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Preface

When initially considering the content of this preface, I wanted to provide a

summarization of the number and kinds of research centers in the world and make

a comparison with Semeion. I was, to say the least, too conscientious in my plan.

Finding the approximate number of research centers in the United States was not

much of a problem (about 366) and was easily done using an Internet search.

However, as I proceeded to search the available data in other countries, I quickly

discovered that the task would be far more daunting than I had time available, but

one item was particularly clear: there are many, many research centers across the

world of varying sizes doing research in any and every field imaginable. I do not

doubt that each center regularly makes a contribution to the knowledge base of

humanity, and I am equally convinced that those contributions can becomemuch too

easily lost in the ether of digitalization and massive quantification of information

that continues to grow at an ever increasing rate. However, there is one research

center that is doing outstanding work in the field of artificial intelligence and it is to

that institute that this book is directed.
The Semeion Research Centre of Rome, Italy, has been in operation since 1991

and was granted legal status recognized by the Italian Ministry for Education

University and Research. It also receives financial assistance from the government

in addition to grants and contracts from assorted organizations and governments.

The center has a full-time staff and an international group of researchers and

scholars directly associated with the organization. Some have been granted the

title of “Fellow” in recognition of their accomplishments
The word “semeion” speaks well for this organization for its root is from Greek

and means, putting it into proper context, from a small quantity of data can be
extracted a substantial mass of knowledge given the presence of prepared minds
and an innovative spirit for discovery

Semeion is directly involved in a series of research initiatives:

• Basic research oriented to the conception and design of artificial organisms

representing adaptive systems based on Artificial Neural Networks and evolu-

tionary algorithms for the simulation, prediction, and control of processes and

phenomena
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• Applied research with a focus on the construction and application of intelligent

computational models in the biomedical, financial, and social fields

• Education of researchers on the methodologies and techniques of the application

of Artificial Adaptive Systems to different research fields

• The distribution of research models, software, projects, and scientific testing

invented inside Semeion

• Publication of scientific discoveries based on the results of research endeavors

and successful experimentation carried out by Semeion’s researchers, both

nationally and internationally

The motivation for this book came from a conference of the North American

Fuzzy Information Processing Society (NAFIPS 2010) in Toronto, Canada, during

the summer of 2010. Several papers dealing with issues involved with complex

problem solving and very innovative methods were reviewed by the conference

publication committee and it was quickly determined that the content was excep-

tional, certainly more than worthy of a conference presentation. The director of

Semeion, Prof. Dr. Massimo Buscema, was asked to consider the publication of the

papers as part of a special issue of that Society’s journal. Unfortunately, the journal

officials were limited to papers whose content specialized in “fuzzy set theory,” and

the content of these papers was somewhat peripheral to this limitation but highly

focused on the area of artificial neural networks. In retrospect, this was very good

for it gave Semeion researchers an opportunity to investigate other available

avenues; a proposal to Springer Science underwent peer review and was enthusias-

tically accepted. This also gave Semeion an opportunity to publish some very recent

breakthroughs in adaptive neural network technology and applications of the

technology in several disciplines, particularly the medical field.

The content presented in this book is representative of the exceptional

work accomplished by Semeion researchers and is also a means by which that

organization can make others more informed of the opportunities available through

collaborative ventures with other individuals and research institutes.

New York, USA William J. Tastle
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Chapter 1

Assessing Post-Radiotherapy Treatment

Involving Brain Volume Differences in Children:

An Application of Adaptive Systems

Methodology

Massimo Buscema, Francis Newman, Giulia Massini, Enzo Grossi,

William J. Tastle, and Arthur K. Liu

1.1 Introduction

Perhaps the most unwelcome news one can hear from one’s physician is that of the

identification of a tumor and it is arguably far more painful to a parent when

the news affects a young child. One standard method of treatment involves the

application of radiation to the brain in an effort to shrink or otherwise eliminate

the tumor. Diseased cells are destroyed in this manner, but it is well known that

healthy brain cells are also destroyed, though at a lesser rate.

Research suggests thatmany children treatedwithCranialRadiotherapy experience

cognitive, educational and behavioral difficulties. The relation between changes

in volume of specific brain regions after radiotherapy and the degree of decline in

cognitive functions, as measured with IQ is not clear, due to high variability of

response and underlying non-linearity.
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Numerous groups have used MRI to study children treated with radiation to

look for brain abnormalities, although the precise mechanism of brain injury in

children resulting from radiotherapy remains poorly understood. The imaging

abnormalities described have included white matter changes, cortical thinning,

calcifications, hemorrhagic radiation vasculopathy, moya-moya disease, and tumors

(Hertzberg et al. 1997; Harila-Saari et al. 1998; Laitt et al. 1995; Paakko et al. 1994;

Poussaint et al. 1995; Liu et al. 2007; Khong et al. 2006; Leung et al. 2004; Nagel et al.

2004; Ullrich et al. 2007; Kikuchi et al. 2007; Ishikawa et al. 2006; Reddick et al. 2003,

2005, 2006;Mulhern et al. 1999). Some groups have been able to correlate the imaging

abnormalities with neuropsychological deficits (Reddick et al. 2003, 2005, 2006;

Mulhern et al. 1999; Paakko et al. 2000). However, other studies have been unable

to find such a relationship (Harila-Saari et al. 1998; Paakko et al. 1994). Possible

causes for these lack of correlations or findings is that if there is an effect on cerebral

anatomy, the effect is subtle or the effect is spatially localized. Small changes may

be difficult to detect with review of conventional imaging by radiologists, while

localized changes may be missed if the entire brain is not closely evaluated.

Newer analysis tools may allow for more sophisticated analysis of structural

changes. In this work, we utilize an automated image analysis tool (Freesurfer, a

freeware application offered by the Athinoula A. Martinos Center for Biomedical

Imaging) that provides accurate quantitative measurements of various brain

structures based on standard clinical MRI. For example, the image analysis soft-

ware enables us to track post-radiotherapy the change in volumes of cerebral cortex,

amygdala, hippocampus and other structures of interest. The structural volume

changes are then used as input into a novel neural network algorithm to uncover

which structures are the best predictors of IQ test results.

It is the purpose of this paper to analyze data acquired from 58 children who have

undergone radiotherapy treatment due to the presence of a brain tumor with the goal

of identifying which brain parts are more, or less, affected.

1.2 Variables Description and Methods

The dataset used in this analysis is composed of 58 young subjects (mean age

10.13 � 5.03 years) affected by brain tumors of different origin (Table 1.1) who

underwent radiotherapy sessions.

Pre-treatment and post-treatment MRI scans were automatically segmented using

the Freesurfer tools (Dale and Sereno 1993; Dale et al. 1999; Fischl et al. 2002, 2004;

Segonne et al. 2004). In brief, non-brain tissue is removed and the remaining brain is

registered to the Taliraich atlas and volumetric segmentation of the brain is performed.

The structures segmented separately for each hemisphere and include white matter,

cortex, thalamus, caudate, putamen, pallidum, hippocampus and amygdale.

Differences in the volume of 18 brain segments, measured through volumetric

magnetic resonance, are considered both pre- and post-treatment. The standard of

success is assumed to be the individual child’s post-treatment IQ. Based on the

post-treatment analysis of the data it is determined that 30 subjects were measured

2 M. Buscema et al.



to have an IQ of less than 94 (subsample V1), and 28 subjects possessed an IQ equal

to or greater than 94 (subsample V2).

The relation between the age of the subjects and the post radiotherapy IQ was

very low (r ¼ �0.27). The problem is to establish the relations between brain

segments volume changes and the IQ (Table 1.2).

From the table we can see that after treatment the total volume for V1 (0.033) is

much smaller than the total volume for V2 (0.668), but there are some exceptions.

The volumes associated with the right and left cerebral cortex are much larger in

V1, the volumes for the right and left hippocampus are larger in V1 and the volumes

of the right and left white matter are much smaller in V1.

Table 1.1 Distribution of brain tumors in the study population

Type of tumor No. subjects

Medulloblastoma 14

Craniopharyngioma 9

Ependymoma 7

Nongerminomatous germ-cell tumor 6

Germinoma 6

Anaplastic astrocytoma 3

Other 13

Total 58

Table 1.2 The average change in brain volume, by segment, after treatment

Brain segment Average V1 (IQ < 94) Average V2 (IQ � 94)

Left-Cerebral-White-Matter �0.00472830 �0.00066057

Left-Cerebral-Cortex 0.00508573 �0.00034732

Left-Thalamus �0.00416413 0.00046304

Left-Caudate �0.00125607 0.00555714

Left-Putamen 0.00976560 0.00424279

Left-Pallidum �0.00335303 0.00191857

Left-Globus Pallidus 0.00156500 0.00111636

Left-Hippocampus 0.00079647 �0.00008032

Left-Amygdala �0.00187227 0.00064261

Right-Cerebral-White-Matter �0.00521657 0.00039893

Right-Cerebral-Cortex 0.00580363 �0.00020357

Right-Thalamus �0.00219633 0.00170196

Right-Caudate �0.00045183 0.00105939

Right-Putamen 0.00029533 0.00445014

Right-Pallidum �0.00224167 0.00130579

Right-Globus Pallidus �0.00116657 0.00176311

Right-Hippocampus 0.00472197 0.00034175

Right-Amygdala �0.00028133 0.00020061

Each hemisphere of the brain is composed of nine segments or parts, and each is designated as

being located in either the left or right hemisphere
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1.2.1 V1 and V2 as Two Separate Classes

Table 1.3 shows the standard deviations associatedwith each brain segment. Inspection

of Table 1.3 shows a variance inV1 that is generally larger than that ofV2. One possible

interpretation of this statistic is that V1 subjects may be more difficult to predict.

Let us take all records in V1 for which all individuals have an IQ measured

at <94 and assign them to be members of Class 1, and all records in V2 for which

individuals have an IQ measured at �94 to be members of Class 2. The addition of

these two classes constitutes dependent variables for which the square of the

correlation is calculated. Table 1.4 shows the square of the correlation.

The square correlation between each variable and the classes for the two

samples together is very poor. This suggests that there is no possible way to

linearly classify V1 or V2 subjects using the 18 variables. In short, this method of

analysis that relies on the use of traditional statistics leads us to the conclusion that

little practical knowledge can be learned from this data. We thus turn to a set of tools

developed by Semeion (Buscema 2000a, b, 2007a, 2008a, b, 2009c; Massini 2007)

in an attempt to extract something useful from this otherwise marginal set of data.

1.2.2 Linear Correlation

Microsoft Excel is used to calculate the correlation between all pairs of variables;

the negative correlations are highlighted

Table 1.3 The standard deviation in brain volume, by segment, after treatment

Brain segment Std dev V1 (IQ < 94) Std dev V2 (IQ � 94)

Left-Cerebral-White-Matter 0.0153 0.0072

Left-Cerebral-Cortex 0.0158 0.0049

Left-Thalamus 0.0237 0.0069

Left-Caudate 0.0140 0.0161

Left-Putamen 0.0444 0.0183

Left-Pallidum 0.0370 0.0184

Left-Globus Pallidus 0.0260 0.0081

Left-Hippocampus 0.0094 0.0036

Left-Amygdala 0.0170 0.0059

Right-Cerebral-White-Matter 0.0200 0.0078

Right-Cerebral-Cortex 0.0250 0.0032

Right-Thalamus 0.0187 0.0074

Right-Caudate 0.0101 0.0071

Right-Putamen 0.0324 0.0146

Right-Pallidum 0.0271 0.0125

Right-Globus Pallidus 0.0289 0.0075

Right-Hippocampus 0.0217 0.0023

Right-Amygdala 0.0114 0.0037

4 M. Buscema et al.



An examination of the linear correlation shows (see page 6):

• In subsample V1 only the cerebral cortex and hippocampus possess a positive

correlation with each other and a negative correlation with the other seven

segments of the brain. From this it may inferred that these two parts of the

brain were modified during the radiotherapy treatment in a different and more

pronounced way.

• Subsample V2 possesses various positive and negative correlations that are

clearly more distributed; that could mean that each part of the brain was less

modified by the radiotherapy treatment;

• In comparing the row summations in V1 and V2 it is apparent that subsample V2

has a stronger relationship in terms of covariance among the nine brain segment

volumes.

These results suggest a suspicion as to the critical role radiotherapy treatment

may have on the modification of the cerebral cortex and hippocampus among the

subjects of the V1 subsample.

1.2.3 Classification of the Two Classes Through
Artificial Adaptive Systems

Artificial adaptive systems (AAS) utilize highly nonlinear functions in computa-

tionally expensive ways to identify relationships among variables. This technique

permits us to classify V1 and V2 in a “blind” way using a Training and Testing

Table 1.4 Calculation of the square of the correlations

Square of the correlation R2 target

Left-Cerebral-White-Matter 0.0283

Left-Cerebral-Cortex 0.0515

Left-Thalamus 0.0173

Left-Caudate 0.0504

Left-Putamen 0.0066

Left-Pallidum 0.0082

Left-Globus Pallidus 0.0001

Left-Hippocampus 0.0038

Left-Amygdala 0.0097

Right-Cerebral-White-Matter 0.0334

Right-Cerebral-Cortex 0.0277

Right-Thalamus 0.0186

Right-Caudate 0.0077

Right-Putamen 0.0069

Right-Pallidum 0.0071

Right-Globus Pallidus 0.0048

Right-Hippocampus 0.0197

Right-Amygdala 0.0008

Sum 0.3026

1 Assessing Post-Radiotherapy Treatment Involving Brain Volume Differences. . . 5
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Reverse Validation Protocol TTRVP (Buscema et al. 2005). Note that the analysis

is “blind” because no preparation of the data is undertaken to provide a separation

of individual datum into their respective classes.

The following artificial adaptive systems were used in this experiment:

• Advanced Back Propagation – FF_BP (Rumelhart and McClelland 1986;

Buscema 2008a, b; Chauvin and Rumelhart 1995);

• Adaptive Vector Quantization 1 – AVQ1_G (Buscema 2009b; Kohonen 1995;

Kosko 1992);

• Sine Net –SN (Buscema et al. 2006a, b);

• Guacamole (Buscema 2008b);

Algorithms:

• NRC (Buscema 1998b; Diappi et al. 2004);

• AutoCM, AutoBP, SCM (Buscema 2007b; Buscema and Grossi 2008; Buscema

et al. 2008);

• Majority Vote (Day 1988; Buscema 2007a; Kuncheva 2004);

• Meta-Fuzzy (Buscema 1998a, 2007a);

Four types of experiments were carried out on the sample data (note that

reference to the “18” means the set of brain segments, separated by hemisphere,

as listed in Tables 1.1, 1.2, and 1.3):

Experiment 1: The 18 real values: The test was conducted using the real

values of difference of volume among 18 pre- and post-treatment segments of

the brain;

The purpose is to test the goodness of the raw data;

Experiment 2: The 18 binary values: The second experiment only considered the

sign difference in each of the 18 sections (�1, +1); to eliminate all possibilities of

noise in the data stream, we eliminate all but the sign difference between the

pre-and post-treatment volumes of the brain;

Experiment 3: The nine summations of the real values: The third experiment

composes a new input vector for each subject made up by summing the real values

of the same left and right part of the volume’s difference. Thus, the left cerebral

white matter variable was added to the right cerebral white matter variable to

produce a single white matter variable. In this way, each input vector was

compacted to nine components and no distinction between left and right is

recognized; the purpose of this experiment is to verify if the key information

contained in this very small dataset is not simply in the volume differences but in

the global compensation between each right and left part of the brain;

Experiment 4: The nine modules as the summation of the real values: The fourth

experiment was similar to the previous experiment, but the module of the sum is

considered. The intent is to test if the sign of the value is relevant or not to the

classification of brain quality.

1 Assessing Post-Radiotherapy Treatment Involving Brain Volume Differences. . . 7



1.2.4 Prototype Discovery Through a New Adaptive System: ACS

There exists a pressing need to develop an algorithm to clearly delineate the effects

of radiotherapy treatment on the various brain segments. Such an algorithm would

produce prototypes based on the V1 and V2 subsamples. We seek to establish

suitable prototypes below.

A new Artificial Adaptive System has been developed that is able to discover

the prototypes embedded in the two subsamples. The name of this system is the

Activation and Competition System (ACS) (Buscema 2009a, c) and it is composed

to two parts:

1. The algorithms are able to calculate the basic association among all the variables

in the dataset; in the case of this particular dataset, the basic association is on the

nine parts of the brain volume differences.

2. Utilizing the correlations among the variables as system constraints,

dynamically generate the prototype that is embedded in the dataset.

The dataset to be processed will include the nine parts of the brain volumes

differences contained in the two subsamples, along with the tag variables (“1 0”

for V1 and “0 1” for V2), to distinguish the subsamples to which each record

belongs.

1.3 The Theory of Activation and Competition System

ACS is an artificial adaptive system designed by Massimo Buscema in 2009 at

Semeion Research Center in Rome (Buscema 2009a, c). It is a dynamic neural

network able to merge many auto associative connection matrices that are

generated by different algorithms, thus able to simultaneously consider many

different types of mathematical associations that exist among the same set of

variables. The results from ACS are detailed and robust.

As is characteristic of neural networks, ACS has an initial learning phase that is

based on the variables under study. These variables are called units. Each unit

evolves toward a new equilibrium state, called an attractor, using the vector of the

connection matrices as a set of constraints.

1.3.1 Application of ACS

In this application ACS uses two different algorithms to generate its vector of

connections matrices:

8 M. Buscema et al.



• The Linear Correlation Matrix:

W
½L�
i;j ¼

PN
k¼1

ðxi;k � �xiÞ � ðxj;k � �xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

ðxi;k � �xiÞ2 �
PN
k¼1

ðxj;k � �xjÞ2
s ; (1.1)

� 1 � W
½L�
i;j � 1; i; j 2 ½1; 2; . . . ;M�

• The Prior Probability Algorithm:

W
½P�
i;j ¼ � ln

1
N2 �

PN
k¼1

xi;k � ð1� xj;kÞ �
PN
k¼1

ð1� xi;kÞ � xj;k

1
N2 �

PN
k¼1

xi;k � xj;k �
PN
k¼1

ð1� xi;kÞ � ð1� xj;kÞ

�1 � W
½P�
i;j � þ1; x 2 ½0; 1�; i; j 2 ½1; 2; . . . ;M�

All weight matrices coming from the various algorithms are linearly scaled

between 0 and 1.

Ecci ¼ a �X
Q

k

PM
j

u
½n�
j �Wk

i;j

N
½E�
k;i

Wk
i;j > 0;

Inii ¼ a �X
Q

k

PM
j

u
½n�
j �Wk

i;j

N
½i�
k;i

Wk
i;j < 0;

Ei ¼Ecciþb � Inputi Inputi > 0;

Ii ¼ Iniiþb � Inputi Inputi < 0;

Neti ¼ Max�u
½n�
i

� �
�Eiþ u

½n�
i �Min

� �
� Ii�Dec

½n�
i � u

½n�
i �Rest

� �
;

di ¼Neti � 1:0�u
½n�
i �u½n�i

� �
;

H½n� ¼XM
i

d2i ;

u
½nþ1�
i ¼ u

½n�
i þdi; �1< u

½n�
i < þ1

u
½n�
i >Max u

½n�
i ¼Max

u
½n�
i <Min u

½n�
i ¼Min

8>><
>>:

9>>=
>>;

Dec
½nþ1�
i ¼Dec

½n�
i �e� u

½n�
i �u½n�ið Þ:

(The description of the notation used in these equations is in Table 1.5).
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The minimization of H[n] is the cost function of ACS. Consequently, when

H[n] < e, the algorithm terminates.

1.3.2 Some Considerations

ACS is an artificial neural network (ANN) endowed with an uncommon architecture.

Every pair of nodes is not linked by a single value but rather by a vector of weights in

which each vector component is derived from a specific metric. Such a diversity of

combinations of metrics can provide interesting results when each metric describes

different and consistent details about the same dataset. For this particular applica-

tion, the ACS is an appropriate algorithm that forces all the variables to compete

among themselves in various ways.

The ACS algorithm possesses interesting properties such as being based on the

weighs matrices of other algorithms. ACS uses these matrices as a complex set of

Table 1.5 Explanation of symbols used in equations

Symbol Meaning

M Number of variables – Units

Q Number of weights in matrices

i, j, k i, j ∈ M; k ∈ Q

Wi, j
k Value of the connection between the ith and the jth units of the kth matrix

Ecci Global excitation to the ith unit coming from the other units

Inii Global inhibition to the ith unit coming from the other units

Ei Final global excitation to the ith unit

Ii Final global inhibition to the ith unit

[n] Cycle of the iteration

ui
[n] State of the ith unit at cycle n

H[n] Number of units updating at cycle n

di Delta update of the ith unit

Neti Net input of the ith unit

Inputi Value of the ith external input: �1 � Inputi � +1

N[E]
k,i Number of positive weights of the kth matrix to the ith unit

N[I]
k,i Number of negative weights of the kth matrix to the ith unit

Max Maximum activation: Max ¼ 1.0

Min Minimum activation: Min ¼ �1.0

Rest Rest value: Rest ¼ �0.1

Decayi
[n] Decay of activation of the ith unit at cycle n: Decayi

[n¼0] ¼ 0

a Scalar for the Ei and Ii, net input to each unit: a ¼ 1/M

b Scalar for the external input: b ¼ 1/MR
A small positive quantity close to zero
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multiple constraints to update its units in response to any input perturbation.

Consequently, ACS works as a dynamic nonlinear associative memory. Whenever

any input is set on, ACS will activate all its units in a dynamic, competitive and

cooperative process at the same time. This process will end when the evolutionary

negotiation among all the units finds its natural attractor.

1.3.3 Characteristics of ACS

The ACS ANN is a complex kind of CAM system (Content Addressable Memory).

When it is compared to the classic associative memory systems (Rumelhart et al.

1986; Hopfield 1982, 1984; Hinton and Anderson 1981; McClelland and Rumelhart

1988; Grossberg 1976, 1978, 1981), ACS presents some new features. First,

ACS simultaneously works with many weight matrices that come from different

algorithms; Grossberg’s Interaction and Activation Competition network (IAC) uses

only one weight matrix. The ACS weight matrices represent different mappings of

the same dataset and all the units (variables) are processed in the same manner;

Grossberg’s IAC only works when the dataset presents a specific kind of architec-

ture. The ACS algorithm can use any combination of weight matrices coming from

any kind of algorithm as long as the values of the weights are linearly scaled into

the same range, typically between �1 and +1; Grossberg’s IAC can work only with

static excitation and inhibitions. Finally, each ACS unit tries to learn its specific

value of decay during its interaction with the other units; Grossberg’s IAC works

with a static decay parameter for all the variables. In short, the ACS architecture is

a circuit with symmetric weights (vectors of symmetric weights), able to manage a

dataset with any kind of variables (Boolean, categorical, continuous, etc.), while

Grossberg’ IAC can work only with specific types of variables.

1.4 Discovering Hidden Links with a New Adaptive System:

Auto-CM

The Auto Contractive Map (AutoCM for short) is a new Artificial Neural Network

designed by Massimo Buscema in 1998 at Semeion Research Center (Buscema

2007b). The Auto-CM system finds, by means of a specific learning algorithm, a

square matrix of weighted connections among the variables of any dataset.

This matrix of connections presents many suitable features:

(a) Nonlinear associations among variables are preserved;

(b) Connections schemes among clusters of variables is captured, and

(c) Complex similarities among variables became evident.

The AutoCM is characterized by a three-layer architecture: an Input layer, where

the signal is captured from the environment, a Hidden layer, where the signal is
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modulated inside the AutoCM, and an Output layer through which the AutoCM

feeds back upon the environment on the basis of the stimuli previously received and

processed (Fig. 1.1).

Each layer contains an equal number of N units, so that the whole AutoCM

is made of 3N units. The connections between the Input and the Hidden layers are

mono-dedicated, whereas the ones between the Hidden and the Output layers

are fully saturated, i.e. at maximum gradient. Therefore, given N units, the total

number of the connections, Nc, is given by:

Nc ¼ NðN þ 1Þ

All of the connections of AutoCM may be initialized either by assigning a same,

constant value to each, or by assigning values at random. The best practice is to

initialize all the connections with a same, positive value, close to zero.

The learning algorithm of AutoCM may be summarized in a sequence of four

characteristic steps:

1. Signal transfer from the input into the hidden layer;

2. Adaptation of the values of the connections between the Input and the Hidden

layers;

3. Signal transfer from the hidden into the output layer;

4. Adaptation of the value of the connections between the Hidden and the Output

layers.

Notice that steps 2 and 3 may take place in parallel.

We write as m[s] the units of the Input layer (sensors), scaled between 0 and 1; as

m[h] the units of the Hidden layer, and as m[t] the units of the Output layer (system

Fig. 1.1 An example of an AutoCM with N ¼ 4
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target). We moreover define v, the vector of mono-dedicated connections; w, the

matrix of the connections between the Hidden and the Output layers; and n,
the discrete time that spans the evolution of the AutoCM weights, or, put another

way, the number of cycles of processing, counting from zero and stepping up one

unit at each completed round of computation: n ∈ T.
In order to specify steps 1–4 that define the AutoCM algorithm, we have to

define the corresponding signal forward-transfer equations and the learning

equations as follows:

(a) Signal transfer from the Input to the hidden layer:

m
½h�
iðnÞ ¼ m

½s�
i 1� viðnÞ

C

� �
(1.2)

where C is a positive real number not less than 1, which we will refer to as the

contraction parameter (see below for comments), and where the (n) subscript
has been omitted from the notation of the input layer units, as these remain

constant at every cycle of processing. It is useful to setC ¼ ffiffiffiffi
N2

p
, where N is the

number of variables considered.

(b) Adaptation of the connections viðnÞ through the variationDviðnÞ which amounts to

trapping the energy difference generated according to (1.2):

DviðnÞ ¼ m
½s�
i � m

½h�
iðnÞ

� �
� 1� viðnÞ

C

� �
(1.3)

viðnþ1Þ ¼ viðnÞ þ a � DviðnÞ (1.4)

(c) Signal transfer from the hidden to the output layer:

NetiðnÞ ¼
XN
j¼1

m
½h�
jðnÞ

� 1� wi;jðnÞ

C

� �
(1.5)

m
½t�
iðnÞ ¼ m

½h�
iðnÞ � 1� NetiðnÞ

C

� �
; (1.6)

(d) Adaptation of the connections wi;jðnÞ through the variation Dwi;jðnÞ which

amounts, accordingly, to trapping the energy difference as to (1.6):

Dwi;jðnÞ ¼ m
½h�
iðnÞ � m

½t�
iðnÞ

� �
� 1� wi;jðnÞ

C

� �
� m½h�

jðnÞ
(1.7)

wi;jðnþ1Þ ¼ wi;jðnÞ þ a � Dwi;jðnÞ (1.8)

There are a few important peculiarities of Auto-CMs with respect to more

familiar classes of ANNs that need special attention and call for careful reflection:
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• Auto-CMs are able to learn when starting from initializations, in which all

connections are set to the same value, i.e., they do not suffer the problem of

symmetric connections.

• During the training process, Auto-CMs always assign positive values to

connections. In other words, Auto-CMs do not allow for inhibitory relations

among nodes, but only for different strengths of excitatory connections.

• Auto-CMs can learn in difficult conditions, namely, when the connections of

the main diagonal of the second layer connection matrix are removed. In the

context of this kind of learning process, Auto- CMs seem to reconstruct the

relationship occurring between each pair of variables. Consequently, from an

experimental point of view, it seems that the ranking of its connections matrix

translates into the ranking of the joint probability of occurrence of each pair

of variables.

• Once the learning process has occurred, any input vector belonging to the

training set will generate a null output vector. So, the energy minimization of

the training vectors is represented by a function through which the trained

connections completely absorb the input training vectors. Thus, AutoCM

seems to learn how to transform itself in a ‘dark body’.

• At the end of the training phase (Dwi;j ¼ 0), all the components of the weights

vector v attain the same value:

lim
n!1 viðnÞ ¼ C (1.9)

The matrix w, then, represents the AutoCM knowledge about the whole dataset.

The AutoCM connections matrix filtered by Minimum Spanning Tree generates

an interesting graphwhose biological evidence has already been tested in themedical

field (Buscema and Grossi 2008; Buscema et al. 2008a, b; Licastro et al. 2010).

Practically, this means that the AutoCM algorithm is able to discover variable

similarities completely embedded in the dataset and invisible to the other classic

tools. This approach highlights affinities among variables as related to their

dynamical interaction rather than to their simple contingent spatial position. This

approach describes a context typical of living systems in which a continuous time

dependent complex change in the variable value is present. After the training phase,

the matrix of the AutoCM represents the warped landscape of the dataset. We apply

a simple filter (minimum spanning tree) to the matrix of the AutoCM system to

show the map of main connections between and among variables and the principal

hubs of the system. These hubs can also be defined as variables with the maximum

number of connections in the map.

The AutoCM algorithms used for all the elaborations presented in this chapter

are implemented only in Semeion proprietary research software that is available for

academic purposes only (Buscema 2000a, b, c; Massini 2007).

We analyzed the brain segment volume changes in the two groups of children

with and without IQ impairment condensing each segment of data referring to the

14 M. Buscema et al.



left and right sides to see if the Auto-CM could depict a pattern of connections

consistent with the different outcomes in cognitive function

1.5 Results

1.5.1 Classification Results

With the data randomly separated into two groups of equal sizes, and thus “blind”

as to any predetermined categorization, the following unnumbered tables indicate

the results of the four experiments:

Experiment 1 V1(%) V2 (%) A. Mean (%) W. Mean (%) Error

Meta-Fuzzy 90.00 92.86 91.43 91.38 2.5

Majority Vote 93.34 85.72 89.52 89.66 3

AQV1 76.67 92.86 84.76 84.49 4.5

B_NRC 86.67 78.58 82.62 82.76 5

B_SCM 83.34 75.00 79.17 79.31 6

SN 66.67 89.29 77.98 77.59 6.5

B_AutoBP 80.00 75.00 77.50 77.59 6.5

B_AutoCM 73.33 71.43 72.38 72.41 8

BP 73.33 67.86 70.60 70.69 8.5

Mean 80.37 80.95 80.66 80.65 5.61

Experiment 2 V1(%) V2 (%) A. Mean (%) W. Mean (%) Error

Meta-Fuzzy 83.34 82.14 82.74 82.76 5.00

B_SCM 76.67 85.71 81.19 81.04 5.50

AQV1 76.67 85.71 81.19 81.04 5.50

Majority Vote 83.34 78.57 80.95 81.04 5.50

SN 66.67 85.71 76.19 75.86 7.00

B_NRC 90.00 53.57 71.79 72.42 8.00

B_AutoCM 63.34 82.14 72.74 72.41 8.00

B_AutoBP 70.00 67.86 68.93 68.97 9.00

BP 76.67 50.00 63.34 63.80 10.50

Mean 76.30 74.60 75.45 75.48 7.11

Experiment 3 V1(%) V2 (%) A. Mean (%) W. Mean (%) Error

Majority Vote 96.67 89.29 92.98 93.11 2.00

Meta-Fuzzy 93.34 89.29 91.31 91.38 2.50

SN 83.34 89.29 86.31 86.21 4.00

B_SCM 90.00 71.43 80.72 81.04 5.50

B_NRC 83.34 75.00 79.17 79.31 6.00

AQV1 83.34 75.00 79.17 79.31 6.00

B_AutoBP 76.67 78.57 77.62 77.59 6.50

B_AutoCM 70.00 75.00 72.50 72.41 8.00

BP 73.34 67.86 70.60 70.69 8.50

Mean 83.33 78.97 81.15 81.23 5.44
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1.5.2 Interpretation of the Experiments

The results from all of these experiments are incredibly good and thus demonstrates

the existence of a robust non-linear link between the radiation treatment and the IQ

in each child’s brain. The application of very different types of non-linear

algorithms, taking care to address the specific capabilities required by each method,

permits us to recognize and correctly categorize the children with varying degrees

of brain damage.

The results from experiment 2 are the worst of the group and hence, the original

dataset is absent of noise. This means that if we permit the data to be transformed

such that the volume differences are represented only by the sign difference, critical

information is lost. From this experiment we now can assign greater confidence in

our results.

Experiments 3 and 4 make it evident that the right and left hemispheres of the

brain work in tandem. Each side compensates for the other and their summation

preserves key, critical information, and the sign of their summation is not funda-

mental to understanding the damages resulting from the radiotherapy treatment.

1.6 Prototypes Identification Through ACS

The results of using ACS to identify the prototypes contained in the brain data are

shown in Table 1.6.

Figure 1.2 shows the dynamics of activity created by ACS on the dataset for

subjects with IQ < 94 and Fig. 1.3 shows the dynamics for subjects with IQ � 94.

1.7 Discovering Hidden Links with Auto-CM

The graph of children without IQ impairment shows a connection scheme among

brain segments which is consistent with the natural anatomic relation in the

brain (Fig. 1.3). The hippocampus acts as the central node and divides the graphs

Experiment 4 V1(%) V2 (%) A. Mean (%) W. Mean (%) Error

SN 93.33 85.71 89.52 89.66 3.00

Majority Vote 90.00 82.14 86.07 86.21 4.00

B_NRC 83.33 85.72 84.53 84.49 4.50

Meta-Fuzzy 86.67 82.14 84.41 84.49 4.50

BP 73.34 89.29 81.31 81.04 5.50

B_SCM 80.00 78.57 79.29 79.31 6.00

B_AutoBP 83.34 71.43 77.38 77.59 6.50

B_AutoCM 93.34 60.72 77.03 77.59 6.50

AQV1 73.34 82.14 77.74 77.59 6.50

Mean 84.07 79.76 81.92 81.99 5.22
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Table 1.6 Comparison

of prototypes identified

using ACS

Variables Activation

Prototype of subject with IQ < 94

ACS after 553 cycles

Cerebral white matter �0.9990

Cerebral cortex 1.0000

Thalamus �1.0000

Caudate �0.9950

Putamen �0.9980

Pallidum �1.0000

Globus pallidus �1.0000

Hippocampus 1.0000

Amygdala �0.9980

IQ < 94 (external input) 1.0000

IQ � 94 �1.0000

Prototype of subject with IQ � 94

ACS after 1,352 cycles

Cerebral white matter 1.0000

Cerebral cortex �0.9270

Thalamus 1.0000

Caudate �0.0750

Putamen 0.9460

Pallidum 1.0000

Globus pallidus 1.0000

Hippocampus �0.8950

Amygdala 1.0000

IQ < 94 �0.8500

IQ � 94 (external input) 1.0000

–1.1

IQ > 94

IQ < 94

Celebral Cortex

Hippocampus

Putanem

Caudate

Amigdala Palladium Globus
White Matter Thalamus

–1
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Fig. 1.2 Dynamics of IQ < 94 subject prototype
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in two sections: In the upper part of the graph the cerebral cortex is connected with

the amygdala and globus pallidus, the latter being linked to putanem. All the values

of connections strength among brain segments volume changes are very high.

The high connection strength values indicate that the volume changes within the

segment of brain more related to cognitive function, like hippocampus (memory),

and amygdala (emotions and fluency) are non-linearly closely related each-other

suggesting a sort of compensation among them in the eventual volume losses.

In the lower part of the graph in fig. 1.2, the thalamus, caudate, pallidum and

cerebral white matter, segments less related to cognitive function, have very low

connection strength values. This suggests that in these segments no compensation

of eventual volume losses took place but this did not impair IQ. This behavior

is consistent with the dynamic trends obtained with ACS analysis in the lower part

of Fig. 1.4.

The connection map of the brain segment volume change in children with IQ

impairment is completely different. Here, connections do not closely reflect the

normal brain anatomy. The graph is less complex, with the thalamus proper acting

as a hub. All the values of connections strength among brain segments less related

to cognitive function (globus pallidus, pallidum, caudate, white cerebral matter,

putamen andamygdala) are very high, while the opposite is true for hippocampus

and cerebral cortex.

–1.1

IQ > 94

IQ < 94
Celebral Cortex

Hippocampus

Putanem

Caudate

Amigdala Palladium Globus
White Matter Thalamus

–1
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Fig. 1.3 Dynamics of IQ � 94 subject prototype
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The low connection strength values among hippocampus and cerebral cortex

indicate that the volume changes within the segment of the brain more related to

cognitive function are poorly related to each other suggesting that no compensation

took place and therefore, this could explain IQ impairment (Fig. 1.5).

1.8 Comments and Conclusions

The supervised artificial neural networks have allowed us to show that a highly

nonlinear relation does exist between brain volumes changes and IQ

The ACS system defines the specific features of two important prototypes: the

prototype of the subjects whose IQ, after the radiotherapy treatment, is measured to

be less than 94, and the prototype of the subjects whose IQ, after treatment, is

measured to be greater than or equal to 94. The IQ < 94 subset seems to be specific

to the subjects with a volume alteration focused in left and right parts of the

Cerebral Cortex and Hippocampus after the treatment. For these subjects it appears

that compensation between left and right hemispheres of the brain seem to be more

difficult.

0.90

0.61
0.00

0.07

0.20

1.00

0.92
0.93

�Amygdala�

�GlobusPallidus�

�Putamen� �Cerebral-Cortex�

�Hippocampus�

�Caudate�

�Thalamus-Proper�

�Pallidum�

�Cerebral-White-Matter�

Fig. 1.4 Connection map of the brain segment volume change in children without IQ impairment
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The IQ � 94 subset seems to be characterized by a more distributed alteration of

brain volumes after treatment. White matter, Thalamus, Palladium, Globus Pallidus

and Amigdala present small alterations, and the left and the right sides of the

Cerebral Cortex and Hippocampus seem to be more preserved. Results consistent

with this trend have been obtained with Auto-CM analysis which maps the connec-

tion pattern among different brain segments through a nonlinear computation of

volume changes before and after radiotherapy.

This initial study lends considerable hope to further study with an expectation

that follow-up studies, using the Semeion software (Buscema 2000a, 2000b, 2007a,

2008a, b, 2009c; Massini 2007), will allow physicians to use structural imaging to

predict changes in IQ and potentially minimize the adverse effects of radiotherapy

treatment on young brains. Additional study based on a dataset of more mature

individuals could lend similar support to adversity minimization in adults and

perhaps the elderly.
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Chapter 2

J-Net: An Adaptive System for Computer-Aided

Diagnosis in Lung Nodule Characterization

Massimo Buscema, Roberto Passariello, Enzo Grossi, Giulia Massini,

Francesco Fraioli, and Goffredo Serra

2.1 Introduction

Lung cancer is the leading cause of cancer deaths in the western world, with a total

number of deaths greater than that resulting from colon, breast, and prostate cancers

combined (Greenlee et al. 2000). The appearance of a non-calcified solitary lung

nodule on a chest radiograph or CT, often serendipitous, is the most common

diagnostic sign of lung cancer. Currently, a significant research effort is being

devoted to the detection and characterization of lung nodules on thin-section

computed tomography (CT) images. This represents one of the newest directions

of CAD development in thoracic imaging.

At the present time the Multi Detector Computed Tomography (MDCT) is the

gold standard in the detection of lung nodules (Henschke and Yankelevitz 2008;

Diederich et al. 2002, 2003; Henschke et al. 2002; Swensen et al. 2003; Fischbach

et al. 2003); it is well demonstrated that early lung cancer often occurs as a small
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undefined precancerous lung nodule (PN) (Li et al. 2002), although only a few in

number actually result in lung cancers.

In most institutions MDCT follow-up remains the most common approach in the

differential diagnosis for nodules smaller than 1 cm; unfortunately this procedure is

a substantial source of patient anxiety, radiation exposure, and medical cost because

of the number of resultant follow-up scans.

In a screening program with CT, the radiologist has to deal with a large number

of images and therefore detection errors (failure to detect a cancer) or interpretation

errors (failure to correctly diagnose a detected cancer) can occur (Li et al. 2002). In

such a circumstance, a CAD scheme for detection and for characterization of lung

nodules would be particularly useful for the reduction of detection errors and

interpretation errors, respectively. In particular a computerized characterization

scheme can provide quantitative information such as the likelihood of malignancy

to assist radiologists in diagnosing a detected nodule (Diederich et al. 2002).

Some authors investigated the use of Computer-Aided Diagnosis (CAD) systems

to classify malignant and benign lung nodules found on CT scans (Aoyama et al.

2003a, b; Shiraishi et al. 2006; Goldin et al. 2008). These investigations showed,

generally speaking, promising results and supported the idea that CAD programs

can improve the radiologist’s diagnostic efficiency. The methodology underlying

CAD for lung nodules characterization is generally based on the extraction of a

definite set of features from the segmented nodule image and also from the outside

region based on 2D sectional data and 3D volumetric data. These features represent

the inputs to linear or nonlinear classifiers for distinguishing between benign and

malignant nodules (Shiraishi et al. 2003; Li 2007).

In this chapter we describe a new CAD system based on a completely new

Artificial Neural Network (ANN) algorithms created for image enhancement and

analysis:

1. Active Connection Fusion (ACF): a new set of ANNs for image fusion (Software

(Buscema 2010));

2. J-Net Active Connections Matrix (J-Net): a new ANN for dynamic image

segmentation. Patent (Buscema 2003, 2004, 2007); Software (Buscema

2003–2010);

3. Population (Pop): a new and fast multidimensional scaling algorithm able to

squash hyper-points from a high dimensional space onto a small dimensional

space with minimal deformations (Software (Massini 2007–2009);

4. Adaptive Learning Quantization (AVQ) and Meta-Consensus: two new

supervised ANNs, experts in rapid classification and not sensitive to over fitting

(Software (Buscema 1999–2010, 2008–2010).

These algorithms pre-process the images of the PNs obtained from the MDCT

and, consequently, make the following processes of segmentation easier, and shape

feature extraction and diagnosis. The aim is to detect and measure the small

densitometric differences at the closest periphery and in the inner regions of a

nodule not visible to the human eye.

The purpose of this chapter is to verify whether the extracted shape features

could be used to differentiate benign lesions from malignant ones.
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2.2 Materials and Methods

2.2.1 Patients

We included in our analysis 88 patients with 90 nodules (two patients had two

nodules; mean age 65 years, 49–83 years) with a solitary undefined lung nodule less

than or equal to 20 mm; Forty four of them had benign nodules (34 males and 10

females) and 46 malignant nodules (30 males and 17 females), all primary

neoplasms.1 The average diameter of benign and malignant nodules was equal to

15.8 mm and 17.2 mm respectively.

All the patients were included in our study after an annual high resolution CT

follow up. Those patients with an increase in size of the PN were considered as

being suspicious of malignancy. In these patients a transthoracic needle biopsy

(n ¼ 15) or surgery (n ¼ 30), were performed to confirm the diagnosis. For one

patient unavailable for surgical procedure, a positive PET CT was accepted for

diagnosis (SUV 4). The remainder of the patients with a stable size PN at the annual

follow up were considered as benign. Eligibility criteria are determined by the

health professionals collecting the data.

2.2.2 CT-Investigation

The CT system was a Siemens Somatom Sensation Cardiac (Siemens, Enlargen,

Germany). The CT examination was performed on a 64 MDCT using a thin

collimation (0.6 mm) protocol. Exposure parameters were 100 mA, 120 kV; gantry

rotation time was 0.33 s and scan time was 4 s. No contrast media was administered.

The CT slice thickness was 1.5 mm; all images were reconstructed by using a bone

algorithm (B60).

2.2.3 Data

The data recorded for each lesion are:

1. A set of consecutive images representing the lesion: this sequence of images was

selected from the CT Image analysis by the experts. The images are in BMP

format; dimension variation is between 556 � 800 and 1,196 � 1,357 pixels;

2. The malignancy or benignancy of the lesion;

1 The 90 CT volumes were provided by the Department of Radiological Sciences of the University

of Rome, “La Sapienza”.
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3. The position of the lesion on the sequence of images extracted from the CT

analysis. For this parameter we considered the (x, y) coordinates of the center

point of the lesion (as evaluated by the experts).

Additional information like the expert radiologist’s diagnosis as well as the size

(maximum diameter) of each lesion were also stored, but not used, in the analysis.

2.3 The Processing System

A complex system composed of different steps and sub processing systems is

necessary in order to analyze the assigned dataset images (Fig. 2.1).

1. The Dataset of images is decomposed into a dataset of regions of interest (ROI):

each ROI is a Rows x Columns box centered on a specific tumor, benign or

malignant. Each lesion is represented by a different number of ROIs, because it

is defined by a specific number of slices. We have renamed these new images

Original ROIs.2

2. In the second step we use a new ANN, the Active Connection Fusion (ACF), to

fuse the different images (ROIs) of the same lesion into only one new image

(ROI), containing all the key information of the 3D lesion. ACF is a new ANN

able to fuse many different and registered images onto one image conserving and

ORIGINAL
IMAGES

ROIs
Searcher

Artificial
ROIs

ACF Algorithm
To fuse many slices of
the same patient into

one artificial slice

Pop
ROI 

Population
Algorithm

ROIs
recognition

Supervised
ANNs

1

Peak
Original 2

3

5

Segmented
ROIs

4

J-Net
Processing

Fig. 2.1 Images processing system fusion and J-Net based

2 Software for extracting ROIs from the original images was set up by Dr. Petritoli and Dr. Terzi

(Semeion, Research Center).
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even enhancing the most important features of the source images. We have

renamed these new images Artificial ROIs.

3. The third step of this process is executed by the J-Net Algorithm. J-Net is a

special system able to determine the shapes and the skeleton of an image at

different levels of light intensity. Consequently, J-Net generates for each single

artificial ROI a set of new images, each one with a shape and skeleton resulting

from different light intensities from images with shape and skeleton of the

original ROI detected at very low light intensity, up to the images whose shapes

and skeleton is detected where the light intensity of the original ROI is very high.

The main goal of the J-Net system is to find the main features of any assigned

image. We have renamed these new images J-Net ROIs.

4. The fourth step is the generation of the Histogram of each J-Net ROI: each J-Net

ROI is coded into a 256 input vector in which each vector component is coded

with a number of presences derived from any grey tone, onto each lesion.

Because we have set the processing of each lesion with five different alpha

values, J-Net generates five images for each lesion. Consequently, we have re-

coded each lesion into 1,280 inputs (256 � 5). These new outputs are named

Histogram ROIs.

5. A new Multidimensional Scaling Algorithm, named Population, will squash

each huge vector (the Histogram of 1,280 components for each lesion) into a

more compact vector representing the main features of each original ROI. The

Population algorithm is discussed below. These new compact vectors, generated

by Population, are named Pop ROIs.

This new dataset composed of all the squashed vectors (Pop ROIs) will be

analyzed using different supervised learning algorithms. A Five K-Fold Cross

Validation protocol is used to analyze the results of the pattern recognition process.

Two new supervised ANNs will be presented and compared against other more

standard Learning Machines and ANNs.

2.4 The Active Fusion Matrix Algorithm

Scientific literature about Image Fusion is quite considerable (Blum and Liu 2006),

especially in the multisensory military field. Multi-sensor fusion refers to the direct

combination of several signals in order to provide a signal that has the same general

format as the source signals. Consequently, image fusion generates a fused image in

which each pixel is determined from a set of pixels in each source image. We

present a new image fusion algorithm named Active Connection Fusion (ACF) and

we compare it with the best algorithms used in literature. Then we use ACF to fuse

the different slices of the same lesion into one artificial ROI. This new artificial ROI
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should preserve the key information about the lesion distributed in the different

original slices. The advantage is clear:

1. We work using only one image per lesion, without considering the various slices

that are representative of each lesion, and

2. We preserve the most important features of each lesion.

2.4.1 Active Connection Fusion: Logic and Equations

The ACF system is composed of a series of analytical steps:

• Linear stretching;

• Non linear focusing;

• Weights initialization;

• Delta calculation;

• Weights update;

• Fused image visualization.

During this process ACF transforms many source images into one new image.

The purpose of ACF is to preserve the most important features and details of the

source images and place them in the new artificial image.

