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PREFACE

WHAT IS DATA MINING?

Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner.

—David Hand, Heikki Mannila, and Padhraic Smyth, Principles of Data Mining,
MIT Press, Cambridge, MA, 2001

Data mining is predicted to be “one of the most revolutionary developments of the
next decade,” according to the online technology magazine ZDNET News (February
8,2001). In fact, the MIT Technology Review chose data mining as one of 10 emerging
technologies that will change the world.

Because data mining represents such an important field, Wiley-Interscience
and I have teamed up to publish a new series on data mining, initially consisting of
three volumes. The first volume in this series, Discovering Knowledge in Data: An
Introduction to Data Mining, appeared in 2005 and introduced the reader to this rapidly
growing field. The second volume in the series, Data Mining Methods and Models,
explores the process of data mining from the point of view of model building: the
development of complex and powerful predictive models that can deliver actionable
results for a wide range of business and research problems.

WHY IS THIS BOOK NEEDED?

Data Mining Methods and Models continues the thrust of Discovering Knowledge in
Data, providing the reader with:

e Models and techniques to uncover hidden nuggets of information
¢ Insight into how the data mining algorithms really work

¢ Experience of actually performing data mining on large data sets

“WHITE-BOX” APPROACH: UNDERSTANDING
THE UNDERLYING ALGORITHMIC AND MODEL
STRUCTURES

The best way to avoid costly errors stemming from a blind black-box approach to
data mining is to instead apply a “white-box” methodology, which emphasizes an

xi



Xii  PREFACE

understanding of the algorithmic and statistical model structures underlying the soft-
ware.
Data Mining Methods and Models applies the white-box approach by:

e Walking the reader through the various algorithms

e Providing examples of the operation of the algorithm on actual large data
sets

e Testing the reader’s level of understanding of the concepts and algorithms

¢ Providing an opportunity for the reader to do some real data mining on large
data sets

Algorithm Walk-Throughs

Data Mining Methods and Models walks the reader through the operations and nu-
ances of the various algorithms, using small sample data sets, so that the reader gets
a true appreciation of what is really going on inside the algorithm. For example, in
Chapter 2 we observe how a single new data value can seriously alter the model
results. Also, in Chapter 6 we proceed step by step to find the optimal solution using
the selection, crossover, and mutation operators.

Applications of the Algorithms and Models to Large Data Sets

Data Mining Methods and Models provides examples of the application of the var-
ious algorithms and models on actual large data sets. For example, in Chapter 3 we
analytically unlock the relationship between nutrition rating and cereal content using
a real-world data set. In Chapter 1 we apply principal components analysis to real-
world census data about California. All data sets are available from the book series
Web site: www.dataminingconsultant.com.

Chapter Exercises: Checking to Make Sure That
You Understand It

Data Mining Methods and Models includes over 110 chapter exercises, which allow
readers to assess their depth of understanding of the material, as well as having a little
fun playing with numbers and data. These include Clarifying the Concept exercises,
which help to clarify some of the more challenging concepts in data mining, and
Working with the Data exercises, which challenge the reader to apply the particular
data mining algorithm to a small data set and, step by step, to arrive at a computation-
ally sound solution. For example, in Chapter 5 readers are asked to find the maximum
a posteriori classification for the data set and network provided in the chapter.

Hands-on Analysis: Learn Data Mining by Doing Data Mining

Chapters 1 to 6 provide the reader with hands-on analysis problems, representing an
opportunity for the reader to apply his or her newly acquired data mining expertise to
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solving real problems using large data sets. Many people learn by doing. Data Mining
Methods and Models provides a framework by which the reader can learn data mining
by doing data mining. For example, in Chapter 4 readers are challenged to approach
a real-world credit approval classification data set, and construct their best possible
logistic regression model using the methods learned in this chapter to provide strong
interpretive support for the model, including explanations of derived and indicator
variables.

Case Study: Bringing It All Together

Data Mining Methods and Models culminates in a detailed case study, Modeling
Response to Direct Mail Marketing. Here the reader has the opportunity to see how
everything that he or she has learned is brought all together to create actionable and
profitable solutions. The case study includes over 50 pages of graphical, exploratory
data analysis, predictive modeling, and customer profiling, and offers different so-
lutions, depending on the requisites of the client. The models are evaluated using a
custom-built cost/benefit table, reflecting the true costs of classification errors rather
than the usual methods, such as overall error rate. Thus, the analyst can compare
models using the estimated profit per customer contacted, and can predict how much
money the models will earn based on the number of customers contacted.

DATA MINING AS A PROCESS

Data Mining Methods and Models continues the coverage of data mining as a process.
The particular standard process used is the CRISP—-DM framework: the Cross-Industry
Standard Process for Data Mining. CRISP-DM demands that data mining be seen
as an entire process, from communication of the business problem, through data col-
lection and management, data preprocessing, model building, model evaluation, and
finally, model deployment. Therefore, this book is not only for analysts and managers
but also for data management professionals, database analysts, and decision makers.

SOFTWARE

The software used in this book includes the following:

¢ Clementine data mining software suite
e SPSS statistical software
e Minitab statistical software
e WEKA open-source data mining software
Clementine (http://www.spss.com/clementine/), one of the most

widely used data mining software suites, is distributed by SPSS, whose base software
is also used in this book. SPSS is available for download on a trial basis from their
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Web site at www . spss.com. Minitab is an easy-to-use statistical software package,
available for download on a trial basis from their Web site at www.minitab.com.

WEKA: Open-Source Alternative

The WEKA (Waikato Environment for Knowledge Analysis) machine learning work-
bench is open-source software issued under the GNU General Public License, which
includes a collection of tools for completing many data mining tasks. Data Min-
ing Methods and Models presents several hands-on, step-by-step tutorial exam-
ples using WEKA 3.4, along with input files available from the book’s compan-
ion Web site www.dataminingconsultant.com. The reader is shown how to
carry out the following types of analysis, using WEKA: logistic regression (Chapter
4), naive Bayes classification (Chapter 5), Bayesian networks classification (Chap-
ter 5), and genetic algorithms (Chapter 6). For more information regarding Weka,
see http://www.cs.waikato.ac.nz/~ml/. The author is deeply grateful to
James Steck for providing these WEKA examples and exercises. James Steck
(james_steck@comcast.net) served as graduate assistant to the author during
the 2004-2005 academic year. He was one of the first students to complete the master
of science in data mining from Central Connecticut State University in 2005 (GPA
4.0) and received the first data mining Graduate Academic Award. James lives with
his wife and son in Issaquah, Washington.

COMPANION WEB SITE:

www .dataminingconsultant.com

The reader will find supporting materials for this book and for my other
data mining books written for Wiley-Interscience, at the companion Web site,
www .dataminingconsultant.com. There one may download the many data sets
used in the book, so that the reader may develop a hands-on feeling for the analytic
methods and models encountered throughout the book. Errata are also available, as
is a comprehensive set of data mining resources, including links to data sets, data
mining groups, and research papers.

However, the real power of the companion Web site is available to faculty
adopters of the textbook, who have access to the following resources:

* Solutions to all the exercises, including the hands-on analyses

e Powerpoint presentations of each chapter, ready for deployment in the class-
room

e Sample data mining course projects, written by the author for use in his own
courses and ready to be adapted for your course

» Real-world data sets, to be used with the course projects
e Multiple-choice chapter quizzes

e Chapter-by-chapter Web resources
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DATA MINING METHODS AND MODELS AS A
TEXTBOOK

Data Mining Methods and Models naturally fits the role of textbook for an introductory
course in data mining. Instructors will appreciate the following:

¢ The presentation of data mining as a process

e The white-box approach, emphasizing an understanding of the underlying al-
gorithmic structures:

Algorithm walk-throughs

Application of the algorithms to large data sets
Chapter exercises

Hands-on analysis

¢ The logical presentation, flowing naturally from the CRISP-DM standard pro-
cess and the set of data mining tasks

e The detailed case study, bringing together many of the lessons learned from
both Data Mining Methods and Models and Discovering Knowledge in
Data

e The companion Web site, providing the array of resources for adopters detailed
above

Data Mining Methods and Models is appropriate for advanced undergraduate-
or graduate-level courses. Some calculus is assumed in a few of the chapters, but the
gist of the development can be understood without it. An introductory statistics course
would be nice but is not required. No computer programming or database expertise
is required.
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CHAPTER 1

DIMENSION REDUCTION
METHODS

NEED FOR DIMENSION REDUCTION IN DATA MINING
PRINCIPAL COMPONENTS ANALYSIS

FACTOR ANALYSIS

USER-DEFINED COMPOSITES

NEED FOR DIMENSION REDUCTION IN DATA MINING

The databases typically used in data mining may have millions of records and thou-
sands of variables. It is unlikely that all of the variables are independent, with no
correlation structure among them. As mentioned in Discovering Knowledge in Data:
An Introduction to Data Mining [1], data analysts need to guard against multicollinear-
ity, a condition where some of the predictor variables are correlated with each other.
Multicollinearity leads to instability in the solution space, leading to possible inco-
herent results, such as in multiple regression, where a multicollinear set of predictors
can result in a regression that is significant overall, even when none of the individual
variables are significant. Even if such instability is avoided, inclusion of variables that
are highly correlated tends to overemphasize a particular component of the model,
since the component is essentially being double counted.

Bellman [2] noted that the sample size needed to fit a multivariate function grows
exponentially with the number of variables. In other words, higher-dimension spaces
are inherently sparse. For example, the empirical rule tells us that in one dimension,
about 68% of normally distributed variates lie between 1 and —1, whereas for a
10-dimensional multivariate normal distribution, only 0.02% of the data lie within
the analogous hypersphere.

The use of too many predictor variables to model a relationship with a response
variable can unnecessarily complicate the interpretation of the analysis and violates
the principle of parsimony: that one should consider keeping the number of predictors

Data Mining Methods and Models By Daniel T. Larose
Copyright © 2006 John Wiley & Sons, Inc.



2 CHAPTER 1 DIMENSION REDUCTION METHODS

to a size that could easily be interpreted. Also, retaining too many variables may lead
to overfitting, in which the generality of the findings is hindered because the new data
do not behave the same as the training data for all the variables.

Further, analysis solely at the variable level might miss the fundamental un-
derlying relationships among predictors. For example, several predictors might fall
naturally into a single group (a factor or a component) that addresses a single aspect
of the data. For example, the variables savings account balance, checking account-
balance, home equity, stock portfolio value, and 401K balance might all fall together
under the single component, assets.

In some applications, such as image analysis, retaining full dimensionality
would make most problems intractable. For example, a face classification system
based on 256 x 256 pixel images could potentially require vectors of dimension
65,536. Humans are endowed innately with visual pattern recognition abilities, which
enable us in an intuitive manner to discern patterns in graphic images at a glance,
patterns that might elude us if presented algebraically or textually. However, even the
most advanced data visualization techniques do not go much beyond five dimensions.
How, then, can we hope to visualize the relationship among the hundreds of variables
in our massive data sets?

Dimension reduction methods have the goal of using the correlation structure
among the predictor variables to accomplish the following:

¢ To reduce the number of predictor components

¢ To help ensure that these components are independent

¢ To provide a framework for interpretability of the results
In this chapter we examine the following dimension reduction methods:

* Principal components analysis
¢ Factor analysis
¢ User-defined composites
This chapter calls upon knowledge of matrix algebra. For those of you whose
matrix algebra may be rusty, see the book series Web site for review resources. We

shall apply all of the following terminology and notation in terms of a concrete
example, using real-world data.

PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) seeks to explain the correlation structure of a
set of predictor variables using a smaller set of linear combinations of these variables.
These linear combinations are called components. The total variability of a data set
produced by the complete set of m variables can often be accounted for primarily
by a smaller set of k linear combinations of these variables, which would mean that
there is almost as much information in the k£ components as there is in the original m
variables. If desired, the analyst can then replace the original m variables with the k < m
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components, so that the working data set now consists of n records on kK components
rather than n records on m variables.

Suppose that the original variables X, X, ..., X,, form a coordinate system in
m-dimensional space. The principal components represent a new coordinate system,
found by rotating the original system along the directions of maximum variability.
When preparing to perform data reduction, the analyst should first standardize the
data so that the mean for each variable is zero and the standard deviation is 1. Let
each variable X; represent an n x 1 vector, where »n is the number of records. Then
represent the standardized variable as the n x 1 vector Z;, where Z; = (X; — ;)/0ii,
;i is the mean of X;, and o;; is the standard deviation of X;. In matrix notation,
this standardization is expressed as Z = (Vl/ 2)71(X — ), where the “~1” exponent
refers to the matrix inverse, and V!/? is a diagonal matrix (nonzero entries only on
the diagonal), the m x m standard deviation matrix:

o 0 0
yir 022 0
0 0 Opp

Let X refer to the symmetric covariance matrix:

2 2 2
on % ot Oy
2 2 2
O" o" e O"
= 12 22 2m
2 2 2
Oim Tom 0 Oy

where 05, i # j refers to the covariance between X; and X ;:

2 Dper G — i)y — 1))
o =
n

The covariance is a measure of the degree to which two variables vary together.
Positive covariance indicates that when one variable increases, the other tends to
increase. Negative covariance indicates that when one variable increases, the other
tends to decrease. The notation 05. is used to denote the variance of X;. If X; and X;
are independent, al% =0, but ol% = 0 does not imply that X; and X ; are independent.
Note that the covariance measure is not scaled, so that changing the units of measure
would change the value of the covariance.

The correlation coefficient r;; avoids this difficulty by scaling the covariance

by each of the standard deviations:
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Then the correlation matrix is denoted as p (rho, the Greek letter for r):

[ o} o o Ot ]
011011 011022 O110mm
ot o5 o T
p= 011022 022022 0220mm
012;11 0'22m . O'nzlm
- O0110mm 0220 mm OmmOmm

Consider again the standardized data matrix Z = (V'/ 2)_I(X — ). Then since each
variable has been standardized, we have E(Z) = 0, where 0 denotes an n x 1 vector
of zeros and Z has covariance matrix Cov(Z) = (Vl/z)_1 P (Vl/z)_1 = p. Thus, for
the standardized data set, the covariance matrix and the correlation matrix are the
same.

The ith principal component of the standardized data matrix Z =
(Zi, Zs, ..., Zy] is given by Y; = e,Z, where e; refers to the ith eigenvector (dis-
cussed below) and e, refers to the transpose of e;. The principal components are
linear combinations Y7, Y5>, ..., Y} of the standardized variables in Z such that (1) the
variances of the Y; are as large as possible, and (2) the Y; are uncorrelated.

The first principal component is the linear combination

Yi=eZ=enZi+enZo+--+enln

which has greater variability than any other possible linear combination of the Z
variables. Thus:

e The first principal component is the linear combination Y, = e} Z, which max-
imizes Var(Y,) = €| pe;.

* The second principal component is the linear combination Y, = e,Z, which is
independent of Y, and maximizes Var(Y,) = e, p e;.

e The ith principal component is the linear combination Y; = €;X, which is in-

dependent of all the other principal components Y;, j < i, and maximizes
Var(Y;) = elpe;.

We have the following definitions:

e FEigenvalues. Let B be an m x m matrix, and let I be the m x m identity ma-
trix (diagonal matrix with 1’s on the diagonal). Then the scalars (numbers of
dimension 1 x 1) Ay, Ay, ..., A, are said to be the eigenvalues of B if they
satisfy |B — AI| = 0.

e FEigenvectors. Let B be an m x m matrix, and let A be an eigenvalue of B. Then
nonzero m X 1 vector e is said to be an eigenvector of B if Be = Xe.

The following results are very important for our PCA analysis.

® Result 1. The total variability in the standardized data set equals the sum of
the variances for each Z-vector, which equals the sum of the variances for each
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component, which equals the sum of the eigenvalues, which equals the number
of variables. That is,

m

iVar(Y,-) = i:Var(Zi) = ZA,- =m
i=1 i=1 i=1

® Result 2. The partial correlation between a given component and a given variable
is a function of an eigenvector and an eigenvalue. Specifically, Corr(Y;, Z;) =
eij/Ai, i, j=1,2,...,m, where (A, €1), (A2, €),...,(Ay,€,) are the
eigenvalue—eigenvector pairs for the correlation matrix p, and we note that
A > Ay > -+ > Ay. A partial correlation coefficient is a correlation coeffi-
cient that takes into account the effect of all the other variables.

® Result 3. The proportion of the total variability in Z that is explained by the ith
principal component is the ratio of the ith eigenvalue to the number of variables,
that is, the ratio A; /m.

Next, to illustrate how to apply principal components analysis on real data, we
turn to an example.

Applying Principal Components Analysis
to the Houses Data Set

We turn to the houses data set [3], which provides census information from all the
block groups from the 1990 California census. For this data set, a block group has
an average of 1425.5 people living in an area that is geographically compact. Block
groups that contained zero entries for any of the variables were excluded. Median
house value is the response variable; the predictor variables are:

o Median income » Population
o Housing median age o Households
« Total rooms  Latitude

o Total bedrooms o Longitude

The original data set had 20,640 records, of which 18,540 were selected ran-
domly for a training data set, and 2100 held out for a test data set. A quick look at
the variables is provided in Figure 1.1. (“Range” is Clementine’s type label for con-
tinuous variables.) Median house value appears to be in dollars, but median income
has been scaled to a continuous scale from O to 15. Note that longitude is expressed
in negative terms, meaning west of Greenwich. Larger absolute values for longitude
indicate geographic locations farther west.

Relating this data set to our earlier notation, we have X| = median income,
X, = housing median age, ..., X3 = longitude, so that m = 8 and n = 18,540. A
glimpse of the first 20 records in the data set looks like Figure 1.2. So, for example, for
the first block group, the median house value is $452,600, the median income is 8.325
(on the census scale), the housing median age is 41, the total rooms is 880, the total
bedrooms is 129, the population is 322, the number of households is 126, the latitude
is 37.88 North and the longitude is 122.23 West. Clearly, this is a smallish block
group with very high median house value. A map search reveals that this block group
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Field [ SampleGraph | Type |  Min Max_ | Mean | Std Dev |

ﬁ Range 149499 500001, 206918.067 115485040

median_house_value

median_income & Range 0.500 15,000 3873 1,908

housing_median_age & Range 1 52 28.656 12582

total_rooms & Range 2 37937 2621653  2131.644

total_bedrooms j Range 1 G445 535.096 413.547

HTTTTRNY

population & Range 3 35682 1418871 1122534
households \¢” Range 1 6082 497.332 377378
latitude & Range 32540 41,950 35630 2137
longiude 49 Range -124.350 -114.310 -119.567 2.003

Figure 1.1  Houses data set (Clementine data audit node).

is centered between the University of California at Berkeley and Tilden Regional
Park.

Note from Figure 1.1 the great disparity in variability among the variables. Me-
dian income has a standard deviation less than 2, while total rooms has a standard devi-
ation over 2100. If we proceeded to apply principal components analysis without first
standardizing the variables, fotal rooms would dominate median income’s influence,

madian_house value | median_incoma | housing_median ags total mnms hadmnmsl population hnusshulds latitude | longituda
i 452600 0.325) 129 322 37.880| -122.230|
] 252500 8.301 21_ 7999. 1108| 2401 1133 37.860| -122.220
3 352100 7257 52| 1467 180 496 177 37.860| -122.240)
4 342200 3,846 52| 1627| 280 565 259 37.850| -122,250|
H 289200 3659 52| 2535 123 1094 514, 37840| -122.240)
(i 241400 3120 52 3104 687, 1157 647 37.840] -122.250|
7 226700 2.080 42| 2555/ 655 1206 595 37.840| 122,260
i 28 3.691 52 | 107 155%) AL
4 52 752 1504 T34 3 !
1] 181300 52 191 345 174 37.840| -122.260)
il 159200 52 2643 Bag 1212 (620 37.850) -122.250
12 140000 50/ 1120 283 BAT 264 37850 2,260
13 152500 52 1966 347 7493 331 37.850| -122.270|
14 155500 52| 1228 293 G40 303 37.850| -122.270
15 158700 s 773 455 g0 419 37840 -122.250
16 147500 40 751 184 408 166 _37.850] -122.270|
i 158200 1] 1634 387, 020 366 37.880] -122.270|
18 35700 51 1688 33T 853 325 37840
19 132600 52 2004 43T 1006 422 31.840, -
20 107500 a1 535| 123 N7 118 37.850] -122.280|

Figure 1.2  First 20 records in the houses data set.
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and similarly across the spectrum of variabilities. Therefore, standardization is called
for. The variables were standardized and the Z-vectors found, Z; = (X; — u;) /oii,
using the means and standard deviations from Figure 1.1.

Note that normality of the data is not strictly required to perform noninferential
PCA [4] but that departures from normality may diminish the correlations observed
[5]. Since we do not plan to perform inference based on our PCA, we will not worry
about normality at this time. In Chapters 2 and 3 we discuss methods for transforming
nonnormal data.

Next, we examine the matrix plot of the predictors in Figure 1.3 to explore
whether correlations exist. Diagonally from left to right, we have the standardized vari-
ables minc-z (median income), hage-z (housing median age), rooms-z (total rooms),
bedrms-z (total bedrooms), popn-z (population), hhlds-z (number of households),
lat-z (1atitude), and long-z (longitude). What does the matrix plot tell us about the
correlation among the variables? Rooms, bedrooms, population, and households all
appear to be positively correlated. Latitude and longitude appear to be negatively
correlated. (What does the plot of latitude versus longitude look like? Did you say the
state of California?) Which variable appears to be correlated the least with the other
predictors? Probably housing median age. Table 1.1 shows the correlation matrix p
for the predictors. Note that the matrix is symmetrical and that the diagonal elements
all equal 1. A matrix plot and the correlation matrix are two ways of looking at the

m"}lfi"ﬁ_"%i k E
HAGE_] k

hROOMs‘j&f' F , f"

s

. IPOPN_

o i "~ HHLDS|

%
1390

™
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Figure 1.3 Matrix plot of the predictor variables.
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TABLE 1.1 Correlation Matrix p

minc-z hage-z  rooms-z  bedrms-z  popn-z  hhlds-z lat-z long-z
minc-z 1.000 —0.117 0.199 —0.012 0.002 0.010 —0.083 —0.012
hage-z —0.117 1.000 —-0.360 —-0.318 —0.292 —0.300 0.011  —-0.107

rooms-z 0.199  —0.360 1.000 0.928 0.856 0919 —-0.035 0.041
bedrms-z  —0.012  —0.318 0.928 1.000 0.878 0.981 —0.064 0.064

popn-z 0.002 —0.292 0.856 0.878 1.000 0.907 —0.107 0.097
hhlds-z 0.010  —0.300 0.919 0.981 0.907 1.000  —0.069 0.051
lat-z —0.083 0.011  —0.035 —-0.064  —0.107 —0.069 1.000  —0.925
long-z —-0.012  —0.107 0.041 0.064 0.097 0.051  —0.925 1.000

same thing: the correlation structure among the predictor variables. Note that the cells
for the correlation matrix p line up one to one with the graphs in the matrix plot.

What would happen if we performed, say, a multiple regression analysis of me-
dian housing value on the predictors, despite the strong evidence for multicollinearity
in the data set? The regression results would become quite unstable, with (among
other things) tiny shifts in the predictors leading to large changes in the regression
coefficients. In short, we could not use the regression results for profiling. That is
where PCA comes in. Principal components analysis can sift through this correla-
tion structure and identify the components underlying the correlated variables. Then
the principal components can be used for further analysis downstream, such as in
regression analysis, classification, and so on.

Principal components analysis was carried out on the eight predictors in the
houses data set. The component matrix is shown in Table 1.2. Each of the columns
in Table 1.2 represents one of the components Y; = e;Z. The cell entries, called
the component weights, represent the partial correlation between the variable and
the component. Result 2 tells us that these component weights therefore equal
Corr(Y;, Z;) = e;;+/A:, aproduct involving the ith eigenvector and eigenvalue. Since
the component weights are correlations, they range between 1 and —1.

In general, the first principal component may be viewed as the single best
summary of the correlations among the predictors. Specifically, this particular linear

TABLE 1.2 Component Matrix?

Component
1 2 3 4 5 6 7 8
minc-z 0.086  —0.058 0.922 0370  —-0.02  —-0.018 0.037  —0.004
hage-z —0.429 0.025  —0.407 0.806 0.014 0.026 0.009  —0.001
rooms-z 0.956 0.100 0.102 0.104 0.120 0.162 —0.119 0.015
bedrms-z 0.970 0.083  —0.121 0.056 0.144  —0.068 0.051  —0.083
popn-z 0.933 0.034 —0.121 0.076  —0.327 0.034 0.006 —0.015
hhlds-z 0.972 0.086 —0.113 0.087 0.058 —0.112 0.061 0.083
lat-z —0.140 0.970 0.017  —0.088 0.017 0.132 0.113 0.005
long-z 0.144 —-0.969 —-0.062 —0.063 0.037 0.136 0.109 0.007

¢ Extraction method: principal component analysis; eight components extracted.
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TABLE 1.3 Eigenvalues and Proportion of Variance Explained by Component

Initial Eigenvalues

Component Total % of Variance Cumulative %
1 3.901 48.767 48.767
2 1.910 23.881 72.648
3 1.073 13.409 86.057
4 0.825 10.311 96.368
5 0.148 1.847 98.215
6 0.082 1.020 99.235
7 0.047 0.586 99.821
8 0.014 0.179 100.000

combination of the variables accounts for more variability than that of any other
conceivable linear combination. It has maximized the variance Var(Y;) = €| pe;. As
we suspected from the matrix plot and the correlation matrix, there is evidence that
total rooms, total bedrooms, population, and households vary together. Here, they all
have very high (and very similar) component weights, indicating that all four variables
are highly correlated with the first principal component.

Let’s examine Table 1.3, which shows the eigenvalues for each component
along with the percentage of the total variance explained by that component. Recall
that result 3 showed us that the proportion of the total variability in Z that is explained
by the ith principal component is X; /m, the ratio of the ith eigenvalue to the number
of variables. Here we see that the first eigenvalue is 3.901, and since there are eight
predictor variables, this first component explains 3.901/8 = 48.767% of the variance,
as shown in Table 1.3 (allowing for rounding). So a single component accounts for
nearly half of the variability in the set of eight predictor variables, meaning that this
single component by itself carries about half of the information in all eight predictors.
Notice also that the eigenvalues decrease in magnitude, A; > A, > -+ > A, A >
Ay > --- > Ag, as we noted in result 2.

The second principal component Y, is the second-best linear combination of the
variables, on the condition that it is orthogonal to the first principal component. Two
vectors are orthogonal if they are mathematically independent, have no correlation,
and are at right angles to each other. The second component is derived from the
variability that is left over once the first component has been accounted for. The third
component is the third-best linear combination of the variables, on the condition that
it is orthogonal to the first two components. The third component is derived from the
variance remaining after the first two components have been extracted. The remaining
components are defined similarly.

How Many Components Should We Extract?

Next, recall that one of the motivations for principal components analysis was to
reduce the number of distinct explanatory elements. The question arises: How do
we determine how many components to extract? For example, should we retain only
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the first principal component, since it explains nearly half the variability? Or should
we retain all eight components, since they explain 100% of the variability? Well,
clearly, retaining all eight components does not help us to reduce the number of
distinct explanatory elements. As usual, the answer lies somewhere between these two
extremes. Note from Table 1.3 that the eigenvalues for several of the components are
rather low, explaining less than 2% of the variability in the Z-variables. Perhaps these
would be the components we should consider not retaining in our analysis? The criteria
used for deciding how many components to extract are (1) the eigenvalue criterion,
(2) the proportion of variance explained criterion, (3) the minimum communality
criterion, and (4) the scree plot criterion.

Eigenvalue Criterion

Recall from result 1 that the sum of the eigenvalues represents the number of variables
entered into the PCA. An eigenvalue of 1 would then mean that the component would
explain about “one variable’s worth” of the variability. The rationale for using the
eigenvalue criterion is that each component should explain at least one variable’s worth
of the variability, and therefore the eigenvalue criterion states that only components
with eigenvalues greater than 1 should be retained. Note that if there are fewer than 20
variables, the eigenvalue criterion tends to recommend extracting too few components,
while if there are more than 50 variables, this criterion may recommend extracting too
many. From Table 1.3 we see that three components have eigenvalues greater than 1
and are therefore retained. Component 4 has an eigenvalue of 0.825, which is not too
far from 1, so that if other criteria support such a decision, we may decide to consider
retaining this component as well, especially in view of the tendency of this criterion
to recommend extracting too few components.

Proportion of Variance Explained Criterion

First, the analyst specifies how much of the total variability he or she would like the
principal components to account for. Then the analyst simply selects the components
one by one until the desired proportion of variability explained is attained. For exam-
ple, suppose that we would like our components to explain 85% of the variability in the
variables. Then, from Table 1.3, we would choose components 1 to 3, which together
explain 86.057% of the variability. On the other hand, if we wanted our components
to explain 90% or 95% of the variability, we would need to include component 4 with
components 1 to 3, which together would explain 96.368% of the variability. Again,
as with the eigenvalue criterion, how large a proportion is enough?

This question is akin to asking how large a value of r? (coefficient of determi-
nation) is enough in the realm of linear regression. The answer depends in part on
the field of study. Social scientists may be content for their components to explain
only 60% or so of the variability, since human response factors are so unpredictable,
whereas natural scientists might expect their components to explain 90 to 95% of the
variability, since their measurements are intrinsically less variable. Other factors also
affect how large a proportion is needed. For example, if the principal components are
being used for descriptive purposes only, such as customer profiling, the proportion
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of variability explained may be a shade lower than otherwise. On the other hand, if
the principal components are to be used as replacements for the original (standard-
ized) data set and used for further inference in models downstream, the proportion
of variability explained should be as much as can conveniently be achieved given the
constraints of the other criteria.

Minimum Communality Criterion

We postpone discussion of this criterion until we introduce the concept of communality
below.

Scree Plot Criterion

A scree plot is a graphical plot of the eigenvalues against the component number. Scree
plots are useful for finding an upper bound (maximum) for the number of components
that should be retained. See Figure 1.4 for the scree plot for this example. Most scree
plots look broadly similar in shape, starting high on the left, falling rather quickly, and
then flattening out at some point. This is because the first component usually explains
much of the variability, the next few components explain a moderate amount, and
the latter components explain only a small amount of the variability. The scree plot
criterion is this: The maximum number of components that should be extracted is
Jjust prior to where the plot first begins to straighten out into a horizontal line. For
example, in Figure 1.4, the plot straightens out horizontally starting at component 5.

o 37
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Eigenvalue Criterion
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Scree Plot Criterion
0 T T A4
1 2 3 4 5 6 7 8
Component Number

Figure 1.4 Scree plot. Stop extracting components before the line flattens out.
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The line is nearly horizontal because the components all explain approximately the
same amount of variance, which is not much. Therefore, the scree plot criterion would
indicate that the maximum number of components we should extract is four, since
the fourth component occurs just prior to where the line first begins to straighten out.

To summarize, the recommendations of our criteria are as follows:

e Eigenvalue criterion. Retain components 1 to 3, but don’t throw component 4
away yet.

e Proportion of variance explained criterion. Components 1 to 3 account for a
solid 86% of the variability, and adding component 4 gives us a superb 96% of
the variability.

e Scree plot criterion. Don’t extract more than four components.

So we will extract at least three but no more than four components. Which is it
to be, three or four? As in much of data analysis, there is no absolute answer in this
case to the question of how many components to extract. This is what makes data
mining an art as well as a science, and this is another reason why data mining requires
human direction. The data miner or data analyst must weigh all the factors involved
in a decision and apply his or her judgment, tempered by experience.

In a case like this, where there is no clear-cut best solution, why not try it both
ways and see what happens? Consider Table 1.4, which compares the component
matrixes when three and four components are extracted, respectively. Component
weights smaller than 0.15 are suppressed to ease component interpretation. Note
that the first three components are each exactly the same in both cases, and each is
the same as when we extracted all eight components, as shown in Table 1.2 (after
suppressing the small weights). This is because each component extracts its portion
of the variability sequentially, so that later component extractions do not affect the
earlier ones.

TABLE 1.4 Component Matrixes for Extracting Three and Four Components?

Component Component
1 2 3 1 2 3 4

minc-z 0.922 0.922 0.370
hage-z —0.429 —0.407 —0.429 —0.407 0.806
rooms-z 0.956 0.956

bedrms-z 0.970 0.970

popn-z 0.933 0.933

hhlds-z 0.972 0.972

lat-z 0.970 0.970

long-z —0.969 —0.969

@ Extraction method: principal components analysis.
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Profiling the Principal Components

The analyst is usually interested in profiling the principal components. Let us now
examine the salient characteristics of each principal component.

e Principal component 1, as we saw earlier, is composed largely of the “block
group size” variables fotal rooms, total bedrooms, population, and households,
which are all either large or small together. That is, large block groups have
a strong tendency to have large values for all four variables, whereas small
block groups tend to have small values for all four variables. Median housing
age is a smaller, lonely counterweight to these four variables, tending to be
low (recently built housing) for large block groups, and high (older, established
housing) for smaller block groups.

* Principal component 2 is a “geographical” component, composed solely of the
latitude and longitude variables, which are strongly negatively correlated, as
we can tell by the opposite signs of their component weights. This supports
our earlier EDA regarding these two variables in Figure 1.3 and Table 1.1.
The negative correlation is because of the way that latitude and longitude are
signed by definition, and because California is broadly situated from northwest
to southeast. If California were situated from northeast to southwest, latitude
and longitude would be positively correlated.

* Principal component 3 refers chiefly to the median income of the block group,
with a smaller effect due to the housing median age of the block group.
That is, in the data set, high median income is associated with recently built
housing, whereas lower median income is associated with older, established
housing.

e Principal component 4 is of interest, because it is the one that we have not
decided whether or not to retain. Again, it focuses on the combination of housing
median age and median income. Here, we see that once the negative correlation
between these two variables has been accounted for, there is left over a positive
relationship between these variables. That is, once the association between, for
example, high incomes and recent housing has been extracted, there is left over
some further association between high incomes and older housing.

To further investigate the relationship between principal components 3 and
4 and their constituent variables, we next consider factor scores. Factor scores are
estimated values of the factors for each observation, and are based on factor analysis,
discussed in the next section. For the derivation of factor scores, see Johnson and
Wichern [4].

Consider Figure 1.5, which provides two matrix plots. The matrix plot in Fig-
ure 1.5a displays the relationships among median income, housing median age, and
the factor scores for component 3; the matrix plot in Figure 1.5b displays the re-
lationships among median income, housing median age, and the factor scores for
component 4. Table 1.4 showed that components 3 and 4 both included each of these
variables as constituents. However, there seemed to be a large difference in the absolute
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Figure 1.5 Correlations between components 3 and 4 and their variables.

component weights, as, for example, 0.922 having a greater amplitude than —0.407
for the component 3 component weights. Is this difference in magnitude reflected in
the matrix plots?

Consider Figure 1.5a. The strong positive correlation between component 3
and median income is strikingly evident, reflecting the 0.922 positive correlation. But
the relationship between component 3 and housing median age is rather amorphous.
It would be difficult with only the scatter plot to guide us to estimate the correlation
between component 3 and housing median age as being —0.407. Similarly, for Fig-
ure 1.5b, the relationship between component 4 and housing median age is crystal
clear, reflecting the 0.806 positive correlation, while the relationship between compo-
nent 3 and median income is not entirely clear, reflecting its lower positive correlation
of 0.370. We conclude, therefore, that the component weight of —0.407 for housing
median age in component 3 is not of practical significance, and similarly for the
component weight for median income in component 4.

This discussion leads us to the following criterion for assessing the compo-
nent weights. For a component weight to be considered of practical significance, it
should exceed +0.50 in magnitude. Note that the component weight represents the
correlation between the component and the variable; thus, the squared component
weight represents the amount of the variable’s total variability that is explained by
the component. Thus, this threshold value of 40.50 requires that at least 25% of
the variable’s variance be explained by a particular component. Table 1.5 therefore
presents the component matrix from Table 1.4, this time suppressing the component
weights below £0.50 in magnitude. The component profiles should now be clear and
uncluttered:

* Principal component 1 represents the “block group size” component and
consists of four variables: ftotal rooms, total bedrooms, population, and
households.
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TABLE 1.5 Matrix of Component Weights, Suppressing Magnitudes Below -£0.502

Component

1 2 3 4
minc-z 0.922
hage-z 0.806
rooms-z 0.956
bedrms-z 0.970
popn-z 0.933
hhlds-z 0.972
lat-z 0.970
long-z —0.969

¢ Extraction method: principal component analysis; four components extracted.

e Principal component 2 represents the “geographical” component and consists
of two variables, latitude and longitude.

e Principal component 3 represents the “income” component and consists of only
one variable, median income.

* Principal component 4 represents the “housing age” component and consists
of only one variable, housing median age.

Note that the partition of the variables among the four components is mutually
exclusive, meaning that no variable is shared (after suppression) by any two com-
ponents, and exhaustive, meaning that all eight variables are contained in the four
components. Further, support for this 4-2—1-1 partition of the variables among the
first four components is found in the similar relationship identified among the first
four eigenvalues: 3.901-1.910-1.073-0.825 (see Table 1.3).

A note about positive and negative loadings is in order. Consider component 2,
which has a strong positive loading for latitude and a strong negative loading for
longitude. 1t is possible that a replication study would find that the signs for these
loadings would be reversed, so that latitude had a negative loading and longitude had
a positive loading. If so, the interpretation is exactly the same, because we interpret
the relationship between the variables rather than the signs per se.

Communalities

We are moving toward a decision regarding how many components to retain. One
more piece of the puzzle needs to be set in place: communality. PCA does not extract
all the variance from the variables, only that proportion of the variance that is shared by
several variables. Communality represents the proportion of variance of a particular
variable that is shared with other variables.

The communalities represent the overall importance of each variable in the
PCA as a whole. For example, a variable with a communality much smaller than the
other variables indicates that this variable shares much less of the common variability
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among the variables and contributes less to the PCA solution. Communalities that
are very low for a particular variable should be an indication to the analyst that
the particular variable might not participate in the PCA solution (i.e., might not be
a member of any of the principal components). Overall, large communality values
indicate that the principal components have successfully extracted a large proportion
of the variability in the original variables; small communality values show that there
is still much variation in the data set that has not been accounted for by the principal
components.

Communality values are calculated as the sum of squared component weights
for a given variable. We are trying to determine whether to retain component 4, the
“housing age” component. Thus, we calculate the commonality value for the variable
housing median age, using the component weights for this variable (hage-z) from
Table 1.2. Two communality values for housing median age are calculated, one for
retaining three components and the other for retaining four components.

e Communality (housing median age, three components):
(—0.429)* + (0.025)* 4 (—0.407)> = 0.350315
e Communality (housing median age, four components):
(—0.429)* + (0.025)* + (—0.407)* + (0.806)> = 0.999951

Communalities less than 0.5 can be considered to be too low, since this would
mean that the variable shares less than half of its variability in common with the
other variables. Now, suppose that for some reason we wanted or needed to keep
the variable housing median age as an active part of the analysis. Then, extracting
only three components would not be adequate, since housing median age shares only
35% of its variance with the other variables. If we wanted to keep this variable in the
analysis, we would need to extract the fourth component, which lifts the communality
for housing median age over the 50% threshold. This leads us to the statement of the
minimum communality criterion for component selection, which we alluded to earlier.

Minimum Communality Criterion

Suppose that it is required to keep a certain set of variables in the analysis. Then
enough components should be extracted so that the communalities for each of these
variables exceeds a certain threshold (e.g., 50%).

Hence, we are finally ready to decide how many components to retain. We have
decided to retain four components, for the following reasons:

* The eigenvalue criterion recommended three components but did not absolutely
reject the fourth component. Also, for small numbers of variables, this criterion
can underestimate the best number of components to extract.

* The proportion of variance explained criterion stated that we needed to use four
components if we wanted to account for that superb 96% of the variability.
Since our ultimate goal is to substitute these components for the original data
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and use them in further modeling downstream, being able to explain so much
of the variability in the original data is very attractive.

¢ The scree plot criterion said not to exceed four components. We have not.

e The minimum communality criterion stated that if we wanted to keep housing
median age in the analysis, we had to extract the fourth component. Since we
intend to substitute the components for the original data, we need to keep this
variable, and therefore we need to extract the fourth component.

Validation of the Principal Components

Recall that the original data set was divided into a training data set and a test data
set. All of the analysis above has been carried out on the training data set. To validate
the principal components uncovered here, we now perform PCA on the standardized
variables for the test data set. The resulting component matrix is shown in Table 1.6,
with component weights smaller than £0.50 suppressed. Although the component
weights do not exactly equal those of the training set, the same four components
were extracted, with a one-to-one correspondence in terms of which variables are
associated with which component. This may be considered validation of the principal
components analysis performed. Therefore, we shall substitute these principal compo-
nents for the standardized variables in our later analysis on this data set. Specifically,
we investigate whether the components are useful for estimating the median house
value.

If the split-sample method described here does not successfully provide vali-
dation, the analyst should take this as an indication that the results (for the data set
as a whole) are not generalizable, and the results should not be reported as valid. If
the lack of validation stems from a subset of the variables, the analyst may consider
omitting these variables and performing the principal components analysis again. An
example of the use of principal component analysis in multiple regression is provided
in Chapter 3.

TABLE 1.6 Validating the PCA: Matrix of Component Weights for the Test Set?

Component
Variables 1 2 3 4
minc-z 0.920
hage-z 0.785
rooms-z 0.957
bedrms-z 0.967
popn-z 0.935
hhlds-z 0.968
lat-z 0.962
long-z —0.961

¢ Extraction method: principal components analysis; four components extracted.
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FACTOR ANALYSIS

Factor analysis is related to principal components, but the two methods have different
goals. Principal components seeks to identify orthogonal linear combinations of the
variables, to be used either for descriptive purposes or to substitute a smaller number
of uncorrelated components for the original variables. In contrast, factor analysis
represents a model for the data, and as such is more elaborate.

The factor analysis model hypothesizes that the response vector X, Xo, ...,
X,, can be modeled as linear combinations of a smaller set of k unobserved, “latent”

random variables Fi, F», ..., Fy, called common factors, along with an error term
€ =¢1, 86, ...,&. Specifically, the factor analysis model is
X—u=L
mx1 mxk kxl mx1

where X — p is the response vector, centered by the mean vector; L is the matrix
mx1 mxk

of factor loadings, with [;; representing the factor loading of the ith variable on the
jth factor; F represents the vector of unobservable common factors and ¢ the

kx1 mx1
error vector. The factor analysis model differs from other models, such as the linear
regression model, in that the predictor variables Fy, F», ..., Fy are unobservable.

Because so many terms are unobserved, further assumptions must be made before we
may uncover the factors from the observed responses alone. These assumptions are
that E(F) = 0, Cov(F) =1, E(¢) = 0, and Cov(¢) is a diagonal matrix. See Johnson
and Wichern [4] for further elucidation of the factor analysis model.

Unfortunately, the factor solutions provided by factor analysis are not invari-
ant to transformations. Two models, X — 4 = LF 4+ ¢ and X — p = (LT) (TF) + ¢,
where T represents an orthogonal transformations matrix, will both provide the same
results. Hence, the factors uncovered by the model are in essence nonunique, without
further constraints. This indistinctness provides the motivation for factor rotation,
which we will examine shortly.

Applying Factor Analysis to the Adult Data Set

Recall the Adult data set [6] we worked with in Discovering Knowledge in Data:
An Introduction to Data Mining [1]. The data set was extracted from data provided
by the U.S. Census Bureau. The intended task is to find the set of demographic
characteristics that can best predict whether or not a person has an income of over
$50,000 per year. For this example, we use only the following variables for the purpose
of our factor analysis: age, demogweight (a measure of the socioeconomic status of
the person’s district), education-num, hours-per-week, and capnet (= capital gain —
capital loss). The training data set contains 25,000 records, and the test data set
contains 7561 records. The variables were standardized and the Z-vectors found,
Z; = (X; — ;) /oi;. The correlation matrix is shown in Table 1.7. Note that the
correlations, although statistically significantin several cases, are overall much weaker
than the correlations from the houses data set above. A weaker correlation structure
should pose more of a challenge for the dimension reduction method.
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TABLE 1.7 Correlation Matrix for the Factor Analysis Example

age-z dem-z educ-z capnet-z hours-z
age-z 1.000 —0.076™* 0.033** 0.070** 0.069**
dem-z —0.076™* 1.000 —0.044** 0.005 —0.015*
educ-z 0.033** —0.044** 1.000 0.116** 0.146**
capnet-z 0.070** 0.005 0.116** 1.000 0.077**
hours-z 0.069** —0.015* 0.146** 0.077** 1.000

** Correlation is significant at the 0.01 level (two-tailed).
* Correlation is significant at the 0.05 level (two-tailed).

To function appropriately, factor analysis requires a certain level of correla-
tion. Tests have been developed to ascertain whether there exists sufficiently high
correlation to perform factor analysis.

e The proportion of variability within the standardized predictor variables which
is shared in common, and therefore might be caused by underlying factors, is
measured by the Kaiser—Meyer—Olkin measure of sampling adequacy. Values
of the KMO statistic less than 0.50 indicate that factor analysis may not be
appropriate.

e Bartlett’s test of sphericity tests the null hypothesis that the correlation matrix is
an identity matrix, that is, that the variables are really uncorrelated. The statis-
tic reported is the p-value, so that very small values would indicate evidence
against the null hypothesis (i.e., the variables really are correlated). For p-values
much larger than 0.10, there is insufficient evidence that the variables are not
uncorrelated, so factor analysis may not be suitable.

Table 1.8 provides the results of these statistical tests. The KMO statistic has
a value of 0.549, which is not less than 0.5, meaning that this test does not find the
level of correlation to be too low for factor analysis. The p-value for Bartlett’s test of
sphericity rounds to zero, so that the null hypothesis that no correlation exists among
the variables is rejected. We therefore proceed with the factor analysis.

To allow us to view the results using a scatter plot, we decide a priori to extract
only two factors. The following factor analysis is performed using the principal axis
factoring option. In principal axis factoring, an iterative procedure is used to estimate
the communalities and the factor solution. This particular analysis required 152 such
iterations before reaching convergence. The eigenvalues and the proportions of the
variance explained by each factor are shown in Table 1.9. Note that the first two factors

TABLE 1.8 Is There Sufficiently High Correlation to Run Factor Analysis?

Kaiser—-Meyer—Olkin measure of sampling adequacy 0.549
Bartlett’s test of sphericity
Approx. chi-square 1397.824
degrees of freedom (df) 10

p-value 0.000
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TABLE 1.9 Eigenvalues and Proportions of Variance Explained: Factor Analysis?

Initial Eigenvalues

Factor Total % of Variance Cumulative %
1 1.277 25.533 25.533
2 1.036 20.715 46.248
3 0.951 19.028 65.276
4 0912 18.241 83.517
5 0.824 16.483 100.000

¢ Extraction method: principal axis factoring.

extract less than half of the total variability in the variables, as contrasted with the
houses data set, where the first two components extracted over 72% of the variability.
This is due to the weaker correlation structure inherent in the original data.

The factor loadings 1. are shown in Table 1.10. Factor loadings are analogous
mxk

to the component weights in principal components analysis and represent the corre-
lation between the ith variable and the jth factor. Notice that the factor loadings are
much weaker than the previous houses example, again due to the weaker correlations
among the standardized variables. The communalities are also much weaker than the
houses example, as shown in Table 1.11. The low communality values reflect the fact
that there is not much shared correlation among the variables. Note that the factor
extraction increases the shared correlation.

Factor Rotation

To assist in the interpretation of the factors, factor rotation may be performed. Factor
rotation corresponds to a transformation (usually, orthogonal) of the coordinate axes,
leading to a different set of factor loadings. We may look upon factor rotation as
analogous to a scientist attempting to elicit greater contrast and detail by adjusting
the focus of a microscope.

The sharpest focus occurs when each variable has high factor loadings on a
single factor, with low to moderate loadings on the other factors. For the houses
example, this sharp focus already occurred on the unrotated factor loadings (e.g.,

TABLE 1.10 Factor Loadings?

Factor
1 2
age-z 0.590 —0.329
educ-z 0.295 0.424
capnet-z 0.193 0.142
hours-z 0.224 0.193
dem-z —0.115 0.013

¢ Extraction method: principal axis factoring; two factors extracted, 152 iterations required.
Factor loadings are much weaker than for the preceding example.
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TABLE 1.11 Communalities?

Initial Extraction
age-z 0.015 0.457
educ-z 0.034 0.267
capnet-z 0.021 0.058
hours-z 0.029 0.087
dem-z 0.008 0.013

¢ Extraction method: principal axis factoring. Communalities are low, reflecting not much
shared correlation.

Table 1.5), so rotation was not necessary. However, Table 1.10 shows that we should
perhaps try factor rotation for the adult data set, to help improve our interpretation
of the two factors. Figure 1.6 shows the graphical view of the vectors of factors of
loadings for each variable from Table 1.10. Note that most vectors do not closely
follow the coordinate axes, which means that there is poor “contrast” among the
variables for each factor, thereby reducing interpretability.

Next, a varimax rotation (discussed shortly) was applied to the matrix of factor
loadings, resulting in the new set of factor loadings in Table 1.12. Note that the
contrast has been increased for most variables, which is perhaps made clearer by
Figure 1.7, the graphical view of the rotated vectors of factor loadings. The figure
shows that the factor loadings have been rotated along the axes of maximum variability,
represented by factors 1 and 2. Often, the first factor extracted represents a “general
factor” and accounts for much of the total variability. The effect of factor rotation is to
redistribute the variability explained among the second, third, and subsequent factors.

1.0
_ educ_z
.5 °
hours_z
capnet_z
x dem_z
é 0.0
=
age_z
[ )
-5
-1.0 T T
-1.0 -5 0.0 5 1.0
Factor 1

Figure 1.6 Unrotated vectors of factor loadings do not follow the coordinate axes.
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TABLE 1.12  Factor Loadings After Varimax Rotation?

Factor
1 2
age-z 0.675 0.041
educ-z 0.020 0.516
capnet-z 0.086 0.224
hours-z 0.084 0.283
dem-z —0.104 —0.051

¢ Extraction method: principal axis factoring; rotation method: varimax with kaiser normaliza-
tion; rotation converged in three iterations.

For example, consider Table 1.13, which shows the percent of variance explained by
factors 1 and 2, for the initial unrotated extraction (left side) and the rotated version
(right side).

The sums of squared loadings for factor I for the unrotated case is (using Table
1.10 and allowing for rounding, as always) 0.5907 4 0.295% + 0.193% + 0.224% 4
—0.115% = 0.536. This represents 10.7% of the total variability and about 61% of the
variance explained by the first two factors. For the rotated case, factor I’s influence
has been partially redistributed to factor 2 in this simplified example, now accounting
for 9.6% of the total variability and about 55% of the variance explained by the first
two factors.

Next we describe three methods for orthogonal rotation, in which the axes are
rigidly maintained at 90°. When rotating the matrix of factor loadings, the goal is to

1.0
educ_z
5 [ ]
hours_z
s capnet_z
o dem_z f —— age_z
£ 00 3 e
5
-5
-1.0 T T
-1.0 -5 0.0 .5 1.0
Factor 1

Figure 1.7 Rotated vectors of factor loadings follow the coordinate axes more closely.
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TABLE 1.13  Factor Rotation Redistributes the Percentage of Variance Explained?

Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Factor Total % of Variance Cumulative % Total % of Variance ~ Cumulative %
1 0.536 10.722 10.722 0.481 9.616 9.616
2 0.346 6.912 17.635 0.401 8.019 17.635

¢ Extraction method: principal axis factoring.

ease interpretability by simplifying the rows and columns of the column matrix. In
the following discussion we assume that the columns in a matrix of factor loadings
represent the factors and that the rows represent the variables, just as in Table 1.10, for
example. Simplifying the rows of this matrix would entail maximizing the loading of a
particular variable on one particular factor and keeping the loadings for this variable
on the other factors as low as possible (ideal: row of zeros and ones). Similarly,
simplifying the columns of this matrix would entail maximizing the loading of a
particular factor on one particular variable and keeping the loadings for this factor on
the other variables as low as possible (ideal: column of zeros and ones).

* Quartimax rotation seeks to simplify the rows of a matrix of factor loadings.
Quartimax rotation tends to rotate the axes so that the variables have high
loadings for the first factor and low loadings thereafter. The difficulty is that it
can generate a strong “general” first factor, in which almost every variable has
high loadings.

e Varimax rotation prefers to simplify the column of the factor loading matrix.
Varimax rotation maximizes the variability in the loadings for the factors, with
a goal of working toward the ideal column of zeros and ones for each variable.
The rationale for varimax rotation is that we can best interpret the factors when
they are strongly associated with some variable and strongly not associated with
other variables. Kaiser [7,8] showed that the varimax rotation is more invariant
than the quartimax rotation.

e Equimax rotation seeks to compromise between simplifying the columns and
the rows.

The researcher may prefer to avoid the requirement that the rotated factors
remain orthogonal (independent). In this case, obligue rotation methods are available
in which the factors may be correlated with each other. This rotation method is called
oblique because the axes are no longer required to be at 90°, but may form an oblique
angle. For more on oblique rotation methods, see Harmon [9].

USER-DEFINED COMPOSITES

Factor analysis continues to be controversial, in part due to the lack of invariance
under transformation and the consequent nonuniqueness of the factor solutions. Ana-
lysts may prefer a much more straightforward alternative: user-defined composites. A
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user-defined composite is simply a linear combination of the variables which com-
bines several variables into a single composite measure. In the behavior science
literature, user-defined composites are known as summated scales (e.g., Robinson
et al. [10]).

User-defined composites take the form

W:a’Z:aIZI+a222+~--+aka

where Zf;l a; =1,k < m, and the Z; are the standardized variables. Whichever
form the linear combination takes, however, the variables should be standardized
first so that one variable with high dispersion does not overwhelm the others. The
simplest user-defined composite is simply the mean of the variables. In this case,
ai=1/k,i =1, 2,..., k. However, if the analyst has prior information or expert
knowledge available to indicate that the variables should not all be weighted equally,
each coefficient a; can be chosen to reflect the relative weight of that variable, with
more important variables receiving higher weights.

What are the benefits of utilizing user-defined composites? When compared to
the use of individual variables, user-defined composites provide a way to diminish the
effect of measurement error. Measurement error refers to the disparity between the
variable values observed, and the “true” variable value. Such disparity can be due to
a variety of reasons, including mistranscription and instrument failure. Measurement
error contributes to the background error noise, interfering with the ability of models to
accurately process the signal provided by the data, with the result that truly significant
relationships may be missed. User-defined composites reduce measurement error by
combining multiple variables into a single measure.

Appropriately constructed user-defined composites allow the analyst to rep-
resent the manifold aspects of a particular concept using a single measure. Thus,
user-defined composites enable the analyst to embrace the range of model character-
istics while retaining the benefits of a parsimonious model. Analysts should ensure
that the conceptual definition for their user-defined composites lies grounded in prior
research or established practice. The conceptual definition of a composite refers to the
theoretical foundations for the composite. For example, have other researchers used
the same composite, or does this composite follow from best practices in one’s field
of business? If the analyst is aware of no such precedent for his or her user-defined
composite, a solid rationale should be provided to support the conceptual definition
of the composite.

The variables comprising the user-defined composite should be highly cor-
related with each other and uncorrelated with other variables used in the analysis.
This unidimensionality should be confirmed empirically, perhaps through the use of
principal components analysis, with the variables having high loadings on a single
component and low-to-moderate loadings on the other components.

Example of a User-Defined Composite

Consider again the houses data set. Suppose that the analyst had reason to believe
that the four variables total rooms, total bedrooms, population, and households were
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highly correlated with each other and not with other variables. The analyst could then
construct the following user-defined composite:

a,(total rooms) + a,(total bedrooms) + asz(population) + a,(households)

1 )
witha; = 1/4,i =1, ..., 4, so that composite W represented the mean of the four
(standardized) variables.

The conceptual definition of composite W is “block group size,” a natural and
straightforward concept. It is unlikely that all block groups have exactly the same
size and therefore that, differences in block group size may account for part of the
variability in the other variables. We might expect large block groups tending to have
large values for all four variables, and small block groups tending to have small values
for all four variables.

The analyst should seek out support in the research or business literature for the
conceptual definition of the composite. The evidence for the existence and relevance of
the user-defined composite should be clear and convincing. For example, for compos-
ite W, the analyst may cite the study from the National Academy of Sciences by Hope
etal. [11], which states that block groups in urban areas average 5.3 square kilometers
in size, whereas block groups outside urban areas averaged 168 square kilometers in
size. Since we may not presume that block groups inside and outside urban areas have
exactly similar characteristics, this may mean that block group size could conceiv-
ably be associated with differences in block group characteristics, including median
housing value, the response variable. Further, the analyst could cite the U.S. Census
Bureau’s notice in the Federal Register [12] that population density was much lower
for block groups whose size was greater than 2 square miles. Hence, block group
size may be considered a “real” and relevant concept to be used in further analysis
downstream.

W=aZ=

SUMMARY

Dimension reduction methods have the goal of using the correlation structure among
the predictor variables to accomplish the following:

To reduce the number of predictor components

To help ensure that these components are independent

¢ To provide a framework for interpretability of the results

In this chapter we examined the following dimension reduction methods:

Principal components analysis

Factor analysis

User-defined composites

Principal components analysis (PCA) seeks to explain the correlation structure
of a set of predictor variables using a smaller set of linear combinations of these
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variables. These linear combinations are called components. The total variability of
a data set produced by the complete set of m variables can often be accounted for
primarily by a smaller set of k linear combinations of these variables, which would
mean that there is almost as much information in the £ components as there is in
the original m variables. Principal components analysis can sift through the correla-
tion structure of the predictor variables and identify the components underlying the
correlated variables. Then the principal components can be used for further analysis
downstream, such as in regression analysis, classification, and so on.

The first principal component may be viewed in general as the single best
summary of the correlations among the predictors. Specifically, this particular linear
combination of the variables accounts for more variability than any other conceivable
linear combination. The second principal component, Y, is the second-best linear
combination of the variables, on the condition that it is orthogonal to the first principal
component. Two vectors are orthogonal if they are mathematically independent, have
no correlation, and are at right angles to each other. The second component is derived
from the variability that is left over once the first component has been accounted
for. The third component is the third-best linear combination of the variables, on
the condition that it is orthogonal to the first two components. The third component
is derived from the variance remaining after the first two components have been
extracted. The remaining components are defined similarly.

The criteria used for deciding how many components to extract are the
following:

e Eigenvalue criterion
¢ Proportion of variance explained criterion
e Minimum communality criterion

e Scree plot criterion

The eigenvalue criterion states that each component should explain at least one vari-
able’s worth of the variability, and therefore the eigenvalue criterion states that only
components with eigenvalues greater than 1 should be retained. For the proportion
of variance explained criterion, the analyst simply selects the components one by
one until the desired proportion of variability explained is attained. The minimum
communality criterion states that enough components should be extracted so that the
communalities for each of these variables exceeds a certain threshold (e.g., 50%).
The scree plot criterion is this: The maximum number of components that should
be extracted is just prior to where the plot begins to straighten out into a horizontal
line.

Part of the PCA output takes the form of a component matrix, with cell entries
called the component weights. These component weights represent the partial corre-
lation between a particular variable and a given component. For a component weight
to be considered of practical significance, it should exceed 4+0.50 in magnitude.
Note that the component weight represents the correlation between the component
and the variable; thus, the squared component weight represents the amount of the
variable’s total variability that is explained by the component. Thus, this threshold
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value of £0.50 requires that at least 25% of the variable’s variance be explained by
a particular component.

PCA does not extract all the variance from the variables, only that propor-
tion of the variance that is shared by several variables. Communality represents the
proportion of variance of a particular variable that is shared with other variables. The
communalities represent the overall importance of each of the variables in the PCA
as a whole. Communality values are calculated as the sum of squared component
weights for a given variable. Communalities less than 0.5 can be considered to be too
low, since this would mean that the variable shares less than half of its variability in
common with the other variables.

Factor analysis is related to principal components, but the two methods have
different goals. Principal components seeks to identify orthogonal linear combinations
of the variables, to be used either for descriptive purposes or to substitute a smaller
number of uncorrelated components for the original variables. In contrast, factor
analysis represents a model for the data, and as such is more elaborate.

Unfortunately, the factor solutions provided by factor analysis are not invari-
ant to transformations. Hence, the factors uncovered by the model are in essence
nonunique, without further constraints. The Kaiser—Meyer—Olkin measure of sam-
pling adequacy and Bartlett’s test of sphericity are used to determine whether a
sufficient level of correlation exists among the predictor variables to apply factor
analysis.

Factor loadings are analogous to the component weights in principal compo-
nents analysis and represent the correlation between the ith variable and the jth factor.
To assist in the interpretation of the factors, factor rotation may be performed. Factor
rotation corresponds to a transformation (usually, orthogonal) of the coordinate axes,
leading to a different set of factor loadings. Often, the first factor extracted represents
a “general factor” and accounts for much of the total variability. The effect of fac-
tor rotation is to redistribute the variability explained among the second, third, and
subsequent factors.

Three methods for orthogonal rotation are quartimax rotation, varimax rotation,
and equimax rotation. Quartimax rotation tends to rotate the axes so that the variables
have high loadings for the first factor and low loadings thereafter. Varimax rotation
maximizes the variability in the loadings for the factors, with a goal of working toward
the ideal column of zeros and ones for each variable. Equimax seeks to compromise
between the previous two methods. Oblique rotation methods are also available in
which the factors may be correlated with each other.

A user-defined composite is simply a linear combination of the variables, which
combines several variables together into a single composite measure. User-defined
composites provide a way to diminish the effect of measurement error by combining
multiple variables into a single measure. User-defined composites enable the ana-
lyst to embrace the range of model characteristics while retaining the benefits of a
parsimonious model. Analysts should ensure that the conceptual definition for their
user-defined composites lies grounded in prior research or established practice. The
variables comprising the user-defined composite should be highly correlated with
each other and uncorrelated with other variables used in the analysis.
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EXERCISES

Clarifying the Concepts

1.1. Determine whether the following statements are true or false. If a statement is false,

explain why and suggest how one might alter the statement to make it true.

(a) Positive correlation indicates that as one variable increases, the other variable
increases as well.

(b) Changing the scale of measurement for the covariance matrix (e.g., from meters
to kilometers) will change the value of the covariance.

(c) The total variability in the data set equals the number of records.
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(d) The value of the ith principal component equals the ith eigenvalue divided by the
number of variables.

(e) The second principal component represents any linear combination of the variables
that accounts for the most variability in the data once the first principal component
has been extracted.

(f) Foracomponent weight to be considered of practical significance, it should exceed
£0.50 in magnitude.

(g) The principal components are always mutually exclusive and exhaustive of the
variables.

(h) When validating the principal components, we would expect the component
weights from the training and test data sets to have the same signs.

(i) For factor analysis to function properly, the predictor variables should not be
highly correlated.

For what type of data are the covariance and correlation matrices identical? In this
case, what is X?

‘What is special about the first principal component in terms of variability?

Describe the four criteria for choosing how many components to extract. Explain the
rationale for each.

Explain the concept of communality, so that someone new to the field could understand
it.

Explain the difference between principal components analysis and factor analysis.
What is a drawback of factor analysis?

Describe two tests for determining whether there exists sufficient correlation within a
data set for factor analysis to proceed. Which results from these tests would allow us
to proceed?

Explain why we perform factor rotation. Describe three different methods for factor
rotation.

What is a user-defined-composite, and what is the benefit of using it in place of
individual variables?

Working with the Data

The following computer output explores the application of principal components analysis to
the churn data set [13].

1.10 Based on the information given in Table E1.10, does there exist an adequate amount

of correlation among the predictors to pursue principal components analysis? Explain
how you know this, and how we may be getting mixed signals.

TABLE E1.10
Kaiser—-Meyer—Olkin measure of sampling adequacy 0.512
Bartlett’s test of sphericity
Approx. chi-square 34.908
df 55

Significance 0.984
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1.11 Suppose that we go ahead and perform the PCA, in this case using seven components.
Considering the communalities given in Table E1.11, which variable or variables might
we be well advised to omit from the PCA, and why? If we really need all these variables
in the analysis, what should we do?

TABLE E1.114

Initial Extraction
Zacctlen 1.000 0.606
Zvmailme 1.000 0.836
Zdaycall 1.000 0.528
Zdaychar 1.000 0.954
Zevecall 1.000 0.704
Zevechar 1.000 0.621
Znitecal 1.000 0.543
Znitecha 1.000 0.637
Zintcall 1.000 0.439
Zintchar 1.000 0.588
Zese 1.000 0.710

¢ Extraction method: principal component analysis.

1.12 Based on the information given in Table E1.12, how many components should be ex-
tracted using (a) the eigenvalue criterion, and (b) the proportion of variance explained

criterion?
TABLE E1.12
Initial Eigenvalues

Component Total 9% of Variance Cumulative %
1 1.088 9.890 9.890
2 1.056 9.596 19.486
3 1.040 9.454 28.939
4 1.023 9.296 38.236
5 1.000 9.094 47.329
6 0.989 8.987 56.317
7 0.972 8.834 65.151
8 0.969 8.811 73.961
9 0.963 8.754 82.715

10 0.962 8.747 91.462

11 0.939 8.538 100.000

1.13 Based on the scree plot shown in Figure E1.13, how many components should be
extracted using the scree plot criterion? Now, based on the three criteria, work toward
a decision on the number of components to extract.

1.14 (a) Based on the following rotated component matrix; provide a quick profile of the
first four components.
(b) If we extracted an sixth component, describe how the first component would
change.

(¢) Whatis your considered opinion as to the usefulness of applying PCA on this data
set?
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TABLE E1.14 Rotated Component Matrix?
Component
1 2 3 4 5

Zacctlen 0.652
Zvmailme 0.521
Zdaycall 0.623
Zevecall 0.508
Znitecal 0.551
Zintcall 0.601
Zcse —0.592
Zdaychar 0.617
Zevechar 0.429 —0.572
Znitechar 0.697
Zintchar 0.657

“ Rotation converged in 8 iterations.
Extraction method: principal component analysis.
Rotation method: Varimax with Kaiser normalization.

Hands-on Analysis

For the following exercises, work with the baseball data set, available from the book series

Web site.

1.15 Filter out all batters with fewer than 100 at bats. Standardize all the numerical variables
using z-scores.

1.16 Suppose that we are interested in estimating the number of home runs based on the
other numerical variables in the data set. So all the other numeric variables will be
our predictors. Investigate whether sufficient variability exists among the predictors
to perform PCA.
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1.17 How many components should be extracted according to:
(a) The eigenvalue criterion?
(b) The proportion of variance explained criterion?
(¢) The scree plot criterion?
(d) The communality criterion?

1.18 Based on the information from Exercise 1.17, make a decision about how many com-
ponents you should extract.

1.19 Apply PCA using varimax rotation with your chosen number of components. Write
up a short profile of the first few components extracted.

1.20 Construct a useful user-defined composite using the predictors. Describe situations
where the composite would be more appropriate or useful than the principal compo-
nents, and vice versa.
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REGRESSION MODELING

EXAMPLE OF SIMPLE LINEAR REGRESSION
LEAST-SQUARES ESTIMATES

COEFFICIENT OF DETERMINATION
STANDARD ERROR OF THE ESTIMATE
CORRELATION COEFFICIENT

ANOVA TABLE

OUTLIERS, HIGH LEVERAGE POINTS, AND INFLUENTIAL OBSERVATIONS
REGRESSION MODEL

INFERENCE IN REGRESSION

VERIFYING THE REGRESSION ASSUMPTIONS
EXAMPLE: BASEBALL DATA SET

EXAMPLE: CALIFORNIA DATA SET
TRANSFORMATIONS TO ACHIEVE LINEARITY

Regression modeling represents a powerful and elegant method for estimating the
value of a continuous target variable. In this chapter we introduce regression modeling
through simple linear regression, where a straight line is used to approximate the
relationship between a single continuous predictor variable and a single continuous
response variable. Later, in Chapter 3, we turn to multiple regression, where several
predictor variables are used to estimate a single response. We introduced regression
analysis in Chapter 4 of Discovering Knowledge in Data: An Introduction to Data
Mining [1]. Here, we explore the many aspects of simple linear regression in greater

detail.
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EXAMPLE OF SIMPLE LINEAR REGRESSION

To develop the simple linear regression model, consider the cereals data set, an excerpt
of which is presented in Table 2.1. The cereals data set (Data and Story Library[2])
contains nutritional information for 77 breakfast cereals and includes the following

variables:

e Cereal name

e Cereal manufacturer

Type (hot or cold)
Calories per serving
Grams of protein
Grams of fat
Milligrams of sodium
Grams of fiber

Grams of carbohydrates

Grams of sugar

e Milligrams of potassium

¢ Percentage of recommended daily allowance of vitamins (0%, 25%, or 100%)

e Weight of one serving

e Number of cups per serving

Shelf location (1, bottom; 2, middle; 3, top)

e Nutritional rating, as calculated by Consumer Reports

TABLE 2.1 Excerpt from the Cereals Data Set: Eight Fields, First 16 Cereals

Cereal Name Calories Sodium  Rating
100% Bran N 6 70 4 1 130 68.4030
100% Natural Bran Q 8 120 3 5 15 33.9837
All-Bran K 5 70 4 1 260 59.4255
All-Bran Extra Fiber K 0 50 4 0 140 93.7049
Almond Delight R 8 110 2 2 200 34.3848
Apple Cinnamon Cheerios G 10 110 2 2 180 29.5095
Apple Jacks K 14 110 2 0 125 33.1741
Basic 4 G 8 130 3 2 210 37.0386
Bran Chex R 6 90 2 1 200 49.1203
Bran Flakes P 5 90 3 0 210 53.3138
Cap’n crunch Q 12 120 1 2 220 18.0429
Cheerios G 1 110 6 2 290 50.7650
Cinnamon Toast Crunch G 9 120 1 3 210 19.8236
Clusters G 7 110 3 2 140 40.4002
Cocoa Puffs G 13 110 1 1 180 22.7364
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Figure 2.1 Scatter plot of nutritional rating versus sugar content for 77 cereals.

Suppose that we are interested in estimating the nutritional rating of a cereal
given its sugar content. Figure 2.1 presents a scatter plot of the nutritional rating
versus the sugar content for the 77 cereals, along with the least-squares regression
line. The regression line is written in the form y = by 4 b x, called the regression
equation or estimated regression equation (ERE), where:

¢ § is the estimated value of the response variable.

* by is the y-intercept of the regression line.

b is the slope of the regression line.

by and by, together, are called the regression coefficients.

