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Preface

Preamble

Sensor networks consist of distributed devices, which monitor an environment by
collecting data (light, temperature, humidity,…). Each node in a sensor network
can be imagined as a small computer, equipped with the basic capacity to sense,
process, and act. Sensors act in dynamic environments, often under adverse
conditions.

Typical applications of sensor networks include monitoring, tracking, and
controlling. Some of the specific applications are photovoltaic plant controlling,
habitat monitoring, traffic monitoring, and ecological surveillance. In these
applications, a sensor network is scattered in a (possibly large) region where it is
meant to collect data through its sensor nodes.

While the technical problems associated with sensor networks have reached
certain stability, managing sensor data brings numerous computational challenges
[1, 5] in the context of data collection, storage, and mining. In particular, learning
from data produced from a sensor network poses several issues: sensors are dis-
tributed; they produce a continuous flow of data, eventually at high speeds; they
act in dynamic, time-changing environments; the number of sensors can be very
large and dynamic. These issues require the design of efficient techniques for
processing data produced by sensor networks. These algorithms need to be exe-
cuted in one step of the data, since typically it is not always possible to store the
entire dataset, because of storage and other constraints.

Processing sensor data has developed new software paradigms, both creating
new techniques or adapting, for network computing, old algorithms of earlier
computing ages [2, 3]. The traditional knowledge discovery environment has been
adapted to process data streams generated from sensor networks in (near) real
time, to raise possible alarms, or to supplement missing data [6]. Consequently, the
development of sensor networks is now accompanied by several algorithms for
data mining which are modified versions of clustering, regression, and anomaly
detection techniques from the field of multidimensional data series analysis in
other scientific fields [4].

The focus of this book is to provide the reader with an idea of data mining
techniques in sensor networks. We have taken special care to illustrate the impact
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of data mining in several network applications by addressing common problems,
such as data summarization, interpolation, and surveillance.

Book Organization

The book consists of five chapters.
Chapter 1 provides an overview of sensor networks. Since the book is con-

cerned with data mining in sensor networks, overviews of sensor networks and
data streams, produced by sensor networks, are provided in this part. We give an
overview of the most promising streaming models, which can be embedded in
intelligent sensor network platforms and used to mine real-time data for a variety
of analytical insights.

Chapter 2 is concerned with summarization in sensor networks. We provide a
detailed description with experiments of a clustering technique to summarize data
and permit the storage and querying of this amount of data, produced by a sensor
network in a server with limited memory. Clustering is performed by accounting
for both spatial and temporal information of sensor data. This permits the
appropriate trade-off between size and accuracy of summarized data. Data are
processed in windows. Trend clusters are discovered as a summary of each win-
dow. They are clusters of georeferenced data, which vary according to a similar
trend along the time horizon of the window. Data warehousing operators are
introduced to permit the exploration of trend-clustered data from coarse-grained
and inner-grained views of both space and time. A case study involving electrical
power data (in kw/h) weekly transmitted from photovoltaic plants is presented.

Chapter 3 describes applications of spatio-temporal interpolators in sensor
networks. We describe two interpolation techniques, which use trend clusters to
interpolate missing data. The former performs the estimation phase by using the
Inverse Distance Weighting approach, while the latter uses Kriging. Both have
been adapted to a sensor network scenario. We provide a detailed description of
both techniques with experiments.

Chapter 4 discusses the problem of data surveillance in sensor networks. We
describe a computation preserving technique, which employees an incremental
learning strategy to continuously maintain trend clusters referring to the most
recent past of the sensor network activity. The analysis of trend clusters permits
the search for possible change in the data, as well the production of forecasts of the
future.

The book concludes with an examination of some sensor data analysis appli-
cations. Chapter 5 illustrates a business intelligence solution to monitor the effi-
ciency of the energy production of photovoltaic plants and a data mining solution
for fault detection in photovoltaic plants.
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Remarks

The future will witness large deployments of sensor networks. These networks of
small devices will change our lifestyle. With the advances in their data mining
ability, these networks will play increasingly important roles in smart cities, by
being integrated into smart houses, offices, and roads. The evolution of the smart
city idea follows the same line as computation: first hardware, then software, then
data, and orgware. In fact, the smart city is joining with data sensing and data
mining to generate new models in our understanding of cities.

We like to think that this book is a small step toward this future evolution. It is
devoted to the description of general intelligent services across networks and the
presentation of specific applications of these services in monitoring the efficiency
of photovoltaic power plants. Networks are treated as online systems, whose
origins lie in the way we are able to sense what is happening. Data mining is used
to process sensed data and solve problems like monitoring energy production of
photovoltaic plants.
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Chapter 1
Sensor Networks and Data Streams: Basics

Abstract Recent advances in pervasive computing and sensor technologies have
significantly influenced the field of geosciences, by changing the type of dynamic
environmental phenomena that can be detected, monitored, and reacted to. Another
important aspect is the real-time data delivery of novel platforms. In this chapter,
we describe the specific characteristics of sensor data and sensor networks. Further-
more, we identify the most promising streaming models, which can be embedded in
intelligent sensor platforms and used to mine real-time data for a variety of analytical
insights.

1.1 Sensor Data: Challenges and Premises

The continued trend toward miniaturization and inexpensiveness of sensor nodes
has paved the way for the explosive living ubiquity of geosensor networks (GSNs).
They are made up of thousands, even millions, of untethered, small-form, battery-
powered computing nodes with various sensing functions, which are distributed in
a geographic area. They allow us to measure geographically and densely distributed
data for several physical variables (e.g. atmospheric temperature, pressure, humidity,
or energy efficiency of photovoltaic plants), by shifting the traditional centralized
paradigm of monitoring a geographical area from the macro-scale to the micro-scale.

Geosensor networks serve as a bridge between the physical and digital worlds
and enable us to monitor and study dynamic physical phenomena at granularity
details that were never possible before [1]. While providing data with unparalleled
temporal and spatial resolution, geosensor networks have pushed the frontiers of
traditional GIS research into the realms of data mining. Higher level spatial and
temporal modeling needs to be enforced in parallel, so that users can effectively
utilize the potential.

The major challenge of a geosensor network is to combine the sensor nodes in com-
putational infrastructures. These are able to produce globally meaningful information

A. Appice et al., Data Mining Techniques in Sensor Networks, 1
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from data obtained by individual sensor nodes and contribute to the synthesis and
communication of geo-temporal intelligent information. The infrastructures should
use appropriate primitives to account for both the spatial dimension of data, which
determines the ground location of a sensor, and the temporal dimension of data,
which determines the ground time of a reading. Both are information-bearing and
play a crucial role in the synthesis of intelligence information.

The spatial dimension yields spatial correlation forms [2] that anyone seriously
interested in processing spatial data should take into account [3]. Spatial autocor-
relation is the correlation among values of a single attribute strictly due to their
relatively close locations on a two-dimensional surface. Intuitively, it is a property
of random variables taking values, at pairs of locations a certain distance apart,
that are more similar (positive autocorrelation) or less similar (negative autocorre-
lation) than expected for pairs of observations at randomly selected locations [2].
Positive autocorrelation is the most common in geographical phenomena [4], which
is justified by Tobler’s first law of geography, according to which “everything is
related to everything else, but near things are more related than distant things” [5].
This law suggests that by picturing the spatial variation of a geophysical variable,
measured by a sensor network over the map, we can observe zones where the dis-
tribution of data is smoothly continuous, with boundaries possibly marked by sharp
discontinuities.

The temporal dimension determines the time extent of the data. In a statisti-
cal view of the network, the simplest case occurs when measurements of a sensor
can be ascribed to a stationary process, i.e., the statistical features do not evolve
at all. By contrast, in a geophysical context the statistical features tend to change
over time. This violates the assumption of identical data distribution across time:
the distribution of a field is usually subjected to time drift. However, statistical
changes occur in general in long timescales, so that the evolution of a time series
is predictable by using time correlations in data. There are several cases where
time-evolving data are subjected to trends with slow and fast variations, possi-
ble seasonality, and cyclical irregularities. For example, trend and seasonality are
properties of genuine interest in climatology [6] for which sensors are frequently
installed.

Seeking spatial- and temporal-aware information in a geosensor network will
bring numerous computational challenges and opportunities [7, 8] for collection,
storage, and processing. These challenges arise from both accuracy and scalabil-
ity perspectives. In this book, the challenges have been explored for the tasks of
summarization, interpolation, and surveillance.

1.2 Data Mining

Data mining is the process of automatically discovering useful information in large
data repositories. The three most popular data mining techniques are predictive mod-
eling, clustering analysis, and anomaly analysis.
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1. In predictive modeling, the goal is to develop a predictive model, capable of
predicting the value of a label (or target variable) as a function of explanatory
variables. The model is mined from historical data, where the label of each sample
is known. Once constructed, a predictive model is used to predict the unknown
label of new samples.

2. In cluster analysis, the goal is to partition a data set into groups of closely related
data in such a way that the observations belonging to the same group, or cluster,
are similar to each other, while the observations belonging to different clusters
are not. Clusters are often used to summarize data.

3. In anomaly analysis, also called outlier detection, the goal is to detect patterns in a
given data set that do not conform to an established normal behavior. The patterns
thus detected are called anomalies and are often translated into critical, actionable
information in several application domains. Anomalies are also referred to as
outliers, change, deviation, surprise, aberrant, peculiarity, intrusion, and so on.

Data mining is a step of knowledge discovery in databases, the so-called KDD
process for converting data into useful knowledge [9]. The KDD process consists of
a series of steps; the most relevant are:

1. Data pre-processing, which transforms collected data into an appropriate form
for subsequent analysis;

2. Actual data mining, which transforms the prepared data into patterns or models
(prediction models, clusters, anomalies);

3. Post-processing of data mining results, which assesses the validity and usefulness
of the extracted patterns and models and presents interesting knowledge to the
final users by using visual metaphors or integrating knowledge into decision
support systems.

Today, data mining is a technology that blends data analysis methods with sophis-
ticated techniques for processing large data volumes. It also represents an active
research field, which aims to develop new data analysis methods for novel forms of
data. One of the frontiers of data research today is represented by spatiotemporal data
[10], that is, observations of events that occur in a given place at a certain time, such
as the data arriving from sensor networks. Here, the challenge is particularly tough:
data mining tools are needed to master the complex dynamics of sensors which are
distributed over a (large) region, produce a continuous flow of data, eventually at high
speeds, act in dynamic, time-changing environments, etc. These issues require the
design of appropriate, efficient data mining techniques for processing spatiotemporal
data produced by sensor networks.
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1.3 Snapshot Data Model

Without loss of generality, the following four premises describe the geosensor sce-
nario that we have considered for this study.

1. Sensors are labeled with a progressive number within the network and they are
georeferenced by means of 2-D point coordinates (e.g., latitude and longitude).

2. Spatial location of the sensors is known, distinct, and invariant, while the number
of sensors, which acquire data, may change in time: a sensor may be temporally
inactive and not acquire any measure for a time interval.

3. Active sensors acquire a stream of data for each numeric physical variable and
acquisition activity is synchronized on the sensors of the network.

4. Time points of the stream are equally spaced in time.

A snapshot model, originally presented in [11], can then be used to represent
sensor data which are georeferenced and timestamped. Let us consider an equal-
width discretization of a time line T and a numeric physical variable Z for which
georeferenced values are sampled by a geosensor network K at the consecutive time
points of T .

Definition 1.1 (Data snapshot) A data snapshot timestamped at t (with t ∈ T ) is
the pair:

〈Kt , zt ()〉, (1.1)

where:

1. Kt (Kt ⊆ K ) is the set of sensors, which measures a value for Z at the time
point t .

2. zt () is a field function [12]:
zt : Kt �→ Z , (1.2)

which assigns the sensor u ∈ Kt to the value zt (u) measured for the variable Z
from the sensor u at time point t .

Though finite, Kt may vary with time t , since sensors which operate in a network can
change with the time. They can pass from being switched-on to being switched-off
(and vice versa) in the network. Similarly, zt () may vary with t .

The data snapshots, which are acquired from a geosensor network K , produce a
geodata stream (see Fig. 1.1).

Definition 1.2 (Geodata stream) In a geodata stream z(T, K ) the input elements
〈Kt1 , zt1(Kt1)〉, 〈Kt2 , zt2(Kt2)〉, . . . , 〈Kti , zti (Kti )〉, . . . arrive sequentially from K ,
snapshot by snapshot, at the consecutive time points of T to describe geographically
distributed values of Z .

The model of a geodata stream is, in general, an insert-only stream model [13],
since once a data snapshot is acquired, it cannot be changed. Insert-only geodata are
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Fig. 1.1 Snapshot representation of a geodata stream. A snapshot is timestamped with a discrete
time point and snapshots continuously arrive at consecutive time points equally spaced in time.
Sensors that are switched-on at a certain time are represented by blue circles in the snapshot. The
number in a circle is the measure collected for a numeric physical variable Z by the geosensor at
the time point of the associated snapshot

collected in several environmental applications, such as determining trends in weather
development [14] and pollution level of water [15] or tracking energy efficiency in
sustainable energy systems [16].

1.4 Stream Data Model

Geodata streams, like any data stream, are unbounded in length. In addition, data
collected with a geosensor network are geographically distributed. Therefore, they
have not only a time dimension but also a space dimension. The amount of geograph-
ically distributed data acquired at a specific time point can be very large. Any future
demand for analysis, which references past data, also becomes problematic. These
are situations in which applying stream models to geodata become relevant.

It is impractical to store all the geodata of a stream. Looking for summaries
of previously seen data is a valid alternative [17]. Summaries can be stored in place
of the real data, which are discarded. This introduces a trade-off between the size of
the summary and the ability to perform any future query by piecing together precise
past data from summaries.
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Fig. 1.2 Count-based window model of a geodata stream with window size w = 4

Windows are commonly used stream approaches to query open-ended data.
Instead of computing an answer over the whole data stream, the query (or
operator) is computed, maybe several times, over a finite subset of snapshots. Several
window models are defined in the literature. In the following subsections the most
relevant ones are described.

1.4.1 Count-Based Window

A count-based window model [18] decomposes a stream into consecutive (non-
overlapping) windows of fixed size (see Fig. 1.2). When a window is completed, it
is queried. The answer is stored, while windowed data are discarded.

Definition 1.3 (Count-based window model) Let w be the window size of the
model. A count-based window model decomposes a geodata stream z(T, K ) in non-
overlapping windows,

t1
z(T,K )→ tw, tw+1

z(T,K )→ t2w, . . . , t(i−1)w+1
z(T,K )→ tiw, . . . (1.3)

where the window t(i−1)w+1
z(T,K )→ tiw is the series of w data snapshots acquired at the

consecutive time points of the time interval [t(i−1)w+1, tiw] with t(i−1)w+1, tiw ∈ T .

1.4.2 Sliding Window

A sliding window model [18] is the simplest model to consider the recent data of the
stream and run queries over the data of the recent past only. This type of window is
similar to the first-in, first-out data structure. When a snapshot timestamped with ti
is acquired and inserted in the window, another snapshot timestamped with ti−w is
discarded (see Fig. 1.3), where w represents the size of the window.
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Fig. 1.3 Sliding window model of a geodata stream with window size w = 4

Definition 1.4 (Sliding window model) Let w be the window size of the model.
A sliding window model decomposes the geodata stream z(T, K ) into overlapping
windows,

t1
z(T,K )→ tw, t2

z(T,K )→ tw+1, . . . , ti−w+1
z(T,K )→ ti , . . . , (1.4)

where the window ti−w+1
z(T,K )→ ti is the series of w data snapshots acquired at the

consecutive time points of the time interval [ti−w+1, ti ] with ti−w+1, ti ∈ T .

The history for the snapshot 〈Kti , zti (kti )〉 is the window ti−w
z(T,K )→ ti−1.

1.5 Summary

The large deployments of sensor networks are changing our lifestyle. With these
advances in computation power and wireless technology, networks start to play an
important role in smart cities. Sensor networks consist of distributed autonomous
devices that cooperatively monitor an environment. Each node in a sensor network
is able to sense, process, and act. Data produced by sensor networks pose several
issues: sensors are distributed; they produce a continuous stream of data, possibly
at high speed; they act in dynamic time-changing environments; and the number of
sensors can be very large and change with time and so on.

Mining data streams generated by sensor networks can play a central role in
several applications, such as monitoring, tracking, and controlling. In this chapter,
we provided a brief introduction to sensor data and sensor networks by focusing
on challenges and opportunities for data mining. We revised basic models for data
stream representation and processing.
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Chapter 2
Geodata Stream Summarization

Abstract The management of massive amounts of geodata collected by sensor net-
works creates several challenges, including the real-time application of summa-
rization techniques, which should allow the storage of this unbounded volume of
georeferenced and timestamped data in a server with a limited memory for any
future query. SUMATRA is a summarization technique, which accounts for spatial
and temporal information of sensor data to produce the appropriate trade-off between
size and accuracy of geodata summarization. It uses the count-based model to process
the stream. In particular, it segments the stream into windows, computes summaries
window-by-window, and stores these summaries in a database. The trend clusters are
discovered as a summary of each window. They are clusters of georeferenced data,
which vary according to a similar trend along the time horizon of the window. Signal
compression techniques are also considered to derive a compact representation of
these trends for storage in the database. The empirical analysis of trend clusters con-
tributes to assess the summarization capability, the accuracy, and the efficiency of
the trend cluster-based summarization schema in real applications. Finally, a stream
cube, called geo-trend stream cube, is defined. It uses trends to aggregate a numeric
measure, which is streamed by a sensor network and is organized around space and
time dimensions. Space-time roll-up and drill-down operators allow the exploration
of trends from a coarse-grained and inner-grained hierarchical view.

2.1 Summarization in Stream Data Mining

The summarization task is well known in stream data mining, where several tech-
niques, such as sampling, Fourier transform, histograms, sketches, wavelet trans-
form, symbolic aggregate approximation (SAX), and clusters have been tailored to
summarize data streams. The majority of these techniques were originally defined
to summarize unidimensional and single-source data streams. The recent literature
includes several extensions of these techniques, which address the task of summa-

A. Appice et al., Data Mining Techniques in Sensor Networks, 9
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rization in multidimensional data streams and, sometimes, multi-source data streams.
A sensor network is a multi-source data stream generator.

2.1.1 Uniform Random Sampling

This is the easiest form of data summarization, which is suitable for summarizing both
unidimensional and multidimensional data streams [1]. Data are randomly selected
from the stream. In this way, summaries are generated fast, but the arbitrary dropping
rate may cause high approximation error. Stratified sampling [2] is the alternative to
uniform sampling to reduce errors, due to the variance in data.

2.1.2 Discrete Fourier Transform

This is a signal processing technique, which is adapted in [3] to summarize a stream
of unidimensional numeric data. For each numeric value flowing in the stream, the
Pearson correlation coefficient is computed over a stream window and the data,
whose absolute correlation is greater than a threshold, are sampled. To the best of
our knowledge, no other present work investigates the discrete Fourier transforms
into multidimensional data streams and multi-source data streams.

2.1.3 Histograms

These are summary structures used to capture the distribution of values in a data
set. Although histogram-based algorithms were originally used to summarize static
data, several kinds of histograms have been proposed in the literature for the sum-
marization of data streams. In Refs. [4, 5], V-Optimal histograms are employed to
approximate the distribution of a set of values by a piecewise constant function,
which minimizes the squared error sum. In Ref. [6], equiwidth histograms partition
the domain into buckets, such that the number of values falling in a bucket is uni-
form across the buckets. Quantiles of the data distributions are maintained as bucket
boundaries. End-biased histograms [7] maintain exact counts of items that occur
with a frequency above a threshold and approximate the other counts by uniform
distribution. Histograms to summarize multidimensional data streams are proposed
in [8, 9].

2.1.4 Sketches

These are approximation algorithms for data streams that allow the estimation of
frequency moments and aggregates over joins [10]. A sketch is constructed by taking
an inner product of the data distribution with a vector of random values chosen
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from some distribution with a known expectation. The accuracy of estimation will
depend on the contribution of the sketched data elements with respect to the rest of
the streamed data. The size of the sketch depends on the memory available, hence
the accuracy of the sketch-based summary can be boosted by increasing the size
of the sketch. Sketching and sampling have been combined in [11]. An adaptive
sketching technique to summarize multidimensional data streams is reported in [12].

2.1.5 Wavelets

These permit the projection of a sequence of data onto an orthogonal set of basis
vectors. The projection wavelet coefficients have the property that the stream recon-
structed from the top coefficients best approximates the original values in terms of
the squared error sum. Two algorithms that maintain the top wavelet coefficients as
the data distribution drifts in the stream are described in [10] and [13], respectively.
Multidimensional Haar synopsis wavelets are described in [13].