Linear Stretching:

Legend :

Pð0Þmi;j ¼ source pixel(x,y) of the m-th source:

Pð1Þmi;j ¼ F Pð0Þmi;j
� �

¼ Scalem � Pð0Þmi;j � Offsetm; Pð1Þmi;j 2 0; 1½ �: (2.1)

Non Linear Focusing:

Legend :

M ¼ Number of Source Images;

xi;j ¼ 1

M
�
XM
m

Pð1Þmi;j;m 2 1; 2; :::;M½ �: (2.2)

ci;j ¼ xi;j

1:0� xi;j
; (2.3)

dmi;j ¼ Pð1Þmi;j � xi;j; (2.4)

Pð2Þmi;j ¼
ci;j

ci;j þ e�dmi;j
: (2.5)
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Weights Initialization:

Legend :

R ¼ Radius of Pixel Neighborhood:

smi;j ¼
XR
k¼�R

XR
z¼�R

Pð2Þmi; j � Pð2Þmiþk; jþz

� �2
; (2.6)

Win ¼ ArgMax
m

smi; j
n o

; m 2 1; 2; :::;M½ �; (2.7)

W
ðtÞ
i; j;iþk; jþz ¼ 2:0 � Pð2ÞWin

i; j � 1:0; k; z 2 �R;þR½ �: (2.8)

Delta Calculation:

Each pixel of any image versus its neighborhood:

ai; j;iþk; jþz ¼ 1

M
�
XM
m

Pð2Þmi; j � Pð2Þmiþk; jþz

� �2
; (2.9)

Each neighborhood of an image versus each neighbor of the other images:

bi; j;iþk; jþz ¼
2

M � M � 1ð Þ �
XM�1

n6¼

XM
m

Pð2Þniþk; jþz � Pð2Þmiþk; jþz

� �2
; (2.10)

Each central pixel of each image versus the neighbor of the other images:

gi; j;iþk; jþz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

M � M � 1ð Þ �
XM�1

n 6¼

XM
m

Pð2Þni; j � Pð2Þmiþk; jþz

� �2
2

vuut ; (2.11)

di; j;iþk; jþz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

M � M � 1ð Þ �
XM�1

n 6¼

XM
m

Pð2Þniþk; jþz � Pð2Þmi; j
� �2

2

vuut ; (2.12)

’i; j;iþk; jþz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai; j;iþk; jþz þ bi; j;iþk; jþz

2

q
; (2.13)

fi; j;iþk; jþz ¼ gi; j;iþk; jþz � di; j;iþk; jþz: (2.14)

Weights update:

ci; j;iþk; jþz ¼
’i; j;iþk; jþz

fi; j;iþk; jþz

; (2.15)

y ¼ ci; j;iþk; jþz; (2.15a)
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W
ðtþ1Þ
i; j;iþk; jþz ¼ W

ðtÞ
i; j;iþk; jþz þ

e�y � ey

e�y þ ey
: (2.16)

Visualization:

NewPi; j ¼ f
1

2 � Rþ 1ð Þ2 �
XR
k¼�R

XR
z¼�R

W
ðtÞ
i; j;iþk; jþz

 !
; (2.17)

f ð�Þ ¼ NewPi; j 2 0; 255½ �; Linear Stretching: (2.18)

2.5 Active Connection Fusion: Application and Comparisons

We have tested ACF with many images and we have compared the ACF algorithm

with different fusion algorithms known in the literature. Here we present a small set

of examples in which we match ACF with one of the best fusion algorithms actually

used, Wavelet.

In Figs. 2.2 and 2.3 there are two x-ray images of a desktop, one taken with high

energy and the other taken with low energy. The target in this field is to preserve the

Fig. 2.2 Desktop high

energy

Fig. 2.3 Desktop low energy
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penetration of high x-ray energy and the sensitivity towards the detail contained in

the low x-ray energy.

In Figs. 2.4 and 2.5 the Wavelet and the ACF algorithms are compared, and in

Figs. 2.5, 2.6, 2.7, 2.8 and 2.9 the details of the twodifferent fusion algorithms are shown.

Fig. 2.4 Desktop wavelet

Fig. 2.5 Desktop ACF

Fig. 2.6 Details of wavelet

fusion

Fig. 2.7 Details of ACF

fusion

2 J-Net: An Adaptive System for Computer-Aided Diagnosis in Lung Nodule. . . 33



It is evident howACF fusion ismuchmore informative than theWavelet algorithm

in terms of detail preservation, noise elimination and global image enhancement.

Figures 2.10 and 2.11 show another example of x-rays at low and high energy.

Figures 2.12 and 2.13 show the different fusion processing of ACF and Wavelet.

In this example the ACF algorithm shows itself to be considerably more effec-

tive than Wavelet.

In the field of security the rapid fusion of images coming from infrared and the

visible band is very useful. Figures 2.14 and 2.15 show the same scene in two

different modalities, infrared and TV. Figure 2.16 is the fusion generated by ACF.

Fig. 2.8 Details of wavelet

fusion

Fig. 2.9 Details of ACF

fusion

Fig. 2.10 Baggage – high

energy
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Fig. 2.11 Baggage – low

energy

Fig. 2.12 Baggage – wavelet

fusion

Fig. 2.13 Baggage – ACF



Figures 2.14, 2.15 and 2.16 show the same problem of infrared and TV image

fusion. We compare the ACF solution with the standard solution actually adopted

(Figs. 2.17 and 2.18).

The comparison between two fused images (2.19 and 2.20) shows that the image

fusion generated by the ACF algorithm evidences a greater level of details.

In this chapter we are interested only in showing the effectiveness of the ACF

algorithm in the medical field and in particular, to its application to MDCT.

Therefore Figs. 2.21 and 2.22 show the fusion of different slices of a benign and

of a malignant tumor into two artificial images.

Fig. 2.14 Infrared

Fig. 2.15 TV

Fig. 2.16 ACF fusion
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Fig. 2.17 Infrared

Fig. 2.18 TV image

Fig. 2.19 Standard fusion
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2.6 ACM Systems

The Active Connections Matrix (ACM) [(Buscema et al. 2006), Patent (Buscema

2003, 2004] systems are a new collection of unsupervised artificial adaptive

systems developed by Buscema at Semeion Research Institute (Buscema et al.

2006). They were created for automatically extracting features of interest (e.g.

edges, segmentation, tissue differentiation, etc.) from digital images. Their main

task is the selection of the local properties of interest through a reduction of image

noise while maintaining the spatial resolution of high contrast structures and the

expression of hidden morphological features. We could formally define an ACM

system as a nonlinear adaptive filter based on local, deterministic and iterative
operations:

• Local, because in each elaboration cycle the operations involve a central pixel

and its relations with the very contiguous pixels (the neighborhood of the central

pixel).

Fig. 2.20 ACF fusion

Fig. 2.21 A benign tumor processed by ACF

Fig. 2.22 A malignant tumor processed by ACF
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• Deterministic, because the static state towards which the dynamic system tends

is represented by the matrix of pixels with the new image based on deterministic

equations. Therefore the elaboration can always be repeated resulting in the

same outcome.

• Iterative, because the operations of the dynamic system repeat themselves,

iteratively, until the evolution in the space of phases reaches its attractor and a

specific cost function is minimized (Buscema et al. 2006).

2.7 JNet: The Functional Scheme and Equations

The JNet is an ACM system developed for image analysis (edge extraction

and segmentation). Its functional representation is showed in the flow chart

(Fig. 2.23):

The scheme represents the iterative process based on the evolution of three main

quantities: the minimal units U (which represent the image and its dynamical

changing), the connections W (which represent the dynamic link between the

units), and the state S of the system (which, combined with the connections W

allows the whole system to converge).

We describe in detail the quantities involved in each step of the process (the

superscript [n] on the quantities indicates the nth-step):

• The Input: This is a gray scale digital image. We consider an eight-bit gray scale

image with dimensions W � H.

• The set U of minimal units: There is a minimal unitux for each pixel of the source
image. They represent the nodes of this ANN. Every minimal unit ux has a

position x ¼ ðx1; x2Þwith x1 ¼ 1; :::;W; x2 ¼ 1; :::;Hand an intensity value u
½n�
x .

At the beginning each u
½n�
x assumes the value of brightness of the pixel of the

original image normalized in the range ½�1þ a; 1þ a�, where a 2 ½0; 1�.
• The set W of connections: For each pair of minimal units ux and uz we define the

oriented connections w n½ �
x;z andw

n½ �
z;x. They depend on the positions of the minimal

units x ¼ ðx1; x2Þ, z ¼ ðz1; z2Þ, u½n�x . At the beginning, each w
0½ �
i; j is equal and close

to 0.

Input U W

S

Output

n = 1
n = n*

Fig. 2.23 JNet functional scheme
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• The activation state S:There is a quantity S
½n�
x for eachminimal unitux (and therefore

for each pixel of the source image). It is derived from the connections w n½ �
x;z.

The iterative process is based on the sequential update of the quantities W and U:

• The update of the connections W depends on the set U and the set W itself.

For each position i ¼ ði1; i2Þ we consider the Moore neighborhood N(i)

(i.e. the set of eight positions surrounding the position i) and the relative

quantities u
½n�
i and w

½n�
i; j:

D
½n�
i ¼

X
j2NðiÞ

ðu½n�j � w
½n�
i; jÞ; Ji ¼ tanhðDiÞ (2.19)

Dw½n�
i; j ¼ �ðu½n�i � JiÞ � ð�2 � JiÞ � ð1� J2i Þ � ðu½n�j � w

½n�
i; jÞ ; j 2 NðiÞ (2.20)

w
½nþ1�
i; j ¼ w

½n�
i; j þ Dw½n�

i; j (2.21)

• The calculation of the activation state S depends on the set U and the set W.

MinW½n� ¼ min
i; j

ðw½n�
i; jÞ (2.22)

MaxW½n� ¼ max
i; j

ðw½n�
i; jÞ (2.23)

Scale
½n�
Out ¼

2

MaxW½n� �MinW ½n�

Offset
½n�
Out ¼ �MaxW ½n� þMinW½n�

MaxW ½n� �MinW½n�

(2.24)

AvW
½n�
i ¼ Scale

½n�
Out �

PN
j

w
½n�
i; j

N
þ Offset

½n�
Out

���������

���������
(2.25)

DS½n�i ¼ � tanhðAvW ½n�
i þ u

½n�
j Þ (2.26)

S
½n�
i ¼ AvW

½n�
i þ DS½n�i ¼ AvW

½n�
i � tanhðAvW½n�

i þ u
½n�
j Þ (2.27)
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• The update of the minimal units U depends on the set S and the set U itself.

’
½n�
i ¼ LCoeff � u½n�i �

XN
j

ð1� DS½n�
2

j Þwhere LCoeff 2 ½0; 1� (2.28)

c½n�
i ¼

XN
j

tanhð’½n�
j Þ (2.29)

We have alternative ways to combine the quantities ’
½n�
i and c½n�

i :

Version 1 sumð Þ : du½n�i ¼ ’
½n�
i þ c½n�

i (2.30a)

Version 2 productð Þ : du½n�i ¼ ’
½n�
i � c½n�

i (2.30b)

The choice between the two versions depends on the particular application. For

the purpose of this study we have selected the first version [sum].

u
½nþ1�
i ¼ u

½n�
i þ du½n�i (2.31)

The stop criterion of this cyclic evolution is connected to the stabilization of the

connection’s values w n½ �
x;z (and consequently of the quantities u

½n�
x andS

½n�
x ). More

precisely, we define the energy of the J-Net system,E½n�, as the result of the addition
of the changes of the connection’s values relating the whole image to each

processing cycle, according to the following equation:

E½n� ¼
X
i2X

X
j2NðiÞ

Dw½n�
i; j

� �2
(2.32)

where X is the set of pixels in the source image.

The evolution of the J-Net system determines a reduction of the system energy

when the processing cycles increase:

limE½n� ¼ 0:
n!1

(2.33)

This means that the stop criterion can be fixed in the following manner:

Stop when E½n�<EThreshold ) n ¼ n�;E½n�� ¼ E � (2.34)

The energy of the system will be minimal at the end of the evolution:

E� ¼ minfE½n�g ; n 2 ½1; :::; n��: (2.35)
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Finally the output of the system is a gray scale digital image by which we can

consider two different outputs:

• Version 1 (states): the output is obtained by the state (Out
½n�
i ¼ S

½n�
i

��� ���).
• Version 2 (weights): the output is derived from the weights (Out

½n�
i ¼ AvW

½n�
i ).

The choice between the two versions for output depends on the particular

application. For the purpose of this study we have selected the first version (states).

2.7.1 JNet: Examples of Application

The J-Net Algorithm has two versions: Sum J-Net (2.30a) and Product J-Net

(2.30b). Both the J-Net Algorithms, with a suitable defined alpha parameter, have

been shown to work as an excellent adaptive filter for edge detection and segmen-

tation (see Figs. 2.24, 2.25 and 2.26).

Fig. 2.24 (a, b) Noisy ellipse (left) and corresponding horizontal cross-section (right) taken at the
center of the image. The size of the ellipse image is 253 � 189 pixels

Fig. 2.25 J-Net segmentation
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Sum J-Net after five cycles generates these results:

At the end of its processing Sum J-Net produces a special skeleton of the image,

pointing the exact position of the two foci of the ellipsoid (see Fig. 2.27). The

algorithm defines the skeleton of any image through propagation of waves from the

edges of the figure up to its local centers. The destructive interferences of these

waves define the skeleton figure.

The capability of Sum J-Net to find the edges, define the contour, segment and

outline the skeleton of any image is a specific feature of this algorithm. Sum J-Net,

consequently, is able to also define the hidden contour of an image and, using its

wave’s propagation process, make visible the hidden skeleton of the assigned

image. Here are two examples of a breast spiculated carcinoma in X-ray (see

Figs. 2.28 and 2.29).

The Sum J-Net capacity to detect a contour that is invisible to the radiologist is

not dependent upon the physical generation of the image. Figure 2.30 is an example

in which J-Net detects a hidden stenosis in an image of a poplitea arterial generated

by a subtractive digital angiography machine, using a special contrast media

(Buscema et al. 2008).

Fig. 2.26 J-Net edges

detection

Fig. 2.27 Sum J-Net after

150 cycles
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The Product J-Net Algorithm (2.12b) is particularly effective in detecting the multi

segmentation analysis in which many areas are included in each other (see Fig. 2.31):

The main feature of the J-Net System is its ability to process the same image with

different values of an alpha parameter. This kind of process permits us to generate a

Fig. 2.28 Processing of a malignant breast mass

Fig. 2.29 Processing of a spiculated breast mass

Fig. 2.30 (a, b, c) The hidden stenosis of a Popliteal Artery (Subtracting Digital Angiography

with Contrast Media)
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different projection of the same image from the most evident contour to the one with

the most light. The alpha parameter codes each different contour according to a

different pseudo-frequency given each different projection. Low alpha values

appear to correlate with some kind of low pseudo-frequency while high alpha values

seem to be associated with some kind of high pseudo-frequency. We are currently

unable to demonstrate this, but we have the impression, experimentally supported,

that J-Net, though the modulation of this alpha parameter, transforms the light

intensity of a pixel into a kind of pseudo-frequency. The real application we

illustrate below shows a further experimental support for this hypothesis.

Figures 2.32 and 2.33 show the different contours of the same image using the

Sum J-Net System with different tunings of the Alpha Parameter.

Fig. 2.31 (a, b) Product J-Net algorithm, breast X-ray – Spiculed Carcinoma

Fig. 2.32 Breast X-ray, particular of spiculed mass
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Our hypothesis is that each different alpha parameter generates a new image

whose information belongs to a past, or to a future, evolution of the original object

from which the source image is derived given the original object is a living system

evolving naturally over time. Figures 2.34 and 2.35 show an example of J-Net

processing of a benign and of a malignant tumor from the artificial images

generated by ACF (see above Figs. 2.21 and 2.22).

Fig. 2.33 J-Net with different Alpha Parameter, from alpha ¼ �0.6 to alpha ¼ +0.6 (shift ¼ 0.1)

Fig. 2.34 J-Net expansion (Alpha increment) of a benign tumor ROI generated by ACF

Fig. 2.35 J-Net expansion (Alpha increment) of a malignant tumor ROI generated by ACF
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2.8 From J-Net to Histograms

This step is a simple way of coding the information generated by the J-Net

Algorithm. Each lesion is represented by five J-Net ROIs and each J-Net ROI

has a size of 101 � 101 pixels coded into 256 tones of grey. We have coded each

J-Net ROI into a vector of 256 bins in which each bin is an integer number

representing the number of times that each grey tone is present in the J-Net ROI

(Fig. 2.36):

Because each lesion is represented by five J-Net ROIs, the union of the five

histograms will code each lesion with a vector of 1,280 components (Fig. 2.37).

2.9 Population Algorithm for Multidimensional Scaling

The Population algorithm was conceived by Massini at the Semeion Research
Centre of Sciences of Communication in 2006 (Massini et al. 2010). This algorithm

fits into the theoretical framework for Multi Dimensional Scaling. The purpose of
Population is to compress N records of aM dimensional space (Source Space) into a
sub-space of P dimensions (Projective Space), where P << M, retaining as much

information as possible about the relationship that exists between the original N
records. Population is an iterative algorithm and it is based only on a calculation of

local fitness. This fitness is considered optimal when the individual differences

Fig. 2.36 Transformation of a J-Net ROI into a vector of 256 tones of grey
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Fig. 2.37 The transformation of each J-Net ROI on the same lesion, with a different Alpha, into a

vector of 1280 components
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between the source matrix of distances and the projected matrix of distances are

close to zero. Consequently, Population does not need to calculate its global fitness
at each iteration. For this reason the convergence of Population is very fast

compared to other algorithms of Multi Dimensional Scaling, such as that of

Sammon (1969). It is therefore especially useful for the design of very large

databases (above 100 K records).

At the beginning, the values of the new vectors of the projective space are

generated randomly, and each iterative cycle consists of the following steps:

• Random selection of two records Vi and Vj;

• Calculation of the distance vector RDij between the vectors Vi and Vj of the

Source Space and the distanceMDi,j between the vectors V
0
i V

0
j of the Projective

Space.

RDi; j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k

vi;k � vj;k
� �2

vuut ; (2.36)

MDi; j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XP
k

v0i;k � v0j;k
� �2vuut : (2.37)

• Calculation of the error (ER) between the distances RDij and MDij

ERi; j ¼ RDi; j �MDi; j: (2.38)

• Correction of each vector V0 so that the difference between RDij and MDij is

reduced.

The correction factor D is added or subtracted to minimize the difference

ERij between the distances RDij and MDij. All the D factors are calculated in

proportion to the error ERij. In practice, when MDi,j > RDi,j, the D
factor is calculated by (2.39a), otherwise (2.39b) is used (obviously, when

MDi,j ¼ RDi,j no correction is applied):

Di; j;k ¼ v0i;k � v0j;k
� �

� 1� RDi; j

MDij

� 	
;RDi; j<MDi; j; (2.39a)

Di; j;k ¼ � v0i;k � v0j;k
� �

� 1�MDi; j

RDi; j

� 	
;RDi; j � MDi; j: (2.39b)
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Finally, the correction factor, scaled by a constant (alpha), is added to each

projected vector VI
i,k:

V0
i;kðnþ1Þ ¼ V0

i;kðnÞ þ
X
j

Di; j;k � a

typically : a ¼ 0:1

(2.40)

The iterative process of Population converges toward a classic minimization

cost function:

Energy ¼ Min
1

2

XN
i 6¼j

XN
j

RDi; j �MDi; j

� �2( )
(2.41)

Regarding the performances on large datasets we emphasize the fact that for

Population the saving of a distance matrix is not necessary because each correction

is made in real time (online). The greater advantage is obviously the speed of the

elaboration system because it does not need to calculate the fitness, stress or other
global functions of cost in order to minimize the error. The end of the elaboration

can be determined, therefore, using two different criteria:

• Sampling of the cost function,

• Average of the error percentage.

The sampling of the cost function is executed randomly in the sample, every n
cycles, and the error is calculated only on the matrix of their mutual distances. The

iteration is interrupted when the error becomes stable. The average of the percent-

age of the error is calculated on the average and variance of the corrections made

during each n cycles. The elaboration is interrupted when the average of the error

becomes stable.

The Population program has demonstrated that it possesses a much higher

resolution quality for the multi-dimensional scaling problem (Massini et al.

2010). The potential for this algorithm is considerable:

1. Speed enhancement;

2. Efficiency improvement;

3. Simplicity of the algorithm;

4. Freedom from having to calculate a specific cost function;

5. The possibility of analyzing a dataset of great dimension;

6. The possibility of dynamically introducing new records into the dataset during

the program run;

7. The possibility of choosing the dimensions of Projected Space.

Figure 2.38 shows an application of this algorithm on the known “IRIS” dataset.

Figure 2.39 shows another application of Population on a very large dataset.

50 M. Buscema et al.



2.10 Application of Population Algorithm to Medical Data

We have used the Population algorithm to reduce the dimensionality of the data

generated by the union of histograms of the five J-Net ROIs for each lesion.

We have always chosen the minimum dimension of the projection space so as to

Fig. 2.39 (a, b) Elaboration of population on a 5,000 point dataset with random coordinates XY

within a minimum and a maximum value. On the left the MST is calculated on the original

coordinates and on the right the MST is calculated on the coordinates population identified

Fig. 2.38 Elaboration with population relative to two different cost functions based on data of 150

records (Iris) for 4 variables
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be able to maintain an error of projection smaller than 0.01. This strategy has shown

to be effective in filtering the high ratio of redundancy generated by the histograms,

and consequently to compact the key information about each lesion. The Population

algorithm is the last step in our processing system. This algorithm has the task of

producing the set of features representing each lesion in the final dataset. After this

step, the definitive classification will be executed by the more classical supervised

ANNs and Machine Learning.

2.10.1 Diagnosis Using Supervised ANNs

ANNs compute highly nonlinear functions to identify relationships among

variables. This technique permits us to classify malignant and benign lesions in a

“blind” way using different type of validation protocols. We have avoided the use

of the “Leave One Out” protocol. This validation protocol is convenient for small

datasets (we have only 90 lesions), but it has shown to be too unstable. We have

instead chosen the more robust K-Fold Cross Validation (K ¼ 5) as validation

protocol and have used and compared different Learning Machine Algorithms:

• an enhanced version of LVQ ANN (Adaptive Vector Quantization (Kohonen

1995–2001; Kosko 1992; Neuralware 1995; Buscema and Catzola 2010),

because these projection algorithms are less sensitive than the gradient based

ANNs to the overtraining phenomenon with small datasets [Software (Buscema

2008–2010)];

• An advanced learning machines as Naive Bayes (Domingos and Pazzani 1997;

Rish 2001; Hand and Yu 2001; Webb et al. 2005; Mozina et al. 2004; Maron

1961; Rennie et al. 2003) [Software (Rapid 2001–2010)];

• A new ANN, gradient based, as Sine Net (Buscema et al. 2006a, b) [Software

(Buscema 1999–2010)];

• A classic Meta Classifier, as Major Voting (Kuncheva 2004), able to fuse the

precedent algorithms [Software (Machine Learning Group 1999–2010)];

• A new Meta Classifier, named Meta-Consensus (Buscema 1998; Buscema et al.

2010), able to maximize the best choices of the precedent algorithms [Software

(Buscema 2008–2010)].

To make it easier for the reader, we have summarized our processing system as

follows:

1. Proposed Processing System, composed of three basic steps: Fusion, Expansion,

and Squashing (FES):

(a) ACF Fusion: All the slices of each lesion are fused by the ACF system;

(b) J-Net: J-Net (Weights–Union) system re-writes each fused lesion into many

images;

(c) Grey Histograms Vector: codification of J-Net ROIs into a vector

representing the tones of grey of each lesion;
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(d) Population: the dimensionality of each matrix lesion is squashed into a small

number of features, maintaining the key information of the assigned matrix;

(e) Classification: using the new features as input vector of each lesion,

supervised ANNs try to blindly classify the new lesions dataset.

We have also analyzed the same data, using more classical approaches.

In this way it is possible to understand the advantages of every processing

step proposed in comparison with other less expensive and standard analyses.

2. Naive Analysis (NA):

(a) ACF Fusion: All the slices of each lesion are fused by ACF system;

(b) Population: Multidimensional Scaling of the input vector of 101 � 101

original pixels into a more compact number of input features;

(c) Final supervised classification.

3. Classic Analysis (CA):

(a) ACF Fusion: All the slices of each lesion are fused by ACF system;

(b) Binning of each ROI: each ROI is coded into a 256 input vector. Each vector

component is coded with the number of presences of any grey tone in each

lesion;

(c) Population: Multidimensional Scaling of the input vector of 256 variables

into a more compact number of input features

(d) Final supervised classification.

4. Object Oriented Analysis (OOA):

(a) ACF Fusion: All the slices of each lesion are fused by the ACF system;

(b) Segmentation of each ROI into two areas: the lesion area and the back-

ground. We have used J-Net Union-State to make this segmentation (see

Figs. 2.40 and 2.41);

(c) Calculation of the area and perimeter of the lesion, and calculation of the

homologous circle having the same area of the lesion and their ratio;

(d) Final supervised classification using the precedent features.

Fig. 2.40 Fusion and J-Net segmentation of a benign lesion

Fig. 2.41 Fusion and J-Net segmentation of a malignant lesion
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2.11 Results

We have processed the 90 lesions in two different ways:

1. An enhanced LVQ ANN (AVQ (Buscema and Catzola 2010)) was applied for

the final supervised classification to the output of our system (FES) and to the

output of the concurrent systems (NA, CA, and OOA) in five independent blind

tests (K-Fold CV, K ¼ 5) for each processing system.

2. Three different learning machines and two meta classifiers were applied only to

the outputs of our system, using always aK-Fold CV (K ¼ 5) validation protocol.

2.11.1 Systems Comparison

In Tables 2.1, 2.2, 2.3 and 2.4 we show the initial results. The J-Net system, with the

alpha processing, marks the difference from the other systems (in each table

“A.Mean” stands for the arithmetic mean and “W.Mean” stands for the weighted
mean).

Table 2.1 Naı̈ve analysis, results with K-Fold CV

Naive analysis (Na)

K-Fold(NA) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_AVQ1_G(1) 90.00 100.00 95.00 94.74 1

FF_AVQ1_G(2) 88.89 100.00 94.44 94.12 1

FF_AVQ1_G(3) 77.78 88.89 83.33 83.33 3

FF_AVQ1_G(4) 88.89 77.78 83.33 83.33 3

FF_AVQ1_G(5) 100.00 77.78 88.89 88.89 2

AVQ (Mean) 89.11 88.89 89.00 88.88 2

Table 2.2 Classic analysis, results with K-Fold C

Classic analysis (CA)

K-Fold (CA) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_AVQ1_G(1) 100.00 88.89 94.44 94.74 1

FF_AVQ1_G(2) 88.89 100.00 94.44 94.12 1

FF_AVQ1_G(3) 77.78 100.00 88.89 88.89 2

FF_AVQ1_G(4) 66.67 100.00 83.33 83.33 3

FF_AVQ1_G(5) 100.00 77.78 88.89 88.89 2

AVQ (Mean) 86.67 93.33 90.00 89.99 1.8

Table 2.3 Object oriented analysis, results with K-Fold CV fusion, expansion and squashing (FES)

Object oriented analysis (OOA)

K-Fold(OOA) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_AVQ1_G(1) 80.00 77.78 78.89 78.95 4

FF_AVQ1_G(2) 88.89 100.00 94.44 94.12 1

FF_AVQ1_G(3) 88.89 88.89 88.89 88.89 2

FF_AVQ1_G(4) 55.56 100.00 77.78 77.78 4

FF_AVQ1_G(5) 77.78 88.89 83.33 83.33 3

AVQ(Mean) 78.22 91.11 84.67 84.61 2.8
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2.11.2 Results Using Meta Classifiers Optimization

In this new experiment we have analyzed the output of our system (FES) using three

different machine learning algorithms:

• An enhanced Vector Quantization (AVQ);

• A Naı̈ve Bayes Classifier (Naı̈ve Bayes)3;

• A Sine Net ANN (SN).

In Tables 2.5, 2.6 and 2.7 we show the results of three independent K-Fold CV

applied to each algorithm:

AVQ and Naı̈ve Bayes outperform SN ANN. AVQ shows a good sensibility and

a very good specificity. Naı̈ve Bayes shows an excellent sensitivity. However, SN

has an interesting performance, quite orthogonal to the other machines learning.

The diversity of these performances is the right prerequisite to combine all these

three classifiers into a meta-classifier, to take the best of their specific capabilities.

To implement this fusion we have selected two Meta-Classifiers:

• Major Voting, a classic and a simple algorithm able to combine different

classifiers (Kuncheva 2004), and

• Meta-Consensus Net, a new meta-classifier, recently presented to the scientific

community (Buscema et al. 2010).

Table 2.5 FES System using AVQ

K-Fold(FES) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_AVQ1_G(1) 100.00 100.00 100.00 100.00 0

FF_AVQ1_G(2) 88.89 100.00 94.44 94.12 1

FF_AVQ1_G(3) 77.78 100.00 88.89 88.89 2

FF_AVQ1_G(4) 100.00 100.00 100.00 100.00 0

FF_AVQ1_G(5) 100.00 77.78 88.89 88.89 2

AVQ 93.33 95.56 94.44 94.38 1.0

3All the experimentations with Naive Bayes algorithm were executed by Massimiliano Marciano

(software engineer at CSI Research and Innovation, via Cesare Pavese 305, Rome, Italy), using

Rapid Miner ver. 5.0.010.

Table 2.4 FES system, results with K-Fold CV

K-Fold(FES) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_AVQ1_G(1) 100.00 100.00 100.00 100.00 0

FF_AVQ1_G(2) 88.89 100.00 94.44 94.12 1

FF_AVQ1_G(3) 77.78 100.00 88.89 88.89 2

FF_AVQ1_G(4) 100.00 100.00 100.00 100.00 0

FF_AVQ1_G(5) 100.00 77.78 88.89 88.89 2

AVQ (Mean) 93.33 95.56 94.44 94.38 1.0
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Tables 2.8 and 2.9 show the K-Fold CV results when each of the two Meta-

Classifiers is applied to the outputs of the three basic classifiers:

Meta-Consensus outperforms all the precedent results and enhances the quality

of the information extraction process executed through the J-Net algorithm.

Table 2.7 FES system using Sine Net

K-Fold(FES) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

FF_Sn(1) 70.00 100.00 85.00 84.21 3

FF_Sn(2) 88.89 62.50 75.69 76.47 4

FF_Sn(3) 77.78 77.78 77.78 77.78 4

FF_Sn(4) 77.78 100.00 88.89 88.89 2

FF_Sn(5) 77.78 88.89 83.33 83.33 3

SN 78.45 85.83 82.14 82.14 3.2

Table 2.8 FES system using Major Voting

K-Fold(FES) Malignant(%) Benign (%) A.Mean (%) W.Mean (%) Error

MajorVote(1) 90.00 100.00 95.00 94.74 1

MajorVote(2) 100.00 100.00 100.00 100.00 0

MajorVote(3) 88.89 100.00 94.44 94.44 1

MajorVote(4) 100.00 100.00 100.00 100.00 0

MajorVote(5) 100.00 77.78 88.89 88.89 2

MajorVote 95.78 95.56 95.67 95.61 0.8

Table 2.6 FES system using Naı̈ve Bayes

K-Fold(FES) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

NaiveBayes(1) 90.00 87.50 88.75 88.89 2

NaiveBayes(2) 100.00 85.71 92.86 93.75 1

NaiveBayes(3) 100.00 87.50 93.75 94.12 1

NaiveBayes(4) 100.00 87.50 93.75 94.12 1

NaiveBayes(5) 100.00 87.50 93.75 94.12 1

NaiveBayes 98.00 87.14 92.57 93.00 1.2

Table 2.9 FES system using Meta-Consensus Net

K-Fold(FES) Malignant (%) Benign (%) A.Mean (%) W.Mean (%) Error

Meta-Consensus(1) 100.00 100.00 100.00 100.00 0

Meta-Consensus(2) 100.00 100.00 100.00 100.00 0

Meta-Consensus(3) 100.00 88.89 94.44 94.44 1

Meta-Consensus(4) 100.00 100.00 100.00 100.00 0

Meta-Consensus(5) 100.00 88.89 94.44 94.44 1

Meta-Consensus 100.00 95.56 97.78 97.78 0.4
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2.11.3 Discussion

The first description of a lung nodule characterization CAD is ascribed to Kawata

et al. (1998). These authors in 1998 described a CAD scheme for distinguishing

between benign and malignant nodules. Their scheme first utilized a deformable

surface model to extract nodule regions based on an initial surface placed within a

nodule. They then extracted three features from the segmented nodule regions, i.e.,

the attenuation, shape index, and curvedness value. The shape index measures

whether a surface is convex or concave, and the curvedness reflects the degree of

curvature on a surface. The histograms of the attenuation, shape index, and

curvedness value for pixels within a nodule region were obtained, and the scale

of each histogram was employed as a feature. A Fisher linear classifier was trained

to provide a score for distinction between benign and malignant nodules. A leave-

one-out method was utilized for evaluating the performance level of the CAD

scheme based on a total of 62 patients, including 35 with malignant nodules and

27 with benign nodules. Each patient was scanned three times at three specific time

points: before the injection of a contrast agent and two and four minutes after

the start of contrast administration. The Az values (where A is the area under the

curve and z is the original score), when all three features were used for the three

time points, were 0.91 � 0.04, 0.99 � 0.01, and 1.0, respectively. The sensitivity

and specificity values were 94% and 74% for the CT images scanned before the

injection of contrast agent, 100% and 89% two minutes after contrast administra-

tion, and 100% and 100% four minutes after contrast administration.

McNitt-Gary et al. (1999) also developed a CAD scheme for the distinction

between benign and malignant nodules. Their database contained 35 patients,

including 19 with malignant and 16 with benign nodules. All of the patients had

at least one volumetric scan and may have had up to four scans imaged 45, 90, 180,

and 360 seconds after the injection of contrast agent. Their scheme first employed a

semi-automated procedure to segment nodule regions. From a seed point identified

by a user of the scheme, a region growing algorithm with user-adjustable upper and

lower thresholds was utilized to create a nodule region. The segmented nodule

region was reviewed, edited, and approved by one of three thoracic radiologists in

their team. Each segmented nodule region was then further partitioned into two

regions: one containing only a solid portion and the other containing only a ground-

glass portion. For each of the two regions of every nodule, 31 features were

calculated, including 12 attenuation features, five size features, four shape features,

and 10 contrast enhancement features. Feature selection was accomplished by a

stepwise model selection search by the Akaike Information Criterion so that the

extent of over fitting was reduced during the subsequent classification step. For

three feature sets including 31 features extracted from the solid portion, 31 features

from the ground-glass portion, and 62 features from both portions, the feature

selection method selected 6, 6, and 5 features, respectively. It seemed that features

extracted from the ground-glass portion were not very effective for distinguishing

between benign and malignant nodules, regardless whether they were used alone or
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combined with features from the solid portion. Three classifiers, including linear

and quadratic discriminant analysis as well as logistic regression, were employed to

distinguish between benign and malignant nodules. A leave-one-out method was

utilized for evaluating the performance level of the CAD scheme. It appeared that

the logistic regression classifier provided the highest performance level, and its Az

value (Area under the ROC curve) for distinction between benign and malignant

nodules was 0.92.

Aoyama described a CAD scheme for nodule characterization (Aoyama 2003)

by use of a dynamic programming technique. Forty-one and 15 image features

based on 2D sectional data and 3D volumetric data, respectively, were determined

from quantitative analysis of the nodule outline and of pixel values. A stepwise

feature selection method extracted eight features which were input to a linear

classifier for distinguishing between benign and malignant nodules. A leave-one-

out testing method was employed to evaluate the performance of this CAD scheme.

A total of 244 patients, including 61 with malignant and 183 with benign nodules,

constituted the study population. The area under the ROC curve was employed to

measure the performance level of this CAD scheme. The CAD scheme yielded an

overall ROC/AUC of 0.937 (0.919 for nodules with pure ground-glass opacity,

0.852 for nodules with mixed ground-glass opacity, and 0.957 for solid nodules) for

distinction between the 61 malignant and 183 benign lung nodules. These are, in

our view, the best reference papers on this subject.

In comparison with the existing literature concerning CAD systems applied to

lung nodules characterization, our approach has two major differences: the first is

the use of a sequential set of adaptive systems rather than a single system. This has

to do with the trivial concept that complex problems require complex approaches to

be solved. By using an assembly of algorithms based of different mathematics it is

easier to capture the intrinsic complexity of the information responsible for the

discrimination among malignant and benign lesions.

The second difference relies in the validation protocols employed to circumstan-

tiate scientifically the predictive power of the algorithms. At variance with existing

literature we have not employed the leave-one-out approach but rather a K fold

cross-validation protocol. The choice is justified by the fact that the leave-one-out

(LOO) approach is not appropriate for small data sets like ours being too unstable

(LOO over fits data and its results are over pessimistic (Kunceva 2004), while

K-fold cross validation is more robust to sampling variability).

The discriminating capacity among malignant and benign lesions obtained in

this study is one, if not the best thus far, described in the literature. This was not

completely expected but it is also not a shocking surprise. We think these results

constitute a strong rationale for further study to be performed on a larger set of

patients, hopefully enrolled by different clinics, to guarantee that a generalization of

the results is confirmed outside the original center. We also need to compare the

performance of the multi-system with the performance of the radiologist in a blind

way. The use of improved ANNs as classifiers will not solve all known problems of

lung MDCT. Manually obtained morphological features and the measurement of

signal intensities inside manually placed ROIs still needs be to well standardized.
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One reason for the good results achieved during this study may be the fact that only

two radiological experts evaluated these subjective features in close cooperation. A

combination of more radiologists will surely increase the inter-observer variability

of extracted features. This could lead to an increased number of errors by the ANNs.

To avoid this problem, the next step must be the introduction of automatic feature

extraction algorithms.

An early diagnosis represents the main goal to achieve when dealing with

patients with small lung nodules; this would allow a curative treatment for malig-

nant tumors to begin at early stages, when healing of the patient is still possible. Our

system seems to be able to enhance nodule morphologic features not visible to the

human eye that might be a reflection of the modifications related to the growth and

invasion of malignant cells in the closest periphery and in the inner regions of a

nodule. The results achieved in our investigation look extremely promising, and our

approach may open new perspectives in the clinical and radiological management

of patients with small lung nodules.
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Chapter 3

Population Algorithm: A New Method

of Multi-Dimensional Scaling

Giulia Massini, Stefano Terzi, and Massimo Buscema

3.1 Introduction and Motivation

The Population algorithm (hereafter referred to as Population) has a place in the

theoretical framework of Multi Dimensional Scaling. Reducing the dimensionality

of a dataset is a frequent problem in the analysis of data and is remarkable

important, in particular, in the field of exploratory analysis. Population provides

an opportunity to compress N records of a M-dimensional space (which we call the

Source Space) in a subspace of Q dimensions (called the Projected Space), where

Q << M, maintaining the greatest possible number of existing relations contained

in the original N records. Population is an iterative algorithm based on the calcula-

tion of a local fitness, the distance between two points that is considered optimal

when the single differences between the matrix of the distances of the Source Space

and the matrix of the distances of Projected Space are near zero.

This particular characteristic of Population, the ability to converge on a solution

without calculating the global fitness, determines the speed with which it finds a

solution minimizing the global error compared to other algorithms of Multi Dimen-

sional Scaling, such as that of Sammon (1969). It is therefore particularly useful for

elaborations of datasets of great dimensionality; we consider a dataset of great

dimensionality to be or the order of magnitude of some 100K+ records.
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The Sammon method consists of the minimization of the Stress Function

E ¼ 1P
i<j

d�ij
h i X

i<j

d�ij � dij

h i2
d�ij

Where:

dij
* is the distance of Source Space;

dij is the distance of Projected Space.

The more recent global approaches (Isomap – Tenenbaum et al. 2000), and local

approaches (Locally Linear Embedding (Roweis and Saul 2000), Laplacian

Eigenmaps (Belkin and Niyogi 2003)) have been addressed towards the search

for algorithms that give various embedded results, such as the modification of a cost

function. Contrary to these recent approaches that have concentrated on the defini-

tion of new modalities of projection to conserve different characteristics from the

matrix of the distances in the original space, we have chosen to take, as our initial

reference, the approach of Sammon (1969).

3.2 The Algorithm

In Population the algorithm is based on a calculation of some local fitness consid-

ered optimal when the single differences are calculated by the matrix of the

distances between the vectors of dimension M and the matrix of the distances

between the vectors of dimension Q, where (Q << M), are near zero.

The algorithm can be expressed as follows:

1. Randomly select two records Vi and Vj.

2. Calculate the vectorial distance RDij between the Vi and Vj vectors of the Source

Space and of the MDij distance between Vi
I and Vj

I vectors of Projected Space.

RDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k

vi;k � vj;k
� �2

vuut (3.1)

MDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XQ
k

v0i;k � v0j;k
� �2vuut

(3.2)

3. Calculate the Error (ER) between the RDij and MDij distances

ERij ¼ RDij �MDij (3.3)

4. Correction of the Vi
I vector is necessary so that the difference between RDij and

MDij is reduced.

5. The correction factor (D) is added or subtracted to minimize the difference ERij

between the RDij and MDij distances. All D factors are calculated in proportion to
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ERij error. When MDij > RDij, the D factor will be calculated with (3.4),

otherwise, when MDij < RDij, the factor is calculated with (3.5). When MDi,j ¼
RDi,j there is no correction.

Dijk ¼ v0ik � v0jk
� �

� 1� RDij

MDij

� �
;RDij < MDij (3.4)

Dijk ¼ � v0ik � v0jk
� �

� 1�MDij

RDij

� �
;RDij > MDij (3.5)

However, since Population is not bound to a specific Cost Function, it is possible

to define the D of correction with respect to the considered objective. Another way

to calculate the correction factor (Buscema, (2009) Personal communication) that

has given optimal results is the following:

Dijk ¼ v0ik � v0jki

� �
� MDij � RDij

� �2
RDij

2
;RDij < MDij (3.6)

Dijk ¼ � v0ik � v0jki

� �
� MDij � RDij

� �2
RDij

2
;RDij � MDij (3.7)

At the end, the correction factor, scaled by the constant a, is added to the

projected vector Vik
I:

V0
ikðtþ1Þ ¼ V0

ikðtÞ þ
X
j

Dijk � a

where a ¼ 0:1 (3.8)

The iterative process of Population aims, therefore, to minimize the Cost Function:

Energy ¼ Min
1

2

XN
i 6¼j

XN
j

RDij �MDij

� �2( )
(3.9)

The following pseudocode shows the operation of the algorithm:

PROCEDURE PopulationRun;
BEGIN

REPEAT
inc (cycles);
random extraction of 2 records (Vi, Vj);
calculation of vectorial distance RD(Vi, Vj);
calculation of vectorial distance MD(VIi, VIj);
IF (dg<>dv) THEN
Correction_of_vectorial_distance_MD(VIi,VIj);

UNTIL stop :¼ true;
END;
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We have evaluated the results of Multi Dimensional Scaling algorithms using

two cost functions:

1. Stress Function

Stress ¼ 1P
i 6¼j RDij

�
XN�1

i¼j

XN

j¼iþ1

RDij �MDij

� �2
RDij

(3.10)

2. Fitness Function

Fitness ¼ 1� 2

C
�
XN�1

i¼j

XN
j¼iþ1

RDij �MDij

� �2
RDij

 !
(3.11)

Where C ¼ N2 � N

In Fig. 3.1 we use Population to show the result of an analysis of two different

functions on the calculation of the D of correction (Algorithm 1 with (3.4 and 3.5)

or (Algorithm 2 with 3.6 and 3.7) based on the data from 150 records related to three

varieties of Iris flowers (Virginica, Versicolor, Setosa) regarding four characteristics

(Sepali Length, Sepali Width, Petals Length, Petals Width). The results of the

elaborations are slightly different with respect to the two fitness/stress functions of

cost and are shown as Algorithms 1 and 2. With Algorithm 1 the Fitness is improved

while with Algorithm 2, Stress is improved.

Fig. 3.1 Elaboration with Population relative to two different cost functions based on data of 150

records (Iris) for four variables

66 G. Massini et al.



3.3 Results

For experiments of comparison between the Population algorithm and others, we

develop one program using Delphi (Massini 2007–2009) and another in Matlab

(SOM Toolbox). In the implementation of Matlab it was not necessary to include

the Sammon algorithm, for there was already an implementation in the SOM

Toolbox of Matlab.

The experiments are based on two kinds of verifications: (a) that the abilities of

convergence of the algorithm on the stress function and of the fitness function are

analogous to those of Sammon’s classic algorithm and (b) that the speed is higher in

the Population approach.

A first test was done on a limited database of 8 records and 3 variables, relative to

coordinates x, y, z of a 3D cube to be projected onto a 2D space. The results are

shown in figs. 3.2 and 3.3.

With this first experiment we observe that the Population algorithm has

identified a solution comparable to that obtained with the Sammon algorithm.

Then we tested both algorithms on a set of four datasets: Segment, Letter and

Satim taken from the UCI repository (Asuncion and Newman 2007) and Defects

belonging to Semeion repository (see Table 3.1).

This comparison shows evidence of a small difference of about 0.01 in terms of

an ability to minimize Stress in favour of the original Sammon algorithm, due

probably to the fact that the inherent function of cost in the Population algorithm is

quite different from that of the classic function of Stress.

The differences are, however, so small that we are unable to invalidate the use of

the Population algorithm as an alternative to Sammon. The comparison of the speed

of the algorithms was not based exclusively on temporal terms, since such an

approach could have suffered from different optimizations resulting from the

writing of the code. Therefore we have chosen to calculate the number of steps

used by the two algorithms and also to use a second measure that is tied to the

number of base operations executed.

Fig. 3.2 Result using the

Sammon algorithm on eight

coordinates x, y, z of a 3D

cube projected in 2D space
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For Population, every cycle is based on the calculation operation of the existing

difference between two distances and on the single correction (~6 operations), while

every epoch of the algorithm of Sammon is based on ~9 operations that have to

be multiplied by n*(n�1) each time the Stress factor is calculated on the total of the

comparisons.

In Table 3.2 the cycles/epochs have been replaced with an appraisal of the

number of operations executed.

Table 3.2 shows that Population completes a considerable smaller number of

operations; however, in temporal terms the higher speed of Population does not

produce great advantages with small databases, rather, when the databases are very

large the difference becomes much more meaningful.

Table 3.1 Comparison of Population vs Sammon results

Record Var

Population Sammon

Algorithm Stress Fitness Cycles Stress Fitness Epochs

Defects 389 27 2 0.93 0.76 75,333 0.93 0.77 248.1

Letters 200 16 1 0.92 0.78 639,833 0.93 0.78 262.7

Satimage 322 36 1 0.98 0.88 355,588 0.98 0.88 237

Segments 231 18 1 0.96 0.84 742,068 0.97 0.84 406.6

Fig. 3.3 Result using the Population (algorithm 1) on eight coordinates x, y, z of a 3D cube

projected onto a 2D space. The two figures have been obtained by saving best run (SAVE BEST)

of Stress or, vice versa, the best value of Fitness

Table 3.2 Comparison of Population vs Sammon results from computer time consuming point

of view

R V

Population Sammon Report

Stress Fitness Operations Stress Fitness Operations Pop/Sam

Defects 389 27 0.93 0.76 451,998 0.93 0.77 337,016,063 745.61

Letters 200 16 0.92 0.78 3,839,598 0.93 0.78 94,099,140 24.51

Satimage 322 36 0.98 0.88 2,133,528 0.98 0.88 220,471,146 103.34

Segments 231 18 0.96 0.84 4,452,408 0.97 0.84 194,423,922 43.67
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For these simulation experiments we have used an artificial dataset that is represen-

tative of real bi-dimensional maps with a huge number of points. Convergence is

considered met when the value of residual stress drops below 10�4.

In the text below we show the result of three experiments carried out on datasets

composed of 5,000, 10,000, and 50,000 points with random coordinates XY

between a minimal and maximal value. The result is a square form composed by

points of increasing density. In all cases Population reached the value of 1.000 for

Stress (Fig. 3.4).

Compared to a dataset of 5,000 points we show the Minimum Spanning Tree

(MST) obtained by combining the points on the plan with respect to their own

original coordinates and the coordinates obtained with Population. As Fig. 3.5

shows, the two MST’s do not permit the crossing of branches.

Fig. 3.4 Results of the

Population algorithm on a DB

of 5,000 points, stopped at

about 3,100,000 cycles

(�18,600,000 operations)

Fig. 3.5 Results of the

Population algorithm on a

5,000 point dataset with

random coordinates XY

within a minimum and a

maximum value. On the left

the MST is calculated on the

original coordinates and on

the right the MST is

calculated on the coordinates

Population identified
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Figure 3.6 shows the images of the other two datasets of 10,000 and 50,000

points as they have been determined by Population. On these datasets the Sammon

algorithm is unacceptable for its slowness.

3.4 Calculations on a Large Data Set

Regarding the performances on large datasets we emphasize the fact that for

Population the saving of a distance matrix is not necessary because each correction

it made in real time (online).

The greater advantage is obviously the speed of the computational system

because it does not need to calculate the fitness, stress or other global functions

of cost in order to minimize the error.

The end of the elaboration can be decided, therefore, using two different criteria:

• Sampling of the cost function,

• Average of the error percentage.

The sampling of the cost function is executed randomly in the sample, every

n cycles, and the error is calculated only on the matrix of mutual distances. The

iteration is interrupted when the error becomes stable. The average of the percent-

age of the error is calculated on the average and variance of the corrections made

each n cycles. The calculation is interrupted when the average of the error becomes

stable. Moreover, a strong possibility exists to use Population to pre-process data
that then could be refined by another program to obtain some desired result; this
application of Population should not be underestimated. Population is already used

to pre-process data in combination with the PST (Buscema 1999–2009; Buscema

and Terzi 2006) program that implements a specific genetic algorithm

Fig. 3.6 Results of Population on a 10,000 point dataset (left) and 50,000 points (right) with
random coordinates XY within a minimum and a maximum value
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(genD-Buscema 2004) able to optimally minimize the fitness function in a space

projected in 2/3D.

It is useful to also show an application of Population on a large dataset: the

dataset we have considered is a Macro -Array composed of 22,283 records and

156 variables (Table 3.3). The results of the calculation of all 22,283 records are

shown in Fig. 3.7. This figure shows four different close ups of the final map

provided by Population.

3.5 Discussion of the Dynamics of a Data Set

Because of the nature of the Population algorithm, it is not necessary that the data

set be complete at the moment of use. New data can be dynamically introduced into

the system. The procedure used for appending to a data set in which the sequence of

records is temporal, follows:

During the elaboration a new record, Vt(n + 1), is positioned into the Projected

Space according to the rule of the triangulation related to the last three records

previously introduced in tn, tn�1, tn�2. The system continues to analyze the dataset

that has now increased to include the new record.