Inthiscase, the EREis givenas y = 59.4 — 2.42(sugars), sothatby = 59.4and
b) = —2.42. Below we demonstrate how this equation is calculated. This estimated
regression equation can then be interpreted as: The estimated cereal rating equals
59.4 minus 2.42 times the sugar content in grams. The regression line, and the ERE,
is used as a linear approximation of the relationship between the x (predictor) and
y (response) variables, that is, between sugar content and nutritional rating. We can
use the regression line or the ERE to make estimates or predictions. For example,
suppose that we are interested in estimating the nutritional rating for a new cereal
(not in the original data) that contains x = 1 gram of sugar. Using the ERE, we
find the estimated nutritional rating for a cereal with 1 gram of sugar to be y =
59.4 —2.42(2.1) = 56.98. Note that this estimated value for the nutritional rating
lies directly on the regression line, at the location (x = 1, y = 56.98), as shown in
Figure 2.1. In fact, for any given value of x (sugar content), the estimated value for
(nutritional rating) lies precisely on the regression line.
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Now there is one cereal in our data set that does have a sugar content of
1 gram—Cheerios. Its nutritional rating, however, is 50.765, not 56.98 as we estima-
ted above for the new cereal with 1 gram of sugar. Cheerios’ point in the scatter plot is
located at (x = 1, y = 50.765), within the oval in Figure 2.1. Now, the upper arrow in
Figure 2.1 is pointing to a location on the regression line directly above the Cheerios
point. This is where the regression equation predicted the nutrition rating to be for a
cereal with a sugar content of 1 gram. The prediction was too high by 56.98 —50.765 =
6.215 rating points, which represents the vertical distance from the Cheerios data point
to the regression line. This vertical distance of 6.215 rating points, in general y — J,
is known variously as the prediction error, estimation error, or residual.

We of course seek to minimize the overall size of our prediction errors. Least-
squares regression works by choosing the unique regression line that minimizes the
sum of squared residuals over all the data points. There are alternative methods of
choosing the line that best approximates the linear relationship between the variables,
such as median regression, although least squares remains the most common method.

LEAST-SQUARES ESTIMATES

Now suppose that our data set contained a sample of 77 cereals different from
the sample in our cereals data set. Would we expect that the relationship between
nutritional rating and sugar content to be exactly the same as that found above,
¥ =59.4 — 2.42(sugars)? Probably not. Here, by and b are statistics, whose values
differs from sample to sample. Like other statistics, by and b; are used to estimate
population parameters, in this case Sy and f;, the y-intercept, and the slope of the
true regression line. That is,

y=PB+ Bix+¢ 2.1

represents the true linear relationship between nutritional rating and sugar content for
all cereals, not just those in our sample. The error term ¢ is needed to account for the
indeterminacy in the model, since two cereals may have the same sugar content but
different nutritional ratings. The residuals (y; — ) are estimates of the error terms,
&, i =1,...,n. Equation (2.1) is called the regression equation or true population
regression equation; it is associated with the true or population regression line.

Earlier, we found the estimated regression equation for estimating the nutritional
rating from sugar content to be y = 59.4 — 2.42(sugars). Where did these values for
by and b; come from? Let us now derive the formulas for estimating the y-intercept
and slope of the estimated regression line given the data. Suppose that we have n
observations from the model in equation (2.1); that is, we have

yi=Bo+ Bixi + & i=1,...,n

The least-squares line is that line which minimizes the population sum of squared
errors, SSE, = Y1 siz. First, we reexpress the population sum of squared errors as

SSE, = Z & = Z()’i — Bo — Brxi)? (2.2)

i=1 i=1
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Then, recalling our differential calculus, we may find the values of Sy and §; that
minimize Y ;_, &7 by differentiating equation (2.2) with respect to By and f; and
setting the results equal to zero. The partial derivatives of equation (2.2) with respect
to Bo and B, are, respectively,

JSSE 1
L=—2%" (i —Bo—pixi)
9Bo —
dSSE, L 2:3)
T ; xi (v — Bo — Pixi)

We are interested in the values for the estimates by and by, so setting equations (2.3)
equal to zero, we have

> (i —bo—bixi) =0
i=1

> xi(yi—bo—bix;) =0

i=1

Distributing the summation gives us

Z vi —nby — by Z x; =0
i=1 i=1
i x,‘yi—bo Xn: xi—b]Xn: XIZZO
i=1 i=1 i=1

which is reexpressed as

bon + by Z X; ZZ Vi
i=1 i=1

2.4)
by Z xi+blz Xiz =Z Xi Vi
i=1 i=1 i=1
Solving equations (2.4) for b; and by, we have
by = T [(E0) (0] s
Yot = (Xx) /n
by =y —bx (2.6)

where n is the total number of observations, X the mean value for the predictor
variable, y the mean value for the response variable, and the summations are i = 1 to
n. Equations (2.5) and (2.6) are therefore the least-squares estimates for 8y and S,
the values that minimize the sum of squared errors.

‘We now illustrate how we may find the values by = 59.4 and b} = — 2.42, using
equations (2.5) and (2.6) and the summary statistics from Table 2.2, which shows the
values for x;, y;, x; y;, and x[2 for the cereals in the data set (note that only 16 of the 77
cereals are shown). It turns out that for this data set, Y  x; = 534, > y; = 3285.26,
Y xiy; = 19,186.7, and Y x? = 5190. Plugging into formulas (2.5) and (2.6), we
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TABLE2.2 Summary Statistics for Finding by and b{

Cereal Name Sugars, x Rating, y Xy x?
100% Bran 6 68.4030 410.418 36
100% Natural Bran 8 33.9837 271.870 64
All-Bran 5 59.4255 297.128 25
All-Bran Extra Fiber 0 93.7049 0.000 0
Almond Delight 8 34.3848 275.078 64
Apple Cinnamon Cheerios 10 29.5095 295.095 100
Apple Jacks 14 33.1741 464.437 196
Basic 4 8 37.0386 296.309 64
Bran Chex 6 49.1203 294.722 36
Bran Flakes 5 53.3138 266.569 25
Cap’n Crunch 12 18.0429 216.515 144
Cheerios 1 50.7650 50.765 1
Cinnamon Toast Crunch 9 19.8236 178.412 81
Clusters 7 40.4002 282.801 49
Cocoa Puffs 13 22.7364 295.573 169
Wheaties Honey Gold 8 36.1876 289.501 64
in- = 534 > yi = 3285.26 S i T2
X = 534/77 y = 3285.26/77 —19.186.7 _’5]90
= 6.935 = 42.6657 7 ’ o
find that
) [(Xx) (X x)]/n 19,186.7 — (534)(3285.26)/77
1= 2 = 2
2 —
in _ (in) /n 5190 — (534)2/77
—3596.791429
=—=-242
1486.675325

by = § — biX = 42.6657 — 2.42(6.935) = 59.4

These values for the slope and y-intercept provide us with the estimated regression
line indicated in Figure 2.1.

The y-intercept by is the location on the y-axis where the regression line in-
tercepts the y-axis, that is, the estimated value for the response variable when the
predictor variable equals zero. Now, in many regression situations, a value of zero
for the predictor variable would not make sense. For example, suppose that we were
trying to predict elementary school students’ weight (y) based on the students’ height
(x). The meaning of height = 0 is unclear, so that the denotative meaning of the
y-intercept would not make interpretive sense in this case.

However, for our data set, a value of zero for the sugar content does make
sense, as several cereals contain zero grams of sugar. Therefore, for our data set, the
y-intercept by = 59.4 simply represents the estimated nutritional rating for cereals
with zero sugar content. Note that none of the cereals containing zero grams of sugar
have this estimated nutritional rating of exactly 59.4. The actual ratings, along with
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the prediction errors, are shown in Table 2.2. Note that all the predicted ratings are the
same, since all these cereals had identical values for the predictor variable (x = 0).

The slope of the regression line indicates the estimated change in y per unit
increase in x. We interpret b; = —2.42 to mean the following: For each increase of
1 gram in sugar content, the estimated nutritional rating decreases by 2.42 rating
points. For example, cereal A with 5 more grams of sugar than cereal B would have
an estimated nutritional rating 5(2.42) = 12.1 ratings points lower than cereal B.

COEFFICIENT OF DETERMINATION

Of course, a least-squares regression line could be found to approximate the rela-
tionship between any two continuous variables; but this does not guarantee that the
regression will be useful. The question therefore arises as to how we may determine
whether a particular estimated regression equation is useful for making predictions.
We shall work toward developing a statistic, 7%, for measuring the goodness of fit of
the regression. That is, r2, known as the coefficient of determination, measures how
well the linear approximation produced by the least-squares regression line actually
fits the data observed. Recall that y represents the estimated value of the response
variable and that y — J represents the prediction error or residual.

Consider the data set in Table 2.3, which shows the distance in kilometers
traveled by a sample of 10 orienteering competitors, along with the elapsed time in
hours. For example, the first competitor traveled 10 kilometers in 2 hours. Based on
these 10 competitors, the estimated regression takes the form y = 6 4 2x, so that the
estimated distance traveled equals 6 kilometers plus two times the number of hours.
You should verify that you can calculate this estimated regression equation, using
either software or equations (2.5) and (2.6).

This estimated regression equation can be used to make predictions about the
distance traveled for a given number of hours. These estimated values of y are given as

TABLE 2.3  SSE for the Orienteering Example

Time, x Distance, y  Score Predicted, Error in Prediction, (Error in Prediction)z,

Subject  (hours) (km) $=6+2x y—9 (v —9)?
1 2 10 10 0 0
2 2 11 10 1 1
3 3 12 12 0 0
4 4 13 14 -1 1
5 4 14 14 0 0
6 5 15 16 -1 1
7 6 20 18 2 4
8 7 18 20 -2 4
9 8 22 22 0 0

10 9 25 24 1 1

SSE=Y(y -7 =12
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the predicted score in Table 2.3. The prediction error and squared prediction error may
then be calculated. The sum of the squared prediction errors, or the sum of squares
error, SSE =Y (y — )7)2, represents an overall measure of the error in prediction
resulting from the use of the estimated regression equation. Here we have SSE = 12.
Is this value large? We are unable to state whether this value SSE = 12 is large, since
at this point we have no other measure to which to compare it.

Now imagine for a moment that we were interested in estimating the distance
traveled without knowledge of the number of hours. That is, suppose that we did not
have access to the x-variable information for use in estimating the y-variable. Clearly,
our estimates of the distance traveled would be degraded, on the whole, since less
information usually results in less accurate estimates.

Because we lack access to the predictor information, our best estimate for y is
simply y, the sample mean of the number of hours traveled. We would be forced to use
¥ = 16 to estimate the number of kilometers traveled for every competitor, regardless
of the number of hours that person had traveled. Consider Figure 2.2. The estimates
for distance traveled when ignoring the time information is shown by the horizontal
line y = 16. Disregarding the time information entails predicting y = 16 kilometers
for the distance traveled, for orienteering competitors who have been hiking only 2 or
3 hours, as well as for those who have been out all day (8 or 9 hours). This is clearly
not optimal.

The data points in Figure 2.2 seem to “cluster” tighter around the estimated
regression line than around the line y = 16, which suggests that overall, the predic-
tion errors are smaller when we use the x-information than otherwise. For example,
consider competitor 10, who hiked y = 25 kilometers in x = 9 hours. If we ignore
the x-information, the estimation error would be y —y = 25 — 16 = 9 kilometers.
This prediction error is indicated as the vertical line between the data point for this
competitor and the horizontal line, that is, the vertical distance between the y observed
and the y = 16 predicted.

26
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18
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2 3 4 5 6 7 8 9
Time

Figure 2.2 The regression line has a smaller prediction error than the sample mean.
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Suppose that we proceeded to find y —y for every record in the data set and
then found the sum of squares of these measures, just as we did for y — § when we
calculated the sum of squares error. This would lead us to SST, the sum of squares total:

SST=) (v -3
i=1

SST, also known as the total sum of squares, is a measure of the total variability in
the values of the response variable alone, without reference to the predictor. Note
that SST is a function of the variance of y, where the variance is the square of the
standard deviation of y:

SST=)"(y— 3 = (n— 1) Var(y) = (n — 1) [SD()]*
i=1

Thus, all three of these measures, SST, variance, and standard deviation, are
univariate measures of the variability in y alone (although, of course, we could find
the variance and standard deviation of the predictor as well).

Would we expect SST to be larger or smaller than SSE? Using the calculations
shown in Table 2.4, we have SST = 228, which is much larger than SSE = 12. We
now have something to compare SSE against. Since SSE is so much smaller than
SST, this indicates that using the predictor information in the regression results in
much tighter estimates overall than ignoring the predictor information. These sums
of squares measure errors in prediction, so that smaller is better. In other words, using
the regression improves our estimates of the distance traveled.

Next, what we would like is a measure of how much the estimated regression
equation improves the estimates. Once again examine Figure 2.2. For hiker 10, the
estimation error when using the regression is y — § = 25 — 24 = 1, and the estima-
tion error when ignoring the time information is y —y = 25 — 16 = 9. Therefore,
the amount of improvement (reduction in estimation error) is y —y =24 — 16 = 8.

Once again, we may proceed to construct a sum of squares statistic based on
$ — . Such a statistic is known as SSR, the sum of squares regression, a measure of

TABLE 2.4 SST for the Orienteering Example

Student Time, x Score, y y y—y vy —79)?
1 2 10 16 —6 36
2 2 11 16 -5 25
3 3 12 16 —4 16
4 4 13 16 -3 9
5 4 14 16 -2 4
6 5 15 16 —1 1
7 6 20 16 4 16
8 7 18 16 2 4
9 8 22 16 6 36

10 9 25 16 9 81

SST=Y (v —y)* =228
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the overall improvement in prediction accuracy when using the regression as opposed
to ignoring the predictor information.

SSR=3)_ (5 —3)°
i=l

Observe from Figure 2.2 that the vertical distance y — y may be partitioned into two

ELIPN

“pieces,” y —y and y — §. This follows from the following identity:
y=y=0-"+0G-3 (2.7)

Now, suppose that we square each side and take the summation. We then obtain

D= =Y G =Y i =) (2.8)
[The cross-product term 2 Y (§; — ¥) (y; — 9:) cancels out; see Draper and Smith
[3] for details.]

We recognize from equation (2.8) the three sums of squares we have been
developing and can therefore express the relationship among them as follows:

SST = SSR + SSE (2.9)

We have seen that SST measures the total variability in the response variable. We
may then think of SSR as the amount of variability in the response variable that
is “explained” by the regression. In other words, SSR measures that portion of the
variability in the response variable that is accounted for by the linear relationship
between the response and the predictor.

However, since not all the data points lie precisely on the regression line, this
means that there remains some variability in the y-variable that is not accounted for
by the regression. SSE can be thought of as measuring all the variability in y from
all sources, including random error, after the linear relationship between x and y has
been accounted for by the regression. Earlier we found that SST = 228 and SSE =
12. Then, using equation (2.9), we can find SSR to be SSR = SST — SSE = 228 —
12 = 216. Of course, these sums of squares must always be nonnegative.

We are now ready to introduce the coefficient of determination, r*, which mea-
sures the goodness of fit of the regression as an approximation of the linear relationship
between the predictor and response variables.

,  SSR
yr = —
SST

Since 72 takes the form of a ratio of SSR to SST, we may interpret 7> to represent the
proportion of the variability in the y-variable that is explained by the regression, that
is, by the linear relationship between the predictor and response variables.

What is the maximum value that 7> can take? The maximum value for r> would
occur when the regression is a perfect fit to the data set, which takes place when
each of the data points lies precisely on the estimated regression line. In this optimal
situation, there would be no estimation errors from using the regression, meaning that
each of the residuals would equal zero, which in turn would mean that SSE would
equal zero. From equation (2.9) we have that SST = SSR + SSE. If SSE = 0, then
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SST = SSR, so that r> would equal SSR/SST = 1. Thus, the maximum value for r>
is 1, which occurs when the regression is a perfect fit.

What is the minimum value that r2 can take? Suppose that the regression showed
no improvement at all; that is, suppose that the regression explained none of the
variability in y. This would result in SSR equaling zero, and consequently, > would
equal zero as well. Thus, r2 is bounded between zero and 1, inclusive. How are we
to interpret the value that 72 takes? Essentially, the higher the value of 72, the better
the fit of the regression to the data set. Values of 7> near 1 denote an extremely good
fit of the regression to the data; values near zero denote an extremely poor fit.

A very rough rule of thumb for the interpretation of 7> might be to imagine it
as a grade received on a very difficult exam. One might be quite pleased to get higher
than 90%, happy with higher than 80%, somewhat satisfied with better than 70%, but
disappointed with less than 50%. This heuristic must be applied carefully, however,
since the interpretation of 72 varies from field to field. In the physical sciences, for
example, one encounters relationships that elicit very high values of r2, whereas in
the social sciences one may need to be content with lower values of rZ, because of
person-to-person variability. As usual, the analyst’s judgment should be tempered
with the domain expert’s experience.

STANDARD ERROR OF THE ESTIMATE

We have seen how the r? statistic measures the goodness of fit of the regression to
the data set. Next, the s statistic, known as the standard error of the estimate, is a
measure of the accuracy of the estimates produced by the regression. Clearly, s is one
of the most important statistics to consider when performing a regression analysis.
To find the value of s, we first find the mean squared error:

SSE

MSE= ——
n—m-—1

where m indicates the number of predictor variables, which is 1 for the simple linear
regression case and greater than 1 for the multiple regression case. Like SSE, MSE
represents a measure of the variability in the response variable left unexplained by
the regression.

Then the standard error of the estimate is given by

SSE

s=vMSE=,/—M—
n—m-—1

The value of s provides an estimate of the “typical” residual, much as the value of the
standard deviation in univariate analysis provides an estimate of the typical deviation.
In other words, s is a measure of the typical error in estimation, the typical difference
between the response value predicted and the actual response value. In this way, the
standard error of the estimate s represents the precision of the predictions generated
by the regression equation estimated. Smaller values of s are better.
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For the orienteering example, we have

2
s Vio—1-1

Thus, the typical estimation error when using the regression model to predict distance
is 1.2 kilometers. That is, if we are told how long a hiker has been traveling, our
estimate of the distance covered will typically differ from the actual distance by about
1.2 kilometers. Note from Table 2.3 that all of the residuals lie between zero and 2
in absolute value, so that 1.2 may be considered a reasonable estimate of the typical
residual. (Other measures, such as the mean absolute deviation of the residuals, may
also be considered but are not widely reported in commercial software packages.)

We may compare s = 1.2 kilometers against the typical estimation error ob-
tained from ignoring the predictor data, obtained from the standard deviation of the
response,

Z?:l (y— y)z _

SD, =
. n—1

5.0

The typical prediction error when ignoring the time data is 5 kilometers. Using the
regression has reduced the typical prediction error from 5 kilometers to 1.2 kilometers.

In the absence of software, one may use the following computational formulas
for calculating the values of SST and SSR. The formula for SSR is exactly the same
as for the slope b; except that the numerator is squared.

2
SST = Zyz— (Zy) /n
[y = () /n]’
Ya? = (L) /n
Let us use these formulas to find the values of SST and SSR for the orienteer-

ing example. You should verify that we have > x =50, Yy = 160, Y_ xy = 908,
> x% =304, and }_ y> = 2788. Then

SSR =

SST=3") - (Z y>2/n — 2788 — (160)2/10 = 2478 — 2560 = 228
and
[Sxy = (Xx) (Xy) /a]° 1908 — (50)(160)/101 1082
Y- (Y x)z /n T304 —(5002/10 54

Of course these are the same values that we found earlier using the more onerous
tabular method. Finally, we calculate the value of the coefficient of determination r2
to be

SSR = =216

SSR 216
rP= " =2 =0.9474
SST 228
In other words, the linear relationship between time and distance accounts for 94.74%
of the variability in the distances traveled. The regression model fits the data very

nicely.
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CORRELATION COEFFICIENT

A common measure used to quantify the linear relationship between two quantitative
variables is the correlation coefficient. The correlation coefficient r (also known as
the Pearson product moment correlation coefficient) is an indication of the strength
of the linear relationship between two quantitative variables and is defined as follows:

_XE-D0-Y)

(n — Dsysy

where s, and s, represent the sample standard deviations of the x and y data values,
respectively. The correlation coefficient r always takes on values between 1 and —1,
inclusive. Following are some standard interpretations for the value of the correlation
coefficient.

INTERPRETING THE CORRELATION COEFFICIENT r

® Values of r close to 1 indicate variables that are positively correlated.
© As the value of x increases, the value of y tends to increase as well.

® Values of r close to —1 indicate variables that are negatively correlated.
© An increase in the x variable is associated with a decrease in the y variable.
© As the value of x increases, the value of y tends to decrease.

e Other values of r indicate variables that are uncorrelated.

© As the value of x increases, the value of y tends to remain unaffected.

The question is: How close is close? We offer a rough rule of thumb for ascer-
taining the presence of correlation, while again noting that the analyst needs to temper
these heuristics with specialist domain knowledge, applicable to the particular field
of study. The analyst should beware of black-and-white verdicts concerning the pres-
ence or absence of correlation, since the degree of correlation ranges continuously
from —1 to 1, including areas in shades of gray. This rule of thumb should not take
the place of more rigorous tests for determining the association between variables.

ROUGH RULE OF THUMB: ASCERTAINING THE PRESENCE OF
CORRELATION

If the value of the correlation coefficient r is:

e Greater than 0.7, the variables are positively correlated.

* Between 0.33 and 0.7, the variables are mildly positively correlated.

e Between —0.33 and 0.33, the variables are not correlated.

® Between —0.7 and —0.33, the variables are mildly negatively correlated.

® Less than —0.7, the variables are negatively correlated.
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The definition formula for the correlation coefficient above may be tedious,
since the numerator would require the calculation of the deviations for both the x
and y data. We therefore have recourse, in the absence of software, to the following
computational formula for r:

L 2xy = (2x) () /n
VI = (Tx) fn JT02 = (2) /n

For the orienteering example, we have:
2xy = (Xx) (Xy) /n

SR e T (D) e
908 — (50)(160)/10

- V304 — (50)2/10 /2788 — (160)2/10

1
_ 18 0.9733

V547228
We would say that the time spent traveling and the distance traveled are strongly
positively correlated. As the time spent hiking increases, the distance traveled tends
to increase. However, it is more convenient to express the correlation coefficient r as
r = £+/r2. When the slope b; of the estimated regression line is positive, the corre-
lation coefficient is also positive, r = Jr? ; when the slope is negative, the correlation
coefficient is also negative, r = —+/r2. In the orienteering example, we have b; = 2.
This is positive, which means that the correlation coefficient will also be positive,

r =~/r2 = 09474 = 0.9733.

ANOVA TABLE

Regression statistics may be presented succinctly inan ANOVA table, the general form
of which is shown in Table 2.5. Here m represents the number of predictor variables, so
that for simple linear regression, m = 1. The ANOVA table conveniently displays the
relationships among several statistics, showing for example that the sums of squares
add up to SST. The mean squares are presented as the ratios of the items to their left,
and for inference, the test statistic ' is represented as the ratio of the mean squares.
Tables 2.6 and 2.7 show the Minitab regression results, including the ANOVA tables,
for the orienteering and cereal examples, respectively.

TABLE2.5 ANOVA Table for Simple Linear Regression

Source of Variation Sum of Squares df Mean Square F
SSR
Regression SSR m MSR = — e MSR
" ~ MSE
. SSE
Error (or residual) SSE n—m-—1 MSE = 1
n—m—

Total SST = SSR + SSE n—1




ANOVA TABLE
TABLE 2.6 Results of Regression of Distance on Time
The regression equation is
distance = 6.00 + 2.00 time
Predictor Coef SE Coef T P
Constant 6.0000 0.9189 6.53 0.000
time 2.0000 0.1667 12.00 0.000
S = 1.2247 R-Sg = 94.7% R-Sg(adj) = 94.1%
Analysis of Variance
Source DF SS MS F P
Regression 1 216.00 216.00 144.00 0.000
Residual Error 8 12.00 1.50
Total 9 228.00

TABLE 2.7 Results of Regression of Nutritional Rating on Sugar Content

The regression equation is
Rating = 59.4 - 2.42 Sugars

Predictor Coef SE Coef T P
Constant 59.444 1.951 30.47 0.000
sugars -2.4193 0.2376 -10.18 0.000
S = 9.16160 R-Sg = 58.0% R-Sg(adj) = 57.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 8701.7 8701.7 103.67 0.000
Residual Error 75 6295.1 83.9

Total 76 14996.8

Unusual Observations

Obs Sugars Rating Fit SE Fit Residual St Resid
1 6.0 68.40 44.93 1.07 23.48 2.58R
4 0.0 93.70 59.44 1.95 34.26 3.83R

R denotes an observation with a large standardized residual.

47
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OUTLIERS, HIGH LEVERAGE POINTS, AND
INFLUENTIAL OBSERVATIONS

Next, we discuss the role of three types of observations that may or may not exert
undue influence on the regression results: (1) outliers, (2) high leverage points, and (3)
influential observations. An outlier is an observation that has a very large standardized
residual in absolute value. Consider the scatter plot of nutritional rating against sugars
in Figure 2.3. The two observations with the largest absolute residuals are identified
as All-Bran Extra Fiber and 100% Bran. Note that the vertical distance away from the
regression line (indicated by the vertical arrows) is greater for these two observations
than for any other cereals, indicating the largest residuals. For example, the nutritional
rating for All-Bran Extra Fiber (93.7) is much higher than predicted (59.44) based
on its sugar content alone (0 grams). Similarly, the nutritional rating for 100% Bran
(68.4) is much higher than would have been estimated (44.93) based on its sugar
content alone (6 grams).

Residuals may have different variances, so that it is preferable to use the stan-
dardized residuals in order to identify outliers. Standardized residuals are residuals
divided by their standard error, so that they are all on the same scale. Let s;, .5ig denote
the standard error of the ith residual. Then

Siresid =S/ 1 —h;

where h; refers to the leverage of the ith observation (see below). The standardized
residual,
yi — i
i, resid
A rough rule of thumb is to flag observations whose standardized residuals
exceed 2 in absolute value as being outliers. For example, note from Table 2.7 that
Minitab identifies observations 1 and 4 as outliers based on their large standardized

residuali, standardized =

957 <« Outlier: A/l Bran Extra Fiber
Sugars: 0
8517 Rating: 93.7
Predicted Rating: 59.44 Outlier: 100% Bran
754 Residual: 34.26 — Sugars: 6
° Rating: 68.4
65 Predicted Rating: 44.93
2 ° Standardized Residual: 23.48
£ 55-
o~
45+
35
25
° [}
L]
L]
15
T T T T
0 5 10 15

Sugars

Figure 2.3 Identifying the outliers in regression of nutritional rating on sugars.
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residuals; these are All-Bran Extra Fiber and 100% Bran. In general, if the residual is
positive, we may say that the y-value observed is higher than the regression estimated
given the x-value. If the residual is negative, we may say that the y-value observed is
lower than the regression estimated given the x-value.

A high leverage point is an observation that is extreme in the predictor space.
In other words, a high leverage point takes on extreme values for the x-variable(s),
without reference to the y-variable. That is, leverage takes into account only the
x-variables and ignores the y-variable. The term leverage is derived from the physics
concept of the lever, which Archimedes asserted could move the Earth itself if only it
were long enough. The leverage h; for the ith observation may be denoted as follows:

(v — %)
e e
noo Y (xi—X)

For a given data set, the quantities 1/n and }_ (x; — X)* may be considered to be
constants, so that the leverage for the ith observation depends solely on (x; — X)?, the
squared distance between the value of the predictor and the mean value of the predictor.
The farther the observation differs from the mean of the observations in the x-space, the
greater the leverage. The lower bound on leverage values is 1/n, and the upper bound
is 1.0. An observation with leverage greater than about2(m + 1) /nor3(m + 1) /n
may be considered to have high leverage (where m indicates the number of predictors).

For example, in the orienteering example, suppose that there was a new obser-
vation, a real hard-core orienteering competitor, who hiked for 16 hours and traveled
39 kilometers. Figure 2.4 shows the scatter plot, updated with this eleventh hiker.
Note from Figure 2.4 that the time traveled by the new hiker (16 hours) is extreme
in the x-space, as indicated by the horizontal arrows. This is sufficient to identify
this observation as a high leverage point without reference to how many kilometers
he or she actually traveled. Examine Table 2.8, which shows the updated regression
results for the 11 hikers. Note that Minitab points out correctly that this is an unusual
observation. It is unusual because it is a high leverage point. However, Minitab is not,

hi

N
(=)
|

(98] (98]
S W
| |

N
W
|

Distance

0 2 4 6 8 10 12 14 16
Time

Figure 2.4 Scatter plot of distance versus time, with new competitor who hiked for 16 hours.
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TABLE 2.8 Updated Regression Results Including the 16-Hour Hiker

The regression equation is
distance = 5.73 + 2.06 time

Predictor Coef SE Coef T P
Constant 5.7251 0.6513 8.79 0.000
time 2.06098 0.09128 22.58 0.000
S = 1.16901 R-Sg = 98.3% R-Sg(adj) = 98.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 696.61 696.61 509.74 0.000
Residual Error 9 12.30 1.37

Total 10 708.91

Unusual Observations

Obs time distance Fit SE Fit Residual St Resid
11 16.0 39.000 38.701 0.979 0.299 0.47 X

X denotes an observation whose X value gives it large influence.

P

=
et P} o

.

The hard-core orienteering competitor is a high-leverage point. (Courtesy: Chantal Larose).

strictly speaking, correct to call it an observation with large influence. To see what
we mean by this, let’s next discuss what it means to be an influential observation.

In the context of history, what does it mean to be an influential person? A
person is influential if his or her presence or absence changes the history of the world
significantly. In the context of Bedford Falls (I#’s a Wonderful Life), George Bailey
discovers that he really was influential when an angel shows him how different (and
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TABLE 2.9 Regression Results Including the Person Who Hiked 20 Kilometers in 5 Hours

The regression equation is
distance = 6.36 + 2.00 time

Predictor Coef SE Coef T P
Constant 6.364 1.278 4.98 0.001
time 2.0000 0.2337 8.56 0.000
S = 1.71741 R-Sg = 89.1% R-Sg(adj) = 87.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 216.00 216.00 73.23 0.000
Residual Error 9 26.55 2.95

Total 10 242.55

Unusual Observations

Obs time distance Fit SE Fit Residual St Resid
11 5.00 20.000 16.364 0.518 3.636 2.22R

R denotes an observation with a large standardized residual.

poorer) the world would have been had he never been born. Similarly, in regression,
an observation is influential if the regression parameters alter significantly based on
the presence or absence of the observation in the data set.

An outlier may or may not be influential. Similarly, a high leverage point may or
may not be influential. Usually, influential observations combine the characteristics
of a large residual and high leverage. It is possible for an observation to be not
quite flagged as an outlier and not quite flagged as a high leverage point, but still be
influential through the combination of the two characteristics.

First, let’s consider an example of an observation that is an outlier but is not
influential. Suppose that we replace our eleventh observation (no more hard-core guy)
with someone who hiked 20 kilometers in 5 hours. Examine Table 2.9, which presents
the regression results for these 11 hikers. Note from Table 2.9 that the new observation
is flagged as an outlier (unusual observation with large standardized residual). This is
because the distance traveled (20 kilometers) is higher than the regression predicted
(16.364 kilometers) given the time (5 hours). Now would we consider this observation
to be influential? Overall, probably not. Compare Tables 2.9 and 2.6 to assess the effect
the presence of this new observation has on the regression coefficients. The y-intercept
changes from by = 6.00 to by = 6.36, but the slope does not change at all, remaining
at by = 2.00 regardless of the presence of the new hiker.

Figure 2.5 shows the relatively mild effect that this outlier has on the estimated
regression line, shifting it vertically a small amount without affecting the slope at
all. Although it is an outlier, this observation is not influential because it has very
low leverage, being situated exactly on the mean of the x-values, so that it has the
minimum possible leverage for a data set of sizen = 11. We can calculate the leverage
for this observation (x = 5, y = 20) as follows. Since ¥ = 5, we have

D=2 =5+ 2=+ B =5+ + (-5 + (557 =54
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Figure 2.5 The mild outlier shifts the regression line only slightly.

Then
1 (5-5)7

s a0 = —
6200 = 7+ 5,

Now that we have the leverage for this observation, we may also find the
standardized residual, as follows. First, we have the standard error of the residual:

8(5,20), resid = 1.71741 % 1 —0.0909 = 1.6375

so that the standardized residual,

= 0.0909

-5  20—16.364
standardized 5(5.20), resid - 1.6375

residual(S’zo)’ =2.22
as shown in Table 2.9.

Cook’s distance measures the level of influence of an observation by taking into
account both the size of the residual and the amount of leverage for that observation.
Cook’s distance takes the following form for the ith observation:

o i — )A’i)2 hi
Yom 4 Ds2 (1 — hy)?

where y; — J; represents the ith residual, m the number of predictors, s the standard
error of the estimate, and /; the leverage of the ith observation. The left-hand ratio in
the formula for Cook’s distance contains an element representing the residual, and the
right-hand ratio contains functions of the leverage. Thus, Cook’s distance combines
the two concepts of outlier and leverage into a single measure of influence. The value
of the Cook’s distance measure for the hiker who traveled 20 kilometers in 5 hours is
as follows:

i

(20— 16.364) [ 0.0909

- = 0.2465
(1+1) 1717412 | (1 — 0.0909)2]
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A rough rule of thumb for determining whether an observation is influential
is if its Cook’s distance exceeds 1.0. More accurately, one may also compare the
Cook’s distance against the percentiles of the F-distribution with (m, n — m) degrees
of freedom. If the observed value lies within the first quartile of this distribution
(lower than the 25th percentile), the observation has little influence on the regression;
however, if the Cook’s distance is greater than the median of this distribution, the
observation is influential. For this observation, the Cook’s distance of 0.2465 lies
within the 37th percentile of the F, ¢ distribution, indicating that while the influence
of the observation is not negligible, neither is the observation particularly influential.

What about the hard-core hiker we encountered earlier? Was that observation
influential? Recall that this hiker traveled 39 kilometers in 16 hours, providing the
eleventh observation in the results reported in Table 2.8. First, let’s find the leverage.
Wehaven = 11 andm = 1, so that observations having #; > 2(m + 1) /n = 0.36 or
h; > 3(m + 1) /n = 0.55 may be considered to have high leverage. This observation
has #; = 0.7007, which indicates that this durable hiker does indeed have high lever-
age, as mentioned with reference to Figure 2.4. This figure seems to indicate that this
hiker (x = 16, y = 39) is not, however, an outlier, since the observation lies near the
regression line. The standardized residual supports this, having a value of 0.46801.
The reader will be asked to verify these values for leverage and standardized residual
in the exercises.

Finally, the Cook’s distance for this observation is 0.2564, which is about the
same as our previous example, indicating that the observation is not particularly
influential, although not completely without influence on the regression coefficients.
Figure 2.6 shows the slight change in the regression with (solid line) and without
(dashed line) this observation. So we have seen that an observation that is an outlier
with low influence, or an observation that is a high leverage point with a small residual,
may not be particularly influential. We next illustrate how a data point that has a
moderately high residual and moderately high leverage may indeed be influential.

40
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Figure 2.6 Slight change in the regression line when the hard-core hiker is added.
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TABLE2.10 Regression Results from a New Observation with Time = 10,
Distance = 23

The regression equation is
distance = 6.70 + 1.82 time

Predictor Coef SE Coef T P
Constant 6.6967 0.9718 6.89 0.000
time 1.8223 0.1604 11.36 0.000
S = 1.40469 R-Sg = 93.5% R-Sg(adj) = 92.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 254.79 254.79 129.13 0.000
Residual Error 9 17.76 1.97

Total 10 272.55

Suppose that our eleventh hiker had instead hiked for 10 hours and traveled 23
kilometers. The regression analysis for the 11 hikers is given in Table 2.10. Note that
Minitab does not identify the new observation as either an outlier or a high leverage
point. This is because, as the reader is asked to verify in the exercises, the leverage
of this new hiker is #; = 0.36019 and the standardized residual equals —1.70831.
However, despite lacking either a particularly large leverage or a large residual, this
observation is nevertheless influential, as measured by its Cook’s distance of D; =
0.821457, which is in line with the 62nd percentile of the F) j¢ distribution. The
influence of this observation stems from the combination of its moderately large
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Figure 2.7 Moderate residual plus moderate leverage = influential observation.
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residual with its moderately large leverage. Figure 2.7 shows the influence this single

hiker has on the regression line, pulling down on the right side to decrease the slope
(from 2.00 to 1.82) and thereby increase the y-intercept (from 6.00 to 6.70).

REGRESSION MODEL

Least-squares regression is a powerful and elegant methodology. However, if the as-
sumptions of the regression model are not validated, the resulting inference and model
building are undermined. Deploying a model whose results are based on unverified
assumptions may lead to expensive failures later. The simple linear regression model
is given as follows. We have a set of n bivariate observations, with response value y;
related to predictor value x; through the linear relationship that follows.

REGRESSION MODEL

y=PB +pBx+e
where
® By and B, represent the model parameters for the y-intercept and slope, respectively.

These are constants, whose true value remains unknown and which are estimated from
the data using least-squares estimates.

® ¢ represents the error term. Since most predictor—response relationships are not deter-
ministic, a certain amount of error will be introduced by any linear approximation of the
actual relationship. Therefore, an error term, modeled by a random variable, is needed.

Assumptions About the Error Term

1. Zero-mean assumption. The error term ¢ is a random variable, with mean or expected
value equal to zero. In other words, E(g) = 0.

2. Constant-variance assumption. The variance of &, denoted by o2, is constant regardless
of the value of x.

3. Independence assumption. The values of ¢ are independent.
4. Normality assumption. The error term ¢ is a normally distributed random variable.

In other words, the values of the error term ¢; are independent normal random variables,
with mean 0 and variance o2.

Based on these four assumptions, we can derive four implications for the be-
havior of the response variable, y, as follows.

Figure 2.8 illustrates graphically the normality of the y;, with mean By + f;x
and constant variance o2, Suppose that we have a data set which includes predictor
values at x = 5, 10, and 15, among other values. Then, at each of these values of x, the
regression assumptions assert that observed values of y are samples from a normally
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Figure 2.8 For each value of x, the y; are normally distributed, with mean on the regression
line and constant variance.

distributed population with a mean on the regression line [E(y) = By + B1x] and
constant standard deviation 2. Note from Figure 2.8 that each of the normal curves
has precisely the same shape, which indicates that the variance is constant for each
value of x.

If one is interested in using regression analysis in a strictly descriptive manner,
with no inference and no model building, one need not worry quite so much about

IMPLICATIONS OF THE ASSUMPTIONS FOR THE BEHAVIOR OF THE
RESPONSE VARIABLE y

1. Based on the zero-mean assumption, we have
E(y)=E(Bo+ Bix +¢) = E(Bo) + E(Bix) + E(e) = Bo + Bix

That is, for each value of x, the mean of the y’s lies on the regression line.
2. Based on the constant-variance assumption, we have the variance of y, Var(y), given as
Var(y) = Var (By + f1x + &) = Var(e) = o>
That is, regardless of which value is taken by the predictor x, the variance of the y’s is
always constant.

3. Based on the independence assumption, it follows that for any particular value of x, the
values of y are independent as well.

4. Based on the normality assumption, it follows that y is also a normally distributed random
variable.

In other words, the values of the response variable y; are independent normal random
variables, with mean B, + f;x and variance o>.
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assumption validation. This is because the assumptions are about the error term. If the

error term is not involved, the assumptions are not needed. However, if one wishes to
do inference or model building, the assumptions must be verified.

INFERENCE IN REGRESSION

Consider the regression results given in Table 2.11. We have a predictor X and a
response Y, and assume that we are unfamiliar with this type of data, except that each
variable ranges from about —4 to 4. We are interested in using X to predict Y. Now
the coefficient of determination takes on the value r2 = 0.3%,which would tend to
indicate that the model is not at all useful. We are tempted to conclude that there is
no linear relationship between x and y.

However, are we sure that there is no linear relationship between the variables?
It is possible that such a relationship could exist even though 72 is small. The ques-
tion is: Does there exist some systematic approach for determining whether a linear
relationship exists between two variables? The answer, of course, is yes: Inference
in regression offers a systematic framework for assessing the significance of linear
association between two variables.

We shall examine four inferential methods in this chapter:

1. The t-test for the relationship between the response variable and the predictor
variable

2. The confidence interval for the slope, §;

3. The confidence interval for the mean of the response variable given a particular
value of the predictor

4. The prediction interval for a random value of the response variable given a
particular value of the predictor

In Chapter 3 we also investigate the F-test for the significance of the regression as
a whole. However, for simple linear regression, the z-test and the F-test are equivalent.

How do we go about performing inference in regression? Take a moment to
consider the form of the regression equation:

y=PBo+pix+e¢

TABLE 2.11 Regression That Is Not Very Useful, or Is It?

The regression equation is
Y = 0.783 + 0.0559 X

Predictor Coef SE Coef T P
Constant 0.78262 0.03791 20.64 0.000
Y 0.05594 0.03056 1.83 0.067

S = 0.983986 R-Sg = 0.3% R-Sg(adj) = 0.2%
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This equation asserts that there is a linear relationship between y on the one hand
and some function of x on the other. Now, f; is a model parameter, so that it is a
constant whose value is unknown. Is there some value that 8; could take such that
if By took that value, there would no longer exist a linear relationship between xand
y?

Consider what would happen if §; were zero. Then the regression equation
would be

y=po+O)x+¢
In other words, when 8; = 0, the regression equation becomes

y=pHt+e

That is, a linear relationship between x and y no longer exists. On the other hand, if
B takes on any conceivable value other than zero, a linear relationship of some kind
exists between the response and the predictor. Much of our regression inference in
this chapter is based on this key idea: that the linear relationship between x and y
depends on the value of g;.

t-Test for the Relationship Between xand y

The least-squares estimate of the slope, by, is a statistic. Like all statistics, it has
a sampling distribution with a particular mean and standard error. The sampling
distribution of b; has as its mean the (unknown) value of the true slope B, and has as
its standard error the following:

Op, = \/sz _ (Zx)z /n

Just as one-sample inference about the mean is based on the sampling distribution of
X, so regression inference about the slope f; is based on this sampling distribution
of b 1-

The point estimate of oy, is sp,, given by

N

Sp, = \/sz _ (Zx)z /n

where sis the standard error of the estimate, reported in the regression results. The s,
statistic is to be interpreted as a measure of the variability of the slope. Large values
of 55, indicate that the estimate of the slope b; is unstable, while small values of s,
indicate that the estimate of the slope b, is precise.

The t-test is based on the distribution of r = (81 — B1)/ss,, which follows a
t-distribution with n — 2 degrees of freedom. When the null hypothesis is true, the
test statistic t = by /s, follows a t-distribution with n — 2 degrees of freedom.

To illustrate, we shall carry out the #-test using the results from Table 2.7,
the regression of nutritional rating on sugar content. For convenience, part of
Table 2.7 is reproduced here as Table 2.12. Consider the row in Table 2.12, labeled
“Sugars. ”
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TABLE 2.12 Results of Regression of Nutritional Rating on Sugar Content

The regression equation is
Rating = 59.4 - 2.42 Sugars

Predictor Coef SE Coef T P
Constant 59.444 1.951 30.47 0.000
sSugars -2.4193 0.2376 -10.18 0.000
S = 9.16160 R-Sg = 98.0% R-Sg(adj) = 57.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 8701.7 8701.7 103.67 0.000
Residual Error 75 6295.1 83.9

Total 76 14996.8

e Under “Coef” is found the value of b;, —2.4193.

e Under “SE Coef” is found the value of s, , the standard error of the slope. Here
sp, = 0.2376.

e Under “T” is found the value of the #-statistic, that is, the test statistic for the
t-test, t = by/sp, = —2.4193/0.2376 = —10.18.

e Under “P” is found the p-value of the r-statistic. Since this is a two-tailed
test, this p-value takes the following form: p-value = P(|t| > fops), Where fops
represent the observed value of the 7-statistic from the regression results. Here
p-value = P(|t| > tos) = P(Jt| > —10.18) &~ 0.000, although, of course, no
continuous p-value ever equals precisely zero.

The null hypothesis asserts that no linear relationship exists between the vari-
ables, while the alternative hypothesis states that such a relationship does indeed
exist.

* Hy: pB1 = 0 (There is no linear relationship between sugar content and nutri-
tional rating.)

e H,: B #0 (Yes, there is a linear relationship between sugar content and
nutritional rating.)

We shall carry out the hypothesis test using the p-value method, where the null
hypothesis is rejected when the p-value of the test statistic is small. What determines
how small is small depends on the field of study, the analyst, and domain experts
although many analysts routinely use 0.05 as a threshold. Here, we have p-value
~ 0.00, which is surely smaller than any reasonable threshold of significance. We
therefore reject the null hypothesis and conclude that a linear relationship exists
between sugar content and nutritional rating.
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Confidence Interval for the Slope of the Regression Line

Researchers may consider that hypothesis tests are too black and white in their con-
clusions, and prefer to estimate the slope of the regression line 8, using a confidence
interval. The interval used is a t-interval, based on the sampling distribution for b;
above. The form of the confidence interval is as follows.

100(1 — )% CONFIDENCE INTERVAL FOR THE TRUE SLOPE 3, OF THE
REGRESSION LINE

We can be 100(1 — «)% confident that the true slope g; of the regression line lies between
by & (1, 2)(Sp,)

where 7, _, is based on n — 2 degrees of freedom.

For example, let us construct a 95% confidence interval for the true slope of the
regression line, 8;. We have the point estimate given as by = —2.4193. The t-critical
value for 95% confidence and n — 2 = 75 degrees of freedom is #75 959, = 2.0. From
Table 2.12 we have s, = 0.2376. Thus, our confidence interval is as follows:

by — (ta_2)(sp,) = —2.4193 — (2.0) (0.2376) = —2.8945
by + (ty_2)(sp,) = —2.4193 + (2.0) (0.2376) = —1.9441

We are 95% confident that the true slope of the regression line lies between —2.89 and
—1.94. That is, for every additional gram of sugar, the nutritional rating will decrease
between 1.94 and 2.89 points. Since the point 8; = 0 is not contained within this
interval, we can be sure of the significance of the relationship between the variables
with 95% confidence.

Confidence Interval for the Mean Value of y Given x

Point estimates for values of the response variable for a given value of the predic-
tor value may be obtained using the estimated regression equation y = by + by x.
Unfortunately, these kinds of point estimates do not provide a probability statement
regarding their accuracy. The analyst is therefore advised to provide the user with two

CONFIDENCE INTERVAL FOR THE MEAN VALUE OF y FOR A GIVEN
VALUE OF x

(xp _ f)z

where §, is the point estimate of y for a particular value of x, #,_» a multiplier associated
with the sample size and confidence level, s the standard error of the estimate, and x,, the
particular value of x for which the prediction is being made.

1
.9/1 =+ tn—Z(s) -+
n
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types of intervals: (1) a confidence interval for the mean value of y given x, and (2)
a prediction interval for the value of a randomly chosen y given x.

Before we look at an example of this type of confidence interval, we are first
introduced to a new type of interval, the prediction interval.

Prediction Interval for a Randomly Chosen Value of y Given x

Baseball buffs, which is easier to predict: the mean batting average for an entire team
or the batting average of a randomly chosen player? You may have noticed while
perusing weekly batting average statistics that team batting averages (which each
represent the mean batting average of all the players on a particular team) are more
tightly bunched together than are the batting averages of the individual players. This
would indicate that an estimate of the team batting average would be more precise
than an estimate of a randomly chosen baseball player given the same confidence
level. Thus, in general, it is easier to predict the mean value of a variable than to
predict a randomly chosen value of that variable.

For another example of this phenomenon, consider exam scores. We would
not think that it unusual for a randomly chosen student’s grade to exceed 98, but it
would be quite remarkable for the class mean to exceed 98. Recall from elementary
statistics that the variability associated with the mean of a variable is smaller than the
variability associated with an individual observation of that variable. For example,
the standard deviation of the univariate random variable xis o, whereas the standard
deviation of the sampling distribution of the sample mean X is o/n. Hence, predicting
the class average on an exam is an easier task than predicting the grade of a randomly
selected student.

In many situations, analysts are more interested in predicting an individual
value than the mean of all the values, given x. For example, an analyst may be more
interested in predicting the credit score for a particular credit applicant rather than
predicting the mean credit score of all similar applicants. Or a geneticist may be
interested in the expression of a particular gene rather than the mean expression of
all similar genes.

Prediction intervals are used to estimate the value of a randomly chosen value
of y given x. Clearly, this is a more difficult task than estimating the mean, resulting
in intervals of greater width (lower precision) than confidence intervals for the mean
with the same confidence level.

PREDICTION INTERVAL FOR A RANDOMLY CHOSEN VALUE OF y FOR A
GIVEN VALUE OF x

(xp — f)z

1
Vp £ o () |14+ -4+ ==
Yp n 2() n Z(x,-—f)z

Note that this formula is precisely the same as the formula for the confidence interval
for the mean value of y, given x, except for the presence of the “1+" inside the square
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root. This reflects the greater variability associated with estimating a single value of y
rather than the mean; it also ensures that the prediction interval is always wider than
the analogous confidence interval.

Recall the orienteering example, where the time and distance traveled was
observed for 10 hikers. Suppose that we are interested in estimating the distance
traveled for a hiker traveling for y, = 5x = 5 hours. The point estimate is obtained
easily using the estimated regression equation from Table 2.6: §y = 6+ 2x = 6 +
2(2.5) = 16. That is, the estimated distance traveled for a hiker walking for 5 hours is
16 kilometers. Note from Figure 2.2 that this prediction (x = 5, y = 16) falls directly
on the regression line, as do all such predictions.

However, we must ask the question: How sure are we about the accuracy of our
point estimate? That is, are we certain that this hiker will walk precisely 16 kilometers,
not 15.9 or 16.1 kilometers? As usual with point estimates, there is no measure of
confidence associated with it, which limits the applicability and usefulness of the
point estimate. We would therefore like to construct a confidence interval. Recall that
the regression model assumes that at each of the x-values, the observed values of y are
samples from a normally distributed population with a mean on the regression line
E(y) = Bo + Bix and constant variance o2, as illustrated in Figure 2.8. The point
estimate represents the mean of this population, as estimated by the data.

Now, in this case, of course, we have only observed a single observation with
the value x = 5 hours. Nevertheless, the regression model assumes the existence of
an entire normally distributed population of possible hikers with this value for time.
Of all possible hikers in this distribution, 95% will travel within a certain bounded
distance (the margin of error) from the point estimate of 16 kilometers. We may
therefore obtain a 95% confidence interval (or whatever confidence level is desired)
for the mean distance traveled by all possible hikers who walked for 5 hours. We use
the formula provided above:

S+ fyals) |~ + (=7
p n— n Z (X,‘ _ Y)Z
with
* 9, = 16, the point estimate e n=10
° tn—2,a = t&gs% = 2306 ° xp — 5
e 5 = 1.22474, from Table 2.6 e Fi=5
We have

Y= =25+ Q =5 +B =54+ (O -5 =54

and we therefore calculate the 95% confidence interval as follows:

. T 1 6-57
Vp £ ta2(s) o + m =16 = (2.306) (1.22474) T0 + 51

=16 £ 0.893 = (15.107, 16.893)
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We are 95% confident that the mean distance traveled by all possible 5-hour hikers
lies between 15.107 and 16.893 kilometers.

However, are we sure that this mean of all possible 5-hour hikers is the quantity
that we really want to estimate? Wouldn’t it be more useful to estimate the distance
traveled by a particular randomly selected hiker? Many analysts would agree and
would therefore prefer a prediction interval for a single hiker rather than the confi-
dence interval for the mean of the hikers. The calculation of the prediction interval is
quite similar to the confidence interval above, but the interpretation is quite different.
We have

1
Vp £ 2 (8) |1+ —F+ =——T=5 =
Yp 2 () p Z(xi—f)z

4+ (2.306) (1.22474),/1 + ! +(5_5)2
' ' 10 54

=16 £ 2.962 = (13.038, 18.962)

In other words, we are 95% confident that the distance traveled by a randomly
chosen hiker who had walked for 5 hours lies between 13.038 and 18.962 kilometers.
Note that as mentioned earlier, the prediction interval is wider than the confidence
interval, since estimating a single response is more difficult than estimating the mean
response. However, also note that the interpretation of the prediction interval is prob-
ably more useful for the data miner.

We verify our calculations by providing in Table 2.13 the Minitab results for
the regression of distance on time, with the confidence interval and prediction interval
indicated at the bottom (“Predicted Values for New Observations”). The fit of 16 is
the point estimate, the standard error of the fit equals

_\2
1 (x b= x)
) |-+ =———
NP > (i —x)
the 95% CI indicates the confidence interval for the mean distance of all 5-hour

hikers, and the 95% PI indicates the prediction interval for the distance traveled by a
randomly chosen 5-hour hiker.

VERIFYING THE REGRESSION ASSUMPTIONS

All of the inferential methods just described depend on the adherence of the data to
the regression assumptions outlined earlier. So how does one go about verifying the
regression assumptions? The two main graphical methods used to verify regression
assumptions are (1) a normal probability plot of the residuals, and (2) a plot of the
standardized residuals against the fitted (predicted) values.

A normal probability plot is a quantile—quantile plot of the quantiles of a par-
ticular distribution against the quantiles of the standard normal distribution, used to
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TABLE 2.13 Results of Regression of Distance on Time

The regression equation is
distance = 6.00 + 2.00 time

Predictor Coef SE Coef T P
Constant 6.0000 0.9189 6.53 0.000
time 2.0000 0.1667 12.00 0.000
S = 1.22474 R-Sg = 94.7% R-Sqg(adj) = 94.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 216.00 216.00 144.00 0.000
Residual Error 8 12.00 1.50

Total 9 228.00

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 16.000 0.387 (15.107, 16.893) (13.038, 18.962)

determine whether the specified distribution deviates from normality. (Similar to a
percentile, a guantile of a distribution is a value x,, such that p% of the distribution
values are less than or equal to x,.) In a normality plot, the values observed for the
distribution of interest are compared against the same number of values that would
be expected from the normal distribution. If the distribution is normal, the bulk of the
points in the plot should fall on a straight line; systematic deviations from linearity
in this plot indicate nonnormality.

To illustrate the behavior of the normal probability plot for different kinds of
data distributions, we provide three examples. Figures 2.9, 2.10, and 2.11 contain the
normal probability plots for a uniform (0, 1) distribution, a chi-square (5) distribution,
and a normal (0, 1) distribution, respectively. Note in Figure 2.9 that the bulk of the
data do not line up on the straight line, and that a clear pattern (reverse S curve)
emerges, indicating systematic deviation from normality. The uniform distribution
is a rectangular distribution whose tails are much heavier than those for the normal
distribution. Thus, Figure 2.9 is an example of a probability plot for a distribution
with heavier tails than those for the normal distribution.

Figure 2.10 also contains a clear curved pattern, indicating systematic deviation
from normality. The chi-square (5) distribution is right-skewed, so that the curve
pattern apparent in Figure 2.10 may be considered typical of the pattern made by
right-skewed distributions in a normal probability plot.

In Figure 2.11 the points line up nicely on a straight line, indicating normality,
which is not surprising since the data are drawn from a normal (0, 1) distribution. It
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Figure 2.9 Normal probability plot for a uniform distribution: heavy tails.

should be remarked that we should not expect real-world data to behave this nicely.
The presence of sampling error and other sources of noise will usually render our
decisions about normality less clear-cut than this.
Note the AD statistic and p-value reported by Minitab in each of Figures 2.9
to 2.11. This refers to the Anderson—Darling test for normality. Smaller values of the
AD statistic indicate that the normal distribution is a better fit for the data. The null
hypothesis is that the normal distribution fits, so that small p-values will indicate lack
of fit. Note that for the uniform and chi-square examples, the p-value for the AD test is

Percent
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o’

Mean 4.944
St Dev 3.055
N 10000

AD 164.857
p-Value <0.005

5 10 15 20
chi square

Figure 2.10 Probability plot for a chi-square distribution: right-skewed.
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Figure 2.11 Probability plot for a normal distribution. (Don’t expect real-world data to
behave this nicely.)

less than 0.005, indicating strong evidence for lack of fit with the normal distribution.
On the other hand, the p-value for the normal example is 0.832, indicating no evidence
against the null hypothesis that the distribution is normal.

The second graphical method used to assess the validity of the regression as-
sumptions is a plot of the standardized residuals against the fits (predicted values).
An example of this type of graph is given in Figure 2.12, for the regression of dis-
tance versus time for the original 10 observations in the orienteering example. Note
the close relationship between this graph and the original scatter plot in Figure 2.2.

2 -

Standardized Residual
()

[ ] °
— 1 —
L]
=2 T T T T T T T T
10 12 14 16 18 20 22 24
Fitted Value

Figure 2.12 Plot of standardized residuals versus values predicted for the orienteering
example.
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Figure 2.13  Four possible patterns in the plot of residuals versus fits.

The regression line from Figure 2.2 is now the horizontal zero line in Figure 2.12.
Points that were either above/below/on the regression line in Figure 2.2 now lie either
above/below/on the horizontal zero line in Figure 2.12.

We evaluate the validity of the regression assumptions by observing whether
certain patterns exist in the plot of the residuals versus fits, in which case one of
the assumptions has been violated, or whether no such discernible patterns exists, in
which case the assumptions remain intact. The 10 data points in Figure 2.12 are really
too few to try to determine whether any patterns exist. In data mining applications,
of course, paucity of data is rarely the issue.

Let us see what types of patterns we should watch out for. Figure 2.13 shows
four pattern “archetypes” that may be observed in residual-fit plots. Plot (a) shows
a “healthy” plot, where no noticeable patterns are observed and the points display
an essentially rectangular shape from left to right. Plot (b) exhibits curvature, which
violates the independence assumption. Plot (¢) displays a “funnel” pattern, which
violates the constant-variance assumption. Finally, plot (d) exhibits a pattern that
increases from left to right, which violates the zero-mean assumption.

Why does plot (») violate the independence assumption? Because the errors are
assumed to be independent, the residuals (which estimate the errors) should exhibit
independent behavior as well. However, if the residuals form a curved pattern, then,
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for a given residual, we may predict where its neighbors to the left and right will
fall, within a certain margin of error. If the residuals were truly independent, such a
prediction would not be possible.

Why does plot (c) violate the constant-variance assumption? Note from plot
(a) that the variability in the residuals, as shown by the vertical distance, is fairly
constant regardless of the value of x. On the other hand, in plot (c), the variability
of the residuals is smaller for smaller values of x and larger for larger values of
x. Therefore, the variability is nonconstant, which violates the constant-variance
assumption.

Why does plot (d) violate the zero-mean assumption? The zero-mean assump-
tion states that the mean of the error term is zero regardless of the value of x. However,
plot (d) shows that for small values of x, the mean of the residuals is less than zero,
whereas for large values of x, the mean of the residuals is greater than zero. This is
a violation of the zero-mean assumption as well as a violation of the independence
assumption.

Apart from these graphical methods, there are several diagnostic hypothesis
tests that may be carried out to assess the validity of the regression assumptions. As
mentioned above, the Anderson—Darling test may be used to indicate the fit of residuals
to a normal distribution. For assessing whether the constant variance assumption has
been violated, either Bartlett’s or Levene’s test may be used. For determining whether
the independence assumption has been violated, either the Durban—Watson or runs
test may be used. Information about all these diagnostic tests may be found in Draper
and Smith [3].

If the normal probability plot shows no systematic deviations from linearity, and
the residuals—fits plot shows no discernible patterns, we may conclude that there is no
graphical evidence for the violation of the regression assumptions, and we may then
proceed with the regression analysis. However, what do we do if these graphs indicate
violations of the assumptions? For example, suppose that our normal probability plot
of the residuals looked something like plot (¢) in Figure 2.13, indicating nonconstant
variance? Then we may apply a transformation to the response variable y, such as the
In (natural log, log to the base ¢) transformation.

EXAMPLE: BASEBALL DATA SET

To illustrate the use of transformations, we turn to the baseball data set, a collection
of batting statistics for 331 baseball players who played in the American League in
2002. In this case we are interested in whether there is a relationship between batting
average and the number of home runs that a player hits. Some fans might argue, for
example, that those who hit lots of home runs also tend to make a lot of strikeouts, so
that their batting average is lower. Let’s check it out using a regression of the number
of home runs against the player’s batting average (hits divided by at bats).

Because baseball batting averages tend to be highly variable for low numbers of
at bats, we restrict our data set to those players who had at least 100 at bats for the 2002
season. This leaves us with 209 players. A scatter plot of home runs versus batting
average is shown in Figure 2.14. The scatter plot indicates that there may be a positive
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Figure 2.14  Scatter plot of home runs versus batting average.

linear relationship between home runs and batting average, but that the variability of
the number of home runs is greater for those with higher batting averages. This may
presage problems with the constant-variance assumption.

We therefore examine whether the regression assumptions are valid, using the
graphical methods introduced above. A regression of home runs on batting aver-
age produced the normal probability plot of the standardized residuals given in
Figure 2.15. The normal probability plot resembles that of Figure 2.10, where the
distribution was right-skewed and not normal. This indicates that the normality as-
sumption has been violated. Next, we turn to a plot of the standardized residuals
versus the fitted (predicted) values given in Figure 2.16. This plot exhibits a fairly
classic funnel pattern, similar to plot (c¢) in Figure 2.13, which is an indication of
nonconstant variance.

The results for the regression of home runs on batting average are given in
Table 2.14. The estimated regression equation is as follows: The estimated number
of home runs is given as —28.1 plus 154 times the player’s batting average. For
example, a player with a 0.300 batting average would have an estimated (—28.1) +
(154)(0.300)=18.1 home runs. Unfortunately, because the normality and constant-
variance assumptions have been violated, we cannot use these regression results for
inference or model building. Since model building is a primary goal of data mining,
we should seek to remedy these violations, using transformations.

It should be emphasized any inference or model building based on the regression
results in Table 2.14 should be viewed with extreme caution. Deploying such a model,
built upon erroneous assumptions, is not recommended. The underlying statistical
and mathematical foundation of the regression model is faulty, and like a cracked
foundation for a house, may cause expensive reconstruction in the future. To bring
our data in line with the regression model assumptions, we therefore apply the natural
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Figure 2.15 Normal probability plot of standardized residuals. Violation of the normality
assumption is indicated.

log (In) transformation to the response, home runs, giving us the transformed response,
In home runs. We then investigate the graphical evidence regarding the validity of
model assumptions for the regression of In home runs on batting average.

Figure 2.17 provides the normal probability plot of the standardized residuals
for this model. Note that most of the data line up nicely along the straight line,
indicating that the bulk of the data set follows a normal distribution. The normality
assumption tends to break down somewhat in the tails, where there are fewer data
points; however, no real-world data set will ever follow a perfectly normal distribution,
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Figure 2.16 Plot of standardized residuals versus fits. Violation of the constant-variance
assumption is indicated.



EXAMPLE: BASEBALL DATA SET 71

TABLE 2.14 Results of Regression of Home Runs on Batting Average?

The regression equation is

home runs = -28.1 + 154 bat ave

Predictor Coef SE Coef T P
Constant -28.149 5.083 -5.54 0.000
bat ave 153.55 19.50 7.87 0.000

S = 9.14046 R-Sg = 23.0% R-Sg(adj) = 22.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 5179.0 5179.0 61.99 0.000
Residual Error 207 17294.5 83.5

Total 208 22473.5

¢ Not valid for inference or model building.

and we conclude that there is insufficient evidence to reject the normality assumption
for this model.

Figure 2.18 provides a plot of the standardized residuals versus the fitted values
for the regression of In home runs on batting average. The plot shows no strong
evidence that the constant-variance assumption has been violated. When examining
plots for patterns, beware of the “Rorschach effect” of seeing patterns in randomness.
The null hypothesis when examining these plots is that the assumptions are intact;
only systematic and clearly identifiable patterns in the residuals plots offer evidence
to the contrary. We therefore conclude that the regression assumptions are validated
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Figure 2.17 Normal probability plot after /n transformation: acceptable normality.
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Figure 2.18 Residuals versus fits plot: no strong evidence of assumption violations.

for the model:

In home runs = By + B batting average + ¢

The results from the regression of In home runs on batting average are provided
in Table 2.15. Using the more precisely reported results, the estimated regression
equation is as follows: The estimated /n home runs equals —0.6608 plus 11.555 times
batting average. To provide a point estimate example, a player with a 0.300 batting
average would have an estimated In home runs of (—0.6608) + (11.555)(0.300) =
2.8057, giving him an estimated e>3%57 = 16.54 home runs. (This is compared to the
18.1 home runs estimated earlier under the unvalidated model.)

The standard error of the estimate is s = 0.673186, which is expressed in the
same units as the response variable, I[n home runs. This means that our typical error
in predicting the number of home runs, based on the player’s batting average, is
673186 — 1,96 home runs, which seems to indicate fairly precise estimation.

The coefficient of determination is r2 = 23.8%, which tells us that the batting
average accounts for 23.8% of the variability in (the In of) the number of home runs a
player hits. Of course, many other factors should affect a person’s ability to hit home
runs, such as size, strength, number of at bats, and other factors. However, batting
average alone accounts for nearly one-fourth of the variability in the response.

Turning to inference, is there evidence that batting average and In home runs
are linearly related? The null hypothesis is that there is no linear relationship between
the variables. We are provided with the following statistics from Table 2.15:

e The slope estimate is b; = 11.555.

e The standard error of the slope estimate is s,, = 1.436, which together with the
slope estimate, gives us

e The f-statistic, t = 11.555/1.436 = 8.05, which is also reported (note the slight
rounding differences). Finally, we have

e The p-value, P(|t| > tons) = P(|t] > 8.05) =~ 0.000.
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TABLE 2.15 Results of Regression of In Home Runs on Batting Average

The regression equation is
In home runs = - 0.661 + 11.6 bat ave

Predictor Coef SE Coef T P

Constant -0.6608 0.3744 -1.77 0.079
bat ave 11.555 1.436 8.04 0.000

S = 0.673186 R-Sg = 23.8% R-Sg(adj) = 23.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 29.327 29.327 64.71 0.000
Residual Error 207 93.808 0.453

Total 208 123.135

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 2.8056 0.0755 (2.6567, 2.9545) 1.4701, 4.1411

Since the p-value is smaller than any reasonable threshold of significance, we
therefore reject the null hypothesis and conclude that batting average and In home
runs are linearly related. A 95% confidence interval for the unknown true slope of
the regression between these two variables is given by

by £ (t,—2)(sp,) = b1 % (207, 95%)(S,)
= 11.555 & (1.97)(1.436)
— (8.73, 14.38)

Since the confidence interval does not include zero, we can conclude with 95%
confidence that batting average and In home runs are linear related.

The correlation coefficient between the variables is r = v/r2 = +/0.238 =
0.4879. Note that this is lower than the threshold in our earlier rule of thumb, which
would have led us to believe that the variables are uncorrelated. However, as men-
tioned earlier, rules of thumb must give way to more rigorous tests of association,
including the #-test and confidence interval performed here. Batting average and In
home runs are clearly mildly positively correlated. As batting average increases, there
is a mild tendency for the number of home runs to increase.

The 95% confidence interval for the mean number of home runs for all players
who had a batting average of 0.300 is given by (e*%°67, ¢23%) = (14.25,19.19).
The 95% prediction interval for the number of home runs by a randomly selected
player with a 0.300 batting average is given by (' 47!, e*!411) = (4.35, 62.87) . This
prediction interval is much too wide to be useful.
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TABLE 2.16 Outliers for the Baseball Data Set

Given His

Batting Average,

His Number of

Obs. Player Team Batting Ave. HR St.Res.  Home Runs Is:
2 Josh Paul Chicago White Sox 0.240 2 —2.11 Low
4 Jose Macias Detroit Tigers 0.234 2 —2.01 Low
5 D’Ange Jimenez Chicago White Sox 0.287 3 —2.32 Low
53  Gabe Kapler Texas Rangers 0.260 2 —2.46 Low
55  Rusty Greer Texas Rangers 0.296 3 —2.48 Low
76 Orland Palmeiro ~ Anaheim Angels 0.300 2 -3.16 Low
110 Rey Sanchez Boston Red Sox 0.286 3 —2.30 Low

With respect to the unusual observations, the outliers are given in Table 2.16
and the high leverage points are given in Table 2.17. The outliers are all on the low
side, meaning that the number of home runs hit by the outliers was all less than
expected given the player’s batting average. The high leverage points includes those
players with the highest and lowest batting averages in the American League in 2002.
No data points were deemed to be influential, with the highest value for Cook’s
distance belonging to Greg Vaughn (D = 0.066) of the Tampa Bay Devil Rays, who
had a relatively high number of home runs (¢?3%2® = 10) for his low batting average
(0.163). The next most influential point was Orland Palmeiro (D = 0.064), who had a
relatively low number of home runs (e*%*3! = 2) for his high batting average (0.300).
However, none of the Cook’s distances exceeded the 20th percentile of the Fj 203
distribution, so none of the data points is influential according to that criterion.

EXAMPLE: CALIFORNIA DATA SET

Let us examine the California data set [4] (available from the book series Web site),
which consists of some census information for 858 towns and cities in California.
This example will give us a chance to investigate handling outliers and high leverage

TABLE 2.17 High Leverage Points for the Baseball Data Set

His Batting

Obs. Player Team Batting Ave. HR Average Is:
3 Enrique Wilson New York Yankees 0.181 4 Low
12 DeWayne Wise Toronto Blue Jays 0.179 5 Low
32 Joe Lawrence Toronto Blue Jays 0.180 4 Low
70 Greg Vaughn Tampa Bay Devil Rays 0.163 10 Low
132 Manny Ramirez Boston Red Sox 0.349 35 High
148 Mike Sweeney Kansas City Royals 0.340 26 High

196 Bernie Williams New York Yankees 0.333 21 High
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Figure 2.19  Scatter plot of percentage over 64 versus population (effect of outliers).

points as well as transformations of both the predictor and response. We are interested
in approximating the relationship, if any, between the percentage of townspeople who
are citizens and the total population of the town. That is, do the towns with higher
proportions of senior citizens (over 64 years of age) tend to be larger towns or smaller
towns?

We begin, as any simple linear regression should begin, with a scatter plot of
the response variable against the predictor (Figure 2.19). Most of the data points are
squished up against the left axis, due to the presence of several outliers, including Los
Angeles, San Diego, San Jose, and San Francisco. Thus, we do not have a solid feel
for the nature of the relationship between the two variables. The problem is that the
distribution of the total population variable is extremely right-skewed, since there are
many towns of small and moderate size, and fewer cities of large size. One way of
handling such skewness is to apply a transformation to the variable, such as the square-
root transformation or the In transformation. Here we apply the /n transformation to
the predictor, giving us the transformed predictor variable /n popn, the natural log of
the total population. Note that the application of this transformation is to the predictor,
not the response, and is due solely to the skewness inherent in the variable itself and
is not the result of the regression diagnostics above.

We then examine a scatter plot of the relationship between the percentage
over 64 and In popn (Figure 2.20). This scatter plot is much better behaved than
Figure 2.19, and provides some indication of a possible relationship between the two
variables. For example, none of the communities with very high percentages of senior
citizens tend to be very large. We therefore perform a regression of percentage over
64 versus In popn, with the results shown in Table 2.18. We see from the table that
the regression results are significant (p-value of the F-test very small) and that the
estimated percentage of senior citizens is 22.8 minus 1.15 times the natural log of the
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Figure 2.20 Scatter plot of percentage over 64 versus In popn.

population. However, how much faith can we have that these results are not built on a
house of sand? That is, we have not yet checked whether the regression assumptions
have been verified.