2.1.6 Symbolic Aggregate Approximation

This is a symbolic representation, which allows the reduction of a numeric time series
to a string of arbitrary length [14]. The time series is first transformed in the Piecewise
Aggregate Approximation (PAA) and then the PAA representation is discretized into
a discrete string. The important characteristic of this representation is that it allows
a distance measure between symbolic strings which lower bounds the true distance
between the original time series. Up to now, the utility of this representation has been
investigated in clustering, classification, query by content, and anomaly detection in
the context of motif discovery, but the data reduction it operates opens opportunities
for the summarization task.

2.1.7 Cluster Analysis

Cluster analysis is a summarization paradigm which underlines the advantage of
discovering summaries (clusters) that adjust well to the concept drift of data streams.
The seminal work is that of Aggarwal et al. [15], where a k-means algorithm is
tailored to discover micro-clusters from multidimensional transactions which arrive
in a stream. Micro-clusters are adjusted each time a transaction arrives, in order to
preserve the temporal locality of data along a time horizon. Clusters are compactly
represented by means of cluster feature vectors, which contain the sum of timestamps
along the time horizon, the number of clustered points and, for each data dimension,
both the linear sum and the squared sum of the data values.
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Another clustering algorithm to summarize data streams is presented in [16].
The main characteristic of this algorithm is that it allows us to summarize multi-
source data streams. The multi-source stream is composed of sets of numeric values
which are transmitted by a variable number of sources at consecutive time points.
Timestamped values are modeled as 2D (time-domain) points of a Euclidean space.
Hence, the source position is neither represented as a dimension of analysis nor
processed as information-bearing. The stream is broken into windows. Dense regions
of 2D points are detected in these windows and represented by means of cluster fea-
ture vectors. A wavelet transform is then employed to maintain a single approximate
representation of cluster feature vectors, which are similar over consecutive win-
dows. Although a spatial clustering algorithm is employed, the aim of taking into
account the spatial correlation of data is left aside.

Ma et al. [17] propose a cluster-based algorithm, which summarizes sensor data
headed by the spatial correlation of data. Sensors are clustered, snapshot by snap-
shot, based on both value similarity and spatial proximity of sensors. Snapshots are
processed independently of each other, hence purely spatial clusters are discovered
without any consideration of a time variant in data. A form of surveillance of the
temporal correlation on each independent sensor is advocated in [18], where the
clustering phase is triggered on the remote server station only when the status of the
monitored data changes on sensing devices. Sensors keep online a local discretization
of the measured values. Each discretized value triggers a cell of a grid by reflecting
the current state of the data stream at the local site. Whenever a local site changes
its state, it notifies the central server of its new state.

Finally, Kontaki et al. [19] define a clustering algorithm, which is out of the scope
of summarization, but originally develops the idea of the trend to group time series
(or streams). A smoothing process is applied to identify the time series vertexes,
where the trend changes from up to down or vice versa. These vertexes are used
to construct piecewise lines which approximate the time series. The time series are
grouped in a cluster, according to the similarity between the associated piecewise
lines. In the case of streams, both the piecewise lines and the clusters are computed
incrementally in sliding windows of the stream. Although this work introduces the
idea of a trend as the base for clustering, the authors neither account for the spatial
distribution of a cluster, grouped around a trend, nor investigate the opportunity of a
compact representation of these trends for the sake of summarization. This idea has
inspired the trend cluster based summarization technique introduced in [20] and is
described in the rest of this chapter.

2.2 Trend Cluster

A trend cluster is a spatiotemporal pattern, recently defined in [20], to model the
prominent temporal trends in the positive spatial autocorrelation of a geophysical
numerical variable monitored through a sensor network. It is a cluster of neighbor
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Fig. 2.1 Trend clusters on a count-based model of the geodata stream (w = 4). The blue cluster
groups circle sensors, whose values vary as the blue polyline from t1 to t4. The red cluster groups
squared sensors, whose values vary as the red polyline from t5 to t8. The green cluster groups
triangular sensors, whose values vary as the green (colored) polyline from t5 to t8

sensors, which measure data, whose temporal variation, called trend polyline, is
similar over the time horizon of the window (see Fig. 2.1).

Definition 2.1 (Trend Cluster) Let z(T, K ) be a geodata stream. A trend cluster is
the triple:

(ti → t j ,C ,Z ), (2.1)

where:

1. ti → t j is a time horizon on T ;
2. C is a set of “neighbor” sensors of K measuring data for Z , which evolve with a

“similar trend” from ti to t j ; and
3. Z is a time series representing the “trend” for data of Z from ti to t j . Each point

in the time series can be a set of aggregating statistics (e.g., median or mean) of
data for Z measured by the sensors enumerated in C.

In the count-based window model the time horizon is that of the count-based
window, while in the sliding window model the time horizon is that of the sliding
window.
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Fig. 2.2 SUMATRA framework

2.3 Summarization by Trend Cluster Discovery

SUMATRA is a summarization algorithm, which resorts to the count-based stream
model to process a geodata stream. It is now designed for the deployment on the
powerful master nodes of a tiered sensor network.1 It computes trend clusters along
the time horizon of a window and derives a compact representation of the computed
trends which is stored in a database (see Fig. 2.2). A buffer consumes snapshots as
they arrive and pours them window-by-window into SUMATRA. The summarization
process is three-stepped:

1. snapshots of a window are buffered into the data synopsis;
2. trend clusters are computed;
3. the window is discarded from the data synopsis, while trend clusters are stored

in the database.

By using the count-based window, the time horizon is that of the window. It is
implicitly defined by the enumerative code of the window when the window size w is
known. The storage of a trend cluster in a database (see Fig. 2.3) includes the window
number, the identifiers of the sensors grouped into the cluster, and a representation
of the trend polyline.

Input parameters for trend cluster discovery are the window size w (w > 1), the
neighborhood distance d, and a domain similarity threshold δ. Input parameters for
the trend polyline compression are either the error threshold ε or the compression
degree threshold σ. Both δ and ε can influence the accuracy of the summary.

1 The investigation of the in-network modality for this anomaly detection service is postponed to
future developments of this study.



2.3 Summarization by Trend Cluster Discovery 15

Fig. 2.3 Entity-relationship schema of the database where the trend clusters are stored

2.3.1 Data Synopsis

Snapshots of a window W are buffered into a data synopsis S which comprises a
contiguity graph structure G and a table structure H (see Fig. 2.4).

Graph G allows us to represent the discrete spatial structure, which is implicitly
defined by the spatial location of sensors. It is composed of a node set N and an
edge relation E with E ⊆ N ×N. N is the set of active sensors which measure
at least one value, for the variable Z , along the time horizon of W . Each node of N
is labeled with the identifier of the associated sensor in the network. E is populated
according to a user-defined distance relation (e.g., nearby within the radius d), which
is derivable from the spatial location of each sensor [21]. In practice (u, v) ∈ E iff
distance(u, v) ≤ d. As the spatial locations of sensors are known and invariant, once
the radius is set, the distance between each pair of sensors is always computable and
does not change with time. Despite this fact, the structure of G is subject to change at
each new window W , which is completed in the stream: sensors may become active
or inactive along the time horizon of a window, hence, associated nodes are added
to or removed from the graph together with the connecting edges.

Table H is a bidimensional matrix; rows correspond to the active sensors (or
equivalently to the nodes of N ) and columns correspond to snapshots of the window.
The w measures collected for Z from a node are stored in the tabular entries of the
associated row of H . The one-to-one association between the graph nodes (keys)
and the table rows (values) is made by means of a hash function. The collisions are
managed according to traditional techniques designed for hash map data structure.
In this chapter, the access to each value within the table row is abstractly denoted
by means of the column index ranging between 1 and w. Thus, H [u][t] denotes the
tabular entry, which stores the value measured from the node u at the t th snapshot of
the window W . Missing values can be stored in H in the presence of sensors which
measure a value at one or more snapshots of the window, but they do not perform the
measurement at all the snapshots of the window. They are preprocessed on-the-fly
and replaced by an aggregate (median) of values stored in the corresponding row of
the table.
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Fig. 2.4 Four (w = 4) consecutive snapshots (windows) are stored in the data synopsis S. a t1 → t4.
b t5 → t8
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2.3.2 Trend Cluster Discovery

We introduce definitions, which are preparatory to the presentation of the trend cluster
discovery, then we illustrate the trend cluster discovery algorithm.

2.3.2.1 Basic Concepts and Definitions

First, we define the relation of E -reachability within a node set.

Definition 2.2 (E -reachability relation) Let C be a subset of N (C ⊆ N ) and u
and v be two nodes of C (u, v ∈ C ). u is E -reachable from v in C iff:

1. 〈u, v〉 ∈ E (direct E -reachability, i.e., distance (u, v) ≤ d), or
2. ∃r ∈ C , such that 〈u, r〉 ∈ E and r is E -reachable from v in C (transitive E -

reachability).

Then, we define the property of E -feasibility of a node set.

Definition 2.3 (E -feasibility) Let C be a subset of N . C is feasible with the relation
E iff:

∀p, q ∈ C : p is E -reachable from q in C (or vice versa). (2.2)

The trend polyline prototype associated with a node set is defined below.

Definition 2.4 (Trend polyline prototype) Let C be a subset of N . The trend poly-
line prototype of C , denoted by Z , is the chain of straight-line segments connecting
the w vertexes of the time series, which is defined as follows:

Z = [(1,Z (1)), (2,Z (2)), . . . , (w,Z (w))], (2.3)

where Z (t) (t = 1, 2, . . . , w) is the aggregate (e.g. median) of values measured by
nodes of C at the t th snapshot of the window (i.e. Z (t) = aggregate ({H [u][t] | u ∈
C })).

Finally, we define the property of the trend purity of a node set.

Definition 2.5 (δ-bounded trend purity) Let

1. δ be a user-defined domain similarity threshold;
2. C be a subset of N ;
3. Z be the trend polyline prototype of C .

The trend purity of [C ,Z ] is a binary property defined as follows:

purity([C ,Z ]) =

⎧
⎪⎪⎨

⎪⎪⎩
true iff

⎛

⎜
⎝

∑

u∈C
sim(u,Z )

⎞

⎟
⎠

|C | = 1
false otherwise

, (2.4)
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where |C | is the cardinality of C and:

sim(u,Z ) =
{

1 iff ∀t = 1, . . . , w : ||(H [u][t])−Z (t))‖ ≤ δ
0 otherwise.

(2.5)

This similarity computation schema requires the computation of the distance
between each sensed value and the centroid of the cluster.

Finally, we describe the form of the trend cluster, which will be computed by
SUMATRA.

Definition 2.6 (Trend cluster) Based upon Definition 2.1, a trend cluster is the triple
(i,C ,Z ), such that:

1. i enumerates the window where the trend cluster is discovered;
2. C is a subset of N which is feasible with the relation E (see Definition 2.3);
3. Z is the trend polyline prototype of C (see Definition 2.4);
4. [C ,Z ] satisfies the trend purity property (see Definition 2.5).

Based on Definition 2.6, we observe that a trend cluster corresponds to a com-
pletely connected subgraph of G, which exhibits a similar polyline evolution for data
measured along the window time horizon (trend purity). The trend of the cluster is
the polyline prototype according to which the trend cluster purity is evaluated. Then,
intuitively, trend clusters can be computed by a graph-partitioning algorithm, which
identifies subgraphs that are completely connected by means of the strong edges
defined as follows.

Definition 2.7 (Strong edge) Let 〈u, v〉 be an edge of E , then 〈u, v〉 is labeled as a
strong edge in E iff, for each snapshot of the window W , the values measured from
u and v differ from δ at worst, that is,

∀t = 1, . . . , w : ||H [u][t] − H [v][t]|| ≤ δ). (2.6)

Informally, a strong edge connects nodes which exhibit a similar trend polyline
evolution along the window time horizon. The strong edges are the basis for the
computation of the strong neighborhood of a node.

Definition 2.8 (Strong neighborhood) Let u be a node of N , then the strong
neighborhood of u, denoted by η(u), is the set of nodes of N which are directly
reachable from u by means of strong edges of E , that is,

η(u) = {v|〈u, v〉 ∈ E and 〈u, v〉 is strong}). (2.7)

Based on Definition 2.8, a strong neighborhood, which can be seen as a set of nodes
around a seed node, is feasible with respect to the edge relation and groups trend
polylines with a similar evolution as the trend polyline of the neighborhood seed.
These considerations motivate our idea of constructing trend clusters by merging
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Fig. 2.5 An example of window storage in SUMATRA. a A window of snapshots. b Window
storage in the data synopsis

overlapping strong neighborhoods provided the resulting cluster satisfies the trend
purity property.

2.3.2.2 The Algorithm

The top-level description of the trend cluster discovery is reported in Algorithm 2.1.
The discovery process is triggered each time a new window (Fig. 2.5a) is buffered

into the data synopsis (Fig. 2.5b).
The computation starts by assigning k = 1, where k enumerates the computed

trend clusters. An unclustered node u is randomly chosen as the seed of a new
empty cluster Ck . Then u is added to Ck (the green cluster in Fig. 2.6a) and the
trend polyline prototype Zk is constructed (by calling polylinePrototype(·)). Both
Ck and Zk are expanded by using u as the seed of the expansion process (by calling
expandCluster(·, ·, ·)). The expanded trend cluster [i,Ck,Zk] is added to the pattern
set P . k is incremented by one and the clustering process is iteratively repeated until
all nodes are assigned to a cluster (Fig. 2.6e, f).

The expansion process is described in Algorithm 2.2. The expansion of [Ck,Zk]
is driven by a seed node u and it is recursively defined. First, the strong neighbor-
hood η(u) is constructed by considering the unclustered nodes (by calling neigh-
borhood(·, ·)). Then, the candidate cluster C ′ = Ck ∪ η(u) and the associated trend
polyline prototype Z ′ are computed. The trend purity of [C ′,Z ′] is computed (by
calling polylinePurity(·, ·)). Two cases are distinguished:

1. [C ′,Z ′] satisfies the trend purity property, then nodes of η(u) are clustered into
Ck (the green cluster in Fig. 2.6b) and the last computed Z ′ is assigned to Zk .

2. [C ′,Z ′] does not satisfy the trend purity property and the addition of each node
of η(u) to Ck is evaluated node-by-node.

In both cases, nodes newly clustered in Ck are iteratively chosen as seeds to
continue the expansion process (the gray circle in Fig. 2.6c). The expansion process
stops if no new node is added to the cluster (the green cluster in Fig. 2.6d).
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Fig. 2.6 An example of trend cluster discovery in SUMATRA. a Cluster seed selection. b Strong
neighborhood. c Expansion seed. d Complete cluster. e Clusters. f Trend polylines

2.3.2.3 Time Complexity

The time complexity of the trend cluster discovery is mostly governed by the number
of neighborhood() invocations. At worst, one neighborhood is computed for each

Algorithm 2.1 TrendClusterDiscovery(i, S[G, H ], δ) → P
Require: i : the number which enumerates W
Require: S[G, H ]: an instance of data synopsis S, where snapshots of W are loaded
Require: δ: the domain similarity threshold
Ensure: P: the set of trend clusters [i, Ck , Zk ] discovered in W
1: k ← 1
2: for all u ∈ N do
3: if u is UNCLUSTERED then
4: [Ck , Zk ] ← expandCluster({u}, polylinePrototype({u}), u)
5: append(P, [i, Ck , Zk ])
6: k ← k + 1
7: end if
8: end for
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Algorithm 2.2 expandCluster (Ck,Zk, u) → [Ck,Zk]
Require: Ck : the node cluster
Require: Zk : the trend polyline prototype of Ck
Require: u: the seed node for the cluster expansion
Ensure: [Ck , Zk ]: the expanded trend cluster
1: η(u)← neighborhood(u)
2: [C ′, Z ′] ← [Ck ∪ η(u), polylinePrototype(Ck ∪ η(u))]
3: if polylinePurity(C ′, Z ′) then
4: [Ck , Zk ] ← [C ′, Z ′]
5: for all v ∈ η(u) do
6: [Ck , Zk ] ← expandCluster(Ck , Zk , v)
7: end for
8: else
9: for all v ∈ η(u) do
10: [C ′, Z ′] ← [Ck ∪ v, polylinePrototype(Ck ∪ v)]
11: if polylinePurity(C ′, Z ′) then
12: [Ck , Zk ] ← expandCluster(C ′, Z ′, v)
13: end if
14: end for
15: end if

sensor and evaluated in space and time. By using an indexing structure to execute such
a neighborhood query and a quickselect algorithm (having linear time complexity)
to compute the median aggregate, the time complexity of the trend cluster discovery
in a window of k nodes and w snapshots is, at worst,

O(k( wlogk
︸ ︷︷ ︸

neighbourhood()

+ kw︸︷︷︸
polylinePrototype()

+ kw︸︷︷︸
polylinePuri ty()

)).

2.3.3 Trend Polyline Compression

A trend polyline is a time series that can be compressed by using any signal com-
pression technique. We have investigated both Discrete Fourier Transform and Haar
Wavelet. Both techniques take a trend cluster polyline Z as input, transform Z
into Z ′ and return Z ′ as output for the storage in the database DB [22]. Details
of these techniques, including the inverse transforms and the strategies to control
the compression degree or the compression error, are described in the following
subsections.

2.3.3.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) [23] is a technique of the Fourier analysis,
which allows us to decompose Z into a linear combination of orthogonal complex
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sinusoids, differing from each other in frequency. The coefficients of the linear com-
bination represent Z in the frequency domain of the sinusoidal basis. The DFT
representation of Z is then used to compute Z ′.

Let Z (1),Z (2), . . . ,Z (w) be the series of the w values of Z as they are equally
spaced in time. The DFT permits us to define each Z (t) as an instance of the linear
combination of w complex sinusoidal functions, as follows:

Z (t) = 1

w

w−1∑

h=0

Zheı2π h
w (t−1), with t = 1, 2, . . . , w, (2.8)

where ı is the imaginary unit and e−ı (2π)
w h(t−1) represents the complex sinusoid with

length w and discrete frequency h/w. We observe that the frequency of the complex
sinusoidal basis in Eq. (2.8) ranges between zero and 1/2 (the so-called Nyquist
frequency), as each complex sinusoid with h/w greater than 1/2 is equivalent to the
complex sinusoid with frequency (w− h)/w and the opposite phase.

The complex coefficients Zh are computed as follows:

Zh =
w∑

t=1

Z (t)e−ı 2π h
w (t−1), with h = 0, 1, . . . , w − 1. (2.9)

Considering that coefficients Zh satisfy the Hermitian symmetry property,2 it is
sufficient to compute coefficients Zh , with h ranging between 0 and w/2. Other
coefficients are achieved by the Hermitian symmetry property.

Z ′ is computed by selecting the top k coefficients Zh (with k ≤ w/2 + 1).
This coefficient selection is motivated by considerations reported in [23], which
are well founded if Z is a slow-time varying polyline. For this kind of polyline,
central coefficients (i.e. the closest to the Nyquist coefficient) capture the short-term
fluctuations of Z (1), then they can be neglected with a minimal loss of information.
This process is called low-pass filtering [23].

The inverse transform τZ ′ : {1, 2, . . . , w} → R to construct Ẑ from Z ′ is com-
puted as follows:

τZ ′(t) = 1

w

w−1∑

h=0

Z̃heı 2π h
w (t−1) with Z̃h =

⎧
⎪⎨

⎪⎩

Zh h = 0, . . . , k − 1

0 h = k, . . . , w − k − 1

Zw+1−h h = w− k, . . . , w− 1

,

(2.10)
where · denotes the complex coniugate.

2 Zh and Zw−h are complex conjugates [23].
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2.3.3.2 Discrete Haar Wavelet

The Discrete Haar Wavelet (DHW) [24] is a kind of wavelet, which decomposes Z
into the linear combination of orthogonal functions, which are localized in time and
represent short local subsections of the polyline.

The DHW defines each Z (t) of the trend polyline Z by means of the linear
combination of the father function, the mother function, and the child functions,
that is,

Z (t) = αφ(t − 1)+
w−1∑

h=1

βhψh(t − 1) with t = 1, 2, . . . , w, (2.11)

where the father φ(·) and the mother ψ(·) are defined as follows:

φ(t) = 1 t = 0, . . . , w− 1 (2.12)

ψ(t) = ψ0(t) =
{
−1 0 ≤ t < w/2

1 w/2 ≤ t < w
, (2.13)

while the w− 1 child functions ψh are defined as follows:

ψh(t) = 2
n
2ψ(2nt − 1) t = 0, . . . , w− 1, (2.14)

with n = �log2(h)� and l = h mod 2n . Each child ψh has the shape of the mother
ψ, but it is rescaled by a factor of 2n/2 and shifted by a factor of l. The coefficients
α and βh (with h = 1, 2, . . . , w − 1) are computed as follows:

α =
w∑

j=1

Z (t)φ(t − 1) and βh =
w∑

t=1

Z (t)ψh(t − 1) with h = 1, 2, . . . , w − 1.

(2.15)
As a filtering technique to compute Z ′, the k coefficients which are the largest

in absolute value are retained. Thus, the root mean squared error between Z and
the polyline, reconstructed from Z ′, is minimized [25]. The Haar Wavelet filtering
technique does not retain coefficients βh as they are ordered according to h.

