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PREFACE

When well-meaning university professors start out with the laudable aim of
writing up their lecture notes for their students, they run the risk of embarking
on a whole volume.

We followed this classic pattern when we started jointly to teach a course entit-
led ‘Data analysis and data mining’ at the School of Statistical Sciences, University
of Padua, Italy.

Our interest in this field had started long before the course was launched, while
both of us were following different professional paths: academia for one of us
(A. A.) and the business and professional fields for the other (B. S.). In these
two environments, we faced the rapid development of a field connected with
data analysis according to at least two features: the size of available data sets, as
both number of units and number of variables recorded; and the problem that
data are often collected without respect for the procedures required by statistical
science. Thanks to the growing popularity of large databases with low marginal
costs for additional data, one of the most common areas in which this situation
is encountered is that of data analysis as a decision-support tool for business
management. At the same time, the two problems call for a somewhat different
methodology with respect to more classical statistical applications, thus giving
this area its own specific nature. This is the setting usually called data mining.
Located at the point where statistics, computer science, and machine learning

intersect, this broad field is attracting increasing interest from scientists and
practitioners eager to apply the new methods to real-life problems. This interest is
emerging even in areas such as business management, which are traditionally less
directly connected to scientific developments.

Within this context, there are few works available if the methodology for data
analysis must be inspired by and not simply illustrated with the aid of real-life
problems. This limited availability of suitable teaching materials was an important
reason for writing this work. Following this primary idea, methodological tools
are illustrated with the aid of real data, accompanied wherever possible by some
motivating background.

Because many of the topics presented here only appeared relatively recently,
many professionals who gained university qualifications some years ago did not
have the opportunity to study them. We therefore hope this work will be useful for
these readers as well.
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Although not directly linked to a specific computer package, the approach
adopted here moves naturally toward a flexible computational environment, in
which data analysis is not driven by an “intelligent” program but lies in the hands
of a human being. The specific tool for actual computation is the R environment.

All that remains is to thank our colleagues Antonella Capitanio, Gianfranco
Galmacci, Elena Stanghellini, and Nicola Torelli, for their comments on the
manuscript. We also thank our students, some for their stimulating remarks and
discussions and others for having led us to make an extra effort for clarity and
simplicity of exposition.

Padua, April 2004 Adelchi Azzalini and Bruno Scarpa



PREFACE TO THE ENGLISH EDITION

This work, now translated into English, is the updated version of the first edition,
which appeared in Italian (Azzalini & Scarpa 2004).

The new material is of two types. First, we present some new concepts and
methods aimed at improving the coverage of the field, without attempting to be
exhaustive in an area that is becoming increasingly vast. Second, we add more case
studies. The work maintains its character as a first course in data analysis, and we
assume standard knowledge of statistics at graduate level.

Complementary materials (data sets, R scripts) are available at: http://
azzalini.stat.unipd.it/Book-DM/.

A major effort in this project was its translation into English, and we are very
grateful to Gabriel Walton for her invaluable help in the revision stage.

Padua, April 2011 Adelchi Azzalini and Bruno Scarpa
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Introduction

He who loves practice without theory
is like the sailor who boards ship without a rudder and compass
and never knows where he may cast.

—LEONARDODA VINCI

1.1 NEW PROBLEMS AND NEW OPPORTUNITIES

1.1.1 Data, More Data, and DataMines
An important phase of technological innovation associated with the rise and rapid
development of computer technology came into existence only a few decades ago.
It brought about a revolution in the way people work, first in the field of science
and then in many others, from technology to business, as well as in day-to-day life.
For several years another aspect of technological innovation also developed, and,
although not independent of the development of computers, it was given its own
autonomy: large, sometimes enormous, masses of information on a whole range of
subjects suddenly became available simply and cheaply. This was due first to the
development of automatic methods for collecting data and then to improvements
in electronic systems of information storage and major reductions in their costs.

This evolution was not specifically related to one invention but was the
consequence of many innovative elements which have jointly contributed to the
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creation of what is sometimes called the information society. In this context, new
avenues of opportunity and ways of working have been opened up that are very
different from those used in the past. To illustrate the nature of this phenomenon,
we list a few typical examples.

• Every month, a supermarket chain issues millions of receipts, one for
every shopping cart that arrives at the checkout. The contents of one of
these carts reflect the demand for goods, an individual’s preferences and,
in general, the economic behavior of the customer who filled that cart.
Clearly, the set of all shopping lists gives us an important information
base on which to direct policies of purchases and sales on the part of
the supermarket. This operation becomes even more interesting when
individual shopping lists are combined with customers’ “loyalty cards,”
becausewe can then follow their behavior through a sequence of purchases.

• A similar situation arises with credit cards, with the important difference
that all customers can be precisely identified; there is no need to introduce
anything like loyalty cards. Another point is that credit card companies do
not sell anything directly to their customers, although they may offer other
businesses the opportunity of making special offers to selected customers,
at least in conditions that allow them to do so legally.

• Every day, telephone companies generate data from millions of telephone
calls and other services they provide. The collection of these services
becomes more highly structured as advanced technology, such as UMTS
(Universal Mobile Telecommunications System), becomes established.
Telephone companies are interested in analyzing customer behavior, both
to identify opportunities for increasing the services customers use and to
ascertain as soon as possible when customers are likely to terminate their
contracts and change companies. The danger of a customer terminating
a contract is a problem in all service-providing sectors, but it is especially
critical in subsectors characterized by rapid transfers of the customer base,
for example, telecommunications. Study of this danger is complicated by
the fact that, for instance, for prepaid telephone cards, there can be no
formal termination of service (except for number portability), but
merely the fact that the credit on the card is exhausted, is not recharged
after its expiration date, and the card itself can no longer be used.

• Service companies, such as telecommunications operators, credit card
companies, and banks, are obviously interested in identifying cases of
fraud, for example, customers who use services without paying for them.
Physical intrusion, subscriptions with the intention of selling services at
low cost, and subverting regulatory restrictions are only some examples of
fraud-implemented methods. There is a need for tools to design accurate
systems capable of predicting fraud, and they must work in an adaptive
way according to the changing behavior of both legitimate customers
and fraudsters. The problem is particularly challenging because only a
very small percentage of the customer base will actually be fraudulently
inclined, which makes this problem more difficult than finding a needle
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in a haystack. Fraudulent behavior may be rare, and behavior that looks
like an attempt at fraud in one account may appear normal and indeed
expected in another.

• The Worldwide Web is an enormous store of information, a tiny fraction
of which responds to a specific query posted to a search engine. Selecting
the relevant documents, the operation that must be carried out by the
search engine, is complicated by various factors: (a) the size of the overall
set of documents is immense; (b) compared with the examples quoted
previously, the set of documents is not in a structured form, as in a well-
ordered database; (c) within a single document, the aspects that determine
its pertinence, or lack thereof, with respect to the given query, are not
placed in a predetermined position, either with respect to the overall
document or compared with others.

• Also, in scientific research, there are many areas of expertise in which
modern methods produce impressive quantities of data. One of the
most recent active fields of research is microbiology, with particular
reference to the structure of DNA. Analyses of sequences of portions
of DNA allow the construction of huge tables, called DNA microarrays,
in which every column is a sequence of thousands of numerical
values corresponding to the genetic code of an individual, and one of
these sequences can be constructed for every individual. The aim—
in the case of microbiology—is to establish a connection between the
patterns of these sequences and, for instance, the occurrence of certain
pathologies.

• The biological context is certainly not the only one in science where
massive amounts of data are generated: geophysics, astronomy, and
climatology are only a few of the possible examples. The basic organization
of the resulting data in a structured way poses significant problems, and the
analysis required to extract meaningful information from them poses even
greater ones.

Clearly, the contexts in which data proliferation manifests itself are numerous
and made up of greatly differing elements. One of the most important, to which
we often refer, is the business sector, which has recently invested significantly in
this process with often substantial effects on the organization ofmarketing. Related
to this phenomenon is the use of the phrase Customer Relationship Management
(CRM),which refers to the structuring of “customer-oriented”marketing behavior.
CRM aims at differentiating the promotional actions of a company in a way that
distinguishes one customer fromanother, searching for specific offers suited to each
individual according to his or her interests and habits, and at the same time avoiding
waste in promotional initiatives aimed at customers who are not interested in
certain offers. The focus is therefore on identifying those customer characteristics
that are relevant to specific commercial goals, and then drawing information from
data about them and what is relevant to other customers with similar profiles.
Crucially, the whole CRM system clearly rests on both the availability of reliable
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quantitative information and the capacity to process it usefully, transforming raw
data into knowledge.

1.1.2 Problems inMining
Data mining, this new technological reality, requires proper tools to exploit
the mass elements of information, that is, data. At first glance, this may seem
paradoxical, but in fact, more often than not, it tells us that we cannot obtain
significant information from such an abundance of data.

In practical terms, examining the data of two characteristics of 100 individuals is
very different from examining the results of 102 characteristics of 106 individuals.
In the first case, simple data-analytical tools may result in important information at
the end of the process: often an elementary scatterplot can offer useful indications,
although formal analysis may be much more sophisticated. In the second case, the
picture changes dramatically: many of the simple tools used in the previous case
lose their effectiveness. For example, the scatterplot of 106 points may become a
single formless ink spot, and 102 characteristics may produce 100× 99/2 of these
forms, which are both too many and at the same time useless.

This simple example highlights two aspects that complicate data analysis of
the type mentioned. One regards the size of the data, that is, the number of
cases or statistical units from which information is drawn; the other regards the
dimensionality of the data, that is, the number of features or variables of the data
collected on a certain unit.

The effects of these components on the complexity of the problem are
very different from each other, but they are not completely independent. With
simplification that might be considered coarse but does help understand the
problem, we may say that size brings about an increase primarily in computational
aspects, whereas dimensionality has a complex effect, which involves both a
computational increase similar to that of size and a rapid increase in the conceptual
complexity of the models used, and consequently of their interpretation and
operative usage.

Not all problems emerging from the context described can be ascribed to a
structure in which it is easy to define a concept of size and, to an even lesser
extent, of dimensionality. A typical counterexample of this kind is extracting those
pages of the Web that are relevant to a query posted to a specific search engine:
not only is it difficult to define the size of the set of cases of interest, but the
concept of dimensionality itself is vague. Otherwise, the most classic and common
situation is that in which statistical units are identified, each characterized by a
certain predetermined number of variables: we focus on this family of situations in
this volume. However, this is the structure in which each of the tables composing a
database is conceptually organized; physical organization is not important here.

Wemust also consider the possibility that the data has ‘infinite’ size, in the sense
that we sometimes have a continuous stream of data. A good example is the stream
of financial transactions of a large stock exchange.

In the past few years, exploration and data analysis of the type mentioned in
section 1.1.1 has come to be called data mining. We can therefore say that:



Introduction 5

data mining represents the work of processing, graphically or
numerically, large amounts or continuous streams of data, with the
aim of extracting information useful to those who possess them.

The expression “useful information” is deliberately general: in many cases, the
point of interest is not specified a priori at all and we often search for it by mining
the data. This aspect distinguishes between data mining and other searches related
to data analysis. In particular, the approach is diametrically opposed, for example,
to clinical studies, in which it is essential to specify very precisely a priori the aims
for which data are collected and analyzed.

What might constitute useful information varies considerably and depends on
the context in which we operate and on the objectives we set. This observation
is clearly also true in many other contexts, but in the area of data mining it has
additional value. We canmake a distinction between two situations: (a) in one, the
interesting aspect is the global behavior of the phenomenon examined, and the aim
is the construction of its globalmodel, taken from the available data; (b) in the other,
it is characterization of detail or the pattern structures of the data, as we are only
interested in cases outside standard behavior. In the example of telephone company
customers, we can examine phone traffic data to identify trends that allow us to
forecast customers’ behavior according to their price plans, geographical position,
and other known elements. However, we can also examine the data with the aim of
identifying behavioral anomalies in telephone usage with respect to the behavior of
the same customer in the past—perhaps to detect a fraudulent situation created by
a third party to a customer’s detriment.

Data mining is a recent discipline, lying at the intersection of various scientific
sectors, especially statistics,machine learning, and databasemanagement.

The connection with database management is implicit in that the operations
of data cleaning, the selection of portions of data, and so on, also drawn from
distributed databases, require competences and contributions from that sector.
The link with artificial intelligence reflects the intense activity in that field to
make machines “learn” how to calculate general rules originating from a series
of specific examples: this is very like the aim of extracting the laws that regulate
a phenomenon from sampled observations. This, among the methods that are
presented later, explains why some of them originate from the field of artificial
intelligence or similar ones.

In light of the foregoing, the statements of Hand et al. (2001) become clear:

Data mining is fundamentally an applied discipline … data mining
requires an understanding of both statistical and computational
issues. (p. xxviii)

The most fundamental difference between classical statistical appli-
cations and data mining is the size of the data. (p. 19)

The computational cost connected with large data sizes and dimensions obviously
has repercussions on the method of working with these data: as they increase,
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methods with high computational cost become less feasible. Clearly, in such cases,
we cannot identify an exact rule, because various factors other than those already
mentioned come into play, such as available resources for calculation and the time
needed for results. However, the effect unquestionably exists, and it prevents the
use of some tools, or at least renders them less practical, while favoring others of
lower computational cost.

It is also true that there are situations in which these aspects are of only marginal
importance, because the amount of data is not enough to influence the computing
element; this is partly thanks to the enormous increase in the power of computers.
We often see this situation with a large-scale problem, if it can be broken down into
subproblems, which make portions of the data more manageable. More traditional
methods of venerable age have not yet been put to rest. On the contrary, many of
them, which developed in a period of limited computing resources, are much less
demanding in terms of computational effort and are still valid if suitably applied.

1.1.3 SQL, OLTP, OLAP, DWH, and KDD
We have repeatedly mentioned the great availability of data, now collected in an
increasingly systematic and thorough way, as the starting point for processing.
However, the conversion of raw data to “clean” data is time-consuming and
sometimes very demanding.

We cannot presume that all the data of a complex organization can fit into a
single database on which we can simply draw and develop. In the business world,
even medium-sized companies are equipped with complex IT systems made up
of various databases designed for various aims (customers and their invoices,
employees’ careers and wages, suppliers, etc.). These databases are used by various
operators, both to insert data (e.g., from outlying sales offices) and to answer
queries about single entries, necessary for daily activities—for example, to know
whether and when customer X has paid invoice Y issued on day Z. The phrase
referring to methods of querying specific information in various databases, called
operational, is OnLine Transaction Processing (OLTP). Typically, these tools are
based on Structured Query Language (SQL), the standard tool for database queries.

For decision support, in particular analysis of data for CRM, these operational
databases are not the proper sources on which to work. They were all designed for
different goals, both in the sense that they were usually created for administrative
and accounting purposes and not for data analysis, and that those goals differ. This
means that their structures are heterogeneous and very often contain inconsistent
data, sometimes even structurally, because the definitions of the recorded variables
may be similar but are not identical. Nor is it appropriate for the strategic activities
of decision support to interfere with daily work on systems designed to work on
operational databases.

For these reasons, it is appropriate to develop focused databases and tools. We
thus construct a strategic database or Data WareHouse (DWH), in which data
from different database systems merge, are “cleaned” as much as possible, and are
organized round the postprocessing phase.

The development of a DWH is complex, and it must be carefully designed for
its future aims. From a functional point of view, the most common method of
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construction is progressive aggregation of various data marts—that is, of finalized
databases. For example, a data mart may contain all the relevant information
for a certain marketing division. After the DWH has been constructed, the later
aggregation must achieve a coherent, homogenous structure, and the DWH must
be periodically updated with new data from various operational databases.

After completing all these programming processes (which can then progress by
means of continual maintenance), a DWH can be used in at least two ways, which
are notmutually exclusive. The first recomposes data from the various original data
marts to create new ones: for example, if we have created a DWH by aggregating
data mart for several lines of products, we can create a new one for selling all those
products in a certain geographical area. A new data mart is therefore created for
every problem for which we want to develop quantitative analysis.

A second way of using a DWH, which flanks the first, directly generates
processing (albeit simplified) to extract certain information about the data
summary. This is called OnLine Analytical Processing (OLAP) and, as indicated
by its name, is made up of querying and processing designed in a certain way to be
a form of data analysis, although it is still raw and primarily descriptive.

For OLAP, the general support is a structure of intermediate processing,
called a hypercube. In statistical terms, this is a multiway table, in which every
dimension corresponds to a variable, and every cell at the intersection of different
levels contains a synthetic indicator, often a frequency. To give an example
of this, let us presume that the statistical units are university students. One
variable could be constructed by place of residence, another by department or
university membership, gender, and so on, and the individual cells of the cross-
table (hypercube) contain the frequencies for the various intersecting levels. This
table can be used for several forms of processing: marginalization or conditioning
with respect to one or more variables, level aggregation, and so on. They are
described in introductory statistical texts and need no mention here. Note that in
the field of computer science, the foregoing operations have different names.

As already noted, OLAP is an initial form of the extraction of information
from the data—relatively simple, at least from a conceptual point of view—
operating from a table with predefined variables and a scope of operations limited
to them. Therefore, strictly speaking, OLAP returns to data mining as defined
in section 1.1.2, but limited to a form that is conceptually a very simple way
of processing. Instead, “data mining” commonly refers to the inspection of a
strategic database and is characteristically more investigative in nature, typically
involving the identification of relations in certain significant ways among variables
or making specific and interesting patterns of the data. The distinction between
OLAP and data mining is therefore not completely clear, but essentially—as
already noted—the former involves inspecting a small number of prespecified
variables and has a limited number of operations, and the latter refers to a
more open and more clearly focused study on extracting knowledge from the
data. For the latter type of processing, much more computational than simple
management, it is not convenient to use SQL, because SQL does not provide
simple commands for intensive statistical processing. Alternatives are discussed
later.
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We can now think of a chain of phases, starting as follows:

• one or more operational databases to construct a strategic database
(DWH): this also involves an operation in which we homogenize the
definition of variables and data cleaning operations;

• we apply OLAP tools to this new database, to highlight points of interest
on variables singled out previously;

• data mining is the most specific phase of data analysis, and aims at finding
interesting elements in specific data marts extracted from the DWH.

The term Knowledge Discovery in Databases (KDD) is used to refer to this
complex chain, but this terminology is not unanimously accepted and data mining
is sometimes used as a synonym. In this work, data mining is intended in the more
restricted sense, which regards only the final phases of those described.

1.1.4 Complications
Wehave already touched on some aspects that differentiate datamining from other
areas of data analysis. We now elaborate this point.

In many cases, data were collected for reasons other than statistical analysis.
In particular, in the business sector, data are compiled primarily for accounting
purposes. This administrative requirement led to ways of organizing these data
becomingmore complex; the realization that they could be used for other purposes,
that is, marketing analysis and CRM, came later.

Data, therefore, do not correspond to any sampling plan or experimental
design: they simply ‘exist’. The lack of canonical conditions for proper data
collection initially kept many statisticians away from the field of data mining,
whereas information technology (IT) experts were more prompt in exploiting this
challenge.

Even without these problems, we must also consider data collected in spurious
forms. This naturally entails greater difficulties and corresponding attention to
other applicative contexts.

The first extremely simple but useful observation in this sense has to do with
the validity of our conclusions. Because a company’s customer database does not
represent a random sample of the total population, the conclusions we may draw
from it cover at most already acquired customers, not prospective ones.

Another reason for the initial reluctance of statisticians to enter the field of
data mining was a second element, already mentioned in section 1.1.2—that is,
research sometimes focuses on an objective that was not declared a priori. When
we research ‘anything’, we end up finding ‘something’ . . . even if it is not there. To
illustrate this idea intuitively, assume that we are examining a sequence of random
numbers: ultimately, it seems that there is some regularity, at least if we examine a
sequence that is not too long. At this point, we must recall an aphorism coined by
an economist, which is very fashionable among applied statisticians: “If you torture
the data long enough, Nature will always confess” (Ronald H. Coase, 1991 Nobel
Prize for Economics).
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This practice of “looking for something” (when we do not know exactly what
it is) is therefore misleading, and thus the associated terms data snooping or
data dredging have negative connotations. When confronted with a considerable
amount of data, the danger of false findings decreases but is not eliminated
altogether. There are, however, techniques to counter this, as we shall see in
chapter 3.

One particularity, which seems trivial, regards the so-called leaker variables,
which are essentially surrogates of the variables of interest. For example, if the
variable of interest is the amount of money spent on telephone traffic by one
customer in one month, a leaker variable is given by the number of phone calls
made in that same month, as the first variable is recorded at the same moment
as the second variable. Conceptually, the situation is trivial, but when hundreds of
variables, often of different origin, aremanipulated, this eventuality is not as remote
as it may appear. It at least signals the danger of using technology blindly, inserting
whole lists of variables without worrying about what they represent. We return to
this point in section 1.3.1.

Bibliographical notes
Hand et al. (2001) depict a broad picture of data mining, its connections with
other disciplines, and its general principles, although they do not enter into detailed
technical aspects. In particular, their chapter 12 contains a more highly developed
explanation of our section 1.1.3 about relationships between datamanagement and
some techniques, like OLAP, closer to that context.

For descriptive statistics regarding tables of frequency and their handling, there
is a vast amount of literature, which started in the early stages of statistics and is still
developing. Some classical texts are Kendall & Stuart (1969, sections 1.30–1.34),
Bishop et al. (1975), and Agresti (2002).

For a more detailed description of the role of data mining in the corporate
context, in particular its connections with business promotion, see the first chapters
of Berry & Linoff (1997).

1.2 ALL MODELS ARE WRONG

All models are wrong but some are useful.
—GEORGE E. P. BOX

1.2.1 What is aModel?
The termmodel is very fashionable in many contexts, mainly in the fields of science
and technology and also business management. Because the important attributes
of this term (which are often implicit) are so varied and often blurred, let us clarify
at once what we mean by it:

Amodel is a simplified representation of the phenomenon of interest,
functional for a specific objective.
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In addition, certain aspects of this definition must be noted:

• We must deal with a simplified representation: an identical or almost
identical copy would not be of use, because it would maintain all the
complexity of the initial phenomenon. What we need is to reduce it
and eliminate aspects that are not essential to the aim and still maintain
important aspects.

• If the model is to be functional for a specific objective, we may easily have
different models for the same phenomenon according to our aims. For
example, the design of a new car may include the development of a
mechanical or mathematical model, as the construction of a physical
model (a real object) is required to study aerodynamic characteristics
in a wind tunnel. Each of these models—obviously very different from
each other—has a specific function and is not completely replaceable by
the other.

• Once the aspect of the phenomenon we want to describe is established,
there are still wide margins of choice for the way we explain relationships
between components.

• Therefore, this construction of a “simplified representation” may occupy
various dimensions: level of simplification, choice of real-life elements
to be reproduced, and the nature of the relationships between the
components. It therefore follows that a “true model” does not exist.

• Inevitably, themodel will be “wrong”—but itmust be “wrong” to be useful.

We can apply these comments to the idea of a model defined in general terms,
and therefore also to the specific case of mathematical models. This term refers to
any conceptual representation in which relations between the entities involved are
explained by mathematical relationships, both written in mathematical notation
and translated into a computer program.

In some fields, generally those connected with the exact sciences, we can think of
the concept of a “true” model as describing the precise mechanics that regulate the
phenomenon of interest. In this sense, a classical example is that of the kinematic
laws regulating the fall of a mass in a vacuum; here, it is justifiable to think of these
laws as quite faithfully describing mechanisms that regulate reality.

It is not our purpose to enter into a detailed discussion arguing that in reality,
even in this case, we are effectively completing an operation of simplification.
However, it is obvious that outside the so-called exact sciences, the picture changes
radically, and the construction of a “true” model describing the exact mechanisms
that regulate the phenomenon of interest is impossible.

There are extensive areas—mainly but not only in scientific research—inwhich,
although there is no available theory that is complete and acquired from the
phenomenon, we can use an at least partially accredited theoretical formulation by
means of controlled experimentation of important factors.

In other fields, mostly outside the sciences, models have purely operative
functions, often regulated only by the criterion “all it has to do is work,” that
is, without the pretext of reproducing even partially the mechanism that regulates
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the functioning of the phenomenon in question. This approach to formulation is
often associated with the phrase “black-box model,” borrowed from the field of
control engineering.

1.2.2 FromData toModel
Since we are working in empirical contexts and not solely speculatively, the data
collected from a phenomenon constitutes the base on which to construct a model.
How we proceed varies radically, depending on the problems and the context in
which we are required to operate.

The most favorable context is certainly that of experimentation, in which we
control experimental factors and observe the behavior of the variables of interest as
those factors change.

In this context, we have a wide range of methods available. In particular,
there is an enormous repertoire of statistical techniques for planning experiments,
analyzing the results, and interpreting the outcomes.

It should be noted that “experimenting” does not signify that we imagine
ourselves inside a scientific laboratory. To give a simple example: to analyze the
effect of a publicity campaign in a local newspaper, a company selects two cities
with similar socioeconomic structure, and applies the treatment (that is, it begins
the publicity campaign) to only one of them. In all other aspects (existence of
other promotional actions, etc.), the two cities may be considered equivalent. At
a certain moment after the campaign, data on the sales of goods in the two cities
become available. The results may be configured as an experiment on the effects of
the publicity campaign, if all the factors required for determining sales levels have
been carefully controlled, in the sense that they are maintained at an essentially
equivalent level in both cities. One example in which factors are not controlledmay
arise from the unfortunate case of promotional actions by competitors that take
place at the same time but are not the same in the two cities.

However, clearly an experiment is generally difficult in real-world environment,
so it is much more common to conduct observational studies. These are
characterized by the fact that because we cannot control all the factors relative
to the phenomenon, we limit ourselves merely to observing them. This type of
study also gives important and reliable information, again supported by a wide
range of statistical techniques. However, there are considerable differences, the
greatest of which is the difficulty of identifying causal links among the variables. In
an experimental study in which the remaining experimental factors are controlled,
we can say that any change in variable of interest Y as variable X (which we
regulate) changes involves a causal relationship between X and Y . This is not true
in an observational study, because both may vary due to the effect of an external
(not controlled) factor Z, which influences both X and Y .

However, this is not the place to examine the organization and planning of
experimental or observational studies. Rather, we are concerned with problems
arising in the analysis and interpretation of this kind of data.

There are common cases inwhich the data do not fall within any of the preceding
types. We often find ourselves dealing with situations in which the data were
collected for different aims than those we intend to work on now. A common
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case occurs in business, when the data were gathered for contact or management
purposes but are then used for marketing. Here, it is necessary to ask whether
they can be recycled for an aim that is different from the original one and whether
statistical analysis of data of this type can maintain its validity. A typical critical
aspect is that the data may create a sample that is not representative of the new
phenomenon of interest.

Therefore, before beginning data analysis, we must have a clear idea of the
nature and validity of the data and how they represent the phenomenon of interest
to avoid the risk of making disastrous choices in later analysis.

Bibliographic notes Two interesting works that clearly illustrate opposing styles
of conducting real data analysis are those by Cox (1997) and Breiman (2001b).
The latter is followed by a lively discussion in which, among others, David Cox
participated, with a rejoinder by Breiman.

1.3 A MATTER OF STYLE

1.3.1 Press the Button?
The previous considerations, particularly those concluding the section, show how
important it is to reflect carefully on the nature of the problem facing us: how to
collect data, and above all how to exploit them. These issues certainly cannot be
resolved by computer.

However, this need to understand the problem does not stop at the preliminary
phase of planning but underlies every phase of the analysis itself, ending with
interpretation of results. Although we tend to proceed according to a logic that
is much more practical than in other environments, often resulting in black-box
models, this does not mean we can handle every problem by using a large program
(software, package, tool, system, etc.) in a large computer and pushing a button.

Although many methods and algorithms have been developed, becoming
increasingly more refined and flexible and able to adapt ever more closely to the
data even in a computerized way, we cannot completely discard the contribution
of the analyst. We must bear in mind that “pressing the button” means starting
an algorithm, based on a method and an objective function of which we may or
may not be aware. Those who choose to ‘press the button’ without this knowledge
simply do not know which method is used, or only know the name of the method
they are using, but are not aware of its advantages and disadvantages.

More or less advanced knowledge of the nature and function of methods is
essential for at least three reasons:

1. An understanding of tool characteristics is vital in order to choose themost
suitable method.

2. The same type of control is required for correct interpretation of the results
produced by the algorithms.

3. A certain competence in computational and algorithmical aspects is helpful
to better evaluate the output of the computer, also in terms of its reliability.



Introduction 13

The third point requires clarification, as computer output is often perceived as
secure and indisputable information. Many of the techniques currently applied
involve nontrival computational aspects and the use of iterative algorithms.
The convergence of these algorithms on the solution defined by the method
is seldom guaranteed by its theoretical basis. The most common version of
this problem occurs when a specific method is defined as the optimal solution
of a certain objective function that is minimized (or maximized), but the
algorithm may converge on a optimal point which is local and not global, thus
generating incorrect computer output without the user realizing it. However, these
problems are not uniform amongdifferentmethods; therefore, knowing the various
characteristics of the methods, even from this aspect, has important applicative
value.

The choice of style to be accomplished here, corroborated by practical
experience, is that of combining up-to-date methods with an understanding of
the problems inherent in the subject matter.

This point of view explains why, in the following chapters, various techniques
are presented from the viewpoints not only of their operative aspects but also
(albeit concisely) of their statistical and mathematical features.

Our presentation of the techniques is accompanied by examples of real-life
problems, simplified for the sake of clarity. This involves the use of a software
tool of reference. There are many such products, and in recent years software
manufacturers have developed impressive and often valuable products.

1.3.2 Tools for Computation and Graphics
In this work, we adopt R (R Development Core Team, 2011) as the
software of choice, because it constitutes a language and an environment for
statistical calculations and graphical representation of data, available free at
http://www.r-project.org/ in open-source form. The reasons for this
choice are numerous.

• In terms of quality, R is one of the best products currently available,
inspired by the environment and language S, developed in the laboratories
of AT&T.

• The fact that R is free is an obvious advantage, which becomes even
more significant in the teaching context, in which—because it is easily
accessible to all—it has an ideal property on which to construct a common
working basis.

• However, the fact that it is free does not mean that it is of little value: R
is developed and constantly updated by the R Development Core Team,
composed of a group of experts at the highest scientific level.

• Because R is a language, it lends itself easily to programming of variants of
existing methods, or the formulation of new ones.

• In addition to the wide range of methods in the basic installation of R,
additional packages are available. The set of techniques thus covers the
whole spectrum of the existing methods.
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• R can interact in close synergy with other programs designed for different
or collateral aims. In particular, cooperation between R and a relational
database or tools of dynamic graphic representation may exist.

• This extendibility of R is facilitated by the fact that we are dealing
with an open-source environment and the consequent transparency of
the algorithms. This means that anyone can contribute to the project,
both with additional packages for specific methods and for reporting and
correcting errors.

• The syntax of R is such that users are easily made aware of the way the
methods work.

The set of exploitable data mining methods by means of R are the same as those
that underlie commercial products and constitute their engine. The choice of R as
our working environment signifies that although we forgo the ease and simplicity
of a graphic interface, we gain in knowledge and in control of what we are doing.



2

A–B–C

Everything should be made as simple as possible, but not simpler.
—Attributed to ALBERT EINSTEIN

2.1 OLD FRIENDS: LINEAR MODELS

2.1.1 Basic Concepts
Let us start with a simple practical problem: we have to identify a relationship that
allows us to predict the consumption of fuel or, equivalently, the distance covered
per unit of fuel as a function of certain characteristics of a car. We consider data
for 203 models of cars in circulation in 1985 in the United States, but produced
elsewhere. Twenty-seven of their characteristics are available, four of which are
shown in figure 2.1: city distance (km/L), engine size (L), number of
cylinders, and curb weight (kg). The data are marked in different ways
according to fuel type (gasoline or diesel).

Some of the available characteristics are numerical: city distance, engine
size, and curb weight are quantitative and continuous, and number of
cylinders is quantitative and discrete. However, fuel type is qualitative;
equivalent terms are categorical variable and factor.
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Figure 2.1 Matrix of scatterplots of some variables of car data, stratified by fuel type.
Circles: gasoline; triangles: diesel.

In this case, when we are dealing with few data, we can represent them as a
scatterplot , as in figure 2.1; in other cases, we would have to think of more elaborate
representations.

In the first phase, for simplicity, we consider only two explanatory variables:
engine size and fuel type, of which the former is quantitative and the latter
qualitative. To study the relationship between quantitative variables, the first thing
to make is a graphic representation, as in figure 2.2.

To study the relationship between two variables (for the moment leaving
aside fuel type, which acts as a qualitative stratification variable), any statistics
primer would first suggest a simple linear regression line, of the type

y = β0 + β1 x + ε (2.1)

where y represents city distance, x fuel type, and ε is a nonobservable
random ‘error’ term, which we assume to be of zero mean and constant but
unknown variance σ 2. We also assume lack of correlation among error terms and
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Figure 2.2 Car data, scatterplot of engine size and city distance, stratified by
fuel type.

therefore also among observations y for differing units. This set of hypothesis is
called ‘of the second-order’ because it involves mean, variance, and covariance,
which are second-order moments.

We are looking for an estimate of unknown regression parameters β0 andβ1 using
n (in this case n = 203) pairs of observations, denoted by (xi, yi), for i = 1, . . . , n.

Equation (2.1) is the simplest case for a more general formulation of the type

y = f (x;β)+ ε, (2.2)

which becomes (2.1) when f is the expression of the straight line and β =
(β0, β1)�.

To estimate β , the least squares criterion leads us to identify the values for which
we obtain the minimum, with respect to β , of the objective function

D(β) =
n∑

i=1
{yi − f (xi;β)}2 = ‖y− f (x;β)‖2 (2.3)

where the last expression uses matrix notation to represent vector y =
(y1, . . . , yn)�; f (x;β) = (f (x1;β), . . . , f (xn;β))�; and ‖ · ‖ indicates the
Euclidean norm of the vector, that is, the square root of the sum of squares of
the elements.
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The solution to this minimization problem is shown by β̂ , and we indicate the
corresponding fitted values

ŷi = f (xi; β̂), i = 1, . . . , n,

which, in the linear case (2.1), are of the type

ŷi = β̂0 + β̂1 xi = x̃�i β̂

where x̃�i = (1, xi).
From the same formula, we can also write the expression of the predicted value

ŷ0 = β̂0 + β̂1 x0

for a value x0 of the explanatory variable, which does not necessarily correspond to
any observation.

Clearly, however, the trend of the relationship in figure 2.2 does not lend itself to
being expressed by a straight line. At this point, we can move in several alternative
directions. The most immediate one is probably to consider a more elaborate form
of function f (x;β), for instance, a polynomial form

f (x;β) = β0 + β1 x + · · · + βp−1 xp−1 (2.4)

where β is now a vector with p components, β = (β0, β1, . . . , βp−1)�. Using
a polynomial function has the double advantage of (1) being conceptually and
mathematically simple, and (2) offering simple treatment regarding the use of the
least squares criterion.

Because (2.4) is linear in the parameters, it can be rewritten as

f (x;β) = X β (2.5)

where X is an n× pmatrix, called the design matrix, defined by

X = (1, x, . . . , xp−1)

where x is the vector of the observations of the explanatory variable, and the
various columns of X contain powers of order from 0 to p − 1 of elements of x.
The complete entry is therefore a particular case of a linear model

y = Xβ + ε (2.6)

in which X refers to a polynomial regression, corresponding to (2.4).
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In this formulation, the explicit solution to the minimization problem of (2.3) is

β̂ = (X�X)−1X�y (2.7)

with which the vector of fitted values is

ŷ = Xβ̂ = Py (2.8)

where

P = X(X�X)−1X� (2.9)

is an n× nmatrix, called the projection matrix. Properties P� = P, P P = P hold,
as does tr(P) = rk(P) = p.

The minimum value of (2.3) may be written in various equivalent forms

D(β̂) = ‖y− ŷ‖2 = y�(In − P)y = ‖y‖2 − ‖ŷ‖2 (2.10)

where In denotes the identity matrix of order n. Quantity D = D(β̂) is called
deviance, in that it is a quantification of the discrepancy between fitted and observed
values.

From here, we also obtain the estimate of σ 2, usually given by

s2 = D(β̂)
n− p

(2.11)

and this allows us to assess the variance of the estimates of β through

v̂ar(β̂) = s2 (X�X)−1. (2.12)

The square root of the diagonal elements of (2.12) yields the standard errors of
the components of β̂—essential for inferential procedures, as we shall see shortly.

A somewhat more detailed explanation of linear model concepts and least
squares is given in Appendix A.3.

In the case of the data in figure 2.2, it is plausible to use p = 3 or even p = 4. In
any case, we still need one more element to treat the data effectively, and this is the
qualitative variable fuel type. A nonnumerical variable must be conveniently
encoded by indicator variables; if the possible levels assumed by the variable are k,
then the number of required indicator variables is k − 1. In this case, we need a
single indicator variable, because fuel type may have two levels, diesel and
gasoline. There is an infinite number of choices, provided that each is associated
with a single value of the indicator variable. One particularly simple choice is to
assign value 1 to the level diesel and value 0 to the level gasoline; we indicate
this new variable with IA .

The simplest way to insert IA into the model is additive, which is equivalent
to presuming that the average difference of the distance covered by two
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Table 2.1. CAR DATA: ESTIMATES AND ASSOCIATEDQUANTITIES

FORMODEL (2.14)

Estimate SE t-value p-value

(intercept) 24.832 3.02 8.21 0.000
(engine size) −10.980 3.53 −3.11 0.002
(engine size)2 2.098 1.27 1.65 0.100
(engine size)3 −0.131 0.14 −0.94 0.349
fuel.diesel 3.214 0.43 7.52 0.000

groups of diesel and gasoline cars is constant for any engine size. This
simplified hypothesis is called the additive hypothesis of the effects. Also, if the
additive hypothesis is not completely valid, this formulation constitutes a first
approximation, which is often the most important part of the influence of the
factor. This component, entered in an additive form, is therefore called the main
effect of the factor.

This choice means that matrix X of (2.5) is now extended with the addition
of a new column containing IA . Function f (x;β) and matrix X are therefore
substituted by the new expressions

f (x;β) = β0 + β1 x+ · · · + βp−1 xp−1 + βp IA, X = (1, x, . . . , xp−1, IA)
(2.13)

Correspondingly, we add a new component to vector β , which, given the specific
form adopted by the dummy variable, represents the average deviation of the
distance covered between diesel or gasoline cars.

Adopting this scheme for the data in figure 2.2, with p = 4, means that the linear
model is specified in the form

y = β0 + β1 x + β2 x2 + β3 x3 + β4 IA (2.14)

of which the estimates and standard errors are listed in table 2.1, together with
the normalized value of estimate t = estimate/(standard error) and the
corresponding p-value, or observed significance level, which we obtain if we can
introduce the additional hypothesis of normal or Gaussian distribution for the error
terms ε of (2.2). The estimated curves identified by these parameters are shown
in figure 2.3.

To evaluate the goodness of fit, we need to calculate the coefficient of
determination

R2 = 1− (residual deviance)

(total deviance)
= 1−

∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(2.15)

where D(β̂) is calculated by (2.10) using X , the matrix corresponding to model
(2.14); and ȳ = ∑

i yi/n indicates the arithmetic mean or average of yi. In this
specific case, we obtain R2 = 0.60, which indicates a fair degree of correlation
between observed and interpolated data.
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Figure 2.3 Car data: fitted curves relative to model (2.14).

However, we cannot reduce evaluation of the adequacy of a model to
consideration of a single indicator. Other indications are provided by graphical
diagnostics. There are several of these, and they all bring us back more or less
explicitly to examination of the behavior of the residuals

ε̂i = yi − ŷi, i = 1, . . . , n, (2.16)

which serve as surrogates of errors εi , which are not observable. The residuals have
various aspects that we must evaluate according to various assumptions. Among
the many diagnostic tools, two of the most frequently used are shown in figure 2.4.

Figure 2.4 (left) shows the Anscombe plot of the residuals with respect to the
interpolated values, which would ideally have to present random scattering of all
points if the selected model is to be deemed valid. In our case, it is evident that the
variability of the residuals increases from left to right, signaling a probable violation
of homoscedasticity—that is, var {εi} must be a constant, say, σ 2, independent of
index i—whereas here the graphic indicates something very different.

Figure 2.4 (right) shows the quantile-quantile plot for verification of the
normality assumption for the distribution of εi. The y-axis gives the values of ε̂i,
conveniently standardized and ordered in increasing terms, and the x-axis shows
the corresponding expected values under the normality hypothesis, approximated
(if necessary) for simplicity of calculation.

If the normal hypothesis is valid, we expect the observed points to lie along the
bisector of the first and third quadrants. In this case, the data behave differently
and do not conform to the normal hypothesis. In more detail, the central part of
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Figure 2.4 Car data: graphical diagnostics for model (2.14).

the diagram shows a trend that is quite satisfactory, although not ideal. The part of
the graph that conforms least to expectations lies in the tails of the distribution, the
portion outside interval (−2, 2). Specifically, the observed residuals are of much
larger absolute value than the expected ones, indicating heavy tails with respect to
the normal curve.

Thus, using a simple linear model (2.14) suggests the following points, some of
which, with necessary modifications, we find in other applications of linear models.

• The goodness of fit of the linear model of figure 2.3 is satisfactory on first
analysis, especially if we want to use it to predict the city distance
covered by a car of average engine size (i.e., between 1.5 and 3 L).

• The construction of the model is so simple, both conceptually and
computationally, that in some cases, these methods can be applied
automatically.

• Despite the superficially satisfactory trend of figure 2.3, the graphical
diagnostics of figure 2.4 reveal aspects that are not satisfied.

• The model is not suitable for extrapolation, that is, for predicting the value
of the variable outside the interval of observed values for the explanatory
variables. This is seen in the example of the set of diesel cars with engines
larger than 3 L, when the predicted values become completely unrealistic.

• The model has no grounding in physics or engineering, which leads to
interpretive difficulties and adds paradoxical elements to the expected
trend. For example, the curve of the set of gasoline cars shows a local
minimum around 4.6 L, and then rises again!

This type of evaluation of a model’s critical elements is not confined to linear
models (see chapter 4).
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2.1.2 Variable Transformations
We must explain what we mean by ‘linear’: these are models which are linear
with respect to parameters, but we can use nonlinear variable transformations of
both y and xi, which may be different for different variables. In addition, we can
use as many transformations as we need, for example, x1 and x2 can give place
to X = (1, x1, x2, x1/x2, ex

2
2+x1). This flexibility of use, with respect to the basic

formulation, is one of the successful features of linear models.
We already used this possibility in formulating polynomial model (2.14), which

is a common variant, but we can also use many others, including transformations
of the response variable. The theoretical structure remains unchanged, although in
this case the objective function (2.3), and therefore the optimality criterion, work
on the transformed scale.

In the foregoing examples, it is reasonable to consider fuel consumption per km
as a response variable instead of distance covered. Hence, we can write

consumption = β0 + β1(engine size)+ β2 IA + ε (2.17)

where consumption = 1/(distance covered). Obviously, here, error
term ε and parameters βj are not the same as those in (2.14), but the same
hypotheses on the nature of the error component are retained. Figure 2.5 shows
the scatterplot of the new variables, with two regression lines, the coefficients of
which are listed in table 2.2.

Some simple observations may be made: (1) the trend of the points in figure 2.5
shows good alignment; (2) this is reinforced by the value of R2, which is 0.64;
(3) therefore, it is not necessary to draw on polynomials of higher order. However,
it is useful to report the trend of the new estimated function on the original scale,
which also allows comparisons with the previous estimate. The new estimated
function is shown in figure 2.6, and is much more convincing, particularly in
the edges of the explanatory variable engine size. To be comparable with
model (2.14), R2 is now recalculated to its original scale, giving a value of 0.56.
The corresponding graphical diagnostics are shown in figure 2.7. Although the fit
of figure 2.5 appears to be acceptable, the graphical diagnostics continue to be
unsatisfactory.

Another type of transformation often used is the logarithm. In this case, it is also
reasonable to transform both the explanatory variable and the response variable,

Table 2.2. CAR DATA: ESTIMATES AND ASSOCIATED QUANTITIES

OF MODEL (2.17)

Estimate SE t-value p-value

(intercept) 0.042 0.0035 11.94 0.000
(engine size) 0.029 0.0016 17.94 0.000
fuel.diesel −0.025 0.0037 −6.78 0.000
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Figure 2.5 Car data: scatterplot of engine size and consumption, with regression
lines of model (2.17).

aiming for the formulation

log(distance covered) = β0 + β1 log(engine size)+ β2 IA + ε.

(2.18)
Logarithmic transformations are often usedwhen intrinsically positive quantities

are involved, such as distance covered and engine size. They have the
advantage of allowing us to operate on variables that vary in (−∞,∞), that is,
the “right” support for linear models. In turn, this fact means that once the
transformation is inverted, we are certain of obtaining positive quantities for the
predicted values of the response variable. An additional advantage of logarithmic
transformations is that they often correct the heteroscedasticity of the residuals.

Table 2.3 summarizes the fittedmodel, figure 2.8 shows the fitted curves on both
transformed and original scales, and figure 2.9 shows the graphical diagnostics for
the linear model.We can now deduce that model (2.18) is preferable to (2.14), but
the graphical diagnostics remain substantially unsatisfactory.

Much of the inadequacy of model (2.18) is due to the persistence of
heteroscedasticity in the residuals, as clearly shown in the left side of figure 2.9, as in
figures 2.4 and 2.7. In turn, this heteroscedasticity is probably due to a heterogeneity
in observed cases that is not adequately ‘explained’ by the explanatory variables.

To remedy this inconvenience, we have many other variables at our disposal.
In particular, basic evaluations lead us to consider the curb weight of the car
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Figure 2.6 Car data: scatterplot of engine size and distance covered with
curves fitted to model (2.17).
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Figure 2.7 Car data: graphical diagnostics of model (2.17).

as an important variable. For reasons already mentioned with respect to the other
two continuous variables, it makes sense to consider curb weight through its
logarithmic transformation.

Another feature to take into account is the anomalous position of the two points
in the bottom left corner of figure 2.2, which are never interpolated appropriately
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Table 2.3. CAR DATA: ESTIMATES AND ASSOCIATEDQUANTITIES

OFMODEL (2.18)

Estimate SE t-value p-value

(intercept) 2.782 0.0295 94.30 0.000
log(engine size) −0.682 0.0398 −17.13 0.000
fuel.diesel 0.278 0.0379 7.34 0.000
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Figure 2.8 Car data: scatterplots and fitted curves of model (2.18) on transformed (left)
and natural scales (right).

by any of the regression curves. They turn out to correspond to four cars, all with
two-cylinder engines, and they are the only ones to have this characteristic. We
must therefore add a new indicator variable, ID, to the model, with a value of 1 if
the engine has two cylinders and 0 otherwise.

Combining the considerations of the last two paragraphs, we can formulate the
newmodel

log(distance covered) = β0 + β1 log(engine size)

+ β2 log(curb weight)+ β3 IA + β4 ID + ε

(2.19)

for which table 2.4 lists the summary outcome of the estimation process. The
value of R2 is 0.88, and the corresponding value on the original scale is 0.87.
These values are evidently much more convincing than the previous ones, even
though the number of parameters has not been increased to any great extent. In
addition, the graphical diagnostics of the residuals of figure 2.10 give a much better
picture, although the residual distribution is slightly skewed, highlighted by the
mild convexity of the trend of the the quantile-quantile plot in the top right panel.

In this case, we have added two extra graphic panels, containing the scatterplots
of the residuals (transformed into the square roots of their absolute values) with



A–B–C 27

1.6 1.8 2.0 2.2 2.4 2.6 2.8

−
0.

5
0.

0
0.

5

Fitted values

R
es

id
ua

ls

Residuals vs fitted

565758 −
4

−3 −2 −1 0 1 2 3
−

2
0

2
4

Theoretical quantiles
S

ta
nd

ar
di

ze
d 

re
si

du
al

s

Normal Q−Q

5657 58

Figure 2.9 Car data: graphical diagnostics for model (2.18).

Table 2.4. CAR DATA: ESTIMATES AND QUANTITIES FORMODEL (2.19)

Estimate SE t-value p-value

(intercept) 9.07 0.475 19.08 0.000
log(engine size) −0.18 0.051 −3.50 0.001
fuel.diesel 0.35 0.022 15.93 0.000
cylinders.2 −0.48 0.052 −9.30 0.000
log(curb weight) −0.94 0.072 −13.07 0.000

respect to the estimated values, and the Cook distance for every observation. The
Cook distance allows us to evaluate the effect on β̂ produced by removing (xi, yi)
from the set of observations, and this perturbation of β̂ is linked to a corresponding
perturbation of ŷ. Therefore, the Cook distance provides an indicator of the
influence of this observation on the fitted model. Both diagrams are entirely
satisfactory in that they show neither heteroscedasticity of residuals nor influential
observations.

The meaning and interpretation of the numerical values in table 2.4 are largely
according to expectations, in the sense that curb weight, engine size, and
fuel type all correspond to common knowledge of the distance covered by
a car, or rather, its logarithmic transformation, as examined here.

However, a specific comment must be made regarding factor ID, the coefficient
of which has a negative sign and is of considerable statistical significance—in
outstanding contrast with intuitive expectations, as a car with two cylinders should
in fact consume less than the others, that is, it should have a positive β4 coefficient
in the prediction of log(distance covered).

The explanation of this apparently paradoxical behavior is due to the structure
of the relationships between all the variables involved, not only between the
response and explanatory variables. In particular, figure 2.1 shows that the
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Figure 2.10 Car data: graphical diagnostics for model (2.19).

curb weight of the two-cylinder cars is similar to that of four-cylinder ones
and much higher than those of three-cylinder cars, and this group of cars also
behaves anomalously with respect to the general trend in the scatterplots for other
variables.

There are many ways of dealing with this type of situation. The simplest
is adopted here: the indicator variable ID of the anomalous group is inserted
among the explanatory variables. Thus, the value of the estimate −0.48 for
β4 is not interpreted in the sense that two-cylinder cars generally have a
log(distance covered) that is 0.48 lower than that of the others: this is due
to the particular way the fact of having two cylinders links up with the other
explanatory variables, mainly curb weight.

2.1.3 Multivariate Responses
In some cases, there are several response variables of interest, for the same sets of
units and explanatory variables. An immediate example comes from the car data
themselves, and here it is interesting to consider not only city distance but
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also highway distance, so we examine the same set of explanatory variables
in both responses.

If there are q response variables, we can construct a matrix Y , the columns of
which contain these q variables. In our car example, q = 2 and

Y = ((city distance), (highway distance)).

If we create q models of linear regression, each of type (2.6), using the same
regression matrix X for each, we obtain

Y = XB+ E (2.20)

where B is the matrix formed of q columns of dimension p, each representing the
regression parameters for the corresponding column of Y , and matrix E is made up
of error terms. Here, too, each of its columns refers to the corresponding column
of Y , with the condition that

var
{
Ẽi
} = �

where Ẽ�i represents the ith row E, for i = 1, . . . , n, and � is a variance matrix
of dimensions q × q independent of i, which expresses the correlation structure
between the error components and therefore also between the response variables.
Equation (2.20) constitutes amodel of multivariate multiple linear regression, where
the term ‘multivariate’ refers to q response variables and ‘multiple’ to p explanatory
variables.

The natural extension of the least squares criterion to the case of q response
variables is given by the sum of q terms of type (2.3). Because this sum is minimal
when each additive term is minimal, the solution to the multivariate least squares
problem is

B̂ = (X�X)−1X�Y (2.21)

which is simply the juxtaposition of q vectors estimated for each response variable.
The corresponding estimate of� is

�̂ = 1
n− p

Y�P Y

of which the diagonal gives the terms equivalent to s2 of (2.11), yielding standard
errors, as in the scalar case, from (2.12).

Bibliographical notes
The treatment of linear models appears in a variety of styles and levels; we
only mention a few references. For an introduction focusing on applicative
use, see Weisberg (2005) and Cook & Weisberg (1999), who deal with
extended aspects of graphical representation and the use of graphical diagnostics.
A more formal treatment of linear models is in chapter 4 of Rao (1973). For the
operational aspects, we refer to Venables &Ripley (2002, ch. 6). Classical methods
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for analysing multivariate response variables are provided by Mardia et al.
(1979).

2.2 COMPUTATIONAL ASPECTS

Computational aspects take on a very important role in data mining. Let us
start by referring to the linear models that represent their most simple algebraic
formulation.

The main element to be calculated is the estimate of β in (2.7), and then the
other quantities associated with it—in particular, estimate s2 of σ 2 given by (2.11)
and the relative standard errors of the components of β̂ .

2.2.1 Least Squares Estimation by Successive Orthogonalization
As we saw in section 2.1.1, the solutions to least squares problems (2.7) and related
quantities are all based on inversion of the (X�X) matrix, and the most frequently
used method of inverting symmetric matrices is based on Cholesky factorization.
The solutions to least squares problems by this method has a computational cost of
p3 + np2/2 elementary operations (see, e.g., Trefethen & Bau, 1997, Lecture 11).

However, a matrix can be inverted only if all its rows and columns are linearly
independent—that is, in this case, if there is no linear dependence between the
columns of X . Clearly, if some columns of X are almost linearly dependent, the
solution of (X�X)−1 will probably be computationally unstable. The best situation
is when all the columns of X are orthogonal to each other, so that the inverse is
obtained very efficiently. The Gram-Schmidt procedure, shown in algorithm 2.1,
transforms the original variables sequentially, by successive orthogonalization
yielding a new formulation of X with orthogonal columns, so that the inverse
of X�X is easily obtained.

The algorithm may be written in matrix form by considering the QR
decomposition of X as the product of an n × p orthogonal matrix Q , usually
normalized so that Q�Q = I , and a p × p, upper triangular matrix R. The least
squares solution is therefore

β̂ = R−1Q�y and ŷ = QQ�y

where the inversion of R is easy because it is a upper triangular matrix.
The computational cost of least squares fitting by QR decomposition requires

approximately 2np2 operations, about twice that of direct inversion by Cholesky
decomposition when n � p and about the same when p = n. Depending on
the number of variables and records available, we choose the most appropriate
algorithm.

2.2.2 When n is Large
However, when n is large, the solutions presented in the last section become
difficult to ascertain, because they involve handling matrices of dimensions n × p,
which is time consuming. When n is really very large, even simply loading X into
memory may be problematic.
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Algorithm 2.1Gram-Schmidt algorithm for least squares estimates

1. Start: Initialize z0 = x0 = 1n.
2. Cycle for j = 1, 2, . . . , p − 1: regress xj on z0, z1, …, zj−1, to produce

coefficients:

γ̂kj =
z�k xj
z�k zk

k = 0, . . . , j − 1 and residual vector zj = xj −
j−1∑
k=1

γ̂kjzk .

3. Regress y on residual vector zp−1 to give estimate β̂p−1.

A simple method of overcoming this problem is as follows. The elements
necessary for calculating (2.7) are only

W = X�X, u = X� y

of dimensions p × p and p × 1, respectively, where W is the symmetric matrix,
so we can write

β̂ = W−1 u. (2.22)

Also, putting

X =

⎛⎜⎜⎜⎜⎝
x̃�1
x̃�2
...

x̃�n

⎞⎟⎟⎟⎟⎠
where x̃�i is the ith row of X , we obtain

W =
n∑

i=1
x̃i x̃�i , u =

n∑
i=1

x̃i yi.

We can also write

W(j) = W(j−1) + x̃j x̃�j , u(j) = u(j−1) + x̃j yj, for j = 2, . . . , n.

whereW(j) is the matrix formed by the first j summands ofW , and u(j) is defined
analogously, starting from

W(1) = x̃1 x̃�1 , u(1) = x̃1 y1.