We therefore produce a normal probability plot of the standardized residuals,
which is shown in Figure 2.21. Comparing Figure 2.21 to the plots in Figures 2.9 to
2.11, we find that it most resembles the plot in Figure 2.10, which indicated that the
distribution, in this case the distribution of the residuals, was right-skewed. Also, the
p-value for the Anderson—Darling test is very small, which rejects the hypothesis that

TABLE 2.18 Results of Regression of Percentage over 64 on In popn

The regression equation is
pct > 64 = 22.8 - 1.15 1n popn

Predictor Coef SE Coef T P
Constant 22.807 1.657 13.77 0.000
1n popn -1.1486 0.1780 -6.45 0.000
S = 7.25519 R-Sg = 4.6% R-Sg(adj) = 4.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 2191.3 2191.327 41.63 0.000
Residual Error 856 45058.0 52.6

Total 857 47249.3
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Figure 2.21 Normal probability plot shows right-skewness of residuals.

the standardized residuals are normally distributed. Of course, the residuals should
generally be normally distributed, to reflect the assumption that the error terms &; are
distributed normally. We therefore conclude that the normality assumption is violated
for this regression.

We also examine the plot of the standardized residuals versus the fitted val-
ues for this regression, shown in Figure 2.22. Again, the funnel pattern emerges,
indicating problems with the constant-variance assumption. The variability is smaller
for towns and cities with smaller predicted percentages of senior citizens than for those
towns and cities with larger predicted percentages. However, the regression model

Standardized Residual

T T
5.0 7.5 10.0 12.5 15.0
Fitted Value

Figure 2.22 Plot of standardized residuals versus fits shows nonconstant variance.
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assumes that the variability in the response should be constant regardless of the town
or city. Therefore, the assumption of constant variance is violated for this regression.

As mentioned earlier, we can often alleviate violations of the regression assump-
tions by applying a transformation to the response variable. We therefore apply the
natural log transformation to the response variable, percentage over 64, giving us the
transformed response variable /n pct. The regression of In pct on In popn is then per-
formed, and the plot of the standardized residuals versus fits is obtained (Figure 2.23).
Note the set of outliers in the lower right, which have an extremely low proportion of
senior citizens (indicated by their strong negative standardized residuals) given their
population. These outliers are as follows:

¢ Camp Pendleton Marine Corps Base, South
e Camp Pendleton Marine Corps Base, North
e Vandenberg Air Force Base

e Edwards Air Force Base

e Beale Air Force Base

¢ El Toro Marine Corps Station

e George Air Force Base

e Mather Air Force Base

e Nebo Center

All but one of these outliers represent military installations, the exception being
Nebo Center, a desert town with high unemployment and low housing values 112 miles
east of Los Angeles. It is not surprising that the proportion of seniors citizens living
in these places is very low. The analyst may therefore decide to set aside this group
of observations and proceed with analysis of the remaining 848 records. We continue
with the analysis of the California data set in the exercises.

4 —
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2 0 "
[}
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5
g 4
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)
—6 - Set of Outliers,
Mostly Military
-84 T T T T T T
1.9 2.0 2.1 2.2 2.3 2.4 2.5
Fitted Value

Figure 2.23  Plot of residuals versus fits for regression of In pct on In popn.
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TRANSFORMATIONS TO ACHIEVE LINEARITY

Have you ever played the game of Scrabble? Scrabble is a game in which the players
randomly select letters from a pool of letter tiles and build crosswords. Each letter tile
has a certain number of points associated with it. For instance, the letter “E” is worth
one point, the letter “Q” is worth 10 points. The point value of a letter tile is related
roughly to its letter frequency, the number of times the letter appears in the pool.
Table 2.19 contains the frequency and point value of each letter in the game. Suppose
that we were interested in approximating the relationship between frequency and point
value, using linear regression. As always when performing simple linear regression,
the first thing an analyst should do is to construct a scatter plot of the response versus
the predictor to see if the relationship between the two variables is indeed linear.
Figure 2.24 presents a scatter plot of the point value versus the frequency. Note that
each dot may represent more than one letter.

Perusal of the scatter plot indicates clearly that there is a relationship between
point value and letter frequency. However, the relationship is not linear but curvilinear,
in this case quadratic. It would not be appropriate to model the relationship between
point value and letter frequency using a linear approximation such as simple linear
regression. Such a model would lead to erroneous estimates and incorrect inference.
Instead, the analyst has a couple of choices about how to proceed. He or she may
apply multinomial regression, which we will learn about in Chapter 3, or the analyst
may apply a transformation to achieve linearity in the relationship.

Mosteller and Tukey, in their book Data Analysis and Regression [5], suggest
the bulging rule for finding transformations to achieve linearity. To understand the
bulging rule for quadratic curves, consider Figure 2.25. Compare the curve seen in
our scatter plot (Figure 2.24) to the curves shown in Figure 2.25. It is most similar
to the curve in the lower left quadrant, the one labeled “x down, y down.” Mosteller
and Tukey propose a “ladder of re-expressions,” which are essentially a set of power
transformations, with one exception, In(z).

LADDER OF RE-EXPRESSIONS (MOSTELLER AND TUKEY)

The ladder of re-expressions consists of the following ordered set of transformations for
any continuous variable 7.

! 12 In(7) Jioooo! 12 I

For our curve, the heuristic from the bulging rule is: “x down, y down.” This
means that we should transform the variable x by going down one or more spots from
x’s present position on the ladder. Similarly, the same transformation is made for
y. The present position for all untransformed variables is #'. Thus, the bulging rule
suggests that we apply either the square-root transformation or the natural log trans-
formation to both letter tile frequency and point value to achieve a linear relationship
between the two variables. Thus, we apply the square-root transformation to both
frequency and points and consider the scatter plot of sqrt points versus sqrt frequency
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TABLE 2.19 Frequencies and Point Values in Scrabble

Letter Frequency Point Value Letter Frequency Point Value
A 9 1 N 6 1
B 2 3 o 8 1
C 2 3 P 2 3
D 4 2 Q 1 10
E 12 1 R 6 1
F 2 4 S 4 1
G 3 2 T 6 1
H 2 4 U 4 1
I 9 1 \Y% 2 4
J 1 8 w 2 4
K 1 5 X 1 8
L 4 1 Y 2 4
M 2 3 zZ 1 10

(Figure 2.26). Unfortunately, the graph indicates that the relationship between sqrt
points and sqrt frequency is still not linear, so that it would still be inappropriate to
apply linear regression. Evidently, the square-root transformation was too mild to
effect linearity in this case.

We therefore move one more notch down the ladder of re-expressions and
apply the natural log transformation to each of frequency and point value, generating
the transformed variables In points and In frequency. The scatter plot of In points
versus In frequency is shown in Figure 2.26. This scatter plot exhibits acceptable
linearity, although, as with any real-world scatter plot, the linearity is imperfect. We
may therefore proceed with the regression analysis for In points and In frequency.
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Figure 2.24 Scatter plot of points versus frequency in Scrabble: nonlinear!
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Figure 2.25 Bulging rule: heuristic for variable transformation to achieve linearity. (After
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Figure 2.26  After applying square-root transformation, still not linear.
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TABLE 2.20 Results of Regression of In points on In frequency

The regression equation is
ln points = 1.94 - 1.01 1n freq

Predictor Coef SE Coef T P
Constant 1.94031 0.09916 19.57 0.000
1n freqg -1.00537 0.07710 -13.04 0.000
S = 0.293745 R-Sg = 87.6% R-Sg(adj) = 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 14.671 14.671 170.03 0.000
Residual Error 24 2.071 0.086

Total 25 16.742

Unusual Observations

Obs 1ln freg 1n points Fit SE Fit Residual St Resid
5 2.48 0.0000 -0.5579 0.1250 0.5579 2.10R

R denotes an observation with a large standardized residual.

Table 2.20 presents the results from the regression of In points on In frequency.
Let’s compare these results with the results from the inappropriate regression of points
on frequency, with neither variable transformed, shown in Table 2.21. The coefficient
of determination for the untransformed case is only 45.5%, compared to 87.6% for
the transformed case, meaning that the transformed predictor accounts for nearly
twice as much of the variability in the transformed response as do the untransformed
variables. Not only is the use of untransformed variables inappropriate in this case, it
also leads to degradation in model performance. Comparing the standard errors of the
estimate, we find that the typical error in predicting point value using the appropriate
regression is e* = ¢*2%3745 = 1.34 points, compared to the typical prediction error
from the inappropriate regression, s = 2.1 points.

TABLE 2.21 Results of Inappropriate Regression of Points
on Frequency, Untransformed

The regression equation is
Points = 5.73 - 0.633 Frequency

Predictor Coef SE Coef T P

Constant 5.7322 0.6743 8.50 0.000
Frequency -0.6330 0.1413 -4.48 0.000

S = 2.10827 R-Sqg = 45.5% R-Sqg(adj) = 43.3%
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Figure 2.27 The natural log transformation has achieved acceptable linearity (single outlier,
E, indicated).

We can also compare the point value predicted for a given frequency,
say frequency = 4 tiles. For the proper regression, the estimated In points
equals 1.94 — 1.01(In freq) = 1.94 — 1.01(1.386) = 0.5401, giving us an estimated
03398 = 1.72¢03401 = 1,72 points for a letter with frequency 4. Since the actual point
values for letters with this frequency are all either one or two points, this estimate
makes sense. However, using the untransformed variables, the estimated point value
for a letter with frequency 4 is 5.73 — 0.633(frequency) = 5.73 — 0.633(2.4) =
3.198, which is much larger than any of the actual point values for a letter with
frequency 4. This exemplifies the danger of applying predictions from inappropriate
models.

In Table 2.20 there is a single outlier, the letter E. Since the standardized resi-
dual is positive, this indicates that the point value for E is higher than expected, given
its frequency, which is the highest in the bunch, 12. The residual of 0.5579 is indicated
by the dashed vertical line in Figure 2.27. The letter E is also the only “influential”
observation, with a Cook’s distance of 0.5081 (not shown), which just exceeds the
50th percentile of the F, 5 distribution.

Box-Cox Transformations

Generalizing from the idea of a ladder of transformations, to admit powers of any
continuous value we may apply a Box—Cox transformation [6]. A Box—Cox transfor-
mation is of the form

1
W= ; for A £ 0
Iny forA =0
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For example, we could have A = 0.75, giving us the following transformation,
W = (y0'75 — 1) /0.75. Draper and Smith [3] provide a method of using maximum
likelihood to choose the optimal value of A. This method involves first choosing a
set of candidate values for A and finding SSE for regressions performed using each
value of A. Then, plotting SSE, versus A, find the lowest point of a curve through the
points in the plot. This represents the maximum likelihood estimate of A.

SUMMARY

In simple linear regression, a straight line is used to approximate the relationship be-
tween a single continuous predictor and a single continuous response. The regression
line is written in the form y = by + b x, called the regression equation or estimated
regression equation (ERE), where ¥ is the estimated value of the response variable,
by the y-intercept of the regression line, b; the slope of the regression line, and by
and b, together are called regression coefficients. We can use the regression line or
the ERE to make estimates or predictions.

The vertical distance between the actual response and the estimated response,
y — ¥, is known as the prediction error, estimation error, or residual. We seek to
minimize the overall size of our prediction errors. Least-squares regression works by
choosing the unique regression line that minimizes the sum of squared residuals over
all the data points.

The observed coefficients by and b; are sample statistics used to estimate the
population parameters By and S, the y-intercept and the slope of the true regression
line. That is, the equation y = By + B1x + € represents the true linear relationship
between the response and predictor variables for the entire population, not just the
sample. Because the sample represents only a subset of the population, the error term e
is needed to account for the indeterminacy in the model.

The sum of squares error (SSE) represents an overall measure of the error in
prediction resulting from use of the estimated regression equation. The total sum of
squares (SST) is a measure of the total variability in the values of the response variable
alone, without reference to the predictor. The sum of squares regression (SSR) is a
measure of the overall improvement in prediction accuracy when using the regression
as opposed to ignoring the predictor information. The relationship among these sums
of squares is SST = SSR + SSE.

The statistic, 2, known as the coefficient of determination, measures how well
the linear approximation produced by the least-squares regression line actually fits
the observed data. Since r? takes the form of a ratio of SSR to SST, we may interpret
72 to represent the proportion of the variability in the y-variable that is explained by
the linear relationship between the predictor and response variables. Its value ranges
from O to 1.

The s statistic, known as the standard error of the estimate and given by s =
~/MSE = /SSE/(n — m — 1) is ameasure of the accuracy of the estimates produced
by the regression. The value of s is a measure of the typical error in estimation, the
typical difference between the predicted and actual response values. In this way, the
standard error of the estimate s represents the precision of the predictions generated
by the estimated regression equation. Smaller values of s are better.
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The correlation coefficient r (also known as the Pearson product moment cor-
relation coefficient) is an indication of the strength of the linear relationship between
two quantitative variables. The correlation coefficient r always takes on values be-
tween 1 and —1 inclusive. Values of r close to 1 indicate variables that are positively
correlated; values of r close to —1 indicate variables that are negatively correlated.
It is convenient to express the correlation coefficient as r = ++/r2. When the slope
b, of the estimated regression line is positive, the correlation coefficient is also posi-
tive, r = Vr? ; when the slope is negative, the correlation coefficient is also negative,
—3

An outlier is an observation that has a very large standardized residual in abso-
lute value. In general, if the residual is positive, we may say that the y-value observed
is higher than the regression estimated given the x-value. If the residual is negative,
we may say that the observed y-value is lower than the regression estimated given the
x-value. A high leverage point is an observation that is extreme in the predictor space.
In other words, a high leverage point takes on extreme values for the x-variable(s),
without reference to the y-variable.

An observation is influential if the regression parameters alter significantly
based on the presence or absence of the observation in the data set. An outlier may
or may not be influential. Similarly, a high leverage point may or may not be influen-
tial. Usually, influential observations combine both large residual and high leverage
characteristics. Cook’s distance measures the level of influence of an observation by
taking into account both the size of the residual and the amount of leverage for that
observation.

If the assumptions of the regression model are not validated, the resulting infer-
ence and model building are undermined. In the regression model, y = By + B1x + ¢,
& represents the error term, which is arandom variable with the following assumptions:

1. The error term ¢ is a random variable with mean or expected value equal to zero.
In other words, E (¢) = 0.

2. The variance of ¢, denoted by o2, is constant regardless of the value of x.
3. The values of ¢ are independent.

4. The error term ¢ is a normally distributed random variable. In other words, the
values of the error term ¢; are independent normal random variables with mean
zero and variance .

In the regression model, when B, = 0, the regression equation becomes y =
Bo + ¢, so there no longer exists a linear relationship between x and y. On the other
hand, if g; takes on any conceivable value other than zero, a linear relationship of
some kind exists between the response and the predictor. We may use this key idea
to apply regression-based inference. For example, the 7-test tests directly whether
B1 = 0, with the null hypothesis representing the claim that no linear relationship
exists. We may also construct a confidence interval for the true slope of the regression
line. If the confidence interval includes zero, this is evidence that no linear relationship
exists.

Point estimates for values of the response variable for a given value of the
predictor value may be obtained by an application of the estimated regression equa-
tion y = by + b1x. Unfortunately, these kinds of point estimates do not provide a
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probability statement regarding their accuracy. We may therefore construct two types
of intervals: (1) a confidence interval for the mean value of y given x, and (2) a pre-
diction interval for the value of a randomly chosen y given x. The prediction interval
is always wider, since its task is more difficult.

All of the inferential methods just described depend on the adherence of the data
to the regression assumptions outlined earlier. The two main graphical methods used
to verify regression assumptions are (1) a normal probability plot of the residuals, and
(2) a plot of the standardized residuals against the fitted (predicted) values. A normal
probability plot is a quantile—quantile plot of the quantiles of a particular distribution
against the quantiles of the standard normal distribution, for the purposes of determin-
ing whether the specified distribution deviates from normality. In a normality plot, the
values observed for the distribution of interest are compared against the same number
of values which would be expected from the normal distribution. If the distribution
is normal, the bulk of the points in the plot should fall on a straight line; systematic
deviations from linearity in this plot indicate nonnormality. We evaluate the validity
of the regression assumptions by observing whether certain patterns exist in the plot
of the residuals versus fits, in which case one of the assumptions has been violated,
or whether no such discernible patterns exists, in which case the assumptions remain
intact.

If these graphs indicate violations of the assumptions, we may apply a trans-
formation to the response variable y, such as the In (natural log, log to the base ¢)
transformation. Transformations may also be called for if the relationship between
the predictor and the response variables is not linear. We may use either Mosteller
and Tukey’s ladder of re-expressions or a Box—Cox transformation.

REFERENCES

1. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, N. J. 2005.

2. Cereals data set, in Data and Story Library, http://1ib.stat.cmu.edu/DASL/. Also
available at the book series Web site.

3. Norman Draper and Harry Smith, Applied Regression Analysis, Wiley, New York, 1998.

4. California data set, U.S. Census Bureau, http: //www.census.gov/. Also available at
the book series Web site.

5. Frederick Mosteller and John Tukey, Data Analysis and Regression, Addison-Wesley,
Reading, MA, 1977.

6. G.E.P.BoxandD.R. Cox, An analysis of transformations, Journal of the Royal Statistical
Society, Series B, Vol. 26, pp. 211-243, 1964.

| EXERCISES

Clarifying the Concepts

2.1. Determine whether the following statements are true or false. If a statement is false,
explain why and suggest how one might alter the statement to make it true.
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(a) The least-squares line is that line which minimizes the sum of the residuals.
(b) If all the residuals equal zero, SST = SSR.

(c) Ifthe value of the correlation coefficient is negative, this indicates that the variables
are negatively correlated.

(d) The value of the correlation coefficient can be calculated given the value of r?
alone.

(e) Outliers are influential observations.

(f) If the residual for an outlier is positive, we may say that the observed y-value is
higher than the regression estimated, given the x-value.

(g) An observation may be influential even though it is neither an outlier nor a high
leverage point.

(h) The best way of determining whether an observation is influential is to see whether
its Cook’s distance exceeds 1.0.

(i) If one is interested in using regression analysis in a strictly descriptive manner,
with no inference and no model building, one need not worry quite so much about
assumption validation.

(j) In anormality plot, if the distribution is normal, the bulk of the points should fall
on a straight line.

(k) The chi-square distribution is left-skewed.

(1) Small p-values for the Anderson—Darling test statistic indicate that the data are
right-skewed.

(m) A funnel pattern in the plot of residuals versus fits indicates a violation of the

independence assumption.

Describe the difference between the estimated regression line and the true regression
line.

Calculate the estimated regression equation for the orienteering example using the
data in Table 2.3. Use either the formulas or software of your choice.

Where would a data point be situated which has the smallest possible leverage?

Calculate the values for leverage, standardized residual, and Cook’s distance for the
hard-core hiker example in the text.

Calculate the values for leverage, standardized residual, and Cook’s distance for the
eleventh hiker who had hiked for 10 hours and traveled 23 kilometers. Show that
although it is neither an outlier nor of high leverage, it is nevertheless influential.

Match each of the following regression terms with its definition.

Term Definition

(a)  Influential observation =~ Measures the typical difference between the predicted
and actual response values.

(b) SSE Represents the total variability in the values of the
response variable alone, without reference to the
predictor.



88 CHAPTER2 REGRESSION MODELING

2.8

2.9

2.10.

2.11.

2.12

2.13.

2.14

Term Definition

(c) r? An observation that has a very large standardized
residual in absolute value.

(d) Residual Measures the strength of the linear relationship between

two quantitative variables, with values ranging from
—ltol.

(e) s An observation that alters the regression parameters
significantly based on its presence or absence in the
data set.

) High leverage point Measures the level of influence of an observation by

taking into account both the size of the residual and
the amount of leverage for that observation.

(2) r Represents an overall measure of the error in prediction
resulting from the use of the estimated regression
equation.

(h) SST An observation that is extreme in the predictor space,
without reference to the response variable.

(i) Outlier Measures the overall improvement in prediction

accuracy when using the regression as opposed to
ignoring the predictor information.

) SSR The vertical distance between the response predicted
and the actual response.
(k) Cook’s distance The proportion of the variability in the response that is

explained by the linear relationship between the
predictor and response variables.

Explain in your own words the implications of the regression assumptions for the
behavior of the response variable y.

Explain what statistics from Table 2.11 indicate to us that there may indeed be a linear
relationship between x and y in this example, even though the value for r? is less than
1%.

Which values of the slope parameter indicate that no linear relationship exists between
the predictor and response variables? Explain how this works.

Explain what information is conveyed by the value of the standard error of the slope
estimate.

Describe the criterion for rejecting the null hypothesis when using the p-value method
for hypothesis testing. Who chooses the value of the level of significance, «? Make
up a situation (one p-value and two different values of «) where the very same data
could lead to two different conclusions of the hypothesis test. Comment.

(a) Explain why an analyst may prefer a confidence interval to a hypothesis test.
(b) Describe how a confidence interval may be used to assess significance.

Explain the difference between a confidence interval and a prediction interval. Which
interval is always wider? Why? Which interval is probably, depending on the situation,
more useful to a data miner? Why?
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2.15. Clearly explain the correspondence between an original scatter plot of the data and a
plot of the residuals versus fitted values.

2.16. What recourse do we have if the residual analysis indicates that the regression as-
sumptions have been violated? Describe three different rules, heuristics, or family of
functions that will help us.

2.17. A colleague would like to use linear regression to predict whether or not customers
will make a purchase based on some predictor variable. What would you explain to
your colleague?

Working with the Data

2.18. Based on the scatter plot of attendance at football games versus winning percentage
of the home team shown in Figure E2.18, answer the following questions.

(a) Describe any correlation between the variables, and estimate the value of the
correlation coefficient r.

(b) Estimate as best you can the values of the regression coefficients by and b .

(c) Will the p-value for the hypothesis test for the existence of a linear relationship
between the variables be small or large? Explain.

(d) Will the confidence interval for the slope parameter include zero? Explain.
(e) Will the value of s be closer to 10, 100, 1000, or 10,0007 Why?

(f) Is there an observation that may look as though it is an outlier?
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17000 — °
16000 —
15000 —

Attendance

14000 — ¢
13000 .
12000 .

11000_I T T T T T T T T

T
10 20 30 40 50 60 70 80 90 100
Winning Percent

Figure E2.18

2.19. Use the regression output (shown in Table E2.19) to verify your responses from
Exercise 2.18.



90 CHAPTER2 REGRESSION MODELING

2.20.

TABLE E2.19

The regeression equation is
Attendance = 11067 + 77.2 Winning Percent

Predictor Coef SE Coef T P
Constant 11066.8 793.3 13.95 0.000
Winning Percent 77.22 12.00 6.44 0.000

S = 1127.51 R-Sg = 74.7% R-Sg(adj) = 72.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 52675342 52675342 41.43 0.000
Residual Error 14 17797913 1271280

Total 15 70473255

Unusual Observations

Winning
Obs Percent Attendance Fit SE Fit Residual St Resid
10 76 19593 16936 329 2657 2.46R

R denotes an observation with a large standardized residual.

Based on the scatter plot shown in Figure E2.20, answer the following questions.
(a) Is it appropriate to perform linear regression? Why or why not?

(b) What type of transformation or transformations are called for? Use the bulging

rule.
1.2
0.9 +
0.6
0.3
0.0
T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0

Figure E2.20
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2.21. Based on the regression output shown in Table E2.21 (from the churn data set), answer
the following questions.

(a)

(b)

Is there evidence of a linear relationship between z vmail messages (z-scores of
the number of voice mail messages) and z day calls (z-scores of the number of
day calls made)? Explain.

Since it has been standardized, the response z vmail messages has a standard
deviation of 1.0. What would be the typical error in predicting z vmail messages
if we simply used the sample mean response and no information about day calls?
Now, from the printout, what is the typical error in predicting z vmail messages
given z day calls? Comment.

TABLE E2.21

The regression equation is
z vmail messages = 0.0000 - 0.0095 z day calls

Predictor Coef SE Coef T P
Constant 0.00000 0.01732 0.00 1.000
z day calls -0.00955 0.01733 -0.55 0.582

S = 1.00010 R-Sg = 0.0% R-Sg(adj) = 0.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.304 0.304 0.30 0.582
Residual Error 3331 3331.693 1.000

Total 3332 3331.997

Hands-on Analysis

2.22. Open the baseball data set, which is available at the book series Web site. Subset the
data so that we are working with batters who have at least 100 at bats.

(a)

(b)

(c)

(d)
(e)

®
(€9)

We are interested in investigating whether there is a linear relationship between
the number of times a player has been caught stealing and the number of stolen
bases the player has. Construct a scatter plot with caught as the response. Is there
evidence of a linear relationship?

Based on the scatter plot, is a transformation to linearity called for? Why or why
not?

Perform the regression of the number of times a player has been caught stealing
versus the number of stolen bases the player has.

Find and interpret the statistic which tells you how well the data fit the model.

What is the typical error in predicting the number of times a player is caught
stealing given his number of stolen bases?

Interpret the y-intercept. Does this make sense? Why or why not?

Inferentially, is there a significant relationship between the two variables? What
tells you this?
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2.23.

2.24.

(h)
)
@

Calculate and interpret the correlation coefficient.
Clearly interpret the meaning of the slope coefficient.

Suppose someone said that knowing the number of stolen bases a player has
explains most of the variability in the number of times the player gets caught
stealing. What would you say?

Open the cereals data set, which is available at the book series Web site.

(a)

(b)

(©
d)
()
®
()

(h)
@
@

(k)

We are interested in predicting nutrition rating based on sodium content. Construct
the appropriate scatter plot.

Based on the scatter plot, is there strong evidence of a linear relationship between
the variables? Discuss. Characterize their relationship, if any.

Perform the appropriate regression.

Which cereal is an outlier? Explain why this cereal is an outlier.

What is the typical error in predicting rating based on sodium content?
Interpret the y-intercept. Does this make any sense? Why or why not?

Inferentially, is there a significant relationship between the two variables? What
tells you this?

Calculate and interpret the correlation coefficient.
Clearly interpret the meaning of the slope coefficient.

Construct and interpret a 95% confidence interval for the true nutrition rating for
all cereals with a sodium content of 100.

Construct and interpret a 95% confidence interval for the nutrition rating for a
randomly chosen cereal with sodium content of 100.

Open the California data set, which is available at the book series Web site.

(a)
(b)

Recapitulate the analysis performed within the chapter.

Set aside the military outliers and proceed with the analysis with the remaining
848 records. Apply whatever data transformations are necessary to construct your
best regression model.
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EXAMPLE OF MULTIPLE REGRESSION

In Chapter 2 we examined regression modeling for the simple linear regression case
of a single predictor and a single response. Clearly, however, data miners are usually
interested in the relationship between the target variable and a set of (more than
one) predictor variables. Most data mining applications enjoy a wealth of data, with
some data sets including hundreds or thousands of variables, many of which may
have a linear relationship with the target (response) variable. Multiple regression
modeling provides an elegant method of describing such relationships. Compared to
simple linear regression, multiple regression models provide improved precision for
estimation and prediction, analogous to the improved precision of regression estimates
over univariate estimates.

A multiple regression model uses a linear surface such as a plane or hyperplane
to approximate the relationship between a continuous response (target) variable and

Data Mining Methods and Models By Daniel T. Larose
Copyright © 2006 John Wiley & Sons, Inc.
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Sugars 15

Figure 3.1 A plane approximates the linear relationship between one response and two
continuous predictors.

a set of predictor variables. Although the predictor variables are typically continuous,
categorical predictor variables may be included as well, through the use of indicator
(dummy) variables. In simple linear regression, we used a straight line (of dimension 1)
to approximate the relationship between the response and one predictor. Now, sup-
pose that we would like to approximate the relationship between a response and two
continuous predictors. In this case, we would need a plane to approximate such a
relationship, since a plane is linear in two dimensions.

For example, returning to the cereals data set [1], suppose that we are interested
in trying to estimate the value of the target variable, nutritional rating, but this time
using two variables, sugars and fiber, rather than sugars alone as in Chapter 2. The
three-dimensional scatter plot of the data is shown in Figure 3.1. High fiber levels
seem to be associated with high nutritional rating, and high sugar levels seem to
be associated with low nutritional rating. These relationships are approximated by
the plane that is shown in Figure 3.1, in a manner analogous to the straight-line
approximation for simple linear regression. The plane tilts downward to the right (for
high sugar levels) and toward the front (for low fiber levels).

Now suppose that we performed a multiple regression of nutritional rating on
both predictor variables, sugars and fiber. The results are provided in Table 3.1; let
us examine these results. The estimated regression equation for multiple regression
with two predictor variables takes the form

Y =bo+ by x1 + brxs

For a multiple regression with m variables, the estimated regression equation takes
the form

Y=0bo+bixi+byxs+ -+ byxy
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TABLE 3.1 Results of Regression of Nutritional Rating on Sugars and Fiber

95

The regression equation is
Rating = 51.8 - 2.21 Sugars + 2.84 Fiber

Predictor Coef SE Coef T P
Constant 51.787 1.559 33.21 0.000
sSugars -2.2090 0.1633 -13.53 0.000
Fiber 2.8408 0.3032 9.37 0.000
S = 6.23743 R-Sg = 80.8% R-Sg(adj) = 80.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 12117.8 6058.9 155.73 0.000
Residual Error 74 2879.0 38.9

Total 76 14996.8

Source DF Seq SS

Sugars 1 8701.7

Fiber 1 3416.1

Unusual Observations

Obs Sugars Rating Fit SE Fit Residual St Resid
2 0.0 93.705 91.558 3.676 2.147 0.43 X
8 0.0 72.802 60.309 1.331 12.493 2.05R
27 5.0 59.426 66.309 2.168 -6.884 -1.18 X
32 6.0 68.403 66.941 2.459 1.462 0.26 X
41 7.0 58.345 44.847 0.753 13.499 2.18R
76 15.0 35.252 18.653 1.561 16.600 2.75R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large influence.

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 54.946 1.123 (52.709, 57.183) (42.318, 67.574)

Values of Predictors for New Observations

New
Obs Sugars Fiber
1 5.00 5.00
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Figure 3.2 Individual variable scatter plots of rating versus sugars and fiber.

Here, we have by = 51.787, b, = —2.2090, b, = 2.8408, x; = sugars, and x, =
fiber. Thus, the estimated regression equation for this example is

$ =51.787 — 2.2090 sugars + 2.8408 fiber

That is, the estimated nutritional rating equals 51.787 minus 2.2090 times the grams
of sugar plus 2.8408 times the grams of fiber. Note that the coefficient for sugars is
negative, indicating a negative relationship between sugars and rating, whereas the
coefficient for fiber is positive, indicating a positive relationship. These results concur
with the characteristics of the plane shown in Figure 3.1. In case the three-dimensional
plot is not clear enough for exploratory purposes, we may examine individual scatter
plots of the response against each of the predictors, as shown in Figure 3.2. The
straight lines shown in Figure 3.2 represent the value of the slope coefficients for
each variable: — 2.2090 for sugars and 2.8408 for fiber.

The interpretations of the slope coefficients b; and b, are slightly different than
for the simple linear regression case. For example, to interpret b; = —2.2090, we
say that “the estimated decrease in nutritional rating for a unit increase in sugar con-
tent is 2.2090 points when the fiber content is held constant.” Similarly, we interpret
b, = 2.8408 as follows: The estimated increase in nutritional rating for a unit increase
in fiber content is 2.8408 points when the sugar content is held constant. In general,
for a multiple regression with m predictor variables, we would interpret coefficient
b; as follows: The estimated change in the response variable for a unit increase in
variable x; is b; when all other variables are held constant.

Recall that errors in prediction are measured by the residual, y — y. In simple
linear regression, this residual represented the vertical distance between the actual
data point and the regression line. In multiple regression, the residual is represented
by the vertical distance between the data point and the regression plane or hyperplane.
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Actual Rating = 72.8018

Residual = 12.4924

Predicted Rating = 60.3094

Fibers

Figure 3.3 Estimation error is the vertical distance between the actual data point and the
regression plane or hyperplane.

For example, Spoon Size Shredded Wheat has x; = 0 grams of sugar, x, = 3 grams
of fiber, and a nutritional rating of 72.8018. The estimated regression equation would
predict, however, that the nutritional rating for this cereal would be

¥y = 51.787 — 2.2090(0) + 2.8408(3) = 60.3094

Therefore, we have a residual for Spoon Size Shredded Wheat of y — § = 72.8018 —
60.3094 = 12.4924, illustrated in Figure 3.3.

Each observation has its own residual, which, taken together, leads to the cal-
culation of the sum of squares error as an overall measure of the estimation errors.
Just as for the simple linear regression case, we may again calculate the three sums
of squares as follows:

SSE=) (y -3
SSR=Y (5 —73)
SST=Y " (y— 3
We may again present the regression statistics succinctly in a convenient ANOVA
table, shown here in Table 3.2, where m represents the number of predictor variables.
Finally, for multiple regression, we have the multiple coefficient of determination,
which is simply
2 _ SSR
SST

For multiple regression, R? is interpreted as the proportion of the variability in the
target variable that is accounted for by its linear relationship with the set of predictor
variables.
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TABLE 3.2 ANOVA Table for Multiple Regression

Source of Variation Sum of Squares df Mean Square F
. SSR
Regression SSR m MSR = —
m MSR
. SSE F=——
Error (or residual) SSE n—m-—1 MSE = Pa— MSE
n—m—
Total SST = SSR + SSE n—1

From Table 3.1 we can see that the value of R2 is 80.8%, which means that 80.8%
of the variability in nutritional rating is accounted for by the linear relationship (the
plane) between rating and the set of predictors, sugar content and fiber content. Would
we expect R? to be greater than the value for the coefficient of determination we got
from the simple linear regression of nutritional rating on sugars alone? The answer is
yes. Whenever a new predictor variable is added to the model, the value of R? always
goes up. If the new variable is useful, the value of R? will increase significantly; if
the new variable is not useful, the value of R?> may barely increase at all.

Table 2.7 provides us with the coefficient of determination for the simple linear
regression case, 7> = 58%. Thus, by adding the new predictor, fiber content, to the
model, we can account for an additional 80.8% — 58% = 22.8% of the variability in
the nutritional rating. This seems like a significant increase, but we shall defer this
determination until later.

The typical error in estimation is provided by the standard error of the estimate,
s. The value of s here is about 6.24 rating points. Therefore, our estimation of the
nutritional rating of the cereals, based on sugar and fiber content, is typically in error
by about 6.24 points. Would we expect this error to be greater or less than the value
for s obtained by the simple linear regression of nutritional rating on sugars alone?
In general, the answer depends on the usefulness of the new predictor. If the new
variable is useful, s will decrease; but if the new variable is not useful for predicting
the target variable, s may in fact increase. This type of behavior makes s, the standard
error of the estimate, a more attractive indicator than R? of whether a new variable
should be added to the model, since R> always increases when a new variable is added,
regardless of its usefulness. Table 2.7 shows that the value for s from the regression
of rating on sugars alone was 9.16. Thus, the addition of fiber content as a predictor
decreased the typical error in estimating nutritional content from 9.16 points to 6.24
points, a decrease of 2.92 points.

With respect to outliers, Table 3.1 shows that there are three outliers in this data
set, as indicated by “R” in the list of unusual observations:

® Observation 8: Spoon Size Shredded Wheat

® Observation 41: Frosted Mini-Wheats

e Observation 76: Golden Crisp
Since the residuals associated with these observations are all positive, we say that
the observed nutritional rating is higher than the regression estimate given the sugar

content and fiber content of the cereal. This may be due to other factors not yet
included in the model, such as sodium content.
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Three observations are flagged by Minitab as having high leverage:

e Observation 2: All-Bran Extra Fiber (with 14 grams of fiber)
e Observation 27: All-Bran (with 9 grams of fiber)
e Observation 32: 100% Bran (with 10 grams of fiber)

High leverage points are defined as data points that are extreme in the x-space.
The three high-leverage points show up in Figure 3.2b as the three isolated data points
on the right, since no other cereal contains more than 6 grams of fiber. This extremeness
with respect to fiber content is enough in this instance for these observations to be
labeled high leverage points.

The most influential observation is Golden Crisp, with a Cook’s distance of
0.168 (not shown), which lies within the 16th percentile of the F;_76-distribution. Since
this is less than the 20th percentile, we may conclude that there are no observations in
this data set which are particularly influential. Before we turn to inference in multiple
regression, we examine the details of the multiple regression model.

MULTIPLE REGRESSION MODEL

We have seen that for simple linear regression, the regression model takes the form
y=PH+phix+e (3.1

with By and B as the unknown values of the true regression coefficients, and ¢ the error
term, with its associated assumption, discussed in Chapter 2. The multiple regression
model is a straightforward extension of the simple linear regression model (3.1), as
follows.

MULTIPLE REGRESSION MODEL

y=PBo+Bixi+Bxa+ -+ Buxy + €
where

® Bo, Bis- .., B represent the model parameters. These are constants, whose true value
remains unknown, which are estimated from the data using the least-squares estimates.

® ¢ represents the error term.

Assumptions About the Error Term

1. Zero-mean assumption. The error term ¢ is a random variable with mean or expected
value equal to zero. In other words, E(¢) = 0.

2. Constant-variance assumption. The variance of &, denoted by o2, is constant, regardless
of the value of xy, x5 ..., x,,.

3. Independence assumption. The values of ¢ are independent.
4. Normality assumption. The error term ¢ is a normally distributed random variable.

In other words, the values of the error term ¢; are independent normal random variables
with mean 0 and variance o2.
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Just as we did for the simple linear regression case, we can derive four impli-

cations for the behavior of the response variable, y, as follows.

IMPLICATIONS OF THE ASSUMPTIONS FOR THE BEHAVIOR OF THE
RESPONSE VARIABLE y

1.

Based on the zero-mean assumption, we have

E(y) = E(Bo+ Bix1 + Boxa + - + BuXm + €)
= E(Bo) + E (Bix1) + -+ E(Buxn) + E (&)
= ﬂO + ﬁlxl + ﬁZXZ +-+ ﬂm-xm

Thatis, for each set of values for x;, x5, - - -, x,,, the mean of the y’s lies on the regression
line.

. Based on the constant-variance assumption, we have the variance of y, Var(y), given as

Var(y) = Var (By + Bixi + Boxa + -+ + BuXy + &) = Var () = o

That is, regardless of which value is taken by the predictors x;, X2, ..., x,, the variance
of the y’s is always constant.

. Based on the independence assumption, it follows that for any particular set of values

for x;, x5, ..., x,, the values of y are independent as well.

. Based on the normality assumption, it follows that y is also a normally distributed random

variable.

In other words, the values of the response variable y; are independent normal random

variables with mean By + Bix1 + Bax> + - - - + BuxX,, and variance o 2.

INFERENCE IN MULTIPLE REGRESSION

We examine five inferential methods in this chapter:

1.

The #-test for the relationship between the response variable y and a particu-
lar predictor variable x;, in the presence of the other predictor variables, x;,
where x;) = x1, X2, ..., Xi—1, Xi41, . . . X, denotes the set of all predictors not
including x;.

. The F-test for the significance of the regression as a whole.
. The confidence interval, g;, for the slope of the ith predictor variable.

. The confidence interval for the mean of the response variable y given a set of

particular values for the predictor variables xi, x2, ..., Xp.

. The prediction interval for a random value of the response variable y given a

set of particular values for the predictor variables x;, xz, ..., X,.
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t-Test for the Relationship Between y and x;
The hypotheses for a 7-test between y and x; are given by

° Ho: ﬂ,‘ =0

° Hu: /31' 75 0
The models implied by these hypotheses are given by:

e Under Hy:  y=Bo+ Bixi + -+ Bicixi—1 + Bixi + Big1Xipn + -+

* Under H,: y=po+pixi+- -+ Bicixic1 + Bipixipr + -

+ﬂmxm + &
Note that the only difference between the two models is the presence or absence of
the ith term. All other terms are the same in both models. Therefore, interpretations of
the results for this 7-test must include some reference to the other predictor variables
being held constant.
Under the null hypothesis, the test statistic t = b; /sy, follows a t-distribution

with n —m — 1 degrees of freedom, where s, refers to the standard error of the slope

for the ith predictor variable. We proceed to perform the #-test for each of the predictor
variables in turn, using the results displayed in Table 3.1.

t-Test for the Relationship Between Nutritional Rating and Sugars

e Hy: B1 =0; model: y= o+ B(fiber)+e.
e H,: By #0;model: y= B+ Bi(sugars)+ Bo(fiber) + €.

In Table 3.1, under “Coef” in the “Sugars” row is found the value of by,
—2.2090.

Under “SE Coef” in the “Sugars” row is found the value of s;,, the standard
error of the slope for sugar content. Here s, = 0.1633.

Under “T” is found the value of the ¢-statistic, that is, the test statistic for the
t-test,

P T
Sp, 0.1633
Under “P” is found the p-value of the 7-statistic. Since this is a two-tailed test,
this p-value takes the form p-value = P(|t| > t,s), Where t,,s represents the
value of the 7-statistic observed from the regression results. Here p-value =
P(|t| > tops) = P(|t] > —13.53) =~ 0.000, although of course no continuous
p-value ever equals precisely zero.

The p-value method is used, whereby the null hypothesis is rejected when the
p-value of the test statistic is small. Here we have p-value & 0.00, which is smaller
than any reasonable threshold of significance. Our conclusion is therefore to reject
the null hypothesis. The interpretation of this conclusion is that there is evidence for
a linear relationship between nutritional rating and sugar content in the presence of
fiber content.
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t-Test for the Relationship Between Nutritional Rating
and Fiber Content
e Hy: p,=0; model: y= o+ Bi(sugars)—+ ¢.
° H,: Br#0; model: y= B+ Bi(sugars)+ B(fiber) + ¢.
In Table 3.1, under “Coef” in the “Fiber” row is found b, = 2.8408.

e Under “SE Coef™ in the “Fiber” row is found the standard error of the slope for
fiber content, s, = 0.3032.

e Under “T” is found the test statistic for the #-test,

by  2.8408
t=—2=""""2-0937
s, 0.3032

e Under “P” is found the p-value of the ¢-statistic. Again, p-value ~ 0.000.

Thus, our conclusion is again to reject the null hypothesis. We interpret this to
mean that there is evidence for a linear relationship between nutritional rating and
fiber content in the presence of sugar content.

F-Test for the Significance of the Overall Regression Model

Next we introduce the F-test for the significance of the overall regression model.
Figure 3.4 illustrates the difference between the 7-test and the F-test. One may apply a
separate t-test for each predictor x;, x,,0r x3, examining whether a linear relationship

X
1 -
""h...‘__b t-test
-
- -
.‘.-h
y y
'
t-test Yy
Xy et R L et >
-
’- t-test R
-l'.--.‘--
"
X3

{x), X X3} y

Figure 3.4 The F-test considers the relationship between the target and the set of predictors,
taken as a whole.
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exists between the target variable y and that particular predictor. On the other hand,
the F-test considers the linear relationship between the target variable y and the set
of predictors (e.g., { x1, x», x3}) taken as a whole.

The hypotheses for the F-test are given by

* Hy: Br=p=-=pBn=0.
° H,: At least one of the B; does not equal 0.

The null hypothesis asserts that there is no linear relationship between the target
variable y and the set of predictors, xj, X7, ..., x,. Thus, the null hypothesis states
that the coefficient §; for each predictor x; exactly equals zero, leaving the null model
to be

e Model under Hy: y=P8+¢

The alternative hypothesis does not assert that the regression coefficients all
differ from zero. For the alternative hypothesis to be true, it is sufficient for a single,
unspecified regression coefficient to differ from zero. Hence, the alternative hypoth-
esis for the F-test does not specify a particular model, since it would be true if any,
some, or all of the coefficients differed from zero.

As shown in Table 3.2, the F-statistic consists of a ratio of two mean squares:
the mean square regression (MSR) and the mean square error (MSE). A mean square
represents a sum of squares divided by the degrees of freedom associated with that
sum of squares statistic. Since the sums of squares are always nonnegative, so are the
mean squares. To understand how the F-test works, we should consider the following.

The MSE is always a good estimate of the overall variance (see model assump-
tion 2) o2, regardless of whether or not the null hypothesis is true. (In fact, recall that
we use the standard error of the estimate, s = ~/MSE, as a measure of the usefulness
of the regression, without reference to an inferential model.) Now, the MSR is also a
good estimate of o2, but only on the condition that the null hypothesis is true. If the
null hypothesis is false, MSR overestimates o'2.

So consider the value of F = MSR/MSE with respect to the null hypothesis.
Suppose that MSR and MSE are close to each other, so that the value of F is small
(near 1.0). Since MSE is always a good estimate of o2, and MSR is only a good
estimate of o> when the null hypothesis is true, the circumstance that MSR and MSE
are close to each other will occur only when the null hypothesis is true. Therefore,
when the value of F'is small, this is evidence that the null hypothesis is true.

However, suppose that MSR is much greater than MSE, so that the value of F'
is large. MSR is large (overestimates o'2) when the null hypothesis is false. Therefore,
when the value of F'is large, this is evidence that the null hypothesis is false. Therefore,
for the F test, we shall reject the null hypothesis when the value of the test statistic
F is large.

The F-statistic observed, F = Fy,,s = MSR/MSE, follows an F,,, ,_,,_1 dis-
tribution. Since all F-values are nonnegative, the F-test is a right-tailed test. Thus,
we will reject the null hypothesis when the p-value is small, where the p-value
is the area in the tail to the right of the observed F-statistic. That is, p-value =
P(F, n—m—1 > Fops), and we reject the null hypothesis when P(F,, ,—n—1 > Fobs)
is small.
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F-Test for the Relationship Between Nutritional Rating and
{Sugar and Fiber} Taken Together

* Hy: B1=pB=0; model: y=p8+e.
e H,: Atleastone of §; and 8, does not equal zero.
e The model implied by H,, is not specified, and may be any one of the following:

y = Bo + Bi(sugars) + &
y = Bo + Ba(fiber) + ¢
y = Bo + Bi(sugars) + Ba(fiber) + ¢

e In Table 3.1, under “MS” in the “Regression” row of the “Analysis of Variance”
table, is found the value of MSR, the mean square regression, MSR = 6058.9.

e Under “MS” in the “Residual Error” row of the “Analysis of Variance” table is
found the value of MSE, the mean-squared error, MSE = 38.9.

e Under “F” in the “Regression,” row of the “Analysis of Variance” table is found
the value of the test statistic,
MSR  6058.9
F=——-=—=15573
MSE 38.9
e The degrees of freedom for the F-statistic are given in the column marked “DF,”
sothat we have m = 2, andn —m — 1 = 74.

e Under “P” in the “Regression” row of the “Analysis of Variance” table is found
the p-value of the F-statistic. Here, the p-value is P(F, p—m—1 > Fobs) =
P(Fy74 > 155.73) ~ 0.000, although again no continuous p-value ever equals
precisely zero.

This p-value of approximately zero is less than any reasonable threshold of
significance. Our conclusion is therefore to reject the null hypothesis. The interpre-
tation of this conclusion is the following. There is evidence for a linear relationship
between nutritional rating on the one hand, and the set of predictors, sugar content
and fiber content, on the other. More succinctly, we may simply say that the overall
regression model is significant.

Confidence Interval for a Particular Coefficient

Just as for simple linear regression, we may construct a 100(1 — «)% confidence
interval for a particular coefficient, 8;, as follows. We can be 100(1 — «)% confident
that the true value of a particular coefficient j; lies within the following interval:

bi + (tnfmfl)(sb,-)

where t,,_,,_; is based on n —m — 1 degrees of freedom, and s,, represents the stan-
dard error of the ith coefficient estimate. For example, let us construct a 95% con-
fidence interval for the true value of the coefficient 8; for x;, sugar content. From
Table 3.1, the point estimate is given as b; = —2.2090. The z-critical value for 95%
confidence and n — m — 1 = 74 degrees of freedom is #,_,,—; = 2.0. The standard
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error of the coefficient estimate is s,, = 0.1633. Thus, our confidence interval is as
follows:

by % (ty—m—1)(sp,) = —2.2090 =+ 2.00(0.1633)
= (—2.54, —1.88)

We are 95% confident that the value for the coefficient 8; lies between — 2.54 and
— 1.88. In other words, for every additional gram of sugar, the nutritional rating will
decrease by between 1.88 and 2.54 points when fiber content is held constant. For
example, suppose a nutrition researcher claimed that nutritional rating would fall two
points for every additional gram of sugar when fiber is held constant. Since 2.0 lies
within the 95% confidence interval, we would not reject this hypothesis, with 95%
confidence.

Confidence Interval for the Mean Value of y Given
x17x27 ---»Xm

We may find confidence intervals for the mean value of the target variable y given a
particular set of values for the predictors x;, X, ..., x,. The formula is a multivariate
extension of the analogous formula from Chapter 2, requires matrix multiplication,
and may be found in Draper and Smith [2]. For example, the bottom of Table 3.1
(““Values of Predictors for New Observations”) shows that we are interested in finding
the confidence interval for the mean of the distribution of all nutritional ratings when
the cereal contains 5.00 grams of sugar and 5.00 grams of fiber. The resulting 95%
confidence interval is given under “Predicted Values for New Observations” as “95%
CI” = (52,709, 57.183). That is, we can be 95% confident that the mean nutritional
rating of all cereals with 5.00 grams of sugar and 5.00 grams of fiber lies between
52.709 and 57.183 points.

Prediction Interval for a Randomly Chosen Value of y
Given xq1, X2, ..., Xm

Similarly, we may find a prediction interval for a randomly selected value of the
target variable given a particular set of values for the predictors xi, xz, ..., x,. We
refer to Table 3.1 for our example of interest: 5.00 grams of sugar and 5.00 grams of
fiber. Under “95% PI” we find the prediction interval to be (42.318, 67.574). In other
words, we can be 95% confident that the nutritional rating for a randomly chosen
cereal with 5.00 grams of sugar and 5.00 grams of fiber lies between 42.318 and
67.574 points. Again, note that the prediction interval is wider than the confidence
interval, as expected.

REGRESSION WITH CATEGORICAL PREDICTORS

Thus far, our predictors have all been continuous. However, categorical predictor
variables may also be used as inputs to regression models, through the use of indicator
variables (dummy variables). For example, in the cereals data set, consider the variable
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Figure 3.5 Is there evidence that shelf location affects nutritional rating?

shelf, which indicates which supermarket shelf the particular cereal was located on.
Of the 77 cereals, 20 were located on shelf 1, 21 were located on shelf 2, and 36 were
located on shelf 3.

A dot plot of the nutritional rating for the cereals on each shelf is provided in
Figure 3.5, with the shelf means indicated by the triangles. Now, if we were to use only
the categorical variables (such as shelf, manufacturer, and so on) as predictors, we
could apply a type of analysis known as analysis of variance. (For more on analysis
of variance, see any good introductory statistics textbook, such as Introduction to the
Practice of Statistics by Moore and McCabe [3].) However, we are interested in using
the categorical variable shelf along with continuous variables such as sugar and fiber
content. Therefore, we shall use multiple regression analysis with indicator variables.

Based on the comparison dot plot in Figure 3.5, does there seem to be evidence
that shelf location affects nutritional rating? It would seem that shelf 2 cereals, with
their average nutritional rating of 34.97, seem to lag somewhat behind the cereals on
shelves 1 and 3, with their respective average nutritional ratings of 46.15 and 45.22.
However, it is not clear whether this difference is significant. Further, this dot plot
does not take into account the other variables, such as sugar content and fiber content;
itis unclear how any “shelf effect” would manifest itself in the presence of these other
variables.

For use in regression, a categorical variable with k categories must be trans-
formed into a set of k& — 1 indicator variables. An indicator variable, also known as
a dummy variable, is a binary 0/1 variable, which takes the value 1 if the observa-
tion belongs to the given category, and takes the value O otherwise. For the present
example, we define the following indicator variables:

Shelf 1 = { 1 if cerea.l located on shelf 1
0 otherwise

1 ifcereal located on shelf 2

Shelf 2 = { 0 otherwise
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TABLE 3.3 Values Taken by the Indicator Variables for Cereals
Located on Shelves 1, 2, and 3, Respectively

Cereal Location ~ Value of Variable Shelf I ~ Value of Variable Shelf 2

Shelf 1 1 0
Shelf 2 0 1
Shelf 3 0 0

Table 3.3 indicates the values taken by these indicator variables, for cereals
located on shelves 1, 2, and 3, respectively. Note that it is not necessary to define a
third indicator variable shelf 3, since cereals located on shelf 3 will have zero values for
each of the shelf I and shelf 2 indicator variables, and this is sufficient to distinguish
them. In fact, one should not define this third dummy variable because the resulting
covariate matrix will be singular, and the regression will not work.

The category that is not assigned an indicator variable is denoted the reference
category. Here, shelf 3 is the reference category. Later we measure the effect of the
location of a given cereal (e.g., on shelf 1) on nutritional rating, with respect to (i.e.,
with reference to) shelf 3, the reference category.

We therefore proceed to perform multiple regression for the linear relationship
between nutritional rating and sugar content, fiber content, and shelf location, using
the two dummy variables from Table 3.3. The general model looks like the following:

y = Bo + Bi(sugars) + Br(fiber) + B3(shelf 1) + Ba(shelf2) + ¢

with its estimated regression equation given as
$ = by + by (sugars) + by(fiber) + by(shelf 1) + by(shelf 2)

For cereals located on shelf 1, the model and the estimated regression equation look
as follows:

Model: y = Bo + Bi(sugars) + Br(fiber) + B3(3.1) 4+ B4(0) + ¢
= (Bo + B3) + Bi(sugars) + Ba(fiber) + ¢
ERE: $ = by + by (sugars) + by (fiber) + b3(3.1) + b4(0)
= (bo + b3) + b (sugars) + b(fiber)
For cereals located on shelf 2, the model and the estimated regression equation are as
follows:
Model:  y = Bo + Bi(sugars) + Ba(fiber) + p3(0) + B4(3.1) + ¢
= (Bo + Bs) + P1(sugars) + Pa(fiber) + ¢
ERE: ¥ = by + bi(sugars) + by(fiber) + b3(0) + ba(1)
= (bo + by) + by (sugars) + by(fiber)
Finally, for cereals located on shelf 3, the model and the estimated regression equation
are given as follows:

Model: y = Bo + Bi(sugars) + Bafiber) + B3(0) + B4(0) + ¢
= Bo + Bi(sugars) + Ba(fiber)

ERE: ¥ = by + by (sugars) + br(fiber) + b3(0) + b4(0)
= by + bi(sugars) + by(fiber)
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Figure 3.6 The use of indicator variables in multiple regression leads to a set of parallel
planes (or hyperplanes).

Note the relationship of the model equations to each other. The three models represent
parallel planes, as illustrated in Figure 3.6. (Note that the planes do not, of course,
directly represent the shelves themselves but rather, the fit of the regression model to
the nutritional rating for the cereals on the various shelves.)

The results for the regression of nutritional rating on sugar content, fiber con-
tent, and shelf location are provided in Table 3.4. The general form of the estimated
regression equation looks like

$ = 50.433 — 2.2954(sugars) + 3.0856(fiber) + 1.446(shelf 1) + 3.828(shelf 2)

Thus, the estimated regression equation for cereals located on the various shelves are
given as follows:

Shelf 1: $ = 50.433 — 2.2954(sugars) + 3.0856( fiber) + 1.446(1)
= 51.879 — 2.2954(sugars) 4+ 3.0856(fiber)

Shelf 2: $ = 50.433 — 2.2954(sugars) + 3.0856( fiber) + 3.828(1)
= 54.261 — 2.2954(sugars) + 3.0856(fiber)

Shelf 3: ¥y = 50.433 — 2.2954(sugars) + 3.0856( fiber)

Note that these estimated regression equations are exactly the same except for
the y-intercept. This means that cereals on each shelf are modeled as following exactly
the same slope in the sugars dimension (—2.2954) and exactly the same slope in the
fiber dimension (3.0856), which gives us the three parallel planes shown in Figure 3.6.
The only difference lies in the value of the y-intercept for the cereals on the three
shelves. The reference category in this case is shelf 3. What is the vertical distance
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TABLE 3.4 Results of Regression of Nutritional Rating on Sugar Content, Fiber Content,
and Shelf Location

The regression equation is
Rating = 50.4 - 2.30 Sugars + 3.09 Fiber + 1.45 shelf 1+ 3.83

shelf 2
Predictor Coef SE Coef T P
Constant 50.433 1.888 26.71 0.000
sugars -2.2954 0.1749 -13.12 0.000
Fiber 3.0856 0.3256 9.48 0.000
shelf 1 1.446 1.806 0.80 0.426
shelf 2 3.828 1.908 2.01 0.049
S = 6.15345 R-Sg = 81.8% R-Sg(adj) = 80.8%
Analysis of Variance
Source DF SS MS F P
Regression 4 12270.5 3067.6 81.01 0.000
Residual Error 72 2726.3 37.9
Total 76 14996.8

Source DF Seq SS
sugars 1 8701. 7
Fiber 1 3416.1
shelf 1 1 0.3
shelf 2 1 152.4

between the shelf 3 plane and, for example, the shelf 1 plane? Note from the deriva-
tions above that the estimated regression equation for the cereals on shelf 1 is given as

Y = (bo + b3) + bi(sugars) + by(fiber)

so that the y-intercept is by + b3. We also have the estimated regression equation for
the cereals on shelf 3 to be

$ = by + bi(sugars) + by(fiber)

Thus, the difference between the y-intercepts is (bg + b3) — by = b3. We can
verify this by noting that (by + b3) — by = 51.879 — 50.433 = 1.446, which is the
value of b3 reported in Table 3.4. The vertical distance between the planes representing
shelves 1 and 3 is everywhere 1.446 rating points, as shown in Figure 3.7.

Of particular importance is the interpretation of this value for b5. The y-intercept
represents the estimated nutritional rating when sugars and fiber both equal zero.
However, since the planes are parallel, the difference in the y-intercepts among the
shelves remains constant throughout the range of sugar and fiber values. Thus, the
vertical distance between the parallel planes, as measured by the coefficient for
the indicator variable, represents the estimated effect of the particular indicator vari-
able on the target variable with respect to the reference category.
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Fiber

Figure 3.7 The indicator variables’ coefficients estimate the difference in the response value
compared to the reference category.

In this example, b3 = 1.446 represents the estimated difference in nutritional
rating for cereals located on shelf 1 compared to the cereals on shelf 3. Since b3 is
positive, this indicates that the estimated nutritional rating for shelf 1 cereals is higher.
We thus interpret b3 as follows: The estimated increase in nutritional rating for cereals
located on shelf 1, as compared to cereals located on shelf 3, is b3 = 1.446 points
when sugars and fiber content are held constant.

Similarly for the cereals on shelf 2: We have the estimated regression equation
for these cereals as

9 = (bo + bs) + bi(sugars) + by(fiber)

so that the difference between the y-intercepts for the planes representing shelves 2 and
31is (by 4 bs) — by = by. We thus have (by + bs) — by = 54.261 — 50.433 = 3.828,
which is the value for b4 reported in Table 3.4. That is, the vertical distance between
the planes representing shelves 2 and 3 is everywhere 3.828 rating points, as shown in
Figure 3.7. Therefore, the estimated increase in nutritional rating for cereals located
on shelf 2, compared to cereals located on shelf 3, is by = 3.828 points when sugars
and fiber content are held constant.

We may then infer the estimated difference in nutritional rating between shelves
2 and 1. This is given as (b + bs) — (bo + b3) = by — b3 = 3.828 — 1.446 = 2.382
points. The estimated increase in nutritional rating for cereals located on shelf 2
compared to cereals located on shelf 1 is 2.382 points when sugars and fiber content
are held constant.
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TABLE 3.5 Using Sugars and Fiber Only, the Regression Model Underestimates the
Nutritional Rating of Shelf 2 Cereals

Mean Mean Mean Mean Estimated Mean
Shelf Sugars Fiber Rating Rating” Error
1 4.85 1.75 46.15 46.04 -0.11
2 9.62 0.92 34.97 33.11 -1.86
3 6.53 3.17 4522 46.36 +1.14

¢ Rating estimated using sugars and fiber only, not shelf location.

Now recall Figure 3.5, where we encountered evidence that shelf 2 cereals
had the lowest nutritional rating, with an average of about 35, compared to average
ratings of 46 and 45 for the cereals on the other shelves. How can this knowledge be
reconciled with the dummy variable results, which seem to show the highest rating
for shelf 2?7 The answer is that our indicator variable results are accounting for the
presence of the other variables, sugar content and fiber content. It is true that the
cereals on shelf 2 have the lowest nutritional rating; however, as shown in Table
3.5, these cereals also have the highest sugar content (average 9.62 grams compared
to 4.85 and 6.53 grams for shelves 1 and 3) and the lowest fiber content (average
0.92 gram compared to 1.75 and 3.17 grams for shelves 1 and 3). Because of the
negative correlation between sugar and rating, and the positive correlation between
fiber and rating, the shelf 2 cereals already have a relatively low estimated nutritional
rating based on these two predictors alone.

Table 3.5 shows the mean fitted values (estimated ratings) for the cereals on
the various shelves when sugar and fiber content are included in the model but shelf
location is not included as a predictor. Note that, on average, the nutritional rating of
the shelf 2 cereals is underestimated by 1.86 points. On the other hand, the nutritional
rating of the shelf 3 cereals is overestimated by 1.14 points. Therefore, when shelf
location is introduced into the model, these over- and underestimates can be compen-
sated for. Note from Table 3.5 that the relative estimation error difference between
shelves 2 and 3 is 1.14 + 1.86 = 3.00. Thus, we would expect that if shelf location
were going to compensate for the underestimate of shelf 2 cereals relative to shelf 3
cereals, it would add a factor in the neighborhood of 3.00 rating points. Recall from
Table 3.4 that by = 3.828, which is in the ballpark of 3.00. Also note that the relative
estimation error difference between shelves 1 and 3is 1.14 4+ 0.11 = 1.25. We would
expect that the shelf indicator variable compensating for this estimation error would
be not far from 1.25, and indeed, we have the relevant coefficient as b3 = 1.446.

This example illustrates the flavor of working with multiple regression, in that
the relationship of the ser of predictors with the target variable is not necessarily
dictated by the individual bivariate relationships the target variable has with each
of the predictors. For example, Figure 3.5 would have led us to believe that shelf 2
cereals would have had an indicator variable adjusting the estimated nutritional rating
downward. But the actual multiple regression model, which included sugars, fiber,
and shelf location, had an indicator variable adjusting the estimated nutritional rating
upward, because of the effects of the other predictors.
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TABLE 3.6 Results of Regression of Nutritional Rating on Shelf Location Only

The regression equation is
Rating = 45.2 + 0.93 shelf 1 - 10.2 shelf 2

Predictor Coef SE Coef T P
Constant 45.220 2.232 20.26 0.000
shelf 1 0.925 3.736 0.25 0.805
shelf 2 -10.247 3.678 -2.79 0.007
S = 13.3947 R-Sqg = 11.5% R-Sg(adj) = 9.1%

Analysis of Variance

Source DF SS MS F P
Regression 2 1719.8 859.9 4.79 0.011
Residual Error 74 13276.9 179.4

Total 76 14996.8

Source DF Seq SS
shelf 1 1 327.1
shelf 2 1 1392.7

On the other hand, what would have happened had sugars and fiber not been in
the model? That is, suppose that we had the following model:

y = Po + B3(shelf 1) + Pa(shelf2) + ¢

with its associated estimated regression equation:
9V = bo + bs(shelf 1) + by(shelf 2)

What would the character of our indicator variables have been in this case? Well, based
on Figure 3.5, we might expect that by would be negative, adjusting the estimated
rating downward for shelf 2 cereals compared to shelf 3 cereals. We might also
expect b3 to be essentially negligible but slightly positive, reflecting a slight upward
adjustment for shelf 1 cereals compared with shelf 3 cereals.

Table 3.6 contains the results of the regression of nutritional rating on shelf
location only. Note that the coefficient for the shelf 2 dummy variable is —10.247,
which is equal (after rounding) to the signed difference in the mean nutritional ratings
between cereals on shelves 2 and 3 (see Table 3.5). Similarly, the coefficient for the
shelf 1 dummy variable is 0.925, which equals the signed difference in the mean ratings
between cereals on shelves 1 and 3. Thus, in a one-dimensional sense, when no other
predictors are in the model, the dummy variable behavior is quite predictable based on
one-dimensional summary measures and graphs. However, in multiple regression, in
the presence of other variables, it is difficult to predict how the variables will interact.

Consider again Table 3.4, where the regression results from our “full” model
(all predictors included) are given. Note that the p-values for the sugar coefficient
and the fiber coefficient are both quite small (near zero), so that we may include both
of these predictors in the model. However, the p-value for the shelf 1 coefficient is
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TABLE 3.7 Results of Regression of Nutritional Rating on Sugars, Fiber, and
the Shelf 2 Indicator Variable

The regression equation is
Rating = 51.3 - 2.32 Sugars + 3.02 Fiber + 3.28 shelf 2

Predictor Coef SE Coef T P
Constant 51.281 1.559 32.90 0.000
sugars -2.3204 0.1717 -13.52 0.000
Fiber 3.0164 0.3131 9.63 0.000
shelf 2 3.282 1.778 1.85 0.069
S = 6.13829 R-Sg = 81.7% R-Sg(adj) = 80.9%

Analysis of Variance

Source DF SS MS F P
Regression 3 12246.2 4082.1 108.34 0.000
Residual Error 73 2750.5 37.7

Total 76 14996.8

source DF Seqg SS
Sugars 1 8701.7
Fiber 1 3416.1
shelf 2 1 128.5

large (0.426), indicating that the relationship between this variable is not statistically
significant. In other words, in the presence of sugar and fiber content, the difference
in nutritional rating between shelf 1 and shelf 3 cereals is not significant. We may
therefore consider eliminating the shelf 1 indicator variable from the model. Note also
that the p-value (0.049) for the shelf 2 coefficient is of only borderline significance.

Suppose that because of its large p-value, we go ahead and eliminate the shelf
1 indicator variable from the model but retain the shelf 2 indicator variable. The
results from the regression of nutritional rating on sugar content, fiber content, and
shelf 2 (compared to shelf 3) location are given in Table 3.7. Note from the table
that the p-value for the shelf 2 dummy variable has increased from 0.049 to 0.069,
indicating that its significance is slightly lower than previously. However, analysts
should not automatically omit variables whose p-values are higher than 0.05. There is
nothing magical about the 0.05 threshold level apart from its widespread use. Rather,
the analyst should perhaps include these types of variables, especially in interim
analyses, until the model takes more concrete form downstream. The analyst needs to
balance the demands of parsimony and an easily explained model against the higher
predictive power of a well-parametrized model.

Adjusting R?: Penalizing Models for Including
Predictors That Are Not Useful

Recall that adding a variable to the model will increase the value of the coefficient of
determination R?, regardless of the usefulness of the variable. This is not a particularly
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attractive feature of this measure, since it may lead us to prefer models with marginally
larger values for R?, simply because they have more variables, not because the extra
variables are useful.

Therefore, in the interests of parsimony, we should find some way to penalize
the R? measure for models that include predictors that are not useful. Fortunately,
such a penalized form for R? does exist and is known as the adjusted R*. The formula
for adjusted R? is

) . n—1

If Rgdj is much less than RZ, this is an indication that at least one variable in the model
may be extraneous and that the analyst should consider omitting that variable from
the model.

As an example of calculating Rfdj, consider Table 3.4, where we have R? =

0.818, Ridj =0.808,n = 77, and m = 4. Then

1
RL, =1-(1-RHy—2—
-

=1—-(1 0818)76—0808
ady m—1 ' 72

Let us now compare Tables 3.4 and 3.7, where the regression model was run with and
without the shelf 1 indicator variable, respectively. The shelf 1 indicator variable was
found not to be useful for estimating nutritional rating. How did this affect RZ, Rgdj,
and s? The statistics are provided in Table 3.8. The value of R? is higher for the model
with more variables in it, even though the extra variable is not useful. This reflects
the fact that R% never decreases when extra variables are added into the model, but
always increases, if even by a tiny amount. On the other hand, the penalized measure,
Rﬁdj, is smaller for the model with the extra, unuseful variable in it. This reflects how
Ry adjusts the value of R* downward when extraneous variables are entered into the
model. Finally, note how s is smaller for the model without the extraneous variable,
reflecting the fact that a more precise model for estimating nutritional rating can be
obtained by ignoring shelf 1 variable. Hence, when one is building models in multiple

regression, one should use Ridj and s rather than the raw RZ.

TABLE 3.8 Comparison of R?, Rgdj' and s for Models Including and Excluding a
Variable That Is Not Useful

Model R? dej s
Table 3.4:
y = Bo + Bi(sugars) + B (fiber)
0.818 0.808 6.153
+B3(shelf 1) + Ba(shelf2) + ¢
Table 3.7:
Y = Po+ Br(sugars) + py(fiber) 0.817 0.809 6.138

+Ba(shelf2) + ¢
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Sequential Sums of Squares

Some analysts use the information provided in the sequential sums of squares, pro-
vided by many software packages, to help them get a better idea of which variables
to include in the model. The sequential sums of squares represent a partitioning of
SSR, the regression sum of squares. Recall that SSR represents the proportion of the
variability in the target variable that is explained by the linear relationship of the target
variable with the set of predictor variables.

The sequential sums of squares partitions the SSR into the unique portions of
the SSR that are explained by the particular predictors given any earlier predictors.
Thus, the values of the sequential sums of squares depends on the order in which the
variables are entered into the model. For example, the sequential sums of squares for
the model,

y = Po + Bi(sugars) + Ba(fiber) + Bs(shelf 1) + Pa(shelf2) 4

are given in Table 3.4 and repeated in Table 3.9. The sequential sum of squares shown
for sugars, 8701.7 represents the variability in nutritional rating that is explained
by the linear relationship between rating and sugar content. In other words, this
first sequential sum of squares is exactly the value for SSR from the simple linear
regression of nutritional rating on sugar content.

The second sequential sum of squares from Table 3.9, for fiber content, equals
3416.1. This represents the amount of unique additional variability in nutritional rating
that is explained by the linear relationship of rating with fiber content given that the
variability explained by sugars has already been extracted. The third sequential sum of
squares, for shelf 1, is 0.3. This represents the amount of unique additional variability
in nutritional rating that is accounted for by location on shelf 1 (compared to the
reference class shelf 3) given that the variability accounted for by sugars and fiber has
already been separated out. This tiny value for the sequential sum of squares for shelf
1 indicates that the variable is probably not useful for estimating nutritional rating.
Finally, the sequential sum of squares for shelf 2 is a moderate 152.4, supporting our
earlier finding that this variable is of borderline significance. (The determination of
statistical significance can be made by the partial F-test discussed later).

