
Data Mining Applications with R

Data Mining Applications with R

Yanchang Zhao
Senior Data Miner, RDataMining.com, Australia

Yonghua Cen
Associate Professor, Nanjing University of Science and

Technology, China

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier

fm

Academic Press is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

Copyright # 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by any means electronic, mechanical, photocopying, recording or

otherwise without the prior written permission of the publisher Permissions may be sought

directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone

(þ44) (0) 1865 843830; fax (þ44) (0) 1865 853333; email: permissions@elsevier.com.

Alternatively you can submit your request online by visiting the Elsevier web site at

http://elsevier.com/locate/permissions, and selecting Obtaining permission to use

Elsevier material.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or

property as a matter of products liability, negligence or otherwise, or from any use or

operation of any methods, products, instructions or ideas contained in the material herein.

Because of rapid advances in the medical sciences, in particular, independent verification of

diagnoses and drug dosages should be made.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-411511-8

For information on all Academic Press publications
visit our web site at store.elsevier.com

Printed and Bound in United States of America

13 14 15 16 17 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://elsevier.com

Preface

This book presents 15 real-world applications on data mining with R, selected from 44

submissions based on peer-reviewing. Each application is presented as one chapter, covering

business background and problems, data extraction and exploration, data preprocessing,

modeling, model evaluation, findings, and model deployment. The applications involve a

diverse set of challenging problems in terms of data size, data type, data mining goals, and the

methodologies and tools to carry out analysis. The book helps readers to learn to solve

real-world problems with a set of data mining methodologies and techniques and then apply

them to their own data mining projects.

R code and data for the book are provided at the RDataMining.com Website http://www.

rdatamining.com/books/dmar so that readers can easily learn the techniques by running the

code themselves.

Background

R is one of the most widely used data mining tools in scientific and business applications,

among dozens of commercial and open-source data mining software. It is free and expandable

with over 4000 packages, supported by a lot of R communities around the world. However,

it is not easy for beginners to find appropriate packages or functions to use for their data mining

tasks. It is more difficult, even for experienced users, to work out the optimal combination

of multiple packages or functions to solve their business problems and the best way to use them

in the data mining process of their applications. This book aims to facilitate using R in

data mining applications by presenting real-world applications in various domains.

Objectives and Significance

This book is not only a reference for R knowledge but also a collection of recent work of data

mining applications.

As a reference material, this book does not go over every individual facet of statistics and data

mining, as already covered by many existing books. Instead, by integrating the concepts

xiii

http://www.rdatamining.com/books/dmar
http://www.rdatamining.com/books/dmar

and techniques of statistical computation and data mining with concrete industrial cases,

this book constructs real-world application scenarios. Accompanied with the cases, a set of

freely available data and R code can be obtained at the book’s Website, with which readers

can easily reconstruct and reflect on the application scenarios, and acquire the abilities of

problem solving in response to other complex data mining tasks. This philosophy is consistent

with constructivist learning. In other words, instead of passive delivery of information and

knowledge pieces, the book encourages readers’ active thinking by involving them in a process

of knowledge construction. At the same time, the book supports knowledge transfer for

readers to implement their own data mining projects. We are positive that readers can find cases

or cues approaching their problem requirements, and apply the underlying procedure and

techniques to their projects.

As a collection of research reports, each chapter of the book is a presentation of the recent

research of the authors regarding data mining modeling and application in response to practical

problems. It highlights detailed examination of real-world problems and emphasizes the

comparison and evaluation of the effects of data mining. As we know, even with the most

competitive data mining algorithms, when facing real-world requirements, the ideal laboratory

setting will be broken. The issues associated with data size, data quality, parameters, scalability,

and adaptability are much more complex and research work on data mining grounded in

standard datasets provides very limited solutions to these practical issues. From this point, this

book forms a good complement to existing data mining text books.

Target Audience

The audience includes but does not limit to data miners, data analysts, data scientists, and

R users from industry, and university students and researchers interested in data mining with R.

It can be used not only as a primary text book for industrial training courses on data mining

but also as a secondary text book in university courses for university students to learn data

mining through practicing.

xiv Preface

Acknowledgments

This book dates back all the way to January 2012, when our book prospectus was submitted to

Elsevier. After its approval, this project started inMarch 2012 and completed in February 2013.

During the one-year process, many e-mails have been sent and received, interacting with

authors, reviewers, and the Elsevier team, from whom we received a lot of support. We would

like to take this opportunity to thank them for their unreserved help and support.

We would like to thank the authors of 15 accepted chapters for contributing their excellent work

to this book, meeting deadlines and formatting their chapters by following guidelines closely.

We are grateful for their cooperation, patience, and quick response to our many requests.

We also thank authors of all 44 submissions for their interest in this book.

We greatly appreciate the efforts of 42 reviewers, for responding on time, their constructive

comments, and helpful suggestions in the detailed review reports. Their work helped the

authors to improve their chapters and also helped us to select high-quality papers for the book.

Our thanks also go to Dr. GrahamWilliams, who wrote an excellent foreword for this book and

provided many constructive suggestions to it.

Last but not the least, we would like to thank the Elsevier team for their supports throughout the

one-year process of book development. Specifically, we thank Paula Callaghan, Jessica

Vaughan, Patricia Osborn, and Gavin Becker for their help and efforts on project contract

and book development.

Yanchang Zhao

RDataMining.com, Australia

Yonghua Cen

Nanjing University of

Science and Technology,

China

xv

Review Committee

Sercan Taha Ahi Tokyo Institute of Technology, Japan

Ronnie Alves Instituto Tecnológico Vale Desenvolvimento Sustentável, Brazil

Nick Ball National Research Council, Canada

Satrajit Basu University of South Florida, USA

Christian Bauckhage Fraunhofer IAIS, Germany

Julia Belford UC Berkeley, USA

Eithon Cadag Lawrence Livermore National Laboratory, USA

Luis Cavique Universidade Aberta, Portugal

Alex Deng Microsoft, USA

Kalpit V. Desai Data Mining Lab at GE Research, India

Xiangjun Dong Shandong Polytechnic University, China

Fernando Figueiredo Customs and Border Protection Service, Australia

MohamedMedhat Gaber University of Portsmouth, UK

Andrew Goodchild NEHTA, Australia

Yingsong Hu Department of Human Services, Australia

Radoslaw Kita Onet.pl SA, Poland

Ivan Kuznetsov HeiaHeia.com, Finland

Luke Lake Department of Immigration and Citizenship, Australia

Gang Li Deakin University, Australia

Chao Luo University of Technology, Sydney, Australia

Wei Luo Deakin University, Australia

Jun Ma University of Wollongong, Australia

B. D. McCullough Drexel University, USA

Ronen Meiri Chi Square Systems LTD, Israel

Heiko Miertzsch EODA, Germany

Wayne Murray Department of Human Services, Australia

Radina Nikolic British Columbia Institute of Technology, Canada

Kok-Leong Ong Deakin University, Australia

Charles O’Riley USA

Jean-Christophe Paulet JCP Analytics, Belgium

Evgeniy Perevodchikov Tomsk State University of Control Systems and Radioelectronics, Russia

xvii

Clifton Phua Institute for Infocomm Research, Singapore

Juana Canul Reich Universidad Juarez Autonoma de Tabasco, Mexico

Joseph Rickert Revolution Analytics, USA

Yin Shan Department of Human Services, Australia

Kyong Shim University of Minnesota, USA

Murali Siddaiah Department of Immigration and Citizenship, Australia

Mingjian Tang Department of Human Services, Australia

Xiaohui Tao The University of Southern Queensland, Australia

Blanca A. Vargas-Govea Monterrey Institute of Technology and Higher Education, Mexico

Shanshan Wu Commonwealth Bank, Australia

Liang Xie Travelers Insurance, USA

Additional Reviewers

Ping Xiong

Tianqing Zhu

xviii Review Committee

Foreword

As we continue to collect more data, the need to analyze that data ever increases. We strive to

add value to the data by turning it from data into information and knowledge, and one day,

perhaps even into wisdom. The data we analyze provide insights into our world. This book

provides insights into how we analyze our data.