It is now clear that W and u can be calculated by reading the data of a single
record at a time and increasing the sums gradually as the data are read, with a
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construction involving memory use independent of n. At this point, β̂ can be
calculated by exploiting an algorithm for the inversion of symmetric matrices. The
most frequently used method is based on Cholesky decomposition. If some of the
columns of X are made up at least partially of variables obtained by transforming
the original data, such transformations can be performed progressively as the data
are read.

The previous procedure may also be extended to calculate s2 and the standard
errors of β with a memory use independent of n.

2.2.3 Recursive Estimation
When the data flow continuously (i.e., are a data stream) and we must update the
estimates in real time, we need an algorithm that updates them recursively.

The previous setting allows us to solve this problem, as there are no restrictions
on n. However, it does behave in a way that for every data read cycle, we must
reinvert matrix W , of dimensions p × p, and this may be problematic if p is not
small and the data flow fast. We can also improve our procedure by suitably
manipulating the formulas.

Let us presume that we have calculated the least squares estimates for the set of
the first n observations and that we have

β̂(n), V(n) = W−1
(n) = (X�(n)X(n))−1

where n as a subscript reminds us that the quantities refer to the first n observations.
On reading the (n+ 1)th observation, formed by yn+1 and x̃n+1, wemust update

the estimates and other connected quantities. We write

X(n+1) =
(
X(n)

x̃�n+1

)
, W(n+1) = X�(n+1)X(n+1) = (X�(n)X(n) + x̃n+1x̃�n+1)

and use the Sherman-Morrison formula (A.2) to invertW(n+1), obtaining

V(n+1) = V(n) − h V(n)x̃n+1x̃�n+1V(n)

where h = 1/(1+ x̃�n+1V(n)x̃n+1). After due substitutions in (2.22), we obtain the
recursive expression

β̂(n+1) = V(n+1) (X�(n)y + x̃n+1yn+1)

= β̂(n) + h V(n)x̃n+1︸ ︷︷ ︸
kn

(yn+1 − x̃�n+1β̂(n))︸ ︷︷ ︸
en+1

= β̂(n) + kn en+1 (2.23)

where en+1 represents the prediction error of yn+1 based on the estimate of β
obtained from the first n observations. We thus have the new quantities β̂(n+1) and
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V(n+1) = (X�(n+1)X(n+1))−1, with which we can resume the updating cycle from
the beginning.

Making use of (A.2) in a similar fashion, we can also obtain a corresponding
recursive form to calculate the sum of the squares of the residuals (2.10), that is,

Qn+1(β̂(n+1)) = Qn(β̂(n))+ h e2n+1 (2.24)

where Qn+1(·) is calculated with matrix X(n+1) and response vector y(n+1), and,
analogously, Qn(·) refers to the first n observations. Equations (2.24) and (2.11)
give estimate s2n+1, which,multiplied byV(n+1), yields the standard errors of β̂(n+1).

The updating rule (2.23) takes the form of a linear filter, in which new estimate
β̂(n+1) is obtained by modifying old estimate β̂(n) according to prediction error
en+1, weighted with the gain kn of the filter. Using the terminology typical of the
field of machine learning, we say that the estimator “learns from its errors” by
adjusting the current estimate each time, according to error en+1.

This scheme therefore calculates only a single inversion of the p × p matrix at
first, and then we simply have to update the estimates and related quantities. When
n is very large, as when we work with a continuous data stream, we can further
simplify the procedure, introducing an approximation that becomes negligible as n
increases. As in this case, the first p observations have little influence on the total,
and we can begin in whatever way we like—for example, with β̂(p) equal to the
zero vector andV(p) to the identitymatrix of order p, which essentially corresponds
to following only step 6 of algorithm 2.2. In this way, the values of β̂ are not the
correct ones, but they tend to became so gradually as n increases.

This sequence of previous operations is shown schematically in algorithm 2.2.
The Diag(·) notation is used to indicate the diagonal elements of a general square
matrix.

Bibliographical notes
An authoritative coverage of the computational aspects of least squares estimation
is given by Golub & Van Loan (1983). The algorithm of recursive least squares
was presented by Plackett (1950), who also refers to the original work of Gauss
of 1821.

2.3 LIKELIHOOD

2.3.1 General Concepts
Up to now we have reviewed cases in which the variable of interest (y) was
continuous and the problemof studying the relationship between y and explanatory
variables (x1, . . . , xp−1) could be managed through the least squares criterion.
The latter finds its field of application more appropriate when the range of y is
(−∞,∞). The most correct usage of associated inferential techniques is possible
if the distribution of error terms ε, and thus also of y, is normal or Gaussian, at least
approximately.
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Algorithm 2.2 Recursive linear least squares

1. LetW(p×p) ← 0, u(p×1) ← 0, Q←0.
2. Cycle for n = 1, . . . , p:

a. read nth record: x← x̃n, y← yn,
b. W ← W + x x�,
c. u← u + x y.

3. V ← W−1.
4. β̂ ← V u.
5. Cycle for n = p+ 1, p+ 2, . . . :

a. read nth record: x← x̃n, y← yn,
b. h← 1/(1+ x� V x),
c. e← y− x�β̂ ,
d. β̂ ← β̂ + h V x e,
e. V ← V − h V x x�V ,
f. Q ← Q + h e2,
g. s2 ← Q /(n− p),
h. std.err(β̂)← sDiag(V)1/2.

For many other cases, to fit a model to data, we need a more general criterion
than that of least squares. From both theoretical and practical points of view,
the preferred criterion for statistical estimation of model parameters is that of
maximum likelihood, which substantially comprises least squares as a special case.

This criterion requires specification of a parametric family of probability
distributions, dependent on a parameter θ (possibly p-dimensional) that must
be estimated from available data. This probability distribution represents the law
governing random variable Y from which empirical value y was observed. The
distribution is identified by its probability density function in the case of continuous
variables, or by the probability function for discrete variables. We usually use the
notation p(t; θ) to indicate this probability or density function, where t varies in
the set of possible values of Y .

With these hypotheses, we define the likelihood function as

L(θ) = c p(y; θ) (2.25)

where c is an arbitrary positive constant, but fixed once and for all. Because p(t; θ)
is evaluated in observed value y, the term on the left-hand side is a function only
of θ ; however, in some cases we use the notation L(θ; y) to show that it depends
on observations.

Equation (2.25) therefore constitutes a family of functions, indexed by c. As c
plays a significant role only for the development of theoretical results but has no
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effect either on the use of L(θ) or on the properties of the associated inferential
techniques, in the following we keep c = 1.

Because p(y; θ) is essentially positive, it makes sense to define the log-likelihood
function as

log L(θ) = log p(y; θ) (2.26)

setting log L(θ) = −∞ if p(y; θ) = 0.
We obtain the estimate of θ according to the maximum likelihood criterion by

maximizing (2.25) or, equivalently, (2.26). We can also write

θ̂ = arg max
θ

L(θ) = arg max
θ

log L(θ) (2.27)

although this notation is not completely rigorous, because the existence and
uniqueness of the maximum of L are not guaranteed. However, in the regular
cases used in practice, this ambiguity does not occur because a unique global
maximum exists.

The actual maximization of L can be explicitly obtained only in simple cases.
In many others, we have to return to numerical analysis methods to identify it.
In regular cases, we have to resolve the system of likelihood equations

∂

∂θ
log L(θ) = 0 (2.28)

and then verify that the resulting solution corresponds to a maximum point. It is,
in fact, quite simple to check whether we have a local maximum, but its definition
(2.27) requires selection of the global maximum point. This can sometimes (but
not always) be resolved by exploiting the mathematical properties of p(y; θ). We
therefore see that this method can cause computational problems, at least in the
case of complex models.

Every estimate must be accompanied by quantification of its precision, and
this requires evaluation of its variance. One of the advantages of the maximum
likelihood method is that we have a general scheme available for it, starting from
Fisher’s observed information matrix

J (θ̂) = − ∂2

∂θ ∂θ�
log L(θ)

∣∣∣∣
θ=θ̂

(2.29)

of which the inverse gives an approximation to var {θ̂}, in conditions that can be
verified in most practical cases. We can therefore obtain standard errors for θ̂
through

std.err(θ̂) = Diag(J (θ̂)−1)1/2

where the Diag(·) notation indicates the diagonal elements of a square matrix.
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Combining these facts with the additional property of estimates of maximum
likelihood, that is, they have an approximately normal distribution when sample
size is sufficiently high, we obtain

θ̂r ± zα/2 std.err(θ̂r) (2.30)

to construct confidence intervals of at least approximate level 1 − α for the rth
component θr of θ ; here, zα/2 indicates the quantile of level 1−α/2 of distribution
N(0,1).

This construction of a confidence interval for θr is associated with the
construction of a procedure for testing the hypothesis

H0 : θr = a

for a specified value a. For fixed statistical significance level α, Wald’s test criterion
leads to rejection of hypothesisH0 when |t| > zα/2, because we put

t = θ̂r − a
std.err(θ̂r)

, (2.31)

and (2.30) is consequently called aWald-type confidence interval.
Equivalently, we can calculate the p-value, or observed significance level,

approximated by 2
(−|t|), which is compared with α.
Whenwe are interested in testing a hypothesis on the components of θ expressed

by q constraints of the type

H′0 : gj(θ) = 0, (j = 1, . . . , q), (2.32)

where gj are differentiable functions, against the alternative that at least one equality
is false, the foregoing method cannot be used. Instead, we use the criterion of the
likelihood ratio, defined by the test function

w = 2 {log L(θ̂)− log L(θ̂0)} (2.33)

where θ̂0 indicates themaximum likelihood estimate subject to q constraints (2.32).
For a fixed significance level α, the criterion leads to rejection of hypothesisH ′0

when observed value w is greater than the 1 − α quantile of distribution χ2
q . Here

again, we can calculate the p-value, now expressed by

p = P
{
X2 > w

}
where X2 ∼ χ2

q , at least approximately and compare p with α. The distributive
properties associatedwith the procedure are exact in the case of normal distribution
of observations and hypothesis H′0 expressed by linear constraints; in other cases,
these properties are approximate.
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Note that the two testing procedures based on (2.31) and (2.33) are connected.
When they are both applicable, they give identical (or at least approximately equal)
results. This is because hypothesis H0 corresponding to a single linear constraint
may be expressed as H′0 = θr − a = 0, and 2
(−|t|) is at least approximately
equal toP

{
X2 > w

}
, where w = t2 and X2 ∼ χ2

1 .

2.3.2 LinearModels with Gaussian Error Terms
Discussion of the regressionmodels of section 2.1 was based on specifying for error
term ε only hypotheses up to second-order moments (i.e., mean, variance, and
covariance), but without formulating a complete hypothesis on the nature of the
distribution of ε, and therefore of the response variable.

As already mentioned, the distributive hypothesis that assumes normal or
Gaussian distribution for ε, with independence between components for separate
observations, is by far the most common and historically consolidated. Combining
this fact with the contents of section 2.1.1 gives us ε ∼ N(0, σ 2). Therefore,
regarding random variable Yi, which generates the ith observation of model (2.2),
we write

Yi ∼ N(f (xi;β), σ 2), for i = 1, . . . , n

and the corresponding log-likelihood function is

log L(β, σ 2) = −n
2
log σ 2 − 1

2σ 2D(β)

where D(β) = ‖y − f (x;β)‖2 is defined as in (2.3). This means that the
maximization of likelihood with respect to β corresponds to the minimization
of D(β), and therefore the estimates of maximum likelihood coincide with those
of least squares. To estimate σ 2, the maximum likelihood estimate,

σ̂ 2 = D(β̂)/n

is similar to s2 of (2.11); the difference in the denominator tends to be relatively
negligible as n gradually increases. It also follows that

−2 log L(β̂, σ̂ 2) = n log{D(β̂)/n} + n.

The new estimates are thus effectively the same as the least square ones, but
the new formulation means that we have access to all the inferential apparatus
mentioned in section 2.3.1.

The principal type of regression model is linear, which may be expressed as
(2.6). In this framework, one common practical problem is testing the significance
of regression parameters β; in particular, hypotheses of the type H0 : βr = 0
are commonly involved. In this case, the distribution of test function (2.31) can
be calculated exactly, by Student’s t distribution, like the p-value in the tables of
section 2.1. The approximation error caused by avoiding the exact calculation of
the p-value is not important for sample sizes larger than a few dozen.
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If the q constraints (2.32) are expressed by linear relations on parameters,
quantity (2.33) takes the form:

w = ‖y− ŷ0‖2 − ‖y− ŷ‖2
σ̂ 2 = ‖ŷ− ŷ0‖2

σ̂ 2 (2.34)

where ŷ0 is the vector of interpolated values under the q constraints. Each of the
terms

D = D(β̂) = ‖y− ŷ‖2 and D0 = D(β̂0) = ‖y − ŷ0‖2

in (2.34) represent a deviance, respectively, of the unconstrained model and that
with q constraints.

The approximated distribution of reference for w is χ2
q , according to the

general results of section 2.3.1. In the specific case of Gaussian error terms, we
can also obtain the exact distribution, which is usually expressed in terms of the
transformation

F = w
n− p
n q

= ‖ŷ− ŷ0‖2/q
s2

(2.35)

which, as null distribution, is Snedecor’s F with (q, n − p) degrees of freedom, if
p is the number of parameters in the nonconstrained model. Also in this case, the
approximation error due to the asymptotic distribution for calculating the p-value
is not important for sample sizes exceeding a few dozen.

2.3.3 Binary Variables with Binomial Distribution
In the case of binary response variables, let us denote one possible outcome as
“success” and the other as “failure.” When π denotes the probability of success in a
single observation, the probability distribution of the total number of successes Y
out of n independent observations in constant conditions is given by the binomial
distribution of index n and probability parameterπ . If y denotes the observed value
of Y , the corresponding log-likelihood function is

log L(π) = constant+ y log(π)+ (n− y) log(1− π), (0 ≤ π ≤ 1).

The estimate of maximum likelihood and its standard error are, respectively,

π̂ = y/n, std.err(π̂) =
√
π̂ (1− π̂)/n

and the corresponding maximum of the log-likelihood function is

log L(π̂) = constant+ y log π̂ + (n− y) log(1− π̂).

where we mean that 0 log 0 = 0, for continuity.
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One frequent practical problem arises when we wish to examine a population
stratified into two groups, say, 1 and 2, and denote the probability of success in
a single observation from each group by π1 and π2, respectively. In this case, the
log-likelihood function depends on two parameters and is

log L(π1, π2) = constant+ y1 log(π1)+ (n1 − y1) log(1− π1)

+ y2 log(π2)+ (n2 − y2) log(1− π2)

where y1 and y2 denote the number of successes and n1 and n2 the sizes of two
samples from the subpopulations.

In the previous notation, the test hypothesis wasH0 : π1 − π2 = 0, and the null
hypothesis thus imposes q = 1 constraints of type (2.32) on the parameters. The
likelihood ratio test statistic is therefore

w = 2{log L(π̂1, π̂2)− log L(π̂ , π̂)}

where π̂j = yj/nj, for j = 1, 2, and π̂ = (y1 + y2)/(n1 + n2) is the estimate of
common values of π . Observed value w is compared with approximate reference
distribution χ2

1 .
By analogy with the framework of section 2.3.2, quantity w is also described

as deviance, because here too it expresses the discrepancy between the formulated
hypothesis and the general case and is usually indicated by the same symbol, D,
of (2.10). We bear in mind here the fact that there is no parameter of scale σ 2.
The same applies to the likelihood test: the concept of deviance has a much more
general value than in the given example, because it may also refer to cases with
J groups and the formulated hypothesis may not be that of equality of π for all
groups, but corresponds to q constraints. Under this assumption π is estimated by
π̂ =∑

yj/
∑

nj. Some simple manipulations yield

D = 2
{
log L(π̂1, . . . , π̂J)− log L(π̂ , . . . , π̂)

}
(2.36)

= D0 − D1 (2.37)

where

D1 = −2 log L(π̂1, . . . , π̂J) = −2
J∑

j=1

{
yj log π̂j + (nj − yj) log(1− π̂j)

}
,

(2.38)
and D0 is similarly obtained when all π̂j = π̂ . Obviously, if the number of
subgroups of which we want to test the equality of probability of success is q + 1,
and correspondingly the number of constraints imposed on π is q, the number of
degrees of freedom changes, and the approximate reference distribution is χ2

q .
For a numerical illustration, we consider the data of the Brazilian bank

(described in Appendix B.3) and split the degree of satisfaction into two levels,
high and low, stratified into two subpopulations of old people and young
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people, according to age (over and under 45). The observed frequencies are
shown below.

young old total

satisfaction low 84 34 118
high 225 157 382

total 309 191 500

This gives us the estimates of the probability of high satisfaction, π̂1 =
225/309 = 0.728 (SE= 0.025) for the young group, and π̂2 = 157/191 = 0.822
(SE = 0.028) for the old group, and the estimate without age stratification is
π̂ = 382/500 = 0.764 (SE = 0.019). The corresponding calculation of the
likelihood ratio test, that is, of deviance, gives D = 2 (273.21 − 270.25) = 5.96,
p-value 0.015, indicating the influence of age class on the degree of satisfaction.

Bibliographic notes
For a general treatment of statistical inference, at various levels, see Cox &
Hinkley (1979), Casella & Berger (2002), orWasserman (2004). For treatment of
likelihood-based inference, see Azzalini (1996).

2.4 LOGISTIC REGRESSION AND GLM
In the previous numerical example, we concluded that the young customers of the
bank are significantly less satisfied than the older ones. Because the variable age
can be used in numerical form, it seems preferable to use it in a nondichotomized
way. To do this, we need a tool that allows us to study the relation between a
quantitative variable and a dichotomous one, like satisfaction.

This situation is still a study of the relation between variables, but in this
case the dichotomous nature of the response variable advises against the use of
linear regression. A simple extension of the idea of linear regression to the new
problem is logistic regression, which connects probabilityπ of the event of interest
to a set x = (x1, x2, . . . , xp−1) of explanatory variables in the following form.
Response variable Y for any given subject is now a Bernoulli random variable,
whose probability of success π(x) depends on the covariates. If we indicate by
η(x) a combination of covariates, linear on the parameters, of the type

η(x) = β0 + β1x1 + · · · + βp−1xp−1 (2.39)

similar to those used in § 2.1, and define the logistic function:

�(η) = eη

1+ eη
(2.40)

the model of logistic regression is given by

π(x) = �(η(x)) = eη(x)

1+ eη(x)
(2.41)
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Figure 2.11 Logistic function for some choices of pair (β0, β1) when η(x) = β0 + β1x.

where we note that the probability of the event of interest depends on x, through
linear predictor η(x) = x�β .

Figure 2.11 shows some examples of the behavior obtainable in this way when
we have only one explanatory variable and η(x) = β0 + β1x, for some choices of
pair (β0, β1). The specific pair (0, 1) corresponds to �(x) defined by (2.40).

The scheme of logistic regression is one of the family of generalized linear
models (GLM) in which the relationship between the explanatory variables and the
response variable may be expressed as

g
(

E
{
Y |x1, . . . , xp−1

}) = x� β = η(x) (2.42)

for an appropriate choice of link function g(·). The notation E
{
Y |x1, . . . , xp−1

}
used here indicates that the values of variables xj are predetermined or that we
operate conditionally on the assumed values of the variables.

For this family of models, the probability distribution of Y conditional on
covariates x1, . . . , xp−1 must belong to a specific set of distributions. Although,
mathematically speaking, this set is quite narrow, in practical terms it covers all
the commonly employed families of distributions—Gaussian, gamma, binomial,
Poisson, inverse Gaussian, and negative binomial. For this form, there is a
clearly structured inference theory based on likelihood and deviance that, in this
framework, plays an important role.

In general, we cannot express the maximum likelihood estimate of a GLM
explicitly as a function of the observed data, and we must therefore use an iterative
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Figure 2.12 Bank data: frequencies of satisfied customers according to age and estimated
curves of logistic regression. Left: circles have same diameter; right: circles have areas
proportional to size of group.

numerical procedure. However, there is a very efficient and reliable iterative
algorithm to obtain the estimates, through an appropriate sequence of estimates
called iterated weighted least squares.

The case of logistic regression obtains when g(·) in (2.42) is

g(π) = logitπ = log
π

1− π
(2.43)

that is, the inverse function of (2.40), and Y has Bernoulli distribution of parameter
π , which is a function of the explanatory variables, that is, π(x) = �(η(x)). In the
previous example, in which the response variable was dichotomous, the index of
the binomial distribution was 1, but extension to the case of m observations made
at value x is immediate, and therefore Y is a binomial with index m and parameter
π(x). It is common to use the quantity

odds = π

1− π

with inverse function

π = odds
1+ odds

.

If we examine the Brazilian bank data in greater detail, without aggregating
the age values, the picture emerging from section 2.3.3 changes considerably.
Figure 2.12 shows the fitted curve of the relative frequencies of satisfied customers
according to age; the two panels are equal, except for the different way of
representing the observed values. Figure 2.12 shows that customers’ behavior
does vary appreciably with age, in the sense that younger customers behave more
like older ones than customers in the intermediate age classes.
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Table 2.5. BANK DATA: SUMMARYOF LOGISTIC REGRESSIONMODEL,
QUADRATIC (UPPER) AND LINEAR (LOWER)

MODELWITHQUADRATIC COMPONENT

Estimate SE t-value p-value

(intercept) 2.0356 1.2734 1.60 0.110
age −0.0700 0.0602 −1.16 0.245
age2 0.0011 0.0007 1.56 0.120
D= 0.795 with 3 d.f.

MODELWITHOUTQUADRATIC COMPONENT

Estimate SE t-value p-value

(intercept) 0.1490 0.3829 0.39 0.697
age 0.0230 0.0084 2.73 0.006
D= 3.302 with 4 d.f.

We can now apply this method to study of the relationship between the
probability of high satisfaction and the age of the bank’s customers. The latter
variable is available in the form of a central value of the respective age class, which
we now indicate by x, of which possible values are (20, 25, 35, 45, 55, 65). The
points in figure 2.12 represent the observed relative frequencies at the values of x,
and the dotted curve is obtained by adapting model (2.40) as follows:

η(x) = β0 + β1x + β2x2

where selection is based on preliminary inspection of the data. Note that for the
class of the youngest customers, the trend is opposite that of intermediate classes.
Table 2.5 lists the estimate operations, which also show that the quadratic
component has aWald test p-value of 0.12, which is not significant.

We can also evaluate the importance of component β2 by comparing the two
deviances of the model with and without a quadratic component. The difference
between them isD = D1 −D2 = 3.302− 0.795 = 2.507, a value that is exceeded
with a probability of 0.11 by variable χ2

1 , where the degrees of freedom are
calculated by the difference 4 − 3 between the degrees of freedom of the two
ingredients. This value is not perfectly identical, but is basically equivalent, to that
obtained by theWald test.

Removing the quadratic component yields a model the relevant values of which
are shown in the lower part of table 2.5, and the estimated curve is that which is
continuous in figure 2.12.

It is initially surprising that the quadratic component is not necessary for a
proper description of the relationship, in view of the very high frequency of
the younger group. In fact, this deceptive impression comes from the type of
graphical representation used, which does not consider group size. The right panel
of figure 2.12 uses a more appropriate representation, in that the areas of the points
are proportional to the size of the various groups, providing a visual impression that
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includes information. The choice of the model without a quadratic component no
longer seems surprising, as the first group is of negligible size.

Bibliographic notes
A classical reference for these models is given inMcCullagh &Nelder (1989). The
work of Azzalini (1996) includes a shorter treatment of generalized linear models.
Specific coverage of logistic regression, with particular attention to applicative
aspects, is given by Hosmer & Lemeshow (1989).

EXERCISES
2.1 In model (2.14), applied to car data, remove the cubic term and estimate the

new model. Observe that the quadratic term becomes significant. Explain
this result.

2.2 Use the estimate of linear model (2.14) and extrapolate predicted values for
gasoline cars with engine size in the interval (1, 7). Comment on the
results.

2.3 For model (2.17), value R2 ranges from 0.64 to 0.56 when calculated from
the original data instead of the transformed data, falling below value 0.60 of
the model (2.14). Explain and comment on these differences.

2.4 Extend model (2.17), inserting variables curb weight and ID, and
compare the result of the fit of the newmodel with that of (2.19).

2.5 For model (2.18), reproduce the two graphs of figure 2.8.

2.6 For model (2.18), give a critical analysis of the elements in table 2.3 and
associated graphs along the lines of the discussion at the end of section 2.1.1.

2.7 Fit an appropriate linear model to predict highway distance for car
data, in two ways: (a) using the variables described in this chapter; (b) using
any variables listed in Appendix B.2.

2.8 Complete the details of the statements at the end of section 2.2.2 by
calculating s2 and standard errors, using (2.10) or any other method.

2.9 Check the correctness of the Sherman-Morrison formula (A.2).

2.10 Check the correctness of the formulas provided by recursive updating of the
least squares estimates.

2.11 Prove (2.24).

2.12 What is the difference between the confidence interval of the value of the
function and the prediction interval, both relative to the next observation?

2.13 The curves of figure 2.11 are all monotone, whereas one of those in
figure 2.12 is not. Explain this discrepancy.
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Optimism, Conflicts, and
Trade-offs

Pluralitas non est ponenda sine necessitate.
—WILLIAMOF OCKHAM

3.1 MATCHING THE CONCEPTUAL FRAME AND REAL LIFE
A solidly based and rich theory of statistical inference, of which we have only
mentioned a few key components, underlies the methods described in chapter 2.
This theory is characterized by a number of properties that hold only if themodel is
chosen according to a conceptual foundation that must preexist the availability of
the data, and the model itself is appropriate, at least for the purposes of the analysis
in question. The related inferential paradigm was developed within a specific
research context, with important connections with the foregoing experimental and
scientific settings.

However, certain applied problems, which are often encountered, do not fit
this scheme very well. A particularly common critical point is the absence of an
adequate background theory, which prevents us from formulating a reliable model
before inspecting the data. Preliminary exploration of the data is therefore often
required to identify the most suitable model; this approach is even adopted as a
general course of action. Chapter 2 describes some examples.

In our areas of application, the inferential paradigm must be adapted to some
extent, because no proper sampling design exists.
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Similar to the procedure described in chapter 2—that is, exploratory inspection
of the data to choose the most suitable models—we consider diagnostic methods
to at least partially verify the appropriateness of the choice of model. These
diagnostics cover one aspect of the problem, but the issue of assessing the validity
of a model is much broader. We explore this topic in the next sections.

3.2 A SIMPLE PROTOTYPE PROBLEM

We consider here a very simple example serving as the prototype for much more
complex and realistic circumstances. Let us presume that yesterday we observed
n = 30 pairs of data (xi, yi), for i = 1, . . . , n, shown in the scatterplot of figure 3.1.
The data were generated artificially by an equation such as

y = f (x)+ ε (3.1)

where ε is an error component with distributionN(0, σ 2) and σ = 10−2; f (x) is
a function which we leave unspecified—the only requirement is that this function
should follow an essentially regular trend. Clearly, to generate the data, we had to
choose a specific function (not a polynomial), but we do not disclose our choice.

Say we wish to obtain an estimate of f (x) today that allows us to predict y as
new observations of x become available. A reasonable choice consists of using the
techniques mentioned in chapter 2, particularly the polynomial regression in (2.4).

If we have no information to guide us in choosing the degree of the poly-
nomial, we first consider all possible degrees from 0 to n− 1, thereby introducing p
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Figure 3.1 Yesterday’s data: scatterplot.
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parameters ranging from 1 to n, in addition to σ . For brevity, figure 3.2 only shows
the fitted curves for only some values of p. Obviously, the polynomial fit improves
as p increases, as shown in figure 3.3, in which the residual deviance (2.10) and
coefficient of determination R2 (2.15) are plotted as functions of p.

A special case exists when p = n, corresponding to a polynomial that exactly
interpolates the observed data, with residual deviance 0 and R2 = 1. Such a case is
apparently ideal, but it corresponds to the unacceptable situation shown in the last
plot of figure 3.2. The nearly vertical lines are simply the visualized portions of the
very large fluctuations the 29-degree polynomial must follow to interpolate all the
observed points exactly.

As already mentioned, we need to use an estimate of f (x) to predict values
of y for new data {yi, i = 1, . . . , n} produced by the same generating mechanism,
but these will become available tomorrow. To simplify the process, we assume that
these yi are associated with the same xi used for yesterday’s data. We now evaluate
the quality of the prediction using yesterday’s fit of the polynomials for the new
yi, as if we could obtain tomorrow’s data today. Figure 3.4 shows tomorrow’s data
with the predictions from the previously fitted polynomials. It is noteworthy that
the higher-degree polynomials fluctuate and no longer fit the new points, whereas
for smaller values of p, an increase in the degree of the polynomial improves
the fit of the general trend. This improvement gradually ceases as the increase
in degree causes the polynomial to follow random fluctuations in yesterday’s
data, not observed in the new sample. Figure 3.5 summarizes and quantifies this
information by showing that the residual deviance decreases to a certain point and
then increases, whereas index R2 peaks and then falls.

The concepts of deviance and R2 are used here in a way that extends beyond
their common definitions, since the sum of the squares of the quantities involved
are computed by using data other than those used for the fit.

3.3 IF WE KNEW f (x). . .
In a general sense, when we formalize the observations of section 3.2, we can say
that we want to estimate f (x) using a generic estimator ŷ = f̂ (x), which, in our
example, can be provided by one of the 30 fitted polynomials.

We start by considering a specific value x′ for x. If we knew the mechanism used
to generate the data precisely, that is, f (x′), we could calculate a few quantities of
interest for the quality of estimator ŷ. An important goodness-of-fit index is given
by themean squared error

E
{[Ŷ − f (x′)]2} = [

E
{
Ŷ
}− f (x′)

]2
+ var

{
Ŷ
}
, (3.2)

where Ŷ denotes the parent random variable of ŷ. When f (·) is a polynomial with
fixed degree p, (3.2) can be explicitly obtained; see exercise 3.2.

Because we are interested in more than one single point x′, we consider the
sum of the mean squared errors for all the n values of x. Representing the resulting
value as a function of p, which is an indicator of model complexity, we obtain the
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Figure 3.2 Yesterday’s data: interpolations with polynomials of various degrees.
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Figure 3.3 Yesterday’s data: deviance and R2 coefficient when p varies.

plot shown in figure 3.6. Note that when p increases, the mean squared error first
decreases and then increases, thus providing the level of ‘complexity’ corresponding
to a minimummean squared error—in this case, for p = 5.

In the foregoing treatment, we used the family of polynomials as a set of models
in which complexity was controlled by a certain parameter p, which was precisely
the polynomial degree. Polynomials are not the only possible choice; the Fourier
series is another that comes to mind. In any case, the final message remains
unaltered, even when the family of models chosen is changed. When complexity
increases, there is usually an initial gain followed by a loss.

When we further consider (3.2), the components of which are such that

E
{[Ŷ − f (x′)]2} = bias2 + variance, (3.3)

we see that this decomposition applies not only in the case of polynomial
regression, but also in general. Figure 3.7 shows how these two components
contribute to the mean squared error for this example. When model complexity,
quantified by p, is low, bias is high and variance is moderate; when p increases, bias
decreases but variance increases. As mentioned in section 3.2, when p increases,
the polynomials fit the data better, but when p becomes too large, they follow
random fluctuations in the data. In this case, variance increases without any
important gain in bias. In these situations, the model overfits the data and involves
an excess of optimism in evaluating the prediction error.

This behavior is found in much more general situations involving models with
increasing complexity. Bias and variance are conflicting entities, and we cannot
minimize both simultaneously. We must therefore choose a trade-off between bias
and variance. This situation guides the developments that follow.

A bias component is essentially due to lack of knowledge of the data-generating
mechanism. If this mechanism were known, we could set up an appropriate para-
metric model, such as a polynomial of specified degree, and the bias would be
null or at most negligible. This is typical of parametric models when they are
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Figure 3.4 Tomorrow’s data: interpolation with polynomials obtained by fitting
yesterday’s data.
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Figure 3.5 Tomorrow’s data: deviance and R2 coefficient as a function of p.
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Figure 3.6 Yesterday’s data: mean squared error as a function of p.

correctly specified. Instead, the context in which we are working obliges us to
use an essentially nonparametric approach, although we used parametric tools
(polynomials) as building materials for the sake of simplicity.

3.4 BUT AS WE DO NOT KNOW f (x). . .
We just concluded that we must expect a trade-off between error and variance
components. In practice, however, we cannot do this because, of course, f (x) is
unknown.
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Figure 3.7 Yesterday’s data: mean squared error as a function of p, decomposed into bias
and variance.

We have seen that overfitting is a trap that must be avoided. Overfitting occurs
when a model closely fits some nonessential features of the observed sample. If
these characteristics are not structural to the phenomenon under study, they will
not recur in a new sample. As this problemoriginates becausewe calculate deviance
with the same data with which we fitted the model, one way of avoiding this trap is
to evaluate the model with other data.

In our example, the models fitted to “yesterday’s” data can be compared with
those of “tomorrow,” yielding the plot of figure 3.8, which shows the residual
deviance for various polynomials fitted to yesterday’s data. Clearly, the deviance
calculated for tomorrow’s data provides a reasonable indication of the complex-
ity of the model, essentially analogous to that given in figure 3.6; equally clearly,
the two figures do not have the same nature: one is an approximation of the other,
and the curve obtained with tomorrow’s data is also affected by the variability of
the new data. Nevertheless, the indication provided by the deviance of tomorrow’s
data does not suffer from the drawback we wished to avoid, and its message is
essentially valid, with a minimum point at p = 4.

3.5 METHODS FOR MODEL SELECTION

We must confess here that we cheated. We do not in fact have two sets of data,
one for yesterday and one for tomorrow. We have 60 observations, randomly
divided into two groups of 30 observations each, but we acted as we did to illustrate
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Figure 3.8 Yesterday’s and tomorrow’s data: residual deviance as a function of degree p
of polynomials fitted to yesterday’s data.

the problem. We now consider the principal tools used in model selection by
identifying the trade-off between bias and variance.

3.5.1 Training Sets and Test Sets
Dividing the data into two groups circumvents the overfitting problem and allows
us to reach a plausible solution for choosing p.

This approach is not our invention but is a common procedure in this kind of
context. A randomly selected portion of data, called training set, is used to fit the
various candidate models. The remaining portion, the test set, is used to evaluate
the performance of the available models and choose the most accurate one.

Clearly, this scheme reduces the sample size used for fitting the model, which
may be inadvisable when sample sizes are already small. Having too few data
is not a concern in the context of data mining; having too many might be the
problem. Instead, in the current context, it is more important to neutralize or at
least diminish any estimation bias, as already noted.

Because the same test set can be used to evaluate many different models, there
is a risk that the final assessment, obtained at the end of the entire process, is still
somewhat biased and too optimistic, because of the same mechanism that acts
when we use the training set. For this reason, and because the data are abundant,
a third set, called the validation set, is often created for use at the end of analysis for
final evaluation of the prediction error.
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There is no precise rule on how to select the size of these sets, but the table that
follows gives some commonly used reference values for proportions with two or
three subsets.

Portion of data for: training test validation
50% 25% 25%
75% 25% 0
67% 33% 0

3.5.2 Cross-validation
Recall the procedure described in section 3.5.1 and presume that we use 75% of
the data for training and 25% for testing themodels. However, for greater accuracy,
we do not want to assign only that specific 25% of the data to the role of test set.
In addition, if n is not very large and we only use 75% of the data to fit the model,
the estimate will be further impoverished, whereas we would like to take better
advantage of available information.

One way of partially overcoming this arbitrariness is to split the data into four
equal parts and use three portions in rotation for training the model and the
remaining portion for testing it. We then cross the role of the data sets: one of
the portions used as the training set is now used as a test set, and the test set
is incorporated into the training set with the other two portions. Obviously, this
scheme requires four iterations of the training and testing procedures.

Because this scheme results in four different estimates, which probably do not
differ by much, an average or some other combination of them can be used.
Analogously, we have four different figures similar to figure 3.8, and use these to
obtain an “average curve,” from which we can determine the minimum point.

It is intuitive that the procedure becomes progressively more accurate if,
instead of 4 parts sized n/4, we use k portions of size n/k and repeat the operations
k times. This is more effective when large values of k are used.

The maximum possible value for k is n. To fit the model, n − 1 observations are
used, and the remaining observation is used for testing. This procedure is known
as leave-one-out cross-validation and is described in detail in algorithm 3.1. Once
we have rotated the only datum serving as test set, we must perform a total of n
fitting operations. Clearly, the computational burden of this procedure increases
considerably as n increases.

Fortunately, in many cases, it is possible to obtain estimates of a model using
data deprived of a single observation, by means of simple operations based on
estimates obtained from the complete data set. In particular, in the case of a linear
model such as (2.6), in which the fitted values are given by (2.8), the following
relationship holds

yi − ŷ−i = (yi − ŷi)/(1− Pii), (3.4)

so that we can obtain interpolated value ŷ−i for the ith observation without using
the observation itself, but only using value (or values) xi . Here,Pii is the ith diagonal
element of projection matrix (2.9). In this way, we obtain all the interpolated
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Algorithm 3.1Cross-validation (leave-one-out)

1. Read n records of x and y.
2. Cycle for p = 0, 1, . . . ,maxp:

a. cycle for i = 1, . . . , n:

i. fit the model of degree p by eliminating the ith
observation,

ii. obtain prediction ŷ−i for yi corresponding to point xi ,
iii. obtain residual ei ← (yi − ŷ−i),

b. calculateD∗(p)←
n∑

i=1
e2i .

3. Choose p so thatD∗(p) is minimum.

values for the n possible subsets of training data by a simple modification of
interpolated value ŷi and using matrix P, which needs to be calculated in any case.

Algorithm 3.1 for the 60 observations considered so far and the simplified
formula (3.4) produces figure 3.9, which indicates p = 4 is the preferred value.

We introduced the cross-validation criterion on a purely intuitive basis. There
are theoretical results guaranteeing that when n diverges, this procedure certainly
leads us to select the most appropriate model. However, we should add that for
small sample sizes, this method often gives a very variable choice for p.

3.5.3 Criteria Based on Information
The main statistical method applied for estimating the unknown parameters of
a model is to maximize the log-likelihood. However, when the model itself is
not fixed in advance and is chosen from a sometimes large set of alternative
models, we cannot simply proceed by maximizing the likelihood function for
each alternative model; we must also take into account the different number of
parameters, introducing a suitable penalty. Criteria that follow this logic can be
traced back to objective functions such as

IC = −2 log L(θ̂)+ penalty(p), (3.5)

where penalty(p) quantifies the penalty assigned to a model incorporating p
parameters.

The choice of the specific penalty function identifies a particular criterion.
Clearly, this function must be positive and must increase with p. A more specific
indication is supplied by the following considerations. When we compare two
nestedmodels by test function (2.33)when the restrictedmodel has one parameter
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Figure 3.9 Yesterday’s and tomorrow’s data: cross-validation model selection.

less than does the other—that is, the nested model specifies one variance on the
p+ 1 parameters of the larger model—we know that asymptotically

2 (log Lp+1 − log Lp) ∼ χ2
1 ,

when the (p + 1)th parameter is actually redundant. Here, we denote the maxi-
mum achieved by the likelihood of the two comparedmodels asLp+1 andLp. Thus,
the insertion of an unnecessary parameter leads the mean of−2 log L to decrease
by one unit, so that the penalty for p parameters must be strictly greater than p.

This approach to model selection was introduced by Akaike (1973), who
proposed the now famous Akaike information criterion (AIC). Akaike suggested
minimizing the Kullback-Leibler divergence:

KL(p∗(·), p(·; θ)) = Ep∗

{
log

p∗(Y)
p(Y ; θ)

}
= Ep∗

{
log p∗(Y)

}−Ep∗
{
log p(Y ; θ)}

between true distribution p∗(y) and fitted model p(y; θ). This quantity may be
interpreted as a measure of the divergence between the distribution of future data
generated by random variable Y and that predicted by the model. It is clear that
to minimize KL, we can only act on the second term of the last expression and
must therefore consider a value that maximizes log p(Y ; θ), that is, the maximum
likelihood estimate. As this estimate θ̂y is a function of past observations, say, y,



Optimism, Conflicts, and Trade-offs 57

and as we want to use p(·; θ̂y) to predict the behavior of the model on future data
generated from random variable Y , we also need to take into account the variability
connected with the estimating procedure. This leads us to consider the quantity

Ey

{
EY

{
log p(Y ; θ̂y)

}}
.

Calculation of this expression requires some assumptions, as well as analytic
approximations. According to Akaike’s initial formulation, after appropriate analy-
tical developments, we obtain

−2 log p(y; θ̂)+ 2 p

as an estimate of the quantity of interest Ep∗
{
log p(Y ; θ)}, multiplied by the

conventional factor −2, which is inserted by alignment with the consolidated
notations related to likelihood, in particular (2.33).

Akaike’s original work was followed by several other proposals, differing in their
assumptions and the way they approximate certain quantities. Some of them are
shown in the table that follows, which provides some alternative penalties to be
included in (3.5).

Criterion Author Penalty(p)

AIC Akaike 2p

AICc Sugiura, Hurvich-Tsay 2p+ 2p (p+ 1)
n− (p+ 1)

BIC/SIC Akaike, Schwarz p log n
HQ Hannan-Quinn c p log log n, (c > 2)

Note that the difference between AIC and AICc tends to be negligible when n is
large, because AICc is a corrected AIC for small sample sizes. The last two criteria
use a penalty that increases with increasing n and were generated by theoretical
considerations quite different from the first two criteria. Although the logical
framework of these information-based criteria and the procedures for hypothesis
testing is not really the same, in practice they are often employed as if they were
competing on the same ground.

An important advantage of information-based criteria with respect to the
likelihood ratio test is that they can also be applied to families of unnested models,
provided that the arbitrary constant in likelihood function (2.25) is set at 1. The
disadvantage is that any evaluation of the probability of error of the procedure is
not available.

Figure 3.10 illustrates the results obtained with these criteria for the data used so
far. In this case, all four criteria suggest the same choice: p = 4. Obviously, there is
no need to split the data into two sets, hence we use all 60 observations.

To conclude this short review of methods for model selection, figure 3.11 plots
the fitted curve, which in this case is the same for all methods, with p = 4. This
represents the basic trend of the phenomenon in a plausible fashion.
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Figure 3.10 Yesterday’s and tomorrow’s data: various information criteria as a function of
model complexity.

Bibliographical notes
Although the first examples of the use of cross-validationmethods are quite old, the
introduction and systematic study of this criterion are attributed to Stone (1974).
The AIC appeared for the first time in Akaike (1973). An extended discussion
of AIC-related criteria is given in Burnham & Anderson (2002). Recent specific
coverage of model selection is to be found in Claeskens &Hjort (2008).

3.6 REDUCTION OF DIMENSIONS AND SELECTION OF

MOST APPROPRIATE MODEL

We can now devise automatic procedures for model selection by examining a
set of alternative models fitted to a certain data set. Implementation of these
procedures is made easier, and for this reason is particularly widespread, when
various models are all of the same type, differing only in their set of explanatory
variables. Therefore, in practice, these are variable selection procedures.

3.6.1 Automatic Selection of Variables
For the sake of simplicity, we refer to the problem discussed in section 3.2 and
to model (3.1). The set of models competing for f (x) consists of a family of
polynomial functions. The explanatory variables are the powers of x, so that the
generic covariate, say, xj, is such that xj = xj, with a degree ranging from 0 to a fixed
maximum q (e.g., q = n − 1). In previous sections, we argued on the assumption
that when we use a polynomial of a certain degree, all the terms of lower degree are
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Figure 3.11 Yesterday’s and tomorrow’s data: fitted curve with p = 4.

inserted in the regression curve. However, this requirement is not necessary in the
following.

In a generic regression context, we consider a set of explanatory variables
such as

S = {1, x1, x2, . . . , xq}, (3.6)

where the inclusion of constant 1 is not a formal need but is in fact almost
universally applied. For each choice of a subset of S, it is straightforward
to obtain estimates for regression coefficients β̂j, other connected quantities
such as deviance, and if we assume Gaussian errors, log-likelihood, and AIC.
However, the regression model is not the only one available: GLM linear or other
parametric models can also be used, despite the possible greater computational
burden.

An automatic procedure for variable selection aims at identifying the subset
of S that minimizes the AIC or a similar criterion. Obviously, this operation
requires fitting many models and must be done by computer. Even so, the related
computational burden is huge if q is not small and we have to go through all the
possible subsets and look for the optimal subset.

Thus, if q is not small, it is more common to use a simplified procedure known
as stepwise selection, or some variant of this name. We begin with a certain model,
identified by a certain subset S0 of S, and then add the member of S not included
in S0. Alternatively, we eliminate the member of S0, which gives the lower value of
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AIC of all the operations of this type. We thus obtain a subset, S1, which contains
one elementmore or one element less than S0. This operation is repeated, this time
starting from S1, looking for the optimal variation. The result is subset S2, and the
procedure is repeated until we reach a set, S∗, which cannot be improved by either
reduction or enlargement. This is the selected subset.

When starting, subset S0 is the minimum size that we want to consider with
respect to S, for example, S0 = {1}, the final outcome will obviously be a
subset S∗ ⊇ S0, and the procedure is called forward selection. However, when
S0 = S, the final selection will be S∗ ⊆ S0 and the procedure is called backward
selection.

The use of these automatic selection techniques is particularly justified when a
large number of the explanatory variables is available and detailed analysis of all
of them is not feasible. Another reason is the lack of suggestions and guidelines
provided by the original applied problem. Both of these conditions often occur in
the context of data mining.

However, it should be noted that these procedures, although they use inferen-
tial tools with well-known probabilistic characteristics as functioning ingredients,
are out of that context in practice. For example, it is very difficult to establish which
properties (in terms of actual precision of standard errors) are associated with the
various estimates. This is because they do not refer to a predetermined model
with respect to data, which is the basic condition for evaluating standard errors.
Obviously, these observations also apply to other situations where the model is
selected using the same data, but they are more relevant in cases when multiple
individual models are evaluated.

Bibliographical notes
Stepwise regression is described and discussed, for example, in Weisberg
(2005, section 10.3), Miller (2002, chapter 3), and Izenman (2008, section 5.7).
Chapter 8 of Afifi & Clark (1990) gives a detailed presentation of automatic
selection procedures.

3.6.2 Principal Component Analysis
Another strategy for selecting a model is based on reducing the dimension of the
explanatory variables, transforming them in some way into a set of new variables
of smaller number, but at the same time trying to lose only information that is not
important in predicting the response variable.

The simplest possibility is to consider linear transformations of explanatory
variables that have some sort of optimality property. Principal component analysis
(PCA) is probably the most frequently used technique for deriving a reduced set
of new variables by linear combination of the original variables that explains most
of the variability of those variables.

We consider matrix X , obtained from the set of explanatory variables in (3.6),
as the sampling determination of a multivariate random variable and, for ease of
explanation, assume that it has mean 0 and covariance matrix�. If the variables are
not centered around 0, it is always possible to calculate deviations from the mean
and obtain zero mean variables. The variance of linear combination Z = Xα is
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var{Z} = α��α. We must find a vector of weights α, so that var{Z} is the largest
among all normalized linear combinations of the columns ofX , by imposing a scale
restriction on α. This leads to the principal component criterion

max
α

var{Z} = max
α

α��α (3.7)

subject to ‖α‖ = 1.

Once the first component has been selected, with coefficients α1, we look for
another linear combination, orthogonal to the first one, maximizing the variance

max
α

var{Z} = max
α

α��α (3.8)

subject to ‖α‖ = 1 and α�α1 = 0.

The other components are defined in a similar fashion by requiring orthogonality
with all the previous components.

The mathematical solution of this problem is given by the spectral decomposi-
tion of �: var{Z1} = var{Xα1} = λ1 is the largest eigenvalue of � and α1 is the
corresponding eigenvector; var{Z2} = λ2 andα2 correspond to the second-largest
eigenvalue and the related eigenvector, and so on. Solution α1 is called the first
vector of principal loadings, combination Z1 = Xα1 is the first principal component,
and so on for α2, Z2, and so on.

Because� is not usually known, in practice spectral decomposition is obtained
on estimate �̂. We denote by zj the observed value of Zj. Principal components
have a simple geometrical interpretation, because Z1 is the projection of the data
on the longest observed direction—that is, the direction having the largest variance
among all such normalized projections—Z2 is the projection on the second longest
direction orthogonal to the first one, and so on. This is illustrated in figure 3.12 for
the two-dimensional case.

The sum of the eigenvalues is equal to the trace of the covariance matrix,
so that the sum of the variances of the components is the same as that of the
original variables, and

∑k
i=1 λi/

∑p+1
i=1 λi is the fraction of total variance explained

by the first k components, and fraction λi/
∑p+1

i=1 λi measures the importance
of the ith component in explaining total variability. If the percentage of total
variance explained by the first k components is large enough, we can eliminate
the remaining components and take only the first k to describe variability among
explanatory variables, using them as new independent variables of the model.

PCA for dimension reduction in prediction problems is often used to solve
the problem of multicollinearity among explanatory variables. This technique is
also used when there are more independent variables than observations, a typical
problem found in some datamining applications such as gene expression problems,
where a large number of genes (variables) is typically observed for a small number
of samples (observations).

Despite the considerable merit of this technique (reducing the number of
variables used), it suffers from the fact that the new variables are often not as



62 DATA ANALY S I S AND DATA M IN ING

−4 −2 0 2

−
4

−
2

0
2

x1

x 2

Largest principal
component

Smallest principal
component

Figure 3.12 Principal components for a set of simulated data in two dimensions. Length
of each solid segment is proportional to variance λi explained by each component. Dashed
segments: perpendicular distances from first component for some observations.

easy to interpret as the original ones. However, suitable modifications of PCA
are often used as tools to identify latent but interpretable data structures. The
methods used to find unobservable but interpretable variables, based on principal
components or not, are usually grouped under the name of factor analysis.

A substantial body of literature proposes many other types of combinations of
variables. Some of these maintain their linear structure and change the optimiz-
ation criteria (3.7), (3.8), and so on; of these, canonical correlation analysis
maximizes the correlation between two groups of variables, and independent
component analysis requires the components to be statistically independent instead
of orthogonal. However, the linearity required is a limitation to the procedure,
because it does not allow for different combinations and reductions of data. Other
methods have been proposed to allow for nonlinear transformations. For example,
principal curves and surfaces provide smooth one- and two-dimensional curved
approximations to a set of data points.

Bibliographical notes
PCA was introduced by Pearson (1901) and developed by Hotelling (1933). It
is now one of the most frequently used techniques in exploratory multivariate
analysis. Depending on the field of application, it is also called the discrete
Karhunen-Loève transform, the Hotelling transform, or proper orthogonal
decomposition. Detailed presentations are discussed in all works on multivariate
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analysis, for example, Mardia et al. (1979) or Johnson & Wichern (1998). A
standard account of PCA is the work of Jolliffe (2002). Generalizations of PCA,
such as independent component analysis (ICA) and principal curves and surfaces,
are discussed in many data mining and multivariate analysis works, such as Hastie
et al. (2009, sections 14.5 and 14.7) and Izenman (2008, sections 15.3 and 16.3).

3.6.3 Methods of Regularization
When a large number of covariates is available, least squares estimates of a linear
model often have low bias but high variance when compared with models with a
smaller number of variables. As we have seen, methods of variable selection and
dimension reduction may help improve prediction accuracy by allowing for larger
bias but smaller variance.

These methods may be unattractive for reasons of computational burden
(variable selection) or interpretation (dimension reduction), as discussed in the
previous sections. A different approach is to modify the estimation method by
abandoning the requirement of an unbiased estimator of the parameters, and
instead considering the possibility of using a biased estimator, which may have
smaller variance. There are several such estimators, most based on regularization:
all the variables are left in the model, but when the model is fitted, their
coefficients shrink.

The idea is to obtain a shrinkage toward the mean, so that usually the intercept
is not penalized. We can therefore operate in two steps: first, we obtain the ave-
rage of y as estimate for the intercept; then we replace each yi with yi − ȳ, and
the xij with centered variables xij − x̄j (for j = 1, . . . , p − 1). For the rest of this
section, without loss of generality,X is the newmatrix with p− 1 columns, the first
constant column 1n having been eliminated, and there is no longer any intercept
to be estimated.
Ridge regression is probably the most common shrinkage method. Consider

linear model (2.6), y = Xβ + ε, for which ridge regression coefficients minimize a
constrained form of (2.3)

n∑
i=1
{yi − x�i β}2 subject to

p−1∑
j=1

β2
j ≤ s (3.9)

An equivalent formulation of this problem can be obtained with the Lagrange
form, so that the ridge regression coefficients minimize the penalized residual sum
of squares

Dridge(β, λ) =
n∑

i=1
(yi − x�i β)2 + λ

p−1∑
j=1

β2
j = ‖y− Xβ‖2 + λβ�β (3.10)

where λ is uniquely determined by s. The solution is β̂λ = (X�X + λI)−1X�y,
where I is the identity matrix. Estimator β̂λ is biased but for some values of
λ > 0 may have a smaller mean squared error than the least squares estimator.
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Note that λ = 0 gives the least squares estimator and, if λ → ∞, then β̂ → 0.
Ridge regression is particularly useful when explanatory variables are collinear,
as even a small λ > 0 makes solution β̂λ numerically and statistically stable.
Parameter λ should be adaptively chosen, for example, by cross-validation or the
other methods discussed in section 3.5.

Ridge regression has a simple geometrical interpretation according to PCA,
because it projects response variable y on the principal components and then
shrinks the coefficients of low-variance components by more than those of high-
variance components. It is, in fact, often (although not always) reasonable to
expect that the response variable will vary more in the direction of high variance
of explanatory variables. Therefore, when compared with principal component
transformation of explanatory variables, ridge regression shrinks the coefficients of
the principal components, relatively more shrinkage being applied to the smaller
components than the larger ones, whereas principal component regression discards
the components with smaller eigenvalues (see, for example, Hastie et al., 2009,
section 3.4.1).

The choice of an alternative penalty to be added to the sum of squares (2.3)
may provide a shrinkagemethod that, in addition to parameter restriction, requires
some coefficients to be zero. When the quadratic constraint in (3.9) is replaced
by absolute value constraint

∑p–1
j=1 |βj| ≤ s and a sufficiently small s is chosen,

constrained minimization of the sum of squares sets some coefficients exactly
at 0, by performing a kind of continuous model selection. This shrinkage method
is called lasso and minimizes

n∑
i=1

(yi − x�i β)2 subject to
p−1∑
j=1
|βj| ≤ s (3.11)

or, in Lagrange form:

Dlasso(β) =
n∑

i=1
(yi − x�i β)2 + λ

p−1∑
j=1
|βj| = ‖y− Xβ‖2 + λ

p−1∑
j=1
|βj|.

The solutions are nonlinear in y and, because of the nature of the constraint, they
may be solved by quadratic programming. As for ridge regression, regularization
parameter s (or λ) should also be adaptively chosen, according to the methods
discussed in section 3.5.

When we compare the coefficient estimates obtained by ridge regression and
lasso, we observe that if inputs are orthogonal, ridge regression coefficients are
obtained from multiplication of least squares coefficients by a constant between 0
and 1, whereas lasso translates them toward 0 by a constant, as shown in figure 3.13
for the simple case when the columns of the X matrix are orthonormal; note that
stepwise regression truncates small estimated coefficients at 0.

The appealing characteristics of lasso are offset by the complicated quadratic
programming algorithm required to estimate the coefficients. In recent years,
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regression, lasso, and stepwise regression for orthonormal case.

several faster algorithms have been proposed, one based on pathwise coordinate
descent. Themost elegant and efficient algorithm is based on least-angle regression
(LAR), a modification of the Gram-Schmidt algorithm to estimate least squares
coefficients of model (2.6) by successive orthogonalization; see algorithm 2.1.