Now, suppose that we changed the ordering of the variables into the regression
model. This would change the values of the sequential sums of squares. For example,
suppose that we perform an analysis based on the following model:

y = Bo + Bi(shelf 1) + Ba(shelf 2) + B3 (sugars) + Pa(fiber) + &

TABLE 3.9 Sequential Sums of Squares for the Model
y = Bo + B1(sugars) + Ba(fiber) + B3(shelf 1) + Ba(shelf2) + e

Source DF Seq SS
sugars 1 8701.7
Fiber 1 3416.1
shelf 1 1 0.3
shelf 2 1 152.4
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TABLE 3.10 Changing the Ordering of the Variables into the Model
Changes Nothing Except the Sequential Sums of Squares

The regression equation is
Rating = 50.4 + 1.45 shelf 1 + 3.83 shelf 2
+ 3.09 Fiber - 2.30 Sugars

Predictor Coef SE Coef T P
Constant 50.433 1.888 26.71 0.000
shelf 1 1.446 1.806 0.80 0.426
shelf 2 3.828 1.908 2.01 0.049
Fiber 3.0856 0.3256 9.48 0.000
Sugars -2.2954 0.1749 -13.12 0.000
S = 6.15345 R-Sg = 81.8% R-Sg(adj) = 80.8%

Analysis of Variance

Source DF SS MS F P
Regression 4 12270.5 3067.6 81.01 0.000
Residual Error 72 2726.3 37.9

Total 76 14996.8

Source DF Seq SS

shelf 1 1 327.1
shelf 2 1 1392.7
Fiber 1 4029.8
sugar 1 6520.9

The results for this regression are provided in Table 3.10. Note that all the results in
Table 3.10 except the values of the sequential sums of squares are exactly the same
as in Table 3.4 (apart from ordering). This time, the indicator variables are able to
“claim” their unique portions of the variability before the other variables are entered,
thus giving them larger values for their sequential sums of squares. See Neter et al. [4]
for more information on applying sequential sums of squares for variable selection.
We use the sequential sums of squares, in the context of a partial F-test, later in this
chapter to perform variable selection.

MULTICOLLINEARITY

Suppose that we are now interested in adding the predictor potassium to the model,
so that our new multiple regression model looks as follows:

y = Po + Bi(sugars) + Pa(fiber) + B3(shelf 1) + Pa(potassium) + &

with the associated estimated regression equation

¥ = by + by (sugars) + by (fiber) + bs(shelf 1) + by(potassium)
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X

Figure 3.8 When the predictors x; and x, are uncorrelated, the response surface y rests on
a solid basis, providing stable coefficient estimates.

Data miners need to guard against multicollinearity, a condition where some of the
predictor variables are correlated with each other. Multicollinearity leads to instability
in the solution space, leading to possible incoherent results. For example, in a data set
with severe multicollinearity, it is possible for the F-test for the overall regression to
be significant, whereas none of the #-tests for the individual predictors are significant.
This situation is analogous to enjoying the whole pizza while not enjoying any of the
slices.

Consider Figures 3.8 and 3.9. Figure 3.8 illustrates a situation where the pre-
dictors x; and x, are not correlated with each other; that is, they are orthogonal, or
independent. In such a case, the predictors form a solid basis upon which the response
surface y may rest sturdily, thereby providing stable coefficient estimates b; and b,,
each with small variability s, and s5,. On the other hand, Figure 3.9 illustrates a
multicollinear situation where the predictors x; and x; are correlated with each other,
so that as one of them increases, so does the other. In this case, the predictors no
longer form a solid basis upon which the response surface may firmly rest. Instead,
when the predictors are correlated, the response surface is unstable, providing highly
variable coefficient estimates b, and b,, with inflated values for s, and s,,.

The high variability associated with the estimates means that different samples
may produce coefficient estimates with widely different values. For example, one
sample may produce a positive coefficient estimate for x;, where as a second sample
may produce a negative coefficient estimate. This situation is unacceptable when the
analytic task calls for an explanation of the relationship between the response and
the predictors individually. Even if such instability is avoided, inclusion of variables
that are highly correlated tends to overemphasize a particular component of the model,
since the component is essentially being double counted.
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Figure 3.9 Multicollinearity: When the predictors are correlated, the response surface is
unstable, resulting in dubious and highly variable coefficient estimates.

To avoid multicollinearity, the analyst should investigate the correlation struc-
ture among the predictor variables (ignoring the target variable for the moment).
Table 3.11 provides the correlation coefficients among the predictors for our present
model. For example, the correlation coefficient between sugars and fiber is —0.137,
and the correlation coefficient between sugars and potassium is 0.022. Unfortunately,
there is one pair of variables that are strongly correlated: fiber and potassium, with
r = 0.905. Another method of assessing whether the predictors are correlated is to
construct a matrix plot of the predictors, such as Figure 3.10. The matrix plot supports
the finding that fiber and potassium are positively correlated.

However, suppose that we did not check for the presence of correlation among
our predictors, but went ahead and performed the regression anyway. Is there some
way that the regression results can warn us of the presence of multicollinearity? The
answer is yes: We may ask for the variance inflation factors (VIFs) to be reported.
What are variance inflation factors? First, recall that s, represents the variability
associated with the coefficient b; for the ith predictor variable x;. We may express s,
as a product of s, the standard error of the estimate, and ¢;, which is a constant whose
value depends on the predictor values observed. That is, s,, = sc;. Now, s is fairly

TABLE 3.11 Correlation Coefficients Among
the Predictor Variables: We Have a Problem

Sugars Fiber Shelf 2
Fiber -0.137
Shelf 2 0.374 -0.330

Potass 0.022 0.905 -0.331
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Figure 3.10 Matrix plot of the predictor variables shows correlation between fiber and
potassium.

robust with respect to the inclusion of correlated variables in the model, as we shall
verify in the exercises. So in the presence of correlated predictors, we would look to
¢; to help explain large changes in sy,.

‘We may express ¢; as
1 1
C; =
' (n—1)s? 1 — R?

where 552 represents the sample variance of the observed values of the ith predictor,
X;, and Rl.2 represents the R? value obtained by regressing x; on the other predictor
variables. Note that R? will be large when x; is highly correlated with the other predic-
tors. Note that of the two terms in ¢;, the first factor, 1 /((n — l)siz), measures only the
intrinsic variability within the of ith predictor, x;. It is the second factor, 1/(1 — Riz)
that measures the correlation between the ith predictor x; and the remaining predictor
variables. For this reason, this second factor is denoted as the variance inflation factor
(VIF) for x;:

1

VIF; = [~ &2

Can we describe the behavior of the VIF? Suppose that x; is completely
uncorrelated with the remaining predictors, so that R? = 0. Then we will have
VIF; = 1/(1 — 0) = 1. That is, the minimum value for VIF is 1, which is reached
when x; is completely uncorrelated with the remaining predictors. However, as the de-
gree of correlation between x; and the other predictors increases, R[2 will also increase.
Inthatcase, VIF; = 1/(1 — Rl.z) will increase withoutbound as Rl.2 approaches 1. Thus,

there is no upper limit to the value that VIF; can take.



120 CHAPTER 3 MULTIPLE REGRESSION AND MODEL BUILDING

What effect do these changes in VIF; have on s;,, the variability of the ith
coefficient? We have

1 1 VIF,
Sp =S¢ =S =5
b n—1)s21—R? (n—1)s2

If x; is uncorrelated with the other predictors, VIF; = 1, and the standard error
of the coefficient s, will not be inflated. However, if x; is correlated with the other
predictors, the large VIF; value will produce an overinflation of the standard error
of the coefficient sp,. As you know, inflating the variance estimates will result in a
degradation in the precision of the estimation.

A rough rule of thumb for interpreting the value of the VIF is to consider VIF; >
5 to be an indicator of moderate multicollinearity and to consider VI F; > 10 to be
an indicator of severe multicollinearity. A variance inflation factor of 5 corresponds
to Ri2 = 0.80, and VIF; = 10 corresponds to Rl.2 = 0.90.

Getting back to our example, suppose that we went ahead with the regression
of nutritional rating on sugars, fiber, the shelf 2 indicator, and the new variable,
potassium, which is correlated with fiber. The results, including the observed variance
inflation factors, are shown in Table 3.12. The estimated regression equation for this
model is

9y = 52.184 — 2.1953(sugars) + 4.1449(fiber)
+ 2.588(shelf) — 0.04208(potassium)

The p-value for potassium is not very small (0.099), so at first glance the variable
may or may not be included in the model. Also, the p-value for the shelf 2 indicator
variable (0.156) has increased to such an extent that we should perhaps not include it in
the model. However, we should probably not put too much credence into any of these
results, since the VIFs observed seem to indicate the presence of a multicollinearity
problem. We need to resolve the evident multicollinearity before moving forward
with this model.

The VIF for fiber is 6.5 and the VIF for potassium is 6.7, with both values
indicating moderate-to-strong multicollinearity. At least the problem is localized with
these two variables only, as the other VIFs are reported at acceptably low values. How
shall we deal with this problem? Some texts suggest choosing one of the variables and
eliminating it from the model. However, this should be viewed only as a last resort,
since the variable omitted may have something to teach us. As we saw in Chapter 1,
principal components can be a powerful method for using the correlation structure
in a large group of predictors to produce a smaller set of independent components.
However, the multicollinearity problem in this example is strictly localized to two
variables, so the application of principal components analysis in this instance might
be considered overkill. Instead, we may prefer to construct a user-defined composite,
as discussed in Chapter 1. Here, our user-defined composite will be as simple as
possible, the mean of fiber, and potassium,, where the z-subscript notation indicates
that the variables have been standardized. Thus, our composite W is defined as W =
(ﬁberZ + pomssiumz) /2.
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TABLE 3.12 Regression Results, with Variance Inflation Factors Indicating a
Multicollinearity Problem

The regression equation is
Rating = 52.2 - 2.20 Sugars + 4.14 Fiber + 2.59 shelf 2
- 0.0421 Potass

Predictor Coef SE Coef T P VIF
Constant 52.184 1.632 31.97 0.000

Sugars -2.1953 0.1854 -11.84 0.000 1.4
Fiber 4.1449 0.7433 5.58 0.000 6.5
shelf 2 2.588 1.805 1.43 0.156 1.4
Potass -0.04208 0.02520 -1.67 0.099 6.7
S = 6.06446 R-Sg = 82.3% R-Sg(adj) = 81.4%

Analysis of Variance

Source DF SS MS F P
Regression 4 12348.8 3087.2 83.94 0.000
Residual Error 72 2648.0 36.8

Total 76 14996.8

Source DF Seq SS
sugars 1 8701.7

Fiber 1 3416.1
shelf 2 1 128.5
Potass 1 102.5

Note that we need to standardize the variables involved in the composite, to
avoid the possibility that the greater variability of one of the variables will overwhelm
that of the other variable. For example, the standard deviation of fiber among all
cereals is 2.38 grams, and the standard deviation of potassium is 71.29 milligrams.
(The grams/milligrams scale difference is not at issue here. What is relevant is the
difference in variability, even on their respective scales.) Figure 3.11 illustrates the
difference in variability.

We therefore proceed to perform the regression of nutritional rating on the vari-
ables sugars, and shelf2,and W = (fiber. + potassium_) /2. The results are provided
in Table 3.13.

Note first that the multicollinearity problem seems to have been resolved, with
the VIF values all near 1. Note also, however, that the regression results are rather
disappointing, with the values of R?, Ridj , and s all underperforming the model results
found in Table 3.7, from the model y = By + Bi(sugars) + Ba(fiber) 4+ Ba(shelf2) +
&, which did not even include the potassium variable.

What is going on here? The problem stems from the fact that the fiber variable
is a very good predictor of nutritional rating, especially when coupled with sugar
content, as we shall see later when we perform best subsets regression. Therefore,
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Figure 3.11  Fiber and potassium have different variabilities, requiring standardization prior
to construction of a user-defined composite.

using the fiber variable to form a composite with a variable that has weaker correlation
with rating dilutes the strength of fiber’s strong association with rating and so degrades
the efficacy of the model.

Thus, reluctantly, we put aside the model y = By + Bi(sugars,) + Pa
(shelf 2) + Bs(W) 4+ e. One possible alternative is to change the weights in the
composite, to increase the weight of fiber with respect to potassium. For example,

TABLE 3.13 Results of Regression of Rating on Sugars, Shelf 2, and the
Fiber/Potassium Composite

The regression equation is
Rating = 41.7 - 10.9 sugars z + 3.67 shelf 2 + 6.97 fiber_potass

Predictor Coef SE Coef T P VIF
Constant 41.6642 0.9149 45.54 0.000
sugars z -10.9149 0.8149 -13.39 0.000 1.2
shelf 2 3.672 1.929 1.90 0.061 1.3
fiber potass 6.9722 0.8230 8.47 0.000 1.1
S = 6.56878 R-Sg = 79.0% R-Sg(adj) = 78.1%
Analysis of Variance

Source DF SS MS F P
Regression 3 11846.9 3949.0 91.52 0.000

Residual Error 73 3149.9 43.1
Total 76 14996.8
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we could use Wy = (0.9 x fiber, + 0.1 x potassium_). However, the model perfor-
mance would still be slightly below that of using fiber alone. Other alternatives
include performing principal components analysis or simply omitting the variable
potassium.

Now, depending on the task confronting the analyst, multicollinearity may not
in fact present a fatal defect. Weiss [5] notes that multicollinearity “does not adversely
affect the ability of the sample regression equation to predict the response variable.”
He adds that multicollinearity does not significantly affect point estimates of the target
variable, confidence intervals for the mean response value, or prediction intervals for
a randomly selected response value. However, the data miner must therefore strictly
limit the use of a multicollinear model to estimation and prediction of the target
variable. Interpretation of the model would not be appropriate, since the individual
coefficients may not make sense in the presence of multicollinearity.

VARIABLE SELECTION METHODS

To assist the data analyst in determining which variables should be included in a
multiple regression model, several different variable selection methods have been
developed, including (1) forward selection, (2) backward elimination, (3) stepwise
selection, and (4) best subsets. These variable selection methods are essentially algo-
rithms to help construct the model with the optimal set of predictors.

Partial F-Test

To discuss variable selection methods, we first need to learn about the partial
F-test. Suppose that we already have p variables in the model, x;, x», ..., x, and
we are interested in whether or not one extra variable x* should be included in
the model. Recall our earlier discussion of the sequential sums of squares. Here
we would calculate the extra (sequential) sum of squares from adding x* to the
model given that xj, x5, ..., x, are already in the model. Denote this quantity by
SSextra = SS(X*[x1, X2, ..., Xp,). Now, this extra sum of squares is computed by find-
ing the regression sum of squares for the full model (including x;, x», ..., x, and
x*), denoted SSg1 = SS(x1, X2, ..., x,,x¥), and subtracting the regression sum of
squares from the reduced model (including only x1, x3, ..., x,), denoted SSequced =
SS(x1, x2, ..., xp). In other words,

SSextra = szull - SSreduced
that is,
SS(x*|x1, x2, ooy xp) = SS(x1, X2, ooy X, X)) = SS(xy, X2, ., X))
The null hypothesis for the partial F-test is as follows:

* Hy: No, the SScxira associated with x* does not contribute significantly to
the regression sum of squares for a model already containing xi, x, ..., X.
Therefore, do not include x* in the model.
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The alternative hypothesis is:

° H,: Yes,the SS¢, associated with x* does contribute significantly to the re-
gression sum of squares for a model already containing xi, x», ..., x,. There-
fore, do include x™* in the model.

The test statistic for the partial F-test is

Ssextra

F(x™|x1, X2, .0y Xp) = ———
r MSEgu

where MSEg,; denotes the mean-squared error term from the full model, including
X1, X2, ..., x, and x*. This is known as the partial F-statistic for x*. When the
null hypothesis is true, this test statistic follows an F;_,_,_»-distribution. We would
therefore reject the null hypothesis when F(x*|x, x2, ..., x,) is large or when its
associated p-value is small.

An alternative to the partial F-test is the z-test. Now an F-test with 1 and n —
p — 2 degrees of freedom is equivalent to a z-test withn — p — 2 degrees of freedom.
This is due to the distributional relationship that Fy ,_,_» = (t,,_ ,,_2)2 . Thus, either
the F-test or the 7-test may be performed. Similar to our treatment of the #-test earlier
in the chapter, the hypotheses are given by

e Hy: ﬂ*ZO
«Hp BT #0

The associated models are:

e Under Hy: y=PB+pixi+ -+ Bx,+e
e Under H,: y=PBo+pixi+ -+ Bpx, +Bx"+¢

Under the null hypothesis, the test statistic + = b*/s,« follows a z-distribution with
n — p — 2 degrees of freedom. Reject the null hypothesis when the two-tailed p-value,
P(|t| > tops), 1s small.

Finally, we need to discuss the difference between sequential sums of squares
and partial sums of squares. The sequential sums of squares are as described earlier in
the chapter. As each variable is entered into the model, the sequential sum of squares
represents the additional unique variability in the response explained by that variable,
after the variability accounted for by variables entered earlier in the model has been
extracted. That is, the ordering of the entry of the variables into the model is germane
to the sequential sums of squares.

On the other hand, ordering is not relevant to the partial sums of squares.
For a particular variable, the partial sum of squares represents the additional unique
variability in the response explained by that variable after the variability accounted
for by all the other variables in the model has been extracted. Table 3.14 shows the
difference between sequential and partial sums of squares, for a model with four
predictors, xy, X2, X3, X4.
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TABLE 3.14 Difference Between Sequential and Partial SS

Variable Sequential SS Partial SS

X SS (x1) SS (x1lx2, x3, x4)
X2 SS(x2]x1) SS(xz|x1, x3, x4)
X3 SS(x3]x1, x2) SS(x3lx1, X2, X4)
X4 SS(x4lx1, X2, x3) SS(x4lx1, x2, x3)

Forward Selection Procedure

The forward selection procedure starts with no variables in the model.

1.

For the first variable to enter the model, select the predictor most highly correlated
with the target. (Withoutloss of generality, denote this variable x;.) If the resulting
model is not significant, stop and report that no variables are important predictors;
otherwise proceed to step 2.

. For each remaining variable, compute the sequential F-statistic for that vari-

able given the variables already in the model. For example, in this first pass
through the algorithm, these sequential F-statistics would be F'(x;|x1), F(x3]x}),
and F(x4|x;). On the second pass through the algorithm, these might be
F(x3]x1, xp)and F(x4]x1, x2). Select the variable with the largest sequential
F-statistic.

. For the variable selected in step 2, test for the significance of the sequential

F-statistic. If the resulting model is not significant, stop, and report the current
model without adding the variable from step 2. Otherwise, add the variable from
step 2 into the model and return to step 2.

Backward Elimination Procedure

The backward elimination procedure begins with all the variables, or all of a user-
specified set of variables, in the model.

1.

2.

Perform the regression on the full model, that is, using all available variables.
For example, perhaps the full model has four variables, x|, x3, x3, X4.

For each variable in the current model, compute the partial F-statistic. In the first
pass through the algorithm, these would be F (x| |x2, x3, x4), F (x2]|x1, X3, X4),
F (x3|x1, x2, x4), and F (x4]|x1, X2, x3). Select the variable with the smallest
partial F-statistic. Denote this value Fi,.

. Test for the significance of Fp,. If Fi, is not significant, remove the variable

associated with Fy,;, from the model, and return to step 2. If Fy;, is significant,
stop the algorithm and report the current model. If this is the first pass through
the algorithm, the current model is the full model. If this is not the first pass, the
current model has been reduced by one or more variables from the full model.
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Stepwise Procedure

The stepwise procedure represents a modification of the forward selection procedure.
A variable that has been entered into the model early in the forward selection process
may turn out to be nonsignificant once other variables have been entered into the
model. The stepwise procedure checks on this possibility by performing at each step
a partial F-test using the partial sum of squares for each variable currently in the model.
If there is a variable in the model that is no longer significant, the variable with the
smallest partial F-statistic is removed from the model. The procedure terminates when
no further variables can be entered or removed.

Best Subsets Procedure

For data sets where the number of predictors is not too large, the best subsets procedure
represents an attractive variable selection method. However, if there are more than 30
or so predictors, the best subsets method encounters a combinatorial explosion and
becomes intractably slow. The best subsets procedure works as follows.

1. The analyst specifies how many (k) models of each size that he or she would like
reported, as well as the maximum number of predictors (p) the analyst wants in
the model.

2. All models of one predictor are built: for example, y = By + B (sugars)
+e&,y = Bo + Ba(fiber) + ¢, and so on. Their R, Rgdj, Mallows’ C,, (see be-
low), and s values are calculated. The best kK models are reported based on these
measures.

3. Then all models of two predictors are built: for example, y = By + B (sugars)
+ Ba(fiber) + ¢, y = Po + Bi1 (sugars) + Pa(shelf2) + ¢, and so on etc. Their
RZ, Rgdj, Mallows’ C),, and s values are calculated, and the best k models are
reported.

The procedure continues in this way until the maximum number of predictors
(p) is reached. The analyst then has a listing of the best models of each size 1, 2, .. .,
p to assist in selection of the best overall model.

All-Possible-Subsets Procedure

The four methods of model selection we have discussed are essentially optimization
algorithms over a large sample space. Because of that, there is no guarantee that the
globally optimal model will be found; that is, there is no guarantee that these variable
selection algorithms will uncover the model with the lowest s, the highest Rgdj, and so
on [2,6]. The only way to ensure that the absolute best model has been found is simply
to perform all the possible regressions. Unfortunately, in data mining applications,
there are usually so many candidate predictor variables available that this method
is simply not practicable. Not counting the null model y = By + ¢, there are 27 — 1

possible models to be built using p predictors.
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For small numbers of predictors, it is not a problem to construct all possible re-
gressions. For example, for p = 5 predictors, there are 2° — 1 = 31 possible models.
However, as the number of predictors starts to grow, the search space grows exponen-
tially. For instance, for p = 10 predictors, there are 2!° — 1 = 1023 possible models;
and for p = 20 predictors, there are 220 _ | = 1,048,575 possible models.

Thus, for most data mining applications, in which there may be hundreds of
predictors, the all-possible-regressions procedure is not applicable. Therefore, the
data miner may be inclined to turn to one of the four variable selection procedures
discussed above. Even though there is no guarantee that the globally best model
is found, these methods usually provide a useful set of models, which can provide
positive results. The analyst can then adopt these models as starting points and apply
tweaks and modifications to coax the best available performance out of them.

APPLICATION OF THE VARIABLE SELECTION METHODS

Suppose that we are interested in building a multiple regression model for estimating
nutritional rating based on the following set of candidate predictors. We would like
the most parsimonious model that does not leave out any significant predictors.

o Calories o Sugars

« Protein « Potassium

« Fat « Vitamins

o Sodium  Shelf 2 indicator variable
o Fiber o Cups

o Carbohydrates o Weight

The variables cups and weight do not really belong in the set of predictors as such, for
reasons that we verify in the exercises. However, we include them here as examples
of variables that will not be selected for inclusion in the model. We apply the four
variable selection methods described above and compare the models suggested by
each procedure.

Forward Selection Procedure Applied to the Cereals Data Set

In the forward selection procedure, we begin with no variables in the model. Then the
variable most strongly correlated with nutritional rating is selected and, if significant,
entered into the model. This variable is sugars, which has the highest correlation co-
efficient (r = 0.762) with rating among the predictors. Then the sequential F-tests are
performed, such as F(fiber|sugars), F(sodium|sugars), and so on. It turns out that
the highest sequential F-statistic is given by the significance test of F(fiber|sugars),
so that the variable fiber becomes the second variable entered into the model. Once
again, the sequential F-tests are performed, such as F'(sodium|sugars, fiber) and
F(fat|sugars, fiber). The highest sequential F-statistic is associated with sodium,
which becomes the third variable entered into the model.

The procedure continues in this manner, adding the following variables in order:
fat, protein, carbohydrates, calories, vitamins, and potassium. The procedure then
does not find any other significant variables to enter into the model and so terminates,
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reporting the following multiple regression model for nutritional rating:

y = Bo + Bi(sugars) + Ba(fiber) + B3(sodium)
+ Ba(fat) + Bs(protein) + Be(carbohydrates)
+ B1(calories) + Bg(vitamins) 4+ Bo(potassium) + €

Denote this model as model A. Note that the forward selection procedure did not
include the following variables in the model: cups, weight, and the shelf 2 indicator
variable. Table 3.15 shows the summaries for the models as variables were entered
(from Clementine software). Note that, as variables are entered into the model, Ridj
increases, and the standard error s decreases, both of which indicate that the newly
entered variables are useful.

‘We may use the results in Table 3.16 to calculate the sequential F-statistics. The
table contains the ANOVA tables for the first four models selected by the forward
selection procedure. Model 1 represents the model with sugars as the only predictor.
Model 2 represents the model with both sugars and fiber entered as predictors. Since
SSextra = SStul — SSreduced> We have

Ssﬁher\sugarx = Ssxugars,ﬁher - Ssxugars

From Table 3.16 we have SSgears, fiver = 12, 117.782 and SSg0s = 8701.675,
giving us

SSfver | sugars = SSsugars, fiber — SSsugars = 12, 117.782 — 8701.675 = 3416.107

The test statistic for the partial (or, in this case, sequential) F-test is the following:

S Sﬁber | sugars

F (ﬁber| sugars) =
MSEsugars,ﬁber

TABLE 3.15 Model Summaries from the Forward Selection Procedure

Model R R? Adjusted R? Std. Error of the Estimate
1 0.762¢ 0.580 0.575 9.16160
2 0.899% 0.808 0.803 6.23743
3 0.948¢ 0.899 0.895 4.54638
4 0.981¢ 0.962 0.960 2.82604
5 0.985°¢ 0.970 0.968 2.50543
6 0.987f 0.975 0.973 2.31269
7 0.995¢ 0.990 0.989 1.47893
8 0.998" 0.995 0.995 1.01477
9 0.999¢ 0.999 0.999 0.52216

¢ Predictors: (constant), sugars.

b Predictors: (constant), sugars, fiber.

¢ Predictors: (constant), sugars, fiber, sodium.

4 Predictors: (constant), sugars, fiber, sodium, fat.

¢ Predictors: (constant), sugars, fiber, sodium, fat, protein.

/ Predictors: (constant), sugars, fiber; sodium, fat, protein, carbohydrates.

¢ Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories.

" Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories, vitamins.

i Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories, vitamins, potassium.
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TABLE 3.16 ANOVA Tables for the First Four Models Selected by the
Forward Selection Procedure?

Model Sum of Squares df Mean Square F Significance
1 Regression 8,701.675 1 8,701.675 103.672 0.000”
Residual 6,295.113 75 83.935
Total 14,996.788 76
2 Regression 12,117.782 2 6,058.891 155.734 0.000¢
Residual 2,879.006 74 38.905
Total 14,996.788 76
3 Regression 13,487.911 3 4,495.970 217.517 0.0004
Residual 1,508.877 73 20.670
Total 14,996.788 76
4 Regression 14,421.759 4 3,605.440 451.441 0.000¢
Residual 575.030 72 7.987
Total 14,996.788 76

¢ Dependent variable: nutritional rating.

b Predictors: (constant), sugars.

¢ Predictors: (constant), sugars, fiber.

4" Predictors: (constant), sugars, fiber, sodium.

¢ Predictors: (constant), sugars, fiber, sodium, fat.

From Table 3.16 we have MSEj,gqrs, fiver = 38.905,giving us

Ssﬁberlsugars _ 3416.107
MSESngars,_ﬁber N 38.905

F(ﬁberlsugars) = =87.8

With a sample size of 77 and p = 2 parameters in the model, this test statistic follows
an Fy ,_,_» = F| 73-distribution. The p-value for this test statistic is approximately
zero, thereby rejecting the null hypothesis that fiber should not be included after
sugars.

Backward Elimination Procedure Applied to the
Cereals Data Set

In the backward elimination procedure, we begin with all of the variables
in the model. The partial F-statistic is then calculated for each variable in
the model. Examples of these would be F(weight|sugars, fiber, ..., cups) and
F(cups|sugars, fiber, ..., weight). The variable with the smallest partial F-statistic,
Fhin, 1s examined, which in this case is weight. If F;, 1s not significant, which is the
case here, the variable is dropped from the model. On the next pass, the variable with
the smallest partial F-statistic is cups, which again is not significant. Thus, cups is
also omitted from the model. On the third pass, the variable with the smallest partial
F-statistic is the shelf 2 indicator variable. However, the p-value associated with this
Fhin 1s not large enough to warrant noninclusion in the model according to the inclu-
sion criteria (more on this in a bit). Therefore, the procedure terminates, and reports
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TABLE 3.17 Model Summaries from the Backward Elimination Procedure

Adjusted Std. Error
Model R R? R? of the Estimate
1 0.999¢ 0.999 0.999 0.51098
2 0.999° 0.999 0.999 0.50813
3 0.999¢ 0.999 0.999 0.51091

¢ Predictors: (constant), shelf 2, fat, sodium, weight, cups, protein, vitamins, carbohydrates, fiber, sugars, calories,
potassium.

b Predictors: (constant), shelf 2, fat, sodium, cups, protein, vitamins, carbohydrates, fiber, sugars, calories, potassium.

¢ Predictors: (constant), shelf 2, fat, sodium, protein, vitamins, carbohydrates, fiber, sugars, calories, potassium.

the following model:

y = Po + Bi(sugars) + Ba(fiber) + Bs(sodium) + Ba(fat)
+ Bs(protein) + Pe(carbohydrates) + B7(calories)
+ Bg(vitamins) + Po(potassium) + Bio(shelf2) e

Denote this model as model B. Note that the forward selection and backward elim-
ination methods disagree on the preferred model, with the variable shelf 2 included
here but not included by the forward selection procedure. We shall investigate why
this occurs below.

Table 3.17 shows the summaries for the models as the unhelpful variables were
eliminated. Note that as variables were dropped, there is no change R‘fdj, at least to
three decimal places, while the evidence from the standard error of the estimate is
inconclusive. The results in Table 3.18 may be used to calculate the partial F-statistics.
Table 3.18 contains the ANOVA tables for the models generated by the backward
elimination procedure. Model 1 represents the model with all the predictors in the

TABLE 3.18 ANOVA Tables for the Models Selected by the Backward Elimination Procedure?

Model Sum of Squares df Mean Square F Significance
1 Regression 14,980.078 12 1,248.340 4,781.082 0.000”
Residual 16.710 64 0.261
Total 14,996.788 76
2 Regression 14,980.005 11 1,361.819 5,274.321 0.000¢
Residual 16.783 65 0.258
Total 14,996.788 76
3 Regression 14,979.560 10 1,497.956 5,738.554 0.000¢
Residual 17.228 66 0.261
Total 14,996.788 76

¢ Dependent variable: rating.

b Predictors: (constant), shelf 2, fat, sodium, weight, cups, protein, vitamins, carbohydrates, fiber, sugars, calories,
potassium.

¢ Predictors: (constant), shelf 2, fat, sodium, cups, protein, vitamins, carbohydrates, fiber, sugars, calories, potassium.

4" Predictors: (constant), shelf 2, fat, sodium, protein, vitamins, carbohydrates, fiber, sugars, calories, potassium.
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model. Model 2 represents the model with all the predictors except weight. We have

SSweight | all other variables — SSall variables — SSall variables except weight

= 14,980.078 — 14,980.005
= 0.073

Then, using the information from Table 3.18, the test statistic for the partial
F-test is the following:

steightlall other variables 0.073
MSEall variables 0.261

This value of 0.280 lies at about the 40th percentile of the F; ,_,_> = Fy 7, distribu-
tion, giving us a p-value for this hypothesis test of 0.60. Therefore, the null hypothesis
that weight should not be included in the model, given all the other variables, is not
rejected, and the variable weight is thereby eliminated from the model.

F (weight|all other variables) = =0.280

Stepwise Selection Procedure Applied to the Cereals Data Set

The stepwise selection procedure is a modification of the forward selection procedure,
where the algorithm checks at each step whether all variables currently in the model
are still significant. In this example, each variable that had been entered remained
significant when the other variables were also entered. Thus, for this example, the
results were the same as for the forward selection procedure (model A) with the same
model summaries, as shown in Table 3.15.

Best Subsets Procedure Applied to the Cereals Data Set

Table 3.19 provides the results from Minitab’s application of the best subsets proce-
dure on the cereals data set. The predictor variable names are given on the upper right,
formatted vertically. Each horizontal line in the table represents a separate model, with
the “X”’s shown under the predictors included in a particular model. Thus, the first
model has only sugars; the second model has only calories; the third model has only
fiber; the fourth model has both sugars and fiber; and so on. Four model selection

criteria are reported for each model: R?, R3y;, Mallows’ C,, and s.

MALLOWS’ Cp STATISTIC

We now discuss the C), statistic, developed by Mallows [7]. The C, statistic takes the
form

SSE,
P MSEg
where p represents the number of predictors in the current (working) model, SSE, the
error sum of squares of the model with p predictors, and MSEg,; the mean-squared
error of the full model, that is, the model with all predictors entered. For a model
that fits well, it can be shown [2] that E (C ,,) = p + 1. Thus, we would expect the

—[n=2(p+1D]
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Figure 3.12 A plot of Mallows’ C,, against the number of predictors, p, can help select the
best model.

value of C, for a well-fitting model to take a value not far from p + 1. On the other
hand, models that show a considerable lack of fit will take values of C, above (and
sometimes far above) p + 1. The full model, with all variables entered, always has
C, = p + 1 but is often not the best model.

Itis useful to plot the value of C, against the number of predictors, p. Figure 3.12
shows such a plot for the cereals data set regression. To increase granularity, only
those models where the value of C), is near p are shown in the plot. One heuristic for
choosing the best model is to select the model where the value of C,, first approaches
or crosses the line C,, = p + 1 as p increases.

Consider Figure 3.12. No points are plotted for p < 9 since the C, values were
too far away from C,, = p + 1 to be helpful. However, the general trend for the values
of C, is to fall as p increases, as can be seen from Table 3.19. As we reach p =9,
we have C,, = 13, which is not too far away from the line C,, = p + I; thus, we may
wish to bear this model in mind as a possible candidate model.

Finally, when we reach p = 10, we have for one of the models, C,, = 11, which
is exactly on the line C,, = p + 1. Therefore, the C,, heuristic would be to select this
model as the current best model. This model, shown in bold in Table 3.19, is as
follows:

y = Po + Bi(sugars) + Ba(fiber) + Bs(sodium) + Ba(fat)
+ Bs(protein) + Be(carbohydrates) + B (calories)
+ Bs(vitamins) + Po(potassium) + Pio(shelf2) + ¢

This is of course model B the model recommended to us by the backward elimination
method. The other model, withp = 9 and C,, = 13, is the model recommended to us
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by the forward selection and stepwise selection method models, A:

y = Bo + Bi(sugars) + Ba(fiber) + B3(sodium) + Ba(far)
+ Bs(protein) + Be(carbohydrates) + B (calories) + Bg(vitamins)
+ Bo(potassium) + &

VARIABLE SELECTION CRITERIA

Thus, we have two candidate models vying for designation as the best model, with
each model chosen by two model selection procedures. The only difference between
the models is the inclusion of the shelf 2 indicator variable. Let us take a moment to
examine why the forward selection method did not include this variable, whereas the
backward elimination method did.

So far, we have blindly applied the variable selection procedures, using the
default selection criteria given by the algorithms. In many cases, these default values
work quite nicely, but the analyst should always be aware of the thresholds being
applied to omit or retain variables in the variable selection process. Figure 3.13
shows the dialog box for setting the entry/removal thresholds for the Clementine
software, with the default values shown. Variables will be added to the model only if
the associated p-value for the partial F-test is smaller than the entry value specified
in this dialog box, and removed only if the p-value is larger than the removal value
specified.

If analysts wish to be more parsimonious, a lower entry threshold may be
specified, which will make it more difficult for variables of borderline significance to
be entered into the model. Similarly, a lower removal threshold will make it easier to
omit variables of borderline significance. On the other hand, if the analyst wishes to be
more inclusive, higher levels for the entry and removal thresholds may be specified.
Clearly, however, the entry threshold value must be less than the removal value.

So what is the significance of the shelf 2 indicator variable given that the other
variables in Table 3.15 are in the model? Table 3.20 shows that the p-value for the z-test
for the shelf 2 variable is 0.05. Earlier we learned how the #-test and the (appropriate)
F-test were equivalent. Thus, it would follow that the p-value for the sequential F-test
for inclusion of shelf 2 is 0.05.

We can verify this p-value using the sequential F-test directly, as follows. From
Table 3.21 we have the regression sum of squares for the full model (including shelf
2 but ignoring cups and weight) equal to 14,979.560. Also from Table 3.21 we have

4 Linear Regression: Stepping Criteria @
® Use probability of F Entry:| 0.05|={Removal| 0.1/
() Use Fvalue ' :-:j|'-'-..; v . :|

[ ok || cancer || Hep |

Figure 3.13  Setting the entry/removal thresholds in Clementine.
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TABLE 3.20 Shelf 2 Indicator Variable Has a Significance of 0.05, as Shown by the t-Test

The regression equation is

Rating=54.3 - 0.230Calories + 3.25Protein-1.67 Fat - 0.0552 Sodium
+3.47 Fiber + 1.16 Carbos - 0.708 Sugars - 0.0330 Potassium
-0.0496 Vitamins + 0.314 shelf 2

Predictor Coef SE Coef T P VIF
Constant 54.2968 0.4488 120.99 0.000
Calories -0.229610 0.007845 -29.27 0.000 6.8
Protein 3.24665 0.08582 37.83 0.000 2.6
Fat -1.66844 0.09650 -17.29 0.000 2.7
Sodium -0.0552464 0.0008142 -67.86 0.000 1.4
Fiber 3.46905 0.07165 48.41 0.000 8.5
Carbos 1.16030 0.03127 37.11 0.000 5.1
Sugars -0.70776 0.03343 -21.17 0.000 6.4
Potassium -0.032982 0.002416 -13.65 0.000 8.6
Vitamins -0.049640 0.002940 -16.88 0.000 1.3
shelf 2 0.3140 0.1573 2.00 0.050 1.4
S = 0.510915 R-Sg = 99.9% R-Sg(adj) = 99.9%

Analysis of Variance

Source DF SS MS F P
Regression 10 14979.6 1498.0 5738.55 0.000
Residual Error 66 17.2 0.3

Total 76 14996.8

the regression sum of squares from the reduced model (not including shelf 2) given
as 14,978.521. Thus, we have

SSShele | all other variables = SSall variables — SSall variables except shelf 2
= 14,979.560 — 14, 978.521
= 1.039

From Table 3.21 we have MSE,j; variabies = 0.261. Hence,

SSS‘ elf2|all other variables 1.039
F(shelf2|all other variables) = ‘K/I’fSZI‘E” ther variables  _ o3 = 39808
all variables .

TABLE 3.21 Regression ANOVA Tables Without and with Shelf 2

Model Sum of Squares ~ df =~ Mean Square F Significance
With Regression 14,978.521 9 1,664.280 6,104.043 0.000
Shelf2  Residual 18.268 67 0.273
Total 14,996.788 76
Without Regression 14,979.560 10 1,497.956 5,738.554 0.000
Shelf2  Residual 17.228 66 0.261

Total 14,996.788 76
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# Linear Regression: Stepping Criteria E
® Use probability of F Enfry| 0051 jHamml 0.1}

() Use F value Bl o.04 S {Removal| 2711

| OK H Cancel H Help |

Figure 3.14 Adjusting the entry threshold for the forward selection algorithm.

This value of 3.9808 for the sequential F-statistic lies at the 95th percentile of the
Fi, n—p—2 = F ¢s5 -distribution, thereby verifying our p-value of 0.05 for the inclusion
of the shelf 2 indicator variable in the model.

Now recall that 0.05 happens to be the default entry threshold for both the
forward selection and stepwise selection procedures. Thus, if we adjust the entry
threshold level just a touch upward (say, to 0.051), we would expect shelf 2 to be
included in the final models from both of these procedures. Figure 3.14 shows the
dialog box for adjusting the entry threshold level for Clementine’s forward selection
algorithm, with the level moved up slightly to 0.051. Finally, Table 3.22 shows the
model summary results from the forward selection algorithm using the adjusted entry
threshold value of 0.051. Note that, as expected, shelf 2 is now included, as the last
variable to be entered into the model. Otherwise, Table 3.22 is exactly the same as
Table 3.15, the forward selection results using the default threshold value.

TABLE 3.22 Model Summary Results for the Forward Selection Procedure, After Adjusting
the Entry Threshold Upward Slightly and with Inclusion of Shelf 2

Adjusted Std. Error
Model R R? R? of the Estimate
1 0.762¢ 0.580 0.575 9.16160
2 0.899” 0.808 0.803 6.23743
3 0.948¢ 0.899 0.895 4.54638
4 0.9814 0.962 0.960 2.82604
5 0.985¢ 0.970 0.968 2.50543
6 0.987/ 0.975 0.973 2.31269
7 0.995¢ 0.990 0.989 1.47893
8 0.998" 0.995 0.995 1.01477
9 0.999¢ 0.999 0.999 0.52216
10 0.999/ 0.999 0.999 0.51091

¢ Predictors: (constant), sugars.

b Predictors: (constant), sugars, fiber.

¢ Predictors: (constant), sugars, fiber, sodium.

4" Predictors: (constant), sugars, fiber, sodium, fat.

¢ Predictors: (constant), sugars, fiber, sodium, fat, protein.

I Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates.

& Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories.

h Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories, vitamins.

i Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories, vitamins, potassium.

J Predictors: (constant), sugars, fiber, sodium, fat, protein, carbohydrates, calories, vitamins, potassium, shelf 2.
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At this point, all four of our variable selection algorithms point to the same
model as the best model. We now designate model B, as our working model:

y = Bo + Bi(sugars) + Ba(fiber) + Bs(sodium) + Ba(far)
+ Bs(protein) + Bg(carbohydrates) + B7(calories)
+ Bg(vitamins) + Po(potassium) + Bio(shelf2) 4 ¢

Let us simply reiterate that one need not report only one model as a final
model. Two or three models may be carried forward, and input sought from managers
about which model may be most ameliorative of the business or research problem.
However, it is often convenient to have one “working model” selected, because of the
complexity of model building in the multivariate environment. Note, however, that
the variable selection criteria for choosing the “best” model do not account for the
multicollinearity that still exists among the predictors. Alert readers will have seen
from Table 3.20 that the variance inflation factors for four or five variables are rather
high, and will need some attention.

But first we need to address a problem that our working model has with a set
of outliers. Figure 3.15 is a plot of the standardized residuals versus the fitted values
for the current working model. Note the set of four outliers in the lower section of the
plot. These are all cereals whose nutritional rating is lower than expected given their
of predictor variable levels. These cereals are:

® Record 46: Raisin Nut Bran

® Record 52: Apple Cinnamon Cheerios
* Record 55: Honey Nut Cheerios

® Record 56: Oatmeal Raisin Crisp

2 -

1 (]

Standardized Residual
I
|

4 - .
T T T T T T T T T

T
10 20 30 40 50 60 70 80 90 100
Fitted Value

Figure 3.15 A set of four outliers is uncovered by the residuals versus fits plot.
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Figure 3.16  After setting aside the four outliers, one further outlier pops up.

It is not clear why the nutritional rating for these cereals is unexpectedly low.
Perhaps these cereals contain certain other ingredients, not listed among our vari-
ables, which lower their nutritional value. Regardless of the reason, these cereals are
obstructing the efficacy of the overall regression model for the bulk of the cereals in
the data set, and will therefore be set aside.

However, after omitting these four cereals, one further extreme outlier appears in
the data set, as shown in the plot of the standardized residuals versus the fitted values
in Figure 3.16. This cereal is Quaker Oatmeal, with the remarkable standardized
residual of —7.87, meaning that its actual nutritional rating is 7.87 residual standard
errors below its expected rating, given its predictor values. We therefore also omit
this cereal from the analysis and plunge ahead with the remaining 72 cereals.

Finally, Figure 3.17 shows that after omitting this fifth outlier, we obtain a
healthy plot of the standardized residuals versus fitted values. No clear patterns are
evident in this plot, which would indicate violation of the regression assumptions of
constant variance or independence. Also, the normal probability plot in Figure 3.18
supports the normality assumption. Therefore, apart from the multicollinearity, which
we still need to address, we have reason to be quite happy with our model for estimating
nutritional rating. The regression results for this model are provided in Table 3.23.
Some of these results, such as the reported value of 100% for R? and Rfdj, are quite
extraordinary. But a closer inspection of the results shows that these reportedly perfect
100% results are probably just due to rounding.

Note from Table 3.23 that both SSE and MSE are reported to equal zero; this
is consistent with the perfect values for R? and R2,.. However, the standard error
of the estimate, s, is reported to differ (however slightly) from zero. We know that
s = ~/MSE; thus, it is likely that the zero and 100% results shown in Table 3.23 are
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Figure 3.17 Finally, after omitting the fifth outlier, we obtain a healthy residuals versus fitted

values plot.

due simply to rounding. This is verified by the SPSS regression printout shown in

Table 3.24, which provides more precise results.

This is just another example of how computer output can sometimes be mis-
leading, which therefore requires that the data analyst understand the mechanisms
and workings of the statistical models. Table 3.23 tells us that our model, in some

99.9

Percent
i
(e
|

0.1 T T T T

-3 -2 -1 0
Standardized Residual

1

Figure 3.18 The normality assumption is supported by the normal probability plot for the

remaining 72 cereals.
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TABLE 3.23 Regression Results for Working Model B*

The regression equation is

Rating=54.9 - 0.223 Calories + 3.27 Protein-1.69 Fat - 0.0545 Sodium
+3.44 Fiber +1.09 Carbos - 0.725 Sugars - 0.0340 Potassium
-0.0512 Vitamins - 0.000002 shelf 2

Predictor Coef SE Coef T P VIF
Constant 54.9271 0.0000 2014113.85 0.000

Calories -0.222724 0.000001 -315293.55 0.000 17.2
Protein 3.27317 0.00001 639653.95 0.000 2.7
Fat -1.69140 0.00001 -226909.09 0.000 .0
Sodium -0.0544927 0.0000000 -1176223.46 0.000 1.3
Fiber 3.44348 0.00000 818194.24 0.000 9.3
Carbos 1.09245 0.00000 330481.84 0.000 14.6
sugars -0.724893 0.000003 -232998.09 0.000 16.7
Potassium -0.0339934 0.0000001 -245597.05 0.000 .0
Vitamins -0.0512122 0.0000002 -309676.00 0.000 1.2
shelf 2 -0.00000193 0.00000908 -0.21 0.832 1.5

S$=0.0000285908 R-Sg=100.0% R-Sg(adj) =100.0%

Analysis of Variance

Source DF SS MS F P
Regression 10 14450.7 1445.1 1.76781E+12 0.000
Residual Error 61 0.0 0.0

Total 71 14450.7

@ Have we reached perfection? No, the 100% R> and Rfdj are just due to rounding.

ways, is perfect. The data analyst knows better. From Table 3.24, we can find the
actual value for R? to be
, SSR 14, 450.67

~ SST  14,450.671
which is nevertheless remarkably high. We also see from Table 3.23 that the indicator
variable shelf 2 is no longer significant. Perhaps shelf 2 was associated somehow with
the cereals that have been omitted. We therefore omit this variable from the model,

and adopt as our new working model, model A:
y = Bo + Bi(sugars) + pa(fiber) + B3(sodium)

+ Ba(fat) + Bs(protein) + Pe(carbohydrates)
+ B(calories) + Pg(vitamins) + Po(potassium) + &

= 0.9999999308

TABLE 3.24 More Precise Regression Results (Almost Perfect)

Sum of Squares df Mean Square F Significance
Regression 14,450.670 10 1,445.067 98,000,000 0.000¢
Residual 0.0008957 61 0.00001468
Total 14,450.671 71

¢ Predictors: (constant), shelf 2, fat, sodium, fiber, vitamins, sugars, protein, carbohydrates, potassium, calories; dependent
variable: rating.
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TABLE 3.25 Results of Regression After Omitting the Shelf2 Indicator Variable?

Model Sum of Squares df Mean Square F Significance
1 Regression 14,450.670 9 1,605.630 100,000,000 0.000”
Residual ~ 0.0009636 62 0.00001554
Total 14,450.671 71
Unstanda.rdized Standardized Collir.lez?rity
Coefficients Coefficients, Statistics
Model B Std. Error B t Significance Tolerance VIF
1 (Constant) 54.924  0.004 15,122.123  0.000
Calories —0.223  0.000 —-0.311  —2,287.163  0.000 0.058 17.205
Protein 3.274  0.001 0.250 4,639.159  0.000 0372 2.692
Fat —1.691 0.001 —0.120  —1,645.658  0.000 0.202  4.953
Sodium —0.054  0.000 —-0.320 —8,537.817  0.000 0.764 1.310
Fiber 3.444  0.001 0.594 5,930.641 0.000 0.107  9.333
Carbohydrates  1.093  0.000 0.301 2,399.500  0.000 0.069 14.585
Sugars —0.725 0.000 —-0.226  —1,701.926  0.000 0.061 16.445
Potassium —0.034  0.000 —-0.175  —1,802.578  0.000 0.114  8.774
Vitamins —0.051  0.000 —0.082  —2,263.919  0.000 0.818 1.222

¢ Dependent variable: rating.
b Predictors: (constant), vitamins, fat, fiber, sugars, sodium, protein, carbohydrates, potassium, calories.

Table 3.25 provides the results from the model A multiple regression. The regression
diagnostics (not shown) are acceptable and similar to those of model B above.

USING THE PRINCIPAL COMPONENTS AS PREDICTORS

However, it is time that we tackled the problem of multicollinearity indicated by
the large variance inflation factors for several of the predictors. (But first, we should
acknowledge that this cereals data set is dissimilar in one respect from most data
mining data sets that you will encounter in the real world. The nutritional rating
may in fact represent a nearly deterministic function of the various predictors. This is
what is keeping the standard errors of the coefficients so small, even in the presence of
multicollinearity. What is happening here is that we are closing in on the actual values
used in the government formula to assign nutritional rating to breakfast cereals.) To
do this, we turn to the dimension reduction methodology we learned in Chapter 1:
principal components analysis (PCA).

First, the predictors from model A are all standardized using z-scores. Then
the correlation structure of the standardized is examined, as shown in Table 3.26.
The principal components analysis will then use this correlation structure of the
standardized variables to identify a certain number of independent components. Nine
variables were entered, but we seek to find a fewer number of orthogonal components.
How many components, then, should be extracted?
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TABLE 3.26 Correlation Matrix, on Which the Principal Components Are Based

Calories  Protein Fat Sodium Fiber  Carbohydrates  Sugar  Potasium Vitamins
cal-z 1.000  0.026 0509 0299 —0.290 0.271 0.565 —0.068  0.268
prot-z 0.026  1.000  0.185 —0.002 0516 —0.018 —0302 0561  0.050
fat-z 0509  0.185 1.000  0.019  0.020 —0.277 0289  0.189 —0.008
sodium-z 0299 —0.002  0.019  1.000 —0.061 0.320 0.047 —0.025 0347
fiber-z  —0290 0516 0.020 —0.061 1.000 —0.397 —0.133 0907 —0.030
carbs-z 0271 —0.018 —0277 0320 —0.397 1.000 —0.461 —0381 0217
sugars-z 0565 —0302 0289  0.047 —0.133 —0.461 1.000  0.026  0.105
potas-z  —0.068 0561  0.189 —0.025  0.907 —0.381 0.026 1000  0.026
vitamin-z 0268 0.050 —0.008 0347 —0.030 0.217 0.105  0.026  1.000

1. Eigenvalue criterion. According to this criterion, only components with eigenval-
ues of at least 1.0 should be extracted. Table 3.27 shows three such components,
with a fourth component being very close to 1.0, with a 0.997 eigenvalue. Thus,
this criterion would suggest either three or four components.

2. Proportion of variance explained criterion. There is no concrete threshold for

this criterion. We would, however, like to account for as much of the variability
as possible while retaining a relatively small number of components. Table 3.27
shows us that 82% of the variability is accounted for by the first four components,
and 89% is accounted for by the first five components. Thus, this criterion would
suggest perhaps four or five components.

3. Minimum communality criterion. This criterion recommends that enough com-

ponents should be extracted so that the communality (proportion of variance of
a particular variable that is shared by the other variables) for each of these vari-
ables in the model exceeds a certain threshold, such as 50%. Table 3.28 shows
that the communalities for each of the variables is greater than 60% four compo-
nents are extracted, but the communality for vitamin-z is below 50% when only

TABLE 3.27 Eigenvalues and Proportion of Variance Explained by
the Nine Components

Initital Eigenvalues

Component Total % of Variance Cumulative %
1 2.634 29.269 29.269
2 2.074 23.041 52.310
3 1.689 18.766 71.077
4 0.997 11.073 82.149
5 0.653 7.253 89.402
6 0.518 5.752 95.154
7 0.352 3.916 99.070
8 0.065 0.717 99.787
9 0.019 0.213 100.000
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TABLE 3.28 Communalities When Extracting Three
and Four Components?

Extracting Three Extracting Four
Components Components
Initial Extraction Initial Extraction
cal-z 1.000 0.835 1.000 0.893
prot-z 1.000 0.653 1.000 0.802
fat-z 1.000 0.550 1.000 0.796
sodium-z 1.000 0.524 1.000 0.614
fiber-z 1.000 0.881 1.000 0.921
carbs-z 1.000 0.815 1.000 0.885
sugars-z 1.000 0.803 1.000 0.910
potas-z 1.000 0.894 1.000 0.909
vitamn-z 1.000 0.442 1.000 0.665

“Extraction method: principal component analysis.

three components are extracted. Thus, this criterion may suggest extracting four
components.

4. Scree plot criterion. The scree plot in Figure 3.19 may be viewed as beginning to
flatten out between the fourth and fifth component numbers. Thus, this criterion
may suggest retaining four components.

3.0

2.5

N
(=]
|

Eigenvalue
—_
(9]
!

1.0

0.0 T T T T T T T
1 2 3 4 5 6 7 8 9

Component Number

Figure 3.19 The scree plot may suggest extracting four components.
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TABLE3.29 Rotated Component Matrix for Four Components?

Component

1 2 3 4

cal-z 0.830

prot-z 0.735 —0.442
fat-z 0.853

sodium-z 0.770

fiber-z 0.936

carbs-z —0.762
sugars-z 0.407 0.834
potas-z 0.939

vitamn-z 0.812

¢ Extraction method: principal component analysis; rotation method: varimax
with Kaiser normalization; rotation converged in seven iterations.

Taking all four criteria into account, we therefore decide to extract four com-
ponents. Using varimax rotation, we obtain the rotated component matrix shown in
Table 3.29, where for clarity, coefficients smaller than 0.4 in absolute value have been
surpressed. Thumbnail profiles of these components may be given as follows:

Principal component 1 = 0.939 potassium + 0.936 fiber + 0.735 protein

As we saw earlier, fiber and potassium are highly correlated, and the inclusion of
protein in this component shows that protein shares in this correlation, as can be seen
from Table 3.26. When it comes time to perform regression using these principal
components, we would expect that this component will have a positive regression
coefficient, since these ingredients are normally viewed as nutritious.

Principal component 2 = 0.853 fat 4+ 0.830 calories + 0.407 sugars

Table 3.26 shows that fat and sugars is each correlated with calories, which perhaps
should come as no surprise. The correlation between fat and sugars is milder but still
enough for the algorithm to assign them to the same component. We would expect
that the relationship between nutritional rating and principal component 2 shall be
negative; that is, as fat/calories/sugars increases, the nutritional rating is expected to
decrease.

Principal component 3 = 0.812 vitamins + 0.770 sodium

We would assume that having more vitamins is a good thing, but that having more
sodium may be a bad thing for a cereal to have. Thus, it is difficult for a nonnutritionist
to predict what the relationship between this component and nutritional rating will be.

Principal component 4 = 0.834 sugars — 0.762 carbohydrates — 0.442 protein

Here we have a contrasting component, which opposes sugars to carbohydrates and
protein. Since sugars has a positive coefficient and protein a negative coefficient, we
might expect this component to have a negative relationship with nutritional rating.
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Figure 3.20 Matrix plot of nutritional rating with the four principal components.

Now that the principal components have been extracted, we may finally proceed
with the regression of nutritional rating on the principal components. A matrix plot
of nutritional rating and the four principal components is provided in Figure 3.20.
The first column of scatter plots shows the relationships between nutritional rating
and each of the four principal components. As expected, the relationship with the first
principal component, potassium + fiber + protein, is positive. Also as expected, the
relationship with the second principal component, fat+ calories + sugars,is negative,
as is that with the fourth principal component, sugars — carbohydrates — protein.
Further, the relationship with the third principal component, vitamins + sodium, is also
negative, perhaps because of the detrimental effects of too much sodium in the diet.

The regression results are provided in Table 3.30. Ridj = 0.951, meaning that
these four principal components together account for over 95% of the variability in
the nutritional rating. The dimension of the prediction space has been reduced from
nine variables to four components. However, this reduction comes with a small cost of
about 5% of unaccounted variability. Note that the variance inflation factors for each
of the principal components is exactly 1.00, which is the minimum. This is because
the principal components are independent, and thus have correlation zero with each
other, as shown in Table 3.31. Since the components are completely uncorrelated,
there is no danger whatsoever of multicollinearity. As the matrix plot indicated, the
regression coefficient (7.664) for the first principal component is positive, while the
other three coefficients are negative.
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TABLE 3.30 Results for Model 1 of Regression of Nutritional Rating on the Four Principal
Components?

R R? Adjusted R? Std. Error of the Estimate
0.977" 0.954 0.951 3.1435987
Sum of Squares df Mean Square F Significance
Regression 13,788.563 4 3,447.141 348.823 0.000”
Residual 662.108 67 9.882
Total 14,450.671 71
Unstandardized . Collinearity
Coefficient Standar(.hzed Statistics
— Coefficient, [ —
B Std. Error B t Significance Tolerance VIF
Principal Component
(constant) 43.107 0.370 116.355 0.000
Principal component 1 7.664 0.373 0.537 20.544 0.000 1.000  1.000
Principal component 2 —7.521 0.373 —-0.527  -20.159 0.000 1.000  1.000
Principal component 3 —5.221  0.373 —-0.366  —13.996 0.000 1.000  1.000
Principal component 4 —7.186  0.373 —-0.504 —19.261 0.000 1.000  1.000

¢ Dependent variable: rating.
b Predictors: (constant), Principal component 1, Principal component 2, Principal component 3, Principal component 4.

SUMMARY

A multiple regression model uses a linear surface such as a plane or hyperplane,
to approximate the relationship between a continuous response (target) variable and
a set of predictor variables. In general, for a multiple regression with m predictor
variables, we would interpret coefficient b; as follows: The estimated change in the
response variable for a unit increase in variable x; is b; when all other variables are
held constant. When building models, if a new variable is useful, s will decrease;
but if the new variable is not useful for predicting the target variable, s may in fact
increase. This type of behavior makes s, the standard error of the estimate, a more
attractive indicator than R? of whether a new variable should be added to the model,
since R? always increases when a new variable is added, regardless of its usefulness.

TABLE 3.31 Pearson Correlations?

Principal Principal Principal Principal
component 1 component 2 component 3 component 4
Principal component 1 1.000 0.000 0.000 0.000
Principal component 2 0.000 1.000 0.000 0.000
Principal component 3 0.000 0.000 1.000 0.000
Principal component 4 0.000 0.000 0.000 1.000

“ The Principal components are independent, and thus have zero correlation with each other.
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The multiple regression model is a straightforward extension of the simple linear
regression model, with analogous assumptions about the error term. We examined
five inferential methods in this chapter: (1) the 7-test for the relationship between the
response variable y and a particular predictor variable x;, in the presence of the other
predictor variables, x(;y, where x;) = x1, X2, ..., Xi_1, Xit1, ..., X» denotes the set
of all predictors not including x;; (2) the F-test for the significance of the regression
as a whole; (3) the confidence interval, §;, for the slope of the ith predictor variable;
(4) the confidence interval for the mean of the response variable y given a set of

particular values for the predictor variables xi, x2, ..., Xx,; and (5) the prediction
interval for a random value of the response variable y given a set of particular values
for the predictor variables xi, xa, ..., Xp.

One may apply a separate r-test for each predictor x;, x,0r x3, examining
whether a linear relationship exists between the target variable y and that particular
predictor. On the other hand, the F-test considers the linear relationship between the
target variable y and the set of predictors (e.g., { x1, x2, x3}) taken as a whole. Cate-
gorical predictor variables may also be used as inputs to regression models, through
the use of indicator variables (dummy variables). For use in regression, a categor-
ical variable with k categories must be transformed into a set of k — 1 indicator
variables. An indicator variable, also known as a dummy variable, is a binary 0/1
variable, which takes the value 1 if the observation belongs to the given category, and
takes the value O otherwise. These indicator variables define a set of parallel (hyper-)
planes. The vertical distance between these parallel planes, as measured by the co-
efficient for the indicator variable, represents the estimated effect of the particular
indicator variable on the target variable with respect to the reference category.

In the interests of parsimony, we should find some way to penalize the R>
measure for models that include predictors that are not useful. Fortunately, such a
penalized form for R* does exist, and is known as the adjusted R>. If Ry is much
less than R?, this is an indication that at least one variable in the model may be
extraneous, and the analyst should consider omitting that variable from the model.
When one is building models in multiple regression, one should use Rgdj and s rather
than the raw R>.

The sequential sums of squares partitions the SSR into the unique portions of
the SSR that are explained by the particular predictors given any earlier predictors.
Thus, the values of the sequential sums of squares depends on the order in which the
variables are entered into the model.

Multicollinearity is a condition where some of the predictor variables are cor-
related with each other. Multicollinearity leads to instability in the solution space,
possibly leading to incoherent results. The high variability associated with the esti-
mates means that different samples may produce coefficient estimates with widely
different values. Variance inflation factors may be used to detect the presence of mul-
ticollinearity. Depending on the task confronting the analyst, multicollinearity may
not in fact present a fatal defect. Multicollinearity does not degrade the accuracy of
the response predicted. However, the data miner must therefore strictly limit the use
of a multicollinear model to estimation and prediction of the target variable. Interpre-
tation of the model would not be appropriate, since the individual coefficients may
not make sense in the presence of multicollinearity.



EXERCISES 149

To assist the data analyst in determining which variables should be included in
a multiple regression model, several different variable selection methods have been
developed, including (1)forward selection, (2) backward elimination, (3) stepwise
selection, and (4) best subsets. In forward selection, the model starts with no variables
in it, and the variable with the highest sequential F-statistic is entered at each step.
For the backward elimination procedure, the model begins with all of the variables
in it, and the variable with the smallest partial F'-statistic is removed. The stepwise
procedure modifies the forward selection procedure so that variables that have been
entered into the model in earlier steps may still be withdrawn if they later turn out to
be nonsignificant. In the best subsets procedure, the software reports the best k models
containing 1, 2, ..., p predictor and reports the values for R2, Rfdj, Mallows’ C,.
One heuristic for choosing the best model is to select the model where the value of
C, first approaches or crosses the line C,, = p + 1 as p increases.
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EXERCISES

Clarifying the Concepts

3.1. Determine whether the following statements are true or false. If a statement is false,
explain why and suggest how one might alter the statement to make it true.

(a) If we would like to approximate the relationship between a response and two
continuous predictors, we would need a plane.

(b) In linear regression, although the response variable is typically continuous, it may
be categorical as well.

(¢) Ingeneral, for amultiple regression with m predictor variables, we would interpret,
coefficient b; as follows: The estimated change in the response variable for a unit
increase in variable x; is b;.

(d) In multiple regression, the residual is represented by the vertical distance between
the data point and the regression plane or hyperplane.

(e) Whenever a new predictor variable is added to the model, the value of R? always
goes up.
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(f) The alternative hypothesis in the F-test for the overall regression asserts that the
regression coefficients all differ from zero.

(g) The standard error of the estimate is a valid measure of the usefulness of the
regression, without reference to an inferential model (i.e., the assumptions need
not be relevant).

(h) If we were to use only the categorical variables as predictors, we would have to
use analysis of variance and could not use linear regression.

(i) Foruse in regression, a categorical variable with k categories must be transformed
into a set of k indicator variables.

(j) The first sequential sum of squares is exactly the value for SSR from the simple
linear regression of the response on the first predictor.

(k) The variance inflation factor has a minimum of zero, but no upper limit.

() A variable that has been entered into the model early in the forward selection
process will remain significant once other variables have been entered into the
model.

(m) The variable selection criteria for choosing the best model account for the multi-
collinearity among the predictors.

(n) The variance inflation factors for principal components using varimax rotation
always equal 1.0.

2

Clearly explain why s and R;; are preferable to R? as measures for model building.

Explain the difference between the 7-test and the F-test for assessing the significance
of the predictors.

Construct indicator variables for the categorical variable class, which takes four values:
freshman, sophomore, junior, and senior.

When using indicator variables, explain the meaning and interpretation of the indicator
variable coefficients, graphically and numerically.

Discuss the concept of the level of significance («). At what value should it be set? Who
should decide the value of «? What if the observed p-value is close to «? Describe a
situation where a particular p-value will lead to two different conclusions given two
different values for .

2

wj s much less than R%.

Explain what it means when R

Explain the difference between the sequential sums of squares and the partial sums of
squares. For which procedures do we need these statistics?

Explain some of the drawbacks of a set of predictors with high multicollinearity.

Which statistics report the presence of multicollinearity in a set of predictors? Explain,
using the formula, how this statistic works. Also explain the effect that large and small
values of this statistic will have on the standard error of the coefficient.

Compare and contrast the effects that multicollinearity has on the point and intervals
estimates of the response versus the values of the predictor coefficients.

Describe the differences and similarities among the forward selection procedure, the
backward elimination procedure, and the stepwise procedure.

Describe how the best subsets procedure works. Why not always use the best subsets
procedure?
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3.14. Describe the behavior of Mallows’ C, statistic, including the heuristic for choosing

the best model.

3.15. Suppose that we wished to limit the number of predictors in the regression model to a
lesser number than those obtained using the default settings in the variable selection
criteria. How should we alter each of the selection criteria? Now suppose that we
wished to increase the number of predictors? How then should we alter each of the

selection criteria?

3.16. Explain the circumstances under which the value for R?> would reach 100%. Now
explain how the p-value for any test statistic could reach zero.

Working with the Data

3.17. Consider the multiple regression output for model 1 from SPSS in Table E 3.17 using
the nutrition data set on the book series Web site. Answer the following questions.

(a) What is the response? What are the predictors?

(b) What is the conclusion regarding the significance of the overall regression?
How do you know? Does this mean that all the predictors are important?

Explain.

(c) What is the typical error in prediction? (Hint: This may take a bit of digging.)

(d) How many foods are included in the sample?

(e) How are we to interpret the value of by, the coefficient for the constant term?
Is this coefficient significantly different from zero? Explain how this makes

sense.

(f) Which of the predictors probably does not belong in the model? Explain how you
know this. What might be your next step after viewing these results?

TABLE E3.172

Sum of

Squares df Mean Square F Significance
Regression 282,629,126.8 6 47,104,854.46 132,263.1 0.000”
Residual 339,762.5 954 356.145

Total 282,968,889.3 960
Unstandardized Collinearity
Coefficient Standardized Statistics
- Coefficient,

B Std. Error B t Significance Tolerance VIF
(Constant) —0.323 0.768 —0.421 0.674
Protein 4.274 0.088 0.080  48.330  0.000 0.463 2.160
Fat 8.769 0.023 0.535 375.923  0.000 0.621 1.611
Cholesterol 0.006 0.007 0.001 0.897 0.370 0.535 1.868
Carbohydrates 3.858 0.013 0.558 293.754  0.000 0.349 2.864
Iron —1.584 0.304 —0.009 —5.187 0.000 0.404 2.475
Sodium 0.005 0.001 0.006 4.032  0.000 0.557 1.796

@ Dependent variable : calories.

b Predictors: (constant), sodium, cholestrol, iron, fat, protein, carbohydrates.
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(g) Suppose that we omit cholesterol from the model and rerun the regression. Explain
what will happen to the value of R

(h) Which predictor is negatively associated with the response? Explain how you
know this.

(i) Discuss the presence of multicollinearity. Evaluate the strength of evidence for
the presence of multicollinearity. Based on this, should we turn to principal com-
ponents analysis?

(j) Clearly and completely express the interpretation for the coefficient for sodium.

(k) Suppose that a certain food was predicted to have 60 calories fewer than it actually
has, based on its content of the predictor variables. Would this be considered
unusual? Explain specifically how you would determine this.

3.18. To follow up, next consider the multiple regression output for model 1 from SPSS in

Table E3.18. Three predictor variables have been added: saturated fat, monounsatu-
rated fat, and polyunsaturated fat. Discuss the presence of multicollinearity. Evaluate
the strength of evidence for the presence of multicollinearity. Based on this, should
we turn to principal components analysis?

TABLE E3.187

Unstandardized Collinearity
Coefficient Standardized Statistics
Coefficient,
B Std. Error B t Significance Tolerance  VIF
(Constant) —0.158 0.772 —0.205 0.838
Protein 4.278 0.088 0.080 48.359 0.000 0.457 2.191
Fat 9.576 1.061 0.585 9.023 0.000 0.000 3379.867
Cholesterol 0.01539  0.008 0.003 1.977 0.048 0.420 2.382
Carbohydrates 3.860 0.014 0.558 285.669 0.000 0.325 3.073
Iron —1.672 0.314 —0.010 —5.328 0.000 0.377 2.649
Sodium 0.005183  0.001 0.006 3.992 0.000 0.555 1.803
Saturated fat —1.011 1.143 —0.020 —0.884 0.377 0.002 412.066
Monounsaturated —0.974 1.106 —0.025 —0.881 0.379 0.002 660.375
Fat
Polyunsaturated ~ —0.600 1.111 —0.013 —0.541 0.589 0.002 448.447
Fat

“ Dependent variable : calories.

3.19. Consider the multiple regression output for model 1 from SPSS in Table E3.19, using

the New York data set on the book series Web site. The data set contains demographic
information about a set of towns in New York State. The response male-fem is the
number of males in the town for every 100 females. The predictors are the percentage
under the age of 18, the percentage between 18 and 64, and the percentage over
64 living in the town (all expressed in percents, such as 57.0), along with the town’s
total population. Answer the following questions.

(a) Note that the variable pct-064 was excluded. Explain why this variable was ex-
cluded automatically from the analysis by the software. (Hint: Consider the anal-
ogous case of using too many indicator variables to define a particular categorical
variable.)



EXERCISES 153

TABLE E3.19?

Sum of

Squares df Mean Square F Significance
Regression 10,00298.8 3 33,432.919 44213 0.000”
Residual 59,4361.3 786 756.185

Total 69,4660.1 789
Unstandardized i Collinearity
Coefficient Standardized Statistics
Coefficient, -
B Std. Error B t Significance Tolerance VIF

(Constant) —63.790 16.855 —3.785 0.000
tot-pop —0.00000190 0.000  —0.017 —0.506 0.613 1.000 1.000
pet-Ul8 0.660 0.249 0.105 2.657 0.008 0.700 1.428
pc-18-64 2.250 0.208 0.427 10.830  0.000 0.700 1.428

“ Dependent variable : Male-Fem.
b Predictors: (constant), pc-18-64, tot-pop, pct-Ul8.
¢ Predictors omitted: pct-064.