The idea of demonstrating how we do data mining through practical examples is brought to us

by Dr. Yanchang Zhao. His tireless enthusiasm for sharing knowledge of doing data

mining with a broader community is admirable. It is great to see another step forward in

unleashing the most powerful and freely available open source software for data mining

through the chapters in this collection.

In this book, Yanchang has brought together a collection of chapters that not only talk

about doing data mining but actually demonstrate the doing of data mining. Each chapter

includes examples of the actual code used to deliver results. The vehicle for the doing is the

R Statistical Software System (R Core Team, 2012), which is today’s Lingua Franca for

Data Mining and Statistics. Through the use of R, we can learn how others have analyzed

their data, and we can build on their experiences directly, by taking their code and extending

it to suit our own analyses.

Importantly, the R Software is free and open source. We are free to download the software,

without fee, and to make use of the software for whatever purpose we desire, without placing

restrictions on our freedoms. We can even modify the software to better suit our purposes.

That’s what we mean by free—the software offers us freedom.

Being open source software, we can learn by reviewing what others have done in the coding of

the software. Indeed, we can stand on the shoulders of those who have gone before us, and

extend and enhance their software to make it even better, and share our results, without

limitation, for the common good of all.

As we read through the chapters of this book, we must take the opportunity to try out

the R code that is presented. This is where we get the real value of this book—learning

to do data mining, rather than just reading about it. To do so, we can install R quite simply

by visiting http://www.r-project.org and downloading the installation package for

xix

http://www.r-project.org

Windows or the Macintosh, or else install the packages from our favorite GNU/Linux

distribution.

Chapter 1 sets the pace with a focus onBigData. Beingmemory based, R can be challengedwhen

all of the data cannot fit into the memory of our computer. Augmenting R’s capabilities with

the Big Data engine that is Hadoop ensures that we can indeed analyze massive datasets.

The authors’ experiences with power grid data are shared through examples using the Rhipe

package for R (Guha, 2012).

Chapter 2 continues with a presentation of a visualization tool to assist in building Bayesian

classifiers. The tool is developed using gWidgetsRGtk2 (Lawrence and Verzani, 2012) and

ggplot2 (Wickham and Chang, 2012).

In Chapters 3 and 4, we are given insights into the text mining capabilities of R. The twitteR

package (Gentry, 2012) is used to source data for analysis in Chapter 3. The data are

analyzed for emergent issues using the tm package (Feinerer and Hornik, 2012). The tm

package is again used in Chapter 4 to analyze documents using latent Dirichlet allocation.

As always there is ample R code to illustrate the different steps of collecting data, transforming

the data, and analyzing the data.

In Chapter 5, we move on to another larger area of application for data mining: recommender

systems. The recommenderlab package (Hahsler, 2011) is extensively illustrated with practical

examples. A number of different model builders are employed in Chapter 6, looking at

data mining in direct marketing. This theme of marketing and customer management is

continued in Chapter 7 looking at the profiling of customers for insurance. A link to the dataset

used is provided in order to make it easy to follow along.

Continuing with a business-orientation, Chapter 8 discusses the critically important task of

feature selection in the context of identifying customers who may default on their bank loans.

Various R packages are used and a selection of visualizations provide insights into the data.

Travelers and their preferences for hotels are analyzed in Chapter 9 using Rfmtool.

Chapter 10 begins a focus on some of the spatial and mapping capabilities of R for data

mining. Spatial mapping and statistical analyses combine to provide insights into real estate

pricing. Continuing with the spatial theme in data mining, Chapter 11 deploys randomForest

(Leo Breiman et al., 2012) for the prediction of the spatial distribution of seabed hardness.

Chapter 12 makes extensive use of the zooimage package (Grosjean and Francois, 2013)

for image classification. For prediction, randomForest models are used, and throughout the

chapter, we see the effective use of plots to illustrate the data and the modeling. The

analysis of crime data rounds out the spatial analyses with Chapter 13. Time and location play

a role in this analysis, relying again on gaining insights through effective visualizations of

the data.

xx Foreword

Modeling many covariates in Chapter 14 to identify the most important ones takes us into

the final chapters of the book. Italian football data, recording the outcome of matches, provide

the basis for exploring a number of predictive model builders. Principal component analysis

also plays a role in delivering the data mining project.

The book is rounded out with the application of data mining to the analysis of domain

name system data. The aim is to deliver efficiencies for DNS servers. Cluster analysis using

kmeans and kmedoids forms the primary tool, and the authors again make effective use of

very many different types of visualizations.

The authors of all the chapters of this book provide and share a breadth of insights, illustrated

through the use of R. There is much to learn by watching masters at work, and that is what

we can gain from this book. Our focus should be on replicating the variety of analyses

demonstrated throughout the book using our own data. There is so much we can learn about our

own applications from doing so.

Graham Williams

February 20, 2013

References

R Core Team, 2012. R: a language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/.

Feinerer, I., Hornik, K., 2012. tm: Text Mining Package. R package version 0.5-8.1. http://CRAN.R-project.org/

package¼tm.

Gentry, J., 2012. twitteR: R based Twitter client. R package version 0.99.19. http://CRAN.R-project.org/

package¼twitteR.

Grosjean, P., Francois, K.D.R., 2013. zooimage: analysis of numerical zooplankton images. R package version 3.0-3.

http://CRAN.R-project.org/package¼zooimage.

Guha, S., 2012. Rhipe: R and Hadoop Integrated Programming Environment. R package version 0.69. http://www.

rhipe.org/.

Hahsler, M., 2011. recommenderlab: lab for developing and testing recommender algorithms. R package version

0.1-3. http://CRAN.R-project.org/package¼recommenderlab.

Lawrence, M., Verzani, J., 2012. gWidgetsRGtk2: toolkit implementation of gWidgets for RGtk2. R package

version 0.0-81. http://CRAN.R-project.org/package¼gWidgetsRGtk2.

Original by Leo Breiman, F., Cutler, A., port by Andy Liaw, R., Wiener, M., 2012. randomForest: Breiman and

Cutler’s random forests for classification and regression. R package version 4.6-7. http://CRAN.R-project.org/

package¼randomForest.

Wickham, H., Chang, W., 2012. ggplot2: an implementation of the Grammar of Graphics. R package version 0.9.3.

http://had.co.nz/ggplot2/.

Foreword xxi

http://www.R-project.org/
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=zooimage
http://CRAN.R-project.org/package=zooimage
http://www.rhipe.org/
http://www.rhipe.org/
http://CRAN.R-project.org/package=recommenderlab
http://CRAN.R-project.org/package=recommenderlab
http://CRAN.R-project.org/package=gWidgetsRGtk2
http://CRAN.R-project.org/package=gWidgetsRGtk2
http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest
http://had.co.nz/ggplot2/

CHAPTER 1

Power Grid Data Analysis with R
and Hadoop

Ryan Hafen, Tara Gibson, Kerstin Kleese van Dam, Terence Critchlow
Pacific Northwest National Laboratory, Richland, Washington, USA

1.1 Introduction

This chapter presents an approach to analysis of large-scale time series sensor data collected

from the electric power grid. This discussion is driven by our analysis of a real-world data

set and, as such, does not provide a comprehensive exposition of either the tools used or

the breadth of analysis appropriate for general time series data. Instead, we hope that this

section provides the reader with sufficient information, motivation, and resources to

address their own analysis challenges.

Our approach to data analysis is on the basis of exploratory data analysis techniques.