As we saw in section 3.6.1, forward stepwise regression adds one variable at
a time to the model by identifying the variable to be included in that model at
each step. LAR uses a similar strategy, but adds to the model only that portion of
information included in a variable which is needed, as we show in algorithm 3.2.
LAR starts by adding to the model the variable most correlated with the response
and, rather than fit this variable by least squares, chooses the coefficient by mov-
ing its value continuously between 0 and the least squares value. As the esti-
mated coefficient moves between them, the correlation between the variable and
the residuals decreases in absolute value. At some point in this evolution of the first
coefficient, the correlation between the variable and the residuals becomes equal
to the correlation between another variable and the same residuals. This second
variable is then included in the model, and its coefficient is chosen together with
the first one, bymoving them in the direction of their least squares coefficient, until
some other variable has asmuch correlation with the current residuals. The process
continues until all the variables are included in the model and we obtain the least
squares coefficients.

The LAR algorithm is of comparable computational complexity to the least
squares fit, which can be computed in p3 + np2 operations.

The interesting aspect of LAR is its simple relationshipwith lasso: amodification
of the algorithm can generate its entire sequence path. In fact, it is enough to add
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Algorithm 3.2 Least-angle regression with lasso modification

LetA be the set of active covariates indices,XA thematrix with the active covariates,
and βA the coefficients vector for these variables.

1. Start: r ← y, β̂j ← 0, j = 1 . . . , p. Assume xj standardized. A← ∅.
2. Find predictor, say, xj1 most correlated with r. Update A← A ∪ {j1}.
3. Increase βj1 in the direction of sign(corr {r, xj1}) until some other

competitor xj2 has as much correlation with current residual as xj1 does.
Update A← A ∪ {j2}.

4. Cycle for k = 3, . . . , p;

a. Update residuals r ← y − XAβ̂A .
b. Move β̂A in the joint least squares direction for the regression of

r on XA (i.e., equiangular between the variables already in XA)
until some other competitor xjk has as much correlation with the
current residual. Update A← A ∪ {jk}.

c. [lasso modification:] If a nonzero coefficient reaches 0 (e.g.,
changes its sign), remove that variable from set A and recompute
the current equiangular (joint least squares) direction.

5. Stop when corr {r, xj} = 0, for all j, that is, least squares solution.

a new step to the algorithm by indicating that if a nonzero coefficient becomes 0,
the corresponding variable must be removed from the model. The best joint least
squares direction is then recomputed, requiring the algorithm to start again from
this new best direction. Clearly, the number of steps in the lasso-modified LAR
algorithm (which is called LARS) may be larger than that of the LAR algorithm
itself, but the order of magnitude of computations remains the same.

Bibliographical notes
Hoerl & Kennard (1970) proposed ridge regression to solve the problem of the
instability of the least squares estimator in linearmodels, and since then themethod
has been presented anddiscussed inmanyworks. Lassowas proposed byTibshirani
(1996) and the LAR procedure by Efron et al. (2004). They are also presented
in detail in Hastie et al. (2009, section 3.4), Miller (2002, sections 3.10–3.11) and
Izenman (2008, sections 5.5–5.9).

EXERCISES
3.1 Prove (3.2).

3.2 Write (3.2) in explicit form when ŷ is a polynomial of degree p (for p =
0, 1, . . . , n− 1), and x′ = 2.
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3.3 Consider a linear regression model with p parameters fitted to a training set
(x1, y1), . . . , (xn, yn) randomly selected from the available data, in which
β are linear regression coefficients. The mean squared error on this set is
Rtrain(β) = 1

n
∑n

i=1(yi−β�xi)2. A test set (xm+1, ym+1), . . . , (xm+n, ym+n)
is also available with mean squared error Rtest(β) = 1

m
∑m

i=1(yn+i −
β�xn+i)2. Show that E

{
Rtrain(β̂)

}
≤ E

{
Rtest(β̂)

}
, in which expectations

are taken with respect to all the random elements in each expression.

3.4 Obtain (3.4) by applying the results of section 2.2.3.

3.5 If q in (3.6) is 9, what is the size of the set of all possible models that can be
fitted?
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Prediction of Quantitative Variables

4.1 NONPARAMETRIC ESTIMATION: WHY?
Let us go back to the car data used in chapter 2 and examine the problem of
predicting city distance by making use of the other available variables, in particu-
lar, engine size and weight. The method used in section 2.1 was parametric, in that
we have assumed that function f of (2.2), which expresses the relationship between
the response and the covariates, is a member of a parametric class of functions
and that the parameter estimate β̂ denotes the chosen member of the class.
The simplest example of this approach is by use of the regression line specified

in (2.1) in the case of a single covariate. However, we saw that this formulation
is not sufficient—for instance, for the data shown in figure 2.2—and this requires
more elaborate formulations, that is, polynomials, transformations of response
variables, nonlinear transformations of covariates, and so on.

An alternative route is to make no reference to either the framework of
linear models or any other parametric formulation for f , but to estimate f in
a nonparametric way—that is, without assuming that f belongs to a specific
parametric class of functions and assuming only some mathematical regularity
conditions. Consequently, there is no longer any need to transform the variables
in a nonlinear way.

The nonparametric approach to regression turns out to be particularly effective,
mainly (but certainly not only) when there is a considerable amount of data, as is
often the case in our type of applications. In fact, with a large amount of data, we
always have enough empirical evidence to “falsify” any parametric model, except
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when dealing with the “true” model and, as mentioned in section 1.2.1, this very
rarely occurs. The reason for this failure lies in the attempt to summarize all the
data in a limited number of parameters, but this difficulty can be overcome with
tools that offer great flexibility.

The main aim of this chapter is to explore these tools. Because the approach
lends itself to several very different formulations, we only select the main ones
here. We also note that the existence of diverse formulations signifies that the
“free” expression of the data just mentioned is not in fact completely free: there
are various methods available, and using one rather than another may produce
different results, at least partially or in certain circumstances. Again, it is up to us to
choose the tool best adapted to the specific problem.

4.2 LOCAL REGRESSION

4.2.1 Basic Formulation
We are interested in examining the relationship that links two quantities,
represented by variables x and y, using a formula of the type

y = f (x)+ ε (4.1)

where ε is a random, nonobserved error term. Without loss of generality, we can
assume that E{ε} = 0 because a possible nonzero value can be included in f (x).
This formulation is similar to that of (2.2), but we do not presume that f is a
member of a specific parametric class. We limit ourselves to looking for an estimate
of f (x), presuming only some regularity conditions.

Consider a general but fixed point x0 of real numbers. We want to estimate f (x)
of (4.1) at point x0.

If f (x) is a derivable function with a continuous derivative at x0, then, based on
development of the Taylor series, f (x) is locally approximated by a line passing
through (x0, f (x0)), that is,

f (x) = f (x0)︸ ︷︷ ︸
β0

+ f ′(x0)︸ ︷︷ ︸
β1

(x − x0)+ remainder

where the remainder is a quantity with an order of magnitude less than |x − x0|.
Transferring this idea to the context of statistical estimation, we estimate f (x)

in a neighborhood x0 by means of a criterion that takes advantage of this fact,
according to n observation pairs (xi, yi) for i = 1, . . . , n. The remainder term is
incorporated in ε.

Let us therefore introduce a criterion analogous to (2.3), but we now weigh
observations based on their distance from x0, which is

min
β0,β1

n∑
i=1

{
yi − β0 − β1(xi − x0)

}2
wi (4.2)

where weights wi are chosen so that they are largest when |xi − x0| is
smallest. Formula (4.2) is a particular form of the weighted least squares criterion,
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Table 4.1. SOME COMMONCHOICES FOR KERNELS

Nucleus w(z) Support

Normal
1√
2π

exp
(− 1

2z
2
)

R

Rectangular 1
2 (−1, 1)

Epanechnikov 3
4 (1− z2) (−1, 1)

Biquadratic 15
16 (1− z2)2 (−1, 1)

Tricubic 70
81 (1− |z|3)3 (−1, 1)

a generalization of least squares when a set of weights is available. Following this
criterion, the estimates of the parameters β = (β0, β1)� are

β̂ = (X�WX)−1X�Wy.

where X is a n × 2 matrix whose ith row is (1, (xi − x0)), and W is the n × n
diagonal matrix with wi as diagonal elements. Because weights wi are constructed
with a “local” perspective around x0, the resulting estimation method is called local
regression. Minimization problem (4.2) is resolved by β̂ and the estimate of f (x0)
is f̂ (x0) = β̂0.

One way to select the weights is to set

wi = 1
h
w
(
xi − x0

h

)
where w(·) is a symmetric density function around the origin, which in this
context, is called a kernel, and h (with h > 0) represents a scale factor, which
is called bandwidth or smoothing parameter. Some of the more common choices for
kernel w(·) are listed in table 4.1. It is convenient to think of the normal kernel,
corresponding to densityN(0, 1), which we use from now on.

Figure 4.1 exemplifies the result of nonparametric estimation in the case of data
for distance covered in relation to car engine size. The top-left panel presents the
data, already seen in chapter 2. The top-right panel illustrates how the estimate
works, highlighting the system of weights relative to specific point x0 = 3, for the
particular choice h = 0.5 with normal kernel, as indicated by the dashed curve.
The shaded area distinguishes the smoothing window on the x-axis, whose points
have an overall relative weight of 95% in (4.2). The other points on the continu-
ous curve were obtained by shifting the weights indicated by the dashed curve
along the x-axis and reapplying (4.2).

Expression (4.2) depends on weights wi , which in turn depend on elements h,
w(·), and x0. Even with h and kernelw(·) fixed, theminimization problem depends
on x0, and estimating f (x) for different choices of x requires many minimization
operations. Repeating the minimization operation is not a problem, as we can
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Figure 4.1 Car data: estimates with local regression of relationship between engine
size and city distance for some choices of h.

show that the estimate relative to a general point x can be obtained from the
explicit formula:

f̂ (x) = 1
n

n∑
i=1

{a2(x; h)− a1(x; h)(xi − x)}wi yi
a2(x; h) a0(x; h)− a1(x; h)2

, (4.3)

where ar(x; h) = {
∑

(xi − x)r wi}/n, for r = 0, 1, 2. We are therefore dealing
with an estimate that is noniterative and linear in the yi , and can therefore write

f̂ (x) = s�h y

for a suitable vector sh ∈ R
n depending on h, x and x1, . . . , xn.

We do not usually estimate f (x) at a single point, but on a whole set ofm values
(generally equally spaced) that span the interval of interest for variable x. We can



72 DATA ANALY S I S AND DATA M IN ING

calculate each of them estimates by a single matrix operation of the type

f̂ (x) = Sh y (4.4)

where Sh is anm× nmatrix, called smoothing matrix; x is now the vector (inR
m) of

the x-axis where we estimate function f ; and f̂ (x) is the corresponding estimation
vector.

If n is very large, we can reduce the size of matrix Sh by regrouping variable x
into classes, and therefore use anm× n′ matrix, with n′ � n.

The choice to approximate a function f (x) locally by a straight line may be
relaxed by fitting a polynomial locally. Degree 0 and degree 2 are the alternatives in
actual use. When a polynomial of degree 0 is used, the estimate of each point
is a weighted mean of the data in a neighborhood of that point. However,
a modification of this procedure with degree 0, called k-nearest-neighbor and
described later (section 4.2.4), is typically preferred. A polynomial of degree 2 is
an appropriate choice when the data show sharp peaks and troughs, because this
variant is more suitable for producing steep curves.

4.2.2 Choice of Smoothing Parameters
The problem of the choice of h and w(·) remains. The latter is not critical, as
many studies on the subject have shown, and we can use any kernel listed in
table 4.1. At most, there is a slight benefit in using continuous functions and some
computational advantages in the choice of kernels with limited support.

The truly important aspect is the choice of smoothing parameter h. One direct
indication of the effect of the choice of h is provided by the last two panels in
figure 4.1. Lowering value h clearly produces curve f̂ , which is closer to the local
behavior of the data and is therefore rougher, because the allocated weights system
works on a smaller window and is more affected by local data variability. In the
other direction, the increase in h produces the opposite effect: the window on
which the weights operate widens and the curve becomes smoother.

To understand which ingredients regulate the behavior of f̂ , particularly in
relation to h, we must study the formal properties of f̂ . Limiting ourselves to quite
simple working hypotheses, let us assume that var {εi} = σ 2 is a positive constant
common to all observations and that the observations are not correlated. Under
suitable regularity conditions for f , we can prove that for h sufficiently close to 0
and n sufficiently large, the approximations

E

{
f̂ (x)

}
≈ f (x)+ h2

2
σ 2
w f ′′(x), var

{
f̂ (x)

}
≈ σ 2

n h
α(w)
g(x)

(4.5)

hold, where σ 2
w =

∫
z2w(z) dz, α(w) = ∫

w(z)2 dz, and g(x) indicates the
density from which the xi were sampled.

These expressions show that bias is a multiple of h2 and the variable is a multi-
ple of 1/(n h). Therefore, although we would like to choose h→ 0 to bring down
the bias, this makes the variance of the estimate diverge. For h→∞, the opposite
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occurs: the variance is reduced, but the bias diverges. Relations (4.5) are valid in
the somewhat restrictive hypotheses previously mentioned, but the same type of
indication is essentially valid with weaker hypotheses: the resulting formulas are
more complex, but the qualitative indication is similar.

At this point, we can also verify the same contrast between the bias and variance
of the estimate already seen in chapter 3, in another context. As in that case,
we must adopt a trade-off solution, balancing bias and variance in some way.

In a certain sense, the optimal solution is implicit in relations (4.5). That is,
minimizing the sum of the variance and the square of the bias, as indicated in (3.3),
the asymptotically best choice for h is

hopt =
(

α(w)
σ 4
w f ′′(x)2 g(x) n

)1/5
. (4.6)

However, this expression is not directly useful because it involves unknown terms
f ′′(x) and g(x), although it does supply at least two important elements:

• it tells us that hmust tend to 0 as n−1/5, and therefore that it decreases very
slowly;

• if we substitute this hopt into the mean and variance expressions (4.5), it
tells us that the mean squared error tends to 0 at a rate of n−4/5; therefore
this method of nonparametric estimation is intrinsically less efficient than
a parametric one with a rate of decrease of n−1, when the parametricmodel
is satisfactory.

This last remark has much broader validity than is apparent here, in the sense
that the basic indication is also valid for other methods of nonparametric estima-
tion (see later).

Operatively, to choose h, we therefore take different routes to those in (4.6), or
at least we do not use it directly. A somewhat rudimentary but effective method is
to try some values and select by eye which seem most appropriate, as we did for
figure 4.1. There are, however, more formal processes, which follow lines similar to
those of section 3.5.

In particular, the methods of cross-validation and AICc (section 3.5) are in
current use, having been suitably adapted to the problem. Specifically, the AICc
variant

AICc = log σ̂ 2 + 1+ 2 {tr(Sh)+ 1}
n− tr(Sh)− 2

is proposed, inspired by section 3.5.3; see Hurvich et al. (1998). Here

σ̂ 2 = 1
n

∑
i

(
yi − f̂ (xi)

)2 = 1
n
y�(In − Sh)�(In − Sh) y
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Figure 4.2 Car data: estimation by local regression with h chosen by AICc (left) and by
loessmethod (right).

is the estimate of residual variance σ 2, and tr(Sh) indicates the trace of matrix Sh
in (4.4). This trace is a substitutive measure of the number of parameters involved,
for reasons that will be clarified in section 4.7.1.

The first panel in figure 4.2 presents the result of local regression with h = 0.21,
chosen by the AICc criterion represented by the continuous curve, but removing
the values corresponding to the four anomalous points (shown as two single points
bottom-left). The meaning of the dotted curves will be explained shortly.

To conclude, we note that the linearity of the estimation process with respect
to yi, established at the end of section 4.2.1, is valid when h is fixed independently
of the data. However, if h is chosen on the basis of the same data, as commonly
occurs, then the method is no longer linear.

4.2.3 Variability Bands
To make inferences, it is useful to develop a tool that is similar to the confidence
interval, to give the estimate of f (x) an indicator of its reliability. To construct
such an interval, we must refer to a pivotal quantity, at least approximately, of
the type

f̂ (x)− f (x)− b(x)√
var

{
f̂ (x)

} ∼ N(0, 1) (4.7)

where b(x) indicates the bias of the estimate, of which the main term is
approximated by the final term of the first expression of (4.5); analogously, the
variance in the denominator is approximated by the second expression of (4.5).
Note that for the asymptotically optimal bandwidth (4.6), the bias has the same
order of magnitude as the denominator of (4.7). Therefore, the bias term cannot
be neglected in this framework, in contrast with what happens in a parametric
context.
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Of the various quantities in play, all, in some way, can be computed at least
approximately, except term f ′′(x), which is included in bias b(x). This means that
constructing a confidence interval is not feasible, even in an approximate form.

Instead of looking for extremely complicated corrections to remedy the
problem, a current solution is to construct variability bands of the type(

f̂ (x)− zα/2 std.err( f̂ (x)), f̂ (x)+ zα/2 std.err( f̂ (x))
)

where zα/2 is the 1 − α/2 quantile of distribution N(0, 1) and std.err( f̂ (x)) the
denominator of (4.7). Strictly speaking, the previous expression is clearly that of
an interval, but once the expression is applied to every point on the x-axis, it
gives rise to two bands. The result is shown by the dotted curves in the left panel
of figure 4.2.

Two observations are necessary: (1) for every fixed x, the previous interval does
not constitute a confidence interval, for the reasons already mentioned, but only
provides an indication of the local variability of the estimate; (2) even if bias b(x)
were not present, the interval thus constructed would have a confidence level of
approximately 1 − α for f (x) to each fixed value of x, but not globally for the
entire curve.

4.2.4 Variable Bandwidths and loess
There are several variations to the basic method of local regression as described up
to now. The most common variation regards the use of a nonconstant bandwidth
along the x-axis, but according to the level of sparseness of observed points. If again
we look at figure 4.1, it is reasonable to use larger values of h when xi are more
scattered (mainly for x > 3).

These intuitive considerations are confirmed by expression (4.6), in which the
presence of g(x) in the denominator shows that when density g(x) is low, that is,
when observations xi are sparse, we must use a larger value of h to keep var

{
f̂ (x)

}
the same.

One technique, which arose from these considerations, is loess, which is very
similar to the local regression in section 4.2.1. A distinctive feature of loess is
that it expresses the smoothing parameter by means of the fraction of effective
observations for estimating f (x) at a certain point on the x-axis; this fraction is
kept constant. To understand how this works, let us look at the top-right panel
in figure 4.1. When we estimate f (x) at another point on the x-axis, with local
regression the weights system and associated colored area are shifted horizontally,
and we do not take into account the level of local sparseness of points on the
x-axis. Instead, loess widens or narrows the window, so that the fraction of
observations involved remains constant.

We can now see that the degree of smoothing is regulated by the fraction
of points used, just like the bandwidth. Therefore, this fraction constitutes the
smoothing parameter in loess.

Another typical aspect of loess is that it combines the ideas of local regression
and robust estimation, which means that we substitute the quadratic function
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Figure 4.3 Car data: estimation by k-nearest-neighbor with k = 10 (left) and k = 60
(right).

of (4.2) with another objective function that limits the effect of anomalous
observations, commonly called outliers.

Again according to the robustness considerations of the procedure, loess uses
a limited support kernel, generally tricubic (see table 4.1), which also has the
advantage of more clearly distinguishing between used and unused points in the
estimate.

The second panel of figure 4.2 shows the result of the estimate and relative
variability bands obtained through loess for the car data, with a fraction of 75%
of the observations and a quadratic objective function such as (4.2) as smoothing
parameter. The same panel also shows the estimated curve when the robust variant
is used: this is the dashed curve that goes beyond the variability bands of the
nonrobust method.

The local regression of degree 0, when a nonconstant bandwidth along the
x-axis is chosen, is very simple and quite commonly used. The estimate of the
function at each point is obtained as the average of a fixed number of closest
observations around that point. This method is called k–nearest–neighbor, where
k denotes the number of observations averaged by the estimate. We use k to
indicate the decreasing complexity of the procedure because, when k = n, the
estimate is simply the average of all available observations, giving a constant fit over
the entire x-axis. Instead, when k = 1, the value of y of the closest observation
is used at every single point as an estimate of the function, producing a very
rough curve.

As an example, figure 4.3 displays the k-nearest-neighbor predicting function of
city distancewith engine size at k = 10 and k = 60.

4.2.5 Extension to Several Dimensions
The formulation of section 4.2.1 may also be applied when two or more covariates,
say, p, are used. Let us begin with the simplest case of two variables, x1 and x2, and
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presume that a relationship of the type

y = f (x1, x2)+ ε

holds, where f (x1, x2) is now a function fromR
2 toR.

The available data are now made up of the same yi as previously and of points
xi = (xi1, xi2) ∈ R

2, for i = 1, . . . , n. To estimate f corresponding to a specific
point, x0 = (x01, x02), a natural extension of the criterion (4.2) takes the form

min
β0,β1,β2

n∑
i=1

{
yi − β0 − β1(xi1 − x01)− β2(xi2 − x02)

}2
wi (4.8)

where weights wi are now to be determined as a function of a suitable distance
between xi and x0. A common way of choosing wi is to set

wi = 1
h1 h2

w
(
xi1 − x01

h1

)
w
(
xi2 − x02

h2

)
which is a simple extension of what we saw in section 4.2.1. Clearly, this expression
involves two smoothing parameters, h1 and h2, to take into account the different
variability of x1 and x2.

From a computational point of view, we can also tackle this problem as a
variation of weighted least squares. If we indicate by X the n × 3 matrix of which
the ith row is

(1, xi1 − x01, xi2 − x02),

y = (y1, . . . , yn)� and W = diag(w1, . . . ,wn), then the solution of the
previous minimum problem is the first element, which corresponds to β0, of
(X�WX)−1X�Wy. Obviously, this calculation is repeated for every choice of
point x0, and tendentially the number of these points is now higher than in the
scalar case of section 4.2.1.

Figure 4.4 shows the results obtained for the car data with x1 = engine size,
x2 = curb weight, and y = city distance, in two forms of representa-
tion: perspective and level curves. To avoid extrapolating the estimate where we
have no observations, it is limited to the convex hull of the observed points of
(x1, x2).

Formally, most of the results can be easily extended to the multivariate case,
where the formulation is of the type

y = f (x)+ ε = f (x1, . . . , xp)+ ε. (4.9)

Definition of the estimation method seen for p = 1 and p = 2 extends naturally
to the case of general p, meaning that there is no need to repeat the discussion of
various connected aspects, such as the choice of h, and so on.
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Figure 4.4 Car data: estimation of city distance by local regression with two
covariates, engine size and curb weight.

Bibliographical notes
A more detailed but still fairly informal presentation of the nonparametric
approach through local regression is given in Bowman & Azzalini (1997). The
book is associated with the R package, an evolution from an earlier version of
software written in S-plus and with a set of additional scripts. These tools have
been used extensively here; specifically figure 4.1 is based on one of the scripts
associatedwith the book. Formore advancedmathematical coverage of the subject,
see Fan & Gijbels (1996) and Wand & Jones (1995). Loader (1999) extends the
local regression approach by combining it with the likelihood concept, particularly
within generalized linear models, and supplies other software tools for the S-plus
and R environments. Loess was originally proposed by Cleveland (1979) and
further developed by Cleveland & Devlin (1988) and is described in Cleveland
et al. (1992).

4.3 THE CURSE OF DIMENSIONALITY

In practice, we rarely go much beyond two dimensions in nonparametric
regression. The first reason is the poor conceptual manageability of the resulting
object: although the idea of a function with 6 or 26 variables is not conceptually
different from one with 2 variables, it is actually difficult to visualize mentally and
graphically. Interpreting the results is also difficult.

A second and perhaps more important aspect is that with increasing dimension
p of the space in which the covariates are placed, the observed points scatter
very quickly. To understand the essence of the problem intuitively, think of
n = 500 points on the x-axis, randomly set over an interval that, without loss
of generality we may presume to be unit interval (0, 1). If we use these n points to
estimate function f (x), we obtain a reliable estimate, thanks to the small average
distance that separates them. If the same number n of points is then distributed
in square (0, 1)2 of plane (x1, x2), they are much less close to each other. If we
then move to higher dimensions, say, p, the dispersion of n points in space R

p
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increases very rapidly, and the quality of the obtainable estimate correspondingly
worsens.

To compensate for the increased space between the points, we need a number
of points of the order of magnitude np. However, although it is common to use a
sample of size n = 500, it is much more uncommon to have 5005 units available,
and practically impossible to have 50010, even in a data mining context. These are
the sizes that are in someway equivalent to estimating function f nonparametrically
when the number of covariates is 5 or, respectively, 10.

This situation of substantial impossibility in estimating function f accurately
when p is large is called the curse of dimensionality. For a more detailed explanation
of how the scatter of the points increases with p, and for other similar issues, see
Hastie et al. (2009; section 2.5).

A further critical aspect with increasing p is the increased computational cost,
at least when a substantial increase in n also occurs.

These problems are not confined to the specific technique of local regression,
but they are substantially valid for all nonparametric estimation techniques, as they
are due to the dimension and dispersed nature of the data with respect to the
number of points from which we wish to estimate the function and not so much to
the method chosen for data processing.

To overcome the problem of the curse of dimensionality, one strategy is to
carry out a preliminary operation to reduce the number p of the covariates,
transforming them into a reduced set of new variables but at the same time losing
as little of their informative content as possible.

The simplest and probably most frequent way of achieving this is to extract
some of the principal components of the original covariates. Therefore, once the
complete set of principal components has been constructed, a suitable number of
them are chosen, keeping a sufficient proportion of the original variability and the
number of new variables low. For a discussion of the advantages and disadvantages
of PCA, see section 3.6.2.

Therefore, in the following section, what we indicate as covariates may
not represent the original variables but those constructed through principal
components or other methods of dimensionality reduction (see section 3.6.2).

Bibliographical notes
The concept of the curse of dimensionality was introduced by Bellman (1961).
Hastie et al. (2009; section 2.5) give a very detailed description of it in the context
of data mining and also discuss a number of additional issues.

4.4 SPLINES
The term spline originally meant the flexible strips of wood used to shape ships’
hulls. Some points on the cross-section of the hull were chosen, and the rest of the
curve of the hull was derived by forcing the wooden strips to pass through such
points, leaving them free to fit into the rest of desired curve according to their
natural tendency. This gave rise to a regular curve with preassigned behavior in
certain positions.
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4.4.1 Spline Functions
The term spline is used in mathematics to construct piecewise polynomial
functions, according to a logic that partly replicates the mechanism just described,
to approximate functions of which we know the value only at certain points.

We choose K points ξ1 < ξ2 < · · · < ξK , called knots, along the x-axis.
A function f (x) is constructed so that it passes exactly through the knots and is free
at the other points, with the constraint that it presents regular overall behavior. In
this sense, the function behaves like splines used in shipyards.

The following strategy is followed: between two successive knots, say, in the
interval (ξi, ξi+1), curve f (x) coincides with a suitable polynomial, of prefixed
degree d, and these sections of polynomials meet at point ξi (i = 2, . . . ,K − 1), in
the sense that the resulting function f (x) has a continuous derivative from degree
0 to degree d− 1 in each of the ξi .

The degree that is almost universally used is d = 3, and we therefore speak
of cubic splines. The reason for this is that the human eye cannot perceive
discontinuity in the third derivative. The foregoing conditions are therefore
written as

f (ξi) = yi, for i = 1, . . . ,K

f (ξ−i ) = f (ξ+i ), f ′(ξ−i ) = f ′(ξ+i ), f ′′(ξ−i ) = f ′′(ξ+i ),

for i = 2, . . . ,K − 1

where g(x−) and g(x+) indicate the left and right limits of a function g(·) at
point x.

The framework of the problem requires the following set of conditions: each of
the K − 1 cubic components requires four parameters; there are K constraints of
the type f (ξi) = yi , and 3 (K − 2) continuity constraints of the function and the
first two derivatives.

As the difference between coefficients and constraints is 2 units, the system of
conditions does not univocally identify a function. We must therefore introduce
two additional constraints.

Many proposals have been made to define these additional constraints, most
of which concern the outmost interval or the extreme points of the function.
A particularly simple choice consists of constraining the second derivatives of the
polynomials in the two extreme intervals to 0, f ′′(ξ1) = f ′′(ξK) = 0, which means
that the two extreme polynomials are straight lines. The resulting function f (x) is
called the natural cubic spline.

4.4.2 Regression Splines
The previous tool is also useful in statistics, in various forms, in the study of
relations between a covariate x and a response y, for which we use n pairs of
observations (xi, yi) for i = 1, . . . , n.

Let us begin by applying these ideas to parametric regression. We return to
model (2.2), where f (x;β) is hypothesized to be a spline function. Then we divide
the x-axis into K + 1 intervals separated by K knots, ξ1, . . . , ξK , and interpolate
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the n points with criterion (2.3), where the β coefficients are now the
nonconstrained parameters of the K + 1 constituent polynomials.

With respect to section 4.4.1, there is a certain difference in that the spline
function coefficients can no longer be chosen according to constraints of the type
f (ξj) = yj, because K and n are no longer linked and K � n. This means that we
have to use a fitting criterion between the data and the interpolated function, for
example, the least squares criterion or a similar one.

If we use cubic splines, the total number of cubic parameters is 4(K + 1)
subject to 3K continuity constraints, and therefore β has K + 4 components. The
solution to the minimum problem (2.3) may be rewritten in the equivalent form

f (x;β) =
K+4∑
j=1

β̂j hj(x) (4.10)

where

hj(x) = xj−1 for j = 1, . . . , 4,

hj+4(x) = (x − ξj)3+, for j = 1, . . . ,K

and a+ = max(a, 0). The solution is thus represented by a suitable linear
combination of basis functions {hj(x), j = 1, . . . ,K + 4}, composed partly of
low-order powers of x and partly of functions of the type max(0, (x − ξ)3).

The number K of knots and their position along the x-axis need to be chosen.
Because K is viewed as a tuning parameter, regulating the complexity of the
model, the strategies proposed in section 3.5 apply. Once K has been set, when
no information is available about the shape of the function to be estimated, a
reasonable choice for knot positions is uniformly along the xi range. Alternatively,
the quantiles of the empirical distribution of the xi are chosen as knots.

Figure 4.5, which concerns our yesterday’s data, illustrate regression splines.
We used K = 2 knots, marked by vertical dotted lines. As well as the standard
solution for the degree d = 3, we also constructed those for d = 1 and d = 2 for
purposes of illustration only. Obviously, in the last two cases, the basis function
changes: in particular, for d = 1, the basis is represented by

h1(x) = 1, h2 = x, hj+2(x) = (x − ξj)+, for j = 1, . . . ,K.

The right panel of figure 4.5 shows function (x − ξ1)+ as an example of the
characteristic component of this approach.

4.4.3 Smoothing Splines
Another way of using spline functions in studying the relationship between
variables is to introduce an approach to nonparametric estimation as an alternative
to local regression.
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Figure 4.5 Yesterday’s day: interpolated functions for d = 1, 2, 3 (left) and the
component function (x − ξ1)+ (right).

Let us consider the penalized least squares criterion

D( f , λ) =
n∑

i=1
[ yi − f (xi)]2 + λ

∫ ∞

−∞
{ f ′′(t)}2 dt (4.11)

where λ is a positive penalization parameter of the roughness degree of curve f ,
quantified by the integral of f ′′(x)2, and therefore acts as a smoothing parameter.

If λ → 0, there is no penalization for the roughness of f (x), so the previous
criterion is not influenced by f (x) outside points x1, . . . , xn, and the optimal
solution f̂ (xi) is the arithmetic mean of the yi corresponding to each fixed x for
each of the observed xi but is not determined for other values of x. If λ → ∞,
the penalty is maximal and means adapting a line imposing f ′′(x) ≡ 0. The overall
result is the least squares line. Therefore, the role of λ is qualitatively similar to that
of h in the case of local regression.

A noteworthy mathematical result (Green & Silverman 1994) shows that the
solution to theminimization problem (4.11) is represented by a natural cubic spline,
whose knots are distinct points xi . The solution may be written as

f̂ (x) =
n0∑
j=1

θj Nj(x)

where n0 is the number of distinct xi and the Nj(x) are natural cubic splines basis
functions.

We can rewrite

D( f , λ) = (y − Nθ)�(y − Nθ)+ λθ��θ

where N is the matrix in which the jth column contains the values of Nj
corresponding to the n0 distinct values of x, and � is the matrix of which the
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Figure 4.6 Car data: Estimate of city distance according to engine size by a
smoothing spline for three choices of λ.

generic element is
∫
N ′′j (t)N ′′k (t) dt . The solution of the optimization problem is

given by

θ̂ = (N�N + λ�)−1N�y (4.12)

which clearly depends on the choice of smoothing parameter λ.
If this expression of θ̂ is substituted into that of f (x), we have ŷ = S̃λ y for a

certain matrix S̃λ of dimension n0 × n0, that is, we are dealing with another linear
smoother. In this case, we speak of smoothing splines.

However, from a computational point of view, we do not proceed with (4.12),
which involves a matrix of order n0. There are much more efficient algorithms, for
which we refer readers to the specialized literature (see the bibliographical notes).
In addition, when the quantity of data is very large, we can reduce the number of
knots used, without loss of accuracy, as we did for local regression at the end of
section 4.2.1.

Again, figure 4.6 shows what is obtained when this procedure is applied to the
car data for three choices of parameter λ. We can also use the criteria discussed
earlier for the choice of smoothing parameterλ (in sections 3.5 and 4.2.2), but here
we choose three values that highlight the effect of variations in parameter λ.

4.4.4 Multidimensional Splines
Extending splines to cases with two or more covariates is not as automatic as
for the other smoothing techniques presented in this chapter. Extension of cubic
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smoothing splines, for example, are thin-plate splines, obtained by a generalization
of (4.11) in which, in the penalty function, the second derivative of function f
is substituted by the Laplacian. Due to the elevated computational complexity
involved, thin-plate splines are hard to use with more than two covariates. In the
simple case when we have a pair of covariates x = (x1, x2)� ∈ R

2, the roughness
penalty function in (4.11) becomes

∫ ∫
R2

{(
∂2f (x)
∂x21

)2

+ 2
(
∂2f (x)
∂x1∂x2

)2

+
(
∂2f (x)
∂x22

)2}
dx1 dx2.

The solution to optimization problem (4.11) with this penalty function can be
proved to have the form

f (x) = β̂0 + β̂�x +
n∑

j=1
αjhj(x)

where hj(x) = η(‖x − xj‖), η(z) = z2 log z2, and estimates α̂j, β̂0, and β̂ are
determined by substituting f (x) in (4.11) and minimizing with respect to the
parameters.

Figure 4.7 presents the results obtained for car data, again with x1 =
engine size, x2 = curb weight, and y = city distance, with two
forms of graphical representation: perspective and level curves.

Another type of generalization particularly useful for regression splines is based
on tensor products of splines. The extension to multiple dimensions is obtained
by constructing a set of basis functions in R

p, multiplying together the basis of
one-dimensional functions for each covariate. If, for example, we consider the
two-dimensional case of cubic splines, where x = (x1, x2)� ∈ R

2 and we have a
basis of functions h1k(x1) with k = 1, . . . ,K1 + 4, relative to the first covariate
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Figure 4.7 Car data: estimation of city distance according to engine size and
curb weight by smoothing splines.
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g(x)

Figure 4.8 Tensor product basis functions, obtained as product of scalar basis functions of
type (x − ξ)+, as in figure 4.5.

x1 and a basis of functions h2k(x2) with k = 1, . . .K2 + 4, relative to the second
explanatory variable x2, the tensor product basis of dimension (K1 + 4)× (K2 + 4)
is defined by

gjk(x) = h1j(x1)h2k(x2), j = 1, . . . ,K1 + 4, k = 1, . . . ,K2 + 4

and can be used to represent a two-dimensional function

g(x) =
K1+4∑
j=1

K2+4∑
k=1

θjkgjk(x).

Parameters θjk can be estimated by the penalized least squares criterion.
Figure 4.8 is an example of tensor product basis functions obtained with one-

dimensional components of the type (x − ξ)+ = max(x − ξ, 0); see figure 4.5.

4.4.5 MARS
When the number of covariates is high, extension of the previous approach is not
easy, due to computational and interpretive difficulties. It is therefore important
to use a process that, starting from the information present in the data, allows us
to select variables reasonably and provides criteria for the choice of the number of
knots necessary for each variable.
Multivariate adaptive regression splines (MARS) represent a particular iterative

specification of regression splines (see section 4.4.2), the aim of which is to model
problems with many explanatory variables. The basis functions used are pairs of
piecewise linear functions, of the type (x − ξ)+ and (ξ − x)+, with a single knot
at point ξ , like those of section 4.4.2.
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The aim is to find the relationship between a dependent variable y and the p
covariates x = (x1, . . . , xp)T . For every explanatory variable xj, we determine a
pair of basis functions with the knot in each observed value xij, for i = 1, . . . , n in
addition to the linear one. This gives the set of basis functions that are considered
as functions on whole spaceR

p:

C = {
xj, (xj − ξ)+, (ξ − xj)+ : ξ ∈ {xi1, xi2, . . . , xip},
i = 1, 2, . . . , n, j = 1, . . . , p

}
.

We must select a subset of basis functions in C to combine in a model suitable
for fitting the data. Piecewise basis functions are included in the model in pairs of
the form {(xj − ξ)+, (ξ − xj)+}. TheMARSmodel is therefore of the type:

f (x) = β0 +
2K∑
k=1

βkhk(x) (4.13)

where hk(x) are either functions belonging to C or products of two or more such
functions, and K is the number of pairs of basis functions to be included in the
model.

To select the hk functions and estimate parameters β , we follow a recursive
process.

• Start with K = 0. We first introduce constant function h0(x) = 1.
• Generic step K . We presume that the model already has 2(K − 1) terms.

We consider, as a new pair of basis functions, each of the possible pairs of
products of a function hk, k ∈ {1, . . . ,K}, already included in the model,
with another pair of functions in C. We then choose the pair of basis
functions that adds to (4.13) the terms

β̂2K−1 hm(x) (xj − ξ)+ + β̂2K hm(x) (ξ − xj)+

which minimize the least squares criterion. Here, hm indicates a function
that is already included in the model, and β̂2K−1 and β̂2K are parameters
that are estimated by least squares together with all the other β parameters
of the model.

• The process continues until a predefined maximum K is reached.

This model is generally very large and may overfit the data. It may be appropri-
ate to formulate a backward procedure in which we iteratively select and remove
the terms from the model one by one, at each step deleting the terms that make
minor contributions to the residual sum of squares. In this backward procedure,
single terms are usually deleted, so the final model is not necessarily characterized
by a pair of basis functions for each knot.

Model subsets are then compared by means of some fitting criterion. When
many data are available, we choose the best model subset by using a different test
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set, as in section 3.5.1. Alternatively, we can use cross-validation (see section 3.5.2),
which, however, requires a considerable computational load.

Another alternative is to use generalized cross-validation (GCV). For each
model to be compared, GCV is defined as

GCV =
∑n

i=1[ yi − f̂ (xi)]2
(1− d/n)2

where d is an indicator of the effective number of parameters in the model. For the
MARS context, d is the sum of the number of terms in themodel and the number of
knots defined in the basis selection process weighted by a penalty that, after some
theoretical and simulation results, is usually fixed at 2 or 3. Another frequently used
approximation chooses d proportional to the number of terms in the model. Note
that the formula used byGCV approximates the error, based on (3.4), whichwould
be determined by leave one out cross-validation for a linear model: this is why it is
called generalized cross-validation.

The pairs of linear functions chosen as basis functions for MARS have the
advantage of operating locally. When these basis functions are multiplied together,
they are different from 0 only in that part of the space where all the univariate
functions are positive (see figure 4.8), and this allows the model to be fitted to
the data with a relatively small number of parameters. These functions also have
the advantage that they can be multiplied together simply, with greatly reduced
computational complexity.

The constructional logic of the model is clearly hierarchical, in the sense that
we can multiply new basis functions that involve new variables only to the basis
functions already in the model; therefore, an interaction of a higher order can
only be introduced when interactions of a lower order are present. This constraint,
introduced for computational reasons, does not necessarily reflect the real behavior
of the data, but it often helps in interpreting the results. However, for easier
interpretation, we often constrain the model to have only first- or at most second-
order interactions.

So far, we have considered the case in which explanatory variables are
quantitative, but it is also easy to introduce qualitative predictors in the MARS
model. If we consider all the possible binary partitions of the levels of a qualitative
explanatory variable, each partition generates a pair of basis step functions that
indicates membership to one of the two groups of levels. These basis functions can
be inserted into C and used like all the others, to obtain products with functions
already included in the model.

For a simple explanation, we again use the car data, this time with only the
two covariates engine size and curb weight. The surface obtained with the
MARSmodel is shown in figure 4.9.

To build a slightly more realistic example, still based on car data, let us now
consider as covariates the variables fuel type, intake, bodywork type,
traction, motor position, width, height, and length in addition to
engine size and curb weight. Table 4.2 lists the relevant information used
by the final model at the end of the MARS process. Only pairs of basis functions
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Figure 4.9 Car data: MARS surface, fitted with two quantitative variables.

Table 4.2. CAR DATA: PARAMETER ESTIMATESOFMARSMODEL

Variable Node Levels Parameters SE

constant 57.0798 4.4884
fuel type 1 −4.0680 0.2768
intake 1 1.3412 0.2287
curb weight −0.0639 0.0063
curb weight 861.84 0.0510 0.0067
curb weight 1149.88 0.0069 0.0013
engine size 11.6215 1.7015
engine size 1.47 −12.1585 1.7581

based on single variables occur in the final model, so it has no interactions. The
table has a line for each pair of basis functions in the final model: the first column
shows the explanatory variable linked to the basis, and for basis functions with
piecewise linear components, the second column specifies the point at which the
knot for that variable is fixed; otherwise, the basis is linear. For qualitative variables,
the third column shows the number of levels into which the factor was divided
to determine the relative basis. The fourth column lists parameter estimations β̂k
relative to each basis, and the last column shows the estimated standard errors of
each parameter.

Figure 4.10 shows the one-dimensional plots of the estimates of the response
variable for each covariate, where the other explanatory variables are kept constant
and equal to their median value in each panel. Figure 4.11 displays a similar plot of
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Figure 4.10 Car data: estimates of one-dimensional relationships in MARS model. Other
variables are fixed at median values.

the regression function, estimated according to the two variables engine size
and curb weight at the same time.

Bibliographical notes
There are very many other aspects concerning spline functions, for which we refer
readers to specialized texts. General coverage of splines and their mathematical
properties can be found in the works of de Boor (1978) and Atkinson (1989;
section 3.7). Green & Silverman (1994) were among the first to use splines
and their variations as thin-plate splines in a statistical environment and were
responsible for the spread of this tool in the statistical community. MARS was
introduced by Friedman (1991) and is found in many works on data mining (e.g.,
Hastie et al. 2009; section 9.4). GCV was introduced by Craven &Wahba (1978)
and extended toMARS by Friedman (1991).

4.5 ADDITIVE MODELS AND GAM
Up to now, we have examined various methods of nonparametric regression
estimation, each of which allows us to examine the relationship between a response
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Figure 4.11 Car data: estimates of double relationship in MARS model. Other variables
are fixed at median values.

variable y and a certain number p of explanatory variables. All these techniques are
valid for the aim, but they also come up against the same problems when p is high:
the curse of dimensionality and the other aspects discussed in section 4.2.5.

To overcome this, on one hand we have to introduce some form of “structure,”
that is, a model of the form of regression function f (x), x = (x1, . . . , xp) ∈ R

p.
On the other hand, for reasons already discussed, we do not want a rigid structure
but must maintain ample flexibility.

One option that has been greatly appreciated for its practical usefulness and
logical simplicity is the following. Let us presume that a representation of the type

f (x) = f (x1, . . . , xp) = β0 +
p∑

j=1
fj(xj) (4.14)

holds for f (x), where f1, . . . , fp are functions of one variable, each having smooth
behavior, and β0 is a constant. We say that formulation (4.9) with representation
(4.14) of f (x) is an additive model.

Note that to avoid what is essentially a problem of model identifiability, it is
necessary for the various fj to be centred around 0, that is,

n∑
i=1

fj(xij) = 0, ( j = 1, . . . , p),

where xij is the jth variable for unit i.
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Algorithm 4.1 Backfitting

1. Start: β̂0 ←
∑

i yi/n, f̂j ← 0 for all j.
2. Cycle for j = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . :

a. f̂j ← S
⎡⎣⎧⎨⎩yi − β̂0 −

∑
k �=j

f̂k(xik)

⎫⎬⎭
n

1

⎤⎦ ,

b. f̂j ← f̂j − n−1
n∑

i=1
f̂j(xij),

until functions f̂j stabilize.

To fit (4.14) to the data, there is an iterative process based on a nonparametric
estimation method of one-variable functions to estimate fj. This procedure, shown
in algorithm4.1, is called backfitting and is essentially a variation of theGauss-Seidel
algorithm.

The specific method for nonparametric estimation is not crucial, and we can
even choose different methods for different fj, but we usually apply a single one,
generically indicated by S in algorithm 4.1, in the sense that S(y) constitutes the
nonparametric estimate, calculated on the observed values y = (y1, . . . , yn)�, of
a scalar function. In many cases, S is a linear estimator, of type Sy, where S is a
suitable smoothing matrix.

A generalization of model (4.14) is of the type

f (x1, . . . , xp) = β0 +
p∑

j=1
fj(xj)+

p∑
j=1

∑
k<j

fkj(xk, xj)

+
p∑

j=1

∑
k<j

∑
h<k<j

fhkj(xh, xk, xj)+ · · ·

which allows us to bear in mind the interaction effect between pairs of variables,
triplets, or other interactions of a higher order.

Figures 4.12 and 4.13 illustrate how additive models work with reference to the
car data, in which the response variable is city distance and the covariates are
engine size and curb weight. Figure 4.12 shows the functions indicated in
(4.14) by f1 and f2, both of which are accompanied by their respective variability
bands. Note that the trend of the engine size regression function is notice-
ably modified when the curb weight component is introduced with respect to
similar graphs in figures 4.1, 4.2, and 4.6, which consider engine size alone.

The left panel of figure 4.13 presents the fitted regression surface under the
additive hypothesis, combining the two functions shown in figure 4.12; the right
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Figure 4.12 Car data: estimate of city distance according to engine size and
curb weight by an additive model with a spline smoother.

E
ng

in
e 

si
ze

1
2

3

4

5
Curb weight

800
1000

1200
1400

1600
1800

C
ity distance

5

10

15

E
ng

in
e 

si
ze

1
2

3

4

5
Curb weight

800
1000

1200
1400

1600
1800

C
ity distance

10

15

20

Figure 4.13 Car data: estimate of city distance according to engine size and
curb weight by an additive model with a spline smoother (left), and without additive
hypothesis by local regression (right).

panel shows the unconstrained estimate, free of the additive hypothesis (see
figure 4.4). Comparison between the two plots shows the effect of the additive
hypothesis or, rather, the effect of interaction between the variables that cannot
be removed from the additive model, which, however, is greatly limited in this
example.

Another direction in which model (4.14) is frequently generalized is of the type

g
(
E
{
Y |x1, . . . , xp

}) = β0 +
p∑

j=1
fj(xj)

which follows (2.42), and is called generalized additive model (GAM). As in the
standard GLM, link function g must be specified. For example, in the case of
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binomial Y , g is commonly assumed to be logit function (2.43). Instead, the term
on the right-hand side is now expressed by an additive form, and consequently the
contribution of general variable xj is no longer linear βj xj but is of themore general
type fj(xj).

To estimate functions for a GAM-type model, we use a suitable combination
of algorithm 4.1 with that of iterative weighted least squares, applied in the case
of GLM.

Bibliographical notes
For complete coverage of additive models and GAM, see Hastie & Tibshirani
(1990) and Hastie et al. (2009; section 9.1).

4.6 PROJECTION PURSUIT
Additive model (4.14) can also be applied to transformed variables in particular,
to projected variables in carefully chosen directions. The model may be written as

f (x1, . . . , xp) = β0 +
K∑

k=1
fk(β�k x)

and is called the projection pursuit regression model, where K is the number of
projections that must be chosen, and βk ∈ R

p are projection vectors, which must
be estimated. Functions fk(·) are called ridge functions, because they are constant
in all directions except that defined by vector βk . Note that unlike additive models,
number K of ridge functions does not coincide with number p of variables in the
model.

The fitting procedure is based on the least squares criterion, leading to an
expression to be minimized by selecting β1, . . . , βK and functions f1, . . . , fK . The
algorithm follows a forward or backward stepwise strategy to select the number of
terms K . At each step, it alternates between a Gauss-Newton method to estimate
βk , given fks, and a one-dimensional smoothing regression for the fk , given βk .
After each step, the fks from previous steps can be readjusted by backfitting
(algorithm4.1). In a forward stepwise procedure, the number of termsK is selected
by stopping the procedure when the next term does not appreciably improve the
model fit, but cross-validation can also be used to chooseK .

The model is very general, and for large enough K and appropriate choice
of fk , it can arbitrarily approximate any continuous function of the covariates.
A class of models with this property is called a universal approximator. Note
that, for example, additive models do not share this property. Projection pursuit
regression is also invariant to nonsingular transformations of covariates, but
interpretation of results is usually difficult, because each variable enters the model
in different projections.

We illustrate the method by considering the car data, with city distance
as the response variable and engine size and curb weight as explanatory
variables. We use smoothing splines as smoothing functions and select K = 3.
Direction vectors βk are shown in table 4.3 and fitted functions fk are plotted in
figure 4.14. The surface of the fitted city distance is shown in figure 4.15.
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Table 4.3. CAR DATA: DIRECTION VECTORS FOR THREE-TERM

PROJECTION PURSUIT REGRESSIONWITH SPLINE SMOOTHER

Term 1 Term 2 Term 3

engine size (rescaled) 0.114 −0.782 0.980
curb weight (rescaled) −0.993 0.623 −0.198

Term 1 Term 2
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Figure 4.14 Car data: plots of ridge functions for three-term projection pursuit regression
with spline smoother.

Bibliographical notes
Projection pursuit was introduced by Friedman & Tukey (1974). A detailed
overview is given in Huber (1985), and an introductory account is provided
by Hastie et al. (2009; section 11.2). Proof that the projection pursuit model
is a universal approximator derives from Kolmogorov’s universal approximation
theorem (Kolmogorov 1957) and is discussed, for example, by Jones (1992).

4.7 INFERENTIAL ASPECTS

The contents of this chapter so far mostly concern nonparametric estimation of
a regression, and we have only marginally considered a statistical inference step,
which we now examine in greater depth. In particular, we want to introduce
a formulation of analysis of variance adapted to the present context to test the
hypothesis that a certain covariate does not affect the response variable.

4.7.1 Effective Degrees of Freedom
Let us refer to the general framework (4.9) and to relative estimator f̂ . We con-
sider the problem of establishing whether a certain explanatory variable, let us call
it xr , is unnecessary and can be removed from the model.

The fact that most of the nonparametric methods described so far are linear
forms of the response variable (once the smoothing parameter has been fixed)
plays an important role. We can therefore write the vector of fitted values ŷ in the
form ŷ = S y, with S as the n × n smoothing matrix; the corresponding vector of
the residuals is given by ε̂ = (In − S)y.
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Figure 4.15 Car data: estimate of city distance according to engine size and
curb weight through projection pursuit regression with spline smoothers.

To construct a table of analysis of variance, we must introduce some type of
“degrees of freedom,” even approximately, associated with the quadratic forms
connected to an estimator. Consider the residual sum of squares

Q =
∑
i

ε̂2i = ε̂�ε̂ = y�(In − S)�(In − S)y

of which we wish to determine the probability distribution and, in particular,
calculate the expected value. Hence, we now consider y as a vector sampled from a
multivariate random variable Y .

We take the case of the classic linear model ε̂ = (In − P)y, where P is projection
matrix (2.9) and it is known that E{Q } = σ 2(n − p), where n − p are the
degrees of freedom of the error component. With the addition of the hypothesis
ε ∼ Nn(0, σ 2In), we can conclude thatQ ∼ σ 2 χ2

n−p.
In our case, the residuals are obtained with a formula similar to that of linear

models, apart from the fact that projection matrix P is substituted by smoothing
matrix S, which does not enjoy the same formal properties. Consequently,
even if we assume the normality of ε, the probability distribution of Q is no
longer χ2.

However, we have empirical evidence based on simulations indicating that the
shape of the probability density for Q is similar to that of χ2. The problem now
is to find an expression that plays the role of degrees of freedom, and this requires
determination of an approximation to E{Q }, in view of the correspondence
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between the average value and degrees of freedom for a χ2 variable. For this,
we write

E{Q } = E

{
Y�(In − S)�(In − S)Y

}
= μ�(In − S)�(In − S)μ+ σ 2tr[(In − S)�(In − S)]

whereμ = E{Y }, and we used lemma A.2.4. If we introduce the approximations

(In − S)μ ≈ 0, (In − S)�(In − S) ≈ (In − S),

we can then write

E{Q } ≈ σ 2{n− tr(S)}
and n− tr(S) are called effective or equivalent degrees of freedom for the error term;
correspondingly, tr(S) are the effective degrees of freedom for the smoother.

Because the foregoing expressions are based on approximations, one implica-
tion is that we can introduce slightly different expressions for the same degrees of
freedom, based on alternative approximations. For example, forms tr(SS�) or even
tr(2S − S S�) have been proposed instead of tr(S). Dealing with approximations
among which there is no clear reason to prefer one form over another, we
tend to use the simplest form, tr(S); in any case, the results do not change
radically.

In addition to the role of numerical approximation, it is useful to identify the
basic meaning of the idea of effective degrees of freedom. We bear in mind that
depending on the choice of smoothing parameter, ŷ = S y lies between the linear
parametric interpolation and a “totally irregular” fit, which presumes no regularity
whatsoever for the underlying function f (x). Choosing the smoothing parameter,
and therefore S, between these two extremes corresponds to a form of “partial
regularity” of f (x), which is quantified by the degrees of freedom corresponding to
the choice of smoothing parameter. In other words, tr(S) represents the number
of effective parameters implied by the model; conversely, n− tr(S) represents the
component of nonregularity and quantifies which fraction of the data is allocated
to estimating the error component.

One role played by effective degrees of freedom is that of introducing a uni-
formly valid smoothing indicator across different types of smoothers.

4.7.2 Analysis of Variance
We now return to the question of evaluating the significance of the individual
variables that enter model (4.9).

Like the scheme of analysis of variance for linear models with Gaussian errors,
we can establish an extended form of analysis of variance in which total variabi-
lity is broken down into components that represent the contribution of each
covariate.

We can now reproduce (2.35) using two nonparametric estimates for ŷ0 and
ŷ, where ŷ0 represents the restricted model. Recalling the discussion in the last
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subsection, we approximate the distribution of test F with a Snedecor F with
(tr(S)− tr(S0), n− tr(S)) degrees of freedom.

As an illustration, reconsider the car city distance data and examine
the effect of engine size and curb weight using local regression, as in
section 4.2, with values of 0.3 and 300 for the smoothing parameters of the two
variables, respectively.

As usual, we summarize the essential ingredients in a table of analysis of
variance.

Component Deviance d.f. p-value

engine size 1169618 12.07 0.000
curb weight 729.0 5.40 0.094

(engine size, curb weight) 410.2 13.08

To interpret the elements of this table, we bear in mind that the row headed,
for example, curb weight, provides the difference of deviance between the
complete model, with both terms, engine size and curb weight, and the
restricted model, without the variable curb weight—that is, the row reports
the contribution made to lowering the deviance due to the variable curb
weight. In the same way, the row shows the effective degrees of freedom for
this component — that is, the difference between the degrees of freedom of the
complete model and that without the variable curb weight. Last, the p-value
is calculated as the complement of the distribution function at the point

F = 729.0/5.40
410.2/(203− 13.08)

= 1.88

of Snedecor’s distribution with 5.40 and 203 − 13.08 degrees of freedom, since
the sample size is 203.