The inverse transform τZ ′ : {1, 2, . . . , w} → R to construct Ẑ from Z ′ is com-
puted as follows:

τZ ′(t) = (α̃+
w−1∑

h=1

β̃hψh(t − 1) with α̃(β̃h) =
{
α(βh) if α(βh) ∈ Z ′

0 otherwise
. (2.16)
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2.3.3.3 Polyline Compression Analysis

First we make some considerations on the amount of information (number of bytes)
necessary to store Z ′ in the database. Then, we state the conditions under which we
guarantee that Z ′ is a compact representation of Z ′.

Proposition 2.1 Let Z be a trend polyline having size w, then the size of Z is σF w
(bytes), where σF is the size of a real number.

Proof The proposition can be proved when points of Z are equally spaced in
time. Then Z can be stored as the series of w float values Z (t), without losing
information. �

Proposition 2.2 Let Z ′ be computed from Z by DFT or DHW.

si ze(Z ′) =
{

(σF + σF )k bytes [DFT ]
(σI + σF )k bytes [DHW ] , (2.17)

where k represents the number of transformed coefficients, σF is the size of a real
number, and σI is the size of an integer number.

Proof The proposition is proved by considering that a complex DFT coefficient is
represented by real unity and imaginary unity (both float values). A DHW coefficient
is a float value with an integer index. �

Proposition 2.3 Z ′ is a compact representation of Z (i.e., si ze(Z ′) ≤ si ze(Z ))

if and only if k ≤ κ with: κ =
{

σF
σF+σI

w [DHW ]
w
2 [DFT ] .

Proof This proposition is derived from Propositions 2.1 and 2.2. �

2.3.3.4 Tuning k

The size of Z ′ linearly depends on k, which should be a user-defined parameter. The
choice of k can be automatically made by fixing a boundary for either the error of
the inverse transform or the size of the signal compression.

Error-Based Tuning

Let Ẑ be the trend polyline reconstructed from Z ′ with the inverse transform τZ ′
and ε be the user-defined upper bound threshold for the error of reconstruction.
e(Z , Ẑ ) is the root mean squared error of approximating Z by Ẑ , that is,
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e(Z , Ẑ ) =
√
√
√
√ 1

w

w∑

t=1

(
Z (t)− Ẑ (t)

)2
. (2.18)

Then k is chosen as
k = min(κ, κε), (2.19)

where κ is the maximum number of coefficients admitted in Z ′ (see Proposition 2.3)
and κε is the minimum k to guarantee a root mean squared error less than or equal
to ε.

Formally,
κε = arg min

k
{k|e(Z , Ẑk) ≤ ε}, (2.20)

with Ẑk as the polyline reconstructed from Z ′k and Z ′k as the compact representation
of Z which contains k coefficients.

To determine κε, the root mean squared error is computed in the transformed
domain according to the Parseval identity. This identity states that the sum of the
squared values in a domain is equal to the same sum computed in the transformed
domain.3 According to this identity, in the case of DFT, the root mean squared error
is computed as the root mean of the squared filtered coefficients, that is,

e(Z , Ẑkε) =
√
√
√
√ 1

w

w∑

t=1

(
Z (t)− Ẑ (t)

)2 =︸ ︷︷ ︸
Parseval identity

√
√
√
√ 1

w

w−k∑

t=k

|Z (t)|2. (2.21)

The advantage of the Parseval identity is that it allows us to avoid the computation
of Ẑkε to look for k. Considering that the coefficients of the transform are ordered
in some way and that the filtering drops down the last coefficients of this order, we
iteratively compute the sum of the squares of the coefficients, which are in the last
positions of the ordering, until this sum approximates ε. Thus, kε corresponds to the
number of coefficients which are not summed to compute ε. Similarly, in the case of
DHW, the Parseval identity allows us to compute the error in the domain of the Haar
wavelet coefficients. Haar coefficients are ordered by the descending absolute value
and, as for DFT, the filtering drops down the last coefficients.

Size-Based Tuning

Let σ be the user-defined upper bound for the degree of compression that Z ′ must
produce with respect to Z (i.e.σ ≈ size(Z ′)

size(Z )
). Then k is computed as k = min(κ,κσ),

such that, on the basis of Proposition 2.2, we have:

3 This identity expresses in some way the law of conservation of energy.
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kσ =
{ σ

(σI+σF )
w [DHW]

σ
(σF+σF )

w [DFT]
. (2.22)

2.3.3.5 General Considerations

DFT and DHW may have different performances depending on the specific charac-
teristics of the data. Fourier analysis, which decomposes a signal in a linear combi-
nation of periodic, regular functions (sinusoids), has particular characteristics to fit
data generated according to periodic or close-to-periodic functions. The smoother
the trend polyline (i.e., short-time fluctuations of data are negligible), the lower the
number of coefficients required to achieve an accurate summary. Wavelet analysis,
like Fourier transform, involves the representation of signals in terms of simpler func-
tions, but the base functions of wavelets are fixed building blocks at different scales
and positions. Hence, the Wavelet method, which has the discontinuity in the base, is
more appropriate than the Fourier method for fitting non-periodic, wide-band signals
with abrupt discontinuities. The comparative study, which inspires this analysis, is
reported in [26].

2.4 Empirical Evaluation

SUMATRA, whose implementation is available to the public,4 is written in Java and
interfaces a database managed by a MySQL DBMS. The trend cluster discovery is
evaluated on several real-world streams.

In the next subsection, we describe the geodata streams employed in this exper-
imental study and describe the experimental setting. Subsequently, we present and
comment on empirical results obtained with the geodata in this study.

2.4.1 Streams and Experimental Setup

We consider geodata streams, derived from both indoor and outdoor sensor networks,
and evaluate the summarization performance in terms of accuracy and size of the
summary, as well as the computation time spent summarizing the data. The experi-
ments are performed on an Intel(R) Core(TM) 2 DUO CPU E4500 @2.20 GHz with
2.0 GiB of RAM Memory, running Ubuntu Release 11.10.

4 http://www.di.uniba.it/~kdde/index.php/SUMATRA

http://www.di.uniba.it/~kdde/index.php/SUMATRA
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2.4.1.1 Data Streams

The Intel Berkeley Lab (IBL) geodata stream5 collects indoor temperature (in Celsius
degrees) and humidity (in RH) measurements transmitted every 31 s from 54 sensors
deployed in the Intel Berkeley Research lab, between February 28th and April 5th
2004. A sensor is considered spatially close to every other sensor in the range of
six meters. The transmitted values are discontinuous and very noisy. Missing values
occur in most snapshots, so the number of transmitting sensors is variable in time. By
using a box plot, we deduce that air temperature values presumably range between
9.75 and 34.6, while the humidity values presumably range between 0 and 100.

The South American Climate (SAC) geodata stream6 collects monthly-mean air
temperature measurements (in Celsius degrees) recorded between 1960 and 1990
and interpolated over a 0.5◦ by 0.5◦ of latitude/longitude grid in South America.
The grid nodes are centered on 0.25◦ for a total of 6477 sensors. The number of
nearby stations that influence a grid-node estimate is 20 on average, which results
in more realistic air-temperature fields. A sensor is considered spatially close to the
sensors which are located in the cells around the grid. Regular and close-to periodic
air temperature values range between −7.6 and 32.9.

The Global Historical Climatology Network geodata stream7 (GHCN) collects
monthly mean air temperature measurements (in Celsius degrees) for 7280 of land
stations worldwide. The period of record varies from station to station, with several
thousand extending back from 1890 up to 1999. The stations are unevenly installed
around the world and the network configuration changes in time since new stations
are installed at some time, while old stations are disused. A total of 1340 snapshots are
collected. Both streams (in particular precipitation) include several missing values.
A station is considered spatially close to the stations that are located in the range
of two degrees longitude/latitude. By using a box plot, we find periodic and regular
temperature values that presumably range between −20.75 and 49.25.

2.4.1.2 Evaluation Measures

Let D be the geodata stream and P be a summarization of D. The accuracy of P
in summarizing D is evaluated by means of the root mean square error (rmse).
Formally,

rmse(D, D̂) =

√
√
√
√
√

∑

i

(vi − v̂i )
2

|D| , (2.23)

5 http://db.csail.mit.edu/labdata/labdata.html
6 http://climate.geog.udel.edu/~climate/html_pages/archive.html
7 ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2/

http://db.csail.mit.edu/labdata/labdata.html
http://climate.geog.udel.edu/~climate/html_pages/archive.html
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2/
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where D̂ is the stream reconstructed from P . This error measures the deviation
between original data before clustering them in trends and their prediction by means
of the summarizing trend cluster stored in the database. Therefore, the lower the
error, the more accurate the summarization. If the trend representation has been
compressed before storage in the database, we use inverse transform to reconstruct
the trend polyline to be used for predicting data.

The compression size (size%) is a value in percentage, which represents the ratio
of the size of summary P to the size of the original stream D, that is,

size%(D→ P) = size(P)

size(D)
× 100 %, (2.24)

with size(·) computed by taking into account that MySQL uses 2 bytes to store a
SMALLINT (ranging between −32767 and 32767) and 4 bytes to store a single
precision FLOAT. The lower the size%, the more compact the P .

The average computation time per window is the time (in milliseconds) spent on
average summarizing each window of D and storing the summary in the database.
SUMATRA can be considered a (near) real-time system if the time spent processing
a window is less on average than the time spent buffering a new window. This aspect
is remarkable in the evaluation of the IBL streams, where transmissions are very
frequent (every 31 s).

2.4.2 Trend Cluster Analysis

We begin the evaluation study by investigating the summarization power of trend
cluster discovery, without running any signal compression technique to compress
trend polylines. We intend to study the influence of both window size w and domain
similarity threshold δ on the summarization power. Both w and δ vary as reported in
Table 2.1. For each geodata stream, δ ranges between 5, 10, and 20 % of the expected
domain range of the measured attribute. Experiments with w = 1 are run to evaluate
the quality of the summary if traditional spatial clusters (as reported in [17]) are used
instead of trend clusters. The accuracy (rmse), the average computation time per

Table 2.1 SUMATRA parameter setting

Stream Dimension δ w

IBL Temperature 1.25, 2.5, 5.0 1, 256, 512,1024
IBL Humidity 5, 10, 20 1, 256, 512, 1024
SAC Temperature 2, 4, 8 1, 6, 12, 24
GHCN Temperature 3.5, 7, 14 1, 6, 12, 24

Bold valued settings are those used to evaluate the compression polyline techniques
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Fig. 2.7 Trend cluster discovery: accuracy (rmse) is plotted (Y axis), by varying the window size
(X axis). SUMATRA is run by varying the similarity domain threshold δ. a IBL (Temperature).
b IBL (Humidity). c SAC. d GHCN

window, and the compression size are plotted in Figs. 2.7, 2.8, 2.9 for the streams in
this study. The analysis of these results leads to several considerations.

First, the root mean square error (rmse) is always significantly below δ.
Second, trend clusters, discovered window-by-window (w>1), generally summa-

rize a stream better than spatial clusters, discovered snapshot-by-snapshot (w = 1). In
particular, the accuracy obtained with the trend cluster summarization is greater than
the accuracy obtained with the spatial cluster summarization. The general behavior
which we observe is that by enlarging w the accuracy of the summary increases.
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Fig. 2.8 Trend cluster discovery: computation time spent per window (in milliseconds) is plotted
(Y axis), by varying the window size (X axis). SUMATRA is run by varying the similarity domain
threshold δ. a IBL (Temperature). b IBL (Humidity). c SAC. d GHCN

This is due to the fact that the number of computed trend clusters tends to increase
with w. The compression size of the trend clusters is always lower than 100 % and,
in most cases, it is lower than the compression size of the spatial clusters. This does
not happen only in a few cases, where w is over-enlarged with respect to the number
of nodes in the network (e.g., the Intel Berkeley Lab network). Further consider-
ations are prompted by the analysis of the average computation time per window.
As the computation time depends on the window size, computing trend clusters in
a window is more time-consuming than computing spatial clusters in a snapshot.
On the other hand, the total time spent processing the entire stream and computing
spatial clusters at each snapshot is more than the time spent computing trend clus-



2.4 Empirical Evaluation 31

Fig. 2.9 Trend cluster discovery: compression size is plotted (Y axis), by varying the window size
(X axis). SUMATRA is run by varying the similarity domain threshold δ. a IBL (Temperature).
b IBL (Humidity). c SAC. d GHCN

ters (independently of the window size). In general, the analysis performed confirms
our hypothesis that the use of trends in clustering sensors is an efficacious means
for summarization purposes in terms of accuracy, size, and time complexity. How-
ever, at the same time it reveals that choosing the window size is a tricky step in
SUMATRA. In any case, we point out here that the domain knowledge generally
available on the nature of the monitored phenomenon (e.g., monthly temperature
reasonably exhibits a year-long periodicity) plays a prominent role in this choice. In
the absence of a domain-dependent guideline, a solution for automatically choosing
the window size is monitoring the behavior of the summarizer for distinct window
sizes along a time interval and then using the result of this comparative analysis to
decide the window size to process the remaining stream.



32 2 Geodata Stream Summarization

Table 2.2 SUMATRA versus ZIP technique: size of (compressed) data after storage in a standard
text file

Stream Stream file (Mb) Zip (Mb) Trend cluster (Mb) Trend cluster & Zip

IBL Temperature 29.7 6.89 21.3 1.79 Mb
IBL Humidity 29.9 6.45 9.39 744 Kb
SAC 30.9 6.57 1.29 176 Kb
GHCN 126 19.4 11.5 1.4 Mb

Third, by increasing δ, the accuracy of summarization decreases slightly but, as
expected, the compression size is lower. Also in this case the average computation
time per window increases with δ, since the size of the neighborhoods explored to
construct the clusters reasonably increases with δ.

Fourth, experiments with IBL streams and GHCN stream confirm the capability
of SUMATRA to deal with noise, outliers, and networks exhibiting a number of
active sensors which are variable in time.

A final consideration concerns the analysis of the computation time. The compu-
tation time is always less than 1.25 s per window in the IBL streams, less than 70 s
per window in the SAC stream and less than 25 s per window in the GHCN stream.
These low values motivate our categorizing of SUMATRA as a system that processes
data in real-time.

On the completion of this analysis, we compare SUMATRA with the straightfor-
ward standard zip file technique, which is commonly used to compress data files. To
this end, we note that, even if a zip technique is indisputably very efficient and the
original data can be exactly reconstructed from the zip bundle, it is purely frequency
based and does not consider the spatiotemporal semantics of sensor data. On the
contrary, the trend cluster summarization operates at a semantic level. Regarding
this, our point of view is that a standard compression technique can be orthogonal to
the trend cluster summarization, so that both techniques can be applied in sequence.
To check the feasibility of this opinion, trend clusters, discovered with the parameter
setting (w and δ) reported in bold in Table 2.1, have been stored in a standard text file
rather than in a database. The size of this bundle is compared to the size of the zip
bundle which zips the entire data stream, as well as the zip bundle which zips the trend
clusters of a data stream. The analysis of the results, collected in Table 2.2, reveals
that the data streams which are unaccounted for, due to missing data (SAC), or which
have few missing data (GHCN), per window indisputably manifest a higher reduc-
tion capability of a spatiotemporal aware summarization technique. On the other
hand, the computation of an interpolate, for which data are expected in a window,
but which is missing in the stream (see Sect. ?? for details), allows the trend cluster
summary to make an estimate of these missing data which is lacking in the zip bundle.
The side effect observed from adding interpolated missing data to the summarization
process is that the size of the summary is boosted. This explains why the trend cluster
summary is larger than the zip bundle in streams where the percentage of missing
data is very high (IBL). In any case, if the trend cluster summarization and the zip
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Fig. 2.10 Trend clusters (TC) versus Trend clusters+polyline compression (DFT, DHW): accuracy
(rmse). a IBL (Temperature) δ = 2.5 w = 512. b IBL (Humidity) δ = 10 w = 512. c SAC
δ = 4 w = 12. d GHCN δ = 7 w = 12

compression are applied in sequence, the size of the data storage is always reduced
drastically.

2.4.3 Trend Compression Analysis

We consider the parameter setting (w and δ) reported in bold in Table 2.1 and evaluate
the trend cluster summarization if the trend polyline representation is derived from
DFT or DHW. Experiments are performed by computing the number (k) of coeffi-
cients, by fixing either the error threshold ε or the compression degree threshold σ.
For each stream, ε ranges between 1

4δ, 1
2δ and 3

4δ, while σ ranges between 1
4 , 1

2 and 3
4 .

The average accuracy, computation time per window and compression size are plot-
ted in Figs. 2.10, 2.11, 2.12 for each stream. Some considerations are reported in the
following.

The integration of a trend polyline compression technique in SUMATRA has
the expected effect of reducing even further the size of the summary, which was
computed by the trend cluster discoverer. This result is achieved at the expense
of accuracy and computation time. Additionally, the experimental results confirm
that both tuning mechanisms are coherently defined. In fact, as expected, the use of
the error-based tuning of k leads to error (rmse) values which remain significantly
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Fig. 2.11 Trend clusters (TC) versus Trend clusters+polyline compression (DFT, DHW): compu-
tation time per window (in milliseconds). a IBL (Temperature) δ = 2.5 w = 512. b IBL (Humidity)
δ = 10 w = 512. c SAC δ = 4 w = 12. d GHCN δ = 7 w = 12

Fig. 2.12 Trend clusters (TC) versus Trend clusters + polyline compression (DFT, DHW): com-
pression size. a IBL (Temperature) δ = 2.5 w = 512. b IBL (Humidity) δ = 10 w = 512. c SAC
δ = 4 w = 12. d GHCN δ = 7 w = 12



2.4 Empirical Evaluation 35

lower than δ + ε. On the other hand, the size-based tuning of k allows us to fix
an upper bound for the size. In any case, by increasing ε in the error-based tuning
of k, the compared techniques show a reduction of the compression size but at a
different speed (summaries become smaller). On the contrary, by increasing σ in
the size-based tuning of k, the techniques compared show a reduction in the errors
(summaries become more accurate). In general, the lower the admitted size for the
summary, the higher the error.

By comparing the signal compression technique, we observe that DHW always
computes the smallest summary and it also achieves the highest accuracy in the
majority of setups. This confirms the conclusions of the empirical study reported
in [26].

Further notes are reported in this paragraph to explain the fact that the compression
size does not benefit particularly, in percentage, from the trend polyline compression
in both the South American Climate and the GHCN streams. In these streams, the
network includes a large number of sensors, but the plausible window size and then
the polyline size is relatively small (w = 12). Since most of the bytes are used to
store clusters, the compression in the trend polyline representation does not produce
the same significant reduction in the total size of the summary that we observe in the
IBL streams.

The analysis of the average computation time per window shows how much the
integration of a trend polyline compression technique in trend cluster discovery slows
down the summarization process. In any case, the average computation time always
remains competitively low; it is less than 0.5 s per window in the IBL streams,
less than 25 s per window in the SAC stream and less than 6 s per window in the
GHCN stream. This low computation time makes viable the performance of each
trend polyline compression technique within the trend clustering discovery process,
without undermining the real-time behavior of SUMATRA.

2.5 Trend Cluster-Based Data Cube

The trend cluster discovery theory computes aggregates on geodata streams by con-
sidering time and space as aggregation dimensions. This paves the way to extend the
cube technology [27] to geodata, in order to naturally organize the stream storage
around time and space dimensions [28].

2.5.1 Geodata Cube

We describe now how trend clusters can represent an appropriate aggregation model
for a geodata stream cube architecture.
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Definition 2.9 (Geodata Cube) A geodata cube Q is the triple:

(Z , D, F), (2.25)

where

1. Z is the cube measure (attribute measured through a sensor network K );
2. D is the non-empty set of dimensional attributes, which includes the time line T

and a time-based space function space(t) with t ∈ T ;
3. F is the unbounded fact table populated with the snapshots of the geodata stream

z(T, K ).

Every dimensional attribute of the cube is associated to a hierarchy of levels such
that each level is a set of dimension values and there exists a partial order based on a
containment relation (�) according to which, for two levels in a dimension, a value
at the higher level contains a set of values at the lower level. The structure of both
hierarchies is defined in the following for the count-based model of a stream.

Definition 2.10 (Time Hierarchy H (T )) Let:

1. w be the size of a count-based model;
2. Ω be a window multiplier.

The hierarchy H (T ) is defined, depending on w and Ω , by a containment relation
formulated as follows:

T
︸︷︷︸

time line

� . . . � t((i−1) mod Ωw)Ωw+1 → t((i−1) mod Ωw+1)Ωw
︸ ︷︷ ︸

higher level window

� t(i−1)w+1 → tiw
︸ ︷︷ ︸

window

� t
︸︷︷︸

time point

, (2.26)

where t is a specific time point of T , which timestamps one of the snapshots of the
stream. t(i−1)w+1 → tiw is the time horizon of a window in the count-based model
having size w. t((i−1) mod Ωw)Ωw+1 → t((i−1) mod Ωw+1)Ωw is the time horizon of
the higher level window in the count-based stream model with size wΩ .