In particular, we perform an analysis over the entire data set to identify sequences of interest,

use a small number of those sequences to develop an analysis algorithm that identifies the

relevant pattern, and then run that algorithm over the entire data set to identify all instances

of the target pattern. Our initial data set is a relatively modest 2TB data set, comprising just

over 53 billion records generated from a distributed sensor network. Each record represents

several sensor measurements at a specific location at a specific time. Sensors are geographically

distributed but reside in a fixed, known location. Measurements are taken 30 times per second

and synchronized using a global clock, enabling a precise reconstruction of events. Because

all of the sensors are recording on the status of the same, tightly connected network, there

should be a high correlation between all readings.

Given the size of our data set, simply running R on a desktop machine is not an option. To

provide the required scalability, we use an analysis package called RHIPE (pronounced ree-

pay) (RHIPE, 2012). RHIPE, short for the R and Hadoop Integrated Programming

Environment, provides an R interface to Hadoop. This interface hides much of the complexity

of running parallel analyses, including many of the traditional Hadoop management tasks.

Further, by providing access to all of the standard R functions, RHIPE allows the analyst to

focus instead on the analysis of code development, even when exploring large data sets. A brief

Data Mining Applications with R
2014 Elsevier Inc. All rights reserved. 1

introduction to both the Hadoop programming paradigm, also known as the MapReduce

paradigm, and RHIPE is provided in Section 1.3. We assume that readers already have a

working knowledge of R.

As with many sensor data sets, there are a large number of erroneous records in the data, so a

significant focus of our work has been on identifying and filtering these records. Identifying bad

records requires a variety of analysis techniques including summary statistics, distribution

checking, autocorrelation detection, and repeated value distribution characterization, all of

which are discovered or verified by exploratory data analysis. Once the data set has been

cleaned, meaningful events can be extracted. For example, events that result in a network

partition or isolation of part of the network are extremely interesting to power engineers.

The core of this chapter is the presentation of several example algorithms to manage, explore,

clean, and apply basic feature extraction routines over our data set. These examples are

generalized versions of the code we use in our analysis. Section 1.3.3.2.2 describes these

examples in detail, complete with sample code. Our hope is that this approach will provide the

reader with a greater understanding of how to proceed when unique modifications to standard

algorithms are warranted, which in our experience occurs quite frequently.

Before we dive into the analysis, however, we begin with an overview of the power grid, which

is our application domain.

1.2 A Brief Overview of the Power Grid

The U.S. national power grid, also known as “the electrical grid” or simply “the grid,” was

named the greatest engineering achievement of the twentieth century by the U.S. National

Academy of Engineering (Wulf, 2000). Although many of us take for granted the flow of

electricity when we flip a switch or plug in our chargers, it takes a large and complex

infrastructure to reliably support our dependence on energy.

Built over 100 years ago, at its core the grid connects power producers and consumers through a

complex network of transmission and distribution lines connecting almost every building in the

country. Power producers use a variety of generator technologies, from coal to natural gas to

nuclear and hydro, to create electricity. There are hundreds of large and small generation

facilities spread across the country. Power is transferred from the generation facility to the

transmission network, which moves it to where it is needed. The transmission network is

comprised of high-voltage lines that connect the generators to distribution points. The network

is designed with redundancy, which allows power to flow tomost locations even when there is a

break in the line or a generator goes down unexpectedly. At specific distribution points, the

voltage is decreased and then transferred to the consumer. The distribution networks are

disconnected from each other.

2 Chapter 1

The US grid has been divided into three smaller grids: the western interconnection, the eastern

interconnection, and the Texas interconnection. Although connections between these regions

exist, there is limited ability to transfer power between them and thus each operates essentially

as an independent power grid. It is interesting to note that the regions covered by these

interconnections include parts of Canada and Mexico, highlighting our international

interdependency on reliable power. In order to be manageable, a single interconnect may be

further broken down into regions which are much more tightly coupled than the major

interconnects, but are operated independently.

Within each interconnect, there are several key roles that are required to ensure the smooth

operation of the grid. In many cases, a single company will fill multiple roles—typically with

policies in place to avoid a conflict of interest. The goal of the power producers is to produce

power as cheaply as possible and sell it for as much as possible. Their responsibilities include

maintaining the generation equipment and adjusting their generation based on guidance from a

balancing authority. The balancing authority is an independent agent responsible for ensuring

the transmission network has sufficient power to meet demand, but not a significant excess.

They will request power generators to adjust production on the basis of the real-time status of

the entire network, taking into account not only demand, but factors such as transmission

capacity on specific lines. They will also dynamically reconfigure the network, opening and

closing switches, in response to these factors. Finally, the utility companies manage the

distribution system, making sure that power is available to consumers. Within its distribution

network, a utility may also dynamically reconfigure power flows in response to both planned

and unplanned events. In addition to these primary roles, there are a variety of additional roles a

company may play—for example, a company may lease the physical transmission or

distribution lines to another company which uses those to move power within its network.

Significant communication between roles is required in order to ensure the stability of the grid,

even in normal operating circumstances. In unusual circumstances, such as a major storm,

communication becomes critical to responding to infrastructure damage in an effective and

efficient manner.

Despite being over 100 years old, the grid remains remarkably stable and reliable.

Unfortunately, new demands on the system are beginning to affect it. In particular, energy

demand continues to grow within the United States—even in the face of declining usage per

person (DOE, 2012). New power generators continue to come online to address this need, with

new capacity increasingly either being powered by natural gas generators (projected to be 60%

of new capacity by 2035) or based on renewable energy (29% of new capacity by 2035) such as

solar or wind power (DOE, 2012). Although there are many advantages to the development of

renewable energy sources, they provide unique challenges to grid stability due to their

unpredictability. Because electricity cannot be easily stored, and renewables do not provide a

consistent supply of power, ensuring there is sufficient power in the system to meet demand

without significant overprovisioning (i.e., wasting energy) is a major challenge facing grid

Power Grid Data Analysis with R and Hadoop 3

operators. Further complicating the situation is the distribution of the renewable generators.

Although some renewable sources, such as wind farms, share many properties with traditional

generation capabilities—in particular, they generate significant amounts of power and are

connected to the transmission system—consumer-based systems, such as solar panels on a

business, are connected to the distribution network, not the transmission network. Although this

distributed generation system can be extremely helpful at times, it is very different from the

current model and introduces significant management complexity (e.g., it is not currently

possible for a transmission operator to control when or how much power is being generated

from solar panels on a house).

To address these needs, power companies are looking toward a number of technology solutions.

One potential solution being considered is transitioning to real-time pricing of power. Today,

the price of power is fixed for most customers—a watt used in the middle of the afternoon costs

the same as a watt used in the middle of the night. However, the demand for power varies

dramatically during the course of a day, with peak demand typically being during standard

business hours. Under this scenario, the price for electricity would vary every few minutes

depending on real-time demand. In theory, this would provide an incentive to minimize use

during peak periods and transfer that utilization to other times. Because the grid infrastructure is

designed to meet its peak load demands, excess capacity is available off-hours. By

redistributing demand, the overall amount of energy that could be delivered with the same

infrastructure is increased. For this scenario to work, however, consumers must be willing to

adjust their power utilization habits. In some cases, this can be done by making appliances cost

aware and having consumers define how they want to respond to differences in price. For

example, currently water heaters turn on and off solely on the basis of the water temperature in

the tank—as soon as the temperature dips below a target temperature, the heater goes on. This

happens without considering the time of day or water usage patterns by the consumer, which

might indicate if the consumer even needs the water in the next few hours. A price-aware

appliance could track usage patterns and delay heating the water until either the price of

electricity fell below a certain limit or the water was expected to be needed soon. Similarly, an

air conditioner might delay starting for 5 or 10 min to avoid using energy during a time of peak

demand/high cost without the consumer even noticing.