The values obtained depend to some extent on the choice of smoothing
parameters, for example, h. However, we note empirically that the p-values, and
therefore the inferential conclusions, are not heavily influenced if the variation of
h occurs within a reasonably chosen area. Consequently, the choice of smoothing
parameter is not as critical here as we saw in the estimation problem.

Clearly, this form of analysis of variance is used in a particularly natural way
within the field of additive models, where the idea of the increase in fit made by
each variable is implicit, retracing the logic of classical analysis of variance.

Bibliographical notes
Inferential methods in the context of nonparametric regression are discussed in
Bowman & Azzalini (1997; ch. 4). For the introduction of effective degrees of
freedom and their various definitions, see, for example, Hastie & Tibshirani (1990;
pp. 128–129, and appendix B) and Green & Silverman (1994; pp. 37–38).
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4.8 REGRESSION TREES

4.8.1 Approximations via Step Functions
In one sense, the simplest way to approximate a generic function y = f (x),
with x ∈ R, is to use a step function, that is, a piecewise constant function (see
figure 4.16).

However, there are various choices to be made: (a) how many subdivisions of
the x-axis must be considered? (b) where are the subdivision points to be placed?
(c) which value of ymust be assigned to each interval?

Of these questions, the easiest to answer is the last one, because it is completely
natural to choose value

∫
Rj f (x) dx/|Rj| for any interval Rj, having indicated the

length of that interval by |Rj|. Regarding positioning the subdivision points of R,
and therefore defining the intervals, it is better to choose small intervals where
f (x) is steeper. The choice of the number of subdivisions is the most subjective
of the three points: intuitively, any increase in the number of steps increases
the quality of the approximation, and therefore, in a certain sense, we are led to
think of infinite subdivisions. However, this is counter to the requirement to use
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Figure 4.16 A continuous function and some approximations by step functions.
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Figure 4.17 A continuous function inR
2 and an approximation via a step function.

a “sparing” approximate representation, and therefore to adopt a finite number
of subdivisions.

The scheme can be extended to the case of functions of p variables: we thus
write y = f (x) where x ∈ R

p. There are many ways of extending the idea from
the p = 1 case to the general p case. Figure 4.17 shows a function in R

2 and
its approximation by a step function: the regions with constant values are thus
rectangles, the sides of which are parallel to the coordinate axes.

These characteristics of an approximate function, with some additional
specifications to be described later, allow it to be represented as a binary tree,
shown in the top panel of figure 4.18; the bottom panel shows the corresponding
partition of the domain of function f (x) and the values of the approximating
function in each rectangle.

The components of the tree are inequalities, called nodes, relative to any
component x of type x2 < 1.725. We begin by examining the inequality of the
node at the root of the tree, which is at the top. We follow the left branch if the
inequality is true and the right branch if it is not. We proceed in the same way,
sequentially examining all the inequalities until we reach the terminal nodes, called
leaves, which give the values of the approximating function.

Graphical representation as a tree is not as visually attractive as that of
figure 4.17, but it has important advantages: as the tree is identified by a few
numerical elements, it can easily be stored. A second important advantage is that
we can move from one approximation to a more accurate one by subdividing one
of the components into two subrectangles with the same characteristics as the
original. This corresponds to extending a branch of the tree to a further branch
level. This characteristic immediately allows us to recursively construct a sequence
of approximations that are increasingly accurate, each obtained by refining the
previous one, as illustrated in the sequence of three step functions in figure 4.16.

4.8.2 Regression Trees: Growth
We want to use the idea of approximation with a step function to approximate
our functions of interest, which are regression functions. Obviously, in our context,
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Figure 4.18 Tree corresponding to approximation of bottom panel of figure 4.17 (top),
and partition of domain of f (x) induced by tree (bottom).

regression function f (x) is not known, but we can observe it indirectly through n
sample observations, generated by model (4.9).

For simplicity, we begin from the case where p = 1 and consider the
data of figure 4.19, which represents the 60 pieces of data already seen in
chapter 2, subdivided into two groups: ‘yesterday’ and ‘tomorrow’.We can estimate
regression curve f (x) underlying the data by a step function of the type just
described, that is

f̂ (x) =
J∑

h=1
ch I(x ∈ Rh) (4.15)
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Figure 4.19 Scatterplot with 60 pairs of values.

where c1, . . . , cJ are constants and I(z) is the indicator function 0 − 1 of logical
predicate z. In general, sets R1, . . . ,RJ are rectangles, in the p-dimensional sense,
with their edges parallel to the coordinate axes. In the specific case where p = 1,
obviously Rh are reduced to line segments.

We need an objective function to choose Rh and ch. The reference criterion is
deviance, but its minimization, even if we fix step number J , involves very complex
computation. Therefore, operatively we follow a suboptimal approach of step-by-
step optimization, in the sense that we construct a sequence of gradually more
refined approximations and to each of these we minimize the deviance relative to
the passage from the current approximation to the previous one.

The algorithm starts by splitting the real line associated with one of the
variables, for example, xj, into two parts; which variable is to be considered
is discussed later. Each of the subintervals is assigned a value, ch, given by the
arithmetic mean of the observed yi having component xj falling in this subinterval,
irrespective of the other covariates. Note that this step divides the R

p space into
two regions via a hyperplane parallel to the jth coordinate axis. The subsequent
steps of the algorithm proceed similarly, each time splitting one of the existing
regions of R

p into two further regions, again with a split parallel to one of the
coordinate axes.

The right panel of figure 4.18 illustrates the outcome of this process in a simple
instance with p = 2. Figure 4.20 shows three instances of portions that are not
compatible with the foregoing process; the fourth one is admissible.
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Figure 4.20 Three partitions of domain of f (x), not consistent with a tree, and one
partition induced by a tree (lower right).

A crucial aspect is the fact that at each step, one of the already constructed rect-
angles is divided into two, and so is the portion of data belonging to it; we optimize
deviance with respect to this operation. Therefore, this is a myopic optimization
procedure. Although it does not guarantee global minimization of deviance, it
does provide acceptable solutions, maintaining limited computational complexity.

At least in principle, this procedure can be applied iteratively through successive
subdivisions of R

p until we can no longer distinguish sets containing a single
sampled observation and thus obtain a tree with n leaves. To be useful, the number
of leaves must be less than n, preferably much less. Therefore, after the stage of tree
growth, with the complete or almost complete development of all the leaves, we
move to a stage of tree pruning. We describe the growth algorithm now and return
to the pruning phase later.

To develop the growth algorithm, first note that whatever the division of R
p

into hyper-rectangles, we can break down the deviance as follows

D =
n∑

i=1
{yi − f̂ (xi)}2 =

J∑
h=1

⎧⎨⎩∑
i∈Rh

(yi − ĉh)2

⎫⎬⎭ =∑
h

Dh. (4.16)
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We also bear in mind the general property that the minimum of
∑n

i=1(zi − a)2
with respect to a is obtained for a = M(z), where M(·) is the average operator
of the vector.

The growth process starts with J = 1, RJ = R
p, D = ∑

i(yi − M(y))2, and
proceeds iteratively for a number of cycles, according to the following scheme:

• once a rectangle Rh is chosen, the appropriate value ch is the average of the
corresponding values

ĉh = M(yi : xi ∈ Rh)

• if we subdivide region Rh into two parts, R′h and R′′h (therefore moving to
J + 1 leaves), summandDh ofD is replaced by

D∗h =
∑
i∈R′h

(yi − ĉ′h)2 +
∑
i∈R′′h

(yi − ĉ′′h)2

with a “gain” of

gh = Dh − D∗h
• we can inspect all p explanatory variables and, for each of them, all the

possible points of subdivision, selecting the variable and its point of
subdivision that maximize gh.

We stop when J = n, at least conceptually. Mainly, if n is enormous, we stop
earlier — for example, when all the leaves contain a number of sample elements
that is less than a preassigned value, or when the relative fall of deviance is less
than a prefixed threshold.

4.8.3 Regression Trees: Pruning
A large tree with n leaves is conceptually equivalent to interpolation through a
polynomial of order n− 1, which passes exactly through all the points; hence, it is
not very useful. We have to prune the tree by removing branches of little or no use.

Let us therefore introduce an objective function that incorporates a penalty
for the cost-complexity of the tree which we assess by dimension J . This objective
function is given by

Cα( J) =
J∑

h=1
Dh + α J (4.17)

where α is a nonnegative penalty parameter. Breiman et al. (1984) showed that
the set of rooted subtrees that minimize the cost-complexity measure is nested.
That is, as we increase α we can find the optimal trees by a sequences of pruning
operations on the current tree. So for each α, there is a unique smallest tree
minimizing Cα( J) (Breiman et al. 1984; proposition 3.7) and we select the tree
that minimizes Cα( J) for a fixed α.
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To minimize (4.17), we proceed by sequentially eliminating one leaf at a time.
At each step, we select the leaf for which elimination causes the smallest increase in∑

h Dh. The question is therefore reduced to choosing α, and for this we can use
one of the methods described in section 3.5. We can show that suitable adaptation
of the AIC gives α = 2 σ̂ 2, where σ̂ 2 is the estimate of residual error variance,
but how this can be estimated reliably is not very clear. However, the widespread
opinion is that AIC tends to overfit the data in this area. Therefore, the methods
of cross-validation and simple subdivision of data into a training set and a test set,
as seen in sections 3.5.1–3.5.2, are more widely used.

Predicting f (x) on a new piece of data x0 is done by allowing the observation to
descend from the root of the available tree. Datum x0 follows one of the branches,
according to the components of x0, which describe it, until it reaches a leaf with
a value of f̂ (x0). We repeat this process for the n′ components of the test set,
(xi, yi) for i = 1, . . . , n′. Comparing f̂ (xi) with observed class yi , we compute the
contribution from the ith unit to deviance (4.16), and the sum over the n′ terms
provides the observed value of the deviance.

For illustration, let us consider the data in figure 4.19, using the subgroups of
yesterday’s data for growth and tomorrow’s data for pruning. The tree developed to
fullness using only yesterday’s data is shown in the first panel of figure 4.21, where
the length of the vertical lines is proportional to the reduction of the deviance
obtained by subdividing the node. Clearly, after some ramifications, there is no
substantial gain due to the lower branches.

The top-right panel represents function
∑

h Dh calculated from tomorrow’s
data. The graph indicates choice J = 4, associated with α = 4.33 × 10−4. The
suitably pruned tree appears in the lower-left panel, and function f̂ (x) is found
lower-right, overlapping the points.

In this case, the small sample size allows us to use cross-validation.
Note that pruning is often very radical and can easily lead to a tree with a

small number of nodes with respect to the numbers of variables and their levels,
if they are categorical. This fact automatically leads to a choice of the useful
variables, regarding the variables that remain excluded. In reverse, it is not easy
to rank importance for those that remain in the tree, as the reduction in deviance
associated with each node is not directly interpretable. This difficulty is due to at
least three aspects: (a) the reduction of the deviance due to the node quantifies the
gain of that particular dichotomization of the variable and not the whole variable;
(b) the logic of myopic optimization used to make the tree grow makes it difficult
to attribute global significance a posteriori to local aspects and (c) each variable
may be included in more than one node.

To overcome these problems, specific measures of the relative importance of
each covariate in predicting the response have been proposed. For example, a
simple measure of the contribution of a variable, like xk , is based on improve-
ments gh in lowering the deviance at each step, involving xk as splitting variable.
The sum of squared g2h over all the internal nodes for which xk was chosen
as splitting variable is a squared relative measure of the importance of that
variable.
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Figure 4.21 For data of figure 4.19, top-left panel displays a nearly fully grown tree.
Top-right panel: deviance function from tomorrow’s data, which selects four-node
tree in lower-left panel. Lower-right panel: data with overlapping selected four-level
function.

4.8.4 Discussion
Because trees are very frequently used in practice, we note their advantages and
disadvantages.

Advantages
• Logical simplicity and ease of “communication,” above all with those who

have a nonquantitative background. Trees are logical structures usually
used by many people in decision-making processes, for example, by
physicians and businesspeople, perhaps not consciously.

• The step function has a simple, compact mathematical formulation in
terms of information to be stored.

• Speed of computation: the process is not very taxing from this point of
view, and it can also take advantage of the potential of parallel calculation.
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• Use of discrete and categorical variables: although the previous description
referred to continuous covariates, there is no specific reason to limit oneself
to them, and the method can proceed in the same way if some of the
variables are discrete or qualitative.

• Robust forms of deviance: clearly, having seen the construction, we
immediately can substitute deviance with another criterion and the
average with the corresponding operator, thus allowing the use of criteria
based on robustness considerations.

• Missing data: not particularly complicated variations can be introduced,
which allow for missing values, in both tree construction and prediction.

• Variable selection: the method automatically selects the important
variables.

Disadvantages
• Instability of results: a tree is often very sensitive to the insertion of new

data or changes in existing data.
• Difficulty in upgrading: if more data arrive, they cannot be added to the

already constructed tree; it is necessary to start again from the beginning.
• Difficulty of approximating some mathematically simple functions,

particularly if they are steep, and a straight line or other simple function
would approximate them very well.

• Statistical inference: formal procedures of statistical inference such as
hypothesis testing, confidence intervals, and others are not available.

• Selection of variables: it is not simple to evaluate the order of importance
of variables remaining in the pruned tree.

Bibliographical notes
Breiman et al. (1984) introduced not only the idea of regression trees and
classification trees (see later discussion) but also the acronym CART, which then
became synonymous with the same method. This work was among the first to
promote a particular philosophy of data analysis and examine issues that later
to became the characteristic elements of data mining. Venables & Ripley (2002)
describe the practical usage of trees.

4.9 NEURAL NETWORKS

The term neural network encompasses a wide family of techniques developed in
machine learning. We describe only the simplest version here.

Figure 4.22 shows p explanatory variables (input) in a relationship with q
response variables, or output. The most characteristic aspect is the layer of r
latent variables, which is not observable (hidden) and comes between the two
previous groups in the sense that the covariates influence the latent variables; these
in turn influence the response variables. The number of input and output variables
is determined by the problem, but the number r of latent variables is something
we can choose, because they are only conceptual entities. In figure 4.22, we have
p = 4, r = 3, and q = 2, and some additional “constant variables,” identical to 1,
are also shown.
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Figure 4.22 A simple neural network.

The term neural network originated as a mathematical model that in the past
was believed to be the mechanism controlling the working of the animal brain:
every node of the graph represented a neuron, and the arcs represented the
synapses. We now know that the animal brain is much more complex, but the
term neural network survives.

A neural network is essentially a two-stage regression scheme, generally of
nonlinear or at least partially nonlinear type. We indicate the generic input, latent,
and output variables by xh, zj, and yk , respectively, and add constant variables x0
and z0 equal to 1. The previous scheme can now be expressed as

zj = f0

⎛⎝∑
h→j

αhj xh

⎞⎠ , yk = f1

⎛⎝∑
j→k

βjk zj

⎞⎠ , (4.18)

whereαhj and βjk are parameters to be estimated, and the sums are over the indices
of the variables for which a dependence relation is predicted. Figure 4.22 shows
these dependencies by arrows and involves all the compatible variables, although
this is not necessarily the case. We can therefore see that the resulting structure
is an acyclic graph with directed edges and weights associated with coefficients α
and β .
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To complete the picture, we must specify activation functions f0 and f1. In
regression problems, where the yk are generally nonlimited, we presume

f0(u) = eu

1+ eu
, f1(u) = u, (4.19)

where the choice of f0 is the logistic function, as seen in section 2.4. We note,
however, that at least one of the two functions f0 and f1 must be nonlinear to avoid
reducing the whole network to a set of linear relations, effectively eliminating the
latent layer.

There are mathematical results that give rise to interesting properties for the
framework. In particular, we can show that a neural network with linear output
units can approximate any continuous function f uniformly on compact sets, by
appropriately increasing the number of units of the latent layer; see Ripley (1996;
p. 147 and 174).

Extensions are possible in various directions. One of the most common is to
consider several layers of latent variables. Another is to introduce edges that skip
a layer: in the case of the single latent layer considered here, this means inserting
an edge directly between some variables of the input layer and some of the output.
Two elements must be specified: the number r of units in the hidden layer and
the set of coefficients α and β of (4.18). For the choice of r, there are no criteria
that are easy to use in practice, apart from experimenting with various ones and
comparing the results.

Therefore assume that r has been fixed and we want to estimate coefficients
α and β according to sample observations. This is done by minimizing the usual
objective function

D =
∑
i

‖yi − f (xi)‖2

where yi now indicates the q-dimensional vector of the response variables of the
ith observation. Analogously, xi is the corresponding p-dimensional vector of the
covariates, and f (x) is the vector, whose kth component is

f (x)k = f1

⎧⎨⎩∑
j→k

βjk f0

⎛⎝∑
h→j

αhj xh

⎞⎠⎫⎬⎭ , (k = 1, . . . , q).

More elaborate versions of this objective function can be obtained by including a
penalty term to avoid overfitting problems, for example, functions of the type

D0 = D+ λ J(α, β). (4.20)

Here λ is a positive tuning parameter and J(α, β) is a penalty function, according
to a path already seen previously, for example in section 4.4.3. Among the most
common penalty forms there are

J(α, β) =
∫ ∑

h,k

∂2yk
∂x2h

dx ≈ 1
n

∑
i

∑
h,k

∂2yki
∂xhi ∂xhi

, J(α, β) = ‖α‖2+‖β‖2

(4.21)
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of which the first form penalizes the amplitude of the second derivative, and the
second tends to shrink the parameters toward 0; the latter is called weight decay.
Here yki denotes the kth component of yi .

These formulations, both D and penalty function J , make sense if the variables
are measured on the same scale. As a preliminary operation, it is therefore better
to normalize them—for example, by rescaling all the variables between 0 and 1
(at least approximately). For regulation parameter λ, Venables & Ripley (2002;
p. 339) advise choosing a value between 10−4 and 10−2.

Clearly, minimization of D0 requires a numerical optimization process. Much
effort has been invested in developing such algorithms. The most common
method is called back-propagation, which has interesting properties. One of the
most important aspects in this context is that there exists a variant of the
back-propagation algorithm,which allows for later updating of parameter estimates
in an incremental way as new data become available.

It must be stressed that practical experience has provided extensive evidence
that objective functionD0 often hasmany points of local minima, and it is therefore
wise to start the optimization algorithm from several initial points. This difficulty
in turn affects something else: in choosing λ it is difficult to take advantage of
techniques like cross-validation, as the algorithm varies widely in locating the
minimum.

To illustrate the method, let us consider the engine size and curb weight from
our car data to predict city distance. We consider a neural network with f0 and
f1 as in (4.19) and one latent layer with r = 3 nodes. We minimize function D0
with penalty J(α, β) in the second form, and λ = 10−3. After various executions
of the minimization algorithm, starting from different initial points of the param-
eters, we reach what would seem to be an acceptable minimum point. The results
are shown in figure 4.23, in which the top diagram is a graph of the neural network
with estimated weights and the lower one is a prospective representation of f (x).

In conclusion, we review of the advantages and disadvantages of this approach.

Advantages
• Flexibility: the method allows for good approximation of practically any

regression function f (x), that is, the model is a universal approximator.
• Compactness of representation: the estimated regression function is

identified by a limited number of components.
• Sequential upgrading: coefficients α and β can be updated sequentially as

new data arrive by means of a suitable variation of the back-propagation
algorithm.

Disadvantages
• Arbitrariness: there are no strong criteria with which to choose the number

r of latent nodes; in addition, we only have rough indications for the choice
of λ.

• Instability in the estimation stage: the nature of objective functionD, or its
variations, implies that its properties are difficult to identify, especially the
existence of a single minimum point. Instead, there is empirical evidence
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of the frequent presence of local minima, and different results may be
obtained if the optimization algorithm is started from different points.

• Inference: there are no standard errors associated with the coefficients
or other inferential procedures—for example, to reduce the number of
coefficients.
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• Interpretation: there are major problems in interpreting results, particu-
larly when r increases.

Bibliographical notes
The literature on neural networks is extremely ample, and ranges from very
technical presentations to very informal ones. Among the latter, from the viewpoint
of readers with a statistical background, we mention the works by Ripley (1996;
ch. 5) and Hastie et al. (2009; ch. 11). Fine (1999) provides a more mathematical
account.

4.10 CASE STUDIES
The data used up to now to illustrate the various methods, although obtained from
real cases, were suitably simplified to avoid over-specific details in applied problems
that interfere with presentation. Here we focus on operational aspects and treat a
couple of real cases in their original complexity.

4.10.1 Traffic Prediction in Telecommunications
The first problem presented here was handled by a group of marketing analysts in a
telecommunications company. Our aim is not to analyze the associated marketing
themes in detail but to present the use of data mining methods as a tool for
business choices.

The data and the background problem
The group within the marketing section of a telecommunications company
managing customer relationships (customer base management) is interested in
analyzing customer behavior regarding telephone traffic. Of the many types of
analysis the group uses to study customer traffic characteristics, identifying a tool
to predict the traffic of every single customer in the coming months is often
extremely useful. Not only can appropriate estimations of overall traffic provide
necessary elements for predicting the company’s budget, but tools can be supplied
to evaluate each client’s value to the company. Marketing actions can be organized
to incentivize the use of company services to those whose traffic could potentially
increase and to avoid doing the same to those who do not need them. Traffic
predictions are also used to note possibly anomalous behavior by customers,
particularly those who are more valuable to the company, for early identification of
possible dissatisfaction, problems in using the main services the company offers, or
even fraudulent situations.

In this context, let us consider a set of customers who possess a SIM (subscriber
identity module) card with a call plan that is of particular interest to the company.
We tackle the problem of predicting traffic for the coming month using data
available so far. Therefore, as response variable, we choose the total number of
seconds of outgoing calls made in a given month.

A typical way of proceeding in these cases is based on the idea that in essence,
customers’ traffic behavior can be considered as stable in time if reduced time
intervals are considered. Under such a hypothesis, traffic in month t using data
for months t − 1, t − 2, . . . , t − k, can be predicted as a first approximation,



112 DATA ANALY S I S AND DATA M IN ING

irrespective of specific month t . Therefore, in the first search we do not keep count
of seasonal components or cycles in the model, but, following common usage
in this field, we consider a model constructed with data for month t as a good
prediction tool for each successive month.

The approximation thus introduced may seem excessive, and it is in fact
possible to consider components that gather effects due to the specific months
in constructing the model itself. Or, in contexts in which prediction models are
often updated, we can validate the model on the basis of test sets extracted from
data that refer to t months differing from those used for the estimate. For the sake
of simplicity, we concentrate only on the stable hypothesis.

We must now choose our covariates. First, we determine for how many months
it would be useful and suitable to “go backwards” in time to continue to find
meaningful relationships with the response variable and then identify the variables
to be observed for each customer. Some of these are observed for all months, for
example, the number of text messages (SMS) sent or the number of calls to the
customer services helpline (customer care), but others do not depend on the time
interval in question, for example, gender or the day of activation of the service.

The company’s DWH (see section 1.1.3) yields a data mart for 30,619
customers, for whom information on a total of 99 variables is available. Some
of these are intrinsic customer characteristics (e.g., gender and age) or have to
do with the specific relationship between customer and company (e.g., activation
data or any value-added services), and some have to do with information on traffic
in each of the consecutive nine months previous to the month of interest. Last,
there is the variable relative to the total duration of outgoing calls in the tenth
month, which is our response variable. The data are presented in greater detail in
section B.4.

The high number of customers allows us to divide the data set into two parts,
one for the estimate and the other for validation of results and comparisons. We
subdivide the available data into two equal sets, composed of 15,310 and 15,309
customers, respectively.

We now examine the training set. An initial descriptive graphical analysis
shows that the distribution of the response variable is highly asymmetric and
concentrated around 0. In particular, the training set contains 5,131 customers
who have not made outgoing calls. This data characteristic involves some difficulty
in automatically using the models proposed here. Clearly, the response variable
cannot be treated as a continuous variable, because it has the characteristics of a
mixed variable: it is the combination of a continuous component for some of the
observations and a discrete, binary component for the other group of customers
who did not make calls in that month.

It is therefore reasonable to take advantage of this information to construct our
prediction model of the duration of outgoing calls. One possibility is to organize
the process into two stages. First, we fit amodel for the probability that the duration
is not 0, and, conditionally on this event, we then construct a model for positive
duration values.

To construct a model that predicts an indicator variable, we still need to
introduce more elements (see chapter 5 for the analysis of this aspect). In the
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next section, we describe some models to predict the total duration of calls on
condition that they were made.

Some prediction models
We now consider, among the customers selected for the estimate, the set contain-
ing the 10,179 customers who had positive total call durations in the month of
interest. The left part of figure 4.24 is a histogram of the response variable for
this set.

The first predictionmethod is a linearmodel obtainedwith all available variables.
The fittedmodel with 98 covariates givesR2 = 0.613. Clearly the estimate ofmany
parameters indicates that the variables in question do not significantly influence
the response variable. Therefore, a stepwise procedure is formulated to select
the relevant variables. After much computer work, the final model contains 56
covariates and gives R2 = 0.612. Note that in situations like these, in which
we have an extremely high number of observations, it is not useful to carry out
formal hypothesis testing with test F to verify the combined influence of all the
eliminated variables on the response variable.

The histogram of the residuals of the model with 56 variables appears in the
right part of figure 4.24. The quantities, obtained by estimating the parameters
in R, are listed below:

Residuals:

Min 1Q Median 3Q Max

-69152.5 -790.7 66.8 663.4 148323.2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.04e+03 2.97e+02 13.64 < 2e-16 ***

tariff.plan4 1.50e+04 4.92e+02 30.57 < 2e-16 ***
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tariff.plan6 -3.78e+03 2.52e+02 -15.00 < 2e-16 ***

tariff.plan7 -4.02e+03 1.99e+02 -20.24 < 2e-16 ***

tariff.plan8 -3.78e+03 1.97e+02 -19.21 < 2e-16 ***

etacl -2.92e+01 6.24e+00 -4.68 2.9e-06 ***

activ.zone2 -4.64e+01 1.24e+02 -0.37 0.70829

activ.zone3 4.87e+02 1.32e+02 3.70 0.00022 ***

activ.zone4 -2.87e+01 1.92e+02 -0.15 0.88146

vas1Y 3.93e+02 1.13e+02 3.46 0.00053 ***

q01.out.ch.peak -4.26e+00 1.58e+00 -2.70 0.00698 **

q01.out.dur.peak 3.01e-02 1.26e-02 2.40 0.01635 *

q01.out.ch.offpeak 1.67e+01 5.91e+00 2.82 0.00481 **

q01.out.dur.offpeak 1.92e-01 4.45e-02 4.31 1.7e-05 ***

q01.out.val.offpeak -6.45e+01 1.30e+01 -4.98 6.4e-07 ***

q01.in.ch.tot 3.85e+00 1.33e+00 2.90 0.00370 **

q01.ch.cc -6.54e+01 4.16e+01 -1.57 0.11609

q02.out.dur.peak -4.37e-02 2.04e-02 -2.15 0.03180 *

q02.out.val.peak 1.81e+01 4.47e+00 4.05 5.1e-05 ***

q02.out.ch.offpeak 1.11e+01 6.85e+00 1.62 0.10539

q02.out.dur.offpeak -2.13e-01 4.24e-02 -5.03 5.1e-07 ***

q02.out.val.offpeak -1.28e+01 6.91e+00 -1.85 0.06398 .

q02.in.ch.tot -3.82e+00 1.37e+00 -2.79 0.00525 **

q02.ch.cc -1.08e+02 4.03e+01 -2.68 0.00736 **

q03.out.val.peak 4.94e+00 1.62e+00 3.05 0.00232 **

q03.out.dur.offpeak 1.20e-01 3.70e-02 3.25 0.00115 **

q03.out.val.offpeak 2.03e+01 8.81e+00 2.30 0.02129 *

q03.in.dur.tot -3.06e-02 8.19e-03 -3.73 0.00019 ***

q04.out.ch.peak -3.59e+00 1.27e+00 -2.82 0.00485 **

q04.out.dur.peak -3.62e-02 1.90e-02 -1.90 0.05713 .

q04.out.val.peak 1.19e+01 4.29e+00 2.77 0.00568 **

q04.out.ch.offpeak -3.71e+01 5.00e+00 -7.42 1.3e-13 ***

q04.in.dur.tot 2.60e-02 9.58e-03 2.71 0.00678 **

q05.out.dur.peak 5.44e-02 1.66e-02 3.27 0.00108 **

q05.out.val.peak -1.46e+01 3.37e+00 -4.34 1.4e-05 ***

q05.out.ch.offpeak 3.35e+01 6.69e+00 5.00 5.9e-07 ***

q05.out.val.offpeak 1.46e+01 9.44e+00 1.55 0.12220

q05.ch.cc 6.74e+01 3.93e+01 1.72 0.08637 .

q06.out.dur.peak -4.48e-02 1.77e-02 -2.53 0.01134 *

q06.out.val.peak 1.14e+01 3.88e+00 2.93 0.00342 **

q06.out.ch.offpeak -5.43e+01 8.54e+00 -6.35 2.2e-10 ***

q06.out.dur.offpeak -1.11e-01 7.23e-02 -1.54 0.12357

q06.out.val.offpeak 2.04e+02 2.61e+01 7.82 5.8e-15 ***

q06.in.dur.tot 1.59e-02 9.45e-03 1.68 0.09219 .

q06.ch.sms -4.29e+00 1.86e+00 -2.30 0.02139 *

q07.out.dur.peak -3.59e-02 1.37e-02 -2.62 0.00893 **

q07.out.val.peak 1.26e+01 3.06e+00 4.12 3.8e-05 ***

q07.out.ch.offpeak -2.34e+01 8.74e+00 -2.68 0.00728 **

q07.out.dur.offpeak -1.12e-01 7.72e-02 -1.45 0.14819

q07.out.val.offpeak 4.01e+01 2.66e+01 1.51 0.13233

q07.in.dur.tot -1.86e-02 9.48e-03 -1.96 0.04975 *

q07.ch.cc -3.23e+01 1.84e+01 -1.76 0.07900 .

q08.out.ch.peak -2.71e+00 1.34e+00 -2.03 0.04280 *

q08.out.dur.peak 4.69e-02 1.36e-02 3.46 0.00055 ***

q08.out.val.peak -1.37e+01 3.11e+00 -4.41 1.1e-05 ***
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q08.out.ch.offpeak -2.18e+01 9.03e+00 -2.42 0.01569 *

q08.out.dur.offpeak 2.48e-01 6.35e-02 3.90 9.5e-05 ***

q08.in.ch.tot 3.43e+00 1.19e+00 2.89 0.00389 **

q09.out.val.peak 1.34e+01 9.95e-01 13.51 < 2e-16 ***

q09.out.ch.offpeak 1.27e+02 8.67e+00 14.63 < 2e-16 ***

q09.out.dur.offpeak 1.47e+00 6.31e-02 23.35 < 2e-16 ***

q09.out.val.offpeak -1.99e+02 1.88e+01 -10.53 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5020 on 10117 degrees of freedom

Multiple R-Squared: 0.612, Adjusted R-squared: 0.61

F-statistic: 262 on 61 and 10117 DF, p-value: <2e-16

Did you stop to look at the individual numbers in the list? They seem to be
useless and too many. In fact, they contain much useful information for analysts
looking for reasons customers increase their traffic. So if we analyze the parameter
values in more detail, we see that they offer interesting suggestions for marketing
choices.

Let us make a single example of simple interpretation: the high value of
the parameter of the first value-added service (vas1) tells us that, taking into
account the linear effect of all the other variables in the model, subscription to
such a service is a strong incentive to use the phone. This result may give rise
to marketing choices aimed at increasing the use of this value-added service—
for example, a targeted marketing campaign or sending personalized letters
presenting the service to customers who have not yet subscribed to it.

However, predictions obtained by applying this model to new data may
also give rise to negative values for total call duration. To avoid this annoying
problem, the prediction for all these customers to whom the model would assign
negative duration at 0.5 was fixed. The choice of 0.5 is reasonable here because
it is lower than any other value in the training set for total call duration, but
it is not too small to have any great influence on the results of the following
analysis.

To evaluate the quality of these two prediction models more completely, we
measure performance on the test set. The resulting squared prediction errors
are 257.74 × 109 and 258.52 × 109 for the complete and restricted models,
respectively.

The models minimize objective function (2.3), which assigns the same
importance to each observed entity. However, as we note that total monthly call
duration (the variable we are predicting) is certainly a positive quantity and we
expect that it frequently has low or medium values and only rarely high ones, we
also expect that it will have a skew shape. This consideration, also corroborated by
the right panel of figure 4.24, which clearly shows that the residuals of the linear
model do not have Gaussian distribution, leads us to consider different objective
functions for estimate evaluation.

A simple, widespread choice in these cases is to consider as new output the
logarithmic transform of the response variable, leading to a deviance on the
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logarithmic scale:

D(β) =
∑
i

{log(yi)− f (xi;β)}2 (4.22)

where, as usual, yi indicates the response variable observations, xi the corre-
sponding covariate observations, β the vector of the unknown parameters to be
estimated, and f the function identified by the model.

To evaluate these two linear models in terms of this new loss function, we can
calculate the prediction error on a logarithmic scale on the test set, calculating the
function ∑

i

{log(yi)− log(g(xi; β̂))}2

where g is the linear predictor on the original scale. On the logarithmic scale,
deviance is 113,472 for the complete model and 112,061 for the restricted one,
respectively, confirming that the model with fewer covariates produces a slightly
better prediction.

The linear model can also be directly fitted so as to minimize (4.22). This time,
too, we fit the model with all the covariates to the data and then select the most
important ones with a stepwise procedure. The prediction errors on the validation
set of all the models fitted using the original and logarithmic scales are listed in
table 4.5.

In figure 4.25, the left panel shows the histogram of the logarithm of
the outgoing call duration in the month of interest; the right panel shows
the histogram of the model residuals on the logarithmic scale obtained by stepwise
selection of the variables. These histograms support the hypothesis that the loss
function on the logarithmic scale is a reasonable choice for the problem in question.
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Figure 4.25 Telecommunications customers. Left: distribution of logarithms of outgoing
call duration for month of interest; right: histogram of residuals of linear model on
logarithmic scale with stepwise selection of variables with Gaussian distribution density
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A second group of models fitted to these data is based on GAM models (see
section 4.5). In this case, a first model with all available variables was fitted and
then a second, with only the variables resulting significant in the first model,
determined through analysis of variance (section 4.7.2). A GAM model was
also fitted, with only those variables for the last observed month, as well as
customer characteristics, which do not vary in time. Also in this case, to estimate
the functions of the additive models, both logarithmic and original scales were
used. Table 4.5 lists the prediction errors of the six additive models obtained by
selecting the covariates (all of them, only significant ones, only those relative to
the last month) and using the two estimation criteria (original and logarithmic
scales).

For all continuous variables, smoothing splines (see section 4.4.3) were used
as nonparametric estimators, and the number of effective degrees of freedom
was fixed at 4 for each univariate function as a choice of spline smoothing
parameter. The estimates of the functions of variables significant for the model
on the logarithmic scale are shown in figure 4.26.

Looking at all the coefficients of the linear model may give rise to feelings of
confusion or uselessness. However, also in this case, each figure may have useful
consequences for company policy. Simple examples are that value-added services
(vas1 and vas2) cause an increase in net traffic, other estimated elements being
fixed. Regarding traffic variables, note the narrowness of the variability bands of the
function for off-peak call duration in the ninth month, identified as a very impor-
tant predictor for increased traffic in the tenth month, and the nonmonotone trend
of the curve for the same variable in the sixth month.

The other family of models based on splines used here is MARS (see
section 4.4.5). In this case, because the procedure automatically chooses variables
useful for predictions, one model was used for the original scale and one for the
logarithmic scale. Table 4.4 lists the information used by the final model on the
original scale. The prediction errors of these models are also listed in table 4.5 to
aid comparison with other predictions.

A neural network (see section 4.9) was also fitted on both original and
logarithmic scales. Three nodes were used for the hidden layer and to control
overfitting. We selected λ = 10−3 as the weight decay parameter. Prediction errors
are listed in table 4.5.

Last, two regression trees (see section 4.8) were “grown” on the two scales.
The trees, like MARS, automatically select the variables that most influence the
response variable, taking advantage of pruning phases; it is not necessary here to
carry out any preliminary operations to reduce the models. The training set was
divided into two parts: one of 5,089 customers, used to grow the tree, and the
other of 5,090 customers, for pruning. Figure 4.27 shows the deviance plot versus
number of tree nodes for the two models on the original and logarithmic scales,
respectively, and figure 4.28 shows the two final trees.

For the first tree, the function that describes deviance with respect to number
of nodes (top panel, figure 4.27) shows two local minima, and the absolute
minimum attained with deviance on the pruning set of 119.52 × 109 refers to
the tree with 44 leaves, which is obviously a tree with many branches.
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Figure 4.26 Telecommunications customers: GAM model on logarithmic scale, with
significant covariates only.

It seems unreasonable in this case to apply the algorithm automatically, which
suggests choosing the tree that minimizes deviance on the pruning set. A more
careful analysis indicates we should consider both models proposed by the devi-
ance curve, which therefore also correspond to the local minimum of 121.32 ×
109—a tree with seven leaves. In fact, as well as finding the optimal prediction
criterion, it is always useful to look for a model which also responds to simplicity
criteria. If, as in this case, deviance on the pruning set is very similar in the two
models, we often prefer the simpler one, apart from other considerations regarding
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Table 4.4. TELECOMMUNICATIONS CUSTOMERS: ESTIMATES FORMARSMODEL

First Variable First Second Variable Second Parameters SE
Node Node

constant 988.29 251.77
q09.out.dur.offpeak −2.84 0.85
q09.out.dur.offpeak 365.00 4.42 0.85
q09.out.val.peak 40.80 3.27
q09.out.val.peak q09.out.dur.offpeak 0.34 0.01
q09.out.val.peak q09.out.dur.offpeak 365.00 −0.34 0.01
plan.tariff −119.08 56.43
plan.tariff q09.out.val.peak −8.77 0.78
q09.out.val.offpeak −48.60 39.37
q05.out.val.offpeak 342.32 25.45
plan.tariff q05.out.val.offpeak −70.93 4.92
q05.out.val.offpeak q09.out.val.peak −0.44 0.13
q05.out.val.offpeak 48.07 −396.81 32.59
plan.tariff q05.out.val.offpeak 48.07 183.68 12.05
q05.out.val.offpeak 48.07 q09.out.val.peak −3.13 0.18
q05.out.val.offpeak q09.out.val.offpeak −2.53 1.03
q05.out.val.offpeak q09.out.dur.offpeak −0.001 0.01
q09.out.val.offpeak 29.22 −515.14 46.37
q09.out.val.peak 189.57 4.91 1.47
q05.out.val.offpeak q09.out.val.peak 189.57 3.35 0.25
q05.out.val.offpeak q09.out.val.offpeak 29.22 11.44 1.30

model interpretation. It was for this reason that in figure 4.28 we preferred to
design the final tree with seven leaves. Table 4.5 lists the prediction errors of the
trees with both 7 and 44 leaves, so as to highlight the real differences between the
models on the test set.

Comparisons and discussion
Examination of table 4.5 and other elements prompt some reflections on both
models and estimates.

The choice of the objective function is obviously linked to the marketing
problem in question. In our case requests vary; on one hand the most precise
prediction possible of the traffic of every customer for the month of interest is
required—to be able, for example, to run budget predictions, measure the value
of each customer, or redesign the network. On the other hand, we can study
which operative tools can incentivize customers with medium or low traffic to
increase their use of company services. Both objective functions are therefore used
to provide useful suggestions for these types of requirements.

After choosing one of the two objective functions, the optimized models are
clearly better than those obtained by minimizing the other function. Table 4.5
shows that similar models obtained with different optimizations can also differ
greately from each other (see, for example, results on linear models). In the
following, therefore, we compare the models obtained by maximizing each of
the two objective functions separately.

Regarding the original scale—that is, analysis of the measure of total traffic,
and therefore of the gain obtained by the company—we focus on the fact that
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Table 4.5. TELECOMMUNICATIONS CUSTOMERS: PREDICTION ERRORS IN ORIGINAL AND

LOGARITHMIC SCALES FORMODELS FITTEDTO DATA

Model Variables Optimization Squared Error Squared Error
Scale Original Scale Logarithmic Scale

Linear all original 257,736,193,454 113,472
Linear only signif. original 258,524,520,314 112,061
Linear all logarithmic 79,407,475,570,006,224 15,838
Linear only signif. logarithmic 41,140,000,000,000,000 15,853
GAM all original 392,419,005,268 94,137
GAM only signif. original 391,286,779,004 98,628
GAM prev. month original 299,872,658,074 109,552
GAM all logarithmic 666,446,084,652 229,497
GAM only signif. logarithmic 1,190,485,331,659 13,989
GAM prev. month logarithmic 1,668,869,970,637 13,779
MARS original 211,786,338,287 35,151
MARS logarithmic 276,868,390,512 13,317
Neural network original 604,876,539,104 35,151
Neural network logarithmic 601,084,507,392 36,875
Tree 44 leaves original 324,547,309,675 20,252
Tree 7 leaves original 252,187,094,517 32,852
Tree logarithmic 344,247,954,167 13,796

customers with high traffic are special and are considered much more important
than customers with medium or low traffic. We therefore note the following.

• All the models are essentially equivalent as for prediction error with the
only exception of the neural network.

• The tree that the pruning set suggested was “optimal” (i.e., 44 final nodes)
performs worse than the tree selected as “sub-optimal,” with 7 leaves,
which combines simplicity and precision. This example indicates that
trees may provide very interesting results if they are studied with care
and evaluated in all their relevant aspects.

• The preferable model in terms of prediction error is MARS, which is
used to make a precise prediction of total call duration in the following
month.

• After precise prediction of total call duration, it is very important for
marketing experts to have a precise description of the characteristics of
those customers who make large numbers of calls with respect to those
who do not.

◦ Table 4.4 gives us a first, albeit preliminary, idea of the mechanism
that allowsMARS to predict total duration.

◦ Other models are of more help in interpreting results. In this
case, the regression tree does not only perform well in terms of
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prediction error, but is also extremely easy to interpret and, as seen
in figure 4.28, offers simple but useful cues for marketing actions.

◦ Other than trees, linear models and GAM are also simple to
interpret, through the table of coefficients presented at the
beginning of this section for the former, and graphs like those
of figure 4.26 for the latter.

◦ Neural networks present greater difficulties in interpreting rela-
tionships. In this specific case, they also appear to perform worse
than the other models.

Similar reasoning can be made for the last column of table 4.5, showing the
squared errors on the logarithmic scale. In this case, the objective is to reduce
the effect on estimates of best customers and search for the levers on which the
company’s marketing department can act to increase the traffic of customers with
low value.

Again, the best model seems to be MARS, followed by GAM and the regre-
ssion tree. The linear model behaves slightly worse than the others, probably due
to the nonlinearity induced by the logarithmic transformation, which the other,
more flexible models can handle.

When working on the logarithmic scale, the need to interpret the results is
greater than that of simply being able to suggest actions to carry out on the custo-
mer base. It therefore favors a GAM-type model, which, as we have seen, offers not
only good performance in terms of prediction error but also easy interpretation
(see figure 4.26).

Summary
• We need a model to predict the traffic of each customer in a fixed month,

using information on customers and services to them in the previous
months.

• There are at least two types of aims: (1) to predict total traffic in the
month of interest with the greatest possible precision, (2) to identify lines
of action to persuade customers with less traffic to increase it.

• Themodel chosen for the first aimwasMARS, with the smallest prediction
on the original scale, which is appropriate for problems of type (1).

• The model chosen for the second aim, for which we used the logarithmic
transform, was GAM, which, although not having the best prediction error
on the logarithmic scale, is appropriate for problems of type (2). It also
makes quite good predictions, offers easy interpretation of the model,
and indicates possible up-sell actions.

4.10.2 Insurance Pricing
The problem described next was handled by the nonlife actuarial office of an
insurance company. However, our objective is not to analyze actuarial issues
in detail but to present data mining methods as tools for business choices.
Much literature is available on statistical models for insurance pricing problems
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(e.g., Ohlsson & Johansson 2010; Tse 2009). A specific characteristic of this type
of problem is that the value of the premiummust be defined before a claim is made,
that is, before its cost is known. Large numbers of predictive actuarial models have
been developed to price different types of insurance.

The marketing managers of insurance companies are also interested in the
combinations of products customers have. They want to “segment” the base
by grouping customers with similar behavior and identify the characteristics
of customers having similar premium value for some specific product. In this
section, we examine the problem of predicting the amount of the pure premium
(the total claim amount, divided by the duration of exposure to risk) for private car
third-party liability insurance by considering subscription to other products offered
by the same company, as well as other policyholder variables such as age, gender,
and residential area. In particular, the company is interested in which insurance
products are bought by customers who buy third-party liability insurance.

The data
The data are described in detail in section B.5 and refer to a random sample of
5,000 policyholders in a given year. Available variables include the number and
total amount of premiums paid in the current year. It is easy to obtain the average
pure premium for third-party liability policies, which is the response variable in
our analysis. Clearly, a different strategy would be to predict the single variables,
number of policies, and total sum paid for premiums by using two different
models and then obtain the predicted ratio of the single-model predictions.
There are circumstances in which either of these strategies is preferable (see
exercise 4.10). Data on other customer policies are also available and are used as
covariates.

We divide the original data set into two parts: 4,000 policyholders are used for
training the models and the remaining 1,000 are reserved to validate results.

Simple descriptive analysis of the training set shows that 26.70% of customers
do not hold any third-party liability insurance, and only 12.12% subscribe to more
than one policy.

The first four panels of figure 4.29 show some characteristics of customers in
the training set. The marginal distribution of the average pure premium paid by
customers holding at least one policy is quite skewed, as shown by the bottom-
left panel of figure 4.29. The last panel of figure 4.29 shows the histogram of
the logarithm of the average pure premium added to 1, so that customers not
subscribing to third-party liability policies are all included in the bar at 0.

Table 4.6 shows the probabilities that in the year considered, a customer
subscribes to products of one or two types, usually called “lines,” at the same time.
The diagonal elements represent the probabilities of subscribing to a product of
every single line, and all other elements represent the probabilities that a customer
subscribes both to a product of the type indicated by the row and to one of a type
indicated by the column in the same year, so that the matrix is symmetric.

The probability of subscribing to a third-party liability policy and a policy of
type 1 at the same time is clearly higher than in other groups. Policy type 4 also
shows a relatively high association with the policy of interest.
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Figure 4.29 Insurance customers: Plots of distribution of a few selected variables.

Some prediction models
To better understand the characteristics of third-party liability customers, we
formulate a number of regressionmodels by considering either the original average
pure premium or its logarithm.

We can organize the analysis into two phases, as we did for telecommunications
customer prediction (section 4.10.1): first fitting a model for the probability that
the premium is not 0, and then, conditionally on this event, fitting a model
for the amount of the premium when it assumes positive values. We leave this
implementation as an exercise (exercise 4.11), and prefer here to predict the
average pure premium directly, including customers with 0 amount paid in the
response variable.

A linear model to predict the average pure premium with all available covariates
gives R2 = 0.27. The same value is obtained by selecting the most important
30 variables in a stepwise procedure based on AIC. We also fit a linear model
with lasso. The LARS algorithm allows us to estimate the entire set of models.
We then select the one producing the smallest squared error on the evaluation set.
Figure 4.30 shows thewhole path of the coefficients for all lassomodels obtained by
changing the value of s in (3.11). Coefficients are plotted versus t = s/

∑p
j=1 |β̂j|.

A vertical line is drawn at t = 0.14, the value chosen according to the test set.
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Table 4.6. INSURANCE CUSTOMERS. CUSTOMERS SUBSCRIBE TO PRODUCTSOF ONEOR

TWO GROUPS AT THE SAME TIME: OBSERVED FREQUENCIES

Policy Third-Party Policy Policy Policy Policy Policy Policy Policy Policy Policy
Liability 1 2 3 4 5 6 7 9 10

Third-party
0.7330 0.1137 0.0130 0.0027 0.0515 0.0065 0.0160 0.0022 0.0002 0.0065

liability
1 0.1137 0.1867 0.0287 0.0012 0.0245 0.0045 0.0072 0.0017 0.0000 0.0027
2 0.0130 0.0287 0.0455 0.0005 0.0080 0.0020 0.0032 0.0002 0.0000 0.0015
3 0.0027 0.0012 0.0005 0.0165 0.0030 0.0010 0.0017 0.0000 0.0000 0.0002
4 0.0515 0.0245 0.0080 0.0030 0.1340 0.0130 0.0050 0.0007 0.0000 0.0027
5 0.0065 0.0045 0.0020 0.0010 0.0130 0.0165 0.0015 0.0000 0.0000 0.0005
6 0.0160 0.0072 0.0032 0.0017 0.0050 0.0015 0.0372 0.0002 0.0000 0.0002
7 0.0022 0.0017 0.0002 0.0000 0.0007 0.0000 0.0001 0.0047 0.0000 0.0000
9 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002
10 0.0065 0.0027 0.0015 0.0002 0.0027 0.0005 0.0002 0.0000 0.0002 0.0120
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Figure 4.30 Insurance customers: profiles of lasso coefficients as tuning parameter s is
varied. Standardized coefficients plotted versus t = s/

∑p
1 |β̂j|.

Lasso shrinks parameters and gives a model with only 9 variables (15 parameters).
The estimated coefficients obtained by lasso with R are listed in table 4.7.

We also fit some nonlinear models to the data. To choose a suitable neural
network for our problem, we divide the training set into two subsets of equal size
and fit a number of different networks on the first subset by modifying the number
of nodes in the hidden layer and the weight decay. Networks with 10 to 19 hidden
nodes and 10 values for weight decay between 0.001 and 0.1 are evaluated, and we
select the one with the smallest squared prediction error on the second subset of
the training set. The best model has 12 nodes and weight decay of 0.1.
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Table 4.7. INSURANCE CUSTOMERS: ESTIMATEOF

COEFFICIENTS FOR BEST LASSO NONZERO ESTIMATE

OF LINEARMODEL

Variable Level Coeff.

occupation.1
9 6.94

99 26.57

occupation.2

5 25.54
12 7.63
13 20.47

area

1082 73.15
1191 17.27
1542 94.19

number.claims.3 100.18
amount.claims.last 0.0041
prem.non-life.5 0.1098
prem.payed.life.1b 0.00007
number.life.2b 102.57

region
2 61.84
8 10.24

A regression tree is also fitted to data. We let the tree grow by using data on
the first subset of the training set and then prune it by using the second subset.
The top panel of figure 4.31 shows deviance versus number of nodes. The global
minimum is observed for size 2 and the pruned tree splits the pure premium once:
if there were no claims in the last three years, the predicted pure premium is
€306.00; otherwise, it is €497.50. However, this tree cannot describe the various
characteristics of customers, particularly if we are interested in connections with
other lines of products. Thus, we consider a second tree, the one corresponding
to the local minimum for size equal 11, plotted in the bottom panel of the same
figure 4.31.

Last, we fit a MARS model, a projection pursuit regression model, and an
additive model by selecting variables by a stepwise procedure based on AIC.

We then consider the logarithm of the average pure premium and fit different
models predicting this transformed variable. Linear models with different selec-
tion strategies, GAM, MARS, projection pursuit, neural network, and trees are
fitted to the data to predict the transformed response variable, choosing appropriate
tuning parameters.

The top part of figure 4.32 shows the pruned tree resulting from prediction of
the transformed variable with the same growing and pruning subsets as for the
original-scale tree.

Table 4.8 shows the prediction errors obtained on the validation set of some
of the models used (the better-fitting ones). For each, we present the squared
prediction error on original and logarithmic scales.
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Figure 4.31 Insurance customers. Top: deviance of regression tree with pure premium
on original scale; bottom: second-best regression tree fitted to data with average pure
premium on original scale.

Comparisons and discussion
Analysis of table 4.8 provides ingredients for comparing the various models and
allows for different choices according to marketing managers’ aims.

In the original scale, the best prediction is that obtained by lasso estimates of the
linear model, and GAM andMARS predictions give a squared error on the original
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Figure 4.33 Insurance customers. Measure of importance of each variable of random
forest for pure premium on same scale.
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Table 4.8. INSURANCE CUSTOMERS: PREDICTION ERRORS IN ORIGINAL AND LOGARITHMIC

SCALES FORMODELS FITTEDTO DATA

Model Optimization Squared Error Squared Error
Scale Original Scale Logarithmic Scale

Linear (all variables) original 1,924,095,198 7,918
Linear (lasso) original 74,270,206 7,967
Linear (stepwise) original 1,870,139,302 7,744
GAM (stepwise) original 73,171,214 7,622
Neural network original 94,077,740 9,002
Neural network logarithmic 192,971,718 4,483
Tree (2 leaves) original 92,697,508 9,503
Tree (9 leaves) original 94,077,740 7,795
Tree logarithmic 94,425,522 4,036
Projection pursuit original 85,829,668 7,454
Projection pursuit logarithmic 3,607,884,000,000 4,258
MARS original 74,288,572 6,732
MARS logarithmic 620,993,900,000,000 4,201

scale that is only slightly larger. These models, in addition to good predictions,
allow easier interpretation of the characteristics of various types of customers.

For example, from table 4.7 it is clear that customers paying large premiums for
third-party liability insurance live in certain regions (in particular region 2 and,
to a limited extent, region 8) and geographic areas (area 1542 shows premium
increases of about €94, area 1082 about €73, and area 1191 about €17, when
compared with other regions) and they work in specific sectors. In addition, there
are some characteristics more related to customer behavior: subscription to one or
more life insurance policies of type 2b and the total amount of the premium paid
for type 1b life insurance policies both increase the level of the pure premium for
third-party liability. Moreover, the amount of premiums paid for nonlife insurance
of type 5 increases the pure premium, and customers who made claims in the
past three years, particularly those who spent more in the last year, have larger
premiums.

The model that best predicts the squared prediction error on the logarithmic
scale is the tree. Looking at figure 4.32, we see that the regression tree for the
logarithm of the average pure premium mainly contains splits related to nonlife
products.

Summary
• We want a model to predict the average pure premium of customers

for private car third-party liability insurance, using information on the
number of policies and amount of premiums paid by customers for other
lines of business of the same insurance company, in addition to some
sociodemographic data.
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Table 4.9. INSURANCE CUSTOMERS: PREDICTION ERRORS IN ORIGINAL AND

LOGARITHMIC SCALES FOR SOMEMODELS DESCRIBED IN CHAPTER 5 FITTEDTO DATA

Model Optimization Squared Error Squared Error
Scale Original Scale Logarithmic Scale

SVM (radial kernel) original 68,795,451 5,790
Random forest original 76,643,407 6,820(40 variables for each split)
Random forest logarithm 88,553,872 3,599(40 variables for each split)

• There are two objectives: (1) to predict the average pure premium with
the greatest possible precision; (2) to predict low and medium levels of
premiums more carefully, for the moment neglecting precision for high
premiums.

• For the first target, our choice is a linearmodel fittedwith a lasso procedure,
which shows good prediction error on the original scale, is appropriate for
problems of type (1), and has an easily interpretable output in terms
of characteristics of customers profiled with respect to the average pure
premium.

• For the second objective, we choose a regression tree, which presents the
best prediction error on the logarithmic scale.

Back from the future
Some methods, which are modifications of classification methods discussed in
the next chapter, that is, support vector machines (SVM), bagging, boosting, and
random forests, are also fitted to this data, considering both original and logarithmic
scales. Table 4.9 shows the prediction errors obtained on the validation set of some
of these models (the better-fitting ones).

In the original scale, SVM shows better prediction than the lasso linear model,
but as we see in section 5.8.2, it does not allow for easy interpretation of results.

