In this chapter, we describe the datasets,
experimental setup, and the results of our proposed approach
and other baseline techniques.

The dataset contains a collection of 1,600 clean and 1,200
viral emails, which are divided into six different evaluation
sets (Section 8.2). The original feature set contains 94
features. The evaluation compares our two-phase feature
selection technique with two other approaches, namely,
dimension reduction using PCA, and no feature selection or
reduction. Performance of three different classifiers has been
evaluated on these feature spaces, namely, NB, SVM, and
Series approach (see Table 8.8 for summary). Therefore, there
are nine different combinations of feature set–classifier pairs,
such as two-phase feature selection + NB, no feature selection
+ NB, two-phase feature selection + SVM, and so on. In
addition, we compute three different metrics on these datasets
for each feature set–classifier pair: classification accuracy,
false positive rate, and accuracy in detecting a new type of
worm.

182



The organization of this chapter is as follows. In Section 8.2,
we describe the distribution of the datasets used. In Section
8.3, we discuss the experimental setup, including hardware,
software, and system parameters. In Section 8.4, we discuss
results obtained from the experiments. The chapter is
summarized in Section 8.5. Concepts in this chapter are
illustrated in Figure 8.1.

Figure 8.1 Concepts in this chapter.

8.2 Dataset
We have collected the worm dataset used in the experiment
by [Martin et al., 2005]. They have accumulated several
hundreds of clean and worm emails over a period of two
years. All of these emails are outgoing emails. Several
features are extracted from these emails, as explained in
Section 7.3 (“Feature Description”).

183



There are six types of worms contained in the dataset:
VBS.BubbleBoy, W32.Mydoom.M, W32.Sobig.F,
W32.Netsky.D, W32.Mydoom.U, and W32.Bagle.F. But the
classification task is binary: {clean, infected}. The original
dataset contains six training and six test sets. Each training set
is made up of 400 clean emails and 1,000 infected emails,
consisting of 200 samples from each of the five different
worms. The sixth virus is then included in the test set, which
contains 1,200 clean emails and 200 infected messages. Table
8.1 clarifies this distribution. For ease of representation, we
abbreviate the worm names as follows:

• B: VBS.BubbleBoy
• F: W32.Bagle.F
• M: W32.Mydoom.M
• N: W32.Netsky.D
• S: W32.Sobig.F
• U: W32.Mydoom.U

NB, SVM, and the Series classifiers are applied to the original
data, the PCA-reduced data, and the TPS-selected data. The
decision tree is applied on the original data only.

Table 8.1 Data Distribution from the Original Dataset

184



Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47-61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

We can easily notice that the original dataset is unbalanced,
because the ratio of clean emails to infected emails is 2:5 in
the training set, whereas it is 5:1 in the test set. So, the results
obtained from this dataset may not be reliable. We make it
balanced by redistributing the examples. In our distribution,
each balanced set contains two subsets. The Known-worms
set or K-Set contains 1,600 clean email messages, which are
the combination of all the clean messages in the original
dataset (400 from training set, 1,200 from test set). The K-Set
also contains 1,000 infected messages, with five types of
worms marked as the “known worms.” The N-Set contains

185

http://www.igi-global.com


200 infected messages of a sixth type of worm, marked as the
“novel worm.” Then we apply cross validation on K-Set. The
cross validation is done as follows: We randomly divide the
set of 2,600 (1,600 clean + 1,000 viral) messages into three
equal-sized subsets, such that the ratio of clean messages to
viral messages remains the same in all subsets. We take two
subsets as the training set and the remaining set as the test set.
This is done three times by rotating the testing and training
sets. We take the average accuracy of these three runs. This
accuracy is shown under the column “Acc” in Tables 8.3, 8.5,
and 8.6. In addition to testing the accuracy of the test set, we
also test the detection accuracy of each of the three learned
classifiers on the N-Set, and take the average. This accuracy
is also averaged over all runs and shown as novel detection
accuracy. Table 8.2 displays the data distribution of our
dataset.

Table 8.2 Data Distribution from the Redistributed Dataset

186



Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47-61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

8.3 Experimental Setup
In this section, we describe the experimental setup including a
discussion of the hardware and software utilized. We run all
our experiments on a Windows XP machine with Java version
1.5 installed. For running SVM, we use the LIBSVM package
[Chang and Lin, 2006].

We use our own C++ implementation of NB. We implement
PCA with MATLAB. We use the WEKA machine learning
tool [Weka, 2006] for decision tree, with pruning applied.

Parameter settings: Parameter settings for LIBSVM are as
follows: classifier type is C-Support Vector Classification
(C-SVC); the kernel is chosen to be the radial basis function
(RBF); the values of “gamma” = 0.2 and “C” = 1 are chosen.

Baseline techniques: We compare our TPS technique with
two different feature selection/reduction techniques.
Therefore, the competing techniques are the following:

TPS. This is our two-phase feature selection technique.

PCA. Here we reduce the dimension using PCA. With PCA,
we reduce the dimension size to 5, 10, 15, …, 90, 94. That is,

187

http://www.igi-global.com


we vary the target dimension from 5 to 94 with step 5
increments.

No reduction (unreduced). Here the full feature set is used.

Each of these feature vectors are used to train three different
classifiers, namely, NB, SVM, and Series. Decision tree is
also trained with the unreduced feature set.

8.4 Results
We discuss the results in three separate subsections. In
subsection 8.4.1, we discuss the results found from unreduced
data; that is, data before any reduction or selection is applied.
In subsection 8.4.2, we discuss the results found from
PCA-reduced data, and in subsection 8.4.3, we discuss the
results obtained using TPS-reduced data.

8.4.1 Results from Unreduced Data

Table 8.3 reports the accuracy of the cross validation
accuracy and false positive for each set. The cross validation
accuracy is shown under the column Acc and the false
positive rate is shown under the column FP. The set names at
the row headings are the abbreviated names, as explained in
“Dataset” section. From the results reported in Table 8.3, we
see that SVM observes the best accuracy among all
classifiers, although the difference with other classifiers is
small.

188



Table 8.4 reports the accuracy of detecting novel worms. We
see that SVM is very consistent over all sets, but NB, Series,
and decision tree perform significantly worse in the
Mydoom.M dataset.

8.4.2 Results from PCA-Reduced Data

Figure 8.2 shows the results of applying PCA on the original
data. The X axis denotes dimension of the reduced
dimensional data, which has been varied from 5 to 90, with
step 5 increments. The last point on the X axis is the
unreduced or original dimension. Figure 8.2 shows the cross
validation accuracy for different dimensions. The data from
the chart should be read as follows: a point (x, y) on a given
line, say the line for SVM, indicates the cross validation
accuracy y of SVM, averaged over all six datasets, where
each dataset has been reduced to x dimension using PCA.

Table 8.3 Comparison of Accuracy (%) and False Positive
(%) of Different Classifiers on the Worm Dataset

189



Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

Table 8.4 Comparison of Novel Detection Accuracy (%) of
Different Classifiers on the Worm Dataset

Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

190

http://www.igi-global.com
http://www.igi-global.com


Figure 8.2 Average cross validation accuracy of the three
classifiers on lower dimensional data, reduced by PCA. (This
figure appears in Email Work Detection Using Data Mining,
International Journal of Information Security and Privacy,
Vol. 1, No. 4, pp. 47–61, 2007, authored by M. Masud, L.
Kahn, and B. Thuraisingham. Copyright 2010, IGI Global,
www.igi-global.com. Posted by permission of the publisher.)

Figure 8.2 indicates that at lower dimensions, cross validation
accuracy is lower, for each of the three classifiers. But SVM
achieves its near maximum accuracy at dimension 30. NB and
Series reaches within 2% of maximum accuracy at dimension
30 and onward. All classifiers attain their maximum at the
highest dimension 94, which is actually the unreduced data.
So, from this observation, we may conclude that PCA is not
effective on this dataset, in terms of cross validation accuracy.
The reason behind this poorer performance on the reduced
dimensional data is possibly the one that we have mentioned

191

http://www.igi-global.com


earlier in subsection “Dimension Reduction.” The reduction
by PCA is not producing a lower dimensional data where
dissimilar class instances are maximally dispersed and similar
class instances are maximally concentrated. So, the
classification accuracy is lower at lower dimensions.

We now present the results, at dimension 25, similar to the
results presented in the previous subsection. Table 8.5
compares the novel detection accuracy and cross validation
accuracy of different classifiers. The choice of this particular
dimension is that, at this dimension, all the classifiers seem to
be the most balanced in all aspects: cross validation accuracy,
false positive and false negative rate, and novel detection
accuracy. We conclude that this dimension is the optimal
dimension for projection by PCA. From Table 8.5, it is
evident that accuracies of all three classifiers on PCA-reduced
data are lower than the accuracy of the unreduced data. It is
possible that some information that is useful for classification
might have been lost during projection onto a lower
dimension.

Table 8.5 Comparison of Cross Validation Accuracy (Acc)
and Novel Detection Accuracy (NAcc) among Different
Classifiers on the PCA-Reduced Worm Dataset at Dimension
25

192



Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

We see in Table 8.5 that both the accuracy and novel
detection accuracy of NB has dropped significantly from the
original dataset. The novel detection accuracy of NB on the
Mydoom.M dataset has become 0%, compared to 17% in the
original set. The novel detection accuracy of SVM on the
same dataset has dropped to 30%, compared to 92.4% in the
original dataset. So, we can conclude that PCA reduction does
not help in novel detection.

8.4.3 Results from Two-Phase Selection

Our TPS selects the following features (in no particular
order):

193

http://www.igi-global.com


Attachment type binary

MIME (magic) type of attachment application/msdownload

MIME (magic) type of attachment
application/x-ms-dos-executable

Frequency of email sent in window

Mean words in body

Mean characters in subject

Number of attachments

Number of From Address in Window

Ratio of emails with attachment

Variance of attachment size

Variance of words in body

Number of HTML in email

Number of links in email

Number of To Address in Window

Variance of characters in subject

The first three features actually reflect important
characteristics of an infected email. Usually, infected emails
have binary attachment, which is a dos/windows executable.

194



Mean/variance of words in body and characters in subject are
also considered as important symptoms, because usually
infected emails contain random subject or body, thus having
irregular size of body or subject. Number of attachments, and
ratio of emails with attachments, and number of links in email
are usually higher for infected emails. Frequency of emails
sent in window, and number of To Address in window are
higher for an infected host, as a compromised host sends
infected emails to many addresses and more frequently. Thus,
most of the features selected by our algorithm are really
practical and useful.

Table 8.6 reports the cross validation accuracy (%) and false
positive rate (%) of the three classifiers on the TPS-reduced
dataset. We see that both the accuracy and false positive rates
are almost the same as the unreduced dataset. The accuracy of
Mydoom.M dataset (shown at row M) is 99.3% for NB,
99.5% for SVM, and 99.4% for Series. Table 8.7 reports the
novel detection accuracy (%) of the three classifiers on the
TPS-reduced dataset. We find that the average novel
detection accuracy of the TPS-reduced dataset is higher than
that of the unreduced dataset. The main reason behind this
improvement is the higher accuracy on the Mydoom.M set by
NB and Series. The accuracy of NB on this dataset is 37.1%
(row M), compared to 17.4% in the unreduced dataset (see
Table 8.4, row M). Also, the accuracy of Series on the same is
36.0%, compared to 16.6% on the unreduced dataset (as show
in Table 8.4, row M). However, accuracy of SVM remains
almost the same, 91.7%, compared to 92.4% in the unreduced
dataset. In Table 8.8, we summarize the averages from Tables
8.3 through Table 8.7.

195



Table 8.6 Cross Validation Accuracy (%) and False Positive
(%) of Three Different Classifiers on the TPS-Reduced
Dataset

Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

Table 8.7 Comparison of Novel Detection Accuracy (%) of
Different Classifiers on the TPS-Reduced Dataset

196

http://www.igi-global.com


Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

The first three rows (after the header row) report the cross
validation accuracy of all four classifiers that we have used in
our experiments. Each row reports the average accuracy on a
particular dataset. The first row reports the average accuracy
for the unreduced dataset; the second row reports the same for
PCA-reduced dataset and the third row for TPS-reduced
dataset. We see that the average accuracies are almost the
same for the TPS-reduced and the unreduced set. For
example, average accuracy of NB (shown under column NB)
is the same for both, which is 99.2%; the accuracy of SVM
(shown under column SVM) is also the same, 99.5%. The
average accuracies of these classifiers on the PCA-reduced
dataset are 1% to 2% lower. There is no entry under the
decision tree column for the PCA-reduced and TPS-reduced
dataset because we only test the decision tree on the
unreduced dataset.

197

http://www.igi-global.com


Table 8.8 Summary of Results (Averages) Obtained from
Different Feature-Based Approaches

Source: This table appears in Email Work Detection Using
Data Mining, International Journal of Information Security
and Privacy, Vol. 1, No. 4, pp. 47–61, 2007, authored by M.
Masud, L. Kahn, and B. Thuraisingham. Copyright 2010, IGI
Global, www.igi-global.com. Posted by permission of the
publisher.

The middle three rows report the average false positive values
and the last three rows report the average novel detection
accuracies. We see that the average novel detection accuracy
on the TPS-reduced dataset is the highest among all. The
average novel detection accuracy of NB on this dataset is
86.7%, compared to 83.6% on the unreduced dataset, which is
a 3.1% improvement on average. Also, Series has a novel
detection accuracy of 86.3% on the TPS-reduced dataset,
compared to that of the unreduced dataset, which is 83.1%.
Again, it is a 3.2% improvement on average. However,
average accuracy of SVM remains almost the same (only
0.1% difference) on these two datasets. Thus, on average, we
have an improvement in novel detection accuracy across

198

http://www.igi-global.com


different classifiers on the TPS-reduced dataset. While
TPS-reduced dataset is the best among the three, the best
classifier among the four is SVM. It has the highest average
accuracy and novel detection accuracy on all datasets, and
also very low average false positive rates.

8.5 Summary
In this chapter, we have discussed the results obtained from
testing our data mining tool for email worm detection. We
first discussed the datasets we used and the experimental
setup. Then we described the results we obtained. We have
two important findings from our experiments. First, SVM has
the best performance among all four different classifiers: NB,
SVM, Series, and decision tree. Second, feature selection
using our TPS algorithm achieves the best accuracy,
especially in detecting novel worms. Combining these two
findings, we conclude that SVM with TPS reduction should
work as the best novel worm detection tool on a feature-based
dataset.

In the future, we would like to extend our work to
content-based detection of the email worm by extracting
binary level features from the emails. We would also like to
apply other classifiers for the detection task.

199



References
[Chang and Lin, 2006] Chang, C.-C., and C.-J. Lin, LIBSVM:
A Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[Martin et al., 2005] Martin, S., A. Sewani, B. Nelson, K.
Chen, and A. D. Joseph, Analyzing Behavioral Features for
Email Classification, in Proceedings of the IEEE Second
Conference on Email and Anti-Spam (CEAS 2005), July 21 &
22, Stanford University, CA.

[Weka, 2006] Weka 3: Data Mining Software in Java,
http://www.cs.waikato.ac.nz/∼ml/weka

200

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.waikato.ac.nz/~ml/weka


Conclusion to Part II

In this part, we discussed our proposed data mining technique
to detect email worms. Different features, such as total
number of words in message body/subject, presence/absence
of binary attachments, types of attachments, and others, are
extracted from the emails. Then the number of features is
reduced using a Two-phase Selection (TPS) technique, which
is a novel combination of decision tree and greedy selection
algorithm. We have used different classification techniques,
such as Support Vector Machine (SVM), Naïve Bayes, and
their combination. Finally, the trained classifiers are tested on
a dataset containing both known and unknown types of
worms. Compared to the baseline approaches, our proposed
TPS selection along with SVM classification achieves the
best accuracy in detecting both known and unknown types of
worms.

In the future, we would like to apply our technique on a larger
corpus of emails and optimize the feature extraction selection
techniques to make them more scalable to large datasets.

201



PART III

DATA MINING FOR DETECTING
MALICIOUS EXECUTABLES

Introduction to Part III
We present a scalable and multi-level feature extraction
technique to detect malicious executables. We propose a
novel combination of three different kinds of features at
different levels of abstraction. These are binary n-grams,
assembly instruction sequences, and dynamic link library
(DLL) function calls, extracted from binary executables,
disassembled executables, and executable headers,
respectively. We also propose an efficient and scalable feature
extraction technique and apply this technique on a large
corpus of real benign and malicious executables. The
previously mentioned features are extracted from the corpus
data and a classifier is trained, which achieves high accuracy
and low false positive rate in detecting malicious executables.
Our approach is knowledge based for several reasons. First,
we apply the knowledge obtained from the binary n-gram
features to extract assembly instruction sequences using our
Assembly Feature Retrieval algorithm. Second, we apply the
statistical knowledge obtained during feature extraction to
select the best features and to build a classification model.
Our model is compared against other feature-based
approaches for malicious code detection, and found to be

202



more efficient in terms of detection accuracy and false alarm
rate.

Part III consists of three chapters: 9, 10, and 11. Chapter 9
describes our approach to detecting malicious executables.
Chapter 10 describes the design and implementation of our
data mining tools. Chapter 11 describes our evaluation and
results.

203



9

MALICIOUS EXECUTABLES

9.1 Introduction
Malicious code is a great threat to computers and computer
society. Numerous kinds of malicious codes wander in the
wild. Some of them are mobile, such as worms, and spread
through the Internet, causing damage to millions of computers
worldwide. Other kinds of malicious codes are static, such as
viruses, but sometimes deadlier than their mobile counterpart.
Malicious code writers usually exploit software
vulnerabilities to attack host machines. A number of
techniques have been devised by researchers to counter these
attacks. Unfortunately, the more successful the researchers
become in detecting and preventing the attacks, the more
sophisticated the malicious code in the wild appears. Thus,
the battle between malicious code writers and researchers is
virtually never ending.

One popular technique followed by the antivirus community
to detect malicious code is “signature detection.” This
technique matches the executables against a unique telltale
string or byte pattern called signature, which is used as an
identifier for a particular malicious code. Although signature
detection techniques are being used widely, they are not
effective against zero-day attacks (new malicious code),
polymorphic attacks (different encryptions of the same

204



binary), or metamorphic attacks (different code for the same
functionality). So there has been a growing need for fast,
automated, and efficient detection techniques that are robust
to these attacks. As a result, many automated systems
[Golbeck and Hendler, 2004], [Kolter and Maloof, 2004],
[Newman et al., 2002], [Newsome et al., 2005], have been
developed.

In this chapter we describe our novel hybrid feature retrieval
(HFR) model that can detect malicious executables efficiently
[Masud et al., 2007-a], [Masud et al., 2007-b]. The
organization of this chapter is as follows. Our architecture is
discussed in Section 9.2. Related work is given in Section 9.3.
Our approach is discussed in Section 9.4. The chapter is
summarized in Section 9.5. Figure 9.1 illustrates the concepts
in this chapter.

Figure 9.1 Concepts in this chapter.

205



9.2 Architecture
Figure 9.2 illustrates our architecture for detecting malicious
executables. The training data consist of a collection of
benign and malicious executables. We extract three different
kinds of features (to be explained shortly) from each
executable. These extracted features are then analyzed and
only the best discriminative features are selected. Feature
vectors are generated from each training instance using the
selected feature set. The feature vectors are used to train a
classifier. When a new executable needs to be tested, at first
the features selected during training are extracted from the
executable, and a feature vector is generated. This feature
vector is classified using the classifier to predict whether it is
a benign or malicious executable.

Figure 9.2 Architecture.

In our approach, we extract three different kinds of features
from the executables at different levels of abstraction and
combine them into one feature set, called the hybrid feature
set (HFS). These features are used to train a classifier (e.g.,

206



support vector machine [SVM], decision tree, etc.), which is
applied to detect malicious executables. These features are (a)
binary n-gram features, (b) derived assembly features
(DAFs), and (c) dynamic link library (DLL) call features.
Each binary n-gram feature is actually a sequence of n
consecutive bytes in a binary executable, extracted using a
technique explained in Chapter 10. Binary n-grams reveal the
distinguishing byte patterns between the benign and malicious
executables. Each DAF is a sequence of assembly instructions
in an executable, and corresponds to one binary n-gram
feature. DAFs reveal the distinctive instruction usage patterns
between the benign and malicious executables. They are
extracted from the disassembled executables using our
assembly feature retrieval (AFR) algorithm. It should be
noted that DAF is different from assembly n-gram features,
mentioned in Chapter 10. Assembly n-gram features are not
used in HFS because of our findings that DAF performs better
than them. Each DLL call feature actually corresponds to a
DLL function call in an executable, extracted from the
executable header. These features reveal the distinguishing
DLL call patterns between the benign and malicious
executables. We show empirically that the combination of
these three features is always better than any single feature in
terms of classification accuracy.

Our work focuses on expanding features at different levels of
abstraction rather than using more features at a single level of
abstraction. There are two main reasons behind this. First, the
number of features at a given level of abstraction (e.g.,
binary) is overwhelmingly large. For example, in our larger
dataset, we obtain 200 million binary n-gram features.
Training with this large number of features is way beyond the
capabilities of any practical classifier. That is why we limit

207



the number of features at a given level of abstraction to an
applicable range. Second, we empirically observe the benefit
of adding more levels of abstraction to the combined feature
set (i.e., HFS). HFS combines features at three levels of
abstraction, namely, binary executables, assembly programs,
and system API calls. We show that this combination has
higher detection accuracy and lower false alarm rate than the
features at any single level of abstraction.

Our technique is related to knowledge management because
of several reasons. First, we apply our knowledge of binary
n-gram features to obtain DAFs. Second, we apply the
knowledge obtained from the feature extraction process to
select the best features. This is accomplished by extracting all
possible binary n-grams from the training data, applying the
statistical knowledge corresponding to each n-gram (i.e., its
frequency in malicious and benign executables) to compute
its information gain [Mitchell 1997], and selecting the best S
of them. Finally, we apply another statistical knowledge
(presence/absence of a feature in an executable) obtained
from the feature extraction process to train classifiers.

Our research contributions are as follows. First, we propose
and implement our HFR model, which combines the three
kinds of features previously mentioned. Second, we apply a
novel idea to extract assembly instruction features using
binary n-gram features, implemented with the AFR algorithm.
Third, we propose and implement a scalable solution to the
n-gram feature extraction and selection problem in general.
Our solution works well with limited memory and
significantly reduces running time by applying efficient and
powerful data structures and algorithms. Thus, it is scalable to
a large collection of executables (in the order of thousands),

208



even with limited main memory and processor speed. Finally,
we compare our results against the results of [Kolter and
Maloof, 2004], who used only the binary n-gram feature, and
show that our method achieves better accuracy. We also
report the performance/cost trade-off of our method against
the method of [Kolter and Maloof, 2004]. It should be pointed
out here that our main contribution is an efficient feature
extraction technique, not a classification technique. We
empirically prove that the combined feature set (i.e., HFS)
extracted using our algorithm performs better than other
individual feature sets (such as binary n-grams) regardless of
the classifier (e.g., SVM or decision tree) used.

9.3 Related Work
There has been significant research in recent years to detect
malicious executables. There are two mainstream techniques
to automate the detection process: behavioral and content
based. The behavioral approach is primarily applied to detect
mobile malicious code. This technique is applied to analyze
network traffic characteristics such as source-destination
ports/IP addresses, various packet-level/flow-level statistics,
and application-level characteristics such as email attachment
type and attachment size. Examples of behavioral approaches
include social network analysis [Golbeck and Hendler, 2004],
[Newman et al., 2002] and statistical analysis [Schultz et al.,
2001-a]. A data mining-based behavioral approach for
detecting email worms has been proposed by [Masud et al.,
2007-a]. [Garg et al., 2006] apply the feature extraction
technique along with machine learning for masquerade
detection. They extract features from user behavior in

209



GUI-based systems, such as mouse speed, number of clicks
per session, and so on. Then the problem is modeled as a
binary classification problem, and trained and tested with
SVM. Our approach is content based, rather than behavioral.

The content-based approach analyzes the content of the
executable. Some of them try to automatically generate
signatures from network packet payloads. Examples are
EarlyBird [Singh et al., 2003], Autograph [Kim and Karp,
2004], and Polygraph [Newsome et al., 2005]. In contrast, our
method does not require signature generation or signature
matching. Some other content-based techniques extract
features from the executables and apply machine learning to
detect malicious executables. Examples are given in [Schultz
et al., 2001b] and [Kolter and Maloof, 2004]. The work in
[Schultz et al., 2001-b] extracts DLL call information using
GNU Bin-Utils and character strings using GNU strings from
the header of Windows PE executables [Cygnus, 1999]. Also,
they use byte sequences as features. We also use byte
sequences and DLL call information, but we also apply
disassembly and use assembly instructions as features. We
also extract byte patterns of various lengths (from 2 to 10
bytes), whereas they extract only 2-byte length patterns. A
similar work is done by [Kolter and Maloof, 2004]. They
extract binary n-gram features from the binary executables,
apply them to different classification methods, and report
accuracy. Our model is different from [Kolter and Maloof,
2004] in that we extract not only the binary n-grams but also
assembly instruction sequences from the disassembled
executables, and gather DLL call information from the
program headers. We compare our model’s performance only
with [Kolter and Maloof, 2004], because they report higher
accuracy than that given in [Schultz et al., 2001b].

210



9.4 Hybrid Feature
Retrieval (HFR) Model
Our HFR model is a novel idea in malicious code detection. It
extracts useful features from disassembled executables using
the information obtained from binary executables. It then
combines the assembly features with other features like DLL
function calls and binary n-gram features. We have addressed
a number of difficult implementation issues and provided
efficient, scalable, and practical solutions. The difficulties that
we face during implementation are related to memory
limitations and long running times. By using efficient data
structures, algorithms, and disk I/O, we are able to implement
a fast, scalable, and robust system for malicious code
detection. We run our experiments on two datasets with
different class distribution and show that a more realistic
distribution improves the performance of our model.

Our model also has a few limitations. First, it does not
directly handle obfuscated DLL calls or encrypted/packed
binaries. There are techniques available for detecting
obfuscated DLL calls in the binary [Lakhotia et al., 2005] and
to unpack the packed binaries automatically. We may apply
these tools for de-obfuscation/decryption and use their output
to our model. Although this is not implemented yet, we look
forward to integrating these tools with our model in our future
versions. Second, the current implementation is an offline
detection mechanism, which means it cannot be directly
deployed on a network to detect malicious code. However, it
can detect malicious codes in near real time.

211



We address these issues in our future work and vow to solve
these problems. We also propose several modifications to our
model. For example, we would like to combine our features
with run-time characteristics of the executables. We also
propose building a feature database that would store all the
features and be updated incrementally. This would save a
large amount of training time and memory. Our approach is
illustrated in Figure 9.3.

Figure 9.3 Our approach to detecting malicious executables.

9.5 Summary
In this work, we have proposed a data mining-based model
for malicious code detection. Our technique extracts three
different levels of features from executables, namely, binary
level, assembly level, and API function call level. These
features then go through a feature selection phase for
reducing noise and redundancy in the feature set and generate
a manageable-sized set of features. These feature sets are then
used to build feature vectors for each training data. Then a
classification model is trained using the training data point.

212



This classification model classifies future instances (i.e.,
executables) to detect whether they are benign or malicious.

In the future, we would like to extend our work in two
directions. First, we would like to extract and utilize
behavioral features for malware detection. This is because
obfuscation against binary patterns may be achieved by
polymorphism and metamorphism, but it will be difficult for
the malware to obfuscate its behavioral pattern. Second, we
would like to make the feature extraction and classification
more scalable to applying the cloud computing framework.

References
[Cygnus, 1999]. GNU Binutils Cygwin,
http://sourceware.cygnus.com/cygwin

[Freund and Schapire, 1996] Freund, Y., and R. Schapire,
Experiments with a New Boosting Algorithm, in Proceedings
of the Thirteenth International Conference on Machine
Learning, Morgan Kaufmann, 1996, pp. 148–156.

[Garg et al., 2006] Garg, A., R. Rahalkar, S. Upadhyaya, K.
Kwiat, Profiling Users in GUI Based Systems for Masquerade
Detection, in Proceedings of the 7th IEEE Information
Assurance Workshop (IAWorkshop 2006), IEEE, 2006, pp.
48–54.

[Golbeck and Hendler, 2004] Golbeck, J., and J. Hendler,
Reputation Network Analysis for Email Filtering, in
Proceedings of CEAS 2004, First Conference on Email and
Anti-Spam.

213

http://sourceware.cygnus.com/cygwin


[Kim and Karp, 2004] Kim, H. A., B. Karp, Autograph:
Toward Automated, Distributed Worm Signature Detection,
in Proceedings of the 13th USENIX Security Symposium
(Security 2004), San Diego, CA, August 2004, pp. 271–286.

[Kolter and Maloof, 2004] Kolter, J. Z., and M. A. Maloof,
Learning to Detect Malicious Executables in the Wild,
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ACM, 2004, pp. 470–478.

[Lakhotia et al., 2005] Lakhotia, A., E. U. Kumar, M.
Venable, A Method for Detecting Obfuscated Calls in
Malicious Binaries, IEEE Transactions on Software
Engineering, 31(11), 955−968.

[Masud et al, 2007a] Masud, M. M., L. Khan, and B.
Thuraisingham, Feature-Based Techniques for
Auto-Detection of Novel Email Worms, in Proceedings of the
11th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD’07), Lecture Notes in Computer
Science 4426/Springer 2007, Bangkok, Thailand, pp.
205−216.

[Masud et al., 2007b] Masud, M. M., L. Khan, and B.
Thuraisingham, A Hybrid Model to Detect Malicious
Executables, in Proceedings of the IEEE International
Conference on Communication (ICC’07), pp. 1443−1448.

[Mitchell, 1997] Mitchell, T. Machine Learning.
McGraw-Hill.

214



[Newman et al., 2002] Newman, M. E. J., S. Forrest, and J.
Balthrop, Email Networks and the Spread of Computer
Viruses. Physical Review A 66(3), 035101-1–035101-4.

[Newsome et al., 2005] Newsome, J., B. Karp, and D. Song,
Polygraph: Automatically Generating Signatures for
Polymorphic Worms, in Proceedings of the IEEE Symposium
on Security and Privacy, May 2005, Oakland, CA, pp.
226−241.

[Schultz et al., 2001a] Schultz, M., E. Eskin, and E. Zadok,
MEF Malicious Email Filter, a UNIX Mail Filter That Detects
Malicious Windows Executables, in Proceedings of the
FREENIX Track, USENIX Annual Technical Conference,
June 2001, Boston, MA, pp. 245−252.

[Schultz et al., 2001b] Schultz, M., E. Eskin, E. Zadok, and S.
Stolfo, Data Mining Methods for Detection of New Malicious
Executables, in Proceedings of the IEEE Symposium on
Security and Privacy, May 2001, Oakland, CA, pp. 38–49.

[Singh et al., 2003] Singh, S., C. Estan, G. Varghese, and S.
Savage, The EarlyBird System for Real-Time Detection of
Unknown Worms. Technical Report CS2003-0761,
University of California at San Diego (UCSD), August 2003.

215



10

DESIGN OF THE DATA MINING
tOOL

10.1 Introduction
In this chapter, we describe our data mining tool for detecting
malicious executables. It utilizes the feature extraction
technique using n-gram analysis. We first discuss how we
extract binary n-gram features from the executables and then
show how we select the best features using information gain.
We also discuss the memory and scalability problem
associated with the n-gram extraction and selection and how
we solve it. Then we describe how the assembly features and
dynamic link library (DLL) call features are extracted.
Finally, we describe how we combine these three kinds of
features and train a classifier using these features.

The organization of this chapter is as follows. Feature
extraction using n-gram analysis is given in Section 10.2. The
hybrid feature retrieval model is discussed in Section 10.3.
The chapter is summarized in Section 10.4. Figure 10.1
illustrates the concepts in this chapter.

216



10.2 Feature Extraction
Using n-Gram Analysis
Before going into the details of the process, we illustrate a
code snippet in Figure 10.2 from the email worm
“Win32.Ainjo.e” and use it as a running example throughout
the chapter.

Feature extraction using n-gram analysis involves extracting
all possible n-grams from the given dataset (training set), and
selecting the best n-grams among them. Each such n-gram is
a feature. We extend the notion of n-gram from bytes to
assembly instructions and DLL function calls. That is, an
n-gram may be either a sequence of n bytes, n assembly
instructions, or n DLL function calls, depending on whether
we are to extract features from binary executables, assembly
programs, or DLL call sequences, respectively. Before
extracting n-grams, we preprocess the binary executables by
converting them to hexdump files and assembly program
files, as explained shortly.

217



Figure 10.1 Concepts in this chapter.

Figure 10.2 Code snippet and DLL call info from the
Email-Worm “Win32.Ainjo.e.” (From M. Masud, L. Khan, B.
Thuraisingham, A Scalable Multi-level Feature Extraction
Technique to Detect Malicious Executables, pp. 33–45,
Springer. With permission.)

10.2.1 Binary n-Gram Feature

Here the granularity level is a byte. We apply the UNIX
hexdump utility to convert the binary executable files into
text files, mentioned henceforth as hexdump files, containing
the hexadecimal numbers corresponding to each byte of the
binary. This process is performed to ensure safe and easy
portability of the binary executables. The feature extraction

218



process consists of two phases: (1) feature collection, and (2)
feature selection, both of which are explained in the following
subsections.

10.2.2 Feature Collection

We collect binary n-grams from the hexdump files. This is
illustrated in Example-I.

Example-I

The 4-grams corresponding to the first 6 bytes sequence
(FF2108900027) from the executable in Figure 1 are the
4-byte sliding windows: FF21890, 21089000, and 08900027

The basic feature collection process runs as follows. At first,
we initialize a list L of n-grams to empty. Then we scan each
hexdump file by sliding an n-byte window. Each such n-byte
sequence is an n-gram. Each n-gram g is associated with two
values: p1 and n1, denoting the total number of positive
instances (i.e., malicious executables) and negative instances
(i.e., benign executables), respectively, that contain g. If g is
not found in L, then g is added to L, and p1 and n1 are updated
as necessary. If g is already in L, then only p1 and n1 are
updated. When all hexdump files have been scanned, L
contains all the unique n-grams in the dataset along with their
frequencies in the positive and negative instances. There are
several implementation issues related to this basic approach.
First, the total number of n-grams may be very large. For
example, the total number of 10-grams in our second dataset
is 200 million. It may not be possible to store all of them in
the computer’s main memory. To solve this problem, we store

219



the n-grams in a disk file F. Second, if L is not sorted, then a
linear search is required for each scanned n-gram to test
whether it is already in L. If N is the total number of n-grams
in the dataset, then the time for collecting all the n-grams
would be O (N2), an impractical amount of time when
N = 200 million.

To solve the second problem, we use a data structure called
Adelson Velsky Landis (AVL) tree [Goodrich and Tamassia,
2006] to store the n-grams in memory. An AVL tree is a
height-balanced binary search tree. This tree has a property
that the absolute difference between the heights of the left
subtree and the right subtree of any node is, at most, 1. If this
property is violated during insertion or deletion, a balancing
operation is performed, and the tree regains its
height-balanced property. It is guaranteed that insertions and
deletions are performed in logarithmic time. So, to insert an
n-gram in memory, we now need only O (log2 (N)) searches.
Thus, the total running time is reduced to O (Nlog2 (N)),
making the overall running time about 5 million times faster
for N as large as 200 million. Our feature collection algorithm
Extract_Feature implements these two solutions. It is
illustrated in Algorithm 10.1.

Description of the algorithm: the for loop at line 3 runs for
each hexdump file in the training set. The inner while loop at
line 4 gathers all the n-grams of a file and adds it to the AVL
tree if it is not already there. At line 8, a test is performed to
see whether the tree size has exceeded the memory limit (a
threshold value). If it exceeds and F is empty, then we save
the contents of the tree in F (line 9). If F is not empty, then
we merge the contents of the tree with F (line 10). Finally, we
delete all the nodes from the tree (line 12).

220



Algorithm 10.1 The n-Gram Feature Collection Algorithm

Procedure Extract_Feature (B)

B = { B1, B2, …, BK} : all hexdump files

1. T ← empty tree // Initialize AVL-tree

2. F ← new file // Initialize disk file

3. for each Bi ∈ B do

4. while not EOF(Bi) do //while not end of file

5. g ← next_ngram(Bi) // read next n-gram

6. T.insert(g) // insert into tree and/or update frequencies as
necessary

7. end while

8. if T.size > Threshold then //save or merge

9. if F is empty then F ← T.inorder() //save tree data in
sorted order

10. else F ← merge(T.inorder(), F) //merge tree data with file
data and save

11. end if

221



12. T ← empty tree //release memory

13. end if

14. end for

The time complexity of Algorithm 10.1 is T = time (n-gram
reading and inserting in tree) + time (merging with disk) = O
(Blog2K) + O (N), where B is the total size of the training data
in bytes, K is the maximum number of nodes of the tree (i.e.,
threshold), and N is the total number of n-grams collected.
The space complexity is O (K), where K is defined as the
maximum number of nodes of the tree.

10.2.3 Feature Selection

If the total number of extracted features is very large, it may
not be possible to use all of them for training because of
several reasons. First, the memory requirement may be
impractical. Second, training may be too slow. Third, a
classifier may become confused with a large number of
features, because most of them would be noisy, redundant, or
irrelevant. So, we are to choose a small, relevant, and useful
subset of features. We choose information gain (IG) as the
selection criterion, because it is one of the best criteria used in
literature for selecting the best features.

IG can be defined as a measure of effectiveness of an attribute
(i.e., feature) in classifying a training data point [Mitchell,
1997]. If we split the training data based on the values of this

222



attribute, then IG gives the measurement of the expected
reduction in entropy after the split. The more an attribute can
reduce entropy in the training data, the better the attribute is
in classifying the data. IG of an attribute A on a collection of
instances I is given by Eq. 10.1:

where

values (A) is the set of all possible values for attribute A,

Iv is the subset of I where all instances have the value of A =
v,

p is the total number of positive instances in I, n is the total
number of negative instances in I,

pv is the total number of positive instances in Iv, and nv is the
total number of negative instances in Iv.

In our case, each attribute has only two possible values, that
is, v ∈ {0, 1}. If an attribute A (i.e., an n-gram) is present in
an instance X, then XA = 1, otherwise it is 0. Entropy of I is
computed using the following equation:

where I, p, and n are as defined above. Substituting (2) in (1)
and letting t = n + p, we get

223



The next problem is to select the best S features (i.e.,
n-grams) according to IG. One naïve approach is to sort the
n-grams in non-increasing order of IG and selecting the top S
of them, which requires O (Nlog2N) time and O (N) main
memory. But this selection can be more efficiently
accomplished using a heap that requires O (Nlog2S) time and
O(S) main memory. For S = 500 and N = 200 million, this
approach is more than 3 times faster and requires 400,000
times less main memory. A heap is a balanced binary tree
with the property that the root of any subtree contains the
minimum (maximum) element in that subtree. We use a
min-heap that always has the minimum value at its root.
Algorithm 10.2 sketches the feature selection algorithm. At
first, the heap is initialized to empty. Then the n-grams (along
with their frequencies) are read from disk (line 2) and inserted
into the heap (line 5) until the heap size becomes S. After the
heap size becomes equal to S, we compare the IG of the next
n-gram g against the IG of the root. If IG (root) ≥ IG (g) then
g is discarded (line 6) since root has the minimum IG.
Otherwise, root is replaced with g (line 7). Finally, the heap
property is restored (line 9). The process terminates when
there are no more n-grams in the disk. After termination, we
have the S best n-grams in the heap.

224



Algorithm 10.2 The n-Gram Feature Selection Algorithm

Procedure Select_Feature (F, H, p, n)

• F: a disk file containing all n-grams
• H: empty heap
• p: total number of positive examples
• n: total number of negative examples

1. while not EOF(F) do

2. <g, p1, n1> ← next_ngram(F) //read n-gram with frequency
counts

3. p0 = P-p1, n0 = N- n1 // #of positive and negative examples
not containing g

4. IG ← Gain(p0, n0, p1, n1, p, n) // using equation (3)

5. if H.size() < S then H.insert(g, IG)

6. else if IG <= H.root.IG then continue //discard lower gain
n-grams

7. else H.root ← <g, IG> //replace root

8. end if

9. H.restore() //apply restore operation

10. end while

225



The insertion and restoration takes only O (log2(S)) time. So,
the total time required is O (Nlog2S), with only O(S) main
memory. We denote the best S binary features selected using
IG criterion as the binary feature set (BFS).

10.2.4 Assembly n-Gram Feature

In this case, the level of granularity is an assembly
instruction. First, we disassemble all the binary files using a
disassembly tool called PEDisassem. It is used to disassemble
Windows Portable Executable (P.E.) files. Besides generating
the assembly instructions with opcode and address
information, PEDisassem provides useful information like list
of resources (e.g., cursor) used, list of DLL functions called,
list of exported functions, and list of strings inside the code
block. To extract assembly n-gram features, we follow a
method similar to the binary n-gram feature extraction. First
we collect all possible n-grams, that is, sequences of n
consecutive assembly instructions, and select the best S of
them according to IG. We mention henceforth this selected
set of features as the assembly feature set (AFS). We face the
same difficulties as in binary n-gram extraction, such as
limited memory and slow running time, and solve them in the
same way. Example-II illustrates the assembly n-gram
features.

Example-II

The 2-grams corresponding to the first 4 assemble
instructions in Figure 1 are the two-instruction sliding
windows:

226



jmp dword[ecx] ; or byte[eax+14002700], dl

or byte[eax+14002700], dl ; add byte[esi+1E], dl

add byte[esi+1E], dh ; inc ebp

We adopt a standard representation of assembly instructions
that has the following format: name.param1.param2. Name is
the instruction name (e.g., mov), param1 is the first
parameter, and param2 is the second parameter. Again, a
parameter may be one of {register, memory, constant}. So,
the second instruction above, “or byte [eax+14002700], dl,”
becomes “or.memory.register” in our representation.

10.2.5 DLL Function Call Feature

Here the granularity level is a DLL function call. An n-gram
of DLL function call is a sequence of n DLL function calls
(possibly with other instructions in between two successive
calls) in an executable. We extract the information about DLL
function calls made by a program from the header of the
disassembled file. This is illustrated in Figure 10.2. In our
experiments, we use only 1-grams of DLL calls, because the
higher grams have poorer performance. We enumerate all the
DLL function names that have been used by each of the
benign and malicious executables and select the best S of
them using information gain. We will mention this feature set
as DLL-call feature set (DFS).

227



10.3 The Hybrid Feature
Retrieval Model
The hybrid feature retrieval (HFR) model extracts and
combines three different kinds of features. HFR consists of
different phases and components. The feature extraction
components have already been discussed in details. This
section gives a brief description of the model.

10.3.1 Description of the Model

The HFR model consists of two phases: a training phase and a
test phase. The training phase is shown in Figure 10.3a, and
the test phase is shown in Figure 10.3b. In the training phase
we extract binary n-gram features (BFSs) and DLL call
features (DFSs) using the approaches explained in this
chapter. We then apply AFR algorithm (to be explained
shortly) to retrieve the derived assembly features (DAFs) that
represent the selected binary n-gram features. These three
kinds of features are combined into the hybrid feature set
(HFS). Please note that DAFs are different from assembly
n-gram features (i.e., AFSs).

228



Figure 10.3 The Hybrid Feature Retrieval Model, (a)
training phase, (b) test phase. (From M. Masud, L. Khan, B.
Thuraisingham, A Scalable Multi-level Feature Extraction
Technique to Detect Malicious Executables, pp. 33–45,
Springer. With permission.)

AFS is not used in HFS because of our findings that DAF
performs better. We compute the binary feature vector
corresponding to the HFS using the technique explained in
this chapter and train a classifier using SVM, boosted
decision tree, and other classification methods. In the test
phase, we scan each test instance and compute the feature
vector corresponding to the HFS. This vector is tested against

229



the classifier. The classifier outputs the class prediction
{benign, malicious} of the test file.

10.3.2 The Assembly Feature Retrieval
(AFR) Algorithm

The AFR algorithm is used to extract assembly instruction
sequences (i.e., DAFs) corresponding to the binary n-gram
features. The main idea is to obtain the complete assembly
instruction sequence of a given binary n-gram feature. The
rationale behind using DAF is as follows. A binary n-gram
may represent partial information, such as part(s) of one or
more assembly instructions or a string inside the code block.
We apply AFR algorithm to obtain the complete instruction
or instruction sequence (i.e., a DAF) corresponding to the
partial one. Thus, DAF represents more complete
information, which should be more useful in distinguishing
the malicious and benign executables. However, binary
n-grams are still required because they also contain other
information like string data, or important bytes at the program
header. AFR algorithm consists of several steps. In the first
step, a linear address matching technique is applied as
follows. The offset address of the n-gram in the hexdump file
is used to find instructions at the same offset at the
corresponding assembly program file. Based on the offset
value, one of the three situations may occur:

1. The offset is before program entry point, so there is
no corresponding assembly code for the n-gram. We
refer to this address as address before entry point
(ABEP).

230



2. There are some data but no code at that offset. We
refer to this address as DATA.

3. There is some code at that offset. We refer to this
address as CODE. If this offset is in the middle of an
instruction, then we take the whole instruction and
consecutive instructions within n bytes from the
instruction.

In the second step, the best CODE instance is selected from
among all CODE instances. We apply a heuristic to find the
best sequence, called the most distinguishing instruction
sequence (MDIS) heuristic. According to this heuristic, we
choose the instruction sequence that has the highest IG. The
AFR algorithm is sketched in Algorithm 10.3. A
comprehensive example of the algorithm is illustrated in
Appendix A.

Description of the algorithm: line 1 initializes the lists that
would contain the assembly sequences. The for loop in line 2
runs for each hexdump file. Each hexdump file is scanned and
n-grams are extracted (lines 4 and 5). If any of these n-grams
are in the BFS (lines 6 and 7), then we read the instruction
sequence from the corresponding assembly program file at the
corresponding address (lines 8 through 10). This sequence is
added to the appropriate list (line 12). In this way, we collect
all the sequences corresponding to each n-gram in the BFS. In
phase II, we select the best sequence in each n-gram list using
IG (lines 18 through 21). Finally, we return the best
sequences, that is, DAFs.

Algorithm 10.3 Assembly Feature Retrieval

231



Procedure Assembly_Feature_Retrieval(G, A, B)

• G = {g1, g2,…,gM }: the selected n-gram features
(BFS)

• A = {A1, A2, …, AL } : all Assembly files
• B = {B1, B2, …, BL } : all hexdump files
• S = size of BFS
• L = # of training files
• Qi = a list containing the possible instruction

sequences for gi //phase I: sequence collection

1. for i = 1 to S do Qi ← empty end for //initialize sequence

2. for each Bi ∈ B do //phase I: sequence collection

3. offset ← 0 //current offset in file

4. while not EOF(Bi) do //read the whole file

5. g ← next_ngram(Bi) //read next n-gram

6. <index, found> ← BinarySearch(G, g) // seach g in G

7. if found then // found

8. q ← an empty sequence

9. for each instruction r in Ai with address(r) ∈ [offset, offset
+ n] do

10. q ← q ∪ r

11. end for

232



12. Qindex ← Qindex ∪ q //add to the sequence

13. end if

14. offset = offset + 1

15. end while

16. end for

17. V ← empty list //phase II: sequence selection

18. for i = 1 to S do //for each Qi

19. q ← t ∈ {Qi | ∀u∈ Qi IG(t) >= IG(u) //the sequence with
the highest IG

20. V ← V ∪ q

21. end for

22. return V // DAF sequences

Time complexity of this algorithm is O (nBlog2S), where B is
the total size of training set in bytes, S is the total number of
selected binary n-grams, and n is size of each n-gram in bytes.
Space complexity is O (SC), where S is defined as the total
number of selected binary n-grams, and C is the average
number of assembly sequences found per binary n-gram. The
running time and memory requirements of all three
algorithms in this chapter are given in Chapter 11.

233



10.3.3 Feature Vector Computation and
Classification

Each feature in a feature set (e.g., HFS, BFS) is a binary
feature, meaning its value is either 1 or 0. If the feature is
present in an instance (i.e., an executable), then its value is 1;
otherwise, its value is 0. For each training (or testing)
instance, we compute a feature vector, which is a bit vector
consisting of the feature values of the corresponding feature
set. For example, if we want to compute the feature vector
VBFS corresponding to BFS of a particular instance I, then for
each feature f ∈ BFS we search f in I. If f is found in I, then
we set VBFS[f] (i.e., the bit corresponding to f) to 1; otherwise,
we set it to 0. In this way, we set or reset each bit in the
feature vector. These feature vectors are used by the
classifiers for training and testing.

We apply SVM, Naïve Bayes (NB), boosted decision tree,
and other classifiers for the classification task. SVM can
perform either linear or non-linear classification. The linear
classifier proposed by Vladimir Vapnik creates a hyperplane
that separates the data points into two classes with the
maximum margin. A maximum-margin hyperplane is the one
that splits the training examples into two subsets, such that
the distance between the hyperplane and its closest data
point(s) is maximized. A non-linear SVM [Boser et al., 2003]
is implemented by applying kernel trick to maximum-margin
hyperplanes. The feature space is transformed into a higher
dimensional space, where the maximum-margin hyperplane is
found. A decision tree contains attribute tests at each internal
node and a decision at each leaf node. It classifies an instance

234



by performing attribute tests from root to a decision node.
Decision tree is a rule-based classifier. Meaning, we can
obtain human-readable classification rules from the tree. J48
is the implementation of C4.5 Decision Tree algorithm. C4.5
is an extension to the ID3 algorithm invented by Quinlan. A
boosting technique called Adaboost combines multiple
classifiers by assigning weights to each of them according to
their classification performance. The algorithm starts by
assigning equal weights to all training samples, and a model
is obtained from these training data. Then each misclassified
example’s weight is increased, and another model is obtained
from these new training data. This is iterated for a specified
number of times. During classification, each of these models
is applied on the test data, and a weighted voting is performed
to determine the class of the test instance. We use the
AdaBoost.M1 algorithm [Freund and Schapire, 1996] on NB
and J48. We only report SVM and Boosted J48 results
because they have the best results. It should be noted that we
do not have a preference for one classifier over the other. We
report these accuracies in the results in Chapter 11.

10.4 Summary
In this chapter, we have shown how to efficiently extract
features from the training data. We also showed how
scalability can be achieved using disk access. We have
explained the algorithm for feature extraction and feature
selection and analyzed their time complexity. Finally, we
showed how to combine the feature sets and build the feature
vectors. We applied different machine learning techniques
such as SVM, J48, and Adaboost for building the

235



classification model. In the next chapter, we will show how
our approach performs on different datasets compared to
several baseline techniques.

In the future, we would like to enhance the scalability of our
approach by applying the cloud computing framework for the
feature extraction and selection task. Cloud computing offers
a cheap alternative to more CPU power and much larger disk
space, which could be utilized for a much faster feature
extraction and selection process. We are also interested in
extracting behavioral features from the executables to
overcome the problem of binary obfuscation by polymorphic
malware.

References
[Boser et al., 2003] Boser, B. E., I. M. Guyon, V. N. Vapnik,
A Training Algorithm for Optimal Margin Classifiers, in D.
Haussler, Editor, 5th Annual ACM Workshop on COLT, ACM
Press, 2003, pp. 144–152.

[Freund and Schapire, 1996] Freund, Y., and R. E. Schapire,
Experiments with a New Boosting Algorithm, Machine
Learning: Proceedings of the 13th International Conference
(ICML), 1996, Bari, Italy, 148–156.

[Goodrich and Tamassia, 2006] Goodrich, M. T., and R.
Tamassia, Data Structures and Algorithms in Java, Fourth
Edition, John Wiley & Sons, 2006.

[Mitchell, 1997] Mitchell, T. Machine Learning,
McGraw-Hill, 1997.

236



11

EVALUATION AND RESULTS

11.1 Introduction
In this chapter, we discuss the experiments and evaluation
process in detail. We use two different datasets with different
numbers of instances and class distributions. We compare the
features extracted with our approach, namely, the hybrid
feature set (HFS), with two other baseline approaches: (1) the
binary feature set (BFS), and (2) the derived assembly feature
set (DAF). For classification, we compare the performance of
three different classifiers on each of these feature sets, which
are Support Vector Machine (SVM), Naïve Bayes (NB),
Bayes Net, decision tree, and boosted decision tree. We show
the classification accuracy, false positive and false negative
rates for our approach and each of the baseline techniques.
We also compare the running times and performance/cost
tradeoff of our approach compared to the baselines.

The organization of this chapter is as follows. In Section 11.2,
we describe the experiments. Datasets are given in Section
11.3. Experimental setup is discussed in Section 11.4. Results
are given in Section 11.5. The example run is given in Section
11.6. The chapter is summarized in Section 11.7. Figure 11.1
illustrates the concepts in this chapter.

237



11.2 Experiments
We design our experiments to run on two different datasets.
Each dataset has a different size and distribution of benign
and malicious executables. We generate all kinds of n-gram
features (e.g., BFS, AFS, DFS) using the techniques
explained in Chapter 10. Notice that the BFS corresponds to
the features extracted by the method of [Kolter and Maloof,
2004]. We also generate the DAF and HFS using our model,
as explained in Chapter 10. We test the accuracy of each of
the feature sets applying a threefold cross validation using
classifiers such as SVM, decision tree, Naïve Bayes, Bayes
Net, and Boosted decision tree. Among these classifiers, we
obtain the best results with SVM and Boosted decision tree,
reported in the results section in Chapter 10. We do not report
other classifier results because of space limitations. In
addition to this, we compute the average accuracy, false
positive and false negative rates, and receiver operating
characteristic (ROC) graphs (using techniques in [Fawcett,
2003]. We also compare the running time and performance/
cost tradeoff between HFS and BFS.

238



Figure 11.1 Concepts in this chapter.

11.3 Dataset
We have two non-disjoint datasets. The first dataset (dataset1)
contains a collection of 1,435 executables, 597 of which are
benign and 838 malicious. The second dataset (dataset2)
contains 2,452 executables, having 1,370 benign and 1,082
malicious executables. So, the distribution of dataset1 is
benign = 41.6%, malicious = 58.4%, and that of dataset2 is
benign = 55.9%, malicious = 44.1%. This distribution was
chosen intentionally to evaluate the performance of the
feature sets in different scenarios. We collect the benign
executables from different Windows XP and Windows 2000
machines, and collect the malicious executables from [VX
Heavens], which contains a large collection of malicious
executables. The benign executables contain various
applications found at the Windows installation folder (e.g.,
“C:\Windows”), as well as other executables in the default
program installation directory (e.g., “C:\Program Files”).
Malicious executables contain viruses, worms, Trojan horses,
and back-doors. We select only the Win32 Portable
Executables in both the cases. We would like to experiment
with the ELF executables in the future.

11.4 Experimental Setup
Our implementation is developed in Java with JDK 1.5. We
use the LIBSVM library [Chang and Lin, 2006] for running
SVM, and Weka ML toolbox [Weka] for running Boosted

239



decision tree and other classifiers. For SVM, we run C-SVC
with a Polynomial kernel, using gamma = 0.1, and epsilon =
1.0E-12. For Boosted decision tree we run 10 iterations of the
AdaBoost algorithm on the C4.5 decision tree algorithm,
called J48.

We set the parameter S (number of selected features) to 500,
because it is the best value found in our experiments. Most of
our experiments are run on two machines: a Sun Solaris
machine with 4GB main memory and 2GHz clock speed, and
a LINUX machine with 2GB main memory and 1.8GHz clock
speed. The reported running times are based on the latter
machine. The disassembly and hex-dump are done only once
for all machine executables, and the resulting files are stored.
We then run our experiments on the stored files.

11.5 Results
In this subsection, we first report and analyze the results
obtained by running SVM on the dataset. Later, we show the
accuracies of Boosted J48. Because the results from Boosted
J48 are almost the same as SVM, we do not report the
analyses based on Boosted J48.

11.5.1 Accuracy

Table 11.1 shows the accuracy of SVM on different feature
sets. The columns headed by HFS, BFS, and AFS represent
the accuracies of the Hybrid Feature Set (our method), Binary
Feature Set (Kolter and Maloof’s feature set), and Assembly
Feature Set, respectively. Note that the AFS is different from

240



the DAF (i.e., derived assembly features) that has been used
in the HFS (see Section IV-A for details). Table 11.1 reports
that the classification accuracy of HFS is always better than
other models, on both datasets. It is interesting to note that the
accuracies for 1-gram BFS are very low in both datasets. This
is because 1 gram is only a 1-byte long pattern, having only
256 different possibilities. Thus, this pattern is not useful at
all in distinguishing the malicious executables from the
normal, and may not be used in a practical application. So, we
exclude the 1-gram accuracies while computing the average
accuracies (i.e., the last row).