(b)
(©)
(d)
(e)

®

(g

(h)

Hands

3.20. In the chapter it was surmised that the reason the shelf 2 indicator variable was no

What is the conclusion regarding the significance of the overall regression?
What is the typical error in prediction?
How many towns are included in the sample?

Which of the predictors probably does not belong in the model? Explain how you
know this. What might be your next step after viewing these results?

Suppose that we omit foz- pop from the model and rerun the regression. Explain
what will happen to the value of R2.

Discuss the presence of multicollinearity. Evaluate the strength of evidence for
the presence of multicollinearity. Based on this, should we turn to principal com-
ponents analysis?

Clearly and completely express the interpretation for the coefficient for pct-UI8.
Discuss whether this makes sense.

-on Analysis

longer important was that perhaps it was somehow associated with the cereals that had
been omitted because they were outliers. Investigate whether this was indeed the case.

(a)

3.21. Open the nutrition data set on the book series Web site.

Build the best multiple regression model you can for the purposes of predicting
calories, using all the other variables as the predictors. Don’t worry about whether
or not the predictor coefficients are stable.

(i) Compare and contrast the results from the forward selection, backward elim-
ination, and stepwise variable selection procedures.

(ii) Apply the best subsets procedure, and compare against the previous methods.

(iii) (Extra credit) Write a script that will perform all possible regressions. Did the
variable selection algorithms find the best regression?
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(b) Build the best multiple regression model you can for the purposes both of predict-
ing the response and of profiling the predictors’ individual relationship with the
response. Make sure that you account for multicollinearity.

Open the New York data set at the book series Web site. Build the best multiple
regression model you can for the purposes of predicting the response, using the gender
ratio as the response and all the other variables as the predictors.

(a) Compare and contrast the results from the forward selection, backward elimina-
tion, and stepwise variable selection procedures.

(b) Apply the best subsets procedure, and compare against the previous methods.

(¢) Perform all possible regressions. Did the variable selection algorithms find the
best regression?

Open the crash data set at the book series Web site. Build the best multiple regression
model you can for the purposes of predicting head injury severity, using all the other
variables as the predictors.

(a) Determine which variables must be made into indicator variables.
(b) Determine which variables might be superfluous.

(¢) Build two parallel models, one where we account for multicollinearity and another
where we do not. For which purposes may each of these models be used?

Continuing with the crash data set, combine the four injury measurement variables
into a single variable, defending your choice of combination function. Build the best
multiple regression model you can for the purposes of predicting injury severity, using
all the other variables as the predictors. Build two parallel models, one where we
account for multicollinearity and another where we do not. For which purposes may
each of these models be used?



CHAPTER 1

LOGISTIC REGRESSION
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Linear regression is used to approximate the relationship between a continuous re-
sponse variable and a set of predictor variables. However, the response variable is
often categorical rather than continuous. For such cases, linear regression is not ap-
propriate, but the analyst can turn to an analogous method, logistic regression, which
is similar to linear regression in many ways. Logistic regression refers to methods
for describing the relationship between a categorical response variable and a set of
predictor variables. In this chapter we explore the use of logistic regression for binary
or dichotomous variables; those interested in using logistic regression for response
variables with more than two categories may refer to Hosmer and Lemeshow [1].
To motivate logistic regression, and to illustrate its similarities to linear regression,
consider the following example.
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SIMPLE EXAMPLE OF LOGISTIC REGRESSION

Suppose that medical researchers are interested in exploring the relationship between
patient age (x) and the presence (1) or absence (0) of a particular disease (y). The data
collected from 20 patients are shown in Table 4.1, and a plot of the data are shown
in Figure 4.1. The plot shows the least-squares regression line (dashed straight line)
and the logistic regression line (solid curved line), along with the estimation error for
patient 11 (age = 50, disease = 0) for both lines. Note that the least-squares regression
line is linear, which means that linear regression assumes that the relationship between
the predictor and the response is linear. Contrast this with the logistic regression line,
which is nonlinear, meaning that logistic regression assumes that the relationship
between the predictor and the response is nonlinear. The scatter plot makes plain the
discontinuity in the response variable; scatter plots that look like this should alert the
analyst not to apply linear regression.

Consider the prediction errors for patient 11. The distance between the data
point for patient 11 (x = 50, y = 0) and the linear regression line is indicated by the
dashed vertical line, and the distance between the data point and logistic regression
line is shown by the solid vertical line. Clearly, the distance is greater for the linear
regression line, which means that linear regression does a poorer job of estimating
the presence of disease than logistic regression does for patient 11. Similarly, this
observation is also true for most of the other patients.

Where does the logistic regression line come from? Consider the conditional
mean of Y given X = x, denoted as E(Y|x). This is the expected value of the re-
sponse variable for a given value of the predictor. Recall that in linear regression,
the response variable is considered to be a random variable defined as ¥ = By +
Bix + €. Now, since the error terme has mean zero, we obtain E(Y |x) = By + Bix
for linear regression, with possible values extending over the entire real number
line.

For simplicity, denote the conditional mean E(Y|x) as m(x). Then the con-
ditional mean for logistic regression takes on a different form from that of linear

TABLE 4.1 Age of 20 Patients, with Indicator of Disease

Patient Age, Disease, Patient, Age, Disease,

D X y 1D X y
1 25 0 11 50 0
2 29 0 12 59 1
3 30 0 13 60 0
4 31 0 14 62 0
5 32 0 15 68 1
6 41 0 16 72 0
7 41 0 17 79 1
8 42 0 18 80 0
9 44 1 19 81 1

10 49 1 20 84 1
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Figure 4.1 Plot of disease versus age, with least-squares and logistic regression lines.

regression. Specifically,

ePothix

w(x) = 1T b 4.1)
Curves of the form of equation (4.1) are called sigmoidal because they are S-shaped
and therefore nonlinear. Statisticians have chosen the logistic distribution to model
dichotomous data because of its flexibility and interpretability. The minimum for 77 (x)
is obtained at lim,_, _~ ¢?/(1 4+ ¢*) = 0, and the maximum for 7 (x) is obtained
at lim,_ o /(1 +¢e) = 1. Thus, m(x) is of a form that may be interpreted as a
probability, with0 < 7 (x) < 1. Thatis, 7 (x) may be interpreted as the probability that
the positive outcome (e.g., disease) is present for records with X = x, and 1 — 7 (x)
may be interpreted as the probability that the positive outcome is absent for such
records.

Linear regression models assume that Y = By 4+ B;x + &, where the error term
¢ isnormally distributed with mean zero and constant variance. The model assumption
for logistic regression is different. Since the response is dichotomous, the errors can
take only one of two possible forms: If Y = 1 (e.g., disease is present), which occurs
with probability 7 (x) (the probability that the response is positive), e = 1 — m(x),the
vertical distance between the data point ¥ = 1 and the curve

ot Pix

7T(x) - 1+ ebo+Bix

directly below it, for X = x. On the other hand, if ¥ = 0 (e.g., disease is absent),
which occurs with probability 1 —  (x) (the probability that the response is negative),
e =0—m(x) = —m(x), the vertical distance between the data point ¥ = 0 and the
curve 7 (x) directly above it, for X = x. Thus, the variance of ¢ is 7 (x) [1 — 7 (x)],
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which is the variance for a binomial distribution, and the response variable in logistic
regression Y = m(x) + ¢ is assumed to follow a binomial distribution with probability
of success m(x).

A useful transformation for logistic regression is the logit transformation, as
follows:

7(x)

1 —m(x)
The logit transformation g(x) exhibits several attractive properties of the linear re-
gression model, such as its linearity, its continuity, and its range from negative to
positive infinity.

g(x)=1In = Bo+ Bix

MAXIMUM LIKELIHOOD ESTIMATION

One of the most attractive properties of linear regression is that closed-form solu-
tions for the optimal values of the regression coefficients may be obtained, courtesy
of the least-squares method. Unfortunately, no such closed-form solution exists for
estimating logistic regression coefficients. Thus, we must turn to maximum likeli-
hood estimation, which finds estimates of the parameters for which the likelihood of
observing the data is maximized.

The likelihood function [(B|x) is a function of the parameters
B = PBo, Bi,..., P which expresses the probability of the observed data, x.
By finding the values of B = By, Bi, ..., B that maximize [ (3]x), we thereby
uncover the maximum likelihood estimators, the parameter values most favored
by the observed data. The probability of a positive response given the data is
w(x) = P(Y = 1|x), and the probability of a negative response given the data
is given by 1 —m(x) = P(Y = 0|x). Then, observations where the response is
positive (X; = x;, ¥; = 1) will contribute probability 7 (x) to the likelihood, while
observations where the response is negative (X; = x;,Y; = 0) will contribute
probability 1 — m(x) to the likelihood. Thus, since Y¥; =0 or 1, the contribution to the
likelihood of the ith observation may be expressed as [77(x;)]* [1 — 7 (x;)] =Y The
assumption that the observations are independent allows us to express the likelihood
function / (3]x) as the product of the individual terms:

1Blx) = [ [l el (1 = el ™
i=1

The log likelihood L(f3|x) = In [I(3]x)] is computationally more tractable:
LBlx)=1In [[(Blx)] = Z {yiln[zx)]+ (1 = y)In[l =7 (x)]} (4.2)
i=1

The maximum likelihood estimators may be found by differentiating L(f3|x) with
respect to each parameter and setting the resulting forms equal to zero. Unfortu-
nately, unlike linear regression, closed-form solutions for these differentiations are
not available. Therefore, other methods must be applied, such as iterative weighted
least squares (see McCullagh and Nelder [2]).
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INTERPRETING LOGISTIC REGRESSION OUTPUT

Let’s examine the results of the logistic regression of disease on age, shown in
Table 4.2. The coefficients, that is, the maximum likelihood estimates of the unknown
parameters fy and By, are given as by = —4.372 and b; = 0.06696. Thus,

ot Pix
T(x) = ———
( ) 14+ ebo+Bix
is estimated as
8™ o—4372+0.0669 (age)

#(x) =

1+ 8@ [ 4 e—4372+0.0669@ge)
with the estimated logit
8(x) = —4.372 4 0.06696(age)

These equations may then be used to estimate the probability that the disease is present
in a particular patient given the patient’s age. For example, for a 50-year-old patient,
we have

8(x) = —4.372 + 0.06696(50) = —1.024

and

eg(x) 671.024

#(x) = =026

|+ o2 ] 4 o 1024

Thus, the estimated probability that a 50-year-old patient has the disease is 26%, and
the estimated probability that the disease is not present is 100% — 26% = 74%. On
the other hand, for a 72-year-old patient, we have

8(x) = —4.372 + 0.06696(72) = —0.449

and
R0)) o—0:449

#(x) = —=0.61

1+ ef0 — 14 ¢ 049

The estimated probability that a 72-year-old patient has the disease is 61%, and the
estimated probability that the disease is not present is 39%.

TABLE 4.2 Results of Logistic Regression of Disease on Age

Logistic Regression Table

Odds 95% CI
Predictor Coef StDev Z P Ratio Lower Upper
Constant -4.372 1.966 -2.22 0.026
Age 0.06696 0.03223 2.08 0.038 1.07 1.00 1.14

Log-Likelihood = -10.101
Test that all slopes are zero: G = 5.696, DF = 1, P-Value = 0.017
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INFERENCE: ARE THE PREDICTORS SIGNIFICANT?

Recall from simple linear regression that the regression model was considered signif-
icant if MSR was large compared to MSE. The mean-squared regression (MSR) is a
measure of the improvement in estimating the response when we include, rather than
ignoring, the predictor. If the predictor variable is helpful for estimating the value of
the response variable, MSR will be large, the test statistic ¥ = MSR/MSE will also
be large, and the linear regression model will be considered significant. Significance
of the coefficients in logistic regression is determined analogously. Essentially, we
examine whether the model that includes a particular predictor provides a substan-
tially better fit to the response variable than that of a model that does not include this
predictor.

Define the saturated model to be the model that contains as many parameters
as data points, such as a simple linear regression model with only two data points.
Clearly, the saturated model predicts the response variable perfectly, and there is no
prediction error. We may then look upon the observed values for the response variable
to be the values predicted from the saturated model. To compare the values predicted
by our fitted model (with fewer parameters than data points) to the values predicted
by the saturated model, we use the deviance [2], as defined here:

. likelihood of the fitted model
deviance D = —21n

likelihood of the saturated model

Here we have a ratio of two likelihoods, so that the resulting hypothesis test is called
a likelihood ratio test. To generate a measure whose distribution is known, we must
take —2 In [likelihood ratio]. Denote the estimate of 7 (x;) from the fitted model
to be ;. Then for the logistic regression case, and using equation (4.2), we have
deviance

- i 1 —7
D:—21nZ|:y,-lnn—+(l—y,-)ln ﬂ]
i=1 Vi l_yl

The deviance represents the error left over in the model after the predictors have been
accounted for. As such, it is analogous to the sum of squares error in linear regression.

The procedure for determining whether a particular predictor is significant is
to find the deviance of the model without the predictor and subtract the deviance of
the model with the predictor thus:

G = deviance (model without predictor) — deviance (model with predictor)

21 likelihood without predictor
=—2In
likelihood with predictor

Letn; =Y y;andng = >_ (1 — y;). Then, for the case of a single predictor only, we
have

G=12 {Z i In[#;]+ (1 — y) In[1 — ;1] — [n1 In(ny) + ng In(no) — nln(n)]}

i=1
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For the disease example, note from Table 4.2 that the log likelihood is given as
—10.101. Then

G =2{-10.101 — [71In(7) + 131n(13) — 201n(20)]} = 5.696

as indicated in Table 4.2.

The test statistic G follows a chi-square distribution with 1 degree of freedom
(i.e., x2_,), assuming that the null hypothesis is true that 8; = 0. The resulting p-value
for this hypothesis test is therefore P(x?) > Gopserved = P(x2) > 5.696 = 0.017, as
shown in Table 4.2. This fairly small p-value indicates that there is evidence that age
is useful in predicting the presence of disease.

Another hypothesis test used to determine whether a particular predictor is
significant is the Wald test (e.g., Rao [3]). Under the null hypothesis that 8; = 0, the
ratio

by

Zalg = ———
Wald SE(by)

follows a standard normal distribution, where SE refers to the standard error of the
coefficient as estimated from the data and reported by the software. Table 4.2 provides
the coefficient estimate and the standard error as follows: by = 0.06696, and SE(b,) =
0.03223, giving us

0.06696

—— =2.08
0.03223

Wald =
as reported under z for the coefficient age in Table 4.2. The p-value is then reported
as P(|z| > 2.08) = 0.038. This p-value is also fairly small, although not as small as
the likelihood ratio test, and therefore concurs in the significance of age for predicting
disease.

We may construct 100(1 — «)% confidence intervals for the logistic regression
coefficients as follows:

b() + Z- SE(bQ)
by £z - SE(by)

where z represents the z-critical value associated with 100(1 — «)% confidence. In
our example, a 95% confidence interval for the slope 8; could be found thus:

by £z - SE(b1) = 0.06696 £ (1.96)(0.03223)
= 0.06696 £ 0.06317
= (0.00379, 0.13013)

Since zero is not included in this interval, we can conclude with 95% confidence that
B1 # 0 and that therefore the variable age is significant. The results above may be
extended from the simple (one predictor) logistic regression model to the multiple
(many predictors) logistic regression model. See Hosmer and Lemeshow [1, Chap. 2]
for details.
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INTERPRETING A LOGISTIC REGRESSION MODEL

Recall from simple linear regression that the slope coefficient B was interpreted as
the change in the response variable for every unit increase in the predictor. The slope
coefficient f; is interpreted analogously in logistic regression, but through the logit
function. That is, the slope coefficient 8; may be interpreted as the change in the
value of the logit for a unit increase in the value of the predictor. In other words,

pr=gx+1)—gx)
In this section we discuss the interpretation of B; in simple logistic regression for
three cases: (1) a dichotomous predictor, (2) a polychotomous predictor, and (3) a
continuous predictor.

To facilitate our interpretation, we need to consider the concept of odds. Odds
may be defined as the probability that an event occurs divided by the probability that
the event does not occur. For example, earlier we found that the estimated probabil-
ity that a 72-year-old patient has the disease is 61%, and the estimated probability
that the 72-year-old patient does not have the disease is 39%. Thus, the odds of a
72-year-old patient having the disease is odds = 0.61/0.39 = 1.56. We also found
that the estimated probabilities of a 50-year-old patient having or not having the dis-
ease are 26% and 74%, respectively, providing odds for the 50-year-old patient to be
odds = 0.26/0.74 = 0.35.

Note that when the event is more likely than not to occur, odds > 1; when the
event is less likely than not to occur, odds < 1; and when the event is just as likely as
not to occur, odds = 1. Note also that the concept of odds differs from the concept of
probability, since probability ranges from zero to 1, and odds can range from zero to
infinity. Odds indicate how much more likely it is that an event occurred compared
to its not occurring.

In binary logistic regression with a dichotomous predictor, the odds that the
response variable occurred (y = 1) for records with x = 1 can be denoted as

(1) B eboth /A + eﬁo+ﬁ1) _ Jfuth

1—m(l)  1/(1 4 ePothr)

Correspondingly, the odds that the response variable occurred for records with x = 0
can be denoted as

70  eP/lyef)
1—m(0)  1/(1+ef)
We also need to discuss the odds ratio (OR), defined as the odds that the response
variable occurred for records with x = 1 divided by the odds that the response variable
occurred for records with x = 0. That is,

7(1)/[1 — 7 (1)]

— (0)/[1 -7 (0)]

ePoth

0

ho

= el 4.3)

The odds ratio has come into widespread use in the research community because of
this simply expressed relationship between the odds ratio and the slope coefficient.
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For example, if a clinical trial reports that the odds ratio for endometrial cancer
among ever-users and never-users of estrogen replacement therapy is 5.0, this may be
interpreted as meaning that ever-users of estrogen replacement therapy are five times
more likely to develop endometrial cancer than are never-users.

The odds ratio is sometimes used to estimate the relative risk, defined as the
probability that the response occurs for x = 1 divided by the probability that the
response occurs for x = 0. That is,

)

7 (0)

For the odds ratio to be an accurate estimate of the relative risk, we must have
[1—=m(0)] / [1 —m(1)] & 1, which we obtain when the probability that the response
occurs is small for bothx = 1 and x = 0.

relative risk =

Interpreting a Model for a Dichotomous Predictor

Recall the churn data set [4], where we were interested in predicting whether a

customer would leave the company’s service (churn) based on a set of predictor

variables. For this simple logistic regression example, assume that the only predictor

available is VoiceMail Plan, a flag variable indicating membership in the plan. The

cross-tabulation of churn by VoiceMail Plan membership is shown in Table 4.3.
The likelihood function is then given by

L(Blx) = [ O x [1 =2 (OF" x [7(DI* x [1 = z(D]*?
Note that we may use the entries from Table 4.3 to construct the odds and the odds
ratio directly.
¢ Odds of those with VoiceMail Plan churning = 7 (1) / [1 —m(1)] =80/842 =
0.0950
e Odds of those without VoiceMail Plan churning = 7(0) / [1—m(0)] =
403/2008 = 0.2007
and
B n(l)/[l —x(D] 80/842 B
~ w(0)/[1—7(0)]  403/2008

That is, those who have the VoiceMail Plan are only 47% as likely to churn as are
those without the VoiceMail Plan. Note that the odds ratio can also be calculated as

TABLE4.3 Cross-Tabulation of Churn by Membership in the VoiceMail Plan

VoiceMail = No, VoiceMail = Yes,
x=0 x=1 Total
Churn = false, 2008 842 2850
y=0
Churn = true, 403 80 483
y=1

Total 2411 922 3333




164 CHAPTER4 LOGISTIC REGRESSION

TABLE 4.4 Results of Logistic Regression of Churn on the VoiceMail Plan

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.60596 0.0545839 -29.42 0.000
VMail -0.747795 0.129101 -5.79 0.000 0.47 0.37 0.61
Log-Likelihood = -1360.165

Test that all slopes are zero: G = 37.964, DF = 1, P-Value = 0.000

the following cross-product:
a(1)[1 —w(0)]  80(2008)

T w0)[1—m(1)]  403(842)
The logistic regression can then be performed in Minitab, with the results shown

in Table 4.4. First, note that the odds ratio reported by Minitab equals 0.47, the same

value that we found using the cell counts directly. Next, equation (4.3) tells us that

odds ratio = ef1. We verify this by noting that b; = —0.747795, so that e”' = 0.47.
Here we have by = —1.60596 and b; = —0.747795. So the probability of

churning for a customer belonging (x = 1) or not belonging (x = 0) to the VoiceMail

Plan is estimated as

OR 0.47

€§(x) e—l.60596+ —0.747795x

(x) = 1+ e8® ]t ¢ 16039+ —0.747795x

with the estimated logit
8(x) = —1.60596 — 0.747795x

For a customer belonging to the plan, we estimate his or her probability of
churning:

8(x) = —1.60596 — (0.747795)(1) = —2.3538

Membership in VoiceMail Plan protects against churn. (Courtesy: Chantal Larose.)
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and
6 23538

a(x) = = 0.0868

1+ 8@ — | 4 23538
So the estimated probability that a customer who belongs to the VoiceMail Plan will
churn is only 8.68%, which is less than the overall proportion of churners in the data
set, 14.5%, indicating that belonging to the VoiceMail Plan protects against churn.
Also, this probability could have been found directly from Table 4.3:

80
P (churn|VoiceMail Plan) = o = 0.0868

For a customer not belonging to the VoiceMail Plan, we estimate the probability
of churning:
g(x) = —1.60596 — (0.747795)(0) = —1.60596

and
2800 o—1:60596

#(x) = =0.16715

1+ 8@ — 1+ 16059
This probability is slightly higher than the overall proportion of churners in the data set,
14.5%, indicating that not belonging to the VoiceMail Plan may be slightly indicative
of churning. This probability could also have been found directly from Table 4.3:

e — 403
P(churn|VoiceMail Plan) = T 0.16715

Next, we apply the Wald test for the significance of the parameter for the
VoiceMail Plan. We have by = —0.747795 and SE(b;) = 0.129101, giving us

—0.747795
0.129101
as reported under z for the coefficient VoiceMail Plan in Table 4.4. The p-value is
P (]z] > 5.79) = 0.000, which is strongly significant. There is strong evidence that

the VoiceMail Plan variable is useful for predicting churn.
A 100(1 — «)% confidence interval for the odds ratio may be found thus:

Zwad = =5.79

exp [b1 iz SAE(bl)]

where expla] represents ¢“. Thus, here we have a 95% confidence interval for the
odds ratio given by

A
exp [bl *z- SE(bl)] = exp [—0.747795 £+ (1.96)(0.129101)]
— (¢~ 10008 ,—0.4948)

= (0.37, 0.61)

as reported in Table 4.4. Thus, we are 95% confident that the odds ratio for churn-
ing among VoiceMail Plan members and nonmembers lies between 0.37 and 0.61.
Since the interval does not include ¢ = 1, the relationship is significant with 95%
confidence.

We can use the cell entries to estimate the standard error of the coefficients
directly, as follows (result from Bishop et al. [5]). The standard error for the logistic
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TABLE 4.5 Reference Cell Encoding for the Customer
Service Calls Indicator Variables

CSC-Med CSC-Hi
Low (0 or 1 calls) 0 0
Medium (2 or 3 calls) 1 0
High (> 4 calls) 0 1

regression coefficient b; for VoiceMail Plan is estimated as follows:

A 1 1 1 1
SE(b)) = \/403 + 2003 + 20 + s = 0.129101
In this churn example, the voice mail members were coded as 1 and the nonmembers
coded as 0. This is an example of reference cell coding, where the reference cell refers
to the category coded as zero. Odds ratios are then calculated as the comparison of
the members relative to the nonmembers or with reference to the nonmembers.

In general, for variables coded as a and b rather than O and 1, we have

In[OR(a, b)] = g(x =a) — g(x = b)
= (bo + bia) — (bo + b1b)
=bi(a —b) (4.4)

So an estimate of the odds ratio in this case is given by exp [b;(a — b)] which becomes
e’ whena = 1and b = 0.

Interpreting a Model for a Polychotomous Predictor

For the churn data set [4], suppose that we categorize the customer service calls
variable into a new variable, CSC, as follows:

e Zero or one customer service calls: CSC = Low
e Two or three customer service calls: CSC = Medium

e Four or more customer service calls: CSC = High

Then CSC is a trichotomous predictor. How will logistic regression handle this? First,
the analyst will need to code the data set using indicator (dummy) variables and
reference cell coding. Suppose that we choose CSC = Low to be our reference cell.
Then we assign the indicator variable values to two new indicator variables, CSC-Med
and CSC-Hi, given in Table 4.5. Each record will have assigned to it a value of zero
or 1 for each of CSC-Med and CSC-Hi. For example, a customer with 1 customer
service call will have values CSC-Med = 0 and CSC-Hi = 0, a customer with 3
customer service calls will have CSC-Med = 1 and CSC-Hi = 0, and a customer with
7 customer service calls will have CSC-Med = 0 and CSC-Hi = 1.

Table 4.6 shows a cross-tabulation of churn by CSC. Using CSC = Low
as the reference class, we can calculate the odds ratios using the cross-products
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TABLE 4.6 Cross-Tabulation of Churn by CSC

CSC=Low  CSC=Medium  CSC=High  Total

Churn = false, 1664 1057 129 2850
y=0
Churn = true, 214 131 138 483
y=1
Total 1878 1188 267 3333
as follows:

e For CSC = Medium:

131(1664
_ 1310663 _ 5 963687 ~ 0.96
214(1057)
e For CSC = High:
138(1664
_ 13801664) _ ¢ 31819 ~ 8.32
214(129)

The logistic regression is then performed in Minitab with the results shown in
Table 4.7.

Note that the odds ratio reported by Minitab are the same that we found using the
cell counts directly. We verify the odds ratios given in Table 4.7, using equation (4.3):

A

e For CSC-Med: OR = ¢l = 700369891 — () 96
A

e [or CSC-Hi: OR = ¢2 = 21184 — g 32

Here we have by = —2.051, b; = —0.0369891, and b, = 2.11844. So the proba-
bility of churning is estimated as
6] o—2:051-0.0369891(CSC-Med)+2.11844(CSC-Hi)

(x) = 1+ ¢80 ] 4 ¢2051-0.0369891(CSC-Med)+2.11844(CSC-Hi)

with the estimated logit:
g(x) = —2.051 — 0.0369891(CSC-Med) + 2.11844(CSC-Hi)

TABLE 4.7 Results of Logistic Regression of Churn on CSC

Logistic Regression Table

0dds 95% CI
Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -2.05100 0.0726213 -28.24 0.000
CcsC-Med -0.0369891 0.117701 -0.31 0.753 0.96 0.77 1.21
CSC-Hi 2.11844 0.142380 14.88 0.000 8.32 6.29 11.00

Log-Likelihood = -1263.368
Test that all slopes are zero: G = 231.557, DF = 2, P-Value = 0.000
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For a customer with low customer service calls, we estimate his or her probability of
churning:
g(x) =—2.051 — 0.0369891(0) + 2.11844(0) = —2.051

and
o) o—2:051

#(x) = =0.114

1+ o2 = 1 4 ¢ 2051
So the estimated probability that a customer with low numbers of customer service
calls will churn is 11.4%, which is less than the overall proportion of churners in
the data set, 14.5%, indicating that such customers churn somewhat less frequently
than the overall group. Also, this probability could have been found directly from
Table 4.6:

P(churn|CSC = Low) = 24
Ci mn = LOW) = ——
" 1878

For a customer with medium customer service calls, the probability of churn is
estimated as

8(x) = —2.051 — 0.0369891(1) + 2.11844(0) = —2.088

=0.114

and
() —2.088
¢ ¢ =0.110

) = 150 — T3 o208

The estimated probability that a customer with medium numbers of customer service
calls will churn is 11.0%, which is about the same as that for customers with low
numbers of customer service calls. The analyst may consider collapsing the distinction
between CSC-Med and CSC-Low. This probability could have been found directly
from Table 4.6:

131
P(churn|CSC = Medium) = —— = 0.110
1188

For a customer with high customer service calls, the probability of churn is
estimated as

§(x) = —=2.051 — 0.0369891(0) + 2.11844(1) = 0.06744

and
R6)) 006744

Ax) = = 0.5169

1 4 €200 ] 4 006744
Thus, customers with high levels of customer service calls have a much higher es-
timated probability of churn, over 51%, which is more than triple the overall churn
rate. Clearly, the company needs to flag customers who make 4 or more customer
service calls and intervene with them before they attrit. This probability could also
have been found directly from Table 4.6:
138
P(churn|CSC = High) = 267 = 0.5169

Applying the Wald test for the significance of the CSC-Med parameter, we have
by = —0.0369891 and SE(b;) = 0.117701, giving us
—0.0369891

Zwad = — 22— _0.31426
Wald = 0 117701
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as reported under z for the coefficient CSC-Med in Table 4.7. The p-value is
P (]z] > 0.31426) = 0.753, which is not significant. There is no evidence that the
CSC-Med versus CSC-Low distinction is useful for predicting churn. For the CSC-Hi
parameter, we have b; = 2.11844 and SE(b;) = 0.142380, giving us
7 2.11844 14.88
W 0142380

as shown for the coefficient CSC-Hi in Table 4.7. The p-value, P (|z| > 14.88) =
0.000, indicates that there is strong evidence that the distinction CSC-Hi versus CSC-
Low is useful for predicting churn.

Examining Table 4.7, note that the odds ratios for both CSC = Medium and
CSC = High are equal to those we calculated using the cell counts directly. Also
note that the logistic regression coefficients for the indicator variables are equal to
the natural log of their respective odds ratios:

besc-mea = In(0.96) ~ 1n(0.963687) = —0.0369891
besc-tign = In(8.32) ~ In(8.31819) = 2.11844

For example, the natural log of the odds ratio of CSC-Hi to CSC-Low can be derived
using equation (4.4) as follows:

In [OR(High, Low)] = g(High) — g(Low)
= [by + b1 (CSC-Med = 0) + b,(CSC-Hi = 1)]
— [bo + b1 (CSC-Med = 0) + by(CSC-Hi = 0)]
=b, =2.11844
Similarly, the natural log of the odds ratio of CSC-Medium to CSC-Low is given by
In [OR(Medium, Low)] = g(Medium) — g(Low)
= [by + b1 (CSC-Med = 1) + by(CSC-Hi = 0)]
— [bo + b1 (CSC-Med = 0) + b,(CSC-Hi = 0)]
= by = —0.0369891
Just as for the dichotomous case, we may use the cell entries to estimate the standard

error of the coefficients directly. For example, the standard error for the logistic
regression coefficient b; for CSC-Med is estimated as follows:

1 1
— 4+ —+ —+ — =0.117701
131 * 1664 + 214 + 1057

Also similar to the dichotomous case, we may calculate 100(1 — «)% confidence
intervals for the odds ratios, for the ith predictor, as follows:

SE(b) =

exp [bi +z. SAE(b,-)]

For example, a 95% confidence interval for the odds ratio between CSC-Hi and
CSC-Low is given by:

A
exp [b2 7. SE(bg)] = exp [2.11844 =+ (1.96)(0.142380)]

= (6.29, 11.0)

(61'8394, 62'3975)
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as reported in Table 4.7. We are 95% confident that the odds ratio for churning for
customers with high customer service calls compared to customers with low customer
service calls lies between 6.29 and 11.0. Since the interval does not include ¢° = 1,
the relationship is significant with 95% confidence.

However, consider the 95% confidence interval for the odds ratio between
CSC-Med and CSC-Low:

N
exp [bl = SE(bl)] = exp [—0.0369891 £ (1.96)(0.117701)]
— (702677 (01937

= (0.77, 1.21)

as reported in Table 4.7. We are 95% confident that the odds ratio for churning
for customers with medium customer service calls compared to customers with low
customer service calls lies between 0.77 and 1.21. Since this interval does include
¢’ = 1, the relationship is not significant with 95% confidence. Depending on other
modeling factors, the analyst may consider collapsing CSC-Med and CSC-Low into
a single category.

Interpreting a Model for a Continuous Predictor

Our first example of predicting the presence of disease based on age was an instance of
using a continuous predictor in logistic regression. Here we present another example,
based on the churn data set [4]. Suppose that we are interested in predicting churn
based on a single continuous variable, day minutes. We first examine an individual
value plot of the day minute usage among churners and nonchurners, provided in
Figure 4.2. The plot seems to indicate that churners have slightly higher mean day
minute usage than nonchurners, meaning that heavier usage may be a predictor of
churn. We verify this using the descriptive statistics given in Table 4.8. The mean and
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Figure 4.2 Churners have slightly higher mean day minutes usage.
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TABLE 4.8 Descriptive Statistics for Day Minutes by Churn

Churn N Mean St. Dev. Min. 01 Median Q3 Max.

False 2850 175.18 50.18 0.00 142.75 177.20 210.30 315.60
True 483 206.91 69.00 0.00 153.10 217.60 266.00 350.80

five-number-summary for the churn = true customers indicates higher day minute
usage than for the churn = false customers, supporting the observation from Fig-
ure 4.2.

Is this difference significant? A two-sample 7-test is carried out, the null hypoth-
esis being that there is no difference in true mean day minute usage between churners
and nonchurners. The results are shown in Table 4.9. The resulting ¢-statistic is —9.68,
with a p-value rounding to zero, representing strong significance. That is, the null
hypothesis that there is no difference in true mean day minute usage between churners
and nonchurners is strongly rejected.

A word of caution is in order here about carrying out inference in data mining
problems, or indeed in any problem where the sample size is very large. Most statistical
tests become very sensitive at very large sample sizes, rejecting the null hypothesis
for tiny effects. The analyst needs to understand that just because the effect is found
to be statistically significant because of the huge sample size, it doesn’t necessarily
follow that the effect is of practical significance. The analyst should keep in mind the
constraints and desiderata of the business or research problem, seek confluence of
results from a variety of models, and always retain a clear eye for the interpretability
of the model and the applicability of the model to the original problem.

Note that the 7-test does not give us an idea of how an increase in day minutes
affects the odds that a customer will churn. Neither does the 7-test provide a method for
finding the probability that a particular customer will churn, based on the customer’s
day minutes usage. To learn this, we must turn to logistic regression, which we now
carry out, with the results given in Table 4.10.

First, we verify the relationship between the odds ratio for day minutes and its

coefficient. OR = ¢ = 90112717 = 1,011335 = 1.01, as shown in Table 4.10. We
discuss interpreting this value a bit later. In this example we have by = —3.92929 and
by = 0.0112717. Thus, the probability of churning 7z (x) = ef+F1¥ /(1 4 efotH1¥) for

TABLE 4.9 Results of a Two-Sample t-Test for Day Minutes by Churn

Two-sample T for Day Mins

Churn N Mean StDev SE Mean

False 2850 175.2 50.2 0.94

True 483 206.9 69.0 3.1

Difference = mu (False) - mu (True)

Estimate for difference: -31.7383

95% CI for difference: (-38.1752, -25.3015)

T-Test of difference = 0 (vs not =): T-Value = -9.68

P-value = 0.000 DF = 571
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TABLE 4.10 Results of Logistic Regression of Churn on Day Minutes

Logistic Regression Table

0dds 95% CI
Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -3.92929 0.202822 -19.37 0.000
Day Mins 0.0112717 0.0009750 11.56 0.000 1.01 1.01 1.01

Log-Likelihood = -1307.129
Test that all slopes are zero: G = 144.035, DF = 1, P-Value = 0.000

a customer with a given number of day minutes is estimated as

eg(x) e—3.92929+0.0] 12717(daymms>

(x) = —— = :
(x) 14 e8™ 1+ 673.92929+0.0112717(daymlnS)

with the estimated logit
g(x) = —3.92929 + 0.0112717(day mins)

For a customer with 100 day minutes, we can estimate his or her probability of
churning:

§(x) = —=3.92929 + 0.0112717(100) = —2.80212

and
e o—2:80212
= 0.0572

7 (x) = 1+ 2™ ] 4 280212

Thus, the estimated probability that a customer with 100 day minutes will churn is
less than 6%. This is less than the overall proportion of churners in the data set,
14.5%, indicating that low day minutes somehow protects against churn. However,
for a customer with 300 day minutes, we have

§(x) = —=3.92929 + 0.0112717(300) = —0.54778

and
£(x) —0.54778
¢ ¢ — 0.3664

) = 1o = [ o077

The estimated probability that a customer with 300 day minutes will churn is over
36%, which is more than twice the overall proportion of churners in the data set,
indicating that heavy-use customers have a higher propensity to churn.

The deviance difference G for this example is given by

G = deviance (model without predictor) — deviance (model with predictor)

likelihood without predictor
= —21In

likelihood with predictor

=2 Z [yiIn[#;] + (1 — y) In[1 — #;]] — [n1 In(n1) + no In(ng) — n In(n)]
i=1

= 2{-1307.129 — [483 In(483) + 2850 In(2850) — 3333 In(3333)]} = 144.035
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as indicated in Table 4.10. The p-value for the chi-square test for G, under the
assumption that the null hypothesis is true (8, = 0), is given by P( Xlz) > Gobserved =
P(Xlz) > 144.035 = 0.000, as shown in Table 4.10. Thus, the logistic regression
concludes that there is strong evidence that day minutes is useful in predicting churn.

Applying the Wald test for the significance of the day minutes parameter, we
have by = 0.0112717 and SE(b;) = 0.0009750, giving us

0.0112717
0.0009750

as shown in Table 4.10. The associated p-value of P(|z| > 11.56) = 0.000, using =
0.05, indicates strong evidence for the usefulness of the day minutes variable for
predicting churn.

Examining Table 4.10, note that the coefficient for day minutes is equal to the
natural log of its odds ratio:

besc-mea = In(1.01) ~ In(1.011335) = 0.0112717
bdaymins = In(1.01) ~ In(1.011335) = 0.0112717
Also, this coefficient may be derived, similar to equation (4.4), as follows:
In [OR (day minutes)] = g(x + 1) — g(x) = [bo + b1 (x + 1)]
—[bo + b1(x)]
= b; =0.0112717 4.5)

This derivation provides us with the interpretation of the value for b;. That is,
birepresents the estimated change in the log odds ratio for a unit increase in the
predictor. In this example, by = 0.0112717, which means that for every additional
day minute that the customer uses, the log odds ratio for churning increases by
0.0112717. N

The value for the odds ratio we found above, OR = ¢
1.011335 = 1.01, may be interpreted as the odds of a customer with x + 1 minutes
churning compared to a customer with x minutes churning. For example, a customer
with 201 minutes is about 1.01 times as likely to churn as a customer with 200 minutes.
This unit-increase interpretation may be of limited usefulness, since the analyst may
prefer to interpret the results using a different scale, such as 10 minutes or 60 minutes,
or even (conceivably) 1 second. We therefore generalize the interpretation of the lo-
gistic regression coefficient as follows:

Wald = 11.56

b _— 80'0112717 —

INTERPRETING THE LOGISTIC REGRESSION COEFFICIENT FOR A
CONTINUOUS PREDICTOR

For a constant ¢, the quantity cb; represents the estimated change in the log odds ratio, for
an increase of ¢ units in the predictor.

This result can be seen to follow from the substitution of g(x + ¢) — g(x) for
8(x + 1) — g(x) in equation (4.5):
8(x +¢) — g(x) = [bo + bi(x + )] — [bo + bi(x)]
= Cbl
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For example, let ¢ = 60, so that we are interested in the change in the log odds ratio for
an increase in 60 day minutes in cell phone usage. This increase would be estimated
as cb; = 60(0.0112717) = 0.676302. Consider a customer A, who had 60 more day
minutes than customer B. Then we would estimate the odds ratio for customer A to
churn compared to customer B to be ¢?67632 = 1 97. That is, an increase of 60 day
minutes nearly doubles the odds that a customer will churn.

Similar to the categorical predictor case, we may calculate 100(1 — «)% con-
fidence intervals for the odds ratios as follows:

exp [b; + 2 - SE(by)]

For example, a 95% confidence interval for the odds ratio for day minutes is given by

A
exp [b1 % z - SE(b))] = exp [0.0112717 £ (1.96)(0.0009750)]
— (60‘0093607 60'0131827)

’

= (1.0094, 1.0133)
= (1.01, 1.01)
as reported in Table 4.10. We are 95% confident that the odds ratio for churning for
customers with 1 additional day minute lies between 1.0094 and 1.0133. Since the
interval does not include e® = 1, the relationship is significant with 95% confidence.
Confidence intervals may also be found for the odds ratio for the ith predictor
when there is a change in ¢ units in the predictor, as follows:

A
exp [cb; & zc - SE(b)]
For example, earlier we estimated the increase in the odds ratio when the day minutes

increased by ¢ = 60 minutes to be 1.97. The 99% confidence interval associated with
this estimate is given by

N
exp [cb; & zc - SE(b;)] = exp [60(0.0112717) & 2.576 (60)(0.0009750)]
= exp[0.6763 £ 0.1507]
= (1.69, 2.29)

So we are 99% confident that an increase of 60 day minutes will increase the odds
ratio of churning by a factor between 1.69 and 2.29.

ASSUMPTION OF LINEARITY

Now, if the logit is not linear in the continuous variables, there may be problems with
the application of estimates and confidence intervals for the odds ratio. The reason
is that the estimated odds ratio is constant across the range of the predictor. For
example, the estimated odds ratio of 1.01 is the same for every unit increase of day
minutes, whether it is the 23rd minute or the 323rd minute. The same is true of the
estimated odds ratio for the increase of 60 day minutes; the estimated odds ratio
of 1.97 is the same whether we are referring to the 0—60-minute time frame or the
55—115-minute time frame, and so on.

Such an assumption of constant odds ratio is not always warranted. For exam-
ple, suppose that we performed a logistic regression of churn on customer service
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TABLE 4.11 Questionable Results of Logistic Regression of Churn on Customer Service Calls

Logistic Regression Table

0dds 95% CI
Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -2.49016 0.0863180 -28.85 0.000
CustServ Calls 0.396169 0.0345617 11.46 0.000 1.49 1.39 1.59

Log-Likelihood = -1313.618
Test that all slopes are zero: G=131.058, DF=1, P-Value=0.000

calls, which takes the values 0 to 9. The results are shown in Table 4.11. The estimated
odds ratio of 1.49 indicates that the odds ratio for churning increases by this amount
for every additional customer service call that is made. We would therefore expect
that a plot of customer service calls with a churn overlay would form a fairly regular
steplike pattern. However, consider Figure 4.3, which shows a normalized histogram
of customer service calls with a churn overlay. (The normalization makes each rect-
angle the same length, thereby increasing the contrast at the expense of information
about bin size.) Darker portions indicate the proportion of customers who churn.
Note that we do not encounter a gradual step-down pattern as we proceed
left to right. Instead, there is a single rather dramatic discontinuity at four customer
service calls. This is the pattern we uncovered earlier when we performed binning
on customer service calls and found that those with three or fewer calls had a much
different propensity to churn than did customers with four or more. Specifically, the

0 1 2 3 4 5 [ 7 B 9
Figure 4.3 Normalized histogram of customer service calls with churn overlay.
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TABLE 4.12 Customer Service Calls by Churn, with Estimated Odds Ratios

Customer Service Calls

0 1 2 3 4 5 6 7 8 9
Churn = false 605 1059 672 385 90 26 8 4 1 0
Churn = true 92 122 87 44 76 40 14 5 1 2
QOdds ratio 076 1.12 088 739 1.82 1.14 0.71 0.8 Undefined

results in Table 4.11 assert that, for example, moving from zero to one customer
service calls increases the odds ratio by a factor of 1.49. This is not the case, as fewer
customers with one call churn than do those with zero calls.

For example, Table 4.12 shows the counts of customers churning and not churn-
ing for the 10 values of customer service calls, along with the estimated odds ratio
for the one additional customer service call. For example, the estimated odds ratio
for moving from zero to one call is 0.76, which means that churning is less likely
for those making one call than it is for those making none. The discontinuity at the
fourth call is represented by the odds ratio of 7.39, meaning that a customer making
his or her fourth call is more than seven times as likely to churn as a customer who
has made three calls.

Note that the odds ratio of 1.49 which results from an inappropriate application
of logistic regression is nowhere reflected in the actual data. If the analyst wishes
to include customer service calls in the analysis (and it should be included), certain
accommodations to nonlinearity must be made, such as the use of indicator variables
(see the polychotomous example) or the use of higher-order terms (e.g., x2, x3, ...).
Note the undefined odds ratio for column 9, which contains a zero cell. We discuss
the zero-cell problem below.

For another example of the problem of nonlinearity, we turn to the adult data
set [6], which was extracted from data provided by the U.S. Census Bureau. The
task is to find the set of demographic characteristics that can best predict whether
or not a person has an income of over $50,000 per year. We restrict our attention to
the derived variable, capnet, which equals the capital gains amount minus the capital
losses, expressed in dollars.

The naive application of logistic regression of income on capnet provides the
results shown in Table 4.13. The odds ratio for the capnet variable is reported as

TABLE 4.13 Results of Questionable Logistic Regression of Income on Capnet

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.32926 0.0159903 -83.13 0.000
capnet 0.0002561 0.0000079 32.58 0.000 1.00 1.00 1.00
Log-Likelihood = -12727.406

Test that all slopes are zero: G = 2062.242, DF = 1, P-Value = 0.000
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TABLE 4.14 Income Level Counts for Categories of Capnet

Capnet Category
Income Loss None Gain < $3000 Gain > $3000
<$50,000 574 49.7% 17,635 81.0% 370 100% 437 25.6%
>$50,000 582 50.3% 4,133 19.0% 0 0% 1269 74.4%
Total 1156 21,768 370 1706

1.00, with both endpoints of the confidence interval also reported as 1.00. Do we
conclude from this that capnet is not significant? If so, how do we resolve the apparent
contradiction with the strongly significant z-test p-value of approximately zero?

Actually, of course, there is no contradiction. The problem lies in the fact that
the odds ratio results are reported only to two decimal places. More detailed 95%
confidence intervals are provided here:

A
CI(ORcapnet) = eXP[bl £z - SE(by)]

— exp [0.0002561 = (1.96)(0.0000079)]
(60'0002406 60'0002716)

= (1.000241, 1.000272)

Thus, the 95% confidence interval for the capnet variable does not include the null
value of e’ = 1, indicating that this variable is in fact significant. Why is such precision
needed? Because capnet is measured in dollars. One additional dollar in capital gains,
for example, would presumably not increase the probability of a high income very
dramatically—hence, the tiny but significant odds ratio.

However, nearly 87% of the records have zero capnet (neither capital gains nor
capital losses). What effect would this have on the linearity assumption? Table 4.14
provides the income-level counts for a possible categorization of the capnet variable.
Note that high income is associated with either capnet loss or capnet gain > $3000,
while low income is associated with capnet none or capnet gain < $3000. Such
relationships are incompatible with the assumption of linearity. We would therefore
like to rerun the logistic regression analysis, this time using the capnet categorization
shown in Table 4.14.

ZERO-CELL PROBLEM

Unfortunately, we are now faced with a new problem, the presence of zero-count cells
in the cross-classification table. There are no records of people in the data set with
income greater than $50,000 and capnet gain less than $3000. Zero cells play havoc
with the logistic regression solution, causing instability in the analysis and leading to
possibly unreliable results. Rather than omitting the gain < $3000 category, we may
try to collapse the categories or redefine them somehow to find some records for the
zero cell. In this example we try to redefine the class limits for the two capnet gains
categories, which will have the added benefit of finding a better balance of records
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TABLE 4.15 Income Level Counts for Categories of Capnet: New Categorization

Capnet Category
Income Loss None Gain < $5000 Gain > $5000
< $50,000 574 49.7% 17,635 81.0% 685 83.0% 122 9.8%
> $50,000 582 50.3% 4,133 19.0% 140 17.0% 1129 90.2%
Total 1156 21,768 825 1251

in these categories. The new class boundaries and cross-classification are shown in
Table 4.15. The logistic regression of income on the newly categorized capnet has
results that are shown in Table 4.16.

The reference category is zero capnet. The category gain < $5000 is not sig-
nificant, since its proportions of high and low income are quite similar to those of
zero capnet, as shown in Table 4.15. The categories of loss and gain > $5000 are
both significant, but at different orders of magnitude. People with a capital loss are
4.33 times as likely to have high income than are zero capnet persons, while people
showing a capnet gain of at least $5000 are nearly 40 times more likely to have high
income than is the reference category. The variability among these results reinforces
the assertion that the relationship between income and capnet is nonlinear and that
naive insertion of the capnet variable into a logistic regression would be faulty.

For a person showing a capnet loss, we can estimate his or her probability of
having an income above $50,000. First the logit:

8(x) = —1.45088 + 1.46472(1) = 0.01384

with probability

) 0.01384
¢ ¢ = 0.5035

w(x) = 1 e ]t 001384

So the probability that a person with a capnet loss has an income above $50,000 is
about 50:50. Also, we can estimate the probability that a person showing a capnet

TABLE 4.16 Results of Logistic Regression of Income on Categorized Capnet

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -1.45088 0.0172818 -83.95 0.000
capnet-cat
gain < $5,000 -0.136894 0.0943471 -1.45 0.147 0.87 0.72 1.05
gain >= $5,000 3.67595 0.0968562 37.95 0.000 39.49 32.66 47.74
loss 1.46472 0.0613110 23.89 0.000 4.33 3.84 4.88

Log-Likelihood = -12156.651
Test that all slopes are zero: G = 3203.753, DF = 3, P-Value = 0.000
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gain of at least $5000 will have an income above $50,000. The logit is
8(x) = —1.45088 + 3.67595(1) = 2.22507

and the probability is
280 £2:22507

1+ 8@ — | 4 222507

Note that these probabilities are the same as could be found using the cell counts in
Table 4.15; similarly for a person with a capnet gain of under $5000. However, this
category was found not to be significant. What, then, should be our estimate of the
probability that a person with a small capnet gain will have high income?

Should we use the estimate provided by the cell counts and the logistic re-
gression (probability = 17%), even though it was found not to be significant? The
answer is no, not for formal estimation. To use nonsignificant variables for estima-
tion increases the chances that the estimation will not be generalizable. That is, the
generalizability (and hence, usefulness) of the estimation will be reduced.

Now, under certain circumstances, such as a cross-validated (see our discussion
on validating the logistic regression, below) analysis, where all subsamples concur that
the variable is nearly significant, the analyst may annotate the estimation with a note
that there may be some evidence for using this variable in the estimation. However,
in general, retain for estimation and prediction purposes only those variables that are
significant. Thus, in this case, we would estimate the probability that a person with a
small capnet gain will have high income as follows:

8(x) = —1.45088

= 0.9025

a(x) =

with probability:
R6)) o~ 1145088

#(x) = —=0.1899

1+ e20) 1 4 o 145088

which is the same as the probability that a person with zero capnet will have a high
income.

MULTIPLE LOGISTIC REGRESSION

Thus far, we have examined logistic regression using only one variable at a time.
However, very few data mining data sets are restricted to one variable! We therefore
turn to multiple logistic regression, in which more than one predictor variable is used to
classify the binary response variable. Returning to the churn data set [4], we examine
whether a relationship exists between churn and the following set of predictors.

e International Plan, a flag variable
® VoiceMail Plan, a flag variable

e CSC-Hi, a flag variable indicating whether or not a customer had a high (>4)
level of customer services calls

e Account length, continuous
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TABLE 4.17 Results of Multiple Logistic Regression of Churn on Several Variables

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -8.15980 0.536092 -15.22 0.000
Account Length 0.0008006 0.0014408 0.56 0.578 1.00 1.00 1.00
Day Mins 0.0134755 0.0011192 12.04 0.000 1.01 1.01 1.02
Eve Mins 0.0073029 0.0011695 6.24 0.000 1.01 1.01 1.01
Night Mins 0.0042378 0.0011474 3.69 0.000 1.00 1.00 1.01
Intl Mins 0.0853508 0.0210217 4.06 0.000 1.09 1.05 1.13
Int-1 Plan

ves 2.03287 0.146894 13.84 0.000 7.64 5.73 10.18
VMail Plan

ves -1.04435 0.150087 -6.96 0.000 0.35 0.26 0.47
CSC-Hi

1 2.67683 0.159224 16.81 0.000 14.54 10.64 19.86
Log-Likelihood = -1036.038

Test that all slopes are zero: G = 686.218, DF = 8, P-Value = 0.000

* Day minutes, continuous
e Evening minutes, continuous
e Night minutes, continuous

e [nternational minutes, continuous

The results are provided in Table 4.17. First, note that the overall regression
is significant, as shown by the p-value of approximately zero for the G-statistic.
Therefore, the overall model is useful for classifying churn. However, not all variables
contained in the model need necessarily be useful. Examine the p-values for the (Wald)
z-statistics for each of the predictors. All p-values are small except one, indicating that
there is evidence that each predictor belongs in the model, except account length, the
standardized customer account length. The Wald z-statistic for account length is 0.56,
with a large p-value of 0.578, indicating that this variable is not useful for classifying
churn. Further, the 95% confidence interval for the odds ratio includes 1.0, reinforcing
the conclusion that account length does not belong in the model. Therefore, we now
omit account length from the model and proceed to run the logistic regression again
with the remaining variables. The results are shown in Table 4.18.

Comparing Table 4.18 to Table 4.17, we see that the omission of account length
has barely affected the remaining analysis. All remaining variables are considered
significant and retained in the model. The positive coefficients indicate predictors for
which an increase in the value of the predictor is associated with an increase in the
probability of churning. Similarly, negative coefficients indicate predictors associated
with reducing the probability of churn. Unit increases for each of the minutes variables
are associated with an increase in the probability of churn, as well as membership in
the International Plan and customers with high levels of customer service calls. Only
membership in the VoiceMail Plan reduces the probability of churn.
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TABLE 4.18 Results of Multiple Logistic Regression After Omitting Account Length
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Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -8.07374 0.512446 -15.76 0.000
Day Mins 0.0134735 0.0011190 12.04 0.000 1.01 1.01 1.02
Eve Mins 0.0072939 0.0011694 6.24 0.000 1.01 1.01 1.01
Night Mins 0.0042223 0.0011470 3.68 0.000 1.00 1.00 1.01
Intl Mins 0.0853509 0.0210212 4.06 0.000 1.09 1.05 1.13
Int-1 Plan

ves 2.03548 0.146822 13.86 0.000 7.66 5.74 10.21
VMail Plan

yves -1.04356 0.150064 -6.95 0.000 0.35 0.26 0.47
CSC-Hi

1 2.67697 0.159151 16.82 0.000 14.54 10.64 19.86
Log-Likelihood =-1036.192
Test that all slopes are zero: G = 685.910, DF = 7, P-Value = 0.000

Table 4.18 provides the estimated logit:

8(x) = — 8.07374 + 0.0134735(DayMins) + 0.0072939(EveMins)
+ 0.0042223(NightMins) 4+ 0.0853509(IntiMins)
+ 2.03548(Int-1 Plan = Yes) — 1.04356(VMail Plan = Yes)
4+ 2.67697(CSC-Hi = 1)
where Intl Plan = Yes, VMail Plan = Yes, and CSC-Hi = I represent indicator
(dummy) variables. Then, using
A &)
(x) = 1T i@

we may estimate the probability that a particular customer will churn given vari-
ous values for the predictor variables. We estimate the probability of churn for the
following customers:

1. A low-usage customer belonging to no plans with few calls to customer service.
This customer has 100 minutes for each of day, evening and night minutes, and
no international minutes. The logit

8(x) = — 8.07374 4+ 0.0134735(100) + 0.0072939(100)
+ 0.0042223(100) + 0.0853509(0)
+ 2.03548(0) — 1.04356(0) + 2.67697(0)
= — 5.57477

The probability that customer 1 will churn is therefore
) o—35T4TT

|+ 2@ — | 4 557471

#(x) = — 0.003778
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That is, a customer with low usage, belonging to no plans, and making few
customer service calls has less than a 1% chance of churning.

2. A moderate-usage customer belonging to no plans with few calls to customer

service. This customer has 180 day minutes, 200 evening and night minutes, and
10 international minutes, each number near the average for the category. Here is
the logit:

8(x) = —8.07374 4 0.0134735(180) + 0.0072939(200)
+0.0042223(200) + 0.0853509(10)

+2.03548(0) — 1.04356(0) + 2.67697(0)
= —2.491761

The probability that customer 2 will churn is

280 o—2491761
= 0.076435

(x) = 1+ et 1+ ¢ 2491761

A customer with moderate usage, belonging to no plans, and making few cus-
tomer service calls still has less than an 8% probability of churning.

3. A high-usage customer belonging to the International Plan but not the VoiceMail

Plan, with many calls to customer service. This customer has 300 day, evening,
and night minutes, and 20 international minutes. The logit is

g(x) = —8.07374 4 0.0134735(300) + 0.0072939(300)
+0.0042223(300) + 0.0853509(20)
+2.03548(1) — 1.04356(0) + 2.67697(1)

= 5.842638

Thus, the probability that customer 3 will churn is

R6)) 05842638

1 4 &0 = 1 + 5842638 =0.997107

#(x) =

High-usage customers, belonging to the International Plan but not the Voice-
Mail Plan, with many calls to customer service, have an astonishing 99.71%
probability of churning. The company needs to deploy interventions for these
types of customers as soon as possible, to avoid the loss of these customers to
other carriers.

4. A high-usage customer belonging to the VoiceMail Plan but not the International

Plan, with few calls to customer service. This customer also has 300 day, evening,
and night minutes, and 20 international minutes. The logit is

$(x) = —8.07374 + 0.0134735(300) + 0.0072939(300)
+0.0042223(300) + 0.0853509(20)
+2.03548(0) — 1.04356(1) + 2.67697(0)

= 0.086628
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Hence, the probability that customer 4 will churn is

g(x) 0.086628
¢ ¢ =0.5216

) = 15w = T3 o005
This type of customer has over a 50% probability of churning, which is more
than three times the 14.5% overall churn rate.

For data that are missing one or more indicator variable values, it would not be
appropriate simply to ignore these missing variables when making an estimation. For
example, suppose that for customer 4, we had no information regarding membership
in the VoiceMail Plan. If we then ignored the VoiceMail Plan variable when forming
the estimate, we would get the following logit:

8(x) = —8.07374 + 0.0134735(300) + 0.0072939(300)
+0.0042223(300) + 0.0853509(20)
+2.03548(0) + 2.67697(0)

— 1.130188

Note that this is the same value for g(x) that we would obtain for a customer who
was known not to be a member of the VoiceMail plan. To estimate the probability of
a customer whose VoiceMail plan membership was unknown using this logit would
be incorrect. This logit would, instead, provide the probability of a customer who did
not have the VoiceMail plan but was otherwise similar to customer 4, as follows:

JR6)) 1130188
= 0.7559

() =1 e | 4 el 130188

Such a customer would have a churn probability of about 76%.

INTRODUCING HIGHER-ORDER TERMS TO
HANDLE NONLINEARITY

We illustrate how to check the assumption of linearity in multiple logistic regression
by returning to the adult data set [6]. For this example, we shall use only the following
variables:

* Age

e Education-num

* Hours-per-week

* Capnet (= capital gain — capital loss)

* Marital-status

e Sex

e Income (the target variable, binary, either <$50,000 or >$50,000)

The three “married” categories in marital-status in the raw data were collapsed
into a single “married” category. A normalized histogram of age with an overlay



184 CHAPTER4 LOGISTIC REGRESSION

Percent

income

[ <=s0K
Bl 50K

20000 30000 40000 S0O0O00 ©0000 70.OOD ©0.000 ©0.000
Age

Figure4.4 Normalized histogram of age with income overlay shows a quadratic relationship.

of the target variable income is shown in Figure 4.4. The darker bands indicate the
proportion of high incomes. Clearly, this proportion increases until about age 52,
after which it begins to drop again. This behavior is nonlinear and should not be
naively modeled as linear in the logistic regression. Suppose, for example, that we
went ahead and performed a logistic regression of income on the singleton predictor
age. The results are shown in Table 4.19.

Table 4.19 shows that the predictor age is significant, with an estimated odds
ratio of 1.04. Recall that the interpretation of this odds ratio is as follows: that the
odds of having high income for someone of age x + 1 is 1.04 times higher than for
someone of age x. Now consider this interpretation in light of Figure 4.4. The odds
ratio of 1.04 is clearly inappropriate for the subset of subjects older than 50 or so. This
is because the logistic regression assumes linearity, whereas the actual relationship
is quadratic (nonlinear.) There are a couple of approaches we could take to alleviate
this problem. First, we could use indicator variables as we did earlier. Here, we use
an indicator variable age 33—-65, where all records falling in this range are coded as 1
and all other records are coded as 0. This coding was used because the higher incomes
were found to fall within this range in the histogram. The resulting logistic regression
is shown in Table 4.20. The odds ratio is 5.01, indicating that persons between 33 and

TABLE 4.19 Results of a Naive Application of Logistic Regression of Income on Age

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -2.72401 0.0486021 -56.05 0.000
age 0.0388221 0.0010994 35.31 0.000 1.04 1.04 1.04
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TABLE 4.20 Results of Logistic Regression of Income on Age 33-65

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -2.26542 0.0336811 -67.26 0.000
age 33 - 65 1.61103 0.0379170 42.49 0.000 5.01 4.65 5.39

65 years of age are about five times more likely to have high income than persons
outside this age range.

An alternative modeling method would be to model the quadratic behavior of
the relationship directly, by introducing an age® (age-squared) variable. The logistic
regression results are shown in Table 4.21. The odds ratio for the age variable has
increased from the value of 1.04 determined prevously, to 1.42. For the age® term,
the odds ratio and the endpoints of the confidence interval are reported as 1.00,
but this is only due to rounding. We use the fact that OR = e to find the more
accurate estimate of the odds ratio as OR = P2 = ¢=0:0034504 — () 99656. Also, the
95% confidence interval is given by

CI(OR) = exp |:bz +tz- SAE(bz)]

= exp [—0.0034504 £ (1.96)(0.0000992)]
(e~0:003645 ,—0.003256)

= (0.9964, 0.9967)
which concurs with the p-value regarding the significance of the term.
The age® term acts as a kind of penalty function, reducing the probability of
high income for records with high age. We examine the behavior of the age and age”
terms working together by estimating the probability that each of the following people

will have incomes greater than $50,000: (1) a 30-year-old person, (2) a 50-year-old
person, and (3) a 70-year-old person. We have the estimated logit:

&(x) = —9.08016 + 0.347807(age) — 0.0034504(age?)
which has the following values for our three persons:

(1) 8(x) = —9.08016 + 0.347807(age) — 0.0034504(age®) = —1.75131
(2) 8(x) = —9.08016 + 0.347807(age) — 0.0034504(age®) = —0.31581
(3) 2(x) = —9.08016 + 0.347807(age) — 0.0034504(age?) = —1.64063

TABLE 4.21 Results of Introducing a Quadratic Term Age? to Model the Nonlinearity of Age

Logistic Regression Table

0Odds 95% CI
Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -9.08016 0.194526 -46.68 0.000
age 0.347807 0.0089465 38.88 0.000 1.42 1.39 1.44

age-squared -0.0034504 0.0000992 -34.77 0.000 1.00 1.00 1.00
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Note that the logit is greatest for the 50-year-old, which models the behavior seen in
Figure 4.4. Then the estimated probability of having an income greater than $50,000
is then found for our three people:

80
f(x) = 1T

o= 175131

(= e 17501 = 0.1479
0031581

2) = T o 0mmr = 0.4217
6_1‘64063

3)= T o To0m = 0.1624

The probabilities that the 30-year-old, 50-year-old, and 70-year-old have an income
greater than $50,000 are 14.79%, 42.17%, and 16.24%, respectively. This is compared
to the overall proportion of the 25,000 records in the training set that have income
greater than $50,000, which is 5984/25,000 = 23.94%.

One benefit of using the quadratic term (together with the original age variable)
rather than the indicator variable is that the quadratic term is continuous and can
presumably provide tighter estimates for a variety of ages. For example, the indicator
variable age 33—65 categorizes all records into two classes, so that a 20-year-old is
binned together with a 32-year-old, and the model (all other factors held constant)
generates the same probability of high income for the 20-year-old as for the 32-year-
old. The quadratic term, however, will provide a higher probability of high income
for the 32-year-old than for the 20-year-old (see the exercises).

Next, we turn to the education-num variable, which indicates the number
of years of education the subject has had. The relationship between income and
education-num is shown in Figure 4.5. The pattern shown in Figure 4.5 is also
quadratic, although perhaps not as manifestly so as in Figure 4.4. As education in-
creases, the proportion of subjects having high income also increases, but not at a
linear rate. Until grade 8 or so, the proportion increases slowly, and then more quickly
as education level increases. Therefore, modeling the relationship between income
and education level as strictly linear would be an error; we again need to introduce a
quadratic term.

Note that for age, the coefficient of the quadratic term age2 was negative,
representing a downward influence for very high ages. For education-num, however,
the proportion of high incomes is highest for the highest levels of income, so that we
would expect a positive coefficient for the quadratic term education®. The results of
a logistic regression run on education-num and education® are shown in Table 4.22.
As expected, the coefficient for education? is positive. However, note that the variable
education-num is not significant, since it has a large p-value and the confidence inter-
val contains 1.0. We therefore omit education-num from the analysis and perform a lo-
gistic regression of income on education? alone, with the results shown in Table 4.23.
Here the education® termis significant, and we have OR = ebr = 00167617 — 1 0169,
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Figure 4.5 Normalized histogram of education-num with income overlay.

with the 95% confidence interval given by

CIOOR) = exp[b; £ - SAE(bl)]

= exp[0.0167617 £ (1.96)(0.0003193)]
(H01614  0.01739)

= (1.01627, 1.01754)

We estimate the probability that persons with the following years of education
will have incomes greater than $50,000: (1) 12 years of education, and (2) 16 years
of education. The estimated logit:

g(x) = —3.1328 + 0.0167617(educati0n2)
has the following values:

(1) $(x) = —3.1328 + 0.0167617 (122) = —0.719115
(2) $(x) = —3.1328 + 0.0167617 (16%) = 1.1582

TABLE4.22 Results of Logistic Regression of Income on Education-Num and Education®

Logistic Regression Table

0Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -3.10217 0.235336 -13.18 0.000
education-num -0.0058715 0.0443558 -0.13 0.895 0.99 0.91 1.08
educ-squared 0.0170305 0.0020557 8.28 0.000 1.02 1.01 1.02




188 CHAPTER4 LOGISTIC REGRESSION

TABLE4.23 Results of Logistic Regression of Income on Education® Alone

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef 7 P Ratio Lower Upper
Constant -3.13280 0.0431422 -72.62 0.000
educ-squared 0.0167617 0.0003193 52.50 0.000 1.02 1.02 1.02

Then we can find the estimated probability of having an income greater than $50,000 as

A &™)
(x) = TF e
0719115
(= T o071 — 0.3276
1.1582
2) = T oim = 0.7610

The probabilities that people with 12 and 16 years of education will have an in-
come greater than $50,000 are 32.76% and 76.10%, respectively. Evidently, for this
population, it pays to stay in school.

Finally, we examine the variable hours-per-week, which represents the number
of hours worked per week for the subject. The normalized histogram is shown in
Figure 4.6. In this figure we certainly find nonlinearity. A quadratic term would seem
indicated by the records up to 50 hours per week. However, at about 50 hours per
week, the pattern changes, so that the overall curvature is that of a backward S-curve.
Such a pattern is indicative of the need for a cubic term, where the cube of the original
variable is introduced. We therefore do so here, introducing hours® and performing

Percent
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Figure 4.6 Normalized histogram of hours-per-week with income overlay.
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TABLE 4.24 Results of Logistic Regression of Income on Hours-per-Week, Hours*, and Hours®

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -3.04582 0.232238 -13.12 0.000
hours-per-week -0.0226237 0.0155537 -1.45 0.146 0.98 0.95 1.01
hours squared 0.0026616 0.0003438 7.74 0.000 1.00 1.00 1.00
hours cubed -0.0000244 0.0000024 -10.14 0.000 1.00 1.00 1.00

the logistic regression of income on hours-per-week, hours?, and hours®, with the
results shown in Table 4.24. Note that the original variable, hours-per-week, is no
longer significant. We therefore rerun the analysis, including only hours® and hours>,
with the results shown in Table 4.25. The hours® and hours® terms are both significant.
Analysis and interpretation of these results are left to the exercises.

Putting all the previous results from this section together, we construct a logistic
regression model for predicting income based on the following variables:

° Age e Hours®

o Age® e Capnet-cat

e Education® e Marital-status
o Hours” o Sex

The results, provided in Table 4.26, are analyzed and interpreted in the exercises.

VALIDATING THE LOGISTIC REGRESSION MODEL

Hosmer and Lebeshow [1] provide details for assessing the fit of a logistic regression
model, including goodness-of-fit statistics and model diagnostics. Here, however, we
investigate validation of the logistic regression model through the traditional method
of a hold-out sample.

The training data set of 25,000 records was partitioned randomly into two data
sets, training set A, of 12,450 records, and training set B, of 12,550 records. Training
set A has 2953 records (23.72%) with income greater than $50,000; training set B has

TABLE 4.25 Results of Logistic Regression of Income on Hours? and Hours®

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -3.37144 0.0708973 -47.55 0.000
hours squared 0.0021793 0.0000780 27.96 0.000 1.00 1.00 1.00
hours cubed -0.0000212 0.0000009 -22.64 0.000 1.00 1.00 1.00
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TABLE 4.26 Results of Multiple Logistic Regression of Income

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -11.5508 0.282276 -40.92 0.000

age 0.235060 0.0115234 20.40 0.000 1.26 1.24 1.29
age-squared -0.0023038 0.0001253 -18.38 0.000 1.00 1.00 1.00
educ-squared 0.0163723 0.0004017 40.76 0.000 1.02 1.02 1.02
hours squared 0.0012647 0.0000888 14.25 0.000 1.00 1.00 1.00
hours cubed -0.0000127 0.0000010 -12.35 0.000 1.00 1.00 1.00

capnet-cat
gain < $5,000 -0.189060 0.109220 -1.73 0.083 0.83 0.67 1.03
gain >= $5,000 3.46054 0.114327 30.27 0.000 31.83 25.44 39.83

loss 1.15582 0.0793780 14.56 0.000 3.18 2.72 3.71
marital-status

Married 2.15226 0.0749850 28.70 0.000 8.60 7.43 9.97

Never-married -0.124760 0.0931762 -1.34 0.181 0.88 0.74 1.06

Separated -0.0212868 0.175555 -0.12 0.903 0.98 0.69 1.38

Widowed 0.372877 0.169419 2.20 0.028 1.45 1.04 2.02
sex

Male 0.209341 0.0554578 3.77 0.000 1.23 1.11 1.37
Log-Likelihood = -8238.566

Test that all slopes are zero: G = 11039.923, DF = 13, P-Value = 0.000

3031 records (24.15%) such records. Therefore, we cannot expect that the parameter
estimates and odds ratios for the two data sets will be exactly the same.