Definition 2.11 (Space Hierarchy H (space(T)) Let:

1. t be a time point of T and ti → te be the time horizon of a window of a count-based
model of z(K , T ), such that t ≥ ti and t ≤ te;

2. δ be the trend similarity threshold such that P(C ) is the set of spatial clusters of

trend clusters discovered in ti
z(T,K )→ te with threshold δ;

3. Δ be a cluster multiplier.

The hierarchy H (space(t) is defined for the time point t , depending on δ and
Δ, by the containment relation formulated as follows:

space[W ]
︸ ︷︷ ︸

space

� . . . � C Δ
︸︷︷︸

higher level cluster

� C︸︷︷︸
cluster

� [x, y]
︸ ︷︷ ︸

spatial point

, (2.27)
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Fig. 2.13 Geo-Trend Stream Cube

where [x, y] is the spatial location of a sensor of K . C is a cluster of P(C ), C Δ

is the higher level cluster, which groups spatially close clusters (i.e., clusters which
group spatially close sensors), which have trend polylines differing one from each
other at worst Δ.

2.5.2 Stream Cube Creation

GeoTube (GEO-Trend stream cUBEr) provides facilities for computing, storing and
exploring a geodata stream cube. The cube computation can be triggered by the
following statement:

CREATE GEOTRENDCUBE Q WITH MEASURE Z FROM STREAM z(T, K )

GROUPING BY SPACE, TIME
HAVING SIMILARITY δ AND SIZE w

The cube Q is computed from the geodata stream z(T, K ) and stored perma-
nently in a database. The time horizon of the windows of the w-sized count-based
stream model determines the aggregation level for the time, while the spatial clusters,
which are computed by the δ-aware trend cluster discovery process, determine the
aggregation level for the space.

The architecture of the GeoTube (see Fig. 2.13) comprises three components,
that is,

1. a snapshot buffer, which consumes data snapshots as they arrive and pours them
window-by-window into SUMATRA;
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2. the system SUMATRA, which performs the trend cluster discovery process; and
3. the cube slice constructor, which builds a new slice of the cube by using trend

clusters output by SUMATRA.

The construction of a cube slice proceeds as follows. Let P(t(i−1)w+1 → tiw) be
the set of k trend clusters discovered with trend similarity threshold δ from the i th

w-sized data window t(i−1)w+1
z(T,K )→ tiw. The cube slice Q[t(i−1)w+1 → tiw],

Q[t(i−1)w+1 → tiw] =
time space measure

t(i−1)w+1 → tiw C1 Z1

t(i−1)w+1 → tiw . . . . . .

t(i−1)w+1 → tiw Ck Zk

(2.28)

can be defined by considering each trend cluster [t(i−1)w+1 → tiw,C ,Z ] ∈
P(t(i−1)w+1 → tiw).

The existing time hierarchy H (T ) is expanded. Time points, which timestamp
snapshots acquired between t(i−1)w+1 and tiw, are added to the bottom level of H (T ).
The time horizon t(i−1)w+1 → tiw is added, as a grouping value of time, at the window
level of H (T ).

A new space hierarchy H (space(t)) is created. It is time-based defined with time
t ranging between t(i−1)w and tiw. Spatial points, which georeference sensors of K ,
are added to the bottom level of H (space(t)). Each cluster C of the trend cluster
set P(t(i−1)w+1 → tiw) is added, as the grouping value of the space, at the cluster
level of H (space(t)).

For each cluster C of the trend cluster set P(t(i−1)w+1 → tiw), the trend polyline
prototype Z associated to C is stored in the cube cell Q[t(i−1)w+1 → tiw][C ].

It is noteworthy that, due to the stream compression naturally operated by trend
clusters, the memory size for storing Q grows indefinitely, but less than the memory
size for storing of the stream z(T, K ).

2.5.3 Roll-up

The roll-up request can be formulated as follows:

ROLL-UP on MEASURE Z OF GEOTRENDCUBE C
WITH SPACE Δ and TIME Ω

and triggers the roll-up from cube Q to cube Q′ such that:

1. cube Q′ has the same base stream as Q;
2. the time hierarchy H ′(T ) groups the time points of T on the windows of the

(wΩ)-sized count-based model of the base stream;
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3. for each window of the (wΩ)-sized count-based stream model, the associated
space hierarchy H ′(space(t)) is populated according to the trend clusters, which
group the data of the window with trend similarity threshold δ +Δ.

The procedure to roll-up C into C ′ is iterative. It processes cube slices of Q by
going along the time line T with step Ω . At each iteration i , it builds the cube slice
Q′[t(i−1)Ωw+1 → tiΩw] by the i th series of Ω consecutive cube slices of Q, that is,

Q[t(i−1)Ωw+1 → t(i−1)Ωw+w]
Q[t(i−1)Ωw+w+1 → t(i−1)Ωw+2w]
Q[t(i−1)Ωw+2w+1 → t(i−1)Ωw+3w]

. . .

Q[t(i−1)Ωw+(Ω−1)w+1 → tiΩw]

The construction of Q′[t(i−1)Ωw+1 → t(i)Ωw] proceeds as follows. For each
Q[t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw] (with j ranging between 1 and Ω), the asso-
ciated trend cluster set P(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw) is retrieved from Q.
This is done by retrieving:

1. each valueC , which appears at the cluster level of the space hierarchy H(space(t))
with t between t(i−1)Ωw+( j−1)w+1 and t(i−1)Ωw+ jw;

2. for each cluster value C , the trend polyline prototype Z , which is stored in the
time-space cube cell Q[t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw][C ].
This series of trend cluster sets:

P(t(i−1)Ωw+1 → t(i−1)Ωw+w)

P(t(i−1)Ωw+w+1 → t(i−1)Ωw+2w)

. . .

P(t(i−1)Ωw+(Ω−1)w+1 → tiΩw)

is rolled-up into the trend cluster set P ′(t(i−1)Ωw+1 → tiΩw), such that:

1. the time horizon (t(i−1)Ωw+1 → tiΩw) is that of the i th window of the Ωw-sized
count-based stream model;

2. the spatial cluster set {C ′} associated to P ′ groups the sensors of K around trend
polyline prototypes Z ′ with length Ωw and trend similarity threshold δ +Δ.

Finally, the cube slice constructor inputs P ′(t(i−1)Ωw+1 → tiΩw) to populate the
cube slice Q′(t(i−1)Ωw+1 → tiΩw) (details in Sect. 2.5.2).

The roll-up algorithm, which computes P ′, is reported in Algorithm 2.3. It is two
stepped.

SPACE ROLL-UP [lines 2–4, Algorithm 2.3]
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Algorithm 2.3 ROLL-UP({P(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw)} j=1,...,Ω,Ω,Δ)
→ P ′(t(i−1)Ωw+1 → tiΩw)

Require: P(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw): the trend cluster set with time horizon
t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw

Require: Ω: the grouping factor for the ROLL-UP in time
Require: Δ: the grouping factor for the ROLL-UP in space
Ensure: P ′(t(i−1)Ωw+1 → tiΩw): the trend cluster set with time horizon t(i−1)Ωw+1 → tiΩw
1: P ′(t(i−1)Ωw+1 → tiΩw)←�

Roll-Up in SPACE
2: for all j = 1 to Ω do
3: P̃(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw)← SUMATRA(P(t(i−1)Ωw+( j−1)w+1 →

t(i−1)Ωw+ jw),Δ)
4: end for

Roll-up in TIME
5: for all (s ∈ K and s is unclustered) do
6: C ′ ← {s};
7: C ′ ←expandROLLUPCluster(s, C ′, {C̃ [s]j } j=1,...,Ω )

8: Z ′ ← Z̃
[s]

1 • . . . • Z̃
[s]
Ω ;

9: add(P ′(t(i−1)Ωw+1 → tiΩw), {(t(i−1)Ωw+1 → tiΩw, C ′, Z ′)})
10: end for

Each input trend cluster set P(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw) is processed:
trend polyline prototypes, differing at worst Δ from each other, are clustered into a
single trend cluster.

We use SUMATRA to perform this clustering process (line 3, Algorithm 2.3). The
discovery process is run with trend similarity threshold Δ by considering each cluster
of the cluster set of P(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw) as a single sensor and the
associated trend polyline prototype as the series of measurements transmitted by the
cluster source.

An edge relation exists between two cluster sources if there exists at least one
edge relation between two sensors belonging to these clusters.

The output is denoted by P̂(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw) (see Fig. 2.14).

TIME ROLL-UP [lines 5–10, Algorithm 2.3]

Sensors, which are repeatedly classified together in a cluster along the time horizon
t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw, are searched for. They measure data, which
evolve with a similar trend prototype along the considered time horizon. Hence, they
can be clustered in a single trend cluster with time horizon t(i−1)Ωw+1 → tiΩw (see
Fig. 2.15).

The construction of a trend cluster (t(i−1)Ωw+1 → tiΩw,C ′,Z ′) starts by choos-
ing the sensor s not yet clustered (line 5, Algorithm 2.3).

Let (t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw, C̃ [s]j , Z̃ [s]j ) be a trend cluster of the set

P̃(t(i−1)Ωw+( j−1)w+1 → t(i−1)Ωw+ jw), such thatC [s] contains s. The new clusterC ′,
which initially contains s (line 6, Algorithm 2.3), is expanded (line 7, Algorithm 2.3).
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Algorithm 2.4 expandROLLUPCluster(s,C ′, {C̃ [s]j } j=1,...,Ω) → C ′

1: for all (s′ ∈ K with s′ spatially close to s and s unclustered) do
2: if isCluster(s′, {C̃ [s]j } j=1,...,Ω ) then

3: C ′ ← expandCluster( s′, C ′ ∪ {s}, {C̃ [s]j } j=1,...,Ω );
4: end if
5: end for

Fig. 2.14 Space Roll-up: The input trend clusters (C1, Z1), (C2, Z2), and (C3, Z3) are grouped in
the new trend cluster (C’, Z’) with Δ = 0.3. a Clusters. b Trends. c Rolled-up Clusters. d Rolled-up
Trends

The cluster expansion (lines 1–5, Algorithm 2.4) is performed by expanding C ′ with
the unclustered sensors s′, which are in the neighborhood of the seed s and are

classified as s in the window (C̃ [s]j = C̃ [s
′]

j for each j ranging between 1 and Ω).
The cluster expansion process is repeated by considering each sensor point,

already grouped in C ′, as an expansion seed (line 3, Algorithm 2.4).If no sensor can
be added to C ′, Z ′ is built by sequencing the trend prototypes Z̃ [s]j with j = . . . Ω

(line 8, Algorithm 2.3).
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Fig. 2.15 Time Roll-up: Trend clusters are created by grouping sensors which are repeatedly
clustered together at Ω consecutive windows ( with Ω = 3). Trends are obtained by sequencing the
Ω trends in the associated windows. a Clusters t1 → t7. b Clusters t8 → t14. c Clusters t15 → t21. d
Trends t1 → t7. e Trends t8 → t14. f Trends t15 → t21. g Rolled-up Clusters t1 → t21. h Rolled-up
Trends t1 → t21. i Rolled-up Trends t1 → t21. j Rolled-up Trends t1 → t21

2.5.4 Drill-Down

The drill-down request is formulated as follows:

DRILL-DOWN on MEASURE Z OF GEOTRENDCUBE Q
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Algorithm 2.5 DRILL-DOWN(P(t(i−1)w+1 → tiw)) → {P ′(t(i−1)w+ j →
t(i−1)w+ j )} j=1,...,w

1: for all ( j = 1 to w) do
2: P ′(t(i−1)w+ j → t(i−1)w+ j ) = �
3: for all (s ∈ K ) do
4: (t(i−1)w+1 → tiw, C [s], Z [s])← trendcluster(s, P(t(i−1)w+1 → tiw))
5: add(P ′(t(i−1)w+ j → t(i−1)w+ j ), {(t(i−1)w+ j → t(i−1)w+ j , {s}, [( j, Z [s][ j])]})
6: end for
7: end for

and triggers the drill-down process from Q to Q′, such that:

1. cube Q′ has the same base stream as Q;
2. the time hierarchy H ′(T ) groups the time points of T on windows of the 1-sized

count-based stream model;
3. for each widow of the 1-sized count-based model, the associated space hierarchy

H ′(space(t)) is populated by using the trend clusters, which cluster a single
point.

The procedure to drill-down from C to C ′ is iteratively defined. At each iteration i ,
it processes the i th cube slice of Q by going along the time line T .

Let P(t(i−1)w+1 → tiw) be the trend cluster set associated to the slice
Q[t(i−1)w+1 → tiw]. w trend cluster sets, P ′(t(i−1)w+ j → t(i−1)w+ j ), with j ranging
between 1 and w, are computed and input to the cube slice constructor to populate
Q′ (see details in Sect. 2.5.2).

The computation of each P ′(t(i−1)w+ j → t(i−1)w+ j ) proceeds as reported in
Algorithm 2.5. For each sensor point s ∈ K (line 3, Algorithm 2.5), the trend cluster
(t(i−1)w+1 → tiw,C [s],Z [s]), which clusters s, is identified (i.e., s ∈ C [s]). For each
j ranging between 1 and w, the trend cluster (t(i−1)w+ j → t(i−1)w+ j , {s},Z [s][ j])
is output.

2.5.5 A Case Study

We describe an application of GeoTube to maintain the electrical power (in kw/h)
weekly transmitted from PhotoVoltaic (PV) plants. The stream is generated with
PVGIS8 (http://re.jrc.ec.europa.eu/pvgis) by distributing 52 PV plants over the South
of Italy. Each plant is 0.5◦ of latitude/longitude distance apart from the others. The
weekly estimates of electricity production are obtained by the default parameter
setting in PVGIS and streamed for 52 weeks.

The GeoTube slice constructor is used to store the stream in cube Q computed
with w = 4 and δ = 1.5 Kw/h. The graph structure for the clustering phase is defined

8 PVGIS is a map-based inventory of the PV plants electricity productions.

http://re.jrc.ec.europa.eu/pvgis


44 2 Geodata Stream Summarization

Fig. 2.16 Geo-Trend Stream Cube construction with w = 4− δ = 1.5 Kw/h: windows 1–6

by the distance relation between the plants, i.e., 2 PV plants are edged if the distance
between them is less than 0.5◦ of latitude/longitude.

The cube slices of Q are plotted in Figs. 2.16, 2.17.
We can navigate Q one level up by rolling-up in time with Ω = 3 and in space

with Δ = 1.5. In this way, we are able to explore data streams (see Fig. 2.18) by
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Fig. 2.17 Geo-Trend Stream Cube construction with w = 4− δ = 1.5 Kw/h: windows 7–12

looking for longer trends (12 weeks), shared by larger clusters. It is noteworthy that
if Ω = 1 and Δ > 0, then the roll-up is only in space. On the other hand, if Ω > 1
and Δ = 0, then the roll-up is only in time.

Finally, we can navigate Q one level down by drilling-down both in time and in
space. In this way, we use DRILL-DOWN(C ) to query stream data for any specific
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Fig. 2.18 Space-Time ROLL-UP with Δ = 1.5 and Ω = 3

time point of the past. Consistently with the evaluation of SUMATRA reported in
Sect. 2.4, the root mean square error is always under 0.5 (<δ).

2.6 Summary

In this chapter we have described the trend cluster discovery as an efficacious means
for addressing the task of summarization for a geodata stream produced from a
(wireless) sensor network. The trend cluster is a special case of a cluster which groups
sensors that are spatially close and transmits measures, whose temporal variations
are similar over a time horizon. We have described a summarization technique,
called SUMATRA, which is able to mine sets of georeferenced numeric data, called
snapshots, and to discover trend clusters across windows of consecutive snapshots.
These snapshots are transmitted, equally spaced in time, from a (variable) number
of sensors. A buffer consumes snapshots as they arrive from the sensor network and
pours them, window-by-window, into SUMATRA. Trend clusters are then computed
as the summarization of each window. The window is discarded, while a compact
representation of trend cluster polylines is computed and stored in a database along
with the cluster. We observe that trend cluster discovery can be compared to the
roll-up of windows for storage in a data warehouse. Drill-down is always possible to
approximately reconstruct the stream from these summaries. For each past window,
the values of the trend polylines of this window are forecast for each sensor grouped in
the associated cluster. SUMATRA also allows us to obtain a compact representation
of a trend polyline, by resorting to signal processing techniques. Both frill-down and
roll-up operations are supported by the system GeoTube which used trend clusters
to build a geo-trend stream cube.
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Chapter 3
Missing Sensor Data Interpolation

Abstract Ubiquitous sensor stations continuously measure several geophysical
variables over large zones and long (potentially unbounded) periods of time. How-
ever, observations can cover neither every space location nor every time. Interpola-
tion, i.e., the estimation of unknown data in each location or time of interest, can be
used to supplement station records. Although in GIScience there has been a tendency
to treat space and time separately, there is now great interest in analyzing data in both
the domains. This suggests that integrating space and time would yield better results
than treating them separately, when interpolating several geophysical fields. This
chapter contributes to the investigation of spatiotemporal interpolators in a remote-
sensing scenario. We describe two interpolation techniques, which use trend clusters
to interpolate missing data. The former performs the estimation phase by using the
Inverse Distance Weighting approach, while the latter uses Kriging. Both have been
adapted to a sensor network scenario. The proposed techniques have been evaluated
in a large air-climate sensor network. The empirical study compares the accuracy
and efficiency of both techniques.

3.1 Interpolation

Interpolation is a key technique used to supplement, smooth, and standardize obser-
vational data. Historically, it has been considered a crucial task in spatial data analysis
and, consequently, a wide plethora of spatial interpolation methods (deterministic,
like Inverse Distance Weighting [1] and Radial Basis Functions [2], as well as stochas-
tic, like Kriging [3]) exists in the literature. They have been largely used to recover
unknown information and account for problems like missing data, energy saving,
sensor default, as well as to provide support data summarization and investigation
of spatial correlation between observed data [4]. More recently, ubiquity of sensing
technologies has provided a huge availability of spatiotemporal data. Interpolation
methods have consistently been required to handle spatiotemporal data, potentially
in a streaming scenario.

A. Appice et al., Data Mining Techniques in Sensor Networks, 49
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3.1.1 Spatial Interpolators

The spatial interpolative primitives, integrated in the majority of geographic infor-
mation systems, estimate a geophysical quantity in any geographic location where
the field measure is not available. The interpolated value is derived by making use of
the knowledge of the nearby observed data and, sometimes, of some hypotheses or
supplementary information about the data field. Inverse distance weighting (IDW)
[1], radial basis functions (RBF) [2], and Kriging [3] are the most common spatial-
aware techniques adopted in these cases. These techniques are specifically studied to
deal with the irregular sampling of the investigated area [5, 6], or with the difficulty
of describing the area by the local atlas of larger, irregular manifolds.

IDW and RBF, both deterministic interpolators, use mathematical functions to
calculate an unknown field value in a geographic location, based either on the degree
of similarity (IDW), or on the degree of smoothing (RBF) in relation to neighboring
data points. Both methods share with Kriging (that is a statistical interpolator) the
idea that the collection of field observations can be considered as the production
of a correlated spatial random field with specific statistical properties. In Kriging
this correlation is used to derive a second-order model of the field (the variogram).
The variogram represents an approximate measure of the spatial dissimilarity of
the observed data. IDW interpolation is based on a linear combination of nearby
observations with weights proportional to a power of the distances. It is a heuristic
but efficient approach justified by the typical power-law of the random field spatial
correlation. In this sense, IDW uses the same strategy adopted by the more rigorous
formulation of Kriging [7–9].

Several studies have arisen from these basic spatial interpolation approaches. In
Ref. [10], the missing data of a dense network are recovered by a Kriging interpolator.
By considering that the computational complexity of a variogram is cubic in the
size of the observed data [11], the variogram calculus, in this study, is sped-up
by processing only the areas with information holes, rather than the global data. In
Ref. [12], IDW and 1-Nearest Neighbor have been used to interpolate a grid of rainfall
data and re-sample data at multiple resolutions. In Ref. [13], IDW is again investigated
and formulated in an adaptive way, which depends on the varying distance-decay
relationship in the area under examination. The weighting parameters are varied
according to the spatial pattern of the sampled points in the neighborhood. The
method proves more efficient than ordinary IDW and, in several cases, also better
than Kriging. These studies contribute to highlighting IDW as a deterministic, quick,
and simple interpolation method, which also provides accurate interpolation results.