Table 11.1 Classification Accuracy (%) of SVM on Different
Feature Sets

Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multilevel Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

a Average accuracy excluding 1 gram.

241



11.5.1.1 Dataset1 Here the best accuracy of the hybrid model
is for n = 6, which is 97.4, and is the highest among all
feature sets. On average, the accuracy of HFS is 1.68% higher
than that of BFS and 11.36% higher than that of AFS.
Accuracies of AFS are always the lowest. One possible
reason behind this poor performance is that AFS considers
only the CODE part of the executables. So, AFS misses any
distinguishing pattern carried by the ABEP or DATA parts,
and, as a result, the extracted features have poorer
performance. Moreover, the accuracy of AFS greatly
deteriorates for n >= 10. This is because longer sequences of
instructions are rarer in either class of executables (malicious/
benign), so these sequences have less distinguishing power.
On the other hand, BFS considers all parts of the executable,
achieving higher accuracy. Finally, HFS considers DLL calls,
as well as BFS and DAF. So, HFS has better performance
than BFS.

11.5.1.2 Dataset2 Here the differences between the accuracies
of HFS and BFS are greater than those of dataset1. The
average accuracy of HFS is 4.2% higher than that of BFS.
Accuracies of AFS are again the lowest. It is interesting to
note that HFS has an improved performance over BFS (and
AFS) in dataset2. Two important conclusions may be derived
from this observation. First, dataset2 is much larger than
dataset1, having a more diverse set of examples. Here HFS
performs better than dataset1, whereas BFS performs worse
than dataset1. This implies that HFS is more robust than BFS
in a diverse and larger set of instances. Thus, HFS is more
applicable than BFS in a large, diverse corpus of executables.
Second, dataset2 has more benign executables than malicious,
whereas dataset1 has fewer benign executables. This
distribution of dataset2 is more likely in a real world, where

242



benign executables outnumber malicious executables. This
implies that HFS is likely to perform better than BFS in a
real-world scenario, having a larger number of benign
executables in the dataset.

11.5.1.3 Statistical Significance Test We also perform a
pair-wise two-tailed t-test on the HFS and BFS accuracies to
test whether the differences between their accuracies are
statistically significant. We exclude 1-gram accuracies from
this test for the reason previously explained. The result of the
t-test is summarized in Table 11.2. The t-value shown in this
table is the value of t obtained from the accuracies. There are
(5 + 5 – 2) degrees of freedom, since we have five
observations in each group, and there are two groups (i.e.,
HFS and BFS). Probability denotes the probability of
rejecting the NULL hypothesis (that there is no difference
between HFS and BFS accuracies), while p-value denotes the
probability of accepting the NULL hypothesis. For dataset1,
the probability is 99.65%, and for dataset2, it is 100.0%.
Thus, we conclude that the average accuracy of HFS is
significantly higher than that of BFS.

Table 11.2 Pair-Wise Two-Tailed t-Test Results Comparing
HFS and BFS

DATASET1 DATASET2
t-value 8.9 14.6
Degrees of freedom 8 8
Probability 0.9965 1.00
p-value 0.0035 0.0000

243



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

11.5.1.4 DLL Call Feature Here we report the accuracies of
the DLL function call features (DFS). The 1-gram accuracies
are 92.8% for dataset1 and 91.9% for dataset2. The accuracies
for higher grams are less than 75%, so we do not report them.
The reason behind this poor performance is possibly that
there are no distinguishing call sequences that can identify the
executables as malicious or benign.

11.5.2 ROC Curves

ROC curves plot the true positive rate against the false
positive rates of a classifier. Figure 11.2 shows ROC curves
of dataset1 for n = 6 and dataset2 for n = 4 based on SVM
testing. ROC curves for other values of n have similar trends,
except for n = 1, where AFS performs better than BFS. It is
evident from the curves that HFS is always dominant (i.e., has
a larger area under the curve) over the other two and it is
more dominant in dataset2. Table 11.3 reports the area under
the curve (AUC) for the ROC curves of each of the feature
sets. A higher value of AUC indicates a higher probability
that a classifier will predict correctly. Table 11.3 shows that
the AUC for HFS is the highest, and it improves (relative to
the other two) in dataset2. This also supports our hypothesis
that our model will perform better in a more likely real-world
scenario, where benign executables occur more frequently.

244



Figure 11.2 ROC curves for different feature sets in dataset1
(left) and dataset2 (right). (From M. Masud, L. Khan, B.
Thuraisingham, A Scalable Multi-level Feature Extraction
Technique to Detect Malicious Executables, pp. 33–45,
Springer. With permission.)

Table 11.3 Area under the ROC Curve on Different Feature
Sets

245



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

a Average value excluding 1-gram

11.5.3 False Positive and False
Negative

Table 11.4 reports the false positive and false negative rates
(in percentage) for each feature set based on SVM output.
The last row reports the average. Again, we exclude the
1-gram values from the average. Here we see that in dataset1,
the average false positive rate of HFS is 4.9%, which is the
lowest. In dataset2, this rate is even lower (3.2%). False
positive rate is a measure of false alarm rate. Thus, our model
has the lowest false alarm rate. We also observe that this rate
decreases as we increase the number of benign examples.
This is because the classifier gets more familiar with benign
executables and misclassifies fewer of them as malicious. We
believe that a large collection of training sets with a larger
portion of benign executables would eventually diminish false
positive rate toward zero. The false negative rate is also the
lowest for HFS, as reported in Table 11.4.

Table 11.4 False Positive and False Negative Rates on
Different Feature

246



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

a Average value excluding 1-gram

11.5.4 Running Time

We compare in Table 11.5 the running times (feature
extraction, training, testing) of different kinds of features
(HFS, BFS, AFS) for different values of n. Feature extraction
time for HFS and AFS includes the disassembly time, which
is 465 seconds (in total) for dataset1 and 865 seconds (in
total) for dataset2. Training time is the sum of feature
extraction time, feature-vector computation time, and SVM
training time. Testing time is the sum of disassembly time
(except BFS) feature-vector computation time, and SVM
classification time. Training and testing times based on
Boosted J48 have almost similar characteristics, so we do not

247



report them. Table 11.5 also reports the cost factor as a ratio
of time required for HFS relative to BFS.

The column Cost Factor shows this comparison. The average
feature extraction times are computed by excluding the
1-gram and 2-grams, because these grams are unlikely to be
used in practical applications. The boldface cells in the table
are of particular interest to us. From the table we see that the
running times for HFS training and testing on dataset1 are
1.17 and 4.87 times higher than those of BFS, respectively.
For dataset2, these numbers are 1.08 and 4.5, respectively.
The average throughput for HFS is found to be 0.6MB/sec (in
both datasets), which may be considered as near real-time
performance. Finally, we summarize the cost/performance
trade-off in Table 11.6. The column Performance
Improvement reports the accuracy improvement of HFS over
BFS. The cost factors are shown in the next two columns. If
we drop the disassembly time from testing time (considering
that disassembly is done offline), then the testing cost factor
diminishes to 1.0 for both datasets. It is evident from Table
11.6 that the performance/cost tradeoff is better for dataset2
than for dataset1. Again, we may infer that our model is likely
to perform better in a larger and more realistic dataset. The
main bottleneck of our system is disassembly cost. The
testing cost factor is higher because here a larger proportion
of time is used up in disassembly. We believe that this factor
may be greatly reduced by optimizing the disassembler and
considering that disassembly can be done offline.

Table 11.5 Running Times (in seconds)

248



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

a Ratio of time required for HFS to time required for BFS.

b Average feature extraction times excluding 1-gram and
2-gram.

c Average training/testing times excluding 1-gram and
2-gram.

Table 11.6 Performance/Cost Tradeoff between HFS and
BFS

249



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

11.5.5 Training and Testing with
Boosted J48

We also train and test with this classifier and report the
classification accuracies for different features and different
values of n in Table 11.7. The second last row (Avg) of Table
11.7 is the average of 2-gram to 10-gram accuracies. Again,
for consistency, we exclude 1-gram from the average. We
also include the average accuracies of SVM (from the last
row of Table 11.1) in the last row of Table 11.7 for ease of
comparison. We would like to point out some important
observations regarding this comparison. First, the average
accuracies of SVM and Boosted J48 are almost the same,
being within 0.4% of each other (for HFS). There is no clear
winner between these two classifiers. So, we may use any of
these classifiers for our model. Second, accuracies of HFS are
again the best among all three. HFS has 1.84% and 3.6%
better accuracies than BFS in dataset1 and dataset2,
respectively. This result also justifies our claim that HFS is a
better feature set than BFS, irrespective of the classifier used.

Table 11.7 Classification Accuracy (%) of Boosted J48 on
Different Feature Sets

250



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

a Average accuracy excluding 1-gram.

b Average accuracy for SVM (from Table 11.1).

11.6 Example Run
Here we illustrate an example run of the AFR algorithm. The
algorithm scans through each hexdump file, sliding a window
of n bytes and checking the n-gram against the binary feature
set (BFS). If a match is found, then we collect the
corresponding (same offset address) assembly instruction
sequence in the assembly program file. In this way, we collect
all possible instruction sequences of all the features in BFS.
Later, we select the best sequence using information gain.
Example-III: Table 11.8 shows an example of the collection

251



of assembly sequences and their IG values corresponding to
the n-gram “00005068.” Note that this n-gram has 90
occurrences (in all hexdump files). We have shown only 5 of
them for brevity. The bolded portion of the op-code in Table
11.8 represents the n-gram. According to the Most
Distinguishing Instruction Sequence (MDIS) heuristic, we
find that sequence number 29 attains the highest information
gain, which is selected as the DAF of the n-gram. In this way,
we select one DAF per binary n-gram and return all DAFs.

Table 11.8 Assembly Code Sequence for Binary 4-Gram
“00005068”

252



Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

Table 11.9 Time and Space Complexities of Different
Algorithms

ALGORITHM TIME
COMPLEXITY

SPACE
COMPLEXITY

Feature Collection O(Blog2K) +
O(N) O(K)

Feature Selection O(Nlog2S) O(S)
Assembly Feature
Retrieval O(nBlog2S) O(SC)

Total (worst case) O(nBlog2K) O(SC)

Source: M. Masud, L. Khan, B. Thuraisingham, A Scalable
Multi-level Feature Extraction Technique to Detect Malicious
Executables, pp. 33–45, Springer. With permission.

Next we summarize the time and space complexities of our
algorithms in Table 11.9.

B is the total size of training set in bytes, C is the average
number of assembly sequences found per binary n-gram, K is
the maximum number of nodes of the AVL tree (i.e.,
threshold), N is the total number of n-grams collected, n is
size of each n-gram in bytes, and S is the total number of
selected n-grams. The worst case assumption: B > N and SC >
K.

253



11.7 Summary
In this chapter we have described the experiments done on
our approach and several other baseline techniques on two
different datasets. We compared both the classification
accuracy and running times of each baseline technique. We
showed that our approach outperforms other baseline
techniques in classification accuracy, without major
performance degradation. We also analyzed the variation of
results on different classification techniques and different
datasets and explained these variations. Overall, our approach
is superior to other baselines not only because of higher
classification accuracy but also scalability and efficiency.

In the future, we would like to add more features to the
feature set, such as behavioral features of the executables.
This is because binary features are susceptible to obfuscation
by polymorphic and metamorphic malware. But it would be
difficult to obfuscate behavioral patterns. We would also
extend our work to the cloud computing framework so that
the feature extraction and selection process becomes more
scalable.

References
[Chang and Lin, 2006] Chang, C.-C., and C.-J. Lin, LIBSVM:
A Library for Support Vector Machine,
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

254

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[Faucett, 2003] Fawcett, T. ROC Graphs: Notes and Practical
Considerations for Researchers, Technical Report
HPL-2003-4, HP Laboratories, http://home.comcast.net/
∼tom.fawcett/public_html/papers/ROC101.pdf

[Freund and Schapire, 1996] Freund, Y., and R. E. Schapire,
Experiments with a New Boosting Algorithm, Machine
Learning: Proceedings of the 13th International Conference
(ICML), 1996, Bari, Italy, pp. 148–156.

[Kolter and Maloof, 2004] Kolter, J. Z., and M. A. Maloof,
Learning to Detect Malicious Executables in the Wild,
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
ACM, 2004, pp. 470–478.

[VX Heavens] VX Heavens, http://vx.netlux.org

[Weka] Weka 3: Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka

255

http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf
http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf
http://vx.netlux.org
http://www.cs.waikato.ac.nz/ml/weka


Conclusion to Part III

We have presented a data mining-based malicious executable
detection technique, which is scalable over a large dataset.
Here we apply a multi-level feature extraction technique by
combining three different kinds of features at different levels
of abstraction. These are binary n-grams, assembly instruction
sequences, and Dynamic Link Library (DLL) function calls,
extracted from binary executables, disassembled executables,
and executable headers, respectively. We apply this technique
on a large corpus of real benign and malicious executables.
Our model is compared against other feature-based
approaches for malicious code detection and found to be more
efficient in terms of detection accuracy and false alarm rate.

In the future, we would like to apply this technique on a much
larger corpus of executables and optimize the feature
extraction and selection process by applying a cloud
computing framework.

256



PART IV

DATA MINING FOR DETECTING
REMOTE EXPLOITS

Introduction to Part IV
In this part we will discuss the design and implementation of
DExtor, a Data Mining-based Exploit code detector, to protect
network services. The main assumption of our work is that
normal traffic into the network services contains only data,
whereas exploit code contains code. Thus, the “exploit code
detection” problem reduces to “code detection” problem.
DExtor is an application-layer attack blocker, which is
deployed between a web service and its corresponding
firewall. The system is first trained with real training data
containing both exploit code and normal traffic. Training is
performed by applying binary disassembly on the training
data, extracting features, and training a classifier. Once
trained, DExtor is deployed in the network to detect exploit
code and protect the network service. We evaluate DExtor
with a large collection of real exploit code and normal data.
Our results show that DExtor can detect almost all exploit
code with a negligible false alarm rate. We also compare
DExtor with other published works and prove its
effectiveness.

Part IV consists of three chapters: 12, 13, and 14. Chapter 12
describes the issues involved in remote code exploitation. The

257



design and implementation of our tool DExtor is discussed in
Chapter 13. Our results are analyzed in Chapter 14.

258



12

DETECTING REMOTE EXPLOITS

12.1 Introduction
Remote exploits are a popular means for attackers to gain
control of hosts that run vulnerable services/software.
Typically, a remote exploit is provided as an input to a remote
vulnerable service to hijack the control flow of
machine-instruction execution. Sometimes the attackers inject
executable code in the exploit that is executed after a
successful hijacking attempt. We will refer to these
code-carrying remote exploits as exploit code.

The problem may be briefly described as follows. Usually, an
exploit code consists of three parts: (1) a NOP (no operation)
sled at the beginning of the exploit, (2) a payload in the
middle, and (3) return addresses at the end. The NOP sled is a
sequence of NOP instructions, the payload contains attacker’s
code, and the return addresses point to the code. Thus, an
exploit code always carries some valid executables in the
NOP sled and in the payload. Such code is considered as an
attack input to the corresponding vulnerable service. Inputs to
a service that do not exploit its vulnerability are considered as
normal inputs. For example, with respect to a vulnerable
HTTP server, all benign HTTP requests are “normal” inputs,
and requests that exploit its vulnerability are “attack” inputs.
If we assume that “normal” inputs may contain only data,

259



then the “exploit code detection” problem reduces to a “code
detection” problem. To justify this assumption, we refer to
[Chinchani and Berg, 2005, p. 286]. They maintain that “the
nature of communication to and from network services is
predominantly or exclusively data and not executable code.”
However, there are exploits that do not contain code, such as
integer overflow exploits, or return-to-libc exploits. We do
not deal with these kinds of exploits. It is also worth
mentioning that a code detection problem is fundamentally
different from a “malware detection” problem, which tries to
identify the presence of malicious content in an executable.

Figure 12.1 Concepts in this chapter.

There are several approaches for analyzing network flows to
detect exploit code [Bro], [Chinchani and Berg, 2005],
[Snort], [Toth and Kruegel, 2002], [Wang et al., 2005],
[Wang and Stolfo, 2004]. If an exploit can be detected and
intercepted on its way to a server process, then an attack will
be prevented. This approach is compatible with legacy code
and does not require any change to the underlying computing
infrastructure. Our solution, DExtor, follows this perspective.

260



It is a data mining approach to the general problem of exploit
code detection.

The organization of this chapter is as follows. Our
architecture is discussed in Section 12.2. Section 12.3
discusses related work. Section 12.4 briefly describes our
approach. The chapter is summarized in Section 12.5. The
concepts in this chapter are illustrated in Figure 12.1.

12.2 Architecture
Figure 12.2 illustrates our architecture for detecting remote
exploits. A classification model is trained using a training
data consisting of a collection of benign non-executable
binaries and code-carrying remote exploits. Each training
instance first undergoes a feature extraction phase. Here the
training instances are first disassembled using techniques
described in Section 13.3. Then we extract three different
kinds of features, explained in Section 13.4. These extracted
features are then used to generate feature vectors and train a
classifier (Sections 13.5 and 13.6). We use different
classification models, such as Support Vector Machine
(SVM), Naïve Bayes (NB), and decision trees.

261



Figure 12.2 Architecture.

When new incoming network traffic (such as an HTTP
request) is to be tested, at first the test instance undergoes the
same disassembly and feature extraction process as done for
the training instances. This feature vector is classified using
the classifier to predict whether it is a code-carrying exploit or
simply a traffic containing only data.

12.3 Related Work
There are many techniques available for detecting exploits in
network traffic and protecting network services. Three main
categories in this direction are signature matching, anomaly
detection, and machine-code analysis.

Signature matching techniques are the most prevailing and
popular. Intrusion Detection Systems (IDSs) [Snort] and
[Bro] follow this approach. They maintain a
signature-database of known exploits. If any traffic matches a
signature in the database, the IDS raises an alert. These
systems are relatively easy to implement, but they can be
defeated by new exploits, as well as polymorphism and
metamorphism. On the contrary, DExtor does not depend on
signature matching.

Anomaly detection techniques detect anomalies in the traffic
pattern and raise alerts when an anomaly is detected. [Wang
and Stolfo, 2004] propose a payload-based anomaly detection
system called PAYL, which first trains itself with normal

262



network traffic and detects exploit code by computing several
byte-level statistical measures. Other anomaly-based
detection techniques in the literature are the improved
versions of PAYL [Wang et al., 2005] and FLIPS [Locasto et
al., 2005]. DExtor is different from anomaly-based intrusion
detection systems for two reasons. First, anomaly-based
systems train themselves using the “normal” traffic
characteristics and detect anomalies based on this
characteristic. On the other hand, our method considers both
“normal” and “attack” traffic to build a classification model.
Second, we consider instruction patterns, rather than raw byte
patterns, for building a model.

Machine-code analysis techniques apply binary disassembly
and static analysis on network traffic to detect the presence of
executables. DExtor falls in this category. [Toth and Kruegel,
2002] use binary disassembly to find long sequences of
executable instructions and identify the presence of an NOP
sled. DExtor also applies binary disassembly, but it does not
need to identify NOP sled. [Chinchani and Berg, 2005] detect
exploit code based on the same assumption as DExtor: that
normal traffic should contain no code. They apply
disassembly and static analysis, and identify several structural
patterns and characteristics of code-carrying traffic. Their
detection approach is rule based. On the other hand, DExtor
does not require generating or following rules. SigFree [Wang
et al., 2006] also disassembles inputs to server processes and
applies static analysis to detect the presence of code. SigFree
applies a code abstraction technique to detect useful
instructions in the disassembled byte-stream, and raises an
alert if the useful instruction count exceeds a predetermined
threshold. DExtor applies the same disassembly technique as
SigFree, but it does not detect the presence of code based on a

263



fixed threshold. Rather, it applies data mining to extract
several features and learns to distinguish between normal
traffic and exploits based on these features.

12.4 Overview of Our
Approach
We apply data mining to detect the presence of code in an
input. We extract three kinds of features: Useful Instruction
Count (UIC), Instruction Usage Frequencies (IUF), and Code
vs. Data Length (CDL). These features are explained in detail
in Section 13.4. Data mining is applied to differentiate
between the characteristics of “attack” inputs from “normal”
inputs based on these features. The whole process consists of
several steps. First, training data are collected that consist of
real examples of “attack” (e.g., exploits) and “normal” (e.g.,
normal HTTP requests) inputs. The data collection process is
explained in Section 14.2. Second, all of the training
examples are disassembled, applying the technique explained
in Section 13.3. Third, features are extracted from the
disassembled examples, and a classifier is trained to obtain a
classification model. A number of classifiers are applied, such
as Support Vector Machine (SVM), Bayes net, decision tree
(J48), and boosted J48, and the best of them is chosen.
Finally, DExtor is deployed in a real networking environment.
It intercepts all inputs destined to the network service that it
protects, and it tests them against the classification model to
determine whether they are “normal” or “attack.”

264



The next obvious issue is how we deploy DExtor in a real
networking environment and protect network services.
DExtor is designed to operate at the application layer and can
be deployed between the server and its corresponding
firewall. It is completely transparent to the service that it
protects; this means no modification at the server is required.
It can be deployed as a stand-alone component or coupled
with a proxy server as a proxy filter. We have deployed
DExtor in a real environment as a proxy, protecting a web
server from attack. It successfully blocks “attack” requests in
real time. We evaluate our technique in two different ways.
First, we apply a fivefold cross validation on the collected
data, which contain 9,000 exploits and 12,000 normal inputs,
and obtain a 99.96% classification accuracy and 0% false
positive rate. Second, we test the efficacy of our method in
detecting new kinds of exploits. This also achieves high
detection accuracy.

Our contributions are as follows. First, we identify different
sets of features and justify their efficacy in distinguishing
between “normal” and “attack” inputs. Second, we show how
a data mining technique can be efficiently applied in exploit
code detection. Finally, we design a system to protect
network services from exploit code and implement it in a real
environment. In summary, DExtor has several advantages
over existing exploit-code detection techniques. First, DExtor
is compatible with legacy code and transparent to the service
it protects. Second, it is readily deployable in any system.
Although currently it is deployed on windows with Intel
32-bit architecture, it can be adapted to any operating system
and hardware architecture only by modifying the
disassembler. Third, DExtor does not require any signature
generation/matching. Finally, DExtor is robust against most

265



attack-side obfuscation techniques, as explained in Section
14.6. Our technique is readily applicable to digital forensics
research. For example, after a server crash, we may use our
technique to analyze the network traffic that went to the
server before the crash. Thus, we may be able to determine
whether the crash was caused by any code-carrying exploit
attack. We may also be able to determine the source of the
attack.

In Chapter 13 we describe DExtor, a data mining approach
for detecting exploit code, in more detail. We introduce three
different kinds of features, namely, useful instruction count,
instruction usage frequencies, and code versus data length,
and show how to extract them. These three kinds of features
are combined to get a combined feature set. We extract these
features from the training data and train a classifier, which is
then used for detecting exploits in the network traffic. We
evaluate the performance of DExtor on real data and establish
its efficacy in detecting new kinds of exploits. Our technique
can also be applied to digital forensics research. For example,
by analyzing network traffic, we may investigate whether the
cause of a server crash was an exploit attack. However, there
are several issues related to our technique that are worth
mentioning.

First, a popular criticism against data mining is that it is
heavily dependent on the training data supplied to it. So, it is
possible that it performs poorly on some data and shows
excellent performance on another set of data. Thus, it may not
be a good solution for exploit code detection, since there is no
guarantee that it may catch all exploit codes with 100%
accuracy. However, what appears to be the greatest weakness
of data mining is also the source of a great power. If the data

266



mining method can be fed with sufficient realistic training
data, it is likely to exhibit near-perfect efficiency in
classification. Our results justify this fact too. It is one of our
future goals to continuously collect real data from networks
and feed them into the classification system. Because training
is performed “offline,” longer training time is not a problem.

Second, we would like to relax our main assumption that
“normal traffic carries only data.” We propose adding a
“malware detector” to our model as follows. We would detect
presence of code inside the traffic using our current model. If
the traffic contains no code, then it is passed to the server.
Otherwise, it is sent to the malware detector for a “secondary
inspection.” We have already implemented such a detector in
one of our previous works. A malware detector detects
malicious components inside an executable. If the malware
detector outputs a green signal (i.e., benign executable), then
we pass the executable to the server. Otherwise, we block and
discard/quarantine the code. Our approach is illustrated in
Figure 12.3.

Figure 12.3 Our approach to detecting remote exploits.

267



12.5 Summary
In this chapter, we have argued that we need to consider both
binary and assembly language features for detecting remote
exploits. We then discussed related approaches in detecting
exploits and gave an overview of our data mining tool, called
DExtor, which is based on classification. The design and
implementation of DExtor is discussed in Chapter 13.
Analysis of the results of our approach is given in Chapter 14.

In the future, we are planning to detect remote exploits by
examining other data mining techniques including other types
of classification algorithms. We will also be examining ways
of extracting more useful features.

References
[Bro] Bro Intrusion Detection System, http://bro-ids.org

[Chinchani and Berg, 2005] Chinchani, R., and E.V.D. Berg.
A Fast Static Analysis Approach to Detect Exploit Code
Inside Network Flows, Recent Advances in Intrusion
Detection, 8th International Symposium, RAID 2005, Seattle,
WA, September 7−9, 2005, Revised Papers. Lecture Notes in
Computer Science 3858 Springer 2006, A. Valdes, D.
Zamboni (Eds.), pp. 284−308.

[Locasto et al. 2005] Locasto, M. E., K. Wang, A. D.
Keromytis, S. J. Stolfo, FLIPS: Hybrid Adaptive Intrusion
Prevention, Recent Advances in Intrusion Detection, 8th

268

http://bro-ids.org
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html


International Symposium, RAID 2005, Seattle, WA,
September 7−9, 2005, Revised Papers. Lecture Notes in
Computer Science 3858 Springer 2006, A. Valdes, D.
Zamboni (Eds.), pp. 82−101.

[Toth and Krügel, 2002] Toth, T., and C. Krügel, Accurate
Buffer Overflow Detection via Abstract Payload Execution,
Recent Advances in Intrusion Detection, 5th International
Symposium, RAID 2002, Zurich, Switzerland, October
16-18, 2002, Proceedings. Lecture Notes in Computer Science
2516 Springer 2002, A. Wespi, G. Vigna, L. Deri (Eds.), pp.
274–291.

[Wang et al., 2005] Wang, K., G. Cretu, S. J. Stolfo,
Anomalous Payload-Based Network Intrusion Detection and
Signature Generation. Recent Advances in Intrusion
Detection, 8th International Symposium, RAID 2005, Seattle,
WA, September 7−9, 2005, Revised Papers. Lecture Notes in
Computer Science 3858 Springer 2006, A. Valdes, D.
Zamboni (Eds.), pp. 227–246.

[Wang and Stolfo 2004] Wang, K., S. J. Stolfo, Anomalous
Payload-Based Network Intrusion Detection, Recent
Advances in Intrusion Detection: 7th International
Symposium, RAID 2004, Sophia Antipolis, France,
September 15-17, 2004. Proceedings. Lecture Notes in
Computer Science 3224 Springer 2004, E. Jonsson, A.
Valdes, M. Almgren (Eds.), pp. 203–222.

[Wang et al., 2006] Wang, X., C. Pan, P. Liu, S. Zhu,
SigFree: A Signature-Free Buffer Overflow Attack Blocker,
in USENIX Security, July 2006.

269

http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wespi:Andreas.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Vigna:Giovanni.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Deri:Luca.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zamboni:Diego.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/j/Jonsson:Erland.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Almgren:Magnus.html


[Wang and Stolfo, 2004] Wang, K. and S. J. Stolfo,
Anomalous payload-based network intrusion detection. In:
Recent Advances In Intrusion Detection (RAID), 2004.

270



13

DESIGN OF THE DATA MINING
TOOL

13.1 Introduction
In this chapter, we describe the design and implementation of
our tool called DExtor for detecting remote exploits. In
particular, the architecture of the tool, feature extraction, and
classification techniques are discussed.

DExtor can be applied within a network to protect network
servers. DExtor can be deployed between the network server
that it protects and the firewall that separates the inner
network from the outside world. As DExtor is based on data
mining, it must be trained with some known training data
containing both benign traffic and exploit traffic. An
important part of this training is identifying and extracting
useful features from the data. Therefore, from the training
data we identify several features that can help to distinguish
the benign traffic from the remote exploits and extract those
features from the training instances to build feature vectors.
These feature vectors are then used to train classifiers that can
be used to detect future unseen exploits.

The organization of this chapter is as follows. The
architecture of DExtor is given in Section 13.2. The modules
of DExtor are described in Sections 13.3 through 13.6. In

271



particular, the disassembly, feature extraction, and data
mining modules are discussed. The chapter is summarized in
Section 13.7. Figure 13.1 illustrates the concepts in this
chapter.

13.2 DExtor Architecture
The architecture of DExtor is illustrated in Figure 13.2.
DExtor is deployed in a network between the network service
and its corresponding gateway/firewall. It is first trained
offline with real instances of attack (e.g., exploits) and normal
(e.g., normal HTTP requests) inputs, and a classification
model is obtained. Training consists of three steps:
disassembly, feature extraction, and training with a classifier.
After training, DExtor is deployed in the network and all
incoming inputs to the service are intercepted and analyzed
online. Analysis consists of three steps: disassembly, feature
extraction, and testing against the model. These processes are
explained in detail in this chapter.

Figure 13.1 Concepts in this chapter.

272



Figure 13.2 DExtor architecture. (From M. Masud, L. Khan,
B. Thuraisingham, X. Wang, P. Lie, S. Zhu, Detecting
Remote Exploits Using Data Mining, pp. 177–189, 2008,
Springer. With permission.)

The major modules of DExtor are the (1) Disassembly, (2)
Feature Extraction, and (3) Classification. The Disassembly
module will take the binary code as inputs and output
assembly code. The feature extraction module will extract the
most useful features. The classification module will carry out
data mining and determine whether there are remote exploits.
Sections 13.3 through 13.6 describe the various modules of
DExtor.

The training data consist of both code-carrying remote
exploits and binaries without any valid executables. At first
the disassembly and feature extraction modules are applied on
the training instances to disassemble them, using the
technique discussed in Section 13.3, and then features are
extracted from the disassembled binaries using the technique
explained in Section 13.4. After feature extraction, feature

273



vectors are generated for each training instance, and the
feature vectors are used to train a classification model
(Sections 13.5 and 13.6). Once trained, the classification
model is used to test new incoming network traffic (such as
HTTP get request). The test instance is first passed through
the disassembly and feature extraction modules to generate
the feature vector, and then the feature vector is tested against
the classification model. If the class prediction is “attack”
(i.e., “exploit”), the traffic is blocked; otherwise, it is passed
to the server.

13.3 Disassembly
The disassembly algorithm is similar to [Wang et al., 2006].
Each input to the server is considered as a byte sequence.
There may be more than one valid assembly instruction
sequence corresponding to the given byte sequence. The
disassembler applies a technique called the “instruction
sequence distiller and analyzer” to filter out all redundant and
illegal instruction sequences. The main steps of this process
are as follows: Step 1. Generate instruction sequences; Step
2. Prune subsequences; Step 3. Discard smaller sequences;
Step 4. Remove illegal sequences; and Step 5. Identify useful
instructions.

The main difficulty with the disassembly process lies in the
fact that there may be more than one valid assembly
instruction sequence corresponding to a given binary
sequence. For example, if the input size is n bytes, then
starting from byte k ∈ {1, …, n}, we will have a total O(n)
different assembly programs (some of the starting positions

274



may not produce any valid assembly program, because they
may end up in an illegal instruction). The problem is to
identify the most appropriate assembly program among these
O(n) programs. The instruction sequence distiller filters out
all redundant instruction sequences and outputs a single, most
viable assembly sequence (i.e., assembly program). The main
steps of this process are briefly discussed here.

Step 1. Generate instruction sequences: The disassembler
assigns an address to every byte of a message. Then, it
disassembles the message from a certain address until the end
of the request is reached or an illegal instruction opcode is
encountered. Disassembly is performed using the recursive
traversal algorithm [Schwarz et al., 2002].

Step 2. Prune subsequences: If instruction sequence sa is a
subsequence of instruction sequence sb, the disassembler
excludes sa. The rationale for this is that if sa satisfies some
characteristics of programs, sb also satisfies these
characteristics with a high probability.

Step 3. Discard smaller sequences: If instruction sequence sa
merges to instruction sequence sb after a few instructions and
sa is no longer than sb, the disassembler excludes sa. It is
reasonable to expect that sb will preserve sa’s characteristics.
Many distilled instruction sequences are observed to merge
into other instruction sequences after a few instructions. This
property is called self-repairing [Linn and Debray, 2003] in
Intel IA-32 architecture.

Step 4. Remove illegal sequences: Some instruction
sequences, when executed, inevitably reach an illegal
instruction whatever execution path is being taken. The

275



disassembler excludes the instruction sequences in which
illegal instructions are inevitably reachable, because causing
the server to execute an illegal instruction (with possible
consequence of terminating the web server thread handling
this request) is not the purpose of a buffer overflow attack.

Step 5. Identify useful instructions: An instruction sequence
obtained after applying the previous four steps filtering may
be a sequence of random instructions or a fragment of a
program in machine language. This step applies a technique
to differentiate these two cases and identifies the useful
instructions, that is, instructions that are most likely part of a
valid executable. Readers are requested to consult [Wang et
al., 2006] for more details.

13.4 Feature Extraction
Feature extraction is the heart of our data mining process. We
have identified three important features based on our
observation and domain-specific knowledge. These are:
Useful Instruction Count (IUC), Instruction Usage
Frequencies (IUF), and Code vs. Data Lengths (CDL). These
features are described here in detail.

13.4.1 Useful Instruction Count (UIC)

The UIC is the number of useful instructions found in step 5
of the disassembly process. This number is important because
a real executable should have a higher number of useful
instructions, whereas data should have less or zero useful
instructions.

276



13.4.2 Instruction Usage Frequencies
(IUF)

To extract the IUF feature, we just count the frequency of
each instruction that appears in an example (normal or
attack). Intuitively normal data should not have any bias/
preference toward any specific instruction or set of
instructions. Thus, the expected distribution of instruction
usage frequency in normal data should be random. On the
other hand, an exploit code is supposed to perform some
malicious activities in the victim machine. So, it must have
some bias/preference toward a specific subset of instructions.
Thus, the expected distribution of instruction usage
frequencies should follow some pattern. This idea is also
supported by our observation of the training data, which is
illustrated in Section 14.5.

13.4.3 Code vs. Data Length (CDL)

As explained earlier, an exploit code has three different
regions: the NOP sled, the payload, and the return addresses.
Following from this knowledge and our observation of the
exploit code, we divide each input instance into three regions
or “zones”: bzone or the beginning zone, czone or the code
zone, and rzone or the remainder zone. “bzone” corresponds
to the first few bytes in the input that could not be
disassembled, and probably contains only data—for example,
the first 20 bytes of the exploit in Figure 13.2. “czone”
corresponds to the bytes after “bzone” that were successfully
disassembled by the disassembler, and probably contains
some code (e.g., bytes 20–79 in Figure 13.2). “rzone”

277



corresponds to the remaining bytes in the input after “czone”
that could not be disassembled, and probably contains only
data (e.g., last 20 bytes in Figure 13.3). We observe that the
normalized lengths (in bytes) of these three zones follow a
certain distribution for “attack” inputs, which is different
from that of the “normal” inputs. These distributions are also
illustrated in Section 14.5.

Figure 13.3 Three zones of an input instance. (From M.
Masud, L. Khan, B. Thuraisingham, X. Wang, P. Lie, S. Zhu,
Detecting Remote Exploits Using Data Mining, pp. 177–189,
2008, Springer. With permission.)

Intuitively, normal inputs should contain code zone at any
location with equal probability. Meaning, the expected
distribution of “bzone” and “rzone” should be random in
normal inputs. Also, normal inputs should have few or no
code. Thus, “czone” length should be near zero. On the other
hand, exploit code is restricted to follow a certain pattern for
the code zone. For example, the exploit code should begin
with the NOP sled, necessitating the “bzone” length to be
equal to 0. Also, “czone” length for exploit codes should be
higher than normal inputs. In summary, the patterns of these
three zones should be distinguishable in normal and attack
inputs.

278



13.5 Combining Features
and Compute Combined
Feature Vector
The feature vectors/values that we have computed for each
input sample are (I) UIC—a single integer; (II)
IUF—containing K integer numbers representing the
frequencies of each instruction, where K is the total number
of different instructions found in the training data; and (III)
CDL features, containing 3 real values. So, we have a
collection of K+4 features, of which the first K+1 feature
values are integer, and the last three are real. These K+4
features constitute our combined feature vector for an input
instance.

Table 13.1 A Disassembled Exploit (First 16H Bytes)

279



We illustrate the feature vector computation with a
comprehensive example as follows.

Table 13.1 shows a disassembled exploit with the address and
op-code for each instruction. The column “Useful?” describes
whether the instruction is useful, which is found during the
disassembly step (Section 13.3). The exploit contains 322
bytes total but only the first 16H bytes are shown in the table.
Among these 322 bytes, only the first 14H (=20) bytes
contain code, and the remaining 302 bytes contain data.
Therefore, the three different kinds of features that we extract
from this exploit are as follows:

1. UIC = 5, since only five instructions are useful
according to the “Useful?” column

2. IUF: push = 1, pop = 2, xor = 1, sub = 1, add = 0,
etc… (count of each instruction in the first 20 bytes)

3. CDL:
• bzone = 0 (number of bytes before the first

instruction)
• czone = 20 (20 bytes of instructions/code)
• rzone = 302 (number of bytes after the last

instruction)

Therefore, the combined feature vector for the exploit would
look as follows, assuming the order of features are as shown:

Features = {UIC, IUF(push, pop, add, …, k-th instruction,
CDL(bzone, czone, rzone)}

Vector = {5, 1, 2, 0, …, freq of k-th instruction, 0, 20, 302}

280



13.6 Classification
We use Support Vector Machine (SVM), Bayes Net, decision
tree (J48), and Boosting for the classification task. These
classifiers are found to have better performances in our
previous work related to malware detection. Each of these
classifiers has its own advantages and drawbacks. First, SVM
is more robust to noise and high dimensionality. However, it
needs to be fine-tuned to perform efficiently on a specific
domain. Decision tree has a very good feature selection
capability. It is also much faster than many other classifiers,
both in training and testing time. On the other hand, it is less
stable than SVM, meaning, minor variations in the training
data may lead to large changes in the decision tree. This
problem can be overcome with Boosting, which applies
ensemble methods, because ensemble techniques are more
robust than single-model approaches. Bayes Net is capable of
finding the inter-dependencies between different attributes. It
avoids the unrealistic conditional independence assumption of
Naïve Bayes by discovering dependency among attributes.
However, it may not perform well when there are too many
dimensions (i.e., attributes).

We train a model with each of the four classification
techniques discussed earlier. Therefore, we have four
different classification models, trained from the same training
dataset but built using different base learners. Each of these
classification models is evaluated on the evaluation data, and
the model with the best accuracy is chosen to be deployed in
the system. In our experiments (Chapter 14), we found that
Boosted J48 has the best accuracy in detecting existing and

281



new kind of exploits. Therefore, we used Boosted J48 in our
tool that we have developed for remote exploit detection.

13.7 Summary
In this chapter, we have described the design and
implementation of the data mining tool DExtor for detecting
remote exploits. In particular, we discussed the architecture of
the tool as well as the major modules of the tool. These
modules include Disassembly, Feature Extraction, and
Classification. In Chapter 14, we discuss the experiments we
carried out and analyze the results obtained.

As stated in Chapter 12, as future work, we are planning to
detect remote exploits by examining other types of data
mining techniques as well as developing techniques for
selecting better features. In addition, we will apply other
classification techniques and compare the performance and
accuracy of the results.

References
[Linn and Debray, 2003] Linn, C., and S. Debray,
Obfuscation of Executable Code to Improve Resistance to
Static Disassembly, in Proceedings of the 10th ACM
Conference on Computer and Communications Security
(CCS), October 2003, pp. 290–299.

[Schwarz et al., 2002] Schwarz, B., S. K. Debray, G. R.
Andrews, Disassembly of executable code revisited, in

282



Proceedings, 9th Working Conference on Reverse
Engineering (WCRE), October 2002.

[Wang et al., 2006] Wang, X., C. Pan, P. Liu, S. Zhu,
SigFree: A Signature-Free Buffer Overflow Attack Blocker,
in Proceedings of USENIX Security, July 2006.

283



14

EVALUATION AND RESULTS

14.1 Introduction
In Chapter 12, we described issues in remote exploit
detection, and in Chapter 13, we described our data mining
tool DExtor for remote exploit detection. In this chapter, we
describe the datasets, experimental setup, and the results that
we have obtained for DExtor.

We first discuss the datasets that are used to evaluate our
techniques. The dataset contains real exploit code generated
by different polymorphic engines, as well as benign inputs to
web servers. Then we discuss the evaluation process on these
datasets. We compare our proposed technique, which
combines three different kinds of features, with four baseline
techniques. These baseline techniques are SigFree [Wang et
al., 2006], and three other techniques that use only one type of
feature, that is, only UIC, only IUF, and only CDL. We report
the accuracy and running time of each approach. Also, we
analyze our results and justify the usefulness of the features
we extract. Finally, we discuss some limitations of our
approach and explain how these limitations can be overcome.

The organization of this chapter is as follows. In Section 14.2,
we describe the datasets used. In Section 14.3, we discuss the
experimental setup, such as hardware, software, and system

284



parameters. In Section 14.4, we discuss results obtained from
the experiments. Our analysis is given in Section 14.5. The
robustness and the limitations of our approach are presented
in Section 14.6. Finally, the chapter is summarized in Section
14.7. Figure 14.1 illustrates the concepts in this chapter.

Figure 14.1 Concepts in this chapter.

14.2 Dataset
The dataset contains real exploit code as well as normal
inputs to web servers. We obtain the exploit codes as follows.
First, we generate 20 unencrypted exploits using the
Metasploit framework [Metasploit]. Second, we apply nine
polymorphic engines “ADMmutate” [Macaulay], “clet”
[Detristan et al.], “Alpha2,” “CountDown,”
“JumpCallAdditive,” “Jumpiscodes,” “Pex,”
“PexFnstenvMov,” “PexFnstenvSub” on the unencrypted
exploits. Each polymorphic engine is applied to generate
1,000 exploits. Thus we obtain a collection of 9,000 exploit
codes. We collect the normal inputs from real traces of HTTP

285



request/responses to/from a web server. To collect these
traces, we install a client-side proxy that can monitor and
collect all incoming and outgoing messages. Thus, the normal
inputs consist of a collection of about 12,000 messages
containing HTTP requests/responses. HTTP responses consist
of texts (.javascript, .html, .xml), applications (.x-javascript,
.pdf, .xml), images (.gif, .jpeg, .png), sounds (.wav), and
flash. Thus we try to make the dataset as diverse, realistic,
and unbiased as possible to get the flavor of a real
environment.

We perform two different kinds of evaluation on the data.
First, we apply a fivefold cross validation and obtain the
accuracy, false positive, and false negative rates. Second, we
test the performance of the classifiers on new kinds of
exploits. This is done as follows: A classifier is trained using
the exploits obtained from eight engines, and tested on the
exploits from the ninth engine. This is done nine times by
rotating the engine in the test set. Normal examples were
distributed in the training and test set with equal proportions.
We report the performances of each classifier for all the nine
tests.

14.3 Experimental Setup
We run our experiment with a 2.0GHz machine with 1GB
RAM on a Windows XP machine. Our algorithms are
implemented in java and compiled with jdk version 1.5.0_06.

286



14.3.1 Parameter Settings

We use the Weka [Weka] Machine Learning tool for the
classification tasks. For SVM, the parameter settings are as
follows. Classifier type: C-Support Vector classifier (C-SVC),
Kernel: polynomial kernel and gamma = 0.01. For Bayes Net,
the following parameters are set: alpha = 0.5 and network
learning: hill-climbing search. For decision tree, we use J48
from Weka, pruning = true, and C = 0.25. For Boosting, we
run 10 iterations of the AdaBoost algorithm to generate 10
models (t = 10), and the weak learner for the AdaBoost
algorithm is decision tree (J48).

14.2.2 Baseline Techniques

We compare our approach with four different baseline
techniques as follows.

1. Comb: The combined feature vector of UIC, IUF, and
CDL features. This is our proposed approach.

2. UIC: Here we use only the UIC feature for both
training and testing.

3. IUF: Here we use only the IUF features for both
training and testing.

4. CDL: Here we use only the CDL features for both
training and testing.

5. SigFree: It is the approach proposed in [Wang et al.,
2006].

Note that each of these features sets (I–IV) are used to train
four different classifiers, namely, Decision Tree (a.k.a. J48 in
weka), Boosted J48, SVM, and Bayes Net.

287



14.4 Results
We apply three different metrics to evaluate the performance
of our method: Accuracy (ACC), False Positive (FP), and
False Negative (FN), where ACC is the percentage of
correctly classified instances, FP is the percentage of negative
instances incorrectly classified as positive, and FN is the
percentage of positive instances incorrectly classified as
negative.

Table 14.1 Comparing Performances among Different
Features and Classifiers

Source: M. Masud, L. Khan, B. Thuraisingham, X. Wang, P.
Lie, S. Zhu, Detecting Remote Exploits Using Data Mining,
pp. 177–189, 2008, Springer. With permission.

Table 14.1 shows a comparison among different features of
DExtor. We see that accuracy of DExtor’s Combined (shown
under column Comb) feature classified with Boosted J48 is
the best, which is 99.96%. Individual features have accuracies
less than the combined feature for all classification

288



techniques. Also, the combined feature has the lowest false
positive, which is 0.0%, obtained from Boosted J48. The
lowest false negative also comes from the combined feature,
which is only 0.1%. In summary, the combined feature with
Boosted J48 classifier has achieved near perfect detection
accuracy. The last row shows the accuracy and false alarm
rates of SigFree on the same dataset. SigFree actually uses
UIC with a fixed threshold (15). It is evident that SigFree has
a low false positive rate (0.2%) but high false negative rate
(88.5%), causing the overall accuracy to drop below 39%.
Figure 14.2 shows the Receiver Operating Characteristic
(ROC) curves of different features for Boosted J48 classifier.
ROC curves for other classifiers have similar characteristics,
and are not shown because of space limitation. The area under
the curve (AUC) is the highest for the combined feature,
which is 0.999.

Table 14.2 reports the effectiveness of our approach in
detecting new kinds of exploits. Each row reports the
detection accuracies and false alarm rates of one particular
engine-generated exploit. For example, the row headed by
“Admutate” shows the detection accuracy (and false alarm
rates) of exploits generated by the Admutate engine. In this
case, the classifiers have been trained with the exploits from
eight other engines. In each case, the training set contains
8,000 exploits and about 10,500 randomly selected normal
samples, and the test set contains 1,000 exploits and about
1,500 randomly chosen normal samples. The columns headed
by SVM, BNet, J48, and BJ48 show the accuracies (or false
positive/false negative rates) of SVM, Bayes Net, J48, and
Boosted J48 classifiers, respectively. It is evident from the
table that all the classifiers could successfully detect most of
the new exploits with 99% or better accuracy.

289



Figure 14.2 ROC curves of different features for
BoostedJ48. (From M. Masud, L. Khan, B. Thuraisingham,
X. Wang, P. Lie, S. Zhu, Detecting Remote Exploits Using
Data Mining, pp. 177–189, 2008, Springer. With permission.)

Table 14.2 Effectiveness in Detecting New Kinds of Exploits

290



Source: M. Masud, L. Khan, B. Thuraisingham, X. Wang, P.
Lie, S. Zhu, Detecting Remote Exploits Using Data Mining,
pp. 177–189, 2008, Springer. With permission.

14.4.1 Running Time

The total training time for the whole dataset is less than 30
minutes. This includes disassembly time, feature extraction
time, and classifier training time. This amounts to about
37ms/KB of input. The average testing time/KB of input is
23ms for the combined feature set. This includes the
disassembly time, feature value computation time, and
classifier prediction time. SigFree, on the other hand, requires
18.5ms to test per KB of input. Considering that training can
be done offline, this amounts to only 24% increase in running
time compared to SigFree. So the price/performance tradeoff
is in favor of DExtor.

291



14.5 Analysis
As explained earlier, IUF feature observes different frequency
distributions for the “normal” and “attack” inputs. This is
illustrated in the leftmost chart of Figure 14.3. This graph
shows the 30 most frequently used instructions (for both
kinds of inputs). It is seen that most of the instructions in this
chart are more frequently used by the “attack” inputs than
“normal” inputs. The first five of the instructions have high
frequencies (>11) in “attack” inputs, whereas they have near
zero frequencies in “normal” input. The next 16 instructions
in “attack” inputs have frequencies close to 2, whereas
“normal” inputs have near zero frequencies for these
instructions. To mimic “normal” input, an attacker should
avoid using all these instructions. It may be very hard for an
attacker to get around more than 20 most frequently used
instructions in exploits and craft his code accordingly.

Figure 14.3 Left: average instruction usage frequencies
(IUF) of some instructions. Right: distributions of “bzone”
and “czone.” (From M. Masud, L. Khan, B. Thuraisingham,

292



X. Wang, P. Lie, S. Zhu, Detecting Remote Exploits Using
Data Mining, pp. 177–189, 2008, Springer. With permission.)

Similarly, we observe specific patterns in the distribution of
the CDL feature values. The patterns for “bzone” and “czone”
are illustrated in the right two charts of Figure 14.3. These are
histograms showing the number of input samples having a
particular length (as a fraction of total input size) of “bzone”
or “czone.” These histograms are generated by dividing the
whole range ([0,1]) of “bzone” (or “czone”) sizes into 50
equal-sized bins, and counting the total number of inputs
instances that fall within the range of a particular bin. By
closely observing the histogram for bzone, we see that most
of the “attack” samples have bzone values in the first bin (i.e.,
[0,0.02]), whereas that of the “normal” samples are spread
over the whole range of values starting from 0.1. This means,
if the attacker wants to mimic normal traffic, he should leave
the first 10% of an exploit without any code. This may
increase his chances of failure since the exploit should
naturally start with a NOP sled. Again by closely observing
the histogram for czone, we see that most of the “normal”
samples have “czone” values within the range [0,0.05],
whereas “attack” samples mostly have “czone” values greater
than 0.05. This means that if the attacker wants to mimic
normal traffic, he should keep his code length within 5% of
the exploit’s length. For a 200-byte exploit, this would allot
only 10 bytes for code—including the NOP sled. Thus, the
attacker would have a hard time figuring out how to craft his
exploit.

293



14.6 Robustness and
Limitations
In this section, we discuss different security issues and the
robustness and limitations of our system.

14.6.1 Robustness against Obfuscations

Our technique is robust against “Instruction re-ordering”
because we do not care about the order of instructions. It is
also robust against “junk-instruction insertion,” as it increases
the frequency of instructions in the exploit. It is robust against
instruction replacement as long as all the “most frequently
used” instructions are not replaced (as explained in Section
14.5) by other instructions. It is also robust against
register-renaming and memory re-ordering, because we do
not consider register or memory locations. Junk byte insertion
obfuscation is targeted at the disassembler, where junk bytes
are inserted at locations that are not reachable at run-time.
Our disassembly algorithm applies recursive traversal, which
is robust to this obfuscation [Kruegel et al., 2004].

14.6.2 Limitations

DExtor is partially affected by the “branch function”
obfuscation. The main goal of this obfuscation is to obscure
the control flow in an executable, so that disassembly cannot
proceed. Currently, there is no general solution to this
problem. In our case, DExtor is likely to produce fragmented

294



“code blocks,” missing some of the original code. This will
not affect DExtor as long as the “missed” block contains a
significant number of instructions.

Another limitation of DExtor is its processing speed. We
evaluated the throughput of DExtor in a real environment,
which amounts to 42KB/sec. This might seem unrealistic for
an intrusion detection system that has to encounter Gigabits
of data per second. Fortunately, we intend to protect just one
network service, which is likely to process inputs much
slower than this rate. We suggest two solutions to get around
this limitation: (1) using faster hardware and optimizing all
software components (disassembler, feature extraction,
classifier), and (2) carefully excluding some incoming traffic
from analysis. For example, any bulk input to the server
having a size greater than a few hundred KB is too unlikely to
be an exploit code because the length of a typical exploit code
is within a few KB only. By applying both the solutions,
DExtor should be able to operate in a real-time environment.

14.7 Summary
In this chapter, we have discussed the results obtained from
testing our data mining tool for detecting remote exploits. We
first discussed the datasets we used and the experimental
setup. Then we described the results we obtained. These
results were subsequently analyzed, and we discussed the
robustness and limitations of our approach.

We have shown that code-carrying exploits can be
successfully detected using our data mining technique. The

295



data mining technique consists of two processes: training and
classification. In the training phase, we take a large number of
training instances containing both code-carrying exploits and
benign binary files. Each training instance is tagged as either
“benign” or “exploit.” Each of these training instances is then
disassembled and analyzed using an “instruction sequence
distiller and analyzer” module. The output of this module is
an assembly instruction sequence with appropriate attributes
assigned to each instruction (e.g., useful/not useful). From
this sequence, we extract three different kinds of features, that
is, useful instruction count (IUC), code vs. data length (CDL),
and instruction usage frequency (IUF). Using these features,
we compute the feature vector for each training instance and
train a classification model. This classification model is then
used to classify future instances. To classify, each instance
(i.e., a binary file transferred through the network) is first
disassembled, and its features are extracted using the same
approach that was followed during training. The extracted
feature values are then supplied to the classification model,
and the model outputs the predicted class of the test instance.
We have evaluated our approach on a large corpus of exploit
and benign data, and obtained very high accuracy and low
false alarm rates compared to the previous approach, SigFree
[Wang et al., 2006].

In the future, we would like to apply data stream
classification techniques to the remote exploit detection
problem. Note that network traffic is essentially a data stream,
which is both infinite in length and usually evolves over time.
Therefore, a data stream mining technique would be a more
appropriate and efficient technique for remote exploit
detection.

296



References
[Detristan et al.] Detristan, T., T. Ulenspiegel, Y. Malcom, M.
S. Von Underduk, Polymorphic Shellcode Engine Using
Spectrum Analysis, Phrack Magazine,
http://www.phrack.org/issues.html?issue=61&id=9#article

[Kruegal et al., 2004] Kruegel, C., W. Robertson, F. Valeur,
G. Vigna, Static Disassembly of Obfuscated Binaries, in
Proceedings of USENIX Security, August 2004.

[Metasploit] The Metasploit Project,
http://www.metasploit.com

[Macaulay] Macaulay, S., Admutate: Polymorphic Shellcode
Engine, http://www.ktwo.ca/security.html

[Wang et al., 2006] Wang, X., C. Pan, P. Liu, S. Zhu,
SigFree: A Signature-Free Buffer Overflow Attack Blocker,
in Proceedings of USENIX Security, July 2006.

[Weka] Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka

297

http://www.phrack.org/issues.html?issue=61&id=9#article
http://www.metasploit.com
http://www.ktwo.ca/security.html
http://www.cs.waikato.ac.nz/ml/weka


Conclusion to Part IV

As we have stated, remote exploits are a popular means for
attackers to gain control of hosts that run vulnerable services/
software. Typically, a remote exploit is provided as an input
to a remote vulnerable service to hijack the control flow of
machine-instruction execution. Sometimes the attackers inject
executable code in the exploit that are executed after a
successful hijacking attempt. We refer to these code-carrying
remote exploits as exploit code. In this part, we discussed the
design and implementation of DExtor, a Data Mining–based
Exploit code detector, to protect network services. In
particular, we discussed the system architecture, our
approach, and the algorithms we developed, and we reported
our performance analysis. We also discussed the strengths
and limitations of our approach.

In Parts II, III, and IV we have discussed our data mining
tools for email worm detection, detecting malicious
executables, and detecting remote exploits. In the next part,
we discuss data mining for botnet detection.