In logarithmic scale the random forest (see section 5.9.3) over-perform the
previously chosen tree. In this case, although easy interpretation of the tree is lost,
a useful plot can give some information about the importance of the variables.
Figure 4.33 shows an importance measure of each variable for random forests.
As discussed in section 5.9.3, this measure is the average over all the trees in the
forest of themeasures of importance of a variable for each single tree, introduced at
the end of section 4.8.3. This plot shows that when we consider logarithmic scale
errors (that is, when we want to limit the effect of errors for very large premiums)
sociodemographic characteristics such as age, occupation, and region of residence
are still relevant variables, and important variables regarding customer behavior are
more related to nonlife products: policies of types 1 and 4 are more important than
life products, which were more important in predicting the original scale.
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EXERCISES
4.1 Prove (4.3).

4.2 Prove (4.5).

4.3 Every nonparametric regression model involves a smoothing parameter. For
example, consider parameter h of local regression. Why is it not estimated by
a standard method such as maximum likelihood?

4.4 Given n points (x1, y1), . . . , (xn, yn), with all xi distinct and increasing, show
that the function that minimizes∫ xn

x1
(f ′′(t))2 dt

under the constraint that f (xi) = yi (i = 1, . . . , n) is a natural cubic spline
with nodes at points x1, . . . , xn. This function is called an interpolation spline.

4.5 Show that function (4.10) satisfies the following three conditions, which
characterize cubic splines

1. f is a cubic function in each subinterval [ξj, ξj+1), for j = 1, . . . ,K−
1;

2. f has two continuous derivatives;
3. f has a third derivative that is a step function with jumps at points

ξ1, . . . , ξK .

4.6 Prove (4.12).

4.7 Consider non-parametric model Yi = f (xi1, . . . , f (xip) + εi , where
E{εi} = 0, var(εi) = σ 2, for i = 1, . . . , n, and assume that all error terms
εi are independent of each other. Under the assumption of smoothness of f ,
consider linear smoother Ŷ = SY evaluated at the observed covariate points,
i.e., S is a n× n smoothing matrix and Y = (Y1, . . . , Yn)�. Prove that:

n∑
i=1

cov(Ŷi, Yi) = tr(S)σ 2

4.8 In the tree growth algorithm, show thatDj−D∗j > 0, apart from a degenerate
case (which one?).

4.9 Consider the step of the tree growth algorithm when examining a generic
variable xr . How can the value of the point of subdivision of its range be
determined efficiently?

4.10 In the case study on prediction of third-party liability insurance premiums
in section 4.10.2, we directly predicted the average pure premium per
customer. A different strategy would be to predict, separately with two
differentmodels, the number of policies per customer and the total amount of
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premiums paid by each customer, and then obtain the ratio between the two
predictions. Follow this strategy and compare results with those presented
in section 4.10.2.

4.11 Analyze the insurance data in two steps: first fit a model for the probability
that the premium is not 0, and then, conditionally on this, fit a model for
the amount of the premium when it assumes positive values. Compare the
results with those presented in section 4.10.2 and those obtained in this
exercise.



5

Methods of Classification

5.1 PREDICTION OF CATEGORICAL VARIABLES

One of the most frequent practical problems in statistics is allocating a unit to
a category or a class among K possible alternatives, using observations about
its variables. The examples that follow illustrate various situations of this type,
focusing on a business context, an area where this kind of problem arises.

• A bank must decide on the degree of solvency of a customer who is
asking for a loan. The problem is to assign the customer to the category
of “solvent” or “insolvent” borrowers, which are two mutually exclusive
and exhaustive categories—presuming, that is, the bank conventionally
allocates its customers to one of the two categories. To make such a
classification, various pieces of information, both personal and historical,
about the customer are available to the bank. In the credit sector, this type
of problem is associated with the terms credit scoring and credit rating.

• An insurance company must evaluate whether a motorist who takes out a
third-party liability policy will have 0, 1, 2, or more accidents in the next
year. The available information here is customer’s personal information,
vehicle characteristics, and data on insurance history. In the business
sector, this type of problem is associated (indirectly) with pricing.

• An airline wants to predict which of its customers, among those in
possession of a loyalty card, will make an intercontinental flight to a holiday
destination within the next 12 months. To avoid contacting people who
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are not interested, the airline sends a catalog of promotional deals to those
customers with a high inclination to do so. In this case, customers are
divided into two groups: those who will and those who will not make
holiday flights, and the available information for predictions is recorded
in the airline loyalty card database. In the business sector, this type of
problem is associated with terms like up-sell and cross-sell.

• A car company wants to identify customers who, within the next six
months, intend to purchase a new car of the type “luxury car,” so that
a presentation brochure of the latest model can be sent to them. It
therefore needs to turn to a specialized company for lists of potential
customers. These are created from extremely large collections of data
from diverse sources, which all contribute toward the formation of
individual economic behavior profiles . In the business sector, this type
of problem is associated with the management of prospects.

The number K and the nature of the classes in each problem are well defined,
in the sense that the allocation criterion must be able to decide the membership of
each unit to one and only one class in a nonambiguous way. In all the previous
examples, we had K = 2 (apart from the second example, where K = 3). The
predominance of examples with K = 2 corresponds to a predominance in real
situations.

The objective, therefore, is to construct a rule to arrange available observations
on the variables relative to an individual and allocate that person to one of the
classes. The following is based on the hypothesis that we use a certain set of n cases
for which membership class is known, in addition to observed variables. In this
case, we use this information to construct the classification rule.

The problem is similar to that considered in chapter 4, with the difference that
response variable y is categorical with K levels, which represent membership class.
We indicate by y1, . . . , yn the membership classes of elements in the sample, and
by nk the number of units belonging to the kth class, for k = 0, . . . ,K − 1. We
denote by Y the parent random variable from which the yi are sampled.

Therefore, apart from methods specifically developed in this context, many
of the techniques presented here go back to the contents of chapter 4.
However, there are some necessary adaptations, one of which concerns the
usual discrepancy measure (2.10) between observed values and estimates, which
is not adequate here. Another aspect is that we have K (K − 1) possible forms
of misclassification error, and the adequacy measures of various methods are
constructed in this context.

5.2 AN INTRODUCTION BASED ON A MARKETING PROBLEM

5.2.1 Prediction via Logistic Regression
Wehave already seen one of themethods used to overcome classification problems
when K = 2, that is, logistic regression (section 2.4). This model predicts a
categorical response variable with two levels, usually indicated by 0 and 1 so that
an appropriate transformation of the probability of result 1 is expressed as a linear
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combination of the covariates. We can use this tool to face a first example of
classification and examine further aspects of the problem in greater detail.

Consider data on the preferences of consumers of two brands of fruit juice
in some American supermarkets, considering n = 1070 purchases that included
fruit juice. The source and other information on the same data are reported in
section B.6. To predict the customer choice between the two brands, CH and
MM, other available variables are used: the prices of the two brands, priceCH
and price MM; the discounts applied, discountCH and discountMM; a loyalty
indicator for MM, loyaltyMM; an identifier of the week, and the store where
the purchase was made. Indicator loyaltyMM reflects the fraction of preference
given in previous purchases to brand MM; the similar indicator loyaltyCH is
also available, so that their sum is constantly 1, and therefore only one of the two
needs to be considered.

According to the procedure already introduced in section 3.5.1, we select a
random portion of 75% of the total set, to be used for fitting and other opera-
tions. The remaining 25% is then used to evaluate the results.

Figure 5.1 shows the behavior of the variables, taken individually. The first
six panels are box-plots of the continuous variables, stratified with respect to the
response variable. The last panel shows a bar plot of the percentage of cases in
whichMMwas preferred, stratified by store.

As a first classification tool of customers with respect to their purchase
preferences, we fit a logistic regression model for probability π of choosing MM,
using the covariates indicated above. The model takes the form

logit(π) = β0 + β1 week+ β2 priceCH+ β3 priceMM

+ β4 discountCH+ β5 discountMM (5.1)

+ β6 loyaltyMM+ β�7 Istore

where the notation Ifactor represents a set of indicator variables equal in number
to the levels of the qualitative variable factor, decreased by 1; in this case, the
corresponding parameter βj is a vector with a matching dimension. Here we adopt
the so-called corner-parameterization for the qualitative variable, for which the first
level is taken as reference and the parameters for other levels represent deviation
from it. The parameter estimates and related quantities are listed in table 5.1.

We remove the term week from (5.1) in light of the p-values of table 5.1.
After refitting the model, the parameter estimates and other relevant quantities
are as listed in table 5.2. The appropriateness of the reduction is confirmed by
the likelihood ratio test D2 − D1, which is virtually 0 on the scale of reference
distribution χ2

1 , bearing in mind (2.33).

5.2.2 Misclassification Tables and AdequacyMeasures
We now apply the fitted model to the portion of data not yet used to classify the
remaining units and examine the prediction ability of the identified model. To
allocate a new unit, we evaluate the probability of choosing MM according to the
chosen model and assign the customer to one category or the other, according to
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Figure 5.1 Fruit juice data: Preliminary graphical representations.
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Table 5.1. FRUIT JUICE DATA: SUMMARYOF FITTED LOGISTIC

REGRESSIONMODEL (5.1)

Estimate SE t-value p-value

(intercept) −3.816 2.059 −1.85 0.064
week −0.002 0.013 −0.13 0.895
priceCH 4.435 2.114 2.10 0.036
priceMM −3.706 1.006 −3.68 0.000
discountCH −3.648 1.140 −3.20 0.001
discountMM 2.095 0.500 4.18 0.000
loyaltyMM 5.864 0.448 13.09 0.000
store1 0.551 0.315 1.75 0.080
store2 0.656 0.285 2.30 0.021
store3 0.574 0.368 1.56 0.119
store4 0.039 0.419 0.09 0.927

D = 631.63 with 791 d.f.

Table 5.2. FRUIT JUICE DATA: SUMMARYOF FITTED LOGISTIC

REGRESSIONMODELWITHOUT TERM week

Estimate SE t-value p-value

(intercept) 2.056 2.015 1.02 0.308
priceCH 4.241 1.520 2.79 0.005
priceMM −3.744 0.963 −3.89 0.000
discountCH −3.695 1.084 −3.41 0.001
discountMM 2.082 0.491 4.24 0.000
loyaltyMM 5.868 0.447 13.12 0.000
store1 0.543 0.309 1.76 0.079
store2 0.651 0.283 2.30 0.021
store3 0.593 0.338 1.75 0.079
store4 0.055 0.401 0.14 0.892

D = 631.64 with 792 d.f.

whether this probability is greater or less than 1
2 . We thus construct a cross-table

that counts the number of correctly or incorrectly predicted cases, for each of the
two levels (table 5.3). This is called amisclassification table or a confusion matrix.

Because we want to compare various classification procedures, we look for
a summarizing index of the quality of the result, and therefore introduce some
adequacy measures of prediction. The first of these is simply constructed from
the fraction of cases correctly classified or, conversely, those wrongly classified.
In this case, we obtain

(150+ 76)/268 = 0.843 and (19+ 23)/268 = 0.157

Because these two quantities provide equivalent information, one of them suffices
and, by convention, we call this error frequency misclassification error.
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Table 5.3. FRUIT JUICE DATA: MISCLASSIFICATION

TABLEOFMODELWITHOUT TERM week IN TEST SET

Actual response
Prediction CH MM Total

CH 150 23 173
MM 19 76 95

Total 169 99 268

Table 5.4. CONFUSIONMATRIX AND TABLEOF PROBABILITY ERRORS

Actual response
Prediction − + Total

− n00 n01 n0·
+ n10 n11 n1·

Total n·0 n·1 n

Actual response
Prediction − +

− 1− α β

+ α 1− β

Total 1 1

However, this method of proceeding is somewhat simplistic: there are various
reasons to be aware of the two separate types of error. If the “positive” event
is the purchase of MM, MM customers classified as CH purchasers are called
false negatives, taking a term originally used in medical context. In reverse, CH
customers classified as MM purchasers are called false positives. The situation is
shown in table 5.4, where the terms nij on the left correspond to the absolute
frequencies of the four possible results; therefore, n01 is the count of the false
negatives and n10 that of false positives.

There is a similarity between this set-up and that of hypothesis testing in the
sense that false positives are analoguous to type I error and false negatives to
type II error, as listed in the right side of table 5.4. According to the terminology of
hypothesis testing,

α = P
{
false positive

}
, β = P

{
false negative

}
.

These two probabilities are unknown and not fixed by us, but they can be
estimated by

α̂ = n10/n·0, β̂ = n01/n·1.

A first remark in this regard is that the cost of a classification error—that is,
damage caused by an error—is not the same in the two situations. Depending
on the problem, we can give more weight to one type of error or the other. For
example, if we are interested in identifying customers who chooseMM, we want to
minimize the error in identifying them.

We therefore consider the error fractions for each observed subpopulation, thus
distinguishing between false positives and false negatives. Recalling the previous
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comments, we use the selected model in a slightly different way: the logistic model
itself provides a set of probabilities, and 1

2 need not be used as the threshold value
to allocate the units. We can grade the weight assigned to each category by moving
the threshold value.

5.2.3 ROCCurve
Although from some points of view it is convenient to use very concise and
comprehensive indicators of the performance of a classification procedure, such as
the simple fractions just considered, it is useful to evaluate the predictive ability of
various models more analytically.

One tool to evaluate the adequacy of a classification criterion is provided by the
ROC curve (receiver operating characteristic). This was introduced during World
War II in the context of communication theory, specifically radar signal detection,
and was then extensively used elsewere, especially in quality control and medical
statistics.

We return to table 5.3 to quantify the proportion of false positives with respect
to the total of positive individuals, here 19/169, and the proportion of false
negatives, here 23/99. However, these values are linked by the threshold value,
which is 1

2 for this table. We now move this threshold between 0 and 1, and
calculate the corresponding proportion of false positives and negatives. We call
these proportions:

• specificity for the proportion of predicted negatives with respect to the
number of actual negatives, that is, 1− α.

• sensitivity for the proportion of predicted positives with respect to the
number of actual positives, that is, 1− β .

These quantities are naturally estimated by

specificity ≈ n00
n00 + n10

, sensitivity ≈ n11
n01 + n11

.

TheROC curve ismade up of the coordinate points (1− specificity, sensitivity)
from these fractions for each of the possible threshold values.

For the fruit juice data, the results, are shown in the left panel of figure 5.2; the
right panel shows a smooth version of the same points. This smoothing was done
by regrouping the data into portions with one-tenth of the points each.

To interpret this curve, we bear in mind that the bisector of the origin
corresponds to random classification of subjects. We are searching for a classi-
fication rule in which the ROC curve is as high as possible above the diagonal.

5.2.4 Lift Curve
Another frequently used tool to evaluate the performance of a classification
procedure more analytically is the lift function, which provides a measure of the
improvement gained by the model with respect to random classification, with
uniform probability equal to the observed fraction in the test set.
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Figure 5.2 Fruit juice data: ROC curve for logistic model. Vertical dotted line in left panel:
threshold 1

2 in allocation rule.

One way of introducing this tool refers to the previous question on
the threshold at which to discriminate customers. Let us imagine that company
CH wants to acquire new customers, and a prediction error of MM customers is
very worrying; we want to highlight the predictive ability of this set. We return to
the response provided by the model in terms of the values of estimated probability.
These fall in the interval (0, 1), and we simplify it by dichotomizing it with respect
to a threshold. One way of scaling such a threshold is to order units according
to the probability assigned by the model and then verify whether the parts of the
units with a greater predicted probability are those that do correspond to greater
frequency of events—in this example, by choosingMM.

Figure 5.3 shows the results of such an operation, with two variants. In both
panels, the left-most points of the line correspond to sets of customers for whom
the estimated probability is higher, and the y-axis represents the proportion of
observed purchasers of MMof those customers, divided by the average proportion
calculated on all the data. The left panel shows the calculation made for every
possible fraction of subjects, ordered according to estimated probabilities; the
right panel shows a smooth form of the same curve, in which the calculated
points refer to fractions of 10%, 20%, …, 100% of the data. The smooth variant is
more commonly used, both to obtain a more regular trend and for computational
simplicity.

Both panels of figure 5.3 also show a vertical dotted line, which corresponds
to the classification of subjects with the probability of the indicated value as
a threshold. For every fixed value of this threshold, a misclassification table is
identified, of the type presented in table 5.4, from which, we can extract the y-axis
of the lift curve for event+, represented by

n11/n1·
n·1/n

In table 5.3 constructedwith threshold 1
2 , the y-axis of the lift curve for “purchase

of MM” is (76/95)/(99/268) = 2.17, which is the observed value on figure 5.3
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Figure 5.3 Fruit juice data. Lift curve for logistic model. Left: curve calculated for every
fraction of subjects; right: curve calculated for grouped data.

where the vertical dotted line crosses the lift curve. In the right panel, the value
of the y-axis is subject to approximation because we constructed the lift curve by
reorganizing the data into 10 groups.

To better appreciate the value of the information in this type of graph, and also
the reason for the term lift, we refer to an example of a different type. Imagine
that a company wants to promote a product to already known customers who
are contacted individually—for example, by mail. For cost reasons, the company
decides to send a limited number N of letters, and therefore the problem arises of
which customers to send them to.

The trivial option, without taking advantage of any information about
customers, is to send letters to N customers chosen at random. Instead, let
us use a logistic regression model for the probability of responding positively
to the promotion, constructed according to available data, following analogous
promotional actions in the past. Clearly, if we take advantage of the indications of
the model, we send letters to those N subjects who have a higher probability of
responding positively.

The lift curve of this model allows us to quantify the expected improvement of
the logistic model with respect to random choice. At x, that is, the proportion
betweenN and the size of the customer base, point y of the lift curve represents the
ratio between the probability of success in reaching the customers selected by the
model and a randomly chosen set.

A further observation regarding the asymmetry of the behavior of lift with
respect to the choice of “favorable” or “unfavorable” events: different graphs are
obtained if we invert the choice of the event in question.

5.3 EXTENSION TO SEVERAL CATEGORIES

5.3.1 Multivariate Logit andMultinomial Regression
The case K > 2 may be treated by extending the previous method as follows. If
we call the K classes 0, 1, . . . ,K − 1, and denote by πk(x) the probability that
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Y = k by the fixed value of x, with
∑K−1

k=0 πk(x) = 1, we assume that

log
πk(x)
π0(x)

= ηk(x) (5.2)

holds, where ηk(x) is a linear combination of the covariates, of type β0 + x�β ,
where the components of vector β vary with k, for k = 1, . . . ,K − 1. A simple
algebraic manipulation leads us to write

1
π0(x)

K−1∑
k=1

πk(x) =
K−1∑
k=1

eηk(x)

and, therefore, adding 1 to both sides,

πk(x) = eηk(x)

1+∑
r e

ηr(x)
, for k = 1, . . . ,K − 1,

π0(x) = 1

1+∑
r e

ηr(x)
.

(5.3)

These relations extend (2.41), and the derivedmodel is called amultivariate logistic
regression model. In principle, each of functions ηk(x) may use different covariates,
but conceptually the substance does not change.

The p (K − 1) parameters of this model may be estimated by fitting K − 1
logistic regression models. Each of these is applied to compare classes 0 and k,
conditional on the fact that the subject belongs to one of these two classes. Because

log
P{Y = k|Y = 0 ∪ Y = k}
P{Y = 0|Y = 0 ∪ Y = k} = log

πk(x)/(π0(x)+ πk(x))
π0(x)/(π0(x)+ πk(x))

= ηk(x)

it is immediately verified that the parameters estimated in this way are those of
interest for the multivariate model.

A different estimation strategy is based on the assumption that π0(x),
π1(x), . . . , πK−1(x) in (5.3) are the parameters of multinomial distribution,
which specifies the probability of each way of allocating n observations in
K categories. The estimates are obtained by numerically maximizing the
log-likelihood function, which is proportional to

K−1∑
k=0

yk log πk(x), (5.4)

where y0, . . . , yK−1 represent the number of observed events for each category.
In this case, the model is called multinomial (or polytomous) logit.
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Table 5.5. BANK DATA: SUMMARYOFMULTINOMIAL LOGIT MODEL, WITH

LINEAR (TOP) AND QUADRATIC (BOTTOM) EFFECTSOF AGE. STANDARD
ERROR VALUES IN BRACKETS

Model with linear age effect

Logit (Intercept) Age Car possession

log(π1/π0) −0.973 (0.744) 0.0358 (0.0153) −0.916 (0.483)
log(π2/π0) 0.373 (0.617) 0.0099 (0.0124) 0.047 (0.439)
log(π3/π0) −0.737 (0.597) 0.0510 (0.0122) −0.795 (0.406)
D = 1164.493 with 9 d.f.

Model with quadratic age effect

Logit (Intercept) Age Age2 Car possession

log(π1/π0) 3.07 (0.0009) −0.171 (0.0198) 0.0024 (0.0004) −0.8939 (0.043)
log(π2/π0) 2.97 (0.0031) −0.125 (0.0170) 0.0016 (0.0003) 0.0523 (0.110)
log(π3/π0) 3.98 (0.0030) −0.177 (0.0169) 0.0027 (0.0003) −0.7620 (0.168)
D = 1156.30 with 12 d.f.

Note that in (5.2) the choice of 0 as reference class, called baseline category, is
arbitrary but irrelevant in that we could use any other class for this aim, and the
probabilities resulting from (5.3) would remain unchanged.

For a numerical illustration, we analyze the Brazilian bank data (described
in section B.3 and already used in section 2.3.3), examining the satisfaction of
the bank’s customers as a categorical variable with four categories, modeled as
a function of customer age and an indicator of car ownership. Table 5.5 lists
the estimate operations of a multinomial logit model, with satisfaction level 4 as
baseline category.

For a given age, the estimated odds that customers not possessing a car have a
satisfaction level of 1 instead of 4 are exp(−0.92) = 0.40 times the estimated odds
for customers possessing a car; the Wald 90% confidence interval is exp(−0.92±
1.64 × 0.483) = (0.18, 0.88). For example, the age effect indicates that the
estimated odds that satisfaction level is 1 instead of 4 are relatively higher for
older customers. The left part of figure 5.4 plots the estimated probabilities that
satisfaction level is 1, 2, 3, or 4 as a function of age, for customers owning a car.

We also consider a model in which a quadratic component for age is added.
The lower part of table 5.5 lists these estimates and the right part of figure 5.4
plots the estimated probabilities for the four satisfaction levels as a function
of age. Figure 5.5 plots the distributions of the predicted probabilities that the
response variable falls in each category with the model that includes the quadratic
component of age.

5.3.2 Ordinal Categorical Variables and Cumulative Logit Models
Sometimes, as in the case of customer satisfaction in the Brazilian bank example,
the categorical response variable is ordinal but the multinomial logit model does
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not take this information into account. Models for ordinal responses may be
introduced for simpler interpretation and potentially greater precision.

Considering an ordered response variable, for each category we define as
cumulative probabilities the probabilities that response variable Y belongs to a
class not higher than the nominated category

P{Y ≤ k} = π0 + . . .+ πk k = 0, . . . ,K − 1.

Amodel for cumulative logits

log
P{Y ≤ k}

1− P{Y ≤ k} = log
π0 + . . .+ πk

πk+1 + . . .+ πK−1
,

automatically incorporates category order. The simplest model of this type is the
proportional odds model, in which an identical effect of the explanatory variable is
assumed for all K − 1 cumulative probabilities

log
P{Y ≤ k}

1− P{Y ≤ k} = β0k − β1x1 − . . .− βpxp = η(x, k),

k = 1, . . . ,K − 1, (5.5)

where η(x, k) = β0k − β1x1 − . . . − βpxp. The choice of the negative sign
preceding βj is conventional and is adopted for easier interpretation of the
parameters, as will be made clear shortly. Here, each cumulative logit has its own
interceptβ0k , but effectsβj of the jth covariate, for j = 1, . . . , p, are the same for all
categories.

Model (5.5) satisfies the property

logit(P
{
Y ≤ k|x′})− logit(P

{
Y ≤ k|x′′})

= log
P
{
Y ≤ k|x′} /(1− P

{
Y ≤ k|x′})

P
{
Y ≤ k|x′′} /(1− P

{
Y ≤ k|x′′})

= β1(x′′1 − x′1)+ . . .+ βp(x′′p − x′p),

where x′ = (x′1, . . . , x′p) and x′′ = (x′′1 , . . . , x′′p ) are two points of covariate
space and, in this case, a notation of the type P

{
Y ≤ k|x′}) makes explicit the

dependence on x that was implicit previously. This means that the odds of making
response Y ≤ k when the covariates assume value x′ are exp{β1(x′′1 − x′1)+ . . .+
βp(x′′p − x′p)} times the odds at x = x′′. The log cumulative odds ratio is therefore
proportional to the distance between the two points x′ and x′′. This is why the
model is called proportional odds model.

The equivalent model expression for cumulative probabilities is

P{Y ≤ k|x} = exp{η(x, k)}
1+ exp{η(x, k)} , k = 1, . . . ,K − 1
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and the single category probabilities are

P{Y = k|x} = exp{η(x, k)}
1+ exp{η(x, k)} −

exp{η(x, k − 1)}
1+ exp{η(x, k − 1)} .

Figure 5.6 shows an example of the trend of P{Y ≤ k} for a proportional odds
model versus one covariate, all other explanatory variables being given.

By hypothesizing multinomial distribution for independent observations,
estimates are obtained by maximizing the log-likelihood

log L(β01, . . . , β0K−1, β1, . . . , βp)

=
n∑

i=1

K−1∑
k=1

yik log
(

exp{η(xi, k)}
1+ exp{η(xi, k)} −

exp{η(xi, k − 1)}
1+ exp{η(xi, k − 1)}

)
.

Note that models based on cumulative probabilities can use a link function
other than a logit. Models belonging to this broad family are usually called
“cumulative link models.” They are characterized by an interesting interpretation,
which considers the response categorical variable as a discretization of an
underlying continuous variable. If Y ∗ denotes such a latent variable, we consider
the model for Y ∗ as a function of x

Y ∗ = β1x1 + . . .+ βpxp + ε, (5.6)

where we assume that ε has a distribution function G(·), with E{ε} = 0. If
−∞ = β00 < β01 < · · · < β0K−1 < β0K = ∞ are cut-points or thresholds on
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a continuous scale, we assume that

Y = k if β0k < Y ∗ ≤ β0k+1, k = 0, . . . ,K − 1.

This means that

P{Y ≤ k|x} = P
{
Y ∗ ≤ β0k|x

} = G(β0k − β1x1 − . . .− βpxp)

and, equivalently,

G−1{P{Y ≤ k|x}} = β0k − β1x1 − . . .− βpxp.

It is now clear why we adopted the negative sign for the βj in (5.5). Negative
signs in (5.5) correspond to positive signs in (5.6), so that the parameters have the
usual directional interpretation—that is, if βj is positive, then Y is more likely to
assume high values as xj increases.

If G(ε) = eε/(1 + eε) = �(ε)—that is, if G is the standard logistic
distribution—G−1 is the logit link function and the model is a proportional odds
model (5.5). Other latent distributions are implied by different link functions: for
example, if ε is Gaussian, G−1 is the probit link function, the inverse of the normal
distribution function.

To illustrate the proportional odds model, we analyze the Brazilian bank data.
We consider the simple model with only age and car possession as predictors.
Table 5.6 lists the estimates for the proportional odds model. For each parameter,
the 95% level Wald confidence interval is adopted. Analyzing these confidence
intervals, we observe that the interval for car possession includes 0, so we are led
to test the hypothesis that this parameter is null. The likelihood ratio test statistic
is 2(log L1 − log L0), where L0 is the maximized log-likelihood function under the
null hypothesis constraint that βcar = 0, and L1 is the maximized log-likelihood
functionwithout that constraint. The observed test statistic, 1185.64− 1182.31 =
3.33 on 1 degree of freedom, leads to an observed significance level of 0.068,
suggesting that we could eliminate the variable car possession from the model.

The lower part of table 5.6 lists the proportional odds model with only age as
a covariate. The top part of figure 5.7 plots the estimated probabilities for the 4
satisfaction levels as functions of age, and the bottom part shows the distributions
of predicted probabilities for each category.

Bibliographical notes
Fahrmeir & Tutz (2001) deal with GLM in the multidimensional case, including
extension of logistic regression to themultivariate case, to treat categorical variables
with more than two levels.

Multinomial classification models and cumulative odds models are also
discussed in many works on categorical data analysis, for example, Agresti (2002)
and, specifically for ordinal categorical data, Agresti (2010). For a discussion of
GLM, including a presentation of proportional odds models, see McCullagh &
Nelder (1989).
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Table 5.6. BANK DATA: PROPORTIONAL ODDS VERSIONOF CUMULATIVE LOGIT MODEL

WITH LINEAR EFFECTOF AGE. Intercept 1|2, Intercept 2|3,
Intercept 3|4: PARAMETERS β01, β02, β03

Wald 95%
Estimate SE t-value conf. limits

Model with age and
car possession
(Intercept 1|2) −0.5803 0.3569 −1.6256 −1.2798 0.1193
(Intercept 2|3) 0.1778 0.3499 0.5081 −0.5080 0.8636
(Intercept 3|4) 1.5289 0.3560 4.2951 0.8312 2.2265
age 0.0386 0.0068 5.6450 0.0252 0.0519
car possession −0.4080 0.2259 −1.8060 −0.8508 0.0348

D = 1182.31 with 5 d.f.

Model with age only

(Intercept 1|2) −0.2901 0.3187 −0.9105 −0.9147 0.3344
(Intercept 2|3) 0.4678 0.3110 1.5041 −0.1418 1.0774
(Intercept 3|4) 1.8137 0.3198 5.6719 1.1870 2.4405
age 0.0374 0.0068 5.5240 0.0242 0.0573

D = 1185.64 with 4 d.f.

5.4 CLASSIFICATION VIA LINEAR REGRESSION

We tackled our first problem of classification with a fairly simple and familiar
method: logistic regression. There are more sophisticated methods, but we now
move on to another, which is even simpler and more familiar: linear regression.
After all, simple methods often give very good results.

5.4.1 Case with TwoCategories
We start by considering the case with K = 2 classes, 0 and 1. We introduce a
linear regression model in which response variable y is formed exactly of labels
0 and 1 of the two classes, and value ŷ = 1

2 is the discriminatory threshold for
predicting the two categories.

To illustrate themethod, consider the artificial data of the two parts of figure 5.8.
Here, we have two continuous covariates z1 and z2, and membership of the points
to the two groups is distinguished by the symbol used. There are 120 points in one
category and 80 in the other.

The simplest form of linear regression we can consider is

y = β0 + β1 z1 + β2 z2 + ε. (5.7)

It is important to note that the nature of ε as implied here is truly original,
in the sense that it must be a random variable, so that its value added to the
deterministic part gives 0 or 1. However, the really crucial assumption for the
least squares criterion to provide reasonable results is that E{ε} = 0, but in fact
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Figure 5.7 Bank data: Proportional odds version of cumulative logit model. Top:
estimated probabilities of satisfaction levels with linear effect of age; bottom: distributions
of predicted probabilities for each satisfaction level.
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Figure 5.8 Simulated data with two groups. Left: classification with simple regression;
right: classification with quadratic regression.

this requirement is automatically satisfied when the model includes an intercept,
because any nonzero value can be included in β0.

After least squares estimation, theR
2 plane is divided into two parts by the line

ŷ = β̂0 + β̂1 z1 + β̂2 z2 = 1
2 (5.8)

where self-explanatory notation is used. This is the line plotted in the left part of
figure 5.8.

Elaborating on this formulation, we can extend the process by inserting
nonlinear functions of z1 and z2 into the linear predictor. The simplest choice
is that of polynomial functions—for example, the quadratic form

β0 + β1 z1 + β2 z2 + β3 z21 + β4 z1 z2 + β5 z22.

After estimation of the parameters, equating the resulting function to 1
2 leads to

subdivision ofR2, indicated by the separation curve in the right part of figure 5.8.
We now apply this procedure to the fruit juice data, using the variables already

shown in figure 5.1. Obviously, with many variables in play, it is not possible to
produce a plot like that of figure 5.8. The misclassification table in the test sample
is identical to that in table 5.3, and so are the error percentages. The lift and
ROC curves are practically indistinguishable from those of the logistic model and
are therefore not shown. However, figure 5.9 shows the scatterplot of logit(π̂)
of the fitted logistic model, with respect to the predicted values according to the
linear model. This reveals astonishing agreement between the two classification
rules, at least for threshold value 1

2 , which corresponds to 0 on the logit scale.
The essential equivalence of the two methods is quite common, although not an
absolute rule.
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Figure 5.9 Fruit juice data: Scatterplot of logit(π̂) predicted by fitted logistic model and
values predicted by linear model.

5.4.2 Case with Several Categories
The case of K > 2 can be tackled with an extension of the previous process
combined with the multivariate linear model described in section 2.1.3. We
construct the n × K dimension matrix Y made by the indicator variables of the
levels of y. The columns of Y are linearly dependent, in the sense that the sums of
each row are identically equal to 1, but in this case it is convenient not to eliminate
a column. We can therefore arrange multivariate multiple linear regression of the
type (2.20),

Y = X B+ E,

whereX represents designmatrix n× p and B the p× K of the parameters. For the
columns of error matrix E, the comments made for ε in (5.7) hold.

Once matrix B has been estimated by (2.21), we can allocate a new point x0
(x0 ∈ R

p) to one of the classes, calculating

ŷ0 = B̂�x0

and assigning x0 to the class for which component ŷ0 is greater (ŷ0 ∈ R
K).

For numerical illustration, we can refer to figure 5.10, showing three groups of
simulated data, of which two coincide with those in figure 5.8 and the new set has
100 points. The two panels of figure 5.10 correspond to those of figure 5.8 in the
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Figure 5.10 Simulated data with three groups. Left: classification with linear regression;
right: classification with quadratic regression.

sense that a regression plan is used for the former and a second-degree polynomial
for the latter.

5.4.3 Discussion
Using linear models for classification purposes is somewhat unnatural. The
domain of y is {0, 1}, which does not fit the logical set-up of least squares because
a linear regression function does not remain constrained within this set. One
consequence of this was alreadymentionedwhen the nature of error term ε of (5.7)
was discussed. In turn, this nature causes difficulty in using inferential methods:
the usual hypothesis of homoscedasticity is not guaranteed in this case. Therefore,
the usual standard errors and other inferential procedures are not fully sustained
by a fixed theory, although some numerical tests give comforting indications in
the sense that approximate standard errors are essentially valid.

It is appropriate here to remark on the interpretation of the model parameters.
Because labels 0 and 1 are conventional, parameters vary if we choose other
labels. As for the nonconstant terms of the linear predictor, the estimate of
the parameter and the corresponding standard error vary in proportion, so the
overall interpretation is not modified. However, the intercept has a purely arbitrary
value: it changes simply if other values are used for the classes, for example, −1
and 1, the associated standard errors change appreciably, and so do the observed
significance levels of the parameters. However, the constant term in the linear
model is needed to guarantee that E{ε} = 0 for every label choice, and it must
therefore be maintained.

A particular problem of this approach comes from the possible “masking” of
a class, in the sense that we can construct a classification rule for which a new
individual will never be allocated to a certain class: this class is masked by the
others. For a more detailed illustration of the problem, see Hastie et al. (2009,
p. 105). The remedy is to consider polynomial expressions of the explanatory
variables in the linear predictor up to orderK − 1, which involvesO(pK−1) terms.
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To conclude, we list the advantages and disadvantages of this approach.

Advantages
• Familiarity of the method: linear regression is one of the most widespread

and familiar statistical tools.
• Computational simplicity: the computational side is noniterative, with

minimal computational complexity. The recursive updating formulas of
algorithm 2.2 can be used, thus allowing real-time applications.

• Effectiveness: in spite of its simplicity, the method produces satisfactory
results, competitive with more sophisticated ones.

Disadvantages
• Improper use of the linear model: the domain of y is in no way similar to

the set of values of a linear function.
• Masking problems: if we are not careful, we risk masking a class.
• Difficulties with inferential aspects: there is no completely satisfactory

theoretical basis to support inferential processes.

Apart from these aspects, there are the standard considerations about using a
parametric method, in both positive and negative senses.

5.5 DISCRIMINANT ANALYSIS

5.5.1 General Remarks
Linear regression and logistic regression are not really tools specifically designed
for classification. “Proper” treatment of the problem follows the procedure shown
next, in which we refer to a p-dimensional random variable X , assumed for the
moment to be continuous, and a random categorical variable Y , which represents
the class to which a subject belongs.

The total population is made up of K subpopulations (classes), having
probability density functions p0(x), . . . , pK−1(x) for the conditional distribution
ofX , andweightsπ0, . . . , πK−1 with respect to the total population (

∑
k πk = 1).

Therefore, marginal density in the total population is

p(x) =
K−1∑
k=0

πk pk(x), (5.9)

For the moment, we argue as if the various ingredients of p(x) were known.
A priori, the probability that a still unclassified subject belongs to the kth
subpopulation is given by πk . For this subject, if the observed value of X is x0,
then by Bayes theorem the a posteriori probability that this subject belongs to
group k is given by

P{Y = k|X = x0} = πkpk(x0)
p(x0)
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or, equivalently, comparison of probability between class k and classm takes place
according to

log
P{Y = k|X = x0}
P{Y = m|X = x0} = log

πk

πm
+ log

pk(x0)
pm(x0)

.

We therefore compare the various classes through the discriminant function

dk(x0) = log πk + log pk(x0)

linked to the posterior probability of the classes. The value of k that maximizes the
discriminant function selects the group to which we assign the new subject.

This constitutes the framework of discriminant analysis. However, to make
the process operative, we must know and therefore estimate from the data the
ingredients of (5.9). Regarding πk , it is natural to estimate it as π̂k = nk/n, unless
we have further information.However, there are various approacheswe can take for
pk(x): parametric or nonparametric; the former includes various options relating to
the family of density functions to be considered, and the latter various alternatives
among estimation methods.

From now on, we develop the more classical procedure, that of Fisher (1936),
which are placed within the parametric environment. We do not deal with the
nonparametric approach, as it has not yet found widespread application, both
because it does not lend itself easily to combining quantitative and qualitative
variables and because it falls quite rapidly into the curse of dimensionality, and
therefore is not suitable for dealing with the problems that interest us here.

5.5.2 Linear Discriminant Analysis
For discriminant analysis, the simplest parametric hypothesis is that in which
each density pk(x) is multivariate normal with parameters dependent on k, say,
Np(μk, �k), which results in

pk(x) = 1
(2π)p/2 det(�k)1/2

exp
{
− 1

2 (x − μk)��−1k (x − μk)
}

(5.10)

for k = 0, . . . ,K − 1. For a brief recap of multivariate normal distribution, see
appendix A.2.3.

In the simplified case, in which all the variance matrices are equal to the same�,
the discriminant function takes the form

dk(x) = log πk − 1
2μ
�
k �

−1μk + x��−1μk

which is a linear function of x, leading to its name, linear discriminant analysis
(LDA).



156 DATA ANALY S I S AND DATA M IN ING

−
4

−
2

0
2

z 2

−4 −2 0 2
z1

−
4

−
2

0
2

z 2

−4 −2 0 2
z1

Figure 5.11 Simulated data with three groups: Classification with linear discriminant
analysis for two sets of variables given in (5.11).

Parameter estimation poses no difficulties because it is immediate to set

μ̂k = 1
nk

∑
i : yi=k

xi, �̂ = 1
n− K

K−1∑
k=0

∑
i : yi=k

(xi − μ̂k) (xi − μ̂k)�

where denominator n − K follows from the same logic of the denominator of
(2.11), and xi denotes the value of X taken on the ith sample unit. Therefore, the
total number of estimated parameters is p K + p(p+ 1)/2.

Consider the simulated data of figure 5.10 and use them as in section 5.4
adopting the same linear predictor. Figure 5.11 was made with the general term xi
of the type

xi = (zi1, zi2)�, xi = (zi1, zi2, z2i1, zi1 zi2, z
2
i2)
� (5.11)

for the left and right panels, respectively, and therefore they have p = 2 and p = 5
components. Here, zi1 indicates the ith observation of z1, and analogously for zi2.

However, we can reach the linear discriminant function just indicated without
the multivariate normality assumption simply by using second-order assumptions.
This justifies using the technique evenwhenX is not amultivariate normal variable,
and it may in fact have noncontinuous components. The development of LDA
through the second-order hypothesis was the original path followed by Fisher
(1936), but for simplicity of explanation, it is easier to follow the framework based
on normal distribution.

5.5.3 Quadratic Discriminant Analysis
If we remove the condition that the K variance matrices in (5.10) are equal,
we obtain the discriminant function

δk(x) = log πk − 1
2(x − μk)��−1k (x − μk)− 1

2 log |�k|
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Figure 5.12 Simulated data with three groups: classification with quadratic discriminant
analysis for two sets of variables given in (5.11).

which is a quadratic function in x, and the corresponding procedure is therefore
called quadratic discriminant analysis (QDA).

The estimate of average vectors μk is the same as that given in the previous
section, whereas the estimate of�k is given by

�̂k = 1
nk − 1

∑
i : yi=k

(xi − μ̂k) (xi − μ̂k)�

and there are therefore a total ofK p+K p(p+1)/2 distinct estimated parameters.
Applying this procedure to the data used earlier and employing the same

transformations of variables z1 and z2 in the components of x, we obtain the
classification regions shown in figure 5.12. Figure 5.13 displays the lift and ROC
curves of the LDA and QDA.

It is important to emphasize that unlike LDA, QDA is closely linked to the
Gaussian distributive hypothesis. However, the second diagram was produced
by violating this assumption, as it cannot be true that z21 and z22 have normal
distribution, not even approximately, because z1 and z2 assume values around 0.
In spite of this, the regions have reasonable shapes.

Let us now apply these two variants of discriminant analysis to the fruit juice
data, in both cases using the linear predictor of (5.1). From table 5.7 we obtain
the total misclassification percentages, which are 42/268 = 0.157 and 46/268 =
0.172, for the linear and quadratic variants, respectively. Note that in this case,
the misclassification error of QDA is larger than that of LDA, highlighting the fact
that a more complicated model does not always give better results.

5.5.4 Discussion
Advantages

• Appropriateness of the method: the method was specifically developed for
the classification problem; it is not an adaptation of a procedure designed
for a different aim.
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Table 5.7. FRUIT JUICE DATA: MISCLASSIFICATION TABLE

OF LINEAR AND QUADRATIC DISCRIMINANT ANALYSIS

ON TEST SET

Actual response
CH MM Total

Prediction with LDA
CH 147 20 167
MM 2 79 101

Total 169 99 268

Prediction with QDA
CH 145 22 167
MM 24 77 101

Total 169 99 268
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Figure 5.13 Fruit juice data. Left: lift curve; right: ROC curve for discriminant analysis.

• A priori information: if available, this can easily be included in the prior
probability of the subpopulation.

• Simplicity of calculation: both parameter estimates and calculation
of discriminant functions are extremely simple from a computational
viewpoint, and the procedure lends itself well to real-time applications.

• Quality and stability of results: years of accumulated experience on
discriminant analysis have shown that the method is highly reliable and
produces results that are valid in a large number of cases and stable with
respect to new data inputs.

• Robustness with respect to the hypotheses: even when the assumptions of
the method are not satisfied, the method tends to produce valid results.
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Disadvantages
• Restrictive hypotheses: the method is constructed under quite detailed

hypotheses.
• Selection and grading of variables: there are no simple techniques to

examine whether a certain variable can be removed without much loss,
apart from the universalmethod of testing on a test set. The same applies to
the similar problem of identifying an order of importance among variables.

• Number of parameters: when p and/orK are not small, QDA brings about
a rapid increase in the number of parameters. In particular, when nk is
small, some covariance matrices�k may not be identifiable—that is, their
estimates may turn out to be singular.

• Nonrobustness of estimates: the estimates of the required parameters are
very quickly calculated with the method of moments, but for this very
reason they are not robust when outlying observations occur. However,
forms of robust estimates exist.

Bibliographical notes
Discriminant analysis was introduced by Fisher (1936). Classic works on
classification problems, with a presentation of discriminant analysis, are those
of Mardia et al. (1979, ch. 11), Hand (1981, 1982), and McLachlan (1992). A
work with a statistical approach but with emphasis on the area of machine learning
is that of Ripley (1996).

5.6 SOME NONPARAMETRIC METHODS

Up to now, we have only dealt with parametric methods, but it is also worth
exploring nonparametric ones. In the remaining part of this chapter, we consider
some of the options, which mainly consist of adapting the matching procedures
discussed in chapter 4 to classification problem.

The k-nearest-neighbor estimator (section 4.2.4) is easily generalized to the
classification framework by considering, for every fixed point x0, neighborhood
Nk(x0), including the k points closest in distance to x0 and classifying x0 according
to a majority vote among k neighbors.

As in the case of regression, number k is a tuning parameter related to the
“complexity” of the model. Figure 5.14 shows the classification results obtained by
applying k-nearest-neighbors with k = 1 and k = 50 to the simulated data already
used in figure 5.8.

Several nonparametric regression techniques can be adapted to the classification
problem, considering the indicator variable that identifies the membership class of
each unit as a response variable. To relate this response variable to covariates,
exactly as in GLM, we use a link function that transforms the scale of the
nonparametric predictor into that of the response variable. For example, where
K = 2, the link function is again logit function (2.43), and the nonparametric
predictor is an unknown function f yielding

logit
(

E
{
Y |x1, . . . , xp

}) = f (x)
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Figure 5.14 Simulated data with two groups classification with k-nearest-neighbors. Left:
k = 1; right: k = 50.
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Figure 5.15 Simulated data with two groups: Classification with loess and a thin plate
spline.

If one or two covariates are available, then the regression function can be estimated
in a nonparametric way by one of the techniques described in section 4.2 and
section 4.4. Figure 5.15 shows the classification results applying loess and a thin
plate spline to the simulated data of figure 5.8.

Extension to the case of K categories is possible, following the scheme of
section 5.3 and using the multilogit function (5.3) as the link function.

When many covariates are available, as in the regression case, the models
must have an albeit weak structure to reduce both conceptual and computational
complexity. The generalized additive models, introduced in section 4.5, can be
used for classification, with a suitable distribution of the response variable and an
appropriate link function. In the case of K = 2, we also use the logit function,
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Algorithm 5.1 Local scoring for additive logistic model.

1. Initialization:

f̂j ← 0, j = 1, . . . , p;

a. if the yi are all 0 or 1, put β̂0 ← 0 or 1, and the algorithm
terminates;

b. otherwise, set

β̂0 ← log(ȳ/(1− ȳ)),

η̂i ← β̂0 +
p∑

j=1
f̂j(xij),

p̂i ← 1
1+ exp(−η̂i)

where ȳ is the average of yi .

2. Cycle for j = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . :

a. set:

zi ← η̂i + yi − p̂i
p̂i(1− p̂i)

,

wi ← p̂i(1− p̂i),

b. fit an additive model to variable zi with weights wi , using the
weighted backfitting algorithm and obtaining new estimates for
β̂0 and f̂j,

until functions f̂j stabilize.

which yields

logit(π) = β0 +
p∑

j=1
fj(xj) (5.12)

where π is the probability of belonging to class 1. To obtain nonparametric
estimates of fj(xj), we use a modification of the backfitting algorithm, which in
this context is called local scoring and is shown in algorithm 5.1.

The result of applying the GAM model to the fruit juice data is shown in
figure 5.16, where the estimated functions are represented with the smoothing
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Figure 5.16 Fruit juice data: Effect of variables on classification with GAM model. For
continuous variables, functions fj are estimated by smoothing splines and yield partial effect
of each covariate on the response; partial effect of qualitative variable is represented by
estimated value for each level. Approximate 95% confidence bands for each function are
also shown in different ways for continuous and discrete explanatory variables.
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Table 5.8. FRUIT JUICE DATA: TABLEOF ANALYSIS OF

VARIANCE FOR GAMMODEL

Component Deviance d.f. p-value

s(week) 0.20 1.0 0.65
s(priceCH) 4.50 3.0 0.21
s(priceMM) 0.29 1.0 0.59
s(discountCH) 0.85 1.0 0.36
s(discountMM) 8.19 3.0 0.04
s(loyaltyMM) 0.52 1.1 0.52
store 7.44 4.0 0.11

Table 5.9. FRUIT JUICE DATA: CONFUSIONMATRIX

OF VERIFICATION SAMPLEWITH GAMMODEL

Prediction Actual response
CH MM Total

CH 147 24 171
MM 22 75 97

Total 169 99 268

spline model on the model components. Table 5.8 lists the essential elements of
the analysis of variance of the GAMmodel. Table 5.9 lists the confusion matrix for
the resulting classifier, to predict classification on the test set, which gives a global
misclassification error of 17.2%.

Also forMARS (see section 4.4.5), generalizations have been proposed to tackle
the classification problem. In the case of K = 2, the simplest route consists of
considering the classification variable as a quantitative variable that takes values 0
and 1 and uses the MARS algorithm for the regression. If K > 2, we can recode
the response variable into K binary variables and apply the multivariate adaptive
regression spline algorithm to each of them, as already seen in the linear model.
We then assign each unit to the class that has the highest predicted value for the
response variable associated with it.

Another way of generalizing MARS to the classification problem is PolyMARS,
based on the multilogit model. As in the case of regression, the model grows
when new basis functions are included, but in this case, a quadratic approximation
of the multinomial log-likelihood is used to decide which basis function is to be
included at each step. The expanded model is fitted to the data by maximum
likelihood.

The confusion matrix for a PolyMARS model estimated on the fruit juice
data is shown in table 5.10. The global misclassification error of this prediction
method is 16.4%. Figure 5.17 shows the lift and ROC curves of the same model.
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Table 5.10. FRUIT JUICE DATA: CONFUSIONMATRIX

OF TEST SETWITH POLYMARSMODEL

Prediction Actual response
CH MM Total

CH 149 24 173
MM 20 75 95

Total 169 99 268
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Figure 5.17 Fruit juice data: Lift and ROC curves for PolyMARSmodel.

Bibliographical notes
The reference base for GAM is the work by Hastie & Tibshirani (1990) in which
the additive version of the proportional odds model is also discussed. PolyMARS
was introduced by Stone et al. (1997).

5.7 CLASSIFICATION TREES

Let us adapt the idea of regression trees, presented in section 4.8, to the case in
which the response variable is qualitative (categorical), with K levels. Figure 5.18
shows a simple case with p = 1 explanatory variables and K = 2. In real opera-
tions, we use this approach with larger p (and sometimes larger K).

Indicating the two classes by 0 and 1 and the probability that an individual with
characteristics x belongs to class 1 by p(x) = P{Y = 1|x}, we approximate p(x)
by means of a step function of the type

p̂(x) =
J∑

j=1
Pj I(x ∈ Rj) (5.13)

as in (4.15), where Pj now represents the probability that Y = 1 in region Rj.
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Figure 5.18 Simulated data of a categorical response with two levels and one explanatory
variable.
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Figure 5.19 Simulated data of a categorical response variable with two levels and one
covariate: Tree and estimate of p(x).

The resulting tree is of the type shown in figure 5.19 (left) and the estimate of
p(x) (right). The only difference with respect to figure 4.21 is that a class indi-
cator, which is 0 or 1, is associated with the leaves, instead of the values of function
p(x). In other words, when we drop a new observation x from the root of the tree
to reach a leaf with associated probability p̂(x), this observation is allocated to
class C(p̂(x)), in which C(p) = 0 if p ≤ 1

2 , and C(p) = 1 if p > 1
2 .
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To estimate the Pj of (5.13), we use the arithmetic mean

P̂j = M(yi : xi ∈ Rj) = 1
nj

∑
i∈Rj

I(yi = 1),

which is the relative frequency of elements 1 in region Rj.
Given the binary nature of y, the deviance function as used for the linear model

is not the most suitable. A more appropriate choice is the deviance of the binomial
distribution

D = −2
n∑

i=1
{yi log p̂i + (1− yi) log(1− p̂i)}

as given in (2.38). The deviance may be rewritten by pooling all units i belonging
to region Rj, where the probability is constantly Pj, so that

D = −2
J∑

j=1
nj[P̂j log P̂j + (1− P̂j) log(1− P̂j)] =

∑
j

Dj.

We reach an interesting interpretation by rewriting the deviance as

D = 2n
∑
j

nj
n
Q (P̂j) (5.14)

which, without constant 2n, is an average of entropies:

Q (Pj) = −
∑
k=0,1

Pjk log Pjk = −{Pj1 log Pj1 + Pj0 log Pj0}

= −{Pj1 log Pj1 + (1− Pj1) log(1− Pj1)}
weighted with the relative size of leaves; here, Pjk is the probability of outcome k,
which is Pj1 = Pj and Pj0 = 1 − Pj. Terms Q (·) are called impurity measures
because they indicate that the elements of a certain leaf are nonhomogenous with
respect to the response variable. Clearly,Q (p) = 0 if p = 0 or p = 1, and increases
gradually from the extremes of interval (0, 1) toward 1

2 , which corresponds to
maximum heterogeneity.

Expression (5.14) suggests that we can substitute the entropy with other
impurity measures. Of the possible alternatives, one common variant is the Gini
index

Q (Pj) =
∑
k=0,1

Pjk (1− Pjk). (5.15)

Another simple index of misclassification error, often used as an alternative to
the sum of impurities, is

J∑
j=1

1
nj

∑
i∈Rj

I
(
yi �= C(p̂(xi))

)
,

that is, the sum of the relative frequencies of errors.
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Figure 5.20 Fruit juice data: Classification tree.

Table 5.11. FRUIT JUICE DATA: CONFUSIONMATRIX

OF TEST SETWITHA CLASSIFICATION TREEMATRIX

Prediction Actual response
CH MM Total

CH 135 18 153
MM 34 81 115

Total 169 99 268

We now use these tools for the fruit juice data. In the growth phase of the tree,
we adopt entropy as impurity index and base the fit on a sample of 600 elements,
taken from 802 observations of the training set. For pruning, we use the remaining
202 observations, for which we again use entropy as the adequacy measure. The
corresponding deviance is shown in the left panel of figure 5.20, from which we
select dimension J = 6 for the tree, shown in the right panel.

The resulting tree demonstrates the importance of loyaltyMM and the
discount variables. We also note that the two leaves on the extreme right could
be pruned, if we are merely focusing on classification, because their distinction
deals with the associated probability value, which is 0.72 for the left leaf and 1 for
the other leaf.

The confusion matrix is shown in table 5.11 and indicates a global error of
19.4%. Figure 5.21 shows the lift and ROC curves.

The adaption for the case of K > 2 is as follows. Function p(x) takes
values in the K-dimensional simplex—that is, its values are probabilities
p0(x), . . . , pK−1(x), which total 1. The impurity indices used earlier take the
form

entropy = −
K−1∑
k=0

Pjk log Pjk, Gini =
K−1∑
k=0

Pjk (1− Pjk)
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Figure 5.21 Fruit juice data. Left: lift curve; right: ROC curve for classification tree.

each one of which can be inserted into objective function (5.14) where P̂j is now
a K-dimensional vector of estimates of p0(x), . . . , pK−1(x).

For a numerical illustration, consider the data of figure 5.10, where K = 3.
The fitting process gives the plots in figure 5.22, where the top-left plot shows
the completely developed tree with entropy as an impurity measure, and the top-
right plot shows the deviance obtained by cross-validation, dividing the set into
10 portions, leading to J = 9. The bottom plots refer to the pruned tree and the
corresponding graphical representation inR

2.
For a discussion of the pros and cons of classification trees, the remarks already

made in section 4.8.4 for regression trees apply.

Bibliographical notes
The references provided at the end of section 4.8 are pertinent also here. In
addition, the basic methodology described in CART is also used in C4.5 developed
by Quinlan (1993) and the commercial version C5.0. Small differences with
respect to CART are in tree structure (C4.5 may have multiway splits), splitting
criteria (only entropy is allowed by C4.5), pruning method (C4.5 uses an error-
based pruning, see, for example Ripley 1996, p. 227) and the way missing values
are handled.