Indicator variables are provided for marital status and sex. The reference cat-
egories (where all indicators equal zero) are divorced and female, respectively. The
logistic regression results for training sets A and B are provided in Tables 4.27 and
4.28, respectively. Note that for both data sets, all parameters are significant (as shown
by the Wald-z p-values) except the separated and widowed indicator variables for
marital status. Overall, the coefficient values are fairly close to each other, except
those with high variability, such as male and separated.

The estimated logit for training sets A and B are

ga(x) = —9.06305 + 0.0278994(age) + 0.374356(education-num)
+2.02743(married) — 0.489140(never-married)
—0.369533(separated) — 0.0760889(widowed) + 0.166622(male)
+0.0309548(hours-per-week) + 0.0002292(capnet)

gp(x) = —8.85216 + 0.0224645(age) + 0.368721(education-num)
+2.02076(married) — 0.587585(never-married)
—0.09439%(separated) — 0.181349(widowed) + 0.311218(male)
+0.0316433(hours-per-week) + 0.0002455(capnet)
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TABLE 4.27 Results of Logistic Regression for Training Set A

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -9.06305 0.232199 -39.03 0.000
age 0.0278994 0.0023420 11.91 0.000 1.03 1.02 1.03
education-num 0.374356 0.0120668 31.02 0.000 1.45 1.42 1.49
marital-status
Married 2.02743 0.103258 19.63 0.000 7.59 6.20 9.30
Never-married -0.489140 0.127005 -3.85 0.000 0.61 0.48 0.79
Separated -0.369533 0.278258 -1.33 0.184 0.69 0.40 1.19
Widowed -0.0760889 0.233292 -0.33 0.744 0.93 0.59 1.46
sex
Male 0.166622 0.0757310 2.20 0.028 1.18 1.02 1.37
hours-per-week 0.0309548 0.0023358 13.25 0.000 1.03 1.03 1.04
capnet 0.0002292 0.0000127 17.98 0.000 1.00 1.00 1.00

Log-Likelihood = -4358.063
Test that all slopes are zero: G = 4924.536, DF = 9, P-Value = 0.000

For each of these logits, we will estimate the probability that each of the follow-
ing types of people have incomes over $50,000: (1) a 50-year-old married male
with 20 years of education working 40 hours per week with a capnet of $500,
(2) a 50-year-old married male with 16 years of education working 40 hours
per week with no capital gains or losses, and (3) a 35-year-old divorced female
with 12 years of education working 30 hours per week with no capital gains or
losses.

1. For the 50-year-old married male with 20 years of education working 40 hours
per week with a capnet of $500, we have the following logits for training sets A
and B:

8a(x) = —9.06305 + 0.0278994(50) + 0.374356(20)
+2.02743(1) — 0.489140(0)
—0.369533(0) — 0.0760889(0) + 0.166622(1)
+0.0309548(40) + 0.0002292(500)
= 3.365884

g5(x) = —8.85216 + 0.0224645(50) + 0.368721(20)
+2.02076(1) — 0.587585(0)
—0.094394(0) — 0.181349(0) + 0.311218(1)
+0.0316433(40) + 0.0002455(500)
— 3.365945
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TABLE 4.28 Results of Logistic Regression for Training Set B

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -8.85216 0.230298 -38.44 0.000
age 0.0224645 0.0023381 9.61 0.000 1.02 1.02 1.03
education-num 0.368721 0.0121961 30.23 0.000 1.45 1.41 1.48
marital-status

Married 2.02076 0.100676 20.07 0.000 7.54 6.19 9.19

Never-married -0.587585 0.126032 -4.66 0.000 0.56 0.43 0.71

Separated 0.0943940 0.222559 0.42 0.671 1.10 0.71 1.70

Widowed -0.181349 0.246958 -0.73 0.463 0.83 0.51 1.35
sex

Male 0.311218 0.0745234 4.18 0.000 1.37 1.18 1.58
hours-per-week 0.0316433 0.0023875 13.25 0.000 1.03 1.03 1.04
capnet 0.0002455 0.0000135 18.16 0.000 1.00 1.00 1.00
Log-Likelihood = -4401.957
Test that all slopes are zero: G = 5071.837, DF =9, P-Value = 0.000

Thus, the estimated probability that this type of person will have an income
exceeding $50,000 is, for each data set,

eg'(x) 83.365884

a0 = i = 1o e = 0966621
eg'(x) @3'365945

Ap(x) = = = 0.966623

1 4 ef() ] 4 3365945

That is, the estimated probability that a 50-year-old married male with 20 years
of education working 40 hours per week with a capnet of $500 will have an
income exceeding $50,000 is 96.66%, as reported by both data sets, with a dif-
ference of only 0.000002 between them. If sound, the similarity of these estimated
probabilities shows strong evidence for validation of the logistic regression. Un-
fortunately, these estimates are not sound, since they represent extrapolation on
the education variable, whose maximum value in this data set is only 16 years.
Therefore, these estimates should not be used in general and should certainly not
be used for model validation.

. For the 50-year-old married male with 16 years of education working 40 hours
per week with a capnet of $500, the logits look like this:

8a(x) = —9.06305 + 0.0278994 (50) + 0.374356 (16)
+2.02743 (1) — 0.489140 (0)
—0.369533 (0) — 0.0760889 (0) + 0.166622 (1)
-+0.0309548 (40) + 0.0002292 (500)
= 1.86846
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gp(x) = —8.85216 + 0.0224645 (50) 4+ 0.368721 (16)
+2.02076 (1) — 0.587585 (0)
—0.094394 (0) — 0.181349 (0) + 0.311218 (1)
+0.0316433 (40) + 0.0002455 (500)
= 1.891061
The estimated probability that a 50-year-old married male with 16 years of

education working 40 hours per week with a capnet of $500 will have an income
exceeding $50,000 is therefore, for each data set,

80 186846
Aalx) = 1+ ¢80 1+ ol 86846 0.8663
) 1891061
Ap(x) = - = 0.8689

1+ €80 — ] 4 1891061
That is, the estimated probability that such a person will have an income greater
than $50,000 is reported by models based on both data sets to be about 87%.
There is a difference of only 0.0026 between the point estimates, which may
be considered small, although of course what constitutes small depends on the
particular research problem, and other factors.

. For the 35-year-old divorced female with 12 years of education working 30 hours
per week with no capital gains or losses, we have the following logits:
ga(x) = —9.06305 + 0.0278994 (35) + 0.374356 (12)
+2.02743 (0) — 0.489140 (0)
—0.369533 (0) — 0.0760889 (0) + 0.166622 (0)
40.0309548 (30) 4+ 0.0002292 (0)
= —2.66566
8gp(x) = —8.85216 + 0.0224645 (35) + 0.368721 (12)
+2.02076 (0) — 0.587585 (0)
—0.094394 (0) — 0.181349 (0) + 0.311218 (0)
+0.0316433 (30) + 0.0002455 (0)
= —2.69195

Therefore, for each data set, the estimated probability that this type of person
will have an income exceeding $50,000 is

eﬁ(x) 672.66566

7400 = i = T oz = 006503
eg(x) e—2.69195

Ap(x) = - — 0.06345

1 4 8™ — ] 4 ¢—2.69195
Thatis, the estimated probability that a 35-year-old divorced female with 12 years
of education working 30 hours per week with no capital gains or losses will have
an income greater than $50,000 is reported by models based on both data sets
to be between 6.3 and 6.5%. There is a difference of only 0.00158 between the
point estimates, which is slightly better (i.e., smaller) than the estimate for the
50-year-old male.
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WEKA: HANDS-ON ANALYSIS USING
LOGISTIC REGRESSION

In this exercise a logistic regression model is built using WEKA’s Logistic class. A
modified version of the cereals data set [7] is used as input, where the RATING field
is discretized by mapping records with values greater than 42 to “High,” while those
less than or equal to 42 become “Low.” This way, our model is used to classify a
cereal as having either a “High” or “Low” nutritional rating. Our data set consists of
the three numeric predictor fields: PROTEIN, SODIUM, and FIBER.

The data set is split into separate training and test files. The training file cereals-
train.arff consists of 24 instances and is used to train our logistic regression model.
The file is balanced 50-50, with half the instances taking on class value “High”
while the other half have the value “Low.” The mean values for the predictor fields
PROTEIN, SODIUM, and FIBER are 2.667, 146.875, and 2.458, respectively. The
complete training file is shown in Table 4.29.

Our training and test files are both represented in ARFF format, which is
WEKA'’s standard method of representing the instances and attributes found in data
sets. The keyword relation indicates the name for the file, which is followed by a
block defining each attribute in the data set. Notice that the three predictor fields are
defined as type numeric, whereas the target variable RATING is categorical. The data
section lists each instance, which corresponds to a specific cereal. For example, the
first line in the data section describes a cereal having PROTEIN = 3, SODIUM =
200, FIBER = 3.0, and RATING = High.

Let’s load the training file and build the Logistic model:

1. Open the WEKA Explorer panel.
2. On the Preprocess tab, press Open file and specify the path to the training file,

cereals-train.arff.

The WEKA Explorer panel displays several characteristics of the training file, as
shown in Figure 4.7. The three predictor attributes and class variable are shown on the
Attributes pane (left). Statistics for PROTEIN, including range (1-4), mean (2.667),
and standard deviation (0.868), are shown on the Selected attribute pane (right). The
Status bar at the bottom of the panel tells us that WEKA loaded the file successfully.

. Select the Classify Tab.
. Under Classifier, press the Choose button.

. Select Classifiers — Functions — Logistic from the navigation hierarchy.

N R S A

. In our modeling experiment we have separate training and test sets; therefore,
under Test options, choose the Use the training set option.

5. Click Start to build the model.

WEKA creates the logistic regression model and reports results in the Classi-
fier output window. Although the results (not shown) indicate that the classification
accuracy of the model, as measured against the training set, is 75% (18/24), we are
interested in using the model to classify the unseen data found in the test set. The odds
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TABLE 4.29 ARFF Trainning File cereals-trains.arff

@relation cereals-train.arff

Qattribute PROTEIN numeric
@attribute SODIUM numeric
@attribute FIBER numeric
@attribute RATING {High, Low}

@data
3,200,3.000000,High
3,230,3.000000,High
3,200,3.000000,High
3,0,4.000000,High
4,150,2.000000,High
3,0,3.000000,High
4,260,9.000000,High
3,140,3.000000,High
2,0,3.000000,High
2,0,2.000000,High
3,80,1.000000,High
2,200,4.000000,High
2,180,1.500000, Low
4,150,3.000000, Low
2,140,2.000000, Low
4,95,3.000000, Low
1,220,0.000000, Low
2,180,0.000000, Low
3,140,4.000000, Low
3,170,2.000000, Low
2,200,1.000000, Low
3,250,1.500000, Low
2,200,1.000000, Low
1,140,0.000000, Low

ratios and values for the regression coefficients By B, B2, and B3 are also reported
by the model as shown in Table 4.30. We’ll revisit these values shortly, but first let’s
evaluate our model against the test set.

1. Under Test options, choose Supplied test set. Click Set.

2. Specify the path to the test file, cereals-test.arff.

3. Click the More options button.

4. Check the Output text predictions on the test set option. Click OK.

5. Under Result list, right-click the Logistic model from the list. Choose Re-evaluate

model on the current test set.

Again, the results appear in the Classifier output window; however, now the out-
put shows that the Logistic regression model has classified 62.5% (5/8) of the instances
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Figure 4.7 WEKA Explorer panel: preprocess tab.

in the test set correctly. In addition, the model now reports the actual predictions and
probabilities by which it classified each instance, as shown in Table 4.31. For exam-
ple, the first instance is incorrectly predicted (classified) to be “Low” with probability
0.567. The plus (4) symbol in the error column indicates this classification is in-
correct according to the maximum (*0.567) probability. Let’s compute the estimated
logit g(x) for this instance according to the coefficients found in Table 4.30. How-
ever, we first examine the test file cereals-test.arff and determine that the first record
contains the attribute-value pairs PROTEIN = 4, SODIUM = 135, FIBER = 2.0,

TABLE 4.30 Logistic Regression Coefficients

Variable Coeff.
1 -0.0423
2 -0.0107
3 0.9476
Intercept -0.5478

Odds Ratios...

Variable O.R.
1 0.9586
2 0.9893
3 2.5795
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and RATING = High. Therefore, the estimated logit equals
g(x) = —0.5478 — 0.0423(4) — 0.0107(135) 4+ 0.9476(2) = —0.2663

It follows that

6_0‘2663

Therefore, the estimated probability equals about 43.4% that a cereal with 4 grams of
protein, 135 milligrams of sodium, and 2 grams of fiber is of high nutritional value.
Note that WEKA reports this same probability (except for slight rounding variations)
for the first instance in Table 4.31. It follows that the model estimates a probability
equal to 1 — 77 (x) = 56.6% that this cereal has a low nutritional rating. Therefore,
based on the higher probability, the model incorrectly classified the record as “Low.”

Table 4.31 also shows reports the odds ratios for the three continuous predictors.

A
For example, the odds ratio for PROTEIN is OR = ePr = ¢700423 — (0.9586. This is
interpreted as the odds of a cereal with x + 1 grams of protein being of high nutritional
value compared to a cereal with x grams of protein being highly nutritious.

SUMMARY

Linear regression is used to approximate the relationship between a continuous re-
sponse variable and a set of predictor variables. Logistic regression, on the other hand,
refers to methods for describing the relationship between a categorical response vari-
able and a set of predictor variables.

Logistic regression assumes that the relationship between the predictor and
the response is nonlinear. In linear regression, the response variable is considered to
be a random variable Y = Sy 4+ B1x + ¢ with conditional mean 7 (x) = E(Y|x) =
Bo + Bix. The conditional mean for logistic regression takes on a different form from
that of linear regression. Specifically,

ebothix
m(x) = 1 + ePothix

Curves of this form are called sigmoidal because they are S-shaped and therefore
nonlinear. The minimum for 7 (x) is obtained at lim,_, o [¢?/(1 4+ ¢*)] = 0, and

TABLE 4.31 Logistic Regression Test Set Predictions

=== Predictions on test set ===

inst#, actual, predicted, error, probability distribution
:High 2 :Low + 0.433 *0.567
:High 2 :Low + 0.357 *0.643
:High 1:High *0.586 0.414
:High 1:High *0.578 0.422
:Low 2 :Low 0.431 *0.569
:Low 2 :Low 0.075 *0.925
:Low 2:Low 0.251 *0.749
:Low 1:High + *0.86 0.14

0 1 o Ul b W N
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the maximum for 7 (x) is obtained at lim,_,~ [e?/(1 + e%)] = 1. Thus, 7 (x) may
be interpreted as the probability that the positive outcome is present for records with
X = x,and | — 7 (x) may be interpreted as the probability that the positive outcome is
absent for such records. The variance of ¢ is 7t (x) [1 — 7t (x)], which is the variance for
a binomial distribution, and the response variable in logistic regression Y = w(x) + ¢
is assumed to follow a binomial distribution with probability of success 7 (x). The
logit transformation is as follows:

(x)

T—re) Bo + Bix

g(x)=In
No closed-form solution exists for estimating logistic regression coefficients. Thus, we
must turn to maximum likelihood estimation, which finds estimates of the parameters
for which the likelihood of observing the observed data is maximized.

A saturated model is a model that which contains as many parameters as data
points and so predicts the response variable perfectly with no prediction error. We may
then look upon the observed values of the response variable to be the values predicted
by the saturated model. To compare the values predicted by our fitted model (with
fewer parameters than data points) to the values predicted by the saturated model, we
use

. likelihood of the fitted model
deviance = —2In | ——
likelihood of the saturated model
The resulting hypothesis test is called a likelihood ratio test.

The deviance represents the error left over in the model, after the predictors
have been accounted for. As such, it is analogous to the sum of squares error in
linear regression. To determine whether a particular predictor is significant, find the
deviance of the model without the predictor, and subtract the deviance of the model

with the predictor, thus:

G = deviance(model without predictor) — deviance(model with predictor)
21 likelihood without predictor
= —2In
likelihood with predictor

The test statistic G follows a chi-square distribution with 1 degree of freedom (i.e.,
szl), assuming that the null hypothesis is true that §; = 0.

Odds may be defined as the probability that an event occurs divided by the
probability that the event does not occur. The odds ratio (OR) is defined as the odds
that the response variable occurred for records with x = 1 divided by the odds that the
response variable occurred for records with x = 0. Conveniently, odds ratio = .
The odds ratio is sometimes used to estimate the relative risk, defined as the probability
that the response occurs for x = 1 divided by the probability that the response occurs
for x = 0.

The slope coefficient 8; may be interpreted as the change in the value of the
logit for a unit increase in the value of the predictor, 8 = g(x + 1) — g(x). The
coefficient b; represents the estimated change in the log odds ratio for a unit increase
in the predictor. In general, for a constant c, the quantity cb; represents the estimated
change in the log odds ratio for an increase of ¢ units in the predictor.
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Zero cells play havoc with the logistic regression solution, causing instability
in the analysis and leading to possibly unreliable results. Rather than omitting the
categories with zero cells, we may try to collapse the categories or redefine them
somehow, in order to find some records for the zero cells. The logistic regression
results should always be validated using either the model diagnostics and goodness-
of-fit statistics shown in Hosmer and Lemeshow [1], or the traditional data mining
cross-validation methods.
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EXERCISES

Clarifying the Concepts
4.1. Determine whether the following statements are true or false. If a statement is false,
explain why and suggest how one might alter the statement to make it true.
(a) Logistic regression refers to methods for describing the relationship between a
categorical response variable and a set of categorical predictor variables.

(b) Logistic regression assumes that the relationship between the predictor and the
response is nonlinear.

(¢) m(x)may be interpreted as a probability.
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4.13.
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(d) Logistic regression models assume that the error term ¢ is normally distributed
with mean zero and constant variance.

(e) In logistic regression, closed-form solutions for the optimal values of the regres-
sion coefficients may be obtained.

(f) The saturated model predicts the response variable perfectly.

(g) The deviance represents the total variability in the response.

(h) Encoding a trichotomous predictor requires only two indicator variables.
(i) The z-test provides a method for finding the response probabilities.

(j) The interpretation of the logistic regression coefficient for a continuous predictor
may be extended from the usual unit increase to an increase of any arbitrary
amount.

(k) The estimated odds ratio is constant across the range of the predictor.
By hand, derive the logit result g(x) = By + Bix.

Explain what is meant by maximum likelihood estimation and describe maximum
likelihood estimators.

Explain clearly how the slope coefficient B, and its estimate b; may be interpreted
in logistic regression. Provide at least two examples, using both a categorical and a
continuous predictor.

What are odds? What is the difference between odds and probability?

What is the definition of the odds ratio? What is the relationship between the odds
ratio and the slope coefficient 8;? For what quantity is the odds ratio sometimes used
as an estimate?

Describe how we determine the statistical significance of the odds ratio using a confi-
dence interval.

If the difference between a particular indicator variable and the reference category is
not significant, what should the analyst consider doing?

Discuss the role of statistical inference with respect to the huge sample sizes prevalent
in data mining.

Discuss the assumption that the odds ratio is constant across the range of the predictor,
with respect to various types of relationships between the predictor and the response.
Provide modeling options for when this assumption may not be reflected in the data.

Discuss the use of predictors that turn out to be nonsignificant in estimating response.
‘When might this be appropriate, if at all? Why would this not be appropriate in general?

For data that are missing one or more indicator variable values, explain why it would
not be appropriate simply to ignore these missing variables when making an estimation.
Provide options for the data analyst in this case.

Working with the Data

The logistic regression output shown in Table E4.13 refers to the breast cancer data
set [8]. Ten numeric predictors are used to predict the class malignant breast cancer
tumor (class = 1) as opposed to benign tumor (class = 0).

(a) What is the value of the deviance difference? Is the overall logistic regression
significant? How can you tell? What does it mean to say that the overall logistic
regression is significant?



4.14.

(b)
(c)

(d)

(e)
)
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Without reference to inferential significance, express the form of the logit.

Which variables do not appear to be significant predictors of breast tumor class?
How can you tell?

Discuss whether the variables you cited in Part (c) should be used in predicting
the class of tumor with an new, unseen data set.

Discuss how you should handle variables with p-values around 0.05, 0.10, or 0.15.

Explain what will happen to the deviance difference if we rerun the model dropping
the nonsignificant variables. Work by analogy with the linear regression case.

TABLE E4.13

Logistic Regression Table

Odds
Predictor Coef SE Coef Z PRatio
Constant -10.1039 1.17490-8.600.000
Clump Thickness 0.535014 0.142018 3.770.000 1.71
Cell Size Uniformity -0.0062797 0.209079 -0.030.976 0.99
Cell Shape Uniformity 0.322706 0.230602 1.400.162 1.38
Marginal Adhesion 0.330637 0.123451 2.680.007 1.39
Single Epithelial Cell Size 0.0966354 0.156593 0.620.537 1.10
Bare Nuclei 0.3830250.0938437 4.080.000 1.47
Bland Chromatin 0.447188 0.171383 2.610.009 1.56
Normal Nucleoli 0.213031 0.112874 1.890.059 1.24
Mitoses 0.534836 0.328777 1.630.104 1.71
Log-Likelihood = -51.444

Test that all slopes are zero: G = 781.462, DF = 9, P-Value = 0.000

Next, the logistic regression for the breast cancer data set was run again, this time
dropping the cell size uniformity and single epithelial cell size variables but retaining
all the others. The logistic regression output shown in Table E4.14 contains the results.

(a)
(b)

(c)

(d)

(e)

Explain why the deviance difference fell, but only by a small amount.

Did you drop cell shape uniformity in Exercise 4.13? Are you surprised that
the variable is now a significant predictor? Discuss the importance of retaining
variables of borderline significance in the early stages of model building.

Assume that our level of significance is 0.11. Express the logit using all significant
variables.

Find the probability that a tumor is malignant given the following:
(i) The values for all predictors are at the minimum (1).
(ii) The values for all predictors are at a moderate level (5).

(iii) The values for all predictors are at the maximum (10).
Calculate the 95% confidence intervals for the following predictor coefficients:

(i) Clump thickness
(ii) Mitoses

Comment as to the evidence provided by the confidence interval regarding
the significance of the mitoses coefficient.
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TABLE E4.14

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -9.98278 1.12607 -8.87 0.000

Clump Thickness 0.534002 0.140788 3.79 0.000 1.71 1.29 2.25
Cell Shape 0.345286 0.171640 2.01 0.044 1.41 1.01 1.98
Uniformity

Marginal Adhesion 0.342491 0.119217 2.87 0.004 1.41 1.11 1.78
Bare Nuclei 0.388296 0.0935616 4.15 0.000 1.47 1.23 1.77
Bland Chromatin 0.461943 0.168195 2.75 0.006 1.59 1.14 2.21
Normal Nucleoli 0.226055 0.110970 2.04 0.042 1.25 1.01 1.56
Mitoses 0.531192 0.324454 1.64 0.102 1.70 0.90 3.21
Log-Likelihood = -51.633

Test that all slopes are zero: G = 781.083, DF = 7, P-Value = 0.000

®

(a)

(b)

(c)

(d)

Clearly interpret the value of the coefficients for the following predictors:
(i) Bland chromatin

(ii) Normal nucleoli

Hands-on Analysis

4.15. Open the adult data set, which is provided at the book series Web site. Construct the
logistic regression model developed in the text with the age® term and the indicator
variable age 33-65.

Verity that using the quadratic term provides a higher estimate of the probability
of high income for a 32-year-old than a 20-year-old.

Analyze and interpret the results from Table 4.25.
(i) Find the form of the logit estimated.

(ii) Find the probability of high income for someone working 30, 40, 50, and 60
hours per week.

(iii) Construct and interpret a 95% confidence interval for each coefficient.

Consider the results from Table 4.26. Construct the logistic regression model that
produced these results.

(i) For indicator categories that are not significant, collapse the categories with
the reference category. (How are you handling the category with the 0.083
p-value?)

(ii) Rerun the logistic regression with these collapsed categories.
Based on your results from rerunning the logistic regression:
(i) Find the estimated logit.

(ii) Construct and interpret 95% confidence intervals for the coefficients for age,
sex-male, and educ-squared. Verify that these predictors belong in the model.
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(iii) Find the probability of high income for (1) a 20-year-old single female with
12 years of education working 20 hours per week with no capital gains or
losses, and (2) a 50-year-old married male with 16 years of education working
40 hours per week with capital gains of $6000.

Open the German data set [9], which is provided on the book series Web site. The data
set consists of 20 predictors, both continuous and categorical, and a single response
variable, indicating whether the individual record represents a good or a bad credit
risk. The predictors are as follows, with amounts in deutsche marks (DM):

¢ Status of existing checking account

¢ Duration in months

¢ Credit history

® Loan purpose

® Credit amount

¢ Savings account/bonds

* Presently employed since

* Payment as percentage of disposable income
e Personal status and gender

¢ Other debtors/guarantors

® Present residence since

® Property

* Age

® Other installment plans

* Housing

® Number of existing credits at this bank

e Job

* Number of people being liable to provide maintenance for
e Telephone

® Foreign worker

More information is available about this data set from the book series Web site. Con-
struct the best logistic regression model you can, using as many of the methods we
learned in this chapter as possible. Provide strong interpretive support for your model,
including explanations of derived variables, indicator variables, and so on.

Open the breast cancer data set [8]. For each significant predictor, investigate, whether
the linearity assumption is warranted. If not, ameliorate the situation using the methods
discussed in this chapter.

Recall the WEKA Logistic example for classifying cereals as either high or low.
Compute the probability that the fourth instance from the test set is classified either
high or low. Does your probability match that produced by WEKA?
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BAYESIAN APPROACH

In the field of statistics, there are two main approaches to probability. The usual way
that probability is taught, as in most typical introductory statistics courses, represents
the frequentist or classical approach. In the frequentist approach to probability, the
population parameters are fixed constants whose values are unknown. These proba-
bilities are defined to be the relative frequencies of the various categories, where the
experiment is repeated an indefinitely large number of times. For example, if we toss
a fair coin 10 times, it may not be very unusual to observe 80% heads; but if we toss
the fair coin 10 trillion times, we can be fairly certain that the proportion of heads will
be near 50%. It is this long-run behavior that defines probability for the frequentist
approach.

However, there are situations for which the classical definition of probability
is unclear. For example, what is the probability that terrorists will strike New York
City with a dirty bomb? Since such an occurrence has never occurred, it is difficult
to conceive what the long-run behavior of this gruesome experiment might be. In
the frequentist approach to probability, the parameters are fixed, and the randomness
lies in the data, which are viewed as a random sample from a given distribution with
unknown but fixed parameters.

Data Mining Methods and Models By Daniel T. Larose
Copyright © 2006 John Wiley & Sons, Inc.
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Figure 5.1 The Reverend Thomas Bayes
(1702-1761).

The Bayesian approach to probability turns these assumptions around. In
Bayesian statistics, the parameters are considered to be random variables, and the
data are considered to be known. The parameters are regarded as coming from a
distribution of possible values, and Bayesians look to the observed data to provide
information on likely parameter values.

Let 6 represent the parameters of the unknown distribution. Bayesian analysis
requires elicitation of a prior distribution for 6, called the prior distribution, p(0).
This prior distribution can model extant expert knowledge, if any, regarding the dis-
tribution of #. For example, churn' modeling experts may be aware that a customer
exceeding a certain threshold number of calls to customer service may indicate a
likelihood to churn. This knowledge can be distilled into prior assumptions about the
distribution of customer service calls, including its mean and standard deviation. If
expert knowledge regarding the prior distribution is not available, Bayesian analysts
may posit a noninformative prior, which assigns equal probability to all values of the
parameter. For example, the prior probability of both churners and nonchurners could
be set at 0.5 using a noninformative prior. (Note that if this assumption does not seem
reasonable, you must be applying your expert knowledge about churn modeling!)
Regardless, because the field of data mining often encounters huge data sets, the prior
distribution should be dominated by the overwhelming amount of information to be
found in the observed data.

Once the data have been observed, prior information about the distribution of 6
can be updated, by factoring in the information about 6 contained in the observed data.
This modification leads to the posterior distribution, p(6|X), where X represents the
entire array of data. This updating of our knowledge about 6 from prior distribution to
posterior distribution was first performed by the Reverend Thomas Bayes (Figure 5.1),
in his Essay Towards Solving a Problem in the Doctrine of Chances [1], published
posthumously in 1763.

! Churn represents customers leaving one company in favor of another company’s products or services.
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The posterior distribution is found as follows:

p(X|0)p(0)

GX =
pO1X) %)

where p(X|60) represents the likelihood function, p(@) the prior distribution, and p(X)
a normalizing factor called the marginal distribution of the data. Since the posterior
is a distribution rather than a single value, we can conceivably examine any possible
statistic of this distribution that we are interested in, such as the first quartile or the
mean absolute deviation. However, it is common to choose the posterior mode, the
value of 6 that maximizes p(6|X), for an estimate, in which case we call this estima-
tion method the maximum a posteriori (MAP) method. For noninformative priors, the
MAP estimate and the frequentist maximum likelihood estimate often coincide, since
the data dominate the prior. The likelihood function p(X|6) derives from the assump-
tion that the observations are independently and identically distributed according to
a particular distribution f(X|0), so that p(X|0) = ]_[?:1 f(X;10).

The normalizing factor p(X) is essentially a constant, for a given data set
and model, so that we may express the posterior distribution like this: p(6|X) o
p(X|0)p(0). That is, given the data, the posterior distribution of 6 is proportional
to the product of the likelihood and the prior. Thus, when we have a great deal of
information coming from the likelihood, as we do in most data mining applications,
the likelihood will overwhelm the prior.

Criticism of the Bayesian framework has focused primarily on two potential
drawbacks. First, elicitation of a prior distribution may be subjective. That is, two
different subject matter experts may provide two different prior distributions, which
will presumably percolate through to result in two different posterior distributions.
The solution to this problem is (1) to select noninformative priors if the choice of
priors is controversial, and (2) to apply lots of data so that the relative importance
of the prior is diminished. Failing this, model selection can be performed on the two
different posterior distributions, using model adequacy and efficacy criteria, resulting
in the choice of the better model. Is reporting more than one model a bad thing?

The second criticism has been that Bayesian computation has been intractable
in data mining terms for most interesting problems where the approach suffered from
scalability issues. The curse of dimensionality hits Bayesian analysis rather hard, since
the normalizing factor requires integrating (or summing) over all possible values of
the parameter vector, which may be computationally infeasible when applied directly.
However, the introduction of Markov chain Monte Carlo (MCMC) methods such as
Gibbs sampling and the Metropolis algorithm has greatly expanded the range of
problems and dimensions that Bayesian analysis can handle.

MAXIMUM A POSTERIORI CLASSIFICATION

How do we find the MAP estimate of 6?7 Well, we need the value of 6 that will
maximize p(0|X); this value is expressed as Oyap = arg max, p(6|X) since it is the
argument (value) that maximizes p(6|X) over all 6. Then, using the formula for the
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posterior distribution, we have, since p(X) has no 6 term,

pX[0)p©)

Omap = argmax p(0]X) = arg max
0 0 pX)

= argmax p(X|0)p(0) (5.1)
0
The Bayesian MAP classification is optimal; that is, it achieves the minimum error
rate for all possible classifiers [2, p. 174]. Next, we apply these formulas to a subset
of the churn data set [3], specifically so that we may find the maximum a posteriori
estimate of churn for this subset.
First, however, let us step back for a moment and derive Bayes’ theorem for sim-
ple events. Let A and B be events in a sample space. Then the conditional probability
P(A|B) is defined as

P(AN B)  number of outcomes in both A and B
P(B) number of outcomes in B

P(A|B) =

Also, P(B|A) = P(AN B)/P(A). Now, reexpressing the intersection, we have
P(AN B) = P(B|A)P(A), and substituting, we obtain
paig) = LEDPA (52)
P(B)
which is Bayes’ theorem for simple events.

We shall restrict our example to only two categorical predictor variables, In-
ternational Plan and VoiceMail Plan, and the categorical target variable, churn. The
business problem is to classify new records as either churners or nonchurners based
on the associations of churn with the two predictor variables learned in the training
set. Now, how are we to think about this churn classification problem (see Larose [4])
in the Bayesian terms addressed above? First, we let the parameter vector 6 represent
the dichotomous variable churn, taking on the two values true and false. For clarity,
we denote 6 as C for churn. The 3333 x 2 matrix X consists of the 3333 records in
the data set, each with two fields, specifying either yes or no for the two predictor
variables.

Thus, equation (5.1) can be reexpressed as

Omap = Cmap = argmax p(I N V|C)p(C) (5.3)
c

where [ represents the International Plan and V represents the VoiceMail Plan.
Denote:

e [ to mean International Plan = yes

* [ to mean International Plan = no

e V to mean VoiceMail Plan = yes

e V to mean VoiceMail Plan = no

e C to mean churn = true

e C to mean churn = false
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TABLE5.1 Marginal and Conditional Probabilities for the Churn Data Set

Count Count Probability
. 323
International Plan No Yes P(I) = 3313010 = 0.0969
3010 323 +
. . 922
VoiceMail Plan No Yes P(V)= 922+ 2411 =0.2766
2411 922 +
483
Churn False True P(C) = 183 7 2350 =0.1449
2850 483 +
. — 186
International Plan No Yes P(IIC) = 186 + 2664 = 0.0653
given churn = false 2664 186 *
— 842
VoiceMail Plan No Yes P(V|IC)= —— =0.2954
given churn = false 2008 842 842 +2008
137
International Plan No Yes P(I|C) = 137 + 346 = 0.2836
given churn = true 346 137 +
80
VoiceMail Plan No Yes P(V|C)= 30 2403 =0.1656
given churn = true 403 80 +

For example, for a new record containing (I N V'), we seek to calculate the following
probabilities using equation (5.3). For customers who churn (churners):

P(International Plan = yes, VoiceMail Plan = yes|churn = true) P(churn = true)

=PUINV|C)P(C)
For customers who do not churn (nonchurners):

P (International Plan = yes, VoiceMail Plan = yes|churn = false) P(churn = false)
=PI NV|C)P(C)

We then determine which value for churn produces the larger probability and select
it as Cyap, the MAP estimate of churn.

We begin by finding a series of marginal and conditional probabilities (Table
5.1), all of which we shall use as we build toward our MAP estimates. Also, since
we may examine the entire training data set of 3333 records, we may calculate the
posterior probabilities directly, as given in Table 5.2.

TABLE 5.2 Posterior Probabilities for the Churn Training Data Set

Count Count Probability
. 137
Churn = true, given False True P(C|I) = 37+ 186 = 0.4241
International Plan = yes 186 137 ( + )
80
Churn = true, given False True P(C|V)= — = 0.0868
(80 + 842)

VoiceMail Plan = yes 842 80
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TABLE5.3 Complement Probabilities for the Churn Training Data Set

P(I)=1—-P)=1-0.0969 = 0.9031
P(C) =1—0.1449 = 0.8551
P(V|C)=1—0.2954 = 0.7046
P(V|C)=1—0.1656 = 0.8344
P(C|V)=1—-0.0868 = 0.9132

P(V)=1-10.2766 = 0.7234

P(I|C) =1 —0.0653 = 0.9347
P(I|1C)=1—0.2836 = 0.7164
P(C|I) =1—0.4241 = 0.5759

Note that using the probabilities given in Tables 5.1 and 5.2, we can easily find
the complement of these probabilities by subtracting from 1. For completeness, we
present these complement probabilities in Table 5.3. Let us verify Bayes’ theorem for
this data set using the probabilities in Table 5.1.

P(VIC)P(C)  0.1656(0.1449)

= 0.0868
P(V) 0.2766

P(C|V) =

which is the value for this posterior probability given in Table 5.2.

We are still not in a position to calculate the MAP estimate of churn. We must
first find joint conditional probabilities of the form P(I, V|C). Clementine’s matrix
node was used to provide the information about these joint conditional probabilities
found in Table 5.4 by counting the records for which the respective joint conditions
held. Now we can find the MAP estimate of churn for the four combinations of
International Plan and VoiceMail Plan membership, using equation (5.3):

GMAP = CMAP = arg max p([, VlC)p(C)
C

Suppose that we have a new record, where the customer belongs to the International
Plan and VoiceMail Plan. Do we expect that this new customer will churn, or not? That
is, what will be the maximum a posteriori estimate of churn for this new customer?
We apply equation (5.3) for each of the churn or nonchurn cases and select the
classification that provides the larger value.

TABLE 5.4 Joint Conditional Probabilities for the Churn Training Data Set

Churn Churn
False True False True
Inv No 2794 447 Inv No 2720 382
Yes 56 36 Yes 130 101

p(INVIC) =36/(36 +447) = 0.0745
pINVIC)=56/(56+2794) = 0.0196

p(INV|C)=101/(101 +382) = 0.2091
p(INVIC) = 130/(130 + 2720) = 0.0456

Inv No 2064 439
Yes 786 44
p(INV|C)=44/(44 + 439) = 0.0911
p(INV|C) =786/(786 +2064) = 0.2758

inv No 972 181
Yes 1878 302
p(INVIC)=302/(302 + 181) = 0.6253
p(INV|C)=1878/(1878 4+ 972) = 0.6589
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Here we have for churners:

P (International Plan = yes, VoiceMail Plan = yes|churn = true) P(churn = true)
=PI NV|C)P(C)=0.0745(0.1449) = 0.0108

and for nonchurners

P (International Plan = yes, VoiceMail Plan = yes|churn = false) P(churn = false)
= P(INV|C)P(C) = 0.0196(0.8551) = 0.0167
P(INV|C)P(C) = 0.0196(0.8551) = 0.0168

Since 0.0167 for churn = false is the maximum of the two cases, Oyap = Cmap, the
maximum a posteriori estimate of churn for this new customer is churn = false. For
customers belonging to both plans, this MAP estimate of churn = false becomes our
prediction; that is, we would predict that they would not churn.

Suppose that a new customer belongs to the International Plan but not the
VoiceMail Plan. Then

P(INV|C)P(C) = 0.2091(0.1449) = 0.0303
and
P(INV|C)P(C) = 0.0456(0.8551) = 0.0390

So Ovap = Cmap 18 churn = false.
What if a new customer belongs to the VoiceMail Plan but not the International
Plan? Then

P(INV|C)P(C) = (0.0911)(0.1449) = 0.0132

and
P(INV|C)P(C)=0.2758(0.8551) = 0.2358

Here again Oyiap = Cmap 1S churn = false.
Finally, suppose that a new customer belongs to neither the International Plan
nor the VoiceMail Plan. Then

P(INV|C)P(C) = 0.6253(0.1449) = 0.0906
and
P(INV|C)P(C) = 0.6589(0.8551) = 0.5634

so that, yet again, Oyap = Cwmap 1S churn = false.

Posterior Odds Ratio

Therefore, the MAP estimate for churn is false for each combination of International
Plan and VoiceMail Plan membership. This result does not appear to be very helpful,
since we will predict the same outcome for all customers regardless of their mem-
bership in the plans. However, not each of the classifications has the same strength
of evidence. Next, we consider the level of evidence in each case, as defined by the
posterior odds ratio. The posterior odds ratio represents a measure of the strength of
evidence in favor of a particular classification and is calculated as follows.
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POSTERIOR ODDS RATIO

pOIX) _ pXI0)p®.)
pOX)  pX|6)p@.)

where 0. represents a particular classification of the unknown target variable.

A posterior odds ratio of exactly 1.0 would mean that the evidence from the
posterior distribution supports both classifications equally. That is, the combination
of information from the data and the prior distributions does not favor one category
over the other. A value greater than 1.0 indicates that the posterior distribution favors
the positive classification, while a value less than 1.0 represents evidence against the
positive classification (e.g., churn = true). The value of the posterior odds ratio may
be interpreted as indicating roughly the proportion or ratio of evidence provided by
the posterior distribution in favor of the positive classification against the negative
classification.

In our example, the posterior odds ratio for a new customer who belongs to
both plans is

P(INV|C)P(C) _ 0.0108

= = 0.6467
P(INVI|C)P(C) 0.0168

This means that that there is 64.67% as much evidence from the posterior distribution
in support of churn = true as there is in support of churn = false for this customer.

For a new customer who belongs to the International Plan only, the posterior
odds ratio is

P(INV|C)P(C) _ 0.0303
P(INVIC)P(C) 0.0390

= 0.7769

indicating that there is 77.69% as much evidence from the posterior distribution in
support of churn = true as there is in support of churn = false for such a customer.

New customers who belong to the VoiceMail Plan only have a posterior odds
ratio of

P NVIC)P(C) _ 0.0132

A ol ol = 0.0560
PANVIC)P(C) 0.2358

indicating that there is only 5.6% as much evidence from the posterior distribution in
support of churn = true as there is in support of churn = false for these customers.
Finally, for customers who belong to neither plan, the posterior odds ratio is

P(INV|C)P(C)  0.0906

SRR et = 0.1608
PINV|C)P(C) 0.5634
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indicating that there is only 16.08% as much evidence from the posterior distribution
in support of churn = true as there is in support of churn = false for customers who
belong to neither plan.

Thus, although the MAP classification is churn = false in each case, the “confi-
dence” in the classification varies greatly, with the evidence for churn = true ranging
from 5.6% up to 77.69% of the evidence for churn = false. For customers who belong
to the International Plan, the evidence for churn is much stronger. In fact, note from the
MAP calculations above that the joint conditional probabilities for customers belong-
ing to the International Plan (with or without the VoiceMail Plan) favored churn =
true, but were overwhelmed by the preponderance of nonchurners in the data set,
85.51% to 14.49%, so that the MAP classification turned out to be churn = false.
Thus, the posterior odds ratio allows us to assess the strength of evidence for our
MAP classifications, which is more helpful to the analyst than a simple up-or-down
decision.

Balancing the Data

However, since the classification decision was influenced by the preponderance of
nonchurners in the data set, we may consider what might happen if we balanced the
data set. Some data mining algorithms operate best when the relative frequencies of
classes in the target variable are not extreme. For example, in fraud investigation,
such a small percentage of transactions are fraudulent that an algorithm could simply
ignore such transactions, classify only nonfraudulent and be correct 99.99% of the
time. Therefore, balanced sampling methods are used to reduce the disparity among
the proportions of target classes appearing in the training data. For example, in the
fraud example, a training data set could be constructed that would contain (1) all of the
fraudulent transactions, and (2) only a small percentage, say 1%, of the nonfraudulent
transactions. A stratified sampling technique could then be applied, first partitioning
by fraudulence, then taking all of the fraudulent records and a random sample of
1% of the nonfraudulent records. A less desirable approach would be to increase the
proportion of fraudulent transactions by “cloning” them, that is, simply padding the
database with copies of existing fraudulent records. This amounts to manufacturing
data and tends to magnify random attribute values. (“Gosh, do 30% of our fraudulent
transactions really take place under a full moon?”)

In our case we have 14.49% of the records representing churners, which may be
considered somewhat uncommon, although one could argue otherwise. Nevertheless,
let us balance the training data set so that we have approximately 25% of the records
representing churners. This may be accomplished if we (1) accept all of the churn =
true records, and (2) take a random sample of 50% of our churn = false records.
Since the original data set had 483 churners and 2850 nonchurners, this balancing
procedure would provide us with 483 /(483 + 1425) = 25.3% churn = true records,
as desired. Two drawbacks of balancing the data are that (1) the balanced data set will
not have exactly the same character as the original data set, and (2). it is a shame to
waste all that data (e.g., discard 1425 churn = false records).

Because some predictor variables have a higher correlation with the target vari-
able than do other predictor variables, the character of the balanced data will change.
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For example, suppose that churners have higher levels of day minutes than those of
nonchurners. Then, when we balance the data set, the overall mean of day minutes
will increase, since we have eliminated so many nonchurner records. Here, the mean
day minutes increased from 179.775 to 183.206 after balancing (not shown), since
balancing eliminated half of the nonchurner records, which were associated with
lower day minutes. Such changes cannot be avoided when balancing data sets. Thus,
direct overall comparisons between the original and balanced data sets are futile, since
changes in character are inevitable. However, apart from these unavoidable changes,
and although the random sampling tends to protect against systematic deviations, data
analysts should provide evidence that their balanced data sets do not otherwise differ
systematically from the original data set. This can be accomplished by examining
the graphics and summary statistics from the original and balanced data set, parti-
tioned on the categories of the target variable. Of course, the churners records for
both data sets are identical, so we may proceed to the evidence for the nonchurner
records.

Figure 5.2 provides a comparison of the nonchurner records from the original
data set and the balanced data set for the variables day minutes and customer service
calls. Figure 5.3 provides the distributions of International Plan members and Voice-
Mail Plan members for the original data set and the balanced data set. There appear
to be no systematic deviations. If such deviations are uncovered, the balancing should
be reapplied. Cross-validation measures can be applied if the analyst is concerned
about these deviations. Multiple randomly selected balanced data sets can be formed
and the results averaged, for example. Hence, using the balanced churn data set, we
once again compute the MAP estimate for churn for our four types of customers. Our
updated probability of churning is

483

P(Chat) = ——— = 0.2531
(Coa) = 723 1 1425

a Audit of [ Day Mins CustServ Calls] #8

=
T wMin_ | war | Wean |
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Figure 5.2 Graphical/statistical comparison of day minutes and customer service calls for
nonchurners only. Original data set is on top.
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Figure 5.3 Distributions of International Plan members (left) and VoiceMail Plan members
(right) for the original data set (top) and the balanced data set (bottom).

and for not churning is
P(Cpa) =1 —0.2531 = 0.7469

For new customers who belong to the International Plan and VoiceMail Plan, we
have

P NV |Cpa)P(Cpa) = 0.0745(0.2531) = 0.0189
and
P(I N V[Cpa) P(Cpa) = 0.0196(0.7469) = 0.0146

Thus, after balancing, Cyap, the maximum a posteriori estimate of churn is churn =
true, since 0.0189 is the greater value. Balancing has reversed the classification deci-
sion for this category of customers.

For customers who belong to the International Plan only, we have

P(I N V|Cpa) P(Cpa) = 0.2091(0.2531) = 0.0529
and
P(INV|Chy)P(Cra) = 0.0456(0.7469) = 0.0341

The MAP estimate Cyap is now churn = true, since 0.0529 is the greater value. Once
again, balancing has reversed the original classification decision for this category of
customers.

For new customers belonging only to the VoiceMail Plan, we have

P(I N V|Cpa)P(Cpa) = 0.0911(0.2531) = 0.0231
and

P(I N V|Cra) P(Cya) = 0.2758(0.7469) = 0.2060
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The MAP estimate has not changed from the original Cyap : churn = false for
members of the VoiceMail Plan only.
Finally, for new customers belonging to neither plan, we have

P(I N'V|Cpa) P(Cpar) = 0.6253(0.2531) = 0.1583
and
P(I NV |Cpa)P(Cra) = 0.6589(0.7469) = 0.4921

Again, the MAP estimate has not changed from the original Cyap : churn = false for
customers belonging to neither plan.

In the original data, MAP estimates were churn = false for all customers, a
finding of limited actionability. Balancing the data set has provided different MAP
estimates for different categories of new customers, providing executives with simple
and actionable results. We may, of course, proceed to compute the posterior odds ratio
for each of these classification decisions if we are interested in assessing the strength
of evidence for the classifications. The reader is invited to do so in the exercises.

NAIVE BAYES CLASSIFICATION

For our simplified example using two dichotomous predictors and one dichotomous
target variable, finding the MAP classification posed no computational difficulties.
However, Hand et al. [5, p. 354] state that, in general, the number of probabilities
that would need to be calculated to find the MAP classification would be on the order
of k™, where k is the number of classes for the target variable and m is the number
of predictor variables. In our example, we had k = 2 classes in churn and m =2
predictors, meaning that we had to find four probabilities to render a classification
decision [e.g., P(I N V|C), P(C), P(I N V|C), and P(C)].

On the other hand, suppose that we are trying to predict the marital status (k = 5:
single, married, divorced, widowed, separated) of people based on a set of m = 10
demographic predictors. Then the number of probabilities to calculate would be k™ =
510 =9, 765, 625 probabilities. Note further that each of these 9,765,625 probabilities
would need to be calculated based on relative frequencies of the appropriate cells in
the 10-dimensional array. Using a minimum of 10 records per cell to estimate the
relative frequencies, and on the unlikely assumption that the records are distributed
uniformly across the array, the minimum requirement would be nearly 100 million
records.

Thus, MAP classification is impractical to apply directly to any interesting real-
world data mining scenarios. What, then, can be done? MAP classification requires
that we find

arg max p(X|0)p(60) = argmax p(X; = x1, X2 = X, ..., Xpn = X|0)p(6)
0 0
The problem is not calculating p(0), for which there is usually a small number of

classes. Rather, the problem is the curse of dimensionality, that is, finding p(X; =
X1, Xo =x2, ..., Xy = x,,]0) for all the possible combinations of the X-variables
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(the predictors). Here is where the search space explodes, so if there is a way to cut
down on the search space for this problem, it is to be found right here.

Here is the key: Suppose we make the simplifying assumption that the predictor
variables are conditionally independent given the target value (e.g., churn = false).
Two events A and B are said to be conditionally independent if for a given event C,
p(AN B|C) = p(A|C)p(B|C). For example, conditional independence would state
that for customers who churn, membership in one of the two plans (/ or V) would
not affect the probability of membership in the other plan. Similarly, the idea extends
to customers who do not churn.

In general, the assumption of conditional independence may be expressed as
follows:

m
p(Xi =x1. X2 =x2, ..., X = x10) = [ [ P(X: = xi10)

i=1

The naive Bayes classification is therefore

m
Onp = arg max [ [ pxi = xil0)p(®)
i=1
When the conditional independence assumption is valid, the naive Bayes classifica-
tion is the same as the MAP classification. Therefore, we investigate whether the
assumption of conditional independence holds for our churn data set example, as
shown in Table 5.5. In each case, note that the approximation for the nonchurners is
several times closer than for the churners. This may indicate that the assumption of
conditional independence assumption is best validated for nonrare categories, another
argument in support of balancing when necessary.

We now proceed to calculate naive Bayes classifications for the churn data set.
For a new customer belonging to both plans, we have for churners,

p(I|IC)p(VIC)p(C) = 0.0470(0.1449) = 0.0068
and for nonchurners,
p(I|C)p(V|C)p(C) = 0.0193(0.8551) = 0.0165

The naive Bayes classification for new customers who belong to both plans
is therefore churn = false since 0.0165 is the larger of the two values. It turns out
that just as for the MAP classifier, all four cases return a naive Bayes classification
of churn = false. Also, after 25.31%/74.69% balancing, new customers who belong
to the International Plan are classified by naive Bayes as churners, regardless of
VoiceMail Plan membership, just as for the MAP classifier. These results are left to
the exercises for verification.

When using naive Bayes classification, far fewer probabilities need to be estima-
ted, just k - m probabilities rather than k™ for the MAP classifier: in other words, just
the number of predictor variables times the number of distinct values of the target vari-
able. In the marital status example, where we had k = 5 distinct marital statuses and
m = 10 predictor variables, we would need to compute only km = 5(10) = 50 prob-
abilities rather than the 9.7 million needed for the MAP classifier. At 10 records per
cell, that would mean that only 500 records would be needed compared to the nearly
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TABLE 5.5 Checking the Conditional Independence Assumption for the Churn Data Set

(INV)C

(Invc

p(I NV|C)=0.0745
p|C)p(VIC)
=0.2836(0.1656) = 0.0470
Difference = |0.0745 — 0.0470| = 0.0275

p(INV|C)=0.2091
pI|C)p(V|C)
= 0.2836(0.8344) = 0.2366
Difference = |0.2091 — 0.2366| = 0.0275

anvyc

anv)c

p(INV[C)=0.0196
pI|C)p(V|C)
= 0.0653(0.2954) = 0.0193
Difference = |0.0196 — 0.0193| = 0.0003

p(INVI[C) = 0.0456
p1C)p(V|C)
= 0.0653(0.7046) = 0.0460
pU1C)p(V|C)
= 0.0653(0.7046) = 0.0460
Difference = [0.0456 — 0.0460| = 0.0004

(Inv)c

anv)c

p(INV|C)=0.0911
pUIC)p(V|C)
=0.7164(0.1656) = 0.1186
Difference = |0.0911 — 0.1186| = 0.0275

p(INVI|C)=0.6253
pI|C)p(V[C)
= 0.7164(0.8344) = 0.5978
Difference = |0.6253 — 0.5978| = 0.0275

Tnv)c

(Inwc

p(INV|C)=0.2758
pIIC)p(VIC)
= 0.9347(0.2954) = 0.2761
Difference = |0.2758 — 0.2761| = 0.0003

p(z QVI@E 0.6589
pIIC)p(VIC)
= 0.9347(0.7046) = 0.6586
Difference = |0.6589 — 0.6586| = 0.0003

100 million calculated earlier. Clearly, the conditional independence assumption,
when valid, makes our life much easier. Further, since the naive Bayes classification
is the same as the MAP classification when the conditional independence assumption
is met, the naive Bayes classification is also optimal, in the sense of minimizing the
error rate over all classifiers. In practice, however, departures from the conditional
independence assumption tend to inhibit the optimality of the naive Bayes classifier.

Next, we examine the log of the posterior odds ratio, which can provide us
with an intuitive measure of the amount that each variable contributes toward the
classification decision. The posterior odds ratio takes the form

s X = xm|9)17(9c)
Xy = Xm|9)P(9c)

pOIX) _ pXl0)pO) _ p(Xi=x1, Xo =X, ...
pOJX)  pXIO)p@:)  p(Xi=x1,X2=1x2,...

conditional H:‘n—l p(Xi = X; |9)P(9c)
independence = —— - —
assumption Hi:l p(Xz = x1|9)]9(9c)

which is the form of the posterior odds ratio for naive Bayes.
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Next, consider the log of the posterior odds ratio. Since the log of a product is
the sum of the logs, we have

[T, p(Xi = xi10)p(6e)
[Ty p(Xi = xi10)p(@.)

= log <H p(X; = x; |9>) +log p(6.) — log (1"[ p(X; = x; @) — log p(@.)
i=1

i=1

log

0, m X; = x;|0
1o PO 4§y PG = 510
p0.) im1 p(X; = x;10)

This form of the log posterior odds ratio is useful from an interpretive point of view,
since each term,
1 (P(Xi = xi|9))
og| ——=
p(Xi = x;[0)

relates to the additive contribution, either positive or negative, of each attribute. For
example, consider the log posterior odds ratio for a new customer who belongs to
both the International Plan and the VoiceMail Plan. Then for the International Plan
we have

pUIC) _ | 0.2836

o — =log—— = 0.6378
810 800653
and for the VoiceMail Plan we have
.1
PVIO) _ 1o 01656 2514

— = 10 =
Eovie) - 02954

Thus, we see that membership in the International Plan contributes in a positive way
to the likelihood that a particular customer will churn, whereas membership in the
VoiceMail Plan decreases the churn probability. These findings concur with our results
from the earlier volume [4].

The conditional independence assumption should not be made blindly. Corre-
lated predictors, for example, violate the assumption. For example, in classifying risk
for credit default, total assets and annual income would probably be correlated. How-
ever, naive Bayes would, for each classification (default, no default), consider total
assets and annual income to be independent and uncorrelated. Of course, careful data
mining practice includes dealing with correlated variables at the EDA stage anyway,
since the correlation can cause problems for several different data methods. Principal
components analysis can be used to handle correlated variables. Another option is
to construct a user-defined composite, a linear combination of a small set of highly
correlated variables. (See Chapter 1 for more information on handling correlated
variables.)

As we saw in Chapter 4, a cell with frequency zero can pose difficulties for
the analysis. Now, for naive Bayes estimation, what if a particular cell (combination
of attribution values) has zero frequency? For example, of the 483 customers who
churned, 80 had the VoiceMail Plan, so that p(V|C) = 80/483 = 0.1656. However,
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ADJUSTED PROBABILITY ESTIMATE FOR ZERO-FREQUENCY CELLS

ne + nequivp
n+ nequiv
where n represents the total number of records for this target class, n. the number of these

n records that also have the attribute value of interest, p the prior estimate of the probability
being estimated, and n.q,;, is a constant representing the equivalent sample size.

suppose that none of the churners had the VoiceMail Plan. Then p(V|C) would equal
0/483 = 0.0. The real problem with this is that since the conditional independence
assumption means that we take the product of the marginal probabilities, this zero
value for p(V|C) will percolate through and dominate the result.

Since the naive Bayes classification contains [ [/, p(X; = x;|0), a single zero
probability in this product will render the entire product to be zero, which will also
make [, p(X; = x;10) p(0) zero, thereby effectively eliminating this class (churn =
true) from consideration for any future probability involving the VoiceMail Plan.
To avoid this problem, we posit an additional number of “virtual” samples, which
provides the following adjusted probability estimate for zero-frequency cells.

The constant nequiv, the additional number of virtual samples used to find the
adjusted probability, controls how heavily the adjustment is weighted. In the absence
of other information, the prior probability estimate p may be assigned to be the
noninformative uniform prior p = 1/k, where k is the number of classes for the target
variable. Thus, n.q;y additional samples, distributed according to p, are contributed
to the calculation of the probability. In our example we have n = 483, n, = 0, and
p = 1/2. We choose nequiy = 1 to minimize the effect of the intervention. The adjusted
probability estimate for the zero = probability cell for p(V|C) is therefore:

Ne + Requiv P . 0+ 1(1/2)

= = 0.0010
n + Nequiv 483 + 1

Numeric Predictors

Bayesian classification can be extended from categorical to continuous predictor
variables, provided that we know the relevant probability distribution. Suppose that, in
addition to International Plan and VoiceMail Plan, we also had access to total minutes,
the total number of minutes used by the cell-phone customer, along with evidence
that the distribution of fotal minutes is normal for both churners and nonchurners. The
mean total minutes for churners is ptenyrm = 635 minutes, with a standard deviation of
Ochurn = 111 minutes. The mean total minutes for nonchurners is (yonchurn = 585, with
a standard deviation of oy,onchurn = 84 minutes. Thus, we assume that the distribution
of total minutes for churners is normal (635,111) and for nonchurners is normal
(585,84).
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Let Tthum represent the random variable total minutes for churners. Then

p(Tchurn = t) = fT\C

1
= ex
Vv 2w Ochurn P |:20'c2hurn

(Tchum — Mchurn )2:|

1 -1 )
\/E(lll) €Xp |:2(111)2 (Tchurn 635) ]
with an analogous form for nonchurners. [Here exp(y) represents e”. Also, fr|c(?) is
substituted for p(T = ¢|C) since for continuous random variables, p(T = t) = 0, Vz.]
Next, suppose we are interested in classifying new customers who have 800
total minutes and belong to both plans, using naive Bayes classification. We have for
churners,

pI NV NT =800|C)P(C) =P(|C)P(VIC) fr|c(800)P(C)
=0.2836(0.1656)(0.001191)(0.1449) = 0.000008105

and for nonchurners,

pI NV NT =800]C)P(C)=P|C)P(V|C) fr;(800)P(C)
=0.0653(0.2954)(0.0001795)(0.8551)=0.00000296 1

Hence, the naive Bayes classification for new customers who have 800 fotal minutes
and belong to both plans is churn = true by a posterior odds ratio of

0.000008105
0.000002961

In other words, the additional information that the new customer had 800 total minutes
was enough to reverse the classification from churn = false (previously, without rotal
minutes) to churn = true. This is due to the somewhat heavier cell-phone usage of
the churners group, with a higher mean fotal minutes.

Assumptions of normality should not be made without supporting evidence.
Should we take Figure 5.4 as supporting evidence for the normality of our distri-
butions? No. The histogram in Figure 5.4 represents the collection of all churners
and nonchurners lumped together, not the individual distributions for each category
that we would like to work with. Therefore, Figure 5.4 does not represent supporting
evidence for our assumptions.

Consider Figure 5.5, a Minitab comparison dot plot of the two distributions.
Immediately we can see that indeed there are many more nonchurner records than
churners. We also note that the balancing point (the mean, indicated by the triangle)
for churners is greater than for nonchurners, supporting the statistics above. Finally,
we notice that the normality assumption for nonchurners looks quite solid, whereas
the normality assumption for the churners looks a little shaky.

Normal probability plots are then constructed for the two distributions just
described and shown in Figure 5.6. In a normal probability plot, there should be no
systematic deviations from linearity; otherwise, the normality assumption is called
into question. In Figure 5.6 the gray points represent fotal minutes for churners, and
the black points represent total minutes for nonchurners. Note that the bulk of the
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Figure 5.4 Histogram of fotal minutes, churners and nonchurners combined.

black points line up nearly perfectly on a straight line, indicating that the normality
assumption is validated for nonchurners’ fotal minutes. However, there does appear
to be systematic curvature in the gray points, in a slight backward S-curve, indicating
that the normality assumption for churners’ total minutes is not validated. Since the
assumption is not validated, all subsequent inference applying this assumption must be
flagged as such for the enduser. For example, the naive Bayes classification of churn =
true may or may not be valid, and the end user should be informed of this uncertainty.

Often, nonnormal distribution can be transformed to normality, using, for ex-
ample, the Box—Cox transformation 7'(y) = (y" - 1) /A. However, Figure 5.5 shows
that total minutes for churners actually looks like a mixture of two normal distri-
butions, which will prove resistant to monotonic transformations to normality. The
mixture idea is intriguing and deserves further investigation. Data transformations
were investigated more fully in Chapters 2 and 3.

Chumn
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Figure 5.5 Comparison dot plot of fotal minutes for churners and nonchurners.
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Figure 5.6 Normal probability plots of fotal minutes for churners and nonchurners.

Alternatively, one may dispense with the normality assumption altogether and
choose to work directly with the observed empirical distribution of total minutes for
churners and nonchurners. We are interested in comparing p(7 = 800) for each dis-
tribution; why not estimate this probability by estimating p(798 < T < 802) directly
for each distribution? It turns out that three of the churner customers had between
798 and 802 total minutes, compared to one for the nonchurner customers. So the
probability estimates would be for the churners,

3
T =800|C) = — = 0.006211
p( 10 = 123

and for the nonchurners,
— 1
T = 800|C)——— = 0.0003509
pe 1©)%%30
Thus, to find the naive Bayes classification, for churners,

p(INV NT =800|C)P(C) = P(I|C)P(V|C) fr,c(800)P(C)
= 0.2836(0.1656)(0.006211)(0.1449) = 0.00004227

and for nonchurners,

pINVNT =800[C)P(C) = P(I|C)P(V|C) frc(800)P(C)
= 0.0653(0.2954)(0.0003509)(0.8551)
= 0.000005788

[Here, fT‘C(SOO) represents our empirical estimate of f7c(800).] Thus, once again,
the naive Bayes classification for new customers who have 800 foral minutes and
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belong to both plans is churn = true, this time by a posterior odds ratio of

0.00004227
0.000005788

The evidence is even more solid in favor of a classification of churn = true for
these customers, and we did not have to burden ourselves with an assumption about
normality.

The empirical probability estimation method shown here should be verified
over a range of margins of error. Above, we found the numbers of records within a
margin of error of two records (798 < T < 802). The reader may verify that that there
are eight churn records and three nonchurn records within 5 minutes of the desired
800 minutes, and that there are 15 churn records and five nonchurn records within 10
minutes of the desired 800 minutes. So the approximate 3 : 1 ratio of churn records
to nonchurn records in this area of the distribution seems fairly stable.

7.30

WEKA: HANDS-ON ANALYSIS USING NAIVE BAYES

In this exercise, WEKA’s naive Bayes classifier is used to classify a small set of
movie reviews as either positive (pos) or negative (neg). First, the text from 20 actual
reviews is preprocessed to create a training file containing three Boolean attributes
and a target variable. This file is used to train our naive Bayes model and contains
a set of 20 individual review instances, where 10 reviews have the class value “pos”
and the remaining 10 reviews take on the class value “neg.” Similarly, a second file
is created to test our model. In this case, movies_test.arff contains only four review
instances, two of which are positive and two of which are negative.

During the preprocessing stage, the unigrams (specifically adjectives) are ex-
tracted from the reviews and a list of adjectives is derived. The three most frequently
occurring adjectives are chosen from the list and form the set of attributes used by
eachreview instance. Specifically, each instance is represented as a Boolean document
vector of length three, where each attribute’s value is either 1 or 0, corresponding to
whether the review contains or does not contain the particular adjective, respectively.
The ARFF-based training file movies_train.arff is shown in Table 5.6.

All attributes in the ARFF file are nominal and take on one of two values; inputs
are either “0” or “1,” and the target variable CLASS is either “pos” or “neg.” The data
section lists each instance, which corresponds to a specific movie review record. For
example, the third line in the data section corresponds to a review where more = 1,
much = 1, other = 0, and CLASS = neg.

Now, we load the training file and build the naive Bayes classification model.

1. Open the WEKA Explorer panel.

2. On the Preprocess tab, press Open file and specify the path to the training file,
movies_train.arff.

3. Select the Classify Tab.
4. Under Classifier, press the Choose button.
5. Select Classifiers — Bayes — Naive Bayes from the navigation hierarchy.
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TABLE 5.6 ARFF Movies Training File movies_train.arff

@relation movies_train.arff

@attribute more {0, 1}
@attribute much {0, 1}
@attribute other {0, 1}
@attribute CLASS {neg, pos}
@data

1, 0, 0, neg

1, 1, 0, neg

1, 1, 0, neg

0, 1, 1, neg

1, 1, 1, neg

1, 1, 0, neg

1, 0, 0, neg

1, 0, 1, neg

1, 1, 1, neg

1, 1, 1, neg

1, 1, 1, pos

1, 0, 1, pos

1, 1, 1, pos

1, 1, 1, pos

1, 0, 0, pos

1, 1, 0, pos

0, 1, 1, pos

1, 0, 1, pos

0, 0, 0, pos

1, 1, 1, pos

6. In our modeling experiment we have separate training and test sets; therefore,
under Test options, choose the Use training set option.

7. Click Start to build the model.

WEKA creates the naive Bayes model and produces the results in the Classifier
output window as shown in Figure 5.7. In general, the results indicate that the classi-
fication accuracy of the model, as measured against the training set, is 65% (13/20.)

Next, our model is evaluated against the unseen data found in the test set,
movies_test.arff.

1. Under Test options, choose Supplied test set. Click Set.
2. Specify the path to the test file, movies_test.arff.

3. Under Result list, right-click the naive Bayes model from the list, and choose
Re-evaluate model on the current test set.

Surprisingly, the Explorer panel shows that our naive Bayes model has classified
all four movie reviews in the test set correctly. Although these results are encouraging
from a real-world perspective, the training set lacks a sufficient number of both
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Figure 5.7 WEKA Explorer: naive Bayes training results.

attributes and examples to be considered practical in any real sense. We continue with
the objective of becoming familiar with the naive Bayes classifier. Let’s explore how
naive Bayes arrived at the decision to classify the fourth record in the test set correctly.
First, however, we examine the probabilities reported by the naive Bayes classifier.

1. Under Test options, press the More options button.
2. Select Output text predictions on the test set, and click OK.

3. Repeat the procedure to evaluate the model against the test set by right-clicking
the naive Bayes model and then choosing Re-evaluate model on the current test
set.

In addition to the classification results we just observed, the naive Bayes
model now reports the actual probabilities it used to classify each review instance
from the test set as either “pos” or “neg.” For example, Table 5.7 shows that naive
Bayes has classified the fourth instance from the test set as “pos” with a proba-
bility equal to 0.60. In Table 5.8, the conditional probabilities are calculated that
correspond to the data found in movies_train.arff. For example, given that the review
is negative, the conditional probability of the word more occurring is p(more =
1|CLASS =neg) =9/10. In addition, we also know the prior probabilities
of p(CLASS = pos) = p(CLASS =neg)=10/20 =0.5. These simply corre-
spond with the fact that our training set is balanced 50-50.

Recall the method of adjusting the probability estimate to avoid zero-frequency
cells, as described earlier in the chapter. In this particular case, naive Bayes produces
an internal adjustment, where n¢qiy = 2 and p = 0.5, to produce (n. + 1)/(n + 2).
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TABLE 5.7 Naive Bayes Test Set Predictions

=== Predictions on test set ===

inst#, actual, predicted, error, probability distribution
1 1:neg 1:neg *0.533 0.467
2 1:neg 1:neg *0.533 0.467
3 2:pos 2:pos 0.444 *0.556
4 2:pos 2:pos 0.4 *0.6

Therefore, we now calculate the probably of the fourth review from the test as set
being either “pos” or “neg”:
3
[]p(Xi = xi|CLASS = pos)p(CLASS = pos)

i=1
8+1\[4+1\/[/7+1
- <10+2> <10+2> <10+2>(0'5)
9\ /5\ /(8
- <E) (E) (E) (0.5) ~ 0.1042

3
l—[p(Xi =x;|CLASS =neg)p(CLASS = neg)
i=1
9+1 341 5+1
_ + + + ©0.5)
1042 10+2 10+2

= <§> <i> <3> (0.5) ~ 0.0694
12)\12)\12

Finally, we normalize the probabilities and determine

oy 01042

PRPOS) = 0571042 + 0.0694
0.0694

p(neg) = —————— ~ 0.3998

0.1042 4- 0.0694

Here, the review is classified as positive with a 0.60 probability. These results agree
with those reported by WEKA in Table 5.7, which also classified the review as positive.
In fact, our hand-calculated probabilities match those reported by WEKA. Although
the data set used for this example is rather small, it demonstrates the use of the naive
Bayes classifier in WEKA when using separate training and test files. More important,
our general understanding of the algorithm has increased as a result of computing the
probabilities that led to an actual classification by the model.

TABLE 5.8 Conditional Probabilities Derived from movies_training.arff

More Much Other

neg 9/10 1/10 7/10 3/10 5/10 5/10
pos 8/10 2/10 6/10 4/10 7/10 3/10
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BAYESIAN BELIEF NETWORKS

Naive Bayes classification assumes that the attributes are conditionally independent
given the value of the target variable. This assumption may in fact be too strong
for environments where dependence exists among the predictor variables. Bayesian
belief networks (BBNs) are designed to allow joint conditional independencies to be
defined among subsets of variables. BBNs, also called Bayesian networks or Bayes
nets, take the form of a directed acyclic graph (DAG), where directed means that the
arcs are traversed in one direction only, and acyclic means that no child node cycles
back up to any progenitor.

An example of a Bayesian network in the form of a DAG is shown in Figure 5.8.
The nodes represent variables, and the arcs represent the (directed) dependence among
the variables. In general, node A is a parent or immediate predecessor of node X,
and node X is a descendant of node A, if there exists a directed arc from node A to
node X. The intrinsic relationship among the variables in a Bayesian network is as
follows:

e Each variable in a Bayesian network is conditionally independent of its nonde-
scendants in the network given its parents.

Thus, we have

Xy =x1, X2 =x3, ..., Xpp = x,) = [ | P(Xi = xilparents(X:))  (54)
i=1

Note that the child node probability depends only on its parents.

Clothing Purchase Example

To introduce Bayesian networks, we shall use the clothing purchase example, illus-
trated by the Bayes net in Figure 5.8. Suppose that a clothes retailer operates two
outlets, one in New York and one in Los Angeles, each producing sales throughout
the four seasons. The retailer is interested in probabilities concerning three articles of
clothing in particular: warm coats, business shirts, and Bermuda shorts. Questions of
interest include the fabric weight of the article of clothing (light, medium, or heavy)
and the color of the article (bright, neutral, or dark). To build a Bayesian network, there
are two main considerations: (1) the dependence relationship among the variables of
interest, and (2) the associated “local” probabilities.