298



PART V

DATA MINING FOR DETECTING
BOTNETS

Introduction to Part V
Botnet detection and disruption have been a major research
topic in recent years. One effective technique for botnet
detection is to identify Command and Control (C&C) traffic,
which is sent from a C&C center to infected hosts (bots) to
control the bots. If this traffic can be detected, both the C&C
center and the bots it controls can be detected and the botnet
can be disrupted. We propose a multiple log file-based
temporal correlation technique for detecting C&C traffic. Our
main assumption is that bots respond much faster than
humans. By temporally correlating two host-based log files,
we are able to detect this property and thereby detect bot
activity in a host machine. In our experiments, we apply this
technique to log files produced by tcpdump and exedump,
which record all incoming and outgoing network packets and
the start times of application executions at the host machine,
respectively. We apply data mining to extract relevant
features from these log files and detect C&C traffic. Our
experimental results validate our assumption and show better
overall performance when compared to other recently
published techniques.

299



Part V consists of three chapters: 15, 16, and 17. An overview
of botnets is provided in Chapter 15. Our data mining tool is
described in Chapter 16. Evaluation and results are presented
in Chapter 17.

300



15

DETECTING BOTNETS

15.1 Introduction
Botnets are emerging as “the biggest threat facing the internet
today” [Ferguson, 2008] because of their enormous volume
and sheer power. Botnets containing thousands of bots
(compromised hosts) have been tracked by several different
researchers [Freiling et al., 2005], [Rajab et al., 2006]. Bots in
these botnets are controlled from a Command and Control
(C&C) center, operated by a human botmaster or botherder.
The botmaster can instruct these bots to recruit new bots,
launch coordinated DDoS attacks against specific hosts, steal
sensitive information from infected machines, send mass
spam emails, and so on.

In this chapter, we discuss our approach to detecting botnets.
In particular, we use data mining techniques. There have been
some discussions whether data mining techniques are
appropriate for detecting botnets as botnets may change
patterns. We have developed techniques for detecting novel
classes, and such techniques will detect changing patterns.
We will describe novcl class detection techniques under our
work on stream mining in Part VI.

The organization of this chapter is as follows. An architecture
for botnets is discussed in Section 15.2. Related work is

301



discussed in Section 15.3. Our approach is discussed in
Section 15.4. The chapter is summarized in Section 15.5.
Figure 15.1 illustrates the concepts of this chapter.

15.2 Botnet Architecture
Figure 15.2 illustrates a typical botnet architecture. The
IRC-based (Internet Relay Chat) botnets are centralized
botnets. The IRC server is the central server with which all
bot machines are connected through an IRC channel. The
botmaster, a human entity controlling the bots, also connects
himself with the IRC server through a channel. The bots are
programmed to receive commands from the botmaster
through the IRC server. The commands are sent via
Command & Control (C&C) traffic. The bots usually recruit
other bots by exploiting vulnerable machines. The botmaster
may launch a distributed denial of service (DDoS) attack
using this bot network. Periodically, the botmaster may want
to update the bot software. This is done by placing the
updated software in a code server and then sending
commands to the bot machines to download the update from
the code server.

302



Figure 15.1 Concepts in this chapter.

Figure 15.2 A typical IRC-based botnet architecture. (From
M. Masud, T. Al-khateeb, L. Khan, B. Thuraisingham, K.
Hamlen, Flow-based Identification of Botnet Traffic by
Mining Multiple Log Files, pp. 200–206, 2008, © IEEE. With
permission.)

Numerous researchers are working hard to combat this threat
and have proposed various solutions [Grizzard et al., 2007],
[Livadas et al., 2006], [Rajab et al., 2006]. One major
research direction attempts to detect the C&C center and
disable it, preventing the botmaster from controlling the

303



botnet. Locating the C&C center requires identifying the
traffic exchanged between it and the bots. Our work adopts
this approach by using a data mining-based technique to
identify temporal correlations between multiple log files. We
maintain two different log files for each host machine: (1) a
network packet trace or tcpdump, and (2) an application
execution trace or exedump. The tcpdump log file records all
network packets that are sent/received by the host, and the
exedump log file records the start times of application
program executions on the host machine. Our main
assumption is that bots respond to commands much faster
than humans do. Thus, the command latency (i.e., the time
between receiving a command and taking actions) should be
much lower, and this should be reflected in the tcpdump and
exedump log files.

Bot commands that have an observable effect upon the log
files we consider can be grouped into three categories: those
that solicit a response from the bot to the botmaster, those that
cause the bot to launch an application on the infected host
machine, and those that prompt the bot to communicate with
some other host (e.g., a victim machine or a code server).
This botnet command categorization strategy is explained in
more detail in Section 16.5. We apply data mining to learn
temporal correlations between an incoming packet and (1) an
outgoing packet, (2) a new outgoing connection, or (3) an
application startup. Any incoming packet correlated with one
of these logged events is considered a possible botnet
command packet. Our approach is flow based because rather
than classifying a single packet as C&C or normal traffic, we
classify an entire flow (or connection) to/from a host as C&C
or normal. This makes the detection process more robust and
effective. Our system is first trained with log files obtained

304



from clean hosts and hosts infected with a known bot, then
tested with logs collected from other hosts. This evaluation
methodology is explained in detail in Chapter 17.

Our technique is different from other botnet detection
techniques [Goebel and Holz, 2007], [Livadas et al., 2006],
[Rajab et al., 2006] in two ways. First, we do not impose any
restriction on the communication protocol. Our approach
should therefore also work with C&C protocols other than
those that use IRC as long as the C&C traffic possesses the
observable characteristics previously defined. Second, we do
not rely on command string matching. Thus, our method
should work even if the C&C payloads are not available.

Our work makes two main contributions to botnet detection
research. First, we introduce multiple log correlation for C&C
traffic detection. We believe this idea could be successfully
extended to additional application-level logs such as those
that track process/service execution, memory/CPU utilization,
and disk accesses. Second, we have proposed a way to
classify botmaster commands into different categories, and
we show how to utilize these command characteristics to
detect C&C traffic. An empirical comparison of our technique
with another recent approach [Livadas et al., 2006] shows that
our strategy is more robust in detecting real C&C traffic.

15.3 Related Work
Botnet defenses are being approached from at least three
major perspectives: analysis, tracking, and detection. [Barford
and Yegneswaran, 2006] present a comprehensive analysis of

305



several botnet codebases and discuss various possible defense
strategies that include both reactive and proactive approaches.
[Grizzard et al., 2007] analyze botnets that communicate
using peer-to-peer networking protocols, concluding that
existing defense techniques that assume a single, centralized
C&C center are insufficient to counter these decentralized
botnets.

[Freiling et al., 2005] summarize a general botnet-tracking
methodology for manually identifying and dismantling
malicious C&C centers. [Rajab et al., 2006] put this into
practice for a specific IRC protocol. They first capture bot
malware using a honeynet and related techniques. Captured
malware is next executed in a controlled environment to
identify the commands that the bot can receive and execute.
Finally, drone machines are deployed that track botnet
activity by mimicking the captured bots to monitor and
communicate with the C&C server. [Dagon et al., 2006]
tracked botnet activity as related to geographic region and
time zone over a six-month period. They concluded that
botnet defenses such as those described earlier can be more
strategically deployed if they take into account the diurnal
cycle of typical botnet propagation patterns.

Our research presented in this chapter is a detection
technique. [Cooke et al., 2005] discuss various botnet
detection techniques and their relative merits. They conclude
that monitoring C&C payloads directly does not typically
suffice as a botnet detection strategy because there are no
simple characteristics of this content that reliably distinguish
C&C traffic from normal traffic. However, [Goebel and Holz,
2007] show that botnets that communicate using IRC can
often be identified by their use of unusual IRC channels and

306



IRC user nicknames. [Livadas et al., 2006] use additional
features including packet size, flow duration, and bandwidth.
Their technique is a two-stage process that first distinguishes
IRC flows from non-IRC flows and then distinguishes C&C
traffic from normal IRC flows. Although these are effective
detection techniques for some botnets, they are specific to
IRC-based C&C mechanisms and require access to payload
content for accurate analysis and detection. In contrast, our
method does not require access to botnet payloads and is not
specific to any particular botnet communication
infrastructure. [Karasaridis et al., 2007] consider botnet
detection from an ISP or network administrator’s perspective.
They apply statistical properties of C&C traffic to mine large
collections of network traffic for botnet activity. Our work
focuses on detection from the perspective of individual host
machines rather than ISPs.

15.4 Our Approach
We presented the novel idea of correlating multiple log files
and applying data mining for detecting botnet C&C traffic.
Our idea is to utilize the temporal correlation between two
different log files: tcpdump and exedump. The tcpdump file
logs all network packets that are sent/received by a host,
whereas the exedump file logs the start times of application
program executions on the host. We implement a prototype
system and evaluate its performance using five different
classifiers: Support Vector Machines, decision trees, Bayes
Nets, Boosted decision trees, and Naïve Bayes. Figure 15.3
illustrates our approach.

307



Figure 15.3 Our approach to botnet detection.

Comparison with another technique by [Livadas et al., 2006]
for C&C traffic detection shows that our method has overall
better performance when used with a Boosted decision tree
classifier. The technique used by Livadas et al. first identifies
IRC flows and then detects botnet traffic from the IRC flows.
Our technique is more general because it does not need to
identify IRC traffic and is therefore applicable to non-IRC
botnet protocols, as long as certain realistic assumptions
about the command-response timing relationships (detailed in
Chapter 16) remain valid.

15.5 Summary
Botnets have been a major threat to the global Internet
community in the past decade. Although many approaches
have been proposed in detecting IRC botnets in recent years,
there are very few approaches that apply data mining
techniques. We propose a data mining-based technique that
combines and correlates two log files in a host machine. The
next two chapters discuss the technique and results on botnet
traffic generated in a controlled environment.

308



In the future, we would like to apply more sophisticated data
mining techniques, such as the data stream classification
techniques for botnet detection. Data stream classification
techniques will be particularly suitable for botnet traffic
detection, because the botnet traffic itself is a kind of data
stream. We would also like to extend our host-based detection
technique to a distributed framework.

References
[Barford and Yegneswaran, 2006] Barford, P., and V.
Yegneswaran, An Inside Look at Botnets, Springer, 2006.

[Cooke et al., 2005] Cooke, E., F. Jahanian, D. McPherson,
The Zombie Roundup: Understanding, Detecting, and
Disrupting Botnets, in Proceedings of the Steps to Reducing
Unwanted Traffic on the Internet Workshop (SRUTI’05),
2005, pp. 39–44.

[Dagon et al., 2008] Dagon, D., C. Zou, W. Lee, Modeling
Botnet Propagation Using Time Zones, in Proceedings of the
13th Network and Distributed System Security Symposium
(NDSS ’06), 2006.

[Ferguson, 2008] Ferguson, T., Botnets Threaten the Internet
as We Know It, ZDNet Australia, April 2008.

[Freiling et al., 2005] Freiling, F., T. Holz, G. Wicherski,
Botnet tracking: Exploring a Root-Cause Methodology to
Prevent Distributed Denial-of-Service Attacks, in
Proceedings of the 10th European Symposium on Research in

309



Computer Security (ESORICS), September 2005, pp.
319–335.

[Goebel and Holz, 2007] Goebel, J., and T. Holz, Rishi:
Identify Bot Contaminated Hosts by IRC Nickname
Evaluation, in Proceedings of the 1st Workshop on Hot
Topics in Understanding Botnets, 2007, p. 8.

[Grizzard et al., 2007] Grizzard, J. B., V. Sharma, C.
Nunnery, B. B. Kang, D. Dagon, Peer-to-Peer Botnets:
Overview and Case Study, in Proceedings of the 1st
Workshop on Hot Topics in Understanding Botnets, 2007, p.
1.

[Karasaridis et al., 2007] Karasaridis, A., B. Rexroad, D.
Hoeflin, Wide-Scale Botnet Detection and Characterization,
in Proceedings of the 1st Workshop on Hot Topics in
Understanding Botnets, 2007, p. 7.

[Livadas et al., 2006] Livadas, C., B. Walsh, D. Lapsley, W.
Strayer, Using Machine Learning Techniques to Identify
Botnet Traffic, in Proceedings of the 31st IEEE Conference
on Local Computer Networks (LCN’06), November 2006, pp.
967–974.

[Rajab et al., 2006] Rajab, M., J. Zarfoss, F. Monrose, A.
Terzis, A Multifaceted Approach to Understanding the Botnet
Phenomenon, in Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement (IMC’06), 2006, pp.
41–52.

310



16

DESIGN OF THE DATA MINING
TOOL

16.1 Introduction
In this chapter we describe our system setup, data collection
process, and approach to categorizing bot commands. We
build a testbed with an isolated network containing two
servers and a three client virtual machine. We execute two
different IRC bots and collect packet traces. We also collect
packet traces of known benign traffic. We identify several
packet-level and flow-level features that can distinguish the
botnet traffic from benign traffic. In addition, we find
temporal correlations between the system execution log
(exedump) and packet trace log (tcpdump) and use these
correlations as additional features. Using these features, we
then train classifiers with known botnet and benign traffic.
This classifier is then used to identify future unseen instances
of bot traffic.

The organization of this chapter is as follows. Our
implementation architecture is described in Section 16.2.
System setup is discussed in Section 16.3. Data collection is
discussed in Section 16.4. Bot command categorization is
described in Section 16.5. Feature extraction is discussed in
Section 16.6. Log file correlation is discussed in Section 16.7.
Classification is discussed in Section 16.8. Packet filtering is

311



discussed in Section 16.9. The chapter is summarized in
Section 16.10. Figure 16.1 illustrates the concepts in this
chapter.

16.2 Architecture
Figure 16.2 illustrates the botnet traffic detection system
deployed in each host machine. The host machines are
assumed to be connected to the Internet through a firewall.
The incoming and outgoing network traffic is logged using
tcpdump, and program executions are logged using exedump
(see Section 16.4). These dumps are then processed through
the feature extraction module (Sections 16.6 and 16.7), and
feature vectors are computed for training.

Figure 16.1 Concepts in this chapter.

312



Figure 16.2 System architecture. (From M. Masud, T.
Al-khateeb, L. Khan, B. Thuraisingham, K. Hamlen,
Flow-based Identification of Botnet Traffic by Mining
Multiple Log Files, pp. 200–206, 2008, © IEEE. With
permission.)

For training, we first label each flow—that is, each
(ip:port,ip′:port′) pair—as a bot flow (conversation between a
bot and its C&C center), or a normal flow (all other
connections). Then we compute several packet-level features
(Section 16.6) for each incoming packet and compute several
flow-level features for each flow by aggregating the
packet-level features. Finally, these flow-level features are
used to train a classifier and obtain a classification model
(Section 16.7). For testing, we take an unlabeled flow and
compute its flow-level features in the same way. Then we test
the feature values against the classification model and label it
a normal flow or a bot flow.

313



16.3 System Setup
We tested our approach on two different IRC-based
bots—SDBot (2006) version 05a and RBot (2006) version
0.5.1. The testing platform consisted of five virtual machines
running atop a Windows XP host operating system. The host
hardware consisted of an Intel Pentium-IV 3.2GHz dual core
processor with 2GB RAM and 150GB hard disk. Each virtual
machine ran Windows XP with 256 MB virtual RAM and
8GB virtual hard disk space.

The five virtual machines played the role of a botmaster, a
bot, an IRC server, a victim, and a code server, respectively.
As with a typical IRC-based botnet, the IRC server served as
the C&C center through which the botmaster issued
commands to control the bot. The IRC server we used was the
latest version of [Unreal IRCd, 2007] Daemon, and the
botmaster’s IRC chat client was MIRC. The code server ran
Apache Tomcat and contained different versions of bot
malware code and other executables. The victim machine was
a normal Windows XP machine. During the experiment the
botmaster instructed the bot to target the victim machine with
udp and ping attacks. All five machines were interconnected
in an isolated network, as illustrated in Figure 16.3.

314



Figure 16.3 System configuration.

16.4 Data Collection
We collect botnet data using our testbed. In each host
machine, we collect both the packet traces and program
execution traces. Features are extracted from these traces, and
the generated feature vectors are used for training classifiers.

Data collection was performed in three steps. First, we
implemented a client for the botmaster that automatically sent
all possible commands to the bot. Second, we ran
[WinDump, 2007] to generate a tcpdump log file, and ran our
own implementation of a process tracer to generate a
exedump log file. Third, we ran each bot separately on a fresh
virtual machine, collected the resulting traces from the log

315



files, and then deleted the infected virtual machine. Traces
were also collected from some uninfected machines
connected to the Internet. Each trace spanned a 12-hour
period. The tcpdump traces amounted to about 3GB in total.
Finally, these traces were used for training and testing.

16.5 Bot Command
Categorization
Not all bot commands have an observable effect on the log
files we consider. We say that a command is observable if it
matches one or more of the following criteria:

1. Bot-response: The command solicits a reply message
from the bot to the C&C center. This reply is logged
in the tcpdump. For example, the SDbot commands
“about” and “sysinfo” are observable according to
this criterion.

2. Bot-app: The command causes the bot to launch an
executable application on the infected host machine.
The application start event will be logged in the
exedump. The execute command from SDbot is an
example of such a command.

3. Bot-other: The command causes the bot to contact
some host other than the C&C center. For example,
the command might instruct the bot to send UDP
packets as part of a DoS attack, send spam emails to
other hosts, or download new versions of bot
malware from a code server. Such events are logged
in the tcpdump.

316



Table 16.1 SDBot and RBot Command Characteristics

Source: M. Masud, T. Al-khateeb, L. Khan, B.
Thuraisingham, K. Hamlen, Flow-based Identification of
Botnet Traffic by Mining Multiple Log Files, pp. 200–206,
2008, © IEEE. With permission.

Some of the SDBot and RBot commands are listed in Table
16.1 and categorized using the previously mentioned criteria.
For a comprehensive description of these commands, please
refer to [RBOT, 2006], [SDBOT, 2006].

16.6 Feature Extraction
First we discuss the packet-level features and then discuss the
flow-level features. The intuitive idea behind these features is
that human response to a command/request (e.g., a request to
send a file or execute an application by his peer) should be
much slower than a bot. In what follows, we refer to a packet
as incoming if its destination is the host being monitored, and
as outgoing if it originates from the monitored host.

317



16.6.1 Packet-Level Features

The packet-level features we consider can be summarized as
follows:

• Bot-Response (BR) (boolean-valued): An incoming
packet possesses this feature if it originated from
some ip:port and there is an outgoing packet to the
same ip:port within 100 ms of arrival of the incoming
packet. This indicates that it is a potential command
packet. The 100 ms threshold has been determined by
our observation of the bots. We will refer to these
incoming packets as BR packets.

• BRtime (real-valued): This feature records the time
difference between a BR packet and its
corresponding outgoing packet. This is an important
characteristic of a bot.

• BRsize (real-valued): This feature records the length
(in KB) of a BR packet. We observe that command
packets typically have lengths of 1KB or less,
whereas normal packets have unbounded size.

• Bot-Other (BO) (boolean-valued): An incoming
packet possesses this feature if it originated from
some ip:port and there is an outgoing packet to some
ip’:port’ within 200 ms of the arrival of the incoming
packet, where ip’≠ip. This is also a potential
command packet. The 200 ms threshold has also been
determined by our observation of the bots. We will
refer to these incoming packets as BO packets.

• BODestMatch (boolean-valued): A BO packet
possesses this feature if outgoing destination ip’ is
found in its payload. This indicates that the BO

318



packet is possibly a command packet that tells the bot
to establish connection with host ip’.

• BOtime (real-valued): This feature records the time
difference between a BO packet and its
corresponding outgoing packet. This is also an
important characteristic of a bot.

• Bot-App (BA) (boolean-valued): An incoming
packet possesses this feature if an application starts
on the host machine within 3 seconds of arrival of the
incoming packet. This indicates that it is potentially
command packet that instructs the bot to run an
application. The 3 second threshold has been
determined by our observation of the bots. We will
refer to these incoming packets as BA packets.

• BAtime (real-valued): This feature records the time
difference between receiving a BA packet and the
launching of the corresponding application.

• BAmatch (boolean-valued): A BA packet possesses
this feature if its payload contains the name of the
application that was launched.

16.6.2 Flow-Level Features

As explained earlier, the flow-level features of a flow are the
aggregations of packet-level features in that flow. They are
summarized in Table 16.2. All flow-level features are
real-valued. Also note that we do not use any flow-level
feature that requires payload analysis.

Table 16.2 Flow-Level Feature Set

FEATURE DESCRIPTION

319



AvgPktLen

VarPktLen
Average and variance of length of packets in KB

Bot-App Number of BA packets as percentage of total
packets

AvgBAtime

VarBAtime
Average and variance of BAtime of all BA
packets

Bot-Reply Number of BR packets as percentage of total
packets

AvgBRtime

VarBRtime
Average and variance of BRtime of all BR
packets

AvgBRsize

VarBRsize
Average and variance of BRsize of all BR
packets

Bot-Other Number of BO packets as percentage of total
packets

AvgBOtime

VarBOtime
Average and variance of BOtime of all BO
packets

Source: M. Masud, T. Al-khateeb, L. Khan, B.
Thuraisingham, K. Hamlen, Flow-based Identification of

320



Botnet Traffic by Mining Multiple Log Files, pp. 200–206,
2008, © IEEE. With permission.

16.7 Log File Correlation
Figure 16.4 shows an example of multiple log file correlation.
Portions of the tcpdump (left) and exedump (right) log files
are shown in this example, side by side. Each record in the
tcpdump file contains the packet number (No), arrival/
departure time (Time), source and destination addresses (Src/
Dest), and payload or other information (Payload/Info). Each
record in the exedump file contains two fields: the process
start time (Start Time) and process name (Process). The first
packet (#10) shown in the tcpdump is a command packet that
instructs the bot to download an executable from the code
server and run it.

Figure 16.4 Multiple log file correlation. (From M. Masud,
T. Al-khateeb, L. Khan, B. Thuraisingham, K. Hamlen,
Flow-based Identification of Botnet Traffic by Mining

321



Multiple Log Files, pp. 200–206, 2008, © IEEE. With
permission.)

The second packet (#11) is a response from the bot to the
botmaster, so the command packet is a BR packet having
BRtime = 1ms. The bot quickly establishes a TCP connection
with the code server (other host) in packets 12 through 14.
Thus, the command packet is also a BO packet having
BOtime = 7ms (the time difference between the incoming
command and the first outgoing packet to another host). After
downloading, the bot runs the executable mycalc.exe. Thus,
this command packet is also a BA packet having BAtime =
2.283s.

16.8 Classification
We use a Support Vector Machine (SVM), Bayes Net,
decision tree (J48), Naïve Bayes, and Boosted decision tree
(Boosted J48) for the classification task. In our previous work
[Masud et al., 2008] we found that each of these classifiers
demonstrated good performance for malware detection
problems.

Specifically, SVM is robust to noise and high dimensionality
and can be fine-tuned to perform efficiently on a specific
domain. Decision trees have a very good feature selection
capability and are much faster than many other classifiers
both in training and testing time. Bayes Nets are capable of
finding the inter-dependencies between different attributes.
Naïve Bayes is also fast and performs well when the features
are independent of one another. Boosting is particularly

322



useful because of its ensemble methods. Thus, each of these
classifiers has its own virtue. In a real deployment, we would
actually use the best among them.

16.9 Packet Filtering
One major implementation issue related to examining the
packet traces is the large volume of traffic that needs to be
scanned. We try to reduce unnecessary scanning of packets by
filtering out the packets that are not interesting to us, such as
the TCP handshaking packets (SYN,ACK,SYNACK) and
NetBios session request/response packets. This is because the
useful information such as bot commands and bot responses
are carried out via TCP protocol.

Packets that do not carry any useful information need not be
processed further. To filter a packet, we look into its header
and retrieve the protocol for the packet. If it is either TCP or
NetBios, we keep it and send it to the feature extraction
module. Otherwise, we drop the packet. In this way, we save
a lot of execution time that would otherwise be used to extract
features from the unimportant packets.

16.10 Summary
In this chapter, we have discussed our log file correlation
technique in detail. We also explained what features are
extracted from the log files and how the features are used to
build a feature vector and train a classification model. We
have also shown different characteristics of Bot command and

323



how these characteristics play an important role in detecting
the bot traffic. In the next chapter, we discuss the evaluation
of our technique on botnet traffic generated in a controlled
environment with real IRC bots.

In the future, we would like to add more system-level logs,
such as process or service execution logs, memory and CPU
utilization logs, disk reads or writes logs, and network read
write logs. We believe adding more system-level logs will
increase the chances of detecting the botnet traffic to a greater
extent.

References
[Masud et al., 2008] Masud, M. M., L. Khan,
B. Thuraisingham, A Scalable Multi-level Feature Extraction
Technique to Detect Malicious Executables, Information
Systems Frontiers, Vol. 10, No. 1, pp. 33–45, March 2008.

[RBOT, 2006] RBOT information web page,
http://www.f-secure.com/v-descs/rbot.shtml (Accessed
December 2006)

[SDBOT, 2006] SDBOT information web page,
www.f-secure.com/v-descs/rbot.shtml (Accessed December
2006)

[Unreal IRCd, 2007] The Unreal IRC Daemon,
http://www.unrealircd.com

[WinDump, 2007] The WinDump web site,
http://www.winpcap.org/windump

324

http://www.f-secure.com/v-descs/rbot.shtml
http://www.f-secure.com/v-descs/rbot.shtml
http://www.unrealircd.com
http://www.winpcap.org/windump


17

EVALUATION AND RESULTS

17.1 Introduction
We evaluate our technique on two different datasets. The first
dataset is generated by running SDBot, and the second one is
generated by running RBot. Benign traffic collected from
uninfected machines is mixed with the bot traffic in each
dataset to simulate a mixture of benign and bot traffic. From
each dataset, we aggregate network packets to flows (i.e.,
connections). Each of these flows is considered an event or an
instance. Each instance is then tagged as either bot flow or
normal flow depending on whether the flow is between a bot
and its C&C center or not.

17.1.1 Baseline Techniques

We compare with another baseline technique discussed here.

1. Temporal: This is our proposed approach. Here we
extract feature values for each flow using the
technique described in Chapter 16.

2. Livadas: This is the machine-learning technique
applied by [Livadas et al., 2006]. They extract several
flow-based features, such as a histogram of packet
sizes, flow duration, bandwidth, and so forth, but
these are different from our feature set. They first

325



identify IRC flows and then detect bot flows in the
IRC flows. We don’t need to identify IRC flows to
detect C&C traffic using our analysis, but to perform
a fair comparison, we also filter out non-IRC flows
with the temporal approach. The features proposed by
[Livadas et al., 2006] are extracted from the filtered
data.

Figure 17.1 Evaluation of botnet detection.

17.1.2 Classifiers

The feature vectors extracted with the Temporal and Livadas
methods are used to train classifiers. We explore five different
classifiers, namely, SVM, J48, Boosted J48, Naïve Bayes, and
Bayes Net.

For evaluation, we apply fivefold cross validation on the data
and report the accuracy and false alarm rates. We use the
[Weka, 2006] ML toolbox for classification.

326



The organization of this chapter is as follows. Datasets are
discussed in Section 17.2. Comparison with other techniques
is given in Section 17.3. Further analysis is given in Section
17.4. Finally, the chapter is summarized in section 17.5.
Figure 17.1 illustrates the concepts in this chapter.

17.2 Performance on
Different Datasets
We evaluate the proposed technique on two different datasets.
The datasets SDBot and RBot correspond to those where the
bot flows are generated only from SDBot and RBot,
respectively, and normal flows are generated from uninfected
machines. For each dataset, we apply fivefold cross
validation. This is done for each competing method (i.e.,
Temporal and Livadas) with each competing classification
algorithm (SVM, J48, Boosted J48, Bayes Net, and Naïve
Bayes). Evaluation metrics are classification accuracy, false
positive, and false negative rates.

Table 17.1 reports the classification accuracies (ACC), false
positive rates (FP), and false negative rates (FN) for each of
the classifiers for different datasets. Boosted J48 has the best
detection accuracy (98.8%) for RBot, whereas Bayes Net has
the best detection accuracy (99.0%) for SDBot. However, it is
evident that Boosted J48 is less dataset-sensitive since it
performs consistently on both datasets, and Bayes Net is only
0.1% better than Boosted J48 for the SDBot dataset. Thus, we
conclude that BoostedJ48 has overall better performance than

327



other classifiers. This is also supported by the results
presented next.

Table 17.1 Performances of Different Classifiers on
Flow-Level Features

Source: M. Masud, T. Al-khateeb, L. Khan, B.
Thuraisingham, K. Hamlen, Flow-based Identification of
Botnet Traffic by Mining Multiple Log Files, pp. 200–206,
2008, © IEEE. With permission.

17.3 Comparison with Other
Techniques
The rows labeled “Temporal” and “Livadas” in Table 17.2
report the classification accuracies (ACC), false positive rates
(FP), and false negative rates (FN) of our technique and the
technique of [Livadas et al., 2006], respectively. The
comparison reported is for the combined dataset that consists
of bot flows from both SDBot- and RBot-infected machines
and all the normal flows from uninfected machines (with

328



non-IRC flows filtered out). We see that Temporal performs
consistently across all classifiers having an accuracy of
greater than 99%, whereas Livadas has less than or equal to
97.5% accuracy in three classifiers and shows slightly better
accuracy (0.2% higher) than Temporal only with Bayes Net.
Bayes Net tends to perform well on a feature set if there are
dependencies among the features. Because it is likely that
there are dependencies among the features used by Livadas,
we infer that the overall detection accuracy of Livadas is
probably sensitive to classifiers, whereas Temporal is robust
to all classifiers. Additionally, Temporal outperforms Livadas
in false negative rates for all classifiers except Bayes Net.
Finally, we again find that Boosted J48 has the best
performance among all classifiers, so we conclude that our
Temporal method with Boosted J48 has the best overall
performance.

Table 17.2 Comparing Performances between Our Method
(Temporal) and the Method of Livadas et al. on the Combined
Dataset

Source: M. Masud, T. Al-khateeb, L. Khan, B.
Thuraisingham, K. Hamlen, Flow-based Identification of

329



Botnet Traffic by Mining Multiple Log Files, pp. 200–206,
2008, © IEEE. With permission.

Figure. 17.2 presents the receiver operating characteristic
(ROC) curves corresponding to the combined dataset results.
ROC curves plot the true positive rate against the false
positive rate. An ROC curve is better if the area under the
curve (AUC) is higher, which indicates a higher probability
that an instance will be correctly classified. In this figure, the
ROC curve labeled as “Bayes Net–Livadas” corresponds to
the ROC curve of Bayes Net on the combined dataset for the
Livadas et al. technique, and so on. We see that all of the
ROC curves are almost co-incidental, except Boosted
J48–Livadas, which is slightly worse than the others. The
AUC of “Boosted J48–Livadas” is 0.993, whereas the AUC
of all other curves are greater than or equal to 0.999.

Figure 17.2 ROC curves of Bayes Net and Boosted J48 on
the combined data. (From M. Masud, T. Al-khateeb, L. Khan,
B. Thuraisingham, K. Hamlen, Flow-based Identification of

330



Botnet Traffic by Mining Multiple Log Files, pp. 200–206,
2008, © IEEE. With permission.)

17.4 Further Analysis
We show a couple of analyses to justify the effectiveness of
the features chosen for classification. In the first analysis, we
show that the average packet lengths of bot traffic maintain a
certain range, whereas normal traffic does not have any
specific range. In the second analysis, we show that the
average BOTime, BATime, and BRTime for bot flows are
also distinguishable from benign flows.

Figure. 17.3 shows statistics of several features. The upper
chart plots the average packet length (in KB) of each flow
that appears in the dataset. Bot flows and normal flows are
shown as separate series. A data point (X,Y) represents the
average packet length Y of all packets in flow X of a particular
series (bot flow or normal). It is clear from the chart that bot
flows have a certain packet length (≤0.2KB), whereas normal
flows have rather random packet lengths. Thus, our
assumption about packet lengths is validated by this chart.
The lower chart plots three different response times:
Bot-Response time (BRtime), Bot-Other time (BOtime), and
Bot-App time (BAtime) for each bot flow. It is evident that
average BRtime is less than 0.1 second, average BOtime is
less than 0.2 seconds, and average BAtime is between 0.6 and
1.6 seconds. The threshold values for these response times
were chosen according to these observations.

331



Figure 17.3 Flow summary statistics. Above: Average
packet lengths of normal flows and bot flows. Below:
Average BRtime, BOtime, and BAtime of bot flows. (From M.
Masud, T. Al-khateeb, L. Khan, B. Thuraisingham, K.
Hamlen, Flow-based Identification of Botnet Traffic by
Mining Multiple Log Files, pp. 200–206, 2008, © IEEE. With
permission.)

332



17.5 Summary
In this work we present a data mining-based IRC botnet
traffic detection technique. We identify several important
features of botnet traffic and demonstrate the importance of
correlating the network traces with program execution traces
for generating useful features. We apply our technique on real
botnet traffic generated using our testbed environment and
evaluate the effectiveness of our approach on that traffic.
Comparison with another data mining-based botnet detection
technique establishes the superiority of our approach.

In future work we intend to apply this temporal correlation
technique to more system-level logs such as those that track
process/service executions, memory/CPU utilization, disk
reads/writes, and so on. We also would like to implement a
real-time C&C traffic detection system using our approach.

References
[Livadas et al., 2006] Livadas, C., B. Walsh, D. Lapsley,
W. Strayer, “Using Machine Learning Techniques to Identify
Botnet Traffic,” in Proceedings of the 31st IEEE Conference
on Local Computer Networks (LCN’06), November 2006, pp.
967–974.

[Weka, 2008] The Weka Data Mining with Open Source
Software, http://www.cs.waikato.ac.nz/ml/weka

333

http://www.cs.waikato.ac.nz/ml/weka


Conclusion to Part V

As we have stated, botnets are emerging as “the biggest threat
facing the Internet today” because of their enormous volume
and sheer power. Botnets containing thousands of bots
(compromised hosts) have been studied in the literature. In
this part, we have described a data mining tool for botnet
detection. In particular, we discussed our architecture and
algorithms, and we reported our performance analysis. We
also discussed the strengths and limitations of our approach.

In Parts II, III, IV, and V, we have described our tools for
email worm detection, malicious code detection, remote
exploit detection, and malicious code detection. In Part VI,
we describe a highly innovative tool for stream mining. In
particular, our tool will detect novel classes. This way, it will
be able to detect malware that can change patterns.

334



PART VI

STREAM MINING FOR SECURITY
APPLICATIONS

Introduction to Part VI
In a typical data stream classification task, it is assumed that
the total number of classes is fixed. This assumption may not
be valid in a real streaming environment, where new classes
may evolve. Traditional data stream classification techniques
are not capable of recognizing novel class instances until the
appearance of the novel class is manually identified and
labeled instances of that class are presented to the learning
algorithm for training. The problem becomes more
challenging in the presence of concept-drift, when the
underlying data distribution changes over time. We propose a
novel and efficient technique that can automatically detect the
emergence of a novel class in the presence of concept-drift by
quantifying cohesion among unlabeled test instances and
separating the test instances from training instances. Our
approach is non-parametric, meaning it does not assume any
underlying distributions of data. Comparison with the
state-of-the-art stream classification techniques proves the
superiority of our approach.

Part VI consists of three chapters: 18, 19, and 20. Chapter 18
discusses relevant stream mining approaches and gives an
overview of our approach. Chapter 19 describes our approach

335



in detail, and Chapter 20 discusses the application and
evaluation of our approach on different synthetic and
benchmark data streams.

336



18

STREAM MINING

18.1 Introduction
It is a major challenge to the data mining community to mine
the ever-growing streaming data. There are three major
problems related to stream data classification. First, it is
impractical to store and use all the historical data for training,
because it would require infinite storage and running time.
Second, there may be concept-drift in the data, meaning the
underlying concept of the data may change over time. Third,
novel classes may evolve in the stream. There are many
existing solutions in literature that solve the first two
problems, such as single-model incremental learning
algorithms [Chen et al., 2008], [Hulten et al., 2001], [Yang et
al., 2005] and ensemble classifiers [Kolter and Maloof, 2005],
[Masud et al., 2008], [Wang et al., 2003]. However, most of
the existing techniques are not capable of detecting novel
classes in the stream. On the other hand, our approach can
handle concept-drift and detect novel classes at the same time.

Traditional classifiers can only correctly classify instances of
those classes with which they have been trained. When a new
class appears in the stream, all instances belonging to that
class will be misclassified until the new class has been
manually identified by some experts and a new model is
trained with the labeled instances of that class. Our approach

337



provides a solution to this problem by incorporating a novel
class detector within a traditional classifier so that the
emergence of a novel class can be identified without any
manual intervention. The proposed novel class detection
technique can benefit many applications in various domains,
such as network intrusion detection and credit card fraud
detection. For example, in the problem of intrusion detection,
when a new kind of intrusion occurs, we should not only be
able to detect that it is an intrusion, but also that it is a new
kind of intrusion. With the intrusion type information, human
experts would be able to analyze the intrusion more intensely,
find a cure, set an alarm in advance, and make the system
more secure.

Figure 18.1 Concepts in this chapter.

The organization of this chapter is as follows. In Section 18.2,
we describe our architecture; related work is presented in
Section 18.3. Our approach is briefly discussed in Section
18.4. The chapter is summarized in Section 18.5. Figure 18.1
illustrates the concepts in this chapter.

338



18.2 Architecture
We propose an innovative approach to detect novel classes. It
is different from traditional novelty (or anomaly/outlier)
detection techniques in several ways. First, traditional novelty
detection techniques [Markou and Singh, 2003], [Roberts,
2000], [Yeung and Chow, 2002] work by assuming or
building a model of normal data and simply identifying data
points as outliers/anomalies that deviate from the “normal”
points. But our goal is not only to detect whether a single data
point deviates from the normality but also to discover whether
a group of outliers have any strong bond among themselves.
Second, traditional novelty detectors can be considered as a
“one-class” model, which simply distinguishes between
normal and anomalous data but cannot distinguish between
two different kinds of anomalies. Our model is a “multi-class”
model, meaning it can distinguish among different classes of
data and at the same time detect presence of a novel class
data, which is a unique combination of a traditional classifier
with a novelty detector.

Our technique handles concept-drift by adapting an ensemble
classification approach, which maintains an ensemble of M
classifiers for classifying unlabeled data. The data stream is
divided into equal-sized chunks, so that each chunk can be
accommodated in memory and processed online. We train a
classification model from each chunk as soon as it is labeled.
The newly trained model replaces one of the existing models
in the ensemble, if necessary. Thus, the ensemble evolves,
reflecting the most up-to-date concept in the stream.

339



The central concept of our novel class detection technique is
that each class must have an important property: the data
points belonging to the same class should be closer to each
other (cohesion) and should be far apart from the data points
belonging to other classes (separation). Every time a new data
chunk appears, we first detect the test instances that are well
separated from the training data (i.e., outliers). Then filtering
is applied to remove the outliers that possibly appear as a
result of concept-drift. Finally, if we find strong cohesion
among those filtered outliers, we declare a novel class. When
the true labels of the novel class(es) arrive and a new model is
trained with the labeled instances, the existing ensemble is
updated with that model. Therefore, the ensemble of models
is continuously enriched with new classes.

Figure 18.2 illustrates the architecture of our novel class
detection approach. We assume that the data stream is divided
into equal-sized chunks. The heart of this system is an
ensemble L of M classifiers: {L1, …, LM}. When a new
unlabeled data chunk arrives, the ensemble is used to detect
novel class in that chunk. If a novel class is detected, then the
instances belonging to the novel class are identified and
tagged accordingly. All other instances in the chunk, that is,
the instances that are not identified as novel class, are
classified using majority voting. As soon as a data chunk is
labeled, it is used to train a classifier, which replaces one of
the existing classifiers in the ensemble. During training, we
create an inventory of the used spaces.

340



Figure 18.2 Architecture.

We have several contributions. First, we provide a detailed
understanding of the characteristic of a novel class and
propose a new technique that can detect novel classes in the
presence of concept-drift in data streams. Second, we
establish a framework for incorporating a novel class
detection mechanism into a traditional classifier. Finally, we
apply our technique on both synthetic and real-world data and
obtain much better results than state-of-the-art stream
classification algorithms.

341



18.3 Related Work
Our work is related to both stream classification and novelty
detection. There has been much work on stream data
classification. There are two main approaches: single-model
classification and ensemble classification. Some single-model
techniques have been proposed to accommodate concept-drift
[Chen et al., 2008], [Hulten et al., 2001], [Yang et al., 2005].
However, our technique follows the ensemble approach.
Several ensemble techniques for stream data mining have
been proposed [Kolter and Maloof, 2005], [Masud et al.,
2008], [Wang et al., 2003]. These ensemble approaches
require simple operations to update the current concept, and
they are found to be robust in handling concept-drift.
Although these techniques can efficiently handle
concept-drift, none of them can detect novel classes in the
data stream. On the other hand, our technique is not only
capable of handling concept-drift, but it is also able to detect
novel classes in data streams. In this light, our technique is
also related to novelty detection techniques.

A comprehensive study on novelty detection has been
discussed in [Markou and Singh, 2003]. The authors
categorize novelty detection techniques into two categories:
statistical and neural network based. Our technique is related
to the statistical approach. Statistical approaches are of two
types: parametric and non-parametric. Parametric approaches
assume that data distributions are known (e.g., Gaussian), and
they try to estimate the parameters (e.g., mean and variance)
of the distribution. If any test data fall outside the normal
parameters of the model, it is declared as novel [Roberts,

342



2000]. Our technique is a non-parametric approach.
Non-parametric approaches like parzen window method
[Yeung and Chow, 2002] estimate the density of training data
and reject patterns whose density is beyond a certain
threshold. k-nearest neighbor (kNN) based approaches to
novelty detection are also non-parametric [Yang et al., 2002].
All of these techniques for novelty detection consider only
whether a test instance is sufficiently close (or far) from the
training data based on some appropriate metric (e.g., distance,
density etc.). Our approach is different from these approaches
in that we not only consider separation from normal data but
also cohesion among the outliers. Besides, our model
assimilates a novel class into the existing model, which
enables it to distinguish future instances of that class from
other classes. On the other hand, novelty detection techniques
just remember the “normal” trend and do not care about the
similarities or dissimilarities among the anomalous instances.

A recent work in the data stream mining domain [Spinosa et
al., 2007] describes a clustering approach that can detect both
concept-drift and novel class. This approach assumes that
there is only one “‘normal” class and all other classes are
novel. Thus, it may not work well if more than one class is to
be considered as “normal” or “non-novel.” Our approach can
handle any number of existing classes. This makes our
approach more effective in detecting novel classes than
[Spinosa et al., 2007], which is justified by the experimental
results.

343



18.4 Our Approach
We have presented a novel technique to detect new classes in
concept-drifting data streams. Most of the novelty detection
techniques either assume that there is no concept-drift or
build a model for a single “normal” class and consider all
other classes as novel. But our approach is capable of
detecting novel classes in the presence of concept-drift, even
when the model consists of multiple “existing” classes. In
addition, our novel class detection technique is
non-parametric; that is, it does not assume any specific
distribution of data. We also show empirically that our
approach outperforms the state-of-the-art data stream-based
novelty detection techniques in both classification accuracy
and processing speed.

Figure 18.3 Our approach to stream mining.

It might appear to readers that to detect novel classes, we are
in fact examining whether new clusters are being formed, and
therefore, the detection process could go on without
supervision. But supervision is necessary for classification.
Without external supervision, two separate clusters could be

344



regarded as two different classes, although they are not.
Conversely, if more than one novel class appears in a chunk,
all of them could be regarded as a single novel class if the
labels of those instances are never revealed. In future work,
we would like to apply our technique in the domain of
multiple-label instances. Our approach is illustrated in Figure
18.3.

18.5 Overview of the Novel
Class Detection Algorithm
Algorithm 18.1 outlines a summary of our technique. The
data stream is divided into equal-sized chunks. The latest
chunk, which is unlabeled, is provided to the algorithm as
input. At first it detects if there is any novel class in the chunk
(line 1). The term novel class will be defined shortly. If a
novel class is found, we detect the instances that belong to the
class(es) (line 2). Then we use the ensemble L = {L1, …, LM}
to classify the instances that do not belong to the novel
class(es). When the data chunk becomes labeled, a new
classifier L′ is trained using the chunk. Then the existing
ensemble is updated by choosing the best M classifiers from
the M + 1 classifiers L∪{L′} based on their accuracies on the
latest labeled data chunk.

Algorithm 18.1 MineClass

• Input: Dn: the latest data chunk

345



• L: Current ensemble of best M classifiers
• Output: Updated ensemble L

1. found ← DetectNovelClass(Dn,L) (algorithm 19-1)
2. if found then Y ← Novel_instances(Dn), X ← Dn – Y

else X ← Dn
3. for each instance x ∈ X do Classify(L,x)
4. /*Assuming that Dn is now labeled*/
5. L′ ← Train-and-create-inventory(Dn) (Section 19.3)
6. L ← Update(L,L′,Dn)

Our algorithm will be mentioned henceforth as “MineClass,”
which stands for Mining novel Classes in data streams.
MineClass should be applicable to any base learner. The only
operation that is specific to a learning algorithm is
Train-and-create-inventory. We will illustrate this operation
for two base learners.

18.6 Classifiers Used
We apply our novelty detection technique on two different
classifiers: decision tree and kNN. We keep M classification
models in the ensemble. For the decision tree classifier, each
model is a decision tree. For kNN, each model is usually the
set of training data itself. However, storing all the raw
training data is memory inefficient, and using them to classify
unlabeled data is time inefficient. We reduce both the time
and memory requirement by building K clusters with the
training data, saving the cluster summaries as classification
models, and discarding the raw data. This process is
explained in detail in [Masud et al., 2008]. The cluster

346



summaries are mentioned henceforth as “pseudopoints.”
Because we store and use only K pseudopoints, both the time
and memory requirements become functions of K (a constant
number). The clustering approach followed here is a
constraint-based K-means clustering where the constraint is to
minimize cluster impurity while minimizing the intra-cluster
dispersion. A cluster is considered pure if it contains instances
from only one class. The summary of each cluster consists of
the centroid and the frequencies of data points of each class in
the cluster. Classification is done by finding the nearest
cluster centroid from the test point and assigning the class that
has the highest frequency to the test point.

18.7 Security Applications
The proposed novel class detection will be useful in several
security applications. First, it can be used in detecting novel
attacks in network traffic. If there is a completely new kind of
attack in the network traffic, existing intrusion detection
techniques may fail to detect it. On the contrary, if a
completely new kind of attack occurs in the network traffic,
our approach should detect it as a “novel class” and would
raise an alarm. This would invoke system analysts to
quarantine and analyze the characteristics of these unknown
kinds of events and tag them accordingly. The classification
models would also be updated with these new class instances.
Should the same kind of intrusion occur in the future, the
classification model would detect it as a known intrusion.
Second, our approach can also be used for detecting a new
kind of malware. Existing malware detection techniques may
fail to detect a completely new kind of malware, but our

347



approach should be able to detect the new malware as a novel
class, quarantine it, and raise an alarm. The quarantined
binary would be later analyzed and characterized by human
experts. In this way, the proposed novel class detection
technique can be effectively applied to cyber security.

18.8 Summary
Data stream classification is a challenging task that has been
addressed by different researchers in different ways. Most of
these approaches ignore the fact that new classes may emerge
in the stream. If this phenomenon is considered, the
classification problem becomes more challenging. Our
approach addresses this challenge in an efficient way. Chapter
19 discusses this approach in detail.

In the future, we would like to extend our approach in two
directions. First, we would like to address the real-time data
stream classification problem. Real-time data stream mining
is more challenging because of the overhead involved in data
labeling and training classification models. Second, we would
like to utilize the cloud computing framework for data stream
mining. The cloud computing framework will be a cheaper
alternative to more efficient and powerful computing that is
necessary for real-time stream mining.

348



References
[Chen et al., 2008] Chen, S., H. Wang, S. Zhou, P. Yu, Stop
Chasing Trends: Discovering High Order Models in Evolving
Data, in Proceedings ICDE, 2008, pp. 923–932.

[Hulten et al., 2001] Hulten, G., L. Spencer, P. Domingos,
Mining Time-Changing Data Streams, in Proceedings ACM
SIGKDD, 2001, pp. 97–106.

[Kolter and Maloof, 2005] Kolter, J., and M. Maloof, Using
Additive Expert Ensembles to Cope with Concept Drift, in
Proceedings ICML, 2005, pp. 449–456.

[Markou and Singh, 2003] Markou, M., and S. Singh,
Novelty Detection: A Review—Part 1: Statistical
Approaches; Part 2: Neural Network-Based Approaches,
Signal Processing, 83, 2003, pp. 2481–2521.

[Masud et al., 2008] Masud, M., J. Gao, L. Khan, J. Han, B.
Thuraisingham, A Practical Approach to Classify Evolving
Data Streams: Training with Limited Amount of Labeled
Data, in Proceedings ICDM, 2008, pp. 929–934.

[Roberts, 2000] Roberts, S. J., Extreme Value Statistics for
Novelty Detection in Biomedical Signal Processing, in
Proceedings of the International Conference on Advances in
Medical Signal and Information Processing, 2000, pp.
166–172.

[Spinosa et al., 2007] Spinosa, E. J., A. P. de Leon F. de
Carvalho, J. Gama, OLINDDA: A Cluster-Based Approach

349



for Detecting Novelty and Concept Drift in Data Streams, in
Proceedings 2007 ACM Symposium on Applied Computing,
2007, pp. 448–452.

[Wang et al., 2003] Wang, H., W. Fan, P. Yu, J. Han, Mining
Concept-Drifting Data Streams Using Ensemble Classifiers,
in Proceedings ACM SIGKDD, 2003, pp. 226–235.

[Yeung and Chow, 2002] Yeung, D. Y., and C. Chow,
Parzen-Window Network Intrusion Detectors, in Proceedings
International Conference on Pattern Recognition, 2002, pp.
385–388.

[Yang et al., 2002] Y. Yang, J. Zhang, J. Carbonell, C. Jin,
Topic-Conditioned Novelty Detection, in Proceedings ACM
SIGKDD, 2002, pp. 688–693.

[Yang et al., 2005] Yang, Y., X. Wu, X. Zhu, Combining
Proactive and Reactive Predictions for Data Streams, in
Proceedings ACM SIGKDD, 2005, pp. 710–715.

350



19

DESIGN OF THE DATA MINING
TOOL

19.1 Introduction
In this chapter, we start with the definitions of novel class and
existing classes. Then we state the assumptions based on
which the novel class detection algorithm works. We
illustrate the concept of novel class with an example, and
introduce several terms such as used space and unused spaces.
We then discuss the three major parts in novel class detection
process: (1) saving the inventory of used spaces during
training, (2) outlier detection and filtering, and (3) computing
cohesion among outliers and separating the outliers from the
training data. We also show how this technique can be made
efficient by raw data reduction using clustering.

The organization of this chapter is as follows. Definitions are
given in Section 19.2. Our novel class detection techniques
are given in Section 19.3. The chapter is summarized in
Section 19.4. The concepts in this chapter are illustrated in
Figure 19.1.

19.2 Definitions
We begin with the definition of “novel” and “existing” class.

351



Definition 19.1 (Existing class and Novel class) Let L be the
current ensemble of classification models. A class c is an
existing class if at least one of the models Li ε L has been
trained with the instances of class c. Otherwise, c is a novel
class.

We assume that any class has the following essential
property:

Property 19.1 A data point should be closer to the data points
of its own class (cohesion) and farther apart from the data
points of other classes (separation).

Figure 19.1 Concepts in this chapter.

Our main assumption is that the instances belonging to a class
c is generated by an underlying generative model Θc, and the
instances in each class are independently identically
distributed. With this assumption, we can reasonably argue
that the instances that are close together are supposed to be
generated by the same model, that is, belong to the same
class. We now show the basic idea of novel class detection

352



using decision tree in Figure 19.2. We introduce the notion of
used space to denote a feature space occupied by any instance
and unused space to denote a feature space unused by an
instance.

According to Property 19.1 (separation), a novel class must
arrive in the unused spaces. Besides, there must be strong
cohesion (e.g., closeness) among the instances of the novel
class. Thus, the two basic principles followed by our
approach are (1) keeping track of the used spaces of each leaf
node in a decision tree, and (2) finding strong cohesion
among the test instances that fall into the unused spaces.

Figure 19.2 (a) A decision tree and (b) corresponding feature
space partitioning. FS(X) denotes the feature space defined by
a leaf node X. The shaded areas show the used spaces of each
partition. (c) A novel class (denoted by x) arrives in the
unused space. (From M. Masud, J. Gao, L. Khan, J. Han, B.
Thuraisingham, Integrating Novel Class Detection with

353



Classification for Concept-Drifting Data Streams, pp. 79–94,
2009, Springer. With permission.)

19.3 Novel Class Detection
We follow two basic steps for novel class detection. First, the
classifier is trained such that an inventory of the used spaces
(described in Section 19.2) is created and saved. This is done
by clustering and saving the cluster summary as
“pseudopoint.” Second, these pseudopoints are used to detect
outliers in the test data and declare a novel class if there is
strong cohesion among the outliers.

19.3.1 Saving the Inventory of Used
Spaces during Training

The general idea of creating the inventory is to cluster the
training data and save the cluster centroids and other useful
information as pseudopoints. These pseudopoints keep track
of the used spaces. How this clustering is done may be
specific to each base learner. For example, for decision tree,
clustering is done at each leaf node of the tree, because we
need to keep track of the used spaces for each leaf node
separately. For the kNN classifier discussed in Section 18.6,
already existing pseudopoints are utilized to store the
inventory.

It should be noted here that K-means clustering appears to be
the best choice for saving the decision boundary and
computing the outliers. Density-based clustering could also be

354



used to detect outliers, but it has several problems. First, we
would have to save all of the raw data points at the leaf nodes
to apply the clustering. Second, the clustering process would
take quadratic time, compared to linear time for K-means.
Finally, we would have to run the clustering algorithm for
every data chunk to be tested. However, the choice of
parameter K in K-means algorithm has some impact on the
overall outcome, which is discussed in the experimental
results.

19.3.1.1 Clustering We build total K clusters per chunk. For
kNN, we utilize the existing clusters that were created
globally using the approach. For decision tree, clustering is
done locally at each leaf node as follows. Suppose S is the
chunk size. During decision tree training, when we reach a
leaf node li, we build ki = (ti/S) * K clusters in that leaf, where
ti denotes the number of training instances that ended up in
leaf node li.

19.3.1.2 Storing the Cluster Summary Information For each
cluster, we store the following summary information in
memory: (i) Weight, w: defined as the total number of points
in the cluster. (ii) Centroid, ζ. (iii) Radius, R: defined as the
maximum distance between the centroid and the data points
belonging to the cluster. (iv) Mean distance, μd: the mean
distance from each point to the cluster centroid. The cluster
summary of a cluster Hi will be referred to henceforth as a
“pseudopoint” ψi. So, w(ψi) denotes the weight of
pseudopoint ψi. After computing the cluster summaries, the
raw data are discarded. Let Ψj be the set of all pseudopoints
stored in memory for a classifier Lj.

355



19.3.2 Outlier Detection and Filtering

Each pseudopoint ψi corresponds to a hypersphere in the
feature space having center ζ(ψi) and radius R(ψi). Thus, the
pseudopoints “memorize” the used spaces. Let us denote the
portion of feature space covered by a pseudopoint ψi as the
“region” of ψi or RE(ψi). So, the union of the regions covered
by all the pseudopoints is the union of all the used spaces,
which forms a decision boundary B(Lj) = uψiεΨj RE(ψi), for a
classifier Lj. Now, we are ready to define outliers.

Definition 19.2 (Routlier) Let x be a test point and ψmin be
the pseudopoint whose centroid is nearest to x. Then x is a
Routlier (i.e., raw outlier) if it is outside RE(ψmin); that is, its
distance from ζ(ψmin) is greater than R(ψmin).

In other words, any point x outside the decision boundary
B(Lj) is a Routlier for the classifier Lj. For K-NN, Routliers
are detected globally by testing x against all the psuedopoints.
For decision tree, x is tested against only the psueodpoints
stored at the leaf node where x belongs.

19.3.2.1 Filtering According to Definition 19.2, a test
instance may be erroneously considered as a Routlier because
of one or more of the following reasons: (1) The test instance
belongs to an existing class, but it is a noise. (2) There has
been a concept-drift and, as a result, the decision boundary of
an existing class has been shifted. (3) The decision tree has
been trained with insufficient data. So, the predicted decision
boundary is not the same as the actual one.