5.8 SOME OTHER TOPICS

The set of classification techniques is vast. We have only presented some here;
there are many others. In this section, we give a brief description of a few of them
without attempting to cover the complete list.

5.8.1 Neural Networks
The extension of neural networks (section 4.9) to this context is immediate.
Starting as usual from the case of K = 2, where class indicator y takes the value 0
or 1, the only important adaptation to be introduced is that in (4.18): activation
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Figure 5.22 Simulated data with three groups: Classification by tree.

function f1 must have interval (0, 1) as a codomain; the most commonly used
function is logistic function �(x), defined in (2.40). When the two classes are
encoded−1 and 1, we use the function

2 �(x)− 1 = ex − 1
ex + 1

= tanh(x/2).

If K > 2, we proceed as in section 5.4.2, in the sense that we create K response
variables with values 0 or 1. The new ingredient is the choice of the activation
function. Putting

Tr =
∑
j→r

βjrzj,

the activation functions between the hidden layer and the output layer in
(4.18) are

f1k = exp(Tk)∑K−1
r=0 exp(Tr)

, k = 0, . . . ,K − 1.
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Figure 5.23 Simulated data with three classes: Classification with neural networks.

In this context, this type of function is called softmax, but it is essentially the same
as (5.3). Term D in objective function (4.20) is no longer the Euclidean distance
but rather entropy, as in many other classification methods. Correspondingly, the
suggested choice of Ripley (1996, p. 163) for regulation parameter λ also changes:
it must now be between 10−3 and 10−1, referring to the second form of (4.21)
for J .

Figure 5.23 shows the results of classifying the simulated data of three classes,
varying the number of hidden nodes r: in the first panel r = 4 and in the second
r = 12; in both cases regulation parameter λ in (4.20) is 10−2. The second panel
shows an overfit effect, indicated by the zones without or almost without any
point within a zone that is well characterized by points in another class and also
by the irregular form of the borders between the classes in some cases. This clear-
cut overfit effect stresses the need for care in choosing regulation parameter λ and
the number of hidden nodes.

5.8.2 Support VectorMachines
Figure 5.24 shows two sets of points in R

2, whose elements are distinguished
by different symbols, and many straight lines cut the plane, perfectly separating
the two classes. As one line must be chosen, it is obvious that the line giving
the cleanest separation is the best, in the sense of maximizing its distance from the
closest point. Intuitively, this line will have the same distance m from the closest
representative of each of the two classes. There are two other lines associated with
it and parallel to it, which pass through the closest point of each of the classes.

This example is a simple illustration of the more general case of two sets
of points in R

p that are linearly separable—that is, perfectly separable by
a hyperplane. For these situations, there is an algorithm to determine the optimal
separation hyperplane, that is, with maximum value m, in a finite number of
operations. This algorithm and its connected aspects go back to the work of Frank
Rosenblatt in the late 1950s on the perceptron, on which the development of neural
networks was based.
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m
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Figure 5.24 Maximum separation margin between two classes: Points belonging to
different classes are marked by different symbols.

It is convenient to recall some geometric concepts. For a hyperplane in R
p

with equation

a+ b�x = 0, (x ∈ R
p)

identified by coefficients a (a ∈ R) and b (b ∈ R
p), each of the following hold:

• for every point x′ on the hyperplane, it follows that b�x′ = −a;
• if x′ and x′′ are any two points on the hyperplane, b�(x′ − x′′) = 0;
• it follows that vector b is orthogonal to the hyperplane, and b̂ = b/‖b‖ is

the corresponding unit-norm vector;
• the signed distance from a point x ∈ R

p to the hyperplane, that is, to
projection x0 of x on the hyperplane, is given by

b̂�(x − x0) = 1
‖b‖(b

�x + a)

We now examine the optimization problem more closely. We consider the case of
K = 2 classes to which this time we assign the conventional values y = −1 and
y = 1, and denote by

β0 + x�β = 0 (x ∈ R
p) (5.16)

the equation that identifies a general hyperplane candidate to separate the two
classes. Note that without loss of generality, we can let ‖β‖ = 1.
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For a fixed choice of (5.16), unit (x̃, y) is classified either correctly or incorrectly,
depending on

ỹ (β0 + x̃�β) > 0 or ỹ (β0 + x̃�β) < 0.

Therefore, the optimization problemmay be formulated as

max
β0, β

m subject to

{‖β‖ = 1,

yi (β0 + x̃�i β) ≥ m, i = 1, . . . , n,
(5.17)

where 2m is called themargin, and it represents the width of the free band of points
in figure 5.24. Problem (5.17) can then be conveniently rewritten as follows. To
free ourselves from condition ‖β‖ = 1, we rewrite the constraints in the form

1
‖β‖yi (β0 + x̃�i β) ≥ m,

which implies a redefinition of β0 or, equivalently,

yi (β0 + x̃�i β) ≥ m ‖β‖.

Becausemultiplication ofβ andβ0 by a arbitrary positive constant does not change
the constraints, we also presume condition ‖β‖ = 1/m, and rewrite (5.17) in the
equivalent form

min
β0, β

1
2‖β‖2 subject to yi (β0 + x̃�i β) ≥ 1 i = 1, . . . , n. (5.18)

Now the half-width m of the free band of points in figure 5.24. is given by 1/‖β‖.
Optimization problem (5.18) becomes a minimization problem of a quadratic
function with linear constraints, which can be solved by known techniques.

A situation in which a hyperplane achieves perfect separation between the two
classes is of course rare in practice. However, we can take the previous example to
extend the criterion to more realistic cases. We do not treat it in detail but only
outline the basic idea. In a case like that of figure 5.25, there is no straight line that
perfectly separates the two classes, and wemust therefore select the line using a less
stringent requirement.

Because in this new case we have to accept the fact that some points will be
wrongly classified, we introduce auxiliary nonnegative variables ξ1, . . . , ξn, which
express how far the points are on the wrong side of the margin of their class; when
a point is within its margin, ξi = 0. In figure 5.25, the ξi are represented by the
length of the line segments connecting the margin of each class with those points
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Figure 5.25 An example of two classes of points that cannot be separated by a straight
line. Membership of points is distinguished by triangles and circles. Line segments between
some points and dotted lines show auxiliary variables ξi.

that violate the margin of their membership class. So optimization problem (5.17)
can be adapted, replacing constraints yi (β0 + x̃�i β) ≥ mwith the form

yi (β0 + x̃�i β) ≥ m(1− ξi), i = 1, . . . , n.

Reformulating the problem in a way similar to the linearly separable case, we reach
the form

min
β0, β

1
2‖β‖2 + γ

n∑
i=1

ξi subject to

{
yi (β0 + x̃�i β) ≥ 1− ξi

ξi ≥ 0 i = 1, . . . , n
(5.19)

where γ represents a positive constant that plays the role of the regulation
parameter and represents the cost of violating the barriers. It can be shown that the
solution for β to the optimality problem is of the form

β̂ =
n∑

i=1
ai yi x̃i (5.20)

where only some of the ai are nonzero. Therefore, the solution can be expressed
through only some of the observations, which are called support vectors.
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As in many other techniques, it is convenient to consider transforming the
explanatory variables, as in

h(x) = (h1(x), . . . , hq(x))�, (x ∈ R
p)

where the number of components q may be less than, equal to, or greater than p.
Correspondingly, (5.16) is substituted by the separation curve

f (x) = β0 + h(x)�β = 0

which, in light of (5.20), becomes

f̂ (x) = β̂0 +
n∑

i=1
ai yi h(x)�h(x̃i) = β̂0 +

n∑
i=1

ai yi 〈h(x), h(x̃i)〉

In the second expression, we used the most commonly adopted notation in the
machine learning literature for the inner product. The resulting method takes the
name support vector machines (SVM).

Note that the observations enter these formulas only through the inner products
of the form 〈h(x), h(x̃i)〉 and the products between these and the yi . Specification
of the functions that form h(x) can therefore occur through the kernel function

K(x, x′) = 〈h(x), h(x′)〉
which calculates the inner products in the space of the transformed variables. The
most commonly used kernel functions are the following:

Kernel K(x, x′)

polynomial (1+ 〈x, x′〉)d
radial basis exp(−d ‖x − x′‖2)
sigmoidal tanh(d1〈x, x′〉 + d2)

where d, d1, d2 are quantities that must be specified a priori.
For example, if p = 2 with x = (x1, x2) and we adopt the polynomial kernel of

order d = 2, we have

K(x, x′) = (1+ 〈x, x′〉)2
= (1+ x1 x′1 + x2 x′2)2

= 1+ (x1 x′1)2 + (x2 x′2)2 + 2 x1 x′1 + 2 x2 x′2 + 2 x1 x′1 x2 x′2

for which q = 6. The corresponding functions hj(x) are

h1(x) = 1, h2(x) =
√
2 x1, h3(x) =

√
2 x2,

h4(x) = x21, h5(x) = x22, h6(x) =
√
2 x1 x2.
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Figure 5.26 Simulated data with two groups. Left: classification by SVM with a poly-
nomial kernel; right: a radial basis kernel. Top plots: γ = 1; bottom plots: values chosen
by cross-validation.

To illustrate the results of the method, examine figure 5.26, in which the data
points are the same as those in figure 5.8. A polynomial of order 3 is used in the
two left panels, and the radial basis kernel with d = 1

2 in those on the right. In the
two top panels, value γ = 1 is fixed, whereas the two bottom panels show a scan
of 25 values of γ , logarithmically equally spaced between 10−2 and 104. For each
value, we proceed to evaluate the total misclassification error by cross-validation
by rotating 10 data subgroups; the resulting optimal values are γ = 70 for the
polynomial and γ = 7.39 for the radial basis.

Bibliographical notes
Hastie et al. (2009, ch. 12) provide more details of the foregoing discussion.
Cristianini & Shawe-Taylor (2000) offer a systematic description of SVM,
although they define it as an “introduction.” Another authoritative text, by one
of the main craftsmen of the approach, is that of Vapnik (1998).
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5.9 COMBINATION OF CLASSIFIERS

In many real-life cases, several models fit the data equally well and none appear to
be preferable to another. For example, in a problem with 50 explanatory variables,
if we construct a logistic regression model with, say, five covariates, there are more
than 2 million possible groups of five variables from which we can choose. If we
calculate the prediction error on a test set to measure the adequacy of the model,
we generally find several sets of five variables with very similar error rates. These
models are essentially equivalent from the viewpoint of their prediction error, but
they may be quite different when we consider the actual classification of the units
in the two groups.

In a similar and perhaps even more obvious way, classification by more unstable
methods—for example, trees or neural networks—is greatly influenced by the
specific choice of the data set used by the estimate. If this set is modified slightly—
for instance, by eliminating a small percentage (2–3%) of data—we can obtain
a model that is markedly different from the original one with about the same
prediction error. That is, many different models can give similar results for the
prediction error.

To improve the predictive ability of each model, one possibility is to combine
predictions obtained from variousmethods, and various paths have been proposed.
Each of them produces a model that in some way gathers all the qualities of the
single components and thus often gives more accurate predictions. This section
presents the main features of the most popular methods.

5.9.1 Bagging
Let Z = {(x̃1, y1), (x̃2, y2), . . . , (x̃n, yn)} be the training set and C(x) a classifier
obtained with one of the methods presented earlier. In the following, the model
associated with C(x) is called the base model. For the sake of simplicity, we
consider the case with K = 2.

Adopting a bootstrap procedure, examine sample Z∗1 obtained by extracting n
elements from training set Z with replacement. We obtain a new classifier C∗1(x),
by fitting to Z∗1 one of the models presented earlier in this chapter, for example, a
classification tree. In general, for a fixed x, the new fitted model is different from
the original one. Repeated application of this step, say, B times, produces a set
of samples Z∗b (b = 1, . . . ,B), each of size n, and they in turn produce B new
classifiers C∗b (x), b = 1, . . . ,B.

A new classifier that is an average of the results from each of the C∗b (x) on the
given x can be introduced. The most natural form of averaging is the arithmetic
mean

Cbag(x) = 1
B

B∑
b=1

C∗b (x)

which allocates the unit with explanatory variables x to y = 1 if Cbag(x) > 1
2

and to y = 0 otherwise. As discussed for logistic regression, the choice of 1
2 is

not mandatory, and the method seen in section 5.2.2 still applies. If we think
of every single classifier C∗b (x) as a voter who assigns a vote to one class or the
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other, we choose the class corresponding to the largest number of votes, so that
this criterion is indicated as a majority vote. This classification procedure is called
bootstrap aggregating, from which the abbreviated the term bagging is derived.
The classification error of the new procedure is often lower than that of the base
models.

Many classification procedures also yield a function p̂(x), which gives the
probability that a unit with explanatory variables x belongs to each class. A variation
of bagging works by averaging the p̂∗b(x), which estimate the class probabilities
for the model fitted to each of the B bootstrap samples Z∗b and using this new
p̂bag(x) =

∑
b p̂
∗
b(x)/B as a probability indicator of class membership.

The bagging strategy can easily be adapted to the regression context, where in
place of classifiers C(x) we use the predictions derived from the models discussed
in chapter 4. In this case, it is not necessary to return to the majority vote criterion,
because we can directly use the average of the predictors obtained by bootstrap
resampling as a new predictor. The new prediction may have variance smaller than
that of the original model.

Bagging procedures often greatly improve predictive ability, particularly when
the classifiers used are very unstable, for example, trees or neural networks.
However, with more stable procedures, bagging can somewhat worsen prediction
quality. It is also obvious that the operation of combining the results of the single
models by way of the arithmetic mean involves losing whatever simple structure
existed in the base model, leading to greater difficulty in interpreting the results.

A variant, called bumping, or stochastic search of the model, picks out, as a new
classifier, the model with the smallest prediction error among all the models
obtained in bootstrap resampling.

To illustrate how the method works, a bagging procedure with majority vote
was applied to the classification tree fitted to the fruit juice data (see table 5.11).
Table 5.12 shows the confusion matrix obtained from the test set after bagging
based on 300 bootstrap samples taken from the training set and, for every sample,
fitting a tree with growth and pruning carried out on two random subsets of each
bootstrap sample.

Themodel obtainedwith this procedure is better than the original one, as shown
by figure 5.27, which compares the error rates of the base model and the bagging
procedure when the number of bootstrap samples used grows. Figure 5.28 shows

Table 5.12. FRUIT JUICE DATA: CONFUSIONMATRIX

OF BAGGING PROCEDURE BASEDON CLASSIFICATION

TREEON TEST SET

Prediction Actual response
with bagging CH MM Total

CH 143 24 167
MM 26 75 101

Total 169 99 268
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Figure 5.27 Fruit juice data: Estimation errors for bagging on a classification tree.
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Figure 5.28 Fruit juice data: Lift (left) and ROC (right) curves of classification tree and
classifier obtained by bagging a tree.

the lift and ROC curves for the bagging model, compared with similar curves for
the initial classification tree, and B = 300.

Using random samples of observations allows the use of a technique called out-
of-bag for easy estimation of prediction errors. In fact, in each bootstrap sample,
some of the data of the original training set are excluded. Consequently, for each
classifier C∗b (x), the data of training set Z that are not in sample Z∗b can be used
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as a test set. We can therefore estimate, for instance, the misclassification error on
these data outside the sample used for the fit (out-of-bag), without requiring a test
set or having to choose computing-intensive solutions, such as cross-validation.

5.9.2 Boosting
The idea underlying bagging is to combine results from different data sets, extrac-
ted through equal-weight random sampling of available units, and fit themwith the
same type of model.

Analogously, boosting consists of combining the results of a model fitted from
several data sets, but we assign a different probability of entering the sample to
each unit. Specifically, we assign greater weight to observations classified poorly in
the early stage. We thus aim at improving model performance, acting mostly on
those subsets in which the original classifier had more problems.

The procedure is iterative. We start by choosing a base model among the
classifiers discussed earlier. In the first step, the base classifier is fitted to the data
by assigning the same weight to each observation. In the following iterations, the
weight assigned to each observation is modified, depending on the classification
error. A new classifier is then fitted at each iteration from the modified set of
weights. At the end of the process, a new classifier is identified through a weighted
majority vote among the classifiers fitted in all the iterations.

This logic has been implemented in many different ways. The most frequent
procedure, also the original one, is called AdaBoost, presented in algorithm 5.2.

As the number of iterations increases, the importance of the choice of base
classifier tends to fall, as the classification choice is more andmore closely linked to
iteration, that is, it concentrates on badly classified units. This explains the common
choice of a tree grown with one or at most two levels, without pruning, as a base
classifier. Because their error rate is only slightly better than random guessing, in
this context they are usually called weak classifiers. When the weak classifier is a
tree, the number of levels is connected to the order of interactions allowed by the
final model. For example, if only one level of trees is included, only main effects
are allowed.

Note that when a tree is fully grown, all its leaves are pure, the classifier makes
no errors on the training data, and its error rate is therefore 0. This means that
boosting will stop because there are no wrongly classified training units to be
boosted. Clearly, the same thing occurs if the tree is just very large, without being
fully grown, so that it probably overfits the data. For this reason, it is usually better
not to use very large trees for boosting.

Boosting has shown a remarkable ability to produce accurate classifiers in
a wide range of situations. They have also been studied theoretically, proving
statistical properties that justify their excellent empirical performance; see
Friedman et al. (2000).

To illustrate the method, we again use the fruit juice data and choose a tree
with two levels as a weak classifier, corresponding to four final leaves. Boosting
is stopped after 200 iterations. Figure 5.29 shows the error rate obtained in the
test set as iterations increase, clearly demonstrating the improvement up a certain
number of iterations, at which point the error stabilizes.
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Algorithm 5.2 Boosting (AdaBoost)

1. Initialize weights wi = 1/n, i = 1, 2, . . . , n.
2. Cycle for b = 1, . . . ,B:

a. Fit a classification model Cb(x) to the training set, with target
values 0 or 1, by weighting the observations by wi .

b. Obtain:

errb ←
∑N

i=1 wi I(yi �= Cb(xi))∑N
i=1 wi

,

αb ← log
1− errb
errb

.

c. Assign the new weights:

wi ← wi exp{αb I(yi �= Cb(xi))}, i = 1, 2, . . . , n.

3. The new classifier is:

C(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if

∑B
b=1 αb Cb(x)∑B

b=1 αb
> 1

2 ,

0 otherwise

Table 5.13 shows the confusion matrix on the test set for the classifier obtained
by boosting; the misclassification error is 16%. Figure 5.30 plots lift and ROC
curves for the same classifier.

5.9.3 Random Forests
Both bagging and boosting construct different models they then combine by
changing at each iteration the set of units or the weight assigned to each unit on
which to fit the model, using all available p explanatory variables at each iteration.
Another way of obtaining combinations of models consists of considering several
subsets of the explanatory variables, instead of considering subsets of the units.

One strategy of this type has been proposed with trees as base classifiers,
choosing the variables to put into each model by random selection: this procedure
is called random forest. Note that this term is sometimes used with a more
general meaning, referring to any classifier obtained as a combination of a set
of classification trees. For example, in this interpretation of the term, bagging and
boosting also belong to random forests when applied to trees.

The procedure consists of selecting at random, at every tree node, a small group
of covariates, which are examined to find their best point of subdivision, according
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Figure 5.29 Fruit juice data: Estimated error for boosting on a classification tree.

Table 5.13. FRUIT JUICE DATA: CONFUSIONMATRIX

ON TEST SETOF BOOSTING CLASSIFIER, BASEDONA

CLASSIFICATION TREEWITH FOUR LEAVES

Prediction Actual response
with boosting CH MM Total

CH 148 22 170
MM 21 77 98

Total 169 99 268

to the splitting criterion described in section 5.7. Therefore, rather than exploring
all the possible variable in each node, only q (q � p) randomly chosen variables
are examined. The tree grows to maximum size but is not pruned. In fact, the
resulting combination of various trees avoids overfitting.

The number q of variables to be selected in each node is a tuning parameter to
be determined and is generally kept constant on all nodes. The number is often
chosen considering forests constructed with different values of q and determining
the value that minimizes the error on a test set.

The other tuning parameter is the number of trees, let’s say B, that make up
the forest. It can be shown that the global error converges to a lower bound when B
increases and that it does not cause overfitting problems when additional trees are
added. If, therefore, a sufficiently large value is chosen for B, we can be confident
that the prediction error obtained will not be very far from its minimum.
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Figure 5.30 Fruit juice data. Left: lift curve; right: ROC curve of classification tree and
classifier obtained by boosting on a tree with four leaves.

When constructing a forest, a bagging procedure is usually also associated with
random selection of variables. Each tree is made to grow on a different bootstrap
sample with a number q of randomly selected variables for each node. Here,
bagging, for which the main aim is to improve prediction accuracy, also allows us
to use the out-of-bag technique to choose regulation parameter q and obtain the
importance measures of the covariates. We can use the prediction error obtained
from the out-of-bag data when determining q, instead of the error on a test set.

To obtain a measure of the importance of each explanatory variable in predict-
ing the response, we can proceed using out-of-bag data in the following way.
For each tree, the misclassification error on the out-of-bag portion of the
data is obtained. The same is done after randomly permuting the values of
each explanatory variable. The average of the difference between the two
misclassification errors is computed and divided by the standard deviation of the
differences, providing an indicator of how that variable influences predictions.

Another indicator of the relevance of variables is based on the importance
measure for a single tree,

∑
h g

2
h , introduced at the end of section 4.8.3. This is

obtained as the average over all the trees in the forest of that importance measure,
calculated separately for each variable.

With respect to other methods of model combination, random forests have
some interesting advantages. The accuracy of their predictions is comparable
to that of boosting and in some cases is better, but they are much faster
because every single tree is based on fewer variables and the computational
burden is therefore lower. It is also relatively simple to build an algorithm that,
taking advantage of parallel computing, can further accelerate the random forest
procedure.

For illustration, we present the result of a random forest obtained for the fruit
juice data. Note, however, that the presence of only eight covariates would not
justify using this strategy, which really only produces interesting results when
some hundreds of variables are involved.
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Table 5.14. FRUIT JUICE DATA: CONFUSIONMATRIXOF RANDOM FOREST USING TEST

SET ANDOUT-OF-BAG SAMPLES

Test set

Prediction
random forest

Actual response
CH MM Total

CH 145 21 166
MM 24 78 102

Total 169 99 268

Out-of-bag samples

Prediction
random forest

Actual response
CH MM Total

CH 414 77 491
MM 70 241 311

Total 484 318 802

In this example, we constructed a forest of 500 trees, and every tree was made
to grow through the Gini index as an impurity measure, with q = 2 variables
randomly chosen for each node of every tree. The left part of table 5.14 shows
the confusion matrix for the forest with the test set; the total classification error
is 16.79%. The right side shows the confusion matrix resulting from out-of-bag
samples, with a classification error of 18.33%.

The top panel of figure 5.31 plots the error rates obtained on the test set
and the out-of-bag samples when the number of iterations increases. The bottom
panel plots the importance measures based on the out-of-bag data of the variables
in predicting purchases of MM. In this case, loyaltyMM is by far the most
important variable for predicting MM purchases; discountMM and store are
less important.

Bibliographical notes
Combination methods of classifiers have been proposed by many authors in both
statistical and machine learning literature. Bagging was introduced by Breiman
(1996), taking advantage of the statistical results on bootstrap. For a presentation
of the bootstrap method, see, for example, Efron &Tibshirani (1993) and Davison
& Hinkley (1997). The out-of-bag technique was introduced by Wolpert &
MacReady (1999) and later exploited by Breiman (2001a). Boosting was initially
introduced in the machine learning environment as AdaBoost by Freund &
Schapire (1996), and its statistical properties were examined by Hastie et al.
(2009). Random forests have been introduced and discussed by Breiman (2001b).

5.10 CASE STUDIES
We now present some real-life cases in which some of the tools described in this
chapter are applied to resolve business problems. Because the method follows the
lines expressed in section 4.10, we simply outline the problems, list the models
used, and present the results and the choice of the final models.

5.10.1 The Traffic of a Telephone Company
We return to the real-life case analyzed in section 4.10.1 and concentrate on
identifying the customers who used services offered by the telephone company.
If we refer to the variable total duration of outgoing calls in a certain
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Figure 5.31 Fruit juice data: Estimation errors and importance measures of variables for
random forests.

month for a certain population of interest (see section 4.10.1), we must subdivide
customers into two classes: those with 0 or positive call durations.

We use as the response variable a new binary variable with value 1 for customers
who made calls lasting at least 1 second in the month of interest, and value 0 for
customers with no traffic. The following models were fitted to the data:

• linear regression model (see section 5.4), with threshold 1
2 , in two variant

forms: (i) with all 98 available explanatory variables; (ii) with only the 55
most significant variables (p-value lower than 0.1);

• logistic regression model (see section 2.4), again using all 98 available
explanatory variables and only the 55 most significant ones (p-value
lower than 0.1);

• linear discriminant analysis (see section 5.5.2);
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• logistic additive model (see section 5.6), with smoothing splines with 4
effective degrees of freedom as smoothers for each variable; this model was
also fitted to the data with all 98 variables and only the 29 most significant
ones (p-value lower than 0.1);

• MARS (see section 5.6), with linear regression splines with single nodes as
elements;

• a classification tree (see section 5.7), with entropy as an impurity index
and the number of leaves for the final tree selected by growing and pruning
that tree on two separate sets of equal size, randomly chosen from the
training set;

• neural networks, with five nodes in the hidden layer and with weight decay
parameter λ = 10−2;

• support vector machine, with radial kernel and tuning parameter (γ = 4)
selected on the test set;

• random forestwith 500 trees; the number of variables sampled as candidate
at each split (60) was selected on the test set;

• bagging with 500 trees;
• boosting with 50 trees; to include higher order interactions, each tree was

grown up to 8 leaves (a test set was used to select it).

We compared the various models according to the percentages of misclassifica-
tion error, false positives and false negatives, listed in table 5.15. The models were
also compared with the lift and ROC curves of figure 5.32.

Comparison of error rates and curves shows that the classifier that predicts best
is bagging, because it has the lowest total error rate and the lowest percentage

Table 5.15. TELECOMMUNICATIONS CUSTOMER DATA: PREDICTION ERRORS (%) FOR

MODELS DESCRIBED IN SECTION 5.10.1. WHERE NECESSARY THRESHOLDSWERE SET AT 1
2

Model Total False False
error negatives positives

Linear model 22.56 29.69 19.92
Linear model – selected variables 22.61 29.64 20.04
Logistic regression model 17.58 27.10 12.50
Logistic regression model – selected variables 20.20 34.87 8.69
Discriminant analysis 22.30 30.25 19.16
GAM 16.06 23.37 12.49
GAM – selected variables 16.13 23.75 12.36
MARS 15.61 18.75 14.34
Classification tree 15.79 21.95 12.95
Neural network 21.39 21.59 21.33
SVM 16.72 24.41 12.96
Random forest 15.40 18.69 14.07
Bagging 15.04 18.51 13.60
Boosting 15.59 19.48 13.98
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Figure 5.32 Telecommunications data: Comparison of lift (top) and ROC (bottom)
curves for various models.
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Figure 5.33 Telecommunications customer data: Final classification tree.

of false negatives. Although its percentage of false positives is not the lowest,
it has an acceptable value. However, the classification tree has not only a low
misclassification error rate and a percentage of false positives lower than that
obtained by bagging, but also a ROC curve that is essentially equal to that of
bagging and is easier to interpret. We therefore chose the tree to predict customers
who do not generate telephone traffic.

Figure 5.33 shows the final version of the tree. To predict which customers will
have traffic in the next month, predictive variables are customer’s age, phone tariff
plan, and several variables linked to traffic in the current and previous months.
One interpretation of this evidence is that a customer does not suddenly stop
using a telephone but generally reduces traffic slowly until it stops completely.

5.10.2 Churn Analysis
A typical CRM problem for many companies with a large customer base is how
to evaluate customer loyalty and, in particular, how to predict which customers
are most likely to abandon the company and transfer to another supplier. These
customers are often described as being churners. This problem is prominent in
sectors where customers have ongoing relationships with companies, such as
banks, insurance companies, telecommunications services, and services companies
in general. Companies of this type must have good models for predicting
deactivation by their customers to be able to carry out appropriate retention
actions later on.

It is also very useful to understand what reasons customers have for leaving
the company. Constructing a model is therefore inspired not only by the need
to fit the data but also by the need for that model to indicate marketing actions,
for example, customer retention strategies, because this obviously translates into
profit.

To handle a real-life case in which this problem was tackled, the same
data analyzed in sections 4.10.1 and 5.10.1 were used for the customers of a
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telecommunications operator. The aim of the analysis was to predict deactivation
by a customer in a given month with at least 2 months’ notice. This requirement
is used to plan and implement loyalty actions toward this customer in those
2 months. In other words, we search for the indicator preluding the decision
to abandon the company, using information on the structural characteristics of
customers, their behavior in terms of use of services offered by the company
(if any), their change in usage style, and any other information available in the
data mart.

Our data mart contains a status variable (not used in the previous analyses)
that indicates customer status in terms of deactivation 2 months after the last
month of available traffic (indicated in the data by the number 10). This variable
takes value 1 if a customer has deactivated and 0 if the customer remains active.
Our objective is therefore to predict this indicator variable by using the other 108
available variables.

A simple inspection reveals that the percentage of customers who deactivate
is about 13.8% in the training set. In this case, the percentage of events in
the population is fairly small—lower than the total prediction rate reasonably
envisioned for this problem. This fact causes problems: if we classify all cases as
nonevents, irrespective of their individual features, this strategy would appear to
be acceptable or possibly even superior to methods that use customer information.
This sort of problem is exacerbated in cases in which the percentage of events is
even smaller and becomes extreme in cases of rare events: if the percentage of
nonevents is 1%, a flat classification scheme of all customers as nonevents has a
total error rate of 1%. All this requires us to change our strategy with respect to the
previous problems.

Clearly, a prediction of this type, although it minimizes misclassification errors,
is not useful for those who want to identify customers who intend to abandon the
operator, together with their characteristics. Instead, we need a strategy allowing
us to fit a model that can identify customers as accurately as possible, even at
the expense of a relatively bad classification of loyal customers, which therefore
translates into an increase in the global misclassification error.

The strategy applied here, commonly used in data mining, consists of using a
sample stratified by the values of the response variable in the training stage. We
thus select all “rare event” customers, that is, all the deactivators or “churners,”
and a random sample with a similar number of customers with the more common
event, that is, customers who are still active.

In this strategy, most of the data are discarded and not used for the estimate.
There are alternative proposals for using all the available data, based on evaluation
of various costs involved in various types of misclassification. In the present case,
for example, we could decide to assign a higher cost to misclassifying a deactiv-
ated customer as active, compared with that of an active customer classified as
nonactive. These costs may be included as weights of the terms composing the
objective function of most of the models discussed in this chapter.

In this analysis, considering the abundance of available data, we preferred to
carry out balanced sampling from the original data mart, to obtain the set to be
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used for the estimate. Obviously, the test set must retain its original proportion of
units, so we can evaluate and compare the results of the various models correctly.
The following models were fitted to the new balanced training set:

• linear regression model, with threshold 1
2 ;

• logistic regression model;
• linear discriminant analysis;
• logistic additive model, with smoothing splines with 4 effective degrees of

freedom as smoother for each variable; this model was also fitted to the
data with all 108 variables and also the 36 variables that turned out to be
the most significant in the previous model;

• MARS, with linear regression splines with singles node as elements;
• classification tree, with entropy as an impurity index and number of leaves

for the final tree selected by growing and pruning two separate sets of equal
size, randomly selected from the training set;

• neural networks, with five nodes in the hidden layer and with weight decay
parameter λ = 2× 10−2;

• support vector machine, with radial kernel and tuning parameter (γ =
4.5) selected on the test set;

• random forestwith 500 trees; the number of variables sampled as candidate
at each split (50) was selected on the test set;

• bagging with 500 trees;
• boosting with 50 trees; to include higher order interactions, each tree was

grown up to 16 leaves (a test set was used to select it).

Table 5.16 lists the percentages of total misclassification errors, false positives
and false negatives obtained on the test set. To further appreciate the usefulness
of balanced samples, the error rates for a linear model, a logistic regression
model and a classification tree fitted to the original nonbalanced sample are also
listed.

As expected, the models fitted to the nonbalanced training set all have a lower
total error than the other models, but they are all around the percentage obtain-
able by classifying all customers as active, which is 13.9% in the test set. However,
these predictions have a higher percentage of false negatives with respect to other
models fitted on balanced samples.

Comparing the percentages of false positives and false negatives shows that
bagging classification is preferable. The percentages in table 5.16 show that the
logistic additive model, which is easier to interpret than bagging, gives slightly
worse predictions for all three three indicators, so it seems reasonable to consider
this simpler model.

Figure 5.34 shows the lift curves of some models. The bottom panel enlarges
the low fractions of predicted customers, which is the important part of the curve,
because it is the portion with the greatest differences among models.

As the fraction of predicted subjects varies, the classifier with the highest lift is
almost always bagging. Only for the first percentile does boosting have a higher lift.
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Table 5.16. CHURN PREDICTION: ERRORS (%) FORMODELS DESCRIBED IN

SECTION 5.10.2. WHERE NECESSARY THRESHOLDSWERE SET AT 1
2

Model Balance Total False False
error negatives positives

Linear model yes 33.97 9.02 77.59
Logistic regression yes 34.46 9.08 77.87
Discriminant analysis yes 33.97 9.02 77.59
GAM yes 31.75 8.49 75.86
Restricted GAM yes 32.16 8.07 75.60
MARS yes 31.84 8.45 75.86
Classification tree yes 24.94 9.55 72.64
Neural network yes 40.32 10.90 81.88
Support vector machine yes 33.69 8.28 76.62
Random forest yes 31.78 8.02 75.34
Bagging yes 30.24 7.81 74.19
Boosting yes 31.43 8.46 75.64
Linear model no 13.94 13.75 54.93
Logistic regression no 13.86 13.41 48.73
Classification tree no 14.13 12.32 52.62

With this model, at its first percentile, we can choose customers who have almost
five times the probability of deactivating with respect to average customers. A
fraction of 1% of customers may not seem much, but if—for example—we have
a customer base of 1,000,000, this 1% corresponds to 10,000 customers, which
already means a nontrivial cost for retention actions on all selected customers. The
lift curve can be used to select these 10,000 customers to whom retention action
(for example, sending a letter or a gift) will be more profitable, because it indicates
those customers most likely to churn.

Among the easily interpretable models, the classification tree has the highest lift
curve (about 4 at the first percentile) and falls more slowly than the other models
until the first decile of predicted units. The corresponding tree of figure 5.35
shows that the traffic of the last and previous months and customer age are the
variables most closely linked to churning. Less important but still relevant are the
sales activation channel and the chosen method of payment. These are actionable
variables, in the sense that the telecommunications operator can act directly on
them. For example, the company can try to dissuade customers from paying bills
by mail (the tree in figure 5.35 shows that the probability of churning is higher
for such customers) or have greater control over those sales channels that provide
potential churner customers.

This last remark empirically highlights the important fact that the final model
should also suggest commercial actions. In our case, for example, models with
actionable variables are preferable to ones in which prediction variables are not
easily translatable into actions, for example, gender. If we were to discover that
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Figure 5.34 Churn prediction: Lift curves.
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Figure 5.35 Churn prediction: Classification tree.

men churn more easily, we certainly cannot decide to stipulate fewer contracts
with men, as they make up about half the population of interest.

In cases like these, the importance of choosing classifiers that are easily
translatable into actions emphasizes the essential fact that a human being carries
out the analysis and selects models that are easy to interpret and not based on
black-box procedures or ones of the type “press a button and the computer will do
it for you.”

5.10.3 Customer Satisfaction
Quantitative measurement of customer satisfaction is one of the most important
key performance indicators for companies in many business sectors.

Customer satisfaction surveys are typically implemented by questionnaires
containing many items detailing various aspects of customers’ feelings toward
the company and of their expectations regarding services offered by that
company.

Data and background problem
The data analyzed here are described in detail in section B.7 and represent a
random sample of 4,000 questionnaires submitted to the customers of an IT
(information technology) company producing software and offering consulting
services. Opinions about a large number of items are collected by asking
customers to score the importance attributed to every aspect characterizing
the relationship between customers and company and their actual degree of
satisfaction.

Overall satisfaction was investigated by a single question at the end of the
questionnaire: “Recalling all the aspects analyzed in this questionnaire, how
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satisfied are you with the company, overall?” The answer was coded in six
levels:

Level Description

1 Extremely satisfied
2 Very satisfied
3 Quite satisfied
4 Quite dissatisfied
5 Very dissatisfied
6 Extremely dissatisfied

The answers clearly show that overall satisfaction is a ordinal categorical variable.
Marketing managers are interested in identifying the specific aspects most closely
connected with answers to this question. We describe and predict such a variable
by fitting models according to three strategies:

a. the response variable considered as ordinal categorical, as seen in
section 5.3.2;

b. the response variable considered as categorical by ignoring level order and
setting a classification problem with six classes;

c. the response variable considered as quantitative discrete by assigning to
each level of overall satisfaction a numeric mark and applying the methods
introduced in chapter 4.

As usual, when data are collected by questionnaire, the number of units is not as
enormous as may occur in other contexts of data mining. In our case, we decided
to set aside one-quarter of the observations (1,000 customers) in the validation
set for the final operation of comparing different models. To tune and test models,
we preferred not to divide the training set into two parts but to apply fivefold
cross-validation to the entire training set of 3,000 customers (see section 3.5.2).

Figure 5.36 shows the percentage of customers by satisfaction level in the
training set. About 69% of them were “quite satisfied,” and only 0.47% were
“extremely satisfied.” The overall percentage of dissatisfied customers was 14.93%,
of which only 2.93% are very or extremely dissatisfied.

Some prediction models
As discussed in section 5.3.2, the simplest model allowing for the ordinal nature
of the response variable is the proportional odds version of the cumulative logit
model. We fitted such a model to the data by selecting important variables with a
stepwise procedure (see section 3.6.1) based onAIC (see section 3.5.3). Table 5.17
shows the final fitted proportional odds model.

A useful feature of this model is its interpretability. The categories of response
variables are in inverse order with respect to common sense—that is, 1 for
the most satisfied and 6 for the least satisfied, so the parameter signs must
be interpreted inversely. For example, table 5.17 shows that given all other
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Figure 5.36 Customer satisfaction: Bar graph of overall satisfaction on training set.

variables, customers who often had direct contacts with company personnel
(question V11) were less satisfied, and older customers were more likely to
be less satisfied than younger ones. The importance attributed to product
quality and flexibility (questions V33 and V35), efficiency, and the capacity
to understand customers’ needs (questions V37 and V39) were negatively
related with satisfaction; satisfaction about single aspects such as efficiency,
speed of problem solving (questions V45, V47, and V48), and the capacity to
understand and respond to customers’ needs (questions V44, V52, and V54) were
positively related with overall satisfaction. Using some specific products/services
(the numbers 5 and “others”—variables V6 and V9) were positively related
with satisfaction, whereas product 6 (variable V7) was sometimes a cause of
dissatisfaction.

The first part of table 5.18 lists the confusion matrix of the linear proportional
odds model in the validation set with classification errors for each predicted
level. The overall classification error was 26.3%. This is a weighted average of
the specific classification errors of each predicted level. Marketing managers,
in addition to receiving good predictions for each category of satisfaction,
are particularly interested in reducing the classification error in one of the
“satisfaction” categories (1, 2, and 3) of customers who express some level of
dissatisfaction (3, 4, and 6). Using the proportional odds model, among the
“very dissatisfied” we can predict 1 customer as “very satisfied” and 5 as “quite
satisfied,” and we can classify 62 customers as “quite satisfied” among the “quite
dissatisfied.” The total of all these particular misclassification errors was 6.8% in
the validation set.
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Table 5.17. CUSTOMER SATISFACTION: SUMMARYOF PROPORTIONAL ODDS VERSIONOF

CUMULATIVE LOGITMODEL. VARIABLES ARE DESCRIBED IN SECTION B.7

Estimate SE Wald 95%
conf. limits

(Intercept 1|2) −15.83 0.65 −17.10 −14.56
(Intercept 2|3) −11.26 0.56 −12.36 −10.17
(Intercept 3|4) −4.85 0.50 −5.83 −3.86
(Intercept 4|5) −1.19 0.51 −2.18 −0.20
(Intercept 5|6) 1.36 0.56 0.25 2.46
V6 −0.24 0.11 −0.44 −0.03
V7 0.23 0.10 0.03 0.43
V9 −0.16 0.10 −0.36 0.05
V11-2 0.33 0.20 −0.06 0.72
V11-3 0.27 0.11 0.06 0.48
V11-4 0.50 0.19 0.13 0.88
V25 −0.20 0.05 −0.30 −0.10
V26 −0.41 0.05 −0.52 −0.31
V27 −0.14 0.04 −0.23 −0.05
V28 −0.08 0.04 −0.15 −0.01
V33 0.10 0.05 0.00 0.20
V35 0.12 0.06 0.00 0.24
V37 0.09 0.06 −0.02 0.21
V38 −0.08 0.05 −0.18 0.02
V39 0.13 0.06 0.01 0.25
V41 −0.08 0.05 −0.18 0.02
V44 −0.09 0.04 −0.17 −0.00
V45 −0.12 0.06 −0.24 −0.00
V47 −0.25 0.07 −0.38 −0.12
V48 −0.10 0.05 −0.20 −0.00
V52 −0.24 0.05 −0.34 −0.14
V54 −0.18 0.05 −0.27 −0.08
V60 0.03 0.01 0.00 0.05
V61 −0.02 0.01 −0.04 0.00

D = 3406.630 on 29 d.f.

A nonparametric generalization of the proportional odds model follows directly
from generalized additive models with logit link function. We replace the linear

predictor in (5.5) with the additive predictor
p∑

j=1
fj(xj), as we did for the logit

model in (5.12)

log
P{Y ≤ k}

1− P{Y ≤ k} = β0k −
p∑

j=1
fj(xj), k = 1, . . . ,K − 1.
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Table 5.18. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR LINEAR AND ADDITIVE PROPORTIONAL ODDSMODELS

Linear proportional odds model Additive proportional odds model

Actual response Classif.
error

Actual response Classif.
errorŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 9 62 28 0 1 0 0.380 2 9 69 35 0 1 0 0.395
3 3 107 619 62 5 0 0.222 3 3 100 613 64 5 0 0.219
4 0 0 23 51 16 1 0.440 4 0 0 22 51 15 1 0.427
5 1 0 0 6 3 1 0.727 5 0 0 0 4 4 2 0.600
6 0 0 0 0 0 2 0.000 6 1 0 0 0 0 1 0.500

A version of the local scoring algorithm (see algorithm 5.1) has been developed to
fit this model. The estimated intercepts for the customer satisfaction problem are:

1|2 2|3 3|4 4|5 5|6
16.027 11.497 4.882 1.266 −1.253

and figure 5.37 plots the estimated effects of the covariates. The second part
of table 5.18 lists the misclassification errors for the additive proportional odds
model in the validation set. The overall misclassification error was 26.2% and the
percentage of dissatisfied customers classified as satisfied 7.0%.

We then fitted some typical classification models by ignoring the ordering of
the response variable. A multinomial model (see section 5.3.1) was fitted by
selecting important variables with a stepwise procedure based on AIC. Table 5.19
summarizes the estimation procedure, and the first part of table 5.20 shows the
misclassification errors in the validation set. The overall error was 27.4% and the
error among dissatisfied customers 7.2%.

We also fitted a multivariate multiple linear model, as discussed in section 5.4.2,
considering each of the six variables as indicating a single level of satisfaction. The
second part of table 5.20 shows the misclassification errors for this model. The
overall error was 31.9%, and dissatisfied customers who are misclassified 12.6%.

Misclassification errors for linear and quadratic discriminant analysis (see
section 5.5.2) are shown in table 5.21, with an overall misclassification error of
28.3% for the linear version and 33.2% for the quadratic one. The percentage
of dissatisfied customers classified as satisfied was 6.4% for LDA and only 5.9%
for QDA.

A k-nearest-neighbor estimator (section 5.6) was fitted to the customer
satisfaction data by assigning to each customer the satisfaction level chosen by
the majority of k closest customers (with respect to the covariates). The number k
of customers to be considered in each neighborhood was selected by fivefold cross-
validation (section 3.5.2) on the training set. The optimal choice for k was 20,
and the first part of table 5.22 shows the misclassification errors for this procedure.
The overall error was 29.3% and the error for dissatisfied customers 8.7%.



Figure 5.37 Customer satisfaction: Effect of variables on classification with proportional
odds additive model.
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Table 5.19. CUSTOMER SATISFACTION: ESTIMATED COEFFICIENTSOF MULTINOMIAL

LOGIT MODEL (STANDARD ERRORS IN PARENTHESES)

log(π2/π 1) log(π 3/π 1) log(π 4/π 1) log(π5/π 1) log(π6/π 1)

(intercept) 9.44 (3.073) 20.66 (3.101) 25.18 (3.180) 28.47 (3.421) 25.63 (3.871)
V5 −0.34 (0.703) −0.13 (0.708) 0.16 (0.729) −0.57 (0.793) 0.47 (0.946)
V6 −0.53 (0.634) −0.73 (0.639) −0.97 (0.660) −1.41 (0.754) −3.36 (1.269)
V25 −0.07 (0.329) −0.18 (0.332) −0.47 (0.339) −0.73 (0.364) −0.53 (0.421)
V26 −1.49 (0.455) −1.92 (0.458) −2.28 (0.464) −2.54 (0.483) −2.70 (0.543)
V27 0.79 (0.369) 0.58 (0.368) 0.37 (0.372) 0.27 (0.384) 0.17 (0.420)
V34 0.94 (0.381) 1.16 (0.382) 1.22 (0.390) 1.49 (0.412) 1.03 (0.470)
V39 0.39 (0.362) 0.55 (0.364) 0.75 (0.371) 0.55 (0.390) 0.98 (0.461)
V47 −0.03 (0.493) −0.35 (0.495) −0.69 (0.501) −1.00 (0.515) −0.88 (0.548)
V48 −0.19 (0.449) −0.38 (0.451) −0.55 (0.456) −0.37 (0.472) −0.56 (0.517)
V52 −0.62 (0.513) −0.99 (0.514) −1.17 (0.519) −1.45 (0.530) −1.49 (0.562)
V54 −0.42 (0.522) −0.63 (0.523) −0.75 (0.527) −0.88 (0.538) −1.04 (0.570)
V60 0.01 (0.032) 0.03 (0.033) 0.03 (0.034) 0.01 (0.039) 0.07 (0.048)
V63M −0.86 (0.831) −1.40 (0.834) −0.81 (0.850) −0.88 (0.901) −0.82 (1.026)
D = 3372.143 on 70 d.f.

Table 5.20. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FORMULTINOMIAL AND LINEAR MULTIVARIATEMODELS

Multinomial logit model Linear multivariate model

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 1 2 0 0 0 1.000 1 0 0 0 0 0 0 —
2 8 62 40 0 1 0 0.441 2 0 1 1 0 0 0 0.500
3 4 106 608 65 6 0 0.229 3 13 168 666 105 21 0 0.316
4 0 0 20 49 12 1 0.402 4 0 0 3 14 4 4 0.440
5 1 0 0 5 6 3 0.600 5 0 0 0 0 0 0 —
6 0 0 0 0 0 0 — 6 0 0 0 0 0 0 —

Another approach to modeling overall customer satisfaction is to consider this
response variable as a quantitative discrete variable and fit regression models. In
this case, class prediction is obtained by rounding the predicted continuous values
to the nearest integer. The second part of table 5.22 shows the classification errors
for a linear model, in which the explanatory variables were selected by a stepwise
procedure based on AIC. The overall error on the validation set was 27.3%, and
the classification error, predicted as satisfied customers who are in fact dissatisfied,
was a very low 4.8%.

Several nonparametric models were fitted by following both strategies,
considering responses as either categorical or quantitative variables. To balance
bias and variance in the choice of tuning parameters, cross-validation was applied
to the training set.
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Table 5.21. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR LINEAR DISCRIMINANT ANALYSIS AND QUADRATIC

DISCRIMINANT ANALYSIS

Linear discriminant analysis Quadratic discriminant analysis

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 1 0 0 0 0 1.000
2 9 50 23 0 1 0 0.398 2 9 95 95 0 1 0 0.525
3 3 119 620 55 4 0 0.226 3 3 73 518 55 4 0 0.207
4 1 0 26 55 15 1 0.439 4 1 0 54 50 15 1 0.587
5 0 0 1 7 5 3 0.688 5 0 0 3 13 5 3 0.792
6 0 0 0 2 0 0 1.000 6 0 0 0 1 0 0 1.000

Table 5.22. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR k-NEAREST-NEIGHBORS AND LINEAR MODEL,
CONSIDERING RESPONSE AS QUANTITATIVE

k-nearest-neighbors Linear model, quantitative response

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 10 51 44 0 1 0 0.519 2 11 70 40 0 1 0 0.426
3 3 118 615 78 8 0 0.252 3 1 99 582 45 2 0 0.202
4 0 0 11 40 15 3 0.420 4 1 0 48 73 20 1 0.490
5 0 0 0 1 1 1 0.667 5 0 0 0 1 2 3 0.667
6 0 0 0 0 0 0 — 6 0 0 0 0 0 0 —

Two treemodels were fitted, one classification tree (section 5.7) with entropy as
splitting criterion, and a regression tree (section 4.8) with a quantitative response.
In both cases, the pruned trees were selected by fivefold cross-validation, as shown
in figure 5.38. Table 5.23 lists misclassification errors for both procedures. The
overall misclassification error was 29.5% for the classification tree and 29.0% for
the regression tree; the error for dissatisfied customers was 9.6% for the catego-
rical response variable and 8.5% when it was quantitative.

Neural networks were also fitted, in two versions, with categorical and
quantitative responses. The number of units in the hidden layer and weight decay
were jointly chosen by fivefold cross-validation. The best classification network
had three nodes with weight decay 0.05, a misclassification error of 27.9%, and
an error for the dissatisfied customers of 8.2%. The best regression network had
three nodes and a weight decay of 0.0005. The overall error on the validation set
was 29.1%, and dissatisfied customers who were misclassified 7.3%. The entire set
of misclassification errors is shown in table 5.24.
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Figure 5.38 Customer satisfaction. Top: pruned classification tree; bottom: regression
tree.

Projection pursuit (section 4.6) was also fitted to the data, the number of terms
being selected by fivefold cross-validation. Table 5.25 shows the misclassification
errors for this model. When the response variable was categorical, the best number
of terms was 2, producing an overall error of 30.4% and an error for satisfied
customers of 6.7%. When response was considered as quantitative, the best
number of terms was 1, the overall error 28.1%, and the error for dissatisfied
customers 6.2%.
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Table 5.23. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR TREEMODELS

Classification tree Regression tree

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 11 73 61 0 1 0 0.500 2 9 80 67 0 1 0 0.490
3 1 96 597 84 11 0 0.243 3 3 88 590 76 8 0 0.229
4 1 0 12 35 13 4 0.462 4 0 1 13 40 16 3 0.452
5 0 0 0 0 0 0 — 5 1 0 0 3 0 1 1.000
6 0 0 0 0 0 0 — 6 0 0 0 0 0 0 —

Table 5.24. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR NEURAL NETWORKS

Classification neural network Regression neural network

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 11 71 48 0 1 0 0.458 2 10 63 57 0 1 0 0.519
3 1 98 605 73 8 0 0.229 3 2 106 595 65 7 0 0.232
4 0 0 16 42 13 1 0.417 4 0 0 17 45 12 1 0.400
5 1 0 1 4 3 3 0.750 5 1 0 1 9 5 2 0.722
6 0 0 0 0 0 0 — 6 0 0 0 0 0 1 0.000

Table 5.25. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR PROJECTION PURSUIT. RESPONSE VARIABLES

CATEGORICAL AND QUANTITATIVE

Projection pursuit with categorical Projection pursuit with quantiative
response regression

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 9 85 86 0 1 0 0.530 2 11 69 47 0 1 0 0.461
3 3 84 552 60 6 0 0.217 3 1 100 590 57 4 0 0.215
4 1 0 32 59 18 4 0.482 4 1 0 33 56 16 1 0.477
5 0 0 0 0 0 0 — 5 0 0 0 6 4 3 0.692
6 0 0 0 0 0 0 — 6 0 0 0 0 0 1 0.000
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Table 5.26. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR POLYMARS ANDQUANTITATIVEMARS

PolyMARS QuantitativeMARS

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 9 59 42 0 1 0 0.468 2 9 57 35 0 1 0 0.441
3 3 110 605 72 6 0 0.240 3 3 112 593 50 1 0 0.219
4 0 0 23 43 13 1 0.463 4 0 0 42 67 19 1 0.481
5 0 0 0 4 5 3 0.583 5 1 0 0 2 4 3 0.600
6 1 0 0 0 0 0 1.000 6 0 0 0 0 0 0 —

Table 5.27. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR SVM, WITH RADIAL KERNEL AND LINEAR KERNEL

SVM, radial kernel SVM, linear kernel

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 0 0 0 0 0 0 — 1 0 0 0 0 0 0 —
2 9 59 26 0 1 0 0.379 2 10 62 38 0 1 0 0.441
3 3 110 635 74 8 0 0.235 3 2 107 620 70 7 0 0.231
4 0 0 9 43 14 1 0.358 4 0 0 12 45 11 1 0.348
5 0 0 0 2 2 3 0.714 5 0 0 0 4 6 3 0.538
6 1 0 0 0 0 0 1.000 6 1 0 0 0 0 0 1.000

Next, PolyMARS (section 5.6) and quantitative MARS (section 4.4.5) were
fitted to the data by selecting the number of basis functions by generalized cross-
validation, as discussed in section 4.4.5. Table 5.26 lists misclassification errors,
with an overall error of 28.8% for PolyMARS, 27.9% for quantitative MARS, and
an error for dissatisfied customers of 7.9% for PolyMARS and 5.2% when the
response variable was quantitative.

SVM classification errors are shown in table 5.27. One radial and one linear
function were selected as kernels, with tuning parameters γ selected by fivefold
cross-validation. Overall misclassification errors were 26.1% for the radial kernel
and 26.7% for the linear one; the error for dissatisfied customers was 8.3% for the
radial kernel and 7.8% for the linear one.

Methods based on combinations of trees were also fitted to the data by
considering both classification and regression trees. We present here only
misclassification errors for the combinations of classification trees, because they
are all lower than those for combinations of regression trees. Bagging and random
forests were fitted by selecting the tuning parameters by fivefold cross-validation
(table 5.28). Overall errors were 27.8% for bagging and 27.4% for random



Table 5.28. CUSTOMER SATISFACTION: CONFUSIONMATRIX AND CLASSIFICATION ERRORS

FOR EACH PREDICTION LEVEL FOR BAGGING TREES AND RANDOM FORESTS

Bagging trees Random forests

Actual response Classif.
error

Actual response Classif.
error

ŷ 1 2 3 4 5 6 ŷ 1 2 3 4 5 6

1 2 0 0 0 0 0 0.000 1 2 0 0 0 0 0 0.000
2 8 68 41 0 1 0 0.424 2 7 64 36 0 1 0 0.407
3 2 101 605 70 8 0 0.230 3 3 105 614 69 6 0 0.230
4 0 0 24 45 14 1 0.464 4 0 0 20 48 16 1 0.435
5 0 0 0 4 2 3 0.778 5 0 0 0 2 2 3 0.714
6 1 0 0 0 0 0 1.000 6 1 0 0 0 0 0 1.000

Table 5.29. CUSTOMER SATISFACTION: PREDICTION ERRORS (%) FORMODELS

DESCRIBED IN SECTION 5.10.3

Model Type of Overall Misclassification error
response classification of dissatisfied

error customers

Linear proportional odds ordered 26.3 6.8
Additive proportional odds ordered 26.2 7.0
Multinomial categorical 27.4 7.2
Multivariate linear categorical 31.9 12.6
k-nearest neighbour categorical 29.3 8.7
Linear discriminant analysis categorical 28.3 6.4
Quadratic discriminant analysis categorical 33.2 5.9
Linear regression quantitative 27.3 4.8
Classification tree categorical 29.5 9.6
Regression tree quantitative 29.0 8.5
Neural network categorical 27.9 8.2
Neural network quantitative 29.1 7.3
Projection pursuit categorical 30.4 6.7
Projection pursuit quantitative 28.1 6.2
PolyMARS categorical 28.8 7.9
MARS quantitative 27.9 5.2
Pupport vector machine – categorical 26.1 8.3

radial kernel
Support vector machine – categorical 26.7 7.8

linear kernel
Bagging trees categorical 27.8 7.9
Random forests categorical 27.0 7.6

203
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Figure 5.39 Customer satisfaction: Calibration plot.

forests, and the percentages of dissatisfied customers predicted as satisfied were
7.9% for bagging and 7.4% for random forests. Table 5.29 summarizes all these
results.