On the other hand, Kriging is based on the statistical properties of the random field
and, hence, is expected to be more accurate regarding the general characteristics of
the observations and the efficacy of the model. In any case, the accuracy of Kriging is
highly dependent on a reliable estimation of the variogram [5, 14] and the variogram
computation cost scales as the cube of the number of observed data [3]. This cost is
prohibitive in evolving sensing environments, where statistical properties of a mon-
itored field may change over time. In the Data Mining framework the change in the
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underlying properties over time is usually called concept drift [15]. It is noteworthy
that the concept drift, expected in evolving data, can be a serious complication for
Kriging. In fact, it may impose the repetition of costly computation of the variogram
each time the statistical properties of the field change significantly. On the other
hand, experimental studies reported in the literature (e.g. Ref. [13]) show that the
accuracy of an IDW interpolator often approaches the accuracy of a Kriging inter-
polator, especially for smooth fields [16]. These considerations motivate the use of
an interpolator that is accurate enough and whose learning phase can be reasonably
run online with the streaming activity.

3.1.2 Spatiotemporal Interpolators

Recently, more and more research efforts have been made to merge traditional tem-
poral data mining techniques with spatial interpolators. The main purpose of these
studies is to transfer mature temporal data mining techniques into a joint spatiotem-
poral set of interpolation methods able to catch the geophysical nature of data, which
are both spatially and temporally correlated. Even in the proper spatiotemporal direc-
tion, the interpolation methods are based on the idea that the sequence of observations
coming from a sensor can be regarded as outcomes of a stochastic process corrupted
by random noise. Hence, the model of such processes can be described (and then
predicted) by means of relatively few parameters [17–19].

Initial studies have offered a partial integration of the spatial and temporal methods
by first performing spatial interpolation and then reducing temporal interpolation to
the application of simple methods (such as linear or spline interpolation, [20, 21])
to the sequence of snapshots of spatially interpolated data [9]. An alternative has
also been explored, i.e., time series of data have been temporally interpolated for
each relevant location and then used as sampled observations for the application of
a traditional spatial interpolator [22].

The true integration of the spatial and temporal data component is a relatively
new research field. It is essentially based on the application of a dynamic model, like
the Kalman filter [23], or the Markov Random field [24], to consecutive snapshots
of data. Thus, the spatial interpolation takes place according to a set of temporally
changing parameters. In Ref. [25], Kriging is used for the spatial interpolation of
medical images, but the statistical model of the variogram is updated according to
a Kalman filter of the temporal observations. In Ref. [26], the impact of an irreg-
ular grid of sensors on data compression is analyzed and the nearest neighbor is
proposed as the interpolator scheme to obtain better data compression. Instead, tem-
poral interpolation is adopted just to assess the possible sensor clock misalignment,
but no solution is formulated to provide an estimate in any spatiotemporal location
of the sensed area. In Ref. [27], a methodology for the spatial and temporal inter-
polation of air quality data is illustrated. The methodology is two-stepped. First,
non-stationary time series analysis methods are used to interpolate the data sets over
periods where measurements are missing and to decompose the time series into trend
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and harmonic components. Then a preliminary analysis of spatial relations within
the data sets and a spatiotemporal model of log-transformed data is computed. The
model consists of trend and noise and represents the spatiotemporal variations in the
data applied to predict the air pollution variations at unsampled points across time
and space.

3.1.3 Challenges and New Contributions

The majority of spatiotemporal interpolation techniques described in the literature
are based on the analysis of a volume of spatiotemporal data that, although big
enough, are always bounded in time. In a sensing application, a (large) amount of
georeferenced data arrives continuously at a high rate and is possibly subjected to
data distribution drifts. In addition, the storage of this unbounded volume of geodata
in a server with limited memory is, in general, subjected to a summarization process.
Any future query, including interpolative requests, must operate with summaries of
the geodata stream. These considerations advocate the necessity of a spatiotemporal
interpolator, which accounts for both (1) the intrinsic dynamism in a geodata stream
and (2) the data summarization of this large volume of data.

Therefore, in order to address both issues, we have decided to pursue the spa-
tiotemporal strategy formulated in Ref. [9]. It advocates the importance of interpo-
lating data by accounting for the existence of a temporal pattern in the evolution of
geodata. This has paved the way for using spatiotemporal knowledge, such as trend
cluster knowledge, to model geodata and processing trend clusters to achieve robust
spatiotemporal interpolation functions. These functions can use either the Inverse
Distance Weighting (IDW) interpolation scheme or the Kriging scheme to estimate
a value at any specific location of space and point of time.

The IDW mechanism outputs a weighted average of the nearby points of the trend
cluster representation for the data observed in the spatiotemporal surrounding the
unknown point. The Kriging mechanism is applied to estimate unknown data, by
taking into account a spatial correlation model of the sensor network. Trends are
used as a guideline to transfer this model across the time horizon of the trend itself,
by accounting for the dynamism of the data in the modeling phase.

3.2 Trend Cluster Inverse Distance Weighting

Treci (TREnd Cluster-based Inverse distance weighting) [28, 29] is a spatiotemporal
interpolation technique, which operates in two phases.

The online phase (see Fig. 3.1a) consumes data snapshots as they arrive from
the sensor network. It analyzes snapshots according to the count-based model of
the stream, in order to determine a trend cluster segmentation of each data window.
For each window, trend clusters model the spatial variation of data along the time
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Fig. 3.1 Treci: online summarization step and offline interpolation step. a Treci ONLINE, b Treci
OFFLINE

horizon of the window. Since this model is stored in a database, while windowed
data are permanently discarded, trend clusters represent the data knowledge for the
future offline interpolation step. For each trend cluster, a shape-dependent sample
of clustered sensors (key sensors) is extracted. The sampling algorithm is designed
to keep only the information that is useful to sketch the real spatial extent of the
clustered region. At the same time, a (polynomial) regression model of the time law
underlying the trend time series is determined and only regression coefficients are
stored in the database as a model of the trend.

The offline phase (see Fig. 3.1b), which is repeatable, retrieves the spatiotemporal
knowledge surrounding the space–time point to be interpolated from the database.
This knowledge is used to determine an IDW-based estimate of the field.

Details of the trend cluster discovery are already reported in Sect. 2.3, while the
shape-based sampling, the polynomial interpolator learning, and the spatiotemporal
IDW interpolation are described in the following subsections.

http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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Algorithm 3.1 function sampling(C , θ ) �→ S
Require: C {cluster of sensors}
Require: θ {density threshold}
Ensure: S {sample of key sensors extracted from C }
1: S ←�
2: Q ← mbr(C )
3: if cardinality(XY, Q)�= 0% then
4: if density(C , Q)> θ% then
5: S ← S ∪ {centroid(C )}
6: else
7: P(C )←subClusterQuadtree(C )
8: for all Ci ∈P(C ) do
9: S ← S ∪ sampling(Ci )

10: end for
11: end if
12: end if

3.2.1 Sensor Sampling

Let C be a cluster of sensors. The goal is to find a shape-based sample S of the
key sensors grouped in C (S ⊆ C ). S can be stored in the database in place of C ;
it represents the region covered from C . Random sampling is the simplest way to
address this task, but it poses two issues. How can we choose the number of sensors to
be sampled? How can we guarantee that the randomly selected sensors maintain the
information about the cluster (region) shape? To answer both questions a sampling
algorithm which resorts to a quadtree decomposition of the clustered region can be
used. The quadtree decomposition is an adaptive sampling method largely used in
image processing [30, 31]. It is opportunely tailored to identify the key sensors of
the cluster which are centroids in the densely populated subareas of the cluster itself.
Thus, the number of sampled sensors and their location in space depend on how the
cluster shape is spread across the space.

The sampling of a cluster is recursively performed according to Algorithm 3.1.
First the minimum boundary rectangle Q of the cluster C is computed (Algorithm 3.1,
line 2, see Fig. 3.2a, d). The minimum bounding rectangle, also known as minimum
bounding box, is the rectangle enveloping C that is unambiguously identified by its
left inferior vertex (min(x), min(y)) and right superior vertex (max(x), max(y)) with:

min(x) = min
x
{x |(x, y) ∈ C } min(y) = min

y
{y|(x, y) ∈ C }

max(x) = max
x
{x |(x, y) ∈ C } max(y) = max

y
{y|(x, y) ∈ C }. (3.1)

Then the density of the cluster C inside Q (Algorithm 3.1, lines 3–4, Fig. 3.2a)
is computed according to a density measure defined as follows:

densi ty(C , Q) = |C ∩ Q|
|Q| × 100, (3.2)
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Fig. 3.2 An example of quadtree-based sensor sampling computed on the cluster of squares with
θ = 75 %. a MBR densi ty(c, Q) = 65.5 %, b QuadTree decomposition, c sensor centroid
selection, d recursive QuadTree decomposition of MBR rectangle, e recursive centroid selection, f
sampled sensors
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where |C ∩ Q| denotes the number of sensors clustered in C which are spatially
contained in Q, while |Q| is the number of sensors of the network falling in Q.
The spatial relation of containment between a 2D location (x, y) and a rectangle
[(xi , yi ), (xs, ys)] is defined as follows:

(x, y) ⊆ Q ⇔ xi ≤ x ≤ xs ∧ yi ≤ y ≤ ys . (3.3)

If densi ty(C , Q) is equal to zero, then Q is empty and it can be discarded for the
sampling (see the gray-colored quadrant in Fig. 3.2c). If densi ty(C , Q) is greater
than θ % (by default θ = 75 %), then C ∩ Q can be considered a dense sub-area
of C and its centroid node is sampled (Algorithm 3.1, lines 4–5, see red-colored
sensors in Fig. 3.2c, e). Otherwise, Q is decomposed into four sub quadrants (see
Fig. 3.2d), that is, Q1, Q2, Q3 and Q4, and then C is coherently decomposed in
the four subclusters falling in those quadrants, that is C1 = c ∩ Q1, C2 = c ∩ Q2,
C3 = c ∩ Q3 and C4 = c ∩ Q4 (see Fig. 3.2b, d). The sampling is then recursively
applied to each subcluster Ci (Algorithm 3.1, lines 8–10).

The quadrant decomposition of Q is defined orthogonally to the axes according
to x = max(x)+min(x)

2 and y = max(y)+min(y)
2 , such that:

Q1 :
[ (

min(x),
max(y)+min(y)

2

)
,

(
max(x)+min(x)

2 , max(y)
) ]

Q2 :
[ (

max(x)+min(x)
2 ,

max(y)+min(y)
2

)
, (max(x), max(y))

]

Q3 :
[ (

max(x)+min(x)
2 , min(y)

)
,

(
max(x),

max(y)+min(y)
2

) ]

Q4 :
[

(min(x), min(y)) ,
(

max(x)+min(x)
2 ,

max(y)+min(y)
2

) ]
.

(3.4)

The centroid of a set of sensors is computed. First, the centroid location (Fig. 3.2c)
(̂xC , ŷC ) of C is determined as follows:

x̂C = 1

|C |
∑

(x,y)∈C
x, ŷC = 1

|C |
∑

(x,y)∈C
y. (3.5)

Then the sensor of C which is the nearest neighbor to (̂xC , ŷC ) is selected as the
key sensor (centroid sensor) for the sampling. The centroid of C (see Fig. 3.2c, e) is
the point location defined as follows:

centroid(C ) = arg min
(x,y)∈C

{EuclideanDistance((x, y), (̂xC , ŷC ))}. (3.6)

When no further decomposition is possible, the selected sample of sensors is
output (Fig. 3.2f).

It is noteworthy that the consideration of the extracted sample of sensors in place
of each original cluster drastically reduces the number of sensors processed during
the interpolation phase. In this way, it speeds-up the offline interpolation phase.
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Algorithm 3.2 function polynomial(Z ) �→ poly
– Main routine
Require: Z {the time series for the polynomial fitting}
Ensure: poly {coefficients of the polynomial fitting Z }

1: p← forwardPolynomial(costantPolynomial(Z ), Z, 1)
– forwardPolynomial(previus P, Z, deg) �→ poly
1: if deg ≤ w− 1 then
2: poly ← previous P
3: else
4: newP ← straightLine(residual(T deg), residual(Z ), Z )
5: if f-test(newP, Z ) then
6: poly ← previuous P {The forward addition of the variable T deg to the polynomial is not

statistically significant for the fitting of the time series Z }
7: else
8: poly ←forwardPolynomial(newP, Z, deg + 1)
9: end if

10: end if

This recursive subdivision algorithm has a time complexity of O(n), where n is
the size of the cluster. It allows us to select a variable number of centroids from
C . Each centroid is strategically located in a dense area of C , so that the necessary
information to sketch the cluster shape is preserved.

3.2.2 Polynomial Interpolator

Let Z be a trend polyline prototype with length w. Coefficients of a polynomial
interpolator, which fits points of Z, are determined and stored in a database in place
of Z.

Let poly : T �→ Z be the polynomial defined as follows:

poly(t) = α + β1t + β2t2 + . . .+ βdegtdeg, (3.7)

such that D < w and the polynomial poly(t) fit the series of points in Z, according
to the minimization of a cost function.

The degree deg is automatically chosen (1 ≤ deg < w) by the forward selection
strategy [32], tailored for the polynomial construction. This strategy is combined with
a test to estimate the ability of a polynomial to fit the time series. Once the (unknown)
estimate at a generic time position t∗ is required, the polynomial computes:

Z(t∗) = poly(t∗). (3.8)

The polynomial is built stepwise according to Algorithm 3.2. We start with deg =
1 and compute the (straight-line) polynomial of the variable Z in the variable T (see
line 1 of the main routine in Algorithm 3.2). At each iteration, the ability of the
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current deg-degree polynomial (named newP) to fit the time series Z is evaluated,
according to the partial F-test. The F-test [32], specifically applied in this case, allows
the evaluation of the statistical significance in the improvement in the time series
fitting, due to the addition of the term tdeg to the currently constructed polynomial. If
this improvement is not statistically significant, the polynomial previous P , that is,
the polynomial previously constructed with degree deg−1 (the constant polynomial
if deg = 1) is kept and no higher degree variable is added to the final polynomial
(stopping criterion, as reported in line 6 of Algorithm 3.2). On the contrary, deg is
incremented by one and the polynomial of degree deg is forward computed by means
of the straight-line regression between the residual of the dependent variable Z and
the residual of the deg-degree variable T deg (see line 8 of Algorithm 3.2 for the
recursive call of the function f orward Polynomial() and line 4 of Algorithm 3.2
for the computation of a straight line between residuals).

The residual of a variable is computed as the difference between the variable and
the polynomial of degree deg− 1 estimating that variable. In particular, the residual
of the dependent variable Z is the difference between the variable itself and the
current polynomial in T of degree deg − 1 and of fitting Z. Similarly, the residual
of the independent variable T deg is the difference between the variable itself and the
polynomial in T of degree deg − 1, fitting the series T deg .

The procedure is iterated until deg = w − 1 (see line 1 in Algorithm 3.2) or the
F-test (see line 5 of Algorithm 3.2) are satisfied.

An example of the stepwise construction of a polynomial, performed according
to Algorithm 3.2, is reported in Example 3.1.

Example 3.1 (Forward selection of a polynomial) Let us consider the case in
which we intend to build the polynomial poly with degree deg = 2,

poly : Z(T ) = α + βT + γ T 2, (3.9)

through a sequence of parametric straight-line regressions. To this aim, we start by
regressing the variable Z on the 1-degree variable T and building the straight line:

Ẑ = α1 + β1T . (3.10)

The slope α1 and intercept β1 are computed on the time series Z . This equation
does not fit the series exactly. By adding the 2-degree variable T 2, the fitting might
improve. However, instead of starting from scratch and building a new polynomial
with both T and T 2, the forward strategy is exploited in the polynomial construction.

First, the parametric linear polynomial is built for T 2, if T is given, that is, T̂ 2 =
α2 + β2T . Then the residuals are defined on both the independent variable T 2 and
the dependent variable Z , that is:

T 2′ = T 2 − (α2 + β2T ).

Z ′ = Z − (α1 + β1T ).
(3.11)
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Finally, the straight-line regression is determined between residuals Z ′ and T 2′

in the time series, that is,
Ẑ ′ = α3 + β3T 2′. (3.12)

By substituting the straight-line regressions of Eq. 3.11, the latter Equation is
reformulated as follows:

Z − (α1 + β1T ) = α3 + β3(T
2 − (α2 + β2T )). (3.13)

This equation can be written equivalently as:

Z = (α3 + α1 − α2β3)+ (β1 − β2β3)T + β3T 2.

It is proved that the polynomial reported in the last Equation coincides with the
polynomial model built with Z , T and T 2 (in Eq. 3.9), that is,

α = α3 + α1 − α2β3. (3.14)

β = β1 − β2β3. (3.15)

γ = β3. (3.16)

A final consideration concerns the time complexity of this forward selection-based
computation of a polynomial of degree deg, that is, O(w× deg(deg−1)

2 ). This result can
be interestingly combined with the consideration reported in Ref. [33] (Sect. 2.3.1,
pp. 90), according to which the degree of a polynomial adequately fitting w values
should rarely exceed w

3 .

3.2.3 Inverse Distance Weighting

The Inverse Distance Weighting (IDW) [34] is adapted in order to estimate offline
the unknown value of the variable Z at any space–time point (x∗, y∗, t∗).

The estimate ẑ(x∗, y∗, t∗) is computed, based on the summary P(ti → te), which
is the set of trend clusters stored in the database with time horizon ti → te, such that
ti ≤ t∗ ≤ te. For the sake of the interpolation, we consider that, for each trend cluster,
key sensors of a cluster georeference the polynomial interpolator of the trend polyline
prototype associated to it. Therefore, the estimate can be computed as follows:

ẑ(x∗, y∗, t∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

polyu(t∗) if ∃u ∈ keys(P)

with (x∗, y∗) ≡ (xu, yu),
∑

u∈keys(P)

w(x∗,y∗)(xu ,yu) × polyu(t∗)
∑

u∈keys(P)

w(x∗,y∗)(xu ,yu)

otherwise,

(3.17)

http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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where keys(P) is the set of keys sampled per P , polyu(t∗) is the value computed at
the time point t∗ by the polynomial interpolator, georeferenced to the key sensor u.

The idea behind Eq. 3.17 is that the interpolation at an unsampled point location
is a function of the known values around it. In particular, it depends on them in a
relation inversely proportional to the distance, i.e., the nearer a known value, the
stronger its influence. According to this idea, the weights w(x∗,y∗)(xu ,yu) are defined
by the inverse of a power of the Euclidean distance:

w(x∗,y∗)(xu ,yu) = d((x∗, y∗)(xu, yu))−p. (3.18)

Based upon Eq. 3.18, the IDW interpolation is dependent on the power parameter
p, which is a positive, real number. Typically, higher values of p provide more
influence to the observation located closest to the unsampled position. For p→∞,
IDW converges to the 1-nearest neighbor interpolation, while for p→ 0 it becomes
an arithmetic mean. Therefore, the optimal value of this parameter is dependent on
the features of the random field under study. Here, p has been chosen by following
the rationale in [35, 36], for which a geophysical random field has well-known self-
similarity properties. Among these the correlation function of a field resembles a
power-descending law of the distance d, that is, Rx (d) � |d|−α . By considering
p as the tuner of the relative influence of neighbors in the interpolation, p = α is
chosen. On the other hand, the value of α is known to be related to the fractal (or
Hausdorff) dimension ν of a field by a simple relation [35], that is, ν = n+1−α/2,,
where n is the field dimension. Since in the literature [36] the fractal dimension of
several geophysical fields has been estimated between 2 and 3, by assuming ν = 2.5,
α = p = 3 is achieved.

Although Eq. 3.17 considers the entire set of key sensors sampled across the
networked space, it is reasonable to suppose that an influence boundary can be set
so that the key sensors which are outside this area should not be taken at all in the
computation. Thus, a spheric area is fixed around the unsampled location (x∗, y∗);
the key sensors contribute to the interpolation only if they are inside this spherical
region. The center of the interpolation sphere is (x∗, y∗) and the radius is a boundary
parameter b. Based on these considerations Eq. 3.18 can be reformulated as follows:

w(x∗,y∗),(xu ,yu) =
{

d((x∗, y∗), (xu, yu))−p if d((x∗, y∗), (xu, yu)) ≤ b

0 otherwise
. (3.19)

In Treci, an automatic mechanism is used to choose b at each window. This
mechanism guarantees that, independently of (x∗, y∗), at least one centroid is within
the boundaries. The idea of automatically detecting b at each window as the maximum
among the distances computed between each pair of closest centroids in the set
keys(P) was inspired by this requirement.

The time complexity of the IDW formula linearly depends on the number of key
sensors. The lower the number of sensors sampled per cluster, the faster the answer.
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3.3 Trend Cluster Kriging

TreCK (TREnd Cluster-based Kriging) [37] is a spatiotemporal interpolation tech-
nique based on Kriging.

3.3.1 Basic Concepts

Kriging is a family of techniques used to interpolate the value of a variable at an
unobserved location across space, starting from a known observation of its value at
nearby locations and from a second-order model of the variable (variogram). In the
original formulation of Kriging, time is ignored and any variable Z is a function of
the space variables only. The value at the position (x∗, y∗) is estimated as follows:

z(x∗, y∗) =
N∑

i=1

wi (x∗, y∗)z(xi , yi ), (3.20)

where N is the number of known data, called interpolation base, collected across
space and each wi (x∗, y∗) is a weight to compute such a linear combination.