356



Due to these reasons, the outliers are filtered to ensure that
any outlier that belongs to the existing classes does not end up
in being declared as a new class instance. The filtering is done
as follows: if a test instance is a Routlier to all the classifiers
in the ensemble, then it is considered as a filtered outlier. All
other Routliers are filtered out.

Definition 19.3 (Foutlier) A test instance is a Foutlier (i.e.,
filtered outlier) if it is a Routlier to all the classifiers Li in the
ensemble L.

Intuitively, being an Foutlier is a necessary condition for
being in a new class. Because, suppose an instance x is not a
Routlier to some classifier Li in the ensemble. Then x must be
inside the decision boundary B(Lj). So, it violates Property
19.1 (separation), and therefore, it cannot belong to a new
class. Although being a Foutlier is a necessary condition, it is
not sufficient for being in a new class, because it does not
guarantee the Property 19.1 (cohesion). So, we proceed to the
next step to verify whether the Foutliers satisfy both cohesion
and separation.

19.3.3 Detecting Novel Class

We perform several computations on the Foutliers to detect
the arrival of a new class. First, we discuss the general
concepts of these computations, and later we describe how
these computations are carried out efficiently. For every
Foutlier, we define a λc-neighborhood as follows:

357



Definition 19.4 (λc-neighborhood) The λc-neighborhood of
an Foutlier x is the set of N-nearest neighbors of x belonging
to class c.

Here N is a user-defined parameter. For brevity, we denote
the λc-neighborhood of a Foutlier x as λc(x). Thus, λ+(x) of a
Foutlier x is the set of N instances of class c+ that are closest
to the outlier x. Similarly, λo(x) refers to the set of N Foutliers
that are closest to x. This is illustrated in Figure 19.3, where
the Foutliers are shown as black dots, and the instances of
class c+ and class c– are shown with the corresponding
symbols. λ+(x) of the Foutlier x is the set of N (= 3) instances
belonging to class c+ that are nearest to x (inside the circle),
and so on. Next, we define the N-neighborhood silhouette
coefficient, (N-NSC).

Figure 19.3 λc-neighborhood with N = 3. (From M. Masud,
J. Gao, L. Khan, J. Han, B. Thuraisingham, Integrating Novel
Class Detection with Classification for Concept-Drifting Data
Streams, pp. 79–94, 2009, Springer. With permission.)

358



Definition 19.5 (N-NSC) Let a(x) be the average distance
from an Foutlier x to the instances in λo(x), and bc(x) be the
average distance from x to the instances in λc(x) (where c is
an existing class). Let bmin(x) be the minimum among all
bc(x). Then N-NSC of x is given by:

According to the definition, the value of N-NSC is between
–1 and +1. It is actually a unified measure of cohesion and
separation. A negative value indicates that x is closer to the
other classes (less separation) and farther away from its own
class (less cohesion). We declare a new class if there are at
least N′ (>N) Foutliers, whose N-NSC is positive.

It should be noted that the larger the value is of N, the greater
the confidence we will have in deciding whether a novel class
has arrived. However, if N is too large, then we may also fail
to detect a new class if the total number of instances
belonging to the novel class in the corresponding data chunk
is less than or equal to N. We experimentally find an optimal
value of N, which is explained in Chapter 20.

19.3.3.1 Computing the Set of Novel Class Instances Once we
detect the presence of a novel class, the next step is to find
those instances and separate them from the existing class data.
According to the necessary and sufficient condition, a set of
Foutlier instances belong to a novel class if the following
three conditions satisfy: (1) all the Foutliers in the set have
positive N-NSC, (2) all the Foutliers in the set have λo(x)
within the set, and (3) cardinality of the set ≥N. Let G be such

359



a set. Note that finding the exact set G is computationally
expensive, so we follow an approximation. Let G′ be the set
of all Foutliers that have positive N-NSC. If |G′|≥N, then G′ is
an approximation of G. It is possible that some of the data
points in G′ may not actually be a novel class instance or vice
versa. However, in our experiments, we found that this
approximation works well.

19.3.3.2 Speeding up the Computation Computing N-NSC for
every Foutlier instance x takes quadratic time in the number
of Foutliers. To make the computation faster, we also create
Ko pseudopoints from Foutliers using K-means clustering and
perform the computations on the pseudopoints (referred to as
Fpseudopoints), where Ko = (No/S) * K. Here S is the chunk
size and No is the number of Foutliers. Thus, the time
complexity to compute the N-NSC of all of the Fpseudopoints
is O(Ko * (Ko + K)), which is constant, because both Ko and K
are independent of the input size. Note that N-NSC of a
Fpseudopoint is actually an approximate average of the
N-NSC of each Foutlier in that Fpseudopoint. By using this
approximation, although we gain speed, we also lose some
precision. However, this drop in precision is negligible when
we keep sufficient number of pseudopoints, as shown in the
experimental results. The novel class detection process is
summarized in Algorithm 19.1 (DetectNovelClass).

Algorithm 19.1 DetectNovelClass(D, L)

• Input: D: An unlabeled data chunk
• L: Current ensemble of best M classifiers
• Output: true, if novel class is found; false, otherwise

360



1. for each instance x ∈ D do
2. if x is a Routlier to all classifiers Li ∈ L

then FList ← FList ∪ {x} /* x is a Foutlier*/

3. end for
4. Make Ko = (K * |FList|/|D|) clusters with the

instances in FList using K-means clustering, and
create Fpseudopoints

5. for each classifier Li ∈ L do
6. Compute N-NSC(ψj) for each Fpseudopoint j
7. Ψp ← the set of Fpseudopoints having positive

N-NSC(.).
8. w(p) sum of w(.) of all Fpseudopoints in Ψp
9. if w(p) > N then NewClassVote++

10. end for
11. return NewClassVote > M – NewClassVote

/*Majority voting*/

This algorithm can detect one or more novel classes
concurrently (i.e., in the same chunk) as long as each novel
class follows Property 19.1 and contains at least N instances.
This is true even if the class distributions are skewed.
However, if more than one such novel class appears
concurrently, our algorithm will identify the instances
belonging to those classes as novel, without imposing any
distinction among dissimilar novel class instances (i.e., it will
treat them simply as “novel”). But the distinction will be
learned by our model as soon as those instances are labeled
and a classifier is trained with them.

361



19.3.3.3 Time Complexity Lines 1 through 3 of Algorithm
19.1 require O(KSL) time where S is the chunk size. Line 4
(clustering) requires O(KS) time, and the last for loop (5–10)
requires O(K2L) time. Thus, the overall time complexity of
Algorithm 19.1 is O(KS + KSL + K2L) = O(K(S + SL + KL)).
Assuming that S>>KL, the complexity becomes O(KS), which
is linear in S. Thus, the overall time complexity (per chunk)
of MineClass algorithm (Algorithm 18.1) is O(KS + fc(LS) +
ft(S)), where fc(n) is the time required to classify n instances
and ft(n) is the time required to train a classifier with n
training instances.

19.3.3.4 Impact of Evolving Class Labels on Ensemble
Classification As the reader might have realized already,
arrival of novel classes in the stream causes the classifiers in
the ensemble to have different sets of class labels. For
example, suppose an older (earlier) classifier Li in the
ensemble has been trained with classes c0 and c1, and a newer
(later) classifier Lj has been trained with classes c1, and c2,
where c2 is a new class that appeared after Li had been
trained. This puts a negative effect on voting decision, since
the older classifier misclassifies instances of c2. So, rather
than counting votes from each classifier, we selectively count
their votes as follows: if a newer classifier Lj classifies a test
instance x as class c, but an older classifier Li does not have
the class label c in its model, then the vote of Li will be
ignored if x is found to be an outlier for Li. An opposite
scenario occurs when the oldest classifier Li is trained with
some class c′, but none of the later classifiers are trained with
that class. This means class c′ has been outdated, and, in that
case, we remove Li from the ensemble. In this way we ensure
that older classifiers have less impact in the voting process. If

362



class c′ later reappears in the stream, it will be automatically
detected again as a novel class (see Definition 19.1).

19.4 Security Applications
There are several potential security applications of the novel
class detection technique, such as intrusion detection in
network traffic or malware detection in a host machine.
Consider the problem of malware detection. To apply our
novel class detection technique, we first need to identify a set
of features for each executable. This can be done using
n-gram feature extraction and selection [Masud et al., 2008].
As long as the feature set selected using the approach of
[Masud et al., 2008] also remains the best set of features for a
new kind of malware, the new malware class should be
detected as a novel class by our approach. The advantage of
our approach with other classification approaches in this
regard is twofold. First, it will detect a new kind of malware
as a novel class. This detection will lead to further analysis
and characterization of the malware. On the contrary, if a new
kind of malware emerges, traditional classification techniques
would either detect it as benign or simply a “malware.” Thus,
our approach will be able to provide more information about
the new malware by identifying it as a novel type. The second
advantage is, if an existing type of malware is tested using the
novel class detection system, it will be identified as a
malware, and also the “type” of the malware would be
predicted.

363



19.5 Summary
In this chapter, we present the working details of the novel
class detection algorithm. Our approach builds a decision
boundary around the training data during training. During
classification, if any instance falls outside the decision
boundary, it is tagged as outlier and stored for further
analysis. When enough outliers have been found, we compute
the cohesion among the outliers and separation of the outliers
from the training data. If both the cohesion and separation are
significant, the outliers are identified as a novel class. In
Chapter 20, we discuss the effectiveness of our approach on
several synthetic and benchmark data streams.

As mentioned in Chapter 18, we would like to extend this
technique to real-time data stream classification. To achieve
this goal, we will have to optimize the training, including the
creation of decision boundary. The outlier detection and novel
class detection should also be made more efficient. We
believe the cloud computing framework can play an important
role in increasing the efficiency of these processes.

Reference
[Masud et al., 2008] Masud, M., L. Khan, B. Thuraisingham,
A Scalable Multi-level Feature Extraction Technique to
Detect Malicious Executables, Information System Frontiers,
Vol. 10, No. 1, 2008, pp. 33–45.

364



20

EVALUATION AND RESULTS

20.1 Introduction
We evaluate our proposed method on a number of synthetic
and real datasets, and we report results on four datasets. Two
of the datasets for which we report the results are synthetic,
and the other two are real benchmark datasets. The first
synthetic dataset simulates only concept-drift. We use this
dataset for evaluation to show that our approach can correctly
distinguish between concept-drift and novel classes. The
second synthetic dataset simulates both concept-drift and
concept-evolution. The two benchmark datasets that we use
are the KDD Cup 1999 intrusion detection dataset, and the
Forest Cover type dataset, both of which have been widely
used in data stream classification literature. Each of the
synthetic and real datasets contains more than or equal to
250,000 data points.

We compare our results with two baseline techniques. For
each dataset and each baseline technique, we report the
overall error rate, percentage of novel instances misclassified
as existing class, and percentage of existing class instances
misclassified as novel class. We also report the running times
of each baseline techniques on each dataset. On all datasets,
our approach outperforms the baseline techniques in both
classification accuracy and false detection rates. Our approach

365



also outperforms the baseline techniques in running time. The
following sections discuss the results in detail.

The organization of this chapter is as follows. Datasets are
discussed in Section 20.2. Experimental setup is discussed in
Section 20.3. Performance results are given in Section 20.4.
The chapter is summarized in Section 20.5. Figure 20.1
illustrates the concepts in this chapter.

Figure 20.1 Concepts in this chapter.

20.2 Datasets
20.2.1 Synthetic Data with Only
Concept-Drift (SynC)

SynC simulates only concept-drift, with no novel classes.
This is done to show that concept-drift does not erroneously
trigger new class detection in our approach. SynC data are
generated with a moving hyperplane. The equation of a

366



hyperplane is as follows: Σd
i=1 aixi = a0. If Σd

i=1 aixi <= a0,
then an example is negative; otherwise, it is positive. Each
example is a randomly generated d-dimensional vector {x1,
…, xd}, where xi ∈ [0, 1]. Weights {a1, …, ad} are also
randomly initialized with a real number in the range [0, 1].
The value of a0 is adjusted so that roughly the same number
of positive and negative examples is generated. This can be
done by choosing a0 = Σd

i=1 ai. We also introduce noise
randomly by switching the labels of p% of the examples,
where p = 5 is set in our experiments. There are several
parameters that simulate concept-drift. Parameter m specifies
the percentage of total dimensions whose weights are
involved in changing, and it is set to 20%. Parameter t
specifies the magnitude of the change in every N example. In
our experiments, t is set to 0.1, and N is set to 1,000. si, i ∈
{1, …, d} specifies the direction of change for each weight.
Weights change continuously; that is, ai is adjusted by si.t/N
after each example is generated. There is a possibility of 10%
that the change would reverse direction after every N example
is generated. We generate a total of 250,000 records.

20.2.2 Synthetic Data with
Concept-Drift and Novel Class (SynCN)

These synthetic data simulate both concept-drift and novel
class. Data points belonging to each class are generated using
Gaussian distribution having different means (–5.0 to +5.0)
and variances (0.5 to 6) for different classes. Besides, to
simulate the evolving nature of data streams, the probability
distributions of different classes are varied with time. This
caused some classes to appear and some other classes to

367



disappear at different times. To introduce concept-drift, the
mean values of a certain percentage of attributes have been
shifted at a constant rate. As done in the SynC dataset, this
rate of change is also controlled by the parameters m, t, s, and
N in a similar way.

The dataset is normalized so that all attribute values fall
within the range [0, 1]. We generate the SynCN dataset with
20 classes, 40 real-valued attributes, having a total of 400K
data points.

20.2.3 Real Data—KDD Cup 99
Network Intrusion Detection

We have used the 10% version of the dataset, which is more
concentrated, hence more challenging than the full version. It
contains around 490,000 instances. Here different classes
appear and disappear frequently, making the new class
detection challenging. This dataset contains TCP connection
records extracted from LAN network traffic at MIT Lincoln
Labs over a period of two weeks. Each record refers to either
to a normal connection or an attack. There are 22 types of
attacks, such as buffer-overflow, portsweep, guess-passwd,
neptune, rootkit, smurf, spy, and others. So, there are 23
different classes of data. Most of the data points belong to the
normal class. Each record consists of 42 attributes, such as
connection duration, the number of bytes transmitted, number
of root accesses, and so forth. We use only the 34 continuous
attributes and remove the categorical attributes. This dataset
is also normalized to keep the attribute values within [0, 1].

368



20.2.4 Real Data—Forest Cover (UCI
Repository)

The dataset contains geospatial descriptions of different types
of forests. It contains 7 classes, 54 attributes, and around
581,000 instances. We normalize the dataset and arrange the
data so that in any chunk at most 3 and at least 2 classes
co-occur, and new classes appear randomly.

20.3 Experimental Setup
We implement our algorithm in Java. The code for decision
tree has been adapted from the Weka machine learning open
source repository (http://www.cs.waikato.ac.nz/ml/weka/).
The experiments were run on an Intel P-IV machine with
2GB memory and 3GHz dual processor CPU. Our parameter
settings are as follows, unless mentioned otherwise: (1) K
(number of pseudopoints per chunk) = 50, (2) N = 50, (3) M
(ensemble size) = 6, (4) chunk size = 1,000 for synthetic
datasets and 4,000 for real datasets. These values of
parameters are tuned to achieve an overall satisfactory
performance.

20.3.1 Baseline Method

To the best of our knowledge, there is no approach that can
classify data streams and detect novel class. So, we compare
MineClass with a combination of two baseline techniques:
OLINDDA [Spinosa et al., 2007] and Weighted Classifier
Ensemble (WCE) [Wang et al., 2003], where the former

369

http://www.cs.waikato.ac.nz/ml/weka/


works as novel class detector, and the latter performs
classification. For each chunk, we first detect the novel class
instances using OLINDDA. All other instances in the chunk
are assumed to be in the existing classes, and they are
classified using WCE. We use OLINDDA as the novelty
detector, as it is a recently proposed algorithm that is shown
to have outperformed other novelty detection techniques in
data streams [Spinosa et al., 2007].

However, OLINDDA assumes that there is only one “normal”
class, and all other classes are “novel.” So, it is not directly
applicable to the multi-class novelty detection problem, where
any combination of classes can be considered as the
“existing” classes. We propose two alternative solutions.
First, we build parallel OLINDDA models, one for each class,
which evolve simultaneously. Whenever the instances of a
novel class appear, we create a new OLINDDA model for that
class. A test instance is declared as novel if all the existing
class models identify this instance as novel. We will refer to
this baseline method as WCE-OLINDDA_PARALLEL.
Second, we initially build an OLINDDA model with all the
available classes. Whenever a novel class is found, the class is
absorbed into the existing OLINDDA model. Thus, only one
“normal” model is maintained throughout the stream. This
will be referred to as WCE-OLINDDA_SINGLE. In all
experiments, the ensemble size and chunk size are kept the
same for both these techniques. Besides, the same base
learner is used for WCE and MC. The parameter settings for
OLINDDA are (1) number of data points per cluster (Nexcl) =
15, (2) least number of normal instances needed to update the
existing model = 100, (3) least number of instances needed to
build the initial model = 30. These parameters are chosen
either according to the default values used in [Spinosa et al.,

370



2007] or by trial and error to get an overall satisfactory
performance. We will henceforth use the acronyms MC for
MineClass, W-OP for WCE-OLINDDA_PARALLEL, and
W-OS for WCE-OLINDDA_SINGLE.

20.4 Performance Study
20.4.1 Evaluation Approach

We use the following performance metrics for evaluation:
Mnew = % of novel class instances Misclassified as existing
class, Fnew= % of existing class instances Falsely identified as
novel class, ERR = Total misclassification error (%)
(including Mnew and Fnew). We build the initial models in
each method with the first M chunks. From the M + 1st chunk
onward, we first evaluate the performances of each method on
that chunk, then use that chunk to update the existing model.
The performance metrics for each chunk for each method are
saved and averaged for producing the summary result.

20.4.2 Results

Figures 20.2(a) through 20.2(d) show the ERR for decision
tree classifier of each approach up to a certain point in the
stream in different datasets. kNN classifier also has similar
results. For example, at X axis = 100, the Y values show the
average ERR of each approach from the beginning of the
stream to chunk 100. At this point, the ERR of MC, W-OP,
and W-OS are 1.7%, 11.6%, and 8.7%, respectively, for the
KDD dataset (Figure 20.2(c)). The arrival of a novel class in

371



each dataset is marked by a cross (x) on the top border in each
graph at the corresponding chunk. For example, on the
SynCN dataset (Figure 20.2(a)), W-OP and W-OS misses
most of the novel class instances, which results in the spikes
in their curves at the respective chunks (e.g., at chunks 12, 24,
37, etc.). W-OS misses almost 99% of the novel class
instances. Similar spikes are observed for both W-OP and
W-OS at the chunks where novel classes appear for KDD and
Forest Cover datasets. For example, many novel classes
appear between chunks 9 and 14 in KDD, most of which are
missed by both W-OP and W-OS. Note that there is no novel
class for SynC dataset. MC correctly detects most of these
novel classes. Thus, MC outperforms both W-OP and W-OS
in all datasets.

372



Figure 20.2 Error comparison on (a) SynCN, (b) SynC, (c)
KDD, and (d) Forest Cover. (From M. Masud, J. Gao, L.
Khan, J. Han, B. Thuraisingham, Integrating Novel Class
Detection with Classification for Concept-Drifting Data
Streams, pp. 79–94, 2009, Springer. With permission.)

Table 20.1 summarizes the error metrics for each of the
techniques in each dataset for decision tree and kNN. The
columns headed by ERR, Mnew and Fnew report the average
of the corresponding metric on an entire dataset. For example,

373



while using decision tree in the SynC dataset, MC, W-OP,
and W-OS have almost the same ERR, which are 11.6%,
13.0%, and 12.5%, respectively. This is because SynC
simulates only concept-drift, and both MC and WCE handle
concept-drift in a similar manner. In SynCN dataset with
decision tree, MC, W-OP, and W-OS have 0%, 89.4%, and
99.7% Mnew, respectively. Thus, W-OS misses almost all of
the novel class instances, whereas W-OP detects only 11% of
them. MC correctly detects all of the novel class instances. It
is interesting that all approaches have lower error rates in
SynCN than SynC. This is because SynCN is generated using
Gaussian distribution, which is naturally easier for the
classifiers to learn. W-OS mispredicts almost all of the novel
class instances in all datasets. The comparatively better ERR
rate for W-OS over W-OP can be attributed to the lower false
positive rate of W-OS, which occurs because almost all
instances are identified as “normal” by W-OS. Again, the
overall error (ERR) of MC is much lower than other methods
in all datasets and for all classifiers. K-NN also has similar
results for all datasets.

Table 20.1 Performance Comparison

374



Source: M. Masud, J. Gao, L. Khan, J. Han, B.
Thuraisingham, Integrating Novel Class Detection with
Classification for Concept-Drifting Data Streams, pp. 79–94,
2009, Springer. With permission.

Figures 20.3(a) through 20.3(d) illustrate how the error rates
of MC change for different parameter settings on KDD
dataset and decision tree classifier. These parameters have
similar effects on other datasets and K-NN classifier. Figure
20.3(a) shows the effect of chunk size on ERR, Fnew, and
Mnew rates for default values of other parameters. Mnew
reduces when chunk size is increased. This is desirable,
because larger chunks reduce the risk of missing a novel
class. But Fnew rate slightly increases because the risk of
identifying an existing class instance as novel also rises a
little. These changes stabilize from chunk size 4,000 (for
Synthetic dataset, it is 1,000). That is why we use these values
in our experiments. Figure 20.3(b) shows the effect of number
of clusters (K) on error. Increasing K generally reduces error
rates, because outliers are more correctly detected, and as a
result, Mnew rate decreases. However, Fnew rate also starts
increasing slowly, as more test instances are becoming
outliers (although they are not). The combined effect is that
overall error keeps decreasing up to a certain value (e.g., K =
50) and then becomes almost flat. This is why we use K = 50
in our experiments. Figure 20.3(c) shows the effect of
ensemble size (M) on error rates. We observe that the error
rates decrease up to a certain size (=6), and become stable
since then. This is because when M is increased from a low
value (e.g., 2), classification error naturally decreases up to a
certain point because of the reduction of error variance [Wang
et al., 2003]. Figure 20.3(d) shows the effect of N on error
rates. The x-axis in this chart is drawn in a logarithmic scale.

375



Naturally, increasing N up to a certain point (e.g., 20) helps
reduce error, because we know that a higher value of N gives
us a greater confidence in declaring a new class. But a too
large value of N increases Mnew and ERR rates, as a new class
is missed by the algorithm if it has less than N instances in a
data chunk. We have found that any value between 20 and
100 is the best choice for N.

Figure 20.3 Sensitivity to different parameters. (From M.
Masud, J. Gao, L. Khan, J. Han, B. Thuraisingham,

376



Integrating Novel Class Detection with Classification for
Concept-Drifting Data Streams, pp. 79–94, 2009, Springer.
With permission.)

20.4.3 Running Time

Table 20.2 compares the running times of MC, W-OP, and
W-OS on each dataset for decision tree. kNN also shows
similar performances. The columns headed by “Time (sec)/
Chunk ” show the average running times (train and test) in
seconds per chunk, the columns headed by “Points/sec” show
how many points have been processed (train and test) per
second on average, and the columns headed by “Speed Gain”
show the ratio of the speed of MC to that of W-OP and
W-OS, respectively. For example, MC is 2,095 and 105 times
faster than W-OP on KDD dataset and Forest Cover dataset,
respectively. Also, MC is 203 and 27 times faster than W-OP
and W-OS, respectively, on the SynCN dataset. W-OP and
W-OS are slower on SynCN than on SynC dataset because
the SynCN dataset has more attributes (20 vs. 10) and classes
(10 vs. 2). W-OP is relatively slower than W-OS because
W-OP maintains C parallel models, where C is the number of
existing classes, whereas W-OS maintains only one model.
Both W-OP and W-OS are relatively faster on Forest Cover
than KDD since Forest Cover has fewer number of classes,
and relatively less evolution than KDD. The main reason for
this extremely slow processing of W-OP and W-OS is that the
number of clusters for each OLINDDA model keeps
increasing linearly with the size of the data stream, causing
both the memory requirement and the running time to
increase linearly. But the running time and memory

377



requirement of MC remain the same over the entire length of
the stream.

Table 20.2 Running Time Comparison in All Datasets

Source: M. Masud, J. Gao, L. Khan, J. Han, B.
Thuraisingham, Integrating Novel Class Detection with
Classification for Concept-Drifting Data Streams, pp. 79–94,
2009, Springer. With permission.

20.5 Summary
In this chapter, we discussed the datasets, experimental
setups, baseline techniques, and evaluation on the datasets.
We used four different datasets, two of which are synthetic,
and the two others are benchmark data streams. Our approach
outperforms other baseline techniques in classification and
novel class detection accuracies and running times on all
datasets.

In the future, we would like to implement our technique on
the cloud computing framework and evaluate the extended
version of novel class detection technique on larger and
real-world data streams. In addition, we would extend our

378



approach to address the real-time classification and novel
class detection problems in data streams.

References
[Spinosa et al., 2007] Spinosa, E. J., A. P. de Leon, F. de
Carvalho, J. Gama, OLINDDA: A Cluster-Based Approach
for Detecting Novelty and Concept Drift in Data Streams, in
Proceedings of the 2007 ACM Symposium on Applied
Computing, 2007, pp. 448–452.

[Wang et al., 2003] Wang, H., W. Fan, P. Yu, J. Han, Mining
Concept-Drifting Data Streams Using Ensemble Classifiers,
in Proceedings of the ACM SIGKDD, 2003, pp. 226–235.

379



Conclusion for Part VI

We have presented a novel technique to detect new classes in
concept-drifting data streams. Most of the novelty detection
techniques either assume that there is no concept-drift or
build a model for a single “normal” class and consider all
other classes as novel. But our approach is capable of
detecting novel classes in the presence of concept-drift, even
when the model consists of multiple “existing” classes. In
addition, our novel class detection technique is
non-parametric, meaning it does not assume any specific
distribution of data. We also show empirically that our
approach outperforms the state-of-the-art data stream-based
novelty detection techniques in both classification accuracy
and processing speed. It might appear to readers that to detect
novel classes, we are in fact examining whether new clusters
are being formed, and therefore, the detection process could
go on without supervision. But supervision is necessary for
classification. Without external supervision, two separate
clusters could be regarded as two different classes, although
they are not. Conversely, if more than one novel class appears
in a chunk, all of them could be regarded as a single novel
class if the labels of those instances are never revealed. In the
future, we would like to apply our technique in the domain of
multiple-label instances.

380



PART VII

EMERGING APPLICATIONS

Introduction to Part VII
In Part I, II, III, and IV we discussed the various data mining
tools we have developed for malware section. These include
tools for email worm detection, malicious code detection,
remote exploit detection, and botnet detection. In Part V, we
discussed stream mining technologies and their applications
in security. In this part (i.e., Part VII), we discuss some of the
data mining tools we are developing for emerging
applications.

Part VII consists of four chapters: 21, 22, 23, and 24. In
Chapter 21, we discuss data mining for active defense. The
idea here is that the malware will change its patterns
continuously, and therefore we need tools that can detect
adaptable malware. In Chapter 22, we discuss data mining for
insider threat analysis. In particular, we discuss how data
mining tools may be used for detecting the suspicious
communication represented as large graphs. In Chapter 23,
we discuss dependable real-time data mining. In particular,
we discuss data mining techniques that have to detect
malware in real time. Finally we discuss data mining tools for
firewall policy analysis. In particular, there are numerous
firewall policy rules that may be outdated. We need a

381



consistent set of firewall policies so that packets arriving from
suspicious ports may be discarded.

382



21

DATA MINING FOR ACTIVE
DEFENSE

21.1 Introduction
Traditional signature-based malware detectors identify
malware by scanning untrusted binaries for distinguishing
byte sequences or features. Features unique to malware are
maintained in a signature database, which must be
continually updated as new malware is discovered and
analyzed.

Signature-based malware detection generally enforces a static
approximation of some desired dynamic (i.e., behavioral)
security policy. For example, access control policies, such as
those that prohibit code injections into operating system
executables, are statically undecidable and can therefore only
be approximated by any purely static decision procedure such
as signature matching. A signature-based malware detector
approximates these policies by identifying syntactic features
that tend to appear only in binaries that exhibit
policy-violating behavior when executed. This approximation
is both unsound and incomplete in that it is susceptible to
both false positive and false negative classifications of some
binaries. For this reason signature databases are typically kept
confidential, because they contain information that an attacker
could use to craft malware that the detector would misclassify

383



as benign, defeating the protection system. The effectiveness
of signature-based malware detection thus depends on both
the comprehensiveness and confidentiality of the signature
database.

Traditionally, signature databases have been manually
derived, updated, and disseminated by human experts as new
malware appears and is analyzed. However, the escalating
rate of new malware appearances and the advent of
self-mutating, polymorphic malware over the past decade
have made manual signature updating less practical. This has
led to the development of automated data mining techniques
for malware detection (e.g., [Kolter and Maloof, 2004],
[Masud et al., 2008], [Schultz et al., 2001]) that are capable of
automatically inferring signatures for previously unseen
malware.

In this chapter, we show how these data mining techniques
can also be applied by an attacker to discover ways to
obfuscate malicious binaries so that they will be misclassified
as benign by the detector. Our approach hinges on the
observation that although malware detectors keep their
signature databases confidential, all malware detectors reveal
one bit of signature information every time they reveal a
classification decision. This information can be harvested
particularly efficiently when it is disclosed through a public
interface. The classification decisions can then be delivered as
input to a data mining malware detection algorithm to infer a
model of the confidential signature database. From the
inferred model, we derive feature removal and feature
insertion obfuscations that preserve the behavior of a given
malware binary but cause it to be misclassified as benign. The

384



result is an obfuscation strategy that can defeat any purely
static signature-based malware detector.

We demonstrate the effectiveness of this strategy by
successfully obfuscating several real malware samples to
defeat malware detectors on Windows operating systems.
Windows-based antivirus products typically support
Microsoft’s IOfficeAntiVirus interface [MSDN Digital
Library, 2009], which allows applications to invoke any
installed antivirus product on a given binary and respond to
the classification decision. Our experiments exploit this
interface to obtain confidential signature database information
from several commercial antivirus products.

This chapter is organized as follows. Section 21.2 describes
related work. Section 21.3 provides an overview of our
approach, Section 21.4 describes a data mining-based
malware detection model, and Section 21.5 discusses methods
of deriving binary obfuscations from a detection model.
Section 21.6 then describes experiments and evaluation of our
technique. Section 21.7 concludes with discussion and
suggestions for future work. The contents of this chapter are
illustrated in Figure 21.1.

385



Figure 21.1 Concepts in this chapter.

21.2 Related Work
Both the creation and the detection of malware that
self-modifies to defeat signature-based detectors are
well-studied problems in the literature [Nachenberg, 1997],
[Ször, 2005]. Self-modifying malware has existed at least
since the early 1990s and has subsequently become a major
obstacle for modern malware protection systems. For
example, Kaspersky Labs [Kaspersky, 2009] reported three
new major threats in February 2009 that use self-modifying
propagation mechanisms to defeat existing malware detection
products. Propagation and mutation rates for such malware
can be very high. At the height of the Feebs virus outbreak in
2007, Commtouch Research Labs [Commtouch, 2007]
reported that the malware was producing more than 11,000
unique variants of itself per day.

Most self-modifying malware uses encryption or packing as
the primary basis for its modifications. The majority of the
binary code in such polymorphic malware exists as an
encrypted or packed payload, which is unencrypted or
unpacked at runtime and executed. Signature-based protection
systems typically detect polymorphic malware by identifying
distinguishing features in the small unencrypted code stub
that decrypts the payload (e.g., [Kruegel et al., 2005]). More
recently, metamorphic malware has appeared, which
randomly applies binary transformations to its code segment

386



during propagation to obfuscate features in the unencrypted
portion. An example is the MetaPHOR system [cf.,
Walenstein et al., 2006], which has become the basis for
many other metamorphic malware propagation systems.
Reversing these obfuscations to obtain reliable feature sets for
signature-based detection is the subject of much current
research [Brushi et al., 2007], [Kruegel et al., 2005],
[Walenstein et al., 2006], but case studies have shown that
current antivirus detection schemes remain vulnerable to
simple obfuscation attacks until the detector’s signature
database is updated to respond to the threat [Christodorescu
and Jha, 2004].

To our knowledge, all existing self-modifying malware
mutates randomly. Our work therefore differs from past
approaches in that it proposes an algorithm for choosing
obfuscations that target and defeat specific malware defenses.
These obfuscations could be inferred and applied fully
automatically in the wild, thereby responding to a signature
update without requiring re-propagation by the attacker. We
argue that simple signature updates are therefore inadequate
to defend against such an attack.

Our proposed approach uses technology based on data
mining-based malware detectors. Data mining-based
approaches analyze the content of an executable and classify
it as malware if a certain combination of features is found (or
not found) in the executable. These malware detectors are
first trained so that they can generalize the distinction
between malicious and benign executables and thus detect
future instances of malware. The training process involves
feature extraction and model building using these features.
Data mining-based malware detectors differ mainly on how

387



the features are extracted and which machine learning
technique is used to build the model. The performance of
these techniques largely depends on the quality of the features
that are extracted.

[Schultz et al., 2001] extract DLL call information (using
GNU binutils) and character strings (using GNU strings) from
the headers of Windows PE executables, as well as 2-byte
sequences from the executable content. The DLL calls,
strings, and bytes are used as features to train models. Models
are trained using two different machine learning
techniques—RIPPER [Cohen, 1996] and Naïve Bayes (NB)
[Michie et al., 1994]—to compare their relative performances.
[Kolter and Maloof, 2004] extract binary n-gram features
from executables and apply them to different classification
methods, such as k nearest neighbor (kNN) [Aha et al., 1991],
NB, Support Vector Machines (SVMs) [Boser et al., 1992],
decision trees [Quinlan, 2003], and boosting [Freund and
Schapire, 1996]. Boosting is applied in combination with
various other learning algorithms to obtain improved models
(e.g., boosted decision trees).

Our previous work on data mining-based malware detection
[Masud et al., 2008] extracts binary n-grams from the
executable, assembly instruction sequences from the
disassembled executables, and DLL call information from the
program headers. The classification models used in this work
are SVM, decision tree, NB, boosted decision tree, and
boosted NB. In the following sections we show how this
technology can also be applied by an attacker to infer and
implement effective attacks against malware detectors using
information divulged by antivirus interfaces.

388



21.3 Architecture
The architecture of our binary obfuscation methodology is
illustrated in Figure 21.2. We begin by submitting a diverse
collection of malicious and benign binaries to the victim
signature database via the signature query interface. The
interface reveals a classification decision for each query. For
our experiments we used the IOfficeAntivirus COM interface
that is provided by Microsoft Windows operating systems
(Windows 95 and later) [MSDN Digital Library, 2009]. The
Scan method exported by this interface takes a filename as
input and causes the operating system to use the installed
antivirus product to scan the file for malware infections. Once
the scan is complete, the method returns a success code
indicating whether the file was classified as malicious or
benign. This allows applications to request virus scans and
respond to the resulting classification decisions.

389



Figure 21.2 Binary obfuscation architecture. (From K.
Hamlen, V. Mohan, M. Masud, L. Khan, B. Thuraisingham,
Exploiting an Antivirus Interface, pp. 1182–1189, 2009,
Elsevier. With permission.)

We then use the original inputs and resulting classification
decisions as a training set for an inference engine. The
inference engine learns an approximating model for the
signature database using the training set. In our
implementation, this model was expressed as a decision tree
in which each node tests for the presence or absence of a
specific binary n-gram feature that was inferred to be
security-relevant by the data mining algorithm.

This inferred model is then reinterpreted as a recipe for
obfuscating malware so as to defeat the model. That is, each
path in the decision tree encodes a set of binary features that,
when added or removed from a given malware sample, causes
the resulting binary to be classified as malicious or benign by
the model. The obfuscation problem is thus reduced to finding
a binary transformation that, when applied to malware, causes
it to match one of the benignly classified feature sets. In
addition, the transformation must not significantly alter the
behavior of the malware binary being obfuscated. Currently,
we identify suitable feature sets by manual inspection, but we
believe that future work could automate this process.

Once such a feature set has been identified and applied to the
malware sample, the resulting obfuscated sample is submitted
as a query to the original signature database. A malicious
classification indicates that the inferred signature model was

390



not an adequate approximation for the signature database. In
this case, the obfuscated malware is added to the training set
and training continues, resulting in an improved model,
whereupon the process repeats. A benign classification
indicates a successful attack upon the malware detector. In
our experiments, we found that repeating the inference
process was not necessary; our obfuscations produced
misclassified binaries after one round of inference.

21.4 A Data Mining-Based
Malware Detection Model
21.4.1 Our Framework

A data mining-based malware detector first trains itself with
known instances of malicious and benign executables. Once
trained, it can predict the proper classifications of previously
unseen executables by testing them against the model. The
high-level framework of such a system is illustrated in Figure
21.3.

The predictive accuracy of the model depends on the given
training data and the learning algorithm (e.g., SVM, decision
tree, Naïve Bayes, etc.) Several data mining-based malware
detectors have been proposed in the past [Kolter and Maloof,
2004], [Masud et al., 2008], [Schultz et al., 2001]. The main
advantage of these models over the traditional
signature-based models is that data mining-based models are
more robust to changes in the malware. Signature-based
models fail when new malware appears with an unknown

391



signature. On the other hand, data mining-based models
generalize the classification process by learning a suitable
malware model dynamically over time. Thus, they are capable
of detecting malware instances that were not known at the
time of training. This makes it more challenging for an
attacker to defeat a malware detector based on data mining.

Our previous work on data mining-based malware detection
[Masud et al., 2008] has developed an approach that consists
of three main steps:

Figure 21.3 A data mining-based malware detection
framework. (From K. Hamlen, V. Mohan, M. Masud, L.
Khan, B. Thuraisingham, Exploiting an Antivirus Interface,
pp. 1182–1189, 2009, Elsevier. With permission.)

1. Feature extraction, feature selection, and
feature-vector computation from the training data

392



2. Training a classification model using the computed
feature-vector

3. Testing executables with the trained model.

These steps are detailed throughout the remainder of the
section.

21.4.2 Feature Extraction

In past work we have extracted three different kinds of
features from training instances (i.e., executable binaries):

1. Binary n-gram features: To extract these features,
we consider each executable as a string of bytes and
extract all possible n-grams from the executables,
where n ranges from 1 to 10.

2. Assembly n-gram features: We also disassemble
each executable to obtain an assembly language
program. We then extract n-grams of assembly
instructions.

3. Dynamic link library (DLL) call features: Library
calls are particularly relevant for distinguishing
malicious binaries from benign binaries. We extract
the library calls from the disassembly and use them
as features.

When deriving obfuscations to defeat existing malware
detectors, we found that restricting our attention only to
binary n-gram features sufficed for our experiments, reported
in Section 21.6. However, in future work we intend to apply
all three feature sets to produce more robust obfuscation
algorithms. Next, we describe how these binary features are
extracted.

393



21.4.2.1 Binary n-Gram Feature Extraction First, we apply
the UNIX hexdump utility to convert the binary executable
files into textual hexdump files, which contain the
hexadecimal numbers corresponding to each byte of the
binary. This process is performed to ensure safe and easy
portability of the binary executables. The feature extraction
process consists of two phases: (1) feature collection, and (2)
feature selection.

The feature collection process proceeds as follows. Let the set
of hexdump training files be H = {h1, …, hb}. We first
initialize a set L of n-grams to empty. Then we scan each
hexdump file hi by sliding an n-byte window over its binary
content. Each recovered n-byte sequence is added to L as an
n-gram. For each n-gram g ∈ L we count the total number of
positive instances pg (i.e., malicious executables) and
negative instances ng (i.e., benign executables) that contain g.

There are several implementation issues related to this basic
approach. First, the total number of n-grams may be very
large. For example, the total number of 10-grams in our
dataset is 200 million. It may not be possible to store all of
them in a computer’s main memory. Presently we solve this
problem by storing the n-grams in a large disk file that is
processed via random access. Second, if L is not sorted, then a
linear search is required for each scanned n-gram to test
whether it is already in L. If N is the total number of n-grams
in the dataset, then the time for collecting all the n-grams
would be O(N2), an impractical amount of time when N = 200
million. To solve the second problem, we use an
Adelson-Velsky-Landis (AVL) tree [Goodrich and Tamassia,
2005] to index the n-grams. An AVL tree is a height-balanced
binary search tree. This tree has a property that the absolute

394



difference between the heights of the left subtree and the right
subtree of any node is, at most, 1. If this property is violated
during insertion or deletion, a balancing operation is
performed, and the tree regains its height-balanced property.
It is guaranteed that insertions and deletions are performed in
logarithmic time. Inserting an n-gram into the database thus
requires only O(log2(N)) searches. This reduces the total
running time to O(log2(N)), making the overall running time
about 5 million times faster when N is large as 200 million.
Our feature collection algorithm implements these two
solutions.

21.4.2.2 Feature Selection If the total number of extracted
features is very large, it may not be possible to use all of them
for training. Aside from memory limitations and impractical
computing times, a classifier may become confused with a
large number of features because most of them would be
noisy, redundant, or irrelevant. It is therefore important to
choose a small, relevant, and useful subset of features for
more efficient and accurate classification. We choose
information gain (IG) as the selection criterion because it is
recognized in the literature as one of the best criteria isolating
relevant features from large feature sets. IG can be defined as
a measure of effectiveness of an attribute (i.e., feature) in
classifying a training data [Mitchell, 1997]. If we split the
training data based on the values of this attribute, then IG
gives the measurement of the expected reduction in entropy
after the split. The more an attribute can reduce entropy in the
training data, the better the attribute is for classifying the data.

The next problem is to select the best S features (i.e.,
n-grams) according to IG. One naïve approach is to sort the
n-grams in non-increasing order of IG and select the top S of

395



them, which requires O(Nlog2N) time and O(N) main
memory. But this selection can be more efficiently
accomplished using a heap that requires O(Nlog2S) time and
O(S) main memory. For S = 500 and N = 200 million, this
approach is more than 3 times faster and requires 400,000
times less main memory. A heap is a balanced binary tree
with the property that the root of any subtree contains the
minimum (maximum) element in that subtree. First, we build
a min-heap of size S. The min-heap contains the minimum-IG
n-gram at its root. Then each n-gram g is compared with the
n-gram at the root r. If IG(g) ≤ IG(r) then we discard g.
Otherwise, r is replaced with g, and the heap is restored.

21.4.2.3 Feature Vector Computation Suppose the set of
features selected in the above step is F = {f1, …, fs}. For each
hexdump file hi, we build a binary feature vector hi(F) =
{hi(f1), …, hi(fS)}, where hi(fj) = 1 if hi contains feature fj, or
0 otherwise. The training algorithm of a classifier is supplied
with a tuple (hi(F), l(hi)) for each training instance hi, where
hi(F) is the feature vector and l(hi) is the class label of the
instance hi (i.e., positive or negative).

21.4.3 Training

We apply SVM, Naïve Bayes (NB), and decision tree (J48)
classifiers for the classification task. SVM can perform either
linear or non-linear classification. The linear classifier
proposed by Vapnik [Boser et al., 1992] creates a hyperplane
that separates the data points into two classes with the
maximum margin. A maximum-margin hyperplane is the one
that splits the training examples into two subsets such that the
distance between the hyperplane and its closest data point(s)

396



is maximized. A non-linear SVM [Cortes and Vapnik, 1995]
is implemented by applying a kernel trick to
maximum-margin hyperplanes. This kernel trick transforms
the feature space into a higher dimensional space where the
maximum-margin hyperplane is found, through the aid of a
kernel function.

A decision tree contains attribute tests at each internal node
and a decision at each leaf node. It classifies an instance by
performing the attribute tests prescribed by a path from the
root to a decision node. Decision trees are rule-based
classifiers, allowing us to obtain human-readable
classification rules from the tree. J48 is the implementation of
the C4.5 Decision Tree algorithm. C4.5 is an extension of the
ID3 algorithm invented by [Quinlan, 2003]. To train a
classifier, we provide the feature vectors along with the class
labels of each training instance that we have computed in the
previous step.

21.4.4 Testing

Once a classification model has been trained, we can assess
its accuracy by comparing its classification of new instances
(i.e., executables) to the original victim malware detector’s
classifications of the same new instances. To test an
executable h, we first compute the feature vector h(F)
corresponding to the executable in the manner described
earlier. When this feature vector is provided to the
classification model, the model outputs (predicts) a class label
l(h) for the instance. If we know the true class label of h, then
we can compare the prediction with the true label and check
the correctness of the learned model. If the model’s

397



performance is inadequate, the new instances are added to the
training set, resulting in an improved model, and testing
resumes.

In the next section, we describe how the model yielded by the
previously described process can be used to derive binary
obfuscations that defeat the model.

21.5 Model-Reversing
Obfuscations
Malware detectors based on static data mining attempt to
learn correlations between the syntax of untrusted binaries
and the (malicious or benign) behavior that those binaries
exhibit when executed. This learning process is necessarily
unsound or incomplete because most practically useful
definitions of “malicious behavior” are Turing-undecidable.
Thus, every purely static algorithm for malware detection is
vulnerable to false positives, false negatives, or both. Our
obfuscator exploits this weakness by discovering false
negatives in the model inferred by a static malware detector.

The decision tree model inferred in the previous section can
be used as a basis for deriving binary obfuscations that defeat
the model. The obfuscation involves adding or removing
features (i.e., binary n-grams) to and from the malware binary
so that the model classifies the resulting binary as benign.
These binary transformations must be carefully crafted so as
to avoid altering the runtime behavior of the malware
program lest they result in a policy-adherent or

398



non-executable binary. Details of the obfuscation approach
are given in [Hamlen et al., 2009]. We briefly outline the
steps in the ensuing paragraphs.

21.5.1 Path Selection

We begin the obfuscation process by searching for a
candidate path through the decision tree that ends in a benign
leaf node. Our goal will be to add and remove features from
the malicious executable so as to cause the detector to follow
the chosen decision tree path during classification. Because
the path ends in a benign-classifying decision node, this will
cause the malware to be misclassified as benign by the
detector.

21.5.2 Feature Insertion

Inserting new features into executable binaries without
significantly altering their runtime behavior tends to be a
fairly straightforward task.

21.5.3 Feature Removal

Removal of a feature from an executable binary is more
difficult to implement without changing the program’s
runtime behavior. Existing malware implement this using one
of two techniques: (1) encryption (polymorphic malware), or
(2) code mutation (metamorphic malware). Although
polymorphism and metamorphism are powerful existing
techniques for obfuscating malware against signature-based
detectors, it should be noted that existing polymorphic and

399



metamorphic malware mutates randomly. Our attack
therefore differs from these existing approaches in that we
choose obfuscations that are derived directly from signature
database information leaked by the malware detector being
attacked. Our work therefore builds upon this past work by
showing how antivirus interfaces can be exploited to choose
an effective obfuscation, which can then be implemented
using these existing techniques.

21.6 Experiments
To test our approach, we conducted two sets of experiments.
In the first experiment, we attempted to collect classification
data from several commercial antivirus products by querying
their public interfaces automatically. In the second
experiment, we obfuscated a malware sample to defeat the
data mining-based malware detector we developed in past
work [Masud et al., 2008] and that is described in Section
21.4. In future work we intend to combine these two results to
test fully automatic obfuscation attacks upon commercial
antivirus products.

We have two non-disjoint datasets. The first dataset (dataset1)
contains a collection of 1,435 executables, 597 of which are
benign and 838 of which are malicious. The second dataset
(dataset2) contains 2,452 executables, having 1,370 benign
and 1,082 malicious executables. The distribution of dataset1
is hence 41.6% benign and 58.4% malicious, and that of
dataset2 is 55.9% benign and 44.1% malicious. This
distribution was chosen intentionally to evaluate the
performance of the feature sets in different scenarios. We

400



collect the benign executables from different Windows XP
and Windows 2000 machines, and collect the malicious
executables from [VX Heavens, 2009] which contains a large
collection of malicious executables.

We carried out two sets of experiments: the Interface Exploit
Experiment and the model-driven obfuscation experiment.
These experiments are detailed in [Hamlen et al., 2009]. For
example, to test the feasibility of collecting confidential
signature database information via the antivirus interface on
Windows operating systems, we wrote a small utility that
queries the IOfficeAntivirus [MSDN Digital Library, 2009]
COM interface on Windows XP and Vista machines. The
utility uses this interface to request virus scans of instances in
dataset1. We tested our utility on four commercial antivirus
products: Norton Antivirus 2009, McAfee VirusScan Plus,
AVG 8.0, and Avast Antivirus 2009. In all but Avast
Antivirus, we found that we were able to reliably sample the
signature database using the interface. In the case of Avast
Antivirus 2009, we found that the return code yielded by the
interface was not meaningful—it did not distinguish between
different classifications. Thus, Avast Antivirus 2009 was not
vulnerable to our attack. In the second experiment, the
obfuscated malware defeated the detector from which the
model was derived.

21.7 Summary
In this chapter, we have outlined a technique whereby
antivirus interfaces that reveal classification decisions can be
exploited to infer confidential information about the

401



underlying signature database. These classification decisions
can be used as training inputs to data mining-based malware
detectors. Such detectors will learn an approximating model
for the signature database that can be used as a basis for
deriving binary obfuscations that defeat the signature
database. We conjecture that this technique could be used as
the basis for effective, fully automatic, and targeted attacks
against signature-based antivirus products.

Our experiments justify this conjecture by demonstrating that
classification decisions can be reliably harvested from several
commercial antivirus products on Windows operating systems
by exploiting the Windows public antivirus interface. We also
demonstrated that effective obfuscations can be derived for
real malware from an inferred model by successfully
obfuscating a real malware sample using our model-reversing
obfuscation technique. The obfuscated malware defeated the
detector from which the model was derived.

Our signature database inference procedure was not an
effective attack against one commercial antivirus product we
tested because that product did not fully support the antivirus
interface. In particular, it returned the same result code
irrespective of its classification decision for the submitted
binary file. However, we believe this limitation could be
overcome by an attacker in at least two different ways.

First, although the return code did not divulge classification
decisions, the product did display observably different
responses to malicious binaries, such as opening a quarantine
pop-up window. These responses could have been
automatically detected by our query engine. Determining

402



classification decisions in this way is a slower but still fully
automatic process.

Second, many commercial antivirus products also exist as
freely distributed, stand-alone utilities that scan for (but do
not necessarily disinfect) malware based on the same
signature databases used in the retail product. These
lightweight scanners are typically implemented as Java
applets or ActiveX controls so that they are web-streamable
and executable at low privilege levels. Such applets could be
executed in a restricted virtual machine environment to
effectively create a suitable query interface for the signature
database. The execution environment would provide a limited
view of the filesystem to the victim applet and would infer
classification decisions by monitoring decision-specific
system calls, such as those that display windows and dialogue
boxes.

From the work summarized in this chapter, we conclude that
effectively concealing antivirus signature database
information from an attacker is important but difficult.
Current antivirus interfaces, such as the one currently
supported by Windows operating systems, invite signature
information leaks and subsequent obfuscation attacks.
Antivirus products that fail to support these interfaces are less
vulnerable to these attacks; however, they still divulge
confidential signature database information through covert
channels, such as graphical responses and other side effects.

Fully protecting against these confidentiality violations might
not be feasible; however, there are some obvious steps that
defenders can take to make these attacks more
computationally expensive for the attacker. One obvious step

403



is to avoid implementing or supporting interfaces that divulge
classification decisions explicitly and on demand through
return codes. While this prevents benign applications from
detecting and responding to malware quarantines, this
reduction in functionality seems reasonable in the (hopefully
uncommon) context of a malware attack. Protecting against
signature information leaks through covert channels is a more
challenging problem. Addressing it effectively might require
leveraging antipiracy technologies that examine the current
execution environment and refuse to divulge classification
decisions in restrictive environments that might be controlled
by an attacker. Without such protection, attackers will
continue to be able to craft effective, targeted binary
obfuscations that defeat existing signature-based malware
detection models.

References
[Aha et al., 1991] Aha, D. W., D. Kibler, M. K. Albert,
Instance-Based Learning Algorithms, Machine Learning, Vol.
6, 1991, pp. 37–66.

[Boser et al., 1992] Boser, B. E., I. M. Guyon, V. N. Vapnik,
A Training Algorithm for Optimal Margin Classifiers, in
Proceedings of the 5th ACM Workshop on Computational
Learning Theory, 1992, pp. 144–152.

[Brushi et al., 2007] Brushi, D., L. Martignoni, M. Monga,
Code Normalization for Self-Mutating Malware, in
Proceedings of the IEEE Symposium on Security and Privacy,
Vol. 5, No. 2, pp. 46–54, 2007.

404



[Christodorescu and Jha, 2004] Christodorescu, M., and S.
Jha, Testing Malware Detectors, in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2004, pp. 34–44.

[Cohen, 1996] Cohen, W. W., Learning Rules that Classify
E-mail, in Papers from the AAAI Spring Symposium on
Machine Learning in Information Access, 1996, pp. 18–25.

[Commtouch, 2007] Q1 Malware Trends Report: Server-Side
Malware Explodes across Email, White Paper, Commtouch
Research Labs, Alt-N Technologies, Grapevine, TX, May 2,
2007.

[Cortes and Vapnik, 1995] Cortes, C., and V. Vapnik,
Support-Vector Networks, Machine Learning, Vol. 20, No. 3,
1995, pp. 273–297.

[Freund and Schapire, 1996] Freund, Y., and R. E. Schapire,
Experiments with a New Boosting Algorithm, in Proceedings
of the 13th International Conference on Machine Learning,
1996, pp. 148–156.

[Goodrich and Tamassia, 2005] Goodrich, M. T., and R.
Tamassia, Data Structures and Algorithms in Java, Fourth
Edition, Wiley, New York, 2005.

[Hamlen et al., 2009] Hamlen, K. W., V. Mohan, M. M.
Masud, L. Khan, B. M. Thuraisingham, Exploiting an
Antivirus Interface, Computer Standards & Interfaces, Vol.
31, No. 6, 2009, pp. 1182–1189.

405



[Kaspersky, 2009] Kaspersky Labs, Monthly Malware
Statistics, http://www.kaspersky.com/news?id=207575761.

[Kolter and Maloof, 2004] Kolter, J. Z., and M. A. Maloof,
Learning to Detect Malicious Executables in the Wild, in
Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2004,
pp. 470–478.

[Kruegel et al., 2005] Kruegel, C., E. Kirda, D. Mutz, W.
Robertson, G. Vigna, Polymorphic Worm Detection Using
Structural Information of Executables, in Proceedings of the
8th Symposium on Recent Advances in Intrusion Detection
(RAID), 2005, pp. 207–226.

[Masud et al., 2008] Masud, M., L. Khan, B. M.
Thuraisingham, A Scalable Multi-level Feature Extraction
Technique to Detect Malicious Executables, Information
System Frontiers, Vol. 10, No. 1, 2008, pp. 33–35.

[Michie et al., 1994] Michie, D., D. J. Spiegelhalter, C. C.
Taylor, Editors, Machine Learning, Neural and Statistical
Classification, chap. 5: Machine Learning of Rules and Trees,
Morgan Kaufmann, 1994, pp. 50–83.

[Mitchell, 1997] Mitchell, T. M., Machine Learning,
McGraw-Hill, New York, 1997.

[MSDN Digital Library, 2009] IOfficeAntiVirus Interface,
http://msdn.microsoft.com/en-us/library/
ms537369(VS.85).aspx

406

http://www.kaspersky.com/news?id=207575761
http://msdn.microsoft.com/en-us/library/ms537369(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms537369(VS.85).aspx


[Nachenberg, 1997] Nachenberg, C., Computer
Virus-Antivirus Coevolution, Communications of the ACM,
Vol. 40, No. 1, 1997, pp. 47–51.

[Quinlan, 2003] Quinlan, J. R., C4.5: Programs for Machine
Learning, Fifth Edition, Morgan Kaufmann, San Francisco,
CA, 2003.

[Schultz et al., 2001] Schultz, M. G., E. Eskin, E. Zadok, S. J.
Stolfo, Data Mining Methods for Detection of New Malicious
Executables, in Proceedings of the IEEE Symposium on
Security and Privacy, pp. 38–39, 2001.