Interestingly, the increasing popularity of plug-in electric cars provides both a challenge and a

potential solution to the grid stability problems introduced by renewables. If the vehicles

remain price insensitive, there is the potential for them to cause sudden, unexpected jumps in

demand if a large number of them begin charging at the same time. For example, one car model

comes from the factory preset to begin charging at midnight local time, with the expectation

that this is a low-demand time. However, if there are hundreds or thousands of cars within a

small area, all recharging at the same time, the sudden surge in demand becomes significant.

If the cars are price aware, however, they can charge whenever demand is lowest, as long as

they are fully charged when their owner is ready to go. This would spread out the charging over

4 Chapter 1

the entire night, smoothing out the demand. In addition, a price-aware car could sell power to

the grid at times of peak demand by partially draining its battery. This would benefit the owner

through a buy low, sell high strategy and would mitigate the effect of short-term spikes in

demand. This strategy could help stabilize the fluctuations caused by renewables by,

essentially, providing a large-scale power storage capability.

In addition to making devices cost aware, the grid itself needs to undergo a significant change in

order to support real-time pricing. In particular, the distribution system needs to be extended to

support real-time recording of power consumption. Current power meters record overall

consumption, but not when the consumption occurred. To enable this, many utilities are in the

process of converting their customers to smartmeters. These newmeters are capable of sending the

utility real-time consumption information and have other advantages, such as dramatically

reducing the time required to read the meters, which have encouraged their adoption. On the

transmission side, existing sensors provide operators with the status of the grid every 4 seconds.

This is not expected tobesufficientgiven increasingvariability, and thusnewsensorscalledphasor

measurement units (PMUs) are being deployed. PMUs provide information 30-60 times per

second. The sensors are time synchronized to a global clock so that the state of the grid at a specific

time canbe accurately reconstructed.Currently, only a fewhundredPMUsare deployed; however,

theNASPIproject anticipateshavingover1000PMUsonlinebytheendof2014 (Silverstein, 2012)

with a final goal of between 10,000 and 50,000 sensors deployed over the next 20 years.

An important side effect of the new sensors on the transmission and distribution networks is a

significant increase in the amount of information that power companies need to collect and

process. Currently, companies are using the real-time streams to identify some critical events,

but are not effectively analyzing the resulting data set. The reasons for this are twofold. First,

the algorithms that have been developed in the past are not scaling to these new data sets.

Second, exactly what new insights can be gleaned from this more refined data is not clear.

Developing scalable algorithms for known events is clearly a first step. However, additional

investigation into the data set using techniques such as exploratory analysis is required to fully

utilize this new source of information.

1.3 Introduction to MapReduce, Hadoop, and RHIPE

Before presenting the power grid data analysis, we first provide an overview of MapReduce and

associated topics including Hadoop and RHIPE. We present and discuss the implementation

of a simple MapReduce example using RHIPE. Finally, we discuss other parallel R approaches

for dealing with large-scale data analysis. The goal is to provide enough background for the

reader to be comfortable with the examples provided in the following section.

The example we provide in this section is a simple implementation of a MapReduce operation

using RHIPE on the iris data (Fisher, 1936) included with R. The goal is to solidify our

Power Grid Data Analysis with R and Hadoop 5

description ofMapReduce through a concrete example, introduce basic RHIPE commands, and

prepare the reader to follow the code examples on our power grid work presented in the

following section. In the interest of space, our explanations focus on the various aspects of

RHIPE, and not on R itself. A reasonable skill level of R programming is assumed.

A lengthy exposition on all of the facets of RHIPE is not provided. For more details, including

information about installation, job monitoring, configuration, debugging, and some advanced

options, we refer the reader to RHIPE (2012) and White (2010).

1.3.1 MapReduce

MapReduce is a simple but powerful programming model for breaking a task into pieces and

operating on those pieces in an embarrassingly parallel manner across a cluster. The approach

was popularized by Google (Dean and Ghemawat, 2008) and is in wide use by companies

processing massive amounts of data.

MapReduce algorithms operate on data structures represented as key/value pairs. The data are

split into blocks; each block is represented as a key and value. Typically, the key is a descriptive

data structure of the data in the block, whereas the value is the actual data for the block.

MapReduce methods perform independent parallel operations on input key/value pairs and

their output is also key/value pairs. TheMapReduce model is comprised of two phases, themap

and the reduce, which work as follows:

Map: A map function is applied to each input key/value pair, which does some user-defined

processing and emits new key/value pairs to intermediate storage to be processed by the reduce.

Shuffle/Sort: The map output values are collected for each unique map output key and passed to

a reduce function.

Reduce: A reduce function is applied in parallel to all values corresponding to each unique map

output key and emits output key/value pairs.

1.3.1.1 An Example: The Iris Data

The iris data are very small and methods can be applied to it in memory, within R, without

splitting it into pieces and applying MapReduce algorithms. It is an accessible introductory

example nonetheless, as it is easy to verify computations done with MapReduce to those with

the traditional approach. It is the MapReduce principles—not the size of the data—that are

important: Once an algorithm has been expressed in MapReduce terms, it theoretically can be

applied unchanged to much larger data.

The iris data are a data frame of 150 measurements of iris petal and sepal lengths and widths,

with 50 measurements for each species of “setosa,” “versicolor,” and “virginica.” Let us

assume that we are doing some computation on the sepal length. To simulate the notion of data

6 Chapter 1

being partitioned and distributed, consider the data being randomly split into 3 blocks. We can

achieve this in R with the following:

> set.seed(4321) # make sure that we always get the same partition

> permute <- sample(1:150, 150)

> splits <- rep(1:3, 50)

> irisSplit <- tapply(permute, splits, function(x) {

iris[x, c(“Sepal.Length”, “Species”)]

})

> irisSplit

$‘1’

Sepal.Length Species

51 7.0 versicolor

7 4.6 setosa

. . . # output truncated

Throughout this chapter, code blocks that also display output will distinguish lines containing

code with “> ” at the beginning of the line. Code blocks that do not display output do not add

this distinction.

This partitions the Sepal.Length and Species variables into three random subsets, having

the keys “1,” “2,” or “3,” which correspond to our blocks. Consider a calculation of the

maximum sepal length by species with irisSplit as the set of input key/value pairs. This can

be achieved with MapReduce by the following steps:

Map: Apply a function to each division of the data which, for each species, computes the

maximum sepal length and outputs key¼species and value¼max sepal length.

Shuffle/Sort: Gather all map outputs with key “setosa” and send to one reduce, then all with key

“versicolor” to another reduce, etc.

Reduce: Apply a function to all values corresponding to each unique map output key (species)

which gathers and calculates the maximum of the values.

It can be helpful to view this process visually, as is shown in Figure 1.1. The input data

are the irisSplit set of key/value pairs. As described in the steps above, applying

the map to each input key/value pair emits a key/value pair of the maximum sepal length per

species. These are gathered by key (species) and the reduce step is applied which

calculates a maximum of maximums, finally outputting a maximum sepal length per species.

We will revisit this Figure with a more detailed explanation of the calculation in

Section 1.3.3.2.

1.3.2 Hadoop

Hadoop is an open-source distributed software system for writing MapReduce

applications capable of processing vast amounts of data, in parallel, on large clusters of

commodity hardware, in a fault-tolerant manner. It consists of the Hadoop Distributed File

Power Grid Data Analysis with R and Hadoop 7

System (HDFS) and the MapReduce parallel compute engine. Hadoop was inspired by papers

written about Google’s MapReduce and Google File System (Dean and Ghemawat, 2008).

Hadoop handles data by distributing key/value pairs into the HDFS. Hadoop schedules and

executes the computationson thekey/valuepairs inparallel, attempting tominimizedatamovement.

Hadoop handles load balancing and automatically restarts jobs when a fault is encountered.

Hadoop has changed the way many organizations work with their data, bringing cluster

computing to people with little knowledge of the complexities of distributed programming.

Once an algorithm has been written the “MapReduce way,” Hadoop provides concurrency,

scalability, and reliability for free.