Table 3.3 156 variables of the macro-array dataset

1 B101N 27 B63T 53 B98T 79 B111T 105 B2-T 131 B2-L

2 B46N 28 B66T 54 B100T 80 B113T 106 B31-T 132 B31-L

3 B49N 29 B67T 55 B101T 81 B81T 107 B32-T 133 B32-L

4 B65N 30 B68T 56 B102T 82 B88T 108 B33-T 134 B33-L

5 B81N 31 B69T 57 B104T 83 B92T 109 B3-T 135 B3-L

6 B83N 32 B71T 58 B105T 84 B94T 110 B4-T 136 B4-L

7 B94N 33 B72T 59 B106T 85 B95T 111 B5-T 137 B5-L

8 B96N 34 B74T 60 B107T 86 B96T 112 B6-T 138 B6-L

9 B10-Nrep 35 B75T 61 B112T 87 B99T 113 B8-T 139 B8-L

10 B11-Nrep 36 B76T 62 B115T 88 B7-T 114 B9-T 140 B9-L

11 B12-N 37 B77T 63 B78T 89 B10-T 115 B10-L 141 B25-Lneg

12 B16-N 38 B53T 64 B79T 90 B11-T 116 B11-L 142 B30-Lneg

13 B18-N 39 B58T 65 B80T 91 B12-T 117 B12-L 143 B64L

14 B2-N 40 B60T 66 B82T 92 B13-T 118 B13-L 144 B7-Lneg

15 B3-N 41 B70T 67 B83T 93 B14-T 119 B14-L 145 B19-Met

16 B9-N 42 B42T 68 B84T 94 B15-T 120 B15-L 146 B20-Met

17 B110T 43 B43T 69 B86T 95 B16-T 121 B16-L 147 B21-Met

18 B114T. 44 B44T 70 B87T 96 B17-T 122 B17-L 148 B22-Met

19 B52T 45 B45T 71 B89T 97 B18-T 123 B18-L 149 B34-Met

20 B54T 46 B46T 72 B90T 98 B1-T 124 B1-L 150 B35-Met

21 B55T 47 B47T 73 B91T. 99 B23-T 125 B23-L 151 B36-Met

22 B56T 48 B48T 74 B93T 100 B24-T 126 B24-L 152 B37-Met

23 B57T 49 B49T 75 B97T 101 B26-T 127 B26-L 153 B38-Met

24 B59T 50 B50T 76 B103T. 102 B27-T 128 B27-L 154 B39-Met

25 B61T 51 B51T 77 B108T. 103 B28-T 129 B28-L 155 B40-Met

26 B62T 52 B73T 78 B109T 104 B29-T 130 B29-L 156 B41-Met
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The map of the Projected Space therefore approaches its shape based on the first

records of the data set because there is no need to wait for a complete dataset to be

provided.

An example follows. A dataset composed of five nano-sensors is based on the

collection of evidence related on an introduction of poison into a room. A determi-

nation is made on a sequence of 10,559 signals for every sensor, and each record is

composed of five values. The data have been standardized in table format. The

sequence of the signal data for the five values is shown in Fig. 3.8.

Using Dynamic Population to assess the first 696 records results in the 2D map

of Fig. 3.9a. The entire final calculation on all the 10,559 records is shown in

Fig. 3.9b, c. The configuration shows two “tails”: on the right the initial records and

on the left the final ones, since the signal tends to return to the initial values it had at

rest conditions. The elaboration was conducted by introducing one record at a time

using the triangulation method.

Fig. 3.7 The figure shows four zoom views of 22,283 records ( points) of the Macro-Array dataset

at the end of Population processing
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Fig. 3.8 Visualization on a graph of the signals of five nano-sensors in presence of poison in the air

Fig. 3.9 Elaboration with Dynamic Population on the signals of five nano-sensors in presence of

poison in the air. In (a) the 2d configuration and the map of the first 696 records. In (b) the 2d

configuration of all the 10,559 records and in (c) the map
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After every introduction, Population fixed the distances between the introduced

records extracting randomly, two records at a time, for a number equal to the

introduced records. At the end of this procedure we have a fitness of 0.99 and

stress ¼ 1.

This method allows a result to be produced in a much faster way and with much

greater precision when analyzing very large datasets.

3.6 Conclusions

The Population program has demonstrated that it possesses a much higher quality

for the resolution of the Multi-Dimensional Scaling problem. The potential for this

algorithm is considerable:

1. Speed enhancement;

2. Efficiency improvement;

3. Simplicity of the algorithm;

4. Freedom from having to calculate a specific cost function;

5. The possibility of analyzing a dataset of great dimension;

6. The possibility of dynamically introducing new records into the dataset during

the program run;

7. The possibility of choosing the dimensions of Projected Space.
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Chapter 4

Semantics of Point Spaces Through

the Topological Weighted Centroid

and Other Mathematical Quantities:

Theory and Applications

Massimo Buscema, Marco Breda, Enzo Grossi, Luigi Catzola,

and Pier Luigi Sacco

Part A: Syntax of Physical Space: Theory

4.1 The Conceptual Context

4.1.1 Introduction

The spatial dimension is often a key feature to understand the structure of a

phenomenon. In some cases, this is relatively obvious, as phenomena themselves

are basically defined in spatial terms as in the case of, for example, diffusion

processes. In some other cases, however, such dimension is not obviously relevant.

For example, think of a comparative analysis of different socio-economic systems

in which geographical coordinates are not necessarily part of the data base. There is

a vast array of alternative, statistically based approaches that have been developed

to deal with the spatial character of phenomena, each approach based on different

fields such as physics, biology, economics and geography, and many more. But an

aspect that has been somewhat overlooked so far is that of the semantic dimension

of space, that is to say the interpreting of the topological or metric dimension of

space as conveying an intrinsic meaning that may have a substantial bearing on the
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interpretation of the underlying phenomena. Thus, whether or not we are consider-

ing a physical space or some sort of abstract, representational space, we must

consider the possibility that the spatial dimension may carry relational information

as to why certain entities ‘stay together’ in a given environment; this may add

substantially to our understanding of the respective phenomena. It is important to

stress the somewhat original meaning that we give to the term ‘relational’ in this

context: We are claiming that, to make any kind of significant sense of a certain

phenomenon, we must consider its variables as negotiating their position within the

state space according to a semantic defined in terms of relative proximity. In other

words, the physical entities produced by a given phenomenon situate themselves in

the state space as if they were aware, to some degree, of their relative position and

would adjust to each other in appropriate ways, as if they were abiding by a sort of

implicit grammar of the phenomenon. We can unscramble and interpret such

negotiation by suitably re-mapping the space in such a way as to give proximity

to its most expressive meaning. Insofar as the semantic aspects of the phenomenon

relate to the spatial characteristics only, we are basically reasoning in terms of a

syntax of space, i.e., the internal rules by which spatial features combine appropri-

ately to generate proper structures of meaning. This is the most basic level of a

relational spatial analysis. If, in addition, the phenomenon presents some character-

istic dimensions of a non-spatial nature, we can speak of a full semantic. In this

case, we will have to develop a more articulated approach that will be presented in

the second part of the chapter.

In this chapter, we present a number of new mathematical quantities that

are particularly useful at capturing such relational dimensions and thus to

allow for a rigorous analysis of the semantics of space. Specifically, such

quantities are practical and relatively easy to use in cognitively accessible

spaces – namely, two- or three-dimensional ones. More indirectly, they can

also be used to analyze the semantics of points defined in higher dimensional

space. In this case, a multidimensional scaling algorithm should be previously

applied in order to obtain a projection of the high-dimensional source space
onto a two- or three-dimensional target space. For the target space semantics

to be representative of the original source space, it is necessary that the

scaling algorithm be capable of minimizing the distortion of the hyper-

distances once they are projected from the source to the target space. The

smaller the distortion error, the more the target conveys a semantic that is

congruent to the original one.

Since R-record of a V-variables dataset can always be seen as a set of R points in

a V-dimensional space, the introduced quantities can be used to describe some

semantic aspects of the dataset that are related to the relative position of the R
records in their V-dimensional space. By the same token, one may transpose the

reasoning and regard the same quantities as illustrative of some semantic aspect of

the relative positions of the V variables in their R-dimensional space, provided that

such transposition is computationally feasible.

All the proposed quantities will be defined considering a set of K points, called

entities, in a two-dimensional space – the extension to the three dimensional case is

straightforward. As we will see, the proposed mathematical quantities are points,
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curves or scalar fields. They are listed below and then defined in the specific

sections:

• Topological Weighted Centroid (TWC)1;

• Self Topological Weighted Centroid (STWC);

• Proximity Scalar Field;

• Gradient of the Scalar Field;

• Relative Topological Weighted Centroid (TWCi);

• Paths from the Arithmetic Centroid to entities;

• Paths between entities;

• Scalar Field of the trajectories.

These quantities imply that each entity in the set of K points has the same

features apart from its position within the N-dimensional space. But we can,

additionally, introduce the possibility that each entity has different features other

than its position, thereby causing more complex interactions with the others within

the N-dimensional ambient space. To deal with this further complication, we will

apply a new algorithm, named the Auto Contractive Map, to evaluate the

relationships among the K non-homogeneous entities while taking their specific

qualitative features into account. Furthermore, we will propose a new method for

combining our derived relationships among non-homogeneous entities with the pre-

existing geographical information.

Overall, we have thus developed a conceptually innovative methodology to deal

with space semantics that may prove particularly interesting and effective in

tackling particularly complex problems and even some kinds of problems that are

commonly believed to be intractable according to the currently available toolbox of

methods and methodologies. To fully illustrate the scope and power of such

techniques, we apply them, in the second part of the paper, to a variety of different

problems taken from various disciplines whose heterogeneity makes a clear case for

the ‘universality’ of our approach.

4.1.2 Location Theory

In the scientific literature the problem of the semantics of the geographic space is

typically analyzed within the framework of Location Theory (Buscema et al.

2009a; Brantingham and Brantingham 1981, 1984; Levine 2004; O’Leary 2006,

Buscema & Terzi, 2006, 2006a).

Location theory is concerned with one of the central issues in geography. This

theory attempts to find an optimal location for any particular distribution of

activities, population, or events over a region according to a specific criterion.

1 The Topological Weighted Centroid and its equations were designed by M. Buscema in 2008 at

Semeion.
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The specific location problem we want to deal with can be simply defined in the

following terms. Let’s consider a distribution of K points in a N-dimensional space,

Xi ¼ xi1 ; . . . ; xiNf g, with i ¼ 1; :::; K, and typically N ¼ 2 or N ¼ 3, depending on

whether we want to deal with a two or three dimensional space. Let these points be

spatial positions representing locations where something meaningful happened

related to an existing phenomenon under study. They could be, for instance,

locations where deaths occurred in case of a disease outbreak, or crime scenes

where serial offences took place. We want to define and calculate a point function

H : <N ! < 0;1½ �, or, more specifically, its extremal value:

Y� ¼ argmax
Y2<N

H X1; . . . ;XK; Yð Þf g

where H expresses the likelihood of finding the originating point(s) of the pheno-

menon. Fixing an appropriate scaling factor,A, the functionH X1; . . . ;XK; Yð Þcan be
seen as a probabilistic function:

H X1; . . . ;XK; Yð Þ ¼ A � PðX1; . . . ;XK Yj Þ

and the given problem as a problem of maximization of the likelihood:

Y� ¼ argmax
Y2<N

PðX1; . . . ;XK Yj Þf g

The function’s extremal value, for instance, could identify the origin of the

outbreak or the serial offender’s hiding place.

4.1.3 Benchmark Solutions

Several solutions can be put forward for the problem just described. The most

relevant ones for the purposes of this paper are described as benchmark elements

for the proposed algorithm. The simplest solution is based on the estimation of the

central location from which travel distance and/or time is minimized, the so called

anchor point:

Y� ¼ argmin
Y2<N

XK
i¼1

DN Y;Xið Þ
( )

Where DNðY;XiÞ is the distance between the anchor point Y and each of the given

pointsXi, based upon some given metric.
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Whereas the anchor point minimizes some kind of distance, the center of mass
minimizes the square of that (Euclidean) distance. We therefore have a second

possible, very simple option to consider as a solution to the given problem:

Y� ¼ argmin
Y

XK
i¼1

XN
r¼1

Yr � Xirð Þ2
( )

Once again, however, this point need not be of particular interest for a location

theory with realistic purposes.

4.1.4 General Approach

In order to reconstruct the underlying law that generates the observed scatter of

points, we have to take into account more information than just time and distance.

Every agent (say, a predator or a virus) has a given quantity of energy to spend.

Such energy is consumed during travel (such as a virus expansion or hunting). The

energy consumption can determine the length of the hunt or the strength of the

virus’ expansion. Other random incidents, such as physical or psychological

constraints, can also interrupt travel. We thus have to consider that the given scatter

of points will typically be the result of some kind of resource (energy expenditure)

optimization. Reasonable locations, then, must take this contextual information into

account. In the case of a predator, for example, the optimal point is, as a rule, the

location that is close to the majority of the hunting areas. In this situation, any

failure in predation can be easily compensated by spending a little more energy in

traveling to the next near hunting area. The same is true for a virus; the more people

in a given area, the greater the virus’ capacity to infect and replicate. In the case of

human predators (serial criminals), a place not so distant from the predator’s house,

and yet close enough to the majority of assault places, is ideal. Thus, if we want to

develop a usable location theory, we have to consider not only distances, but also

the agent’s energy minimization strategy and the geographical and contextual

constraints of the territory.

We must then define an operation point as the point which minimizes suitably

rescaled distances, as well as all of the relevant constraints whatever their nature

(geographic, energetic, and so forth). In particular, a general enough model for

PðX1; . . . ;XK Yj Þ can be provided by considering:

DNðY;XiÞ: distances between the operation point Yand each of the given points Xi

according to a specific metric (Euclidean distance, Block distance, Travel

distance, Travel time, etc);

F DNðY;XiÞ
� �

: distance decay function;

G Xið Þ : a function representing geographic factors and other context-specific

features;
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E(Xi,Y): a function representing the energy distribution of the field in which the

given (observed) points are located; and

S r1; . . . ; rKð Þ: a composition function.

On the basis of the above, we can write:

PðX1; . . . ;XK Yj Þ ¼ S
F DNðY;X1Þ
� � � G X1ð Þ � E X1; Yð Þ; . . .
;F DNðY;XKÞ
� � � G XKð Þ � E XK; Yð Þ

 !

The classic algorithms that are found in the current literature consider all of these

components, but G(Xi). We will show how our approach, the TWC (Topological

Weighted Centroid) theory and its algorithms, with the support of the Auto

Contractive Map Neural Network, is able to also take into account the G(Xi)
component, that is, the semantics of the physical space.

The specific geographic and non-geographic factors characterizing the space

where each observed point is located represent a key point in the location theory. In

most cases, location theory algorithms do not systematically deal with these

features. This is the reason why location theory in its current state actually

represents a way to analyze the syntax of the space. TWC algorithms with the

Auto Contractive Map can, therefore, be regarded as the first systematic approach to

the semantics of the physical space.

4.1.5 Probability Distribution Strategies

This class of algorithms focuses only on the metric of the space and the shape of the

decay distance function, and uses the sum as a composition function without

specific assumptions about other factors. Following this approach, the operational

point is located in a region with a high “Hit Score”:

Y� ¼ argmax
Y2<N

PðX1; . . . ;XK Yj Þf g ¼ argmax
Y2<N

S X1; . . . ;XK; Yð Þf g

S X1; . . . ;XK; Yð Þ ¼
XK
i¼1

F DNðY;XiÞ
� �

More practically, these approaches tend to define the probability of each point –

within the convex hull of the locations of the observations – to be the operational

point. Consequently, the probability distribution strategy defines a search area

whose points have the highest probability of being the operational point (Buscema

et al. 2009a; Brantingham and Brantingham 1981, 1984; Levine 2004; O’Leary

2006; Rich and Shively 2004; Rossmo 2005).
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In this chapter we consider the two well-known algorithms of this kind:

• The Rossmo Algorithm (Rossmo 1993, 1995, 1997, 2000, 2005); and

• The Canter Algorithm (Canter and Larkin 1993; Canter and Taggs 1975; Canter

2003, 1999; Canter et al. 2000).

In addition, we consider also three proprietary algorithms, two of which have

already been presented in a previous paper (Buscema et al. 2009a):

• The Negative Exponential Summation Algorithm (NES); and

• The Likelihood with Variance Maximization Algorithm (LVM).

The third algorithm is presented here for the first time, after one year of testing:

• The Mexican Probability Algorithm (MexProb).

These five algorithms, together with the Anchor Point and the Center of Mass,

will be compared to the TWC algorithms with some real problems for which the

actual operational point is known.

4.1.6 The Rossmo Algorithm

The Rossmo Algorithm uses the block distance. It employs four free parameters

B; k; g; hð Þ, each of which has to be calibrated empirically according to the situation.

This algorithm is specific to the identification of an operational point in a serial

crime. We adapt its four parameters and metric and apply it in the quest to track an

epidemic. The Rossmo equations are the following:

F DNðY;XiÞ
� � ¼ FðdÞ ¼

k
dh

if d>Bð Þ
k�Bg�h

2B�dð Þg if ðd � BÞ

(

The first term of the equation takes its inspiration from Newtonian gravity. The

whole equation represents a formulation of the Brantingham and Brantingham

(1981, 1984) search area model in which the offender’s search behaviour is seen

as following a distance decay function with decreased activity near the offender’s

home base. Rossmo has produced examples showing how the model can be applied

to serial offenders (Rossmo 2000, 2005). For both the ‘within buffer zone’ (near to

home base, controlled by the parameterB) and ‘outside buffer zone’ (far from home

base) functions, the parameter k and the exponents h and g are empirically

determined. Though he doesn’t discuss how these are calculated, they are presum-

ably estimated from a sample of known offenders’ home-bases in cases for which

the distance to each crime scene is known (e.g., through arrest records).
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4.1.7 Canter Algorithm

Canter’s group in Liverpool (Canter and Larkin 1993; Canter and Taggs 1975;

Canter 1999, 2003; Canter et al. 2000) have suitably modified the distance decay

function for offenders’ choices of assault locations by using a negative exponential

term instead of the inverse distance:

F DNðY;XiÞ
� � ¼ FðdÞ ¼ A � e�b�d

Also the Canter algorithm was devised for the detection of serial offenders, and

thus we have employed it with the same cautions used to adopt the Rossmo algorithm.

4.1.8 The NES Algorithm

The NES Algorithm (Buscema et al. 2009a) uses the buffer concept of the Rossmo

model and the negative exponential of Canter, combining them in the following

equations:

F DNðY;XiÞ
� � ¼ FðdÞ ¼ 1� e�nðdÞ

nðdÞ ¼ ’ � e�d�g þ ð1� ’Þ � e�B�ðg�hÞ � e�ðd�2BÞ�g

When h and g are fine-tuned appropriately (h ¼ 0.05 and g ¼ 0.01) and the NES

Algorithm has proven to be very sensitive to the distribution of the observed sites.

4.1.9 The LVM Algorithm

The LVM Algorithm (Buscema et al. 2009a) is inspired by the O’Realy Bayesian

model. The main difference is the cost function: We try to maximize the variance of

the likelihood among all the candidate operation points, by means of an iterative

process:

F DNðY;XiÞ
� � ¼ F DNðY;XiÞa�

� � ¼ F da�ð Þ

F dað Þ ¼ 1

2pa2
� exp � d

2a2

� �

a� ¼ argmax
a n½ �

Variance
XK
i¼1

F DNðY;XiÞa n½ �

� � !( )

a½nþ1� ¼ a½n� þ e
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a½n¼0� ¼ 0:01

e ¼ 0:01

The LVM Algorithm presents two main advantages: it does not require external

parameters and it is based on Bayesian theory.

4.1.10 The MexProb Algorithm

The MexProb algorithm (Buscema et al. 2009a) was created to manage all the

parameters usually employed in location theory algorithms within only one

equation:

’ ¼ the connection strength among the points;

B ¼ the diameter of the protection zone, when such a zone is required;

d ¼ the distances among points, in any metric;

a and a� ¼ the width (and the optimal width) of the bell of the decay function:

The MexProb algorithm, moreover, calibrates all these parameters by itself, by

maximizing the variance of its scalar field, iteratively:

F DNðY;XiÞ
� � ¼ F DNðY;XiÞa�

� � ¼ F da�ð Þ;

FðdaÞ ¼ ð’� BÞ þ d
2�a2 � e�

d
2�a2

a� ¼ argmax
a½n�

Variance
PK
i¼1

F DNðY;XiÞa n½ �

� �� �� 	
;

a½nþ1� ¼ a½n� þ e;
a½n¼0� ¼ 0:01;
e ¼ 0:01:

4.2 The Topological Weighted Centroid Basic Concepts

We define the Topological Weighted Centroid (TWC) of a set of N entities in a bi-

dimensional space as the center of mass of such entities, weighted by the relative

proximity of each entity to the others; the exact meaning of proximity is defined

below. Since the weight employed in the proximity measure is dependent on a

parameter a , we introduce a specific curve, TWC að Þ , such that the TWC point

corresponds to a specific value a�.
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The TWC að Þ curve is defined by the following iterative process:

að0Þ ¼ 0; Starting value for af g (4.1)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2r
; Euclidean distance between any couple of entitiesf g

(4.2)

D ¼ max
i;j

di;j
� �

; Maximum distance among the assigned entitiesf g (4.3)

ACx ¼ 1

N

XN
i¼1

xi;ACy ¼ 1

N

XN
i¼1

yi; Classical Arithmetic Centroidgf (4.4)

pi að Þ ¼ 1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D a;

a - dependent relative proximity of each entity w.r.t. the othersf g
(4.5)

TWCx að Þ ¼ 1

PN
i¼1

pi að Þ

XN
i¼1

pi að Þ � xi;

TWCy að Þ ¼ 1

PN
i¼1

pi að Þ

XN
i¼1

pi að Þ � yi; a - dependent TWCf g
(4.6)

a tþ 1ð Þ ¼ aðtÞ þ Da; Increment of af g (4.7)

The TWC point is found on the curve by means of the following equations:

dAC;TWC að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACx � TWCx að Þð Þ2 þ ACy � TWCy að Þ� �2q

;

Distance between AC and TWC að Þf g
(4.8)

dAC;TWC a�ð Þ ¼ FL Max
a

dAC;TWC að Þ� �
;n

First Local Maximum distance between AC and TWCðaÞ;

obtained for a ¼ a�
o

(4.9)
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pi ¼
1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D a� ; Proximity of each entity to the othersf g (4.10)

TWCx ¼ 1

PN
i¼1

pi

XN
i¼1

pi � xi;

TWCy ¼ 1

PN
i¼1

pi

XN
i¼1

pi � yi; Topological Weighted Centroidf g
(4.11)

It can be easily seen that, as the iterative process unfolds, the following charac-

teristic pattern of evolution emerges:

TWCð0Þ ¼ AC (4.12)

lim
t!1 piðtÞ ¼ 0 (4.13)

TWC0
k ¼ lim

t!1TWCkðtÞ ¼
kim þ kjm

2
; dim;jm

¼ min
i;j

di;j
� �

, supposing unique min distance ; k ¼ x; y (4.14)

TWC0
k ¼ lim

t!1TWCkðtÞ ¼
XR
r¼1

kir þ kjr
2 � R ; dim;jm ¼ dir ;jr ¼ min

i;j
di;j
� �

;

r ¼ 1; . . . ;R; supposing R min equal distances ; k ¼ x; y

(4.15)

Equation 4.12 indicates that, at the beginning of the iterations,TWC að Þ coincides
with the classical arithmetic centroid; (4.14) and (4.15) show that, during the

process, TWC að Þ moves from the arithmetic centroid towards the center of mass

of the points with minimum reciprocal distance. In case there is a single couple,

(4.14) applies, whereas (4.15) applies for the generic case of R couples with equal

minimum reciprocal distance.

From the previous considerations it is obvious that, for every set of points with

given coordinates, it is possible to calculate the TWC. According to (4.1, 4.2, 4.3,

4.4, 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10), the TWC appears to be a modification of the

classical Arithmetic Centroid (AC), based on the concept of proximity of a point to

the others. Equation 4.5 determines, for each assigned point, its proximity in terms

of positioning in a more or less dense region of points. As observed, for each

different value assumed by the a parameter during the iteration, we have a shifting

position for theTWC að Þ. We chose to define the TWC point as the position assumed
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by TWC að Þ for a ¼ a� , when the distance from the AC reaches its first local

maximum.

The a parameter has a crucial role in this process, and is not simply an

instrumental parameter. When a ¼ 0, each point acts independently, i.e. it does

not ‘feel’ the presence of the others, and in this case the TWC and the AC collapse

into each other. When a becomes positive (and growing), the area of influence of

each point in the distribution widens, so that the proximity of the other points begins

to matter, and as a consequence the position of TWC að Þ changes as the degree

of proximity of each point is weighted by a . The process stops when further

enlargements of the area of influence of each point no longer affect the

position of TWC að Þ . When this happens, the position of the moving TWC að Þ is

stuck at TWC0, i.e., in the point where the relative proximity between the closest

points has been a-calibrated in order to dominate the entire space.

Thus, by increasing a we draw out a correspondent path for TWC að Þ. This path
tracks the position of the centroid weighing the proximity of the points while their

influence area expands. It is evident that the more interesting positions for TWC að Þ
are neither the origin nor the end of the path. In particular, the first local maximum

distance position seems to possess interesting properties.

When every entity has the same probability of occupying a place near the others,

the space has no semantics and the TWC and the AC are coincident. This can

happen in two limit cases: When the distances among the entities is always the

same, and when the summation of the distances from one entity to the others is the

same for every entity. These are two cases of perfect symmetry.

4.2.1 The Self Topological Weighted Centroid

If, at this point, we make a little change to (4.5) including the distance that each

entity has from itself, the dynamics of the whole process change dramatically. To

emphasize this apparently minor but crucial modification, in the following

equations we prefer to re-label the name of the a parameter to b. Consistently, we
do not speak anymore of TWC, but we introduce a new quantity called Self

Topological Weighted Centroid (STWC). In this case, the weight used to calculate

proximity now depends on the b parameter and, accordingly, a new STWC bð Þ curve
is considered, with a specific value b� that fixes the STWC point, and that is

determined following the very same logic as for TWC(a).
The algorithm to determine theSTWC bð Þcan be defined as an iterative process as

follows:

bð0Þ ¼ 0; Starting value for bf g (4.16)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2r
; Euclidean distance between any couple of entitiesf g

(4.17)
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D ¼ max
i; j

di; j
� �

; Maximum distance among the assigned entitiesf g (4.18)

ACx ¼ 1

N

XN
i¼1

xi; ACy ¼ 1

N

XN
i¼1

yi; Classical Arithmetic Centroidgf (4.19)

pi bð Þ ¼ 1

N

XN
j¼1

e�
di; j
D b;

b - dependent relative proximity of each entity w.r.t. the others, itself includedf g
(4.20)

STWCx bð Þ ¼ 1

PN
i¼1

pi bð Þ

XN
i¼1

pi bð Þ � xi;

STWCy bð Þ ¼ 1

PN
i¼1

pi bð Þ

XN
i¼1

pi bð Þ � yi; b - dependent STWCf g (4.21)

b tþ 1ð Þ ¼ bðtÞ þ Db; Increment of bf g (4.22)

The actual STWC is then determined by means of the following equations:

dAC;STWC bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACx � STWCx bð Þð Þ2 þ ACy � STWCy bð Þ� �2q

;

Distance between AC and STWC bð Þf g (4.23)

dAC;STWC b�ð Þ ¼ max
b

dAC;STWC bð Þ� �
;

Maximum distance between AC and STWC bð Þ, obtained for b ¼ b�f g (4.24)

pi ¼
1

N

XN
j¼1

e�
di; j
D b� ; Proximity of each entity to the others, itself incluedf g

(4.25)

STWCx ¼ 1

PN
i¼1

pi

XN
i¼1

pi � xi; STWCy ¼ 1

PN
i¼1

pi

XN
i¼1

pi � yi;

Self Topological Weighted Centroidf g

(4.26)
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The corresponding pattern of evolution is characterized as follows:

lim
t!1 piðtÞ ¼ 1=N (4.27)

lim
t!1 STWCkðtÞ ¼ STWCkð0Þ ¼ ACk (4.28)

These equations show the convergence properties of the algorithm; in particular,

one can notice that the STWC bð Þ dynamics describe a loop, starting from, and

ending with, the classical arithmetic centroid.

From (4.24), we see that b� is the parameter value at which the absolute

maximum is reached. So, b�is a critical point: For any b>0 up tob� , the distance

between STWC bð Þ and AC typically increases as each pi bð Þ (see (4.20)) is greater
than 0, smaller than 1 and, excluding the non-generic case of a null semantics,

different from the others. Further increases ofb beyondb�cause the distance of each
point from itself to dominate on the other distances and consequently∂STWC bð Þ and
AC slowly approach each other.

With respect to the proximity concept defined for the TWC as in (4.5), in the

one defined here as in (4.20), the proximity to other points is valued only as an

additive component to the presence of the point itself. As b moves along its range,

the corresponding changes in STWC bð Þ position the curve such as to weigh in terms

ofb the area of influence corresponding to this kind of proximity, thereby mediating

the presence of the other points with that of the reference point itself. At the b�

value, such mediation effect causes the extension of the area of influence to diverge

as much as possible from the ones of the areas that correspond to the (coincident)

initial and final positions along the STWC bð Þcurve.

4.2.2 The Proximity Scalar Field

Let us now discretize our bi-dimensional plane by assigning to it a (discrete) set of

geometrical points, e.g., a grid. Each geometrical point may, or may not, be covered

by one of the entities that express the phenomenon under study. On the basis of the

proximity values pi described above, we can define a scalar field in the discrete

plane, and compute a specific value for each of its points. We call it the Proximity
Scalar Field. The value assigned to each geometrical point of the discretized plane

represents the proximity degree of that point to the observed entities. A useful way

to construct such a scalar field is that, whenever the coordinates of a geometrical

point happen to coincide with those of an entity, the scalar field tends to assume a

relatively high value; moreover, whenever there is also a significant concentration

of other entities close to the ‘matching’ entity/point, the scalar field value increases

further. To sum up, we define our scalar field onto a discrete covering of the plane in

such a way that it constitutes a sort of density measure for entities.

Comparing the two notions of proximity as defined in (4.5) and (4.20), it is easy

to conclude that the reflexive one, i.e., the one based on the b� value, is more
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appropriate in this case, in that reflexive distance is a substantial component of our

definition of a proximity scalar field.

We therefore define the scalar field for the assigned entities in terms of the

following equations:

N; Number of entities generating the fieldf g (4.29)

M; Number of points of the discretized spacef g (4.30)

i; j 2 1; 2; . . . ;Nf g; Entities indexesf g (4.31)

k 2 1; 2; . . . ;Mf g; Space points indexf g (4.32)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2r
;

Euclidean distance between any couple of entitiesf g
(4.33)

D ¼ max
i; j

di; j
� �

; Maximum distance among the assigned entitiesf g (4.34)

mk;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xj
� �2 þ yk � yj

� �2r
;

Euclidean distance between any couple of space points and entitiesf g
(4.35)

pk ¼
1

N

XN
j¼1

e�
mk; j
D b� ;

Proximity of a point to the entities, with b� as maximizing value of dAC;STWC

� �
(4.36)

From the above equations, it is evident that our Proximity Scalar Field is a

differentiable function, and at any point it yields a value that represents the point’s

proximity to the given entities, including the one possibly coinciding with the point

itself. As for the STWC, proximity is weighed using an area of influence that

maximizes the distance of the weighed centroid from the arithmetic one. In other

words, we define a concept of centrality that re-maps the space in such a way to

consistently maximize the semantic distance with respect to the ‘context-neutral’

(i.e., arithmetic) idea of centrality.
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4.2.3 The Gradient of the Scalar Field

Once a scalar field is generated from the geometrical points, it may be useful to

calculate the gradient of this field, to transform again the scalar field into a

conservative vector field. In this way, we can assign to each entity or to a new

point a virtual path, that defines a dynamics on the whole plane, that is implicit in

the semantics of the generated target space.

In order to compute the x and y components of the gradient of this scalar field, we

have applied the Sobel operator (Duda and Hart 1973; Jaehne et al. 1999) to assign a

measure of relevance to the points around the reference one. The masks to compute

the gradient in the form of the Sobel operator are:

�1 0 1

�2 0 2

�1 0 1

for the x component of the gradient, G*
x , and

1 2 1

0 0 0

�1 �2 1

for the y component of the gradient, G*
y . Therefore, the equations computing these

components are:

G�
x ¼ pxþ1;yþ1 þ 2 � pxþ1;y þ pxþ1;y�1

� �� px�1;yþ1 þ 2 � px�1;y þ px�1;y�1

� �
(4.37)

G�
y ¼ pxþ1;yþ1 þ 2 � px;yþ1 þ px�1;yþ1

� �� pxþ1;y�1 þ 2 � px;y�1 þ px�1;y�1

� �

The gradient intensity and its local direction represent the variation of the
proximity with respect to the entities situated in each point of the plane. It can

be seen as the force of the target space at each point, that would act on an entity

placed at that point, due to the potential information content generated by the

anisotropy of the space in terms of proximity – that is to say, the different

degree of proximity that each entity has with respect to each other, and with

respect to any geometrical point of the target space. In such a way, the

semantics of a target space could be regarded as the potential energy of

information of that space, that could act upon the state of any newly added

entity according to its inertia, which could be seen in turn as the own informa-

tion content of that entity.
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4.2.4 Relative Topological Weighted Centroid
and Paths from AC to Entities

We can define a centroid relative to any specific i-th entity. Actually, to weigh the

entity coordinates we can consider only the distances among a given entity and all

the others, itself included, but excluding all the distances among other entities.

The Relative Topological Weighted Centroid for the i-th entity will be indicated by

TWCi. Also for this quantity, a corresponding curve TWCi gið Þ is defined, according
to the by now familiar logic, and dependent on the parametergi, such that a specific

value g�i identifies theTWCi.

The TWCi gið Þ curve is algorithmically defined as follows:

gið0Þ ¼ 0; Starting value for gif g (4.38)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2r
;

Euclidean distance between the i-th and the j-th entityf g (4.39)

D ¼ max
i;j

di;j
� �

; Maximum distance among the assigned entitiesf g (4.40)

ACx ¼
XN
i¼1

xi; ACy ¼
XN
i¼1

yi; Classical Arithmetic Centroidf g (4.41)

pi;j ¼ e�
di;j
D gi ; fg - dependent relative proximity between the i-th and the j-th entitiesg

(4.42)

TWCix gið Þ ¼ 1

PN
j¼1

pi;j gið Þ

XN
j¼1

pi;j gið Þ � xj;

TWCiy gið Þ ¼ 1

PN
j¼1

pi;j gið Þ

XN
j¼1

pi;j � yj gið Þ; g - dependent TWCif g
(4.43)

gi tþ 1ð Þ ¼ giðtÞ þ Dgi; Increment of gif g (4.44)

The TWCiquantity is then identified by the equations below:

dAC;TWCi
gið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACx � TWCix gið Þð Þ2 þ ACy � TWCiy gið Þ� �2q

;

Distance between AC and TWCi gið Þf g (4.45)
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dAC;TWCi
g�i
� � ¼ max

gi
dAC;TWCi

gið Þ� �
;

Maximum distance between AC and TWCi gið Þ, obtained for gi ¼ g�i
� �

(4.46)

pi;j ¼ e�
di;j
D g�i ;

fProximity between the i-th and the j-th entities, with g�i
as maximizing value of dAC;TWCig (4.47)

TWCix ¼
1

PN
j¼1

pi;j

XN
j¼1

pi;j � xj;

TWCiy ¼
1

PN
j¼1

pi;j

XN
j¼1

pi;j � yj; Relative Topological Weighted Centroidf g
(4.48)

and the corresponding dynamics is characterized as:

TWCið0Þ ¼ AC (4.49)

lim
t!1 pi;jðtÞ ¼ 0 (4.50)

lim
t!1 TWCikðtÞ ¼ ki; k ¼ x; y (4.51)

As stated by (4.38), at the beginning of the iterationsTWCi gið Þ coincides with the
AC. As the parameter gi increases, the centroid moves towards the i-th entity,

eventually reaching it, as shown by (4.51).

For theTWCi gið Þwhat is interesting is obviously not the endpoint of the path, but
the path itself, from the center of mass (AC) to the entity, as the gi parameter

increases. Such trajectory will be a straight line when the entities have a distribution

with null semantics. It will assume, instead, a curved shape when the proximity field

has a specific warped geometry. This deformation shows how the path from the AC

to the given entity is modified by the attraction effects caused by the proximity of all

the other entities in the space.

4.2.4.1 Paths Between Entities

It is relatively easy to translate the path from the AC to the entities into direct paths

connecting entities among each other. Their parametric coordinates are given as

follows:
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C i; jð ÞxðsÞ ¼ xj þ TWCix g�i � s
� �� TWCjx g�j � s

� �� �
;

C i; jð ÞyðsÞ ¼ yj þ TWCiy g�i � s
� �� TWCjy g�j � s

� �� �
; 0 � s � 1 (4.52)

In this way, we can draw a complete regular undirected graph, whose vertices are

the entities and whose arcs are in general curvilinear, moving from the j-th entity

(for s ¼ 0) to the ith (for s ¼ 1). Similarly to the paths from the AC to the entities,

the trajectory will be a straight line in case of a null semantics, but will assume a

characteristic shape when the proximity to the other entities varies along the space

crossed by the path joining the two entities.

The Non Linear Minimum Spanning Tree (NL-MST) of this graph could be a

good representation of the trajectories connecting all the entities.

4.2.5 The Scalar Field of the Trajectories

We are now in the position to be able to calculate the degree of proximity of each

point of the plane to every point of the above defined trajectories:

N; Number of points composing all the trajectories, in the discrete spacef g
(4.53)

M; Number of points of the discrete spacef g (4.54)

i; j 2 1; 2; . . . ;Nf g; Trajectories points indexesf g (4.55)

k 2 1; 2; . . . ;Mf g; Space points indexf g (4.56)

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2r
; fEuclidean distance between any couple

of trajectories pointsg
(4.57)

D ¼ max
i; j

di; j
� �

; Maximum distance among the trajectories pointsf g (4.58)

mk;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xj
� �2 þ yk � yj

� �2r
;fEuclidean distance between any couple

of space points and trajectories pointsg
(4.59)

4 Semantics of Point Spaces Through the Topological Weighted Centroid. . . 93



pk ¼
1

N

XN
j¼1

e�
mk; j
D b� ; fProximity of a point to the trajectory points,

with b� as maximizing value of dAC; STWCg
(4.60)

This field yields, in any point, a value that represents the proximity of the point

itself to the trajectories connecting entities. As for the scalar field, proximity is

weighed by the b� parameter, as defined for the STWC.

Part B – Syntax of Physical Space: Applications

4.3 Introduction

In the first part of the paper, we have briefly reviewed the essential tools that we

need to carry out a relational analysis of complex spatial dynamics, based on

the idea that the dynamics is essentially governed by a semantics of space that

arises from the negotiation among the physical entities that constitute the observ-

able correlate of the underlying phenomenon. Most of the toolbox (and of the

respective concepts) that we have introduced is likely to sound relatively new to

the reader who would probably call for a much more extensive discussion and for

further argument and clarification. Likewise, the same can be said about the general

philosophy and the specific meaning of the various parts of the TWC methodology.

However, rather than taking this route, in order to maintain the length of the paper

within reasonable limits, we have opted for a different solution: That of illustrating

systematically the application of the methodology by means of examples motivated

by a few issues relating to different disciplines. Most of these examples are not

trivial problems for they contain several original results on disciplinarily relevant

issues, and are presented here for the first time. We hope that, by going through the

mechanics of the analytical procedures in the various examples below, the reader

will be able to return to the theoretical part with more insight and better prepared to

understand the theoretical complexities.

4.3.1 A Basic Example with a Very Weak Semantic

We introduce as an initial illustration a space with a very weak semantic. In fact, in

this space, the summation of distances of each entity from the others is quite the

same, and consequently the AC and the TWC are located approximately in the same

position (Fig. 4.1): the software use for all simulations and graph come from

Buscema (2007b, 2008).
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By means of 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, and 4.36, we can generate

the proximity scalar field of the entities (Fig. 4.2):

The map shows that the degree of proximity to entities is quite evenly distributed

around the circle. We can also notice the darker areas inside the red region, that

correspond to the places where the original entities are denser. Using 4.38, 4.39,

4.40, 4.41, 4.42, 4.43, and 4.44 we can also generate the trajectories connecting

each entity with the center of mass (AC) (Fig. 4.3). Also in this case, the connecting
lines are mostly straight, because the proximity field around entities is quite the

same for each.

4.3.2 Cocaine Trafficking in London, 2006

We now consider a completely different problem based on real world data and

presenting a typical example of what is commonly meant as a ‘hard’ analytical task.

We start from a map of the places in London where the Metropolitan Police arrested

Fig. 4.1 A simple artificial

example

Fig. 4.2 The scalar field
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people caught trafficking in cocaine over a four month period (Buscema et al.

2009b) (Fig. 4.4):

An examination of this map makes it relatively clear how the distribution of

the entities is hardly believable to be random. In the following picture we can

observe how, computing the TWC according to 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7,

it can be seen to move from the center of mass (AC) down towards a group of

entities situated in the borough of Bromley (Fig. 4.5).

According to other independent research (Buscema et al. 2009b), conducted

using different data, it turns out that Bromley and the City of Westminster appear as

two of the most representative boroughs in London as to cocaine trafficking. If we

generate the scalar field of this distribution, using 4.29, 4.30, 4.31, 4.32, 4.33, 4.34,

4.35, and 4.36 we have an optimal representation of the proximity to cocaine

trafficking in London: It is apparent that Bromley and the City of Westminster

are the two foci of cocaine distribution (Fig. 4.6).

Now, projecting the same map according to the gradient, as in (4.37), we are also

able to distinguish the different clusters of cocaine trafficking in London (Fig. 4.7):

At this point, it would be interesting to try and conjecture the most probable

trajectories connecting all such drug dealing places (entities) together. We can try to

answer to this question by building a curvilinear MST, based on the paths

connecting entities, according to (4.52) (Fig. 4.8).

This graphical map could at first sight look too complex to be readable in any

sensible way. To help the reader (and the analyst), we can provide an alternative

representation obtained by employing the Maximally Regular Graph (MRG) algo-

rithm, that adds to the MST representation all and only the links that are necessary

to capture the fundamental connections between the observed entities (Buscema

et al. 2008a; Buscema and Sacco 2008; Buscema and Grossi 2008; Buscema et al.

2008b; Buscema et al. 2009b, under review) (Fig. 4.9).

Fig. 4.3 Trajectories connecting entities with the center of mass
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By looking at this graph, it is possible to infer that the cocaine delivery network

in London starts from the borough of Bromley (TWC high in the north of the

graph), has its wholesale hub in the borough of Merton and finally arrives, through

Lambeth, at the big, final customer market of the City of Westminster and subse-

quently to the other boroughs of London (relatively minor final customer markets).

This example explains rather clearly what we mean by a relational spatial

analysis, and to what extent our approach exploits a particular form of space

semantics. The task of reconstructing the spatial articulation of cocaine trafficking

in a large metropolitan area in London by looking only at events that locate the

capture of drug dealers in a given time period looks somewhat hopeless at first sight.

Nevertheless, it is clear that, insofar as a real drug trafficking network is operating

across the London territory, it must have an inherent spatial organization that has to

emerge to some degree from the observable data. The question becomes whether a

Fig. 4.4 Arrests for cocaine trafficking in London over a 4 month period
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Fig. 4.5 Centre of mass versus TWC

Fig. 4.6 Scalar field of the distribution
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small scatter of points like the available database for this example may be enough to

reconstruct the basic structural properties of the drug dealing network. If we consider

the available data (the entities) as isolated points in space, i.e. as random draws from

a given, underlying distribution, the task is really hopeless. But if, on the contrary,

such data are thought as context-sensitive, i.e., a given event (the arrest of a drug

dealer) produces complex spatial effect on the entire geography and organization of

Fig. 4.8 Nonlinear MST

Fig. 4.7 Gradient map
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drug trafficking (like a propagation wave following a shock), then it is clear that the

observed spatial distribution of entities carries meaning, i.e., is governed by an

underlying semantic that can be reconstructed on the basis of a few well-chosen

reference cases. In this perspective, it should also be clearer in what sense the various

entities negotiate their position in the underlying, warped representational space;

Some of the dealers are more tightly connected to some of the others, and thus the

event of the capture of a given dealer produces asymmetrical effects in the whole

network, and affects different, as yet uncaught dealers in different ways, thereby

causing complex adjustments that will be reflected in the distribution of the next

capture. This is the kind of hidden, structural information that we need to learn to

exploit to be able to reconstruct the true semantics of the phenomenon under study.

4.3.3 The Russian Influenza in Sweden, 1889–1890

Using data from a study of the 1889–1890 Russian flu in Sweden, this example

shows how the application of the TWC methodology may help to identify the

source of an epidemic outbreak in surveillance analyses (for a complementary study

on the sources of outbreaks, see Buscema et al. (2009a)).

In 1890, immediately after the outbreak of Russian influenza, all Swedish

doctors were asked to provide information about the start and the peak of the

epidemic, and the total number of cases in their region, as well as to fill in a

questionnaire on the number, sex and age of infected persons in the households they

visited. General answers on the epidemic were received from 398 physicians, and

data on individual patients were available for more than 32,600 persons. From such

answers, a table was compiled and a map was drawn in 1890, indicating when the

influenza first appeared at different locations. To support the contagiousness theory,

an analysis of the connections between the spatial dynamics of the disease from

the onset of its outbreak and the structure of the railway network was carried out.

In the first week of December 1889, in turned out that 12 of the 13 affected places

outside Stockholm had railway stations. Linroth (1890) demonstrated that, by

December 20 of the same year, 82% of reporting places with a railway station

and 47% without one had been affected. The dissemination was very fast and the

local epidemics developed at a pace that in some cases was described as explosive.

Due to the general susceptibility, the short incubation time and the difficulty to

detect the very first cases, more evidence was needed to scientifically ascertain that

the influenza was indeed contagious. Linroth was however of the opinion that the

many individual testimonies describing how the infection was transferred directly

from infected persons justified the hypothesis: Influenza is a contagious disease.

In a recent GIS study (Skog et al. 2008), Linroth’s original tables were converted

into an Excel format and to dot maps. The figure below, taken from (Skog et al.

2008), illustrates the progression of the epidemic across time. Dots represent the

places where at least one case of infection had been reported to date, starting from

the last week of November 1889. The railroad network is also shown (Fig. 4.10).
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In this other figure, dots sizes are proportional to the number of reported cases. Each

map represents one week, starting from the last week of 1889 (first left) (Fig. 4.11).

The figure below shows a magnification of dot maps at week zero and week three

of the Swedish epidemic spread (Fig. 4.12).

We have worked on the scatter of dots of week 3, using the coordinates of the

points corresponding to the 44 locations interested by the outbreak in the third

week, in order to calculate the appropriate mathematical quantities described in the

first part of the article. The coordinates were derived from the dot maps. Figure 4.13

shows the 44 dot maps obtained from the original coordinates, from which we have

implemented the TWC methodology.

The source of the epidemic corresponds to a location between points 25 and 30

in our dot maps.

As it is shown in Fig. 4.14, starting from the Euclidean centroid, the system

positions the TWC a� exactly between points 25 and 30, the source of the epidemic

spread.

Fig. 4.10 Influenza epidemic spread versus railways system in Sweden, 1889

Fig. 4.11 Four-weeks progression of the influenza

102 M. Buscema et al.



Fig. 4.12 Week zero versus week three spread

origin

P30

P25

The 44 Points of the Russian influenza in Sweden

Fig. 4.13 TWC methodology on the dot map
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TWC Alfa

TheTWC (Alfa) moves close the origin of the epidemic.

Fig. 4.14 TWC versus the actual epidemic source point

Fig. 4.15 STWC(b) map
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In Fig. 4.15, we report the STWC(b) map, again correctly identifying the point of

origin of the epidemic and additionally determining the probability of its diffusion.

The gradient of the STWC (b) map yields the likely speed of diffusion of the

epidemic from its origin (Fig. 4.16). It is noteworthy that our emergent dot map

does anticipate quite closely the real spread observed in weeks 4 and 5.

The TWC (g) map picks even more precisely the origin of the epidemic and the

actual probability of its diffusion (Fig. 4.17).

The gradient of the TWC(g) map provides again the likely speed of diffusion of

the epidemic from its origin (Fig. 4.18).

Finally, with TWC(g) the possible paths of diffusion of the epidemic are drawn

out (Fig. 4.19a). It is interesting to notice that such paths are very close to the actual

railway network as reported in the maps in Fig. 4.19b.