[Ször, 2005] Ször, P., The Art of Computer Virus Research
and Defense, Addison-Wesley Professional, 2005.

[VX Heavens, 2009] VX Heavens, http://vx.netlux.org

[Walenstein et al., 2006] Walenstein, A., R. Mathur, M. R.
Chouchane, A. Lakhotia, Normalizing Metamorphic Malware
Using Term Rewriting, in Proceedings of the 6th IEEE
Workshop on Source Code Analysis and Manipulation
(SCAM), 2006, pp. 75–84.

407

http://vx.netlux.org


22

DATA MINING FOR INSIDER
THREAT DETECTION

22.1 Introduction
Effective detection of insider threats requires monitoring
mechanisms that are far more fine-grained than for external
threat detection. These monitors must be efficiently and
reliably deployable in the software environments where
actions endemic to malicious insider missions are caught in a
timely manner. Such environments typically include
user-level applications, such as word processors, email
clients, and web browsers, for which reliable monitoring of
internal events by conventional means is difficult.

To monitor the activities of the insiders, tools are needed to
capture the communications and relationships between the
insiders, store the captured relationships, query the stored
relationships, and ultimately analyze the relationships so that
patterns can be extracted that would give the analyst better
insights into the potential threats. Over time, the number of
communications and relationships between the insiders could
be in the billions. Using the tools developed under our
project, the billions of relationships between the insiders can
be captured, stored, queried, and analyzed to detect malicious
insiders.

408



In this chapter, we discuss how data mining technologies may
be applied for insider threat detection. First, we discuss how
semantic web technologies may be used to represent the
communication between insiders. Next, we discuss our
approach to insider threat detection. Finally, we provide an
overview of our framework for insider threat detection that
also incorporated some other techniques.

The organization of this chapter is as follows. In Section 22.2,
we discuss the challenges, related work, and our approach to
this problem. Our approach is discussed in detail in Section
22.3. Our framework is discussed in Section 22.4. The
chapter is concluded in Section 22.5. An overview of
semantic web technologies is discussed in Appendix D.
Figure 22.1 illustrates the contents of this chapter,

Figure 22.1 Concepts in this chapter.

409



22.2 The Challenges, Related
Work, and Our Approach
The insiders and the relationships between the insiders will be
presented as nodes and links in a graph. Therefore, the
challenge is to represent the information in graphs, develop
efficient storage strategies, develop query processing
techniques for the graphs, and subsequently develop data
mining and analysis techniques to extract information from
the graphs. In particular, there are three major challenges:

1. Storing these large graphs in an expressive and
unified manner in a secondary storage

2. Devising scalable solutions for querying the large
graphs to find relevant data

3. Identifying relevant features for the complex graphs
and subsequently detecting insider threats in a
dynamic environment that changes over time

The motivation behind our approach is to address the
previously mentioned three challenges. We are developing
solutions based on cloud computing to (1) characterize graphs
containing up to billions of nodes and edges between nodes
representing activities (e.g., credit card transactions), email,
or text messages. Because the graphs will be massive, we will
develop technologies for efficient and persistent storage. (2)
To facilitate novel anomaly detection, we require an efficient
interface to fetch relevant data in a timely manner from this
persistent storage. Therefore, we will develop efficient query
techniques on the stored graphs. (3) The fetched relevant data
can then be used for further analysis to detect anomalies. To

410



do this, first we have to identify relevant features from the
complex graphs and subsequently develop techniques for
mining large graphs to extract the nuggets.

As stated earlier, insider threat detection is a difficult problem
[Maybury et al., 2005], [Strayer et al., 2009]. The problem
becomes increasingly complex with more data originating
from heterogeneous sources and sensors. Recently, there is
some research that focuses on anomaly-based insider threat
detection from graphs [Eberle and Holder, 2009]. This
method is based on the minimum description length (MDL)
principle. The solution proposed by [Eberle and Holder,
2009] has some limitations. First, with their approach,
scalability is an issue. In other words, they have not discussed
any issue related to large graphs. Second, the heterogeneity
issue has not been addressed. Finally, it is unclear how their
algorithm will deal with a dynamic environment.

There are also several graph mining techniques that have been
developed especially for social network analysis [Carminati et
al., 2009], [Cook and Holder, 2006], [Thuraisingham et al.,
2009], [Tong, 2009]. The scalability of these techniques is
still an issue. There is some work from the mathematics
research community to apply linear programming techniques
for graph analysis [Berry et al., 2007]. Whether these
techniques will work in a real-world setting is not clear.

For a solution to be viable, it must be highly scalable and
support multiple heterogeneous data sources. Current
state-of-the-art solutions do not scale well and preserve
accuracy. By leveraging Hadoop technology, our solution will
be highly scalable. Furthermore, by utilizing the flexible
semantic web RDF data model, we are able to easily integrate

411



and align heterogeneous data. Thus, our approach will create
a scalable solution in a dynamic environment. No existing
threat detection tools offer this level of scalability and
interoperability. We will combine these technologies with
novel data mining techniques to create a complete insider
threat detection solution.

We have exploited the cloud computing framework based on
Hadoop/MapReduce technologies. The insiders and their
relationships are represented by nodes and links in the form of
graphs. In particular, in our approach, the billions of nodes
and links will be presented as RDF (Resource Description
Framework) graphs. By exploiting RDF representation, we
will address heterogeneity. We will develop mechanisms to
efficiently store the RDF graphs, query the graphs using
SPARQL technologies, and mine the graphs to extract
patterns within the cloud computing framework. We will also
describe our plans to commercialize the technologies
developed under this project.

22.3 Data Mining for Insider
Threat Detection
22.3.1 Our Solution Architecture

Figure 22.2 shows the architectural view of our solution. Our
solution will pull data from multiple sources and then extract
and select features. After feature reduction, the data will be
stored in our Hardtop repository. Data will be stored in the
Resource Description Framework (RDF) format, so a format

412



conversion may be required if the data is in any other format.
RDF is the data format for the semantic web and is very able
to represent graph data. The Anomaly Prediction component
will submit SPARQL Protocol and RDF Query Language
(SPARQL) to the repository to select data. It will then output
any detected insider threats. SPARQL is the query language
for RDF data. It is similar to SQL in syntax. The details of
each of the components are given in the following sections.
For choosing RDF representation for graphs over relational
data models, we will address heterogeneity issues effectively
(semi-structured data model). For querying, we will exploit
standard query language, SPARQL, instead of starting from
scratch. Furthermore, in our proposed framework, inference
will be provided.

Figure 22.2 Solution architecture.

413



We are assuming that the large graphs already exist. To
facilitate persistent storage and efficient retrieval of these
data, we use a distributed framework based on the cloud
computing framework Hadoop [Hadoop]. By leveraging the
Hadoop technology, our framework is readily fault tolerant
and scalable. To support large amounts of data, we can simply
add more nodes to the Hadoop cluster. All the nodes of a
cluster are commodity class machines; there is no need to buy
expensive server machines. To handle large complex graphs,
we will exploit Hadoop Distributed File System (HDFS) and
MapReduce framework. The former is the storage layer that
stores data in multiple nodes with replication. The latter is the
execution layer where MapReduce jobs can be run. We use
HDFS to store RDF data and the MapReduce framework to
answer queries.

22.3.2 Feature Extraction and Compact
Representation

In traditional graph analysis, an edge represents a simple
number that represents strength. However, we may face
additional challenges in representing link values because of
the unstructured nature of the content of text and email
messages. One possible approach is to keep the whole content
as a part of link values, which we call explicit content (EC).
EC will not scale well, even for a moderate size graph. This is
because content representing a link between two nodes will
require a lot of main memory space to process the graph in
the memory. We propose a vector representation of the
content (VRC) for each message. In RDF triple
representation, this will simply be represented as a unique

414



predicate. We will keep track of the feature vector along with
physical location or URL of the original raw message in a
dictionary encoded table.

VRC: During the preprocessing step for each message, we
will extract keywords and phrases (n-grams) as features.
Then, if we want to generate vectors for these features, the
dimensionality of these vectors will be very high. Here, we
will observe the curse of dimensionality (i.e., sparseness and
processing time will increase). Therefore, we can apply
feature reduction (PCA, SVD, NMF) as well as feature
selection. Because feature reduction maps high-dimensional
feature spaces to a space of fewer dimensions, and new
feature dimension may be the linear combination of old
dimensions that may be difficult to interpret, we will exploit
feature selection.

With regard to feature selection, we need to use a class label
for supervised data. Here, for the message we may not have a
class label; however, we know the source/sender and the
destination/recipient of a message. Now, we would like to use
this knowledge to construct an artificial label. The sender and
destination pair will form a unique class label, and all
messages sent from this sender to the recipient will serve as
data points. Hence, our goal is to find appropriate features
that will have discriminating power across all of these class
labels based on these messages. There are several methods for
feature selection that are widely used in the area of machine
learning, such as information gain [Masud et al., 2010-a],
[Masud et al., 2010-b], [Mitchell, 1997]; Gini index;
chi-square statistics; and subspace clustering [Ahmed and
Khan, 2009]. Here, we will present information gain, which is

415



very popular, and for the text domain, we can use subspace
clustering for feature selection.

Information gain (IG) can be defined as a measure of the
effectiveness of a feature in classifying the training data
[Mitchell, 1997]. If we split the training data on these
attribute values, then IG provides the measurement of the
expected reduction in entropy after the split. The more an
attribute can reduce entropy in the training data, the better the
attribute will be in classifying the data. IG of an attribute A on
a collection of examples S is given by (22.1):

where Values (A) is the set of all possible values for attribute
A, and Sv is the subset of S for which attribute A has value v.
Entropy of S is computed using the following equation (22.2):

where pi(S) is the prior probability of class i in the set S.

Subspace clustering: Subspace clustering can be used for
feature selection. Subspace clustering is appropriate when the
clusters corresponding to a dataset form a subset of the
original dimensions. Based on how these subsets are formed,
a subspace clustering algorithm can be referred to as soft or
hard subspace clustering. In the case of soft subspace
clustering, the features are assigned weights according to the

416



contribution each feature or dimension plays during the
clustering process for each cluster. In the case of hard
subspace clustering, however, a specific subset of features is
selected for each cluster and the rest of the features are
discarded for that cluster. Therefore, subspace clustering can
be utilized for selecting which features are important (and
discarding some features if their weights are very small for all
clusters). One such soft subspace clustering approach is SISC
[Ahmed and Khan, 2009]. The following objective function is
used in that subspace clustering algorithm. An E-M
formulation is used for the clustering. In every iteration, the
feature weights are updated for each cluster and by selecting
the features that have higher weights in each cluster, we can
select a set of important features for the corresponding
dataset.

where

subject to

417



In this objective function, W, Z, and Λ represent the cluster
membership, cluster centroid, and dimension weight matrices.
respectively. Also, the parameter f controls the fuzziness of
the membership of each data point, q further modifies the
weight of each dimension of each cluster (λli), and finally, γ
controls the strength of the incentive given to the chi-square
component and dimension weights. It is also assumed that
there are n documents in the training dataset, m features for
each of the data points, and k subspace clusters generated
during the clustering process. Impl indicates the cluster
impurity, whereas χ2 indicates the chi-square statistic. Details
about these notations and how the clustering is done can be
found in our prior work, funded by NASA [Ahmed and Khan,
2009]. It should be noted that feature selection using subspace
clustering can be considered as an unsupervised approach
toward feature selection, as no label information is required
during an unsupervised clustering process.

Once we select features, a message between two nodes will
be represented as a vector using these features. Each vector’s
individual value can be binary or weighted. Hence, this will
be a compact representation of the original message, and it
can be loaded into main memory along with graph structure.
In addition, the location or URL of the original message will
be kept in the main memory data structure. If needed, we will
fetch the message. Over time, the feature vector may be
changed as a result of dynamic nature content [Masud et al.,
2010-a], and hence, the feature set may evolve. Based on our
prior work for evolving streams with dynamic feature sets
[Masud et al., 2010-b], we will investigate alternative options.

418



22.3.3 RDF Repository Architecture

RDF is the data format for semantic web. However, it can be
used to represent any linked data in the world. RDF data are
actually a collection of triples. Triples consist of three parts:
subject, predicate, and object. In RDF, almost everything is a
resource and hence the name of the format. Subject and
predicate are always resources. Objects may be either
resources or literals. Here, RDF data can be viewed as a
directed graph where predicates are edges that flow from
subjects to objects. Therefore, in our proposed research to
model any graph, we will exploit RDF triple format. Here, an
edge from the source node to destination node in a graph
dataset will be represented as predicate, subject, and object of
an RDF triple, respectively. To reduce storage size of RDF
triples, we will exploit dictionary encoding, that is, replace
each unique string with a unique number and store the RDF
data in binary format. Hence, RDF triples will have subject,
predicate, and object in an encoded form. We will maintain a
separate table/file for keeping track of dictionary encoding
information. To address the dynamic nature of the data, we
will extend RDF triple to quad by adding a timestamp along
with subject, predicate, and object representing information in
the network.

Figure 22.3 shows our repository architecture, which consists
of two components. The upper part of the figure depicts the
data preprocessing component, and the lower part shows the
component, which answers a query. We have three
subcomponents for data generation and preprocessing. If the
data is not in N-Triples, we will convert it to N-Triples
serialization format using the N-Triples Converter

419



component. The PS component takes the N-Triples data and
splits it into predicate files. The predicate-based files then will
be fed into the POS component, which would split the
predicate files into smaller files based on the type of objects.

Figure 22.3 RDF repository architecture. (From M. Husain,
L. Khan, M. Kantarcioglu, B. Thuraisingham, Data Intensive
Query Processing for Large RDF Graphs Using Cloud
Computing Tools, pp. 1–10, 2010 © IEEE. With permission.)

420



Our MapReduce framework has three subcomponents in it. It
takes the SPARQL query from the user and passes it to the
Input Selector and Plan Generator. This component will select
the input files and decide how many MapReduce jobs are
needed and pass the information to the Join Executer
component, which runs the jobs using MapReduce
framework. It will then relay the query answer from Hadoop
to the user.

22.3.4 Data Storage

We will store the data in N-Triples format because in this
format we have a complete RDF triple (Subject, Predicate,
and Object) in one line of a file, which is very convenient to
use with MapReduce jobs. We will dictionary encode the data
for increased efficiency. Dictionary encoding means replacing
text strings with a unique binary number. Not only does this
reduce disk space required for storage, but also query
answering will be fast because handling the primitive data
type is much faster than string matching. The processing steps
to get the data in our intended format are described next.

22.3.4.1 File Organization We will not store the data in a
single file because, in the Hadoop and MapReduce
framework, a file is the smallest unit of input to a MapReduce
job and, in absence of caching, a file is always read from the
disk. If we have all the data in one file, the whole file will be
input to jobs for each query. Instead, we divide the data into
multiple smaller files. The splitting will be done in two steps,
which we discuss in the following sections.

421



22.3.4.2 Predicate Split (PS) In the first step, we will divide
the data according to the predicates. In real-world RDF
datasets, the number of distinct predicates is no more than
100. This division will immediately enable us to cut down the
search space for any SPARQL query that does not have a
variable predicate. For such a query, we can just pick a file
for each predicate and run the query on those files only. For
simplicity, we will name the files with predicates; for
example, all the triples containing a predicate p1:pred go into
a file named p1-pred. However, in case we have a variable
predicate in a triple pattern and if we cannot determine the
type of the object, we have to consider all files. If we can
determine the type of the object, then we will consider all
files having that type of object.

22.3.4.3 Predicate Object Split (POS) In the next step, we
will work with the explicit type information in the rdf_type
file. The file will be first divided into as many files as the
number of distinct objects the rdf:type predicate has. The
object values will no longer be needed to be stored inside the
file as they can be easily retrieved from the file name. This
will further reduce the amount of space needed to store the
data.

Then, we will divide the remaining predicate files according
to the type of the objects. Not all the objects are Uniform
Resource Identifiers (URIs); some are literals. The literals
will remain in the file named by the predicate: no further
processing is required for them. The type information of a
URI object is not mentioned in these files, but they can be
retrieved from the rdf-type_* files. The URI objects will
move into their respective file named as predicate_type.

422



22.3.5 Answering Queries Using
Hadoop MapReduce

For querying we can utilize HIVE, a SQL-like query
language, and SPARQL, the query language for RDF data.
When a query is submitted in HiveQL, Hive, which runs on
top of the Hadoop installation, can answer that query based
on our schema presented earlier. When a SPARQL query is
submitted to retrieve relevant data from the graph, first, we
will generate a query plan having the minimum number of
Hadoop jobs possible.

Next, we will run the jobs and answer the query. Finally, we
will convert the numbers used to encode the strings back to
the strings when we present the query results to the user. We
will focus on minimizing the number of jobs because, in our
observation, we have found that setting up Hadoop jobs is
very costly, and the dominant factor (time-wise) is query
answering. The search space for finding the minimum number
of jobs is exponential, so we will try to find a greedy-based
solution or, generally speaking, an approximation solution.
Our proposed approach will be capable of handling queries
involving inference. We can infer on the fly and, if needed,
we can materialize the inferred data.

22.3.6 Data Mining Applications

To detect anomaly/insider threat, machine learning and
domain knowledge-guided techniques are proposed. Our goal
is to create a comparison baseline to assess the effectiveness
of chaotic attractors. As a part of this task, rather than

423



modeling normal behavior and detecting changes as anomaly,
we will apply a holistic approach based on a semi-supervised
model. In particular, first, in our machine learning technique,
we will apply a sequence of activities or dimensions as
features. Second, domain knowledge (e.g., adversarial
behavior) will be a part of semi-supervised learning and will
be used for identifying correct features. Finally, our
techniques will be able to identify an entirely brand new
anomaly. Over time, activities/dimensions may change or
deviate. Hence, our classification model needs to be adaptive
and identify new types or brand new anomalies. We will
develop adaptive and novel class detection techniques so that
our insider threat detection can cope with changes and
identify or isolate new anomalies from existing ones.

We will apply a classification technique to detect insider
threat/anomaly. Each distinct insider mission will be treated
as class and dimension and/or activities will be treated as
features. Because classification is a supervised task, we
require a training set. Given a training set, feature extraction
will be a challenge. We will apply n-gram analysis to extract
features or generate a number of sequences based on temporal
property. Once a new test case comes, first, we test it against
our classification model. For classification model, we can
apply Support Vector Machine, K-NN, and Markov model.

From a machine learning perspective, it is customary to
classify behavior as either anomalous or benign. However,
behavior of a malevolent insider (i.e., insider threat) may not
be immediately identified as malicious, and it should also
have subtle differences from benign behavior. A traditional
machine learning-based classification model is likely to
classify the behavior of a malevolent insider as benign. It will

424



be interesting to see whether a machine learning-based novel
class detection technique [Masud et al., 2010-a] can detect the
insider threat as a novel class and therefore trigger a warning.

The novel class detection technique will be applied on the
huge amount of data that is being generated from user
activities. Because these data have temporal properties and
are produced continuously, they are usually referred to as data
streams. The novel class detection model will be updated
incrementally with the incoming data. This will allow us to
keep the memory requirement within a constant limit, as the
raw data will be discarded, but the characteristic or pattern of
the behaviors will be summarized in the model. This
incremental learning will also reduce the training time, as the
model need not be built from the scratch with the new
incoming data. Therefore, this incremental learning technique
will be useful in achieving scalability.

We will examine the techniques that we have developed as
well as other relevant techniques to modeling and anomaly
detection. In particular, we propose to develop the following:

Tools that will analyze and model benign and anomalous
missions

Techniques to identify right dimensions and activities and
apply pruning to discard irrelevant dimensions

Techniques to cope with changes and novel class/anomaly
detection

In a typical data stream classification task, it is assumed that
the total number of classes is fixed. This assumption may not

425



be valid in insider threat detection cases, where new classes
may evolve. Traditional data stream classification techniques
are not capable of recognizing novel class instances until the
appearance of the novel class is manually identified, and
labeled instances of that class are presented to the learning
algorithm for training. The problem becomes more
challenging in the presence of concept-drift, when the
underlying data distribution changes over time. We have
proposed a novel and efficient technique that can
automatically detect the emergence of a novel class (i.e.,
brand new anomaly) by quantifying cohesion among
unlabeled test instances and separating the test instances from
training instances. Our goal is to use the available data and
build this model.

One interesting aspect of this model is that it should capture
the dynamic nature of dimensions of the mission, as well as
filter out the noisy behaviors. The dimensions (both benign
and anomalous) have a dynamic nature because they tend to
change over time, which we denote as concept-drift. A major
challenge of the novel class detection is to differentiate the
novel class from concept-drift and noisy data. We are
exploring this challenge in our current work.

22.4 Comprehensive
Framework
As we have stated earlier, insider threat detection is an
extremely challenging problem. In the previous section, we
discussed our approach to handling this problem. Insider

426



threat does not occur only at the application level; rather, it
happens at all levels, including the operating system, database
system, and the application. Furthermore, due to the fact that
the insider will be continually changing patterns, it will be
impossible to detect all types of malicious behavior using a
purely static algorithm; a dynamic learning approach is
required. Essentially we need a comprehensive solution to the
insider threat problem. However, to provide a more
comprehensive solution, we need a more comprehensive
framework. Therefore, we are proposing a framework for
insider threat detection. Our framework will implement a
number of inter-related solutions to detect malicious insiders.
Figure 22.4 illustrates such a framework. We propose four
approaches to this problem. At the heart of our framework is
the module that implements inline reference monitor-based
techniques for feature collection. This feature collection
process will be aided by two modules; one uses game theory
approach and the other uses the natural language-based
approach to determine which features can be collected. The
fourth module implements machine learning techniques to
analyze the collected features.

427



Figure 22.4 Framework for insider threat detection.

In summary, the relationship between the four approaches can
be characterized as follows:

Inline Reference Monitors (IRM) perform covert,
fine-grained feature collection.

Game-theoretic techniques will identify which features should
be collected by the IRMs.

Natural language processing techniques in general and honey
token generation in particular will take an active approach to
introducing additional useful features (i.e., honey token
accesses) that can be collected.

Machine learning techniques will use the collected features to
infer and classify the objectives of malicious insiders.

Details of our framework are provided in [Hamlen et al.,
2011]. We assume that the inline reference monitor tool,
game-theoretic tool, and honey token generation tool will
select and refine the features we need. Our data mining tools
will analyze the features and determine whether there is a
potential for insider threat.

22.5 Summary
In this chapter, we have discussed our approach to insider
threat detection. We represent the insiders and their

428



communication as RDF graphs and then query and mine the
graphs to extract the nuggets. We also provided a
comprehensive framework for insider threat detection.

The insider threat problem is a challenging one. Research is
only beginning. The problem is that the insider may change
his or her patterns and behaviors. Therefore, we need tools
that can be adaptive. For example, our stream mining tools
may be used for detecting such threats. We also need
real-time data mining solutions. Some of the aspects of
real-time data mining are discussed in Chapter 23.

References
[Ahmed and Khan, 2009] Ahmed, M. S., and L. Khan, SISC:
A Text Classification Approach Using Semi Supervised
Subspace Clustering, DDDM ’09: The 3rd International
Workshop on Domain Driven Data Mining in conjunction
with ICDM 2009, December 6, 2009, Miami, Florida.

[Berry et al., 2007] Berry, M. W., M. Browne, A. Langville,
V. P. Pauca, R. J. Plemmons, Algorithms and Applications
for Approximate Nonnegative Matrix Factorization,
Computational Statistics & Data Analysis, Vol. 52, No. 1,
2007, pp. 155–173.

[Carminati et al., 2009] Carminati, B., E. Ferrari, R.
Heatherly, M. Kantarcioglu, B. Thuraisingham: A Semantic
Web-Based Framework for Social Network Access Control,
Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies. ACM, NY, pp. 177−186, 2009.

429



[Cook and Holder, 2006] Cook, D., and L. Holder, Mining
Graph Data, Wiley Interscience, New York, 2006.

[Eberle and Holder, 2009] Eberle, W., and L. Holder,
Applying Graph-Based Anomaly Detection Approaches to the
Discovery of Insider Threats, Proceedings of IEEE
International Conference on Intelligence and Security
Informatics (ISI), June 2009, pp. 206–208.

[Guo et al., 2005] Guo, Y., Z. Pan, J. Heflin, LUBM: A
Benchmark for OWL Knowledge Base Systems, Journal of
Web Semantics, Vol. 8, No. 2–3, 2005.

[Hadoop] Apache Hadoop, http://hadoop.apache.org/

[Hamlen et al., 2011] Hamlen, K., L. Khan, M. Kantarcioglu,
V. Ng, B. Thuraisingham, Insider Threat Detection, UTD
Report, April 2011.

[Masud et al., 2010-a] Masud, M., J. Gao, L. Khan, J. Han, B.
Thuraisingham, Classification and Novel Class Detection in
Concept-Drifting Data Streams under Time Constraints, IEEE
Transactions on Knowledge & Data Engineering (TKDE),
April 2010, IEEE Computer Society, Vol. 23, No. 6, pp.
859–874.

[Masud et al., 2010-b] Masud, M., Q. Chen, J. Gao, L. Khan,
J. Han, B. Thuraisingham, Classification and Novel Class
Detection of Data Streams in a Dynamic Feature Space, in
Proceedings of European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML PKDD),
Barcelona, Spain, September 20–24, 2010, Springer, 2010,
pp. 337–352.

430

http://hadoop.apache.org/


[Maybury et al., 2005] Maybury, M., P. Chase, B. Cheikes, D.
Brackney, S. Matzner, T. Hetherington, et al., Analysis and
Detection of Malicious Insiders, in 2005 International
Conference on Intelligence Analysis, McLean, VA.

[Mitchell, 1997] Mitchell, T., Machine Learning,
McGraw-Hill, 1997.

[Thuraisingham et al., 2009] Thuraisingham B., M.
Kantarcioglu, L. Khan: Building a Geosocial Semantic Web
for Military Stabilization and Reconstruction Operations,
Intelligence and Security Informatics, Pacific Asia Workshop,
PAISI 2009, Bangkok, Thailand, April 27, 2009. Proceedings.
Lecture Notes in Computer Science 5477 Springer 2009, H.
Chen, C. C. Yang, M.Chau, S.-H. Li (Eds.):

[Tong, 2009] Tong, H., Fast Algorithms for Querying and
Mining Large Graphs, CMU Report No. ML-09-112,
September 2009.

431



23

DEPENDABLE REAL-TIME DATA
MINING

23.1 Introduction
Much of the focus on data mining has been for analytical
applications. However, there is a clear need to mine data for
applications that have to meet timing constraints. For
example, a government agency may need to determine
whether a terrorist activity will happen within a certain time
or a financial institution may need to give out financial quotes
and estimates within a certain time. That is, we need tools and
techniques for real-time data mining. Consider, for example, a
medical application where the surgeons and radiologists have
to work together during an operation. Here, the radiologist
has to analyze the images in real time and give inputs to the
surgeon. In the case of military applications, images and
video may arrive from the war zone. These images have to be
analyzed in real time so that advice is given to the soldiers.
The challenge is to determine which data to analyze and
which data to discard for future analysis in non-real time. In
the case of counter-terrorism applications, the system has to
analyze the data about the passenger, from the time the
passenger gets ticketed until the plane is boarded, and give
proper advice to the security agent. For all of these
applications, there is an urgent need for real-time data mining.

432



Thuraisingham et al. introduced the notion of real-time data
mining in [Thuraisingham et al., 2001]. In that paper, we
focused on mining multimedia data, which is an aspect of
real-time data mining. Since then, there have been many
developments in sensor data management as well as stream
data mining. Furthermore, the need for real-time data mining
is more apparent especially due to the need for
counter-terrorism applications. In a later paper, we explored
some issues on real-time data mining [Thuraisingham et al.,
2005]. In particular, we discussed the need for real-time data
mining and also discussed dependability issues, including
incorporating security, integrity, timeliness, and fault
tolerance into data mining. In a later paper [Thuraisingham et
al., 2009], we discussed real-time data mining for intelligence
applications. In this chapter, we summarize the discussions in
our prior papers.

Figure 23.1 Concepts in this chapter.

433



The organization of this chapter is as follows. Some issues in
real-time data mining, including real-time threats, are
discussed in Section 23.2. Adapting data mining techniques to
meet real-time constraints is described in Section 23.3.
Parallel and distributed real-time data mining is discussed in
Section 23.4. Techniques in dependable data mining that
integrate security real-time processing and fault tolerance are
given in Section 23.5. Stream data mining is discussed in
Section 23.6. Summary and directions are provided in Section
23.7. Figure 23.1 illustrates the concepts discussed in this
chapter.

23.2 Issues in Real-Time
Data Mining
As stated in Section 23.1, data mining has typically been
applied to non-real-time analytical applications. Many
applications, especially for counter-terrorism and national
security, need to handle real-time threats. Timing constraints
characterize real-time threats. That is, such threats may occur
within a certain time, and therefore we need to respond to
them immediately. Examples of such threats include the
spread of smallpox virus, chemical attacks, nuclear attacks,
network intrusions, and bombing of a building. The question
is what types of data mining techniques do we need for
real-time threats?

Data mining can be applied to data accumulated over a period
of time. The goal is to analyze the data, make deductions, and
predict future trends. Ideally it is used as a decision support

434



tool. However, the real-time situation is entirely different. We
need to rethink the way we do data mining so that the tools
can produce results in real time.

For data mining to work effectively, we need many examples
and patterns. We observe known patterns and historical data
and then make predictions. Often for real-time data mining, as
well as terrorist attacks, we have no prior knowledge. So the
question is how do we train the data mining tools based on,
say, neural networks without historical data? Here we need to
use hypothetical data as well as simulated data. We need to
work with counter-terrorism specialists and get as many
examples as possible. When we have gathered the examples
and start training the neural networks and other data mining
tools, the question becomes what sort of models do we build?
Often the models for data mining are built beforehand. These
models are not dynamic. To handle real-time threats, we need
the models to change dynamically. This is a big challenge.

Data gathering is also a challenge for real-time data mining.
In the case of non-real-time data mining, we can collect data,
clean data, and format the data, build warehouses, and then
carry out mining. All these tasks may not be possible for
real-time data mining because of time constraints. Therefore,
the questions are what tasks are critical and what tasks are
not? Do we have time to analyze the data? Which data do we
discard? How do we build profiles of terrorists for real-time
data mining? How can we increase processing speed and
overall efficiency? We need real-time data management
capabilities for real-time data mining.

From the previous discussion, it is clear that a lot has to be
done before we can perform real-time data mining. Some

435



have argued that there is no such thing as real-time data
mining and it will be impossible to build models in real time.
Some others have argued that without accurate data, we
cannot do effective data mining. These arguments may be
true. However, others have predicted the impossibility of
technology (e.g., air travel, Internet) that today we take for
granted. Our challenge is to then perhaps redefine data mining
and figure out ways to handle real-time threats.

As we have stated, there are several situations that have to be
managed in real time. Examples are the spread of smallpox,
network intrusions, and analyzing data sensor data. For
example, surveillance cameras are placed in various places
such as shopping centers and in front of embassies and other
public places. Often the data from these sensors must be
analyzed in real time to detect or prevent attacks. We discuss
some of the research directions in the remaining sections.
Figure 23.2 illustrates a concept of operation for real-time
data management and mining where some data are discarded,
other data are analyzed, and a third dataset is stored for future
use. Figure 23.3 illustrates the cycle for real-time data mining.

436



Figure 23.2 Concept of operation for real-time data
management and data mining. (From B. Thuraisingham, L.
Khan, C. Clifton, J. Mauer, M. Ceruti, Dependable Real-Time
Data Mining, pp. 158–165, 2005 © IEEE. With permission.)

437



Figure 23.3 Real-time data mining cycle. (From B.
Thuraisingham, L. Khan, C. Clifton, J. Mauer, M. Ceruti,
Dependable Real-Time Data Mining, pp. 158–165, 2005 ©
IEEE. With permission.)

23.3 Real-Time Data Mining
Techniques
In this section, we examine the various data mining outcomes
and discuss how they could be applied for real-time
applications. The outcomes include making associations, link
analysis, cluster formation, classification, and anomaly
detection. The techniques that result in these outcomes are

438



based on neural networks, decisions trees, market basket
analysis techniques, inductive logic programming, rough sets,
link analysis based on the graph theory, and nearest neighbor
techniques. As we have stated in [Thuraisingham, 2003], the
methods used for data mining are top-down reasoning where
we start with a hypothesis and then determine whether the
hypothesis is true or bottom-up reasoning where we start with
examples and then form a hypothesis.

Let us start with association mining techniques. Examples of
these techniques include market basket analysis techniques
[Agrawal et al., 1993]. The goal is to find which items go
together. For example, we may apply a data mining tool to a
dataset and find that John comes from country X and he has
associated with James, who has a criminal record. The tool
also outputs the result that an unusually large percentage of
people from country X have performed some form of terrorist
attack. Because of the associations between John and country
X, as well as between John and James, and James and
criminal records, one may conclude that John has to be under
observation. This is an example of an association. Link
analysis is closely associated with making associations.
Whereas association rule-based techniques are essentially
intelligent search techniques, link analysis uses
graph-theoretic methods for detecting patterns. With graphs
(i.e., nodes and links), one can follow the chain and find links.
For example, A is seen with B and B is friends with C and C
and D travel a lot together and D has a criminal record. The
question is what conclusions can we draw about A? Now, for
real-time applications, we need association rule mining and
link analysis techniques that output the associations and links
in real time.

439



Relevant research is in progress. Incremental association rule
mining techniques were first proposed in [Cheung et al.,
1996]. More recently, data stream techniques for mining
association have been proposed [Chi et al., 2004]; these will
be discussed further in Section 23.6. Whereas they address
some of the issues faced by real-time data mining, the key
issue of time-critical need for results has not been addressed.
The real-time database researchers have developed various
techniques, including real-time scheduling and
approximate-query processing. We need to examine similar
techniques for association rule mining and link analysis and
determine the outcomes that can be determined in real time.
Are we losing information by imposing real-time constraints?
How can we minimize errors when we impose real-time
constraints? Are approximate answers accurate enough to
base decisions on them?

Next, let us consider clustering techniques. One could analyze
the data and form various clusters. For example, people with
origins from country X and who belong to a certain religion
may be grouped into Cluster I. People with origins from
country Y and who are less than 50 years old may form
another cluster, Cluster II. These clusters could be formed
based on their travel patterns, eating patterns, buying patterns,
or behavior patterns. Whereas clustering techniques do not
rely on any prespecified condition to divide the population,
classification divides the population based on some
predefined condition. The condition is found based on
examples. For example, we can form a profile of a terrorist.
He could have the following characteristics: male less than 30
years of a certain religion and of a certain ethnic origin. This
means all males less than 30 years belonging to the same
religion and the same ethnic origin will be classified into this

440



group and possibly could be placed under observation. These
examples of clustering and classification are for analytical
applications. For real-time applications, the challenge is to
find the important clusters in real time. Again, data stream
techniques may provide a start. Another approach is iterative
techniques. Classical clustering methods such as k-means and
EM could refine answers based on the time available rather
than terminating on distance-based criteria. The question is
how much accuracy and precision are we sacrificing by
imposing timing constraints?

Another data mining outcome is anomaly detection. A good
example here is learning to fly an airplane without wanting to
learn to take off or land. The general pattern is that people
want to get a complete training course in flying. However,
there are now some individuals who want to learn flying but
do not care about take-off or landing. This is an anomaly.
Another example is John always goes to the grocery store on
Saturdays. But on Saturday, October 26, 2002, he goes to a
firearms store and buys a rifle. This is an anomaly and may
need some further analysis as to why he is going to a firearms
store when he has never done so before. Is it because he is
nervous after hearing about the sniper shootings, or is it
because he has some ulterior motive? If he is living, say, in
the Washington, DC, area, then one could understand why he
wants to buy a firearm, possibly to protect himself. But if he
is living in say Socorro, New Mexico, then his actions may
have to be followed up further. Anomaly detection faces
many challenges even if time constraints are ignored. Such an
example is the approaches for Intrusion Detection (see [Lee
and Fan, 2001] and [Axelsson, 1999] for surveys of the
problem, and [Wang and Stolfo, 2004] for a recent discussion
of anomaly detection approaches.) Adding real-time

441



constraints will only exacerbate the difficulties. In many
cases, the anomalies have to be detected in real time both for
cyber security as well as for physical security. The technical
challenge is to come up with meaningful anomalies as well as
meet the timing constraints; however, a larger issue is to
define the problems and surrounding systems to take
advantage of anomaly detection methods in spite of the false
positives and false negatives. Figure 23.4 illustrates examples
of real-time data mining outcomes.

Figure 23.4 Real-time data mining outcomes. (From B.
Thuraisingham, L. Khan, C. Clifton, J. Mauer, M. Ceruti,
Dependable Real-Time Data Mining, pp. 158–165, 2005 ©
IEEE. With permission.)

442



23.4 Parallel, Distributed,
Real-Time Data Mining
For real-time data mining applications, perhaps a combination
of techniques may prove most efficient. For example,
association rule techniques could be applied either in series or
in parallel with clustering techniques, which is illustrated in
Figure 23.5. In series, the association rule technique may
provide enough information to issue a real-time alert to a
decision maker before having to invoke the clustering
algorithms.

By using parallel processing software that executes on one or
more hardware platforms with multiple processors, several
real-time data mining techniques can be explored
simultaneously rather than sequentially. Among the many
ways to implement this, two basic categories emerge. First,
one can execute real-time data mining programs
simultaneously but on separate processors and input the
results to a control program that compares the results to
criteria or threshold values to issue alert reports to a decision
maker.

443



Figure 23.5 Data mining tasks executing in concert on
separate platforms with direct link to the control program.
(From B. Thuraisingham, L. Khan, C. Clifton, J. Mauer, M.
Ceruti, Dependable Real-Time Data Mining, pp. 158–165,
2005 © IEEE. With permission.)

The second category is an architecture in which the programs
execute in parallel, either on the same hardware platform or
over a network, as depicted in Figure 23.6, where a central
program would format and parse data inputs to the various
processors running the programs to determine the different
data mining outcomes. For example, when clusters start to
form in the output of the cluster detection processor, these
clusters could be compared to the associations found in the
association rule processor. Similarly, the patterns formed by
the link analysis processor could be input into the anomaly
detector for examination to see if the pattern is the same or
different from those expected. The various processors could
all process the same data in different ways, or they could
process data from different sources. The central control

444



program could compare the results to the criteria or thresholds
and issue alerts even before the slower algorithms have
finished processing. The control program would continue to
send newly emerging results to the decision maker while the
response to the threat is in progress.

Figure 23.6 Distributed data mining tasks executing on a
network. (From B. Thuraisingham, L. Khan, C. Clifton, J.
Mauer, M. Ceruti, Dependable Real-Time Data Mining, pp.
158–165, 2005 © IEEE. With permission.)

445



Figure 23.7 Data mining tasks executing on a parallel
machine. (From B. Thuraisingham, L. Khan, C. Clifton, J.
Mauer, M. Ceruti, Dependable Real-Time Data Mining, pp.
158–165, 2005 © IEEE. With permission.)

The method of parallel processing depicted in Figure 23.7 is
potentially the fastest and most efficient method of real-time
data mining because the software that implements every data
mining outcome executes on the same hardware platform
without any of the delays associated with communications
networks, routers, and so forth. It is also the most versatile,
challenging, and potentially best implement using artificial
intelligence (AI) techniques for pattern recognition and
algorithm coordination. These AI techniques could include
rule-based reasoning, case-based reasoning, and Bayesian
networks.

23.5 Dependable Data
Mining
For a system to be dependable, it must be secure and fault
tolerant, meet timing deadlines, and manage high-quality
data. However, integrating these features into a system means
that the system has to meet conflicting requirements
determined by the policy makers and the applications
specialists. For example, if the systems make all the access
control checks, then it may miss some of its deadlines. The
challenge in designing dependable systems is to design
systems that are flexible. For example, in some situations it
may be important to meet all the timing constraints, whereas

446



in other situations it may be critical to satisfy all the security
constraints.

The major components of dependable systems include
dependable networks, dependable middleware (including
infrastructures), dependable operating systems, dependable
data managers, and dependable applications. Data mining,
which can be regarded as an aspect of information and data
management, has to be dependable as well. This means that
the data mining algorithms have to have the ability to recover
from faults, maintain security, and meet real-time constraints
all in the same program.

Sensor data may be available in the form of streams. Special
data management systems are needed to process stream data.
For example, much of the data may be transient data.
Therefore, the system has to analyze the data, discard
unneeded data, and store the necessary data all in real time.
Special query processing strategies, including query
optimization techniques, are needed for data stream
management. Many of the queries on stream data are
continuous queries.

Aggregating the sensor data and making sense out of it is a
major research challenge. The data may be incomplete or
sometimes inaccurate. Many data prove to be irrelevant, thus
increasing the noise of the detection-in-clutter task. We need
the capability to deal with uncertainty and reason with
incomplete data. Information management includes extracting
knowledge and models from data as well as mining and
visualizing the data. Much work has been accomplished in
information management in recent years. For example, sensor
data must be visualized for a better understanding of the data.

447



We need to develop intelligent, real-time visualization tools
for the sensor data. We may also need to aggregate the sensor
data and possibly build repositories and warehouses.
However, much of the sensor data may be transient.
Therefore, we need to determine which data to store and
which data to discard. Data may also have to be processed in
real time. Some of the data may be stored and possibly
warehoused and analyzed for conducting analysis and
predicting trends. That is, the sensor data from surveillance
cameras must be processed within a certain time. The data
may also be warehoused for subsequent analysis.

Sensor and stream data mining are becoming important areas.
We need to examine the data mining techniques such as
association rule mining, clustering, and link analysis for
sensor data and data streams from sensors and other devices.
One important consideration is to select the level of
granularity at which to mine the data. For example, should we
mine raw sensor data or data processed at a higher level of
aggregation? For example, patterns found in images are easily
detected only when observed in the image context where the
relationships between image features are preserved. These
features are not recognized easily by analyzing a series of
pixels from the image.

As we have stressed, we need to manage sensor data in real
time. Therefore, we may need to mine the data in real time
also. This means not only building models ahead of time, so
that we can analyze the data in real time, but also possibly
building models in real time. That is, the models have to be
flexible and dynamic. Model formation represents the
aggregation of information at a very high level. This is a
major challenge. As we have stated in Section 23.2, we also

448



need many training examples to build models. For example,
we need to mine sensor data to detect and possibly prevent
terrorist attacks. This means that we need training examples
to train the neural networks, classifiers, and other tools so that
they can recognize in real time when a potential anomaly
occurs. Sensor data mining is a fairly new research area, and
we need a research program for sensor data management and
data mining. The mining of data streams is discussed in
Section 23.6.

Data mining may be a solution to some dependability issues.
Most data mining techniques generate aggregates over large
quantities of data, averaging out random errors. Systematic
errors pose a greater challenge, but as shown in [Agrawal and
Srikant, 2000] and randomization approaches to
privacy-preserving data mining, knowing something about the
source of errors allows high-quality data mining even if we
cannot reconstruct correct data. Many techniques are
non-deterministic; the similarity or dissimilarity of results of
repeated runs provides a measure of dependability. (This was
used to minimize errors in anomaly detection in [Clifton,
2003].) Data mining has the potential to improve the
dependability of decisions based on data, even if each datum
taken separately is not dependable.

Data mining has also come under fire, perhaps unfairly,
because of perceived impacts on privacy. Researchers are
developing techniques for privacy-preserving data mining as
well as for handling the inference problem that occurs
through data mining [Vaidya and Clifton, 2004]. Many
real-time data mining problems involve sensitive data, and
privacy will remain an issue. Many privacy-preserving data
mining approaches come at a significant computational cost.

449



We need to integrate security techniques with real-time data
mining so that we can develop algorithms for dependable data
mining. In particular, methods that trade security for time
constraints may be appropriate for particular problems. A
passenger trying to catch a plane may be willing to accept
some loss of privacy in return for a faster “anomaly
detection” check. However, information about people that is
used to develop the data mining model (who have nothing to
gain from the faster check) must not be disclosed. Such
asymmetric privacy and security requirements raise new
challenges.

23.6 Mining Data Streams
In recent years, advances in hardware technology have made
it easy to store and record numerous transactions and
activities in everyday life in an automated way. Such
processes result in data that often grow without limit, referred
to as data streams. Stream data could come from sensors,
video, and other continuous media, including transactions.
Some research has been performed on mining stream data.
Several important problems recently have been explored in
the data stream domain. Clustering, projected clustering,
classification, and frequent pattern mining on data streams are
a few examples.

Clustering is a form of data management that must be
undertaken with considerable care and attention. The idea
behind clustering is that a given set of data points can be
organized into groups of similar objects through the use of a
distance function. By defining similarity through a distance

450



function, an entire data stream can be partitioned into groups
of similar objects. Methods that do this view the problem of
partitioning the data stream into object groups as an
application of a one-pass clustering algorithm. This has some
merit, but a more careful definition of the problem, with far
better results, will view the data stream as an infinite process
with data continually evolving over time. Consequently, a
process is needed which can, de novo and continuously,
establish dominant clusters apart from distortions introduced
by the previous history of the stream. One way to accomplish
this is to resize the dataset periodically to include new data
sampling and processing from time to time. The operator
could set parameters such as how to include old data
processed along with the new, at what level of granularity and
during what time period. It is important that past discoveries
do not bias future searches that could miss newly formed (or
rarely formed) clusters.

An interesting proposal for a two-component process for
clustering data streams is found in [Aggarwal et al., 2003],
where the components are an online micro-clustering process
and an off-line macro-clustering process. The first of these,
the online micro-clustering component, is based on a
procedure for storing appropriate summary statistics in a fast
data stream. This must be very efficient. The summary
statistics consist of the sum and square of data values, and is a
temporal extension of the cluster feature vector shown by
BIRCH [Zhang et al., 1996]. With respect to the off-line
component, user input is combined with the summary
statistics to afford a rapid understanding of the clusters
whenever this is required, and because this only utilizes the
summary statistics, it is very efficient in practice.

451



Flexibility to consider the way in which the clusters evolve
over time is a feature of this two-phased approach, as is an
opportunity for users to develop insight into real applications.
The question of how individual clusters are maintained online
is discussed in [Aggarwal et al., 2004-b]. Using an iterative
approach, the algorithm for high-dimensional clustering is
able to determine continuously new cluster structures, while
at the same time redefining the set of dimensions included in
each cluster. A normalization process, with the aim of
equalizing the standard deviation along each dimension, is
used for the meaningful comparison of dimensions. As the
data stream evolves over time, the values might be expected
to change as well, making it necessary to re-compute the
clusters and the normalization factor on a periodic basis. A
period for this re-computation can be taken as an interval of a
certain number of points.

For projected clustering on data streams, [Aggarwal et al.,
2004-b] have proposed a method of high-dimensional,
projected data stream clustering called “HPStream.”
HPStream relies upon an exploration of a linear update
philosophy in projected clustering, achieving both high
scalability and high clustering quality. Through HPStream,
consistently high clustering quality can be achieved because
of the program’s adaptability to the nature of the real dataset,
where data reveal their tight clustering behavior only in
different subsets of dimension combinations.

For classification of data streams, [Aggarwal et al., 2004-a]
propose data stream mining in the context of classification
based on one-pass mining. Changes that have occurred in the
model since the beginning of the stream construction process
are not generally recognized in one-pass mining. However,

452



the authors propose the exploitation of incremental updating
of the classification model, which will not be greater than the
best sliding window model on a data stream, thus creating
micro-clusters for each class in the training stream. Such
micro-clusters represent summary statistics of a set of data
points from the training data belonging to the same class,
similar to the clustering model in the off-line component
[Aggarwal et al., 2003]. To classify the test stream in each
instance, a nearest neighbor classification process is applied
after identifying various time horizons and/or segments.
When different time horizons determine different class labels,
majority voting is applied.

With regard to frequent pattern mining on data stream, [Han
et al., 2002] discuss algorithms at multiple time granularities.
They first discuss the landmark model of Motwani and others
[Datar et al., 2002] and argue that the landmark model
considers a stream from start to finish. As a result, the model
is not appropriate for time-sensitive data where the patterns
such as video patterns, as well as transactions, may be
sensitive to time. Therefore, they focus on data streams over
certain intervals, depending on the time sensitivity, and
describe algorithms for extracting frequent patterns in stream
data. In particular, they consider three types of patterns:
frequent patterns, sub-frequent patterns, and infrequent
patterns. They argue that due to limited storage space with
sensor devices, one cannot handle all kinds of patterns.
Therefore, they focus on frequent patterns and sub-frequent
patterns as the sub-frequent patterns could become frequent
patterns over time. They illustrate tree-building algorithms,
which essentially develop a structure that is a pattern tree with
a time window. Such a structure is what they call an

453



FP-stream. This technique essentially relies on the
FP-streams.

Besides these, [Demers et al., 2004] use the notion of an
information sphere that exists within an agency and focus on
mining the multiple high-speed data streams within that
agency. They also discuss the global information spheres that
span across the agencies and focus on joining multiple data
streams.

One major difference is noted between what we have called
real-time data mining and the data stream mining defined by
Han and others. In the case of real-time data mining, the goal
is to mine the data and output results in real time. That is, the
data mining algorithm must meet timing constraints and
observe deadlines. In the case of stream mining, the goal is to
find patterns over specified time intervals. That is, the
patterns may be time sensitive, but the result may not
necessarily lead to an urgent action on the part of a decision
maker unless the pattern were to emerge in time to allow
appropriate follow-up action. We can also see the similarities
between the two notions. That is, while stream mining has to
find patterns within a specified time interval, it may also
imply that after the interval has passed, the patterns may not
be of much value. That is, stream mining also has to meet
timing constraints in addition to finding patterns with
time-sensitive data. Essentially what we need is a taxonomy
for real-time data mining that also includes stream mining.
More detail on stream mining was discussed in Part VI.

454



23.7 Summary
In this chapter, we discussed dependability issues for data
mining. Recently, much emphasis has been placed on data
mining algorithms meeting timing constraints as well as
mining time-sensitive data. For example, how much do we
lose by imposing constraints on the data mining algorithms?
In some situations, it is critical that analysis be completed and
the results reported within a few seconds rather than, say, a
few hours.

We first discussed issues of real-time data mining, and then
we examined various data mining techniques such as
associations and clustering and discussed how they may meet
timing constraints. We also discussed issues of using parallel
processing techniques and mining data streams. This is
because streams come from sensor and video devices, and the
patterns hidden in the streams may be time sensitive. We also
discussed dependability issues for data mining.

Since we introduced the notion of real-time data mining in
[Thuraisingham et al., 2001], much interest has emerged in
the field. Many applications, including counter-terrorism and
financial analysis, clearly need this type of data mining. This
chapter has provided some initial directions. Many
opportunities and challenges remain in real-time data mining.

455



References
[Aggarwal et al., 2003] Aggarwal, C., J. Han, J. Wang, P. S.
Yu, A Framework for Clustering Evolving Data Streams, in
Proceedings of the 2003 International Conference on Very
Large Data Bases (VLDB’03), Berlin, Germany, September
2003, pp. 81–92.

[Aggarwal et al., 2004-a] Aggarwal, C., J. Han, J. Wang, P. S.
Yu, On Demand Classification of Data Streams, Proceedings
of the 2004 International Conference on Knowledge
Discovery and Data Mining (KDD’04), Seattle, WA, August
2004, pp. 503–508.

[Aggarwal et al., 2004-b] Aggarwal, C., J. Han, J. Wang, P. S.
Yu, A Framework for Projected Clustering of High
Dimensional Data Streams, Proceedings of the 2004
International Conference on Very Large Data Bases
(VLDB’04), Toronto, Canada, August 2004, pp. 852–863.

[Agrawal et al., 1993] Agrawal, R., T. Imielinski, A. N.
Swami, Mining Association Rules between Sets of Items in
Large Databases, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington, DC, May 1993, pp. 207–216.

[Agrawal and Srikant, 2000] Agrawal, R., and R. Srikant,
Privacy-Preserving Data Mining, Proceedings of the 2000
ACM SIGMOD International Conference on Management of
Data, Dallas, TX, pp. 439–450.

456



[Axelsson, 1999] Axelsson, S., Research in Intrusion
Detection Systems: A Survey, Technical Report 98-17 (revised
in 1999), Chalmers University of Technology, 1999.

[Cheung et al., 1996] D. W. Cheung, J. Han, V. Ng, C. Y.
Wong, Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique, in
Proceedings 1996 International Conference Data
Engineering, New Orleans, LA, February 1996, pp. 106–114.

[Chi et al., 2004] Chi, Y., H. Wang, P. Yu, R. Muntz,
Moment: Maintaining Closed Frequent Itemsets over a
Stream SlidingWindow, Proceedings of the 4th IEEE
International Conference on Data Mining, ICDM’04, pp.
59–66.

[Clifton, 2003] Clifton, C., Change Detection in Overhead
Imagery using Neural Networks, International Journal of
Applied Intelligence, Vol. 18, No. 2, March 2003, pp.
215–234.

[Datar et al., 2002] Datar, M., A. Gionis, P. Indyk, R.
Motwani, Maintaining Stream Statistics over Sliding
Windows, Proceedings of the 13th SIAM-ACM Symposium on
Discrete Algorithms, 2002.

[Demers, 2004] Demers, A., J. Gehrke, and M. Riedewald,
Research Issues in Mining and Monitoring Intelligent Data,
Data Mining: Next Generation Challenges and Future
Directions, AAAI Press, 2004. (H. Kargupta et al. Eds.), pp.
2–46.

457



[Han et al., 2004] Han, J., J. Pei, Y. Yin, R. Mao, Mining
Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach, Data Mining and
Knowledge Discovery, Vol. 8, No. 1, 2004, pp. 53–87.

[Lee and Fan, 2001] Lee, W., and W. Fan, Mining System
Audit Data: Opportunities and Challenges, SIGMOD Record,
Vol. 30, No. 4, 2001, pp. 33–44.

[Thuraisingham et al., 2001] Thuraisingham, B., C. Clifton,
M. Ceruti, J. Maurer, Real-Time Multimedia Data Mining,
Proceedings of the ISORC Conference, Magdeberg,
Germany, 2001.

[Thuraisingham, 2003] Thuraisingham, B., Data Mining for
Business Intelligence and Counter-Terrorism, CRC Press,
2003.

[Thuraisingham et al., 2005] Thuraisingham B., L. Khan, C.
Clifton, J. Maurer, M. Ceruti, Dependable Real-Time Data
Mining, ISORC, 2005, pp. 158–165.

[Thuraisingham et al., 2009] Thuraisingham, B., L. Khan, M.
Kantarcioglu, S. Chib, J. Han, S. Son, Real-Time Knowledge
Discovery and Dissemination for Intelligence Analysis,
HICSS, 2009, pp. 1–12.

[Vaidya and Clifton, 2004] Jaideep, V., and C. Clifton,
Privacy-Preserving Data Mining: Why, How, and What For?
IEEE Security & Privacy, New York, November/December,
2004.

458



[Wang and Stolfo 2004] Wang, K., S. J. Stolfo, Anomalous
Payload-Based Network Intrusion Detection, Recent
Advances in Intrusion Detection: 7th International
Symposium, RAID 2004, Sophia Antipolis, France,
September 15-17, 2004. Proceedings. Lecture Notes in
Computer Science 3224 Springer 2004, E. Jonsson, A.
Valdes, M. Almgren (Eds.), pp. 203–222.

[Zhang et al., 1996] Zhang, T., R. Ramakrishnan, M. Livny,
BIRCH: An Efficient Data Clustering Method for Very Large
Databases, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal,
Quebec, Canada, June 4–6, 1996. ACM Press 1996, H. V.
Jagadish, I. S. Mumick (Eds.), pp. 103–114.

459

http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/j/Jonsson:Erland.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/v/Valdes:Alfonso.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Almgren:Magnus.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mumick:Inderpal_Singh.html


24

FIREWALL POLICY ANALYSIS

24.1 Introduction
A firewall is a system that acts as an interface of a network to
one or more external networks and regulates the network
traffic passing through it. The firewall decides which packets
to allow through or to drop based on a set of “rules” defined
by the administrator. These rules have to be defined and
maintained with utmost care, as any slight mistake in defining
the rules may allow unwanted traffic to enter or leave the
network or may deny passage to legitimate traffic.
Unfortunately, the process of manual definition of the rules
and trying to detect mistakes in the rule set by inspection is
prone to errors and is time consuming. Thus, research in the
direction of detecting anomalies in firewall rules has gained
momentum recently. Our work focuses on automating the
process of detecting and resolving the anomalies in the rule
set.