The retailer has five variables: season, location, clothing purchase, fabric
weight, and color. What is the dependence relationship among these variables? For
example, does the season of the year depend on the color of the clothes purchased?
Certainly not, since a customer’s purchase of some bright clothing doesn’t mean that
spring is here, for example, although the customer may wish it so.

In fact, the season of the year does not depend on any of the other variables,
so we place the node for the variable season at the top of the Bayes network, which
indicates that it does not depend on the other variables. Similarly, location does not
depend on the other variables, and is therefore placed at the top of the network.
Since the fabric weight and the color of the clothing are not known until the article
is purchased, the node for the variable clothing purchase is inserted next into the
network, with arcs to each of the fabric weight and color nodes.
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Figure 5.8 Bayesian network for the clothing purchase example.

The second consideration for constructing a Bayesian network is to specify
all of the entries in the probability tables for each node. The probabilities in the
season node table indicate that clothing sales for this retail establishment are uniform
throughout the four seasons. The probabilities in the location node probability table
show that 60% of sales are generated from their Los Angeles store and 40% from their
New York store. Note that these two tables need not supply conditional probabilities,
since the nodes are at the top of the network.

Assigning probabilities for clothing purchase requires that the dependence on
the parent nodes be taken into account. Expert knowledge or relative frequencies
(not shown) should be consulted. Note that the probabilities in each row of the
table sum to 1. For example, the fourth row of the clothing purchase table shows
the conditional probabilities of purchasing the articles of clothing from the Los
Angeles store in the summer. The probabilities of purchasing a warm coat, a business
shirt, and Bermuda shorts are 0.05, 0.35, and 0.60, respectively. The seventh row
represents probabilities of purchasing articles of clothing from the New York store in
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Bayes nets help determine purchase probabilities. (Courtesy: Chantal Larose).

winter. The probabilities of purchasing a warm coat, a business shirt, and Bermuda
shorts are 0.60, 0.35, 0.05, respectively.

Given a particular item of clothing, the probabilities then need to be specified
for fabric weight and color. A warm coat will have probabilities for being of light,
medium, or heavy fabric, or 0.10, 0.20, and 0.70, respectively. A business shirt will
have probabilities of having bright, neutral, or dark color of 0.70, 0.20, and 0.10,
respectively. Note that the fabric weight or color depends only on the item of cloth-
ing purchased, not on the location or season. In other words, color is conditionally
independent of location given the article of clothing purchased. This is one of the
relationships of conditional independence to be found in this Bayesian network. Here
are some others:

e Color is conditionally independent of season given clothing purchased.
e Color is conditionally independent of fabric weight given clothing purchased.
e Fabric weight is conditionally independent of color given clothing purchased.

e Fabric weight is conditionally independent of location given clothing pur-
chased.

Fabric weight is conditionally independent of season given clothing purchased.

Note that we could say that season is conditionally independent of location
given its parents. But since season has no parents in the Bayes net, this means
that season and location are (unconditionally) independent.

Be careful when inserting arcs into the Bayesian network, since these represent
strong assertions of conditional independence.

Using the Bayesian Network to Find Probabilities

Next, suppose we would like to find the probability that light-fabric neutral-colored
Bermuda shorts were purchased in New York in the winter. Using equation (5.4), we
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may express what we seek as
p(A=a4, B=b,,C=c|,D=d, X =x3)
= p(A =ay)p(B =by))p(X = x3|A =ay, N B =Dby)p(C = c1|X = x3)
p(D = d2|X = X3)p(A = dy, B = bl, C = Cc, D= dz, X = X3)
= p(A=ay)p(B=0b)p(X =x3]A=a,N B =0b)p(C =ci|X =x3)
p(D = dr|X = x3)
= p(season = winter) p(location = New York)
-p(clothing = shorts | season = winter and location = New York)
-p(fabric = light | clothing = shorts) p(color = neutral | clothing = shorts)
= 0.25(0.4)(0.05)(0.50)(0.40) = 0.001
Evidently, there is not much demand for light-fabric neutral-colored Bermuda shorts
in New York in the winter.

Similarly, probabilities may be found in this way for any combinations of season,
location, article of clothing, fabric weight, and color. Using the Bayesian network
structure, we can also calculate prior probabilities for each node. For example, the
prior probability of a warm coat is found as follows:

p(coat) = p(X = xy)

=pX=xil[A=aNB=>b)p(A=a NB=b)
+pX=xi1|[A=a; N B=by)p(A=a; N B =by)
+pX =x1|[A=aNB=>b)p(A=a, B =by)
+p(X =x1|A=aNB=>b)p(A=a, N B =by)
+pX=xi|[A=a3NB=b)p(A=a3;NB =0y
+pX=xi|[A=a3NB=b)p(A=a3;N B =Dby)
+pX =xi|[A=ayNB=>b))p(A=a,NB=by)
+p(X =xi|[A=ayNB=Dby)p(A=a,NB=by)
= (0.30)(0.10) 4 (0.20)(0.15) + (0.10)(0.10) + (0.05)(0.15)
+(0.40)(0.10) + (0.20)(0.15) 4 (0.60)(0.10) + (0.30)(0.15)
= 0.2525
So the prior probability of purchasing a warm coat is 0.2525. Note that we used the
information that season and location are independent, so that p(A N B) = p(A)p(B).
For example, the probability that a sale is made in the spring in New York is
p(A=a NB=>b;)= p(A=a)p(B=>b)=0.250.4)=0.10
Posterior probabilities may also be found. For example,

p(coat)

winter | coat) = —————
p( | ) p(winter N coat)
To find p(winter N coat), we must first find p(winter N New York N coat) and
p(winter N Los Angeles N coat). Using the conditional probability structure of the

Bayesian network in Figure 5.8, we have

pwinter N New York N coat) = p(winter) p(New York) p(coat|winter N New York)
= 0.25(0.4)(0.6) = 0.06



BAYESIAN BELIEF NETWORKS 231

p(winter N Los Angeles N coat)
= p(winter) p(Los Angeles) p(coat | winter N Los Angeles)
= 0.25(0.6)(0.3) = 0.045

So
p(winter N coat) = 0.06 + 0.045 = 0.105

Thus, we have

p(coat) _0.2525

= =0.4158
p(winter N coat) 0.105

p(winter|coat) =

Then the Bayes net could provide a classification decision using the highest pos-
terior probability among p(winter | coat), p(spring | coat), p(summer | coat), and
p(fall | coat) (see the exercises).

A Bayesian network represents the joint probability distribution for a given set
of variables. What is a joint probability distribution? Let X;, X5, ..., X,, represent
a set of m random variables, with each random variable X; defined on space Sy, . For
example, a normal random variable X is defined on space Sx, where Sy is the real
number line. Then the joint space of X, X, ..., X,, is defined as the cross-product
Sx, X Sx, x -+ x S, . Thatis, each joint observation consists of the vector of length
m of observed field values (xi, x», ..., x,,). The distribution of these observations
over the joint space is called the joint probability distribution.

The Bayesian network represents the joint probability distribution by providing
(1) a specified set of assumptions regarding the conditional independence of the
variables, and (2) the probability tables for each variable given its direct predecessors.
For each variable, information regarding both is provided. For a subset of variables
Xy, X2, ..., X,, the joint probability may be found thus:

m

POX1 = x1, X2 = X2 ooy X = x) = [ | P(Xi = xi) parents (X))

i=1

where we define parents(X;) to be the set of immediate predecessors of X; in the
network. The probabilities p(X; = x;| parents(X;) and p(X; = x;| parents(X;) are
the probabilities that have been specified in the probability table associated with the
node for X;.

How does learning take place in a Bayesian network? When the structure of the
network is known and the field values have all been observed, learning in Bayesian
nets is straightforward. The local (node-specific) probability tables are fully specified,
and any joint, conditional, prior, or posterior probability desired may be calculated.
However, when some of the field values are hidden or unknown, we need to turn
to other methods, with the goal of filling in all the entries in the local probability
distribution table. Russell et al. [6] suggest a gradient descent method for learning in
Bayesian networks. In this paradigm, the unknown entries in the probability distri-
bution tables are considered to be unknown weights, and gradient descent methods,
analogous to the neural network learning case (e.g., Larose [4, Chap. 7] and Mitchell
[2, Chap. 4], can be applied to find the optimal set of weights (probability values)
given the data.
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Bayes’ nets were originally designed to aid subject matter experts to specify the
conditional independence structure among variables graphically. However, analysts
may also attempt to discern the unknown structure of Bayes nets by studying the
dependence and independence relationships among the variable values observed.
Sprites et al. [7] and Ramoni and Sebastian [8] provide further information about
learning both the content and structure of Bayesian networks.

WEKA: HANDS-ON ANALYSIS USING THE
BAYES NET CLASSIFIER

Let’s revisit the movies data set; however, this time, classification of the data is
explored using WEKA'’s Bayes Net classifier. Similar to our last experiment, the 20
instances in movies_train.arff are used to train our model, whereas it is tested using
the four reviews in movies_test.arff. Let’s begin by loading the training file.

1. From the WEKA Explorer panel, press Open file.
2. Specify the path to the training file, movies_train.arff.

3. If successful, the Explorer panel looks similar to Figure 5.9 and indicates that
the relation movies_train.arff consists of 20 instances with four attributes. It also
shows, by default, that CLASS is specified as the class variable for the data set.

4. Select the Classify tab.

il
Preprocess | Cisssiry | Custer | Associsie | Select sttriutes | Visusirs |
[ Open UAL | penDE. | i | save. |
Fie
Currert relafion FI———

A}

| g

Figure 5.9 WEKA Explorer panel: preprocess tab.
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TABLE5.9 Bayes Net Test Set Predictions

=== Predictions on test set ===

inst#, actual, predicted, error, probability distribution
1 1:neg 1:neg *0.521 0.479
2 1:neg 1:neg *0.521 0.479
3 2:pos 2:pos 0.423 *0.577
4 2:pos 2:pos 0.389 *0.611

5. Under Classifier, press Choose.

6. Select Classifiers — Bayes — Bayes Net from the navigation hierarchy.
7. Under Test options, specify Supplied training set.

8. Click Start.

The results are reported in the Classifier output window. The classification
accuracy for Bayes Net is 65% (13/20), which is identical to the results reported
by naive Bayes. Again, let’s evaluate our classification model using the data from
movies_test.arff, with the goal of determining the probabilities by which Bayes Net
classifies these instances.

. Under Test options, choose Supplied test set. Press the Set button.

. Press Open file and specify the location of the test file, movies_test.arff.
. Under Test options, press the More options button.

. Check the Output text predictions on the test set option. Click OK.

. Under Result list, right-click the Bayes Net model from the list, and choose
Re-evaluate model on the current test.

N AW N =

Now the predictions for each instance, including their associated probability, are
reported in the Classifier output window. For example, Bayes Net correctly classified
instance 3 as “pos,” with probability 0.577, as shown in Table 5.9. Next, let’s evaluate
how Bayes Net made its classification decision for the third instance. First, recall the
data set used to build our model, shown in Table 5.6. From here the prior probabilities
for the attributes more, much, and other can be derived; for example, p(more =
1) = 17/20 and p(more = 0) = 3/20. In addition, to avoid zero-probability cells,
Bayes Net uses a simple estimation method that adds 0.5 to each cell count. Using
this information, the prior probability tables for the three parent nodes used in the
network are shown in Table 5.10.

TABLE 5.10 Prior Probabilities Derived from movies_training.arff

More Much Other

1 0 1 0 1 0

17.5/20 3.5/20 13.5/20 7.5/20 12.5/20 8.5/20
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Now, according to the model built from the training set data, we calculate the
probability of classifying the third record from the test set as pos using the formula

p(more = 0, much = 0, after = 0, CLASS = pos)
= p(more = 0)(much = 0)(after = 0) p(CLASS = pos | more = 0)
P(CLASS = pos | much = 0)p(CLASS = pos |after = 0)

As described above, Bayes Net also adds 0.5 to the conditional probability table
cell counts to prevent zero-based probabilities from occurring. For example, the
conditional probability p(CLASS = pos|more = 0) = 2/10 becomes 2.5/10 us-
ing this internal adjustment. Therefore, given the values for more, much, and other
found in the third instance, the probability of a positive classification is computed as
follows:

p(more = 0, much = 0, after = 0, CLASS = pos)
3.5 7.5 8.5 2.5 4.5 3.5
-(3)(5)-(5) 5) () 5)
= (0.175)(0.375)(0.425)(0.25)(0.45)(0.35) ~ 0.001098

Likewise, the probability of a negative classification is derived using a similar ap-
proach:

p(more = 0, much = 0, after = 0, CLASS = neg)

_(35\ (75\ (85 1.5\ /3.5\ /5.5
-(%) (3) (%) (%) (%))
— (0.175)(0.375)(0.425)(0.15)(0.35)(0.55) ~ 0.000805

Our last step is to normalize the probabilities as follows:

0.001098
P(POS) = 57501008 + 0.000805 7698
0.000805
p(neg) = ~ (0.42302
0.001098 + 0.000805

Our calculations have determined that according to the Bayes Net model built from
the training set, instance 3 is classified as positive with probability 0.577. Again,
our hand-calculated probabilities agree with those produced by the WEKA model, as
shown in Table 5.9. Clearly, our results indicate that “hand-computing” the probability
values for a network of moderate size is a nontrivial task.

SUMMARY

In Bayesian statistics, the parameters are considered to be random variables, and
the data are considered to be known. The parameters are regarded to come from a
distribution of possible values, and Bayesians look to the observed data to provide
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information on likely parameter values. Let 6 represent the parameters of the unknown
distribution. Bayesian analysis requires elicitation of a prior distribution for 0, called
the prior distribution, p(6). In the field of data mining, huge data sets are often en-
countered; therefore, the prior distribution should be dominated by the overwhelming
amount of information to be found in the observed data.

Once the data have been observed, prior information about the distribution of
6 can be updated by factoring in the information about 6 contained in the observed
data. This modification leads to the posterior distribution, p(61X), where X represents
the entire array of data. The posterior distribution of 6 given the data is proportional
to the product of the likelihood and the prior.

A common estimation method is to choose the posterior mode, the value of 6 that
maximizes p(f|X) for an estimate, in which case we call this estimation method the
maximum a posteriori (MAP) method. The Bayesian MAP classification is optimal;
that is, it achieves the minimum error rate for all possible classifiers. The MAP
classifier may be expressed as Oyap = arg max, p(X|0)p(6). Bayes’ theorem is given
by

P(B|A)P(A)

P(A|B) = 55

where A and B are events.
The posterior odds ratio represents a measure of the strength of evidence in
favor of a particular classification and is calculated as

pO:X) _ pX|0:)p®c)
p@X)  pXl8)p@.)

where 6, represents a particular classification of the unknown target variable. A value
greater than 1 indicates that the posterior distribution favors the positive classifica-
tion; a value less than 1 represents evidence against the positive classification (e.g.,
churn = true). The value of the posterior odds ratio may be interpreted as indicating
roughly the proportion of evidence provided by the posterior distribution in favor of
the positive classification against the negative classification.

In general, the number of probabilities that would need to be calculated to
find the MAP classification would be on the order of k™, where k is the number of
classes for the target variable and m is the number of predictor variables. However, we
may make the simplifying assumption that the predictor variables are conditionally
independent given the target value. Two events A and B are said to be conditionally
independent if for a given event C, p(A N B|C) = p(A|C)p(B|C).

Thus, the naive Bayes classification is

m

O = argmax [ | p(X; = xi10)p(0)

o iz
When the conditional independence assumption is valid, the naive Bayes classification
is the same as the MAP classification. When using naive Bayes classification, far fewer
probabilities need to be estimated, just km probabilities rather than £ for the MAP
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classifier, in other words, just the number of predictor variables times the number of
distinct values of the target variable. Bayesian classification can be extended from
categorical to continuous predictor variables, provided that we know the relevant
probability distribution.

Bayesian belief networks (BBNs) are designed to allow joint conditional in-
dependencies to be defined among subsets of variables. BBNs, also called Bayesian
networks or Bayes nets, take the form of a directed acyclic graph (DAG), where di-
rected means that the arcs are traversed in one direction only, and acyclic means that
no child node cycles back up to any progenitor. The nodes represent variables, and
the arcs represent the (directed) dependence among the variables.

In general, node A is a parent or immediate predecessor of node X, and node X
is a descendant of node A, if there exists a directed arc from node A to node X. The
intrinsic relationship among the variables in a Bayesian network is as follows: Each
variable in a Bayesian network is conditionally independent of its nondescendants in
the network, given its parents. The Bayesian network represents the joint probability
distribution by providing that (1) a specified set of assumptions regarding the condi-
tional independence of the variables, and (2) the probability tables for each variable,
given its direct predecessors. For each variable, information regarding both (1) and
(2) is provided.
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EXERCISES

Clarifying the Concepts

5.1

5.2
5.3

54
5.5
5.6

5.7.

5.8.

5.9.

5.10

5.11
5.12

5.13

5.14

5.15

5.16
5.17

. Describe the differences between the frequentist and Bayesian approaches to proba-
bility.

. Explain the difference between prior and posterior distributions.

. In most data mining applications, why would we expect the maximum a posteriori
estimate to be close to the maximum likelihood estimate?

. Describe in plain English the maximum a posteriori classification.
. Explain the interpretation of the posterior odds ratio. Why do we need it?

. Describe what balancing is, and when and why it may be needed. Also describe two
techniques for achieving a balanced data set, and explain why one method is preferred.

Explain why we cannot avoid altering, even slightly, the character of the data set when
we apply balancing.

Explain why the MAP classification is impractical to apply directly for any interesting
real-world data mining application.

What is conditional independence? Provide examples of events that are conditionally
independent and of events that are not conditionally independent.

. When is the naive Bayes classification the same as the MAP classification? In terms
of optimality, what does this mean for the naive Bayes classifier?

. Explain why the log posterior odds ratio is useful. Provide an example.

. Using the concept of distribution, describe the process for using continuous predictors
in Bayesian classification,

. (Extra credit) Investigate the mixture idea for the continuous predictor mentioned in
the text.

. Discuss working with the empirical distribution. Describe how this can be used to
estimate true probabilities.

. Explain the difference in assumptions between naive Bayes classification and Bayesian
networks.

. Describe the intrinsic relationship among the variables in a Bayesian network.

. What are the two main considerations when building a Bayesian network?

Working with the Data

5.18

5.19

. Using the balanced data set, compute the posterior odds ratio for each of the combi-
nations of International Plan and VoiceMail Plan membership.

. Using 25.31%/74.69% balancing, calculate the naive Bayes classification for all four
possible combinations of International Plan and VoiceMail Plan membership.
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5.20

5.25

5.21.

5.22.

5.23.

5.24.

CHAPTER 5 NAIVE BAYES ESTIMATION AND BAYESIAN NETWORKS

. Verity the empirical distribution results referred to in the text of the numbers of records
within the certain margins of error of 800 minutes for churners and nonchurners.
Find the naive Bayes classifier for the following customers:

(a) Belongs to neither plan, with 400 day minutes

(b) Belongs to the International Plan only, with 400 minutes

(c) Belongs to both plans, with 400 minutes

(d) Belongs to both plans, with zero minutes (comment)
Use the empirical distribution where necessary.

Provide the MAP classification for season given that a warm coat was purchased, in
the clothing purchase example in the Bayesian network section.

Revisit the WEKA naive Bayes example. Calculate the probability that the first instance
in movies_test.arffis “pos” and “neg.” Do your calculations agree with those reported
by WEKA leading to a negative classification?

Compute the probabilities by which the Bayes Net model classifies the fourth instance
from the test file movies_test.arff. Do your calculations result in a positive classification
as reported by WEKA?

Hands-on Analysis

. Open the breast cancer data set [9]. Ten numeric predictors are used to predict
the class of malignant breast cancer tumor (class = 1) as opposed to benign tumor
(class = 0).

(a) Consider using only two predictors, mitoses and clump thickness, to predict tumor
class. Categorize the values for mitoses as follows: Low = 1, High = 2 to 10.
Categorize the values for clump thickness as follows: Low = 1 to 5, High =6 to
10. Discard the original variables and use these categorized predictors.

(b) Find the prior probabilities for each of the predictors and the target variable. Find
the complement probabilities of each.

(c) Find the conditional probabilities for each of the predictors given that the tumor is
malignant. Then find the conditional probabilities for each of the predictors given
that the tumor is benign.

(d) Find the posterior probability that the tumor is malignant given that mitoses is (i)
high, and (ii) low.

(e) Find the posterior probability that the tumor is malignant given that clump thick-
ness is (i) high, and (ii) low.

(f) Construct the joint conditional probabilities, similar to Table 5.4.

(g) Using your results from part (f), find the maximum a posteriori classification of
tumor class for each of the following combinations:

(i) Mitoses = low and clump thickness = low
(ii) Mitoses = low and clump thickness = high
(ili) Mitoses = high and clump thickness = low

(iv) Mitoses = high and clump thickness = high



(h)
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For each of the combinations in part (g), find the posterior odds ratio.

(Optional) Assess the validity of the conditional independence assumption using
calculations similar to Table 5.5.

Find the naive Bayes classifications for each of the combinations in part (g).

For each of the predictors, find the log posterior odds ratio, and explain the con-
tribution of this predictor to the probability of a malignant tumor.
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GENETIC ALGORITHMS

INTRODUCTION TO GENETIC ALGORITHMS

BASIC FRAMEWORK OF A GENETIC ALGORITHM

SIMPLE EXAMPLE OF A GENETIC ALGORITHM AT WORK
MODIFICATIONS AND ENHANCEMENTS: SELECTION
MODIFICATIONS AND ENHANCEMENTS: CROSSOVER

GENETIC ALGORITHMS FOR REAL-VALUED VARIABLES

USING GENETIC ALGORITHMS TO TRAIN A NEURAL NETWORK
WEKA: HANDS-ON ANALYSIS USING GENETIC ALGORITHMS

INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithms (GAs) attempt to mimic computationally the processes by which
natural selection operates, and apply them to solve business and research problems.
Developed by John Holland in the 1960s and 1970s [1] genetic algorithms provide
a framework for studying the effects of such biologically inspired factors as mate
selection, reproduction, mutation, and crossover of genetic information. In the natural
world, the constraints and stresses of a particular environment force the different
species (and different individuals within species) to compete to produce the fittest
offspring. In the world of genetic algorithms, the fitness of various potential solutions
are compared, and the fittest potential solutions evolve to produce ever more optimal
solutions.

Not surprisingly, the field of genetic algorithms has borrowed heavily from
genomic terminology. Each cell in our body contains the same set of chromosomes,
strings of DNA that function as a blueprint for making one of us. Then each chro-
mosome can be partitioned into genes, which are blocks of DNA designed to encode
a particular trait, such as eye color. A particular instance of the gene (e.g., brown
eyes) is an allele. Each gene is to be found at a particular locus on the chromosome.
Recombination, or crossover, occurs during reproduction, where a new chromosome

Data Mining Methods and Models By Daniel T. Larose
Copyright © 2006 John Wiley & Sons, Inc.
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is formed by combining the characteristics of both parents’ chromosomes. Mutation,
the altering of a single gene in a chromosome of the offspring, may occur randomly
and relatively rarely. The offspring’s fitness is then evaluated, either in terms of via-
bility (living long enough to reproduce) or in the offspring’s fertility.

In the field of genetic algorithms, a chromosome refers to one of the candidate
solutions to the problem, a gene is a single bit or digit of the candidate solution, an
allele is a particular instance of the bit or digit (e.g., O for binary-encoded solutions
or the number 7 for real-valued solutions). Recall that binary numbers have base 2,
so that the first “decimal” place represents “ones,” the second represents “twos,” the
third represents “fours,” the fourth represents “eights,” and so on. So the binary string
10101010 represents

(1 x128)4+ (0 x64)+(1 x32)+0x16)+(1 x8 +(0x4)+ (1 x2)
+0 x 1)=170

in decimal notation.
Three operators are used by genetic algorithms:

1. Selection. The selection operator refers to the method used for selecting which
chromosomes will be reproducing. The fitness function evaluates each of the
chromosomes (candidate solutions), and the fitter the chromosome, the more
likely it will be selected to reproduce.

2. Crossover. The crossover operator performs recombination, creating two new
offspring by randomly selecting a locus and exchanging subsequences to the left
and right of that locus between two chromosomes chosen during selection. For
example, in binary representation, two strings 11111111 and 00000000 could
be crossed over at the sixth locus in each to generate the two new offspring
11111000 and 00000111.

3. Mutation. The mutation operator randomly changes the bits or digits at a partic-
ular locus in a chromosome: usually, however, with very small probability. For
example, after crossover, the 11111000 child string could be mutated at locus
two to become 10111000. Mutation introduces new information to the genetic
pool and protects against converging too quickly to a local optimum.

Most genetic algorithms function by iteratively updating a collection of poten-
tial solutions called a population. Each member of the population is evaluated for
fitness on each cycle. A new population then replaces the old population using the
operators above, with the fittest members being chosen for reproduction or cloning.
The fitness function f(x) is a real-valued function operating on the chromosome (po-
tential solution), not the gene, so that the x in f(x) refers to the numeric value taken
by the chromosome at the time of fitness evaluation.

BASIC FRAMEWORK OF A GENETIC ALGORITHM

The following introductory GA framework is adapted from Mitchell [2] in her inter-
esting book An Introduction to Genetic Algorithms.
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o Step 0: Initialization. Assume that the data are encoded in bit strings (1’s and

0’s). Specity a crossover probability or crossover rate p. and a mutation prob-
ability or mutation rate p,,. Usually, p. is chosen to be fairly high (e.g., 0.7),
and p,, is chosen to be very low (e.g., 0.001).

Step 1: The population is chosen, consisting of a set of n chromosomes each of
length [.

Step 2: The fitness f(x) is calculated for each chromosome in the population.

Step 3: Iterate through the following steps until n offspring have been
generated.

o Step 3a: Selection. Using the values from the fitness function f(x) from
step 2, assign a probability of selection to each chromosome, with higher
fitness providing a higher probability of selection. The usual term for the
way these probabilities are assigned is the roulette wheel method. For each
chromosome x;, find the proportion of this chromosome’s fitness to the to-
tal fitness summed over all the chromosomes. That is, find f(x;)/ Y, f(x;)
and assign this proportion to be the probability of selecting that chromo-
some for parenthood. (Each chromosome then has a proportional slice of
the putative roulette wheel spun to choose the parents.) Then select a pair
of chromosomes to be parents, based on these probabilities. Allow the same
chromosome to have the potential to be selected to be a parent more than
once. Allowing a chromosome to pair with itself will generate tree copies
of that chromosome to the new generation. If the analyst is concerned about
converging to a local optimum too quickly, perhaps such pairing should not be
allowed.

o Step 3b: Crossover. Select a randomly chosen locus (crossover point) for
where to perform the crossover. Then, with probability p., perform crossover
with the parents selected in step 3a, thereby forming two new offspring. If
the crossover is not performed, clone two exact copies of the parents to be
passed on to the new generation.

o Step 3c: Mutation. With probability p,,, perform mutation on each of the two
offspring at each locus point. The chromosomes then take their place in the
new population. If n is odd, discard one new chromosome at random.

Step 4: The new population of chromosomes replaces the current population.

Step 5: Check whether termination criteria have been met. For example, is the
change in mean fitness from generation to generation vanishingly small? If
convergence is achieved, stop and report results; otherwise, go to step 2.

Each cycle through this algorithm is called a generation, with most GA applica-

tions taking from 50 to 500 generations to reach convergence. Mitchell [2] suggests
that researchers try several different runs with different random number seeds, and
report the model evaluation statistics (e.g., best overall fitness) averaged over several
different runs.
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SIMPLE EXAMPLE OF A GENETIC ALGORITHM AT WORK

Let’s examine a simple example of a genetic algorithm at work. Suppose that our
task is to find the maximum value of the normal distribution with mean ¢ = 16 and
standard deviation o = 4 (Figure 6.1). That is, we would like to find the maximum
value of

1 -1 1 -1
_ (X —w?| = X —16)?
f) 5= exp [202 ( w) } o @ exp [2(4)2 ( ) }

We allow X to take on only the values described by the first five binary digits, that is,
00000 through 11111, or O to 31 in decimal notation.

First Iteration

o Step 0: Initialization. We define the crossover rate to bep, = 0.75 and the
mutation rate to be p,, = 0.002.

e Step 1: Our population will be a set of four chromosomes chosen randomly
from the set 00000 — 11111. Son = 4 and [ = 5. These are 00100 (4), 01001
9), 11011 (27),and 11111 (31).

e Step 2: The fitness f(x) is calculated for each chromosome in the population
(Table 6.1).

e Step 3: Iterate through the following steps until n offspring have been generated.

o Step 3a: Selection. We have the sum of the fitness values equal to
Z Sf(x;) =0.001108 4 0.021569 + 0.002273 + 0.000088
l = 0.025038

Then the probability that each of our chromosomes will be selected for par-
enthood is found by dividing their value for f (x) by the sum 0.025038. These

St

» X

4 8 12 16 20 24 28

Figure 6.1 Finding the maximum value of the normal (16, 4) distribution.
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TABLE 6.1 Fitness and Probability of Selection for Each Chromosome

Decimal Selection
Chromosome Value Fitness Probability
00100 4 0.001108 0.04425
01001 9 0.021569 0.86145
11011 27 0.002273 0.09078
11111 31 0.000088 0.00351

are also shown in Table 6.1. Clearly, chromosome 07001 gets a very large
slice of the roulette wheel! The random selection process gets under way.
Suppose that chromosome 07001 and 11011 are selected to be the first pair
of parents, since these are the two chromosomes with the highest fitness.

Step 3b: Crossover. The locus is randomly chosen to be the second position.
Suppose that the large crossover rate of p,, 0.75, leads to crossover between
01001 and 11011 occurring at the second position. This is shown in Figure
6.2. Note that the strings are partitioned between the first and second bits.
Each child chromosome receives one segment from each of the parents. The
two chromosomes thus formed for the new generation are 0/017 (11) and
11001 (25).

Step 3c: Mutation. Because of the low mutation rate, suppose that none of
the genes for 01011 or 11001 are mutated. We now have two chromosomes
in our new population. We need two more, so we cycle back to step 3a.

Step 3a: Selection. Suppose that this time, chromosomes 0/001 (9) and 00100
(4) are selected by the roulette wheel method.

Step 3b: Crossover. However, this time suppose that crossover does not take
place. Thus, clones of these chromosomes become members of the new gener-
ation, 01001 and 00100. We now have n = 4 members in our new population.

e Step 4. The new population of chromosomes therefore replaces the current

population.

e Step 5. We iterate back to step 2.

Current 0|1 0 0 1 I |1 0 1 1
Generation :
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Figure 6.2 Performing crossover at locus two on the first two parents.
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TABLE 6.2 Fitness and Probability of Selection for the Second Generation

Decimal Selection
Chromosome Value Fitness Probability
00100 4 0.001108 0.014527
01001 9 0.021569 0.282783
01011 11 0.045662 0.598657
11001 25 0.007935 0.104033

Second Iteration

e Step 2: The fitness f(x) is calculated for each chromosome in the population
(Table 6.2).

o Step 3a: Selection. The sum of the fitness values for the second generation is
> f(x;) = 0.076274, which means that the average fitness among the chro-
mosomes in the second generation is three times that of the first generation.
The selection probabilities are calculated and shown in Table 6.2.

We ask you to continue this example in the exercises.

MODIFICATIONS AND ENHANCEMENTS: SELECTION

For the selection operator, the analyst should be careful to balance fitness with diver-
sity. If fitness is favored over variability, a set of highly fit but suboptimal chromosomes
will dominate the population, reducing the ability of the GA to find the global op-
timum. If diversity is favored over fitness, model convergence will be too slow. For
example, in the first generation above, one particular gene 01001 (9) dominated the
fitness measure, with over 86% of the selection probability. This is an example of
selection pressure, and a potential example of the crowding phenomenon in genetic
algorithms, where one particular chromosome that is much fitter than the others be-
gins to reproduce, generating too many clones and similar copies of itself in future
generations. By reducing the diversity of the population, crowding impairs the ability
of the genetic algorithm to continue to explore new regions of the search space.

A variety of techniques are available to handle crowding. De Jong [3] suggested
that new-generation chromosomes should replace the individual most similar to itself
in the current generation. Goldberg and Richardson [4] posited a fitness-sharing
function, where a particular chromosome’s fitness was decreased by the presence
of similar population members, where the more similarity, the greater the decrease.
Thus, diversity was rewarded.

Changing the mating conditions can also be used to increase population di-
versity. Deb and Goldberg [5] showed that if mating can take place only between
sufficiently similar chromosomes, distinct “mating groups” will have a propensity
to form. These groups displayed low within-group variation and high between-
group variation. On the other hand, Eshelman [6] and Eshelman and Schaffer [7]
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investigated the opposite strategy by not allowing matings between chromosomes
that were sufficiently alike. The result was to maintain high variability within the
population as a whole.

Sigma scaling, proposed by Forrest [8], maintains the selection pressure at a
relatively constant rate by scaling a chromosome’s fitness by the standard deviation
of the fitnesses. If a single chromosome dominates at the beginning of the run, the
variability in fitnesses will also be large, and scaling by the variability will reduce
the dominance. Later in the run, when populations are typically more homogeneous,
scaling by this smaller variability will allow the highly fit chromosomes to reproduce.
The sigma-scaled fitness is as follows:

(x)—p
fsigma scaled(X) =1+ %

!

where 1 ¢ and oy refer to the mean fitness and standard deviation of the fitnesses for
the current generation.

Boltzmann selection varies the selection pressure, depending on how far along
in the run the generation is. Early on, it may be better to allow lower selection
pressure, allowing the less fit chromosomes to reproduce at rates similar to the fitter
chromosomes, thereby maintaining a wider exploration of the search space. Later in
the run, increasing the selection pressure will help the GA to converge more quickly
to the optimal solution, hopefully the global optimum. In Boltzmann selection, a
temperature parameter T is gradually reduced from high levels to low levels. A
chromosome’s adjusted fitness is then found as follows:

exp(f(x)/T)
mean[exp( f(x)/T)]

As the temperature falls, the difference in expected fitness increases between high-fit
and low-fit chromosomes.

Elitism, developed by De Jong [3], refers to the selection condition requiring
that the GAs retain a certain number of the fittest chromosomes from one generation to
the next, protecting them against destruction through crossover, mutation, or inability
to reproduce. Michell [2], Haupt and Haupt [9], and others report that elitism greatly
improves GA performance.

Rank selection ranks the chromosomes according to fitness. Ranking avoids the
selection pressure exerted by the proportional fitness method, but it also ignores the ab-
solute differences among the chromosome fitnesses. Ranking does not take variability
into account and provides a moderate adjusted fitness measure, since the probability
of selection between chromosomes ranked & and k + 7 is the same regardless of the
absolute differences in fitness.

Tournament ranking is computationally more efficient than rank selection while
preserving the moderate selection pressure of rank selection. In tournament ranking,
two chromosomes are chosen at random and with replacement from the population.
Let ¢ be a constant chosen by the user to be between zero and 1 (e.g., 0.67). A
random number r, 0 <r < 1, is drawn. If r < c, the fitter chromosome is selected
for parenthood; otherwise, the less fit chromosome is selected.

fBollzmann (x) =
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MODIFICATIONS AND ENHANCEMENTS: CROSSOVER

Multipoint Crossover

The single-point crossover operator that we have outlined here suffers from what is
known as positional bias. That is, the performance of the genetic algorithm depends,
in part, on the order in which the variables occur in the chromosome. So genes in
loci 1 and 2 will often be crossed over together, simply because of their proximity to
each other, whereas genes in loci 1 and 7 will rarely cross over together. Now, if this
positioning reflects natural relationships within the data and among the variables, this
is not such a concern, but such a priori knowledge is relatively rare. The solution is
to perform multipoint crossover, as follows. First, randomly select a set of crossover
points, and split the parent chromosomes at those points. Then, to form the children,
recombine the segments by alternating between the parents, as illustrated in Figure 6.3.

Uniform Crossover

Another alternative crossover operator is uniform crossover. In uniform crossover,
the first child is generated as follows. Each gene is randomly assigned to be that of
either one or the other parent, with 50% probability. The second child would then take
the inverse of the first child. One advantage of uniform crossover is that the genes
inherited are independent of position. Uniform crossover is illustrated in Figure 6.4. A
modified version of uniform crossover would be to allow the probabilities to depend
on the fitness of the respective parents.

Eiben and Smith [10] discuss the roles of crossover and mutation, and the
cooperation and competition between them with respect to the search space. They
describe crossover as explorative, discovering promising new regions in the search
space by making a large jump to a region between the two parent areas. They describe
mutation as exploitative, optimizing present information within an already discovered
promising region, creating small random deviations and thereby not wandering far
from the parents. Crossover and mutation complement each other, since only crossover
can bring together information from both parents, and only mutation can introduce
completely new information.

Parents

[ ] [ ] [ ]
[oJofo[ofofofofo[ofoofo[o[ofo]0]

|1\1\1\1I1|1|1|1|1I1|1|1\1\1I1\1|

Children

[oJofofofrf1]a]af1]ofofofofof1]1]

[afafafalofolofofofafrfa]1]1]o]0]
Figure 6.3 Multipoint crossover.
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Figure 6.4 Uniform crossover.

GENETIC ALGORITHMS FOR REAL-VALUED VARIABLES

The original framework for genetic algorithms was developed for binary-encoded
data, since the operations of crossover and mutation worked naturally and well with
such data. However, most datamining data come in the form of real numbers, often
with many decimals’ worth of precision. Some analysts have tried quantizing the real-
valued (continuous) data into binary form. However, to reexpress the real-valued data
in binary terms will necessarily result in a loss of information, due to the degradation
in precision caused by rounding to the nearest binary digit. To combat this loss in
precision, each binary chromosome would need to be made longer, adding digits that
will inevitably impair the speed of the algorithm. Therefore, methods for applying
GAs directly to real-valued data have been investigated. Eiben and Smith [10] suggest
the following methods for performing the crossover operation.

Single Arithmetic Crossover

Let the parents be (x;, x3, ..., x,) and (y1, y2, ..., Y. Pick the kth gene at random.
Then let the first child be of the form (xy, x2, ..., @y + (1 — &)xg, ..., x,) and the
second child be of the form (y;, y2, ..., 0xx + (1 — )V, ..., yu), for 0 <o < 1.
For example, let the parents be (0.5, 1.0, 1.5, 2.0) and (0.2, 0.7, 0.2, 0.7), leto = 0.4,
and select the third gene at random. Then, single arithmetic crossover would produce
the first child to be (0.5, 1.0, (0.4)(0.2) + (0.6)(1.5), 2.0) = (0.5, 1.0, 0.98, 2.0), and
the second child to be (0.2, 0.7, (0.4)(1.5) + (0.6)(0.2), 0.7) = (0.2, 0.7, 0.72, 0.7).

Simple Arithmetic Crossover

Let the parents be (x;, x7, ..., x,) and (y;, ¥2, ..., V). Pick the kth gene at random,
and mix values for all genes at this point and beyond. That is, let the first child be of
the form (xi, x2, ...,y + (1 — @)xg, ..., @y, + (I —a)x,), and the second child
be of the form (yi, y2, ..., axy + (I —a&)yr, ..., ax, + (1 —)y,), for 0 <o < 1.
For example, let the parents be (0.5, 1.0, 1.5, 2.0) and (0.2, 0.7, 0.2, 0.7), let
a = 0.4, and select the third gene at random. Then, simple arithmetic crossover
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would produce the first child to be

(0.5, 1.0, (0.4)(0.2) + (0.6)(1.5), (0.4)(0.7) + (0.6)(2.0))
= (0.5, 1.0, 0.98, 1.48),

and the second child to be

(0.2, 0.7, (0.4)(1.5)+ (0.6)(0.2), (0.4)(2.0) + (0.6)(0.7))
= (0.2, 0.7, 0.72, 1.22).

Whole Arithmetic Crossover

Let the parents be (x;, x2, ..., x,) and (y;, y2, ..., y,). Perform the mixture above
to the entire vector for each parent. The calculation of the child vectors is left as an
exercise. Note that for each of these arithmetic crossover techniques, the affected genes
represent intermediate points between the parents’ values, with & = 0.5 generating
the mean of the parents’ values.

Discrete Crossover

Here, each gene in the child chromosome is chosen with uniform probability to
be the gene of one or the other of the parents’ chromosomes. For example, let the
parents be (0.5, 1.0, 1.5, 2.0) and (0.2, 0.7, 0.2, 0.7); one possible child could
be (0.2, 0.7, 1.5, 0.7), with the third gene coming directly from the first parent and
the others coming from the second parent.

Normally Distributed Mutation

To avoid converging too quickly toward a local optimum, a normally distributed “ran-
dom shock” may be added to each variable. The distribution should be normal, with
a mean of zero and a standard deviation of o, which controls the amount of change
(since most random shocks will lie within one o of the original variable value). If the
resulting mutated variable lies outside the allowable range, its value should be reset so
that it lies within the range. If all variables are mutated, clearly p,, = 1 in this case. For
example, suppose that the mutation distribution is normal(;t = 0, 0 = 0.1), and that
we wish to apply the mutation to the child chromosome from the discrete crossover ex-
ample, (0.2, 0.7, 1.5, 0.7). Assume that the four random shocks generated from this
distribution are 0.05, —0.17, —0.03, and 0.08. Then, the child chromosome becomes
(0.2+0.05, 0.7—-0.17, 1.5—-0.03, 0.7 +0.08) = (0.25, 0.53, 1.47, 0.78).

USING GENETIC ALGORITHMS TO TRAIN A
NEURAL NETWORK

A neural network consists of a layered, feedforward, completely connected network of
artificial neurons, or nodes. Neural networks are used for classification or estimation.
See Mitchell [11], Fausett [12], Haykin [13], Larose [14], or Reed and Marks [15]
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Figure 6.5 Simple neural network.

for details on neural network topology and operation. Figure 6.5 provides a basic
diagram of a simple neural network. The feedforward nature of the network restricts
the network to a single direction of flow and does not allow looping or cycling. The
neural network is composed of two or more layers, although most networks consist of
three layers: an input layer, a hidden layer, and an output layer. There may be more
than one hidden layer, although most networks contain only one, which is sufficient
for most purposes. The neural network is connected completely, meaning that every
node in a given layer is connected to every node in the next layer, although not to other
nodes in the same layer. Each connection between nodes has a weight (e.g., Wia)
associated with it. At initialization, these weights are randomly assigned to values
between zero and 1.

How does the neural network learn? Neural networks represent a supervised
learning method, requiring a large training set of complete records, including the
target variable. As each observation from the training set is processed through the
network, an output value is produced from the output node (assuming that we have
only one output node). This output value is then compared to the actual value of
the target variable for this training set observation, and the error (actual — output) is
calculated. This prediction error is analogous to the residuals in regression models.
To measure how well the output predictions are fitting the actual target values, most
neural network models use the sum of squared errors:

SSE = Z Z (actual — output)2

records output nodes

where the squared prediction errors are summed over all the output nodes and over
all the records in the training set.

The problem is therefore to construct a set of model weights that will minimize
this SSE. In this way, the weights are analogous to the parameters of a regression
model. The “true” values for the weights that will minimize SSE are unknown, and
our task is to estimate them given the data. However, due to the nonlinear nature of
the sigmoid functions permeating the network, there exists no closed-form solution
for minimizing SSE, as there exists for least-squares regression. Most neural network
models therefore use back-propagation, a gradient-descent optimization method, to
help find the set of weights that will minimize SSE. Back-propagation takes the
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prediction error (actual — output) for a particular record and percolates the error
back through the network, assigning partitioned “responsibility” for the error to the
various connections. The weights on these connections are then adjusted to decrease
the error, using gradient descent.

However, since finding the best set of weights in a neural network is an optimiza-
tion task, GAs are wonderfully suited to doing so. The drawbacks of back-propagation
include the tendency to become stuck at local minima (since it follows a single route
through the weight space) and the requirement to calculate derivative or gradient in-
formation for each weight. Also, Unnikrishnan et al. [16] state that improper selection
of initial weights in back-propagation will delay convergence. Genetic algorithms, on
the other hand, perform a global search, lessening the chances of becoming caught
in a local minimum, although of course there can be no guarantees that the global
minimum has been obtained. Also, GAs require no derivative or gradient information
to be calculated. However, neural networks using GAs for training the weights run
more slowly than traditional neural networks using back-propagation.

Genetic algorithms apply a much different search strategy than back-
propagation. The gradient descent methodology in back-propagation moves from one
solution vector to another vector that is quite similar. The genetic algorithm search
methodology, however, can shift much more radically, generating a child chromosome
that may be completely different than that of either parent. This behavior decreases
the probability that GAs will become stuck in local optima.

Huang et al. [17] apply a neural network optimized with a genetic algorithm
to forecast financial distress in life insurance companies. Unnikrishnan et al. [16]
used genetic algorithms to optimize the weights in a neural network, which was used
to model a three-dimensional ultrasonic positioning system. They represented the
network weights in the form of chromosomes, similar to Table 6.3 for the chromosome
for the neural network weights in Figure 6.5. However, their chromosome was 51
weights long, reflecting their 5-4-4-3 topology of five input nodes, four nodes in
each of two hidden layers, and three output nodes. The authors cite the length of the
chromosome as the reason the model was outperformed by both a back-propagation
neural network and a traditional linear model.

Montana and Davis [18] provide an example of using genetic algorithms to
optimize the weights in a neural network (adapted here from Mitchell [2]). Their
research task was to classify “lofargrams” (underwater sonic spectrograms) as either
interesting or not interesting. Their neural network had a 4-7-10-1 topology, giving
a total of 126 weights in their chromosomes. The fitness function used was the usual
neural network metric,

SSE = Z Z (actual — output)2

records output nodes

except that the weights being adjusted represented the genes in the chromosome.

TABLE 6.3 Chromosome Representing Weights from Neural Network in Figure 6.5

Wia Wig Waa Wap Wia Wip Woa Wop  Waz Wz Wy
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TABLE 6.4 Neural Network Weights Indicating Results of Crossover

Wia  Wip Wax Wap  Wix Wipg Woa Wopg Wiz Wiz Wiz

Parent1 0.1 —-02 07 —-0.6 04 09 -01 03 -05 08 02
Parent2 02 —-04 05 —-05 03 07 -02 01 =06 09 -03
Child 01r -04 07 -05 04 07 -01 01 -06 09 =03

For the crossover operator, they used a modified discrete crossover. Here, for
each noninput node in the child chromosome, a parent chromosome is selected at
random, and the incoming links from the parent are copied to the child for that partic-
ular node. Thus, for each pair of parents, only one child is created. For the mutation
operator, they used a random shock similar to the normal distribution mutation shown
above. Because neural network weights are constrained to lie between —1 and 1, the
resulting weights after application of the mutation must be checked so that they do
not stray outside this range.

The modified discrete crossover is illustrated in Table 6.4 and Figure 6.6. In this
example, the weights incoming to node A are supplied by parent 1, and the weights
incoming to nodes B and Z are supplied by parent 2 (shaded). The random shock
mutation is illustrated in Table 6.5 and Figure 6.7. In this example, the mutation was
applied to the weights incoming to node B only for the child generated from the
crossover operation. The new weights are not far from the old weights. Montana and
Davis’s GA-based neural network outperformed a back-propagation neural network
despite a total of 126 weights in their chromosomes.

WEKA: HANDS-ON ANALYSIS USING
GENETIC ALGORITHMS

This exercise explores the use of WEKA’s Genetic Search class to optimize (choose) a
subset of inputs used to classify patients as having either benign or malignant forms of
breast cancer. The input file breast-cancer.arff used in our experiment is adapted from
the Wisconsin Breast Cancer Database [19]. Breast-cancer.arff contains 683 instances
after deleting 16 records containing one or more missing values. In addition, it contains
nine numeric inputs (“sample code number” attribute deleted) and a target attribute
class which takes on values 2 (benign) and 4 (malignant). Table 6.6 shows the ARFF
header and first 10 instances from breast-cancer.arff:
Next, we load the input file and become familiar with the class distribution.

1. Open the WEKA Explorer panel.

2. From the Preprocess tab, press Open file and specify the path to the input file,
breast-cancer.arff.

3. Under Attributes (lower left), select the class attribute from the list.

The WEKA Preprocess Tab displays the distribution for class and indicates
that 65% (444/683) of the records have value 2 (benign), while the remaining 35%
(239/683) have value 4 (malignant), as shown in Figure 6.8.
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Figure 6.6 Crossover in neural network weights.

Next, let’s establish a baseline and classify the records using naive Bayes with
10-fold cross validation, where all nine attributes are input to the classifier.
1. Select the Classify Tab.
2. Under Classifier, press the Choose button.
3. Select Classifiers — Bayes — Naive Bayes from the navigation hierarchy.

4. By default, under Test options, notice that WEKA specifies Cross-validation.
We’ll use this option for our experiment because we have a single data file.

5. Click Start.
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TABLE 6.5 Weights Before and After Mutation

Wia  Wip Wax  Wap  Win Wig Woa  Wop Wiz Wiz Wyz

Before 0.1 —-04 0.7 -0.5 0.4 0.7 —0.1 0.1 -06 09 -03
Shock None —0.05 None —0.07 None 0.02 None None None None None
After 0.1 -045 07 —-057 04 072 -0.1 0.1 -06 09 -03

The results in the Classifier output window show that naive Bayes achieves a
very impressive 96.34% (658/683) classification accuracy. This obviously leaves little
room for improvement. Do you suppose that all nine attributes are equally important
to the task of classification? Is there possibly a subset of the nine attributes, when
selected as input to naive Bayes, which leads to improved classification accuracy?

Before determining the answers to these questions, let’s review WEKA’s ap-
proach to attribute selection. It’s not unusual for real-word data sets to contain irrel-
evant, redundant, or noisy attributes, which ultimately contribute to degradation in
classification accuracy. In contrast, removing nonrelevant attributes often leads to im-
proved classification accuracy. WEKA’s supervised attribute selection filter enables
a combination of evaluation and search methods to be specified, where the objective
is to determine a useful subset of attributes as input to a learning scheme.

Network before Mutation

Network after Mutation of Weights Incoming to Node B

éW0A=-0.1

Figure 6.7 Mutation in neural network weights.
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TABLE 6.6 Breast Cancer Input File breast-cancer.arff

@relation breast-cancer.arff

@attribute clump-thickness numeric
@attribute uniform-cell-size numeric
@attribute uniform-cell-shape numeric
@attribute marg-adhesion numeric
@attribute single-cell-size numeric
@Qattribute bare-nuclei numeric
@attribute bland-chromatin numeric
@attribute normal-nucleoli numeric
@Qattribute mitoses numeric
@attribute class {2,4}
@data

5,1,1,1,2,1,3,1,1,2
5,4,4,5,7,10,3,2,1,2
3,1,1,1,2,2,3,1,1,2
6,8,8,1,3,4,3,7,1,2
4,1,1,3,2,1,3,1,1,2
8,10,10,8,7,10,9,7,1,4
1,1,1,1,2,10,3,1,1,2
2,1,2,1,2,1,3,1,1,2
2,1,1,1,2,1,1,1,5,2
4,2,1,1,2,1,2,1,1,2

WEKA contains a Genetic Search class with default options that include a
population size of n = 20 chromosomes, crossover probability p. = 0.6, and mutation
probability p,, = 0.033. Figure 6.9 shows the default options available in the Genetic
Search dialog. As specified, the Genetic Search algorithm creates an initial set of 20
chromosomes. An individual chromosome in the initial population may consist of the
attribute subset

[1]4]6][7]9]

where each of the five genes represents an attribute index. For example, the first gene
in our example chromosome is the attribute clump-thickness, as represented by its
index position = 1. In our configuration the WrapperSubsetEval evaluation method
serves as the fitness function f(x) and calculates a fitness value for each chromosome.

WrapperSubsetEval evaluates each of the attribute subsets (chromosomes) ac-
cording to a specified learning scheme. In the example below we’ll specify naive
Bayes. In this way, the usefulness of a chromosome is determined as a measure of
the classification accuracy reported by naive Bayes. In other words, the chromosomes
leading to higher classification accuracy are more relevant and receive a higher fitness
score.

Now, let’s apply WEKA'’s Genetic Search class to our attribute set. To accom-
plish this task, we first have to specify the evaluator and search options for attribute
selection.
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Figure 6.9 Genetic search dialog.
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Figure 6.10 AttributeSelection dialog.

1. Select the Preprocess Tab.
2. Under Filter, press the Choose button.

3. Select Filters — Supervised — Attribute — AttributeSelection from the navi-
gation hierarchy. As a result, the text “AttributeSelection ...” is shown next to
the Choose button.

4. Now, click on the text “AttributeSelection ...”.

The AttributeSelection dialog appears as shown in, Figure 6.10, where the
default Evaluator and Search methods are displayed. Next, we’ll override these default
options by specifying new evaluator and search methods.

1. Next to evaluator, press the Choose button.
2. Select AttributeSelection — WrapperSubsetEval from the navigation hierarchy.

3. Click on the text “WrapperSubsetEval” next to the evaluator Choose button. The
WrapperSubsetEval dialog appears as shown in Figure 6.11. By default, WEKA
specifies the ZeroR classifier.

¢ weka.gui.GenericObjectEditor 1 EE | glﬁ]

waka attributeSstection WrapperSubselEval

[ About

WrapperSubsetEval: Mare | ‘

Evaluates atiribule sels by using a learning scheme.

tods |5

seed |1

theeshold |0.01

Figure 6.11 WrapperSubsetEval dialog.
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4. Press the Choose button, next to classifier.
5. Select Classifiers — Bayes — Naive Bayes from the navigation hierarchy.

6. Click OK to close the WrapperSubsetEval dialog. The evaluation method for
AttributeSelection is now specified.

7. On the AttributeSelection dialog, press the Choose button next to search.
8. Select AttributeSelection — GeneticSearch from the navigation hierarchy.
9. Press OK to close the AttributeSelection dialog.

The evaluator and search methods for attribute selection have been specified;
however, our changes haven’t yet been applied to our data set.

10. Press the Apply button on the right side of the Explorer panel.

After processing the command, WEKA displays updated results in the Explorer
panel. In particular, under Attributes, notice the list now shows seven predictor at-
tributes. That is, the two attributes single-cell-size and mitoses have been removed
from the attribute list. Let’s reclassify the records using naive Bayes with 10-fold
cross-validation; however, this time only seven attributes are input to the classifier.

1. Select the Classify Tab.
. Under Classifier, press the Choose button.
. Select Classifiers — Bayes — Naive Bayes from the navigation hierarchy.
. Cross-validation is specified.
. Click Start.

wnm A W

Now, naive Bayes reports 96.78% (661/683) classification accuracy, which in-
dicates that the second model outperforms the first model by almost 0.05% (96.78%
versus 96.34%). That is, classification accuracy has increased where only seven of
the nine attributes are specified as input. Although these results do not show a dra-
matic improvement in accuracy, this simple example has demonstrated how WEKA'’s
Genetic Search algorithm can be included as part of an attribute selection approach.

Let’s further examine the results reported by WEKA’s Genetic Search method,
where the characteristics of the candidate population are described. The following
procedures should look similar to those performed above. This time, however, we’re
invoking the attribute selection filter from WEKA'’s Select attributes Tab, which pro-
vides detailed output.

1. Return to the Preprocess Tab on the Explorer panel.

2. Press the Undo button (top right). This removes the filter we applied to the data
set earlier.

. Select the Select attributes Tab from the Explorer panel.
. Under Attribute Evaluator, press the Choose button.

. Select AttributeSelection — WrapperSubsetEval from the navigation hierarchy.

A Ut A W

. Click on the text “WrapperSubsetEval...” to open the WrapperSubsetEval di-
alog.
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TABLE 6.7 Attributes Selected by the Attribute Selection Method

Selected attributes: 1,2,3,4,6,7,8 : 7
clump-thickness
uniform-cell-size
uniform-cell-shape
marg-adhesion
bare-nuclei
bland-chromatin
normal-nucleoli

7. Press the Choose button next to the classifier.

8. Select Classifiers — Bayes — Naive Bayes from the navigation hierarchy. Now
the evaluator is specified.

9. Under Search Method, press the Choose button.

10. Select AttributeSelection — GeneticSearch from the navigation hierarchy.

Now, the attribute selection evaluator and search methods are specified. By
default, under Attribute Selection Mode, WEKA specifies Use full training set. Click
the Start button to select the attributes. WEKA reports results in the Attribute selection
output window and includes the attributes it selected, as shown in Table 6.7.

Not surprisingly, this is the same list of attributes that we derived earlier using
the attribute selection method. In other words, notice that single-cell-size and mitoses
are not included in the attribute subset. By default, the Genetic Search method specifies
default options report frequency = 20 and max generations = 20, which cause WEKA
to report population characteristics for the initial and final populations. For example,
the initial population characteristics for the 20 chromosomes are shown in Table 6.8.

Here, each subset is a chromosome and merit is the fitness score reported by
naive Bayes, which equals the corresponding classification error rate. For example,
consider the chromosome {4, 6, 7, 9} reported in Table 6.8 with merit 0.053; this value
corresponds’ to the classification error rate reported by naive Bayes using fivefold
cross-validation when {4, 6, 7, 9} are specified as input.

Also, each chromosome’s scaled fitness is reported in the scaled column, where
WEKA uses the linear scaling technique to scale the values. By definition, the raw
fitness and scaled fitness values have the linear relationship f’ = af + b, where f
and f are the scaled and raw fitness values, respectively. The constants a and b are
chosen where f., = fae and fr. = Cmuttfoyg- The constant Cyy represents the
expected number of copies of the fittest individual in the population, and for small
populations is typically set’ to a value in the range 1.2 to 2.0.

Therefore, by computing the average fitness values presented in Table 6.8 we
obtain fu, = 0.055753 and f,,, = 0.055755, which agrees with the rule by which the
constants a and b are chosen. Because the value for Cy,, is not an option in WEKA,
the fitness values from the last two rows from Table 6.8 are selected to solve the

! Actually, this value may differ slightly, due to the value for the WrapperSubsetEval threshold option.
2 WEKA sets this value internally.
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TABLE 6.8 Initial Population Characteristics Reported by a Genetic Search

Initial population

merit scaled subset
0.053 0.05777 4 6 79
0.04978 0.06014 123479
0.03807 0.06873 123469
0.05564 0.05584 6 7 8
0.13177 0 8

0.03953 0.06765 2356738
0.0448 0.06379 2 6

0.09048 0.03028 5 8

0.07028 0.0451 2

0.04275 0.06529 1689
0.04187 0.06593 345¢6 78
0.04275 0.06529 246 78
0.08492 0.03436 4 5

0.0612 0.05176 2 47
0.03865 0.0683 124679
0.03807 0.06873 13469
0.04275 0.06529 367 89
0.05329 0.05756 2 4 8
0.05271 0.05799 147 8
0.04275 0.06529 367 89

simultaneously equations for a and b, according to the relationship f' = a - f + b:

0.05799 = 0.05271a + b
0.06529 = 0.04275a + b

Subtracting the second equation from the first, we obtain

—0.0073 = 0.00996a

_ 00078 0.73293 b =0.096623
T 7000996~ -
We use the definition f,,, = Cimur fave to determine
! 0.06873
Cinult = Jmax _ 000873 _

fwe 0055753

Finally, observe that the fifth row in Table 6.8 has f’ = 0. The raw fitness value of
0.13177 corresponds to the largest classification error in the population produced by
chromosome {8}, and as a result, f’ is mapped to zero to avoid the possibility of
producing negatively scaled fitnesses.

In this exercise we’ve analyzed a simple classification problem where Genetic
Search was used to find an attribute subset that improved naive Bayes classification
accuracy compared to using the full set of attributes. Although this problem has only
nine attributes, there are still 2° — 1 = 511 possible attribute subsets that can be input
to a classifier. Imagine building a classification model from a set of 100 inputs. Here,
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there are 2'% — 1 = 1.27 x 10°° possible attribute subsets from which to choose. In
situations such as these, Genetic Search techniques may prove helpful in determining
useful attribute subsets.

SUMMARY

Genetic algorithms (GAs), developed by John Holland in the 1960s and 1970s, at-
tempt to mimic computationally the processes by which natural selection operates.
Genetic algorithms provide a framework for studying the effects of such biologically
inspired factors as mate selection, reproduction, mutation, and crossover of genetic
information. Three operators are used by genetic algorithms: selection, crossover,
and mutation. The selection operator refers to the method used for selecting which
chromosomes will be reproducing. The fitness function evaluates each of the chro-
mosomes (candidate solutions), and the fitter the chromosome, the more likely it will
be selected to reproduce. The crossover operator performs recombination, creating
two new offspring by randomly selecting a locus and exchanging subsequences to
the left and right of that locus between two chromosomes chosen during selection.
The mutation operator randomly changes the bits or digits at a particular locus in a
chromosome, usually, however, with very low probability. Mutation introduces new
information to the genetic pool and protects against converging too quickly to a local
optimum.

Each member of the population of potential solutions is evaluated for fitness
on each cycle. A new population then replaces the old population using the operators
above, with the fittest members being chosen for reproduction or cloning. Fitness
is measured using a fitness function f(x), a real-valued function operating on the
chromosome (potential solution). For the selection operator, the analyst should be
careful to balance fitness with diversity. If fitness is favored over variability, a set of
highly fit but suboptimal chromosomes will dominate the population, reducing the
ability of the GA to find the global optimum. If diversity is favored over fitness, model
convergence will be too slow.

Crowding occurs when one particular chromosome which is much fitter than
the others begins to reproduce, generating too many clones and similar copies of itself
in future generations. By reducing the diversity of the population, crowding impairs
the ability of the genetic algorithm to continue to explore new regions of the search
space. A variety of techniques are available to handle crowding.

Single-point crossover suffers from positional bias, in which the performance
of the genetic algorithm depends in part on the order that the variables occur in the
chromosome. Multipoint crossover or uniform crossover can be used to alleviate this.

The original framework for genetic algorithms was developed for binary-
encoded data, since the operations of crossover and mutation worked naturally and
well with such data. However, most data mining data come in the form of real num-
bers, often with many decimals worth of precision. Eiben and Smith [10] suggest
the following methods for performing crossover and mutation on continuous data:
single arithmetic crossover, simple arithmetic crossover, whole arithmetic crossover,
discrete crossover, and normally distributed mutation.
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Genetic algorithms are often used to perform optimization within a neural net-

work, as an alternative to the usual back-propagation method. Genetic algorithms have
less of a tendency to become stuck in local minima than do back-propagation methods.
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EXERCISES

Clarifying the Concepts

6.1. Match each of the following genetic algorithm terms with its definition or description.

Term

Definition

(a) Selection
(b) Generation

(c) Crowding

(d) Crossover

(e) Chromosome

(f) Positional bias

(g) Uniform crossover

(h) Mutation

(i) Sigma scaling

(j) Gene

(k) Elitism

(1) Neural network

One of the candidate solutions to the problem.

Scales the chromosome fitness by the standard
deviation of the fitnesses, thereby maintaining
selection pressure at a constant rate.

The operator that determines which chromosomes
will reproduce.

Genes in neighboring loci will often be crossed
together, affecting the performance of the genetic
algorithm.

The operator that introduces new information to the
genetic pool to protect against premature
convergence.

A feedforward, completelyconnected, multilayer
network.

A cycle through the genetic algorithm.

One particularly fit chromosome generates too many
clones and close copies of itself, thereby reducing
population diversity.

The selection condition requiring that the genetic
algorithm retain a certain number of the fittest
chromosomes from one generation to the next.

The operator that performs recombination, creating
two new offspring by combining the parents’
genes in new ways.

Each gene is randomly assigned to be that of either
one parent or the other, with 50% probability.

A single bit of the candidate solution.

6.2. Discuss why the selection operator should be careful to balance fitness with diversity.
Describe the dangers of an overemphasis on each.

6.3. Compare the strengths and weakness of using back-propagation and genetic algorithms
for optimization in neural networks.
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Working with the Data

6.4 Continue the example in the text, where the fitness is determined by the normal (16, 4)
distribution. Proceed to the end of the third iteration. Suppress mutation, and perform
crossover only once, on the second iteration at locus four.

6.5 Calculate the child vectors for the whole arithmetic crossover example in the text.
Use the parents indicated in the section on simple arithmetic crossover, with @ = 0.5.
Comment on your results.

Hands-on Analysis

6.6 (Extra credit) Write a computer program for a simple genetic algorithm. Implement
the example discussed in the text using the normal (16, 4) fitness function. Let the
crossover rate be 0.6 and the mutation rate be 0.01. Start with the population of all
integers 0 to 31. Generate 25 runs and measure the generation at which the optimal
decision of x = 16 is encountered. If you have time, vary the crossover and mutation
rates and compare the results.

6.7 Repeat the procedure using the breast-cancer.arff data set with WEKA by selecting
an attribute subset using Genetic Search. This time, however, specify naive Bayes with
use kernel estimator = true for both attribute selection and 10 fold cross validation.
Now, contrast the classification results using the full set of attributes compared to the
attribute subset selected using Genetic Search. Does classification accuracy improve?
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DATA UNDERSTANDING AND DATA PREPARATION PHASES
MODELING AND EVALUATION PHASES

CROSS-INDUSTRY STANDARD PROCESS FOR
DATA MINING

The case study in this chapter is carried out using the Cross-Industry Standard Process
for Data Mining (CRISP-DM). According to CRISP-DM, a given data mining project
has a life cycle consisting of six phases, as illustrated in Figure 7.1. Note that the
phase sequence is adaptive. That is, the next phase in the sequence often depends on
the outcomes associated with the preceding phase. The most significant dependencies
between phases are indicated by the arrows. For example, suppose that we are in the
modeling phase. Depending on the behavior and characteristics of the model, we may
have to return to the data preparation phase for further refinement before moving
forward to the model evaluation phase. The six phases are as follows:

1. Business understanding phase. The first phase in the CRISP-DM standard
process may also be termed the research understanding phase.

a. Enunciate the project objectives and requirements clearly in terms of the
business or research unit as a whole.

b. Translate these goals and restrictions into the formulation of a data mining
problem definition.

c. Prepare a preliminary strategy for achieving these objectives.

Data Mining Methods and Models By Daniel T. Larose
Copyright © 2006 John Wiley & Sons, Inc.
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Evaluation Phase

Figure 7.1 CRISP-DM is an iterative, adaptive process.

2. Data understanding phase

a.
b.

c.
d.

Collect the data.

Use exploratory data analysis to familiarize yourself with the data, and dis-
cover initial insights.

Evaluate the quality of the data.

If desired, select interesting subsets that may contain actionable patterns.

3. Data preparation phase

a.

c.
d.

This labor-intensive phase covers all aspects of preparing the final data set,
which will be used for subsequent phases, from the initial, raw, dirty data.

Select the cases and variables you want to analyze and that are appropriate
for your analysis.

Perform transformations on certain variables, if needed.

Clean the raw data so that it is ready for the modeling tools.

4. Modeling phase

a.
b.

C.

Select and apply appropriate modeling techniques.
Calibrate model settings to optimize results.

Often, several different techniques may be applied for the same data mining
problem.
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d. Loop back to the data preparation phase as required to bring the form of
the data into line with the specific requirements of a particular data mining
technique.

5. Evaluation phase

a. The modeling phase has delivered one or more models. These models must
be evaluated for quality and effectiveness before we deploy them for use in
the field.

b. Determine whether the model in fact achieves the objectives set for it in
phase 1.

c. Establish whether some important facet of the business or research problem
has not been accounted for sufficiently.

d. Finally, come to a decision regarding the use of the data mining results.
6. Deployment phase

a. Model creation does not signify the completion of the project. Need to make
use of created models according to business objectives.

b. Example of a simple deployment: Generate a report.

c. Example of a more complex deployment: Implement a parallel data mining
process in another department.

d. For businesses, the customer often carries out the deployment based on your
model.

For more on CRISP-DM, see Chapman et al. [1], Larose [2], or www . crisp-dm
.org.

BUSINESS UNDERSTANDING PHASE

Direct Mail Marketing Response Problem

In this detailed case study, our task is to predict which customers are most likely
to respond to a direct mail marketing promotion. The clothing-store data set [3],
located at the book series Web site, represents actual data provided by a clothing store
chain in New England. Data were collected on 51 fields for 28,799 customers. More
information about the data set is provided in the data understanding phase below.

Our data mining task is a classification problem. We are to classify which
customers will respond to a direct mail marketing promotion based on information
collected about the customers. How does this problem fit into the business as a whole?
Clearly, for the clothing store, the overriding objective is to increase profits. Therefore,
the goal of our classification model should also be to increase profits. Model evaluative
measures that assess the effect of the classification model on the business’s bottom
line will therefore be applied. In the following sections we examine this case study
using Clementine 8.5 data mining software, available from SPSS, Inc.

Building the Cost/Benefit Table

Classification models are often evaluated on accuracy rates, error rates, false negative
rates, and false positive rates. These measures can be applied to any classification
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problem. However, for a particular classification problem, these measures may not
select the optimal model. The reason is that each classification problem carries with it
aunique set of costs and benefits, which stem from the particular set of circumstances
unique to that business or research problem.

The cost of a false positive (wrongly predicting positive response) may be low
in certain environments but higher in other environments. For example, in direct
marketing, a false positive may cost no more than a postcard, while in HIV testing,
a false positive on the ELISA test will be more expensive, leading to second-level
HIV testing. (On the other hand, of course, false negatives in HIV testing are very
serious indeed, which is why the ELISA test allows a higher rate of false positives,
to maintain the false negative rate as low as possible.)

In business problems, such as our direct mail marketing problem, company
managers may require that model comparisons be made in terms of cost/benefit anal-
ysis. Recall from Discovering Knowledge in Data: An Introduction to Data Mining 2]
that it is useful to construct a cost/benefit table when performing classification. This is
done to provide model comparison in terms of anticipated profit or loss by associating
a cost or benefit with each of the four possible combinations of correct and incorrect
classifications.

Let us consider each of the four possible decision outcomes (true negative,
true positive, false negative, and false positive) and assign reasonable costs to each
decision outcome.

1. True negative (TN). The model predicted that this customer would not re-
spond to the direct mail marketing promotion, so no postcard was mailed to
him or her. In reality, this customer would not have responded to the pro-
motion. Therefore, the correct decision was made. No costs were incurred,
since no postcard was sent; no sales were made, and no prospective sales were
lost.