In this other example, we find a different type of complex spatial dynamics:

From capture to contagion. In fact, one might see the contagion dynamics in terms

of the capture of the infected humans by the viral agent. But the logic of capture in

the two cases is basically different, in that in the latter the number of predators is

extremely high and capture occurs through physical proximity and contact, whereas

in the former predators are few and capture occurs through careful intelligence and

a dose of good luck. Nevertheless, we find that this entirely different kind of spatial

phenomenon may also be addressed through the same battery of tools, and again

providing a rather accurate reconstruction of the underlying structural forces at

play. Again, this is a case where thinking of the phenomenon in ‘relational’ terms

and trying to reconstruct its implicit semantics makes sense, and this time in a very

intuitive way: Each case of contagion clearly determines an area of influence

Fig. 4.16 Gradient of the STWC(b) map
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Fig. 4.17 TWC(g) map

Fig. 4.18 Gradient of the TWC(g) map
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(morbility) that drives the appearance of further cases, the more or less so

depending on a number of local circumstances (size of the family, type of housing,

pre-existence of other diseases, etcetera). But also the long-range interactions

determined by the railway system are mirrored in the results, and with an interesting

level of accuracy: This is a clear illustration of the global character of the relational

concept on which the TWC methodology is based.

4.3.4 Comparison with the Other Algorithms

The case of Russian influenza in Sweden is pretty well known. In this case, we know

the exact location of the outbreak and of its dynamics, and thus we can carry out any

kind of benchmark comparison test. Specifically, we can compare the performance

of TWC algorithms with that of the other algorithms presented in Sect. 1.2.

Fig. 4.19 (a) TWC(g) paths; (b) Sweden railway networks
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The algorithms we have selected for this benchmark are seven:

(a) Two simple algorithms that are only able to work upon a minimization criterion

with a specific cost function:

• The Anchor Point;

• The Centre of Mass;

(b) Five (some well-known, some new) algorithms that estimate the probability of

the outbreak for each point of the convex hull of the map:

• The Rossmo Algorithm;

• The Canter Algorithm;

• The NES Algorithm;

• The LVM Algorithm;

• The MexProb Algorithm.

Among the TWC algorithms, we have selected three kinds of TWC quantities:

• The TWC(Alfa) point;

• The TWC(Beta) map;

• The TWC(Gamma) map.

We also considered various criteria against which to compare the performance of

the algorithms:

• Percent error: The percent distance of the estimated point and/or of the

estimated peak of the map generated by the algorithm from the real outbreak.

We have scaled this measure in relation to the maximum distance among the

assigned points.

• Sensitivity: The probability that each algorithm assigns on its characteristic map

the point where the real outbreak occurred (only for the algorithms whose output

is a probabilistic map).

• Specificity: If we divide the probability distribution into 9 equivalent bins from 0 to

1,we have 9 classes of probability; the percent of points of all the classes of themap

where the real outbreak point is not located defines the specificity of the algorithm.

The table and the figures below show a general convergence of the more

complex algorithms toward the real outbreak point:

Algorithms Type of output

Distance from

the outbreak –

accuracy (%)

Sensitivity

(%)

Specificity

(%)

TWC(Gamma) Probability

Map (Peak)

1.67 90.13 99.89

TWC(Alfa) Point 3.13

Canter Probability

Map (Peak)

3.81 58.86 99.83

TWC(Beta) Probability

Map (Peak)

4.55 77.59 99.50

(continued)
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Algorithms Type of output

Distance from

the outbreak –

accuracy (%)

Sensitivity

(%)

Specificity

(%)

NES Probability

Map (Peak)

4.55 79.08 99.46

MexProb Probability

Map (Peak)

6.73 82.69 99.32

LVM Probability

Map (Peak)

6.77 84.57 98.14

Anchor Point: Point 15.90

Mean Center: Point 17.44

Rossmo Probability

Map (Peak)

19.42 80.18 % 96.36 %

Some considerations are in order.

• TWC(Alfa) is the best estimation among the algorithms with point-wise output,

and it is the second best in the general ranking.

• TWC(Gamma) peak points out the real outbreak with a very consistent accuracy,

high sensitivity and very high specificity.

• Canter algorithm is quite accurate but its sensitivity is low. Rossmo algorithm is

not accurate and its specificity is lower than the others.

• The other algorithms are positioned in middle range of performance: A reason-

able accuracy, an acceptable sensitivity and a high specificity.

In the following Figs. 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25 we visualize our

results, sticking to the following conventions:

• The colours from dark blue to dark red indicate the estimation of the operation

point location from 0.0 to 1.0;

• The name of the algorithm is at the top of the figure;

• The white point represents the peak of the map;

• The label “45_Origin” represents the real outbreak.

Part C – Semantics of Physical Space: Theory

4.4 The Auto Contractive Map and Qualitative Information

We can synthetically refer to the whole set of the equations and the quantities

presented thus far as the TWC Methodology. The TWC Methodology works upon a

dataset of N two-dimensional (or alternatively, three-dimensional) entities:

DATASET : fxn; yngNn¼1 wherexn and yn are the (geographical) coordinates

of each entity within the 2 - dimensional space.
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Centre of Mass

Outbreak

Anchor Point

Anchor Point & Centre of Mass

Fig. 4.20 Anchor point and centre of mass

Fig. 4.21 Topological weighted centroid
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Fig. 4.22 Rossmo algorithm

Fig. 4.23 NES algorithm
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Fig. 4.24 LVM algorithm

Fig. 4.25 Mex Prob algorithm
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We can increase the complexity of the dataset, however, by attaching to each

entity a vector of characteristics:

NEW DATASET :fxn; yn; fcn;pgPp¼1gNn¼1

where cn; p are the abstract characteristics of each

entity in a suitable M-dimensional space:

With this additional set of non-spatial characteristics, we are passing from a

syntactic to a fully semantic level of analysis, that is to say, to the semantics of

space. If we want to merge all this information into a common representational

space, we have to compute how the extra characteristics bring about modifications

in the classic Euclidean space matrix, given the (Euclidean) coordinates xn and yn.
To this purpose, we will process all the cn;p characteristics pertaining to each entity

by means of an Auto-Contractive Map (Auto-CM). This ANN is a special Auto-

Associative algorithm that is able to estimate the non linear association among the

entities, given their respective sets of characteristics (Buscema et al. 2008a;

Buscema and Sacco 2008; Buscema et al. 2008b; Buscema 2007a, c). Its basic

equations are as follows:

Legend :

C ¼ constant (typically C ¼ D
½Eu�
MaxÞ;

D
½Eu�
Max ¼ max

i;j
di;j
� �

;

di;j ¼ classic Euclidean distance between entities using the x and y

coordinates;

p 2 P the p - th characteristic;

i; j 2 N indexes for the entities; ½z� = index for any cycle of the Auto - CM;

In
½z�
p;i ¼ the p - th feature of the i - th entity at cycle z;

In
½z�
p;i 2 ½0; 1�;
v
½z�
i ¼ weight of any entity at any cycle;

w
½z�
i;j ¼ weight between any couple of entities at any cycle;

Hid
½z�
j ¼ Hidden activation of each entity at any cycle;

Net
½z�
i ¼ Net input to any entity at any cycle;

Out
½z�
i ¼ Output of any entity at any cycle:

Hid
½z�
i ¼ In

½z�
p;i � 1� v

½z�
i

C

 !
; (4.61)
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v
½zþ1�
i ¼ v

½z�
i þ In

½z�
p;i � Hid

½z�
i

� �
� 1� v

½z�
i

C

 !
� In½z�p;i; (4.62)

Net
½z�
i ¼

XN
j

Hid
½z�
j � 1� w

½z�
i;j

C

 !
; (4.63)

Out
½z�
i ¼ Hid

½z�
i � 1� Net

½z�
i

C

 !
; (4.64)

w
½zþ1�
i;j ¼ w

½z�
i;j þ Hid

½z�
i � Out

½z�
i

� �
� 1� w

½z�
i;j

C

 !
� Hid½z�j ; (4.65)

The Auto-CM convergence criterion is fixed as:

XN
i

Dvi ¼ 0; where Dvi ¼ In
½z�
p;i �Hid

½z�
i

� �
� 1� v

½z�
i

C

 !
� In½z�p;i and Dvi � 0: (4.66)

(for the demonstration of these conditions see Buscema [5,6,9]).

The trained w weights matrix encodes all of the nonlinear relationships among

the N entities. With a simple operation, we transform the w matrix into a semi-
distance:

d
½AutoCM�
i;j ¼ C� wi; j i 6¼ j: (4.67)

The weights matrix w also defines the local fan-out strength of each entity. This

information is important to establish the influence of each entity in this new metric:

Si ¼ Local strengh of the i-th Entity according to the Auto-CM weights matrix;

(This quantity will be used in equation 38b, below in the text):

Hidi ¼
XN
j

wi;j; (4.68)

Hidmax ¼ max Hidif g
i

; (4.69)

Si ¼ Hidi
Hidmax

: (4.70)
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We now have to cope with two different metrics, namely the Euclidean one that

defines the position of each entity within the geographical space, and the Auto-CM

one which describes the quasi-distance of the same entities in a suitably re-mapped

space. We need to merge the information built into these two matrices within a

common framework. More precisely, we need to calculate how the Auto-CM

matrix modifies the Euclidean space among the entities and how all the quantities

that we have already introduced will be modified accordingly.

First of all, we must suitably re-write (4.6) and (4.11), ruled by the a parameter;

(4.21) and (4.26), ruled by the b parameter; and, finally, (4.44) and (4.49), ruled by

the g parameter.

As to the equations that refer to a, we have:

pi að Þ ¼ 1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D a; (4.6)

and

pi ¼
1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D a� ; (4.11)

change into:

pi að Þ ¼ 1

N � 1

XN
j¼1; j 6¼i

e�
di; jþd

½AutoCM�
i; j
2�D a; (4.6a)

and

pi ¼
1

N � 1

XN
j¼1; j 6¼i

e�
di;jþd

½AutoCM�
i;j
2�D a� ; (4.11a)

As to b, we have:

pi bð Þ ¼ 1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D b; (4.21)

and

pi ¼
1

N � 1

XN
j¼1; j 6¼i

e�
di;j
D b� ; (4.26)
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change into:

pi bð Þ ¼ 1

N � 1

XN
j¼1; j 6¼i

e�
di;jþd

½AutoCM�
i;j
2�D b; (4.21a)

and

pi ¼
1

N � 1

XN
j¼1; j 6¼i

e�
di;jþd

½AutoCM�
i; j
2�D b� ; (4.26a)

Finally, for g, we have:

pi;j gð Þ ¼ e�
di;j
D g; (4.44)

and

pi;j ¼ e�
di;j
D g� ; (4.49)

change into

pi;j gð Þ ¼ e�
di;jþd

½AutoCM�
i;j
2�D g; (4.44a)

and

pi;j ¼ e�
di;jþd

½AutoCM�
i;j
2�D g� ; (4.49a)

The re-mapping of coordinates as determined by the Auto-CM matrix also

influences the calculation of the Proximity Scalar Field. Consequently, 4.38 has

to be accordingly modified as well, by taking into account the strength of each

entity in relation to the geographical points:

pk ¼
1

N

XN
j¼1

e�
mk;j
D b� ; (4.38)

Equation 4.38 is changed into:

pk ¼
1

N

XN
j¼1

e�
mk;j �qk;j

D b� ; (4.38a)
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qk;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� Sj

mk;j

s
; (4.38b)

for Sj see (4.70)

4.4.1 A Basic Example of Interaction Between Semantic
Features and Physical Position

We start again from an ‘artificial’ example that allows us to elucidate some basic

features of the methodology. Let us start by considering four entities distributed at

the corners of a unit square:

Euclidean distances P1 P2 P3 P4

P1 0.000000 1.000000 1.000000 1.414214

P2 1.000000 0.000000 1.414214 1.000000

P3 1.000000 1.414214 0.000000 1.000000

P4 1.414214 1.000000 1.000000 0.000000

Because of the symmetry, the TWC and the Centre of mass will stay in the same

position (Fig. 4.26):

Consequently, the paths between the entities (see (4.44) will look like this

Fig. 4.27):

The lines connecting the entities located along the diagonals appear smoothly

warped. That happens because the diagonal of the unit square is an irrational

number. The point is that the Relative TWC (4.38, 4.39, 4.40, 4.41, 4.42, 4.43,

4.44, 4.45, 4.46, 4.47, and 4.48) is sensitive to this numerical approximation.

In fact, the scalar field of the trajectories draws out a sort of a 3-dimensional

parabola, with some asymmetry (Fig. 4.28):

Now, we add to the previous matrix of distances a new matrix, generated by an

AutoCM system that processes the similarities among the entities (similarity

of shape, color, etc.). What we have to understand, then, is how the two matrices

will actually interact. If the AutoCM matrix is identical to the first one, nothing will

change. So we will consider the case in which this second matrix presents a very

small difference with respect to the Euclidean one (1/100000):

AutoCM distances P1 P2 P3 P4

P1 0.000000 0.999990 1.000000 1.414214

P2 1.000000 0.000000 1.414214 1.000000

P3 1.000000 1.414214 0.000000 1.000000

P4 1.414214 1.000000 1.000000 0.000000

4 Semantics of Point Spaces Through the Topological Weighted Centroid. . . 117



Fig. 4.26 Centre of mass and TWC for an artificial problem

Fig. 4.27 Paths between entities
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In this new situation, the scalar field of the trajectories appears completely

different (Fig. 4.29):

We then realize that a small perturbation that drives a wedge between the

Euclidean metric and the Auto CM semi-metric causes the single-peak (quasi-)

parabola to collapse into a complex surface with nine local maxima.

Now, we moreover modify the Auto CM matrix in three different, consistent

ways (Figs. 4.30, 4.31, 4.32, 4.33 and 4.34).

Case 1. Trajectories

Case 1. Scalar Field of Trajectories

Case 2. Scalar Field of Trajectories

Case 1 Auto CM semi-metric

P1 & P2

are closer

Distances P1 P2 P3 P4

P1 0 0.5 1 1.414214

P2 0.5 0 1.414214 1

P3 1 1.414214 0 1

P4 1.414214 1 1 0

Case 2 Auto CM semi-metric

P1 & P2 Distances P1 P2 P3 P4

Collapse in the

same point

P1 0 0 1 1.414214

P2 0 0 1.414214 1

P3 1 1.414214 0 1

P4 1.414214 1 1 0

Paths0

0.965

0.955

0.945

0.935

0.96

0.95

0.94

0.93
200

200150
150100

10050
50

0 0 x axisy axis

Fig. 4.28 Scalar field of the trajectories: symmetric case
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Case 3: Trajectories:

Case 3 Auto CM semi-metric

P1 & P2 & P3

are closer

Distances P1 P2 P3 P4

P1 0 0.5 0.5 1.414214

P2 0.5 0 1.414214 1

P3 0.5 1.414214 0 1

P4 1.414214 1 1 0

Paths000001

0.42

0.38

0.34

0.3

0.4

0.36

0.32

0.26

0.28

200

200150
150100

100
50

50
0 0 x-axisy-axis

Fig. 4.29 Scalar field of the trajectories: perturbed case

Fig. 4.30 Path between entities, case 1
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Fig. 4.31 Scalar field of trajectories, case 1
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Fig. 4.32 Scalar field of trajectories, case 2
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Case 3. Scalar Field of Trajectories

What kind of lessons can we draw from the above exercise? Here are a few:

1. A minimal distortion of symmetry in the distances generates a remarkable

transition from a surface with only one maximum to a surface with many local

maxima.

Fig. 4.33 Paths between entities, case 3
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Fig. 4.34 Scalar field of trajectories, case 3
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2. The resulting surface maintains a linear correlation with the new, non symmetric

distance matrix.

3. The TWC tends to be located in the position with the highest density of close-by

vertices, like an electro-magnetic field.

We have then repeated the same experiment with many points distributed along

a regular, bi-dimensional grid (Fig. 4.35). We consider here the case of a 6 � 6

regular grid. In case 1, the Euclidean metric and the Auto CM distances are the

same. Consequently, the surface of trajectories should be symmetric, but with

numerical approximations (Fig. 4.36):

Case 1: Regular Grid 6�6

Case 1: Scalar Field of Trajectories when Auto CM Matrix ¼ Euclidean Matrix

In case 2, we modified the Auto CM matrix as follows:

AutoCM_Matrix = Euclidean_Matrix þ w;
where w = random_number 2 [0.0,0.1].

So, we perturb the Euclidean matrix by a very small amount of random noise.

The shape of the scalar field of the trajectories changes considerably (Fig. 4.37):

Case 2: Scalar Field of Trajectories when Auto CM Matrix ¼ Euclidean Matrix +

Small Noise

Fig. 4.35 6 � 6 grid
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Fig. 4.36 Scalar field of trajectories, symmetric case
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Fig. 4.37 Scalar field of trajectories, small noise
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In case 3, we perturb the Auto CM matrix more intensely:

AutoCM_Matrix = Euclidean_Matrix þ w;
where w = random_number 2 [0.0,0.5].

That is to say, we add to the Euclidean matrix a substantially higher level of

random noise. The shape of the scalar field of the trajectories now reveals a densely

multi-peak surface (Fig. 4.38):

Case 3: Scalar Field of Trajectories when Auto CM Matrix ¼ Euclidean Matrix +

Large Noise

The examples of this subsection then illustrate quite clearly the intrinsic non-

linearity of the TWC. Even small departures from symmetry or relatively small

random perturbations cause a substantial differentiation of the TWC from the AC.

This is a distinctive proof of the relevance of the semantics of space in determining,

and reading, the deep structural properties of spatial phenomena.

Part D –Semantics of Physical Space: Applications

At this point we consider a small dataset about the terroristic attacks executed by

terrorists in Afghanistan until May 2009.

This dataset consists of the latitude and longitudes of 50 attacks (Table 4.1 and

Fig. 4.39). Each attack, further, is defined by 27 attributes, representing the estimation

thatUSA forces did about the agent of the attack and itsmilitary equipment (Table 4.2).
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Fig. 4.38 Scalar field of trajectories, large noise
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We have analyzed the dataset describing the attributes of the agents of each

attack using AutoCM NN because we want to understand how these attacks are

connected to each other and their natural clustering. Figure 4.40 shows the Maxi-

mally Regular Graph of the attacks, provided by AutoCM. A specific group of

attacks seems to be the root of the others (attack: 14, 15, 16, 17, 18, 20, 21, 22, 26,

27, 28, and 29). All these attacks, except for attacks 19, 23, 24, and 25, have the

same coordinates. Following the AutoCM inferences we are able to rebuild the

connections and the interrelationships of the 50 attacks on the maps (Fig. 4.41) and

to point out the main agent of these attacks (Table 4.3).

According this this view, the origin of attacks would be the region of Tarin-

Kowt. From this location the other attacks would be expanded in the North-East and

in the South-West. AutoCM infers, also, that the attacks in the Kabul area work as a

strategic signal for the following attacks in the Herat area. This cognitive connec-

tion opens the possibility of a physical connection between the East and the West of

Afghanistan from terrorists’ point of view.

The independent application of TWC algorithm (4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15), reinforced by the AutoCM metric

(4.6a and 4.11a), locates the Hidden Point (TWC(alpha)) close to the Tarin city

(look the Fig. 4.42). The same TWC, without AutoCM metric is less interesting,

because it points the exact location of this group of twelve attacks in Tarin city.

According to the TWC algorithm, the Hidden Point is the point from which the

distribution of the other points is managed, if we presuppose that all the points are

managed by only one hand. Strategically speaking, the TWC locates the logistic

Fig. 4.39 The map of the 50 attacks. The x- and y-axes are latitude and longitude abbreviations
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Fig. 4.40 Attacks logic networks according to AutoCM algorithm

Fig. 4.41 Topographic map of the attacks according to AutoCM algorithm
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home of the attacks, close to the attacks analyzed by the AutoCM algorithm as the

root for the other attacks, and close to the boundary between the big provinces of

Uruzgan and Kandahar, exactly across the road joining Tarin-Kowt and Kandahar.

To understand the relevance of the semantic information, we compare the map

of TWC(Beta) without the AutoCM metric (we call this the Syntactic Map), in

Fig. 4.43a (see 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27,

4.28, 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, 4.36 and 4.37), and the same map

produced using AutoCM metric in Fig. 4.43b (see 4.21a and 4.26a) called the

Semantic Map. We remind the reader that the TWC(Beta) represents the map of

probability of new points generation, from the analysis of the assigned points (the

original 50 attack points). Consequently, the TWC(Beta) scalar field represents the

vulnerability map of attacks, according to the stored data.

The difference between the two maps is self-evident. The Semantic Map is more

extensiveand tries togroupall theattacks in aunique frameworkwith twomain clusters.

The TWC(Gamma) generates syntactic and semantic maps that are completely

different. We further remind the reader that TWC(Gamma) builds its scalar field in

consideration of the closeness of each point of the surface to the trajectories

connecting each entity (attack location) to the others according to the constrains

found by the scalar field of TWC(Beta).

The TWC(Gamma), conceptually speaking, is a very interesting quantity for it

considers the possible trajectories connecting the place of the attacks, according to

Fig. 4.42 The black star points the TWC(Alfa) generated by TWC algorithm
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the TWC(Beta) scalar field then it implies a dynamic. Consequently, the TWC

(Gamma) should figure out the scalar field of the implicit consequences of the

50 attacks thus generates a map of the risk of possible new attacks.

Also in this case we can generate a Syntactic Map (4.38, 4.39, 4.40, 4.41, 4.42,

4.43, 4.44, 4.45, 4.46, 4.47, 4.48, 4.49, 4.50, and 4.51) and a Semantic map (4.38a,

4.38b, 4.44a and 4.49a). Figure 4.44a and b show the Syntactic and the Semantic

scalar field of the TWC(Gamma).

In this case the Semantic Map better represents the general framework of the

attacks and their connections. But there is something new in both the TWC

(Gamma) maps: the area of the new possible attacks has moved to the North-East

of Afghanistan, in the Kabul province and in Pakistan. That is really surprising for

the 50 attacks of the assigned dataset were updated to May of 2009, a real explosion

Fig. 4.43 (a) TWC(beta) Syntactic Map; (b) TWC(beta) Semantic Map

Fig. 4.44 (a) TWC(Gamma) Syntactic Map. (b) TWC(Gamma) Semantic Map
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of terroristic attacks occurred exactly at north and at east of Kabul from September

2009 to December 2009.

This predictive capability is dependent on the data: TWC(Gamma) is able to

extract from the data most of their subtle consequences, and many of them are

statistically meaningful. Moreover, the more a situation continues, the fewer

choices remain available.

The calculation of the gradient of the TWC(Gamma) scalar field (see Sect. 2.4),

shows a possible future map of the instability in Afghanistan; in what areas is it

more plausible to have terroristic attacks in highly unpredictable ways (Fig. 4.45)?

In Fig. 4.45 the areas around Herat and Ferat also shows a relevant probability of

being subjected to terroristic attacks after May 2009. . .and that is exactly what has

happen.

We need to conclude this exemplary application of the TWC algorithm showing

the Non Linear MSTs generated with the support of AutoCM metric (the Semantic

method) and without AutoCM NN, that is, using only the Euclidean distances (the

Syntactic method).

Fig. 4.45 Gradient of the TWC(Gamma), Semantic Map (that is, using AutoCM metric)
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Figure 4.46a shows the Syntactic NL-MST, and Fig. 4.46b show the Semantic

NL-MST of the 50 attacks.

Comparing the two NL-MSTs with the map of Afghanistan (Fig. 4.45) is

impressive how much both the trajectories match with the road networks of the

Region. But there is a meaningful difference: while the syntactic NL-MST tends

to represent the connections among the attack locations by, following the only

highway that crosses the south of Afghanistan, the semantic NL-MST chooses the

minor roads connecting the same places, and that seems to have a greater

likelihood.

The second meaningful difference is concerned with the semantic NL-MST map

of the Kabul area that suggests that it is to become the new center of the attacks. The

trajectories are very compact and they tend to work as a road-ring between the north

and the east of the region.

If now we consider that we started from the Latitude and the Longitude of

50 attacks and 27 variables, we need to note that TWC and AutoCM algorithms

are suitable for an intensive data mining examination and analysis. They have

shown to be able to extract usefully valuable information from the “bottom of

the basket.”

Fig. 4.46 (a) Syntactic NL-MST. (b) Semantic NL_MST
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4.5 Concluding Remarks

Our analysis shows how a relatively straightforward mathematics may help decision

makers in situations characterized by a substantially limited amount of information,

and moreover how the mathematics of complex systems can improve the level of

accuracy in the analysis of spatial phenomena, compared with the level that can be

achieved with a classical statistical toolbox. We have illustrated a few applications

that deliver interesting and encouraging results, but we are at the same time aware

that the methodology presented here needs more, careful verification and validation

on further logically consistent and empirically relevant problems.

Models concerning the onset and diffusion of epidemics, for example, describe

the spread of infectious diseases across populations. More and more, these models

are being used for predicting, understanding and developing control strategies.
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In realistic epidemic models, a key issue to consider is the representation of the

interaction process through which the disease spreads over, and network-based

models have qualified as viable candidates, not only at the micro- but also at the

macro-level, predicting which cities are endemic sources for the disease, and

understanding the shape and dynamics of diffusion waves may become fundamen-

tal to design optimal surveillance and control strategies. In particular, our results are

consistent with the idea that the spreading of an infectious disease is not random but

follows a geometry which reflects inherent, as yet undiscovered mathematical laws

based on some probabilistic density function.

Likewise, there may be many other social phenomena that could be

characterized by the same fundamental structure and level of complexity. At

present, we cannot count on a methodology that allows us to tackle this sort of

issues adequately, but we will pursue this objective in future work. We are

convinced that these are but a few examples of the actual range of problems from

many different disciplines that may be usefully addressed by means of the TWC

methodology. We look forward to future research exploring new ground in this

respect, and providing an expanding literature on which to build a powerful and

consistent theory of complex spatial dynamics.
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Chapter 5

Meta Net: A New Meta-Classifier Family

Massimo Buscema, William J. Tastle, and Stefano Terzi

5.1 Introduction

The purpose of a classification system is to perform the task of categorization on some

object and to do so with a reasonable degree of accuracy. There exists today a rather

extensive listing of classifiers developed around specialized algorithms to satisfy

certain classification schemes. This has led to the creation of a vast library of available

instruments from which an investigator must make a choice, with each classifier

possessing a particular typology. While one type of classifier might yield excellent

results in one situation, it might also yield dismal results when applied to another.

What has become conspicuously apparent from the creation of these many

classifiers over an extended time period is that a perfect “classifier” does not exist.

Even if it were possible to create some sort of hierarchy with respect to the efficacy

of each typology of classifier, the evidence suggests that the results make sense when

applied to the set of test data utilized to train and evaluate the investigated model but

when given over to data derived from a “real world” problem, different classifiers

typically identify different solutions. All classifiers engage in the standard process of

training with some appropriate validation protocol, but the task at hand is to select,

from the different typologies of classifiers, the one with the best characteristics

possible. If we consider the classification process to be an exercise in data mining,
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we discover that each classifier can classify the same inputs into different classes.

This means that as the quantity and quality of extracted information changes from

classifier to classifier; some typologies of classifiers like neural networks and

decision trees present a great internal variability, producing sensible but different

models when applied to the same problem.

In the standard process we have briefly described above, the diversity of models

that have been produced is exploited; one strategy is to choose a single classifier,

excluding all the others. Another kind of strategy consists of mixing a subset of

classifiers to exploit the possible complementarities of information that can be

extracted from each classifier. Such a strategy of using the outputs of several

classifiers to produce a combined, and improved, output is produced by what is

called a meta-classifier.

Dietterich suggests three motivations to explain why the fusion of the single

classifier should produce a more efficient one: one is a statistic motivation, the second
is a computational motivation, and the third is a representational motivation. For a
thorough review of these motivations the reader is directed to Dietterich (2002).

The problem of the construction of a meta-classifier is quite complex in that it

requires a formal schematization of possible options with definitions of a terminol-

ogy and taxonomy. Additionally, it also takes into account that due to the nature of

different problems, this schema may well be subjected to various exceptions.

Kuncheva (2004) considers four possible dimensions of projects during the

development of a meta-classifier:

1. The database for the training and the validation

2. The selection of the “significant” variables;

3. The choice and training of the single classifiers; and

4. The definition of a combination strategy.

The first three dimensions represent a forward propagation chain of variations

which generates the final classifier:

• If two classifiers are trained with two different training sets, the two classifiers

will develop different data models; [boosting is a machine learning meta-

algorithm for performing supervised learning and is based on the premise that

a set of weak learners might create a single strong learner; bagging is another

machine learning algorithm for a classification based on the model averaging

approach];

• If two classifiers are trained with the same records, but possessing different

variables, the two classifiers will develop different data models;

• If two classifiers are trained with the same training set, but the mathematics of

the two classifiers is different (topology, learning rule, signal dynamics or cost

function), the two classifiers will develop different data models;

• If two classifiers are trained with the same training set and have the same

algorithm, but begin the learning session with either initial random weights or

parameters, then the two classifiers will develop different data models.
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In any case, we direct our attention to dimension four above and focus on the

development of particular strategies of combination of single classifiers. It must be

pointed out that dimensions three and four are often strictly connected. The

choices made with respect to the mathematics of the classifiers and the initial

weights or parameters will have consequences on the possible choices for the

other, and vice versa.

While many taxonomies of classification are available in literature, one good

review source is a book by Kuncheva (2004) in which some keys are listed that can

be used to organize ensembles of classifiers. However these typologies are very

often a simple list of features. Instead, we intend to present a generative typology,

able to underline relevant features of meta-classifiers such that it is possible to

generate new algorithms.

The key features we have identified are:

Algorithmic category – a meta-classifier can define its characteristics in two ways:

Static – a calculation of characteristics and results of composing classifiers

executed in a non-iterative way. The algorithm does not plan an iterative

analysis of composing characteristics of classifiers in order to define the best

way of establishing its parameters. A static algorithm can be:

Flexible – a vector of parameters emerges from a calculation.

Strict – only one parameter emerges from a calculation.

Dynamic – an iterative calculation based on characteristics and results in the

composition of classifiers to optimize a vector of parameters. A dynamic

algorithm can be:

Trainable – the iterative algorithm tends to define the data entry continu-

ous function parameters.

Optimizable – the iterative algorithm tends to optimize some cost

function.

Extensional category (Scope) – a meta-classifier can define its characteristics as:

Local – each composing classifier, in an independent way, provides the meta-

classifier with some characteristics.

Global – characteristics and results of all composing classifiers interact, globally

defining the meta-classifier characteristics.

Teleological category – a meta-classifier can define its characteristics as:

Supervised – the relevance of each composing classifier is weighted on the basis

of the right/wrong results it produces.

Autopoietic – the relevance of each composing classifier is weighted on the basis

of the produced results without considering mistakes or successes. Autopoietic

meta-classifiers, obviously, offer interesting performances when all compos-

ing classifiers have a confusion matrix which respects the following condition:
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Targeti ¼ Erri;i �
XN

j¼1; j6¼i

Erri; j < 0;

Functional category – a meta-classifier can evaluate each new entry input in this

manner:

Feed-forward – a meta-classifier provides only one response for each new entry

input;

Recursive – a meta-classifier generates more responses, each considering the

previous ones, until the process optimizes a specific cost function (providing

always the same classification response). During the recall process, this kind

of meta-classifier works as a dynamic system; when a new input is presented,

each one of its components hypothesizes a class for it and then all

components negotiate their different hypothesis until they dynamically

reach an agreement. We have found no information on meta-classifiers of

this kind in literature. At a future time we will introduce a meta-classifier

possessing these features.

5.2 Proposed Algorithm: Meta-Net Metaclassifiers

5.2.1 General Properties

The fundamental characteristic of the Meta-Net (Kohavi and Provost 1998) consists

of considering not only the “positive credibility” of its composing classifiers (i.e.,

“this pattern is white”), but also their “negative credibility” (i.e., “this pattern is not

white”). So, the characterizing connection of the Meta-Net is to connect each output

Fig. 5.1 Meta-Net general topology
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node of each composing classifier with each output class. “Complete grid”

connections are planned between Meta-Net inputs and outputs, and each connection

can be either excitatory (positive numbers), or inhibitory (negative numbers). See

Fig. 5.1.

Between 1994 and 2008 Semeion researchers conceived and developed a series

of Meta-Classifiers (Buscema 1998e) based on some common traits and called them

“Meta-Nets.” All Meta-Nets have typically similar neural network architecture

(Kohavi and Provost 1998); certain input nodes are the whole outputs of all

composing classifiers, and certain output nodes are the output classes of the

classification problem. The connections between Meta-Net inputs and outputs

always possess a complete grid structure and are defined by specific algorithms

characterizing the Meta-Net peculiarities.

The Meta-Net output vector is calculated in this way:

Classi ¼
PN
j

PM
k

Ikj � wk
i; j;

Winner Class ¼ Arg Max
i

Classif g:
where:

N is the dimension of the confusion matrix;
M is the number of classifiers;

wk
i; j is the value of the weight connecting output node j of the kth

base classifier to output node i of Meta-Net;

Ikj is the output node j of the kth base classifier;

Classi is the output class of the Meta-Net;

Winner Class is the winner class selected by Meta-Net:

All Meta-Nets are unsupervised. Each one evaluates its own output without

knowledge of the errors in the composing classifiers; it only knows the statistic of

their responses. So, Meta-Nets are strongly sensitive to the quality of classifiers to
be optimized. This means that each Meta-Net, to be considered excellent, should be

composed of classifiers in which the confusion matrix, in blind testing, clearly

respects the following equation:

8k; k 2 P : aki;i �
XN�1

j6¼i

aki; j > 0;

where aki; j is a generic cell of the confusion matrix. However, in the tests that follow

we shall verify that this condition, if not properly respected, will produce a “very

smooth” fall of Meta-Net capacities in accordance with the typical characteristics of

artificial neural networks (ANNs).

Each connection value represents the plausibility trough in which every compo-

nent classifier supports every classification node of the Meta-Net. The numerical

value of each Meta-Net connection can belong to the interval between –1
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(implausibility) and +1 (plausibility). The plausibility and the implausibility of

each connection is a function of the probability of each Meta-Net component during

the testing phase.

5.2.2 Weight Definition

Weights are estimations based on the performance of base classifiers evaluated on

an independent testing set. The results are summarized and used in the confusion

matrix.

From a mathematical perspective, the common feature of the all Meta-

Net algorithms is the specific procedure through which the plausibility of each

output of any classifier is connected to each output of the global Meta-Classifier. To

explain this procedure we need to start from the analysis of the confusion matrix of

one classifier (Kohavi and Provost 1998):

Classifier k Output

Target

a11 ::: a1N
::: ::: :::
aN1 ::: aNN

0
@

1
A

In this matrix we need to distinguish four criteria for each cell, aki; j . The first

criterion represents the “Rights,” that is, the plausibility by which the kth classifier

considers correct the records classified in the cell vki; j with respect to the summation

of Targets:

Rk
i; j ¼

aki; jPN
j

aki; j

The second criteria represents the “Corrects,” that is, the plausibility by which

the kth classifier considers “correct” the records classified in the cellvki; jwith respect
to the (column) summation of outputs:

Ck
i; j¼

aki; jPN
i

aki; j

The third criteria is a correlation of the “Rights” to the probability that any

specific output depends on a specific Target: pkj; i ¼ pðOk
j jTk

i Þ:
The fourth criteria is a correlation of the “Corrects” to the probability that any

specific Target comes from a specific Output: pki; j ¼ pðTk
i jOk

j Þ:
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Every weight connecting the output of each base classifier (that is, the Meta-Net

input) and the output of the Meta-Net depends not only by the sensitivity of the

considered classifier, but also by its precision. In other words, each weight of Meta-

Net is the result of a function composed by the sensitivity and by the precision of

each cell of the confusion matrix generated in test phase for each base classifier.

wk
i; j ¼ f Rk

i; j;C
k
i; j

� �
:

Legenda:

Rk
i; j ¼ sensitivity of the cell i,j in the k-th basic classifier;

Ck
i; j ¼ precision of the cell i,j in the k-th basic classifier;

f ðÞ ¼ typically a fuzzy function;

wk
i; j ¼ value of the weight between the j-th output of the k-th

classifier and the i-th output of Meta Net:

The function composing the sensitivity and the precision of each weight of a

Meta Net can be a simple fuzzy rule, like the following:

wk
i; j ¼ min Rk

i; j;C
k
i; j

n o
:

Or a more complex fuzzy rule like this one:

wk
i; j ¼ Rk

i; j þ Ck
i; j

� �
� 1� Ri; j

k
� � � 1� Ci; j

k
� �� �

:

Both theR andCmatrices give additional information to theMeta-Classifier for the

purpose of the weighting of each base classifier. The intention is to provide increased

accuracy to theMeta-Classifier. Traditionally, the combination of the outputs from the

base classifiers has been done with weighted averages and these weights have been

determined by the main diagonal of R and C. By limiting the weight calculations to

the diagonal omits potentially important additional information and hence, the preci-

sion of a value does not necessarily indicate conciseness of accuracy, and here is

where the Meta-Classifier gains its value. It utilizes all the information available in

the entire matrix to determine the weights of the Meta-Classifier.

Referring to Kuncheva’s (2004) work, given L number of classifiers and c

number of classes, we can have three types of weighted averages depending on

the number of weights. First, we can have L weights in which each classifier has

exactly one weight; second, we can have L * c weights in which there is one weight

per class, and third we can have L * c * c weights which represent a complete

connection between the outputs of the base classifiers and the outputs of the Meta-

Classifier. The Meta-Net algorithm uses this third method to take into account the

possibility of how much a single base classifier might render a wrong decision.

It is important to understand the meaning of the R and C values that are off the

main diagonal. For the R matrix the values represent the number of times the base
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classifier answered “i” when the answer should have been “j”, and the C matrix is

the “precision” of the confusion between “i” and “j”; simply stated, C informs us

that from among all the times the classifier answered class “i” (correct and incorrect

decisions) the percentage of correct decisions was actually class “j”.

In other words Meta Net algorithms additionally consider the inhibitory credi-

bility of each base classifier. This is the case when the weight pushes Meta Net to

change opinion in relation to the classification suggested by the base classifier. An

example: Suppose the base classifier confuses the correct class A with the incorrect

class B 30 times over 100. Let us also suppose that the base classifier makes

systematic mistakes, confusing class A with class B. At this point the weight

connecting class B of the base classifier with class A (the correct one) of Meta-

Net will be strong, while the weight connecting class B of the base classifier with

class B of Meta-Net will be weak. And, consequently, Meta-Net is also able to

correct many systematic errors of classification generated by its base classifiers.

Armed with this theory we can now proceed to a description of the equations.

5.2.3 Specific Weight Equation on the Confusion Matrix

5.2.3.1 Meta-Bayes

Meta-Bayes is a meta-classifier created in 1994 by M. Buscema at Semeion and has

been developed and refined through numeric testing until 2007 at which time was

the progenitor and inspiration of all the family of meta-classifiers created at

Semeion and known by the collective name Meta-Net.

A first version appeared in Buscema (1998e).

The specific weight equation is:

wk
i; j ¼ � ln

ð1� Ri; j
kÞ � ð1� Ci; j

kÞ
Ri; j

k � Ci; j
k

 !
(5.1)

This equation is inspired to the “co-occurrence equation” used in precedent

research by Rumelhart et al. (1986b) and derived from a Bayesian analysis of the

probability that the unit x(i) should be on given unit x(j) and vice versa:

wi; j ¼ � ln
p xi ¼ 0 & xj ¼ 1
� � � p xi ¼ 1 & xj ¼ 0

� �
p xi ¼ 1 & xj ¼ 1
� � � p xi ¼ 0 & xj ¼ 0

� �
 !

:
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5.2.3.2 Meta-Sum

Meta-Sum is the name of an equation developed by M. Buscema in 2007 to

optimize the weights matrix of a new Meta-Net:

wk
i; j ¼

1

2
� Rk

i; j þ Ck
i; j

� �
� ð1� Rk

i; jÞ � ð1� Ck
i; jÞ

� �h i
: (5.2)

In terms of fuzzy sets, if we pose ~A ¼ Rk
i; j and

~B ¼ Ck
j;i then we can write:

wk
i; j ¼

m ~A xk
� �þ m ~B xk

� �� 1� m ~A xk
� � � 1� m ~B xk

� �� �� �
2

: (5.3)

To better understand this equation we can proceed in this way:

If we pose:

x ¼
XN
i

aki; j; y ¼
XN
j

aki; j; z ¼ aki; j:

then we can write (5.3) as:

wi; j ¼ 1

2
� z

x
þ z

y
� x� z

x
� y� z

y

� �
;

and then:

wi; j ¼ 1

2
� zðxþ yÞ

xy
� xy� zðxþ yÞ � z2

xy

� 	
¼ 2zðxþ yÞ � xy� z2

2xy
:

5.2.3.3 Meta-Fuzzy

Meta-Fuzzy is a meta-classifier created in 2008 by M. Buscema at Semeion. Meta-

Fuzzy can be considered the most simple member of the Meta-Net family. From a

typological point of view Meta-Fuzzy meta-classifier is definable as follows:

wk
i; j ¼ max min Rk

i; j;F
k
i; j

� �
;min Ci; j

k;Mi; j
k

� �n o
¼ min Rk

i; j;C
k
i; j

n o
:

In terms of fuzzy sets, if we pose ~A ¼ Rk
i; j and

~B ¼ Ck
i; j then we can write:

wk
i; j ¼ max min m ~A xk

� �
; 1� m ~B xk

� �� �
;min m ~B xk

� �
; 1� m ~A xk

� �� �
 �
¼ min m ~A xk

� �
; m ~B xk
� �
 �

:
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5.2.3.4 Meta-Exp

Meta-Exp is a meta-classifier created in 2008 by M. Buscema at Semeion. Meta-

Exp can be considered an alternative version of Meta-Sum:

wk
i; j ¼

e Ri; j
kþCi; j

kð Þ
e Mi; j

k �Fi; j
kð Þ ; (5.4)

5.2.3.5 Meta-Einstein

wk
i; j ¼

Rk
i; j þ Ck

i; j

1þMi; j
k � Fi; j

k
(5.5)

The inspiration for this equation is the Einstein Sum in Fuzzy Theory of Sets

(Zimmermann 1996), with a little change in the denominator:

wk
i; j ¼

m ~A xk
� �þ m ~B xk

� �
1þ 1� m ~A xkð Þ� � � 1� m ~B xkð Þ� �

5.2.3.6 Meta-Consensus

Meta Consensus Net, (see 5.1–5.5), is a particularly suitable and effective new

fuzzy function composing sensitivity and precision of each cell of the confusion

matrix of each base classifier. The Meta Consensus function was explicitly inspired

by Consensus Theory (Tastle et al. 2005; Tastle and Wierman 2007). For each

output cell in the base classifiers a weight as calculated on a Meta-Classifier input

node. Given k base classifiers in which i and j are subscripts that identify the column

(precision) and row (sensitivity) values, (5.6) gives the weight provided by the row

calculation.

rki; j ¼
aki; j

Rk
i

� log2 Rk
i �

aki; j � Rk
i

��� ���
2 � N � 1ð Þ

0
@

1
A; where Rk

i ¼
XN
j

aki; j: (5.6)

A similar weight calculation (5.7) is made based on column values:
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cki; j ¼
aki; j

Ck
j

� log2 Ck
j �

aki; j � Ck
j

��� ���
2 � N � 1ð Þ

0
@

1
A; where Ck

j ¼
XN
i

aki; j: (5.7)

The data that are missing from these calculations of weight are addressed in an

additional weight equation that captures this missing information. Note that from

the sum of the rows is subtracted the individual value from the confusion matrix

classifier (5.8) to yield the remaining information that is also used to calculate the

weight:

mk
i; j ¼

Rk
i � aki; j

Rk
i

� log2 Rk
i �

aki; j
2 � N � 1ð Þ

 !
; (5.8)

In the same manner that the missing information is calculated for the rows, (5.9)

captures the missing information from the column:

f ki; j ¼
Ck
j � aki; j

Ck
j

� log2 Ck
j �

aki; j
2 � N � 1ð Þ

 !
:

(5.9)

According to Consensus Theory we can assume the following equivalences:

AgrðX; tÞ ¼ 1þ
Xn
i¼1

pilog2 1� Xi � tj j
2 � dX

� �
¼ rki; j þ cki; j;

DagrðX; tÞ ¼ �
Xn
i¼1

pilog2 1� Xi � tj j
2 � dX

� �
¼ mk

i; j þ f ki; j;

Consequently the following equation should be able to enhance the consensus of

the analyzed confusion matrix:

y ¼ CnsðXÞ � DntðXÞ ¼ rki; j þ cki; j

� �
� mk

i; j þ f ki; j

� �
:

We have preferred to express this relationship in logarithmic terms:

y� ¼ lnðrki; jÞ þ lnðcki; jÞ
� �

� lnðmk
i; jÞ þ lnðf ki; jÞ

� �
¼ � ln

mk
i; j � f ki; j

rki; j � cki; j

 !
:

So (5.10) is able to synthesize the Consensus Theory and the Theory of indepen-

dent judges:
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wk
i; j ¼ � ln

mk
i; j � f ki; j

rki; j � cki; j

 !
(5.10)

5.3 Genetic Optimization of Meta-Nets

Meta-Net NNs are completely independent from the classifiers that they have to

combine to make a better pattern recognition. Each Meta-Net NN, in fact, builds its

weights only analyzing the confusion matrix that the classifiers produce in valida-

tion phase. But each confusion matrix represents a compact synthesis of the pattern

recognition behavior of a generic classifier. Consequently, Meta-Net NNs do not

know analytically how each of its base classifiers performs with each pattern of the

validation test.

Considering that, if we put in any Meta-Net pool only one classifier, the Meta-

Net algorithm will perform in the Prediction phase (not in the Validation one,

because this behavior could be trivial) the same performances of the selected

classifier. This is an interesting feature, because it testifies that Meta-Net algorithm

is able to infer the general behavior of any classifier, only analyzing a synthesis of

its behavior in a specific context (the confusion matrix in the validation phase).

Thus we can say that Meta-Net NNs have a specific intelligent mimetic capabil-

ity. This fact has important consequences. First of all, we can use Meta-Net NNs to

reproduce a generic algorithm, whose mathematic is completely unknown,

analyzing only a representative sample of the results it is able to achieve. Second,

if we put in a Meta-Net pool a set of classifiers that have shown very different

performances in the validation phase, the worst performance of Meta-Net in the

prediction phase will be at least equal to the performance of the best classifier in its

pool.

A practical way to use this suitable feature is to let each Meta-Met be free to

chose its best combination of classifiers in any recognition task. This possibility

does not affect the validity of the experimentations because the weights of every

Meta-Net are built during the validation phase and they are not changed during the

prediction phase. We simply test each Meta-Net in the prediction phase many

times, considering all kinds of classifier permutations.

This permutation task can be easy when the number of classifiers is small, but it

could be prohibitive when it becomes big. The number of possible permutation, in

fact, is determinate by the following equation:

NumberOfPermutation ¼ 2NumberOfClassifiers

To reduce this CPU time, we have used an evolutionary algorithm called GenD

(Buscema 2004; Buscema et al. 2005), that is able to optimize the classifiers pool in
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just a few generations (in this experiment, from 1 to 20 generations at the top, with

an average of four generations).

Consequently, each Meta-Net NN, after its weights definition in the validation

phase, will use an evolutionary algorithm to select its best combination of classifiers

for the prediction phase.

5.3.1 Experimentations

5.3.1.1 Experimental Setup

Figure 5.2 shows the experimental set up carried out to evaluate the results of the

Base and of the Meta Classifiers.

Part of the available dataset is used for the training of base classifiers (the

training set), part for their performance estimation (the testing set) constituting

the informative basis on which the Meta-Classifiers define their strategies of

resulting combinations of base classifiers, and a third part (the prediction set) on

which the evaluation of the meta-classifiers is conducted. To obtain a correct

comparison the base classifiers and the meta-classifiers will be evaluated on the

same dataset, the prediction set. The problem with this protocol is that the informa-

tion, that is to say, the records, available for the training are favorable to meta-

classifiers that utilize, through base classifiers, both the training set and the testing

set. To correct this unbalance we chose the protocol in Fig. 5.2: the base classifiers’

Train + Test

Prediction

Validation

Base Classifier

Training

Base Classifier

Training

Meta-Classifier

Performance Evaluation

Base Classifier

Performance Evaluation

Meta-Classifier

2/3

1/3

Fig. 5.2 The experimental set up
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performances, to be provided to meta-classifiers, are estimated using a tenfold

cross-validation protocol (Kohavi 1995), the base classifiers are then trained

again on the dataset given by the training and testing set sum and evaluated on

the prediction set. Each dataset analyzed this procedure was repeated for five

random splits: 1/3 training set, 1/3 testing set and 1/3 prediction set.