Firewall rules are usually in the form of criteria and an action
to take if any packet matches the criteria. Actions are usually
“accept” and “reject.” A packet arriving at a firewall is tested
with each rule sequentially. Whenever it matches with the
criteria of a rule, the action specified in the rule is executed,
and the rest of the rules are skipped. For this reason, firewall
rules are order sensitive. When a packet matches with more

460



than one rule, the first such rule is executed. Thus, if the set of
packets matched by two rules are not disjoint, they will create
anomalies. For instance, the set of packets matching a rule
may be a superset of those matched by a subsequent rule. In
this case, all the packets that the second rule could have
matched will be matched and handled by the first one, and the
second rule will never be executed. More complicated
anomalies may arise when the sets of packets matched by two
rules are overlapped. If no rule matches the packet, then the
default action of the firewall is taken. Usually such packets
are dropped silently, so that nothing unwanted can enter or
exit the network. In this chapter, we assume that the default
action of the firewall system is to reject, and we develop our
algorithms accordingly.

In this chapter, we describe our algorithms for resolving
anomalies in firewall policy rules. The organization of the
chapter is as follows. In Section 24.2, we discuss related
work. In Section 24.3, we discuss the basic concepts of
firewall systems, representation of rules in firewalls, possible
relations between rules, and possible anomalies between rules
in a firewall policy definition. In Section 24.4, we first
present our algorithm for detecting and resolving anomalies
and illustrate the algorithm with an example. Next, we present
our algorithm to merge rules and provide an example of its
application. The chapter is concluded in Section 24.5. Figure
24.1 illustrates the concepts in this chapter.

461



Figure 24.1 Concepts in this chapter.

24.2 Related Work
Of late, research work on detecting and resolving anomalies
in firewall policy rules have gained momentum. [Mayer et al.,
2000] presents tools for analyzing firewalls. [Eronen and
Zitting, 2001] propose the approach of representing the rules
as a knowledge base and present a tool based on Constraint
Logic Programming to allow the user to write higher level
operations and queries. Work focusing on automating the
process of detecting anomalies in policy include [Hazelhurst,
1999], in which Hazelhurst describes an algorithm to
represent the rules as a Binary Decision Diagram and
presents a set of algorithms to analyze the rules. [Eppstein
and Muthukrishnan, 2001] give an efficient algorithm for
determining whether a rule set contains conflicts. Al-Shaer et
al. define the possible relations between firewall rules in
[Al-Shaer and Hamed, 2002, 2003, 2006], and then define
anomalies that can occur in a rule set in terms of these

462



definitions. They also give an algorithm to detect these
anomalies and present policy advisor tools using these
definitions and algorithm. They extend their work to
distributed firewall systems in [Al-Shaer and Hamed, 2004],
[Al-Shaer et al., 2005]. A work that focuses on detecting and
resolving anomalies in firewall policy rules is [Hari et al.,
2000], in which they propose a scheme for resolving conflicts
by adding resolve filters. However, this algorithm requires the
support of prioritized rules, which is not always available in
firewalls. Also their treatment of the criterion values only as
prefixes makes their work specific. [Fu et al., 2001] define
high-level security requirements and develop mechanisms to
detect and resolve conflicts among IPSec policies. [Golnabi et
al., 2006] describe a data mining approach to the anomaly
resolution.

Most current research focuses on the analysis and detection of
anomalies in rules. Those that do address the resolution of
anomalies require special features or provisions from the
firewall or focus on specific areas. We base our work on the
research of [Al-Shaer et al., 2002, 2003, 2004], whose
analysis is applicable to all rule-based firewalls in general.
However, their work is limited to the detection of anomalies.
We also show that one of their definitions is redundant, and
the set of definitions do not cover all possibilities. In our
work, we remove the redundant definition and modify one
definition to cover all the possible relations between rules.
We also describe the anomalies in terms of the modified
definitions. Then we present a set of algorithms to
simultaneously detect and resolve these anomalies to produce
an anomaly-free rule set. We also present an algorithm to
merge rules whenever possible. Reports are also produced by

463



the algorithms describing the anomalies that were found, how
they were resolved, and which rules were merged.

24.3 Firewall Concepts
In this section, we first discuss the basic concepts of firewall
systems and their policy definition. We present our modified
definitions of the relationships between the rules in a firewall
policy, and then present the anomalies as described in
[Al-Shaer and Hamed, 2002]. Figure 24.2 illustrates the
concepts in this section.

Figure 24.2 Firewall policy rules.

464



24.3.1 Representation of Rules

A rule is defined as a set of criteria and an action to perform
when a packet matches the criteria. The criteria of a rule
consist of the elements direction, protocol, source IP, source
port, destination IP, and destination port. Therefore, a
complete rule may be defined by the ordered tuple _direction,
protocol, source IP, source port, destination IP, destination
port, action_. Each attribute can be defined as a range of
values, which can be represented and analyzed as sets.

24.3.2 Relationship between Two Rules

The relation between two rules essentially means the relation
between the set of packets they match. Thus, the action field
does not come into play when considering the relation
between two rules. Because the values of the other attributes
of firewall rules can be represented as sets, we can consider a
rule to be a set of sets, and we can compare two rules using
the set relations. Two rules can be exactly equal if every
criterion in the rules matches exactly; one rule can be the
subset of the other if each criterion of one rule is a subset of,
or equal to, the other rule’s criteria; or they can be overlapped
if the rules are not disjoint and at least one of the criteria is
overlapped. In the last case, a rule would match a portion of
the packets matched by the other but not every packet, and the
other rule would also match a portion of packets matched by
the first rule, but not all. Al-Shaer et al. discuss these possible
relations in [Al-Shaer and Hamed, 2002] and they define the
relations completely disjoint, exactly matched, inclusively
matched, partially disjoint and correlated. We propose some

465



modifications to the relations defined in [Al-Shaer and
Hamed, 2002]. First, we note that it is not needed to
distinguish between completely disjoint and partially disjoint
rules, as two rules will match an entirely different set of
packets if they differ, even only in one field. Further, we
observe that the formal definition of correlated rules does not
include the possibility of an overlapped field in which the
fields are neither disjoint nor a subset of one or the other. We
propose the following modified set of relations between the
rules.

Disjoint. Two rules r and s are disjoint, denoted as r RD s, if
they have at least one criterion for which they have
completely disjoint values. Formally, r RD s if ∃a ∈ attr[r.a ∩
s.a = φ].

Exactly Matching. Two rules r and s are exactly matched,
denoted by r REM s, if each criterion of the rules matches
exactly. Formally, r REM s if ∃a ∈ attr[r.a = s.a].

Inclusively Matching. A rule r is a subset, or inclusively
matched of another rule s, denoted by r REM s, if there exists
at least one criterion for which r’s value is a subset of s’s
value and for the rest of the attributes r’s value is equal to s’s
value. Formally, r REM s if ∃a⊂attr [a ≠ φ ∧ ∀x∈a [r.x ⊂ s.x]
∧ ∀y∈a c [r.y = s.y]].

Correlated. Two rules r and s are correlated, denoted by r RC
s, if r and s are not disjoint, but neither is the subset of the
other. Formally, r RC s if (r RD s) ∧ (r RIM s) ∧ (s RIM r).

466



24.3.3 Possible Anomalies between Two
Rules

[Al-Shaer and Hamed, 2002] give formal definitions of the
possible anomalies between rules in terms of the relations
defined in [Al-Shaer and Hamed, 2002]. Of these anomalies,
we consider generalization not to be an anomaly, as it is used
in practice to handle a specific group of addresses within a
larger group, and as such we omit it from our consideration.
Here, we define the anomalies in terms of the relations given
earlier.

Shadowing Anomaly. A rule r is shadowed by another rule s
if s precedes r in the policy, and s can match all the packets
matched by r. The effect is that r is never activated. Formally,
rule r is shadowed by s if s precedes r, r REM s, and r.action ≠
s.action, or s precedes r, r RIM s, and r.action ≠ s.action.

Correlation Anomaly. Two rules r and s are correlated if
they have different filtering actions and the r matches some
packets that match s and the s matches some packets that r
matches. Formally, rules r and s have a correlation anomaly if
r RC s, r.action ≠ s.action.

Redundancy Anomaly. A redundant rule r performs the
same action on the same packets as another rule s such that if
r is removed, the security policy will not be affected.
Formally, rule r is redundant of rule s if s precedes r, r REM s,
and r.action = s.action, or s precedes r, r RIM s, and r.action =
s.action; whereas rule s is redundant to rule r if s precedes r, s
RIM r, r.action = s.action and ?∃t where s precedes t and t
precedes r, s{RIM,RC}t, r.action ≠ t.action.

467



24.4 Anomaly Resolution
Algorithms
This section describes the algorithms to detect and resolve the
anomalies present in a set of firewall rules as defined in the
previous section. The algorithm is in two parts. The first part
analyzes the rules and generates a set of disjoint firewall rules
that do not contain any anomaly. The second part analyzes the
set of rules and tries to merge the rules in order to reduce the
number of rules thus generated without introducing any new
anomaly. Figure 24.3 illustrates the flow of firewall policy
analysis algorithms discussed in this section.

24.4.1 Algorithms for Finding and
Resolving Anomalies

In this section, we present our algorithm to detect and resolve
anomalies. In this algorithm, we resolve the anomalies as
follows: In case of shadowing anomaly, when rules are
exactly matched, we keep the one with the reject action.
When the rules are inclusively matched, we reorder the rules
to bring the subset rule before the superset rule. In case of
correlation anomaly, we break down the rules into disjoint
parts and insert them into the list. Of the part that is common
to the correlated rules, we keep the one with the reject action.
In case of redundancy anomaly, we remove the redundant
rule. In our algorithm, we maintain two global lists of firewall
rules: an old rules list and a new rules list. The old rules list
will contain the rules as they are in the original firewall

468



configuration, and the new rules list will contain the output of
the algorithm, a set of firewall rules without any anomaly.
The approach taken here is incremental; we take each rule in
the old rules list and insert it into the new rules list in such a
way that the new rules list remains free from anomalies.
Algorithm Resolve-Anomalies controls the whole process.
After initializing the global lists in lines 1 and 2, it takes each
rule from the old rules list and invokes algorithm Insert on it
in lines 3 to 4. Then, it scans the new rules list to resolve any
redundancy anomalies that might remain in the list in lines 5
to 10 by looking for and removing any rule that is a subset of
a subsequent rule with same action.

Figure 24.3 Flow of firewall policy analysis algorithms.

Algorithm Insert inserts a rule into the new rules list in such a
way that the list remains anomaly free. If the list is empty, the
rule is unconditionally inserted in line 2. Otherwise, Insert
tests the rule with all the rules in new rules list using the
Resolve algorithm in the “for” loop in line 5. If the rule
conflicts with any rule in the list, Resolve will handle it and
return true, breaking the loop. So, at line 10, if insert flag is

469



true, it means that Resolve has already handled the rule.
Otherwise, the rule is disjoint or superset with all the rules in
new rules list, and it is inserted at the end of the list in line 11.

Algorithm: Resolve-Anomalies

Resolve anomalies in firewall rules file

1. old rules list ← read rules from config file
2. new rules list ← empty list
3. for all r ∈ old rules list do
4. Insert(r, new rules list)
5. for all r ∈ new rules list do
6. for all s ∈ new rules list after r do
7. if r ⊂ s then
8. if r.action = s.action then
9. Remove r from new rules list

10. break

Algorithm: Insert(r,new rules list)

Insert the rule r into new rules list

470



1. if new rules list is empty then
2. insert r into new rules list
3. else
4. inserted ← false
5. for all s ∈ new rules list do
6. if r and s are not disjoint then
7. inserted ← Resolve(r, s)
8. if inserted = true then
9. break

10. if inserted = false then
11. Insert r into new rules list

The algorithm Resolve is used to detect and resolve
anomalies between two non-disjoint rules. This algorithm is
used by the Insert algorithm. The first rule passed to Resolve,
r, is the rule being inserted, and the second parameter, s, is a
rule already in the new rules list. In comparing them, the
following are the possibilities:

1. r and s are equal. If they are equal, and their actions
are same, then any one can be discarded. If the
actions are different, then the one with the reject
action is retained. This case is handled in lines 1 to 6.

2. r is a subset of s. In this case, we simply insert r
before s regardless of the action. This case is handled
in lines 7 to 9.

3. r is a superset of s. In this case, r may match with
rules further down the list, so it is allowed to be
checked further. No operation is performed in this
case. This case is handled in lines 10 to 11.

471



4. r and s are correlated. In this case, we need to break
up the correlated rules into disjoint rules. This case is
handled in lines 12 to 19. First the set of attributes in
which the two rules differ is determined in line 13,
and then Split is invoked for each of the differing
attributes in the “for” loop in line 14. After Split
returns, r and s contain the common part of the rules,
which is then inserted.

Algorithm: Resolve(r, s)

Resolve anomalies between two rules r and s

1. if r = s then
2. if r.action ≠ s.action then
3. set s.action to REJECT and report anomaly
4. else
5. report removal of r
6. return true
7. if r ⊂ s then
8. insert r before s into new rules list and report

reordering
9. return true

10. if s ⊂ r then
11. return false
12. Remove s from new rules list
13. Find set of attributes a = {x|r.x ≠ s.x}
14. for all ai ∈ a do
15. Split(r, s, ai)

472



16. if r.action ≠ s.action then
17. s.action ← REJECT
18. Insert(s, new rules list)
19. return true

Algorithm Split is used to split two non-disjoint rules. It is
passed through the two rules and the attribute on which the
rules differ. It first extracts the parts of the rules that are
disjoint to the two rules and invokes the Insert algorithm on
them. Then it computes the common part of the two rules. Let
r and s be two rules and let a be the attribute for which Split
is invoked. The common part will always start with
max(r.a.start, s.a.start) and end with min(r.a.end, s.a.end). The
disjoint part before the common part begins with min(r.a.start,
s.a.start) and ends with max(r.a.start, s.a.start) − 1, and the
disjoint part after the common part starts with min(r.a.end,
s.a.end) + 1 and ends with max(r.a.end, s.a.end). As these two
parts are disjoint with r and s, but we do not know their
relation with the other rules in the new rules list, they are
inserted into the new rules list by invoking the Insert
procedure. The common part of the two rules is computed in
lines 13 and 14. The disjoint part before the common part is
computed and inserted in lines 5 to 8. The disjoint part after
the common part is computed and inserted in lines 9 to 12.

Algorithm: Split(r,s,a)

473



Split overlapping rules r and s based on attribute a

1. left ← min(r.a.start, s.a.start)
2. right ← max(r.a.end, s.a.end)
3. common start ← max(r.a.start, s.a.start)
4. common end ← min(r.a.end, s.a.end)
5. if r.a.start > s.a.start then
6. Insert(((left, common start−1), rest of s’s attributes),

new rules list)
7. else if r.a.start < s.a.start then
8. Insert(((left, common start−1), rest of r’s attributes),

new rules list)
9. if r.a.end > s.a.end then

10. Insert(((common end+1, right), rest of r’s attributes),
new rules list)

11. else if r.a.end < s.a.end then
12. Insert(((common end+1, right), rest of s’s attributes),

new rules list)
13. r ← ((common start, common end), rest of r’s

attributes)
14. s ← ((common start, common end), rest of s’s

attributes)

After completion of the Resolve-Anomalies algorithm, the
new rules list will contain the list of firewall rules that are free
from all the anomalies in consideration.

24.4.1.1 Illustrative Example Let us consider the following
set of firewall rules for analysis with the algorithm.

474



1. (IN, TCP, 129.110.96.117, ANY, ANY, 80,
REJECT)

2. (IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT)
3. (IN, TCP, ANY, ANY, 129.110.96.80, 80, ACCEPT)
4. (IN, TCP, 129.110.96.*, ANY, 129.110.96.80, 80,

REJECT)
5. (OUT, TCP, 129.110.96.80, 22, ANY, ANY,

REJECT)
6. (IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 22,

REJECT)
7. (IN, UDP, 129.110.96.117, ANY, 129.110.96.*, 22,

REJECT)
8. (IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22,

REJECT)
9. (IN, UDP, 129.110.96.117, ANY, 129.110.96.117,

22, ACCEPT)
10. (IN, UDP, 129.110.96.117, ANY, 129.110.96.117,

22, REJECT)
11. (OUT, UDP, ANY, ANY, ANY, ANY, REJECT)

Step 1. As the new rules list is empty, rule 1 is inserted as it
is.

Step 2. When rule 2 is inserted, the new rules list contains
only one rule, the one that was inserted in the previous step.
We have, r = (IN, TCP, 129.110.96.*, ANY, ANY, 80,
ACCEPT) and s = (IN, TCP, 129.110.96.117, ANY, ANY,
80, REJECT).

Here, s ⊂ r, so r is inserted into new rules list after s.

475



Step 3. In this step, r = (IN, TCP, ANY, ANY,
129.110.96.80, 80, ACCEPT). In the first iteration, s =
(IN,TCP,129.110.96.117,ANY,ANY,80,REJECT).

Clearly these two rules are correlated, with s.srcip ⊂ r.srcip
and r.destip ⊂ s.destip. Therefore, these rules must be broken
down. After splitting the rules into disjoint parts, we have the
following rules in the new rules list:

1. (IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80,
80, ACCEPT)

2. (IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80,
80, ACCEPT)

3. (IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79,
80, REJECT)

4. (IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254,
80, REJECT)

5. (IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80,
REJECT)

6. (IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT)

After completion of the first “for” loop in line 3 in the
algorithm Resolve-Anomalies, the new rules list will hold the
following rules:

1. (IN, TCP, 129.110.96.1-116, ANY, 129.110.96.80,
80, ACCEPT)

2. (IN, TCP, 129.110.96.118-254, ANY, 129.110.96.80,
80, ACCEPT)

3. (IN, TCP, 129.110.96.117, ANY, 129.110.96.1-79,
80, REJECT)

4. (IN, TCP, 129.110.96.117, ANY, 129.110.96.81-254,
80, REJECT)

476



5. (IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 80,
REJECT)

6. (IN, TCP, 129.110.96.*, ANY, 129.110.96.80, 80,
REJECT)

7. (IN, TCP, 129.110.96.*, ANY, ANY, 80, ACCEPT)
8. (OUT, TCP, 129.110.96.80, 22, ANY, ANY,

REJECT)
9. (IN, TCP, 129.110.96.117, ANY, 129.110.96.80, 22,

REJECT)
10. (IN, UDP, 129.110.96.117, ANY, 129.110.96.80, 22,

REJECT)
11. (IN, UDP, 129.110.96.117, ANY, 129.110.96.117,

22, REJECT)
12. (IN, UDP, 129.110.96.117, ANY, 129.110.96.*, 22,

REJECT)
13. (OUT, UDP, ANY, ANY, ANY, ANY, REJECT)

The next step is to scan this list to find and resolve the
redundancy anomalies. In this list, rule 1 is a subset of rule 6,
but as the rules have different action, rule 1 is retained.
Similarly, rule 2, which is also a subset of rule 6 with
differing action, is also retained. Rules 3 and 4 are subsets of
rule 7, but are retained as they have different action than rule
7. Rule 5 is a subset of rule 6, and as they have the same
action, rule 5 is removed. After removing these rules, the list
is free from all the anomalies.

24.4.2 Algorithms for Merging Rules

After the completion of the anomaly resolution algorithm,
there are no correlated rules in the list. In this list, we can
merge rules having attributes with consecutive ranges with

477



the same action. To accomplish this, we construct a tree using
Algorithm TreeInsert. Each node of the tree represents an
attribute. The edges leading out of the nodes represent values
of the attribute. Each edge in the tree represents a particular
range of value for the attribute of the source node, and it
points to a node for the next attribute in the rule represented
by the path. For example, the root node of the tree represents
the attribute Direction, and there can be two edges out of the
root representing IN and OUT. We consider a firewall rule to
be represented by the ordered tuple, as mentioned in Section
24.3. So, the edge representing the value IN coming out of the
root node would point to a node for Protocol. The leaf nodes
always represent the attribute Action. A complete path from
the root to a leaf corresponds to one firewall rule in the
policy.

Algorithm TreeInsert takes as input a rule and a node of the
tree. It checks if the value of the rule for the attribute
represented by the node matches any of the values of the
edges out of the node. If it matches any edge of the node, then
it recursively invokes TreeInsert on the node pointed by the
edge with the rule. Otherwise, it creates a new edge and adds
it to the list of edges of the node.

Algorithm: TreeInsert(n, r)

Inserts rule r into the node n of the rule tree

1. for all edge ei ∈ n.edges do

478



2. if r.(n.attribute) = ei.range then
3. TreeInsert(ei.vertex, r)
4. return
5. v ← new Vertex(next attribute after n.attribute,

NULL)
6. Insert new edge _r.(n.attribute), r.(n.attribute), v _ in

n.edges
7. TreeInsert(v, r)

We use Algorithm Merge on the tree to merge those edges of
the tree that have consecutive values of attributes and have
exactly matching subtrees. It first calls itself recursively on
each of its children in line 2 to ensure that their subtrees are
already merged. Then, it takes each edge and matches its
range with all the other edges to see if they can be merged.
Whether two edges can be merged depends on two criteria.
First, their ranges must be contiguous; that is, the range of
one starts immediately after the end of the other. Second, the
subtrees of the nodes pointed to by the edges must match
exactly. This criterion ensures that all the attributes after this
attribute are the same for all the rules below this node. If
these two criteria are met, they are merged into one edge in
place of the original two edges. After merging the possible
rules, the number of rules defined in the firewall policy is
reduced, and it helps to increase the efficiency of firewall
policy management.

Algorithm: Merge(n)

479



Merges edges of node n representing a continuous range

1. for all edge e ∈ n.edges do
2. Merge(e.node)
3. for all edge e ∈ n.edges do
4. for all edge e′ ≠ e ∈ n.edges do
5. if ranges of e and e′ are contiguous and

Subtree(e)=Subtree(e′) then
6. Merge e.range and e′.range into e.range
7. Remove e′ from n.edges

24.4.2.1 Illustrative Example of the Merge Algorithm To
illustrate the merging algorithm, we start with the following
set of non-anomalous rules. We deliberately chose a set of
rules with the same action since rules with a different action
will never be merged.

1. (IN, TCP, 202.80.169.29-63, 483,
129.110.96.64-127, 100-110, ACCEPT)

2. (IN, TCP, 202.80.169.29-63, 483,
129.110.96.64-127, 111-127, ACCEPT)

3. (IN, TCP, 202.80.169.29-63, 483,
129.110.96.128-164, 100-127, ACCEPT)

4. (IN, TCP, 202.80.169.29-63, 484, 129.110.96.64-99,
100-127, ACCEPT)

5. (IN, TCP, 202.80.169.29-63, 484,
129.110.96.100-164, 100-127, ACCEPT)

6. (IN, TCP, 202.80.169.64-110, 483-484,
129.110.96.64-164, 100-127,ACCEPT)

480



From this rules list we generate the tree by the TreeInsert
algorithm. On this tree, the Merge procedure is run. The
Merge algorithm traverses the tree in post order. After the
Merge algorithm is complete on the entire tree, we are left
with the single rule:

(IN, TCP, 202.80.169.29-110, 483-484, 129.110.96.64-164,
100-127, ACCEPT).

Details of the example are given in [Abedin et al., 2006].

24.5 Summary
Resolution of anomalies from firewall policy rules is vital to
the network’s security, as anomalies can introduce
unwarranted and hard-to-find security holes. Our work
presents an automated process for detecting and resolving
such anomalies. The anomaly resolution algorithm and the
merging algorithm should produce a compact yet
anomaly-free rule set that would be easier to understand and
maintain. These algorithms can also be integrated into policy
advisor and editing tools. This work also establishes the
complete definition and analysis of the relations between
rules.

In the future, this analysis can be extended to distributed
firewalls. Also, we propose to use data mining techniques to
analyze the log files of the firewall and discover other kinds
of anomalies. These techniques should be applied only after
the rules have been made free from anomaly by applying the
algorithms in this chapter. That way it would be ensured that

481



not only syntactic but also semantic mistakes in the rules will
be captured. Research in this direction has already started.

References
[Abedin et al., 2006] Abedin, M., S. Nessa, L. Khan, B.
Thuraisingham, Detection and Resolution of Anomalies in
Firewall Policy Rules, DBSec 2006, pp. 15–29.

[Al-Shaer and Hamed, 2002] Al-Shaer, E., and H. Hamed,
Design and Implementation of Firewall Policy Advisor Tools,
Technical Report CTI-techrep0801, School of Computer
Science Telecommunications and Information Systems,
DePaul University, August 2002.

[Al-Shaer and Hamed, 2003] Al-Shaer, E., and H. Hamed,
Firewall Policy Advisor for Anomaly Detection and Rule
Editing, in IEEE/IFIP Integrated Management Conference
(IM’2003), March 2003, pp. 17–30.

[Al-Shaer and Hamed, 2004] Al-Shaer, E., and H. Hamed,
Discovery of Policy Anomalies in Distributed Firewalls, in
Proceedings of the 23rd Conference IEEE Communications
Society (INFOCOM 2004), Vol. 23, No. 1, March 2004, pp.
2605–2616.

[Al-Shaer and Hamed, 2006] Al-Shaer, E., and H. Hamed,
Taxonomy of Conflicts in Network Security Policies, IEEE
Communications Magazine, Vol. 44, No. 3, March 2006, pp.
134–141.

482



[Al-Shaer et al., 2005] Al-Shaer, E., H. Hamed, R. Boutaba,
M. Hasan, Conflict Classification and Analysis of Distributed
Firewall Policies, IEEE Journal on Selected Areas in
Communications (JSAC), Vol. 23, No. 10, October 2005, pp.
2069–2084.

[Eppstein and Muthukrishnan, 2001] Eppstein, D., and S.
Muthukrishnan, Internet Packet Filter Management and
Rectangle Geometry, in Proceedings of the 12th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA
2001), January 2001, pp. 827–835.

[Eronen and Zitting, 2001] Eronen, P., and J. Zitting, An
Expert System for Analyzing Firewall Rules, in Proceedings
of the 6th Nordic Workshop on Secure IT Systems (NordSec
2001), November 2001, pp. 100–107.

[Fu et al., 2001] Fu, Z., S. F. Wu, H. Huang, K. Loh, F. Gong,
I. Baldine, C. Xu, IPSec/VPN Security Policy: Correctness,
Conflict Detection, and Resolution, Proceedings of the Policy
2001 Workshop, January 2001, pp. 39–56.

[Golnabi et al., 2006] Golnabi, K., R. K. Min, L. Khan, E.
Al-Shaer, Analysis of Firewall Policy Rules Using Data
Mining Techniques, in IEEE/IFIP Network Operations and
Management Symposium (NOMS 2006), April 2006, pp.
305–315.

[Hari et al., 2000] Hari, A., S. Suri, G. M. Parulkar, Detecting
and Resolving Packet Filter Conflicts, in INFOCOM, Vol. 3,
March 2000, pp. 1203–1212.

483



[Hazelhurst, 1999] Hazelhurst, S., Algorithms for Analysing
Firewall and Router Access Lists, Technical Report
TR-WitsCS-1999-5, Department of Computer Science,
University of the Witwatersrand, South Africa, July 1999.

[Mayer et al., 2000] Mayer, A., A. Wool, E. Ziskind, Fang: A
Firewall Analysis Engine, in Proceedings of the IEEE
Symposium on Security and Privacy, IEEE Press, May 2000,
pp. 177–187.

484



Conclusion to Part VII

We have presented data mining tools for various emerging
security applications. These include data mining tools for
active defense and insider threat analysis. In addition, we
discussed aspects of real-time data mining as well as data
mining for firewall policy rule management. Some of the
tools discussed here are in the design stages and need to be
developed further. Nevertheless, they provide some ideas on
our approach to handling the emerging applications.

This brings us to the end of the discussion of the data mining
tools. As we have stated, malware is becoming more and
more sophisticated as new technologies emerge. Malware will
be continuously changing patterns so that it is not caught.
Therefore we need tools that can handle adaptable malware,
as well as tools that can detect malware in real time.

485



CHAPTER 25

SUMMARY AND DIRECTIONS

25.1 Introduction
This chapter brings us to the close of Data Mining Tools for
Malware Detection. We discussed several aspects, including
supporting technologies such as data mining, malware, and
data mining applications, and we provided a detailed
discussion of the tools we have developed for malware
detection. The applications we discussed included email
worm detection, remote exploited detection, malicious code
detection, and botnet detection. This chapter provides a
summary of the book and gives directions for data mining for
malware detection.

The organization of this chapter is as follows. In Section 25.2
we give a summary of this book. We have taken the
summaries from each chapter and formed a summary of this
book. In Section 25.3, we discuss directions for data mining
for malware detection. In Section 25.4 we give suggestions as
to where to go from here.

25.2 Summary of This Book
Chapter 1 provided an introduction to the book. We first
provided a brief overview of the data mining techniques and

486



applications and discussed various topics addressed in this
book, including the data mining tools we have developed. Our
framework is a three-layer framework, and each layer was
addressed in one part of this book. This framework was
illustrated in Figure 1.10. We replicate this framework in
Figure 25.1.

The book is divided into seven parts. Part I consists of four
chapters, 2, 3, 4, and 5. Chapter 2 provided an overview of
data mining techniques used in this book. Chapter 3 provided
some background information on malware. In Chapter 4, we
provided an overview of data mining for security
applications. The tools we have described in our previous
book were discussed in Chapter 5.

487



488



Figure 25.1 Components addressed in this book.

Part II consists of three chapters, 6, 7, and 8, and described
our tool for email worm detection. An overview of email
worm detection was discussed in Chapter 6. Our tool was
discussed in Chapter 7. Evaluation and results were discussed
in Chapter 8. Part III consists of three chapters, 9, 10, and 11,
and described our tool malicious code detection. An overview
of malicious code detection was discussed in Chapter 9. Our
tool was discussed in Chapter 10. Evaluation and results were
discussed in Chapter 11. Part IV consists of three chapters,
12, 13, and 14, and described our tool for detecting remote
exploits. An overview of detecting remote exploits was
discussed in Chapter 12. Our tool was discussed in Chapter
13. Evaluation and results were discussed in Chapter 14. Part
V consists of three chapters, 15, 16, and 17, and described our
tool for botnet detection. An overview of botnet detection was
discussed in Chapter 15. Our tool was discussed in Chapter
16. Evaluation and results were discussed in Chapter 17. Part
VI consists of three chapters, 18, 19, and 20, and described
our tool for stream mining. An overview of stream mining
was discussed in Chapter 18. Our tool was discussed in
Chapter 19. Evaluation and results were discussed in Chapter
20. Part VII consists of four chapters, 21, 22, 23, and 24, and
described our tools for emerging applications. Our approach
for detecting adaptive malware was discussed in Chapter 21.
Our approach for insider threat detection was discussed in
Chapter 22. Real-time data mining was discussed in Chapter
23. Firewall policy management tool was discussed in
Chapter 24.

Chapter 25, which is this chapter, provides a summary of the
book. In addition, we have four appendices that provide

489



supplementary information. Appendix A provides an
overview of data management and describes the relationship
between our books. Appendix B describes trustworthy
systems. Appendix C describes secure data, information, and
knowledge management, and Appendix D describes semantic
web technologies.

25.3 Directions for Data
Mining Tools for Malware
Detection
There are many directions for data mining for malware
detection. Figure 25.2 illustrates our directions. In the list that
follows, we elaborate on the areas that need further work. In
particular, we will reiterate the key points raised for each part.

Part I: Data Mining and Security: One of the major challenges
is to determine the appropriate techniques for different types
of malware. We still need more benchmarks and performance
studies. In addition, the techniques should result in fewer
false positives and negatives. Furthermore, as we have stated,
malware is causing chaos in society and in the software
industry. Malware technology is getting more and more
sophisticated. Malware is continuously changing patterns so
as not to get caught. Therefore, developing solutions to detect
and/or prevent malware has become an urgent need.

490



Figure 25.2 Directions for data mining tools for malware
detection.

Part II: Data Mining for Email Worm Detection: Future work
here will include detecting worms by combining the
feature-based approach with content-based approach to make
it more robust and efficient. In addition, we need to focus on
the statistical property of the contents of the messages for
possible contamination of worms.

Part III: Data Mining for Detecting Malicious Executables: In
this part, we focused on techniques such as SVM and NB. We
need to examine other techniques as well as integrate multiple
techniques. We will also work to develop ways of extracting
more useful features.

Part IV: Data Mining for Detecting Remote Exploits: As in
the case of malicious executables, we need to examine other
techniques as well as integrate multiple techniques. We will
also work to develop ways of extracting more useful features.

491



Part V: Data Mining for Detecting Botnets: We need to
examine more sophisticated data mining techniques, such as
the data stream classification techniques, for botnet detection.
Data stream classification techniques will be particularly
suitable for botnet traffic detection, because the botnet traffic
itself is a kind of data stream. We would need to extend our
host-based detection technique to a distributed framework.

Part VI: Stream Mining for Security Application: We need to
extend stream mining to real-time data stream classification.
For example, we have to optimize the training, including the
creation of decision boundary. The outlier detection and novel
class detection should also be made more efficient. We
believe the cloud computing framework can play an important
role in increasing the efficiency of these processes.

Part VII: Emerging Applications: For active defense, we need
techniques that can handle adaptable malware. For insider
threat detection, we need scalable graph mining techniques.
For real-time data mining, we need techniques that can meet
timing constraints as well as develop models dynamically.
Finally, for firewall policy management, we need scalable
association rule mining techniques for mining a very large
number of policies.

25.4 Where Do We Go from
Here?
This book has discussed a great deal about data mining tools
for malware detection. We have stated many challenges in

492



this field in Section 25.3. We need to continue with research
and development efforts if we are to make progress in this
very important area.

The question is where do we go from here? First of all, those
who wish to work in this area must have a good knowledge of
the supporting technologies, including data management,
statistical reasoning, and machine learning. In addition,
knowledge of the application areas, such as malware,
security, and web technologies, is needed. Next, because the
field is expanding rapidly and there are many developments
in the field, the reader has to keep up with the developments,
including reading about the commercial products. Finally, we
encourage the reader to experiment with the products and also
develop security tools. This is the best way to get familiar
with a particular field—that is, work on hands-on problems
and provide solutions to get a better understanding.

As we have stated, malware is getting more and more
sophisticated with the emerging technologies. Therefore, we
need to be several steps ahead of the hacker. We have to
anticipate the types of malware that would be created and
develop solutions. Furthermore, the malware will be changing
very rapidly, and therefore we need solutions for adaptive
malware.

To develop effective solutions for malware detection, we
need research and development support from the government
funding agencies. We also need commercial corporations to
invest research and development dollars so that progress can
be made in industrial research and the research can be
transferred to commercial products. We also need to

493



collaborate with the international research community to
solve problems and develop useful tools.

494



Appendix A: Data Management
Systems

Developments and Trends

A.1 Introduction
The main purpose of this appendix is to set the context of the
series of books we have written in data management, data
mining, and data security. Our series started in 1997 with our
book, Data Management Systems Evolution and
Interoperation [Thuraisingham, 1997]. Our subsequent books
have evolved from this first book. We have essentially
repeated Chapter 1 of our first book in Appendix A of our
subsequent books. The purpose of this appendix is to provide
an overview of data management systems. We will then
discuss the relationships between the books we have written.

As stated in our series of books, the developments in
information systems technologies have resulted in
computerizing many applications in various business areas.
Data have become a critical resource in many organizations,
and therefore, efficient access to data, sharing the data,
extracting information from the data, and making use of the
information have become urgent needs. As a result, there
have been several efforts on integrating the various data
sources scattered across several sites. These data sources may
be databases managed by database management systems, or
they could simply be files. To provide the interoperability

495



between the multiple data sources and systems, various tools
are being developed. These tools enable users of one system
to access other systems in an efficient and transparent
manner.

We define data management systems to be systems that
manage the data, extract meaningful information from the
data, and make use of the information extracted. Therefore,
data management systems include database systems, data
warehouses, and data mining systems. Data could be
structured data, such as that found in relational databases, or it
could be unstructured, such as text, voice, imagery, or video.
There have been numerous discussions in the past to
distinguish between data, information, and knowledge. We do
not attempt to clarify these terms. For our purposes, data
could be just bits and bytes, or they could convey some
meaningful information to the user. We will, however,
distinguish between database systems and database
management systems. A database management system is that
component which manages the database containing persistent
data. A database system consists of both the database and the
database management system.

A key component to the evolution and interoperation of data
management systems is the interoperability of heterogeneous
database systems. Efforts on the interoperability between
database systems have been reported since the late 1970s.
However, it is only recently that we are seeing commercial
developments in heterogeneous database systems. Major
database system vendors are now providing interoperability
between their products and other systems. Furthermore, many
of the database system vendors are migrating toward an
architecture called the client-server architecture, which

496



facilitates distributed data management capabilities. In
addition to efforts on the interoperability between different
database systems and client-server environments, work is also
directed toward handling autonomous and federated
environments.

The organization of this appendix is as follows. Because
database systems are a key component of data management
systems, we first provide an overview of the developments in
database systems. These developments are discussed in
Section A.2. Then we provide a vision for data management
systems in Section A.3. Our framework for data management
systems is discussed in Section A.4. Note that data mining,
warehousing, and web data management are components of
this framework. Building information systems from our
framework with special instantiations is discussed in Section
A.5. The relationship between the various texts that we have
written (or are writing) for CRC Press is discussed in Section
A.6. This appendix is summarized in Section A.7.

A.2 Developments in
Database Systems
Figure A.1 provides an overview of the developments in
database systems technology. Whereas the early work in the
1960s focused on developing products based on the network
and hierarchical data models, much of the developments in
database systems took place after the seminal paper by Codd
describing the relational model [Codd, 1970] (see also [Date,
1990]). Research and development work on relational

497



database systems was carried out during the early 1970s, and
several prototypes were developed throughout the 1970s.
Notable efforts include IBM’s (International Business
Machine Corporation’s) System R and the University of
California at Berkeley’s INGRES. During the 1980s, many
relational database system products were being marketed
(notable among these products are those of Oracle
Corporation, Sybase Inc., Informix Corporation, INGRES
Corporation, IBM, Digital Equipment Corporation, and
Hewlett-Packard Company). During the 1990s, products from
other vendors emerged (e.g., Microsoft Corporation). In fact,
to date, numerous relational database system products have
been marketed. However, Codd stated that many of the
systems that are being marketed as relational systems are not
really relational (see, e.g., the discussion in [Date, 1990]). He
then discussed various criteria that a system must satisfy to be
qualified as a relational database system. Whereas the early
work focused on issues such as data model, normalization
theory, query processing and optimization strategies, query
languages, and access strategies and indexes, later the focus
shifted toward supporting a multi-user environment. In
particular, concurrency control and recovery techniques were
developed. Support for transaction processing was also
provided.

498



Figure A.1 Developments in database systems technology.

Research on relational database systems, as well as on
transaction management, was followed by research on
distributed database systems around the mid-1970s. Several
distributed database system prototype development efforts
also began around the late 1970s. Notable among these efforts
include IBM’s System R*, DDTS (Distributed Database
Testbed System) by Honeywell Inc., SDD-I and Multibase by
CCA (Computer Corporation of America), and Mermaid by

499



SDC (System Development Corporation). Furthermore, many
of these systems (e.g., DDTS, Multibase, Mermaid) function
in a heterogeneous environment. During the early 1990s,
several database system vendors (such as Oracle Corporation,
Sybase Inc., Informix Corporation) provided data distribution
capabilities for their systems. Most of the distributed
relational database system products are based on client-server
architectures. The idea is to have the client of vendor A
communicate with the server database system of vendor B. In
other words, the client-server computing paradigm facilitates
a heterogeneous computing environment. Interoperability
between relational and non-relational commercial database
systems is also possible. The database systems community is
also involved in standardization efforts. Notable among the
standardization efforts are the ANSI/SPARC 3-level schema
architecture, the IRDS (Information Resource Dictionary
System) standard for Data Dictionary Systems, the relational
query language SQL (Structured Query Language), and the
RDA (Remote Database Access) protocol for remote database
access.

Another significant development in database technology is
the advent of object-oriented database management systems.
Active work on developing such systems began in the
mid-1980s, and they are now commercially available (notable
among them include the products of Object Design Inc.,
Ontos Inc., Gemstone Systems Inc., and Versant Object
Technology). It was felt that new generation applications such
as multimedia, office information systems, CAD/CAM,
process control, and software engineering have different
requirements. Such applications utilize complex data
structures. Tighter integration between the programming
language and the data model is also desired. Object-oriented

500



database systems satisfy most of the requirements of these
new generation applications [Cattell, 1991].

According to the Lagunita report, published as a result of a
National Science Foundation (NSF) workshop in 1990
([Silberschatz et al., 1990]; also see [Kim, 1990]), relational
database systems, transaction processing, and distributed
(relational) database systems are stated as mature
technologies. Furthermore, vendors are marketing
object-oriented database systems and demonstrating the
interoperability between different database systems. The
report goes on to state that as applications are getting
increasingly complex, more sophisticated database systems
are needed. Furthermore, because many organizations now
use database systems, in many cases of different types, the
database systems need to be integrated. Although work has
begun to address these issues and commercial products are
available, several issues still need to be resolved. Therefore,
challenges faced by the database systems researchers in the
early 1990s were in two areas. One was next generation
database systems, and the other was heterogeneous database
systems.

Next generation database systems include object-oriented
database systems, functional database systems, special
parallel architectures to enhance the performance of database
system functions, high-performance database systems,
real-time database systems, scientific database systems,
temporal database systems, database systems that handle
incomplete and uncertain information, and intelligent
database systems (also sometimes called logic or deductive
database systems). Ideally, a database system should provide
the support for high-performance transaction processing,

501



model complex applications, represent new kinds of data, and
make intelligent deductions. Although significant progress
was made during the late 1980s and early 1990s, there is
much to be done before such a database system can be
developed.

Heterogeneous database systems have been receiving
considerable attention during the past decade [March, 1990].
The major issues include handling different data models,
different query processing strategies, different transaction
processing algorithms, and different query languages. Should
a uniform view be provided to the entire system, or should the
users of the individual systems maintain their own views of
the entire system? These are questions that have yet to be
answered satisfactorily. It is also envisaged that a complete
solution to heterogeneous database management systems is a
generation away. While research should be directed toward
finding such a solution, work should also be carried out to
handle limited forms of heterogeneity to satisfy the customer
needs. Another type of database system that has received
some attention lately is a federated database system. Note that
some have used the terms heterogeneous database system and
federated database system interchangeably. While
heterogeneous database systems can be part of a federation, a
federation can also include homogeneous database systems.

The explosion of users on the web, as well as developments in
interface technologies, has resulted in even more challenges
for data management researchers. A second workshop was
sponsored by NSF in 1995, and several emerging
technologies have been identified to be important as we go
into the twenty-first century [Widom, 1996]. These include
digital libraries, large database management, data

502



administration issues, multimedia databases, data
warehousing, data mining, data management for collaborative
computing environments, and security and privacy. Another
significant development in the 1990s is the development of
object-relational systems. Such systems combine the
advantages of both object-oriented database systems and
relational database systems. Also, many corporations are now
focusing on integrating their data management products with
web technologies. Finally, for many organizations there is an
increasing need to migrate some of the legacy databases and
applications to newer architectures and systems such as
client-server architectures and relational database systems.
We believe there is no end to data management systems. As
new technologies are developed, there are new opportunities
for data management research and development.

A comprehensive view of all data management technologies
is illustrated in Figure A.2. As shown, traditional technologies
include database design, transaction processing, and
benchmarking. Then there are database systems based on data
models such as relational and object-oriented. Database
systems may depend on features they provide, such as
security and real time. These database systems may be
relational or object oriented. There are also database systems
based on multiple sites or processors, such as distributed and
heterogeneous database systems, parallel systems, and
systems being migrated. Finally, there are the emerging
technologies such as data warehousing and mining,
collaboration, and the web. Any comprehensive text on data
management systems should address all of these technologies.
We have selected some of the relevant technologies and put
them in a framework. This framework is described in Section
A.5.

503



Figure A.2 Comprehensive view of data management
systems.

A.3 Status, Vision, and
Issues
Significant progress has been made on data management
systems. However, many of the technologies are still
stand-alone technologies, as illustrated in Figure A.3. For
example, multimedia systems have yet to be successfully
integrated with warehousing and mining technologies. The
ultimate goal is to integrate multiple technologies so that
accurate data, as well as information, are produced at the right
time and distributed to the user in a timely manner. Our vision

504



for data and information management is illustrated in Figure
A.4.

The work discussed in [Thuraisingham, 1997] addressed
many of the challenges necessary to accomplish this vision. In
particular, integration of heterogeneous databases, as well as
the use of distributed object technology for interoperability,
was discussed. Although much progress has been made on the
system aspects of interoperability, semantic issues still remain
a challenge. Different databases have different
representations. Furthermore, the same data entity may be
interpreted differently at different sites. Addressing these
semantic differences and extracting useful information from
the heterogeneous and possibly multimedia data sources are
major challenges. This book has attempted to address some of
the challenges through the use of data mining.

Figure A.3 Stand-alone systems.

505



Figure A.4 Vision.

A.4 Data Management
Systems Framework
For the successful development of evolvable interoperable
data management systems, heterogeneous database systems
integration is a major component. However, there are other
technologies that have to be successfully integrated to
develop techniques for efficient access and sharing of data, as
well as for the extraction of information from the data. To
facilitate the development of data management systems to
meet the requirements of various applications in fields such as
medicine, finance, manufacturing, and the military, we have
proposed a framework, which can be regarded as a reference

506



model, for data management systems. Various components
from this framework have to be integrated to develop data
management systems to support the various applications.

Figure A.5 illustrates our framework, which can be regarded
as a model, for data management systems. This framework
consists of three layers. One can think of the component
technologies, which we will also refer to as components,
belonging to a particular layer to be more or less built upon
the technologies provided by the lower layer. Layer I is the
Database Technology and Distribution layer. This layer
consists of database systems and distributed database systems
technologies. Layer II is the Interoperability and Migration
layer. This layer consists of technologies such as
heterogeneous database integration, client-server databases,
and multimedia database systems to handle heterogeneous
data types, and migrating legacy databases. Layer III is the
Information Extraction and Sharing layer. This layer
essentially consists of technologies for some of the newer
services supported by data management systems. These
include data warehousing, data mining [Thuraisingham,
1998], web databases, and database support for collaborative
applications. Data management systems may utilize
lower-level technologies such as networking, distributed
processing, and mass storage. We have grouped these
technologies into a layer called the Supporting Technologies
layer. This supporting layer does not belong to the data
management systems framework. This supporting layer also
consists of some higher-level technologies such as distributed
object management and agents. Also shown in Figure A.5 is
the Application Technologies layer. Systems such as
collaborative computing systems and knowledge-based
systems, which belong to the Application Technologies layer,

507



may utilize data management systems. Note that the
Application Technologies layer is also outside of the data
management systems framework.

Figure A.5 Data management systems framework.

508



Figure A.6 A three-dimensional view of data management.

The technologies that constitute the data management systems
framework can be regarded as some of the core technologies
in data management. However, features like security,
integrity, real-time processing, fault tolerance, and high
performance computing are needed for many applications
utilizing data management technologies. Applications
utilizing data management technologies may be medical,
financial, or military, among others. We illustrate this in
Figure A.6, where a three-dimensional view relating data
management technologies with features and applications is
given. For example, one could develop a secure distributed
database management system for medical applications or a
fault-tolerant multimedia database management system for
financial applications.

509



Integrating the components belonging to the various layers is
important for developing efficient data management systems.
In addition, data management technologies have to be
integrated with the application technologies to develop
successful information systems. However, at present, there is
limited integration of these various components. Our previous
book Data Management Systems Evolution and
Interoperation focused mainly on the concepts,
developments, and trends belonging to each of the
components shown in the framework. Furthermore, our
current book on web data management focuses on the web
database component of Layer III of the framework of Figure
A.5 [Thuraisingham 2000].

Note that security cuts across all of the layers. Security is
needed for the supporting layers such as agents and
distributed systems. Security is needed for all of the layers in
the framework, including database security, distributed
database security, warehousing security, web database
security, and collaborative data management security. This is
the topic of this book. That is, we have covered all aspects of
data and applications security, including database security and
information management security.

510



A.5 Building Information
Systems from the
Framework
Figure A.5 illustrates a framework for data management
systems. As shown in that figure, the technologies for data
management include database systems, distributed database
systems, heterogeneous database systems, migrating legacy
databases, multimedia database systems, data warehousing,
data mining, web databases, and database support for
collaboration. Furthermore, data management systems take
advantage of supporting technologies such as distributed
processing and agents. Similarly, application technologies
such as collaborative computing, visualization, expert
systems, and mobile computing take advantage of data
management systems.

Many of us have heard of the term information systems on
numerous occasions. This term is sometimes used
interchangeably with the term data management systems. In
our terminology, information systems are much broader than
data management systems, but they do include data
management systems. In fact, a framework for information
systems will include not only the data management system
layers but also the supporting technologies layer as well as the
application technologies layer. That is, information systems
encompass all kinds of computing systems. It can be regarded
as the finished product that can be used for various

511



applications. That is, whereas hardware is at the lowest end of
the spectrum, applications are at the highest end.

We can combine the technologies of Figure A.5 to put
together information systems. For example, at the application
technology level, one may need collaboration and
visualization technologies so that analysts can collaboratively
carry out some tasks. At the data management level, one may
need both multimedia and distributed database technologies.
At the supporting level, one may need mass storage as well as
some distributed processing capability. This special
framework is illustrated in Figure A.7. Another example is a
special framework for interoperability. One may need some
visualization technology to display the integrated information
from the heterogeneous databases. At the data management
level, we have heterogeneous database systems technology.
At the supporting technology level, one may use distributed
object management technology to encapsulate the
heterogeneous databases. This special framework is
illustrated in Figure A.8.

512



Figure A.7 Framework for multimedia data management for
collaboration.

Figure A.8 Framework for heterogeneous database
interoperability.

Finally, let us illustrate the concepts that we have described
by using a specific example. Suppose a group of physicians or
surgeons want a system through which they can collaborate
and make decisions about various patients. This could be a
medical video teleconferencing application. That is, at the
highest level, the application is a medical application and,
more specifically, a medical video teleconferencing
application. At the application technology level, one needs a
variety of technologies, including collaboration and
teleconferencing. These application technologies will make
use of data management technologies such as distributed
database systems and multimedia database systems. That is,
one may need to support multimedia data such as audio and
video. The data management technologies, in turn, draw upon

513



lower-level technologies such as distributed processing and
networking. We illustrate this in Figure A.9.

Figure A.9 Specific example.

In summary, information systems include data management
systems as well as application-layer systems such as
collaborative computing systems and supporting-layer
systems such as distributed object management systems.

514



While application technologies make use of data management
technologies and data management technologies make use of
supporting technologies, the ultimate user of the information
system is the application itself. Today numerous applications
make use of information systems. These applications are from
multiple domains such as medicine, finance, manufacturing,
telecommunications, and defense. Specific applications
include signal processing, electronic commerce, patient
monitoring, and situation assessment. Figure A.10 illustrates
the relationship between the application and the information
system.

Figure A.10 Application-framework relationship.

515



A.6 Relationship between
the Texts
We have published eight books on data management and
mining. These books are Data Management Systems:
Evolution and Interoperation [Thuraisingham, 1997], Data
Mining: Technologies, Techniques, Tools and Trends
[Thuraisingham, 1998], Web Data Management and
Electronic Commerce [Thuraisingham, 2000], Managing and
Mining Multimedia Databases for the Electronic Enterprise
[Thuraisingham, 2001], XML Databases and the Semantic
Web [Thuraisingham, 2002], Web Data Mining and
Applications in Business Intelligence and Counter-Terrorism
[Thuraisingham, 2003], and Database and Applications
Security: Integrating Data Management and Information
Security [Thuraisingham, 2005]. Our book on trustworthy
semantic webs [Thuraisingham, 2007] has evolved from
Chapter 25 of [Thuraisingham, 2005]. Our book on secure
web services [Thuraisingham, 2010] has evolved from
[Thuraisingham, 2007]. All of these books have evolved from
the framework that we illustrated in this appendix and address
different parts of the framework. The connection between
these texts is illustrated in Figure A.11.

516



517



Figure A.11 Relationship between texts—Series I.

This book is the second in a new series and is illustrated in
Figure A.12. This book has evolved from our previous book
on the design and implementation of data mining tools [Awad
et al., 2009].

Figure A.12 Relationship between texts—Series II.

A.7 Summary
In this appendix, we have provided an overview of data
management. We first discussed the developments in data
management and then provided a vision for data management.

518



Then we illustrated a framework for data management. This
framework consists of three layers: database systems layer,
interoperability layer, and information extraction layer. Web
data management belongs to Layer III. Finally, we showed
how information systems could be built from the technologies
of the framework.

We believe that data management is essential to many
information technologies, including data mining, multimedia
information processing, interoperability, and collaboration
and knowledge management. This appendix focuses on data
management. Security is critical for all data management
technologies. We will provide background information on
trustworthy systems in Appendix B. Background on data,
information, and knowledge management, which will provide
a better understanding of data mining, will be discussed in
Appendix C. Semantic web technologies, which are needed to
understand some of the concepts in this book, will be
discussed in Appendix D.

References
[Awad et al., 2009] Awad, M., L. Khan, B. Thuraisingham, L.
Wang, Design and Implementation of Data Mining Tools,
CRC Press, 2009.

[Cattell, 1991] Cattell, R., Object Data Management Systems,
Addison-Wesley, 1991.

519



[Codd, 1970] Codd, E. F., A Relational Model of Data for
Large Shared Data Banks, Communications of the ACM, Vol.
13, No. 6, June 1970, pp. 377–387.

[Date, 1990] Date, C. J., An Introduction to Database
Management Systems, Addison-Wesley, 1990 (6th edition
published in 1995 by Addison-Wesley).

[Kim, 1990] Kim, W. (Ed.), Directions for Future Database
Research & Development, ACM SIGMOD Record, December
1990.

[March, 1990] March, S. T., Editor, Special Issue on
Heterogeneous Database Systems, ACM Computing Surveys,
September 1990.

[Silberschatz et al., 1990] Silberschatz, A., M. Stonebraker, J.
D. Ullman, Editors, Database Systems: Achievements and
Opportunities, The “Lagunita” Report of the NSF Invitational
Workshop on the Future of Database Systems Research,
February 22–23, Palo Alto, CA (TR-90-22), Department of
Computer Sciences, University of Texas at Austin, Austin,
TX. (Also in ACM SIGMOD Record, December 1990.)

[Thuraisingham, 1997] Thuraisingham, B., Data Management
Systems: Evolution and Interoperation, CRC Press, 1997.

[Thuraisingham, 1998] Thuraisingham, B., Data Mining:
Technologies, Techniques, Tools and Trends, CRC Press,
1998.

[Thuraisingham, 2000] Thuraisingham, B., Web Data
Management and Electronic Commerce, CRC Press, 2000.

520



[Thuraisingham, 2001] Thuraisingham, B., Managing and
Mining Multimedia Databases for the Electronic Enterprise,
CRC Press, 2001.

[Thuraisingham, 2002] Thuraisingham, B., XML Databases
and the Semantic Web, CRC Press, 2002.

[Thuraisingham, 2003] Thuraisingham, B., Web Data Mining
Applications in Business Intelligence and Counter-Terrorism,
CRC Press, 2003.

[Thuraisingham, 2005] Thuraisingham, B., Database and
Applications Security: Integrating Data Management and
Information Security, CRC Press, 2005.

[Thuraisingham, 2007] Thuraisingham, B., Building
Trustworthy Semantic Webs, CRC Press, 2007.

[Thuraisingham, 2010] Thuraisingham, B., Secure Semantic
Service-Oriented Systems, CRC Press, 2010.

[Widom, 1996] Widom, J., Editor, Proceedings of the
Database Systems Workshop, Report published by the
National Science Foundation, 1995 (also in ACM SIGMOD
Record, March 1996).

521



Appendix B: Trustworthy Systems

B.1 Introduction
Trustworthy systems are systems that are secure and
dependable. By dependable systems we mean systems that
have high integrity, are fault tolerant, and meet real-time
constraints. In other words, for a system to be trustworthy, it
must be secure and fault tolerant, meet timing deadlines, and
manage high-quality data.