Lift and ROC curves are not appropriate in this multiclass context. However,
a tool to evaluate more finely the adequacy of a classification criterion is the
calibration plot introduced by Dawid (2006) and presented by Venables & Ripley
(2002, p. 349) for multicategory prediction. A model is suitable if its predicted
probabilities are well calibrated—that is, if we predict an event with probability p,
a fraction of about p of the events predicted actually occur. We can therefore plot
the predicted probabilities against the actual proportion of events by comparing all
the predicted p with the observed relative frequency of occurrence for each single
event. If these two quantities are approximately equal, the set of predictions may
be regarded as probably valid or well calibrated. Figure 5.39 shows calibration plots
for each of the models fitted in this section. We applied a smoothing method with
adaptive bandwidth (loess, see section 4.2.4) to estimate the relative frequency
of occurrence of each event. Clearly, calibration plots can be obtained only for
methods in which the response is categorical. Most of the curves are very close
to the diagonal line, showing that almost all the models are substantially well
calibrated. Only SVM (not shown in the figure) and MARS show slight over-
confidence in predictions, especially at probabilities close to 1.



Methods of Classification 205

The lowest overall error, 26.1%, was obtained by the SVM with radial kernel.
Unfortunately, this model has two drawbacks from the viewpoint of marketing
managers: the percentage of dissatisfied customers misclassified as satisfied is quite
high (8.3%, compared with the lowest 4.8% of linear regression), and it is not
easy, in terms of questionnaire responses, to identify the characteristics of the
customers allocated to each category of satisfaction.

As already mentioned, a much easier interpretation is available for linear
and additive proportional odds models, which in our case had an overall
misclassification error almost as low as that of SVM (the linear proportional odds
model had an overall error of 26.2%, and 6.8% for dissatisfied customers).

If we consider the misclassification error for dissatisfied customers, the best
prediction is obtained by the linear regression model, with an error of only 4.8%.
The overall error of this model is 27.3%, which is not very high.

In our case, two models were recommended to marketing managers:
proportional odds and linear regression with quantitative responses. Both
models are easy to interpret and have specific optimality, one for the overall
misclassification error and the other the error for dissatisfied customers, and
neither has a very high value for the other percentage of error.

5.10.4 WebUsageMining
We now examine the website of a consulting company interested in better
understanding its visitors, to identify appropriate marketing actions. Analysis
of raw data (information about each hit and visitor) is extremely useful
for decision making. Web programming tools allow companies to personalize
their relationship with customers by configuring every page to be shown to visitors
differently. Profiling visitors by their hit pattern is a simple way of identifying
differences in interests between potential customers.

In this context, applying data analysis and data mining techniques to discover
patterns from the web is called web mining and is generally divided into three
main families, according to the primary type of data used: (i) web usage mining,
to discover user access patterns from information about hits and the number of
clicks made by each user (often called click-stream data); (ii) web content mining,
to extract useful knowledge from web page contents (text, image, audio, or video
data); and (iii) web structure mining, for useful knowledge from hyperlinks and
document structures.

In the following, we only face some typical problems of interest for decision
makers analyzing raw web usage data and refer to specific works for examples of
web content and web structure mining. The data set we analyze contains data on
about 26,157 anonymous hits on the website of a consulting company. For each
hit, the pages of the site visited over a fixed time interval are known. Visitors are
identified by number and no personal information is given. There are 231 pages in
the website, and the total number of page views for the entire site is 47,387, so that
every page was visited on average 205 times and each visitor hit an average of 1.81
pages. Because some of the pages have similar content, they were grouped into
eight categories (home, contacts, communications, events, company, white papers,
business units, consulting). The data are presented in greater detail in section B.8.
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Prediction of visits to “contacts” pages
In this section, we consider the problem of predicting customers visiting one area
of the website: “contacts.” Section 6.3 extends analysis of the same data set with
some of the tools presented in chapter 6.

The company’s marketing managers are interested in identifying the charac-
teristics of visitors who finish their visit in the contacts area: they are likely to be
interested in the consulting services offered by the company. Identifying potentially
interested customers before they visit the contacts page may be useful to the
company, because they can be intercepted and offered some services before they
explicitly request them.

This marketing objective can be achieved by considering the statistical problem
of predicting the indicator variable, that is, the last page hit by each visitor in the
contacts area, by examining previously visited pages. Clearly, we need to identify
visitors who saw at least two pages, that is, 4,572. Figure 5.40 shows the frequency
distribution of the number of web pages seen by each visitor who visited at least
two pages. Because the number of visitors who went through more than 10 pages
is small (about 500), we decided to keep only nine visited pages before the last one
as predictors of the final hits on the contacts area.

Among the 4, 572 last pages, only 229, or about 5%, fall in the contacts area.
Such a low percentage and the small absolute value suggest using cross-validation
to trade off bias and variance. We assessed the performance of different models
by 10-fold cross-validation, using the same random partition for all methods. To
compare the actually observed data, we predicted each of the 10 parts using the
best model fitted by using the other parts, thus avoiding having to divide the data
set into training and validation sets. We typically also used inner cross-validation
to choose a model within each class.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
50

0
10

00
15

00

Figure 5.40 Web usage mining: Bar graph of number of web pages hit by each visitor who
saw at least two pages.
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Table 5.30. WEBUSAGEMINING: CROSS-VALIDATION PREDICTION ERRORS (%) FOR

MODELS DESCRIBED IN SECTION 5.10.4

Model Overall False % of
error negatives correct predictions

over positive predictions

Linear discriminant analysis 9.14 47.16 28.07
Linear regression 9.49 46.29 27.27
Logistic regression 8.68 51.96 28.35
Classification tree 9.38 45.41 27.78
PolyMARS 9.53 44.98 27.45
Neural network 9.31 51.96 26.38
Support vector machine 9.38 45.41 27.78
Bagging trees 9.58 79.91 15.28
Random forests 42.78 43.67 6.50
Boosting trees 9.01 52.40 27.18

The response variable has another characteristic: the distribution of visits to
the contacts area is very unbalanced. Given the relatively small number of total
observations available, we cannot obtain a sample stratified by the values of
the response variable if we want to keep the training set a reasonable size. We
therefore modify the fitting procedure slightly, to consider this characteristic,
described next.

Although all the explanatory variables are categorical, linear discriminant
analysis can be fitted. These models do not need any particular specification to
process unbalanced response variables. The overall error is 9.14%, false negatives
(the error for actual visitors who finished their visit to the contacts area) is
about 47.16%, and the percentage of visitors correctly predicted as positive is
only 28.07%. Table 5.30 lists these errors for all fitted models.

Linear and logistic models can easily bemodified to process unbalanced training
sets. For linear models, it is sufficient to change the threshold separating the classes
in (5.8): instead of 12 , we select a smaller number, closer to the observed proportion
of visitors to the contacts area, for example, 0.2. Similarly, for logistic regression,
we assign visitors to one category or the other according to whether the estimated
probability is greater or less than a smaller number with respect to 1

2—for example,
again 0.2. All errors are listed in table 5.30.

To fit a classification tree, we need to cross-validate with respect to the choice of
tree size. Ten-fold cross-validation is used for pruning. Given the unbalanced
response, the consequences of misclassifying observations is more serious for
visitors who finish in the contacts area. To take this into account, we define a
2× 2 loss matrix L, where Ljk is the loss incurred in classifying a class j observation
as class k. In our case, we consider Lkk = 0 and assign a higher loss for classifying
a visitor in the contacts area who actually finishes in another area. The losses
are incorporated in the model process, and the observation in class j is weighted
by Ljk .
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Figure 5.41 Web usage mining: Lift curves.

The pruning level for PolyMARS is also identified by an inner cycle of cross-
validation. A loss matrix can be used to incorporate the various weights of the
response classes in model selection.

We also fit a neural network by averaging across several fits (10) to overcome
the problem of finding multiple local maxima of the likelihood. We choose
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Table 5.31. WEBUSAGEMINING: ESTIMATES FOR LOGISTIC MODEL

Estimate SE z-value p-value

(intercept) −2.5313 0.1226 −20.64 0.0000
page−4: white papers 1.5103 0.6248 2.42 0.0156
page−3: business area 0.5396 0.3070 1.76 0.0788
page−2: business area −1.2908 0.3323 −3.88 0.0001
page−2: consulting −0.8367 0.2928 −2.86 0.0043
page−1: business area −1.8203 0.2754 −6.61 0.0000
page−1: home 1.7043 0.1596 10.68 0.0000
page−1: white papers −3.5884 0.7345 −4.89 0.0000

the number of hidden units and the amount of weight decay by inner cross-
validation. As in the linear model, here, too, we tackle unbalanced classes in
responses by changing the threshold separating predicted classes. SVM tuning
parameters are selected by inner cross-validation, and weights are supplied. In our
example, an SVM with a radial kernel was fitted. Random forests, bagging and
boosting were fitted by including trees modified to take unbalanced responses into
account.

Figure 5.41 compares smooth versions of lift curves for all fittedmodels. The top
panel shows the entire lift curve, and the bottom one the same function enlarged
for small fractions of predicted visitors.

Logistic regression has the lowest overall error and predicts that 388 visitors
are interested in contacts, although only 110 of them actually finished their visits
on a page of the contacts area, which is the highest percentage among the various
models. Nevertheless, the percentage of false negatives suggests using a random
forest (which, however, has an overall error that is too high) and PolyMARS or
SVM. An SVM seems to be preferable, although we have a small percentage of
predicted subjects in the lift curve.

Conversely, if we are interested in identifying a small number, say, less than
10%, of subjects who are most likely to visit the contacts area, an SVM is the most
preferable predictor. Alternatively, logistic regression and boosting trees show the
best lift curves for fractions of predicted subjects over 10%. The particular ease
of interpretation of logistic regression results leads us to choose this model for
the final prediction, if we are not interested in very small numbers of predicted
subjects. To obtain a set of interpretable parameters, the simplest method is
fitting logistic regression with all available data. Table 5.31 lists the estimates
of parameters for such a model.

Given all the other variables, homepage visits increase to more than five times
the probability of concluding the path in the company website with a page in the
contacts area. Visits to business area pages or white papers is negatively related to
the response, even in cases when these pages had been visited some clicks earlier,
when they may have had a positive impact. Visits to pages in the consulting area
have a decreasing impact on the probability of visiting the contacts area later.
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EXERCISES
5.1 Consider a classificationmodel with two categories and assume that we know

the fitted probabilities of the vector of successes for the units of a test set,
say, p = (p1, . . . , pn). Also assume that we know the correct membership
category of all units and they are y = (y1, . . . , yn). Compute the lift curve
from vectors p and y.

5.2 For every classification problem in two categories we have two lift curves,
one for each of two classes (success and failure). What is the relationship
between these curves? If we know vectors p and y of exercise 5.1 for
the class identified by (successes), is it also possible to construct the lift
curve for the other class? If so, what is explicit form of the lift curve for
failures?

5.3 Is it possible to have a lift curve that is not monotone-decreasing? If so, how
do we interpret this fact?

5.4 Explain why, in ROC curves, the diagonal corresponds to random
classification.

5.5 Is it possible to have a ROC curve that is completely or partly under the
diagonal? If so, how do we interpret this fact?

5.6 Write the equation of the line and the dashed curve in the two panels of
figure 5.8.

5.7 Prove (5.3), where ηr(xi) = β0 +
p∑

j=1
xijβjr , using the fact that (5.2) also

holds with r = 0, by setting βj0 = 0, for j = 0, . . . p.

5.8 In a classification problem with K = 2 classes, multiple linear regression can
be used as a classification method in two ways, using either a column of
indicator variables and selecting the class closest to the interpolated value,
or two indicator variables (and two regression models) and selecting the
one corresponding to the higher estimate. Why are the two procedures
equivalent?

5.9 In the case of linear discriminant analysis with K = 2 and equal a priori
probability for the two groups, show that d1(x) > d2(x) takes the form

(μ1 − μ2)��−1(x − μ) > 0

whereμ = 1
2 (μ1 + μ2).

5.10 Show that the classification rule of discriminant analysis described in
section 5.5.2, in which K = 2 and group sizes are equal, coincides with
the rule obtained though the linear model presented in section 5.4; show
also that this statement does not hold if classes have different numbers of
observations (Fisher 1936).
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5.11 In classification trees, if the impurity measure is entropy, how can we
compute the gain achievedwhenpassing from J to J+1 leaves, corresponding
toD∗j − Dj in the case of regression trees?

5.12 Show that the Gini index is a first-order approximation of entropy. Show also
that entropy is not smaller than the Gini index.



6

Methods of Internal Analysis

This chapter differs from the previous two in that we no longer presume the
existence of a response variable related to explanatory variables. Here, all variables
are on the same level.

In the terminology of machine learning literature, the following themes come
under the heading of unsupervised learning, in the sense that learning is not driven
by a set of observed cases; the themes of the previous two chapters cover supervised
learning.

6.1 CLUSTER ANALYSIS

6.1.1 General Remarks
We wish to group n available units into K groups, but—unlike the case of
classification problems—we have no preassigned system of classification and
therefore no response categorical variables. We are speaking of cluster analysis.

Typically, because we have no information about the number or nature of the
groups, we look for a method to form them by starting from the available variables.
Sometimes, a posteriori, we try to interpret the resulting groups. A typical example
is that of the segmentation of a company’s customer base. From data on how the
chosen products are used, personal data, responses to questionnaires, and other
sources of information, we arrive at customer groups, called “segments.” To define
marketing actions, we must be able to characterize each group, identifying some of
the main explicit aspects, called “profiles.”
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In other cases, we have in mind certain customer profiles, but cannot directly
observe whether an individual fits into a given profile, and we try to construct the
closest fit of such profiles from the groups of individuals. In this case, the number
K can be given as known.

For the ith individual, we have available p variables, x̃i = (xi1, . . . , xip)�, of
which some are quantitative and some qualitative (i = 1, . . . , n). We allocate
individuals who are more similar to each other in the same group, and dissimilar
individuals in other groups. Note that these methods are essentially descriptive,
at least regarding the more classical ones presented here.

6.1.2 Distances andDissimilarities
A fundamental role is clearly played by the way wemeasure the “nearness” between
individuals or, equivalently, their “distance.” There are many possible ways of
quantifying this, and they vary in nature of the variables in question and what our
aims are.Weuse the general term dissimilarity to refer to thesemeasures of distance.

In any case, the dissimilarity d(i, i′) between individuals i and i′ is based on the
composition evaluated for dissimilarities in each of the p observed variables, say,
dj(xij, xi′j) for j = 1, . . . , p. There are many options to define functions dj(x, x′),
but in all cases some conditions must be respected

dj(x, x) = 0, dj(x, x′) ≥ 0.

We often also need a condition of symmetry, dj(x, x′) = dj(x′, x). A further
condition that is often respected is triangle inequality

dj(x, y)+ dj(y, z) ≥ dj(x, z)

and in this case dissimilarity qualifies as a distance.
For quantitative variables, themain choice for dissimilarity is given by the square

of the Euclidean distance

dj(x, x′) = (x − x′)2

although it is by no means the only one. For qualitative variables we often use

dj(x, x′) = 1− I(x = x′)

where I(x = x′) is 1 if x and x′ coincide, and 0 otherwise. For ordinal qualitative
variables, that is, ones with levels ordered naturally, we assign a conventional score,
such as 1, 2, . . . ,m, and then treat them as if they were quantitative variables.

For both qualitative and quantitative variables, it is useful to introduce some
form of normalization. For quantitative variables, the scale on which variable xj is
measured clearly influences the dimension of dj and therefore its contribution to
the sum (6.1). This observation suggests that we can divide the squared distance
by the variance of xj. Similarly, for qualitative variables, we should keep in mind
the number of levels of variables xj, because the correspondence of observations
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between two subjects does not have the same significance if xj has 2 or 20 possible
alternatives. A simple way of considering this is to divide dj by the number of levels
of xj. However, these indications are not followed systematically, because we can
easily produce examples where the effect of these normalizations is more harmful
than useful, leading to groups that are less easily distinguished than they were
originally.

Once functions dj are chosen, the problem remains of combining them to
obtain dissimilarities d(i, i′). The simplest option is clearly to add them, by

d(i, i′) =
p∑

j=1
dj(xij, xi′j). (6.1)

Whatever combination is adopted, conditions

d(i, i) = 0, d(i, i′) ≥ 0, d(i, i′) = d(i′, i)

should be satisfied, and also d(i, i′) = 0, if and only if all the dj components are 0.
If all the variables are quantitative, we can also use the distances listed in

table 6.1. In more common cases when variables are both quantitative and
qualitative, it is reasonable to calculate the dissimilarities separately for the three
sets of quantitative variables, qualitative variables and ordinal qualitative variables;
obtaining respectively d(1)(i, i′), d(2)(i, i′), and d(3)(i, i′); and last, combining
them in the form

d(i, i′) = w1 d(1)(i, i′)+ w2 d(2)(i, i′)+ w3 d(3)(i, i′)
w1 + w2 + w3

wherew1,w2, andw3 are weights thatmay be chosen subjectively tomake the three
components of comparable size.

The values of d(i, i′) are arranged in a n × n dissimilarity matrix D, with zero
diagonal and nonnegative elements. When the property of symmetry is valid for
all functions dj(i, i′), matrix D is symmetric. Because this symmetric property is
required by most of the algorithms used, we can fulfill the requirement by redefin-
ingD as (D+ D�)/2.

Once dissimilarity matrix D is constructed, it constitutes the basis for most
of the grouping methods currently used. Each of these sets is determined
to amalgamate subjects with low dissimilarity and separate those with high
dissimilarity. These methods are usually grouped according to the following
scheme:

Clustering

⎧⎪⎨⎪⎩
nonhierarchical

hierarchical
{
agglomerative
divisive

There are also other algorithms that do not fit into this scheme. They are not based
on matrix D, and therefore are not treated here, where we confine ourselves to
classical procedures.
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Table 6.1. SOME COMMON TYPESOF DISSIMILARITY USING CLUSTERINGMETHODS

WITH QUANTITATIVE VARIABLES

Name d(i, i′)
Euclidean distance

simple: wj = 1
weighted with variance wj = 1/s2j
weighted with range: wj = 1/R2

j

(∑p
j=1 wj (xij − xi′ j)2

)1/2

Mahalanobis distance
(where� is a positively defined matrix)

{
(x̃i − x̃i′)��−1(x̃i − x̃i′)

}1/2
Minkowsky distance

(for a parameter λ ≥ 1)

(∑p
j=1 wj (xij − yi′ j)λ

)1/λ

Manhattan distance
∑p

j=1 wj |xij − xi′ j|
Canberra metric (one of several variants),

where terms in which denominator is 0
are excluded

∑p
j=1

|xij − xi′ j|
|xij| + |xi′ j|

L∞ norm max j |xij − xi′ j|

6.1.3 Nonhierarchical Methods
The best-known and by far the oldest nonhierarchical method is called K-means
and was designed for continuous variables. The basic idea is that of identifying
aggregating points, called centroids, around which to construct groups, attributing
observations to the closest centroid. The centroids are not irrevocably fixed but are
themselves subject to sequential updating as the algorithm proceeds.

Let us assume that we have subdivided observations intoK groups, according to
a certain criterion. We note that total dissimilarity, summing all the elements ofD,
can be decomposed as

∑
i,i′

d(i, i′) =
K∑

k=1

∑
G(i)=k

⎛⎝ ∑
G(i′)=k

d(i, i′)+
∑

G(i′)�=k
d(i, i′)

⎞⎠ = Dwithin+Dbetween

whereG(i) indicates the group to which the ith individual is assigned, and

Dwithin =
K∑

k=1

∑
G(i)=k

∑
G(i′)=k

d(i, i′)

Dbetween =
K∑

k=1

∑
G(i)=k

∑
G(i′)�=k

d(i, i′)

are the overall dissimilarity within groups and between groups, respectively. As we
want to choose the groups in such a way as to minimize the dissimilarity within
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them, we try to minimize Dwithin. Because the total dissimilarity depends neither
on K nor on the way in which the groups are created, this aim is equivalent to
maximizingDbetween.

Since the number of possible clusters which can be constructed for a fixed value
of K is finite, in principle this minimization is achievable in a finite number of
operations by scanning all possible choices. Clearly, this is not a viable option, as
the number of possible groupings grows at impressive speed with n, and we must
resort to suboptimal algorithms.

A classic algorithm of this type is that of K-means, which uses the Euclidean
distance to construct dissimilarities between quantitative variables. For a known
property of the sample mean, we can write

Dwithin =
K∑

k=1

∑
G(i)=k

∑
G(i′)=k

‖x̃i − x̃i′‖2 = 2
K∑

k=1

∑
G(i)=k

‖x̃i − mk‖2 (6.2)

where mk is the mean vector of the subjects of the kth group, that is, the vector
form of the arithmetic mean of each variable.

The method aims at minimizing this expression of Dwithin, given group
number K and the initial position of centroids mk . The algorithm then proceeds
iteratively, clustering individuals round the centroids, which are subject to iterative
uploading, until convergence. This convergence is ensured but does not necessarily
correspond to an absolute minimum of the objective function.

The procedure is presented in detail in algorithm 6.1. Step 2.a guarantees that
deviance (6.2) is minimum once the centroids have been chosen, and step 2.b
guarantees the deviance is minimum once the subjects have been allocated to
their groups.

Figure 6.1 illustrates the outcome of the K-means method applied to two sets
of simulated data, with very simple structure, so that in both cases three groups of
points are evident in a basically nonambiguous way. For illustrative purposes, we
use only p = 2 variables. The top panels illustrate the method with K = 3 and
show the final outcome with two choices of initial centroid; the bottom-left panel

Algorithm 6.1 K-means

1. Choose K and initial arbitrary centroidsm1, . . . ,mK .
2. Cycle for r = 1, 2, . . . :

a. for i = 1, . . . , n, assign x̃i to group k, so that ‖x̃i − mk‖ is
minimum,

b. for k = 1, . . . ,K , let mk be equal to the arithmetic mean of the
subjects belonging to group k,

until centroidsm1 . . . ,mK stabilize.



Methods of Internal Analysis 217

−2

−
2

−
1

0
1

2
3

4

x 2
−

2
−

1
0

1
2

3
4

x 2

−
2

−
1

0
1

2
3

4

x 2
x 2

0.1 0.2 0.3 0.4 0.5 0.6

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

−1 0 1 2 3 4
x1

−2 −1 0 1 2 3 4
x1 x1

−2 −1 0 1 2 3 4
x1

Figure 6.1 Simulated data with three groups each. Top and bottom-left panels: data
set C1; bottom-right panel: data set C2. Groups are distinguished by different symbols;
squares: initial position of centroids, chosen randomly; line segment: direction of final
positions of centroids.

refers to the case when K = 4. For these data, the chosen groups, distinguished
by type of symbol, correspond satisfactorily to those that are true, in the sense that
“true” applies to the top panels whatever their initial configuration. The bottom-
left panel obviously contains one group too many, but the union of two of the
chosen groups corresponds substantially to one of the true groups. The same
type of outcome is also maintained when the configuration of the initial centroids
changes greatly.

However, the result of the method is very different in the bottom-right panel,
which refers to other data, with a group structure of a more filiform type. In this
case, the individual groups are obviously different from those that are true, this is
also the case when starting with other choices of initial centroids. This different
type of result is due to the choice of metric used, because the Euclidean distance
allows for spherical structures.
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This method has two limitations: (1) it requires the initial choice of various
elements; (2) it can only be applied to quantitative variables. This second
restriction can be overcome by substituting the Euclidean distance with another
form of dissimilarity, adapting to the case of qualitative variables, and introducing
the concept of medoid, that is, a unit representative of the group that minimizes
within-group dissimilarity. Conversely, the requirement to specify a value for K is,
in many cases, a problem, when we have no information on the structure of the
data to guide us.

6.1.4 Hierarchical Methods
To overcome the foregoing inconvenience and to solve the abrupt specification of
a value forK , methods that structure the data hierarchically and organize them into
groups are often used. This is done by associating the set of points with a binary
tree structure, so that the leaves of the tree correspond to the units and the nodes to
subsets of the points. Due to the nature of a binary tree, this introduces a hierarchy
in the subsets associated with the branches.

There are two large families of hierarchical methods: agglomerative and divisive.
We start with those that are agglomerative, which are more highly developed and
frequently used.

An agglomerative method starts from an initial state in which K = n, that is, a
state in which each individual constitutes a separate group, and then proceeds by
successive aggregations of previously formed groups having low dissimilarity. This
sequence of aggregations continues until K = 1, that is, when all the individuals
belong to the same group.

Clearly, this method of proceeding gives rise to a hierarchical structure in which
the subdivision into K groups “contains” the subdivision in K + 1 groups, in
the sense that the former is obtained from the latter by aggregating two groups.
figure 6.2 shows an example of such a tree; in this context, this type of diagram is
called a dendrogram. The reason for the different lengths of the vertical stems is
given shortly.

To turn the general framework into an operational procedure, we need to
introduce a measure of dissimilarity between the two groups. At the start of the
agglomeration process, when all the groups are formed of a single unit, it is clear
that d(i, i′) also constitutes the dissimilarity between the two degenerate groups
formedby {i} and {i′}. In later stages, we agglomerate groups formedof several units
and, correspondingly, need a dissimilarity measure between groups composed of
more than one unit. If G and G′ represent two groups, the three most frequently
used measures are:

dS(G,G′) = min
i∈G,i′∈G′

d(i, i′), dC(G,G′) = max
i∈G,i′∈G′

d(i, i′),

dM(G,G′) = 1
nG nG′

∑
i∈G

∑
i′∈G′

d(i, i′),

which are called single link, complete link, and average link, respectively. Obviously
the grouping changes with the adopted measure.
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Figure 6.2 A dendrogram.

Information about the dissimilarity between two groups can be incorporated
into a dendrogram by making the height of the vertical line connecting two
successive ramifications on the same branch proportional to the fall in dissimilarity
obtained by passing from K to K + 1 groups.

This fact can be used as a guide to use the dendrogram for the operative choice
of number of groups, if this is not known a priori. For example, in figure 6.2, the two
dashed lines identifyK = 3 andK = 7 groups.We usually cut the tree horizontally
at the level where the vertical stems are longer, and the number of intersecting
stems represents the number of prechosen groups. “Objective rules” also exist, but
which of them is preferable is not immediately obvious. Again, the analyst must
make an evaluation.

To appreciate the effect of different types of link, we examine figure 6.3, which
shows the same data as the first three panels in figure 6.1. From top to bottom, the
first pair of panels refers to the single link, the second to the complete link, and
the third to the average link. For each pair, the left panel presents the dendrogram
and the right panel the clusters corresponding to K = 3, with the same symbols as
in figure 6.1 to distinguish the groups.

In this example, the single link method clearly does not work nearly as well as
the others. This negative result is due to the spheroidal form of the groups. In fact,
in figure 6.4, in which the data from the last panel of figure 6.1 were used, the
groups determined by the complete and average links do not correspond to the
true groups, whereas the single link does allow them to be identified. This means
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Figure 6.3 Simulated data C1: Groups made with agglomerative hierarchical method
and three types of link (from top to bottom: single, complete, and average links). Left:
dendrogram; right: clustering whenK = 3.
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and three types of link (from top to bottom: single, complete, and average links). Left:
dendrogram; right: clustering whenK = 3.
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that the single link tends to work better with filiform types of geometric structures
and the complete link with spheroidal structures.

In one sense, divisive methods represent the dual approach to agglomerative
methods. Here we follow a logic similar to the previous case but start from the
opposite extreme—that is, first forming one group that includes all units, and then
proceeding by successive subdivisions.

The division of a group is evaluated according to the dissimilarity between the
various choices of two subgroups that can be formed starting from the original
one. These dissimilarities between subgroups are evaluated with the same forms
of links already seen for agglomerative methods. However, divisive methods
have been less thoroughly explored and are less frequently used than agglomer-
ative ones.

Bibliographical notes
A pioneering work on cluster methods is by Hartigan (1975). Another classic
account is found in Mardia et al. (1979, ch. 13), which, although more concise,
is still clearly described. A work that in its time significantly influenced the
formulation of the concept of dissimilarity is that of Gower (1971). A relatively
more recent treatment, with particular emphasis on computational aspects, is by
Kaufman & Rousseeuw (2009).

6.2 ASSOCIATIONS AMONG VARIABLES

The previous section concerned the clustering of units and, in a more general
sense, their forms of association. We now deal with the dual problem of relations
among variables.

6.2.1 Elementary Notions of Graphical Models
A large proportion of statistical methodology is concerned with studying how
variables are connected to each other. This broad problem has various forms,
according to whether the variables are quantitative or qualitative, whether there
is a natural distinction between explanatory and response variables, and so on. In
fact, much of what we have seen in the previous chapters deals with the problem
of relationships between variables in the asymmetric case, that is, one or more
variables that are responses to explanatory ones. Here, we briefly deal with the
symmetric case, in which all variables play the same role.

The best-known concept of dependence between two variables is probably that
of correlation. If xr and xs are the vectors of observations on two quantitative
variables, recorded from the same n units, the sample correlation between them
can be written as

corr{xr, xs} = 〈x′r, x′s〉
‖x′r‖ ‖x′s‖ = cos(angle between x′r and x′s)

where x′r and x′s represent the deviations of xr and xs from their respective
arithmetic means, and the notation 〈x′r, x′s〉 indicates the inner product.This is
not the most common way the correlation is expressed algebraically, but it has



Methods of Internal Analysis 223

the advantage of showing its geometric interpretation, and it highlights the fact
that correlation measures the degree of alignment of the directions of x′r and x′s. If
we have p numerical variables, say, x1, . . . , xp, we calculate the correlation matrix
formed by all the pairs of corr{xr, xs}, for r, s = 1, . . . , p.

The population version of the concept of correlation, referred to two random
variables, Xr and Xs, is given by

corr{Xr,Xs} =
E
{
X ′r X ′s

}
‖X ′r‖ ‖X ′s‖ =

cov{Xr,Xs}√
var{Xr} var{Xs}

where X ′r = Xr − μr , X ′s = Xs − μs denote the centred variables after subtracting
their mean values,μr andμs, and we have used the nonstandard notation

‖U‖ = E
{
U2}1/2

referred to a 0-mean random variable U . As for the sample version, a set of p
random variables leads to the introduction of a correlation matrix formed by all
pairs corr{Xr,Xs}; see also section A.2.1.

Although the correlation matrix is a fundamental tool in studying dependence
structures, it does have limitations. One is the fact that a correlation reflects
exclusively the dependencies of linear type between variables, but as this is
discussed in every introductory textbook on statistics, we do not discuss it now.

Another source of difficulty in interpreting the values of the correlation matrix
is illustrated by the following simple numerical example, taken from Mardia et al.
(1979, p. 170). In a sample of children, the variables are:

x = intelligence, y = weight, z = age

and a sample correlation matrix is

R =
⎛⎝ 1 0.6162 0.8267

0.6162 1 0.7321
0.8267 0.7321 1

⎞⎠ .

The high correlation between weight and intelligence, 0.6162, indicates a
relationship between variables that is very surprising and unlikely on general
grounds. The problem lies in the third variable, age, and how it interacts with
the other two.

Therefore, for better indications, we must examine the dependence between x
and y after the effect of z has been removed. This leads us to obtain the residual
vectors

e(x) = x −
(
β̂
(x)
0 + β̂

(x)
1 z

)
, e(y) = y −

(
β̂
(y)
0 + β̂

(y)
1 z

)
,

after the linear dependence on z has been removed by fitting a simple regression
model of type (2.1) on each of x and y and to consider the correlation between
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these residual vectors. We then arrive to the introduction the partial correlation
between x and y given z, which is defined as

corr
{
x, y

}∗ = corr
{
e(x), e(y)

}
.

Again, a population version of the partial correlation is introduced, replacing
sample vectors by random variables and sample moments by populationmoments,
as for the correlation.

In our numerical example, the partial correlation between weight and
intelligence, once age is fixed, drops to a much more reasonable 0.0286;
this means that they are essentially uncorrelated. Repeating the previous operation
for all the variables—that is, considering all the possible pairs of variable—we
obtain the partial correlation matrix

R∗ =
⎛⎝ 1 0.0 0.7
0.0 1 0.5
0.7 0.5 1

⎞⎠
where we round the values to only one decimal place; in particular, 0.0286 is
rounded to 0. This is reasonable when we consider that the observed correlations
are subjected to sampling variability. To proceed in a canonical way, we would
have to test a statistical hypothesis formally, but that is not the point we wish to
focus on now.

The matrix of partial correlations, R∗, is much easier to interpret than that of
marginal correlations, R, particularly when we associate it with a graph like that
shown in figure 6.5, which is made up of one node for every variable and one
nondirected edge for every nonzero partial correlation. The graph shows that x
and y are correlated only “through” z, and are uncorrelated conditionally on the
value assumed by z.

Now assume joint normality of the three parent random variables, say,
(X, Y ,Z). Because independence and lack of correlation are equivalent condi-
tions in the context of multivariate normal distributions, we have a situation of
conditional independence betweenX and Y , conditionally on the value ofZ: wewrite
X ⊥⊥ Y |Z.

X Y

Z

Figure 6.5 A simple graphical model.
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The need to develop tools for examining and correctly interpreting complex
dependence structures becomesmore pressing as the number of available variables
increases. The theoretical apparatus is often called a graphical model because it is
linked to the idea of expressing the dependence structure by means of a graph.
This theory is highly structured: it does not handle only continuous variables, nor
does it refer only to analysis of association structures of a symmetric nature, but
it also covers the asymmetric case, in which one or more variables play the role
of the response variable with respect to the explanatory variables, as described
in previous chapters. Here we merely mention the analogy of the previous case
when using categorical variables.

Nowmove to the case where X and Y represent two categorical variables. Their
joint distribution is identified by the set of probabilities

πjk = P
{
X = xj, Y = yk

}
where xj and yk vary in the set of levels for variables X and Y , respectively. It is also
useful to rewrite these probabilities in another form, based on the identity

πjk = πj+ π+k
πjk

πj+ π+k

where symbol + indicates the sum of the values over the corresponding index
(e.g., πj+ =

∑
k πjk). This yields

log πjk = βX
j + βY

k + βXY
jk (6.3)

where βX
j = log πj+, and analogously for the other terms.

This factorization of probabilities allows a clearer interpretation of the
ingredients. Because X and Y are categorical variables, the right-hand side
is similar to the same type used in two-way analysis of variance. In our case,
too, the various parameters are subject to constraints, such as∑

j

πj+ = 1 =
∑
k

π+k.

Terms βX
j and βY

k of (6.3) play the role of main effects and reflect the marginal
distribution ofX andY . “Interaction” termβXY

jk , which depends on the relationship
between probabilities πjk and their value in the independence case, πj+ π+k ,
constitute an association measure between factors X and Y . Specifically, if βXY

jk = 0
for all j and k, we have a situation of independence between X and Y ; conversely,
positive values indicate that the probability of event {X = xj ∩ Y = yk} is higher
than in the independence hypothesis, and there is therefore a positive association
between event components {X = xj} and {Y = yk}. In reverse, negative values
of the parameter indicate a “repulsion” situation, or negative association between
events.



226 DATA ANALY S I S AND DATA M IN ING

Now assume that, on the basis of a sample of n elements, a frequency table
has been constructed, of which entry njk represents the observed frequency of
events {X = xj ∩ Y = yk}. Denote the expected value of njk by μjk . From (6.3),
it immediately follows that

logμjk = log n+ βX
j + βY

k + βXY
jk (6.4)

which is a special case of the generalized linear models (2.42). In this particular
case, the link function is the logarithm and (6.4) is an example of the log-linear
model.

We can also use theoretical apparatus and the iterative weighted least squares
algorithm for GLMs. Starting from observed values njk , we can estimate the
parameters of (6.4) and carry out other inferential operations. We can therefore
verify that the available data allows the removal of component βXY

jk from (6.4),
inasmuch as it is not significant, and we conclude that X and Y are independent
variables.

However, we often have to deal with more than two variables, sometimes
many more. As in analysis of the correlation structure of a continuous
multivariate variable, it is essential to use tools allowing for systematic examina-
tion of dependence structures that rapidly become complicated. The concept of
conditional independence also plays an important role in the case of categorical
variables.

If we consider three categorical variables, (X, Y ,Z), and indicate by μjkl the
number of obtained observations for the general cell of the corresponding three-
way table, representation as the corresponding log-linear model, as in (6.4), is

logμjkl = log n+ βX
j + βY

k + βZ
l

+ βXY
jk + βYZ

kl + βXZ
jl + βXYZ

jkl

where the significance of the new symbols is similar to those already introduced.
Note here that term βXYZ

jkl is also introduced, whereas in the Gaussian case a term
expressing an association between three components did not exist, because the
particular nature of normal distribution allows us to express all associations among
variables via correlations, and thus only involves pairs of variables.

The specification of the foregoing model for the independence of X and Y
conditional on Z is given by

log μjkl = log n+ βX
j + βY

k + βZ
l + βYZ

kl + βXZ
jl

and figure 6.5 shows the relative graph (with different labeling of nodes).
In the applicational context on which we focus, log-linear and graphical

models are used in studying associations between variables (often categorical)
that variously represent aspects of customers’ behavior. These associations, both
positive and negative, give us useful suggestions for company commercial actions.
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Bank
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B

C

Income

Marital status

Household tenure statusAmount of credit

InsolvencyCredit card insolvency

Figure 6.6 A graphical model for credit scoring.

In terms of computational cost, a high value of n has a small effect because
determination of frequencies njk is fast and computing time increases linearly
with n. Once the frequency table has been obtained, later processing has a
computational cost that does not depend on n. However, difficulties may arise
if the number of variables involved is high, and even more so if the number of
possible levels of these variables is large, because this can lead to a huge frequency
table. We discuss this aspect in the following subsection from a different point
of view.

To illustrate the capacity of the representation of complex dependency
structures, consider figure 6.6, taken from Hand et al. (1997). It shows a model
to evaluate which variables influence the occurrence of insolvency in returning
a bank loan. The study was based on a survey of about 23,000 holders of loans
issued by a large U.K. bank. Financing not exceeding £10,000 was allowed, not
covered by secure guarantees.

The variables in the model described customers according to their demogra-
phic characteristics, which are Age (categories: 17–30, 31–40, or over 40) and
Marital Status (Married, Other), and socioeconomic ones, which were
Income (up to £ 700, £ 700–£ 1500, over £ 1500) and an indicator variable of
housing tenure status. Information derived from the credit history of the customer,
encoded by some indicator variables, was also available: Bank indicates a current
account with the loan company, Credit card insolvency indicates past
difficulties with credit card payments. Last, there is information about finances:
the loan Amount (up to £ 3000, over £ 3000), Insolvency, measured with
an indicator variable of a certain number of missed payments, and an indicator
variable for taking out loan protection insurance, because all customers were given
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the opportunity, by means of a small increase in the monthly payment, to buy
insurance to protect themselves from some types of insolvency.

One node of the graph in figure 6.6 is associated with each variable. The edges
denote associations among the variables; the absence of an edge means that the
corresponding variables are conditionally independent, given the values of the
other variables. The advantage of visualizing the model by means of the graph
is the parallel between graphical separation and conditional independence, which
means that if all paths from a node of set A to a node of set C pass through a node
of set B, then set A is conditionally independent of set C, given B. This implies
that, knowing the values of the variables in B, knowledge of the variables in C does
not add any information about the nodes in A, and vice versa.

Interpreting that, if income, age, and the indicators of bank and insurance
company are known, then the amount of credit, marital status, and housing tenure
status do not provide extra information in predicting loan insolvency or financial
insolvency. In other words, the set of nodes grouped in setsA, B, andC in figure 6.6
behave the same way as X , Z, and Y in figure 6.5. Therefore, for this type of
financing, the variables for income, age, and the indicators of insurance, bank,
and credit card insolvency contain all the information regarding insolvency. This
causes a significant reduction in the size of the problem and enables us to identify
customer profiles with an insolvency probability about three times the marginal
probability.

6.2.2 Association Rules
Let us denote by A1,A2, . . . ,Ap a set of binary variables, whose possible values
are labeled 0 and 1. Although in an abbreviated fashion, the previous section
showed how the basis of n observations of such variables can let us develop amodel
to represent the dependence structure of such variables compactly.

To develop the connected log-linear model, we first have to construct the
p-ways frequency table. If all the variables are dichotomous, the number of cells in
the table is 2p cells, a number that “explodes” rapidly as p increases and is higher
still if some of the variables have more than two levels. If p = 20, for example,
the number of cells is 2p = 1048576. The potential number of parameters to be
estimated for the connected log-linear model is slightly lower, but is gigantic in
any case.

To explain the following, we refer to a background applied problem, where
high values of p are easy to observe. In market basket analysis, variable Aj is
the indicator variable, often called an item, that is, a customer has purchased
the jth product from the company catalog (j = 1, . . . , p). According to data
on the purchases made by n customers, we identify the associations existing among
variables A1, . . . ,Ap, or at least pick up those that are considered interesting.

If the company in question has a catalog containing a small number of items, for
example, a service company, then the methods discussed in the previous section
are perfectly adequate. Instead, if the company is a supermarket, then p is easily of
the order of thousands, a frequency table with 21000 cells cannot even be stored
in a computer, and it cannot be processed to develop a log-linear model. Besides
computing complications, there is also a serious inferential problemwith this table,
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which will inevitably be extremely sparse, that is, with very many zeroes, hence
violating the standard assumptions for inferences about log-linear models.

In short, we must explore other routes. An alternative and currently very
popular method comes from the field of machine learning and similar areas. It
refers to the idea of association rule, intended as a proposition of the type

condition⇒ consequence

as for example

it is raining⇒ the ground is wet

The concept of rule constitutes a classic paradigm in the field of artificial
intelligence as a way of representing knowledge. The variant of this concept of
more direct interest to us is the probabilistic (association) rule, which assigns a
probability to the previous “consequence,” once the condition has been fulfilled.
For example, the rule

the customer purchases bread and jam⇒ the customer purchases butter

does not intend to be deterministic, and therefore a probability is typically
associated with it.

On the basis of n purchases carried out by as many customers, our aim is thus
to choose rules that in probability theory correspond to conditional probabilities
of the type:

P{E2|E1} = P{E1 ∩ E2}
P{E1} = π12 (6.5)

where E1 is an event related to a group of variables and E2 an event determined
by another set of variables; all the rules need not involve the same number of
variables. Obviously, to evaluate these probabilities numerically, we make use of
the relative frequencies of the same events, as observed in the data. For example,
jam is the indicator variable of the purchase of jam, and so on for other variables.
So a simple probabilistic rule is of the type

P{butter = 1|bread = 1, jam = 1} = 0.71 (6.6)

where E1 involves two indicator variables and E2 one. In this context, sets of
events such as E1 or E2 are called itemsets and are called k-itemsets if the events
specify the values of k indicator variables. For example, E2 is a 1-itemset and E1 a
2-itemset.

We can infer many rules from a data set, even for a limited number of variables,
but to be useful, a rule must satisfy various conditions, as follows:

• Obviously, a rule must have a high level of confidence, that is, value π12 of
(6.5) must be high, ideally, 1.
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• The rule must also be capable of being applied to a suitable number of
cases. For example, the rule of (6.6) has a good level of confidence, but if we
later discover that hardly anyone buys both bread and jam, it is practically
useless. The rule must therefore have a high support, given by P{E1} in
(6.5). The term support is also sometimes used to refer to P{E1 ∩ E2}.
Itemsets with supports larger than a fixed threshold are called frequent
itemsets.

• In a predictive approach, another characteristic for a good rule requires
that knowledge that the “condition” is verified should produce a better
prediction of the “consequence.” A measure of this is given by the ratio
between confidence and the support of the consequent event, which is
a measure of expected confidence when the condition is not known. An
estimate of this association measure, P(E2|E1)/P(E2) = P(E2 ∩ E1)/
P(E1)P(E2), is called lift. Although this term coincides with that of
section 5.2.4, the two concepts are separate. Note that this lift is the
exponential of term βXY in (6.3).

• Last, the rule must be “interesting.” The rule “if a person has a baby,
then she is a woman” has a confidence level of 1, and support is
not negligible, but the rule states nothing of interest. Identifying what
is ‘interesting’ is not always easy, because it often involves specific
aspects of the essential problem. However, there have been proposals
to introduce quantitative criteria, such as the “J measure,” which
is fundamentally given by the Kullback-Leibler divergence between
conditional distribution (P{E2|E1} ,P

{
Ē2|E1

}
) and unconditional dis-

tribution (P{E2} ,P
{
Ē2
}
), weighting the divergence with P{E1}.

The problem of operatively identifying the rules remains. Conceptually, the type
of operations required is elementary: we first calculate the empirical frequencies of
various subsets and then select those that are the most useful with respect to the
criteria. Although the required operations are very simple, the size of the possible
events to consider is mind-boggling, even when the number p of variables is not
very high and the computational cost becomes unmanageable.

However, the APriori algorithm comes to our rescue. Developed specifically
for this problem, APriori is highly efficient and can select a set of associated rules
that are interesting in some way, even though a limited number of data readings
is available. The APriori algorithm, presented in algorithm 6.2, uses a hierarchical
“level-wise” search,where k-itemsets (i.e., containing k indicator variables) are used
to explore (k + 1)-itemsets to find frequent itemsets. This is done by following
the a priori property: any (k + 1)-itemset that is not frequent cannot be a subset
of a frequent k-itemset and hence should be removed. Initially, the set of frequent
1-itemsets is found. This is used to find the set of frequent 2-itemsets, which in
turn is used to find the set of frequent 3-itemsets, and so on until no more frequent
k-itemsets can be found.

The results and conclusions are rather different from those discussed in previ-
ous sections for other models. At least two considerations must be made.
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Algorithm 6.2 APriori algorithm for association rules

1. Assign a threshold ts for support and one tc for confidence.
2. Let k = 1; generate frequent 1-itemsets with support larger than the

indicated threshold ts.
3. Cycle for k = 2, 3, . . . until no new frequent itemsets are identified:

a. generate candidate itemsets with length (k + 1) from frequent
k-itemsets;

b. prune candidate itemsets containing infrequent k-itemsets
(support lower than threshold ts);

c. obtain the support of each candidate (k + 1)-itemset by scanning
the entire data set;

d. eliminate infrequent candidates, keeping only thosewhose support
is larger than threshold ts.

4. For every nonempty subset of each frequent itemset, choose the rules that
have confidence larger than threshold tc .

• The final result is not a global model illustrating the complex behavior of
the phenomenon but a selection of particular aspects that are considered
of interest. The aim of the study is therefore part of the identification of
interesting data patterns; see section 1.1.2.

• As the association rules selected in this way are not inserted in
an inferential process, we have no information about their level of
generalizability. It is not difficult to construct a statistical significance test
for a fixed proposition, but the problem is that, in principle, we carry
out a large number of such tests and select only those that are the most
significant.We therefore process repeated hypothesis tests that completely
change the real significance level, which in the end is very different from
the nominal one.

A final remarks deals with the field of application of the association rules. As
already noted, the most classical application is market basket analysis, but the same
concepts are relevant for other uses. An example is text analysis, in which indicator
variable Aj may indicate the presence or absence in a certain fragment of text of the
jth term of a vocabulary list with p terms ( j = 1, . . . , p).

Bibliographical notes
The theory of graphical models is excellently explained by Whittaker (1990) and
is still very pertinent today. Two other classic texts are those by Lauritzen (1996)
and Cox & Wermuth (1998), the former more mathematical in nature, the latter
combining theoretical and applicative aspects. Association rules are discussed,
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among others, by Hand et al. (2001, ch. 13). The APriori algorithm was developed
by Agrawal et al. (1996), combining previous works by the same authors.

6.3 CASE STUDY: WEB USAGE MINING

We return to the real-life case analyzed in section 5.10.4. Here, we concentrate
on the segmentation of visitors to the company website.

In this section, we follow two lines of analysis that complement what was
already shown in section 5.10.4. First, we look for behavioral segments of visitors
in terms of visited pages, in particular by classifying visitors into homogeneous
groups according to visits to pages belonging to the eight areas already used in the
previous analysis. We then analyze sequences of visited pages by identifying the
most likely navigation paths in the website.

6.3.1 ProfilingWebsite Visitors
Website managers are interested in behavioral segmentation of visitors for future
marketing decisions, and cluster analysis (see section 6.1) is typically used.

Table 6.2 showswhich visitors reachedwhich areas in sessionswith a single page.
Clearly, as people visiting only one page are easily classified by the area including
that page, we remove them from subsequent analysis.

A more specific method of analysis is needed for the 4,572 visitors going to two
or more pages. Table 6.3 lists some descriptive indicators of the distributions of
the number of hits for each area. All distributions are highly skewed to the right,
and it seems reasonable to use some kind of data transformation to run a clustering
procedure. Because the variables represent counts, all measured on the same scale
as the number of hits, it also seems reasonable to consider the base 2 logarithm of
each of them incremented by 1. This transformation, once rounded upwards, is the
number of binary digits needed to write the counting number.

The choice of a complete linkage is natural in implementing hierarchical cluster
analysis in this case, where we are looking for very homogeneous groups. Figure 6.7
shows the dendrogram for identifying the optimal number of groups, in which
the dashed line shows the level at which we decide to cut the tree, obtaining

Table 6.2. WEB USAGE MINING:
PERCENTAGEOF THE SINGLE-PAGE

SESSIONS FOR EACH AREA

Area %Visits

Business area 23.21
Communications 1.45
Company 1.00
Consulting 8.70
Contacts 0.12
Events 1.42
Home 1.33
White papers 50.78
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Table 6.3. WEB USAGE MINING: MEANS, MEDIANS, AND PERCENTILES FOR NUMBER

OF HITS TO EACH AREA

Area Mean Median 3rd 90th 99th
quartile percentile percentile

Business area 2.275 2 3 6 9
Communications 0.2937 0 0 0 2
Company 0.8871 0 0 3 6
Consulting 0.7220 0 0 2 4
Contacts 0.1562 0 0 1 1
Events 0.1223 0 0 0 1
Home 0.6177 0 0 2 3
White papers 0.5693 0 0 2 3

10
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0

Figure 6.7 Web usage mining: Dendrogram for cluster procedure with complete linkage.

four groups. Cuts allowing the choice of three or four groups are all of similar
height, so we decide to use the larger number of clusters (i.e., four).

Table 6.4 lists averages and standard deviations for each cluster of the eight
variables used. These outcomes show the following.

• Cluster A is characterized by a large number of visits to the business
area, home, company, consulting, and contacts pages. These visitors are
probably the most interested ones, who may become customers of the
consulting branch: they look at all the company information, the consulting
area, and the business areas in which the company works.

• Cluster B is the smallest and has a very high number of visits to the
white papers area. These customers are interested in the workings of the
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Table 6.4. WEB USAGEMINING: MEANS AND STANDARD DEVIATIONS (IN BRACKETS) FOR

NUMBEROF VISITS TO EACH AREA

Area Cluster A Cluster B Cluster C Cluster D Overall mean

Business area 9.43 (5.83) 0.58 (2.02) 1.76 (1.92) 0.30 (0.73) 2.27 (3.36)
Communications 0.67 (1.59) 0.02 (0.14) 0.27 (1.24) 0.16 (0.62) 0.29 (1.22)
Company 3.15 (6.40) 0.07 (0.43) 0.69 (2.03) 0.53 (1.90) 0.89 (2.79)
Consulting 2.23 (3.80) 0.41 (1.81) 0.13 (0.46) 3.73 (3.76) 0.72 (2.13)
Contacts 0.37 (0.78) 0.02 (0.14) 0.12 (0.39) 0.21 (0.59) 0.15 (0.47)
Events 0.43 (0.79) 0.11 (0.37) 0.09 (0.35) 0.13 (0.58) 0.12 (0.45)
Home 1.67 (2.14) 0.62 (1.35) 0.43 (0.88) 1.10 (2.41) 0.62 (1.36)
White papers 0.40 (1.83) 14.75 (14.18) 0.46 (0.94) 0.02 (0.14) 0.57 (2.38)

Number of visitors 409 53 3603 507 4572

company, probably with the aim of learningmore about what the company
actually does and how, rather than doing business with it.

• Cluster C is the largest group, and shows a low level of interest in consult-
ing and events. None of the areas is visited more than another, and this
group may be considered as one of general surfers.

• Cluster D shows great interest in consulting, home page, and contacts.
These visitors are less interested in white papers and business, so they
are probably less interested in understanding in detail how the company
works, but they still seem to be interested in the company’s products. They
are probably a group of potential customers, although less determined and
perhaps less knowledgeable than those of Cluster A.

We also implement the nonhierarchical k-means algorithm. As discussed in
section 6.1, we need to select the number of expected clusters. In practice, we find
solutions for a range of values for the numbers of clusters and examine the value of
the within-group sum of squares associated with each solution. As the number of
groups increases, thewithin-group sumof squares decreases.However, wemay find
some sudden change indicating the best solution. The top panel of figure 6.8 plots
this quantity for a range of number of clusters. Here, the centers of each cluster are
randomly selected. The plot suggests looking at the four-cluster solution, where
the “elbow” is slightly sharper. The means of the clusters are plotted in the bottom
panel of figure 6.8 and show the following:

• Group 1, with 175 sessions, is characterized by a high number of visits to
every area, and is the group with the most loyal visitors.

• Group 2, with 2752 sessions, includes visitors with a high average number
of hits on the white paper area, but few to all other areas.

• Group 3, with 388 sessions, shows visitors’ great interest in the company,
contacts, and events, but little in white papers. Visitors are potential
customers for events organized by the company.
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Figure 6.8 Web usage mining. Top: plot of within-group sum of squares against number
of clusters. Bottom: means of the clusters for each area.

• Group 4, with 1257 sessions, comprises visitors who are only interested in
the business area; all other areas are seldom visited.

These differences between the sets of clusters obtained by the two procedures
are noticeable and represent a typical practical situation. Cross-tabulation of the
two sets of groups is given in the table.
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Hierarchical
clusters

k-means clusters

1 2 3 4

A 139 1 19 250
B 2 49 0 2
C 27 2228 351 997
D 7 474 18 8

However, the aim of website managers, that is, to find homogeneous groups
among visitors, did not require a single segmentation result. They may actually be
interested in examining and using each of them for different marketing goals.

For example, the segmentation yielded by the hierarchical procedure can be
used to plan actions for customers interested in consulting products. Cluster A
is sufficiently small and well characterized to be viewed as a target of marketing
action by direct proposals for consulting services on the part of the company.
Cluster B comprises people interested in the contents andmethods adopted by the
company; it may include researchers or other consultants who useful as contacts to
improve methodology and share know-how.

The set of groups obtained by k-means may also be used to segment potential
customers of other products offered by the company, such as organization of
events: group 3 is a typical target interested in events. Group 1 is mainly a subset
of hierarchical Cluster A, including the most loyal and interested visitors of that
cluster. Group 4 isolates visitors interested in the business area, who were not
identified in the other sets.