5.3.1.2 The Actors of the Experiment

We have chosen to utilize different typologies of base classifiers, and in this way we

can reasonably expect to have high variability. The set includes 21 algorithms:

1. CART, a decisional tree (TREE) (Breiman et al. 1993),

2. A K Nearest Neighbor (KNN)(Bremner et al. 2005; Cover and Hart 1967; Geva

and Sitte 1991; Denoeux 1995),

3. A Support Vector Machine (SVM) (Cortes and Vapnik 1995),

4. A Bayesian linear classifier (LDC) (Srivastava et al. 2007),

5. The Bayesian “naive” classifier (NaiveBayes) (Zang 2004; Rish 2001; John and

Langley 1995),

6. A quadratic Bayesian classifier (QDC),

7. An improved Bp algorithm: Delta Bar Delta (DBD) (Jacobs 1988; Patterson

1996),

8. Parzen Classifier (PARZEN) (Parzen 1962; Chapelle 2005),

9. Learning Vector Quantization (LVQ) (Kohonen 1990),

10. A BackPropagation Neural Networks (BP) (Rumelhart et al. 1986; Buscema

1998c),

11. A Sine Network (SN) (Buscema et al. 2006),

12. A Feed Forward Contractive Map (FF_CM) (Buscema and Benzi 2011),

13. Bayes Net (Pearl 1988; Friedman et al. 1997; Holbech and Nielsen 2008; Neal

1996),

14. IBk (Aha et al. 1991; Turney 1993),

15. J48 (LeFevre et al. 2006; Quinlan 1993, 1996),

16. KStar (Cleary and Trigg 1995),

17. Classic Multilayer Perceptron (MPL) (Rumelhart et al. 1986),

18. Multinomial Naı̈ve Bayes (MNB) (Kibriya et al. 2005),

19. Random Forest (Breiman 2001; Livingston 2005),

20. Radial Basis Function (RBF) (Moody and Darken 1989; Powell 1985),

21. Sequential Minimal Optimization (SMO) (Platt 2000;Keerthi et al. 2001).

With respect to Meta-classifiers we propose, for comparison purposes, to com-

pare Meta-Net algorithms with the following 18 algorithms that are among the most

used in literature:

1. Wernecke Fusion (Wernecke 1992),

2. Dempster and Shafer Combination (Rogova 1994),

3. Decision Template (Kuncheva 2001; Kuncheva et al. 2001),
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4. Majority Vote (MajVote) (Kuncheva 2004; Kittler et al. 1998; Day 1988),

5. Clustering and Selection (Kuncheva 2000),

6. Direct Knn Decision Dependent (DynDdDirectKnn) (Woods et al. 1997),

7. Fuzzy Integral (Cho and Kim 1995),

8. Naı̈ve Bayesan Combiner (BayesComb) (Rokach and Mainon 2001;

Stefanowski and Nowaczyk 2006),

9. Weighted Average (Liu 2005),

10. Meta-AdaBoostM1 (Breiman 1998b; Kamath et al. 2001; Mohammed et al.

2006), Freund & Shapire 1997),

11. Meta-Bagging (Breiman 1996),

12. Meta-Dagging (Amasyali and Ersoy 2009),

13. Meta-Decorate (Melville and Mooney 2003),

14. Meta-End (Dong et al. 2005),

15. Meta-LogitBoost (Friedman et al. 1997),

16. Meta-Random Committee (Zorkadis et al. 2005),

17. Meta-Random Sub-Space (Ho 1998),

18. Meta-Rotation Forest (Rodriguez et al. 2006).

For courtesy, we remind also the names of Meta-Net algorithms that we have

presented in this research:

1. Meta-Bayes (Buscema 1998e),

2. Meta-Sum

3. Meta-Fuzzy

4. Meta-Exp

5. Meta-Einstein

6. Meta-Consensus (Buscema et al. 2010).

All the algorithms used in this paper were implemented in Matlab (2005), in

Neuralware (1998), in WEKA (Hall et al. 2009) and in Semeion Software library

(Buscema 1999–2010, 2008–2010).

5.3.1.3 The Datsets

For the experiment we use six datasets derived from the UCI Repository (Asuncion

and Newman 2007) and are used in the machine learning area to evaluate the

different algorithm performances (Digit, Faults (Buscema et al. 1999), DNA,

Letters, Sat-Image and Segment).

5.3.1.4 DIGITS Dataset

From UCI Repository: Semeion Handwritten Digit Dataset.

The dataset used in the problem of recognizing handwritten numeric characters

is composed of 1594 digits, handwritten by different subjects in different situations,
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and codified in a 256 bit streak corresponding to a 16 � 16 grid. The objective is to

classify each grid into the corresponding digits, 0–9.

5.3.1.5 FAULTS Dataset

From UCI Repository: Steel Plates Faults.

Every dataset record represents a superficial fault of a stainless steel leaf. There

are seven different typologies of faults:

1. Pastry;

2. Z_Scratch;

3. K_Scatch;

4. Stains;

5. Dirtiness;

6. Bumps;

7. Other_Faults.

The fault description is constituted by 27 indicators representing the geometric

shape of the fault and its contour:

We have 1941 records in total. This dataset was already analyzed in a previous

paper (Buscema 1998e).

5.3.1.6 DNA Dataset

From UCI Repository: Molecular Biology (Splice-junction Gene Sequences) Data

Set.

Splice junctions are points on a DNA sequence at which “superfluous” DNA is

removed during the process of protein creation in higher organisms. The problem

posed in this dataset is to recognize, given a sequence ofDNA, the boundaries between

exons (the parts of the DNA sequence retained after splicing) and introns (the parts of

the DNA sequence that are spliced out). This problem consists of two subtasks:

recognizing exon/intron boundaries (referred to as EI sites), and recognizing intron/

exon boundaries (IE sites). (In the biological community, IE borders are referred to a

“acceptors” while EI borders are referred to as “donors”.) Details on the dataset can be

found at http://archive.ics.uci.edu/ml/machine-learning-databases/molecular-biol-

ogy/splice-junction-gene-sequences/splice.names. We have used the dataset version

with 180 inputs, three outputs and 3,186 data-points.
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5.3.1.7 LETTERS Dataset

UCI: Letter Recognition Data Set

The objective is the identification of a great number of boxes containing white and

black pixels representing one of the 26 letters of the English alphabet. The

characters are extracted by 20 different fonts and distorted in random ways produc-

ing 20,000 different characters. Each character has been codified with 16 numeric

attributes, scaled on 16 integer values from 0 to 15.

5.3.1.8 SEGMENT Dataset

UCI: Statlog (Image Segmentation) Data Set

The records have been randomly extracted from a database of seven outdoor

pictures. These images have been manually sectioned to create a classification for

each pixel. Each record represents a 3 � 3 region. There are seven classes (1 ¼
brick face, 2 ¼ sky, 3 ¼ foliage, 4 ¼ cement, 5 ¼ window, 6 ¼ path, 7 ¼ grass).

Every region is characterized by 19 measures on the color image. There are 2,310

records.

5.3.1.9 SAT-IMAGE Dataset

UCI: Statlog (Image Segmentation) Data Set

The database consists of the multi-spectral values of pixels in 3 � 3 neighborhoods

in a satellite image, and the classification is defined by the central pixel, associated

with six possible types of soil: red soil, cotton crop, grey soil, damp grey soil, soil

with vegetation stubble, and very damp grey soil. The aim is to predict this

classification, given the multi-spectral values (four frequencies for each image).

The dataset is composed of 36 inputs, 6 outputs and 6,435 data-points.

5.4 The Philosophy of the Experimental Design

5.4.1 The Base Classifiers

We have chosen 21 base classifiers for this experiment. Many of them represent the

most popular and most used algorithms for pattern recognition. But they also

represent an implicit typology of the Machine Learning world over the last
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40 years (Bishop 1995; Ripley 1996; Duda et al. 2001; Witten and Frank 2005;

Wang 2010).

In fact, all the algorithms considered in this paper present a suitable feature that

is to be learned from data. If we define learning as a process of cognitive manipula-

tion whose target (when the system has learnt) is to reduce to zero the time of the

processing itself, then we have to recognize the conceptual specificity of learning:

learning is a time process supported by examples and by iteration through which the

similarity and the differences among examples are internalized and approximated

along the time.

Simultaneously we need to distinguish between these different learning methods:

1. Artificial Neural Networks (ANNs) learning: a bottom-up process to build

weight matrices representing the abstract parameters of the data. They are able

to compute any kind of non linear function [85–100] (Anderson and Rosenfeld

1988; Arbib 1995; Bishop 1995; Buscema 1998a, b, d; Carpenter and Grossberg

1991; Chauvin and Rumelhart 1995; Hopfield 1988; Kohonen 1995; McClelland

and Rumelhart 1988; NeuralWare 1995; Poggio and Girosi 1994; Rumelhart and

McClelland 1986; Simpson 1996). Their weights can be linked explicitly to the

data features, as the morphemes in natural language, or their weights matrices

can represent a distributed and sparse abstraction of the same data, as the

phonemes in natural languages.

(a) Our first type of ANN is the Radial Basis Function (RBF) and Learning Vector

Quantization (LVQ). The weights matrices of this ANN are linked to hidden

units, each one representing an abstract prototype of the input features;

(b) The second type of ANN is represented by different types of Back Propagation

as the classic Multilayer Perceptron (MLP), an advanced Back Propagation

(BP) and the Delta Bar Delta (DBD); in this type we have also included two

new ANNs: the Sine Net (SN) and a Feed Forward ContractiveMap (FF_Cm).

The latter is very important because it shows the possibility of building these

kinds of ANNs without utilizing the usual inspiration related to the gradient

method. In this case the weight matrices are linked to one or more hidden

layers whose units present a distributed coding of the input features. In this

way they can be perceived as being more brain like and efficient from the

computational point of view. On the other hand, their decoding is very

complex and sometime they can appear to be a magic black box. This problem

can be actually overcome by using some evolutionary algorithm able to

discover the complex pattern through which they coded the input patterns

into their hidden units.

2. Function Optimization: in this class we identify all the top-down algorithms

whose target is the optimization of a specific cost function. In this case it is

necessary to distinguish two subsets of algorithms:

(a) The Optimization based on Bayesian theory: these algorithms try to optimize

some loss function linked strictly to the Bayes theory of probability. The

attraction that these algorithms receive from the scholars is due to their

mathematic evidence and correctness, and to their speed in processing the
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data. The time flow and iteration processes in these algorithms are not a

theoretical need: they use time as a space to test their hypothesis and in some

cases to refine and regularize their weight matrices. We have tested the

classic Bayes Network (BayesNet), a Quadratic Bayesian Classifier

(QDC), a Parzen Classifier (Parzen) and two types of Naı̈ve Bayes: Simple

Naı̈ve Bayes (NaiveBayes) and Multinomial Naı̈ve Bayes (MNB).

(b) The Optimization based on Boundaries: these algorithms try to optimize,

linearly and non linearly, the separation boundaries among classes using

some type of space transformation. We have chosen for this experimentation

the Linear Discriminant Classifier (LDC), the Support Vector Machine

(SVM) and the Sequential Minimal Optimization (SMO).

3. Instance Based Learning: this class of algorithms is also known as “lazy”

classifiers because they are both very simple and effective at the same time.

These algorithms follow the k Nearest Neighbor (KNN) philosophy; the training
data generates a tessellation of projection space and each testing datum conse-

quently is assigned automatically to the class of its nearest neighbor. The KNN

learning is a bottom-up process based on some kind of distance metric. Usually

the chosen metric is weighted to avoid giving the same relevance to all the input

attributes. Consequently the quality and the quantity of the training examples

increase the tessellation accuracy and then the testing quality. KNN algorithms

are similar to a “Pavlov machine” in which learning is generated by direct

stimulus – reaction process with a reinforcement of a greedy rule: the nearest
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Fig. 5.3 Typology of the base classifiers implemented and tested
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takes the new one. Their learning process is able to make generalizations without

abstraction. In KNN algorithms there is not an intermediate layer between input

and output able to provide an abstract representation of the fundamental feature

of the data. The only proof of the learning quality is the behavior of the algorithm

in the testing phase. Very simply stated, the KNN classifiers are similar to ANNs

without hidden units. We have chosen for this experiment a classic k Nearest

Neighbor algorithm (KNN), the very well known k Instance Based algorithm

(IBk), designed by Aha et al. (1991), and the K* algorithm (KStar), a special

Instance Based Learning using an entropic distance measure.

4. Decision Trees: this class of algorithms is based on a top-down process of

analysis of the dataset attributes. The basic logic of the Decision Tree is

embraced in three sequential concepts: branch, split and bound (or prune). A

dataset point is transformed into a growing classification tree whose leaves are

the class labels and the internal nodes are the attributes defined by a dynamic and

hierarchical set of splitting rules. The boundaries among classes are conse-

quently represented by hyper-rectangles of any size, defining the boundaries of

each class in some adaptive manner. The success of Decision Trees in the

machine learning community is given by their explicative power, very close to

human reasoning, and their speed. We have included in our benchmark three

very well known decision trees: the classic CART (Tree), C4.5 (the version J48)

and the relatively new Random Forest (RandomForest).

Figure 5.3 shows the classification tree of 21 base classifiers implemented in our

experiments.

5.4.2 The Meta Classifiers

Meta Classifiers can be defined as a set of adaptive systems able to make improved

pattern recognition by combining, in some way, the classification task of other

adaptive systems. From an historical point of view, two fundamental styles of

combining base classifiers are shown to be effective (Kuncheva 2004; Rokach

2009; Valentini and Masulli 2002; Ho 2001):

(a) Many learning strategies in sampling the training dataset use the same algo-

rithm (Boosting Scheme); Boosting Scheme behaves as an expert using the

same lens to watch the world from many points of view. At the end of this

overview it decides the true shape of the landscape, according to the coherence

of its lens.

(b) Another strategy is that of mixing many different algorithms from the same

training dataset, Stacking Scheme (Wolpert 1992; Smyth and Wolpert 1999).

The Stacking Scheme uses many different lenses to watch the world from the

same point of view, and finally its decision depends on some statistics (theory)

derived from its observations.

Obviously, the machine learning literature has shown many examples of

hybrid application of these two extreme schemes, but this distinction can help
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the reader to understand how we have chosen to compare the Meta Classifiers

described in this paper. Meta Net algorithms could represent a third scheme in

building Meta Classifiers:

(c) Many different algorithms, learning locally with many different strategies,

could be optimized by one meta-learning algorithm. Meta-Net uses many lens

and many points of view, but its meta-learning algorithm is made to be adapted

locally to each different base classifier (lens). The Meta-Net target, in fact, is to

help each base classifier express its best view and its systematic hallucinations.

After this Socratic work, Meta-Net combines, bottom-up, the best observations

of all its base classifiers. We have named this approach the Socratic Scheme.

Figure 5.4 shows the 24 Meta Classifiers implemented in this experiment.

5.5 Results

5.5.1 The Numbers of This Experimentation

We have considered 21 base classifiers, 24 Meta-Classifiers and 6 datasets.

Each dataset was processed using a Five Random Split in three subsets: Training

& Testing (Tuning set) from one side, and an independent Prediction set from

another side. Each classifier and each meta-classifier was tuned in each of the five

sessions for any of the six datasets using a K-Fold Cross Validation protocol with

K ¼ 10. Finally, each one, with tuned parameters, was trained on the Tuning set

and tested on the independent Prediction set.

Meta-
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Fig. 5.4 Typology of the 24 Meta-classifiers implemented and tested
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Globally we have implemented 166,320 training sessions and 1,350 prediction

sessions1: 55 training sessions for each classifier or Meta classifier (21 classifiers

and 24 Meta classifiers) in six different datasets (Fig. 5.5a, b and c).

For all elaborations we used an Intel processor, one core, with 2.8 GHz, 32 bit

and 4 GB of RAM.

5.5.2 How to Read the Results

The accuracy of Classifiers and Meta-Classifiers is shown for each of the six

datasets in one single table. This table will show, for each dataset, the average

predictive accuracy of each Meta Classifier and Base Classifier on five independent

prediction sets. For each dataset the table presents eight fields in the following

columns:

(a) The name or the nick name of the algorithm (Algorithm);

(b) The type of algorithm (Classifier or Meta);

Data set
5 Random 
Splits

2.

2. Dataset for Prediction 

3.

3. Dataset for Prediction 

4.

4. Dataset for Prediction 

1. Dataset for Tuning
[Training & Testing]

Dataset for Tuning
[Training & Testing]

Dataset for Tuning
[Training & Testing]

Dataset for Tuning
[Training & Testing]

Dataset for Tuning
[Training & Testing]

1. Dataset for Prediction 

5.

5. Dataset for Prediction 

10-Fold Cross Validation: 
Results for Training Meta-Classifiers

10-Fold Cross Validation: 
Results for Training Meta-Classifiers

10-Fold Cross Validation: 
Results for Training Meta-Classifiers

10-Fold Cross Validation: 
Results for Training Meta-Classifiers

10-Fold Cross Validation: 
Results for Training Meta-Classifiers

Tuned Training for Classifier Results

Tuned Training for Classifier Results

Tuned Training for Classifier Results

Tuned Training for Classifier Results

Tuned Training for Classifier Results

2/3

a

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3

1/3

Fig. 5.5 (continued)

1We gratefully acknowledge Marco Intraligi (Semeion Staff) who helped the authors during the

training sessions.
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(c) The software used to implement the algorithm;

(d) The average of the five arithmetic averages of the algorithm in prediction phase

(A.Mean );

Dataset
5 Random 
Splits

2. Dataset for Tuning
[Training & Testing]

2. Dataset for
Prediction 

3. Dataset for Tuning
[Training & Testing]

3. Dataset for
Prediction 

4. Dataset for Tuning
[Training & Testing]

4. Dataset for
Prediction 

1. Dataset for Tuning
[Training & Testing]

1. Dataset for
Prediction 

5. Dataset for Tuning
[Training & Testing]

5. Dataset for
Prediction 

10-Fold Cross Validation for
Tuning Parameters using
Classifiers Results

10-Fold Cross Validation for
Tuning Parameters using
Classifiers Results

10-Fold Cross Validation for
Tuning Parameters using
Classifiers Results

10-Fold Cross Validation for
Tuning Parameters using
Classifiers Results

10-Fold Cross Validation for
Tuning Parameters using
Classifiers Results

Tuned Training for Meta Classifier
Results using Classifiers Results

Tuned Training for Meta Classifier
Results using Classifiers Results

Tuned Training for Meta Classifier
Results using Classifiers Results

Tuned Training for Meta Classifier
Results using Classifiers Results

Tuned Training for Meta Classifier
Results using Classifiers Results
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1/3

2/3
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b

c

Fig. 5.5 (a) Experimental design of any classifier for each dataset; (b) experimental design of any

Meta classifier for each dataset; (c) global number of the training sessions implemented
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Table 5.1 Digit dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%) Errors

Var

(%) Rank

Meta-Consensus Meta Semeion 97.30 97.30 8.6 0.36 1

Meta-Einstein Meta Semeion 97.23 97.24 8.8 0.47 2

Meta-Fuzzy Meta Semeion 97.23 97.24 8.8 0.47 2

Meta-Bayes Meta Semeion 97.23 97.24 8.8 0.41 2

Meta-Sum Meta Semeion 97.04 97.05 9.4 0.36 5

Meta-Expn Meta Semeion 97.04 97.05 9.4 0.36 5

QDC Classifier MatLab 95.79 95.79 13.4 0.71 7

SVM Classifier MatLab 95.73 95.73 13.6 1.08 8

mcMajVote Meta MatLab 95.27 95.29 15.0 1.09 9

mcBayesComb Meta MatLab 94.81 94.79 16.6 2.49 10

mcDempsterShafer Meta MatLab 94.78 94.79 16.6 1.10 10

mcWernecke Meta MatLab 94.76 94.79 16.6 1.17 10

Meta-AdaBoostM1 Meta Weka 94.64 94.66 17.0 1.19 13

mcDecisionTemplate Meta MatLab 94.41 94.41 17.8 1.15 14

mcDynDdDirectKnn Meta MatLab 94.40 94.41 17.8 2.03 14

Meta-Bagging Meta Weka 94.14 94.16 18.6 1.61 16

mcClusteringAndSelection Meta MatLab 93.38 93.41 21.0 1.74 17

SMO Classifier Weka 93.32 93.35 21.2 1.54 18

MLP Classifier Weka 93.00 93.03 22.2 0.91 19

FF_Cm Classifier Semeion 92.50 92.53 23.8 2.05 20

Parzen Classifier MatLab 92.17 92.22 24.8 1.70 21

Kstar Classifier Weka 91.08 91.15 28.2 1.11 22

DBD Classifier Neuralware 90.76 90.77 29.4 1.41 23

IBk Classifier Weka 90.50 90.59 30.0 0.88 24

KNN Classifier MatLab 90.50 90.59 30.0 0.79 24

LDC Classifier MatLab 90.26 90.27 31.0 2.37 26

Meta-End Meta Weka 90.26 90.27 31.0 1.89 26

LVQ Classifier Neuralware 90.07 90.08 31.6 1.86 28

Bp Classifier Semeion 89.56 89.58 33.2 1.63 29

Meta-Dagging Meta Weka 89.51 89.52 33.4 2.05 30

Meta-RandomCommitte Meta Weka 89.15 89.20 34.4 2.93 31

Meta-RotationForest Meta Weka 89.05 89.08 34.8 2.50 32

SN Classifier Semeion 88.88 88.89 35.4 2.16 33

RBF Classifier Weka 88.13 88.13 37.8 2.15 34

RandomForest Classifier Weka 86.67 86.75 42.2 3.48 35

Multinomial NaiveBayes Classifier Weka 86.16 86.12 44.2 2.49 36

BayesNet Classifier Weka 85.39 85.37 46.6 2.80 37

NaiveBayes Simple Classifier MatLab 85.01 84.99 47.8 2.82 38

Meta-RandomSubSpace Meta Weka 84.77 84.81 48.4 2.36 39

mcFuzzyIntegral Meta MatLab 83.36 83.49 52.6 1.66 40

Meta-LogitBoost Meta Weka 81.61 81.67 58.4 2.99 41

Meta-Decorate Meta Weka 81.19 81.29 59.6 4.68 42

J48 Classifier Weka 76.60 76.71 74.2 4.02 43

Tree Classifier MatLab 73.23 73.32 85.0 4.12 44

mcWeightedAverage Meta MatLab 61.09 61.20 123.4 41.63 45
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Table 5.2 Faults dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%)

Error

(%)

Var

% Rank

Meta-Einstein Meta Semeion 81.41 80.228 76.8 1.52 1

Meta-Consensus Meta Semeion 80.19 80.22 76.8 1.35 1

Meta-Sum Meta Semeion 81.26 80.07 77.4 1.42 3

Meta-Fuzzy Meta Semeion 81.06 79.91 78.0 1.44 4

Meta-Expn Meta Semeion 81.52 79.81 78.4 1.67 5

Meta-Bayes Meta Semeion 79.90 79.75 78.6 1.18 6

Meta-AdaBoostM1 Meta WEKA 80.48 79.65 79.0 2.35 7

Meta-Decorate Meta WEKA 79.48 79.14 81.0 1.66 8

Meta-Bagging Meta WEKA 78.65 78.47 83.6 1.46 9

Meta-RotationForest Meta WEKA 77.63 77.85 86.0 1.46 10

Meta-RandomCommitte Meta WEKA 79.52 77.38 87.8 2.42 11

RandomForest Classifier WEKA 78.16 77.02 89.2 2.23 12

mcMajVote Meta MatLab 80.44 74.76 98.0 2.19 13

Meta-RandomSubSpace Meta WEKA 74.62 74.45 99.2 2.80 14

Meta-LogitBoost Meta WEKA 74.13 74.40 99.4 0.41 15

SVM Classifier MatLab 73.62 74.04 100.8 1.93 16

mcBayesComb Meta MatLab 71.95 73.83 101.6 1.86 17

mcDecisionTemplate Meta MatLab 79.98 73.73 102 1.82 18

mcDempsterShafer Meta MatLab 80.58 73.68 102.2 1.61 19

mcWernecke Meta MatLab 78.11 73.37 103.4 1.78 20

TREE Classifier MatLab 76.22 73.11 104.4 1.75 21

mcDynDdDirectKnn Meta MatLab 77.40 72.59 106.4 1.95 22

FF_Cm Classifier Semeion 74.92 72.49 106.8 1.17 23

Kstar Classifier WEKA 74.52 71.15 112.0 4.09 24

mcClusteringAndSelection Meta MatLab 74.24 70.99 112.6 1.38 25

Parzen Classifier MatLab 74.15 70.94 112.8 1.80 26

KNN Classifier MatLab 73.62 70.94 112.8 2.18 26

IBk Classifier WEKA 73.40 70.94 112.8 2.49 26

mcFuzzyIntegral Meta MatLab 77.82 70.74 113.6 0.87 29

SN Classifier Semeion 74.16 70.68 113.8 0.79 30

Bp Classifier Semeion 74.54 70.53 114.4 1.04 31

MLP Classifier WEKA 71.23 70.43 114.8 2.09 32

DBD Classifier Neuralware 75.73 70.37 115.0 2.31 33

SMO Classifier WEKA 63.09 69.86 117.0 1.97 34

BayesNet Classifier WEKA 74.78 69.56 118.2 2.33 35

NaiveBayes Simple Classifier MatLab 73.60 68.63 121.8 3.33 36

Meta-End Meta WEKA 64.06 68.12 123.8 2.81 37

LVQ Classifier Neuralware 74.72 67.28 127.0 2.31 38

Meta-Dagging Meta WEKA 55.74 66.67 129.4 2.15 39

RBF Classifier WEKA 66.29 65.28 134.8 2.16 40

LDC Classifier MatLab 74.25 64.97 136.0 1.81 41

QDC Classifier MatLab 77.20 63.37 142.2 1.52 42

J48 Classifier WEKA 60.33 63.17 143.0 1.64 43

Multinomial NaiveBayes Classifier WEKA 71.40 60.44 153.6 1.99 44

mcWeightedAverage Meta MatLab 75.75 59.92 155.6 3.69 45

5 Meta Net: A New Meta-Classifier Family 165



Table 5.3 DNA dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%) Error

Var

% Rank

Meta-Fuzzy Meta Semeion 97.64 97.74 14.4 0.56 1

Meta-Consensus Meta Semeion 97.55 97.74 14.4 0.45 1

Meta-Einstein Meta Semeion 97.59 97.71 14.6 0.59 3

Meta-Expn Meta Semeion 97.59 97.71 14.6 0.61 3

Meta-Sum Meta Semeion 97.51 97.65 15.0 0.58 5

Meta-Bayes Meta Semeion 97.39 97.61 15.2 0.48 6

mcDecisionTemplate Meta MatLab 96.69 96.70 21.0 0.61 7

mcWeightedAverage Meta MatLab 96.63 96.64 21.4 0.62 8

mcBayesComb Meta MatLab 96.42 96.61 21.6 0.53 9

mcDempsterShafer Meta MatLab 96.63 96.61 21.6 0.54 9

QDC Classifier MatLab 96.51 96.45 22.6 0.62 11

SVM Classifier MatLab 95.94 96.23 24.0 0.54 12

mcMajVote Meta MatLab 96.17 96.04 25.2 0.74 13

Meta-RotationForest Meta Weka 95.10 95.79 26.8 1.35 14

Meta-Bagging Meta Weka 94.33 95.39 29.4 0.75 15

mcDynDdDirectKnn Meta MatLab 95.20 95.32 29.8 0.46 16

Meta-Decorate Meta Weka 94.17 95.04 31.6 0.74 17

MLP Classifier WEKA 95.02 95.04 31.6 0.76 17

BayesNet Classifier WEKA 94.33 94.85 32.8 0.44 19

mcClusteringAndSelection Meta MatLab 94.92 94.82 33.0 0.84 20

Meta-AdaBoostM1 Meta Weka 94.69 94.79 33.2 1.10 21

NaiveBayes Multinomial Classifier WEKA 94.00 94.70 33.8 0.43 22

Meta-End Meta Weka 94.25 94.54 34.8 0.80 23

DBD Classifier Neuralware 94.34 94.51 35.0 0.82 24

RBF Classifier WEKA 94.30 94.22 36.8 0.82 25

Meta-LogitBoost Meta Weka 94.23 94.22 36.8 0.68 25

NaiveBayes Simple Classifier MatLab 93.55 94.04 38.0 0.87 27

mcFuzzyIntegral Meta MatLab 93.95 94.01 38.2 0.75 28

FF_Cm Classifier Semeion 93.95 93.97 38.4 0.37 29

Meta-RandomSubSpace Meta Weka 93.09 93.97 38.4 0.67 29

Meta-Dagging Meta Weka 93.41 93.79 39.6 0.66 31

BP Classifier Semeion 93.35 93.69 40.2 0.82 32

LDC Classifier MatLab 94.41 93.41 42.0 0.36 33

SN Classifier Semeion 92.77 93.19 43.4 0.56 34

SMO Classifier WEKA 92.25 93.03 44.4 0.87 35

TREE Classifier MatLab 92.21 93.03 44.4 0.96 35

J48 Classifier WEKA 91.51 92.09 50.4 1.07 37

Meta-RandomCommittee Meta Weka 90.30 91.15 56.4 0.33 38

RandomForest Classifier WEKA 89.33 90.62 59.8 0.99 39

mcWernecke Meta MatLab 88.92 89.83 64.8 1.29 40

KNN Classifier MatLab 87.12 88.04 76.2 1.28 41

LVQ Classifier Neuralware 78.13 82.70 110.2 0.49 42

Kstar Classifier WEKA 78.61 75.24 157.8 0.91 43

IBK Classifier WEKA 78.01 73.79 167.0 1.33 44

Parzen Classifier MatLab 78.45 73.63 168.0 0.88 45
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Table 5.4 Letters dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%) Error

Var

% Rank

Meta-Consensus Meta Semeion 98.29 98.31 67.8 0.24 1

Meta-Bayes Meta Semeion 98.28 98.29 68.4 0.30 2

Meta’Einstein Meta Semeion 98.26 98.28 68.8 0.26 3

Meta-Sum Meta Semeion 98.26 98.27 69.2 0.25 4

Meta-Expn Meta Semeion 98.25 98.26 69.6 0.25 5

Meta-Fuzzy Meta Semeion 98.24 98.25 69.8 0.22 6

SVM Classifier MatLab 97.87 97.89 84.6 0.38 7

mcWeightedAverage Meta MatLab 97.48 97.49 100.2 0.28 8

mcWernecke Meta MatLab 97.33 97.35 106.2 0.27 9

mcClusteringAndSelection Meta MatLab 96.98 96.98 120.8 0.49 10

mcDempsterShafer Meta MatLab 96.65 96.66 133.4 0.43 11

mcDecisionTemplate Meta MatLab 96.62 96.63 134.8 0.27 12

FF_Cm Classifier Semeion 96.49 96.50 139.8 0.51 13

mcMajVote Meta MatLab 96.45 96.46 141.6 0.40 14

Parzen Classifier MatLab 96.20 96.22 151.4 0.29 15

mcDynDdDirectKnn Meta MatLab 96.05 96.07 157.2 0.30 16

DBD Classifier Neuralware 95.76 95.78 168.8 0.24 17

Ibk Classifier WEKA 95.70 95.72 171.2 0.36 18

Kstar Classifier WEKA 95.52 95.54 178.6 0.35 19

mcBayesComb Meta MatLab 95.35 95.36 185.4 0.30 20

Meta-AdaBoostM1 Meta WEKA 95.16 95.18 192.8 0.25 21

KNN Classifier MatLab 94.86 94.88 205.0 0.43 22

SN Classifier Semeion 94.71 94.74 210.6 0.71 23

Meta-RotationForest Meta WEKA 94.70 94.74 210.6 0.51 24

Meta-RandomCommitte Meta WEKA 94.55 94.58 217.0 0.48 25

Meta-END Meta WEKA 94.34 94.37 225.2 0.40 26

BP Classifier Semeion 94.19 94.22 231.4 0.56 27

RandomForest Classifier WEKA 94.11 94.14 234.4 0.19 28

LVQ Classifier Neuralware 94.06 94.08 236.8 0.42 29

Meta-RandomSubSpace Meta WEKA 90.81 90.86 365.8 0.97 30

Meta-Decorate Meta WEKA 90.41 90.44 382.6 0.46 31

Meta-Bagging Meta WEKA 90.37 90.41 383.6 0.97 32

mcFuzzyIntegral Meta MatLab 88.65 88.68 452.8 0.67 33

QDC Classifier MatLab 88.49 88.54 458.6 0.42 34

Tree Classifier MatLab 87.87 87.89 484.4 0.63 35

J48 Classifier WEKA 87.25 87.28 508.6 0.34 36

SMO Classifier WEKA 81.84 81.94 722.2 0.45 37

MLP Classifier WEKA 81.32 81.42 743.2 0.82 38

BayesNet Classifier WEKA 74.19 74.25 1030.2 0.25 39

RBF Classifier WEKA 73.80 73.90 1044.0 0.81 40

Meta-LogitBoost Meta WEKA 73.39 73.45 1062.0 0.48 41

Meta-Dagging Meta WEKA 73.17 73.31 1067.4 0.65 42

NaiveBayes Simple Classifier MatLab 73.22 73.27 1069.4 0.42 43

LDC Classifier MatLab 70.07 70.17 1193.4 0.28 44

Multinomial NaiveBayes Classifier WEKA 63.90 64.02 1439 0.42 45
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Table 5.5 Sat-Image dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%) Error

Var

% Rank

Meta-Einstein Meta Semeion 90.76 93.16 88.0 0.71 1

Meta-Fuzzy Meta Semeion 90.82 93.16 88.0 0.63 1

Meta-Consensus Meta Semeion 90.85 93.15 88.2 0.61 3

Meta-Bayes Meta Semeion 90.83 93.15 88.2 0.57 3

Meta-Sum Meta Semeion 90.87 93.08 89.0 0.44 5

Meta-Expn Meta Semeion 89.84 92.68 94.2 0.55 6

SVM Classifier MathLab 90.29 92.35 98.4 0.28 7

Meta-AdaBoostM1 Meta WEKA 90.22 92.35 98.4 0.68 7

Meta-Bagging Meta WEKA 89.00 91.53 109.0 0.63 9

Meta-RotationForest Meta WEKA 88.75 91.45 110.0 0.34 10

mcBayesComb Meta MatLab 88.47 91.11 114.4 0.66 11

mcMajVote Meta MatLab 89.18 91.05 115.2 0.59 12

mcDempsterShafer Meta MatLab 89.26 91.02 115.6 0.61 13

Meta-Decorate Meta WEKA 88.47 91.02 115.6 1.56 13

mcWernecke Meta MatLab 89.02 90.85 117.8 0.72 15

SN Classifier Semeion 89.26 90.83 118.0 0.54 16

mcDecisionTemplate Meta MatLab 89.47 90.75 119.0 0.72 17

mcClusteringAndSelection Meta MatLab 88.82 90.74 119.2 0.73 18

Meta-RandomCommitte Meta WEKA 88.39 90.71 119.6 0.80 19

mcWeightedAverage Meta MatLab 88.23 90.69 119.8 0.71 20

FF_Cm Classifier Semeion 88.92 90.67 120.0 0.44 21

mcDynDdDirectKnn Meta MatLab 88.27 90.52 122.0 0.48 22

BP Classifier Semeion 88.88 90.49 122.4 0.51 23

KNN Classifier MathLab 88.61 90.47 122.6 1.09 24

Meta-End Meta WEKA 87.79 90.36 124.0 0.44 25

RandomForest Classifier WEKA 87.57 90.18 126.4 0.71 26

Kstar Classifier WEKA 88.55 90.08 127.6 0.97 27

IBk Classifier WEKA 88.54 89.96 129.2 0.94 28

Parzen Classifier MathLab 89.32 89.89 130.2 0.61 29

MLP Classifier WEKA 86.54 89.39 136.6 0.79 30

LVQ Classifier NeuralWare 85.58 89.21 138.8 0.78 31

Meta-RandomSubSpace Meta WEKA 85.66 88.87 143.2 1.02 32

DBD Classifier NeuralWare 86.83 87.75 157.6 0.46 33

QDC Classifier MathLab 82.45 86.88 168.8 0.44 34

mcFuzzyIntegral Meta MatLab 84.54 86.82 169.6 0.63 35

SMO Classifier WEKA 82.54 86.60 172.4 0.96 36

J48 Classifier WEKA 83.17 86.07 179.2 1.03 37

Meta-LogitBoost Meta WEKA 82.38 85.82 182.4 1.00 38

TREE Classifier MathLab 82.99 85.38 188.2 0.76 39

Meta-Dagging Meta WEKA 79.68 84.89 194.4 0.94 40

RBF Classifier WEKA 81.43 83.98 206.2 0.89 41

LDC Classifier MathLab 81.79 83.87 207.6 0.37 42

NaiveBaye Simple Classifier MathLab 80.33 83.65 210.4 0.39 43

BayesNet Classifier WEKA 81.06 81.98 232.0 0.61 44

Multinomial NaiveBayes Classifier WEKA 78.48 79.46 264.4 0.73 45
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Table 5.6 Segment dataset – final results

Algorithms Type Software

A.Mean

(%)

W.Mean

(%) Error

Var

% Rank

Meta-Bayes Meta Semeion 99.09 99.09 4.2 0.39 1

Meta-Consensus Meta Semeion 99.09 99.09 4.2 0.39 1

Meta-Expn Meta Semeion 99.09 99.09 4.2 0.39 1

Meta-Einstein Meta Semeion 99.05 99.05 4.4 0.45 4

Meta-Fuzzy Meta Semeion 99.05 99.05 4.4 0.45 4

Meta-Sum Meta Semeion 99.05 99.05 4.4 0.45 4

Meta-RandomCommitte Meta WEKA 98.01 98.01 9.2 0.49 7

Meta-AdaBoostM1 Meta WEKA 97.92 97.92 9.6 0.19 8

mcMajVote Meta Matlab 97.84 97.84 10.0 0.64 9

mcDecisionTemplate Meta Matlab 97.71 97.71 10.6 0.67 10

mcWernecke Meta Matlab 97.71 97.71 10.6 0.56 10

mcDempsterShafer Meta Matlab 97.66 97.66 10.8 0.69 12

Meta-End Meta WEKA 97.66 97.66 10.8 0.60 12

RandomForest Classifier WEKA 97.62 97.62 11.0 0.63 14

Meta-Decorate Meta WEKA 97.62 97.62 11.0 0.59 14

Meta-RotattionForest Meta WEKA 97.57 97.57 11.2 1.08 16

FF_Cm Classifier Semeion 97.53 97.53 11.4 0.74 17

mcWeightedAverage Meta Matlab 97.40 97.40 12.0 1.09 18

mcBayesComb Meta Matlab 97.36 97.36 12.2 0.72 19

SN Classifier Semeion 97.36 97.36 12.2 0.42 19

mcDynDdDirectKnn Meta Matlab 97.32 97.32 12.4 0.73 21

Kstar Classifier WEKA 97.19 97.19 13.0 0.74 22

SVM Classifier MatLab 97.14 97.14 13.2 0.99 23

Meta-Bagging Meta WEKA 96.98 96.98 13.9 1.07 24

TREE Classifier MatLab 96.97 96.97 14.0 0.74 25

Ibk Classifier WEKA 96.97 96.97 14.0 0.65 25

Parzen Classifier MatLab 96.92 96.92 14.2 0.65 27

J48 Classifier WEKA 96.92 96.92 14.2 0.80 27

DBD Classifier NeuralWare 96.88 96.88 14.4 0.68 29

KNN Classifier MatLab 96.80 96.80 14.8 0.69 30

BP Classifier Semeion 96.58 96.58 15.8 0.25 31

MLP Classifier WEKA 96.58 96.58 15.8 1.17 31

mcFuzzyIntegral Meta Matlab 96.45 96.45 16.4 0.56 33

mcClusteringAndSelection Meta Matlab 96.23 96.23 17.4 0.90 34

Meta-RandomSubSpace Meta WEKA 95.89 95.89 19.0 1.89 35

Meta-LogitBoost Meta WEKA 95.89 95.89 19.0 0.53 35

LVQ Classifier NeuralWare 95.50 95.50 20.8 0.99 37

SMO Classifier WEKA 92.86 92.86 33.0 1.21 38

BayesNet Classifier WEKA 91.69 91.69 38.4 1.89 39

LDC Classifier MatLab 91.64 91.64 38.6 1.29 40

NaiveBayes Simple Classifier MatLab 90.61 90.61 43.4 1.20 41

Meta-Dagging Meta WEKA 87.92 87.92 55.8 1.17 42

QD Classifier MatLab 87.75 87.75 56.6 1.68 43

RBF Classifier WEKA 87.44 87.44 58.0 1.94 44

Multinomial NaiveBayes Classifier WEKA 80.30 80.30 91.0 1.00 45
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(e) The average of the five weighted averages of the algorithm in prediction phase

(W.Mean);

(f) The average number of instances misclassified in the five prediction test (Error);

(g) The standard deviation of the five weighted averages of the five predictions test

(Var %);

(h) The rank position of the algorithm according to the average of the five weighted

averages (Rank).

Because we applied the same procedure to each dataset, we have six tables:

1. Table 5.1: results for Digit dataset;

2. Table 5.2: results for Faults dataset;

3. Table 5.3: results for DNA dataset;

4. Table 5.4: results for Letters dataset;

5. Table 5.5: results for Sat-Image dataset;

6. Table 5.6: results for Segment dataset.
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However these results show the obvious power of Meta-Net family, we have

summarized the specific performances of each algorithm by the average of its rank

position in each dataset. Table 5.7, then, synthesizes the results of this comparison

and Fig. 5.6 show the same comparison from a graphical point of view.

5.5.3 Results and Discussion

We have tried to cluster the performances of each classifier and meta-classifier,

analyzing its specific misclassifications in the five prediction sets of each dataset

(we remind the reader that each algorithm, after the initial training phase, was

blindly tested on 30 prediction subsets). Consequently we have built, for each

dataset, a square symmetric matrix with null main diagonal where in each cell are

counted the number of common patterns that each couple of algorithms

misclassified.2 Obviously we have considered the probability of a couple of

classifiers might behave the same, but this depends on the number of output classes

and on the number of records of each prediction set. Thus, we have used the

following equation to normalize any comparison:

Si; j ¼
2 � Ei ^ Ej

� �
Ei þ Ej

� K
R
� 1� 1

K

� �

where:

Ei and Ej ¼ Number of misclassifications of the i-th or of the j-th classifier;

K ¼ Number of Classes of the Prediction set;

R ¼ Number of Records of the Prediction set;

Si; j ¼ Similarity between the i-th and the j-th classifier in a specific

Prediction set:

Finally, we have linearly scaled the values of each matrix between 0 and 1 and

summed the square matrix over the six datasets.

This final square matrix represents the similarities of misclassifications of each

classifier with all the others. Finally, we have calculated the Minimum Spanning

Tree (MST) of this matrix in order to generate a weighted graph (tree), clustering

the global performances of each algorithm in relation to the others. Figure 5.7a

shows the MST of the 45 algorithms behavior.

Some elaboration is necessary:

(a) Meta-Net algorithms are located all together in south-west area of the MST.

They are a specific branch of the global tree and they are also strongly

2 This detailed analysis of the shared misclassifications among algorithms was conducted thanks to

a suggestion of Dr. Giulia Massini (Semeion researcher).
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Fig. 5.7 (a) The weighted MST of the similarities in misclassifications of the 45 Algorithms in all

six datasets; (b) dendrogram of the similarities in misclassifications of the 45 Algorithm in all the

6 datasets
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connected each other. They represent really a new possibility for meta-

classifiers;

(b) In the south of the tree most of the Boosting Meta-Classifiers are clustered

together. This cluster represents, in a perfect way, the shared philosophy and

history of these meta-classifiers. Ada-Boost and Bagging seem to be the

prototypes of this group; this position is coherent with the scientific literature.

(c) In the northern area of the tree are clustered the algorithms dedicated to the

boundaries optimization. Close to them, in a coherent way, are located the

algorithms based on Bayesian optimization.

(d) Instance Base Learning algorithms are grouped together in the eastern side of

the tree, with the Parzen classifier bearing a philosophy that is very close to

them.

(e) Also in the east, close to Instance Learning algorithms, are clustered the main

typology of Artificial Neural Networks. The positions of each of them in the

ranking table are very different (see Table 5.7). It is also interesting that the

Bayes Combiner is located as its “father node”, while all the algorithms based

on Bayes theory are located in the opposite side of the tree. We must say that

ANNs behave as complex Bayesian machines such that they are not only

algorithms based on frequency analysis.

(f) Stacking Meta-Classifiers are spread out into the map, but many of them are

located in the central part of the tree: the Majority Vote algorithm, for example,

is the center of the graph. Their meaning is quite clear. They, represent an

average behavior of the other algorithms. Just an example: Majority Vote,

Dempster & Shafer, Decision Template and Wernecke Fusion are located in

the center of the tree and are strongly connected each other. That means that they

tend to make the same misclassifications and are probably different versions of

the same philosophy, based on the voting and /or on the average criterion.

Figure 5.7b shows the dendrogram of the MST of Fig. 5.7a.3 The dendrogram is

useful to understand the dynamics through which the MST was built. In this specific

case we have 22 bottom up levels and the first level is the kernel level of MST. This

core level is formed by the nine pairs, whose internal similarities are particularly

strong:

1. BayesNet and Simple Naı̈ve Bayes;

2. Meta-Dagging and SMO (Meta-Dagging uses SMO as its leading algorithm);

3. FF_Cm and Bayes Combiner (interesting association);

4. IBk and Parzen Classifier;

5. Decision Template and Dempster & Shafer meta classifier;

6. Majority Vote and Wernecke Fusion;

7. Meta-Einstein and Meta-Fuzzy;

8. Meta-Bagging and Meta-Rotation Forest;

9. Fuzzy Integral and Tree (CART).

3We acknowledge Dr. Giulia Massini (2010–2011) (Semeion researcher) who has generated this

dendrogram, using specific software she wrote.
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In many cases the nine couples of the core level have a similar position in the

global ranking of the performances (see Table 5.7), but in some cases their

performances are pretty different. In the last case, the more effective algorithm

could substitute for the weaker one.

5.6 Conclusion and Future Works

There is an adage from the field of Systems Science that in order to understand a

system we should all the information necessary to define the structure and behavior

of the system, but no more than what is necessary. Since most all systems have

some kind of flux, possess inputs from unknown or unintended variables and thus

show “noise” in the system, to use more information than that which is necessary to

understand the system is to give the noise an opportunity to play an undeserved role

in the structure and behavior of the system. Further, there are always different views

of a system. One might select a purely mathematical approach to describe a system

LEFT SIDE FRONT

BOTTOM

Fig. 5.8 Views of an

unknown system

BOTTOM

FRONT

REAR

RIGHT SIDE

PROFILE PLANE

LEFT SIDE

TOP
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Fig. 5.9 The 3-dimensional

object with the 2-dimensional

views
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while others may produce a model and subject it to an air current to observe the

flow. In a similar way each of the Learning Machines described in this paper

produce a view of the system from its own specialized perspective, each one

correct, but each one only showing a part of the whole system. A simple example

will help illustrate the meaning.

Let us examine the different views of an unknown system shown as Fig. 5.8

(from Klir 1985). We have examined the system, using our limited means, to note

the shape of the system from the left, the front, and the bottom. Each view is correct,

but it is only a view presented by some tool. These are 2-dimensional views of a

3-dimensional figure but each one is decidedly different. Even with something as

simple as this set of 2-dimensional views the reader might be challenged to

construct the whole system, that is, the 3-dimensional object from which these

views, or slices, were taken (see Fig. 5.9). It is only when we assemble the 2-

dimensional views that we see the actual or intended structure. These views are

orthographic projections when viewed from their respective projection planes, and

there are an infinite number of other views depending on the angularity of a plane

that passes through the object.

In a similar way each of the Learning Machines and ANNs produce a view that is

dependent on the algorithms that analyze the input data. Each Machine Learner is

constructed to try to identify the behavior and/or structure of the system, and each

does from a particular perspective. It is easy to see above that these Learning

Machines result in different answers or views, but each is correct in its own way.

There is no evidence to suggest that the results from the other methods might be

incorrect, but by using all the information contained in these differing views the

Meta-Consensus algorithm utilizes the benefit of having all the views as input to

produce the system that is arguably more complete than any of the other individual

algorithms. Further, it is difficult to identify which of these individual, single

purpose Machine Learners has used more information than necessary to develop

its view. It may not be possible to separate the noise from the actual system at the

level of the individual network, but it is possible to use the meta-consensus

algorithm to assemble the differing views into a single system while disregarding

possible noise. The result should be more accurate.

It has been said by some that one must be a believer to accept the concept of a

neural network or more generally of a learning machine. Perhaps, for the work is

being done in the hidden reaches of the computer, even though the resulting output

does produce an answer that seems to work quite well. These individual networks

demonstrate an ability to solve very complex non-linear problems with relative

ease. By combining the output of many stand-alone Learning Machines into one

aggregate solution, further strength is given to the output of the meta-consensus

neural network.

Thus, we outline the singular properties of the Meta-Net algorithms, especially

Meta-Consensus, that we have introduced in this paper. Meta-Net algorithms, in

fact, address the pattern recognition problem:
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1. The key information that is derived from the algorithms belonging to Meta-Net

pool is hidden within details. Machine Learning can be in error because it fixates

on the dominant or “correct” relationships (false attributions) and because lapses

(missing attributions) can be used to improve the global pattern recognition task

of the Meta-Net. Consequently, the marginalities, and then the errors, can

frequently be more informative than “correct” behaviors;

2. The real diversity among different Learning Machines is not in their explicit

mathematics and topology, but rather, in their performance on real data. In some

datasets a Tree can behave in a manner similar to that of an Instance Learning

algorithm, or a pool of ANNs can perform in ways that are perceived as similar

to that of the Bayesian Combiner. We have learned, for example, that in six

different datasets it is the Decision Template and the Dempster-Shafer meta-

classifiers that work in practically the same way despite the different theories

involved, and that both have similar or inferior performances to that of the

simple and easy meta-classifier Majority Vote. Thus we arrive at two inescap-

able conclusions: first, not everything that shows itself to be different is actually

different, and, second (with apologies to William of Ockham), sometime an easy

devise works better than a complicated one. To paraphrase, within the input we
hopefully have the problem, but it is only in the output that we have the

possibility of discovering truth;

3. Meta-Nets algorithms work bottom up. They follow a majeutic philosophy: they

try to allow to any single machine learning of their pool to express completely its

point of view about the assigned dataset, and only after they assemble all the

different opinions in an open arena where the right solution can arise “spontane-

ously”. The most of the other meta-classifiers follow, instead, two kind of

philosophies: an Aristotelian approach (because I know the true, let me see

which single machine learning can be useful for that), or a Darwinian approach

(The best players survive, the weaker ones die). Sometime “nature” is sweet, and

consequently complexity and efficiency diverge.