1.3.3 RHIPE: R with Hadoop

RHIPE is a merger of R and Hadoop. It enables an analyst of large data to apply numeric

or visualization methods in R. Integration of R and Hadoop is accomplished by a set of

components written in R and Java. The components handle the passing of information between

R and Hadoop, making the internals of Hadoop transparent to the user. However, the user must

be aware of MapReduce as well as parameters for tuning the performance of a Hadoop job.

One of the main advantages of using R with Hadoop is that it allows rapid prototyping of

methods and algorithms. Although R is not as fast as pure Java, it was designed as a

programming environment for working with data and has a wealth of statistical methods and

tools for data analysis and manipulation.

ReduceShuffle/Sort

Key

setosa

Value

versicolor

virginica

Key

setosa

Value

versicolor

virginica

Key

setosa

Value

versicolor

virginica

Key Value

Sep.Len Species
 7.0 versicolor
 4.6 setosa

2

Sep.Len Species
 7.0 versicolor
 4.6 setosa

3

Sep.Len Species
 7.0 versicolor
 4.6 setosa

1

setosa 5.8

versicolor 7.0

virginica 7.9

Key

setosa

Value

setosa

setosa

5.5

5.7

5.8

Key

versicolor

Value

versicolor

versicolor

7.0

6.7

6.7

Key

virginica

Value

virginica

virginica

7.9

7.7

7.7

5.7

6.7

7.7

5.8

6.7

7.7

5.5

7.0

7.9

Map

Figure 1.1
An Illustration of applying a MapReduce job to calculate the maximum Sepal. Length

by Species for the irisSplit data.

8 Chapter 1

Figure 1.1

1.3.3.1 Installation

RHIPE depends on Hadoop, which can be tricky to install and set up. Excellent references for

setting up Hadoop can be found on the web. The site www.rhipe.org provides installation

instructions for RHIPE as well as a virtual machine with a local single-node Hadoop cluster.

A single-node setup is good for experimenting with RHIPE syntax and for prototyping jobs

before attempting to run at scale. Whereas we used a large institutional cluster to perform

analyses on our real data, all examples in this chapter were run on a single-node virtual

machine. We are using RHIPE version 0.72. Although RHIPE is a mature project, software

can change over time. We advise the reader to check www.rhipe.org for notes of any changes

since version 0.72.

Once RHIPE is installed, it can be loaded into your R session as follows:

> library(Rhipe)

--

| IMPORTANT: Before using Rhipe call rhinit() |

| Rhipe will not work or most probably crash |

--

> rhinit()

Rhipe initialization complete

Rhipe first run complete

Initializing mapfile caches

[1] TRUE

> hdfs.setwd(“/”)

RHIPE initialization starts a JVM on the local machine that communicates with the cluster. The

hdfs.setwd() command is similar to R’s setwd() in that it specifies the base directory to

which all references to files on HDFS will be subsequently based on.

1.3.3.2 Iris MapReduce Example with RHIPE

To execute the example described in Section 1.3.1.1, we first need to modify the irisSplit

data to have the key/value pair structure that RHIPE expects. Key/value pairs in RHIPE are

represented as an R list, where each list element is another list of two elements, the first being a

key and the second being the associated value. Keys and values can be arbitrary R objects. The

list of key-value pairs is written to HDFS using rhwrite ():

> irisSplit <- lapply(seq_along(irisSplit), function(i)

þ list(i, irisSplit[[i]])

þ)

> rhwrite(irisSplit, “irisData”)

Wrote 3 pairs occupying 2100 bytes

This creates an HDFS directory irisData (relative to the current HDFS working directory),

which contains a Hadoop sequence file. Sequence files are flat files consisting of key/value

pairs. Typically, data are automatically split across multiple sequence files in the named data

Power Grid Data Analysis with R and Hadoop 9

http://www.rhipe.org
http://www.rhipe.org

directory, but since this data set is so small, it only requires one file. This file can now serve as

an input to RHIPE MapReduce jobs.

1.3.3.2.1 The Map Expression

Below is a map expression for the MapReduce task of computing the maximum sepal length by

species. This expression transforms the random data splits in the irisData file into a partial answer

by computing the maximum of each species within each of the three splits. This significantly

reduces the amount of information passed to the shuffle sort, since there will be three sets (one for

each of the map keys) of at most three key-value pairs (one for each species in each map value).

maxMap <- expression({

for(r in map.values) {

by(r, r$Species, function(x) {

rhcollect(

as.character(x$Species[1]), # key

max(x$Sepal.Length) # value

)

})

}

})

RHIPE initializes the map.values object to be an R list with the input keys and values for

each map task to process. Typically, multiple map expressions are executed in parallel with

batches of key/value pairs being passed in until all key/value pairs have been processed.

Hadoop takes care of the task distribution, relaunching map tasks when failures occur and

attempting to keep the computation local to the data. Because each map task operates on

only the subset of the keys and values, it is important that they do not make improper

assumptions about which data elements are being processed.

The above map expression cycles through the input key/value pairs for each map.value,

calculating the maximum sepal length by species for each of the data partitions. The function

rhcollect() emits key/value pairs to be shuffled and sorted before being passed to the

reduce expression. The map expression generates three output collections, one for each of

the unique keys output by the map, which is the species. Each collection contains three elements

corresponding to themaximumsepal length for that species foundwithin the associatedmapvalue.

This is visually depicted by theMap step in Figure 1.1. In this example, the input map.keys (“1,”

“2,” and “3”) are not used since they are not meaningful for the computation.

Debugging expressions in parallel can be extremely challenging. As a validation step, it

can be useful for checking code correctness to step through the map expression code manually

(up to rhcollect(), which only works inside of a real RHIPE job), on a single processor

and with a small data set, to ensure that it works as expected. Sample input map.keys and map.

values can be obtained by extracting them from irisSplit:

map.keys <- lapply(irisSplit, “[[", 1)

map.values <- lapply(irisSplit, “[[", 2)

10 Chapter 1

Then one can proceed through the map expression to investigate what the code is doing.

1.3.3.2.2 The Reduce Expression

Hadoop automatically performs the shuffle/sort step after the map task has been executed,

gathering all values with the same map output key and passing them to the same reduce task.

Similar to the map step, the reduce expression is passed key/value pairs through the reduce.

key and associated reduce.values. Because the shuffle/sort combines values with the same

key, each reduce task can assume that it will process all values for a given key (unlike the map

task). Nonetheless, because the number of values can be large, the reduce.values are fed

into the reduce expression in batches.

maxReduce <- expression(

pre¼{

speciesMax <- NULL

},

reduce¼{

speciesMax <- max(c(speciesMax, do.call(c, reduce.values)))

},

post¼{

rhcollect(reduce.key, speciesMax)

}

)

To manage the sequence of values, the reduce expression is actually defined as a vector of

expressions, pre, reduce, and post. The pre expression is executed once at the beginning of

the reduce phase for each reduce.key value. The reduce expression is executed each time

new reduce.values arrive, and the post expression is executed after all values have been

processed for the particular reduce.key. In our example, pre is used to initialize the

speciesMax value to NULL. The reduce.values arrive as a list of a collection of the emitted

map values, which for this example is a list of scalars corresponding to the sepal lengths. We

update speciesMax by calculating the maximum of the reduce.values and the current

value of speciesMax. For a given reduce key, the reduce expression may be invoked

multiple times, each time with a new batch of reduce.values, and updating in this manner

assures us that we ultimately obtain the maximum of all maximums for the given species. The

post expression is used to generate the final key/value pairs from this execution, each species

and its maximum sepal length.

1.3.3.2.3 Running the Job

RHIPE jobs are prepared and run using the rhwatch() command, which at a minimum requires

the specification of the map and reduce expressions and the input and output directories.