This appendix provides an overview of the various
developments in trustworthy systems with special emphasis
on secure systems. In Section B.2, we discuss secure systems
in some detail. In Section B.4, we discuss web security.
Building secure systems from entrusted components is
discussed in Section B.4. Section B.5 provides an overview of
dependable systems that covers trust, privacy, integrity, and
data quality. Some other security concerns are discussed in
Section B.6. The appendix is summarized in Section B.7.

B.2 Secure Systems
B.2.1 Introduction

Secure systems include secure operating systems, secure data
management systems, secure networks, and other types of
systems, such as web-based secure systems and secure digital

522



libraries. This section provides an overview of the various
developments in information security.

In Section B.2.2, we discuss basic concepts such as access
control for information systems. Section B.2.3 provides an
overview of the various types of secure systems. Secure
operating systems will be discussed in Section B.2.4. Secure
database systems will be discussed in Section B.2.5. Network
security will be discussed in Section B.2.6. Emerging trends
is the subject of section B.2.7. Impact of the web is given in
Section B.2.8. An overview of the steps to building secure
systems will be provided in Section B.2.9.

B.2.2 Access Control and Other
Security Concepts

Access control models include those for discretionary security
and mandatory security. In this section, we discuss both
aspects of access control and also consider other issues. In
discretionary access control models, users or groups of users
are granted access to data objects. These data objects could be
files, relations, objects, or even data items. Access control
policies include rules such as User U has read access to
Relation R1 and write access to Relation R2. Access control
could also include negative access control where user U does
not have read access to Relation R.

In mandatory access control, subjects that act on behalf of
users are granted access to objects based on some policy. A
well-known policy is the Bell and LaPadula policy [Bell and
LaPadula, 1973], where subjects are granted clearance levels
and objects have sensitivity levels. The set of security levels

523



form a partially ordered lattice where Unclassified <
Confidential < Secret < TopSecret. The policy has two
properties, which are the following: A subject has read access
to an object if its clearance level dominates that of the object.
A subject has write access to an object if its level is
dominated by that of the object.

Other types of access control include role-based access
control. Here access is granted to users depending on their
roles and the functions they perform. For example, personnel
managers have access to salary data, and project managers
have access to project data. The idea here is generally to give
access on a need-to-know basis.

Whereas the early access control policies were formulated for
operating systems, these policies have been extended to
include other systems such as database systems, networks,
and distributed systems. For example, a policy for networks
includes policies for not only reading and writing but also for
sending and receiving messages.

524



Figure B.1 Security policies.

Other security policies include administration policies. These
policies include those for ownership of data as well as for
how to manage and distribute the data. Database
administrators as well as system security officers are involved
in formulating the administration policies.

Security policies also include policies for identification and
authentication. Each user or subject acting on behalf of a user
has to be identified and authenticated possibly using some
password mechanisms. Identification and authentication
becomes more complex for distributed systems. For example,
how can a user be authenticated at a global level?

The steps to developing secure systems include developing a
security policy, developing a model of the system, designing
the system, and verifying and validating the system. The
methods used for verification depend on the level of
assurance that is expected. Testing and risk analysis are also
part of the process. These activities will determine the
vulnerabilities and assess the risks involved. Figure B.1
illustrates various types of security policies.

B.2.3 Types of Secure Systems

In the previous section, we discussed various policies for
building secure systems. In this section, we elaborate on
various types of secure systems. Much of the early research in
the 1960s and 1970s was on securing operating systems.

525



Early security policies such as the Bell and LaPadula policy
were formulated for operating systems. Subsequently, secure
operating systems such as Honeywell’s SCOMP and
MULTICS were developed (see [IEEE, 1983]). Other policies
such as those based on noninterference also emerged in the
early 1980s.

Although early research on secure database systems was
reported in the 1970s, it was not until the early 1980s that
active research began in this area. Much of the focus was on
multi-level secure database systems. The security policy for
operating systems was modified slightly. For example, the
write policy for secure database systems was modified to state
that a subject has write access to an object if the subject’s
level is that of the object. Because database systems enforced
relationships between data and focused on semantics, there
were additional security concerns. For example, data could be
classified based on content, context, and time. The problem of
posing multiple queries and inferring sensitive information
from the legitimate responses became a concern. This
problem is now known as the inference problem. Also,
research was carried out not only on securing relational
systems but also on object systems and distributed systems,
among others.

Research on computer networks began in the late 1970s and
throughout the 1980s and beyond. The networking protocols
were extended to incorporate security features. The result was
secure network protocols. The policies include those for
reading, writing, sending, and receiving messages. Research
on encryption and cryptography has received much
prominence because of networks and the web. Security for
stand-alone systems was extended to include distributed

526



systems. These systems included distributed databases and
distributed operating systems. Much of the research on
distributed systems now focuses on securing the web (known
as web security), as well as securing systems such as
distributed object management systems.

As new systems emerge, such as data warehouses,
collaborative computing systems, multimedia systems, and
agent systems, security for such systems has to be
investigated. With the advent of the World Wide Web,
security is being given serious consideration by not only
government organizations but also commercial organizations.
With e-commerce, it is important to protect the company’s
intellectual property. Figure B.2 illustrates various types of
secure systems.

Figure B.2 Secure systems.

527



B.2.4 Secure Operating Systems

Work on security for operating systems was carried out
extensively in the 1960s and 1970s. The research still
continues, as new kinds of operating systems such as
Windows, Linux, and other products emerge. The early ideas
included access control lists and capability-based systems.
Access control lists are lists that specify the types of access
that processes, which are called subjects, have on files, which
are objects. The access is usually read or write access.
Capability lists are capabilities that a process must possess to
access certain resources in the system. For example, a process
with a particular capability can write into certain parts of the
memory.

Work on mandatory security for operating systems started
with the Bell and La Padula security model, which has two
properties.

• The simple security property states that a subject has
read access to an object if the subject’s security level
dominated the level of the object.

• The *-property (pronounced “star property”) states
that a subject has write access to an object if the
subject’s security level is dominated by that of the
object.

Since then, variations of this model, as well as a popular
model called the noninterference model (see [Goguen and
Meseguer, 1982]), have been proposed. The non-interference
model is essentially about higher-level processes not
interfering with lower-level processes.

528



Figure B.3 Secure operating systems.

As stated earlier, security is becoming critical for operating
systems. Corporations such as Microsoft are putting in many
resources to ensure that their products are secure. Often we
hear of vulnerabilities in various operating systems and about
hackers trying to break into operating systems especially
those with networking capabilities. Therefore, this is an area
that will continue to receive much attention for the next
several years. Figure B.3 illustrates some key aspects of
operating systems security.

B.2.5 Secure Database Systems

Work on discretionary security for databases began in the
1970s, when security aspects were investigated for System R
at IBM Almaden Research Center. Essentially, the security
properties specified the read and write access that a user may
have to relations, attributes, and data elements [Denning,

529



1982]. In the 1980s and 1990s, security issues were
investigated for object systems. Here the security properties
specified the access that users had to objects, instance
variables, and classes. In addition to read and write access,
method execution access was also specified.

Since the early 1980s, much of the focus was on multi-level
secure database management systems [AFSB, 1983]. These
systems essentially enforce the mandatory policy discussed in
Section B.2.2. Since the 1980s, various designs, prototypes,
and commercial products of multi-level database systems
have been developed. [Ferrari and Thuraisingham, 2000] give
a detailed survey of some of the developments. Example
efforts include the SeaView effort by SRI International and
the LOCK Data Views effort by Honeywell. These efforts
extended relational models with security properties. One
challenge was to design a model in which a user sees different
values at different security levels. For example, at the
Unclassified level an employee’s salary may be 20K, and at
the secret level it may be 50K. In the standard relational
model, such ambiguous values cannot be represented due to
integrity properties.

Note that several other significant developments have been
made on multi-level security for other types of database
systems. These include security for object database systems
[Thuraisingham, 1989]. In this effort, security properties
specify read, write, and method execution policies. Much
work was also carried out on secure concurrency control and
recovery. The idea here is to enforce security properties and
still meet consistency without having covert channels.
Research was also carried out on multi-level security for
distributed, heterogeneous, and federated database systems.

530



Another area that received a lot of attention was the inference
problem. For details on the inference problem, we refer the
reader to [Thuraisingham et al., 1993]. For secure
concurrency control, we refer to the numerous algorithms by
Atluri, Bertino, Jajodia, et al. (see, e.g., [Alturi et al., 1997]).
For information on secure distributed and heterogeneous
databases as well as secure federated databases we refer the
reader to [Thuraisingham, 1991] and [Thuraisingham, 1994].

As database systems become more sophisticated, securing
these systems will become more and more difficult. Some of
the current work focuses on securing data warehouses,
multimedia databases, and web databases (see, e.g., the
Proceedings of the IFIP Database Security Conference
Series). Figure B.4 illustrates various types of secure database
systems.

B.2.6 Secure Networks

With the advent of the web and the interconnection of
different systems and applications, networks have proliferated
over the past decade. There are public networks, private
networks, classified networks, and unclassified networks. We
continually hear about networks being infected with viruses
and worms. Furthermore, networks are being intruded by
malicious code and unauthorized individuals. Therefore,
network security is emerging as one of the major areas in
information security.

531



Figure B.4 Secure database systems.

Various techniques have been proposed for network security.
Encryption and cryptography are still dominating much of the
research. For a discussion of various encryption techniques,
we refer to [Hassler, 2000]. Data mining techniques are being
applied for intrusion detection extensively (see [Ning et al.,
2004]). There has also been a lot of work on network protocol
security, in which security is incorporated into the various
layers of, for example, the protocol stack, such as the network
layer, transport layer, and session layer (see [Tannenbaum,
1990]). Verification and validation techniques are also being
investigated for securing networks. Trusted Network
Interpretation (also called the “red book”) was developed
back in the 1980s to evaluate secure networks. Various books
on the topic have also been published (see [Kaufmann et al.,
2002]). Figure B.5 illustrates network security techniques.

532



B.2.7 Emerging Trends

In the mid-1990s, research in secure systems expanded to
include emerging systems. These included securing
collaborative computing systems, multimedia computing, and
data warehouses. Data mining has resulted in new security
concerns. Because users now have access to various data
mining tools and they can make sensitive associations, it can
exacerbate the inference problem. On the other hand, data
mining can also help with security problems, such as intrusion
detection and auditing.

Figure B.5 Secure networks.

The advent of the web resulted in extensive investigations of
security for digital libraries and electronic commerce. In

533



addition to developing sophisticated encryption techniques,
security research also focused on securing the web clients as
well as servers. Programming languages such as Java were
designed with security in mind. Much research was also
carried out on securing agents.

Secure distributed system research focused on security for
distributed object management systems. Organizations such
as OMG (Object Management Group) started working groups
to investigate security properties [OMG, 2011]. As a result,
secure distributed object management systems are
commercially available. Figure B.6 illustrates the various
emerging secure systems and concepts.

B.2.8 Impact of the Web

The advent of the web has greatly impacted security. Security
is now part of mainstream computing. Government
organizations and commercial organizations are concerned
about security. For example, in a financial transaction,
millions of dollars could be lost if security is not maintained.
With the web, all sorts of information is available about
individuals, and therefore privacy may be compromised.

534



Figure B.6 Emerging trends.

Various security solutions are being proposed to secure the
web. In addition to encryption, the focus is on securing clients
as well as servers. That is, end-to-end security has to be
maintained. Web security also has an impact on electronic
commerce. That is, when one carries out transactions on the
web, it is critical that security be maintained. Information
such as credit card numbers and social security numbers has
to be protected.

All of the security issues discussed in the previous sections
have to be considered for the web. For example, appropriate
security policies have to be formulated. This is a challenge, as
no one person owns the web. The various secure systems,
including secure operating systems, secure database systems,
secure networks, and secure distributed systems, may be
integrated in a web environment. Therefore, this integrated

535



system has to be secure. Problems such as the inference and
privacy problems may be exacerbated due to the various data
mining tools. The various agents on the web have to be
secure. In certain cases, tradeoffs need to be made between
security and other features. That is, quality of service is an
important consideration. In addition to technological
solutions, legal aspects also have to be examined. That is,
lawyers and engineers have to work together. Although much
progress has been made on web security, there is still a lot to
be done as progress is made on web technologies. Figure B.7
illustrates aspects of web security. For a discussion of web
security, we refer readers to [Ghosh, 1998].

Figure B.7 Web security.

536



B.2.9 Steps to Building Secure Systems

In this section, we outline the steps to building secure
systems. Note that our discussion is general and applicable to
any secure system. However, we may need to adapt the steps
for individual systems. For example, to build secure
distributed database systems, we need secure database
systems as well as secure networks. Therefore, the multiple
systems have to be composed.

The first step to building a secure system is developing a
security policy. The policy can be stated in an informal
language and then formalized. The policy essentially specifies
the rules that the system must satisfy. Then the security
architecture has to be developed. The architecture will include
the security-critical components. These are the components
that enforce the security policy and therefore should be
trusted. The next step is to design the system. For example, if
the system is a database system, the query processor,
transaction manager, storage manager, and metadata manager
modules are designed. The design of the system has to be
analyzed for vulnerabilities. The next phase is the
development phase. Once the system has been implemented,
it has to undergo security testing. This will include designing
test cases and making sure that the security policy is not
violated. Furthermore, depending on the level of assurance
expected of the system, formal verification techniques may be
used to verify and validate the system. Finally, the system
will be ready for evaluation. Note that systems initially were
being evaluated using the Trusted Computer Systems
Evaluation Criteria [TCSE, 1985]. There are interpretations of
these criteria for networks [TNI, 1987] and for databases

537



[TDI, 1991]. There are also several companion documents for
various concepts such as auditing and inference control. Note
that more recently, some other criteria have been developed,
including the Common Criteria and the Federal Criteria.

Figure B.8 Steps to building secure systems.

Note that before the system is installed in an operational
environment, one needs to develop a concept of operation of
the environment. Risk assessment has to be carried out. Once

538



the system has been installed, it has to be monitored so that
security violations, including unauthorized intrusions, are
detected. Figure B.8 illustrates the steps. An overview of
building secure systems can be found in [Gasser, 1998].

B.3 Web Security
Because the web is an essential part of our daily activities, it
is critical that the web be secure. Some general cyber threats
include authentication violations, nonrepudiation, malware,
sabotage fraud, and denial of service; infrastructure attacks
access control violations, privacy violations, integrity
violations, confidentiality violations, inference problem,
identity theft, and insider threat [Ghosh, 1998]. Figured B.9
illustrates the various attacks on the web.

539



Figure B.9 Attacks on web security.

The security solutions to the web include securing the
components and firewalls and encryption. For example,
various components have to be made secure to get a secure
web. One desires end-to-end security, and therefore the
components include secure clients, secure servers, secure
databases, secure operating systems, secure infrastructures,
secure networks, secure transactions, and secure protocols.
One needs good encryption mechanisms to ensure that the
sender and receiver communicate securely. Ultimately,
whether it be exchanging messages or carrying out
transactions, the communication between sender and receiver
or the buyer and the seller has to be secure. Secure client
solutions include securing the browser, securing the Java
virtual machine, securing Java applets, and incorporating
various security features into languages such as Java.

One of the challenges faced by the web managers is
implementing security policies. One may have policies for
clients, servers, networks, middleware, and databases. The
question is how do you integrate these policies? That is, how
do you make these policies work together? Who is
responsible for implementing these policies? Is there a global
administrator, or are there several administrators that have to
work together? Security policy integration is an area that is
being examined by researchers.

Finally, one of the emerging technologies for ensuring that an
organization’s assets are protected is firewalls. Various
organizations now have web infrastructures for internal and
external use. To access the external infrastructure, one has to
go through the firewall. These firewalls examine the

540



information that comes into and out of an organization. This
way, the internal assets are protected and inappropriate
information may be prevented from coming into an
organization. We can expect sophisticated firewalls to be
developed in the future.

B.4 Building Trusted
Systems from Untrusted
Components
Much of the discussion in the previous sections has assumed
end-to-end security, where the operating system, network,
database system, middleware, and the applications all have to
be secure. However, in today’s environment, where the
components may come from different parts of the world, one
cannot assume end-to-end security. Therefore, the challenge
is to develop secure systems with untrusted components. That
is, although the operating system may be compromised, the
system must still carry out its missions securely. This is a
challenging problem.

We have carried out some preliminary research in this area
[Bertino et al., 2010]. Addressing the challenges of protecting
applications and data when the underlying platforms cannot
be fully trusted dictates a comprehensive defense strategy.
Such a strategy requires the ability to address new threats that
are smaller and more agile and may arise from the
components of the computing platforms. Our strategy,

541



including our tenets and principles, are discussed in [Bertino
et al., 2010].

B.5 Dependable Systems
B.5.1 Introduction

As we have discussed earlier, by dependability, we mean
features such as trust, privacy, integrity, data quality and
provenance, and rights management, among others. We have
separated confidentiality and included it as part of security.
Therefore, essentially trustworthy systems include both
secure systems and dependable systems. (Note that this is not
a standard definition.)

Figure B.10 Aspects of dependability.

542



Whether we are discussing security, integrity, privacy, trust,
or rights management, there is always a cost involved. That
is, at what cost do we enforce security, privacy, and trust? Is
it feasible to implement the sophisticated privacy policies and
trust management policies? In addition to bringing lawyers
and policy makers together with the technologists, we also
need to bring economists into the picture. We need to carry
out economic tradeoffs for enforcing security, privacy, trust,
and rights management. Essentially, what we need are
flexible policies for security, privacy, and trust and rights
management.

In this section, we will discuss various aspects of
dependability. Trust issues will be discussed in Section B.5.2.
Digital rights management is discussed in Section B.5.3.
Privacy is discussed in Section B.5.4. Integrity issues, data
quality, and data provenance, as well as fault tolerance and
real-time processing, are discussed in Section B.5.5. Figure
B.10 illustrates the dependability aspects.

B.5.2 Trust Management

Trust management is all about managing the trust that one
individual or group has of another. That is, even if a user has
access to the data, do I trust the user so that I can release the
data? The user may have the clearance or possess the
credentials, but he may not be trustworthy. Trust is formed by
the user’s behavior. The user may have betrayed one’s
confidence or carried out some act that is inappropriate in
nature. Therefore, I may not trust that user. Now, even if I do
not trust John, Jane may trust John and she may share her data

543



with John. John may not be trustworthy to Jim, but he may be
trustworthy to Jane.

The question is how do we implement trust? Can we trust
someone partially? Can we trust say John 50% of the time
and Jane 70% of the time? If we trust someone partially, then
can we share some of the information? How do we trust the
data that we have received from Bill? That is, if we do not
trust Bill, then can we trust the data he gives us? There have
been many efforts on trusted management systems as well as
trust negotiation systems. Winslett et al. have carried out
extensive work and developed specification languages for
trust as well as designed trust negotiation systems (see [Yu
and Winslett, 2003]). The question is how do two parties
negotiate trust? A may share data D with B if B shares data C
with A. A may share data D with B only if B does not share
these data with F. There are many such rules that one can
enforce, and the challenge is to develop a system that
consistently enforces the trust rules or policies.

B.5.3 Digital Rights Management

Closely related to trust management is digital rights
management (DRM). This is especially critical for
entertainment applications. Who owns the copyright to a
video or an audio recording? How can rights be propagated?
What happens if the rights are violated? Can I distribute
copyrighted films and music on the web?

We have heard a lot about the controversy surrounding
Napster and similar organizations. Is DRM a technical issue,
or is it a legal issue? How can we bring technologists,

544



lawyers, and policy makers together so that rights can be
managed properly? There have been numerous articles,
discussions, and debates about DRM. A useful source is
[Iannella, 2001].

B.5.4 Privacy

Privacy is about protecting information about individuals.
Furthermore, an individual can specify, say to a web service
provider, the information that can be released about him or
her. Privacy has been discussed a great deal in the past,
especially when it relates to protecting medical information
about patients. Social scientists and technologists have been
working on privacy issues.

Privacy has received enormous attention during recent years.
This is mainly because of the advent of the web, the semantic
web, counter-terrorism, and national security. For example, to
extract information about various individuals and perhaps
prevent or detect potential terrorist attacks, data mining tools
are being examined. We have heard much about national
security versus privacy in the media. This is mainly due to the
fact that people are now realizing that to handle terrorism, the
government may need to collect data about individuals and
mine the data to extract information. Data may be in
relational databases, or it may be text, video, and images. This
is causing a major concern with various civil liberties unions
(see [Thuraisingham, 2003]). Therefore, technologists, policy
makers, social scientists, and lawyers are working together to
provide solutions to handle privacy violations.

545



B.5.5 Integrity, Data Quality, and High
Assurance

Integrity is about maintaining the accuracy of the data as well
as processes. Accuracy of the data is discussed as part of data
quality. Process integrity is about ensuring the processes are
not corrupted. For example, we need to ensure that the
processes are not malicious processes. Malicious processes
may corrupt the data as a result of unauthorized
modifications. To ensure integrity, the software has to be
tested and verified to develop high assurance systems.

The database community has ensured integrity by ensuring
integrity constraints (e.g., the salary value has to be positive)
as well as by ensuring the correctness of the data when
multiple processes access the data. To achieve correctness,
techniques such as concurrency control are enforced. The idea
is to enforce appropriate locks so that multiple processes do
not access the data at the same time and corrupt the data.

Data quality is about ensuring the accuracy of the data. The
accuracy of the data may depend on who touched the data.
For example, if the source of the data is not trustworthy, then
the quality value of the data may be low. Essentially, some
quality value is assigned to each piece of data. When data is
composed, quality values are assigned to the data in such a
way that the resulting value is a function of the quality values
of the original data.

Data provenance techniques also determine the quality of the
data. Note that data provenance is about maintaining the
history of the data. This will include information such as who

546



accessed the data for read/write purposes. Based on this
history, one could then assign quality values of the data as
well as determine when the data are misused.

Other closely related topics include real-time processing and
fault tolerance. Real-time processing is about the processes
meeting the timing constraints. For example, if we are to get
stock quotes to purchase stocks, we need to get the
information in real time. It does not help if the information
arrives after the trading desk is closed for business for the
day. Similarly, real-time processing techniques also have to
ensure that the data are current. Getting yesterday’s stock
quotes is not sufficient to make intelligent decisions. Fault
tolerance is about ensuring that the processes recover from
faults. Faults could be accidental or malicious. In the case of
faults, the actions of the processes have to be redone, the
processes will then have to be aborted, and, if needed, the
processes are re-started.

To build high assurance systems, we need the systems to
handle faults, be secure, and handle real-time constraints.
Real-time processing and security are conflicting goals, as we
have discussed in [Thuraisingham, 2005]. For example, a
malicious process could ensure that critical timing constraints
are missed. Furthermore, to enforce all the access control
checks, some processes may miss the deadlines. Therefore,
what we need are flexible policies that will determine which
aspects are critical for a particular situation.

B.6 Other Security
Concerns

547



B.6.1 Risk Analysis

As stated in the book by Shon Harris [Harris, 2010], risk is
the likelihood that something bad will happen that causes
harm to an informational asset (or the loss of the asset). A
vulnerability is a weakness that can be used to endanger or
cause harm to an informational asset. A threat is anything
(manmade or act of nature) that has the potential to cause
harm.

The likelihood that a threat will use a vulnerability to cause
harm creates a risk. When a threat uses a vulnerability to
inflict harm, it has an impact. In the context of information
security, the impact is a loss of availability, integrity, and
confidentiality, and possibly other losses (lost income, loss of
life, loss of real property). It is not possible to identify all
risks, nor is it possible to eliminate all risk. The remaining
risk is called residual risk.

The challenges include identifying all the threats that are
inherent to a particular situation. For example, consider a
banking operation. The bank has to employ security experts
and risk analysis experts to conduct a study of all possible
threats. Then they have to come up with ways of eliminating
the threats. If that is not possible, they have to develop ways
of containing the damage so that it is not spread further.

Risk analysis is especially useful for handling malware. For
example, once a virus starts spreading, the challenge is how
do you stop it? If you cannot stop it, then how do you contain
it and also limit the damage that it caused? Running various
virus packages on one’s system will perhaps limit the virus

548



from affecting the system or causing serious damage. The
adversary will always find ways to develop new viruses.
Therefore, we have to be one step or many steps ahead of the
enemy. We need to examine the current state of the practice
in risk analysis and develop new solutions, especially to
handle the new kinds of threats present in the cyber world.

B.6.2 Biometrics, Forensics, and Other
Solutions

Some of the recent developments in computer security are
tools for biometrics and forensic analysis. Biometrics tools
include understanding handwriting and signatures and
recognizing people from their features and eyes, including the
pupils. Although this is a very challenging area, much
progress has been made. Voice recognition tools to
authenticate users are also being developed. In the future, we
can expect many to use these tools.

Forensic analysis essentially carries out postmortems just as
they do in medicine. Once the attacks have occurred, how do
you detect these attacks? Who are the enemies and
perpetrators? Although progress has been made, there are still
challenges. For example, if one accesses the web pages and
uses passwords that are stolen, it will be difficult to determine
from the web logs who the culprit is. We still need a lot of
research in the area. Digital Forensics also deals with using
computer evidence for crime analysis.

Biometrics and Forensics are just some of the new
developments. Other solutions being developed include

549



smartcards, tools for detecting spoofing and jamming, as well
as tools to carry out sniffing.

B.7 Summary
This appendix has provided a brief overview of the
developments in trustworthy systems. We first discussed
secure systems, including basic concepts in access control, as
well as discretionary and mandatory policies; types of secure
systems, such as secure operating systems, secure databases,
secure networks, and emerging technologies; the impact of
the web; and the steps to building secure systems. Next we
discussed web security and building secure systems from
untested components. This was followed by a discussion of
dependable systems. Then we focused on risk analysis and
topics such as biometrics.

Research in trustworthy systems is moving at a rapid pace.
Some of the challenges include malware detection and
prevention, insider threat analysis, and building secure
systems from untrusted components. This book has addressed
one such topic and that is malware detection with data mining
tools.

References
[AFSB, 1983] Air Force Studies Board, Committee on
Multilevel Data Management Security, Multilevel Data
Management Security, National Academy Press, Washington
DC, 1983.

550



[Atluri et al., 1997] Atluri, V., S. Jajodia, E. Bertino,
Transaction Processing in Multilevel Secure Databases with
Kernelized Architectures: Challenges and Solutions, IEEE
Transactions on Knowledge and Data Engineering, Vol. 9,
No. 5, 1997, pp. 697–708.

[Bell and LaPadula, 1973] Bell, D., and L. LaPadula, Secure
Computer Systems: Mathematical Foundations and Model,
M74-244, MITRE Corporation, Bedford, MA, 1973.

[Bertino et al., 2010] Bertino, E., G. Ghinita, K. Hamlen, M.
Kantarcioglu, S. H. Lee, N. Li, et al., Securing the Execution
Environment Applications and Data from Multi-Trusted
Components, UT Dallas Technical Report #UTDCS-03-10,
March 2010.

[Denning, 1982] Denning, D., Cryptography and Data
Security, Addison-Wesley, 1982.

[Ferrari and Thuraisingham, 2000] Ferrari E., and B.
Thuraisingham, Secure Database Systems, in Advances in
Database Management, M. Piatini and O. Diaz, Editors,
Artech House, 2000.

[Gasser, 1998] Gasser, M., Building a Secure Computer
System, Van Nostrand Reinhold, 1988.

[Ghosh, 1998] Ghosh, A., E-commerce Security, Weak Links
and Strong Defenses, John Wiley, 1998.

[Goguen and Meseguer, 1982] Goguen, J., and J. Meseguer,
Security Policies and Security Models, Proceedings of the

551



IEEE Symposium on Security and Privacy, Oakland, CA,
April 1982, pp. 11–20.

[Harris, 2010] Harris, S., CISSP All-in-One Exam Guide,
McGraw-Hill, 2010.

[Hassler, 2000] Hassler, V., Security Fundamentals for
E-Commerce, Artech House, 2000.

[Iannella, 2001] Iannella, R., Digital Rights Management
(DRM) Architectures, D-Lib Magazine, Vol. 7, No. 6,
http://www.dlib.org/dlib/june01/iannella/06iannella.html

[IEEE, 1983] IEEE Computer Magazine, Special Issue on
Computer Security, Vol. 16, No. 7, 1983.

[Kaufmann et al., 2002] Kaufmann, C., R. Perlman, M.
Speciner, Network Security: Private Communication in a
Public World, Pearson Publishers, 2002.

[Ning et al., 2004] Ning, P., Y. Cui, D. S. Reeves, D. Xu,
Techniques and Tools for Analyzing Intrusion Alerts, ACM
Transactions on Information and Systems Security, Vol. 7,
No. 2, 2004, pp. 274–318.

[OMG, 2011] The Object Management Group, www.omg.org

[Tannenbaum, 1990] Tannenbaum, A., Computer Networks,
Prentice Hall, 1990.

[TCSE, 1985] Trusted Computer Systems Evaluation Criteria,
National Computer Security Center, MD, 1985.

552

http://www.dlib.org/dlib/june01/iannella/06iannella.html
http://www.omg.org


[TDI, 1991] Trusted Database Interpretation, National
Computer Security Center, MD, 1991.

[Thuraisingham, 1989] Thuraisingham, B., Mandatory
Security in Object-Oriented Database Systems, Proceedings
of the ACM Object-Oriented Programming Systems,
Language, and Applications (OOPSLA) Conference, New
Orleans, LA, October 1989, pp. 203–210.

[Thuraisingham, 1991] Thuraisingham, B., Multilevel
Security for Distributed Database Systems, Computers and
Security, Vol. 10, No. 9, 1991, pp. 727–747.

[Thuraisingham, 1994] Thuraisingham, B., Security Issues for
Federated Database Systems, Computers and Security, Vol.
13, No. 6, 1994, pp. 509–525.

[Thuraisingham, 2003] Thuraisingham, B., Web Data Mining
Technologies and Their Applications in Business Intelligence
and Counter-Terrorism, CRC Press, 2003.

[Thuraisingham, 2005] Thuraisingham, B., Database and
Applications Security: Integrating Data Management and
Information Security, CRC Press, 2005.

[Thuraisingham et al., 1993] Thuraisingham, B., W. Ford, M.
Collins, Design and Implementation of a Database Inference
Controller, Data and Knowledge Engineering Journal, Vol.
11, No. 3, 1993, pp. 271–297.

[TNI, 1987] Trusted Network Interpretation, National
Computer Security Center, MD, 1987.

553



[Yu and Winslett, 2003] Yu, T., and M. Winslett, A Unified
Scheme for Resource Protection in Automated Trust
Negotiation, IEEE Symposium on Security and Privacy,
Oakland, CA, May 2003, pp. 110–122.

554



Appendix C: Secure Data,
Information, and Knowledge
Management

C.1 Introduction
In this appendix, we discuss secure data, information, and
knowledge management technologies. Note that data,
information, and knowledge management technologies have
influenced the development of data mining. Next we discuss
the security impact on these technologies since data mining
for security applications falls under secure data, information,
and knowledge management.

Data management technologies include database
management, database integration, data warehousing, and
data mining. Information management technologies include
information retrieval, multimedia information management,
collaborative information management, e-commerce, and
digital libraries. Knowledge management is about
organizations utilizing the corporate knowledge to get a
business advantage.

The organization of this chapter is as follows. Secure data
management will be discussed in Section C.2. Secure
information management will be discussed in Section C.3.
Secure knowledge management will be discussed in Section
C.4. The chapter is summarized in Section C.5.

555



C.2 Secure Data
Management
C.2.1 Introduction

Database security has evolved from database management
and information security technologies. In this appendix, we
will discuss secure data management. In particular, we will
provide an overview of database management and then
discuss the security impact.

Database systems technology has advanced a great deal
during the past four decades, from the legacy systems based
on network and hierarchical models to relational and
object-oriented database systems based on client-server
architectures. We consider a database system to include both
the database management system (DBMS) and the database
(see also the discussion in [Date, 1990]). The DBMS
component of the database system manages the database. The
database contains persistent data. That is, the data are
permanent even if the application programs go away.

The organization of this section of the appendix is as follows.
In Section C.2.2 we will discuss database management.
Database integration will be discussed in Section C.2.3. Data
warehousing and data mining will be discussed in Section
C.2.4. Web data management will be discussed in Section
C.2.5. Security impact of data management technologies will
be discussed in Section C.2.6.

556



C.2.2 Database Management

We discuss data modeling, function, and distribution for a
database management system.

C.2.2.1 Data Model The purpose of a data model is to capture
the universe that it is representing as accurately, completely,
and naturally as possible [Tsichritzis and Lochovsky, 1982].
Data models include hierarchical models, network models,
relational models, entity relationship models, object models,
and logic-based models. The relational data model is the most
popular data model for database systems. With the relational
model [Codd, 1970], the database is viewed as a collection of
relations. Each relation has attributes and rows. For example,
Figure C.1 illustrates a database with two relations, EMP and
DEPT. Various languages to manipulate the relations have
been proposed. Notable among these languages is the ANSI
Standard SQL (Structured Query Language). This language is
used to access and manipulate data in relational databases. A
detailed discussion of the relational data model is given in
[Date, 1990] and [Ullman, 1988].

557



Figure C.1 Relational database.

C.2.2.2 Functions The functions of a DBMS carry out its
operations. A DBMS essentially manages a database, and it
provides support to the user by enabling him to query and
update the database. Therefore, the basic functions of a
DBMS are query processing and update processing. In some
applications, such as banking, queries and updates are issued
as part of transactions. Therefore, transaction management is
also another function of a DBMS. To carry out these
functions, information about the data in the database has to be
maintained. This information is called the metadata. The
function that is associated with managing the metadata is
metadata management. Special techniques are needed to
manage the data stores that actually store the data. The
function that is associated with managing these techniques is
storage management. To ensure that these functions are
carried out properly and that the user gets accurate data, there
are some additional functions. These include security
management, integrity management, and fault management
(i.e., fault tolerance). The functional architecture of a DBMS
is illustrated in Figure C.2 (see also [Ullman, 1988]).

C.2.2.3 Data Distribution As stated by [Ceri and Pelagatti,
1984], a distributed database system includes a distributed
database management system (DDBMS), a distributed
database, and a network for interconnection (Figure C.3). The
DDBMS manages the distributed database. A distributed
database is data that is distributed across multiple databases.
The nodes are connected via a communication subsystem, and
local applications are handled by the local DBMS. In
addition, each node is also involved in at least one global
application, so there is no centralized control in this

558



architecture. The DBMSs are connected through a component
called the Distributed Processor (DP). Distributed database
system functions include distributed query processing,
distributed transaction management, distributed metadata
management, and security and integrity enforcement across
the multiple nodes. It has been stated that the semantic web
can be considered to be a large distributed database.

Figure C.2 Database architecture.

559



Figure C.3 Distributed data management.

Figure C.4 Heterogeneous database integration.

560



C.2.3 Heterogeneous Data Integration

Figure C.4 illustrates an example of interoperability between
heterogeneous database systems. The goal is to provide
transparent access, both for users and application programs,
for querying and executing transactions (see, e.g.,
[Wiederhold, 1992]). Note that in a heterogeneous
environment, the local DBMSs may be heterogeneous.
Furthermore, the modules of the DP have both local DBMS
specific processing as well as local DBMS independent
processing. We call such a DP a heterogeneous distributed
processor (HDP). There are several technical issues that need
to be resolved for the successful interoperation between these
diverse database systems. Note that heterogeneity could exist
with respect to different data models, schemas, query
processing techniques, query languages, transaction
management techniques, semantics, integrity, and security.

Some of the nodes in a heterogeneous database environment
may form a federation. Such an environment is classified as a
federated data mainsheet environment. As stated by [Sheth
and Larson, 1990], a federated database system is a collection
of cooperating but autonomous database systems belonging to
a federation. That is, the goal is for the database management
systems, which belong to a federation, to cooperate with one
another and yet maintain some degree of autonomy. Figures
C.5 illustrates a federated database system.

561



Figure C.5 Federated data management.

C.2.4 Data Warehousing and Data
Mining

Data warehousing is one of the key data management
technologies to support data mining and data analysis. As
stated by [Inmon, 1993], data warehouses are subject
oriented. Their design depends to a great extent on the
application utilizing them. They integrate diverse and
possibly heterogeneous data sources. They are persistent.
That is, the warehouses are very much like databases. They
vary with time. This is because as the data sources from
which the warehouse is built get updated, the changes have to
be reflected in the warehouse. Essentially, data warehouses
provide support for decision support functions of an
enterprise or an organization. For example, while the data

562



sources may have the raw data, the data warehouse may have
correlated data, summary reports, and aggregate functions
applied to the raw data.

Figure C.6 illustrates a data warehouse. The data sources are
managed by database systems A, B, and C. The information
in these databases is merged and put into a warehouse. With a
data warehouse, data may often be viewed differently by
different applications. That is, the data is multidimensional.
For example, the payroll department may want data to be in a
certain format, whereas the project department may want data
to be in a different format. The warehouse must provide
support for such multidimensional data.

Data mining is the process of posing various queries and
extracting useful information, patterns, and trends, often
previously unknown, from large quantities of data possibly
stored in databases. Essentially, for many organizations, the
goals of data mining include improving marketing
capabilities, detecting abnormal patterns, and predicting the
future based on past experiences and current trends.

563



Figure C.6 Data warehouse.

Some of the data mining techniques include those based on
statistical reasoning techniques, inductive logic programming,
machine learning, fuzzy sets, and neural networks, among
others. The data mining outcomes include classification
(finding rules to partition data into groups), association
(finding rules to make associations between data), and
sequencing (finding rules to order data). Essentially one
arrives at some hypothesis, which is the information
extracted, from examples and patterns observed. These
patterns are observed from posing a series of queries; each
query may depend on the responses obtained to the previous
queries posed. There have been several developments in data
mining. A discussion of the various tools is given in [KDN,

564



2011]. A good discussion of the outcomes and techniques is
given in [Berry and Linoff, 1997]. Figure C.7 illustrates the
data mining process.

C.2.5 Web Data Management

A major challenge for web data management researchers and
practitioners is coming up with an appropriate data
representation scheme. The question is, is there a need for a
standard data model for web database systems? Is it at all
possible to develop such a standard? If so, what are the
relationships between the standard model and the individual
models used by the databases on the web?

565



Figure C.7 Steps to data mining.

Database management functions for the web include query
processing, metadata management, security, and integrity. In
[Thuraisingham, 2000], we have examined various database
management system functions and discussed the impact of
web database access on these functions. Some of the issues
are discussed here. Figure C.8 illustrates the functions.
Querying and browsing are two of the key functions. First of
all, an appropriate query language is needed. Because SQL is
a popular language, appropriate extensions to SQL may be
desired. XML-QL, which has evolved from XML (eXtensible
Markup Language) and SQL, is moving in this direction.
Query processing involves developing a cost model. Are there
special cost models for Internet database management? With
respect to browsing operation, the query processing
techniques have to be integrated with techniques for
following links. That is, hypermedia technology has to be
integrated with database management technology.

566



Figure C.8 Web data management.

Updating web databases could mean different things. One
could create a new web site, place servers at that site, and
update the data managed by the servers. The question is can a
user of the library send information to update the data at a
web site? An issue here is with security privileges. If the user
has write privileges, then he could update the databases that
he is authorized to modify. Agents and mediators could be
used to locate the databases as well as to process the update.

Transaction management is essential for many applications.
There may be new kinds of transactions on the web. For
example, various items may be sold through the Internet. In
this case, the item should not be locked immediately when a
potential buyer makes a bid. It has to be left open until several
bids are received and the item is sold. That is, special
transaction models are needed. Appropriate concurrency
control and recovery techniques have to be developed for the
transaction models.

Metadata management is a major concern for web data
management. The question is what is metadata? Metadata
describes all of the information pertaining to the library. This
could include the various web sites, the types of users, access
control issues, and policies enforced. Where should the
metadata be located? Should each participating site maintain
its own metadata? Should the metadata be replicated, or
should there be a centralized metadata repository? Metadata
in such an environment could be very dynamic, especially
because the users and the web sites may be changing
continuously.

567



Storage management for web database access is a complex
function. Appropriate index strategies and access methods for
handling multimedia data are needed. In addition, because of
the large volumes of data, techniques for integrating database
management technology with mass storage technology are
also needed. Other data management functions include
integrating heterogeneous databases, managing multimedia
data, and mining. We discussed them in [Thuraisingham,
2002-a].

C.2.6 Security Impact

Now that we have discussed data management technologies,
we will provide an overview of the security impact. With
respect to data management, we need to enforce appropriate
access control techniques. Early work focused on
discretionary access control; later, in the 1980s, focus was on
mandatory access control. More recently, the focus has been
on applying some of the novel access control techniques such
as role-based access control and usage control. Extension to
SQL to express security assertions, as well as extensions to
the relational data model to support multilevel security, has
received a lot of attention. More details can be found in
[Thuraisingham, 2005].

With respect to data integration, the goal is to ensure the
security of operation when heterogeneous databases are
integrated. That is, the policies enforced by the individual
data management systems have to be enforced at the coalition
level. Data warehousing and data mining results in additional
security concerns, and this includes the inference problem.
When data is combined, the combined data could be at a

568



higher security level. Specifically, inference is the process of
posing queries and deducing unauthorized information from
the legitimate responses received. The inference problem
exists for all types of database systems and has been studied
extensively within the context of multilevel databases. Figure
C.9 illustrates the security impact on data management.

C.3 Secure Information
Management
C.3.1 Introduction

In this section, we discuss various secure information
management technologies. In particular, we will first discuss
information retrieval, multimedia information management,
collaborative information management, and e-business and
digital libraries and then discuss the security impact.

569



Figure C.9 Secure data management.

Note that we have tried to separate data management and
information management. Data management focuses on
database systems technologies such as query processing,
transaction management, and storage management.
Information management is much broader than data
management, and we have included many topics in this
category, such as information retrieval and multimedia
information management.

The organization of this section is as follows. Information
retrieval is discussed in Section C.3.2. Multimedia
information management is the subject of Section C.3.3.
Collaboration and data management are discussed in Section
C.3.4. Digital libraries are discussed in Section C.3.5.
E-commerce technologies will be discussed in Section C.3.6.
Security impact will be discussed in Section C.3.7.

C.3.2 Information Retrieval

Information retrieval systems essentially provide support for
managing documents. The functions include document
retrieval, document update, and document storage
management, among others. These systems are essentially
database management systems for managing documents.
There are various types of information retrieval systems, and
they include text retrieval systems, image retrieval systems,
and audio and video retrieval systems. Figure C.10 illustrates
a general purpose information retrieval system that may be

570



utilized for text retrieval, image retrieval, audio retrieval, and
video retrieval. Such architecture can also be utilized for a
multimedia data management system (see [Thuraisingham,
2001]).

Figure C.10 Information retrieval system.

C.3.3 Multimedia Information
Management

A multimedia data manager (MM-DM) provides support for
storing, manipulating, and retrieving multimedia data from a
multimedia database. In a sense, a multimedia database
system is a type of heterogeneous database system, as it
manages heterogeneous data types. Heterogeneity is due to
the multiple media of the data such as text, video, and audio.
Because multimedia data also convey information such as
speeches, music, and video, we have grouped this under
information management. One important aspect of
multimedia data management is data representation. Both

571



extended relational models and object models have been
proposed.

An MM-DM must provide support for typical database
management system functions. These include query
processing, update processing, transaction management,
storage management, metadata management, security, and
integrity. In addition, in many cases, the various types of data,
such as voice and video, have to be synchronized for display,
and therefore, real-time processing is also a major issue in an
MM-DM.

Various architectures are being examined to design and
develop an MM-DM. In one approach, the data manager is
used just to manage the metadata, and a multimedia file
manager is used to manage the multimedia data. There is a
module for integrating the data manager and the multimedia
file manager. In this case, the MM-DM consists of the three
modules: the data manager managing the metadata, the
multimedia file manager, and the module for integrating the
two. The second architecture is the tight coupling approach.
In this architecture, the data manager manages both the
multimedia data and the metadata. The tight coupling
architecture has an advantage because all of the data
management functions could be applied on the multimedia
database. This includes query processing, transaction
management, metadata management, storage management,
and security and integrity management. Note that with the
loose coupling approach, unless the file manager performs the
DBMS functions, the DBMS only manages the metadata for
the multimedia data.

572



Figure C.11 Multimedia information management system.

There are also other aspects to architectures, as discussed in
[Thuraisingham, 1997]. For example, a multimedia database
system could use a commercial database system such as an
object-oriented database system to manage multimedia
objects. However, relationships between objects and the
representation of temporal relationships may involve
extensions to the database management system. That is, a
DBMS together with an extension layer provide complete
support to manage multimedia data. In the alternative case,
both the extensions and the database management functions
are integrated so that there is one database management
system to manage multimedia objects as well as the
relationships between the objects. Further details of these
architectures as well as managing multimedia databases are
discussed in [Thuraisingham, 2001]. Figure C.11 illustrates a
multimedia information management system.

573



C.3.4 Collaboration and Data
Management

Although the notion of computer supported cooperative work
(CSCW) was first proposed in the early 1980s, it is only in
the 1990s that much interest was shown on this topic.
Collaborative computing enables people, groups of
individuals, and organizations to work together with one
another to accomplish a task or a collection of tasks. These
tasks could vary from participating in conferences, solving a
specific problem, or working on the design of a system (see
[ACM, 1991]).

One aspect of collaborative computing that is of particular
interest to the database community is workflow computing.
Workflow is defined as the automation of a series of functions
that comprise a business process, such as data entry, data
review, and monitoring performed by one or more people. An
example of a process that is well suited for workflow
automation is the purchasing process. Some early commercial
workflow system products targeted for office environments
were based on a messaging architecture. This architecture
supports the distributed nature of current workteams.
However, the messaging architecture is usually file based and
lacks many of the features supported by database
management systems, such as data representation, consistency
management, tracking, and monitoring. The emerging
workflow systems utilize data management capabilities.

574



Figure C.12 Collaborative computing system.

Figure C.12 illustrates an example in which teams A and B
are working on a geographical problem, such as analyzing
and predicting the weather in North America. The two teams
must have a global picture of the map as well as any notes
that go with it. Any changes made by one team should be
instantly visible to the other team, and both teams
communicate as if they are in the same room.

To enable such transparent communication, data management
support is needed. One could utilize a database management
system to manage the data or some type of data manager that
provides some of the essential features such as data integrity,
concurrent access, and retrieval capabilities. In the previously
mentioned example, the database may consist of information
describing the problem the teams are working on, the data

575



that are involved, history data, and the metadata information.
The data manager must provide appropriate concurrency
control features so that when both teams simultaneously
access the common picture and make changes, these changes
are coordinated.

The web has increased the need for collaboration even
further. Users now share documents on the web and work on
papers and designs on the web. Corporate information
infrastructures promote collaboration and sharing of
information and documents. Therefore, the collaborative tools
have to work effectively on the web. More details are given in
[IEEE, 1999].

C.3.5 Digital Libraries

Digital libraries gained prominence with the initial efforts of
the National Science Foundation (NSF), Defense Advanced
Research Projects Agency (DARPA), and National
Aeronautics and Space Administration (NASA). NSF
continued to fund special projects in this area and as a result
the field has grown very rapidly. The idea behind digital
libraries is to digitize all types of documents and provide
efficient access to these digitized documents.

Several technologies have to work together to make digital
libraries a reality. These include web data management,
markup languages, search engines, and question answering
systems. In addition, multimedia information management
and information retrieval systems play an important role. This
section will review the various developments in some of the

576



digital libraries technologies. Figure C.13 illustrates an
example digital library system.

Figure C.13 Digital libraries.

C.3.6 E-Business

Various models, architectures, and technologies are being
developed. Business-to-business e-commerce is all about two
businesses conducting transactions on the web. We give some
examples. Suppose corporation A is an automobile
manufacturer and needs microprocessors to be installed in its
automobiles. It will then purchase the microprocessors from
corporation B, who manufactures the microprocessors.
Another example is when an individual purchases some
goods, such as toys from a toy manufacturer. This
manufacturer then contacts a packaging company via the web

577



to deliver the toys to the individual. The transaction between
the manufacturer and the packaging company is a
business-to-business transaction. Business-to-business
e-commerce also involves one business purchasing a unit of
another business or two businesses merging. The main point
is that such transactions have to be carried out on the web.
Business-to-consumer e-commerce is when a consumer
makes purchases on the web. In the toy manufacturer
example, the purchase between the individual and the toy
manufacturer is a business-to-consumer transaction.

The modules of the e-commerce server may include modules
for managing the data and web pages, mining customer
information, security enforcement, and transaction
management. E-commerce client functions may include
presentation management, user interface, as well as caching
data and hosting browsers. There could also be a middle tier,
which may implement the business objects to carry out the
business functions of e-commerce. These business functions
may include brokering, mediation, negotiations, purchasing,
sales, marketing, and other e-commerce functions. The
e-commerce server functions are impacted by the information
management technologies for the web. In addition to the data
management functions and the business functions, the
e-commerce functions also include those for managing
distribution, heterogeneity, and federations.

578



Figure C.14 E-business components.

E-commerce also includes non-technological aspects such as
policies, laws, social impacts, and psychological impacts. We
are now doing business in an entirely different way and
therefore we need a paradigm shift. We cannot do successful
e-commerce if we still want the traditional way of buying and
selling products. We have to be more efficient and rely on the
technologies a lot more to gain a competitive edge. Some key
points for e-commerce are illustrated in Figure C.14.

C.3.7 Security Impact

Security impact for information management technologies
include developing appropriate secure data models, functions,
and architectures. For example, to develop secure multimedia
information management systems, we need appropriate
security policies for text, audio, and video data. The next step
is to develop secure multimedia data models. These could be

579



based on relations or objects or a combination of these
representations. What is the level of granularity? Should
access be controlled to the entire video of video frames? How
can access be controlled based on semantics? For digital
libraries there is research on developing flexible policies.
Note that digital libraries may be managed by multiple
administrators under different environments. Therefore,
policies cannot be rigid. For collaborative information
systems, we need policies for different users to collaborate
with one another. How can the participants trust each other?
How can truth be established? What sort of access control is
appropriate? There is research on developing security models
for workflow and collaboration systems [Bertino et al., 1999].

Secure e-business is receiving a lot of attention. How can the
models, processes, and functions be secured? What are these
security models? Closely related to e-business is supply chain
management. The challenge here is ensuring security as well
as timely communication between the suppliers and the
customers.

C.4 Secure Knowledge
Management
We first discuss knowledge management and then describe
the security impact.

580



C.4.1 Knowledge Management

Knowledge management is the process of using knowledge as
a resource to manage an organization. It could mean sharing
expertise, developing a learning organization, teaching the
staff, learning from experiences, or collaborating. Essentially,
knowledge management will include data management and
information management. However, this is not a view shared
by everyone. Various definitions of knowledge management
have been proposed. Knowledge management is a discipline
invented mainly by business schools. The concepts have been
around for a long time. But the term knowledge management
was coined as a result of information technology and the web.

In the collection of papers on knowledge management by
[Morey et al., 2001], knowledge management is divided into
three areas. These are strategies such as building a knowledge
company and making the staff knowledge workers; processes
(such as techniques) for knowledge management, including
developing a method to share documents and tools; and
metrics that measure the effectiveness of knowledge
management. In the Harvard Business Review in the area of
knowledge management, there is an excellent collection of
articles describing a knowledge-creating company, building a
learning organization, and teaching people how to learn
[Harvard, 1996]. Organizational behavior and team dynamics
play major roles in knowledge management.

Knowledge management technologies include several
information management technologies, including knowledge
representation and knowledge-based management systems.
Other knowledge management technologies include

581



collaboration tools, tools for organizing information on the
web, and tools for measuring the effectiveness of the
knowledge gained, such as collecting various metrics.
Knowledge management technologies essentially include data
management and information management technologies as
well as decision support technologies. Figure C.15 illustrates
some of the knowledge management components and
technologies. It also lists the aspects of the knowledge
management cycle. Web technologies play a major role in
knowledge management. Knowledge management and the
web are closely related. Although knowledge management
practices have existed for many years, it is the web that has
promoted knowledge management.

Figure C.15 Knowledge management components and
technologies.

Many corporations now have Intranets, and an Intranet is the
single most powerful knowledge management tool.

582



Thousands of employees are connected through the web in an
organization. Large corporations have sites all over the world,
and the employees are becoming well connected with one
another. Email can be regarded to be one of the early
knowledge management tools. Now there are many tools,
such as search engines and e-commerce tools.

With the proliferation of web data management and
e-commerce tools, knowledge management will become an
essential part of the web and e-commerce. A collection of
papers on knowledge management experiences covers
strategies, processes, and metrics [Morey et al., 2001].
Collaborative knowledge management is discussed in
[Thuraisingham et al., 2002-b].

C.4.2 Security Impact

Secure knowledge management is receiving a lot of attention
[SKM, 2004]. One of the major challenges here is to
determine the security impact on knowledge management
strategies, processes, and metrics [Bertino et al., 2006]. We
will examine each of the components.

Note that an organization’s knowledge management strategy
must be aligned with its business strategy. That is, an
organization must utilize its knowledge to enhance its
business, which will ultimately include improved revenues
and profits. Therefore, the security strategy has to be aligned
with its business strategy. For example, an organization may
need to protect its intellectual property. Patents are one aspect
of intellectual property; other aspects include papers and trade
secrets. Some of this intellectual property should not be

583



widely disseminated to maintain the competitive edge.
Therefore, policies are needed to ensure that sensitive
intellectual property is treated as classified material.

With respect to knowledge management processes, we need
to incorporate security into them. For example, consider the
workflow management for purchase orders. Only authorized
individuals should be able to execute the various processes.
This means that security for workflow systems is an aspect of
secure knowledge management. That is, the data and
information management technologies will contribute to
knowledge management.

With respect to metrics, security will have an impact. For
example, one metric could be the number of papers published
by individuals. These papers may be classified or
unclassified. Furthermore, the existence of the classified
documents may also be classified. This means that at the
unclassified level there may be one value for the metric,
whereas at the classified level there may be another value.
Therefore, when evaluating the employee for his or her
performance, both values have to be taken into consideration.
However, if the manager does not have an appropriate
clearance, then there will be an issue. The organization has to
then develop appropriate mechanisms to ensure that the
employee’s entire contributions are taken into consideration
when he or she is evaluated.

584



C.5 Summary
In this chapter, we have provided an overview of secure data,
information, and knowledge management. In particular, we
have discussed data, information, and knowledge
management technologies and then examined the security
impact.

As we have stated earlier, data, information, and knowledge
management are supporting technologies for building
trustworthy semantic webs. The agents that carry out
activities on the web have to utilize the data, extract
information from the data, and reuse knowledge so that
machine-untreatable web pages can be developed. There are
several other aspects of data, information, and knowledge
management that we have not covered in this chapter, such as
peer-to-peer information management and information
management for virtual organizations.

References
[ACM, 1991] Special Issue on Computer Supported
Cooperative Work, Communications of the ACM, December
1991.

[Berry and Linoff, 1997] Berry, M., and G. Linoff, Data
Mining Techniques for Marketing, Sales, and Customer
Support, John Wiley, 1997.

585



[Bertino et al., 1999] Bertino, E., E. Ferrari, V. Atluri, The
Specification and Enforcement of Authorization Constraints
in Workflow Management Systems, ACM Transactions on
Information and Systems Security, Vol. 2, No. 1, 1999, pp.
65–105.

[Bertino et al., 2006] Bertino, E., L. Khan, R. S. Sandhu, B.
M. Thuraisingham, Secure Knowledge Management:
Confidentiality, Trust, and Privacy, IEEE Transactions on
Systems, Man, and Cybernetics, Part A, Vol. 36, No. 3, 2006,
pp. 429–438.

[Ceri and Pelagatti, 1984] Ceri, S., and G. Pelagatti,
Distributed Databases, Principles and Systems,
McGraw-Hill, 1984.

[Codd, 1970] Codd, E. F., A Relational Model of Data for
Large Shared Data Banks, Communications of the ACM, Vol.
26, No. 1, 1970, pp. 64–69.

[Date, 1990] Date, C., An Introduction to Database Systems,
Addison-Wesley, Reading, MA, 1990.

[Harvard, 1996] Harvard Business School Articles on
Knowledge Management, Harvard University, MA, 1996.

[IEEE, 1999] Special Issue in Collaborative Computing,
IEEE Computer, Vol. 32, No. 9, 1999.

[Inmon, 1993] Inmon, W., Building the Data Warehouse,
John Wiley and Sons, 1993.