2. True positive (TP). The model predicted that this customer would respond to
the direct mail marketing promotion, so a promotion was mailed to him or
her. In reality, this customer would indeed have responded to the promotion.
Therefore, again the correct decision was made. The direct mailing cost, with
materials, postage, and handling, is $2 per promotion unit mailed. However, this
particular TP customer, upon receiving the postcard, would have come into the
store to make purchases. The question then becomes: How much money would
we reasonably expect the customer to spend, and how much of that amount spent
could be considered profit? Table 7.1 shows the statistics associated with the
average amount spent per visit for all 28,799 customers. The mean is $113.59,
which we shall use as our estimate of the amount this customer will spend on the
visit after receiving the promotion. (The median is another reasonable estimate,
which we did not use in this example. By the way, why is the mean larger than
the median? Hint: Check out the maximum: Imagine spending an average of
$1919.88 per visit to a clothing store.) Assume that 25% of this $113.59, or
$28.40, represents profit. Then the benefit associated with this customer is
the profit expected from the visit, $28.40, minus the cost associated with the
mailing, $2.00, that is, $26.40.
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TABLE 7.1 Statistics Associated with the Average
Amount Spent per Visit for All Customers

Count 28,799
Mean 113.588
Minimum 0.490
Maximum 1,919.880
Standard deviation 86.981
Median 92.000

3. False negative (FN). In most marketing problems, which decision error is worse,
a false negative or a false positive? A false positive means that you contacted a
nonresponsive customer, which is not very costly. But a false negative means
that you failed to contact a customer who would have responded positively to
the promotion. This error is much more expensive, and marketing classification
modelers should endeavor to minimize the probability of making this type of
error. What is the cost associated with making a false negative decision in this
case? There is no cost of contact for this customer, since we did not contact
him or her. But had this customer been in fact contacted, he or she would have
responded, and spent money at the clothing store. The estimated amount is the
same as above, $113.59, of which $28.40 would have been profit. Therefore,
the lost profit associated with this customer is $28.40.

4. False positive (FP). False positives are much less serious for marketing models.
Here, the cost associated with contacting a nonresponsive customer is the $2
for postage and handling. We can therefore see that in the context of this par-
ticular problem, a false negative is 28.40 / 2.00 = 14.2 times as expensive as a
false positive.

We may thus proceed to construct the cost/benefit table for this clothing store
marketing promotion example, as shown in Table 7.2. Note that benefit is shown as

TABLE7.2 Cost/Benefit Decision Summary for the Clothing Store
Marketing Promotion Problem

Outcome Classification Actual Response Cost Rationale

True negative Nonresponse Nonresponse $0 No contact, no
lost profit

True positive Response Response —$26.4 Estimated profit
minus cost of
mailing

False negative Nonresponse Response $28.40 Lost profit

False positive Response Nonresponse $2.00 Materials,

postage, and
handling cost
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negative cost. The cost/benefit table in Table 7.2 will be the final arbitrator of which
model we select as optimal for this problem, error rates notwithstanding.

DATA UNDERSTANDING AND DATA
PREPARATION PHASES

Clothing Store Data Set

For this case study we meld together the data understanding and data preparation
phases, since what we learn in each phase immediately affects our actions in the other
phase. The clothing-store data set contains information about 28,799 customers in
the following 51 fields:

e Customer ID: unique, encrypted customer identification

e Zip code

e Number of purchase visits

e Total net sales

e Average amount spent per visit

e Amount spent at each of four different franchises (four variables)
e Amount spent in the past month, the past three months, and the past six months
e Amount spent the same period last year

e Gross margin percentage

¢ Number of marketing promotions on file

e Number of days the customer has been on file

e Number of days between purchases

e Markdown percentage on customer purchases

e Number of different product classes purchased

e Number of coupons used by the customer

¢ Total number of individual items purchased by the customer
e Number of stores the customer shopped at

e Number of promotions mailed in the past year

e Number of promotions responded to in the past year

¢ Promotion response rate for the past year

e Product uniformity (low score = diverse spending patterns)
o Lifetime average time between visits

¢ Microvision lifestyle cluster type

e Percent of returns

e Flag: credit card user

e Flag: valid phone number on file

¢ Flag: Web shopper
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Figure 7.2 Most customers are nonresponders.

e 15 variables providing the percentages spent by the customer on specific
classes of clothing, including sweaters, knit tops, knit dresses, blouses, jackets,
career pants, casual pants, shirts, dresses, suits, outerwear, jewelry, fashion,
legwear, and the collectibles line; also a variable showing the brand of choice
(encrypted)

e Target variable: response to promotion

These data are based on a direct mail marketing campaign conducted last year.
We use this information to develop classification models for this year’s marketing
campaign. In the data understanding phase, we become more familiar with the data
set using exploratory data analysis (EDA) and graphical and descriptive statistical
methods for learning about data. First, what is the proportion of responders to the
direct mail marketing promotion? Figure 7.2 shows that only 4762 of the 28,799
customers, or 16.54%, responded to last year’s marketing campaign (1 indicates
response, 0 indicates nonresponse.) Since the proportion of responders is so small,
we may decide to apply balancing to the data prior to modeling.

One of the variables, the Microvision lifestyle cluster type, contains the market
segmentation category for each customer as defined by Claritas Demographics [4].
There are 50 segmentation categories, labeled 1 to 50; the distribution of the most
prevalent 20 cluster types over the customer database is given in Figure 7.3.

The six most common lifestyle cluster types in our data set are:

1. Cluster 10: Home Sweet Home—families, medium-high income and education,
managers/professionals, technical/sales

2. Cluster 1: Upper Crust—metropolitan families, very high income and educa-
tion, homeowners, manager/professionals

3. Cluster 4: Midlife Success—families, very high education, high income, man-
agers/professionals, technical/sales

4. Cluster 16: Country Home Families—Ilarge families, rural areas, medium edu-
cation, medium income, precision/crafts

5. Cluster 8: Movers and Shakers—singles, couples, students, and recent gradu-
ates, high education and income, managers/professionals, technical/sales

6. Cluster 15: Great Beginnings—young, singles and couples, medium-high edu-
cation, medium income, some renters, managers/professionals, technical/sales
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Figure 7.3 The 20 most prevalent Microvision lifestyle cluster types.

Overall, the clothing store seems to attract a prosperous clientele with fairly
high income and education. Cluster 1, Upper Crust, represents the wealthiest of the
50 cluster types and is the second most prevalent category among our customers.

Moving to other variables, we turn to the customer ID. Since this field is unique
to every customer and is encrypted, it can contain no information that is helpful for
our task of predicting which customers are most likely to respond to the direct mail
marketing promotion. It is therefore omitted from further analysis.

The zip code can potentially contain information useful in this task. Although
ostensibly numeric, zip codes actually represent a categorization of the client database
by geographic locality. However, for the present problem, we set this field aside and
concentrate on the remaining variables.

Transformations to Achieve Normality or Symmetry

Most of the numeric fields are right-skewed. For example, Figure 7.4 shows the dis-
tribution of product uniformity, a variable that takes large values for customers who
purchase only a few different classes of clothes (e.g., blouses, legwear, pants) and
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Figure 7.4 Most of the numeric fields are right-skewed, such as product uniformity.

small values for customers who purchase many different classes of clothes. Later we
shall see that high product uniformity is associated with low probability of responding
to the promotion. Figure 7.4 is right-skewed, with most customers having a relatively
low product uniformity measure, while fewer customers have larger values. The cus-
tomers with large values for product uniformity tend to buy only one or two classes
of clothes.

Many data mining methods and models, such as principal components analy-
sis and logistic regression, function best when the variables are normally distributed
or, failing that, at least symmetric. Thus, we therefore apply transformations to all
of the numerical variables that require it, to induce approximate normality or sym-
metry. The analyst may choose from the transformations indicated in Chapter 2,
such as the natural log transformation, the square root transformation, a Box—Cox
transformation, or a power transformation from the ladder of re-expressions. For
our variables which contained only positive values, we applied the natural log trans-
formation. However, for the variables that contained zero values as well as posi-
tive values, we applied the square root transformation, since In(x) is undefined for
x=0.

Figure 7.5 shows the distribution of product uniformity after the natural log
transformation. Although perfect normality is not obtained, the result is nevertheless
much less skewed than the raw data distribution, allowing for smoother application of
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Figure 7.5 Distribution of in product uniformity is less skewed.

several data mining methods and models. Recall that the data set includes 15 variables
providing the percentages spent by the customer on specific classes of clothing, in-
cluding sweaters, knit tops, knit dresses, blouses, and so on. Now, a small percentage
(usually, <1%) of records contain percentage values that are negative. It is not clear
how percentages can take negative values, or what the meaning of these negative
values is, in the context of this problem. Communication with the database analyst
or other domain specialist is in order. However, absent that option, we adjust these
anomalous values upward to zero dollars. Another option would have been to take the
absolute value of these negative amounts, on the assumption that the figures represent
returns of earlier purchases.

Figure 7.6 shows the distribution, after adjustment, of the percentage spent on
blouses. We see a spike at zero, along with the usual right-skewness, which calls
for a transformation. The square root transformation is applied, with results shown
in Figure 7.7. Note that the spike at zero remains, while the remainder of the data
appear nicely symmetric. The dichotomous character of Figure 7.7 motivates us to
derive a flag variable for all blouse purchasers. Figure 7.8 shows the distribution of
this flag variable, with about 58% of customers having purchased a blouse at one time
or another. Flag variables were also constructed for the other 14 clothing percentage
variables.
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Figure 7.8 Distribution of blouse purchasers flag variable.

Standardization and Flag Variables

When there are large differences in variability among the numerical variables, the
data analyst needs to apply standardization. The transformations already applied do
help in part to reduce the difference in variability among the variables, but substantial
differences still exist. For example, the standard deviation for the variable sgrt spend-
ing in the last six months is 10.02, while the standard deviation for the variable sqrz #
coupons used is 0.735. To avoid the greater variability of the sqrt spending in the last
six months variable overwhelming the sqrt # coupons used variable, the numeric fields
should be normalized or standardized. Here, we choose to standardize the numeric
fields, so that they all have a mean of zero and a standard deviation of 1. For each
variable, this is done by subtracting the mean of the variable and dividing by the stan-
dard deviation, to arrive at the z-score. In this analysis, the resulting variable names
are prefixed with a “z” (e.g., z sqrt # coupons used). Other normalization techniques,
such as min-max normalization, may be substituted for z-score standardization if
desired.

Figure 7.9 shows the histogram of the variable z sqrt spending last one month.
Note the spike that represents the majority of customers who have not spent any
money at the store in the past month. For this reason, flag (indicator) variables were
constructed for spending last one month, as well as the following variables:

e Spending at the AM store (one of the four franchises), to indicate which cus-
tomers spent money at this particular store

e Spending at the PS store

¢ Spending at the CC store

¢ Spending at the AX store

¢ Spending in the last three months

e Spending in the last six months

¢ Spending in the same period last year (SPLY)

e Returns, to indicate which customers have ever returned merchandise
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Figure 7.9 Histogram of z sgrt spending last one month motivates us to create a flag variable
to indicate which customers spent money in the past month.

¢ Response rate, to indicate which customers have ever responded to a marketing
promotion before

e Markdown, to indicate which customers have purchased merchandise that has
been marked down

Deriving New Variables

The data preparation phase offers the data miner the opportunity to clarify relation-
ships between variables and to derive new variables that may be useful for the analysis.
For example, consider the following three variables: (1) amount spent (by customer)
in the last month, (2) amount spent in the last three months, and (3) amount spent in
the last six months. Clearly, the amount spent by the customer in the last month is also
contained in the other two variables, the amount spent in the last three months and
the last six months. Therefore, the amount spent in the last month is getting triple-
counted. Now, the analyst may not wish for this most recent amount to be so heavily
weighted. For example, in time-series models, the more recent measurements are the
most heavily weighted. In this case, however, we prefer not to triple-count the most
recent month and must therefore derive two new variables, as shown in Table 7.3.
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TABLE7.3 New Derived Spending Variables

Derived Variable Formula
Amount spent in previous months Amount spent in last three months
2and 3 — amount spent in last one month
Amount spent in previous months Amount spent in last six months
4,5,and 6 — amount spent in last three
months

By “amount spent in previous months 2 and 3”” we mean the amount spent in the
period 90 days to 30 days previous. We shall thus use the following three variables:
(1) amount spent in the last month; (2) amount spent in previous months 2 and 3; and
(3) amount spent in previous months 4, 5, and 6. We omit the following variables:
amount spent in the last three months, and amount spent in the last six months.

Note that even with these derived variables, the most recent month’s spending
may still be considered to be weighted more heavily than any of the other months’
spending. This is because the most recent month’s spending has its own variable,
while the previous two and three month’s spending have to share a variable, as do the
previous four, five, and 6 months spending.

The raw data set may have its own derived variables already defined. Consider
the following variables: (1) number of purchase visits, (2) total net sales, and (3)
average amount spent per visit. The average amount spent per visit represents the
ratio

total net sales

average = —
number of purchase visits

Since the relationship among these variables is functionally defined, it may turn out
that the derived variable is strongly correlated with the other variables. The analyst
should check this. Figure 7.10 shows that there is only weak correlation between the
derived variable average and either of the other variables. On the other hand, the cor-
relation is strong between total net sales and number of purchase visits. This strong
correlation bears watching; we return to this below. By the way, the correlation coef-
ficients between the raw variables should be the same as the correlation coefficients
obtained by the z-scores of those variables.

Exploring the Relationships Between the
Predictors and the Response

We return to the correlation issue later, but first we would like to investigate the
variable-by-variable association between the predictors and the target variable, re-
sponse to the marketing promotion. Ideally, the analyst should examine graphs and
statistics for every predictor variable, especially with respect to the relationship with
the response. However, the huge data sets prevalent in most data mining applications
make this a daunting task. Therefore, we would like to have some way to examine
the most useful predictors in an exploratory framework.
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Figure 7.10 Check to make sure that the derived variable is not correlated with the original
variables.

Of course, choosing the most useful variables is a modeling task, which lies
downstream of our present phase, the EDA-flavored data understanding phase. How-
ever, a very rough tool for choosing some useful variables to examine at this early
phase is correlation. That is, examine the correlation coefficients for each predictor
with the response, and select for further examination those variables that have the
largest absolute correlations, say, |r| > 0.30.

The data miner should, of course, be aware that this is simply a rough EDA tool,
and linear correlation with a 0—1 response variable is not appropriate for inference or
modeling at this stage. Nevertheless, this method can be useful for paring down the
number of variables that would be helpful to examine at the EDA stage. Table 7.4
provides a list of the variables with the highest absolute correlation with the target
variable, response.

We therefore examine the relationship between these selected predictors and
the response variable. First, Figure 7.11 shows a histogram of z In lifetime average
time between visits, with an overlay of response (0 = no response to the promotion).
It appears that records at the upper end of the distribution have lower response rates.
To make the interpretation of overlay results more clearly, we turn to a normalized
histogram, where each bin has the same height, shown in Figure 7.12.

Figure 7.12 makes it clear that the rate of response to the marketing promotion
decreases as the lifetime average time between visits increases. This makes sense,
since customers who visit the store more rarely will presumably be less likely to
respond to the promotion. For the remaining variables from Table 7.4, we examine



280 CHAPTER 7 CASE STUDY: MODELING RESPONSE TO DIRECT MAIL MARKETING

TABLE 7.4 Variables with the Largest Absolute Correlation with the Target
Variable, Response

Variable Correlation Coefficient Relationship
z In lifetime ave time between visits —0.431 Negative
z In purchase visits 0.399 Positive

z In # individual items purchased 0.368 Positive

z In total net sales 0.336 Positive

z In promotions responded in last year 0.333 Positive

z In # different product classes 0.329 Positive

z In # coupons used 0.322 Positive

z In days between purchases —0.321 Negative

the normalized histogram only, to save space. However, the analyst should not depend
on the normalized histograms alone, since these do not display information about the
differing densities in the distribution.

Figure 7.13 shows the normalized histograms for the following variables, z In
purchase visits, z In # individual items purchased, z In total net sales, and z In #
different product classes. All of the relationships show that as the variable increases,
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Figure 7.11 Histogram of z In lifetime average time between visits with response overlay:
may be difficult to interpret.
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Figure 7.12 Normalized histogram of z [n lifetime average time between visits with response
overlay: easier to discern a pattern.

the response rate increases as well. This is not surprising, since we might anticipate
that customers who shop at our stores often, purchase many different items, spend
a lot of money, and buy a lot of different types of clothes might be interested in
responding to our marketing promotion.

Figure 7.14 shows the relationships between the response variable and the
remaining three variables from Table 7.4, z sqrt responded (number of promotions
responded to in the past year), z sqrt # coupons used, and z In days between purchases.
We see that the response rate increases as the number of promotions responded to
increases, just as it does as the number of coupons used increases. However, the
response rate decreases as the number of days between purchases increases. We
might expect that the eight variables from Table 7.4 will turn out, in one form or
another, to be among the best predictors of promotion response. This is investigated
further in the modeling phase.

Next consider Figure 7.15, which shows the normalized version of Figure 7.7,
the histogram of sqrt percentage spent on blouses, this time with an overlay of the
response variable. Note from Figure 7.15 that apart from those who spend nothing on
blouses (the leftmost bin), as the percentage spent on blouses increases, the response
rate decreases. This behavior is not restricted to blouses, and is prevalent among all
the clothing percentage variables (not shown). What this seems to indicate is that



282  CHAPTER 7 CASE STUDY: MODELING RESPONSE TO DIRECT MAIL MARKETING

Razponsa (Targael) Résponss (Targel
| £ -
[N [N
0000 1000 2000 3000 4000 2000 0000 2000 4000
zin pusthase v Zin @ imdiidual e puiehsed

5 0o i
H H
S 2
H H
[ LS
-
Response (Targef) Responss (Targed
= [ | K
N L
al
4000 4000 2000 0000 2000 4000 <2000 -1000 OOOD 1000 2000
= b total Bet waled 2ha @ difeinnt piodinct ¢l hibat

(Grah  Apewonco | Aotations | | Goph  Appewace  Awotstons

Figure 7.13 The response rate increases as the z In number of purchase visits, z In number
of individual items purchased, z In total net sales, and z In number of different product classes
increase.

customers who concentrate on a particular type of clothing, buying only one or two
types of clothing (e.g., blouses), tend to have a lower response rate.

The raw data file contains a variable that measures product uniformity, and based
on the behavior observed in Figure 7.15, we would expect the relationship between
product uniformity and response to be negative. This is indeed the case, as shown
by the normalized histogram in Figure 7.16. The highest response rate is shown by
the customers with the lowest uniformity, that is, the highest diversity of purchasing
habits, in other words, customers who purchase many different types of clothing.

Next, we turn to an examination of the relationship between the response and
the many flag variables in the data set. Figure 7.17 provides a directed web graph
of the relationship between the response (upper right) and the following indicator
variables (counterclockwise from the response): credit card holder, spending months
4,5, and 6, spending months 2 and 3, spending last one month, spending same period
last year, returns, response rate, markdown, Web buyer, and valid phone number on
file. Web graphs are exploratory tools for determining which categorical variables
may be of interest for further study.
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Figure 7.14 The response rate is positively related to the z sqrt number of promotions re-
sponded to, and the z sqrt number of coupons used, but negatively related to the z In number of
days between purchases.
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Figure 7.15 z sqrt percentage spent on blouses, with response overlay.
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Figure 7.16  As customers concentrate on only one type of clothing, the response rate goes
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Figure 7.17 Directed web graph of the relationship between the response and several flag
variables.
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Figure 7.18 Higher response rates are associated with web buyers, credit card holders, cus-
tomers who made a purchase within the past month (lower left), and customers who made a
purchase in the same period last year (lower right).

In this graph, only the true values for the various flags are indicated. The
darkness and solidity of the line connecting the flag variable with the response is
a measure of the association of that variable with the response. In particular, these
connections represent percentages of the frue predictor flag values associated with
the true value of the response. Therefore, more solid connections represent a greater
association with responding to the promotion. Among the most solid connections in
Figure 7.17 are the following: (1) Web buyer, (2) credit card holder, (3) spending
last one month, and (4) spending same period last year. We therefore examine the
normalized distribution of each of these indicator variables, with the response overlay,
as shown in Figure 7.18. The counts (and percentages) shown in Figure 7.18 indicate
the frequencies (and relative frequencies) of the predictor flag values and do not
represent the proportions shown graphically. To examine these proportions, we turn
to the set of results matrices (confusion matrices) in Figure 7.19.

Consider the highlighted cells in Figure 7.19, which indicate the proportions
of customers who have responded to the promotion, conditioned on their flag values.
Credit card holders are about three times as likely as non-credit card holders (28.066%
versus 9.376%) to respond to the promotion. Web buyers (those who have made
purchases via the company’s Web shopping option) are also nearly three times as
likely to respond compared to those who have not made a purchase via the Web
(44.852% versus 15.247%). Customers who have made a purchase in the last month
are nearly three times as likely to respond to the promotion (33.642% versus 11.981%).
Finally, those who made a purchase in the same period last year are twice as likely
to respond than those who did not make a purchase during the same period last year
(27.312% versus 13.141%). We would therefore expect these flag variables to play
some nontrivial role in the model-building phase downstream.
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Figure 7.19 The statistics in these matrices describe the graphics from Figure 7.18.

Recall Figure 7.3, which showed the 20 most common Microvision lifestyle
clusters. What is the relationship between these clusters and the probability of re-
sponding to the direct mail marketing promotion? Figure 7.20 shows the normalized
distribution of the clusters, with response overlay. Somewhat surprisingly, there do
not appear to be any substantial differences in response among the clusters. We return
to this result later during the modeling phase.

Investigating the Correlation Structure Among the Predictors

Recall that depending on the objective of our analysis, we should be aware of the
dangers of multicollinearity among the predictor variables. We therefore investigate
the pairwise correlation coefficients among the predictors and note those correlations
that are the strongest. Table 7.5 contains a listing of the pairwise correlations that are
the strongest in absolute value among the predictors.

Figure 7.21 shows a scatter plot of z In total net sales versus z In number of
items purchased, with a response overlay. The strong positive correlation is evident in
that as the number of items purchased increases, the total net sales tends to increase.

TABLE7.5 Strongest Absolute Pairwise Correlations Among the Predictors

Predictor Predictor Correlation
z In purchase visits z In # different product classes 0.804
z In purchase visits z In # individual items purchased 0.860
z In # promotions on file z In # promotions mailed in last year 0.890
z In total net sales z In # different product classes 0.859
z In total net sales z In # individual items purchased 0.907
z In days between purchase z In lifetime ave time between visits 0.847

z In # different product classes z In # individual Items purchased 0.930
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Figure 7.20 There are no substantial differences in promotion response among the 20 most
prevalent microvision lifestyle cluster types.

Of course, such a relationship makes sense, since purchasing more items would
presumably tend to result in spending more money. Also, at the high end of both
variables (the upper right), responders tend to outnumber nonresponders, while at the
lower end (the lower left), the opposite is true.

For an example of a negative relationship, we may turn to Figure 7.22, the
scatter plot of z gross margin percentage versus z markdown, with response overlay.
The correlation between these variables is —0.772, so they did not make the list
in Table 7.5. In the scatter plot, it is clear that as markdown increases, the gross
margin percentage tends to decrease. Note that the markdown variable seems to have
a floor, presumably associated with customers who never buy anything on sale. The
relationship with response is less clear in this scatter plot than in Figure 7.21.

A convenient method for examining the relationship between categorical vari-
ables and response is a cross-tabulation, using a function of the response instead of raw
cell counts. For example, suppose that we are interested in the relationship between
response to the promotion and two types of customers: those who have purchased
sweaters and those who have made a purchase within the last month. Figure 7.23
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Figure 7.21 Scatter plot of z In total net sales versus z In number of items purchased, with
response overlay.
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Figure 7.22 Negative relationship between z gross margin percentage and z markdown.



MODELING AND EVALUATION PHASES 289

i Matrix of flag sweaters FFIEI

(ZlFile |”| Edit @ Generate
flag spending last one month
flag sweaters F | T | |
F 0.060 0.194|
T 0. ‘EdEI 0.357|

Cells contain; Mean of Respond (Target)

Figure 7.23 Cross-tabulation of spending within the last month versus sweater purchase,
with cell values representing promotion response percentages.

contains such a cross-tabulation, with the cells representing the mean value of the
target variable (response). Since the target represents a dichotomous variable, the
means therefore represent proportions.

Thus, in the cross-tabulation, we see that customers who have neither bought
sweaters nor made a purchase in the last month have only a 0.06 probability of
responding to the direct-mail marketing promotion. On the other hand, customers
who have both bought a sweater and made a purchase in the last month have a 0.357
probability of responding positively to the promotion. If a customer has a true flag
value for exactly one of the two predictors, the spending last one month variable is
slightly more indicative of promotion response than is the sweaters variable (0.194
versus 0.146 probability, respectively).

MODELING AND EVALUATION PHASES

Of course, exploratory data analysis is fun and can provide many useful insights.
However, it is time now to move on to the formal modeling stage so that we may
bring to bear on our promotion response problem the suite of data mining classification
algorithms. An outline of our modeling strategy is as follows:

¢ Partition the data set into a training data set and a test data set.

¢ Provide a listing of the inputs to all models.

e Apply principal components analysis to address multicollinearity.
e Apply cluster analysis and briefly profile the resulting clusters.

Balance the training data set to provide the algorithms with similar numbers of
records for responders and nonresponders.

Establish the baseline model performance in terms of expected profit per cus-
tomer contacted, in order to calibrate the performance of candidate models.
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e Apply the following classification algorithms to the training data set:

o Classification and regression trees (CARTS)
© (5.0 decision tree algorithm
o Neural networks
o Logistic regression
e Evaluate each of these models using the test data set.

e Apply misclassification costs in line with the cost—benefit table defined in the
business understanding phase.

e Apply overbalancing as a surrogate for misclassification costs, and find the
most efficacious overbalance mixture.

e Combine the predictions from the four classification models using model voting.

e Compare the performance of models that use principal components with mod-
els that do not use the components, and discuss the role of each type of
model.

Because our strategy calls for applying many models that need to be evaluated
and compared, we hence move fluidly back and forth between the modeling phase
and the evaluation phase. First we partition the data set into a training data set and a
test data set. Figure 7.24 shows one method of accomplishing this using Clementine
8.5. A new variable is defined, training test, which is distributed uniformly between
zero and 1. The rectangle attached to the node indicates that the data cache has been
set; this is necessary so that the same records will be assigned to each partition every
time the process is run.

The data miner decides the proportional size of the training and test sets, with
typical sizes ranging from 50% training/50% test, to 90% training/10% test. In this
case study we choose a partition of approximately 75% training and 25% test. In
Clementine this may be done by selecting those records whose training test value is
at most 0.75 and outputting those records to a file, in this case called Case Study 1
Training Data Set. Similarly, the remaining records are output to the Case Study 1
Test Data Set.

G-@—~® -k

Training Test Type Select Case Study 1 Trainin..
(==
==

Select Case Study 1 Test Da..

Figure 7.24 Partitioning the data set into a training data set and a test data set.
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Figure 7.25 Input variables for classification models.

The analyst should always provide the client or end user with a comprehensive
listing of the inputs to the models. These inputs should include derived variables,
transformed variables, or raw variables, as well as principal components and cluster
membership, where appropriate. Figure 7.25 contains a list of all the variables input
to the classification models analyzed in this case study.

Note that all of the numeric (range) variables have been both transformed and
standardized, that many flag variables have been derived, and that only two nonflag
categorical variables remain, brand, and lifestyle cluster. In fact, only a handful of
variables remain untouched by the data preparation phase, including the flag variables
Web buyer and credit card holder. Later, when the principal components and clusters
are developed, we shall indicate for which models these are to be used for input.
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Principal Components Analysis

Recall Table 7.5, which listed the strongest pairwise correlations found among the
predictors. Bear in mind that strongly correlated predictors lead to multicollinearity,
as discussed earlier. Depending on the primary objective of the business or research
problem, the researcher may decide to substitute the principal components for a
particular collection of correlated predictors.

e If the primary objective of the business or research problem pertains solely
to estimation, prediction, or classification of the target variable, with no inter-
est whatsoever in the characteristics of the predictors (e.g., customer profil-
ing), substitution of the principal components for the collection of correlated
predictors is not strictly required. As noted in Chapter 3, multicollinear-
ity does not significantly affect point or interval estimates of the target
variable.

e However, if the primary (or secondary) objective of the analysis is to assess or
interpret the effect of the individual predictors on the response or to develop
a profile of likely responders based on their predictor characteristics, substitu-
tion of the principal components for the collection of correlated predictors is
strongly recommended. Although it does not degrade prediction accuracy, mul-
ticollinearity nevertheless plays havoc with the individual predictor coefficients,
such as those used in linear or logistic regression.

Therefore, part of our strategy will be to report two types of best models, one
(containing no principal components) for use solely in target prediction, and the
other (containing principal components) for all other purposes, including customer
profiling. We thus proceed to derive the principal components for the collection of
correlated variables listed in Table 7.5 using the training data set. The minimum
communality was 0.739, indicating that all seven variables share a healthy portion of
the common variability. Varimax rotation is used, and two components are extracted,
using the eigenvalue criterion. The eigenvalues for these components are 3.9 and 2.2.
These two components account for a solid 87% of the variability among the seven
variables in Table 7.5. The component loadings are given in Table 7.6. Here follow
brief profiles of these components.

e Principal component I: purchasing habits. This component consists of the most
important customer general purchasing habits. Included here are the total num-
ber of items purchased, the number of different types of clothing purchased,
the number of different times that customers came to the store to purchase
something, and the total amount of money spent by the customer. All of these
variables are positively correlated to each other. Conversely, the variable life-
time average time between visits is also included in this component, but it is
negatively correlated to the others, since longer times between visits would pre-
sumably be negatively correlated with the other purchasing habits. We would
expect that this component would be strongly indicative of response to the direct
mail marketing promotion.
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TABLE7.6 Component Loadings for the Two Principal
Components Extracted from the Training Data Set”

Component
1 2
z In # individual items purchased 0.915
z In # different product classes 0.887
z In purchase visits 0.858
z In lifetime ave time between visits —0.858
z In total net sales 0.833
z promotions mailed 0.944
z # promotions 0.932

¢ Extaction method: principal component analysis; rotation method: varimax
with Kaiser normalization. Rotation converged in three iterations.

e Principal component 2: promotion contacts. This component consists solely of
two variables, the number of promotions mailed in the past year, and the total
number of marketing promotions on file. Note that there is no information in
this component about the response of the customer to these promotion contacts.
Thus, it is unclear whether this component will be associated with response to
the promotion.

As mentioned in Chapter 1, the principal components extracted from the training
data set should be validated by comparison with principal components extracted from
the test data set. Table 7.7 contains the component loadings for the principal compo-
nents extracted from the seven correlated variables in Table 7.5, this time using the test
data set. Once again, two components are extracted using the eigenvalue criterion and
varimax rotation. The eigenvalues for these components are again 3.9 and 2.2. This
time, 87.2% of the variability is explained, compared to 87% earlier. A comparison
of Tables 7.6 and 7.7 shows that the component loadings, although not identical, are
nevertheless sufficiently similar to confirm that the extracted components are valid.

TABLE7.7 Component Loadings for the Two Principal Components
Extracted from the Test Data Set?

Component
1 2
z In # individual items purchased 0.908
z In # different product classes 0.878
z In lifetime ave time betw visits —0.867
z In purchase visits 0.858
z In total net sales 0.828
z promotions mailed 0.942
z # promotions 0.928

¢ Extaction method: principal component analysis; rotation method: varimax
with Kaiser normalization. Rotation converged in three iterations.
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Cluster Analysis: BIRCH Clustering Algorithm

Next, we turn to cluster analysis. In Discovering Knowledge in Data: An Introduction
to Data Mining [2] we demonstrated hierarchical clustering, k-means clustering, and
Kohonen clustering. For this case study, however, we shall apply the BIRCH clustering
algorithm [5]. The BIRCH algorithm requires only one pass through the data set and
therefore represents a scalable solution for very large data sets. The algorithm contains
two main steps and hence is termed fwo-step clustering in Clementine. In the first
step, the algorithm preclusters the records into a large number of small subclusters
by constructing a cluster feature tree. In the second step, the algorithm then combines
these subclusters into higher-level clusters, which represent the algorithm’s clustering
solution.

One benefit of Clementine’s implementation of the algorithm is that unlike
k-means and Kohonen clustering, the analyst need not prespecify the desired number
of clusters. Thus, two-step clustering represents a desirable exploratory tool. For this
case study, two-step clustering was applied with no prespecified desired number of
clusters. The algorithm returned k= 3 clusters. The two main advantages of cluster-
ing are (1) exploratory cluster profiling, and (2) the use of the clusters as inputs to
downstream classification models.

Figure 7.26 provides an excerpt from Clementine’s cluster viewer. Across the
top are the clusters, ordered by number of records per cluster, so that cluster 2 (8183
records) comes first, followed by cluster 3 (7891 records) and cluster 1 (5666 records).
Down the left side are found variable names, in this case all of which are flags. In
each row are found bar charts for that particular variable for each cluster. Since all
the variables in Figure 7.26 are flags, the first bar in each bar chart represents O (false)
and the second bar represents 1 (true).

Note that the bars representing 1 (i.e., a true value for the flag) for cluster 3 are
consistently higher than those for clusters 1 or 2. In other words, for every variable
listed in Figure 7.26, the proportion of true flag values for cluster 3 is greater than
that for the other two clusters. For example, the proportion of customers in cluster 3
who spent money at the AX store is larger than the proportions for the other clusters,
and similarly for the other variables in Figure 7.26.

Continuing our exploration of these clusters, Table 7.8 contains the mean values,
by cluster, for a select group of numeric variables. Table 7.9 displays the proportion
of true flag values, by cluster, for a select group of flag variables. Armed with the
information in Figure 7.26, Tables 7.8 and 7.9, and similar information, we now
proceed to construct profiles of each cluster.

e Cluster 1: moderate-spending career shoppers

o This cluster has the highest proportion of customers who have ever bought a
suit.

© The proportion who have ever bought career pants is six times higher than
cluster 2.

o The total net sales for this cluster is moderate, lying not far from the overall
mean.
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Figure 7.26 Bar charts by cluster for a set of flag variables: cluster 3 appears to be the most
promising cluster.
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TABLE7.8 Mean Values by Cluster for a Select Group of Numeric Variables

Cluster 1 Cluster 2 Cluster 3
z In Purchase Visits —0.575 —0.570 1.011
z In Total Net Sales —0.177 —0.804 0.971
z sqrt Spending Last One Month —-0.279 —-0.314 0.523
z In Lifetime Average Time Between Visits 0.455 0.484 —0.835
z In Product Uniformity 0.493 0.447 —0.834
z sqrt # Promotion Responses in Past Year —0.480 —0.573 0.950
z sqrt Spending on Sweaters —0.486 0.261 0.116

© Product uniformity is high, meaning that these shoppers tend to focus on
particular types of clothing.

o The overall shopping habits, however, do not indicate that these are the
most loyal customers, since purchase visits and spending last month are low,
whereas the time between visits is high. Also, this cluster has not tended to
respond to promotions in the past year.

e Cluster 2: low-spending casual shoppers

o This cluster has the lowest total net sales, with a mean nearly one standard
deviation below the overall average.

o Compared to cluster 1 (career clothes shoppers), this cluster tends to shop for
more casual wear, having more than double the proportion of casual pants
purchases and the highest overall amount spent on sweaters.

o This cluster is not interested in suits, with only 0.1% ever had bought one.

o This cluster is similar to cluster 1 in some respects, such as the low numbers
of purchase visits, the low spending in the past month, the high product
uniformity, the high time between visits, and the low response rate to past
promotions.

o Cluster 3: frequent, high-spending, responsive shoppers

© The mean purchase visits and the mean total net sales are each about one stan-
dard deviation above the overall average, meaning that this cluster represents
frequent shoppers who tend to spend a lot.

TABLE7.9 Proportion of True Values by Cluster for a Select Group of Flag Variables (%)

Cluster 1 Cluster 2 Cluster 3
Credit card 27.6 16.7 68.6
Web buyer 1.9 1.2 8.9
Ever bought marked-down merchandise 77.6 81.7 99.8
Ever bought career pants 63.7 9.9 70.7
Ever responded to a promotion 26.2 19.4 88.2
Ever bought a suit 18.7 0.1 18.1

Ever bought casual pants 15.9 34.5 70.5
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Figure 7.27 Cluster 3 shows a higher rate of response to the marketing promotion.

o These shoppers have low product uniformity, meaning that they are not fo-
cusing on any particular type of clothing. For example, they buy both career
pants and casual pants in about the same proportions.

o These shoppers are responsive, since nearly 90% of them have responded to
a marketing promotion in the past year.

© A majority of these shoppers have a credit card on file, as opposed to the
other two clusters.

o This cluster buys online at a rate four times higher than either of the other
clusters.

Based on the cluster profiles above, which cluster would you expect to be most
responsive to the present direct mail marketing promotion? Clearly, we would expect
cluster 3 to have a higher promotion response rate. Figure 7.27 shows the distribution
of the clusters with a response overlay; indeed, cluster 3 is the most responsive. Figure
7.28 contains the cross-tabulation of cluster and target response.
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Figure 7.28 Cross-tabulation of cluster (two-step) and response.
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Note that the proportion of positive responders to the direct mail marketing
promotion is more than four times larger for cluster 3 (32.974%) than for the other
clusters (7.607% and 7.063%). Based on this result, we shall include cluster member-
ship as an input to the downstream classification models, and we will not be surprised
if cluster membership turns out to play some role in helping to classify potential
responders correctly.

The classification models discussed below will contain the following inputs:

® Model collection A (includes principal components analysis: models appropri-
ate for customer profiling, variable analysis, or prediction)

© The 71 variables listed in Figure 7.25, minus the seven variables from Table
7.6 used to construct the principal components

© The two principal components constructed using the variables in Table 7.6
o The clusters uncovered by the BIRCH two-step algorithm

* Model collection B (PCA not included): models to be used for target prediction
only)

o The 71 variables listed in Figure 7.25
o The clusters uncovered by the BIRCH two-step algorithm.

Balancing the Training Data Set

For classification models in which one of the target variable classes has much lower
relative frequency than the other classes, balancing is recommended. For example,
suppose that we are running a fraud classification model and our training data set
consists of 100,000 transactions, only 1000 of which are fraudulent. Then our classi-
fication model could simply predict “nonfraudulent” for all transactions and achieve
99% classification accuracy. However, clearly this model is useless.

Instead, the analyst should balance the training data set so that the relative
frequency of fraudulent transactions is increased. It is not recommended that current
fraudulent records be cloned to achieve this balance, since this amounts to fabricating
data. Rather, a sufficient number of nonfraudulent transactions should be set aside,
thereby increasing the proportion of fraudulent transactions. For example, suppose
that we wanted our 1000 fraudulent records to represent 25% of the balanced training
data set rather than the 1% represented by these records in the raw training data set.
That would mean that we could retain only 3000 nonfraudulent records. We would
then need to discard from the analysis 96,000 of the 99,000 nonfraudulent records,
using random selection. Of course, one always balks at discarding data, but in the data
mining world, data are abundant. Also, in most practical applications, the imbalance
is not as severe as this 99-to-1 fraud example, so that relatively fewer records need
be omitted.

Another benefit of balancing the data is to provide the classification algorithms
with a rich balance of records for each classification outcome, so that the algorithms
have a chance to learn about all types of records, not just those with high target fre-
quency. In our case study, the training data set contains 18,129 (83.4%) customers
who have not responded to the direct mail marketing promotion and 3611 (16.6%)
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customers who have responded. Although it is possible to proceed directly with the
classification algorithms with this degree of imbalance, it is nevertheless recom-
mended that balancing be applied so that the minority class contain at least 25% of
the records, and perhaps at most 50%, depending on the specific problem.

In our case study, we apply balancing to achieve an approximate 50%—50%
distribution for the response/nonresponse classes. To do this, we set the Clementine
balance node to retain approximately 20% of the nonresponse records, randomly
selected. The resulting balance is as follows: 3686 (50.5%) nonresponse records, and
all of the 3611 response records (49.5%).

The test data set should never be balanced. The test data set represents new
data that the models have not yet seen. Certainly, the real world will not balance
tomorrow’s data for our classification models; therefore, the test data set itself should
not be balanced. Note that all model evaluation will take place using the test data
set, so that the evaluative measures will all be applied to unbalanced (real-world-like)
data. In other words, tables showing comparative measures of candidate models are
obtained using the data found in the test set.

Establishing the Baseline Model Performance

How will we know when our models are performing well? Is 80% classification ac-
curacy good enough? 90%? 95%? To be able to calibrate the performance of our
candidate models, we need to establish benchmarks against which these models can
be compared. These benchmarks often come in the form of baseline model perfor-
mance for some simple models. Two of these simple models are (1) the “don’t send
a marketing promotion to anyone” model, and (2) the “send a marketing promotion
to everyone” model.

Clearly, the company does not need to employ data miners to use either of
these two models. Therefore, if after arduous analysis, the performance of the models
reported by the data miner is lower than the performance of either of the baseline
models above, the data miner better try again. In other words, the models reported by
the data miner absolutely need to outperform these baseline models, hopefully by a
margin large enough to justify the project.

Recall Table 7.2, the cost/benefit decision table for this case study. Applying
those costs and benefits to these two baseline models, we obtain for the test data set
(5908 negative responses and 1151 positive responses) the performance measures
shown in Table 7.10. Which of these two baseline models performs better? A com-
parison of the overall error rates would lead one to prefer the “send to everyone”
model. However, as we discussed earlier, data mining models need to take into ac-
count real-world considerations such as costs and benefits, so that traditional model
performance measures such as false positive rate, false negative rate, and overall error
rate are deemphasized. Instead, we deal directly with the bottom line: What effect
would the deployment of this model have on the profitability of the company?

Here, the “don’t send to anyone” model is costing the company an estimated
$4.63 per customer in lost profits. Of the customers in this data set, 16.3% would have
responded positively to the direct mail marketing promotion had they only been given
the chance. Therefore, this model must be considered a complete failure and shall
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TABLE 7.10 Performance Measures for Two Baseline Models

TN TP FN FP Overall
Cost Cost Cost Cost Error Overall
Model $0  —$26.4 $2840 $2.00 Rate Cost
Don’t send to anyone 5908 0 1151 0 16.3%  $32,688.40
($4.63 per customer)
Send to everyone 0 1151 0 5908 83.7% —$18,570.40

(—$2.63 per customer)

no longer be discussed. On the other hand, the “send to everyone” model is actually
making money for the company, to the tune of an estimated $2.63 per customer.
This “per customer” statistic embraces all customers in the test data set, including
nonresponders. The 83.7% error rate is initially shocking until we take into account
the low cost of the type of error involved. Therefore, it is this “send to everyone”
model that we shall define as our baseline model, and the profit of $2.63 per customer
is defined as the benchmark profit that any candidate model should outperform.

Model Collection A: Using the Principal Components

We begin modeling by applying our four main classification model algorithms to
the data set using the principal components, and using 50%—50% balancing for the
target field response. The results are provided in Table 7.11. Note that the percentages
indicated in the FN and FP columns represent the false negative rate and the false
positive rate, respectively. That is, FP percentage = FP/FP + TP and FN percentage =
FN/FN + TN. The logistic regression model outperforms the other three, with a mean
estimated profit of $1.68 per customer. However, clearly this is a moot point since
none of these models come close to the minimum benchmark of $2.63 profit per
customer established by the “send to everyone” model.

TABLE7.11 Performance Results from Classification Models Using 50%-50%
Balancing and Principal Components

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Neural network 4694 672 479 1214 24.0% —$0.24
9.3% 64.4%
CART 4348 829 322 1560 26.7% —$1.36
6.9% 65.3%
C5.0 4465 782 369 1443 25.7% —$1.03
7.6% 64.9%
Logistic regression 4293 872 279 1615 26.8% —$1.68

6.1% 64.9%
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Why are these models performing so poorly? The answer is that we have not
applied misclassification costs. To develop candidate models that we will evaluate
using a strictly defined cost—benefit matrix, we should seek to embed these costs
within the models themselves. In Clementine 8.5, two classification algorithms are
equipped with explicit mechanisms for defining asymmetric misclassification costs:
C5.0 and CART. Therefore, our next step is to develop decision tree models using
misclassification costs in C5.0 and CART. We proceed to define the cost of making a
false negative decision to be 28.4 and the cost of making a false positive decision to
be 2.0; there is no mechanism for defining the benefit of a true positive to be 26.4, so it
is left as 1.0. It should be noted that using these values to define the misclassification
costs is equivalent to setting the false negative cost to 14.2 and the false positive cost
to 1.0.

Unfortunately, the application of these costs resulted in both the CART model
and the C5.0 model classifying all customers as responders (not shown) (i.e., similar
to the “send to everyone” model). Evidently, the combination of 50% balancing with
these strong misclassification costs made it too expensive for either model to predict
negatively. Therefore, the misclassification costs were reduced from the 14.2—1.0 ratio
down to a 10.0-1.0 ratio, with the false negative cost equal to 10 and the false positive
cost equal to 1. Again, this is equivalent to a false negative cost of 20 and a false
positive cost of 2. The resulting performance measures are provided in Table 7.12.
Suddenly, with the application of misclassification costs at the model-building stage,
the overall profit per customer has jumped by more than a dollar. Both the CART
model and the C5.0 model have now outperformed the baseline “send to everyone”
model.

Let’s take a closer look at these models. Figure 7.29 shows the results from the
C5.0 model in Table 7.12. Note the highlighted node. For the 447 records in this node,
only 20.8% of them are responders. Yet, as indicated by the “1” to the right of the
arrow, the model is predicting that the customers in this node are responders. Why
is this happening? Because the high false negative misclassification cost makes the
model very wary of making negative predictions. This phenomenon helps to illustrate
why the C5.0 model with 14.2—1 misclassification costs returned not a single negative
prediction.

Also note from Figure 7.29 the dominant role played by the first principal
component, purchasing habits (Table 7.6), denoted as $F-PCA-1 in the decision tree.

TABLE 7.12 Performance Results from CART and C5.0 Classification Models
Using 10-1 Misclassification Costs

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
CART 754 1147 4 5154 73.1% —$2.81
0.5% 81.8%
C5.0 858 1143 8 5050 71.7% —$2.81

0.9% 81.5%
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Figure 7.29 C5.0 decision tree using 10-1 misclassification costs.

This first principal component represents both the root node split and the secondary
split, indicating that this component is easily the most important factor for predicting
response.

We were able to apply misclassification costs for the CART and C5.0 models.
But what about the algorithms that don’t come with built-in misclassification cost
options?

Overbalancing as a Surrogate for Misclassification Costs

Table 7.12 did not contain either a neural network model or a logistic regression
model, since Clementine does not have an explicit method for applying misclassi-
fication costs for these algorithms. Nevertheless, there is an alternative method for
achieving decision effects similar to those provided by the misclassification costs.
This alternative method is overbalancing.

Table 7.13 contains the performance results for a series of neural network
models run, using no principal components, for various levels of balancing. For the first
model there is no balancing; for the second model the target variable is balanced 50%—
50%; for the third model the target variable is overbalanced, about 65% responders
and 35% nonresponders; for the fourth model the target variable is overbalanced,
about 80% responders and 20% nonresponders; and for the fifth model the target
variable is overbalanced, about 90% responders and 10% nonresponders. Note that
the three models that have been overbalanced each outperform the baseline “send
to everyone” model, even though none of these models applied misclassification
costs directly. Thus, overbalancing, properly applied, may be used as a surrogate for
misclassification costs.

The optimal performance by the neural network was obtained using the 80%-—
20% overbalancing ratio. Let’s compare this performance against the other three
algorithms using the same ratio. Table 7.14 shows the performance results for all four
algorithms, using the 80%—-20% overbalancing ratio.
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TABLE 7.13 Performance Results from Neural Network Models for Various Levels of
Balancing and Overbalancing

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
No balancing 5865 124 1027 43 15.2% +$3.68
16.3%-83.7% 14.9% 25.7%
Balancing 4694 672 479 1214 24.0% —$0.24
50%—-50% 9.3% 64.4%
Overbalancing 1918 1092 59 3990 57.4% —$2.72
65%—35% 3.0% 78.5%
80%-20% 1032 1129 22 4876 69.4% —$2.75
2.1% 81.2%
90%—-10% 592 1141 10 5316 75.4% —$2.72
1.7% 82.3%

The logistic regression model is the top performer in this group, though all four
models outperform the baseline “send to everyone” model. A perusal of the output
from the logistic regression model (not shown) shows that the logistic regression
model deals with the inclusion of lifestyle cluster in the model by using 49 different
indicator variables (representing the 50 different values for this single variable). This
may be considered overparameterization of the model. If the field was of strong
influence on the target response, we might consider keeping the field in the model,
probably in binned form. However, because the different lifestyle clusters do not
appear to be strongly associated with response or nonresponse, we should consider
omitting the variable from the analysis. Retaining the variable to this point has led to
an overparameterization of the neural network model; that is, the model has too many
nodes for the amount of information represented by the variable. Therefore, we omit
the variable and rerun the analysis from Table 7.13, with the results given in Table
7.15.

TABLE 7.14 Performance Results from the Four Algorithms Using the 80%-20%
Overbalancing Ratio

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Neural network 1032 1129 22 4876 69.4% —$2.75
2.1% 81.2%
CART 1724 1111 40 4184 59.8% —$2.81
2.3% 79.0%
C5.0 1195 1127 24 4713 67.1% —$2.78
2.0% 80.7%
Logistic regression 2399 1098 53 3509 50.5% —$2.90

2.2% 76.2%




304 CHAPTER7 CASE STUDY: MODELING RESPONSE TO DIRECT MAIL MARKETING

TABLE7.15 Performance Results from the Four Algorithms Using the 80%-20%
Overbalancing Ratio After Omitting Lifestyle Cluster

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Neural network 885 1132 19 5023 71.4% —$2.73
2.1% 81.6%
CART 1724 1111 40 4184 59.8% —$2.81
2.3% 79.0%
C5.0 1467 1116 35 4441 63.4% —$2.77
2.3% 79.9%
Logistic regression 2389 1106 45 3519 50.5% —$2.96

1.8% 76.1%

Note that the decision to discard the variable is made here in the modeling
phase rather than the EDA phase. We should not discard variables in the EDA (data
understanding) phase due simply to lack of apparent pairwise relationship with the
response. One never knows what relationships exist in higher dimensions, and we
should allow the models to decide which models should and should not be retained,
as we have done here.

The exclusion of lifestyle cluster has improved the performance of the logistic
regression model from $2.90 to an estimated $2.96 profit per customer. This $0.06
represents an improvement of 18% over the model that retained the variable, compared
to the baseline model. Therefore, in this case, “less is more.” On the other hand, the
CART model is completely unaffected by the exclusion of lifestyle cluster, since
the variable did not make it into the model to begin with. The performance of both
the C5.0 model and the neural network model degraded slightly with the exclusion
of the variable.

However, our best model so far remains the logistic regression model using
80%—-20% balancing, no principal components, and excluding the lifestyle cluster
field. Note that without the application of overbalancing as a surrogate for misclassi-
fication costs, we would not have had access to a helpful logistic regression model.
This model provides an estimated profit per customer of $2.96, which represents a
solid improvement of 45% over the models that applied misclassification costs ($2.81)
directly as compared to the baseline benchmark of $2.63 [i.e., ($2.96 — $2.81)/($2.96
— $2.63) = 45%].

Combining Models: Voting

In Olympic figure skating, the champion skater is not decided by a single judge alone
but by a panel of judges. The preferences of the individual judges are aggregated using
some combination function, which then decides the winner. Data analysts may also
be interested in combining classification models, so that the strengths and weaknesses
of each model are smoothed out through combination with the other models.
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One method of combining models is to use simple voting. For each record,
each model supplies a prediction of either response (1) or nonresponse (0). We may
then count the votes that each record obtains. For example, we are presently applying
four classification algorithms to the promotion response problem. Hence, records may
receive from 0 votes up to 4 votes predicting response. In this case, therefore, at the
overall level, we may predict a positive response to the promotion based on any one
of the following four criteria:

A. Mail a promotion only if all four models predict response.
B. Mail a promotion only if three or four models predict response.
C. Mail a promotion only if at least two models predict response.

D. Mail a promotion if any model predicts response.

Clearly, criterion A would tend to protect against false positives, since all four
classification algorithms would have to agree on a positive prediction according to
this criterion. Similarly, criterion D would tend to protect against false negatives,
since only a single algorithm would need to predict a positive response. Each of
these four criteria in effect defines a combination model whose performance may be
evaluated, just as for any other model. Hence, Table 7.16 contains the performance
results for each of these four combination models. The best combination model is the
model defined by criterion B: Mail a promotion only if three or four models predict
response. This criterion has an intuitive alternative representation: Mail a promotion
only if a majority of the models predict response.

One disadvantage of using combination models is their lack of easy inter-
pretability. We cannot simply point to a decision rule or p-value to explain why or

TABLE7.16 Performance Results from Four Methods of Counting the Votes Using the
80%-20% Overbalancing Ratio After Omitting Lifestyle Cluster

N TP FN FP Overall Overall
Combination Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Mail a promotion 2772 1067 84 3136 45.6% —$2.76
only if all four 2.9% 74.6%
models predict
response
Mail a promotion 1936 1115 36 3972 56.8% —$2.90
only if three or 1.8% 78.1%
four models
predict response
Mail a promotion 1207 1135 16 4701 66.8% —$2.85
only if at least two 1.3% 80.6%
models predict
response
Mail a promotion if 550 1148 3 5358 75.9% —$2.76
any model 0.5% 82.4%

predicts response
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TABLE 7.17 Most Important Variables/Components and Their p-Values

Variable or Component p-Value
Principal component 1: purchasing habits 0.000
Principal component 2: promotion contacts 0.000
z days on file 0.000
z In average spending per visit 0.000
z In days between purchases 0.000
z In product uniformity 0.000
z sqrt spending CC 0.000
Web buyer flag 0.000
z sqrt knit dresses 0.001
z sqrt sweaters 0.001
z in stores 0.003
z sqrt career pants 0.004
z sqrt spending PS 0.005

why not a particular customer received a promotion. Recall that the most easily in-
terpreted classification models are the decision trees, such as those produced by the
CART or C5.0 algorithms. In our case, however, our best model was produced by
logistic regression, which, for interpretability, lies midway between the decision trees
and neural networks. Let us therefore take a closer look at this logistic regression
model. Table 7.17 contains a list of the most important variables and components
reported by the logistic regression model along with their p-values.

Much more modeling work could be done here; after all, most models are
usually considered works in progress and few models are ever considered complete.
Thus, in the interests of brevity, we move on to the other class of models that awaits
us: the non-PCA models.

Model Collection B: Non-PCA Models

Finally, we examine the models that do not include the principal components. Instead,
these models retain the set of correlated variables shown in Table 7.5, and thus should
not be used for any purpose except prediction of the target variable, promotion re-
sponse. On the other hand, since the set of correlated variables is highly predictive of
the response, we would expect the non-PCA models to outperform the PCA models
in terms of response prediction.

Our strategy in this section will mirror our work with the PCA models, with
one special addition:

. Apply CART and C5.0 models, using misclassification costs and 50% balancing.
. Apply all four classification algorithms, using 80% overbalancing.

. Combine the four classification algorithms, using voting.

W N -

. Combine the four classification algorithms, using the mean response probabili-
ties.
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TABLE 7.18 Performance Results from CART and C5.0 Classification Models
Using 14.2-1 Misclassification Costs

N TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
CART 1645 1140 11 4263 60.5% —$3.01
0.7% 78.9%
C5.0 1562 1147 4 4346 61.6% —$3.04
0.3% 79.1%

We begin by applying the decision trees algorithms, CART and C5.0, using
14.2—1 misclassification costs, and 50%—-50% balancing. The results are provided in
Table 7.18. Note that both models have already outperformed the best of the PCA
models, with an estimated profit per customer of $3.04 and $3.01, compared to $2.96
for the logistic regression PCA model. Suppose, however, that we wished to enrich
our pool of algorithms to include those without built-in misclassification costs. Then
we can apply overbalancing as a surrogate for misclassification costs, just as we
did for the PCA models. Table 7.19 contains the performance results from all four
algorithms, using 80% overbalancing.

Note the wide disparity in model performance. Here, C5.0 is the winner, with a
solid estimated profit of $3.15, representing the best overall prediction performance
by a single model in this case study. The logistic regression model is not far be-
hind, at $3.12. The neural network model, however, performs relatively poorly, at
only $2.78. (It should be noted here that all neural network models run in this case
study used Clementine’s default settings and the quick option. Perhaps the neural
network performance could be enhanced by tweaking the many settings and options
available.)

Next, we combine the four models, first through the use of voting. Table 7.20
provides the performance metrics from the four methods of counting the votes,

TABLE7.19 Performance Results from the Four Algorithms Using the 80%-20%
Overbalancing Ratio

TN TP FN FP Overall Overall
Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Neural network 1301 1123 28 4607 65.7% —$2.78
2.1% 80.4%
CART 2780 1100 51 3128 45.0% —$3.02
1.8% 74.0%
C5.0 2640 1121 30 3268 46.7% —$3.15
1.1% 74.5%
Logistic regression 2853 1110 41 3055 43.9% —$3.12

1.4% 73.3%
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TABLE 7.20 Performance Results from Four Methods of Counting the Votes Using the
80%-20% Overbalancing Ratio for Non-PCA Models

TN TP FN FP Overall Overall
Combination Cost Cost Cost Cost Error Cost per
Model $0 —$26.40 $28.40 $2.00 Rate Customer
Mail a promotion 3307 1065 86 2601 38.1% —$2.90
only if all four 2.5% 70.9%
models predict
response
Mail a promotion 2835 1111 40 3073 44.1% —$3.12
only if three or 1.4% 73.4%
four models
predict response
Mail a promotion 2357 1133 18 3551 50.6% —$3.16
only if at least two 0.7% 75.8%
models predict
response
Mail a promotion if 1075 1145 6 4833 68.6% —$2.89
any model 0.6% 80.8%

predicts response

where once again we use 80% overbalancing. The results from the combined mod-
els may be a bit surprising, since one combination method, mailing a promotion
only if at least two models predict response, has outperformed all of the individ-
ual classification models, with a mean overall profit per customer of about $3.16.
This represents the synergy of the combination model approach, where the com-
bination of the models is in a sense greater than the sum of its parts. Here, the
greatest profit is obtained when at least two models agree on sending a promo-
tion to a potential recipient. The voting method of combining models has pro-
vided us with better results than we could have obtained from any of the individual
models.

Combining Models Using the Mean Response Probabilities

Voting is not the only method for combining model results. The voting method rep-
resents, for each model, an up-or-down, black-and-white decision without regard for
measuring the confidence in the decision. It would be nice if we could somehow com-
bine the confidences that each model reports for its decisions, since such a method
would allow finer tuning of the decision space.

Fortunately, such confidence measures are available in Clementine, with a bit
of derivation. For each model’s results Clementine reports not only the decision,
but also a continuous field that is related to the confidence of the algorithm in its
decision. When we use this continuous field, we derive a new variable that measures
for each record the probability that this particular customer will respond positively to
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Figure 7.30 Distribution of mean response probability, with response overlay.

the promotion. This derivation is as follows:

If prediction = positive, then response probability = 0.5 + (confidence reported)/2
If prediction = negative, then response probability = 0.5 — (confidence reported)/2

For each model, the model response probabilities (MRPs) were calculated using
this formula. Then the mean MRP was found by dividing the sum of the MRPs
by 4. Figure 7.30 contains a histogram of the MRP with a promotion response
overlay.

The multimodality of the distribution of MRP is due to the discontinuity of
the transformation used in its derivation. To increase the contrast between responders
and nonresponders, it is helpful to produce a normalized histogram with increased
granularity, to enable finer tuning, obtained by increasing the number of bins. This
normalized histogram is shown in Figure 7.31.

Next, based on this normalized histogram, the analyst may define bands that
partition the data set according to various values of MRP. Recalling that the false
negative error is 14.2 times worse than the false positive error, we should tend to
set these partitions on the low side, so that fewer false negative decisions are made.
For example, based on a perusal of Figure 7.31, we might be tempted to partition
the records according to the criterion: MRP < 0.85 versus MRP > 0.85, since it is
near that value that the proportion of positive respondents begins to increase rapidly.
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Figure 7.31 Normalized histogram of mean response probability, with response overlay
showing finer granularity.

However, as shown in Table 7.21, the model based on such a partition is suboptimal
since it allows so many false positives. As it turns out, the optimal partition is at or near
50% probability. In other words, suppose that we mail a promotion to a prospective
customer under the following conditions:

e Continuous combination model. Mail a promotion only if the mean response
probability reported by the four algorithms is at least 51%.

In other words, this continuous combination model will mail a promotion only
if the mean probability of response reported by the four classification models is
greater than half. This turns then out to be the optimal model uncovered by any of our
methods in this case study, with an estimated profit per customer of $3.1744 (the extra
decimal points help to discriminate small differences among the leading candidate
models). Table 7.21 contains the performance metrics obtained by models defined by
candidate partitions for various values of MRP. Note the minute differences in overall
cost among several different candidate partitions. To avoid overfitting, the analyst
may decide not to set in stone the winning partition value, but to retain the two or
three leading candidates.

Thus, the continuous combination model defined on the partition at MRP =
0.51 is our overall best model for predicting response to the direct mail marketing
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TABLE 7.21 Performance Metrics for Models Defined by Partitions for Various Values of MRP

TN TP FN FP Overall Overall
Combination Cost Cost Cost Cost Error Cost per
Model $0 —$26.40  $28.40  $2.00 Rate Customer
. [MRP <0095
Partition : MRP > 0.95 5648 353 798 260 15.0% +$1.96
12.4% 42.4%
. [MRP <085
Partition : MRP > 0.85 3810 994 157 2098 31.9% $2.49
4.0% 67.8%
. [MRP <065
Partition : MRP > 0.65 2995 1104 47 2913 41.9% —$3.11
1.5% 72.5%
. [MRP <054
Partition : MRP > 0.54 2796 1113 38 3112 44.6% $3.13
1.3% 73.7%
. [MRP<0.52
Partition : MRP > 0.52 2738 1121 30 3170 453% $3.1736
1.1% 73.9%
. [MRP<0.51
Partition : MRP > 0.51 2686 1123 28 3222 46.0% $3.1744
1.0% 74.2%
. [MRP < 0.50
Partition : MRP > 0.50 2625 1125 26 3283  46.9% $3.1726
1.0% 74.5%
. [MRP < 0.46
Partition : MRP > 0.46 2493 1129 22 3415 48.7% —$3.166
0.9% 75.2%
. [MRP <042
Partition : MRP > 0.42 2369 1133 18 3539 50.4% $3.162
0.8% 75.7%

promotion. This model provides an estimated $3.1744 in profit to the company for
every promotion mailed out. This is compared with the baseline performance, from
the “send to everyone” model, of $2.63 per mailing. Thus, our model enhances the
profitability of this direct mail marketing campaign by 20.7%, or 54.44 cents per cus-
tomer. For example, if a mailing was to be made to 100,000 customers, the estimated
increase in profits is $54,440. This increase in profits is due to the decrease in costs
associated with mailing promotions to nonresponsive customers.

To illustrate, consider Figure 7.32, which presents a graph of the profits obtained
by using the C5.0 model alone (not in combination). The darker line indicates the
profits from the C5.0 model, after the records have been sorted, so that the most likely
responders are first. The lighter line indicates the best possible model, which has
perfect knowledge of who is and who isn’t a responder. Note that the lighter line rises
linearly to its maximum near the 16th percentile, since about 16% of the test data
set records are positive responders; it then falls away linearly but more slowly as the
costs of the remaining nonresponding 84% of the data set are incurred.
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Figure 7.32  Profits graph for the C5.0 model.

On the other hand, the C5.0 model profit curve reaches a plateau near the 50th
percentile. That is, the profit curve is, in general, no higher at the 99th percentile than
it is near the 50th percentile. This phenomenon illustrates the futility of the “send to
everyone” model, since the same level of profits can be obtained by contacting merely
half the prospective customers as would be obtained by contacting them all.

Since the profit graph is based on the records sorted as to likelihood of response,
it is in a sense therefore related to the continuous combination model above, which
also sorted the records by likelihood of response according to each of the four models.
Note that there is a “change point” near the 50th percentile in both the profit graph
and the continuous combination model.

SUMMARY

The case study in this chapter, Modeling Response to Direct Mail Marketing, was
carried out using the Cross-Industry Standard Process for Data Mining (CRISP-DM).
This process consists of six phases: (1) the business understanding phase, (2) the data
understanding phase, (3) the data preparation phase, (4) the modeling phase, (5) the
evaluation phase, and (6) the deployment phase.

In this case study, our task was to predict which customers were most likely to
respond to a direct mail marketing promotion. The clothing-store data set [3], located
at the book series Web site, represents actual data provided by a clothing store chain
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in New England. Data were collected on 51 fields for 28,799 customers. The objective
of the classification model was to increase profits. A cost/benefit decision table was
constructed, with false negatives penalized much more than false positives.

Most of the numeric fields were right-skewed and required a transformation
to achieve normality or symmetry. After transformation, these numeric fields were
standardized. Flag variables were derived for many of the clothing purchase variables.
To flesh out the data set, new variables were derived based on other variables already
in the data set.

EDA indicated that response to the marketing campaign was associated posi-
tively with the following variables, among others: z In purchase visits, z In number of
individual items purchase, z In total net sales, and z In promotions responded to in the
last year. Response was negatively correlated with z In lifetime average time between
visits. An interesting phenomenon uncovered at the EDA stage was the following: As
customers concentrate on only one type of clothing purchase, the response rate goes
down.

Strong pairwise associations were found among several predictors, with the
strongest correlation between z In number of different product classes and z In number
of individual items purchased.

The modeling and evaluation phases were combined and implemented using
the following strategy:

e Partition the data set into a training data set and a test data set.

e Provide a listing of the inputs to all models.

e Apply principal components analysis to address multicollinearity.
e Apply cluster analysis and briefly profile the resulting clusters.

¢ Balance the training data set to provide the algorithms with similar numbers of
records for responders and nonresponders.

o Establish the baseline model performance in terms of expected profit per cus-
tomer contacted, in order to calibrate the performance of candidate models.

¢ Apply the following classification algorithms to the training data set:

o Classification and regression trees (CARTS)
o (5.0 decision tree algorithm
o Neural networks
o Logistic regression
e Evaluate each of these models using the test data set.

e Apply misclassification costs in line with the cost/benefit table defined in the
business understanding phase.

e Apply overbalancing as a surrogate for misclassification costs, and find the
most efficacious overbalance mixture.

e Combine the predictions from the four classification models using model voting.

¢ Compare the performance of models that use principal components with models
that do not use the components, and discuss the role of each type of model.
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Part of our strategy was to report two types of best models, one (containing no
principal components) for use solely in target prediction, and the other (containing
principal components) for all other purposes, including customer profiling. The subset
of variables that were highly correlated with each other were shunted to a principal
components analysis, which extracted two components from these seven correlated
variables. Principal component I represented purchasing habits and was expected to
be highly indicative of promotion response.

Next, the BIRCH clustering algorithm was applied. Three clusters were un-
covered: (1) moderate-spending career shoppers, (2) low-spending casual shoppers,
and (3) frequent, high-spending, responsive shoppers. Cluster 3, as expected, had the
highest promotion response rate.

Thus, the classification models contained the following inputs:

® Model collection A (included principal components analysis: models appropri-
ate for customer profiling, variable analysis, or prediction

o The 71 variables listed in Figure 7.25, minus the seven variables from Table
7.6 used to construct the principal components

© The two principal components constructed using the variables in Table 7.6

© The clusters uncovered by the BIRCH two-step algorithm

* Model collection B (PCA not included): models to be used for target prediction
only

o The 71 variables listed in Figure 7.25
o The clusters uncovered by the BIRCH two-step algorithm

To be able to calibrate the performance of our candidate models, we established
benchmark performance using two simple models:

e The “don’t send a marketing promotion to anyone” model

¢ The “send a marketing promotion to everyone” model

Instead of using the overall error rate as the measure of model performance,
the models were evaluated using the measure of overall cost derived from the cost—
benefit decision table. The baseline overall cost for the “send a marketing promotion
to everyone” model worked out to be —$2.63 per customer (i.e., negative cost = profit).

We began with the PCA models. Using 50% balancing and no misclassification
costs, none of our classification models were able to outperform this baseline model.
However, after applying 10—1 misclassification costs (available in Clementine only for
the CART and C5.0 algorithms), both the CART and C5.0 algorithms outperformed
the baseline model, with a mean cost of —$2.81 per customer. The most important
predictor for these models was principal component 1, purchasing habits.

Overbalancing as a surrogate for misclassification costs was developed for
those algorithms without the misclassification cost option. It was demonstrated that
as the training data set becomes more overbalanced (fewer negative response records
retained), the model performance improves, up to a certain point, when it again begins
to degrade.
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For this data set, the 80%—-20% overbalancing ratio seemed optimal. The best
classification model using this method was the logistic regression model, with a
mean cost of —=$2.90 per customer. This increased to —$2.96 per customer when the
overparametrized variable lifestyle cluster was omitted.

Model voting was investigated. The best combination model mailed a promotion
only if at least three of the four classification algorithms predicted positive response.
However, the mean cost per customer for this combination model was only —$2.90 per
customer. Thus, for the models including the principal components, the best model
was the logistic regression model with 80%—20% overbalancing and a mean cost of
—$2.96 per customer.

The best predictors using this model turned out to be the two principal compo-
nents, purchasing habits and promotion contacts, along with the following variables:
z days on file, z In average spending per visit, z In days between purchases, z In
product uniformity, z sqrt spending CC, Web buyer, z sqrt knit dresses, and z sqrt
sweaters.

Next came the non-PCA models, which should be used for prediction of the
response only, not for profiling. Because the original (correlated) variables are re-
tained in the model, we expect the non-PCA models to outperform the PCA models
with respect to overall cost per customer. This was immediately borne out in the
results for the CART and C5.0 models using 50% balancing and 14.2—1 misclassifi-
cation costs, which had mean costs per customer of —=$3.01 and —-$3.04, respectively.
For the 80%—-20% overbalancing ratio, C5.0 was the best model, with an overall
mean cost of —=$3.15 per customer, with logistic regression second with —$3.12 per
customer.

Again, model combination using voting was applied. The best voting model
mailed a promotion only if at least two models predicted positive response, for an
overall mean cost of —$3.16 per customer. A second, continuous method for combining
models was to work with the response probabilities reported by the software. The mean
response probabilities were calculated, and partitions were assigned to optimize model
performance. It was determined that the same level of profits obtained by the “send to
everyone” model could also be obtained by contacting merely half of the prospective
customers, as identified by this combination model.

As it turns out the optimal partition is at or near 50% probability. In other words,
suppose that we mailed a promotion to a prospective customer under the following
conditions: Mail a promotion only if the mean response probability reported by the
four algorithms is at least 51%. In other words, this continuous combination model
will mail a promotion only if the mean probability of response reported by the four
classification models is greater than half. This turned out to be the optimal model
uncovered by any of our methods in this case study, with an estimated profit per
customer of $3.1744.

Compared with the baseline performance, from the “send to everyone” model,
of $2.63 per mailing, this model enhances the profitability of this direct mail marketing
campaign by 20.7%, or 54.44 cents per customer. For example, if a mailing was to
be made to 100,000 customers, the estimated increase in profits is $54,440. This
increase in profits is due to the decrease in costs associated with mailing promotions
to nonresponsive customers.
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