In conclusion: the future of this meta-solution needs to be illustrated across

various disciplines to demonstrate and/or illustrate that these solutions are, overall,

a better solution than those done by single purpose networks. This will be a

continuing area of research and one with which we are willing to engage in

collaborative work with credentialed researchers. Interested researchers are

encouraged to contact the corresponding author.

Niels Bohr used to say that an expert is a normal person who made all the

possible mistakes only in one field.
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Chapter 6

Optimal Informational Sorting:

The ACS-ULA Approach

Massimo Buscema and Pier Luigi Sacco

6.1 Introduction

Optimal informational sorting is an issue of huge relevance for both theorists and

applied scientists. Given an n-dimensional database of characteristics for a list of

entities, the correct assignment of each entity to the pertinent group may be far from

obvious, provided that the association between carrying certain sets of charac-

teristics and belonging to a specific group is non-linear enough. From the theoreti-

cal point of view, problems with this structure can be tackled by a number of

different tools, whereas applications practically cover most realms of scientific

research, from medical diagnosis, security analysis, and career orientation, to

name just a few heterogeneous examples.

In this chapter, we propose a new approach to optimal informational sorting that

is based on the combination of two complementary tools: ACS (Activation &

Competition System), an auto-associative neural network developed by Massimo

Buscema (2009) at Semeion Research Center in Rome, and ULA (Universe Lines

Algorithm), a new technique for the generation of “implicit” dynamic datasets that,

once coupled to the suitable artificial neural network (ANN) architecture, enhances

substantially its discriminating power. This chapter provides a concise but self-

contained introduction to these tools, and carries out a validation based on a well

known benchmark, widely used in classical approaches to knowledge representa-

tion via Parallel Distributed Processing (McClelland 1981, 1995; McClelland and

M. Buscema (*)

Semeion Research Center of Sciences of Communication, Via Sersale 117, Rome, Italy

Department of Mathematical and Statistical Sciences, CCMB, University of Colorado,

Denver, Colorado, USA

e-mail: m.buscema@semeion.it

P.L. Sacco

IULM University, Via Carlo Bo, 1, 20143 Milano, Italy

W.J. Tastle (ed.), Data Mining Applications Using Artificial Adaptive Systems,
DOI 10.1007/978-1-4614-4223-3_6, # Springer Science+Business Media New York 2013

183

mailto:m.buscema@semeion.it


Rumelhart 1988), the West Side Story dataset where one has to distinguish

members’ affiliation in two rival gangs, the Jets and the Sharks, on the basis of a

certain number of identifying characteristics. This is a demanding benchmark in

that characteristics are mixed up in a rather tricky way: Jets tend to be in their 20s,

single, and with a Junior High School education, although no one Jet member

actually happens to meet all three criteria at the same time, whereas Sharks tend to

be older, married, and with a High School education, but again no one Shark

happens to meet the three criteria simultaneously. Moreover, all members of both

gangs are equally likely to operate as pushers, bookies, or burglars.

The associated sorting problem is particularly hard. We provide a comparative

evaluation of different tools for its solution and find that not only the ACS-ULA

approach reaches the best results and provides a perfect sorting, but does so by

taking as its only input the other methodologies in the benchmark that yield flawed
results with a common bias. Moreover, the ACS-ULA approach allows us to

reconstruct in detail not only the affiliation of each member, but also the structure

of the association between characteristics and affiliation, including a proper fram-

ing of the “deceiving” variables, to identify the “outliers” and to perform an

accurate optimal filtering of the dataset. In other words, the input of the approach

is not only an accurate sorting, but also an in-depth exploration of the structural

properties of the database – that is, very useful information for a number of further

tasks, including, for instance, analysis of variance, scenario simulation, vulnerabil-

ity analysis, and so on. This same procedure may be applied to a vast range of

potentially relevant problems in many disciplines.

The structure of the remainder of the chapter is the following. Section 6.2

presents the ACS architecture. Section 6.3 presents the ULA methodology.

Section 6.4 introduces the West Side Story database and performs the comparative

evaluation. Section 6.5 concludes and offers suggestions for further research.

6.2 Activation and Competition System

ACS is an ANN endowed with an uncommon architecture: Any couple of nodes is

not linked by a single value, but by a vector of weights, where each vector compo-

nent is derived from a specific metric. Such “bio-diversity” of combinations of

metrics may provide interesting results when each metric describes different and

consistent details of the same dataset. In this situation, ACS forces all the variables to

compete among themselves in different respects. The ACS algorithm, therefore, is

based on the weights matrices of other algorithms. ACS will use these matrices as a

complex set of multiple constraints to update its units in response to any input

perturbation. ACS, consequently, works as a dynamic non linear associative mem-

ory. Whenever any input is set on, ACS will activate all its units in a dynamic,

competitive and cooperative process at the same time. This process will terminate

when the evolutionary negotiation among all the units finds its natural attractor.

The ACS ANN is, thus, a complex kind of C.A.M. system (Content Addressable

Memory). Compared to the classic associative memories (McClelland and
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Rumelhart 1988; Hinton and Anderson 1981; Grossberg 1980), ACS presents the

following new features:

• The ACS algorithm works using simultaneously many weights matrices coming

from different algorithms and/or ANNs;

• The ACS algorithm recall is not a one-shot reaction but an evolutionary process

where all its units negotiate their reciprocal value.

To compute the weights matrices for the ACS algorithm, one can follow

different approaches: Applying straightforward formulas for association among

variables, or making use of more complex algorithms such as specific ANN

architectures like Self-Organizing Maps (SOMs) (Kohonen 1995) and Auto-

Contractive Maps (AutoCM) (Buscema 2007a, b), as well as any kind of mix of

the above. In this chapter, however, for reasons that will become clear later, we will

only make use of very simple formulas for association.

6.3 Measures of Association

The matrix of associations of M variables from a dataset with N patterns can easily

be constructed by computing the linear associations between any couple of the M

variables:

W
½L�
i;j ¼

PN
k¼1

ðxi;k � �xiÞ � ðxj;k � �xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

ðxi;k � �xiÞ2 �
PN
k¼1

ðxj;k � �xjÞ2
s ; (6.1)

� 1 � W
½L�
i;j � 1; i; j 2 ½1; 2; :::;M�

The associations matrix, W
½L�
i; j , is a square matrix in which the main diagonal

entries are zero. The matrix W
½L�
i;j has, however, some limitations. It considers only

linear relationships among variables and it is not sensitive to the frequency and to

the distribution of the variables across the dataset. To compensate for these

limitations, we compute another association matrix, W
½P�
i; j , based on the distribution

probability of co-occurrence of any couple of the M variables:

W
½P�
i; j ¼ � ln

1

N2
�
XN
k¼1

xi;k � ð1� xj;kÞ �
XN
k¼1

ð1� xi;kÞ � xj;k

1

N2
�
XN
k¼1

xi;k � xj;k �
XN
k¼1

ð1� xi;kÞ � ð1� xj;kÞ
(6.2)
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�1 � W
½P�
i;j � þ1; x 2 ½0; 1�; i; j 2 ½1; 2; :::;M�

If we scale linearly this new matrix, W
½P�
i;j , in the same interval as for the linear

matrix, W
½L�
i;j , we get two comparable hyper-surfaces into the same metric space.

6.4 The ACS Algorithm

ACS is a nonlinear associator whose cost function is based on theminimization of the

energy among units whenever the system is activated by an external input. We call it

Activation & Competition System (ACS for short) and it is defined as follows:

M ¼ Number of Variables-Units;

Q ¼ Number of weights matrices;

i; j 2 M;

k 2 Q;

Wk
i;j ¼ value of connection between the i-th and the j-th units ofthe k-thmatrix;

Ecci ¼ global excitation to the i-th unit coming from the other units;

Inii ¼ global inhibition to the i-th unit coming from the other units;

Ei ¼ final global excitation to the i-th unit;

Ii ¼ final global inhibition to the i-th unit;

½n� ¼ cycle of the iteration;

u
½n�
i ¼ state of the i-th unit at cycle n;

H½n� ¼ amount of units updating at cycle n;

Neti ¼ Net Input of the i-th unit;

di ¼ delta update of the i-th unit;

Inputi ¼ value of the i-th external input: � 1 � Inputi � þ1;

N
½E�
k;i ¼ number of positive weights of the k-th matrix to the i-th unit;

N
½I�
k;i ¼ number of negative weights of the k-th matrix to the i-th unit;

Max = Maximum of activation: Max ¼ 1:0;

Min ¼ Minimum of activaction: Min ¼ �1:0;

Rest ¼ rest value: Rest ¼ �0:1;

Decay
½n�
i ¼ Decay of activaction the i-th unit at cycle n : Decay

½n¼0�
i ¼ 0:1;

a ¼ scalar for the Ei and Ii net input to each unit;

b = scalar for the external input;

e = a small positive quantity close to zero:
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Ecci ¼ a �
XQ
k

PM
i

u
½n�
i �Wk

i;j

N
½E�
k;i

Wk
i;j > 0;

Inii ¼ a �
XQ
k

PM
i

u
½n�
i �Wk

i;j

N
½I�
k;i

Wk
i; j < 0;

Ei ¼ Ecci þ b � Inputi; Inputi > 0;

Ii ¼ Inii þ b � Inputi; Inputi < 0;

Neti ¼ Max� u
½n�
i

� �
� Ei þ u

½n�
i �Min

� �
� Ii � Deci � u

½n�
i � R est

� �
;

di ¼ Neti � ð1:0� u2i Þ;

H½n� ¼
XM
i

d2i ;

u
½nþ1�
i ¼ u

½n�
i þ di;

Dec
½nþ1�
i ¼ Dec

½n�
i � e�u2i ; (6.3)

Notice how the decay function of ACS is itself subject to learning: The more

pronounced the activation or inhibition of units (i.e., the more ui gets closer to +1 or
�1), the quicker decay approaches zero.

H½n�is the cost function of ACS to be minimized. Consequently, whenH½n�<e, the
algorithm terminates. More specifically:

Max � Ei � ui � Ei þ ui � Ii �Min � Ii � Deci � ui þ R est � Deci ¼ 0

Max � Ei � ui � Ei þ ui � Ii �Min � Ii � Deci � ui þ R est � Deci ¼ 0

�Ei þ Ii � Decið Þ � ui þMax � Ei �Min � Ii þ R est � Deci ¼ 0

ui ¼ Max � Ei �Min � Ii þ R est � Deci
Ei � Ii þ Deci

(6.4)

When Max ¼ 1; Min ¼ �1;R est ¼ 0:1, then:

ui ¼ Ecci þ Ii � 0:1 � Deci
Ecci � Ii þ Deci

(6.5)
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We have already said that the ACS ANN is partially inspired by a previous ANN

presented by Grossberg (1976, 1978, 1980) but their differences are so marked that

we need to present ACS as a new ANN:

• ACS works using simultaneously many weights matrices coming from different

algorithms, while Grossberg’ IAC uses only one weight matrix;

• ACS weights matrices represent different mappings of the same dataset and all

the units (variables) are processed in the same way, while Grossberg’s IAC

works only when the dataset presents only a specific kind of architecture;

• The ACS algorithm can use any combination of weights matrices coming from

any kind of algorithm. The only constraint is that all the values of every weights

matrix have to be linearly scaled into the same range (typically between �1 and

+1), while Grossberg’s IAC can work only with static excitations and inhibitions.

• Each ACS unit tries to learn its specific value of decay, during its interaction

with the other units, while Grossberg’s IAC works with a static decay parameter

for all the variables;

• The ACS architecture is a circuit with symmetric weights (vectors of symmetric

weights), which can manage a dataset with any kind of variables (Boolean,

categorical, continuous, etc.), while Grossberg’s IAC can work only with spe-

cific types of variables.

The ACS System is implemented by specific research software patented by

Semeion Research Center (Buscema 2009).

6.5 Universe Lines

ACS, using the weight matrices provided by different algorithms, transforms a

static dataset into a dynamical system: Every external activation of one of the

variables of the original dataset generates a process. Each step of this process is a

state of a dynamical system. At each state, each variable takes a specific value,

generated by the previous evaluation of that variable with all the others. The

process will terminate when the system reaches its natural attractor. At this point,

all the states of the process represent the trajectory drawn by ACS with reference to

the first external input. Thus, for each external recall of the dataset, we get a new

dataset.

If the original dataset is made of N variables, after the training phase (generation

of weight matrices), we can make N independent recalls, one for any of the N

variables. ACS will generate N different datasets, each one representing the path

(trajectory) of a specific recall into an N�1 dimensional space. Of course, each

trajectory could have a different number of states. But it is easy to standardize the

number of states for the trajectories making an homogenous sampling from them.

As the process ends, we have transformed a static dataset of N variables

into N dynamical datasets (systems), each of which represents a universe line
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for each variable of the original dataset. The advantages of this transformation

are many:

1. Each universe line represents how any specific variable modifies itself and the

other variables during a sequential process of negotiation;

2. Each universe line is a trajectory, a sequential machine, whose states cause the

competition and the cooperation processes going on among all of the variables to

emerge spontaneously;

3. Once this happens, we can analyze the relationship between any couple of

variables using two (N�1)-dimensional vectors, and not only one scalar value.

Cropping all of the N universe lines together, we get a new view of the original

dataset: The universe lines suggest us how the relationship among variables is going

to change. In mathematical terms:

LiNxMi
Ii; xið Þ ¼ xi; (6.6)

xnþ1
i ¼ ACSi Ii ¼ 1; xni ;w

� �
: (6.7)

Legenda:

N ¼ Number of dataset variables;

Mi ¼ Number of ACS cycles for the ith variable;

Ii ¼ External Input of the ith variable;

xni ¼ ith Vector of the state of all of the variables at each cycle n;

w ¼ Constant matrices of weights among the variables;

ACSi ¼ function of the ith dynamical system;

xi ¼ Final sequential matrix for the ith variable;

LiNxM Ii; xið Þ ¼ Universe line of the ith variable in relation to the N� 1

other variables in M(i) cycles

The flow chart of ULA is synthetically depicted in Fig. 6.1 below.

6.6 The West Side Story Dataset

The best way to illustrate the practical and the conceptual advantages of the

Universe Line Algorithm (ULA for short) is to work with a test problem that is

well studied in order to provide a meaningful and easily comparable benchmark.

For this purpose, we have chosen to work with the so called Gang dataset inspired

by the well known West Side Story characters (Tables 6.1 and 6.2).

We can sum up the basic statistics of the dataset as in Table 6.3 below:

Accordingly, in Tables 6.4 and 6.5 we report the Carnot maps of the frequencies

of the whole range of combinations of the variables in their relationships to the

characteristics of the two Gangs.
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6.7 ULA Analysis

As a first step, we will apply a linear correlation analysis to every couple of

variables of the dataset. Then, we will use the same linear correlation matrix

weights to calculate, through the ACS algorithm, the Universe Lines matrices for

every variable. We will uniform the cardinality of the cycles of any new UL matrix,

and then merge all the ULs in a new dataset (ULs Dataset). Finally, we will again

calculate the linear correlation of this new dataset, so as to compare the first linear

correlation matrix with the second. As a first stage, the ACS methodology

prescribes that we have to run alternative classification algorithms on the dataset

so as to generate the weight matrices that are needed to feed the ACS itself. To this

purpose, we have considered two different methodologies: Linear Correlation (LC)

and Prior Probability (PP) analysis. LC analysis is based on the first measure of

association presented in (6.1) of Sect. 6.1. PP analysis is based on the enhanced

version of the “simple” measure of association, as presented in (6.2) of Sect. 6.1.

For each approach, we thus get a weights matrix, mapping in an idiosyncratic

way the relationships existing between the variables in the dataset. The weight

matrices for the two methodologies are reported in Tables 6.6 and 6.7.
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Algorithm 
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…

Algorithm 
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Fig. 6.1 Processing work flow: from the assigned dataset to the visualization of the Universe

Lines
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Alternatively, we run the ULA algorithm, taking as inputs for the ACS the

output of the two “simple” methodologies, LC and PP. Thus, the ACS-ULA

methodology plainly builds on the inferences that can be drawn through straight-

forward measures of association. The weight matrix for the ACS-ULA methodol-

ogy is presented in Table 6.8; notice how, unlike the previous ones, the non-zero

entries of this weight matrix are entirely made of either full activations (+1) or

inhibitions (�1).

One could expect that the accuracy of the latter critically depends on that of the

former, and that ACS-ULA performs by yielding relatively marginal, quantitative

improvements in terms of accuracy with respect to the simple algorithms. In fact

(and this was in fact clear by simply looking at the structure of the weight matrix),

this intuition proves to be wrong: ACS-ULA produces a major, qualitative improve-

ment on the inferences of the simple algorithms, even if they turn out to be flawed

by a common bias. In other words, ACS-ULA improves upon the results of LC and

Table 6.1 The West Side Story dataset

The dataset and its basic statistics

Name Gang Age Education Status Profession

ART Jets 40 Junior school Single Pusher

AL Jets 30 Junior school Married Burglar

SAM Jets 20 College Single Bookie

CLYDE Jets 40 Junior school Single Bookie

MIKE Jets 30 Junior school Single Bookie

JIM Jets 20 Junior school Divorced Burglar

GREG Jets 20 High school Married Pusher

JOHN Jets 20 Junior school Married Burglar

DOUG Jets 30 High school Single Bookie

LANCE Jets 20 Junior school Married Burglar

GEORGE Jets 20 Junior school Divorced Burglar

PETE Jets 20 High school Single Bookie

FRED Jets 20 High school Single Pusher

GENE Jets 20 College Single Pusher

RALPH Jets 30 Junior school Single Pusher

PHIL Sharks 30 College Married Pusher

IKE Sharks 30 Junior school Single Bookie

NICK Sharks 30 High school Single Pusher

DON Sharks 30 College Married Burglar

NED Sharks 30 College Married Bookie

KARL Sharks 40 High school Married Bookie

KEN Sharks 20 High school Single Burglar

EARL Sharks 40 High school Married Burglar

RICK Sharks 30 High school Divorced Burglar

OL Sharks 30 College Married Pusher

NEAL Sharks 30 High school Single Bookie

DAVE Sharks 30 High school Divorced Pusher
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PP even in cases in which they commit the same mistakes. This is the consequence

of the dynamic unfolding of information carried out by ULA through the sequential

generation of virtual datasets.

To make a precise evaluation of the amount of information generated by the

dynamic unfolding carried out by ULA, we will calculate again the linear correla-

tion between the linear correlation of each variable with respect to the others in the

original input matrix, and the linear correlation of the same variable with respect to

the others in the final matrix. Eventually, as N is the number of variables of the

dataset (N ¼ 14), we will generate N meta correlations among the variables before

and after the application of the UL Algorithm.

If the meta-correlation indices turn out to be close to 1 (or to�1), that means the

ULA has not extracted new information from the original dataset: An almost perfect

correlation (or anti-correlation) reveals that the new weight matrix is a mere

perturbation of the original one. Whereas, if such indices are significantly away

from (plus or minus) unity, that means that ACS-ULA has generated a substantial

amount of new information with respect to the original dataset. In the latter case, we

need to understand whether such change improves our knowledge about the Gang

dataset or is nothing but noise coding. Table 6.9 presents the linear correlation

matrices before and after the application of ULA (with autocorrelation set to 0):

The result of the comparison is clear: The two matrices present a meaningful

difference. Their meta-correlation is relatively low (r ¼ 0.5858). They are certainly

linked, but weakly enough to be taken as substantially different. Moreover, the

two matrices are different in different ways, according to the specific variable we

focus upon:

• Some Meta correlations are quite high (Jets, Sharks, JH): This means that, for

these variables, ULA does not generate a substantial amount of extra

information;

• Some Meta correlations are low (20s, 30s, College, Bookie), keeping in mind

that the source dataset is the same and the ULA is a deterministic process; this

could mean that ULA has extracted new information from the original dataset;

Table 6.3 The West Side

Story dataset, basic statistics
Freq Jets Sharks Frequence Jets (%) Sharks (%)

20s 9 1 20s 60.00 8.33

30s 4 9 30s 26.67 75.00

40s 2 2 40s 13.33 16.67

JH 9 1 JH 60.00 8.33

HS 4 7 HS 26.67 58.33

COL 2 4 COL 13.33 33.33

Single 9 4 Single 60.00 33.33

Married 4 6 Married 26.67 50.00

Divorced 2 2 Divorced 13.33 16.67

Pusher 5 4 Pusher 33.33 33.33

Bookie 5 4 Bookie 33.33 33.33

Burglar 5 4 Burglar 33.33 33.33

6 Optimal Informational Sorting: The ACS-ULA Approach 193



T
a
b
le

6
.4

C
ar
n
o
t
m
ap

fo
r
Je
ts

Je
ts

2
0
ag
e

2
0
ag
e

2
0
ag
e

3
0
ag
e

3
0
ag
e

3
0
ag
e

4
0
ag
e

4
0
ag
e

4
0
ag
e

S
in
g
le

0
1

1
1

0
0

1
0

0
P
u
sh
er

S
in
g
le

0
0

0
0

0
0

0
0

0
B
u
rg
la
r

S
in
g
le

0
1

1
1

1
0

1
0

0
B
o
o
k
ie

M
ar
ri
ed

0
1

0
0

0
0

0
0

0
P
u
sh
er

M
ar
ri
ed

2
0

0
1

0
0

0
0

0
B
u
rg
la
r

M
ar
ri
ed

0
0

0
0

0
0

0
0

0
B
o
o
k
ie

D
iv
o
rc
ed

0
0

0
0

0
0

0
0

0
P
u
sh
er

D
iv
o
rc
ed

2
0

0
0

0
0

0
0

0
B
u
rg
la
r

D
iv
o
rc
ed

0
0

0
0

0
0

0
0

0
B
o
o
k
ie

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

194 M. Buscema and P.L. Sacco



T
a
b
le

6
.5

C
ar
n
o
t
m
ap

fo
r
S
h
ar
k
s

S
h
ar
k
s

2
0
ag
e

2
0
ag
e

2
0
ag
e

3
0
ag
e

3
0
ag
e

3
0
ag
e

4
0
ag
e

4
0
ag
e

4
0
ag
e

S
in
g
le

0
0

0
0

1
0

0
0

0
P
u
sh
er

S
in
g
le

0
1

0
0

0
0

0
0

0
B
u
rg
la
r

S
in
g
le

0
0

0
1

1
0

0
0

0
B
o
o
k
ie

M
ar
ri
ed

0
0

0
0

0
2

0
0

0
P
u
sh
er

M
ar
ri
ed

0
0

0
0

0
1

0
1

0
B
u
rg
la
r

M
ar
ri
ed

0
0

0
0

0
1

0
1

0
B
o
o
k
ie

D
iv
o
rc
ed

0
0

0
0

1
0

0
0

0
P
u
sh
er

D
iv
o
rc
ed

0
0

0
0

1
0

0
0

0
B
u
rg
la
r

D
iv
o
rc
ed

0
0

0
0

0
0

0
0

0
B
o
o
k
ie

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

Ju
n
io
r
sc
h
o
o
l

H
ig
h
sc
h
o
o
l

C
o
ll
eg
e

6 Optimal Informational Sorting: The ACS-ULA Approach 195



T
a
b
le

6
.6

T
h
e
L
C
w
ei
g
h
ts
m
at
ri
x

[L
C
]

A
R
T

A
L

S
A
M

C
L
Y
D
E

M
IK

E
JI
M

G
R
E
G

JO
H
N

D
O
U
G

L
A
N
C
E

G
E
O
R
G
E

P
E
T
E

F
R
E
D

G
E
N
E

R
A
L
P
H

P
H
IL

IK
E

N
IC
K

D
O
N

N
E
D

K
A
R
L

K
E
N

E
A
R
L

R
IC
K

O
L

N
E
A
L

D
A
V
E

A
R
T

0
.0
0

0
.0
7

0
.0
7

0
.6
9

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.6
9

�0
.2
4

0
.0
7

0
.0
7

�0
.5
6

�0
.5
6

�0
.2
4

�0
.2
4

�0
.2
4

�0
.5
6

�0
.2
4

�0
.2
4

�0
.2
4

A
L

0
.0
7

0
.0
0

�0
.2
4

0
.0
7

0
.3
8

0
.3
8

0
.0
7

0
.6
9

0
.0
7

0
.6
9

0
.3
8

�0
.2
4

�0
.2
4

�0
.2
4

0
.3
8

0
.0
7

0
.0
7

�0
.2
4

0
.3
8

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

S
A
M

0
.0
7
�0

.2
4

0
.0
0

0
.3
8

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.6
9

0
.3
8

0
.6
9

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

0
.0
7

�0
.5
6

�0
.5
6

�0
.2
4

0
.0
7

�0
.5
6

C
L
Y
D
E

0
.6
9

0
.0
7

0
.3
8

0
.0
0

0
.6
9

0
.0
7

�0
.2
4

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.3
8

�0
.5
6

0
.3
8

�0
.2
4

�0
.5
6

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

0
.0
7

�0
.5
6

M
IK

E
0
.3
8

0
.3
8

0
.3
8

0
.6
9

0
.0
0

0
.0
7

�0
.2
4

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.6
9

�0
.2
4

0
.6
9

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

�0
.2
4

�0
.2
4

0
.3
8

�0
.2
4

JI
M

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.0
0

0
.0
7

0
.6
9

�0
.2
4

0
.6
9

1
.0
0

0
.0
7

0
.0
7

0
.0
7

0
.0
7

�0
.5
6

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

�0
.5
6

0
.0
7

�0
.2
4

0
.0
7

�0
.5
6

�0
.5
6

�0
.2
4

G
R
E
G

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
0

0
.3
8

0
.0
7

0
.3
8

0
.0
7

0
.3
8

0
.6
9

0
.3
8

0
.0
7

0
.0
7

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

0
.0
7

JO
H
N

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.6
9

0
.3
8

0
.0
0

�0
.2
4

1
.0
0

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

D
O
U
G

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.6
9

�0
.2
4

0
.0
7

�0
.2
4

0
.0
0

�0
.2
4

�0
.2
4

0
.6
9

0
.3
8

0
.0
7

0
.3
8

�0
.2
4

0
.3
8

0
.3
8

�0
.2
4

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

0
.6
9

0
.0
7

L
A
N
C
E

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.6
9

0
.3
8

1
.0
0

�0
.2
4

0
.0
0

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

G
E
O
R
G
E

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.0
7

1
.0
0

0
.0
7

0
.6
9

�0
.2
4

0
.6
9

0
.0
0

0
.0
7

0
.0
7

0
.0
7

0
.0
7

�0
.5
6

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

�0
.5
6

0
.0
7

�0
.2
4

0
.0
7

�0
.5
6

�0
.5
6

�0
.2
4

P
E
T
E

0
.0
7
�0

.2
4

0
.6
9

0
.3
8

0
.3
8

0
.0
7

0
.3
8

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.0
0

0
.6
9

0
.3
8

0
.0
7

�0
.5
6

0
.0
7

0
.0
7

�0
.5
6

�0
.2
4

0
.0
7

0
.3
8

�0
.2
4

�0
.2
4

�0
.5
6

0
.3
8

�0
.2
4

F
R
E
D

0
.3
8
�0

.2
4

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.6
9

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.6
9

0
.0
0

0
.6
9

0
.3
8

�0
.2
4

�0
.2
4

0
.3
8

�0
.5
6

�0
.5
6

�0
.2
4

0
.3
8

�0
.2
4

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

G
E
N
E

0
.3
8
�0

.2
4

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.6
9

0
.0
0

0
.3
8

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

0
.0
7

�0
.5
6

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

R
A
L
P
H

0
.6
9

0
.3
8

0
.0
7

0
.3
8

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.0
0

0
.0
7

0
.3
8

0
.3
8

�0
.2
4

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

�0
.2
4

0
.0
7

0
.0
7

0
.0
7

P
H
IL

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

�0
.2
4

0
.0
7

0
.0
7

0
.0
0

0
.0
7

0
.3
8

0
.6
9

0
.6
9

0
.0
7

�0
.2
4

0
.0
7

0
.0
7

1
.0
0

0
.0
7

0
.3
8

IK
E

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.6
9

�0
.2
4

�0
.5
6

�0
.2
4

0
.3
8

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

0
.3
8

0
.0
7

0
.0
0

0
.3
8

0
.0
7

0
.3
8

0
.0
7

0
.0
7

�0
.2
4

0
.0
7

0
.0
7

0
.6
9

0
.0
7

N
IC
K

0
.0
7
�0

.2
4

�0
.2
4

�0
.2
4

0
.0
7

�0
.5
6

0
.0
7

�0
.5
6

0
.3
8

�0
.5
6

�0
.5
6

0
.0
7

0
.3
8

0
.0
7

0
.3
8

0
.3
8

0
.3
8

0
.0
0

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.0
7

0
.3
8

0
.3
8

0
.6
9

0
.6
9

D
O
N

�0
.5
6

0
.3
8

�0
.2
4

�0
.5
6

�0
.2
4

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

�0
.5
6

�0
.2
4

�0
.2
4

0
.6
9

0
.0
7

0
.0
7

0
.0
0

0
.6
9

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.6
9

0
.0
7

0
.0
7

N
E
D

�0
.5
6

0
.0
7

0
.0
7

�0
.2
4

0
.0
7

�0
.5
6

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

�0
.2
4

�0
.2
4

0
.6
9

0
.3
8

0
.0
7

0
.6
9

0
.0
0

0
.3
8

�0
.2
4

0
.0
7

0
.0
7

0
.6
9

0
.3
8

0
.0
7

K
A
R
L

�0
.2
4
�0

.2
4

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

�0
.5
6

�0
.5
6

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.0
0

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.3
8

0
.0
7

K
E
N

�0
.2
4
�0

.2
4

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

0
.3
8

0
.0
7

�0
.2
4

0
.0
7

0
.0
0

0
.3
8

0
.3
8

�0
.2
4

0
.3
8

0
.0
7

E
A
R
L

�0
.2
4

0
.0
7

�0
.5
6

�0
.2
4

�0
.5
6

�0
.2
4

0
.0
7

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

0
.0
7

�0
.2
4

0
.0
7

0
.3
8

0
.0
7

0
.6
9

0
.3
8

0
.0
0

0
.3
8

0
.0
7

0
.0
7

0
.0
7

R
IC
K

�0
.5
6

0
.0
7

�0
.5
6

�0
.5
6

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

0
.0
7

�0
.2
4

�0
.2
4

�0
.5
6

�0
.2
4

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.0
7

0
.0
7

0
.3
8

0
.3
8

0
.0
0

0
.0
7

0
.3
8

0
.6
9

O
L

�0
.2
4

0
.0
7

�0
.2
4

�0
.5
6

�0
.2
4

�0
.5
6

0
.0
7

�0
.2
4

�0
.2
4

�0
.2
4

�0
.5
6

�0
.5
6

�0
.2
4

0
.0
7

0
.0
7

1
.0
0

0
.0
7

0
.3
8

0
.6
9

0
.6
9

0
.0
7

�0
.2
4

0
.0
7

0
.0
7

0
.0
0

0
.0
7

0
.3
8

N
E
A
L

�0
.2
4
�0

.2
4

0
.0
7

0
.0
7

0
.3
8

�0
.5
6

�0
.2
4

�0
.5
6

0
.6
9

�0
.5
6

�0
.5
6

0
.3
8

0
.0
7

�0
.2
4

0
.0
7

0
.0
7

0
.6
9

0
.6
9

0
.0
7

0
.3
8

0
.3
8

0
.3
8

0
.0
7

0
.3
8

0
.0
7

0
.0
0

0
.3
8

D
A
V
E

�0
.2
4
�0

.2
4

�0
.5
6

�0
.5
6

�0
.2
4

�0
.2
4

0
.0
7

�0
.5
6

0
.0
7

�0
.5
6

�0
.2
4

�0
.2
4

0
.0
7

�0
.2
4

0
.0
7

0
.3
8

0
.0
7

0
.6
9

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.0
7

0
.6
9

0
.3
8

0
.3
8

0
.0
0



T
a
b
le

6
.7

T
h
e
P
P
w
ei
g
h
ts
m
at
ri
x

[P
P
]

A
R
T

A
L

S
A
M

C
L
Y
D
E

M
IK

E
JI
M

G
R
E
G

JO
H
N

D
O
U
G

L
A
N
C
E

G
E
O
R
G
E

P
E
T
E

F
R
E
D

G
E
N
E

R
A
L
P
H

P
H
IL

IK
E

N
IC
K

D
O
N

N
E
D

K
A
R
L

K
E
N

E
A
R
L

R
IC
K

O
L

N
E
A
L

D
A
V
E

A
R
T

0
.0
0

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

0
.1
3

�0
.0
8

�0
.0
1

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
8

A
L

�0
.0
1

0
.0
0

�0
.0
8

�0
.0
1

0
.0
5

0
.0
5

�0
.0
1

0
.1
3

�0
.0
1

0
.1
3

0
.0
5

�0
.0
8

�0
.0
8

�0
.0
8

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
8

0
.0
5

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

S
A
M

�0
.0
1

�0
.0
8

0
.0
0

0
.0
5

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

0
.1
3

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
1

�0
.5
2

C
L
Y
D
E

0
.1
3

�0
.0
1

0
.0
5

0
.0
0

0
.1
3

�0
.0
1

�0
.0
8

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

0
.0
5

�0
.5
2

0
.0
5

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
1

�0
.5
2

M
IK

E
0
.0
5

0
.0
5

0
.0
5

0
.1
3

0
.0
0

�0
.0
1

�0
.0
8

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

0
.1
3

�0
.0
8

0
.1
3

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
8

0
.0
5

�0
.0
8

JI
M

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
0

�0
.0
1

0
.1
3

�0
.0
8

0
.1
3

0
.9
7

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
8

G
R
E
G

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

0
.0
0

0
.0
5

�0
.0
1

0
.0
5

�0
.0
1

0
.0
5

0
.1
3

0
.0
5

�0
.0
1

�0
.0
1

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
1

JO
H
N

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

0
.0
0

�0
.0
8

0
.9
7

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

D
O
U
G

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

0
.1
3

�0
.0
8

�0
.0
1

�0
.0
8

0
.0
0

�0
.0
8

�0
.0
8

0
.1
3

0
.0
5

�0
.0
1

0
.0
5

�0
.0
8

0
.0
5

0
.0
5

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

0
.1
3

�0
.0
1

L
A
N
C
E

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

0
.9
7

�0
.0
8

0
.0
0

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

G
E
O
R
G
E

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

0
.9
7

�0
.0
1

0
.1
3

�0
.0
8

0
.1
3

0
.0
0

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
8

P
E
T
E

�0
.0
1

�0
.0
8

0
.1
3

0
.0
5

0
.0
5

�0
.0
1

0
.0
5

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

0
.0
0

0
.1
3

0
.0
5

�0
.0
1

�0
.5
2

�0
.0
1

�0
.0
1

�0
.5
2

�0
.0
8

�0
.0
1

0
.0
5

�0
.0
8

�0
.0
8

�0
.5
2

0
.0
5

�0
.0
8

F
R
E
D

0
.0
5

�0
.0
8

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

0
.1
3

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

0
.1
3

0
.0
0

0
.1
3

0
.0
5

�0
.0
8

�0
.0
8

0
.0
5

�0
.5
2

�0
.5
2

�0
.0
8

0
.0
5

�0
.0
8

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

G
E
N
E

0
.0
5

�0
.0
8

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.1
3

0
.0
0

0
.0
5

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

R
A
L
P
H

0
.1
3

0
.0
5

�0
.0
1

0
.0
5

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

0
.0
0

�0
.0
1

0
.0
5

0
.0
5

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
1

P
H
IL

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
1

0
.0
0

�0
.0
1

0
.0
5

0
.1
3

0
.1
3

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
1

0
.9
7

�0
.0
1

0
.0
5

IK
E

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.1
3

�0
.0
8

�0
.5
2

�0
.0
8

0
.0
5

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

0
.0
5

�0
.0
1

0
.0
0

0
.0
5

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
1

0
.1
3

�0
.0
1

N
IC
K

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
8

�0
.0
1

�0
.5
2

�0
.0
1

�0
.5
2

0
.0
5

�0
.5
2

�0
.5
2

�0
.0
1

0
.0
5

�0
.0
1

0
.0
5

0
.0
5

0
.0
5

0
.0
0

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

0
.0
5

0
.0
5

0
.1
3

0
.1
3

D
O
N

�0
.5
2

0
.0
5

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
8

0
.1
3

�0
.0
1

�0
.0
1

0
.0
0

0
.1
3

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

0
.1
3

�0
.0
1

�0
.0
1

N
E
D

�0
.5
2

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
1

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
8

0
.1
3

0
.0
5

�0
.0
1

0
.1
3

0
.0
0

0
.0
5

�0
.0
8

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

�0
.0
1

K
A
R
L

�0
.0
8

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.0
0

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

0
.0
5

�0
.0
1

K
E
N

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

0
.0
5

�0
.0
1

�0
.0
8

�0
.0
1

0
.0
0

0
.0
5

0
.0
5

�0
.0
8

0
.0
5

�0
.0
1

E
A
R
L

�0
.0
8

�0
.0
1

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
1

0
.0
5

�0
.0
1

0
.1
3

0
.0
5

0
.0
0

0
.0
5

�0
.0
1

�0
.0
1

�0
.0
1

R
IC
K

�0
.5
2

�0
.0
1

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
8

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

�0
.0
1

�0
.0
1

0
.0
5

0
.0
5

0
.0
0

�0
.0
1

0
.0
5

0
.1
3

O
L

�0
.0
8

�0
.0
1

�0
.0
8

�0
.5
2

�0
.0
8

�0
.5
2

�0
.0
1

�0
.0
8

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
1

�0
.0
1

0
.9
7

�0
.0
1

0
.0
5

0
.1
3

0
.1
3

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
1

0
.0
0

�0
.0
1

0
.0
5

N
E
A
L

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
1

0
.0
5

�0
.5
2

�0
.0
8

�0
.5
2

0
.1
3

�0
.5
2

�0
.5
2

0
.0
5

�0
.0
1

�0
.0
8

�0
.0
1

�0
.0
1

0
.1
3

0
.1
3

�0
.0
1

0
.0
5

0
.0
5

0
.0
5

�0
.0
1

0
.0
5

�0
.0
1

0
.0
0

0
.0
5

D
A
V
E

�0
.0
8

�0
.0
8

�0
.5
2

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
1

�0
.5
2

�0
.0
1

�0
.5
2

�0
.0
8

�0
.0
8

�0
.0
1

�0
.0
8

�0
.0
1

0
.0
5

�0
.0
1

0
.1
3

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

�0
.0
1

0
.1
3

0
.0
5

0
.0
5

0
.0
0



T
a
b
le

6
.8

T
h
e
A
C
S
�U

L
A
w
ei
g
h
ts
m
at
ri
x

[A
C
S
]

A
R
T

A
L

S
A
M

C
L
Y
D
E

M
IK

E
JI
M

G
R
E
G

JO
H
N

D
O
U
G

L
A
N
C
E

G
E
O
R
G
E

P
E
T
E

F
R
E
D

G
E
N
E

R
A
L
P
H

P
H
IL

IK
E

N
IC
K

D
O
N

N
E
D

K
A
R
L

K
E
N

E
A
R
L

R
IC
K

O
L

N
E
A
L

D
A
V
E

A
R
T

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

A
L

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

S
A
M

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

C
L
Y
D
E

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

M
IK

E
1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

JI
M

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

G
R
E
G

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

JO
H
N

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

D
O
U
G

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

L
A
N
C
E

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

G
E
O
R
G
E

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

P
E
T
E

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

F
R
E
D

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

G
E
N
E

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

R
A
L
P
H

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

P
H
IL

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

IK
E

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

N
IC
K

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

D
O
N

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

N
E
D

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

K
A
R
L

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

K
E
N

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

E
A
R
L

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

R
IC
K

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

1
.0
0

O
L

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

1
.0
0

N
E
A
L

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0

1
.0
0

D
A
V
E

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

�1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

1
.0
0

0
.0
0



T
a
b
le

6
.9

L
in
ea
r
co
rr
el
at
io
n
b
ef
o
re

an
d
af
te
r
th
e
ap
p
li
ca
ti
o
n
o
f
U
L
A

an
d
m
et
a
co
rr
el
at
io
n
b
et
w
ee
n
th
e
tw
o
m
at
ri
ce
s

U
L
A

d
at
as
et

co
rr
el
at
io
n

Je
t

S
h
ar
k
s

2
0
s

3
0
s

4
0
s

JH
C
O
L

H
S

S
in
g
le

M
ar
ri
ed

D
iv
o
rc
ed

P
u
sh
er

B
o
o
k
ie

B
u
rg
la
r

Je
t

0
.0
0
0
0

�1
.0
0
0
0

0
.5
3
1
6

�0
.4
8
0
7

�0
.0
4
6
6

0
.5
3
1
6

�0
.2
3
9
0

�0
.3
2
0
2

0
.2
6
5
2

�0
.2
4
0
1

�0
.0
4
6
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

S
h
ar
k
s

�1
.0
0
0
0

0
.0
0
0
0

�0
.5
3
1
6

0
.4
8
0
7

0
.0
4
6
6

�0
.5
3
1
6

0
.2
3
9
0

0
.3
2
0
2

�0
.2
6
5
2

0
.2
4
0
1

0
.0
4
6
6

0
.0
0
0
0

0
.0
0
0
0

0
.0
0
0
0

2
0
’s

0
.5
3
1
6

�0
.5
3
1
6

0
.0
0
0
0

�0
.7
3
9
1

�0
.3
1
9
8

0
.0
4
7
1

�0
.0
4
1
0

�0
.0
1
1
6

0
.0
2
8
4

�0
.1
1
1
8

0
.1
1
1
9

�0
.0
5
4
2

�0
.2
1
6
9

0
.2
7
1
2

3
0
’s

�0
.4
8
0
7

0
.4
8
0
7

�0
.7
3
9
1

0
.0
0
0
0

�0
.4
0
1
9

�0
.1
2
5
1

0
.1
9
8
1

�0
.0
4
4
7

�0
.0
3
8
5

0
.0
2
8
4

0
.0
1
5
5

0
.1
0
4
8

0
.1
0
4
8

�0
.2
0
9
7

4
0
’s

�0
.0
4
6
6

0
.0
4
6
6

�0
.3
1
9
8

�0
.4
0
1
9

0
.0
0
0
0

0
.1
1
1
9

�0
.2
2
2
9

0
.0
7
8
6

0
.0
1
5
5

0
.1
1
1
9

�0
.1
7
3
9

�0
.0
7
3
7

0
.1
4
7
4

�0
.0
7
3
7

JH
0
.5
3
1
6

�0
.5
3
1
6

0
.0
4
7
1

�0
.1
2
5
1

0
.1
1
1
9

0
.0
0
0
0

�0
.4
1
0
0

�0
.6
3
5
9

0
.0
2
8
4

�0
.1
1
1
8

0
.1
1
1
9

�0
.2
1
6
9

�0
.0
5
4
2

0
.2
7
1
2

C
O
L

�0
.2
3
9
0

0
.2
3
9
0

�0
.0
4
1
0

0
.1
9
8
1

�0
.2
2
2
9

�0
.4
1
0
0

0
.0
0
0
0

�0
.4
4
3
2

�0
.1
5
8
5

0
.3
2
8
0

�0
.2
2
2
9

0
.1
8
9
0

0
.0
0
0
0

�0
.1
8
9
0

H
S

�0
.3
2
0
2

0
.3
2
0
2

�0
.0
1
1
6

�0
.0
4
4
7

0
.0
7
8
6

�0
.6
3
5
9

�0
.4
4
3
2

0
.0
0
0
0

0
.1
0
6
2

�0
.1
6
7
7

0
.0
7
8
6

0
.0
5
3
3

0
.0
5
3
3

�0
.1
0
6
6

S
in
g
le

0
.2
6
5
2

�0
.2
6
5
2

0
.0
2
8
4

�0
.0
3
8
5

0
.0
1
5
5

0
.0
2
8
4

�0
.1
5
8
5

0
.1
0
6
2

0
.0
0
0
0

�0
.7
3
9
1

�0
.4
0
1
9

0
.1
0
4
8

0
.4
1
9
3

�0
.5
2
4
1

M
ar
ri
ed

�0
.2
4
0
1

0
.2
4
0
1

�0
.1
1
1
8

0
.0
2
8
4

0
.1
1
1
9

�0
.1
1
1
8

0
.3
2
8
0

�0
.1
6
7
7

�0
.7
3
9
1

0
.0
0
0
0

�0
.3
1
9
8

�0
.0
5
4
2

�0
.2
1
6
9

0
.2
7
1
2

D
iv
o
rc
ed

�0
.0
4
6
6

0
.0
4
6
6

0
.1
1
1
9

0
.0
1
5
5

�0
.1
7
3
9

0
.1
1
1
9

�0
.2
2
2
9

0
.0
7
8
6

�0
.4
0
1
9

�0
.3
1
9
8

0
.0
0
0
0

�0
.0
7
3
7

�0
.2
9
4
9

0
.3
6
8
6

P
u
sh
er

0
.0
0
0
0

0
.0
0
0
0

�0
.0
5
4
2

0
.1
0
4
8

�0
.0
7
3
7

�0
.2
1
6
9

0
.1
8
9
0

0
.0
5
3
3

0
.1
0
4
8

�0
.0
5
4
2

�0
.0
7
3
7

0
.0
0
0
0

�0
.5
0
0
0

�0
.5
0
0
0

B
o
o
k
ie

0
.0
0
0
0

0
.0
0
0
0

�0
.2
1
6
9

0
.1
0
4
8

0
.1
4
7
4

�0
.0
5
4
2

0
.0
0
0
0

0
.0
5
3
3

0
.4
1
9
3

�0
.2
1
6
9

�0
.2
9
4
9

�0
.5
0
0
0

0
.0
0
0
0

�0
.5
0
0
0

B
u
rg
la
r

0
.0
0
0
0

0
.0
0
0
0

0
.2
7
1
2

�0
.2
0
9
7

�0
.0
7
3
7

0
.2
7
1
2

�0
.1
8
9
0

�0
.1
0
6
6

�0
.5
2
4
1

0
.2
7
1
2

0
.3
6
8
6

�0
.5
0
0
0

�0
.5
0
0
0

0
.0
0
0
0

U
L
A

d
at
as
et

C
o
rr
el
at
io
n

Je
t

S
h
ar
k
s

2
0
’s

3
0
’s

4
0
’s

JH
C
O
L

H
S

S
in
g
le

M
ar
ri
ed

D
iv
o
rc
ed

P
u
sh
er

B
o
o
k
ie

B
u
rg
la
r

Je
t

0
.0
0
0
0

�0
.9
8
8
0

0
.9
8
6
2

�0
.9
7
5
1

0
.2
0
6
9

0
.9
8
7
2

�0
.9
5
3
4

�0
.9
5
8
7

0
.6
0
9
4

�0
.9
1
8
8

0
.4
9
1
1

�0
.9
2
2
5

0
.1
5
6
6

0
.5
5
7
0

S
h
ar
k
s

�0
.9
8
8
0

0
.0
0
0
0

�0
.9
8
1
0

0
.9
8
6
9

�0
.2
0
7
5

�0
.9
8
4
5

0
.9
6
6
3

0
.9
6
4
6

�0
.6
0
0
8

0
.9
3
0
1

�0
.5
0
7
0

0
.9
2
9
4

�0
.1
4
0
0

�0
.5
6
6
0

2
0
’s

0
.9
8
6
2

�0
.9
8
1
0

0
.0
0
0
0

�0
.9
7
4
7

0
.1
8
9
3

0
.9
8
5
0

�0
.9
5
4
7

�0
.9
6
1
4

0
.5
8
9
0

�0
.9
1
3
3

0
.5
2
2
3

�0
.9
3
0
6

0
.1
3
5
7

0
.5
8
5
8

3
0
’s

�0
.9
7
5
1

0
.9
8
6
9

�0
.9
7
4
7

0
.0
0
0
0

�0
.2
1
8
0

�0
.9
7
8
7

0
.9
7
8
3

0
.9
7
4
2

�0
.5
7
6
6

0
.9
3
2
0

�0
.5
2
3
5

0
.9
4
7
1

�0
.1
2
1
6

�0
.5
8
9
0

4
0
’s

0
.2
0
6
9

�0
.2
0
7
5

0
.1
8
9
3

�0
.2
1
8
0

0
.0
0
0
0

0
.2
1
0
6

�0
.2
1
7
1

�0
.2
0
3
8

0
.5
5
5
7

�0
.2
3
5
4

�0
.3
7
4
2

�0
.1
9
5
6

0
.7
7
0
6

�0
.2
9
5
0

JH
0
.9
8
7
2

�0
.9
8
4
5

0
.9
8
5
0

�0
.9
7
8
7

0
.2
1
0
6

0
.0
0
0
0

�0
.9
6
5
5

�0
.9
7
2
2

0
.5
9
2
8

�0
.9
2
0
3

0
.5
1
8
7

�0
.9
4
0
2

0
.1
4
2
5

0
.5
8
2
4

(c
o
n
ti
n
u
ed
)



T
a
b
le

6
.9

(c
o
n
ti
n
u
ed
)

U
L
A

d
at
as
et

co
rr
el
at
io
n

Je
t

S
h
ar
k
s

2
0
s

3
0
s

4
0
s

JH
C
O
L

H
S

S
in
g
le

M
ar
ri
ed

D
iv
o
rc
ed

P
u
sh
er

B
o
o
k
ie

B
u
rg
la
r

C
O
L

�0
.9
5
3
4

0
.9
6
6
3

�0
.9
5
4
7

0
.9
7
8
3

�0
.2
1
7
1

�0
.9
6
5
5

0
.0
0
0
0

0
.9
6
7
1

�0
.5
7
0
2

0
.9
4
0
8

�0
.5
4
3
0

0
.9
5
1
5

�0
.1
1
3
6

�0
.5
8
8
8

H
S

�0
.9
5
8
7

0
.9
6
4
6

�0
.9
6
1
4

0
.9
7
4
2

�0
.2
0
3
8

�0
.9
7
2
2

0
.9
6
7
1

0
.0
0
0
0

�0
.5
6
0
7

0
.9
3
1
4

�0
.5
5
8
3

0
.9
6
8
3

�0
.1
2
5
2

�0
.6
1
6
9

S
in
g
le

0
.6
0
9
4

�0
.6
0
0
8

0
.5
8
9
0

�0
.5
7
6
6

0
.5
5
5
7

0
.5
9
2
8

�0
.5
7
0
2

�0
.5
6
0
7

0
.0
0
0
0

�0
.7
0
0
6

�0
.0
0
7
6

�0
.5
3
6
8

0
.7
4
7
0

0
.0
3
5
6

M
ar
ri
ed

�0
.9
1
8
8

0
.9
3
0
1

�0
.9
1
3
3

0
.9
3
2
0

�0
.2
3
5
4

�0
.9
2
0
3

0
.9
4
0
8

0
.9
3
1
4

�0
.7
0
0
6

0
.0
0
0
0

�0
.4
4
8
5

0
.9
1
9
5

�0
.2
4
5
4

�0
.4
7
6
0

D
iv
o
rc
ed

0
.4
9
1
1

�0
.5
0
7
0

0
.5
2
2
3

�0
.5
2
3
5

�0
.3
7
4
2

0
.5
1
8
7

�0
.5
4
3
0

�0
.5
5
8
3

�0
.0
0
7
6

�0
.4
4
8
5

0
.0
0
0
0

�0
.5
8
1
7

�0
.3
8
5
5

0
.9
4
5
0

P
u
sh
er

�0
.9
2
2
5

0
.9
2
9
4

�0
.9
3
0
6

0
.9
4
7
1

�0
.1
9
5
6

�0
.9
4
0
2

0
.9
5
1
5

0
.9
6
8
3

�0
.5
3
6
8

0
.9
1
9
5

�0
.5
8
1
7

0
.0
0
0
0

�0
.1
2
7
9

�0
.6
4
7
0

B
o
o
k
ie

0
.1
5
6
6

�0
.1
4
0
0

0
.1
3
5
7

�0
.1
2
1
6

0
.7
7
0
6

0
.1
4
2
5

�0
.1
1
3
6

�0
.1
2
5
2

0
.7
4
7
0

�0
.2
4
5
4

�0
.3
8
5
5

�0
.1
2
7
9

0
.0
0
0
0

�0
.3
4
3
9

B
u
rg
la
r

0
.5
5
7
0

�0
.5
6
6
0

0
.5
8
5
8

�0
.5
8
9
0

�0
.2
9
5
0

0
.5
8
2
4

�0
.5
8
8
8

�0
.6
1
6
9

0
.0
3
5
6

�0
.4
7
6
0

0
.9
4
5
0

�0
.6
4
7
0

�0
.3
4
3
9

1
.0
0
0
0

M
et
a co
rr
el
at
io
n

(S
o
u
rc
e-
U
L
A
)

0
.8
0
4
2

0
.8
1
7
9

0
.6
2
3
8

0
.7
0
7
4

0
.3
4
9
4

0
.8
2
7
9

0
.6
0
1
9

0
.2
2
9
9

0
.5
0
7
2

0
.4
7
3
6

0
.5
4
9
6

0
.4
3
2
5

0
.7
0
1
7

0
.5
7
4
2



• Some Meta correlations are very low (40s, HS, Single, Married, Divorced,

Pusher, Burglar): This means that the amount of information generated by

ULA is substantial.