> maxSepalLength <- rhwatch(

þ map¼maxMap,

þ reduce¼maxReduce,

þ input¼"irisData",

þ output¼"irisMaxSepalLength”

Power Grid Data Analysis with R and Hadoop 11

þ)

. . .

job_201301212335_0001, State: PREP, Duration: 5.112

URL: http://localhost:50030/jobdetails.jsp?jobid¼job_201301212335_0001

pct numtasks pending running complete killed failed_attempts

map 0 1 1 0 0 0 0

reduce 0 1 1 0 0 0 0

killed_attempts

map 0

reduce 0

Waiting 5 seconds

. . .

Note that the time it takes this job to execute (�30 s) is longer than it would take to do the

simple calculation in memory in R. There is a small overhead with launching a RHIPE

MapReduce job that becomes negligible as the size of the data grows.

rhwatch() specifies, at a minimum, the map and reduce expressions and the input and output

directories. There are many more options that can be specified here, including Hadoop

parameters. Choosing the right Hadoop parameters varies by the data, the algorithm, and the

cluster setup, and is beyond the scope of this chapter. We direct the interested reader to the

rhwatch() help page and to (White, 2010) for appropriate guides on Hadoop parameter

selection. All examples provided in the chapter should run without problems on the virtual

machine available at www.rhipe.org using the default parameter settings.

Some of the printed output of the call to rhwatch() is truncated in the interest of space. The

printed output basically provides information about the status of the job. Above, we see output

from the setup phase of the job. There is one map task and one reduce task. With larger data and

on a larger cluster, the number of tasks will be different, and mainly depend on Hadoop

parameters which can be set through RHIPE or in the Hadoop configuration files. Hadoop has a

web-based job monitoring tool whose URL is specified when the job is launched, and the URL

to this is supplied in the printed output.

The output of the MapReduce job is stored by default as a Hadoop sequence file of key/value

pairs on HDFS in the directory specified by output (here, it is irisMaxSepalLength. By

default, rhwatch() reads these data in after job completion and returns it. If the output of the

job is too large, as is often the case, and we don’t want to immediately read it back in but instead

use it for subsequent MapReduce jobs, we can add readback¼FALSE to our rhwatch() call

and then later on call rhread(“irisMaxSepalLength”). In this chapter, we will usually read

back results in the examples since the output datasets are small.

1.3.3.2.4 Looking at Results

The output from a MapReduce run is the set of key/value pairs generated by the reduce

expression. In exploratory data analysis, often it is important to reduce the data to a size that is

manageable within a single, local R session. Typically, this is accomplished by iterative

12 Chapter 1

http://localhost:50030/jobdetails.jsp?jobid=job_201301212335_0001
http://localhost:50030/jobdetails.jsp?jobid=job_201301212335_0001
http://www.rhipe.org

applications ofMapReduce to transform, subset, or reduce the data. In this example, the result is

simply a list of three key-value pairs.

> maxSepalLength

[[1]]

[[1]][[1]]

[1] “setosa”

[[1]][[2]]

[1] 5.8

. . .

> do.call("rbind", lapply(maxSepalLength, function(x) {

þ data.frame(species¼x[[1]], max¼x[[2]])

þ }))

species max

1 setosa 5.8

2 virginica 7.9

3 versicolor 7.0

We see that maxSepalLength is a list of key/value pairs. This code turns this list of key/value

pairs into a more suitable format, extracting the key (species) and maximum for each pair and

binding them into a data.frame.

Before moving on, we introduce a simplified way to create map expressions. Typically, a RHIPE

map expression as defined above for the iris example simply iterates over groups of key/value

pairs provided as map.keys and map.values lists. To avoid this repetition, a wrapper function,

rhmap() has been created, that is applied to each element of map.keys and map.values,

where the current map.keys element is available as m, and the current map.values element is

available as r. Thus, the map expression for the iris example could be rewritten as

maxMap <- rhmap({

by(r, r$Species, function(x) {

rhcollect(

as.character(x$Species[1]), # key

max(x$Sepal.Length) # value

)

})

})

This simplification will be used in all subsequent examples.

1.3.4 Other Parallel R Packages

As evidenced by over 4000 R add-on packages available on the Comprehensive R Archive

Network (CRAN), there are many ways to get things done in R. Parallel processing is no

exception. High-performance computing with R is very dynamic, and a good place to find up-

to-date information about what is available is the CRAN task view for high-performance

computing.1 Nevertheless, this chapter would not be complete without a brief overview of some

1 http://cran.r-project.org/webviews/HighPerformanceComputing.html.

Power Grid Data Analysis with R and Hadoop 13

http://cran.r-project.org/webviews/HighPerformanceComputing.html

other parallel packages available at this time. The interested reader is directed to a very good,

in-depth discussion about standard parallel R approaches in (McCallum and Weston, 2011).

There are a number of R packages for parallel computation that are not suited for analysis of

large amounts of data. Two of the most popular parallel packages are snow (Tierney et al.,

2012) and multicore (Urbanek, 2011), versions of which are now part of the base R package

parallel (R Core Team, 2012). These packages enable embarrassingly parallel computation

on multiple cores and are excellent for CPU heavy tasks. Unfortunately, it is incumbent upon

the analyst to define how each process interacts with the data and how the data are stored. Using

the MapReduce paradigm with these packages is tedious because the user must explicitly

perform the intermediate storage and shuffle/sort tasks, which Hadoop takes care of

automatically. Finally, these packages do not provide automatic fault tolerance, which is

extremely important when computations are spread out over hundreds or thousands of cores.

R packages that allow for dealing with larger data outside of R’s memory include ff (Adler

et al., 2012), bigmemory (Kane and Emerson, 2011), and RevoScaleR (Revolution

Analytics, 2012a,b). These packages have specialized formats to store matrices or data frames

with a very large number of rows. They have corresponding packages that perform

computation of several standard statistical methods on these data objects, much of which can

be done in parallel. We do not have extensive experience with these packages, but we

presume that they work very well for moderate-sized, well-structured data. When the data

must be spread across multiple machines and is possibly unstructured, however, we turn to

solutions like Hadoop.

There are multiple approaches for using Hadoop with R. Hadoop Streaming, a part of Hadoop

that allows any executable, which reads from standard input and writes to standard output to be

used as map and reduce processes, can be used to process R executables. The rmr package

(Revolution Analytics, 2012a,b) builds upon this capability to simplify the process of creating

the map and reducing tasks. RHIPE and rmr are similar in what they accomplish: using R with

Hadoop without leaving the R console. The major difference is that RHIPE is integrated with

Hadoop’s Java API whereas rmr uses Hadoop Streaming. The rmr package is a good choice for

a user satisfied with the Hadoop Streaming interface. RHIPE’s design around the Java API

allows for a more managed interaction with Hadoop during the analysis process. The segue

package (Long, 2012) allows for lapply() style computation using Hadoop on Amazon

Elastic MapReduce. It is very simple, but limited for general-purpose computing.

1.4 Power Grid Analytical Approach

This section presents both a synopsis of the methodologies we applied to our 2TB power grid

data set and details about their implementation. These methodologies include aspects of

exploratory analysis, data cleaning, and event detection. Some of the methods are

14 Chapter 1

straightforward and could be accomplished using a variety of techniques, whereas others

clearly exhibit the power and simplicity ofMapReduce. Although this approach is not suited for

every data mining problem, the following examples should demonstrate that it does provide a

powerful and scalable rapid development environment for a breadth of data mining tasks.

1.4.1 Data Preparation

Preprocessing data into suitable formats is an important consideration for any analysis task, but

particularly so when using MapReduce. In particular, the data must be partitioned into key/

value pairs in a way that makes the resulting analysis efficient. This applies to both optionally

reformatting the original data into a format that can be manipulated by R and partitioning

the data in a way that supports the required analyses. In general, it is not uncommon to partition

the data along multiple dimensions to support different analyses.

As a first step, it is worthwhile to convert the raw data into a format that can be quickly ingested

by R. For example, converting data from a customized binary file into an R data frame

dramatically reduces read times for subsequent analyses. The raw PMU data were provided in a

proprietary binary format that uses files to partition the data. Each file contains approximately

9000 records, representing 5 min of data. Each record contains 555 variables representing the

time and multiple measurements for each sensor.