[KDN, 2011] Kdnuggets, www.kdn.com

586

http://www.kdn.com


[Morey et al., 2001] Morey, D., M. Maybury, B.
Thuraisingham, Editors, Knowledge Management, MIT Press,
2001.

[Sheth and Larson, 1990] Sheth A., and J. Larson, Federated
Database Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases, ACM Computing Surveys, Vol.
22, No. 3, 1990, pp. 183–236. 1990.

[SKM, 2004] Proceedings of the Secure Knowledge
Management Workshop, Buffalo, NY, 2004.

[Thuraisingham, 1997] Thuraisingham, B., Data Management
Systems Evolution and Interoperation, CRC Press, 1997.

[Thuraisingham, 2000] Thuraisingham, B., Web Data
Management and Electronic Commerce, CRC Press, 2000.

[Thuraisingham, 2001] Thuraisingham, B., Managing and
Mining Multimedia Databases for the Electronic Enterprise,
CRC Press, 2001.

[Thuraisingham, 2002-a] Thuraisingham, B., XML Databases
and the Semantic Web, CRC Press, 2002.

[Thuraisingham et al., 2002-b] Thuraisingham, B., A. Gupta,
E. Bertino, E. Ferrari, Collaborative Commerce and
Knowledge Management, Journal of Knowledge and Process
Management, Vol. 9, No. 1, 2002, pp. 43–53.

[Thuraisingham, 2005] Thuraisingham, B., Database and
Applications Security, CRC Press, 2005.

587



[Tsichritzis and Lochovsky, 1982] Tsichritzis, D., and F.
Lochovsky, Data Models, Prentice Hall, 1982.

[Ullman, 1988] Ullman, J. D., Principles of Database and
Knowledge Base Management Systems, Vols. I and II,
Computer Science Press, 1988.

[Wiederhold, 1992] Wiederhold, G., Mediators in the
Architecture of Future Information Systems, IEEE Computer,
Vol. 25, Issue 3, March 1992, pp. 38–49.

[Woelk et al., 1986] Woelk, D., W. Kim, W. Luther, An
Object-Oriented Approach to Multimedia Databases,
Proceedings of the ACM SIGMOD Conference, Washington,
DC, June 1986, pp. 311–325.

588



Appendix D: Semantic Web

D.1 Introduction
Tim Berners Lee, the father of the World Wide Web, realized
the inadequacies of current web technologies and
subsequently strived to make the web more intelligent. His
goal was to have a web that would essentially alleviate
humans from the burden of having to integrate disparate
information sources as well as to carry out extensive searches.
He then came to the conclusion that one needs
machine-understandable web pages and the use of ontologies
for information integration. This resulted in the notion of the
semantic web [Lee and Hendler, 2001]. The web services that
take advantage of semantic web technologies are called
semantic web services.

A semantic web can be thought of as a web that is highly
intelligent and sophisticated so that one needs little or no
human intervention to carry out tasks such as scheduling
appointments, coordinating activities, searching for complex
documents, as well as integrating disparate databases and
information systems. Although much progress has been made
toward developing such an intelligent web, there is still a lot
to be done. For example, technologies such as ontology
matching, intelligent agents, and markup languages are
contributing a lot toward developing the semantic web.
Nevertheless, humans are still needed to make decisions and
take actions.

589



Recently there have been many developments on the semantic
web. The World Wide Web consortium (W3C,
www.w3c.org) is specifying standards for the semantic web.
These standards include specifications for XML, RDF, and
Interoperability. However, it is also very important that the
semantic web be secure. That is, the components that
constitute the semantic web have to be secure. The
components include XML, RDF, and Ontologies. In addition,
we need secure information integration. We also need to
examine trust issues for the semantic web. It is, therefore,
important that we have standards for securing the semantic
web, including specifications for secure XML, secure RDF,
and secure interoperability (see [Thuraisingham, 2005]). In
this appendix, we will discuss the various components of the
semantic web and discuss semantic web services.

Although agents are crucial to managing the data and the
activities on the semantic web, usually agents are not treated
as part of semantic web technologies. Because the subject of
agents is vast and there are numerous efforts to develop
agents, as well as secure agents, we do not discuss agents in
depth in this appendix. However, we mention agents here as it
is these agents that use XML and RDF and make sense of the
data and understand web pages. Agents act on behalf of the
users. Agents communicate with each other using
well-defined protocols. Various types of agents have been
developed depending on the tasks they carry out. These
include mobile agents, intelligent agents, search agents, and
knowledge management agents. Agents invoke web services
to carry out the operations. For details of agents we refer
readers to [Hendler, 2001].

590

http://www.w3c.org


The organization of this appendix is as follows. In Section
D.2, we will provide an overview of the layered architecture
for the semantic web as specified by Tim Berners Lee.
Components such as XML, RDF, ontologies, and web rules
are discussed in Sections D.3 through D.6. Semantic web
services are discussed in Section D.7. The appendix is
summarized in Section D.8. Much of the discussion of the
semantic web is summarized from the book by Antoniou and
van Harmelan [Antoniou and Harmelan, 2003]. For an
up-to-date specification we refer the reader to the World Wide
Web Consortium web site (www.w3c.org).

Figure D.1 Layered architecture for the semantic web.

591

http://www.w3c.org


D.2 Layered Technology
Stack
Figure D.1 illustrates the layered technology stack for the
semantic web. This is the architecture that was developed by
Tim Berners Lee. Essentially the semantic web consists of
layers where each layer takes advantage of the technologies of
the previous layer. The lowest layer is the protocol layer, and
this is usually not included in the discussion of the semantic
technologies. The next layer is the XML layer. XML is a
document representation language and will be discussed in
Section D.3. Whereas XML is sufficient to specify syntax, a
semantic string such as “the creator of document D is John” is
hard to specify in XML. Therefore, the W3C developed RDF,
which uses XML syntax. The semantic web community then
went further and came up with a specification of ontologies in
languages such as OWL (Web Ontology Language). Note that
OWL addresses the inadequacies of RDF. For example, OWL
supports the notions of union and intersection of classes that
RDF does not support. In order to reason about various
policies, the semantic web community has come up with a
web rules language such as SWRL (semantic web rules
language) and RuleML (rule markup language) (e.g., the
consistency of the policies or whether the policies lead to
security violations).

The functional architecture is illustrated in Figure D.2. It is
essentially a service-oriented architecture that hosts web
services.

592



D.3 XML
XML is needed due to the limitations of HTML and
complexities of SGML. It is an extensible markup language
specified by the W3C (World Wide Web Consortium) and
designed to make the interchange of structured documents
over the Internet easier. An important aspect of XML used to
be the notion of Document Type Definitions (DTDs) which
defines the role of each element of text in a formal model.
XML schemas have now become critical to specify the
structure. XML schemas are also XML documents. This
section will discuss various components of XML including:
statements, elements, attributes, and schemas. The
components of XML are illustrated in Figure D.3.

593



Figure D.2 Functional architecture for the semantic web.

594



Figure D.3 Components of XML.

D.3.1 XML Statement and Elements

The following is an example of an XML statement that
describes the fact that “John Smith is a Professor in Texas.”
The elements are name and state. The XML statement is as
follows:

<Professor>

<name> John Smith </name>

<state> Texas </state>

</Professor>

595



D.3.2 XML Attributes

Suppose we want to specify that there is a professor called
John Smith who makes 60K. We can use either elements or
attributes to specify this. The example below shows the use of
the attributes Name and Salary.

<Professor>

Name = “John Smith,” Access = All, Read

Salary = “60K”

</Professor>

D.3.3 XML DTDs

DTDs (Document Type Definitions) essentially specify the
structure of XML documents.

Consider the following DTD for Professor with elements
Name and State. This will be specified as:

<!ELEMENT Professor Officer (Name, State)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT state (#PCDATA)>

596



<!ELEMENT access (#PCDATA).>

D.3.4 XML Schemas

While DTDs were the early attempts to specify structure for
XML documents, XML schemas are far more elegant to
specify structures. Unlike DTDs, XML schemas essentially
use the XML syntax for specification.

Consider the following example:

<ComplexType = name = “ProfessorType”>

<Sequence>

<element name = “name” type = “string”/>

<element name = “state” type = “string”/>

<Sequence>

</ComplexType>

D.3.5 XML Namespaces

Namespaces are used for DISAMBIGUATION. An example
is given below.

597



<CountryX: Academic-Institution

Xmlns: CountryX = “http://www.CountryX.edu/Institution
UTD”

Xmlns: USA = “http://www.USA.edu/Institution UTD”

Xmlns: UK = “http://www.UK.edu/Institution UTD”

<USA: Title = College

USA: Name = “University of Texas at Dallas”

USA: State = Texas”

<UK: Title = University

UK: Name = “Cambridge University”

UK: State = Cambs

</CountryX: Academic-Institution>

D.3.6 XML Federations/Distribution

XML data may be distributed and the databases may form
federations. This is illustrated in the segment below.

Site 1 document:

<Professor-name>

598

http://www.CountryX.edu/Institution
http://www.USA.edu/Institution
http://www.UK.edu/Institution


<ID> 111 </ID>

<Name> John Smith </name>

<State> Texas </state>

</Professor-name>

Site 2 document:

<Professor-salary>

<ID> 111 </ID>

<salary> 60K </salary>

<Professor-salary>

D.3.7 XML-QL, XQuery, XPath, XSLT

XML-QL and XQuery are query languages that have been
proposed for XML. XPath is used to specify the queries.
Essentially, Xpath expressions may be used to reach a
particular element in the XML statement. In our research we
have specified policy rules as Xpath expressions (see [Bertino
et al., 2004]). XSLT is used to present XML documents.
Details are given on the World Wide Web Consortium web
site (www.w3c.org) and in [Antoniou and Harmelan, 2003].
Another useful reference is [Laurent, 2000].

599

http://www.w3c.org


D.4 RDF
Whereas XML is ideal to specify the syntax of various
statements, it is difficult to use XML to specify the semantics
of a statement. For example, with XML, it is difficult to
specify statements such as the following:

Engineer is a subclass of Employee.

Engineer inherits all properties of Employee.

Note that the statements specify the class/subclass and
inheritance relationships. RDF was developed by Tim Berners
Lee and his team so that the inadequacies of XML could be
handled. RDF uses XML syntax. Additional constructs are
needed for RDF and we discuss some of them. Details can be
found in [Antoniou and Harmelan, 2003].

Resource Description Framework (RDF) is the essence of the
semantic web. It provides semantics with the use of
ontologies to various statements and uses XML syntax. RDF
concepts include the basic model, which consists of
Resources, Properties, and Statements, and the container
model, which consists of Bag, Sequence, and Alternative. We
discuss some of the essential concepts. The components of
RDF are illustrated in Figure D.4.

600



Figure D.4 Components of RDF.

Figure D.5 RDF statement.

D.4.1 RDF Basics

The RDF basic model consists of resource, property, and
statement. In RDF everything is a resource such as person,
vehicle, and animal. Properties describe relationships between
resources such as “bought,” “invented,” “ate.” Statement is a
triple of the form (Object, Property, Value). Examples of
statements include the following:

Berners Lee invented the Semantic Web.

601



Tom ate the Apple.

Mary brought a Dress.

Figure D.5 illustrates a statement in RDF. In this statement,
Berners Lee is the Object, Semantic Web is the Value, and
invented is the property.

D.4.2 RDF Container Model

The RDF container model consists of bag, sequence, and
alternative. As described in [Antoniou and Harmelan, 2003],
these constructs are specified in RDF as follows:

Bag: Unordered container, may contain multiple occurrences

Rdf: Bag

Seq: Ordered container, may contain multiple occurrences

Rdf: Seq

Alt: a set of alternatives

Rdf: Alt

D.4.3 RDF Specification

As stated in [Antoniou and Harmelan, 2003], RDF
specifications have been given for attributes, types, nesting,
containers, and others. An example is the following:

602



“Berners Lee is the Author of the book Semantic Web.”

This statement is specified as follows (see also [Antoniou and
Harmelan, 2003]):

<rdf: RDF

xmlns: rdf = “http://w3c.org/1999/02-22-rdf-syntax-ns#”

xmlns: xsd = “http:// - - -

xmlns: uni = “http:// - - - -

<rdf: Description: rdf: about = “949352”

<uni: name = Berners Lee</uni:name>

<uni: title> Professor < uni:title>

</rdf: Description>

<rdf: Description rdf: about: “ZZZ”

< uni: bookname> semantic web <uni:bookname>

< uni: authoredby: Berners Lee <uni:authoredby>

</rdf: Description>

</rdf: RDF>

603

http://w3c.org/1999/02-22-rdf-syntax-ns
http:// - - -
http:// - - - -


D.4.4 RDF Schemas

Whereas XML schemas specify the structure of the XML
document and can be considered to be metadata, RDF schema
specifies relationships such as the class/subclass relationships.
For example, we need RDF schema to specify statements
such as “engineer is a subclass of employee.” The following
is the RDF specification for this statement.

<rdfs: Class rdf: ID = “engineer”

<rdfs: comment>

The class of Engineers

All engineers are employees

<rdfs: comment>

<rdfs: subClassof rdf: resource = “employee”/>

<rdfs: Class>

D.4.5 RDF Axiomatic Semantics

First-order logic is used to specify formulas and inferencing.
The following constructs are needed:

Built in functions (First) and predicates (Type)

604



Modus Ponens: From A and If A then B, deduce B

The following example is taken from [Antoniou and
Harmelan 2003]:

Example: All Containers are Resources; that is if X is a
container, then X is a resource.

Type(?C, Container) → Type(?c, Resource)

If we have Type(A, Container) then we can infer (Type A,
Resource)

D.4.6 RDF Inferencing

Unlike XML, RDF has inferencing capabilities. Although
first-order logic provides a proof system, it will be
computationally infeasible to develop such a system using
first-order logic. As a result, Horn clause logic was developed
for logic programming [Lloyd, 1987]; this is still
computationally expensive. Semantic web is based on a
restricted logic called Descriptive Logic; details can be found
in [Antoniou and Harmelan, 2003]. RDF uses If then Rules as
follows:

IF E contains the triples (?u, rdfs: subClassof, ?v)

and (?v, rdfs: subClassof ?w)

THEN

605



E also contains the triple (?u, rdfs: subClassof, ?w)

That is, if u is a subclass of v, and v is a subclass of w, then u
is a subclass of w.

D.4.7 RDF Query

Similar to XML Query languages such as X-Query and
XML-QL, query languages are also being developed for RDF.
One can query RDF using XML, but this will be very difficult
because RDF is much richer than XML. Thus, RQL, an
SQL-like language, was developed for RDF. It is of the
following form:

Select from “RDF document” where some “condition.”

D.4.8 SPARQL

The RDF Data group at W3C has developed a query language
for RDF called SPARQL, which is becoming the standard
now for querying RDF documents. We are developing
SPARQL query processing algorithms for clouds. We have
also developed a query optimizer for SPARQL queries.

D.5 Ontologies
Ontologies are common definitions for any entity, person, or
thing. Ontologies are needed to clarify various terms, and
therefore, they are crucial for machine-understandable web

606



pages. Several ontologies have been defined and are available
for use. Defining a common ontology for an entity is a
challenge, as different groups may come up with different
definitions. Therefore, we need mappings for multiple
ontologies. That is, these mappings map one ontology to
another. Specific languages have been developed for
ontologies. Note that RDF was developed because XML is
not sufficient to specify semantics such as class/subclass
relationship. RDF is also limited, as one cannot express
several other properties such as Union and Intersection.
Therefore, we need a richer language. Ontology languages
were developed by the semantic web community for this
purpose.

OWL (Web Ontology Language) is a popular ontology
specification language. It’s a language for ontologies and
relies on RDF. DARPA (Defense Advanced Research
Projects Agency) developed early language DAML (DARPA
Agent Markup Language). Europeans developed OIL
(Ontology Interface Language). DAML+OIL is a
combination of the two and was the starting point for OWL.
OWL was developed by W3C. OWL is based on a subset of
first-order logic and that is descriptive logic.

OWL features include Subclass relationship, Class
membership, Equivalence of classes, Classification and
Consistency (e.g., x is an instance of A, A is a subclass of B,
x is not an instance of B).

There are three types of OWL: OWL-Full, OWL-DL,
OWL-Lite. Automated tools for managing ontologies are
called ontology engineering.

607



Below is an example of OWL specification:

Textbooks and Coursebooks are the same.

EnglishBook is not a FrenchBook

EnglishBook is not a GermanBook

< owl: Class rdf: about = “#EnglishBook”>

<owl: disjointWith rdf: resource “#FrenchBook”/>

<owl: disjointWith rdf: resource = “#GermanBook”/>

</owl:Class>

<owl: Class rdf: ID = “TextBook”>

<owl: equivalentClass rdf: resource = “CourseBook”/>

</owl: Class>

Below is an OWL specification for Property:

Englishbooks are read by Students

< owl: ObjectProperty rdf: about = “#readBy”>

<rdfs domain rdf: resource = “#EnglishBook”/>

<rdfs: range rdf: resource = “#student”/>

608



<rdfs: subPropertyOf rdf: resource = “#involves”/>

</owl: ObjectProperty>

Below is an OWL specification for property restriction:

All Frenchbooks are read only by Frenchstudents.

< owl: Class rdf: about = “#”FrenchBook”>

<rdfs: subClassOf>

<owl: Restriction>

<owl: onProperty rdf: resource = “#readBy”>

<owl: allValuesFrom rdf: resource = “#FrenchStudent”/>

</rdfs: subClassOf>

</owl: Class>

D.6 Web Rules and SWRL
D.6.1 Web Rules

RDF is built on XML and OWL is built on RDF. We can
express subclass relationships in RDF and additional

609



relationships in OWL. However, reasoning power is still
limited in OWL. Therefore, we need to specify rules, and
subsequently a markup language for rules, so that machines
can understand and make inferences.

Below are some examples as given in [ANTI03]:

Studies(X,Y), Lives(X,Z), Loc(Y,U), Loc(Z,U) →

DomesticStudent(X)

i.e. if John Studies at UTDallas and John lives on Campbell

Road and the location of Campbell Road and UTDallas

are Richardson then John is a Domestic student.

Note that Person (X) → Man(X) or Woman(X) is not a rule in
predicate logic.

That is if X is a person then X is either a man or a woman
cannot be expressed in first order predicate logic. Therefore,
in predicate logic we express the above as if X is a person and
X is not a man then X is a woman and similarly if X is a
person and X is not a woman then X is a man. That is, in
predicate logic, we can have a rule of the form

Person(X) and Not Man(X) → Woman(X)

610



However, in OWL we can specify the rule if X is a person
then X is a man or X is a woman.

Rules can be monotonic or nonmonotonic.

Below is an example of a monotonic rule:

→ Mother(X,Y)

Mother(X,Y) → Parent(X,Y)

If Mary is the mother of John, then Mary is the parent of John

Rule is of the form:

B1, B2, –––– Bn → A

That is, if B1, B2, ––-Bn hold then A holds.

In the case of nonmonotonic reasoning, if we have X and
NOT X, we do not treat them as inconsistent as in the case of
monotonic reasoning. For example, as discussed in [Antoniou
and Harmelan, 2003], consider the example of an apartment
that is acceptable to John. That is, in general, John is prepared
to rent an apartment unless the apartment has fewer than two
bedrooms and does not allow pets. This can be expressed as
follows:

→ Acceptable(X)

Bedroom(X,Y), Y<2 → NOT Acceptable(X)

611



NOT Pets(X) → NOT Acceptable(X)

The first rule states that an apartment is, in general,
acceptable to John. The second rule states that if the
apartment has fewer than two bedrooms, it is not acceptable
to John. The third rule states that if pets are not allowed, then
the apartment is not acceptable to John. Note that there could
be a contradiction. With nonmonotonic reasoning this is
allowed, whereas it is not allowed in monotonic reasoning.

We need rule markup languages for the machine to
understand the rules. The various components of logic are
expressed in the Rule Markup Language called RuleML,
developed for the semantic web. Both monotonic and
nonmonotonic rules can be represented in RuleML.

An example representation of the Fact Parent(A), which
means “A is a parent” is expressed as follows:

<fact>

<atom>

<predicate>Parent</predicate>

<term>

<const>A</const>

</term>

612



</atom>

</fact>

Figure D.6 SWRL components.

D.6.2 SWRL

W3C has come up with a new rules language that integrates
both OWL and Web Rules and this is SWRL (semantic web
rules language). The authors of SWRL state that SWRL
extends the set of OWL axioms to include Horn-like rules.
This way, Horn-like rules can be combined with an OWL
knowledge base. Such a language will have the
representational power of OWL and the reasoning power of
logic programming. We illustrate SWRL components in
Figure D.6.

The authors of SWRL (Horrocks et al.) also state that the
proposed rules are in the form of an implication between an
antecedent (body) and consequent (head). The intended
meaning can be read as: whenever the conditions specified in

613



the antecedent hold, then the conditions specified in the
consequent must also hold. An XML syntax is also given for
these rules based on RuleML and the OWL XML
presentation syntax. Furthermore, an RDF concrete syntax
based on the OWL RDF/XML exchange syntax is presented.
The rule syntaxes are illustrated with several running
examples. Finally, we give usage suggestions and cautions.

The following is a SWRL example that we have taken from
the W3C specification of SWTL [Horrocks et al., 2004]. It
states that if x1 is the child of x2 and x3 is the brother of x2,
then x3 is the uncle of x1. For more details of SWRL, we
refer the reader to the W3C specification [Horrocks et al.,
2004]. The example uses XML syntax.

<ruleml:imp>

<ruleml:_rlab ruleml:href=“#example1”/>

<ruleml:_body>

<swrlx:individualPropertyAtom swrlx:property=

“hasParent”>

<ruleml:var>x1</ruleml:var>

<ruleml:var>x2</ruleml:var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property=

614



“hasBrother”>

<ruleml:var>x2</ruleml:var>

<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property=

“hasUncle”>

<ruleml:var>x1</ruleml:var>

<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_head>

</ruleml:imp>

D.7 Semantic Web Services
Semantic web services utilize semantic web technologies.
Web services utilize WSDL and SOAP messages, which are
based on XML. With semantic web technologies, one could

615



utilize RDF to express semantics in the messages as well as
with web services description languages. Ontologies could be
utilized for handling heterogeneity. For example, if the words
in the messages or service descriptions are ambiguous, then
ontologies could resolve these ambiguities. Finally, rule
languages such as SWRL could be used for reasoning power
for the messages as well as the service descriptions.

As stated in [SWS], the mainstream XML standards for
interoperation of web services specify only syntactic
interoperability, not the semantic meaning of messages. For
example, WSDL can specify the operations available through
a web service and the structure of data sent and received, but
it cannot specify semantic meaning of the data or semantic
constraints on the data. This requires programmers to reach
specific agreements on the interaction of web services and
makes automatic web service composition difficult.

Figure D.7 Semantic web services.

616



Semantic web services are built around semantic web
standards for the interchange of semantic data, which makes it
easy for programmers to combine data from different sources
and services without losing meaning. Web services can be
activated “behind the scenes” when a web browser makes a
request to a web server, which then uses various web services
to construct a more sophisticated reply than it would have
been able to do on its own. Semantic web services can also be
used by automatic programs that run without any connection
to a web browser. Figure D.7 illustrates the components of
semantic web services.

D.8 Summary
This appendix has provided an overview of semantic web
technologies and the notion of semantic web services. In
particular, we have discussed Tim Berners Lee’s technology
stack as well as a functional architecture for the semantic
web. Then we discussed XML, RDF, and ontologies, as well
as web rules for the semantic web. Finally, we discussed
semantic web services and how they can make use of
semantic web technologies.

There is still a lot of work to be carried out on semantic web
services. Much of the development of web services focused
on XML technologies. We need to develop standards for
using RDF for web services. For example, we need to develop
RDF-like languages for web services descriptions. Security
has to be integrated into semantic web technologies. Finally,
we need to develop semantic web technologies for
applications such as multimedia geospatial technologies and

617



video processing. Some of the directions are discussed in
[Thuraisingham, 2007] and [Thuraisingham, 2010].

References
[Antoniou and Harmelan, 2003] Antoniou, G., and F. van
Harmelan, A Semantic Web Primer, MIT Press, 2003.

[Bertino et al., 2004] Bertino, E., B. Carminati, E. Ferrari, B.
Thuraisingham, A. Gupta, Selective and Authentic
Third-Party Distribution of XML Documents, IEEE
Transactions on Knowledge and Data Engineering, Vol. 16,
No. 10, 2004, pp. 1263–1278.

[Hendler, 2001] Hendler, J., Agents and the Semantic Web,
IEEE Intelligent Systems Journal, Vol. 16, No. 2, 2001, pp.
30–37.

[Horrocks et al., 2004] Horrocks, I., P. F. Patel-Schneider, H.
Boley, S. Tabet, B. Grosof, M. Dean, A Semantic Web Rule
Language Combining OWL and RuleML, National Research
Council of Canada, Network Inference, and Stanford
University, http://www.w3.org/Submission/SWRL/#1

[Laurent, 2000] Laurent, S. S., XML: A Primer, Power Books
Publishing, 2000.

[Lee and Hendler, 2001] Lee, T. B., and J. Hendler, The
Semantic Web, Scientific American, May 2001, pp. 35–43.

[Lloyd, 1987] Lloyd, J., Logic Programming, Springer, 1987.

618

http://www.w3.org/Submission/SWRL/#1


[SWS] http://en.wikipedia.org/wiki/Semantic_Web_Services

[Thuraisingham, 2005] Thuraisingham, B., Database and
Applications Security: Integrating Data Management and
Information Security, CRC Press, 2005.

[Thuraisingham, 2007] Thuraisingham, B., Building
Trustworthy Semantic Webs, CRC Press, 2007.

[Thuraisingham, 2010] Thuraisingham, B., Secure Semantic
Service-Oriented Systems, CRC Press, 2010.

619

http://en.wikipedia.org/wiki/Semantic_Web_Services


Index

A

ABEP, see Address before entry point

Active defense, data mining for, 245–261

antivirus product, 258

architecture, 249–250

boosted decision trees, 249

data mining-based malware detection model, 251–255

binary n-gram feature extraction, 252–253

feature extraction, 252–252

feature selection, 253–254

feature vector computation, 254

framework, 251–252

testing, 255

training, 254–255

encrypted payload, 247

620



experiments, 257–258

model-reversing obfuscations, 255–257

feature insertion, 256

feature removal, 256–257

path selection, 256

related work, 247–249

signature information leaks, 259

summary and directions, 258–260

Windows public antivirus interface, 259

ActiveX controls, 259

Adaboost, 131

Address before entry point (ABEP), 128

Adelson Velsky Landis (AVL) tree, 121

AFR algorithm, see Assembly feature retrieval algorithm

AFS, see Assembly feature set

AI, see Artificial intelligence

ANN, see Artificial neural network

621



Anomaly detection, 53

Antivirus

interfaces, signature information leaks, 259

product, tested, 258

ARM, see Association rule mining

ARPANET, 38

Artificial intelligence (AI), 57, 288

Artificial neural network (ANN), 14–19

back propagation algorithm, 18

diagram, 17

hybrid model and, 65

learning process, 15

perceptron input, 15

predictive accuracy and, 58

sigmoid transfer function, 18

step size, 19

training example, 17

622



uses, 14

Assembly feature retrieval (AFR) algorithm, 128–130

Assembly feature set (AFS), 126

Association rule mining (ARM), 25–29

Apriori algorithm, 28

firewall policy management, 321

Frequent Itemset Graph, 27, 29

hybrid model and, 65

incremental techniques, 288

parameters, 25

prediction using, 57, 63

problem in using, 26

recommendation engine, 27, 28

relationships among itemsets, 25

sensor data, 289

web transactions, 26

Attack

623



categories, 52

critical infrastructures, 50

distributed denial of service, 5, 41

host-based, 52

information-related, 48

network-based, 52, 53

terrorist, 281

types, 233

web security, 353

zero-day, 4, 39, 73, 111

AVL tree, see Adelson Velsky Landis tree

B

Banking, online, 41

BFS, see Binary feature set

Binary feature set (BFS), 125, 127

BIRCH, 292

Boosted J48, 172

624



Botnets, 41–42

Botnets, detecting, 183–189

approach, 187–188

botnet architecture, 183–186

related work, 186–187

summary and directions, 188

Botnets, detecting, design of data mining tool, 191–199

architecture, 191–192

bot command categorization, 194–195

classification, 198

data collection, 194

feature extraction, 195–196

flow-level features, 196–196

packet-level features, 195–196

log file correlation, 197–198

packet filtering, 198–199

summary and directions, 199

625



system setup, 193

Botnets, detecting, evaluation and results, 201–206

baseline techniques, 201–202

classifiers, 202

Livadas, 201

Temporal, 201

comparison with other

techniques, 203–204

false alarm rates, 202

further analysis, 205–206

performance on different datasets, 202–203

summary and directions, 206

Business-to-business e-commerce, 378

C

CBIR, see Content-based image retrieval

CDL, see Code vs. data length

CF, see Collaborative filtering

626



Chi-square, 65

Class label, 89

CLEF medical image datasets, 33

Cluster feature vector, 292

Clustering, idea behind, 291

Code vs. data length (CDL), 163–164

Collaborative filtering (CF), 63

Computer Fraud and Abuse Act, 39

Computer supported cooperative work (CSCW), 375

Content-based image retrieval (CBIR), 31

Credit card fraud, 49

Cryptography, 348

CSCW, see Computer supported cooperative work

Curse of dimensionality, 32

Cyber-terrorism, 48

D

DAF, see Derived assembly feature set

627



DARPA, see Defense Advanced Research Projects Agency

Database

functional, 327

heterogeneous, 328

management, 364–266

data distribution, 365–366

data model, 364–365

functions, 365

object-oriented, 327

signature, 39

system vendors, 324

Data, information, and knowledge management, 363–384

Distributed Processor, 366

metadata, 365

secure data management, 364–372

database management, 364–266

data warehousing and data mining, 368–369

628



heterogeneous data integration, 367

security impact, 372

web data management, 369–372

secure information management, 372–380

collaboration and data management, 375–377

digital libraries, 377

e-business, 378–379

information retrieval, 373

multimedia information management, 374–375

security impact, 379–380

secure knowledge management, 380–383

components and technologies, 381

corporate Intranets, 381

definition of knowledge management, 380

knowledge management, 380–382

security impact, 382–383

Web data management and, 382

629



summary and directions, 383

transaction management, 371

Data management systems (developments and trends),
323–340

building information systems from framework, 334–337

client-server environments, 324

comprehensive view of data management systems, 329

data management systems framework, 331–334

developments in database systems, 325–330

federated database system, 328

functional database systems, 327

heterogeneous database system, 328

major database system vendors, 324

object-oriented database systems, 327

relational database system products, 326

relationship between texts, 337–338

standardization efforts, 327

status, vision, and issues, 330

630



Structured Query Language, 327

summary and directions, 339

three-dimensional view of data management, 333

vision, 331

Data mining, introduction to, 1–9

botnet detection, 5

detecting remote exploits, 5

email worm detection 3–4

emerging data mining tools for cyber security applications, 6

image classification, 2

malicious code detection, 4

next steps, 7–8

organization of book, 6–7

security technologies, 2–3

signature detection, 4

stream data mining, 5–6

trends, 1–2

631



Data mining techniques, 13–35

artificial neural network, 14–19

back propagation algorithm, 18

diagram, 17

learning process, 15

perceptron input, 15

sigmoid transfer function, 18

step size, 19

training example, 17

uses, 14

association rule mining, 25–29

Apriori algorithm, 28

Frequent Itemset Graph, 27, 29

parameters, 25

problem in using, 26

recommendation engine, 27, 28

relationships among itemsets, 25

632



web transactions, 26

hyper-plane classifier, 18

image classification, 32

image mining, 31–34

approaches, 31

automatic image annotation, 33

clustering algorithm, 32

content-based image retrieval, 31

curse of dimensionality, 32

feature selection, 32–33

image classification, 33–34

k nearest neighbor algorithm, 34

principal component analysis, 33

singular value decomposition, 33

translational model, 33

Markov model, 22–25

example, 23

633



first-order, 24

second-order, 24

sliding window, 25

transition probability, 23

web surfing predictive methods using, 22

multi-class problem, 29–30

one-vs-all, 30

one-vs-one, 29–30

overview, 14

semantic gap, 31

summary, 34

support vector machines, 19–22

basic concept in, 19

binary classification and, 19

description of, 19

functional margin, 19

linear separation, 20

634



margin area, adding objects in, 22

optimization problem, 21

support vectors, 21

DDoS attacks, see Distributed denial of service attacks

Defense, see Active defense, data mining for

Defense Advanced Research Projects Agency (DARPA), 377,
395–396

Derived assembly feature set (DAF), 133

Descriptive Logic, 394

Design of data mining tool (detecting botnets), 191–199

architecture, 191–192

bot command categorization, 194–195

classification, 198

data collection, 194

feature extraction, 195–196

flow-level features, 196–196

packet-level features, 195–196

log file correlation, 197–198

635



packet filtering, 198–199

summary and directions, 199

system setup, 193

Design of data mining tool (detecting remote exploits),
159–167

classification, 166

combining features and compute combined feature vector,
164–165

DExtor architecture, 159–151

disassembly, 161–163

discard smaller sequences, 162

generate instruction sequences, 162

identify useful instructions, 162

prune subsequences, 162

remove illegal sequences, 162

feature extraction, 163–164

code vs. data length, 163–164

instruction usage frequencies, 163

636



useful instruction count, 163

instruction sequence distiller and analyzer, 161

summary and directions, 166–167

Design of data mining tool (email worm detection), 81–93

architecture, 82

classification model, 89

classification techniques, 89–91

class label, 89

hyperplane, 90

two-layer approach, 91

feature description, 83–84

per-email features, 83–84

per-window features, 84

feature reduction techniques, 84–88

decision tree algorithms, 88

dimension reduction, 84–85

minimal subset, 87

637



phase I, 85–87

phase II, 87–88

potential feature set, 87

two-phase feature selection, 85–88

summary 91–92

support vectors, 91

Design of data mining tool (malicious executables), 119–132

Adelson Velsky Landis tree, 121

C4.5 Decision Tree algorithm, 131

feature extraction using n-gram analysis, 119–126

assembly n-gram feature, 125–126

binary n-gram feature, 120–121

DLL function call feature, 126

feature collection, 121–123

feature selection, 123–125

hybrid feature retrieval model, 127–131

Adaboost, 131

638



address before entry point, 128

assembly feature retrieval algorithm, 128–130

assembly instruction sequences, 128

description of model, 127–128

feature vector computation and classification, 130–131

Naïve Bayes data mining techniques, 131

maximum-margin hyperplane, 131

most distinguishing instruction sequence, 129

summary and directions, 131–132

Design of data mining tool (stream mining), 221–230

classification techniques, SVM, 90

definitions, 221–223

novel class detection, 223–229

clustering, 223–224

computing set of novel class instances, 226–227

detecting novel class, 225–229

filtering, 224–225

639



impact of evolving class labels on ensemble classification,
228–229

outlier detection and filtering, 224–225

saving inventory of used spaces during training, 223–224

speeding up of computation, 227–228

storing of cluster summary information, 224

time complexity, 228

security applications, 229

summary and directions, 229–230

Design and implementation of data mining tools (data mining
and security), 57–68

collaborative filtering, 63

dynamically growing self-organizing tree, 61

image classification, 65–66

contributions to, 65

key aspect of, 65

research, 66

intrusion detection, 59–62

640



predictive accuracy, 58

summary and directions, 66

supervised learning, 57

support vectors, 61

web page surfing prediction, 62–65

DFS, see DLL-call feature set

DGSOT, see Dynamically growing self-organizing tree

Digital rights management (DRM), 356

Distributed denial of service (DDoS) attacks, 5, 41

Distributed Processor (DP), 366

DLL, see Dynamic link library

DLL-call feature set (DFS), 126, 127

Document Type Definitions (DTDs), 388

DP, see Distributed Processor

DRM, see Digital rights management

DTDs, see Document Type

Definitions

641



Dynamically growing self-organizing tree (DGSOT), 61

Dynamic link library (DLL), 113, 252

E

EarlyBird System, 76

EC, see Explicit content

E-commerce, 378–379

Email Mining Toolkit (EMT), 75

Email worm detection, 73–79

architecture, 74–75

honeypot, 76

known worms set, 77

novel worms set, 77

overview of approach, 76–77

principal component analysis, 73

related work, 75–76

summary, 77–78

training instances, 75

642



zero-day attacks, 73

Email worm detection, design of data mining tool, 81–93

architecture, 82

classification model, 89

classification techniques, 89–91

class label, 89

hyperplane, 90

SVM, 90

two-layer approach, 91

feature description, 83–84

per-email features, 83–84

per-window features, 84

feature reduction techniques, 84–88

decision tree algorithms, 88

dimension reduction, 84–85

minimal subset, 87

phase I, 85–87

643



phase II, 87–88

potential feature set, 87

two-phase feature selection, 85–88

summary 91–92

support vectors, 91

Email worm detection, evaluation and results, 95–110

dataset, 96–98

experimental setup, 98–99

baseline techniques, 99

parameter settings, 98

results, 99–106

PCA-reduced data, 99–102

two-phase selection, 102–106

unreduced data, 99

summary, 106

Emerging applications, 243

Emerging trends, 348–349, 350

644



EMT, see Email Mining Toolkit

Encryption, 348

Evaluation and results (detecting botnets), 201–206

baseline techniques, 201–202

classifiers, 202

Livadas, 201

Temporal, 201

comparison with other techniques, 203–204

false alarm rates, 202

further analysis, 205–206

performance on different datasets, 202–203

summary and directions, 206

Evaluation and results (detecting remote exploits), 169–177

analysis, 174–175

czone values, 175

dataset, 170

experimental setup, 171

645



baseline techniques, 171

parameter settings, 171

results, 171–174

effectiveness, 172, 173

metrics, 171

running time, 174

robustness and limitations, 175–176

DExtor, 176

junk-instruction insertion, 175

limitations, 176

robustness against obfuscations, 175–176

summary and directions, 176–177

Evaluation and results (email worm detection), 95–110

dataset, 96–98

experimental setup, 98–99

baseline techniques, 99

parameter settings, 98

646



results, 99–106

PCA-reduced data, 99–102

two-phase selection, 102–106

unreduced data, 99

summary, 106

Evaluation and results (malicious executables), 133–145

dataset, 134–135

example run, 143–144

experimental setup, 135

experiments, 133–134

receiver operating characteristic graphs, 134

results, 135–143

accuracy, 135–138

Dataset1, 136–137

Dataset2, 137

DLL call feature, 138

false positive and false negative, 139

647



ROC curves, 138–139

running time, 140–142

statistical significance test, 137–138

training and testing with boosted J48, 142–143

summary and directions, 145

Evaluation and results (stream mining), 231–245

datasets, 232–234

real data (forest cover), 233–234

real data (KDD Cup 99

network intrusion detection), 233

synthetic data with concept-drift and novel class, 233

synthetic data with only concept-drift (sync), 232

experimental setup, 234–235

baseline method, 234–235

OLINDDA model, 234

Weighted Classified

Ensemble, 234

648



performance study, 235–240

evaluation approach, 235

results, 235–239

running time, 239–240

summary and directions, 240

Explicit content (EC), 267

External attacks, 47–48

F

Federated database system, 328

Firewall policy analysis, 297–313

anomaly resolution algorithms, 302–311

algorithms for finding and resolving anomalies, 302–309

algorithms for merging rules, 309–311

correlation anomaly, 303

illustrative example of the merge algorithm, 310–311

inclusively matched rules, 303

new rules list, 303

649



old rules list, 303

overlapping rules, 306

redundancy anomaly, 303

shadowing anomaly, 303

firewall concepts, 299–302

correlated rules, 301

correlation anomaly, 302

disjoint rules, 301

exactly matching rules, 301

inclusively matching rules, 301

possible anomalies between two rules, 301–302

redundancy anomaly, 302

relationship between two rules, 300–301

representation of rules, 300

shadowing anomaly, 302

related work, 298–299

summary and directions, 311–312

650



Frequent Itemset Graph, 27, 29

Functional database systems, 327

G

Graph(s)

analysis, 265, 267

dataset, 270

Frequent Itemset Graph, 27, 29

mining techniques, 6, 321

network, 75

receiver operating characteristic, 134

theory, 283

H

Hackers, 48

Hadoop MapReduce, 273–274

HDP, see Heterogeneous distributed processor

Heterogeneous database system, 328

651



Heterogeneous distributed processor (HDP), 367

HFR model, see Hybrid feature retrieval model

Honeypot, 76

Host-based attacks, 52

HPStream, 292

HTML forms, fake, 41

Hybrid feature retrieval (HFR) model, 127–131

Adaboost, 131

address before entry point, 128

assembly feature retrieval algorithm, 128–130

assembly instruction sequences, 128

description of model, 127–128

feature vector computation and classification, 130–131

Naïve Bayes data mining techniques, 131

Hyper-plane classifier, 18

I

Identity theft, 49

652



IG, see Information gain

Image classification, 2, 32, 65–66

contributions to, 65

key aspect of, 65

research, 66

Image mining, 31–34

approaches, 31

automatic image annotation, 33

clustering algorithm, 32

content-based image retrieval, 31

curse of dimensionality, 32

feature selection, 32–33

image classification, 33–34

k nearest neighbor algorithm, 34

principal component analysis, 33

singular value decomposition, 33

translational model, 33

653



Information gain (IG), 123

Information management, secure, 372–380

collaboration and data management, 375–377

digital libraries, 377

e-business, 378–379

information retrieval, 373

multimedia information management, 374–375

security impact, 379–380

Insider threat detection, data mining for, 263–278

challenges, related work, and approach, 264–266

classification model, 274

comprehensive framework, 276–277

data mining for insider threat detection, 266–276

answering queries using Hadoop MapReduce, 273–274

data mining applications, 274–276

data storage, 272–275

explicit content, 267

654



feature extraction and compact representation, 267–270

file organization, 272

predicate object split, 273

predicate split, 272–273

RDF repository architecture, 270–272

Resource Description

Framework, 266

solution architecture, 266–267

vector representation of the content, 267

summary and directions, 277

Instruction usage frequencies (IUF), 163

Intranets, corporate, 381

IUF, see Instruction usage frequencies

J

Java applets, 259

Junk-instruction insertion, 175

655



K

Keylogger, 42

Keyword-based query interface, 31

k nearest neighbor (kNN)

algorithm, 34

kNN algorithm, see k nearest neighbor algorithm, 34

Knowledge management, secure, 380–383

components and technologies, 381

corporate Intranets, 381

definition of knowledge management, 380

security impact, 382–383

web data management, 382

Known worms set, 77

L

Lagrangian multiplier, 21

Layered technology stack, 387

656



Linux, 345

Log file correlation, 197–198

Logic bombs, 40–41

M

Malicious executables, 111–118

architecture, 112–114

hybrid feature retrieval model, 116

masquerade detection, 115

related work, 114–115

signature detection, 111

summary and directions, 117

zero-day attacks, 111

Malicious executables, design of data mining tool, 119–132

Adelson Velsky Landis tree, 121

C4.5 Decision Tree algorithm, 131

feature extraction using n-gram analysis, 119–126

assembly n-gram feature, 125–126

657



binary n-gram feature, 120–121

DLL function call feature, 126

feature collection, 121–123

feature selection, 123–125

hybrid feature retrieval model, 127–131

Adaboost, 131

address before entry point, 128

assembly feature retrieval algorithm, 128–130

assembly instruction sequences, 128

description of model, 127–128

feature vector computation and classification, 130–131

Naïve Bayes data mining techniques, 131

maximum-margin hyperplane, 131

most distinguishing instruction sequence, 129

summary and directions, 131–132

Malicious executables, evaluation and results, 133–145

dataset, 134–135

658



example run, 143–144

experimental setup, 135

experiments, 133–134

receiver operating characteristic graphs, 134

results, 135–143

accuracy, 135–138

Dataset1, 136–137

Dataset2, 137

DLL call feature, 138

false positive and false negative, 139

ROC curves, 138–139

running time, 140–142

statistical significance test, 137–138

training and testing with boosted J48, 142–143

summary and directions, 145

Malware, 37–44

botnet, 41–42

659



keylogger, 42

metamorphic, 247

polymorphic, 247

spyware, 42

summary, 42–43

time and logic bombs, 40–41

Trojan horses, 40

viruses, 38–39

worms, 39

Zeus botnet, 41

Malware detection model, 251–255

feature extraction, 252–252

binary n-gram feature extraction, 252–253

feature selection, 253–254

feature vector computation, 254

framework, 251–252

testing, 255

660



training, 254–255

Market basket analysis techniques, 283

Markov model, 22–25

example, 23

first-order, 24

second-order, 24

sliding window, 25

transition probability, 23

web surfing predictive methods using, 22

WWW prediction, 22, 24

Masquerade detection, 115

MDIS, see Most distinguishing instruction sequence

MDL principle, see Minimum description length principle

Metadata, 365

Metamorphic malware, 247

Microsoft IOfficeAntiVirus interface, 246

Minimum description length (MDL) principle. 265

661



MM-DM, see Multimedia data manager

Most distinguishing instruction sequence (MDIS), 129

Multimedia data manager (MM-DM), 374

N

Naïve Bayes (NB) data mining techniques, 4, 131

NASA, see National Aeronautics and

Space Administration

National Aeronautics and Space

Administration (NASA), 377

National Science Foundation (NSF), 377

National security, threats to, 47

NB data mining techniques, see

Naïve Bayes data mining techniques

Network-based attacks, 52, 53

Network protocol security, 348

Noninterference model, 345

Novel worms set, 77

662



NSF, see National Science

Foundation

O

Object Management Group (OMG), 349

Object-oriented database systems, 327

OLINDDA model, 234

OMG, see Object Management

Group

Online banking login pages, 41

Only concept-drift, 232

Ontology engineering, 396

OWL, see Web Ontology Language

P

Packet filtering, 198–199

Payload-based anomaly detection system, 153

PCA, see Principal component analysis

663



Perceptron input, 15

PFS, see Potential feature set

Polymorphic malware, 247

POS, see Predicate object split

Potential feature set (PFS), 87

Predicate object split (POS), 273

Predicate split (PS), 272

Principal component analysis (PCA), 33, 73

PS, see Predicate split

Q

Query interface, keyword-based, 21

R

RDF, see Resource Description

Framework

Real-time data mining, dependable, 279–296

BIRCH, 292

664



cluster feature vector, 292

clustering, idea behind, 291

dependable data mining, 288–291

HPStream, 292

incremental association rule mining techniques, 284

issues in real-time data mining, 281–282

mining data streams, 291–294

parallel, distributed, real-time data mining, 286–288

real-time data mining techniques, 283–286

summary and directions, 294–295

Receiver operating characteristic (ROC) graphs, 134

Relational database system products, 326

Remote exploits, detecting, 151–158

architecture, 152–153

overview of approach, 154–157

payload-based anomaly detection system, 153

related work, 153–154

665



summary and directions, 157

Remote exploits, detecting, design of data mining tool,
159–167

classification, 166

combining features and compute combined feature vector,
164–165

DExtor architecture, 159–151

disassembly, 161–163

discard smaller sequences, 162

generate instruction sequences, 162

identify useful instructions, 162

prune subsequences, 162

remove illegal sequences, 162

feature extraction, 163–164

code vs. data length, 163–164

instruction usage frequencies, 163

useful instruction count, 163

summary and directions, 166–167

666



Remote exploits, detecting, evaluation and results, 169–177

analysis, 174–175

czone values, 175

dataset, 170

experimental setup, 171

baseline techniques, 171

parameter settings, 171

results, 171–174

effectiveness, 172, 173

metrics, 171

running time, 174

robustness and limitations, 175–176

DExtor, 176

junk-instruction insertion, 175

limitations, 176

robustness against obfuscations, 175–176

summary and directions, 176–177

667



Residual risk, 359

Resource Description Framework (RDF), 268, 391–395

axiomatic semantics, 394

basics, 392

container model, 392–393

inferencing, 394–395

query, 395

schemas, 393–394

SPARQL, 395

specification, 393

ROC graphs, see Receiver operating characteristic graphs

Rule Markup Language, 398

S

Security applications, data mining for, 45–55

anomaly detection, 53

current research and development, 52–54

data mining for cyber security, 46–52

668



attacks on critical infrastructures, 50

credit card fraud and identity theft, 49

cyber-terrorism, insider threats, and external attacks, 47–48

data mining for cyber security, 50–52

malicious intrusions, 48–49

overview, 46–47

hackers, 48

host-based attacks, 52

national security, threats to, 47

network-based attacks, 52, 53

“socially engineered” penetration techniques, 52

summary and directions, 54

Trojan horses, 45

viruses, 45

Semantic web, 385–402

Defense Advanced Research

Projects Agency, 395–396

669



Descriptive Logic, 394

layered technology stack, 387

ontologies, 395–397

ontology engineering, 396

Resource Description

Framework, 391–395

axiomatic semantics, 394

basics, 392

container model, 392–393

inferencing, 394–395

query, 395

schemas, 393–394

SPARQL, 395

specification, 393

Rule Markup Language, 398

rules language (SWRL), 387, 397

semantic web rules language, 397–400

670



semantic web services, 400–401

summary and directions, 401–402

XML, 387–391

attributes, 389

Document Type Definitions, 388, 389

federations/distribution, 390–391

namespaces, 390

schemas, 389–390

statement and elements, 389

XML-QL, XQuery, Xpath, XSLT, 391

SigFree, 177

Signature-based malware detection, 245

detection, 4, 111

information leaks, 259

unknown, 251

Singular value decomposition (SVD), 33

Sliding window, Markov model, 25

671



“Socially engineered” penetration techniques, 52

SPARQL Protocol and RDF Query Language, 266

Spyware, 37, 42

SQL, see Structured Query Language

Stream mining, 211–219

approach, 215–216

architecture, 212–214

classifiers used, 217–218

overview of novel class detection algorithm, 216–217

related work, 214–215

security applications, 218

summary, 218–219

Stream mining, design of data mining tool, 221–230

definitions, 221–223

novel class detection, 223–229

clustering, 223–224

computing set of novel class instances, 226–227

672



detecting novel class, 225–229

filtering, 224–225

impact of evolving class labels on ensemble classification,
228–229

outlier detection and filtering, 224–225

saving inventory of used spaces during training, 223–224

speeding up of computation, 227–228

storing of cluster summary information, 224

time complexity, 228

security applications, 229

summary and directions, 229–230

Stream mining, evaluation and results, 231–245

datasets, 232–234

real data (forest cover), 233–234

real data (KDD Cup 99

network intrusion detection), 233

synthetic data with concept-drift and novel class, 233

synthetic data with only concept-drift (sync), 232

673



experimental setup, 234–235

baseline method, 234–235

OLINDDA model, 234

Weighted Classified

Ensemble, 234

performance study, 235–240

evaluation approach, 235

results, 235–239

running time, 239–240

summary and directions, 240

Structured Query Language (SQL), 327, 372

Summary and directions, 317–322

directions for data mining tools for malware detection,
319–321

firewall policy management, 321

summary of book, 317–319

where to go from here, 321–322

Supervised learning, 57

674



Support vector machines (SVMs), 5, 19–22

basic concept in, 19

binary classification and, 19

description of, 19

functional margin, 19

linear separation, 20

margin area, adding objects in, 22

optimization problem, 21

separator, 20

support vectors, 21

Support vectors, 21, 61, 91

SVD, see Singular value decomposition

SVMs, see Support vector machines

SWRL, see Semantic web rules language

T

Threat, see also Insider threat detection, data mining for
cyber, 47, 352

675



identifying, 359

organizational, 48

real-time, 46, 280

response, 288

virus, 37

Time bombs, 40–41

TPS, see Two-Phase Selection

Training instances (email), 75

Transaction management, 371

Trojan horses, 40, 45, 51, 135

Trustworthy systems, 341–362

biometrics, forensics, and other solutions, 359–360

building trusted systems from untrusted components, 354

cryptography, 348

dependable systems, 354–358

digital rights management, 356

integrity, data quality, and high assurance, 357–358

676



privacy, 356–357

trust management, 355–356

encryption, 348

network protocol security, 348

noninterference model, 345

privacy, 357

residual risk, 359

risk analysis, 358–359

secure systems, 341–252

access control and other security concepts, 342–343

emerging trends, 348–349, 350

impact of web, 349–350

Object Management Group, 349

secure database systems, 346–347

secure networks, 347–348

secure operating systems, 345–346

steps to building secure systems, 351–352

677



types of secure systems, 343–344

summary and directions, 360

Trusted Network Interpretation, 348

web security, 352–354

Two-Phase Selection (TPS), 71, 77

U

UIC, see Useful instruction count

Unknown label, 57

Unreduced data, 99

Useful instruction count (UIC), 163

V

Vector representation of the content (VRC), 267

Viruses, 38–39, 45

VRC, see Vector representation of the content

W

Web, see also Semantic web data management, 369–372, 382

678



surfing, predictive methods for, 22

transactions, association rule mining and, 26

Web Ontology Language (OWL), 387, 395

Weighted Classified Ensemble, 234

Windows, 258, 345

World Wide Web, father of, 385

Worm, see also Email worm detection known worms set, 77

novel worms set, 77

WWW prediction, 13

classification problem, 57

hybrid approach, 65

Markov model, 22, 24

number of classes, 64

session recorded, 26

typical training example, 17

X

XML, 387–391

679



attributes, 389

Document Type Definitions, 388, 389

federations/distribution, 390–391

namespaces, 390

schemas, 389–390

statement and elements, 389

XML-QL, XQuery, Xpath, XSLT, 391

Z

Zero-day attacks, 4, 39, 73, 111

Zeus botnet, 41

680


	Cover
	Title Page
	Copyright
	Dedication
	Contents
	PREFACE
	ACKNOWLEDGMENTS
	THE AUTHORS
	COPYRIGHT PERMISSIONS
	CHAPTER 1: INTRODUCTION
	PART I: DATA MINING AND SECURITY
	CHAPTER 2: DATA MINING TECHNIQUES
	CHAPTER 3: MALWARE
	CHAPTER 4: DATA MINING FOR SECURITY APPLICATIONS
	CHAPTER 5: DESIGN AND IMPLEMENTATION OF DATA MINING TOOLS
	CONCLUSION TO PART I

	PART II: DATA MINING FOR EMAIL WORM DETECTION
	CHAPTER 6: Email Worm Detection
	CHAPTER 7: DESIGN OF THE DATA MINING TOOL
	CHAPTER 8: EVALUATION AND RESULTS
	CONCLUSION TO PART II

	PART III: DATA MINING FOR DETECTING MALICIOUS EXECUTABLES
	CHAPTER 9: MALICIOUS EXECUTABLES
	CHAPTER 10: DESIGN OF THE DATA MINING TOOL
	CHAPTER 11: EVALUATION AND RESULTS
	CONCLUSION TO PART III

	PART IV: DATA MINING FOR DETECTING REMOTE EXPLOITS
	CHAPTER 12: DETECTING REMOTE EXPLOITS
	CHAPTER 13: DESIGN OF THE DATA MINING TOOL
	CHAPTER 14: EVALUATION AND RESULTS
	CONCLUSION TO PART IV

	PART V: DATA MINING FOR DETECTING BOTNETS
	CHAPTER 15: DETECTING BOTNETS
	CHAPTER 16: DESIGN OF THE DATA MINING TOOL
	CHAPTER 17: Evaluation and Results
	CONCLUSION TO PART V

	PART VI: STREAM MINING FOR SECURITY APPLICATIONS
	CHAPTER 18: STREAM MINING
	CHAPTER 19: DESIGN OF THE DATA MINING TOOL
	CHAPTER 20: EVALUATION AND RESULTS
	CONCLUSION TO VI

	PART VII: EMERGING APPLICATIONS
	CHAPTER 21: Data Mining for Active Defense
	CHAPTER 22: DATA MINING FOR INSIDER THREAT DETECTION
	CHAPTER 23: DEPENDABLE REAL-TIME DATA MINING
	CHAPTER 24: FIREWALL POLICY ANALYSIS
	CONCLUSION TO PART VII
	CHAPTER 25: SUMMARY AND DIRECTIONS

	APPENDIX A: DATA MANAGEMENT SYSTEMS: DEVELOPMENTS AND TRENDS
	APPENDIX B: TRUSTWORTHY SYSTEMS
	APPENDIX C: SECURE DATA, INFORMATION, AND KNOWLEDGE MANAGEMENT
	APPENDIX D: SEMANTIC WEB
	INDEX