From the point of view of the generation of new information, two different kinds

of changes can be noted:

• A quantitative modification occurs when a variable reinforces its relationship of

excitation or of inhibition with some others. For example, with reference to our

database “JH” and “20s” increase their positive relationship with “Jet” and their

negative relation with “Sharks”. On the opposite side, “HS”, “College” and

“30s” increase their solidarity with “Sharks” and their opposition to “Jets”;

• A qualitative modification occurs when a variable changes the nature of its

relationships with the others. In the case of our database, this is evident with the

variables “40s” and “Divorced.” In the original matrix, their relationship with

both “Jets” and “Sharks” is weak and slightly oriented toward the “Sharks”,

whereas in the final matrix both variables have become completely “Jet” ori-

ented: This means that, whereas by looking at the global structure of the database

the variables “40s” and “Divorced” play an ambiguous role, for the point of view

of the inherent structure of the association of variables from the optimal sorting

point of view, their presence tends to be more meaningful for the identification

of Jets (where their presence is more atypical, being the majority of Jets

relatively young and single) than of Sharks.

Another interesting qualitative change brought about by ULA concerns the

variables “College” and “HS”. These variables are orthogonal in the source dataset.

The presence of any of them excludes the other one. Consequently, from the

viewpoint of a simple linear correlation analysis (original matrix), their relationship

looks like strong mutual inhibition (�0.4432). But, according to ULA, this is a

misleading conclusion. In fact, both the variables “HS” and “College” characterize

in a strong way the variable “Sharks” and both inhibit the variable “Jets”. That is to

say: When a “Sharks” member is not “HS”, he is probably “College”, and vice

versa. So, despite their orthogonal relationship, these two variables support a

similar prototype.

The same pattern of non linear connection is found by ULA among the last three

variables: “Pusher”, “Bookie” and “Burglar”. In the source dataset, they are orthog-

onal to each other, and their weighted frequencies are exactly the same in the two

main classes (“Jets” and “Sharks”). In fact, in the first correlation matrix their

relationships with “Jets” and “Sharks” are null. But, from the ULA point of view,

“Pusher” is strongly “Sharks” oriented, “Burglar” is relatively more “Jet” oriented,

and “Bookie” presents a fuzzy positive membership with “Jets”. Looking at Carnot

maps in detail (Tables 6.4 and 6.5), this pattern becomes evident.

In Fig. 6.2, we present, in detail for each one of the 14 variables, the meta-

correlation between the correlation in the source dataset and the correlation in the

dataset generated by ULA.
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6.8 Optimal Filtering

At this point, we are ready to translate the ULA methodology into actual optimal

sorting inferences and to apply a benchmark analysis. To appreciate the impact of

the ULA methodology, we preliminarily apply an optimal filtering technique to the

more conventional approaches (LC and PP) showing what kind of “minimal

spanning tree” can be obtained by selecting the optimal tree (in terms of relative

distances as measured on the basis of the corresponding weights matrix), and

discussing the informational sorting that they operate on the West Side Story

database. To this purpose we make use of the Population algorithm (Massini

et al. 2010), which operates on the basis of the minimization of a certain measure

of dissimilarity between the matrix of the original distances and that of the mapped

distances.

In the case of LC, presented in Fig. 6.3, the sorting is imperfect. Specifically, two

Sharks, Ike and Ken, get assigned to the Jets. The border between the two gangs is

found in Doug, a Jet. Doug presents in fact a few anomalous characters as a Jet: he

is in the 30s and has a High School education, while at the same time being single,

so he is a proper hybrid of “Jetness” and “Sharkness”. The two incorrectly

attributed individuals, Ken and Ike, are again two hybrids: Ike is in the 30s but

has a Junior High School education and is single, whereas Ken is in the 20s and is

single, albeit having a High School education. Thus, LC analysis seems to be very

sensitive to misattributing Sharks when they are single and presents another

Fig. 6.2 Meta-correlation between the source dataset and ULA
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characteristic that is distinctive of “Jetness”. This finding reflects the ambiguity in

the role of the single versus married family status that emerged in the analysis

before the application of ULA in Sect. 6.2 above.

In the case of PP, sorting is again imperfect and actually replicates the outcome

for the LC methodology, generating a topologically equivalent MST (despite the

corresponding weight matrices are different): Doug is the “border” individual and

Ken and Ike are attributed to the Jets, and also the structure of the branches linking

all other individuals are the same, as shown in Fig. 6.4. Thus, the two methods turn

out to replicate the same errors and to manifest the same bias in terms of improper

use of the informational content of variables for sorting purposes.

What happens once the two weights matrices are fed into the ACS algorithm and

ULA analysis is carried out? The application of the ULA algorithm generates a new

database where each record has 27-dimensions. We make use of the Population

(Massini et al. 2010) algorithm to project such trajectories in a lower-dimensional

space, thus generating the corresponding MST and the 3D rendition of the UL

trajectories. As to the MST, a radically different result emerges, as depicted in

Fig. 6.5.

In the case of ULA, not only are all individuals properly attributed, but the way

in which the underlying structure of associations is depicted is much different, and

in particular, radically different from the one emerging from both of the input
weight matrices. The ACS-ULA methodology has thoroughly re-organized the

information provided by LC and PP into an entirely original, and accurate, scheme.

Again, Doug is the borderline individual. Unlike the LC and PP representations,

where the distribution of weights across the graph measured the connections

between individuals with varying strengths, in the ACS-ULA MST all individuals
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Fig. 6.3 MST resulting from LC analysis
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belonging to the same gang are connected with maximum strength (+1), whereas

the connection between the borderline individuals separating the two gangs (Doug

and Ken) is the only one that presents a maximal negative strength (�1). That is to

say, ACS-ULA has perfectly understood the structure of affiliation that was

embodied in the data and has mapped it without uncertainties.
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Fig. 6.5 MST resulting from ACS-ULA analysis
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As to the structure of the connections between individuals, all members of a gang

are presented as leaves of a small number of “hub” individuals aroundwhom specific

membership sub-classes are organized. First of all, Jets present a “double border”

structure where another individual, Lance, sits as a gateway to “Sharkness” in a

subordinate position with respect to Doug. Lance is in the 20s and has a Junior High

School education, but is married, i.e., he presents the complementary characteristic

with respect to the “anomalous” Sharks Ike and Ken. All remaining Jets other than

Doug and Lance, however, can be seen as “leaves” of Art, who has Junior High

education and is single, but is in the 40s: A highly anomalous feature for a Jet – a trait

that is shared only by another Jet, Clyde, and which, as we know from the analysis of

Sect. 6.2, is taken by ACS-ULA as a highly meaningful carrier of optimal sorting

information for “Jetness”. As to Sharks, they are organized around two hubs,

namely, Ken and Earl. Interestingly, Ken is one of the two “anomalous” Sharks

who was mistakenly included in the Jets according to LC and PP approaches: Thus,

his failed attribution is not simply a mistake, but causes a substantial misunderstand-

ing of the true structure of association among variables on the Sharks side. More-

over, Ken is directly linked with Doug, and thus represents the true borderline Shark

individual. Unlike the other hubs, Earl, who is directly linked to Ken, is an almost a

perfect Shark: He is married and has a High School education, his only anomaly

being age. He is in his 40s (which is, however, less anomalous than for Art, provided

that the representative age for Jets is in the 20s rather than in the 30s).

Notice that in the LC and PPMSTs, no hubness structure emerged, and the graph

topology for the Jet and the Shark groups was pretty much similar. In the ULA

representation, to the contrary, hubness properties are essential to understand the

association patterns within groups, and the graph topologies for the two groups are

substantially different – a single hub structure for Jets with a “thick border”, a dual

hub structure for Sharks with a “thin border”.

The discriminating capacity of ULA can be appreciated even better by means of

a 3D depiction of the dynamics of Universe Lines that is presented in Figs. 6.6, 6.7,

and 6.8. The figures show clearly how, in the environment space, the two

populations are strongly entangled as to the mix of individual characteristics, but

as the successive iterations of ULA made the informational roles of variables for

sorting purposes clearer, they tend to be separated increasingly well, landing in

totally different regions of the space. In Fig. 6.6, we see how the UL trajectories

clearly separate Jets from Sharks individuals in the 3D space, with the exception of

one individual whose trajectory remains eccentric with respect to those of the main

groups, but however firmly placed on the Jets side. Figure 6.7 reveals that this

individual is actually Doug, namely, the borderline one that separates the two

groups. Figure 6.8, finally, reveals that the two anomalous Shark individuals,

namely Ike and Ken, initially follow a trajectory that is slightly anomalous with

respect to the group (that is what leads non-dynamic algorithms such as LC and PP

into error), but that as iterations proceed, they get fully absorbed into the proper

group – as the iterations sort out variables with increasing efficiency, individuals

like Ike and Ken appear less anomalous and coherent with the complex typical

characterization of their group.
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Fig. 6.6 UL in 3D space: optimal sorting of Jets versus Sharks

Fig. 6.7 UL in 3D space: the anomalous trajectory of Doug

206 M. Buscema and P.L. Sacco



This sharp visual separability of gangs in the 3D space induced by ULA reflects

the informational gain that is produced through the enhancement in the classifica-

tion of variables for the purpose of optimal discrimination as explained in Sect. 6.2.

As the iterations of ULA proceed, the association of certain combinations of

variables with gang affiliation becomes clearer, and even variables that were

previously uninformative – in that they are evenly distributed across gangs (such

as criminal profession) – or variables that played an ambiguous role, now become

more and more informative as they turn out to present different joint discriminatory

value depending on the gang. As a consequence, individuals carrying hybrid sets of

characteristics who were previously likely to be miss-assigned now acquire a higher

typicality in their own group and contribute to increase the sorting efficiency of the

methodology.

6.9 Conclusion

Complex patterns of association between variables for significantly non linear

phenomena call for more sophisticated statistical techniques. An observational

sample is like an instant photograph of a body in motion, which may in principle

be compatible with many different motions, the more so the smaller the variability

Fig. 6.8 UL in 3D space: the transient anomalies of Ike and Ken
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contained in the original dataset. In particular, what happens in a highly nonlinear

phenomena is that the relationships among variables may evolve in subtle ways,

following a logic that defies all kinds of inductive extrapolation from the observed

past, however sophisticated. This is particularly the case when the analysis is

conducted on the basis of pairwise comparisons, where the effect of the other

acting variables can sum up in ways that lead to quite misleading inferences.

With ACS-ULA, it becomes possible to explode the kinematics of each single

variable, while at the same time stacking up all such projections to generate a global

coherent picture of the underlying motion. The whole dialectics of the interaction

among (many to many) variables thus becomes visible at once, possibly subverting

the common sense of extrapolative thought.

ACS-ULA may prospectively prove to be especially useful in dealing with

complex social phenomena subject to theory absorption (Dacey 1976, 1979),

where the ability of intelligent agents to incorporate systemic knowledge may

cause extremely complex “twists” in the global relationship among variables. For

instance, the discovery that a certain variable may be extremely useful to track and

predict an agent’s behavior in certain circumstances may induce the agent to

systematically alter his responses to such variable, thereby modifying the role of

the variable in the global system of relationships. If the conditions that allow the

agent to make such a discovery are stable enough, exploring the global kinematics

of variables will reveal this pattern that turns upside down, the one that could be

reconstructed through the analysis of the original dataset.

In a sense, the ACS-ULA approach may be considered a first step toward a new

“physics of global interactions”, where one can analyze all kinds of context-

sensitive behaviors, while being at the same time able to evaluate to what extent

the phenomenon under study really calls for the ULA expanded representation or

not. This naturally leads to the possibility of classifying the complexity of phenom-

ena on the basis of the actual informational gain that is generated by the passage

from the original dataset to the expanded one, for the wider the gap, the more

complex the phenomenon in a highly specific sense. It would be interesting to

check, through suitable meta-analyses, which kinds of phenomena fall into the

same equivalence classes. This could be the starting point of a new unified approach

to a truly cross-disciplinary science of complexity. We look forward to explore

these exciting prospects in forthcoming publications.
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Chapter 7

GUACAMOLE: A New Paradigm

for Unsupervised Competitive Learning

Massimo Buscema and Pier Luigi Sacco

7.1 Introduction: Supervised Versus Unsupervised

Learning – In Search of a New Paradigm

It is well known that learning is a truly complex phenomenon. There are many

different forms of learning, and their codification is far from straightforward. In the

AI-oriented literature (and in particular for Artificial Neural Networks (ANNs)), the

basic distinction that prevails to classify the variety of possibilities at a very basic

level is that between supervised and unsupervised learning. In the supervised form,

learners are subject to schemes of rewards and punishments that are conditional to

the achievement of an external, pre-determined target, and the level of reward/

punishment depends on the level of achievement of the target subject to a certain

metric. In the unsupervised form, learners are free from predetermined targets and

from external enforcement, and they have to derive an endogenous, idiosyncratic

categorization of the phenomenon. One can imagine several hybrid forms where

either the prescription value of the target or the operation of the reward system

(or both) are loosened to allow for some degree of autonomy of the learner’s

information acquisition and categorization strategy (Chapelle et al. 2006; Zhu and

Goldberg 2009). In the case of reinforcement learning, for instance, the learner

generally knows nothing about the objective of the learning process but is exter-

nally rewarded/punished depending on the actions undertaken, and it is the actual

greed for reward/aversion for reinforcement that drives the whole learning process
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(Sutton and Barto 1998). The literature on learning, both on the human and on the

machine side, is enormous and even a sketchy review is beyond the scope of this

paper. It may be useful, however, to consider some contributions that are useful to

define the theoretical context of our paper.

In the human context, both supervised and unsupervised learning clearly have

relevance at the social level, and it is easy to number a variety of situations and even

of institutions that are especially designed to implement specific supervised and/or

unsupervised forms. But as it comes to the actual mechanics of individual learning at

the neural level, the issue becomes much more controversial: Though humans are

sensible to external rewards and punishments and can become quite able at hitting

certain targets, this does not mean that a similar dynamic can describe the actual

process of cognition at the biological level (e.g. Damper et al. 2000). At the moment,

we have no evidence of the existence of ‘teacher neurons’ that set targets and rewards

in order to direct and optimize learning content and pace of the learning system at the

neural level. On the other hand, although the distance between our understanding of

human learning and actual models of machine learning is still remarkable, we begin

to have examples of unsupervised machine learning processes which, with some

suitable amendments, are coming to reflect part of the available evidence about

human learning (K€ording and K€onig 2001). And conversely, we begin to understand
what kind of learning styles tend to emerge in systems calibrated upon the

performances of humans in certain unsupervised learning environments, thereby

illustrating once more the multi-faceted, context-sensitive nature of unsupervised

learning, and allowing for comparisons with the outcomes of supervised learning

(Love 2002). One of the most interesting dimensions of unsupervised learning when

compared to supervised learning, is its sensitivity to redundancy, which allows the

learner (be it a human or a machine) to build up a ‘typical’ representation of the

phenomenon and to single out effectively atypical (i.e., unexpected) incoming signals

(Barlow 1989). As we shall see, expectation formation and redundancy-based detec-

tion of anomalies plays a central role in our approach to unsupervised learning.

The reason why much attention is paid to supervised forms of learning is of

course that they seem to allow a much more effective and efficient learning for

certain tasks where the goal is clearly fixed and the degree of accomplishment is

easily measurable. On the other hand, supervised learning calls for often un-

economical and cognitively limitative pre-formatting of the learning task and data

(Ko and Seo 2000) – and this is a particularly serious problem when relatively little

is known about the patterns to be learned (Bailey and Elkan 1995). Unsurprisingly

then, there is a proliferation of hybrid approaches where both modes are eclectically

implemented from time to time according to the nature of the task (Malakooti and

Raman 2000), or are subsumed into a more general, abridged or unifying approach

(Nadal and Parga 1994; Xu 1994; Zhao and Liu 2007), possibly calibrated upon

actual human learning processes (Gureckis and Love 2003). Also, general criteria

for performance comparisons between supervised and unsupervised learning pro-

cesses are being developed (Lange et al. 2002). In various cases, the unsupervised

approach is introduced as a task- or method-focused counterpart to well-established

supervised learning techniques, to evaluate to what extent one can still achieve
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satisfactory results by loosening up supervision, or to derive innovative approaches

by analogies in cases where actual supervision is not possible or viable (Hansen and

Larsen 1996; Japkowicz 2001; Kim et al. 2002). In some cases, the unsupervised

counterpart even outperforms the supervised one – an outcome that is typically

welcomed with surprise by the researchers (Yarowsky 1995; El-Yaniv and

Souroujon 2001), on the basis of the implicit presumption that, in terms of learning

effectiveness, learners should do better when skillfully driven toward the desired

result by an external trainer. And clearly, cases for the supervised approach against

unsupervised ones on the basis of accuracy and computational efficiency are not

lacking (Carneiro et al. 2007).

An interesting viewpoint on this theoretical debate can be gained by noting that,

from the point of view of the energy function that is being calculated by an

unsupervised versus a supervised ANN, it is easy to subsume both approaches

into a common framework. The energy function for a supervised ANN can be

written as its Mean Square Error:

MSE ¼ 1

2
�
XK
p

XN
i

tp;i � up;i
� �2

; (7.1)

where:

tpi ¼ the i-th target of the p-th pattern;

upi ¼ the i-th output of the p-th pattern;

K ¼ Number of patterns;

N ¼ Number of outputs

whereas, traditionally, the energy minimization function in an unsupervised

auto-associative neural network is represented by the following equation:

En ¼ 1

2
�
XK
p

XN
i

XN
j

up;i � up;j � wi;j; (7.2)

where;

wi, j ¼ trained weights from input j to output i.

But if we assume that (7.1) represents the mean error of a linear perceptron, then

we can develop (7.1) as follows:

MSE ¼ 1

2
�
XK
p

XN
i

tp;i � up; i
� �2 ¼ 1

2
�
XK
p

XN
i

tp; i �
XN
j

up; j � wi; j

 !2

¼

¼ 1

2
�
XK
p

XN
i

tp; i
2 � 2 � tp;i �

XN
j

up; j � wi; j þ
XN
j

up; j � wi; j

 !2
0
@

1
A: (7.3)
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Setting all targets to 0, as in the case of unsupervised neural networks, we have:

MSE¼ 1

2
�
XK
p

XN
i

XN
j

up; j �wi; j

 !2

¼ 1

2
�
XK
p

XN
i

XN
j

up; j �wi; j

 ! XN
j

up; j �wi; j

 !
¼

¼ 1

2
�
XK
p

XN
i

up;i
XN
j

up; j �wi; j

 !
:

(7.4)

At this point it is easy to derive

MSE ¼ 1

2
�
XK
p

XN
i

XN
j

up; i � up; j � wi; j (7.5)

which is the energy function for an unsupervised ANN (see (7.2)).

Therefore:

En ¼ MSE when ðtarget = 0): (7.6)

We can thus in principle regard unsupervised ANN learning as a conceptually

more economical approach than supervised learning in that it entails doing away

with some free parameters, namely, targets. Or, on the other hand, we can make a

case for supervised learning, i.e. for the inclusion of the extra free parameters, as a

way to focus the learning model upon a more clear-cut task.

Being that it is conceptually (and sometimes practically) easier to build up – and

to work with – supervised models (whenever applicable), the literature on unsuper-

vised learning has consequently mainly developed in fields where a supervised

approach was out of question, and this has led to a flourishing of studies aimed at an

all-round exploration of theoretical issues and possibilities, from developing differ-

ent models and methods of unsupervised learning, to carefully analyzing their

optimality properties under certain conditions (Watkin and Nadal 1994), or

providing deep characterizations of their typical error patterns (Liang and Klein

2008). To date, however, there seems to be no reference model that has won an

ample consensus in the literature, whereas the menu of possible proposals is

surprisingly ample and articulated. In the current situation, setting a standard for

unsupervised learning then requires the possible concurrence of two conditions:

Conceptual clarity and plausibility of the model, possibly also with a view to the

reproduction of actual biological processes, and superior performance.

In this chapter, we provide a new paradigm for unsupervised learning which, on

the one side, provides a systematic treatment of the redundancy-based learning

mode that is typical of unsupervised learning, and offers a positive model with a

possible bio-physical interpretation. On the other side, our approach proves to be

systematically outperforming rival supervised learning methodologies for the tasks
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upon which it has been tested, thereby possibly characterizing suitable forms of

unsupervised learning as a superior (i.e. both more accurate and more efficient)

alternative to supervised learning. According to our approach, supervised learning,

rather than enhancing the learning performance due to a clear set-up of the learning

task, actually undermines to some extent the learning potential by inefficiently

eliminating the redundancy that can only be properly exploited under the unsuper-

vised learning mode. In our view, therefore, unsupervised learning is by no means a

‘second best’ with respect to supervised learning, the real issue being focusing upon a

proper approach to unsupervised learning that is able to unleash its hidden potential.

7.2 GUACAMOLE: A New Paradigm for Competitive

Unsupervised Learning – Basic Principles

As it comes to machine learning, a field where supervised ANNs typically obtain

good results is intelligent pattern recognition, but when the classification problem

becomes particularly complex, they compete with several others statistical tools,

such as Support Vector Machines, Bayesian Networks, Classification Trees, KNN,

Gaussian Mixtures, Meta-Classifiers, and so on (Duda et al. 2001; Theodoridis and

Kotroumbas 2009). All these approaches, however, share a common methodology,

that is, they need to be trained on a fraction of the dataset, so that they can rely upon

the input-target distinction to calibrate their parameters – in other words, they

depend on the partition of the dataset into independent and dependent variables,

to generate a specific model to be tested:

Data : xn;yn
� �N

n¼1

Model: x ! y ¼ f ðxÞ þ e:

As already remarked, this kind of framing of the problem has no sensible

biological counterpart: In real biological cognitive processes, neurons actually

create, adapt and delete their connections in an unsupervised way, i.e. treating all

the variables on the same logical level. The real issue then becomes building an

ANN architecture that is able to carry out sophisticated pattern recognition in an

entirely unsupervised way, reasoning in terms of implicit functions rather than of

causal models:

Data : xnf gKnjyn¼K K2½1;2;3;:::;C�;N ¼
XC
k¼1

xkj j

Models: xk ! x0k ¼ f kðxkÞ þ ek:
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Thus, from the point of view of the first requirement introduced in the previous

section, namely biological plausibility, there seem to be reasons to prefer the

unsupervised approach over the supervised one. Coming to the second requirement,

namely performance, the issue becomes more articulated as there are various

dimensions of performance we should take into account, namely, the unsupervised

ANN must:

1. Be able to classify input vectors as well as, or better than, classical, supervised

algorithms;

2. Once exposed to unfamiliar input vectors, behave as a dynamic memory, i.e.,

rely upon previously accumulated knowledge to handle new instances in a

consistent way – whereas classical supervised algorithms get ‘frozen’, i.e. they

respond unconditionally to the new evidence;

3. Be able to generate on its own new inputs that can be representative of each

given class;

4. Be able to simulate the dynamic consequences of its own classifications.

These four sub-requirements into which the notion of performance is split all

correspond to natural features of a truly satisfactory pattern classifier. Specifically,

(sub) requirement 1 is what we could call effectiveness: First of all, of course,

patterns have to be properly recognized, at the highest possible standard against

competitor systems. Requirement 2 may be termed flexibility: The system is able to

generalize its knowledge to handle unprecedented stimuli in an appropriate way.

Requirement 3 is what one means for specificity: the system understands the

typology it has constructed, and is able to replicate the characteristic aspects of

each of its classes. Finally, requirement 4 calls for insightfulness: the system is able

to figure out how the constructed categories will tend to adapt to changing

circumstances.

In this paper, we take this challenge and propose an unsupervised ANN which

meets in principle all of the four requirements above. It is called GUACAMOLE

(General Unsupervised Adaptive Classification Algorithm for Modular Orga-

nization of Learning Evolution). The basic principle behind GUACAMOLE is

very intuitive: It feeds upon a collection of Auto-Associative ANNs (Buscema and

Sacco 2010), each of which is trained to be a ‘specialist’ of a given class of the

recognition task. Each ANN focuses upon its own assigned class, without even

communicating with the others, and learns in an unsupervised way without any

target. ‘Recognizing’ a pattern as belonging to a certain class then amounts to

designing a competitive scheme that at every given round of testing/prediction

chooses as the winner the ‘expert ANN’ for the appropriate category: The key point

is thus how to design such an allocation scheme, and this is what qualifies GUA-

CAMOLE irrespectively of the specific Auto-Associative ANNs which are

employed as ‘experts’.

More specifically, the whole procedure may be described as follows. Given the

recognition problem with N given classes, GUACAMOLE calls for N Auto-

Associative ANNs, one for each class. The available database is split in a
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random way into a Training and a Testing sub-database, respectively. At the

beginning of the Training stage, the Training sub-database is further split into N
sub-sub-databases, one for each class of the recognition task, and the training

records are assigned accordingly to the appropriate class (database). At this point,

Training takes place, and each ANN learns about its own assigned class, thus

becoming the system’s ‘expert’ for that class. It is important to stress that each

ANN only sees the training records pertaining to its assigned class, and knows

nothing about other classes nor how the other ANNs are faring with their training.

At the end of the Training phase, the weights for each ANN are ‘frozen’.

In the Testing phase, then, each ANN keeps its weights fixed and does not learn

further from experience. Each record from the Testing sub-database is then submit-

ted to each of the ANNs, and the corresponding errors are computed at fixed

weights. At this point, the competitive allocation rule is put to work. The rule

simply prescribes that the ANN whose Testing error is closer to the average error

incurred in the Training phase is the winning one, i.e., the test record is attributed to

its class. Intuitively, we could say that the winning ANN is the one that results in

being less ‘surprised’ by the appearance of that specific test record, i.e. the one that

finds it more ‘typical’ given its class-specific training background. It is apparent

here how this particular approach to unsupervised learning relates in a direct way to

the knowledge-generating value of redundant information, and on the construction

of reference types for each taxonomic class.

7.3 GUACAMOLE: Formal Treatment

We are now ready to present the GUACAMOLE architecture in more formal terms.

In the first place, we have to define the particular kind of Auto-Associative ANNs

that are used to implement GUACAMOLE in this specific instance. The choice has

been to work with New Recirculation ANNs (NRC henceforth), i.e., an enhanced

version of Hinton’s Recirculation ANN (Hinton and McClelland 1988) developed

in Buscema (1998). The peculiarity of the NRC is that it is an unsupervised Auto-

Associative ANN which learns through a comparison between its own expectations

about the outcome of its own learning, and the actual outcome, i.e., by reasoning

about, and interpreting, its own learning process. What NRC actually does is to re-

circulate, literally, the output that has been produced at the end of a processing

cycle as a new input for the next processing cycle, and keeping on like this until the

process converges, i.e. until the process reaches a stationary state. In other words,

the arrival of a new input causes NRC to ‘ruminate’ the new piece of information

until it has been digested by the system: In this unsupervised process, it is as if the

ANN takes as its provisional target the actual output of the previous processing

cycle, so that the process ends when the ‘target’ is reached, i.e., when a new

processing cycle does not cause further modifications of the weights.
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In formal terms, the equations defining NRC are the following:

Real Output calculation:

aRo ¼ f
X
i

w
½n�
o;i�aRi þ y½n�o

 !
¼ f NetRo
� � ¼ 1

1þ Exp �NetRo
� � ; (7.7)

Imaginary Input calculation:

NetIi ¼
X
o

w
½n�
i;o � aRo þ y½n�i ; (7.8a)

aIi ¼ r � aRi þ ð1� rÞ � 1

1þ e�NetIi
; 0 < r < 1 (7.8b)

Imaginary Output calculation:

NetIo ¼
X
i

w
½n�
o;i � aIi þ y½n�o ; (7.9a)

aIo ¼ r � aRo þ ð1� rÞ � 1

1þ Exp �NetIo
� � ; (7.9b)

Weights error calculation:

Dwi;o ¼ Rate � aRo � aRi � aIi
� �

; 0 < Rate � 1 (7.10a)

Dwo;i ¼ Rate � aIi � aRo � aIo
� �

; (7.10b)

Biases error calculation:

Dyo ¼ Rate � aRo � aIo
� �

; (7.11a)

Dyi ¼ Rate � aRi � aIi
� �

; (7.11b)

Weights updating:

w
½nþ1�
i;o ¼w

½n�
i;oþDwi;o; (7.12a)

w
½nþ1�
o;i ¼w

½n�
o;iþDwo;i; (7.12b)

Biases updating:

y½nþ1�
o ¼y½n�o þDyo; (7.13a)
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y½nþ1�
i ¼y½n�i þDyi: (7.13b)

where r is a projection coefficient and Rate is the learning coefficient. To under-

stand the equations, we must introduce more detail about the actual structure of

NRC, as in Fig. 7.1 below.

The structure of NRC distinguishes between two different typologies of input

and output: The Real and the Imaginary (hypothetical) ones. Real values are

denoted by an R superscript, whereas imaginary ones by an I superscript. In turn,

Input values are denoted by an i subscript, whereas Output values by an o subscript.
Given the nature of NRC, we consider a generic signal a, without distinguishing in

the main notational corpus between input and output values (which are instead

identified by subscripts), as the same signal plays either the input or the output roles

at different points of the learning cycle. Thus, accordingly, by ai
I and ao

I we mean

the imaginary input and output signals, respectively, and likewise for ai
R and ao

R,

the real input and output signals. Moreover, by woi we mean the (down-streaming)

weights from the input to the output layer, and by wio the (up-streaming, recircula-

tion) weights from the output to the input layer. Finally, the ys are the biases.
Thus, (7.7) tells us that NRC produces its real output by a classical sigmoid

filtering of its net real input. Real output, in turn, becomes the net input for the

imaginary part of the ANN (7.8a); in particular, NRC’s imaginary input is a

weighted average (according to the projection coefficient r) of the real input and
of the net real output at the previous stage (7.8b): That is to say, NRC directs its

learning process by reflecting on the outcomes of its own learning process at

previous stages and by constructing a new, idiosyncratic evidence base which is

the blending, according to a given relative weight, of the external evidence and of

its own past rumination of the same evidence. The imaginary inputs thus generated

become the basis for an imaginary output, which is obtained by the sigmoid filtering

of the net imaginary input (7.9b): That is to say, NRC elaborates an ‘opinion’ of its

own by processing in the familiar way its own idiosyncratic evidence base, which

becomes the hypothetic benchmark against which to compare the actual output. The

way NRC learns, therefore, is by comparison between the outcomes of the real and

of the imaginary information processing, whereas the latter directly takes into

account the NRC’s own architecture, i.e., is the product of self-reflection.

Fig. 7.1 Topology of the new recirculation ANN
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Up-streaming and down-streaming weights, accordingly, are revised according to

the distance between the real and imaginary outputs and inputs, respectively – that

is to say, the distance between the real and the imaginary magnitude of the signal is

interpreted by the system as the ‘error’ to be optimized (7.10b). Biases are revised

according to the same logic (7.11b). Finally, (7.12a and 7.12b) and (7.13a and

7.13b) describe weights and biases updating, respectively.

This brief discussion should thus elucidate in what sense NRC uses the real

magnitudes as a ‘moving target’ to adjust its conjectural (imaginary) structure: The

ANN keeps on adjusting itself, i.e. on self-redesigning its own ‘imagination’, until

the latter turns out to fit naturally the actual observed evidence. Once the observed

evidence turns out to be no longer ‘surprising’ on the basis of the ANN’s ‘imagina-

tion’, then the learning process cools down and NRC ‘loses interest’ in further

processing of the same data. A synthetic picture of the actual structure of the

informational flow for the NRC is provided in Fig. 7.2 below.

Choosing NRCs as ‘local experts’ for GUACAMOLE’s optimal classification

strategy means that, in the Training phase, each NRC develops an internal repre-

sentation of the structure of the particular class to which it has been assigned, and by

doing so, indirectly constructs a characterization of the typical features that identify

that specific class. Once the NRCs are exposed to the Testing records during the

Testing phase, they tend therefore to be more or less ‘surprised’ about the

characteristics of the record they are being shown depending on the extent to

which such characteristics reflect the typicality of their class. This is the simple

principle on which the formal architecture of GUACAMOLE is based:

Legend :

aRi; j ¼ i-th input of the j-th pattern;

aIi; j ¼ i-th output of the j-th pattern;

Q ¼ Number of Input and Output units;

Mp ¼ Number of Patterns of the pth ANN;

ANNp = pth ANN; p 2 N;
N ¼ Number of the ANNs and consequently number of the Classes:

Fig. 7.2 Dynamics of signal transfer in NRC
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TrainErrorp ¼

PMp

j

PQ
i

aRi;j � aIi;j

� �2

Mp
; (7.14)

TestErrorp ¼
XQ
i

aRi � aIi
� �2

; (7.15)

Enp ¼ TrainErrorp � TestErrorp
� �2

; (7.16)

ANNwinner ¼ argMin
p

fEnpg: (7.17)

GUACAMOLE then defines the Training error of each NRC in terms of the

discrepancy between its real and imaginary inputs for the Training database, and the

Testing error in terms of the discrepancy between its (fixed weights) real and

imaginary inputs for that specific Testing record. The winning expert is the one

for which the discrepancy between the above defined Training and Resting errors is

minimal, that is to say, the NRC for which the given Testing record elicits an

imaginary response (on the basis of the fixed weights determined by the shaping up

of the NRC’s imaginary system during the Training phase) which best fits its pre-

existent representation of the levels and modes of variability of ‘its’ class. This

implies, by the way, that the winning NRC need not be the one that commits the

smallest Testing error – the winning NRC is thus not the most accurate, but the one

for which the testing error is as close as possible to the magnitude of its Training

error, i.e. the NRC whose performance in the Testing phase better resonates with

the performance in the Training phase given the specific structural complexity of

the class about which it has been assigned to learn. A representation of the

GUACAMOLE architecture during the Training and Testing phases, respectively,

is provided in Figs. 7.3 and 7.4.

7.4 Benchmarking GUACAMOLE in Pattern Recognition

Tasks

After having presented the structure of GUACAMOLE, we are finally in the

position to evaluate its performance against a battery of the best available

supervised and unsupervised systems in a pattern recognition task, thereby meeting

one of the two requirements put forward in the introductory section. We have

chosen in particular the following competitor systems: the Parzen (1962) classifier

(PARZENC); the BackPropagation ANN (Chauvin and Rumelhart 1995)

(BackProp); the Extended Delta Bar Delta ANN (Minai and Williams 1990)

(EDBD); the Learning Vector Quantization (Kohonen 2001) (LVQ); the Support
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Fig. 7.3 GUACAMOLE training

Fig. 7.4 GUACAMOLE testing
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Vector Machine (Cortes and Vapnik 1995) (SVM); the Modular Neural Networks

(Jordan and Jacobs 1992) (MNN); the Linear Discriminant Classifier (McLachlan

2004) (LDC); the Quadratic Discriminant Classifier (McLachlan 2004) (QDC); the

K-Nearest Neighbor (Bremner et al. 2005), and the Naı̈ve Bayes Classifier (Zhang

2004) (NAIVEBC). Overall, this battery of techniques represents a fair covering of

the most diffused and credited machine learning tools for pattern recognition from a

variety of conceptual backgrounds and analytical approaches, sampling both inside

and outside the ANN field.

The first specific task that has been chosen for the benchmark is the Digit

Database for the recognition of hand-written numeric characters to be found in

the UCI Repository at the address http://archive.ics.uci.edu/ml/. It is a database of

1,594 hand-written digits by different subjects in different situations, which have

been codified in a 256 bit streak, corresponding to a 16 � 16 grid. The task is to

assign each grid to the corresponding digit, for the ten 0–9 digits.

The validation protocol chosen is the familiar one with three phases: Training,

Testing, and Prediction. The database is randomly split into the Training, Testing

and Prediction sets, respectively, and is formatted according to the needs of the

specific system being employed. Systems are optimally calibrated during the

Training phase, and then the performance of the calibrations is measured under

the Testing phase without further learning. Wherever necessary, a Tuning sub-

phase is carried out. Finally, all rival systems are exposed to the Prediction phase,

where entirely new records are shown and their one-shot comparative performance

is measured. Five independent blind runs have been conducted for each system, and

the results reported represent an average of the outcomes of the five runs. A

synthetic representation of the validation protocol can be found in Fig. 7.5.

Fig. 7.5 Validation protocol
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For the final Prediction phase, 319 records covering all of the 10 digits to be

classified have been exposed to the optimally calibrated versions of the respective

systems. In Table 7.1 we report the comparative scores of the best-performing

systems, disaggregated into the scores for each single digit:

From Table 7.1, the following results can be easily inferred. GUACAMOLE

turns out to be the best performing system in the recognition of 5 digits out of 10

(with one ex-aequo). With the exception of the recognition of the 0 digit, it is

however always in the group of the top-3 performing systems. In terms of both

arithmetic mean and weighted mean of errors (which takes into account the relative

size of the sub-samples for the various digits), GUACAMOLE is, however, by far

the best performing system, with a spread of around 10 errors in absolute size from

the second-best performing system (PARZENC), and an almost three-points spread

in percentage figures. Moreover, GUACAMOLE’s standard deviation for errors is

the smallest in the lot, so that at the same time the system is both the more accurate

and the more reliable. A visualization of the relative performances for the simple

average of errors is provided in Fig. 7.6.

In this benchmark, then, GUACAMOLE fully passes the test of relative

performances with respect to competing supervised and unsupervised systems.

Moreover, the performance gap is such that the benchmark seems to confirm the

idea that a carefully designed unsupervised system may be inherently superior to

alternative supervised systems once the knowledge potential of redundancy is

properly channeled, and not, as it has been often argued, as a second-best alternative

to be used when the structure of the problem does not allow for supervised learning.

The second benchmark test we carry out has to do with a more realistic situation,

namely, the recognition of patients of Amyotrophic Lateral Sclerosis (ALS), a

complex, highly multi-factorial disease which seems to derive from a subtle

interaction between environmental and genetic susceptibility factors. The database

is made of 61 polymorphisms within 35 genes, sampled in 54 sporadic ALS patients

and 208 controls. A preliminary study of ANN-based pattern recognition on this

database has been conducted in Penco et al. (2008). Ability to successfully detect

ALS patients from genetic background then provides a clear case for complex,

multi-factorial genetic background as a major and only partially understood deter-

minant of the disease. The results in Penco et al. (2008) already provided sound

evidence of this sort, with the top scoring system reaching an overall average

success in prediction of around 96 %. Here we use this same database as a second

benchmark for our battery of competing systems already tested out with the Digit

database.

In this second experiment, we have adopted an even more articulated validation

protocol, in which not only, as before, five independent runs for each system are

carried out, but each system is in turn Trained and Tested twice in order to rule out

the possibility of selecting sub-optimal calibrations for a given system. The new

validation protocol is reported in Fig. 7.7.

As before, we report here in Table 7.2 the scores obtained by the best performing

systems, as averages for the 5 � 2 independent runs, for a Prediction test database

of 265 records (58 cases vs. 207 controls).
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As shown by the results, GUACAMOLE is neither the best system in detecting

actual patients nor in detecting controls, but overall it turns out to be by far the best

performing system both in terms of accuracy and reliability: The two rival systems

whose standard deviation is smaller than GUACAMOLE are the two worst

performing ones, and thus in this case a low deviation means that they are stuck

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

GUACAMOLE PARZEN EDBD LVQ SVM MNN LDC KNN NAIVEBC

Digit 256 input x 10 classes

Fig. 7.6 Relative performance of the competing systems, digit database

Fig. 7.7 5 � 2 validation protocol
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away from an acceptable level of performance. The second-best system in this

benchmark, namely SVM, is such that even the 1-standard deviation score above

weighted mean remains below the weighted mean of GUACAMOLE: Once again,

thus, there is a performance that is on a different order of magnitude than that of the

best rival system. The comparative performance scores are visualized in Fig. 7.8.

The superior performance of GUACAMOLE in entirely different recognition

tasks, in which by the way the performance of rival systems varies wildly (for

instance, the second-best performing system for the Digit benchmark, PARZENC,

is the worst performing one in the ALS benchmark), seems to suggest that indeed

this type of unsupervised system may set a new standard, opening a new view on the

Table 7.2 Comparative scores of the best performing systems for the ALS database

Amyotrophic Lateral Sclerosis 61 input � 2 classes

265 Records: 58 Cases vs. 207 Controls

5 � 2CV Cases (%) Controls (%)

A.Mean

Acc (%)

W.Mean

Acc (%) Errors St Dev

GUACAMOLE 93.79 99.61 96.70 98.34 2.2 1.32

SVM 87.59 98.07 92.83 95.77 5.6 1.96

Back Prop 80.35 80.20 80.27 80.23 26.2 8.02

LDC 84.10 70.85 77.48 75.53 33.1 4.48

NAIVEBC 96.90 50.00 73.45 60.25 52.7 53.67

KNN 100.00 12.55 56.28 31.69 90.5 3.03

Quadratic DC 13.47 99.24 56.36 44.68 91.5 0.53

PARZENC 100.00 0.10 50.05 21.96 103.4 0.7

Fig. 7.8 Relative performance of the competing systems, ALS database
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potential of unsupervised learning systems as the natural option even in context

where traditionally supervised systems are electively chosen and considered to be

the reference option.

7.5 Discussion

In this final section, we briefly discuss some of the implications of our results for the

requirements set forth in the introductory section of the paper and for future

research. We have already seen that, speaking of performance, it is indeed the

case that our unsupervised system outperforms the rivals in terms of both predictive

accuracy and reliability. The effectiveness sub-criterion is then strongly met by

GUACAMOLE. At this point, it will be important to test the system in terms of the

remaining performance criteria, namely, flexibility, specificity, and insightfulness.

This will be the object of future work, and will allow us to explore in some detail so

far often overseen aspects of unsupervised machine learning. This is an especially

interesting perspective in view of the main finding that emerges from the present

paper, namely, the possibility of looking at unsupervised learning as the natural
framework for any kind of machine learning task.

From what it has already been said so far, there are good reasons to expect that

GUACAMOLE can perform satisfactorily on the other criteria as well. In terms of

flexibility, insofar as the new item being submitted is an outlier, i.e. an anomalous

member of one of the categories being learnt, the decentralization of the system into a

population of local experts would likely guarantee that the singular characteristics of

the outlier are best framed into the affine typological class rather than misattributed to

others – whereby causing a global, inefficient restructuring of the system’s represen-

tational model for the task – as GUACAMOLE’s local experts only learn about the

characteristics of their assigned class and are not messing up this information in any

way with other pertaining to different classes; it is only at the competitive allocation

level that the various local expertise’s merge. If, on the contrary, the new item being

submitted is an entirely new one, not fitting into the already presented classes (e.g., the

number 10, made of two digits rather than one, for the Digit database), again the

system can adapt reasoning by analogy, i.e. by assigning the new number to the class

that corresponds to the local expert that is ‘surprised’ the least by the new occurrence –

and given the nature of the typology constructed by the local expert, it is likely that the

attribution will occur on the basis of structural rather than contingent characteristics,

and that therefore it will display a relative stability across cases.

Likewise, and by the same token, elicitation of new, unobserved representative

examples of a given class is a relatively easy task for the local expert of GUACA-

MOLE, unlike what would happen for other methods which do not work upon a

separable process of typology-building for the various classes. And finally, given

the self-reflecting nature of the Auto-Associative ANNs employed in GUACA-

MOLE (and most notably of the NRC used in the implementation carried out in this

paper), this system is naturally qualified to explore the dynamic implications of its
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own categorizations. All these intuitions, however, will be rigorously tested in

future work.

Finally, it is interesting to discuss how the GUACAMOLE architecture responds

to the other requirement put forth, namely, its conceptual clarity and biological

plausibility. The idea that pattern recognition may be managed through the devel-

opment of local specialists which are independently trained for the purpose is

fascinating and not devoid of biological plausibility. The available preliminary

evidence seems to suggest that distributed neural systems play a key role in

classification tasks, and that distinct aspects of the task tend to be mediated by

distinct neural representations (e.g. Haxby et al. 2000). Although at the moment it is

not possible to conjecture any specific counterpart in the biological organization of

human cognition, the proposed one is nevertheless a clear-cut logical scheme which

may be the object of finalized thinking and analysis, unlike what generally happens

for most of the competing machine learning systems which do not admit an

analogous biological scheming – let alone an accurate translation into biological

terms.

For these reasons, we look forward to further work to check whether GUACA-

MOLE may be seen as a first instance of a new paradigm for unsupervised learning

– and for certain dimensions of machine learning more generally.
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Chapter 8

Spatiotemporal Mining: A Systematic

Approach to Discrete Diffusion Models

for Time and Space Extrapolation

Massimo Buscema, Pier Luigi Sacco, Enzo Grossi, and Weldon A. Lodwick

8.1 Introduction: Diffusion as an Ubiquitous Concept

Diffusion may be synthetically described as the phenomenon of spatiotemporal

propagation of a certain variable across a medium, where the modes of propagation

crucially depend on the characteristics of the medium and the entities of interest.