The weights are obtained as a solution of a system of linear equations, formulated
by minimizing the variance of the prediction error. Rather than using weights based on
an arbitrary function of distance, as for the Inverse Distance Weighted interpolation,
the weights wi (x, y) are based on the computation of a variogram of the random
field (details are in Ref. [5]).

A variogram is an approximate measure of statistical dissimilarity within the vari-
able; the higher the variogram value, the more different the values assumed by the
variable, on average, for that distance. Random functions, for which closely spaced
values may be quite different, will have a variogram that rises quickly from the origin;
random functions for which the closely spaced values are very similar will have a
variogram that rises much more slowly. Given the variable Z , the sample variogram
γ (h) is defined as half the averaged square difference between the paired data values:

γ (h) = 1

2N (h)

∑

(u,v)|h(u,v)�h

(z(u)− z(v))2, (3.21)

where N (h) is the number of data pairs at a distance h. Eq. 3.21 assumes the exis-
tence of an isotropic model of the field [5, 34] and a proper tolerance for the distance
h. The tolerance for the distance h guarantees the consideration of an acceptable
number of pairs (i, j) in the empirical evaluation of the variogram.

To reduce the effect of variability, due to the unavoidable presence of noise on the
measure, several research studies [3, 5, 34] have argued the appropriateness of fitting
a theoretical model on the sample measure. The existing models have been inspired
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Fig. 3.3 A sample variogram (red crosses and line) and the Gaussian model (blue line) which fits
the data samples. The sill, the nugget, and the range are also highlighted

by the idea that a variogram is an approximate measure of statistical dissimilarity
within the random field, so they have approximately the same behavior. They start
with an initial low value (the nugget, that is, the value of γ (h = 0)), then increase
and, after a given distance (the range) they approach an asymptotic value (the sill,
which is γ (h → ∞)). Moreover, it has been proved that the sill of a variogram is
also the variance of the random field [5]. A sample variogram and a model fitted on
it, using the Least Mean Square (LMS) method, is illustrated in Fig. 3.3.

3.3.2 Issues and Solutions

Adapting traditional Kriging to a sensor network scenario is not a straightforward
task. There are specific issues to be addressed when the variogram should be com-
puted in a spatiotemporal setting.

3.3.2.1 Spatial Non-Stationarity of Geodata

In the classical Kriging formulation, the variogram model is learned as a global
function of the average squared difference in geodata, under the assumption that the
function definition does not vary with space. However, we cannot suppose the spatial
invariance for geodata on large extensions. Realistically, a sample variogram may
vary significantly on a set of data estimated in very distant locations.

We address this issue by segmenting the surface under investigation into regions,
such that the invariance of the variable statistics can be observed in each region at



3.3 Trend Cluster Kriging 63

least up to second-order statistics like the variogram. The variogram function can be
conveniently computed piecewise on these regions (called variogram regions).

3.3.2.2 Temporal Non-Stationarity of a Variogram

A sensor generates a time series. While a variogram represents some given spatial
statistics at a specific time point, distinct variograms may arise at distinct time points.
The temporal non-stationarity of a variogram can be naively faced by computing a
new variogram from each data snapshot. By considering that the cost of computing
a variogram scales as the cube of the number of observed data [3], this solution is
not feasible in a sensor network management system, for which the assurance of a
time-preserving computation is a crucial constraint.

We address this issue by defining a transfer learning technique [38], which exploits
the prominent trends observed in the geodata, in order to transfer the variogram
computed at a specific time point across the time horizon of the detected trends.

3.3.3 Spatiotemporal Kriging

The Kriging interpolation process operates in two phases. The online phase (see
Fig. 3.4a) consumes snapshots as they arrive from the sensor network and pours
them, window-by-window, into TreCK, which computes the interpolation base and
the variogram of the window. The offline phase (see Fig. 3.4b), which is repeatable,
uses the data model for the data estimation. Details on both phases are discussed in
the next subsections.

3.3.3.1 Kriging Model Computation

Let ti
z(T,K )→ te be a data window of the w-sized count-based window model of the

stream z(T, K ). The variogram (var ) and the interpolation base (B) are computed
for the window in three steps. Details are reported in Algorithm 3.3.

Variogram Region Segmentation [lines 1–2, Algorithm 3.3]

The data window ti
z(T,K )→ te is segmented into the set P of the trend clusters,

discovered with the global trend similarity threshold δG (line 1, Algorithm 3.3).
Let P(C , ς2(C )) be the set of cluster parts collected in P . Each cluster C ∈

P(C ) is called the variogram region. ς2(C ) is the variance vector of the cluster C ,
such that ς2(C )[t] is the variance of values of Z measured at the time t from the
sensors of K , clustered in C (with ti ≤ t ≤ te).
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Fig. 3.4 TreCK: online interpolation phase and offline interpolation phase. a TreCK ONLINE, b
TreCK OFFLINE

P(C , ς2(C )) depends on δG . Domain knowledge expertise should aid the user
in the choice of the value of δG . This can lead to determine variogram regions, for
which a global variogram can consistently fit the variability of the clustered data.

Time Series Down-Sampling [lines 3–7,11, Algorithm 3.3]

A sample of key time series B(ti → te) is determined. This sample is the base of
the known time series, which are linearly combined during the Kriging estimation
(see Eq. 3.20).
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Algorithm 3.3 variogram(z(T, K ), ti → te) �→ B(ti → te), var(K , ti → te)

Require: ti
z(T,K )→ te {a window of w data snapshots measured for Z from K along the time horizon

ti → te}
Ensure: B(ti → te) {Interpolation base}
Ensure: var(K , ti → te) {Spatiotemporal variogram of K with time horizon ti → te}

1: P ←sumatra(te
z(T,K )→ te, δG )

2: P(C , ς2(C ))← clusterSet(P, ti
z(T,K )→ te)

3: for all (C , ς2(C )) ∈P(C , ς2(C )) do

4: P ′(C )← sumatra(	C

(

ti
z(T,K )→ te

)

, δC )

5: for all [C ′, Z ′] ∈ P ′(C ) do
6: append(B(ti → te), 〈centroid(C ′), Z ′〉)
7: end for
8: ρC , ηC ←gaussianVariogram(B(t i+e

2
, C ))

9: var(C )← (centroid(C ), ρC , ηC , ς2(C ))

10: append(var(K , ti → te), var(C ))
11: end for

In theory, this base should contain all the time series of the data window
z(T,K )

ti → te
(a w-sized time series for each sensor of K ). In practice, this data volume can be very
large and a summary is computed. The data window can be down-sampled, based
on the computed summary. The computed sample is that used in the variogram
computation, as well as in the Kriging estimation.

The down-sampling procedure is based on the trend clusters locally discovered
in a variogram region.

Let 	C

(

ti
z(T,K )→ te

)

be the projection of the data window, which is performed on

the variogram region C . It contains the data of the window which are measured by the

sensors clustered in C . The trend cluster set P ′(C ) is discovered in 	C

(

ti
z(T,K )→ te

)

,

with local domain similarity threshold δC (line 4, Algorithm 3.3). Each trend polyline
prototype in P ′(C ) is georeferenced in the centroid of the associated cluster and
stored in B(ti → te) for the subsequent computations (lines 5–7, Algorithm 3.3).

The threshold δC is determined with a box plot. Values of 	C

(

ti
z(T,K )→ te

)

are

depicted through five summaries: the smallest observation, the lower quartile (Q1),
the median (Q2), the upper quartile (Q3), and the largest observation. Given α =
Q1−1.5(Q3−Q1) and β = Q3+1.5(Q3−Q1), we can compute δC = 0.1(β−α).

Piecewise Variogram Computation and Transfer [lines 8–10, Algorithm 3.3]

The variogram is piecewise computed on the regional decomposition P(C ,

ς2(C )), such that,

var(K , ti → te) =
⋃

(C ,ς2(C ))∈P(C ,ς2(C ))

(centroid(C ), var(C )). (3.22)
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For each variogram region, the nugget, range, and sill of the regional variogram are
computed and georeferenced at the centroid of the region. We assume the Gaussian
ideal variogram and use the Least Mean Square (LMS) method to fit the estimated
sample variogram γSample with the best Gaussian model γModel . We assume that
the nugget and the range are constant on the entire window. Hence, the temporal
variability of the variogram is modeled by the sill. It is a vector with a distinct value
for each time point between ti and te.

The shape of the Gaussian model is reported in Ref. [5] with nugget zero, range
one, and sill one. The sample variogram associated to the variogram region C is
computed by means of Eq. 3.21. It is obtained by fitting the theoretic Gaussian model
on the data and represented by the nugget, range, and sill of the fitted model. Formally,

var(C ) = (ηC , ρC , ς2(C )), (3.23)

where the range ρ and the nugget η are LMS-estimated on B(t i+e
2

,C ) (i.e., the set of

values of B timestamped at t i+e
2

and georeferenced at centroids, which are sampled

within C ), while the sill vector is the variance vector ς2(C ) (according to the theory
reported in Ref. [5]).

The LMS-fitted model,γModel(C , t i+e
2

), is found by estimating the triple,
{
ηC , ρC ,

ς2
C

}
, such that (line 8, Algorithm 3.3):

γModel

(
C , t i+e

2

)
= ς2

C · γ I deal

(
h; ρC

)+ ηC , (3.24)

with:

{
ηC , ρC , ς2

C

}
= arg min

{
ηC ,ρC ,ς2

C

}

[(
γModel

(
C , t i+e

2

)
− γSample

(
C , t i+e

2

))2
]

.

(3.25)
After this estimation phase, only ηC and ρC are considered, while the sill is the

variance vector of C (line 9, Algorithm 3.3).

3.3.3.2 Kriging Interpolation

Let (x∗, y∗, t∗) be a space-time point, ti → te be the time horizon of a window of
the count-based stream model such that ti ≤ t ≤ te. The estimate ẑ(x∗, y∗, t∗) is
computed according to Eq. 3.20 by linearly combining key data with weights. The
key data are the data of the interpolation base B(ti → te), which are timestamped
at t . The weights are the coefficients determined according to the variogram model
var(K , ti → te) at the time t .

Let (η, ρ, ς) be the nugget, range, and t-timestamped sill of the nearest regional
variogram of var(C ) ∈ var(K , ti → te). The neighboring relation is based on the
computation of the Euclidean distance between (x, y) and the centroid point, which
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georeferences the regional variogram (C ) ∈ (K , ti → te) on the map. Formally,

(η, ρ, ς) = (ηC , ρC , ς2(C [t])) with C = arg min
var(C )∈var(K ,ti→te)

d((x, y), centroid(C )).

(3.26)

In theory, the Kriging linear estimate should combine all known data of the inter-
polation base, but, in practice, we exploit the fact that the nearest data contribute to
the unknown location more than the furthest. Based upon this consideration, we have
found the estimate on just the known data falling in a neighborhood. As a neighbor-
hood of the location (x, y), we consider the sphere with center (x, y) and radius d.
This radius represents the distance, over which correlation is supposed to cut off,
hence we can automatically determine d by taking as distance a given percentage of
the experimental range of the variogram model (by default d = 2ρ).

3.4 Empirical Evaluation

Both Treci and TreCK are written in Java. They interface the summarization system
SUMATRA to discover trend clusters in a geodata stream and a database, managed
by a MySQL DBMS, to store the interpolation model. The online component (sum-
marizer) and the offline component (interpolator) of both systems are evaluated on an
Intel(R) Core(TM) 2 DUO CPU P61100 @2.00GHz with 3.7 GB of RAM Memory,
running Ubuntu Release 12.04 (precise) 32−bit , Kernel Linux 3.2.0-26-generic-pae.

3.4.1 Streams and Experimental Setup

Experiments are performed with the climatology stream South American Climate
(details in Sect. 2.4.1.1). The computation time is used to compare the efficiency
of the online systems, while the root mean squared error is used to compare the
interpolation ability of the offline systems. We use both Treci and TreCK.

Experiments are run by using window size w = 12 (months), due to the expected
yearlong periodicity of the air temperature. In Treci, the trend cluster discovery is
run with a domain similarity, that is, about 10 % of the field dynamics in the stream
(= 4 ◦C). In TreCK, variogram regions are discovered with a global domain similarity
10 ◦C. This is deduced by common sense, which suggests that a spatial variation of
temperature data, which differs more than 10 ◦C across space, cannot be correctly
modeled by a single variogram, provided that the dynamics of the data varies by
about 40 ◦C.

The accuracy of the interpolators is evaluated by varying the percentage of sensors
switched-off in the network. In this case, the online system processes only a subset

http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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of the stream, while the offline interpolator is used to estimate both available and
unavailable data.

3.4.2 Online Analysis

We consider the entire network (all sensors are switched-on) and use both Treci and
TreCK to learn the IDW/Kriging interpolation model of the stream. For Kriging,
TreCK is compared to the baseline TreCK*, which learns a new piecewise regional
variogram from scratch at each new snapshot of the window.

Results are reported in Table 3.1. The analysis of these results confirms that
the learning process, performed by TreCK to compute a spatiotemporal variogram,
obtains a remarkable reduction in the baseline computation time.

As expected, the learning process is sped-up at the expense of the interpolation
accuracy. In fact, the analysis of the interpolation error reveals a result worsening
in each snapshot of the stream. In any case, this is de facto a slight worsening; the
average root mean squares error per snapshot grows slightly from 1.71 up to 1.94
(see Table 3.1).

On the other hand, the learning phase of TreCK is slower than the learning phase of
Treci. The Inverse Distance Weighting overfits data when the interpolation model is
used to estimate training data. This probably depends on the fact that the interpolation
base computed with Treci is more numerous than the interpolation base computed
by TreCK.

3.4.3 Offline Analysis

Several experimental settings are considered to analyze the accuracy of the spa-
tiotemporal interpolator of both Treci and TreCK. In particular, this comparison
is performed by varying the percentage of sensors, which are switched-off in the
network, from 0 % (the network is considered in its entirety) to 10, 20, and 50 %.

Table 3.1 Online phase (TreCK vs TreCK*, Treci vs TreCK): root mean squared error—rmse
(averaged on snapshots), computation time in seconds (averaged on windows) and number of key
sensors—nks (averaged on windows)

Treci TreCK TreCK*

Averaged time 21.64 78.5 311.5
Averaged rmse 1.23 1.94 1.71
Averaged nks 666 316 316
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Table 3.2 Online phase (Treci vs TreCK): rmse (averaged on snapshots)

% Treci TreCK

0 1.74 1.94
10 2.11 2.13
20 2.4 2.12
50 2.7 2.08

The average rmse per snapshot is collected in Table 3.2. This result shows the
robustness of Kriging interpolation, when the network becomes more and more
sparse by switching-off sensors. The Kriging interpolation model does not overfit
training data, so it is more accurate than IDW when the network becomes sparse and
incomplete.

This study contributes to highlighting IDW as a deterministic, quick, and simple
interpolation method, which also provides accurate interpolation results. On the other
hand, Kriging is based on the statistical properties of the random field and, hence,
is more accurate regarding the general characteristics of the observations and the
efficacy of the model. This allows us to consider Kriging (and then TreCK) to be more
robust, but less efficient, for interpolating a random field of a sparse and incomplete
network.

3.5 Summary

Trend clusters are stream patterns, which compactly represent numeric spatiotem-
poral data, by means of spatial clusters having prominent data trends in time. Trend
cluster discovery is originally defined to summarize geodata, which are collected
throughout a remote sensor network. In this chapter, we have illustrated that trend
cluster discovery can be integrated as an online step in the spatiotemporal inter-
polation process, which permits the estimation of a variable at any location of the
networked space and at any time point in the past. Both the Inverse Distance Weight-
ing and Kriging are combined with the trend clusters to obtain spatial-aware and
temporal-aware estimated values of a random field, monitored throughout a sensor
network.
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Chapter 4
Sensor Data Surveillance

Abstract A growing volume of geodata requires for appropriate data management
systems, which ensure data acquisition and memory-preserving storage as well as
continuous surveillance of this unbounded amount of georeferenced data. Trend
cluster discovery, as a spatiotemporal aggregate operator, may play a crucial role in
the surveillance process of the sensor data. We describe a computation-preserving
algorithm, which employs an incremental learning strategy to continuously maintain
sliding window trend clusters across a sensor network. The analysis of trend clusters,
which are discovered at the consecutive sliding windows, is useful to look for possible
changes in the data, as well as to produce forecasts of the future.

4.1 Data Surveillance

The widespread dissemination and the rapid increase of sensor networks, coupled
with the high demand to utilize sensor data in critical real-time analysis tasks, have
put the research focus on the deployment of network-integrated surveillance systems.
These systems should be able to identify data that deviate from past baselines in (near)
real-time. The surveillance in a sensor network comprises the steps of gathering data
from one or several sensors, recognizing a behavioral pattern in data to raise an alarm
in the presence of data that do not conform to the past pattern. The alarm can indicate
a drift in the established behavior.

Data visualization can be a crucial means for the surveillance process. How-
ever, the visualization of sensor data cannot ignore the specific circumstance of an
unbounded volume of data, which flow continuously and rapidly from geo-distributed
sources. In fact, the streaming activity makes any traditional visualization of data
prohibitive and ineffectual. These considerations underline the importance of extract-
ing, in real time, a knowledge that preserves the compact representation of sensor
data. This representation should highlight the prominent spatiotemporal dynamics
of the data and allow us to visualize how these dynamics change.

A. Appice et al., Data Mining Techniques in Sensor Networks, 73
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-5454-9_4,
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Trend cluster discovery, as a spatiotemporal aggregate operator, may play a crucial
role in the surveillance process of the sensor data applications. Initially formulated for
data warehousing, trend cluster discovery gathers spatially clustered sensors, whose
readings of a numeric geophysical variable show a similar trend (represented by a time
series) along a time horizon. In previous chapters, we resorted to a segmentation of
the time in consecutive windows, such that trend clusters can be discovered window-
per-window, the representation of a trend can be compressed by applying some
signal processing techniques, and trend clusters can be used to feed a trend-based
cube storage of the sensor data and to interpolate data. In any case, trend clusters are
always discovered along the time horizons of non-overlapping widows; in this way,
trend clusters discovered in a window do not share, at least explicitly, any knowledge
with trend clusters discovered in any other window.

On the other hand, the sliding window computation [1] is frequently considered in
a data stream system. In this chapter, we illustrate an incremental algorithm for trend
cluster discovery in sliding windows of a geodata stream. The algorithm presented
seeks trend clusters in the latest data, which are constrained by a sliding window.
A cluster stability index is defined. It can be computed to measure the degree of
stability of trend clusters discovered throughout consecutive sliding windows and to
look for drifts of data. A forecasting function can be fitted to each trend time series
to produce forecasts for sensors grouped in the associated cluster.

The main challenge of discovering sliding window knowledge is how to minimize
the computation cost (memory and time usage) during the discovery process. We
face this challenge for trend cluster discovery by using a technique, called Sliding
WIndow Trend cluster maintaining algorithm (SWIT), which efficiently maintains
accurate sliding window trend clusters that arise in a sensor network. When new
data are collected from the network, trend clusters are slid to fit these new data. For
each trend cluster, which is currently maintained, the oldest time point is discarded.
Clusters, which are spatially close and share a similar trend along the time horizon
under consideration, are merged. Finally, trend clusters are spatially split when they
do not fit data trends up to the present.

4.2 Sliding Window Trend Cluster Discovery

SWIT permits the discovery of sliding window trend clusters in a geodata stream.
It uses an incremental learning strategy to slide the trend clusters of the past window,
in order to fit the data which are acquired in the last round. The entire process is
iterated at the acquisition of each new data snapshot and performed in (near) real
time. This means that the analysis of a snapshot is completed presumably before a
new snapshot is recorded. A merge-and-split procedure [2] is used.
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4.2.1 Basics

We consider the definition of trend clusters, which is formulated in Chap. 2 (Definition
2.1).

A distance bandwidth d is used to look for the spatial closeness relation between
sensors.

Definition 4.1 (Spatial closeness relation between sensors) Let d be a threshold
chosen for the spatial distance between sensors. The sensor u is close to the sensor
v if u is far at worst d from v (i.e., distance(u, v) ≤ d).

We assume that the spatial closeness relation is transitive, that is, it can be estab-
lished transitively between sensors, which are related by means of other sensors that
are in direct closeness one couple at a time.

A domain threshold δ is used to look for the trend similarity of the clustered
sensors. We assume that this similarity is looked for pairwise for the sensors of a
trend cluster. This similarity computation schema requires the calculus of the distance
between all pairs of sensors grouped in a trend cluster.