We provide R code in Appendix to generate a synthetic data set of frequencymeasurements and

flags, a subset of 76 variables out of the 555. These synthetic data are a simplified version of the

actual PMU data, containing only the information required to execute the examples in this

section. Where appropriate, we motivate our analysis using results pulled from the actual data

set. The attentive reader will notice that these results will typically not exhibit the same

properties as the same analysis performed on the synthetic data, although we tried to artificially

preserve some of these properties. Although unfortunate, that difference is to be expected.

The major consideration when partitioning the data is determining how to best split it into key/

value pairs. Our analyses are primarily focused on time-local behavior, and therefore the

original partitioning of the data into 5-min time intervals is maintained. Five minutes is an

appropriate size for analysis because interesting time-local behaviors occur in intervals

spanning only a few seconds, and the blocks are of an adequate size (�11 MB per serialized

block) for multiple blocks to be read in to the map function at a given time. However, many raw

data files do not contain exactly 5 min of data, so some additional preprocessing is required to

fill in missing information. For simplicity, the synthetic data set comprises 10 complete

5-min partitions.

If our analysis focused on behavior of individual PMUs over time, the partitioning would be by

PMU. This would likely result in too much data per partition and thus an additional refinement

based on time or additional partitioning within PMU would also be needed.

Power Grid Data Analysis with R and Hadoop 15

1.4.2 Exploratory Analysis and Data Cleaning

A good first step in the data mining process is to visually and numerically explore the

data. With large data sets, this is often initially accomplished through summaries

since a direct analysis of the detailed records can be overwhelming. Although summaries

can mask interesting features of the full data, they can also provide immediate insights.

Once the data are understood at the high level, analysis of the detailed records can be

fruitful.

1.4.2.1 5-min Summaries

A simple summary of frequency over a 5-min window for each PMU provides a good

starting point for understanding the data. This calculation is straightforward: since the data

are already divided into 5-min blocks the computation simply calculates summary statistics at

each time stamp split by PMU. The map expression for this task is:

map.pmusumm <- rhmap({

r is the data.frame of values for a 5-minute block

k is the key (time) for the block

colNames <- colnames(r)

freqColumns <- which(grepl(“freq”, colNames))

pmuName <- gsub(“(.*)\\.freq”, “\\1”, colNames[freqColumns])

for(j in seq_along(freqColumns)) { # loop through frequency columns

v <- r[,freqColumns[j]] / 1000þ60 # convert to HZ

rhcollect(

pmuName[j], # key is the PMU

data.frame(

time ¼ k,

min ¼ min(v, na.rm¼TRUE),

max ¼ max(v, na.rm¼TRUE),

mean ¼ mean(v, na.rm¼TRUE),

stdev ¼ sd(v, na.rm¼TRUE),

median ¼ median(v, na.rm¼TRUE),

nna ¼ length(which(is.na(v)))

)

)

}

})

The first three lines after the comments extract only the PMU frequency columns (because

the data frame consists of column names ending with “.freq” and “.flag”). These three

lines will be recycled in most of the subsequent examples. These columns are then iterated

over, converting the 1000 offset from 60 HZ to a true frequency value and calculating a

data frame of summary statistics which is emitted to the reduce function with the PMU as

the key. This map task emits 38 key/value pairs (one for each PMU) for each input key

(time interval).

16 Chapter 1

The reduce collects all of the values for each unique PMU and collates them:

reduce.pmusumm <- expression(

pre ¼ {

res <- NULL

},

reduce ¼ {

res <- do.call(rbind, c(list(res), reduce.values))

},

post ¼ {

res <- res[order(res$time),] # order results by time

res$time <- as.POSIXct(res$time, origin¼"1970-01-01", tz¼"UTC")

rhcollect(reduce.key, res)

}

)

Recall that the reduce expression is applied to each collection of uniquemap output keys, which

in this case is the PMU identifier. The pre expression is evaluated once for each key,

initializing the result data frame. The reduce expression is evaluated as new reduce.values

flow in iteratively building the data frame. Finally, the post expression orders the result by

time, converts the time to an R POSIXct object, and writes the result.

We run the job by:

summ5min <- rhwatch(

map¼map.pmusumm,

reduce¼reduce.pmusumm,

input¼“blocks5min”,

output¼"blocks5min_summary”

)

To look at the first key/value pair:

> summ5min[[1]][[1]]

[1] “AA”

> str(summ5min[[1]][[2]])

‘data.frame’: 10 obs. of 7 variables:

$ time : POSIXct, format: “2012-01-01 00:00:00” “2012-01-01 00:05:00” “2012-01-01 00:10:00”

. . .

$ min : num 60 60 60 60 60 . . .

$ max : num 60 60 60 60 60 . . .

$ mean : num 60 60 60 60 60 . . .

$ stdev : num 0.00274 0.00313 0.0044 0.0028 0.00391 . . .

$ median: num 60 60 60 60 60 . . .

$ nna : int 0 0 0 0 0 0 0 0 0 0

Note that the order of the key/value pairs read in by rhread()will not necessarily be the same

for each run, depending on the order of when tasks are completed when running in parallel.

In the real data, the 5-min summaries highlight some interesting behaviors in the frequency.

Specifically, some PMUs exhibit extended periods of abnormally deviant median frequencies,

and more interestingly, these aberrant points typically have few values reported for the 5-min

Power Grid Data Analysis with R and Hadoop 17

interval. Figure 1.2 shows a plot of 5-min median frequencies and number of missing

observations across time for two PMUs as calculated from the real data.

Plots like these helped identify regions of data for which the median frequency was so out-of-

bounds that it could not be trusted.

1.4.2.2 Quantile Plots of Frequency

A summary that provides information about the distribution of the frequency values for each

PMU is a quantile plot. Calculating exact quantiles would require collecting all of the frequency

values for each PMU, about 1.4 billion values, then applying a quantile algorithm. This is an

example where a simplified algorithm that achieves an approximate solution is very useful.

An approximate quantile plot can be achieved by first discretizing the data through rounding and

then tabulating the unique values. Great care must be taken in choosing how to discretize the data

to ensure that the resulting distribution is not oversimplified. The PMU frequency data are already

discretely reported as an integer 1000 offset from 60 HZ. Thus, our task is to tabulate the unique

frequency values by PMU and translate the tabulation into quantiles. Here, as in the previous

Figure 1.2
5-min medians and number of missing values versus time for two PMUs.

18 Chapter 1

Figure 1.2

example, we are transforming data split by time to data split by PMU. This time, we are

aggregating across time as well, tabulating the occurrence of each unique frequency value:

map.freqquant <- rhmap({

colNames <- colnames(r)

freqColumns <- which(grepl("freq", colNames))

pmuName <- gsub("(.*)\\.freq", “\\1", colNames[freqColumns])

for(j in seq_along(freqColumns)) { # loop through frequency columns

freqtab <- table(r[,freqColumns[j]])

rhcollect(

pmuName[j], # key is the PMU

data.frame(

level ¼ as.integer(names(freqtab)),

count ¼ as.numeric(freqtab)

)

)

}

})

As a result, this map task is similar to that of the previous example. The only difference is the

data frame of tabulated counts of frequencies that is being passed to the reduce expression.2 The

map expression emits one data frame of tabulations for each PMU for each time block.