Instances of propagation abound in virtually every discipline, and thus there is a

rich, vast and heterogeneous literature dealing with it. Consequently, diffusion may

safely be deemed to be a ubiquitous concept (Buchanan 2001). A consequence of

this ubiquity is that diffusion has been tackled analytically by scholars belonging to

very different disciplines, using a diverse range of techniques. In some cases the

medium has a social nature such as in the case of epidemics or in the propagation of

innovations and attitudes, whereas in others it has a physical nature, like in the

propagation of a fluid through a porous medium or in the propagation of

earthquakes in the underlying crust.

In this study we present a general approach to the study of diffusion phenomena

based on a relatively simple though rather general framework, and on an entirely

new mathematical treatment that allows for accurate description/reproduction,

understanding, and prediction of the outcomes of diffusion phenomena. Our

approach is the result of the combination of several modules that have been
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developed recently at Semeion Research Center, and in particular what we call

the Target Diffusion Model (TDM)1 and Twisting Algorithm based on Twisting

Theory (TWT).2 The aim of this chapter is to present our general approach to

the modeling of diffusion phenomena and its implementation through the

TDM + TWT methodology. The approach is subsequently tested for predictive

accuracy using as a benchmark epidemic data from the Dengue fever crisis that

occurred in the state of São Paulo, Brazil, in 2001 (Ferreira 2005, 2010).

More specifically, we may think of diffusion in terms of the following general

logical scheme. ConsiderM fixed entities in two-dimensional space (the entity set),

and a sequence of discrete time periods n ¼ 1,. . ., N where to each of the entities

one can assign a vector of state variables which describe the overall state of the

entity at each given time with respect to the phenomenon under study. For example,

the entities could be specific population centers and the vector of state variables

could describe the number of infected and non-infected residents at each given

time, respectively. Or alternatively, to recall an issue that has become very popular

in the study of the diffusion of innovations, the entities could be physicians and the

state variables could be the medical treatments that they prescribe to their patients

for given diseases at each given time (Becker 1970). The reason we refer to an

entities set is that our measurement capacity is limited, and therefore we are

generally able to describe the diffusion of the variables across the medium only

at carefully chosen sample points. The underlying assumption is, of course, that

there are spatiotemporal cause/effect relationships that are captured by our models

from the data. Our approach is to let the data determine what these relations are

rather than imposing a-priori relationships as would occur in partial differential

equation diffusion models. To be sure, there is an underlying architecture to how

the data are analyzed to extract the dynamics. In order to understand the actual

mechanics of diffusion, we must address three basic issues:

(a) The reconstruction of the global causation process: what are the entities whose
state at time n influences any given entity at time n + 1? And with what

strength? That is to say, what is the global causation process that drives the

diffusion of the quantity under study through the medium? We will be able to

address this issue by means of the TDM.

(b) The reconstruction of the effects on unmapped entities: what can be said of the

effects of the diffusion process for entities (e.g. at points) which are not

included in the original entities set but belong to the same diffusion space.

1 Target Diffusion Model (T.D.M.) is a USA Patent pending#13/070,854 (24 March 2011),

inventor: Massimo Buscema, m.buscema@semeion.it; owners Semeion Research Center of

Sciences of Communication, via Sersale 117, Rome, 00128, Italy and CSI Research & Environ-

ment, via CesarePavese, 305, Rome, Italy.
2 Twisting Theory is a USA Patent pending #12/969,887 (16 Dec 2010), inventor: Massimo

Buscema, m.buscema@semeion.it; owners Semeion Research Center of Sciences of Communica-

tion, via Sersale 117, Rome, 00128, Italy and CSI Research & Environment, via CesarePavese,

305, Rome, Italy.
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For example, what are the diffusion patterns at points that are not part of the

original population centers data? Using the outputs of TDM, we will apply

TWT to address this issue.

(c) The step-by-step predictability of the process: what are the invariants of the

process, that is to say, is it possible to predict which entities at n will influence

what entities at n + 1 in a blind (i.e., unconditional) way? Using the outputs of

TDM, we will make use of a specific supervised artificial neural network to

address this issue.

Being able to successfully tackle issues a–c above basically amounts to being able

to decipher and reproduce the inner mechanics (also called the behavior system) of

the diffusion process. As our approach is not based upon any specific disciplinary

perspective, we believe that if such goal is reached, the corresponding methodology

must be successfully applied to any instance of diffusion phenomenon, whatever the

disciplinary context in which it takes place. Therefore, in this paper we are up at

developing an all-purpose approach to the study of diffusion. To emphasize, our

philosophy is thus one in which we impose no a-priori structure such as is true in

partial differential equation models on the dynamical system. We seek to extract this

structure from the available data. We will, however, impose an architecture to the

way we extract relationships, but we do not predefine the relationships as is true of

many other approaches such as partial differential equations.

8.2 The Target Diffusion Model (TDM)

As explained in the introductory section, we consider here M entities in the

two-dimensional plane, identified by their Cartesian coordinates (X,Y), observed
at a sequence of times n ¼ 1,. . .,N. To each entity is assigned a quantity that varies
through time, and that is described by an M � N matrix Q. We can resume the

above in the following table (Table 8.1):

To reconstruct the causation process that drives diffusion, we have to build a

model of the reciprocal influences among entities through time. The basic elements

that we have to consider are: The spatial coordinates of the entities (Space, S); the

quantities assigned to each entity (Quantity, Q), at each time step (Time, T), so that

we can write the causation model in its general form as

M ¼ C S; T;Qð Þ:

We can accordingly define a local model M([n,n + 1]) in Markovian terms, to

express the likelihood of relationship between any entity at time n and any entity at
time n + 1, in the following way:

M
½n;nþ1�
i;j ¼ C xi; yi; q

½n�
i ; q

½nþ1�
i ; xj; yj; q

½n�
j ; q

½nþ1�
j

� �
:
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The TDM translates this general scheme into a specific model of diffusion

dynamics, which can be thought of as a ‘competitive gravity’ model, where the

strength of the link between two entities is measured by the direct product of their

quantities, (exponentially) weighted by their relative distance, and adjusted by their

relative increments. Among the various strengths of association between one entity

and all of the others, the stronger one ‘wins’ and causes the creation of a direct link.

In formal terms:

S
½n;nþ1�
i;j ¼ q

½n�
i � q½nþ1�

j � e�
di;j
a �

1þ q
½nþ1�
i � q

½n�
i

� �

1þ q
½nþ1�
j � q

½n�
j

� � ; q 2 ½0; 1�;

S
½n;nþ1�
Win;j ¼ ArgMax

i
S
½n;nþ1�
i;j

n o
;

C
½n;nþ1�
i;j ¼ 1 i ¼ Win;

C
½n;nþ1�
i;j ¼ 0 i 6¼ Win;

8<
:

9=
;:

Legend:

q
½n�
i ;q

½nþ1�
i = Quantity in source place at the time n or at the time n + 1;

q
½n�
j ;q

½nþ1�
j = Quantity in destination place at the time n or at the time n + 1;

di;j ¼ Distance between source and destination;

a = Tuned parameter connected to the distance;

S
½n;nþ1�
i;j ¼ Strength of directed connection between source

at time n and destination at time n + 1;

S
½n;nþ1�
Win;j ¼ Selection of the strongest connection between source

at time n and destination at time n + 1;

C
½n;nþ1�
i;j ¼ Presence of a directed link between source

at time n and destination at time n + 1:

Table 8.1 Entities, their coordinates across the medium and the time evolution of the quantity

Entities X Y Time (1) Time (2) Time (3) Time (. . .) Time (N)

Entity (1) Ex(1) Ey(1) q(1,1) q(1,2) q(1,3) q(1,. . .) q(1,N)

Entity (2) Ex(2) Ey(2) q(2,1) q(2,2) q(2,3) q(2,. . .) q(2,N)

Entity (3) Ex(3) Ey(3) q(3,1) q(3,2) q(3,3) q(3,. . .) q(3,N)

Entity (4) Ex(4) Ey(4) q(4,1) q(4,2) q(4,3) q(4,. . .) q(4,N)

Entity (5) Ex(5) Ey(5) q(5,1) q(5,2) q(5,3) q(5,. . .) q(5,N)

Entity (6) Ex(6) Ey(6) q(6,1) q(6,2) q(6,3) q(6,. . .) q(6,N)

Entity (7) Ex(7) Ey(7) q(7,1) q(7,2) q(7,3) q(7,. . .) q(7,N)

Entity (8) Ex(8) Ey(8) q(8,1) q(8,2) q(8,3) q(8,. . .) q(8,N)

Entity (. . .) Ex(. . .) Ey(. . .) q(. . .,1) q(. . .,2) q(. . .,3) q(. . .,. . .) q(. . .,N)

Entity (M) Ex(M) Ey(M) q(M,1) q(M,2) q(M,3) q(M,. . .) q(M,N)

234 M. Buscema et al.



In other words, TDM reconstructs a causal scheme by singling out the ‘main

channel’ through which diffusion takes place and by highlighting the corresponding

links that carry out the basic channeling. To better elucidate the sense and the

implication of this simple model, let us consider a specific, toy example. Consider

the following table, providing us the data that describe the specific diffusion process

(Table 8.2):with the corresponding spatial distribution of entities as in Fig. 8.1:

By applying the TDM equations, we easily derive the following computations

for the transition from n ¼ 0 to n ¼ 1 (see Tables 8.3 and 8.4):

and see Tables 8.5 and 8.6 for the transition between n ¼ 1 and n ¼ 2.
In terms of causation schemes, we then have, in the transition from n ¼ 0

to n ¼ 1 (see Table 8.7)

and accordingly, in the transition from n ¼ 2 to n ¼ 3 (Table 8.8).

Table 8.2 An example

Data Quantity at n ¼ 0 Quantity at n ¼ 1 Quantity at n ¼ 2

Place 1 0 0 5

Place 2 0 0 2

Place 3 0 4 0

Place 4 1 3 7

Place 5 1 1 4

Fig. 8.1 The spatial distribution of entities as of Table 8.2
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Table 8.3 TDM matrix of strength of the connections between time 0 and time 1

Strength of connections between places (Row ¼ Time (n) � Columns ¼ Time

(n + 1))

n ¼ 0; n ¼ 1 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 0 0 0 0 0

Place 4 0 0 1 0 0.008928

Place 5 0 0 0.089095 0.016203 0

Table 8.4 TDM matrix of the plausible connections between time 0 and time 1

Presence of connections between places (Row ¼ Time (n) � Columns ¼ Time

(n + 1))

n ¼ 0; n ¼ 1 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 0 0 0 0 0

Place 4 0 0 1 0 1

Place 5 0 0 0 1 0

Table 8.5 TDM matrix of strength of the connections between time 1 and time 2

Strength of connections between places (Row ¼ Time (n) � Columns ¼ Time

(n + 1))

n ¼ 1; n ¼ 2 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 0.010040 0.002334 0 1 0.072003

Place 4 0.006473 0.005317 0 0 0.010714

Place 5 0.000994 0.000029 0 0.005165 0

Table 8.6 TDM matrix of the plausible connections between time 1 and time 2)

Presence of connections between places (Row ¼ Time (n) � Columns ¼ Time

(n + 1))

n ¼ 1; n ¼ 2 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 1 0 0 1 1

Place 4 0 1 0 0 0

Place 5 0 0 0 0 0

Table 8.7 Transformation from n ¼ 0 to n ¼ 1, according to TDM

Transf_0 � > 1

Source TRF Destination Strength

Place_4 ! Place_3 1

Place_5 ! Place_4 0.016203

Place_4 ! Place_5 0.008928



The above computations may be easily translated into graphs, thus obtaining the

following for the two above transitions (respectively Figs. 8.2 and 8.3 and thus, by

overlapping the first two steps, we obtain the following graph in Fig. 8.4).

We can of course proceed with further steps, thereby obtaining a dynamic

representation of the direction of the main causation scheme of the process in

terms of a graph of increasing complexity.

Now, in order to transform our discrete diffusion model into a proper diffusion

process over a scalar field, we have to determine how the quantities located at each

entity in each given moment influence the state of any given point of the scalar field

with generic coordinates (x,y).
First of all, we determine the potential influence of each given entity at a given

time by adding up the strength of its connection toward all other entities at that time,

Table 8.8 Transformation from n ¼ 1 to n ¼ 2, according to TDM

Transf_1 � > 2

Source TRF Destination Strength

Place_3 ! Place_1 0.010040

Place_4 ! Place_2 0.005317

Place_3 ! Place_4 1

Place_3 ! Place_5 0.072003

Fig. 8.2 Graphs for the first step of the process: transformation from n ¼ 0 to n ¼ 1
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Fig. 8.3 Graphs for the second step of the process: transformation from n ¼ 1 to n ¼ 2

Fig. 8.4 Cumulative influence graph
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and the cumulative potential influence of the entity by adding up potential

influences over all of the time periods:

I
½n;nþ1�
ix;y

¼
XM
j

S
½n;nþ1�
i;j ; Potential Influence of the i-th assigned entity

upon the whole environment space;

CIix;y ¼
XN
n

XM
j

S
½n�
i;j ; Cumulative Potential Influence of the i-th assigned entity

upon the whole environment space;

M ¼ Number of the assigned entities;

N ¼ Number of time steps:

Next, we define the potential U of the scalar field through an (exponential)

weighting of the potential influence of each given entity, controlled by the distance

between any point of the field and that entity, and then adding over all of the

entities:

U
½n;nþ1�
kx;y

¼
XM
i

e�
D Eix;y ;Pkx;yð Þ

a � I½n;nþ1�
ix;y

;

D(�) = Distance between the generic k-th point (P) and the i-th assigned entity (E)

M = Number of the assigned entities

Each given point of the field then absorbs some influence from each of the entity

according to their relative strengths and distances.

We are thus in the position to define the corresponding scalar fields for the

various steps of the diffusion process of our toy example thereby obtaining the

following pictures (see Figs. 8.5 and 8.6).

And thus, the overlap of the two fields for each single influence step, following

the same logic that yielded the cumulative influence graph as of Fig. 8.4, provides

the actual scalar field of the influence after the first two steps (Fig. 8.7):

In its essence, we have thus described TDM: It is a diffusion model based on a

gravitational logic which determines selectively the actual pattern of the influence

lines that best describe a certain diffusion model among a certain finite number of

entities, and can be extended in a natural and consequential way to a continuous

diffusion model where the potential that generates the scalar field is obtained

applying the same gravitational logic to all points of the environment space. In

the following sections, after having presented the basic concepts of Twisting

Theory (TWT), we will put this model at work on a specific and demanding

example.
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Fig. 8.6 Scalar field for the toy example: steps 2

Fig. 8.5 Scalar field for the toy example: steps 1
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8.3 Twisting Theory and Twisting Algorithm (TWT)

With respect to the framework already defined in Sect. 8.2, imagine now that the

entities located in the environmental space are no longer fixed but tend to move

because of the action of some inherent force. In particular, this force can be

interpreted as the quantity associated with the entity, which now gives a momentum

to the entity that depends on the magnitude of the quantity itself. Each entity thus

describes a trajectory in the environment space. For simplicity, we assume all such

trajectories to be linear. Suppose moreover that the space is covered by a grid, and

that the force that acts on the entities also acts on the grid, so that the change of

position of the entities brings about accordingly a distortion of the original grid, i.e.,

the field of forces generated by the quantities assigned to the entities may now be

visualized in terms of the modifications that it produces on the grid. We call all

points belonging to the grid geometrical points. How can we describe the actual

effect onto the grid of the forces acting upon the entities?

To illustrate the idea, consider the following 36 � 36 grid with five entities and

a trajectory in two time steps (Fig. 8.8).

The approach of TWT is to divide trajectories into N given sub-steps of equal

length, so that each entity is dynamically identified by the coordinates of its place of

Fig. 8.7 The scalar field with

the overlap of the first two

influence steps
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origin, by the moving local target corresponding to the movement at each single

sub-step, and by the coordinates of the place of arrival of the trajectory (Fig. 8.9).

TWT focuses upon the distances between a given geometrical point (i.e., a point

of the grid) and the position of each given entity as it moves along its trajectory,

measuring how such distance varies at each sub-step of the trajectory.

A generic point of
the Grid

Entity #1 at the
step 1

Entity #1

At the step 0

Trajectory of

Entity #1

Entity #2 and

its Trajectory

Entity #4 and

its Trajectory

Entity #5 and

its Trajectory

Entity #3 with

Null Trajectory

Fig. 8.8 An example of entity trajectories across the grid

Trajectory of Entity #1

Entity #1
Origin 
t=0

Entity #1
Final Target
t=1

Sub-Step

Local Target
at n=1

Local Target
at n=3

Local Target
at n=5

…
n=2

…
n=4

…
n=6

Local Target
at n=7

…
n=…

Fig. 8.9 Splitting of the entity trajectory into sub-steps
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dSijðnÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPi ðnÞ� xSj

� �2
þ yPi ðnÞ� ySj

� �2r

dTijðnÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPi ðnÞ� xTj ðnÞ
� �2

þ yPi ðnÞ� yTj ðnÞ
� �2r

:

Legend :

xPi ðnÞ;yPi ðnÞ¼ Coordinates of a generic point (i) of the grid at substep (n);

when n = 0, geometrical points all sit upon the regular grid:

xSj ;y
S
j ¼ Origin Coordinates of each entity (j):

xTj ðnÞ;yTj ðnÞ¼ Local target of the coordinates of each entity (j) at any substep (n);

when n = 0, the entity lies at its Origin, whereas when n = N the entity

has completed its trajectory:

dSijðnÞ¼ Distance of a generic point (i) from the Origin of any entity at substep (n);

dTijðnÞ¼ Distance of a generic point (i) from the Local Target (n) of any entity

atsubstepðnÞ;

This variation in the distance can be interpreted as the accumulation of potential

energy that is consequently free to act upon the grid, i.e. upon the position of the

geometrical points themselves. The more the varying position of the entity along its

trajectory tends to change its distance from the given geometrical point from step to

step, the more the grid is consequently ‘stretched’ or ‘shrunk’ accordingly

(Fig. 8.10).

In mathematical terms, the variation of potential energy D across the whole

trajectory may be thus expressed as:

Target N

dij
T

dij
S

(dij
T
-d ij

S
)

Origin S
T1 Sub-Step 1

Tn Sub-Step n

dij
T
(n)

Generic Point

Fig. 8.10 The sub-trajectory

of the entity and the

accumulation of potential

energy
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dSi;jðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPiðnÞ � xSj

� �2
þ yPiðnÞ � ySj

� �2r

dTi;jðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPiðnÞ � xTjðnÞ

� �2
þ yPiðnÞ � yTjðnÞ

� �2r

DiðnÞ ¼
XN
j¼1

exp �
ðdSi;jðnÞ þ dTi;jðnÞ Þ

a

 !
� dSi;jðnÞ � dTi;jðnÞ

��� ���:

The potential energy is then transformed into kinetic energy, i.e. it produces a

deformation of the grid as determined by the movement of the entity:

dx½p�iðnÞ ¼
XN
j

exp �
d
½s�
i;jðnÞ

þ d
½t�
i;jðnÞ

a

0
@

1
A � x

½s�
j � x

½t�
jðnÞ

� �
;

dy½p�iðnÞ ¼
XN
j

exp �
d
½s�
i;jðnÞ

þ d
½t�
i;jðnÞ

a

0
@

1
A � y

½s�
j � y

½t�
jðnÞ

� �
;

x
½p�
iðnþ1Þ ¼ x

½p�
iðnÞ þ DiðnÞdx

½p�
iðnÞ<0;

x
½p�
iðnþ1Þ ¼ x

½p�
iðnÞ � DiðnÞdx

½p�
iðnÞ � 0;

y
½p�
iðnþ1Þ ¼ y

½p�
iðnÞ þ DiðnÞdy

½p�
iðnÞ<0;

y
½p�
iðnþ1Þ ¼ y

½p�
iðnÞ � DiðnÞdy

½p�
iðnÞ � 0:

We are now in the position to check how, by superimposing the TWT framework

upon the TDM-focused example introduced earlier, it is possible to visualize the

diffusion process in terms of the deformation of the corresponding grid, by simply

applying the equations introduced above. Switching back to the step 1 of the

process, and recalling the graph that describes the influence pattern, we can

accordingly derive the associated Twisting Map (see Figs. 8.11 and 8.12):

Accordingly, we can do the same for the influence graph at step 2 (Figs. 8.13 and

8.14), and for the cumulative influence graph, thus obtaining the actual Twisting

Map after two steps of the process (Figs. 8.15 and 8.16).

If our conceptualization of the diffusion process then turns out to have some

sense, by the help of TDM we should have been able to determine the actual causal

processes that act upon entities and bring about the evolution of the quantity values

from one step to another, and by TWT we should have been able to represent how

the whole causal dynamics would bring about a complex, nonlinear field dynamics

of diffusion even starting from a simple interpretation of quantities associated to

each entity as linear impulses. To check whether our intuition is reasonably

grounded, we will have to evaluate it against a benchmark that allows us to test it

severely enough.
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Fig. 8.11 Toy example: the influence graph at step 1 according to TDM

Fig. 8.12 Toy example: the influence graph at step 1 coded by Twisting Theory
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Fig. 8.13 Toy example: the influence graph at step 2 according to TDM

Fig. 8.14 Toy example: the influence graph at step 2 coded by Twisting Theory
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Fig. 8.15 Toy example: the influence graph after steps 1–2 according to TDM

Fig. 8.16 Toy example: the influence graph after steps 1–2 and the corresponding Twisting Map
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8.4 Prediction

In order to proceed with the construction of our test, we now begin by slightly

complicating our toy example by introducing two extra steps in our time series:

Assume now that, on the basis of this expanded database, we want to make some

one-step prediction on the values of the quantities assigned to each entity. There are

at least two reasons that make this task pretty difficult (Table 8.9):

• The number of records in the dataset is extremely small (five observations), and

even more so with reference to the number of variables (five variables);

• The prediction of an integer number (which has to do with the computation of an

approximation function) is much more difficult than, say, the recognition of a

pattern (i.e., an exercise in classification that is a standard test bed for machine

learning).

Table 8.9 Expanded time series for the toy example
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As a consequence, under these conditions it is virtually impossible, from a

statistical viewpoint, to construct a viable prediction model, and even more so if

this model calls upon some Artificial Neural Network (ANN) architecture. At this

point, however, we are in the position to appreciate the potential of TDM to carry

out such an apparently impossible task.

By means of the TDM procedure, we can transform the small original dataset

into a set of four 5 � 5 matrices, containing the strengths of the connections

between steps n and n + 1 of the influence process; let us call them the matrices

of Strength S. Moreover, we can accordingly construct another set of companion

matrices, delivering the oriented links among entities from step n to step n + 1; let
us call them the matrices of Connections C (see Data Appendix: Tables A.1, A.2

and A.3). In addition to the two graphs for steps 1 and 2 already shown in Figs. 8.2

and 8.3 above, we thus obtain the following graphs for steps 3 and 4 respectively

(see Figs. 8.17 and 8.18).

At this point, the Connection matrices C generated by the TDM procedure can be

stacked into a common dataset with a mobile window, so that connections that refer

to a same entity at different times are lined up. We can thus generate a substantially

bigger dataset, which can be learned by a suitably designed supervised ANN:

Fig. 8.17 Graphs for the third step of the process
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New Dataset : xpn; x
p
nþ1

� �N�1

n¼0

n oM

p¼1

Legend :

M ¼ Number of entities;

N ¼ Number of time steps;

consequently:

ANN Model: xðnÞ ! xðnþ 1Þ ¼ f ðxðnÞ;w�Þ þ e:

The ANN weights matrix w* that is obtained once the training phase has been

completed should thus be able to encode the whole dynamic process described by

the time series, by reconstructing it from the local transition laws that have been the

object of learning. In Table 8.10, we show synthetically how the available data are

divided into the Training, Testing and Prediction datasets, respectively.

Thus, for the Training and Testing sets, each record is made up of M + 1 input

variables: The connectivity of each entity from time n to time n + 1, as determined

by the TDM algorithm, and an identification number (i.e., an integer) for each entity

(position). The M target variables, consequently, will be the connectivity of each

entity from time n + 1 to time n + 2.
Overall, the Training set if made up of 10 patterns, each one with 6 input and 5

target variables. The Testing set contains 5 patterns with analogous characteristics:

Fig. 8.18 Graphs for the fourth step of the process
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the dataset still remains rather small. The ANN that will be trained is a Sine Net3

(Buscema 2000; Buscema et al. 2006). Once training is over, it will be tested in a

blind way, i.e., it will only be shown the input variables in order to predict the

outputs. The ANN will thus make a total of 25 independent predictions (5 output

variables for 5 rounds).

The predictive performance of the Sine Net ANN will be measured according to

three different standards: sensitivity, namely, the number of actual connections

correctly predicted; specificity, namely, the number of actual non-connections

correctly predicted; and accuracy, namely, the overall number of correct predictions.

The chosen specification of the Sine Net has 24 hidden units, and its training has

been terminated after 43989 epochs, with a RMSE of 0.21505214. The results of the

testing are shown in Table 8.11.

As it can be noticed, the results are pretty interesting; even in a prohibitive

learning condition as the present one, the Sine Net reaches an accuracy of 0.84, and

a specificity of 0.9. Sensitivity stops at 0.6, but even in this case it remains well

above the critical threshold of 0.5. Figure 8.19 reports the comparison between the

actual and the predicted dynamics at the last time step.

What made this test particularly severe, however, was the fact that, in the toy

problem, data were basically picked up at random, i.e. they did not reflect any

implicit, coherent semantics. In spite of this, the ANN was able to find out a

substantial part of the structural properties of the process by means of a simple

application of the TDM procedure.

We now test the methodology against a more rich and challenging example, and

in particular one where there actually is a strong implicit semantics. This last

feature invites us to think that, if our methodology is sound enough, we should

expect a better performance than for the toy problem, in spite of the much greater

complexity of the underlying diffusion process, in that we can now capitalize upon

the far richer semantics of the problem, which should now possibly reveal many

structural layers about which the ANN can learn proficiently.

Table 8.10 Training, testing and prediction datasets for the stacked connection matrices of the toy

problem

3 Sine Net is a USA Patent No. US 7,788,196 B2 (Aug. 31, 2010), inventor: Massimo Buscema, m.

buscema@semeion.it; owners Semeion Research Center of Sciences of Communication, via

Sersale 117, Rome, 00128, Italy.
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Table 8.11 Results of the testing: Missing connections have a dotted background, false

connections have horizontal ruling

Fig. 8.19 Real (left) versus predicted (right) dynamics for the Sine Net



8.5 A Real World Test: The 2001 Dengue Fever

Epidemics in Brazil

8.5.1 The Dengue Fever Epidemics Case Study

This section applies our methods on an actual case, the case of Dengue fever

epidemic in the state of São Paulo, Southeast Brazil, as reported in Ferreira

(2010). The map of the epidemics diffusion is reported in Fig. 8.20, and the data

about the actual pattern of diffusion of contagion over 7 months in the 54 counties

where at least one case was reported are listed in Table 8.12. As one can see from the

table, the spatial coordinates of the main center of each county have been deter-

mined, and time steps span one month each. At each step, the associated quantity

corresponds to the number of new infected subjects. From these data, a digital map

has been constructed, which reports the main centers of all of the 54 counties that

have witnessed at least one case of the fever epidemics, reported in Fig. 8.21. This

map then constitutes our set of entities, which we use to analyze the actual propaga-

tion dynamics, according to the methods presented in the previous sections.

Fig. 8.20 Dengue fever epidemics: map of contagion susceptibility
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8.6 The Harmonic Center4: A New Concept and Mathematical

Entity

Even without exploiting the techniques for the analysis of the dynamics of diffusion

of the epidemics presented in this paper, a good deal of information can be extracted

already by the analysis of the static distribution of points. Notice, moreover, that the

static distribution says nothing about the actual level of susceptibility of the various

counties, i.e., does not differentiate among the points that carry a high number of

infected subjects and those that carry very little ones and in the limit, just one. Only

on the basis of this digital map, however, through the further development of

techniques presented and applied in Buscema et al. (2009), we are able to locate

with a certain precision the point of maximal condensation of the epidemics by

calculating the so called harmonic center of the scatter of points. It is interesting to

stress that the harmonic center does not coincide in principle with the outbreak point

of the epidemics (whose estimate is better found with a complementary method, the

TWC [see below]) – it is rather the point where the dynamic impulse that drives the

propagation of the epidemics exerts its most significant impact. For intuitive

reasons, in the case of epidemics the outbreak and the harmonic center tend to be

Fig. 8.21 Digital map of the outbreak

4Harmonic Center is a USA Patent pending # 12/969,620 (16-Dec-2010), inventor: Massimo

Buscema, m.buscema@semeion.it; owners Semeion Research Center of Sciences of Communica-

tion, via Sersale 117, Rome, 00128, Italy and CSI Research & Environment, via CesarePavese,

305, Rome, Italy.
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close by, in that it is around the outbreak that the epidemics generally unleashes its

strongest virulence. For other diffusion phenomena such as earthquakes or massive

landslides, however, the epicenter and the harmonic center may be even quite far

away from each other.

One also can see the harmonic center as the point from where one accumulates

the influence of each given entity, as defined in Sect. 8.2, is maximized.

In particular, the harmonic point is the perfect phasing point such that the squared

distances from the various entities are as close as possible to being exact multiples of

one another (i.e., they are harmonics). In principle, one can partition the environ-

mental space into regions according to their degree of harmony. To make a simple

association, we could identify harmony with temperature, and then, those points

which are more harmonic with respect to each assigned entity can be said to be ‘hot’

(max harmony). The ‘warm’ points (high harmony) are those whose harmony is

below that of some entities but still more harmonic that the average of the entities.

The ‘cool’ points (low harmony) are those lying among the average harmony of the

points of the environment space and that of the entities, whereas the ‘cold’ points

(null harmony) are those with harmony below the average of the environment space.

We formally denote entities as ‘assigned points’ and ‘generic points’ of the

environmental space as ‘pixel points’ and calculate distances between all of the

assigned points and each specific pixel point in the process of calculating their

harmony with reference to the harmony function dH. Once the value of dH has been

obtained, the environmental space is portioned. The method is as follows:

Harmonic Centre Calculation:

dk;i ¼ C � 1þ xk � xið Þ2 þ yk � yið Þ2
� �j k

;

dHk ¼ 1:0� f

PN
i¼1

PN
j¼1;j 6¼i

Rem dk;i; dk;j
� 	

1
M �PM

k¼1

PN
i¼1

PN
j¼1;j 6¼i

Rem dk;i; dk;j
� 	

0
BBB@

1
CCCA;

dHarmonic ¼ arg max
k;k2A[P

dHkf g;
Harmonic Field Segmentation:

�dHM ¼ 1

M
�
XM

k¼1;k2P
dHk;

�dHN ¼ 1

N
�
XN

k¼1;k2A
dHk;

dHMAXN
¼ max

k;xk2A
dHkf g;

dHk 2 HMaxdHk>HMAX;

dHk 2 HHigh
�dHN<dHk �HMAX;

dHk 2 HLow
�dHM<dHk � �dHN ;

dHk 2 HNulldHk< �dHM :
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where:

N ¼ Number of Assigned Points;

M ¼ Number of Pixel Points;

A ¼ set of Assigned Points;

P ¼ set of Pixel Points;

i; j 2 f1; 2; :::;Ng;
k 2 f1; 2; :::;Mg;
C ¼ big integer positive Constant;

d ¼ Euclidean Distance

dH ¼ Harmonic Distance;

f ðÞ ¼ Linear scaling between [0,1];

dHarmonic ¼ Harmonic Centre;

�dHN ¼ Harm. Distance Mean of the Assigned Points;

�dHM ¼ Harm. Distance Mean of the Pixel Points;

dHMAXN
¼ Minimal Harmonic Distance among the Assigned Points;

HMax ¼ set of Points with Max Harmony;

HHigh ¼ set of Points with High Harmony;

HLow ¼ set of Points with Low Harmony;

HNull ¼ set of Points with Null Harmony;

or the simple example of a 3 � 3 grid within a square, for instance, the harmonic

center coincides with the central point of the grid (Fig. 8.22), and the geography of

the harmonic regions turns out to be the following (with colors corresponding to

‘temperatures’):

Fig. 8.22 The harmonic point and the harmonic map
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In the case of the Dengue epidemics, the harmonic center is found to be between

Mirassol and São Josè do Rio Preto, that is to say, between the actual outbreak point

(São Josè) and its closest point of propagation (Mirassol). As expected, the estimated

point of maximal virulence is close to the outbreak point, and in fact falls into an area

with very high susceptibility according to the map elaborated by Ferreira (2010).

The result is particularly striking, considering that the actual distribution of points

does not give, as already remarked, any information about the actual number of

infected subjects located in each point, but only refers to the semantics of space, i.e.

to the structure of the reciprocal distances among the various points (Fig. 8.23).

8.7 The Topological Weight Centroid (TWC)

Remaining within a static context, i.e. without exploiting yet the potential of the

TDM + TWT approach, we can however reconstruct a vector field for the propa-

gation of the Dengue fever on the basis of the information contained in the digital

map by constructing the so called TWC map, following the approach illustrated in

Buscema and Grossi (2009), Chaps. 8 and 9. In this way, we give an estimate of the

probability of diffusion of the epidemics from its outbreak, or better, from another

close estimate of its actual position, called the Topologically Weighted Centroid

(TWC). As it can be clearly read from Fig. 8.24, the harmonic center sits well

within the area of maximal susceptibility estimated according to the TWC method,

guaranteeing that the TWC and the harmonic center provide mutually coherent

indications for this case, once again placing the outbreak and the peak point close to

each other.

Fig. 8.23 The harmonic center of the distribution of points
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The TWC field, moreover, provides an interesting static benchmark reference for

the further analysis that will be provided by means of the TDM + TWT approach.

Another important implication within the static informational framework comes

from the analysis of the so-called TWC paths, which represent a ‘nonlinear mini-

mum spanning tree’ for the spatial distribution of entities, i.e., the paths of minimum

energy for the propagation dynamics. Quite interestingly, these paths replicate quite

accurately the existing structure of communication networks (roads), as it can be

checked in Fig. 8.25 which also can be seen from Google Earth aerial view of the

region. As found out by Ferreira (2010), it turns out that the road network is actually

the channel throughwhich the epidemics has found its most efficient channeling, and

then one can read the TWC paths map as a diagram of the propagation dynamics of

the epidemics. But what is surprising once more is that in the digital map which has

been the (static, non-quantified) informational basis for this computation has no

reference whatsoever to the road network, and thus there is no way that the TWC

algorithm could exploit this information in finding out its paths of minimal energy.

Thus, in this perspective the structure of the road network emerges endogenously as

the most efficient solution of the propagation problem for the epidemics.

Thus, quite interestingly, we conclude that, already from a static perspective and

making use of techniques already introduced in previous work, it is already possible

to make powerful inferences about the outbreaks and diffusion dynamics of the

epidemics. To what extent the introduction of the dynamic TDM + TWT approach

allows us to take a further step forward in the understanding of the diffusion

phenomenon for this specific case?

Fig. 8.24 TWC map of the Dengue fever epidemics
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8.8 TDM Applied to the Dengue Fever Epidemics Data

To answer this question, we can simply apply the TDM methodology to the digital

map introduced in Fig. 8.21 above for the Dengue fever epidemic, this time

assigning to each entity the quantity corresponding to the number of newly infected

subjects from time to time. The result of step 1 of the procedure is shown in

Fig. 8.25 Above: the TWC paths for the propagation of the Dengue fever epidemics. Below: aerial
view from Google Earth

8 Spatiotemporal Mining: A Systematic Approach to Discrete Diffusion Models. . . 261



Fig. 8.26: the axis São Josè-Mirassol, linking the outbreak and the peak point, is

identified, and we clearly single out two branches, a Northwest-bound one and a

Southeast-bound one, through which the epidemics reach out to new counties.

Interestingly, there is also a minor Northeastern branch that seems to have devel-

oped independently of the main one.

At this point, looking at the whole sequence of steps 1–6 (Fig. 8.27), it becomes

clear how, starting from the first outreach run, the epidemic then develops

according to a peculiar logic: The Northwestern branch, initially infected by

carriers coming from the outbreak county, now becomes a secondary infectious

hub of its own, gradually spreading over in nearby centers of the Northwestern

quadrant and becoming causally independent from the outbreak from step

2 onwards. At the outbreak county, on the other hand, we witness the emergence

of a ‘double bind’ connection between the outbreak and the peak points which

signals a strong positive feedback causal loop, which causes the building of further

virulence, with a very far-reaching and persistent propagation that remains at high

levels over the months, gradually extending to once marginal places. The initially

independent Northeastern branch of virulence is rapidly ‘colonized’ by the out-

break/peak infection hub and subsequently persists in this new status in spite of the

relative distance from the hub itself and its being relatively closer to the secondary

Northwestern hub – a further signal of the fact that the peak point actually stays

close to the outbreak.

Fig. 8.26 The causation process of the epidemics, step 1

262 M. Buscema et al.



We are now in the position to consider the cumulative graph that overlaps the

causation effects emerging at the various steps of the process (Fig. 8.27). We can

also evaluate the dynamic networks representation by TDM in comparison with the

real data. From this comparison, we see that only three links have been missed by

TDM. The results are shown in Table 8.13 below and deliver quite interesting

implications. The most apparent feature is the level of performance on all of the

three dimensions of evaluation. Scores never get below 0.98, and for specificity we

even obtain a 100 % level. As expected when discussing the results of the prediction

task for the toy problem, it turns out that, when dealing with a real-world problem

with a rich and consistent inherent structural grammar, TDM becomes able to learn

Fig. 8.27 Causation dynamics for the Dengue fever epidemics, steps 1–6

Table 8.13 TDM prediction scores, steps 1–6

TDM Algorithm

Working hypothesis 378

Right connections 183

Missing connections 3

Sensitivity 98.39 %

Specificity 100.00 %

Global accuracy 99.21 %
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it very accurately – that is to say, unlike what happens in most test or benchmark

evaluations, the performance of the method is logically bound to be better in real-

world contexts rather than in artificial contexts (Fig. 8.28).

8.9 TWT Applied to the Dengue Fever Epidemics Data

We can now take a further step forward by carrying out the TWT analysis as well.

In Figs. 8.29 and 8.30, we report the TWT map vs. the spatial distribution of

susceptibility for the first two steps of the process only, comparing it with the

distribution of susceptibility at the final step of the process according to the analysis

of Ferreira (2010). It is apparent that, already at the first step of the process, the

TWT map provides a quite accurate picture of how the final configuration of

infection hubs will look like. In particular, the main Southeast hub is clearly

found out in all of its complex spatial articulations, and is correctly estimated to

be the most virulent, as clearly indicated by the grid tectonics. Moreover, the

secondary Northwest hub and the minor, ‘satellite’ Northeast hub are also clearly

sorted out, with their decreasing potential of virulence.

The comparison between Figs. 8.29 and 8.30 presents another interesting

feature. TWT actually rebuilds, in the first two steps, the global shape of the

epidemic diffusion pattern, even beyond the sampled points. In fact, such shape is

quite close to the shape of the political map of the region (Fig. 8.30). Figure 8.31

shows a Google map of the region. Its Northern boundaries are naturally marked by

lakes and rivers, whereas the Southern boundaries are delimited by rivers and by the

main highways.

Fig. 8.28 Influence graph, steps 1–6
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Fig. 8.29 TWT map after the first two steps

Fig. 8.30 Susceptibility map after step 6



This feature, consequently, shows that TWT is also able to approximate the

geometrical shape of a polygon, extracting information from a representative

sample of its points. From a mathematical point of view, this could mean that

TWT equations have the capability to approximate in a correct way the probability

density function of a set of given (hyper-) points. This characteristic can be very

useful to generate a global map of the diffusion process, despite the fact that we are

generally able to directly monitor only a little part of it.

If we now consider the TWT map obtained from the all of the six steps

(Fig. 8.32) and once again compare it with the susceptibility map at step 6

(Fig. 8.30), we find an even more fine-grained representation with the central

outbreak-peak block emerging as the main hub with a smaller Eastern secondary

component, and with the two minor Northern hubs accurately delineated with

neatly differentiated representations of their relative strengths. In particular, this

map shows with clarity how the epidemic has been propagating through waves in

which minor local hubs appeared as new ‘infection pumps’ with decreasing

strength.

We can therefore conclude that the TDM + TWT analysis seems to add a

substantial amount of useful extra information with respect to the static methods

based upon the TWC and the Harmonic Center; in particular, they give us deep

insights on the fine-grained properties of the diffusion process both at the level of

causation and at the level of actual spatial patterns.

Fig. 8.31 The Google map of the Northwest region of the state of São Paulo
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8.10 Neural Networks Step-Wise Prediction

Finally, and again as we did for the toy problem, we now employ a Sine Net to carry

out a one-step ahead prediction exercise, i.e., guessing the state of the system at step

n + 1 given our knowledge of the state at step n. In line of what has happened with
the prediction of the link structure for the Dengue fever benchmark as opposed to

the toy problem, for the same reasons here we expect again a substantially better

performance of the system with respect to the toy problem context. To begin with,

we train the network on the first four steps in order to predict the fifth step,

following the same methodology that we presented in Sect. 8.4. We obtain the

following results (see Table 8.14 and Fig. 8.33):

Results again confirm our intuition: On this very difficult prediction task, the Sine

Net delivers substantially better scores on any indicator than in the toy problem

context once gain demonstrating that actual structural complexity for this kind of

machine learning architecture is a resource rather than a constraint with respect to

performance. Notice in particular how, in the present prediction task, precision and

accuracy both stand well above 0.99. Similar results emerge from the prediction of

step 6 on the basis of the first five steps (see Table 8.15 and Fig. 8.34).

Finally, as a last prediction exercise, we have tried to figure out what the Sine

Net would predict for step 7 given the first six steps, i.e., a scenario for which actual

data are not available to us. This lack of evidence makes the prediction particularly

Fig. 8.32 Above: TWT map after step 6
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intriguing, and we look forward to the possibility to acquire more data to make a

check on this in future work. Interestingly enough, the Sine Net makes a very sharp

and far from obvious prediction for step 7, namely, that the only virulent hub that

remains is the main one, whereas the others die out – a circumstance that makes

actual checking even more deserving (Fig. 8.35).

Table 8.14 Prediction performance of the Sine Net for step 5 on the

basis of the first four steps

Testing Correct Total Errors %

Sensitivity 31 34 3 91.18

Precision 2,866 2,882 16 99.44

Accuracy 2,897 2,916 19 99.35

Fig. 8.33 Predicted influence graph at step 5 on the basis of the training on the first four steps.

Wrong links are marked in red (color version) with an arrow pointing to it (black/white version)

Table 8.15 Prediction performance of the Sine Net for step 6 on the

basis of the first five steps

Testing Correct Total Errors %

Sensitivity 19 22 3 86.36

Precision 2,881 2,894 13 99.55

Accuracy 2,900 2,916 16 99.45
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Fig. 8.34 Predicted influence graph at step 6 on the basis of the training on the first five steps.

Wrong links are marked in red (color version) with an arrow pointing to it (black/white version)

Fig. 8.35 Predicted influence graph at step 7 on the basis of the training on the first six steps.

Actual data for step 7 are not currently available
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8.11 Discussion

Despite the fact that spatial trajectories of epidemic diseases with implicit and

explicit dynamics can influence population outcomes dramatically, yet few predic-

tive tools of temporal spatial spreads exist. Most of the approaches described in the

literature are based on ordinarily differential equations (ODE) or integro-partial

differential equations (PDEs) (Keeling 1999a).

The majority of existing epidemic models utilizing differential equations do not

take into account spatial factors such as population local density. These models

assume populations are closed and well mixed; that is, host numbers are constant

and individuals are free to move wherever they wish. At variance, the real environ-

ment with the presence of natural barriers, like mountains chains of river courses,

creates a constrained space with increasing complexity according to geopolitical

structure of the country.

A good review of the existing approaches has been made recently by Parham and

Ferguson (2005).

For processes continuous in space and time, spatial moment equations summa-

rize the ensemble behavior of the underlying stochastic model while analogous

methods have been developed for modeling disease spread on contact networks by

capturing how the number of pairs of connected individuals vary over time.

Space may be included in epidemic models within continuous or discrete space

frameworks and the choice of model depends on both epidemiological and

modeling considerations.

Epidemic spread models are developed by different actors for different

objectives. Epidemiologists generally like simple models able to test the impor-

tance of certain specific parameters on the general behavior of the epidemic

dynamics. Computer scientists wish to develop software applications which can

simulate the behavior of epidemics as seen in nature. Mathematicians would like to

discover inherent hidden and universal laws explaining the mysterious nature of

diffusion in time and space. This explains why there exist many models of epidemic

spreads, each with its own approach and set of assumptions. However, most of these

models all share one property: the virtual world in which they run is an idealized

one where noise and imperfections are filtered out (Fu 2002).

The novelty of our approach is twofold. First, we have a bottom-up approach to

reconstruct the global causation process of diffusion in space and in time, avoiding

any a priori assumption or ideal dynamic process. This is what TDM algorithm

performs.

Second, we consider the space of interest like an elastic sheet posed on a flat

surface and kept stuck only along the external edges. The big question is: if I move a

finger touching and pushing the sheet in a particular direction, what happens to all

the points lying on the sheet near or far away to the point below my finger? This is

basically what Twisting Theory and the Twisting Algorithm try to solve. Starting

from this information a good classifier trained well with the real data can predict

future events.
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So we now have a variety of techniques with which to study diffusion phenom-

ena from a new perspective, the adoption of a general framework that lends itself

quite naturally to applications in a variety of different disciplines, both in the

natural and in the social sciences. We feel that more tests need to be carry out to

ascertain whether our methodology really works at the levels of accuracy obtained

in the present paper in very different disciplinary contexts and for very different

problems, and we look forward to tackling this challenge in future research.

It is important to stress, however, that further disciplinary applications of our

methodology are of interest not only in order to prove the robustness of the

methodology, but possibly also to derive interesting and hopefully cutting-edge

results to help us better understand seemingly intractable or ill-defined problems.

Among the many possibilities, we are particularly interested in taking a closer look

at phenomena such as the diffusion of technology (e.g. Keller 2004) or of

innovations (e.g. Walker 1969) and the role of social network structures (for a

classical formulation see e.g. Burt 1987), the diffusion of pro-social behavior (e.g.

Darkley and Latané 1968), or socio-political attitudes (e.g. Simmons and Elkins

2004), but also at entirely different phenomena such as landslides (e.g. Martin and

Church 1997), earthquakes (e.g. Helmstetter and Sornette 2002), and so on. It is an

ambitious program, but in our opinion it is an important effort to take a further step

along the way toward a truly meta-disciplinary perspective on complex phenomena,

their structure, and their implications.
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Data Appendix

Table A.1 Matrices of the Strength of Connections from n ¼ 0 to n ¼ 4 in the toy example

Strength of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 0; n ¼ 1 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0.000000 0.000000 0.000000 0.000000 0.000000

Place 2 0.000000 0.000000 0.000000 0.000000 0.000000

Place 3 0.000000 0.000000 0.000000 0.000000 0.000000

Place 4 0.000000 0.000000 1.000000 0.000000 0.008928

Place 5 0.000000 0.000000 0.089095 0.016203 0.000000

Strength of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 1; n ¼ 2 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0.000000 0.000000 0.000000 0.000000 0.000000

Place 2 0.000000 0.000000 0.000000 0.000000 0.000000

Place 3 0.010040 0.002334 0.000000 1.000000 0.072003

Place 4 0.006473 0.005317 0.000000 0.000000 0.010714

Place 5 0.000994 0.000029 0.000000 0.005165 0.000000

Strength of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 2; n ¼ 3 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0.000000 0.040726 0.009736 0.020922 0.010910

Place 2 0.021721 0.000000 0.001697 0.012889 0.000238

Place 3 0.000000 0.000000 0.000000 0.000000 0.000000

Place 4 0.029657 0.034255 1.000000 0.000000 0.058438

Place 5 0.006683 0.000273 0.050911 0.025251 0.000000

Strength of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 3; n ¼ 4 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0.000000 0.067575 0.013630 0.031244 0.010560

Place 2 0.016218 0.000000 0.003564 0.028870 0.000345

Place 3 0.004362 0.004752 0.000000 0.948148 0.072407

Place 4 0.010545 0.040599 1.000000 0.000000 0.040402

Place 5 0.004277 0.000582 0.091640 0.048482 0.000000
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Tables A.2 Matrices of the plausible connections from n ¼ 0 to n ¼ 4 in the toy example

Presence of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 0; n ¼ 1 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 0 0 0 0 0

Place 4 0 0 1 0 1

Place 5 0 0 0 1 0

Presence of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 1; n ¼ 2 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 0 0 0 0

Place 2 0 0 0 0 0

Place 3 1 0 0 1 1

Place 4 0 1 0 0 0

Place 5 0 0 0 0 0

Presence of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 2; n ¼ 3 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 1 0 0 0

Place 2 0 0 0 0 0

Place 3 0 0 0 0 0

Place 4 1 0 1 0 1

Place 5 0 0 0 1 0

Presence of connections between places (Row ¼ Time (n) – Columns¼ Time(n+1))

n ¼ 3; n ¼ 4 Place 1 Place 2 Place 3 Place 4 Place 5

Place 1 0 1 0 0 0

Place 2 1 0 0 0 0

Place 3 0 0 0 1 1

Place 4 0 0 1 0 0

Place 5 0 0 0 0 0
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