Definition 4.2 (Trend similarity relation between sensors) Let δ be the similarity
threshold, u and v be two sensors, which measure data for Z along the time horizon
H . The trend of the sensor u is similar to the trend of sensor v along the time horizon
H if and only if,

1

|H |
∑

ti∈H

I (zti (u), zti (v)) = 0, (4.1)

where zti (x) (x ∈ {u, v}) is the measure taken by the sensor x at the specific time
ti and I (zti (u), zti (v)) = 0 if ‖zti (u)− zti (v)‖ ≤ δ; 1 otherwise.

The distance ‖ · ‖ is the absolute distance.
The trend similarity relation cannot be established transitively. In any case, Propo-

sition 4.2.1 can be accounted for when testing the trend similarity relation in a cluster
of sensors.

Proposition 4.2.1 Let C be a cluster of sensors. For each u, v ∈ C , I (zti (u), zti (v))

= 0 if and only if I (arg max
u∈C

zti (u), arg min
v∈C

zti (v)) = 0.

4.2.2 Merge Procedure

Let w be the window size of the sliding window model according to the stream being
processed, P be the set of sliding window trend clusters maintained with the last
processing round.

At the time ti , the merge procedure (see Algorithm 4.1) starts after the information
timestamped with the farthest time point (ti−w) is discarded from the trend time series

http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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Fig. 4.1 Sliding window process: the farthest time point (t1) is discarded from each trend time
series. a Geodata stream (with w = 4), b Sensor network, c P(t1 → t4), d P(t2 → t4)

of each trend cluster of P . This happens due to the effect of the sliding window
mechanism (see Fig. 4.1).

The merge procedure inputs the trend cluster set P , selects a random seed trend
cluster T ∈ P , and looks for merging trend clusters, which are close in space and
similar in trend to the seed.

Let Tu = (ti−w+1 → ti−1,Cu,Zu) and Tv = (ti−w+1 → ti−1,Cv,Zv) be two
trend clusters with the time horizon ti−w+1 → ti−1.

Definition 4.3 (Spatial closeness relation between trend clusters) Tu is close in
space to Tv iff there exists two sensors u ∈ Cu and v ∈ Cv , such that u is spatially
close to v (according to Definition 4.2).

Definition 4.4 (Trend similarity relation between trend clusters) Tu is similar
in trend to Tv if and only if, according to Proposition 4.2.1, for each time point
t j with ti−w+1 ≤ t j ≤ ti−1,

max{Zu(t j ).max,Zv(t j ).max} −min{Zu(t j ).min,Zv(t j ).min} ≤ δ, (4.2)

where max and min are aggregation statistics stored with a trend time series Zx

associated to the cluster Cx (with x ∈ {u, v}) in P .
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Algorithm 4.1 MergeTrendClusters(TC)
– Main routine(P)
Require: P: a set of trend clusters with time horizon ti−w+1 → ti−1
1: for all T ∈ P do
2: T ← merge(T , P)

3: end for
– merge(Tu , P) �→ Tu

1: for all Tv ∈ P do
2: if closeInSpace(Tu , Tv) and similarInTrend(Tu , Tv) then
3: Tu = μ(Tu , Tv)

4: P ← P − {Tv}
5: Tu ← merge(Tu , P)

6: end if
7: end for

The merge operator, applied to a pair of trend clusters, computes a new trend clus-
ter that replaces the seed of the merge process (sub-routine merge in Algorithm 4.1,
lines 3–4).

Definition 4.5 (MergeOperator µ) The operator μ inputs both Tu and Tv and
computes T (= (ti−w+1 → ti−1,C ,Z )), so that C = Cu ∪ Cv , Z is the series of
triples timestamped at the time points t j with ti−w+1 ≤ t j ≤ ti−1 and defined as
follows:

Z (t j ).mean = Zu(t j ).mean × |Cu | +Zv(t j ).mean × |Cv|
|Cu | + |Cv| , (4.3)

Z (t j ).min = min{Zu(t j ).min,Zv(t j ).min}, (4.4)

Z (t j ).max = max{Zu(t j ).max,Zv(t j ).max}. (4.5)

| · | is the cardinality of a set. The mean is computed to represent each cluster centroid
in the trend cluster.

The procedure applies the merge operator to trend clusters that are close in space
and similar in trend. Therefore, the output is always a “proper” trend cluster that
satisfies the (transitive) spatial closeness relation (see Definition 4.1), as well as the
trend cluster similarity condition (see Definition 4.2) between each pair of sensors
in the output cluster.

The merge operator is recursively applied until no further merge can be performed
(sub-routine merge in Algorithm 4.1, line 5) and all seeds have been considered (main
routine in Algorithm 4.1, lines 1–3).

The time complexity of the procedure is O(m2(w − 1)) in the worst case with
m the number of input trend clusters.
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4.2.3 Split Procedure

The procedure (see Algorithm 4.2) inputs the set of trend clusters from the merge
procedure and the snapshot acquired in the last round.

Each input trend cluster is partitioned into sub-clusters of sensors. A sub-cluster
collects data differing at worst δ from each other, at the time ti (Algorithm 4.2, lines
1–2).

The clustering is done by resorting to a contiguity-constrained clustering tech-
nique that, as pointed out in [3], permits the fitting of the requirements of learning
under correlation. Clustering takes advantage of the spatial contiguity constraint
between sensing devices (the one formulated in Definition 4.1) to reduce the number
of possible solutions and force a fast convergence onto largely similar areal bound-
aries. The contiguity constraint is fulfilled by clustering sensors on a contiguity
graph.

Clustering is done with a mode-seeking strategy [4], which starts from a seed
sensor, to which other neighbors are added until each resulting sub-cluster (C ′)
satisfies the similarity condition:

max
{
zK (ti )(C

′)
}− min

{
zK (ti )(C

′)
} ≤ δ, (4.6)

where zK (ti )(C ′) is the set of measurements of Z in 〈Kti , zK (ti )〉) for the sensors of
C ′. The choice of this clustering mode is motivated by the positive properties of the
seek-mode described in [5], i.e., no limit on either the geometric shape of clusters or
on the number of clusters.

The cluster set P(C ), that is the output of the clustering phase, is used to complete
the sliding of the input trend cluster to the time ti (that of the last row). Formally, let
T = (H,C ,Z ) be the input trend cluster. For each sub-cluster C ′ ∈P(C ), a trend
cluster T ′ = (ti−w+1 → ti ,C ′,Z ′) is computed for the output (Algorithm 4.2, lines
6–7), so that:

1. C ′ is the sub-cluster in P(C ) (Algorithm 4.2, lines 3,6); and
2. Z ′ is the trend time series Z , which is incremented with the statistics (minimum,

maximum, mean) computed for C ′ at the time ti (Algorithm 4.2, lines 4–6).

The time complexity of the procedure is O(n2) in the worst case, with n as the
number of sensors spanned over the set of trend clusters.

4.2.4 Transient Sensors

Final notes complete the description of this process for the transient sensors, which
switch their operative status from off to on and vice versa.

The former is the case of a sensor switched-on in the snapshot processed in the
last round, but switched-off in the window history. This sensor is not enumerated in
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Algorithm 4.2 SplitTrendClusters(P, 〈Kti , zti (Kti )〉) �→ P ′
Require: P: a set of trend clusters with time horizon ti−w+1 → ti−1
Require: 〈Kti , zti (Kti )〉: the snapshot acquired at the last time point ti
Ensure: P ′: a set of slid trend clusters with time horizon ti−w+1 → ti
1: for all T ∈ T C with T = {ti−w+1 → ti , C , Z } do
2: P(C )← clustering(zK (t)(C ))

3: for all C ′ ∈P(C ) do
4: Z (ti )← statistics(zti (C

′))
5: Z ′ ← add(Z , Z (ti ))
6: T ′ ← trendCluster

{
ti−w+1 → ti , C ′, Z ′

}

7: P ′ ← add(P ′, T ′)
8: end for
9: end for

any of the past trend clusters. Under the hypothesis of spatial correlation, this “new”
sensor can be automatically assigned to the trend cluster that encloses the majority of
its neighbors. If there is no neighbor within distance d, a new trend cluster is created
to group the sensor and a trend time series of empty values is assigned to it. The
entire window of data is acquired before this trend cluster starts to participate in both
the merge and split phases of the process. During this initialization phase, the only
activity is that of incrementing the trend time series with statistics measured for the
sensor on the row.

The latter is the case of a sensor, enumerated in a past trend cluster, but switched-off
in the row processed in the last round. One datum is expected for it. During the steady-
state streaming activity, a sensor may miss a data transmission in a row without being
really switched-off in the network. The sliding window phase reacts to the presence
of unexpected switched-off sensors by interpolating their data (using an inverse
distance-weighted sum of nearby known data [6]), putting them under surveillance
and using interpolated data to complete the process of sliding the trend clusters. For
each sensor, the inactivity status is declared at any missing measurement, while it is
suspended at a real measurement. Sensors, kept under inactivity surveillance from
the beginning of the window, are classified as switched-off, purged from the trend
clusters they belong to, and no longer considered in the sliding window discovery of
trend clusters.

4.3 Cluster Stability Analysis

A stability measure can be computed to determine if the clusters of sensors, associated
to the trend clusters, are stable over consecutive sliding windows. We propose the
evaluation of the stability of clustering by resorting to an error measure. It can be
computed backward or forward. The higher the stability error, the greater the change
in the clustering configuration.
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Backward cluster stability error

This measures how much clustering changes at the time ti with respect to clustering
at the past time ti−1. It is a misclassification error percentage computed at the time
ti , by considering the baseline trend clusters, which are detected at the time ti−1. Let
P(C ) be the clustering of sensors at the time ti and P(C )B be the clustering at the
time ti−1, then:

bse(ti ) =

∑

C∈P(C )

|C − cluster(C ,P(C )B)|

|Kti |
, (4.7)

where cluster(C ,P(C )B) = arg max
CB∈P(C )B

|CB ∩ C |.
The backward cluster stability error can be plotted in (near) real time when a new

data snapshot is processed.

Forward cluster stability error

This measures how much clustering changes at the time ti with respect to the clus-
tering at the future time ti+1. It is the misclassification error percentage computed
at the time ti , by considering the baseline trend clusters discovered at the time ti+1.
Differently from the backward cluster stability error, the forward cluster stability
error is plotted with a delay in time, that is, the time required to acquire and process
the next baseline snapshot.

Average cluster stability error

This is the mean of the backward cluster stability error and the forward cluster
stability error.

General Considerations

We observe that if bse(ti ) = f se(ti ) then ti is a stable point in the stream, otherwise
ti is a drifting point in the stream. bse(ti ) = 0 indicates that a cluster merge is
happening from ti−1 to ti , while f se(ti ) = 0 indicates that a cluster split is happening
from ti to ti+1.

Example 4.3.1 Let us consider the clustering configuration associated to the sliding
window trend clusters discovered with time horizon ti−w+1 → ti (Fig. 4.2a) and
ti−w+2 → ti+1 (Fig. 4.2b). We compute:
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Fig. 4.2 Sliding window cluster configurations (from ti to ti+1): C1 and C2 are merged into D1,
while C3 is split in D2 and D3. a Clustering (ti−w+1 → ti ), b Clustering (ti−w+1 → ti+1)

bse(ti+1) = |D1 − C1| + |D2 − C2| + |D3 − C2|
20

= 5+ 0+ 0

20
= 0.25 ≥ 0,

f se(ti ) = |C1 − D1| + |C2 − D1| + |C3 − D3|
20

= 2+ 0+ 0

20
= 0.1 ≥ 0,

which correctly give warning of merge of clusters C1 and C2 into D1 and the split
of the cluster C3 in D2 and D3. The merge event means that sensors having distinct
trends until ti start to have the same trend from ti+1. The split event means that
sensors having the same trend until ti start to have a distinct trend from ti+1.

4.4 Trend Forecasting Analysis

The time series forecasting theory is concerned with fitting a function of time on the
data of a time series. Therefore, a forecasting function can be fitted to the trend time
series of a trend cluster and used to extrapolate data prediction of clustered sensors
for the future. The forecasting error can be analyzed. The higher the error means,
the more the real data differ from the forecasts produced. This may indicate a drift
in the expected trend model according to the data, which are produced.

Several forecasting models are described in the literature; a plethora of these
models broadly uses the linear predictive theory and builds the model as a linear
combination of recent data. We consider the exponential smoothing procedures [7],
which provide forecasting functions accurate enough and easy to increment when a
new data measurement is available in the time series, according to the sliding window
model.
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4.4.1 Exponential Smoothing Theory

In the exponential smoothing theory, a time series is taken as the sum of a trend, a
seasonal (periodic) component, and a residual fluctuation. The trend is the average
progress of the variable in time and is usually described by a simple and slowly
varying function (e.g. linear). The seasonality is an emerging (close to-) periodic
behavior in the series, once the general trend is removed from data. The residual
fluctuation (error ε) is any random unexplained variation in data. It is usually supposed
to have little extent with respect to trend and seasonality and to be distributed as white
noise (i.e., an uncorrelated Gaussian zero-mean process).

Let z(t) be a time series of numerical measures for Z which are routinely sampled
over a time interval. A forecasting model can be produced by composing the trend
(τ , the intercept and ι, the slope) and the seasonality (ν) contributions predicted from
past samples. The usual way to combine these components is by the additive model:1

z(t) = [τ (t)+ ι(t)+ ν(t)] + ε(t). (4.8)

To determine τ (·), ι(·) and ν(·), i.e., the predictable part of the model, the expo-
nential smoothing models of Brown, Holt, and Winters are revised here. Brown’s
model and Holt’s model perform ad hoc procedures that account for the trend in
a time series, but they neglect seasonality. Winters’ model accounts for both trend
and seasonality. None of these models can be considered the best in absolute. For
this reason, the best model should be chosen from time to time, according to the
properties of the data.

4.4.1.1 Brown’s Model

Brown’s model averages past data collected in the time series up to the current sample.
The recent data are given more weight than the older ones. To obtain a fading weight
schema [7], the trend component is defined in an exponential recursive formula

τ (ti ) =
{

z(t1) i = 1

αz(ti )+ (1− α)τ (ti−1) otherwise
. (4.9)

The starting step (in t1) is defined in [8]. The recursive step starts from t2. The coef-
ficient α ∈ [0, 1] balances the importance of the datum in ti with respect to the past;
past data are recursively accumulated in τ (ti−1). The value forecast ẑ for the time
ti+1 is ẑ(ti+1) = τ (ti ).

1 An alternative, rarely used, can be the multiplicative model.
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4.4.1.2 Holt’s Model

Holt’s model improves the previous one by correcting a linear tendency in the trend
part [7], such that

τ (ti ) =
{

z(ti ) i = 1, 2

αz(ti )+ (1− α)(τ (ti−1)+ ι(ti−1)) otherwise
, (4.10)

with ι(ti ) =
{
τ (t2)− τ (t1) i = 1

β(τ (ti )− τ (ti−1))+ (1− β)ι(ti−1) otherwise
. (4.11)

The starting step is defined in [8]. The recursive step starts from t3.The coefficient
β ∈ [0, 1] weights a linear trend in the prediction model. The value forecast is
ẑ(ti+1) = τ (ti )+ ι(ti ).

4.4.1.3 Winters’ Model

Winters’ model finally assumes the existence of seasonality with a periodω in the time
series. The recursive relations for trend, in bias and linear tendency, and seasonality
[7] are defined as follows:

τ (ti ) = α(z(ti )− ν(ti−ω))+ (1− α)(τ (ti−1)+ ι(ti−1)),

ι(ti ) = β(τ (ti )− τ (ti−1))+ (1− β)ι(ti−1),

ν(ti ) = γ(z(ti )− τ (ti ))+ (1− γ)ν(ti−ω),

(4.12)

with ti > tω; the coefficient γ ∈ [0, 1] balances for the seasonal component ν.
The forecasting process starts at time tω+1, while the procedure, described in

[8], requires L (L > 1) initial periods to start the iterations. The value forecast is
ẑ(ti+1) = τ (ti )+ ι(ti )+ ν(ti ).

4.4.2 Trend Cluster Forecasting Model Update

For each trend cluster, the coefficients of the associated forecasting model, M , are
updated, in order to estimate the next point expected in the trend time series. This
estimation process is pursued on the mean statistic, so that this estimated value can
be used to forecast the next measurements of sensors enumerated in the associated
cluster. The forecast value is computed according to the recursive formulation of the
exponential smoothing models reported in Sect. 4.4.1. The estimate is carried out by
considering Brown, Holt, and Winters’ models. By accounting for the formulation
in Sect. 4.4.1, the prediction for the next time is then computed after that:
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1. τ (ti ) is computed for Brown’s model,
2. τ (ti ) and ι(ti ) are computed for Holt’s model,
3. τ (ti ), ι(ti ) and ν(ti ) are computed for Winters’ model.

In case (1), τ (ti ) is computed recursively from τ (ti−1) (see Eq. 4.9). In case (2),
τ (ti ) and ι(ti ) are computed recursively from τ (ti−1) and ι(ti−1) (see Eq. 4.11). In
case (3), τ (ti ), ι(ti ) and ν(ti ) are computed recursively from τ (ti−1), ι(ti−1) and
ν(ti−ω) (see Eq. 4.12). For the recursive computation, these coefficients are kept in
the forecasting model M , associated to the trend cluster. When a trend cluster is
computed by means of a merge operation, the coefficients of the original models are
combined in a merged model by a weighted average. The weights are proportional
to the size of original clusters.

4.5 Empirical Evaluation

SWIT is written in Java. It is evaluated on an Intel(R) Core(TM) 2 DUO CPU
P61100 @2.00GHz with 3.7 GB of RAM Memory, running Ubuntu Release 12.04
(precise) 32− bit , Kernel Linux 3.2.0–26-generic-pae.

4.5.1 Streams and Experimental Goals

Experiments are performed with the temperature stream of Intel Berkeley Lab and
the climatology stream of South American Climate (details in Sect. 2.4.1.1).

For both streams, we study:

1. the accuracy and efficiency of the incremental discovery of sliding window trend
clusters;

2. the stability of clustering throughout the sliding windows of the stream;
3. the forecasting ability of the sliding window trends.

4.5.2 Sliding Window Trend Cluster Discovery

SWIT is compared to the baseline system, denoted W-by-W, which discovers trend
clusters by processing all the data of each sliding window. W-by-W performs trend
cluster discovery by integrating Algorithms 2.1, 2.2 (see their description in Chap. 2)
in a sliding window framework. Purity of trend clusters is evaluated by resorting to
the same similarity schema of SWIT (see Definition 4.2).

The comparison is based on the analysis of the computation time, summarization
error, and clustering error. The computation time (in millisecs) measures the time
spent to complete the discovery of trend clusters when a new snapshot is acquired in
the stream.

http://dx.doi.org/10.1007/978-1-4471-5454-s9_2
http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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Fig. 4.3 SWIT: average stability error (in percentage) is plotted per sliding window. a IBL (w = 128
and δ = 2.5oC), b SAC (w = 24 and δ = 5oC )

The summarization error is the root mean square error computed when the data
of a sensor are summarized by the trend cluster.

The clustering error measures the percentage of sensors which are grouped in
an unexpected cluster. The expected clusters are the trend clusters discovered by
W-by-W. For each trend cluster T discovered by SWIT, we determine the baseline
trend cluster B discovered by W-by-W, which groups the majority of its sensors.
Sensors of T .C ∩ B.C are correctly classified; sensors of T .C − B.C are
misclassified. The clustering error is the percentage of misclassified sensors.

Both SWIT and W-by-W are run by varying the window size w and the domain
similarity threshold δ. Results are collected in Table 4.1. The analysis of results leads
to several considerations.

The incremental learning strategy speeds-up the discovery process. The reduction
of the amount of data to be processed (a single snapshot rather than the window)
saves computation time as a consequence. The computation time of SWIT is always
much lower than the computation time of W-by-W, independently of w and δ.

The accuracy of the trend clusters is not decreased when they are discovered by
SWIT. In IBL, the summarization errors of both systems are comparable. In SAC,
the summarization error of SWIT is even lower than the summarization error of
W-by-W.

The clustering error is, in general, low (with peaks of 8 % in IBL and 26 % in
SAC). This means that the incremental startegy provides a good approxiamtion of
the expected clusters. The error tends to decrease when enlarging w.