The reduce function must combine a collection of tabulations for a given PMU:

reduce.tab <- expression(

pre ¼ {

res <- NULL

},

reduce ¼ {

tabUpdate <- do.call(rbind, c(list(res), reduce.values))

tabUpdate <- xtabs(count � level, data ¼ tabUpdate)

res <- data.frame(

level ¼ as.integer(names(tabUpdate)),

count ¼ as.numeric(tabUpdate)

)

},

post ¼ {

rhcollect(reduce.key, res)

}

)

For each PMU, we combine the data frames of the tabulation output and create a new tabulation

data frame using R’s xtabs() function. This function sums the already-computed counts

instead of simply counting the number of unique occurrences. The call to as.numeric() is

required because the count may become too large to be represented as an integer. As is common

2 We use the word count to refer to the tabulation of frequencies as opposed to frequency to avoid confusion with the
PMU measurement of grid frequency.

Power Grid Data Analysis with R and Hadoop 19

in reduce steps, the output of the reduce expression is of the same format as the values emitted

from the map, allowing it to be easily updated as new reduce.values arrive. This function is

a generalized reduce that can be applied to other computations.

To execute the job:

freqtab <- rhwatch(

map¼map.freqquant, reduce¼reduce.tab,

input¼"blocks5min", output¼"frequency_quantile”

)

The data and computed quantiles for the first PMU can be manipulated and viewed by:

ftpmu <- freqtab[[1]][[2]]

cs <- cumsum(ftpmu$count)

f <- ppoints(2000, 1)

q <- ftpmu$level[sapply(f * sum(ftpmu$count), function(x)

min(which(x <¼ cs)))]

plot(f, q/1000þ60, xlab¼"Quantile", ylab¼"Frequency (HZ)")

Here, cs is the cumulative sum of the tabulated frequencies, and f is the vector of discrete

values which had been recorded by the PMU. The quantile, q[i], for a given value of f[i] is

the value at which the number of counts corresponding to f[i] is less than or equal to the

cumulative sum. This code essentially turns our frequency tabulation into

approximate quantiles.

The distribution of frequency for many of the PMUs was approximately normal. Figure 1.3

shows normal-quantile plots for two PMUs in the real data set. The distribution of frequency for

PMU A looks approximately normal, whereas that for PMU B has an abnormally high amount

of frequency values right below 60 HZ. This indicates data integrity issues.

As implied by the previous two examples, there are many observations in this data set that are

suspect. With RHIPE, we can perform calculations across the entire data set to uncover and

confirm the bad data cases while developing algorithms for removing these cases from the data.

A conservative approach filters only impossible data values, ensuring that anomalous data are

not unintentionally filtered out by these algorithms. Furthermore, the original data set is

unchanged by the filters, which are applied on demand to remove specific types of information

from the data set.

1.4.2.3 Tabulating Frequency by Flag

Investigating the strange behavior of the quantile plots required looking at other aspects of the

data including the PMU flag. The initial information from one expert was that flag 128 is a

signal for bad data. Our first step was to verify this and then gain insight into the other flags.

Tabulating frequency by PMU and flag can indicate whether or not the frequency behaves

differently based on the flag settings. This involves a computation similar to the quantile

calculation, except that we step through each unique flag for each PMU, and emit a vector with

20 Chapter 1

the current PMU and flag for which frequencies are being tabulated. For the sake of brevity, we

omit the code for this example but encourage the reader to implement this task on the synthetic

data provided.

When applying this to the real data, we found that for any flag greater than or equal to 128, the

frequency is virtually always set at �1 (59.999 HZ). This insight, combined with visual

confirmation that the values did not appear to be plausible, implied that these flags are

indicative of bad data. This was later confirmed by another expert.

1.4.2.4 Distribution of Repeated Values

Even after filtering the additional bad data flags, the quantile plots indicated some values that

occurredmore frequently than expected. Investigating the frequency plots further, we identified

some cases where extended sequences of repeated frequency values occurred. This was

quantified by calculating the distribution of the sequence length of repeated values.

The sequence length distribution is calculated by stepping through a 5-min block of

data and, for each PMU and given frequency value x, finding all runs of x and counting the

run length. Then the number of times each run length occurs is tabulated. This can

be achieved with:

map.repeat <- rhmap({

colNames <- colnames(r)

Figure 1.3
Normal-quantile plots of frequency for two real PMUs.

Power Grid Data Analysis with R and Hadoop 21

Figure 1.3

freqColumns <- which(grepl("freq", colNames))

pmuName <- gsub("(.*)\\.freq", “\\1", colNames[freqColumns])

for(j in seq_along(freqColumns)) { # step through frequency columns

curFreq <- r[,freqColumns[j]]

curFreq <- curFreq[!is.na(curFreq)] # omit missing values

changeIndex <- which(diff(curFreq) !¼ 0) # find index of changes

changeIndex <- c(0, changeIndex, length(curFreq)) # pad with beg/end

runLengths <- diff(changeIndex) # run length is diff between changes

runValues <- curFreq[changeIndex[-1]] # get value assoc with lengths

uRunValues <- unique(runValues)

for(val in uRunValues) { # for each unique runValue tabulate lengths

repeatTab <- table(runLengths[runValues ¼¼ val])

rhcollect(

list(pmuName[j], val),

data.frame(

level ¼ as.integer(names(repeatTab)),

count ¼ as.numeric(repeatTab)

)

)

}

}

})

curFreq is the current frequency time series for which we are tabulating runs, with

missing values omitted. We find all places where curFreq changes from one number to

another by finding where all first differences are not zero, storing the result as changeIndex.

We calculate runLengths by taking the first difference of changeIndex. Then, for

each unique runValue, we tabulate the count of each sequence length and pass it to

the reduce.

Because this tabulation in the map occurs on a single 5-min window, the largest possible

sequence length is 9000 (5 min*30 records/s). For our purposes, this is acceptable because we

are looking for impossibly long sequences of values, and a value repeating for even 1 min or

more is impossibly long. We do not need to accurately count the length of every run; we only

identify those repetitions that are too long to occur in a correctly working system. Further, if a

sequence happens to slip by the filter, for example, because it is equally split across files, there

is little harm done. An exact calculation could be made, but the additional algorithmic

complexity is not worthwhile in our case.

Since we emit data frames of the same format as those expected by reduce.tab (Section 1.4),

we simply define it as our reduce function. This reuse is enabled because we precede the

tabulation with a nontrivial transformation of the data to sequence lengths. As previously noted,

many map algorithms can be defined to generate input to this function. The job is executed by:

repeatTab <- rhwatch(

map¼map.repeat, reduce¼reduce.tab,

input¼"blocks5min", output¼"frequency_repeated”

)

22 Chapter 1

And we can visualize the results for repeated 60 HZ frequencies by:

repeatZero <- do.call(rbind, lapply(repeatTab, function(x) {

if(x[[1]][[2]] ¼¼ 0) {

data.frame(pmu¼x[[1]][[1]], x[[2]])

}

}))

library(lattice)

xyplot(log2(count) � log2(level) | pmu, data¼repeatZero)

The lattice package plots the distribution of repeated 60H values by PMU, shown for two PMUs

in Figure 1.4 for the real PMU data.

Figure 1.4 shows this plot for real PMUs on a log-log scale. The solid black line indicates

the tail of a geometric probability distribution fit to the tail of the repeated value distribution.

We can use this observation to set limits based on the estimated geometric parameters

which we would likely never expect to see a run length exceed. PMU AS in Figure 1.4

shows several cases well beyond the tail of a legitimate distribution. These sequences of

well over 45 s correspond to bad data records. An interesting side effect of this analysis

was that domain experts were quite surprised that sequence lengths as long as 3 seconds are

not only completely plausible according to the distribution—but actually occur frequently

in practice.

1.4.2.5 White Noise

A final type of bad sensor data occurs when the data have a high degree of randomness.

Because the sensors model a physical system, with real limitations on how fast state can

change, a high degree of autocorrelation in frequency is expected. When data values are

essentially random, the sensor is clearly not operating correctly and the values should be

Figure 1.4
Tabulation of sequence lengths for repeated zero values for 2 real PMU frequency series. The solid

black line indicates the tail of a fitted geometric distribution.

Power Grid Data Analysis with R and Hadoop 23

Figure 1.4