4.5.3 Clustering Stability

The cluster stability error is studied for trend clusters maintained by SWIT. We
consider trend clusters discovered with w = 128 and δ = 2.5oC for IBL, w = 24
and δ = 4oC for SAC. The average stability error (in percentage) is plotted in
Fig. 4.3a for IBL and Fig. 4.3b for SAC. A peak of high stability error reveals a time
point, where the clustering of sensors changes with the time. The analysis of cluster
stability provides interesting insights into the nature of these data.
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Table 4.1 SWIT versus W-by-W (Intel Berkeley Lab and South American Air Climate): statistics
computed per sliding window are averaged on the number of sliding windows

w δ SWIT W-by-W clustering error%
time (ms) rmse #trend clusters time (ms) rmse #trend clusters

Intel Berkeley Lab
32 1.25 2.06 0.46 9.14 15.99 0.46 9.00 8.09
32 2.5 2.38 0.75 3.53 24.31 0.74 3.57 9.67
32 5 1.76 0.82 1.70 27.72 0.82 1.44 0.02
64 1.25 4.74 0.43 11.23 29.47 0.43 10.20 6.30
64 2.5 4.01 0.73 4.68 49.07 0.73 4.41 8.24
64 5 2.32 0.81 2.04 61.49 0.81 1.62 0.02
128 1.25 17.14 0.39 12.47 65.56 0.40 12.54 5.49
128 2.5 11.48 0.70 7.22 104.89 0.70 5.46 4.46
128 5 3.59 0.80 2.39 134.37 0.79 2.05 0.02
South American Air Climate
6 2 6069.00 0.76 188.64 18876.46 0.81 106.74 23.83
6 4 9595.95 1.43 56.08 44017.49 1.53 36.31 16.00
6 8 20689.79 3.06 14.15 90789.98 3.30 11.62 4.88
12 2 5730.96 0.72 232.00 25279.87 0.77 133.39 26.93
12 4 9024.30 1.34 70.64 60952.52 1.45 46.72 17.50
12 8 16766.44 2.87 17.89 137296.9 3.09 14.65 5.93
24 2 5666.98 0.69 279.00 36863.70 0.74 155.93 26.99
24 4 8456.80 1.35 96.60 95688.27 1.38 49.97 19.91
24 8 14791.74 2.82 21.19 234658.70 2.94 16.31 6.98

The outdoor temperature values, which are collected in SAC, form a (near) stable
stream. The low stability error denotes a slight modification of clustering, which
affects 3 % of sensors on average.

The indoor temperature values, which are collected in IBL, form a stream which is
characterized by long periods of stable clusters (where the stability error is 0), which
are interrupted by some pervasive change in the cluster configuration. In these cases,
the cluster stability error grows up to 30 %. This is consistent with the description of
these data; they are noised data, subject to sudden changes.

4.5.4 Trend Forecasting Ability

The forecasting error is studied for the forecasting models maintained on sliding win-
dows trends. We consider both Brown’s model, Holt’s model and Winters’ model
whose coefficients are incremented over the maintained trends. The forecasting
model of a trend cluster is used to produce forecasts of the next snapshot for sensors
grouped in the cluster. The forecasting error is plotted per snapshot in Fig. 4.4 for
IBL and Fig. 4.5 for SAC. The higher the error, the greater the difference between
the real values and the produced forecasts.
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Fig. 4.4 Forecasting error (IBL): root mean square error plotted per snapshot. a Brown model, b
Holt model, c Winters model w = 32, d Winters model w = 64

Fig. 4.5 Forecasting error (SAC): root mean square error plotted per snapshot. a Brown model, b
Holt model, c Winters model w = 12
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Forecasting models have different performances. Brown’s model is the most accu-
rate for IBL, where no periodicity is known for data. Winters’ model is the most
accurate for SAC, where the year-long periodicity of air temperature can be used to
appropriately set up the period ω.

In any case, the forecasting errors of the three models exhibit peaks, which are,
in general, in the same time periods. A high forecasting error indicates a time period
where the data drift from the behavior established by the forecasting model. For
IBL, the three models detect a drift between time t168 and time t175, as well as a drift
between time t492 and time t493. For SAC, a drift is observed in all three models at
the time t90.

4.6 Summary

In this chapter we have illustrated an incremental strategy to maintain sliding window
trend clusters in a sensor network. A forecasting function can be fitted to each trend
time series to produce forecasts for sensors grouped in the associated cluster. The
proposed strategy reduces the amount of processed data by saving computation time.
The stability of clusters discovered throughout consecutive sliding windows can be
monitored to look for drifts of data. The forecasting error can be used to observe
drifts when data differ greatly from the forecasts produced.
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Chapter 5
Sensor Data Analysis Applications

Abstract A PhotoVoltaic (PV) plant is a power station which converts sunlight
energy into electric energy. In the last decade, PV plants have become ubiquitous in
several countries of the European Union, due to a valuable policy of economic incen-
tives (e.g., feed-in tariffs). Today, this ubiquity of PV plants has paved the way to the
marketing of new smart systems, designed to monitor the energy production of a PV
plant grid and supply intelligent services for customer and production applications.
In this chapter, we start moving in this direction by fulfilling the urgent request of PV
customers and PV companies to enjoy knowledge-based managing and monitoring
services, integrated within a PV plant network. In particular, we illustrate a business
intelligence solution developed to monitor the efficiency of the energy production of
PV plants and a data mining solution for the fault diagnosis in PV plants.

5.1 Monitoring Efficiency of PV Plants: A Business
Intelligence Solution

Monitoring performances of solar PV plants has become extremely important due to
the high cost of maintenance operations, the reduction of incomes due to unexpected
faults and the degradation of non-monitored performances. It becomes essential
to ensure high performance, low downtime, and automatic fault detection. In this
Section, we present a remote distributed system, called Sun Inspector, which permits
the monitoring of the efficiency of the energy production of PV plants. Sun Inspector,
developed according to the “Software as Service” (SaaS) paradigm, offers a well
designed monitoring and analytical system, which assists installers and owners in
reducing the cost of efficiency monitoring and plant maintenance.

Sun Inspector includes services for data collection, summarization (based on
trend cluster discovery), synthetic data generation, supervisory monitoring, model
learning, and visualization. On-site weather data, as well as energy production data,
which are measured by panel strings, inverters, and transformers, are continuously

A. Appice et al., Data Mining Techniques in Sensor Networks, 89
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-5454-9_5,
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Fig. 5.1 Sun Inspector web interface

collected by Sun Inspector. Raw data, initially stored in a relational database, are
summarized using the trend cluster discovery and saved in a data warehouse for any
future queries and analysis. To simulate PV plan productions, synthetic data can
be produced and plotted on charts. Finally, end users can query and display both
energy production data and trend clusters, in order to monitor performances and
view anomalies.

All these services can be used through a web interface. Figure 5.1 shows the main
page of Sun Inspector. Using the navigation bar, it is possible to access all the services.
A demo of Sun Inspector is available at http://www.kdde.uniba.it/suninspector, while
the source code is available at the project code repository.1

5.1.1 Sun Inspector Architecture

The architecture of the proposed system consists of several components, each of
which is in charge of performing specific tasks as shown in Fig. 5.2. A brief descrip-
tion of each component is given below.

1 http://bitbucket.org/kddeuniba/suninspector

http://www.kdde.uniba.it/suninspector
http://bitbucket.org/kddeuniba/suninspector
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Fig. 5.2 Sun Inspector system architecture

5.1.1.1 General Services

This component allows PV companies and PV owners, to register a PV plant to obtain
information about a PV plant, to display energy production data, and to access the
Business Intelligence services. Figure 5.3 displays an example of energy production
report generated by Sun Inspector. By selecting a PV plant from the bottom table
and a date under analysis, Sun Inspector generates an energy production bar chart.
Using these reports end users can monitor PV plant performances and check for daily
production anomalies.

The General Services Component is in charge of administering the database and
providing authorized access to the saved data. It enables the execution of all the
services scheduled by the Sun Inspector administrators through the web interface.
Figure 5.4 displays the web page to save a new PV plant in Sun Inspector.
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Fig. 5.3 Sun Inspector web interface: the web page to view PV plant energy production reports

5.1.1.2 Data Collector

The data collector component allows Sun Inspector to obtain data from PV plants,
which are registered in Sun Inspector. All the production data are offered via a REST
Web Service [1], which accepts the data formatted as tab-separated values.

In order to use the data collection service, data loggers or micro-controllers
measure and acquire the signals from the PV plants and transmit them to Sun
Inspector through the web. Each transmission contains the identifier of the PV
plant stored in Sun Inspector, the timestamp, and the measures of the energy
production and additional parameters. After receiving these data, Sun Inspec-
tor stores them in the database. Figure 5.5 displays an example of energy pro-
duction data saved by the data collector component and visualized through Sun
Inspector.
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Fig. 5.4 Sun Inspector web interface: the web page to register a new PV plant

5.1.1.3 Trend Cluster-Based Summarization

This component wraps the system SUMATRA, described in Sect. 2.3. Contrary to
the original system, where the data windows are consumed from a buffer, the Trend
Cluster component loads the windows to be processed from the database. This is
done, in order to allow PV customers to check the latest raw productions of their
PV plants. The summarization process is implemented as a time-scheduled service.
Given the neighborhood distance and the domain similarity threshold parameters,
SUMATRA discovers trend clusters by the three-stepped process that:

1. loads the data window from the database;
2. computes the trend clusters of the data window;
3. stores discovered trend clusters in the database.

http://dx.doi.org/10.1007/978-1-4471-5454-9_2
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Fig. 5.5 Sun Inspector web interface: example of energy production data

The summarization process can be started via Sun Inspector. Figure 5.6 shows the
web page to start the trend cluster discovery process. The input parameters include:

1. Network: the type of measures to be processed by SUMATRA (e.g., energy
production, temperature,…).

2. Starting Time: the time to start loading data windows from the database.
3. Interval snapshot in minutes: elapsed time (in minutes) between consecutive

snapshots, which compose the windows.
4. Window size: the number of snapshots in a window.
5. Minimum threshold: the domain similarity threshold used to consider PV plant

productions as similar.
6. Max distance: the neighborhood distance between PV plants to be considered

neighbors.
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Fig. 5.6 Sun Inspector web interface: the web page to start SUMATRA

By pressing the button “schedule”, SUMATRA starts to discover trend clusters
window-by-window. The computed trend clusters are indexed and made available to
end users though the graphical web interface. Users can visualize trend clusters and
check trend productions (See Fig. 5.7).

5.1.1.4 Data Generator

The Data Generator component is a web service, which allows users to simulate
the energy production of a PV plant. It is implemented by wrapping an extension
of the web application Photovoltaic Geographical Information System-Interactive
Maps (PVGIS-IM) implemented by the European Commission. PVGIS-IM2 is a
radiation database, which can be used to estimate the solar electricity produced by
a PV plant over the year as well as the monthly/daily solar radiation energy, which
hits one square meter in a horizontal plane in one day. It can be queried by filling
in a form with several parameters related to the geographic position, the inclina-
tion and the orientation of the PV plant. The Data Generator component wraps

2 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
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Fig. 5.7 Sun Inspector web interface: the web page to view trend clusters discovered by SUMATRA

the PVGIS-IM by offering a Rest Web Service interface, which can be queried by
automatic services. Moreover, it offers a new service that, given the characteris-
tics of a PV plant as input, simulates its day-by-day energy productions. Figure 5.8
shows the Sun Inspector web page to use the Data Generator. To simulate the
PV plant energy productions, the Data Generator combines the solar irradiation
queried from PVGIS-IM with the characteristics of the PV plant. The source code
of the data generator is available at the following url http://bitbucket.org/kddeuniba/
datagenerator.

http://bitbucket.org/kddeuniba/datagenerator
http://bitbucket.org/kddeuniba/datagenerator
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Fig. 5.8 Sun Inspector web interface: the web page to use the data generator component

5.2 Fault Diagnosis in PV Plants: A Data Mining Solution

We describe a fault diagnosis service [2], which makes a network of PV plants smart,
by automatically alerting the presence of faulty plants and promptly arranging repair
activities.

The scenario that we consider is a network of PV plants, which periodically trans-
mit measurements of the plant energy production to a central server. By considering
that the production of electrical energy depends on how much light strikes the station,
we have designed a smart monitoring service, which takes into account that the light
amount may change with both space (i.e., latitude and longitude of a plant) and time
(i.e., the season of the year).

This idea moves away from the plethora of monitoring systems [3–6] already
developed by the PV community. In any case, existing systems neither cope with the
spatial arrangement of PV plants nor process the produced stream of data along the
temporal dimension. On the contrary, we have decided to capitalize on the knowledge
which can be extracted by considering the spatiotemporal distribution of the energy
production measure. In particular, we have designed a smart fault diagnosis service,
which permits the identification of the plant productions which are continuously
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suspicious in time and to label them as symptoms of PV faults. Once again in
this book we have used trend clusters to model the spatiotemporal dynamics of
data.

The presented fault diagnosis service [7] is decomposed into two sub-services, that
is, (1) learning a yearlong model, which describes the expected energy production
within the boundary of a fixed region along the time of 1 year; and (2) using this
model to determine, in real time, the fault risk of a plant installed anywhere inside
the boundary of the region under examination.

5.2.1 Model Learning

The energy production model is learned by processing a training set, which collects
the periodic measurements of energy production, which are transmitted over the time
of 1 year by a training set of PV plants installed in the region under observation. The
trend clusters, which are discovered with the sliding window model (Sect. 4.2), define
the energy production model of the region.

The learning problem is formally defined as follows.
Given:

1. A network K of training PV plants distributed in the region of analysis.
2. A training yearlong time horizon T , which is discretized in n p-spaced time

points.
3. A series of training data snapshots, which collect the energy productions measured

from K at the discrete time points of T .

The goal is to learn the yearlong energy production model E (K , T ) as a series of
n timestamped models of the energy production, one for each time point in T ,

E (K , T ) = E (K , t1),E (K , t2), . . . ,E (K , tn). (5.1)

Each model E (K , t1) (with i = 1, 2, . . . , n) synthesizes the expected energy
production of K at the specific time point ti ∈ T .

In this study, we have decided to maintain an insight into the historical behavior
of each PV plant and take advantage of this insight in the fault risk evaluation.
Therefore, the trend clusters, discovered in the training set with a sliding window
model (Sect. 4.2), are used to represent the energy production model. This means
that, for each time point ti , Ei (K ) is the set of trend clusters of the training set,
which are labeled with the time horizon ti−w+1 → ti . To be able to compute this
model for every time point of T , we consider T as a circular list, so that tk is
treated as the predecessor of t1 (and vice-versa, t1 is treated as the successor of tk).
The size w of the sliding window model represents the size of the memory of the
model.

http://dx.doi.org/10.1007/978-1-4471-5454-9_4
http://dx.doi.org/10.1007/978-1-4471-5454-9_4
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5.2.2 Fault Detection

The yearlong energy production model E (K , T ) is used to monitor the efficiency
of every plant, which is installed in the region surrounding the training network K .
At each time point, the set of trend clusters, associated to the corresponding sliding
window, is selected from the energy production model. Then the areal unit (spatial
cluster), which contains the monitored plant, is identified and the trend polyline time
series associated to this cluster is compared with the time series of the real variation of
energy productions observed for the plant over the recent window. The dissimilarity
between these two time series is computed to estimate the degree of fault risk.

The fault risk detection task is formally formulated as follows.
Given:

1. A yearlong energy production model E (K , T ).
2. A PV plant k that continuously transmits periodic measures of the energy pro-

duction at p-spaced consecutive time points.
3. A certain time point ti .

The goal is to measure the fault risk degree fR(k, ti ) of the plant k at the specific
time point ti and raise an alarm when the computed degree goes over a user defined
threshold.

The fault risk degree is estimated by computing the dissimilarity between the
observed series k Z of energy production measurements, produced by the plant k,
and the expected measurements eZ of the same plant for the window with time
horizon between ti−w+1 and ti . Our motivation for evaluating the observed/expected
values over a window, rather than at a single time point, is that we intend to detect
the plant whose energy production is persistently anomalous along a time hori-
zon. In this way, we can filter out noise, which may affect data, and reduce false
alarms.

To illustrate how fR(·, ·) is computed, we first specify how the observed series and
expected series are obtained and then we explain how dissimilarity between these
data is computed and used to estimate the fault risk degree.

Observed data

The observed data for the plant k at the time ti are the series of the most recent
income w measures of energy production produced from k. Formally, let Z be the
energy production variable, so we have that:

k Z(k, ti ) = z(k, ti−w+1), z(k, ti−w+2), . . . , z(k, ti−1), z(k, ti ). (5.2)

For each monitored plant k, when a new data snapshot is produced in the monitored
network, the oldest energy production measure is discarded from k Z(k, ti ) (sliding
data), while the new measure is added to k Z(k, ti ).
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Expected Data

Let t̂i be the time point of T which is closest to ti (regardless of the year). Then
E (K , t̂i ) is the expected model of the energy production of k at the time ti . This
model is recovered from E (K , t̂i ) by identifying the cluster C , which hosts the
majority of training neighbors of k and returning the w-sized trend polyline time
series Z , which is associated to C . Let (t̂i−w+1 →, t̂i ,C ,Z ) be the selected trend
cluster, so we have that:

eZ(k, ti ) = Z [t̂i−w+1],Z [t̂i−w+2], . . . Z [t̂i−1],Z [t̂i ]. (5.3)

Fault Risk Degree Computation

The fault risk degree fd(·, ·) is computed as follows:

fd(k, ti ) = d(k Z(k, ti ), eZ(k, ti )) = (5.4)

=

i∑

j=i−w+1

diss(z(k, t j )−Z [t̂ j ])

w
; (5.5)

where diss(·, ·) is computed as follows:

diss(v1, v2) =
{

1 iff ‖v1− v2‖ ≥ δ
0 otherwise

, (5.6)

and δ is the trend similarity threshold according to which trend clusters are computed.
Here fd(k, ti ) can range between zero (i.e., the observed value is persistently

similar to the expected one over the time horizon of the entire window) and one (i.e.,
the observed value is dissimilar from the expected one in one or more time points of
the window). The higher fd(k, ti ), the higher the fault risk.

5.2.3 A case Study

We present an application, where we monitor PV plants distributed in the South of
Italy, which weekly (p=1 week) produce measurements of total energy productions
(in kw/h). A description of these data is reported in Sect. 2.5.5.

We consider 52 training PV plants in the South of Italy, distributed as shown
in Fig. 5.9a. Each training plant is 0.5 degrees in latitude and 0.5 degrees in lon-
gitude apart the others (see the white pushpins in Fig. 5.9a. A yearlong production
model is learned with sliding window size w = 8 and domain similarity threshold

http://dx.doi.org/10.1007/978-1-4471-5454-9_2


5.2 Fault Diagnosis in PV Plants: A Data Mining Solution 101

Fig. 5.9 a Training PV plants (white pushpins) and testing PV plants (blue pushpins). b Number
of plants weekly classified into a low risk zone (blue), medium risk zone (yellow), and high risk
zone (red). The trend cluster partition of the South of Italy territory c and the fault-based coloring
d of the testing PV plants as it appeared at the 26th week of the testing monitoring activity

δ = 1.5 kW h. This model is learned off-line from yearlong training data. The model
is then used to monitor on-line 10 testing PV plants, which are installed randomly
in the South of Italy (see the blue pushpins in Fig. 5.9a. The energy production mea-
sures of the testing PV plants are generated with PVGIS (http://re.jrc.ec.europa.eu/
pvgis/), but testing data are perturbed with randomly added noise.

The fault risk degree, computed week-by-week, is visualized on the map. Plants
are colored on the basis of the fault risk degree, so that the plant visualization is
updated accordingly. For this study, we have assigned a color to three zones of risk,
that is, low fault risk zone (blue), where the risk degree is less than 0.25, medium
fault risk zone (yellow), where the risk degree is between 0.25 and 0.5 and high fault
risk zone (red), where the risk degree is greater than 0.50.

The number of testing plants predicted in each risk zone is plotted in Fig. 5.9b. An
example insight into the fault risk computed in the 26th week of the monitored year
is reported in Figs. 5.9c, d. In particular, Fig. 5.9c shows the South Italy partitioning
on the basis of trend clusters, while Fig. 5.9d plots the fault risk computed for each
testing plant. Plants are colored on the basis of the computed fault risk and alarms
are raised in correspondence to the high risk faults. Alarms are always raised in
correspondence to perturbed measurements, which exhibit the typical characteristics
of a fault scenario.

http://re.jrc.ec.europa.eu/pvgis/
http://re.jrc.ec.europa.eu/pvgis/
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5.3 Summary

In this chapter, we have illustrated two applications of sensor data analysis in the
specific context of smart networks of PhotoVoltaic plants. The former is a business
intelligence solution to monitor the efficiency of PV plants. The latter is a fault
diagnosis service which resorts to trend cluster discovery to monitor the energy
production of a network of PV plants and raise an alarm in the presence of faults.
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b Influence boundary of the interpolation sphere
C Cluster
DFT Discrete Fourier Transform.
DHW Discrete Haar Wavelet
H (space(T )) Space hierarchy
H (T ) Time hierarchy
IDW Inverse Distance Weighting
K Geosensor network
lower case u, v Sensor sources
PVP PhotoVoltaic Plant
Q Geodata cube
rmse Root mean square error
se Stability error
si ze% Compression size
T Time line
w Window size
zt () Field function
z(T, K ) Geodata stream
Z Geo-physical field (variable)
Z Trend polyline
| · | Cardinality of a set
δ Domain similarity threshold
ε Compression error threshold
γ (h) Sample variogram
η Variogram nugget
ι(t) Forecasting model intercept
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ν(t) Forecasting model seasonality
ρ Variogram range
σ Compression degree threshold
ς2 Variogram sill
τ(t) Forecasting model intercept
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