Therefore, both segmentations may be used by website managers to decide on
various marketing actions, directed to different targets and with different goals,
and new visitors may be included in a specific cluster (one for each of the two
segmentations proposed) depending on their surfing habits.

6.3.2 Sequence Rules and Usage Behavior
In section 5.10.4 we saw how visits to a single page can be predicted by analyzing
data on the order in which web pages are visited. Here, a finer analysis is proposed
to predict navigation paths and page sequences by considering every single page
instead of areas and analyzing all observed paths, not only final hits on the
contacts pages.

Association rules (see section 6.2.2) can be used to see the most probable
navigation paths in the website and predict the pages that will be viewed according
to the path the visitor has taken so far.

In consideration of the large number of pages visited, corresponding to the
events we wish to associate, we use a simple modification of the APriori algorithm,
called the sequential pattern discovery using equivalence classes (spade) algorithm,
proposed by Zaki (2001) which identifies the navigation paths visited most
often. In this case, the order of visits to pages is crucial to understanding the
sequential path of the session. To take into account the order of sequences, we only
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consider rules in which events are naturally ordered and, to simplify computation,
associate each sequence to the ordered lists of sessions in which it occurs. Frequent
sequences can thus be found efficiently by means of intersections on these lists.

Figure 6.9 shows the frequency bar plot for inspecting the item distribution of
pages visited. To reduce the number of items, we only plot item frequency for
items with support greater than 2%.

The algorithm found a total of 186 sequences with support of at least 0.5%. By
selecting only rules with at least 60% of confidence, we obtain the 15 sequences
shown in table 6.5. Here, the support indicates that the percentage of users
who visited the two pages were in sequence, and the confidence represents the
probability that the second page of the sequence was seen by visitors interested in
the first (group of) page(s).

http://www.company.it/
http://www.company.it/business_units/car.html

http://www.company.it/business_units/customers_en.html
http://www.company.it/business_units/customers.html

http://www.company.it/business_units/finance_en.html
http://www.company.it/business_units/finance.html

http://www.company.it/business_units/finance2.html
http://www.company.it/business_units/finance3_en.html

http://www.company.it/business_units/finance3.html
http://www.company.it/business_units/finance4_en.html
http://www.company.it/business_units/finance4_es.html

http://www.company.it/business_units/finance4.html
http://www.company.it/business_units/insurance.html

http://www.company.it/business_units/internet.html
http://www.company.it/business_units/others.html

http://www.company.it/business_units/publisher.html
http://www.company.it/business_units/sales.html

http://www.company.it/business_units/sales2.html
http://www.company.it/business_units/telecom_en.html

http://www.company.it/business_units/telecom.html
http://www.company.it/business_units/telecom2_en.html

http://www.company.it/business_units/telecom2.html
http://www.company.it/communications/birthday.html

http://www.company.it/communications/index.html
http://www.company.it/communications/newformat.html

http://www.company.it/communications/vote.html
http://www.company.it/company/index_en.html

http://www.company.it/company/index.html
http://www.company.it/company/jobs.html

http://www.company.it/company/methodology.html
http://www.company.it/company/partners.html

http://www.company.it/company/staff.html
http://www.company.it/company/technology.html

http://www.company.it/consulting/create.html
http://www.company.it/consulting/education.html

http://www.company.it/consulting/education2.html
http://www.company.it/consulting/education3.html

http://www.company.it/consulting/product.html
http://www.company.it/consulting/projects_en.html

http://www.company.it/consulting/projects.html
http://www.company.it/consulting/realize.html

http://www.company.it/contacts/index.html
http://www.company.it/events/index.html

http://www.company.it/index_en.html
http://www.company.it/index.html
http://www.company.it/map.html

http://www.company.it/white_papers/pdf/paper23.pdf
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Figure 6.9 Web usage mining: Item frequencies of page views with support greater
than 2%.
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Table 6.5. WEB USAGE MINING: THEMOST FREQUENT SEQUENCES OCCUPYINGMORE

THANONE PAGE

Rule Support Confidence Lift

1 <http://www.company.it/business_units/finance4.html,
http://www.company.it/business_units/customers.html>
=><http://www.company.it/business_units/finance4.html>

0.0056 0.7228 10.04

2 <http://www.company.it/company/index.html,
http://www.company.it/company/staff.html,
http://www.company.it/company/partners.html>
=> <http://www.company.it/company/jobs.html>

0.0069 0.7054 35.35

3 <http://www.company.it/company/staff.html,
http://www.company.it/company/partners.html>
=> <http://www.company.it/company/jobs.html>

0.0073 0.6931 34.73

4 <http://www.company.it/,
http://www.company.it/company/index.html,
http://www.company.it/company/staff.html>
=> <http://www.company.it/company/partners.html>

0.0065 0.6552 49.53

5 <http://www.company.it/,
http://www.company.it/company/index.html>
=> <http://www.company.it/company/staff.html>

0.0100 0.6525 36.86

6 <http://www.company.it/,
http://www.company.it/company/staff.html>
=> <http://www.company.it/company/partners.html>

0.0068 0.6520 49.29

7 <http://www.company.it/company/index.html,
http://www.company.it/company/technology.html>
=> <http://www.company.it/company/partners.html>

0.0054 0.6498 49.12

8 <http://www.company.it/company/index.html,
http://www.company.it/company/partners.html>
=> <http://www.company.it/company/jobs.html>

0.0074 0.6467 32.40

9 <http://www.company.it/company/index.html,
http://www.company.it/company/staff.html>
=> <http://www.company.it/company/partners.html>

0.0099 0.6434 48.64

10 <http://www.company.it/consulting/create.html>
=> <http://www.company.it/consulting/realize.html>

0.0052 0.6398 75.38

11 <http://www.company.it/company/index.html,
http://www.company.it/company/technology.html>
=> <http://www.company.it/company/staff.html>

0.0053 0.6359 35.93

12 <http://www.company.it/company/partners.html>
=> <http://www.company.it/company/jobs.html>

0.0082 0.6185 30.99

13 <http://www.company.it/company/technology.html>
=> <http://www.company.it/company/partners.html>

0.0055 0.6128 46.32

14 <http://www.company.it/company/index.html,
http://www.company.it/company/staff.html>
=> <http://www.company.it/company/jobs.html>

0.0093 0.6060 30.36

15 <http://www.company.it/company/technology.html>
=> <http://www.company.it/company/staff.html>

0.0054 0.6000 33.90

Among the page sequences visited by a moderately large number of people, the
rule with the highest confidence describes a path from two pages presenting those
business units including finance and customers, and then goes back to a finance
page, with a conditional probability of 72%. With almost the same confidence,
there are two sequences that, from the pages describing the company as a working
environment (index, staff, partners, etc.), then go to the page listing job offers,
including people looking for new jobs.

Two paths moving from generic company pages to information about staff and
partners still have high confidence (65%). This is a typical sequence followed
by people potentially interested in doing business with the company: first they
look for generic information about it; when they see it appears to be interesting,
they look for the personal characteristics of the people working there (this is
mainly a consulting company, so the standards of its personnel are crucial for
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the services offered). A further passage may be direct contact with the aim of
collaborating with the company.

Note that only a few of the identified rules involve pages from different areas
of the website. The pages do not seem to be very well connected, or else people
visiting the site are only interested in specific goals and go directly to the pages
of interest.



Appendix A

Complements of Mathematics
and Statistics

A.1 CONCEPTS ON LINEAR ALGEBRA

We recall some standard facts in linear algebra and establish notation. A matrix is
an array of elements, or entries, all taken from the same set, organized into rows
and columns. These entries commonly belong to the set of real numbers, and this
is the case we deal with here. Matrix A has dimensionm× n if it hasm rows and n
columns; we can also say that A is anm× nmatrix and write A = (aij), where the
parentheses contain the generic element of A.

The transposed matrix of A, obtained by switching rows and columns, is
denoted A�. A matrix v of dimension n × 1 is called the (column) vector of
dimension n or, equivalently, the n× 1 vector, and we write v ∈ R

n; analogously,
a matrix of dimension 1× n is called a row vector.

The identity matrix of order n is indicated by In, 1n is the n × 1 vector having
all elements equal to 1 and 0 is the zero-matrix whose dimension will be clear from
the context.

If A = (aij) is a square matrix of order n, that is, an n × n matrix, we use the
following notation and terminology:

i. A is symmetric if A� = A;
ii. det(A) is the determinant of A; the property det(A B) = det(A) det(B)

holds;
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iii. If det(A) �= 0, we say that A is nonsingular and there is an inverse
matrix, A−1, so that A A−1 = A−1 A = In; we can also write (A�)−1 =
(A−1)� and (A B)−1 = B−1 A−1, if both the inverses exist;

iv. A symmetric matrix A is positive semi-definite if u�Au ≥ 0 for every
nonzero vector u ∈ R

n; in this case, we can write A ≥ 0; we can also
write A ≥ B to indicate that A − B ≥ 0;

v. A symmetric matrixA is positive definite if it is symmetric and u�Au > 0
for every nonzero vector u ∈ R

n; in this case, we write A > 0; we also
write A > B to indicate that A − B > 0;

vi. A is orthogonal if its transpose and inverse are equal, that is, A� = A−1;
in this case, det(A) = ±1;

vii. tr(A) is the trace of A, that is, the sum of the elements on its main
diagonal; tr(AB) = tr(BA) holds for two matrices A and B, which
need not to square, presuming both products AB and BA are possible;

viii. A is idempotent if A = A2; for an idempotent matrix, the rank is equal
to the trace, that is, rk(A) = tr(A);

ix. A is a diagonal matrix if all the elements outside the main diagonal
(a11, a22, . . . , ann) are 0; we can also write A = diag(a11, . . . , ann);

x. The so-calledmatrix inversion lemma

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (A.1)

holds when thematrices are of conformable dimensions and the required
inverse matrices exist; in particular, if b and d are column vectors and
c = 1 is a scalar, then (A.1) becomes

(A + b d�)−1 = A−1 − 1
1+ d�A−1b

A−1b d�A−1 (A.2)

which is called the Sherman–Morrison formula.

A.2 CONCEPTS OF PROBABILITY THEORY

A.2.1 Multivariate RandomVariables
If X1, . . . ,Xp are random variables defined on the same probability space, then
the vector

X =

⎛⎜⎜⎜⎝
X1
X2
...

Xp

⎞⎟⎟⎟⎠
is a multivariate random variable. The expectation or mean value E{X} of X is
defined as the vector of the expectations of the components, if they all exist.
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That is, we define

E{X} =

⎛⎜⎜⎜⎜⎝
E{X1}
E{X2}

...

E
{
Xp
}

⎞⎟⎟⎟⎟⎠
and the variance matrix (or dispersion matrix) is defined as

var{X} =

⎛⎜⎜⎜⎜⎜⎝
var{X1} cov{X1,X2} . . . cov

{
X1,Xp

}
cov{X2,X1} var{X2} . . . cov

{
X2,Xp

}
...

...
. . .

...

cov
{
Xp,X1

}
cov

{
Xp,X2

}
. . . var

{
Xp
}

⎞⎟⎟⎟⎟⎟⎠
presuming the existence of every element of the matrix. However, the existence of
the elements on the main diagonal is sufficient to guarantee the existence of all the
others, keeping in mind the Cauchy-Schwartz inequality. Note also that var{X} is a
symmetric matrix and that var{Xi} is a notation equivalent to cov{Xi,Xi}.

The matrix obtained by dividing the generic term cov
{
Xi,Xj

}
by the product of

the respective standard deviations,
√
var{Xi} ×

√
var

{
Xj
}
, is called the correlation

matrix.
If var{X} is a diagonal matrix, we say that X has uncorrelated components.

A.2.2 SomeGeneral Properties
We state some simple properties of the expectation and variance matrix of
multivariate random variables; for proofs, see, for example, Azzalini (1996,
Appendix A.4). For this section, we assume that X = (X1, . . . ,Xp)�, with
E{X} = μ, var{X} = V .

Lemma A.2.1
If A is a q× pmatrix, b a q× 1 vector, and

Y = AX + b,

then

i. E{Y } = Aμ+ b,
ii. var{Y } = A VA�.

Lemma A.2.2
Variance matrix V = var{X} is positive semi-definite and is also positive
definite if there are no zero vectors b for which b�X has degenerate
distribution.
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Lemma A.2.3
If var{X} = V > 0, there is a square matrix C of order p, so that Y = CX has
uncorrelated components with unit variance, that is, var{Y } = Ip.

Lemma A.2.4
Let A = (aij) be a square matrix of order p. Then

E

{
X�AX

}
= μ�Aμ+ tr(AV).

A.2.3 Multivariate Normal Distribution
We want to extend the concept of normal distribution from the scalar to the
p-dimensional case. In the multidimensional case, the normal (or Gaussian)
distribution plays a key role to an even greater extent than in the scalar
case.

The following is a constructive definition equipped with certain properties.
More details are given, for example, by Azzalini (1996, Appendix A.5); for a more
detailed presentation, see Mardia et al. (1979, ch. 2 and 3).

Let Z1, . . . ,Zp be independent random variables N(0, 1), so vector Z =
(Z1, . . . ,Zp)� is a multivariate random variable that we can reasonably consider
the first case of a multivariate normal variable. However, the distribution of Z is
very specific, and we want to introduce a much wider class, keeping the properties
of the simple distribution.

In the univariate case, the normal distribution class can be generated by
transformations of the type X0 = μ + σZ0, if Z0 ∼ N(0, 1) and σ �= 0 (note
that σ < 0 is not excluded). A similar operation in the p-dimensional case is of
the type

X = μ+�1/2 Z

whereμ ∈ R
p and�1/2 is a p× pmatrix of full rank.

The probability density function of Z is given by the product of p copies of
density N(0, 1). From this, applying known rules to calculate the distributions of
transformed random variables, the density function of X is

p(x) = 1
(2π)p/2 det(�)1/2

exp
{
− 1

2 (x − μ)��−1(x − μ)
}

(A.3)

for x ∈ R
p.

Therefore, let us decide by definition that a random variableX with a distribution
of type (A.3) is said to have normal (or Gaussian) multivariate p-dimensional
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distribution with parameters μ and � = �1/2 (�1/2)�. We thus adopt the
notation

X ∼ Np(μ,�).
The case in which � does not have full rank is admissible, even though our
construction and (A.3) are assumed in the case with full rank.

The family of multivariate normal distributions has many formal properties
that make its use as a probabilistic model particularly advantageous. Some of the
simplest, already implicit in what has been stated so far, are listed here.

a. The contour lines of p(x) are ellipses of equation

(x − μ)��−1(x − μ) = constant.

b. If � is a diagonal matrix, the components of X are not only uncorrelated
but also independent, as we can immediately see from the expression
of p(x).

c. BecauseE{Z} = 0 and var{Z} = Ip, lemma A.2.1 immediately gives

E{X} = μ, var{X} = �.

To better perceive the nature of normal distribution, it is useful to examine
figure A.1, which shows the case when p = 2. The left panel shows some contour
lines of the probability density of Z, which are circumferences, since its variance
matrix is the identity. The same panel also shows the 100 points randomly sampled
from Z. The right panel refers to the transformed variable

X =
(

1
−0.5

)
+
(
0.9 0.4
0.4 1.1

)
Z ∼ N2

((
1
0.5

)
,

(
0.97 0.80
0.80 1.37

))
(A.4)

and shows the density contour lines corresponding to those in the left panel.
This signifies that the ellipses on the right represent the deformation of the

z1

z 2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
1

0
1

2
3

x1

x 2

−3 −2 −1 0 1 2 3

Figure A.1 Contour lines of density function and sample points from bivariate normal
distributions. Left: variable Z with independent components N(0, 1); right: those of its
transformation (A.4).
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circumferences on the left, according to transformation (A.4); the value of the
density associated with these curves is modified according to factor det(�)1/2 in
(A.3). The right panel also shows the previous sample points as modified by the
adopted transformation. Some of the points are marked by symbols different from
themajority of the sample, to facilitate matching of the corresponding points in the
two panels. The inclination of the main axis of the ellipses denotes a correlation
between the two components, which in this case is 0.694 = 0.80/

√
0.97× 1.37.

One of the most important properties of the family of multivariate normal
distributions is that they are closed to affine transformations, including those that
reduce the dimension. More precisely, if a ∈ R

q and B is a q× pmatrix, then

Y = a+ BX ∼ Nq(a+ Bμ, B�B�). (A.5)

This includes the special case inwhich the scalar linear combination of components
having multivariate normal distribution has normal distribution.

As a particular case of the previous property, the class is closed with respect
to the marginalization operation, in the following sense. We subdivide the
components of X into two sets, the first of q and the second of p− q components.
For notational simplicity, we assume the first set corresponds to the first q
components of X , although this is not essential. In other words, we introduce
the partitions

X =
(
X1
X2

)
, μ =

(
μ1
μ2

)
, � =

(
�11 �12
�21 �22

)
whereμ and� are partitioned in the same way as X . And so, as a particular case of
the general property (A.5), we obtain

X1 ∼ Nq(μ1, �11).

The property of closure of the normal distribution class with respect to the
conditioning operation also holds. Specifically, the distribution of X1 conditional
on X2 = x2 is

(X1|X2 = x2) ∼ Nq(μ1 +�12�
−1
22 (x2 − μ2), �11·2) (A.6)

where

�11·2 = �11 −�12�
−1
22 �21.

As x2 varies, the conditional mean value μ1 + �12�
−1
22 (x2 − μ2) corresponds to

the equation of a plane, called the regression hyperplane. Conditional variance�11·2
is “smaller” thanmarginal variance�11, where “smaller” means inequality between
matrices, with equality only when�12 is the zero matrix. Note that the conditional
variance does not depend on x2.
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There are various connections betweenmultivariate normal distribution and χ2

distribution, of which the simplest is given by

(X − μ)��−1(X − μ) = Z�Z ∼ χ2
p .

In addition, if X ∼ Np(μ, Ip) and A is a symmetric positive semi-definite p × p
matrix of rank q, then

Q1 = X�AX ∼ χ2
q (δ1), Q2 = X�(Ip − A)X ∼ χ2

p−q(δ2)

with noncentrality parameters δ1 = μ�Aμ, δ2 = μ�(Ip − A)μ, respectively, and
the two quadratic formsQ1 andQ2 are stochastically independent.

A.3 CONCEPTS OF LINEAR MODELS

A.3.1 LinearModels and the Least Squares Criterion
We assume that the relation between response variable y and explanatory variables
x1, . . . , xp is of the type

y = β1 x1 + · · · + βp xp + ε (A.7)

where ε is a component, called error, that expresses the deviation between empirical
observations and systematic component β1 x1 + · · · + βp xp, also called linear
predictor. Regression parameters β1, . . . , βp are real numbers; therefore, in the
absence of constraints on the model, β = (β1, . . . , βp)� is any point inR

p.
We make use of a set of n observations (n ≥ p) of variables x1, x2, . . . , xp, y,

which therefore satisfy the relations

yi = β1 xi1 + · · · + βp xip + εi, (i = 1, . . . , n) (A.8)

On the basis of these n replicas, we estimate parameters β and carry out other
inferential operations.

Assume that error component ε is a random variable that in successive
observations frommodel (A.7), is such that

E{εi} = 0, var{εi} = σ 2, cov
{
εi, εj

} = 0 se i �= j, (A.9)

where σ 2 is a positive constant value for all replications. Consequently,

μi = E{Yi} = β1 xi1 + · · · + βp xip, var{Yi} = σ 2

when Yi represents the random variable that generated observation yi.
Formulation (A.7) is said to be a linear model, and assumptions (A.9) are called

second-order hypotheses, because they involve moments up to the second order.
To estimate parameters β on the basis of n sample observations, according to

model (A.8), it is common to adopt the least squares criterion, which selects
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β values that minimize the sum of square deviations between observed and
interpolated values, which in turn minimizesQ (β), given by

Q (β) =
n∑

i=1

{
yi − (β1 xi1 + · · · + βp xip)

}2
where the unknown β is now treated as a free variation quantity inR

p.
The whole formulation lends itself to more compact notation by means of

matrices. We therefore create vector y, of n observations of the response variable,
and do the same for ε. Analogously, we form a matrix X with dimension n × p,
whose jth column is formed from n observations on variable xj; we assume that
matrix X has full rank p. Therefore, we can rewrite (A.8) in a compact matrix
form as

y = Xβ + ε

with the second-order hypothesis given by

μ = E{Y } = Xβ, var{Y } = σ 2 In.

The least squares criterion lies in the solution of the optimization problem

min
β∈Rp

D(β) where D(β) = ‖y − Xβ‖2.

The following presentation is taken from Azzalini (1996, ch. 5), to which we refer
for missing details.

A.3.2 The Geometry of Least Squares
We now analyze the various components in the game from the purely geometric
point of view, leaving aside statistical and probabilistic aspects for the moment. We
consider vectors y, x1, . . . , xp containing, respectively, the values of the response
variable and p explanatory variables as elements of vector spaceR

n.
As β varies in R

p, expression Xβ = β1x1 + · · · + βpxp can be seen as a
linear combination of columns x1, . . . , xp of X with coefficients β — that is,
the parametric equation of a subspace of R

n spanned by the columns of X . This
subspace, which we call C(X), is a vector space on R with dimension p. The
property that, if Xβ ∈ C(X) and a ∈ R then also a(Xβ) = X(aβ) ∈ C(X)
holds; moreover, if Xβ and Xb are two elements of C(X), then also Xβ + Xb =
X(β + b) ∈ C(X); clearly, the other properties of vector spaces also hold.

Model (A.7–A.9) then states that μ = E{Y } lies in C(X), and the least squares
criterion chooses which vector of C(X) minimizes the Euclidean distance between
vector y and space C(X). We indicate by μ̂ = Xβ̂ this element of C(X), identified
by coefficients β̂ ∈ R

p. The situation is illustrated is figure A.2.



248 DATA ANALY S I S AND DATA M IN ING

y

Origin
C (X )

∧m

y – m∧

Figure A.2 Projection of y on C(X).

On the basis of known results of vector space geometry, we know that vector
μ̂ ∈ C(X), which minimizes the distance from y, is such that

(y − Xβ̂) ⊥ C(X)

and this requires (y − μ̂) to be orthogonal to the vectors that constitute the basis
of C(X). Therefore, it is necessary that

(y − Xβ̂)�X = 0,

that is,

X�X β = X�y, (A.10)

which are called normal equations.
The inversion of matrix X�X is legitimate because the condition that X has

rank p implies that X�X is still of rank p. Therefore, the minimum of D(β) is
obtained for β and is

β̂ = (X�X)−1X�y. (A.11)

The same result can be obtained by minimizing D(β) in an analytical instead of
a geometrical way. The projection vector of y on C(X) is

μ̂ = Xβ̂

= X(X�X)−1X�y
= Py (A.12)

where P = X(X�X)−1X� is called the projection matrix on C(X). This identifies
an operator, associated with matrix X , whose role is precisely that of projecting a
vector y ∈ R

n by transforming it into Py ∈ C(X) with a minimum distance from y.
We can immediately verify that P is symmetric and idempotent because P2 = P;
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this signifies that Py = P(Py), so projecting a projection has no effect. We note
that these observations imply that

rk(P) = tr(P) = tr((X�X)−1X�X) = p.

We can therefore split y into two components: its projection μ̂ on C(X), and
the component of the residuals given by the difference vector

y− μ̂ = y − X(X�X)−1X�y = (In − P)y. (A.13)

These two components are orthogonal to each other; in fact, y − μ̂ is orthogonal
to every element of C(X) and not only μ̂. For any vector Xa ∈ C(X), we have

(Xa)�(y − μ̂) = (Xa)�(y − Py)

= a�X�(y − X(X�X)−1X�y)
= 0.

Matrix In − P is also a projectionmatrix: it projects the elements ofRn in the space
orthogonal to C(X). As calculated for the rank of P, we have rk(In − P) = n− p.

The orthogonality between the projection vector and one of the residuals has
an immediate corollary: expanding the norm of μ̂+ (y − μ̂), we obtain

‖y‖2 = ‖μ̂‖2 + ‖y− μ̂‖2 (A.14)

which is an instance of the Pythagorean theorem, in which y plays the role of the
hypotenuse and μ̂ and y− μ̂ that of the sides.

A.3.3 The Statistics of Least Squares
We now examine, from a statistical point of view, the quantities introduced in
the previous section. This naturally brings us to consider y observations and error
components as determinations of random variables Y and ε, respectively. We have

E

{
β̂
}
= E

{
(X�X)−1X�Y

}
= (X�X)−1X�E{Y }
= PXβ

= β (A.15)

and therefore β̂ is an unbiased estimate of β; in addition,

E
{
μ̂
} = μ.
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For the variance matrix of the estimates, we have

var
{
β̂
}
= (X�X)−1X�var{Y }

(
(X�X)−1X�

)�
= (X�X)−1X�(σ 2In)X(X�X)−1

= σ 2(X�X)−1 (A.16)

and

var
{
μ̂
} = Xvar

{
β̂
}
X�

= σ 2X(X�X)−1X�

= σ 2P.

Up to now, we have only looked at the estimation of β . Although to a lesser
extent than β , we are also interested in estimating σ 2. The least squares criterion
does not tell us how to proceed. Because we haveE

{
ε2i
} = σ 2 for generic term εi ,

it is reasonable to estimate σ 2 with the arithmetic mean of the ε̂2i , where ε̂i is the
general component of the residual vector

ε̂ = y − μ̂

and therefore we consider

σ̂ 2 =
∑

i ε̂
2
i

n
= ‖ε̂‖

2

n
(A.17)

as an estimate of σ 2. Note that this expression can be rewritten in various other
forms, bearing in mind the relations

‖ε̂‖2 = D(β̂)

= (y − μ̂)�(y− μ̂)

= y�(In − P)�(In − P)y

= y�(In − P)y = ε�(In − P)ε

= y�y− y�Xβ̂.

To calculate expectation of (A.17), we have

E
{
nσ̂ 2} = E

{
y�(In − P)y

}
= μ�(In − P)μ+ tr((In − P)σ 2In)

= σ 2(n− p), (A.18)
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using lemma A.2.4. The term μ�(In − P)μ is 0, because In − P projects onto the
space orthogonal to C(X) whereμ lies, and therefore

(In − P)μ = (In − X(X�X)−1X�)Xβ = 0.

Thus, σ̂ 2 is subject to bias, which tends to 0 as n→∞. If we need an unbiased
estimate for σ 2, this is given by

s2 = σ̂ 2 n
n− p

= ‖y − μ̂‖2
n− p

. (A.19)

A.3.4 Constrained Estimation
We now consider the problem of estimating β when linear constraints are present
in the β coefficients, that is, β is such that

Hβ = 0 (A.20)

whereH is a q× pmatrix (with q ≤ p) with rank q formed of specified constants.
The solution to this problem is particularly useful in the framework of hypothesis
testing on the components of β , but it is also of independent interest.

First consider the geometric meaning of condition Hβ = 0. It requires μ to
lie in the subset of C(X), which satisfies q conditions specified by Hβ = 0. This
subset represents a vector subspace, here called C0(X), of dimension p − q of space
C(X), as shown in figure A.3.

y

C (X )

C0 (X )

∧m

∧m0

–
∧m ∧m0

y – m∧

Figure A.3 Projection of y on C(X) and subspace C0(X).
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To obtain the constrained minimum ofD(β), we must minimize

D∗(α, β) = (y − Xβ)�(y− Xβ)+ 2(Hβ)�α,

where α is a vector of Lagrange multipliers, with constraint (A.20). After some
algebraic manipulation, we reach the solution

β̂0 = β̂ − (X�X)−1H�K Hβ̂ (A.21)

where

K = {H(X�X)−1H�}−1. (A.22)

The corresponding projection of y on C0(X) is given by

μ̂0 = Xβ̂0

= μ̂− X(X�X)−1H�K Hβ̂

= (P − PH)y = P0y

having set

PH = X(X�X)−1H�K H(X�X)−1X�, (A.23)

P0 = P − PH .

Consider the conclusions we have reached so far. We have a new projection
matrix, P0, which projects any vector ofRn on space C0(X). If we apply this matrix
to y, we obtain μ̂0, which, by its very nature, is the element of C0(X) with the
minimum distance from y. It is also easy to verify the following further properties:

• Vector y− μ̂0 is orthogonal to every element of C0(X). If Xc is an element
of C(X) so thatHc = 0, we have (y − μ̂0)�Xc = 0. In particular,

(y− μ̂0) ⊥ μ̂0.

• The projection of y − μ̂0 on C(X) is P(y − μ̂0) = μ̂ − μ̂0, which is
such that

μ̂− μ̂0 ⊥ μ̂0.

Last, we obtain the following decomposition:

y = μ̂0 + (μ̂− μ̂0)+ (y − μ̂)

where the three summands on the right-hand side are orthogonal to each other,
and therefore allow us to write

‖y‖2 = ‖μ̂0‖2 + ‖μ̂− μ̂0‖2 + ‖y − μ̂‖2 (A.24)

which is an extension of (A.14).
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A.3.5 Normality Assumptions
If we add to the second-order hypothesis (formulated in section A.3.1 around the
distribution of the random variable of the error component) that of normality,
for which

ε ∼ Nn(0, σ 2In),

we can obtainmore stringent results for the distributive properties of the inferential
quantities already seen. First, it immediately follows that

Y ∼ Nn(Xβ, σ 2In)

leading to

β̂ ∼ Np(β, σ 2Ip).

The interpretation of β̂ changes, in the sense that it can be seen as a maximum
likelihood estimate, besides being descended from the least squares criterion. In
fact, maximization of the likelihood function corresponds to maximization with
respect to β of the term within exp(·) of (A.3), if we assume that μ = Xβ ,
and this coincides with the minimization ofD(β).

The components of projection and error of Y also have normal distribution, as

Ŷ = P Y ∼ Nn(PXβ, σ 2P),

ε̂ = (In − P) Y ∼ Nn((In − P)Xβ, σ 2(In − P))

for which we can apply the results for quadratic forms of random normal variables
noted in section A.2.3. It therefore follows that

Ŷ�Ŷ ∼ σ 2χ2
p (δ), ‖ε̂‖2 ∼ σ 2χ2

n−p,

where the noncentrality parameter is δ = β�X�Xβ and the two quadratic forms
are independent.

These facts thus establish the distribution of the decomposition of total
variabilityY�Y into two components, that is, error component‖ε̂‖2 and regression
component Ŷ�Ŷ . These properties yield the distribution of the F test connected
with the analysis of variance table.

The sum of the squares of regression component Ŷ�Ŷ is then further
decomposed into individual components, one for each explanatory variable with
corresponding decomposition of the degrees of freedom.
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Data Sets

Appendix B describes the data used in this volume. They are also available at the
website: http://azzalini.stat.unipd.it/Book-DM/.

B.1 SIMULATED DATA

Some of the data used were obtained by means of simulation of pseudo-random
numbers, as follows:

a. Yesterday’s data and tomorrow’s data. A table with 30 rows (other
than those with variable names) and 3 columns, contains variables
x, y.yesterday, y.tomorrow, with self-explanatory names. These
data are used in chapter 3 and section 4.8.

b. Data for three classes, of sizes 120, 80, and 100, are used in chapter 5.
The data table contains 300 rows (other than those with variable names)
and 3 columns, for two explanatory variables, z1 and z2, and one class
indicator. Some of the numerical examples in chapter 5 refer to data in the
first two classes.

c. Two data collections, C1 and C2, are used in section 6.1, each with two
variables, with 250 and 100 points.

B.2 CAR DATA

The car data, first used in section 2.1.1 and then in section 2.1 and chapter 4, were
obtained by simplemanipulation of original data that referred to the characteristics
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of 203 automobile models imported into the United States in 1985. The original
data are available at:ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/autos. Their manipulation on our part simply consisted of
converting one unit of measurement to another and eliminating some variables.
The new variables are as follows:

Variable Description

make manufacturer (factor, 22 levels)
fuel type type of engine fuel (factor, 2 levels: diesel, gasoline)
aspiration type of engine aspiration (factor, 2 levels: standard, turbo)
body style type of body style

(factor, 5 levels: hardtop, wagon, sedan, hatchback, convertible)
drive wheels type of drive wheels (factor, 3 levels: 4wd, fwd, rwd)
engine location location of engine (factor, 2 levels: front, rear)
wheel base distance between axes (cm)
length length (cm)
width width (cm)
height height (cm)
curb weight weight (kg)
engine size engine size (L)
compression rate compression rate
hp horsepower
peak-rpm number of peak revolutions per minute
city distance city distance covered (km/L)
highway distance highway distance (km/L)
n.cylinders number of cylinders

B.3 BRAZILIAN BANK DATA

The data used in sections 2.3.3 and 2.4 were obtained by simple manipulation of
original data referring to a customer satisfaction survey by a Brazilian bank. For 500
subjects, randomly selected from the bank’s customers, some information from
marketing research was obtained. Some characteristic variables of customers and
their satisfaction are:

Variable Description

id customer identification
satisfaction (factor: 4 levels)
education (factor: 5 levels)
age (years)
gender gender
car indicator of car ownership
phone indicator of phone use
fax indicator of fax use
pc indicator of PC ownership
pincome annual income (in Brazilian reais)
ok satisfaction index (factor: 2 levels)
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Customers were also asked which products of the bank they used and if they
also used similar products supplied by other banks. The names of the variables
regarding the products of the bank that commissioned the survey end with the
number n = 1; the number of similar variables that refer to other banks end
with the number n = 2. The following is the list of surveyed products, with
self-explanatory names:

savingsn installment.loann
creditcardn investment.fundn
bankcardn commodities.fundn
cdn annuities.fundn
specialcheckingn car.insurancen
auto.bill.paymentn home.insurancen
personal.loansn life.insurancen
mortgagen

B.4 DATA FOR TELEPHONE COMPANY CUSTOMERS

The data for telephone customers, used in section 4.10.1 and later in chapter 5
in the two case studies in section 5.10, was obtained by simple manipulation of
original data referring to the characteristics of 30,619 customers of a European
telephone company with postpay contracts. To be part of the set, the customers
had to be active in the 10 consecutive months to which the data refer, which are
conventionally indicated by numbers from 1 to 10 (nn = 01, . . . , 10).

The original data were processed simply by eliminating some of the original
variables. For the customers, the variables are:

• characteristic variables of customer and of company contract

Variable Description

id customer identification
tariff.plan customer tariff plan (factor, 5 levels)
payment.method (factor, 3 levels:

PO: postal order, CC: credit card, DD: direct debit)
gender (factor, 3 levels:

M: male, F: female, B: company)
age (years)
activ.zone geographical activation zone (factor, 4 levels)
activ.chan channel of activation (factor, 8 levels)
vas1 presence of a first value-added service
vas2 presence of a second value-added service

• variables for traffic in the 10 available months. For each month, indicated
by the first part of the name (q01, q02,. . . , q10), the following variables
are available:
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Variable Description

qnn.out.ch.peak total monthly number of outgoing calls
at peak tariff times

qnn.out.dur.peak duration of total monthly outgoing calls
at peak tariff times

qnn.out.val.peak total monthly outgoing call value
at peak tariff times

qnn.out.ch.offpeak total monthly number of outgoing calls
at off-peak tariff times

qnn.out.dur.offpeak duration of total monthly outgoing calls
at off-peak tariff times

qnn.out.val.offpeak total monthly outgoing call value
at off-peak tariff times

qnn.in.ch.tot total monthly number of incoming calls
qnn.in.dur.tot duration of total monthly incoming calls
qnn.ch.sms total monthly number of SMS sent
qnn.ch.cc number of monthly calls to

customer services

• the variable status, that is which is the indicator variable of possible
deactivation in the thirteenth month, that is, two months after the
final month for which traffic is available (factor, 2 levels: 0—active,
1—deactivated).

B.5 INSURANCE DATA

The data on insurance customers, used in section 4.10.2, was obtained by simple
manipulation of original data on the characteristics of a sample of 5,000 customers
of a European insurance company. To be part of the set, the customers had to take
out one policy in at least one of the company’s lines of business.

Processing the original data consisted simply of eliminating some of the original
variables. For these customers, the available variables are as follows.

• Customers’ characteristic variables

Variable Description

id customer identification
gender (factor, 3 levels: M: male, F: female,—missing)
age (years)
occupation.1 occupational categories of employment 1 (factor, 11 levels)
occupation.2 occupational categories of employment 2 (factor, 17 levels)
zip postcode (numeric)
area geographical area of residence (factor, 33 levels)
region geographical region of residence (factor, 10 levels)
city indicator variable of residence in urban areas
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• Variables regarding to canceled claims and policies:

Variable Description

number.claims.last number of claims in last year
number.claims.3 number of claims in last 3 years
amount.claims.last amount of claims in last year
amount.claims.3 amount of claims in 3 years
number.cancel.last number of policies canceled in last year
number.cancel.3 number of policies canceled in 3 years

• Variables relating to products. For each product, indicated by number n
at the end of the name of the variable (for nonlife products n = 1, . . . 9
and life products n = 1a, 1b, 2a, 2b, 3a, 3b), the following variables are
available:

Variable Description

n.nonlife.0 number of private car third-party liability policies
prem.nonlife.0 total amount of premiums for private car third-party

liability policies
number.bank.1 number of bank products of type 1
number.bank.2 number of bank products of type 2
net.bank.2 net asset value funds
tot.bank.2 total amount of funds
ac.bank.2 total amount of funds acquired
number.non-life.n number of nonlife policies of type n
prem.non-life.n total amount of premiums for nonlife policies of type n
number.life.n number of life policies of type n
prem.life.n total amount of premiums for life policies of type n in last year
pre.payed.life.n total amount of paid premiums for life policies of type n
i.cancel.last policies canceled in last year
i.cancel.3 policies canceled in 3 years
i.bank.1 at least one bank product of type 1
i.bank.2 at least one bank product of type 2
i.non-life.n at least one nonlife policy of type n
i.life.n at least one life policy of type n

B.6 CHOICE OF FRUIT JUICE DATA

The data on fruit juice purchases were presented by Foster et al. (1998, ch. 11) and
are available through the distribution system for statistical information StatLib
at the website http://lib.stat.cmu.edu/.

The data refer to 1,070 fruit juice purchases of two different brands (MM and
CH) in certain U.S. supermarkets, supplied with some contributory variables.
The data used in chapter 5 were slightly processed in the sense that some
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characteristics of little importance were excluded. The variables used are
as follows:

Variable Description

choice prechosen brand (factor, with 2 levels)
id.cust customer identification
week identifier of week of purchase
priceCH reference price for brand CH (USD)
priceMM reference price for brandMM (USD)
discountCH discount applied to product CH (USD)
discountMM discount applied to product MM (USD)
loyaltyCH loyalty indicator for product CH
loyaltyMM loyalty indicator for product MM
store store identifier (factor, with 5 levels)

Variable loyaltyMM is constructed starting from the value 0.5 and updating
with every purchase by the same customer, with a value that increases by 20% of
the current difference between the current value and 1, if the customer chose MM,
and falls by 20% of the difference between the current value and 0 if the customer
chose CH. The corresponding variable loyaltyCH is given by 1− loyaltyMM.
There are five stores in question, numbered from 0 to 4.

B.7 CUSTOMER SATISFACTION

The data on customer satisfaction, used in section 5.10.3, were obtained by simple
manipulation of original data on responses to a questionnaire from a survey of
4,000 customers of a European IT company producing and selling software
and offering consulting services. The survey was carried out by an independent
marketing research company specializing in such surveys. Processing of original
data consisted simply of eliminating some of the original variables. These were:

• products/services used
Question:Which products/services of the company do you use?

Variable Product/service

V2 1
V3 2
V4 3
V5 4
V6 5
V7 6
V8 7
V9 others
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• satisfaction with staff and products (except V11, all variables are factors
with 10 levels: 1: totally disagree,…, 10: totally agree)

Variable Question Answer

V11 In the last year, did you have contacts with
company personnel for consultancy,
information, or solutions to problems?

1: no
2: yes, once
3: yes, sometimes
4: yes, often

V24 The products are easy to use
V25 The products can easily be adapted to customers’ needs
V26 The products are exactly what I need
V27 Product results are reliable
V28 Differing products are easily integrated

• Question: Please rate the importance of the following aspects in evaluating
an IT company (each variable is a factor with 10 levels: 1: not at all
important,…, 10: very important):

Variable Item

V29 expertise of personnel
V30 capacity to offer an efficient consulting service
V31 problem solving
V32 reliability of products/services
V33 flexibility of products/services
V34 efficiency of products/services
V35 working speed of products
V36 helpfulness of personnel
V37 efficiency in serving customers
V38 predisposition towards customers’ needs
V39 capacity to respond to customer’s needs
V40 flexibility in making changes
V41 capacity for technological innovation
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• Question: Please rate your satisfaction with the following aspects (each
variable is a factor with 10 levels: 1: not at all important,…, 10: very
important):

Variable Item

V42 expertise of personnel
V43 capacity to offer an efficient consulting service
V44 problem solving
V45 reliability of products/services
V46 flexibility of products/services
V47 efficiency of products/services
V48 working speed of products
V49 helpfulness of personnel
V50 efficiency in serving customers
V51 predisposition towards customers’ needs
V52 capacity to respond to customer’s needs
V53 flexibility in making changes
V54 capacity for technological innovation

• customers’ overall satisfaction and characteristics:

Variable Question Answer

V56 Recalling all aspects analyzed in this
questionnaire, how satisfied are you
with the company, overall?

1: extremely satisfied
2: very satisfied
3: quite satisfied
4: quite dissatisfied
5: very dissatisfied
6: extremely dissatisfied

V58 occupational category of employment 12 categories
V59 employment status 1: employer

2: manager
V60 age
V61 length of service in company
V62 education 1: university degree

2: high school diploma
3: middle school diploma
oth: other

V63 gender

B.8 WEB USAGE DATA

The data onweb usage, used in sections 5.10.4 and 6.3, refer to hitsmade by 26,157
anonymous visitors to the website of a consulting company. Data were collected
from web log files, collecting all relevant information about hits on every page of
the website.
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A user session describes the sequence of web pages viewed consecutively by a
visitor, without leaving the website or the connection. We call these sequences of
pages “visits.” The website to which the data refer does not have a cookie system
or other way of identifying the same visitor in different sessions, so we consider
each session in the analysis as a new visitor, and we call the same event “session” or
“visit” indifferently.

All pages visited in a year are included in the data set. Sessions are labeled with
a identification number, and no personal information is available. The website has
215 pages and the total number of page views (hits) on the entire site was 47,387.
Some of the pages have similar contents and were aggregated in eight categories
(home, contacts, communications, events, company, white papers, business units,
consulting). The day and time of all visits to every single page are also recorded.
For each single event (visit to a page) the available variables are:

ID identification number of single event (page visited)
sessionID identification number of session
screen screen resolution used by customer (if available)
url address of visited page
dt day and month of event
yr indicator of year of event: data refer to

two consecutive years, called 1 and 2.
hr time of event
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Symbols and Acronyms

AIC Akaike information criterion
CART classification and regression trees
CRM customer relationship management
d.f. degree or degrees of freedom
DWH data warehouse
GAM generalized additive model
GCV generalized cross validation
GLM generalized linear model
KDD knowledge discovery in databases
LDA linear discriminant analysis
MARS multivariate adaptive regression splines
OLAP online analytical processing
OLTP online Transaction Processing
PCA principal component analysis
QDA quadratic discriminant analysis
ROC receiver operating characteristic
SQL structured query language
SVM support vector machine

det(·) determinant of a matrix
tr(·) trace of a matrix
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rk(·) rank of a matrix
D deviance
L likelihood function
�(x) logistic function ex/(1+ ex)
E{·} expectation of a random variable
var{·} variance (or matrix of variance) of a random variable
‖ · ‖ Euclidean norm
R,Rp set of real numbers, p-dimensional Euclidean space
I(x) indicator function 0–1 of logical predicate x
IA set of indicator variables of factor A
In identity matrix of order n
1n n× 1 vector of elements, all 1
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C4.5 – C5.0, 168
calculus, parallel, 105, 182
calibration plot see plot, calibration
CART, 106 see also tree
centroid, 215–218
churn analysis see applications in churn

prediction
classification

examples, 42–44, 134–136, 144, 148,
183–209

methods, 40–42, 136–183
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cluster analysis, 212–222
cluster methods, 212–214, 222

agglomerative, 218–222
divisive, 222
hierarchical, 218–222
non-hierarchical, 215–218

coefficient
correlation see correlation
of a linear combination, 247
of determination, 20, 23, 26, 47

complexity
computational see computational

complexity
of a model, 4, 47–49, 160

computational
burden, 5–6, 30, 33, 54, 59, 79, 101,

105, 230
in log-linear models, 226–227

complexity, 84, 87, 102, 154, 158,
160, 182

computing, statistical, 13
confidence (of a rule), 229
confidence interval, 36, 75, 106
conflict between bias and variance

see trade-off, bias-variance
constraint, 36, 38, 39, 81, 87

linear, 36, 37, 251–252
contingency table, 9, 138, 225–229
convex hull, 77
correlation, 29, 222–223, 245

geometric interpretation, 222
marginal, 224
matrix seematrix, correlation
partial, 223–224
sample, 223

cost-complexity, 103
covariate see variable, explanatory
credit scoring see applications in credit

scoring
CRM, 3–4, 6, 8, 187, 263
cross table multiple, 7, 228
cross-sell, 135
cross-validation, 54–55, 58, 73, 87, 104,

109, 168, 175, 179, 206
algorithm, 55
generalized, 87, 263
leave-one-out, 54
with small sizes, 55

curse of dimensionality, 78–79, 90, 155
curve

lift, 140–142, 151, 163, 167, 178, 180,
185, 189

ROC, 140, 151, 163, 167, 178, 180,
185, 263

customer
base, 123, 187, 212
care, 112
profiling, 135, 212, 213
satisfaction see applications in customer

satisfaction
value, 111, 119

data
anomalous see outliers
clean, 6, 8
influential, 27
missing, 106
raw, 6
sampling, 5
stream of, 4, 32, 33

data dredging, 9
data mart, 6–8, 112, 188
data snooping, 9
databases, 4–8
databases, 4–8 see alsoDWH

cooperation with R, 14
operational, 6–7
strategic, 6–8

data sets, 254–262
decision support, 6
decomposition

Cholesky, 30, 32
QR, 30
spectral, 61

decomposition, spectral, 61
degrees of freedom, 38, 39, 97, 253, 263

effective, 94–96, 117, 185, 189
dendrogram, 218–222
descriptive statistics see statistics,

descriptive
determinant, 240, 263
deviance, 19, 20, 38–41, 43, 47, 51,

97, 101, 104, 117, 120, 163,
216, 264

residual, 47, 51–53
diagnostics, graphical, 21–26, 29, 46
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dimensionality, 4
curse of see curse of dimensionality

discriminant analysis, 154–159
linear, 155–156, 184, 189, 207, 263
quadratic, 156–157, 263

dissimilarity, 213–214, 222
between groups, 215, 218
for quantitative variables, 215
total, 215
within groups, 215–218

distance, 69, 77, 252 see also dissimilarity
as measure of dissimilarity, 213
Cook, 27
Euclidean, 17, 19, 213, 215–218, 264

and least squares, 247
Mahalanobis, 215
Manhattan, 215
Minkowsky, 215

distribution
Bernoulli, 42
binomial, 38–40, 42, 166
χ 2, 36, 38, 39, 95

and normal distribution, 245
conditional, 7, 230

of multivariate normal
variable, 245

Gaussian see distribution, normal
marginal, 7, 225

of multivariate normal variable, 245
multinomial, 143, 147
multivariate, 241–243
normal, 20, 22, 36, 37

multivariate, 155, 224, 243–246
Snedecor F, 38, 97

divergence, Kullback-Leibler, 230
DWH, 6–8, 112, 263

effect
interaction, 225
main, 20, 225

entropy, 166, 167, 170, 185, 189, 211
equations

likelihood see likelihood, equations
normal, 248

equidensity ellipse, 244, 245
error

approximation, 37, 38
prediction, 32, 141, 178, 181

term of, 69, 149
and residuals, 21

in linear models
multivariate, 29
normal, 20, 33, 38, 253

estimate, 17, 19, 20, 38, 74, 113, 117,
119, 209

computational aspects, 30–33
constrained, 251–252
maximum likelihood see likelihood,

estimate of maximum
non-parametric, 68–111
nonparametric, 79
of false positives and false

negatives, 139
robust, 75
sensibility and specificity, 140
sequential, 32, 109
unbiased, 249, 251

Euclidean
norm see distance, Euclidean

example with data
Brazilian bank, 39–40, 42–44, 144, 148,

255–256
car, 15–29, 68–77, 83–84, 87–89,

91–93, 97, 109, 254–255
customer satisfaction, 192–205, 259
fruit juice, 136–142, 151, 157, 161–163,

166–167, 177–180, 182–183,
258–259

insurance, 123–131, 257–258
simulated yesterday’s and tomorrow’s,

81, 100–101, 104, 254
telecommunications, 111–123,

183–192, 256–257
web usage, 205–209, 232–239,

261–262
expected improvement, 142
experimental design, 8
exploratory analysis, 45, 188
extrapolation, 22

factor, 11, 15, 20, 27, 88, 136
experimental, 10, 11
not controlled, 11

false findings, 9
false positives and negatives, 138–139,

185, 189
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feature see variable
filter, linear, 33
forward selection see variable selection,

stepwise
Fourier series, 49
frequency table

sparse, 229
three-way, 226

function
activation, 108, 169
discriminant, 155
indicator, 264
kernel see kernel (of SVM) and kernel

(of local regression)
likelihood see likelihood
link, 41, 159

logarithmic, 226
log-likelihood see likelihood,

log-likelihood
logistic, 40–42, 108, 169, 264
logit, 40–42, 93, 136, 151, 159, 160
multilogit, 143, 160, 163

see also function softmax
objective, 12, 13, 76, 108, 115, 168

of the least squares, 17
polynomial, 18, 47, 80

cubic, 80, 132
probit, 148
softmax, 170
step, 98–99, 132, 164

GAM seemodel, additive, generalized
GCV see generalized cross validation
Gini index, 166, 183, 211
GLM seemodel, linear, generalized
graph, 109, 110, 224–228

acyclic, 107
conditional independence, 224

graphical model seemodel, graphical
graphical representation, 15, 16, 29, 43,

75, 77, 99, 112, 136 see also plot
and histogram

dynamic, 14
tools for, 13

heterogeneity, 24, 166
heteroscedasticity, 24, 27
histogram, 113, 116
homoscedasticity, 21, 153

hypercube, 7
hypothesis

additive, 20, 90–93, 160–163
of normality, 21, 37, 157, 253
of the second order, 17, 37, 156

formulation of, 246
hypothesis test, 36, 37, 106, 139

for binomial variables, 39
repeated, 231

identifiability, 90, 159
impurity, 166, 167
independence, 37, 224, 225

conditional, 224, 228
index, Gini seeGini index
inequality, Cauchy–Schwartz, 242
inner product, 222
input see variable, explanatory
interaction, 87, 91, 92
internal analysis methods, 212–239
interpolation, 50

KDD, 8, 263
kernel

(of SVM), 174–175
(of local regression), 69–72, 76

knots, 80
Kullback-Leibler divergence, 56

Lagrange multipliers, 252
lasso see regression, lasso
layer, hidden, 106, 108, 109, 169
leaf of the tree, 99, 104
leaker see variable, leaker
learning

supervised see supervised learning
unsupervised see unsupervised learning

least squares, 17, 18, 29, 81, 85, 86, 151
computational aspects, 30–33
general concepts, 246–247
objective function, 17
penalized, 82
recursive, 32–33, 154
weighted, 69, 77

iterative, 93, 226
levels (of a factor), 7, 19, 39, 87, 88, 104,

135, 148
lift

(as association measure), 230
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(as performance indicator of
classification procedures)
see curve, lift

likelihood, 33–37, 41, 56
and AIC, 56–57
equations, 35
estimate of maximum, 33–37, 41,

56, 163
in binomial case, 38
in linear models, 253
with constraints, 36

function, 34, 57
log-likelihood, 35, 38, 39
ratio test, 36–40, 55, 136

linear combination, 60
linearly separable classes, 170
link (for cluster methods), 218–222
link (in GLM) see function, link
loess, 74–76, 160
log file, web, 261
log-likelihood see likelihood,

log-likelihood
logit see function, logit and regression,

logistic

machine learning, 5, 33, 159, 229
majority vote, 177, 179
market basket analysis see applications,

in market basket analysis
marketing, 8, 12, 212

actions, 111, 115, 119, 135, 142, 187,
190–192

MARS, 85–89, 117, 122, 163, 185, 189,
207–208, 263

masking, 154
masking of variable, 153
matrix

confusion, 138, 163, 167, 177, 180
correlation, 223, 242
definition of, 240
design, 18, 152
diagonal, 241, 242
dispersion seematrix, variance
dissimilarity, 214
idempotent, 241, 248
identity, 19, 63, 240, 264
inverse, 241
inversion lemma, 241

non-singular, 241
observed information, 35
orthogonal, 241
positive definite, 241, 242
positive semi-definite, 241, 242
projection, 54, 95, 248, 249, 252
rank of, 241
smoothing, 72, 91
symmetric, 31, 32, 240, 242
trace of, 241
transposed, 240
variance, 29, 242–243, 250, 264

mean squared error, 47
mean, arithmetic, 166, 176, 177, 216

definition of, 20
property of, 103

measure
J , 230
prediction adequacy, 138

medoid, 218
method of moments, 159
metric, Canberra, 215
minimization see optimization
misclassification error, 135, 138, 157, 166,

179, 185, 188, 194
cost of, 139, 188

misclassification table seematrix,
confusion

missing data see data, missing
model, 45–46

additive, 89–93, 116–117, 123
generalized, 92–93, 160–164, 185,

189, 263
proportional odds, 164, 196

black box, 11, 12, 192
complexity, 4, 47–49, 160
general framework, 9–12
graphical, 224–228, 231
linear

general formulation of, 246–253
generalized, 41–44, 59, 92, 148, 226,

263
regression see regression, linear
with second-order hypothesis see

hypothesis of the second order
log-linear, 225–229
logistic multivariate see also regression,

logistic
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model (Cont’d.)
logistic, multivariate, 143
MARS seeMARS
mathematical, 10
multinomial logit, 143
parametric, 49, 59
polytomous logit, 143
proportional odds, 144–148, 193–196
regression see regression
selection, 52–60

nearest–neighbour, 76
neural network, 106–111, 117, 123,

168–170, 185, 189, 208–209
node, 99
non-parametric approach, 68, 155,

159–164
nonparametric approach, 51
norm
L∞, 215
Euclidean see distance, Euclidean

numerical analysis, 35, 42, 109

observations see also data
observations

anomalous, 76, 159
influential see data, influential
missing see data, missing

odds, 42
OLAP, 7–9, 263
OLTP, 6, 263
optimism, 49
optimization, 19, 37, 70, 82, 101, 109,

155, 173
myopic, 102, 104
step-by-step, 101

orthogonality, 61, 248
of vectors, 252

out-of-bag, 178–179, 182, 183
output see variable, response
overfitting, 49, 52, 53, 86, 108, 170, 181

with AIC, 104

p-value, 20, 36–38, 40, 43, 136
parameter

complexity, 86–87, 103, 108–109, 170,
173, 181, 185, 189

penalization see parameter, complexity
regression, 17, 29, 37, 116, 246

smoothing, 70, 72–75, 77, 81–83, 94,
96–97, 117

variable, 75–76
tuning see parameter, complexity

parametrization, corner, 136
pattern of data, 5, 7, 231
perceptron, 170
plot

Anscombe, 21
bar, 136
box, 136
calibration, 204
quantile-quantile, 21, 26
scatter, 16, 17, 23, 25, 26, 46, 151

predictor, linear, 41, 116, 246
pricing see applications in pricing
principal components, 60–64, 79
probability

a posteriori, 154
a priori, 154, 158
and relative frequencies, 229
conditional, 229

projection, 19, 61, 95, 171 see alsomatrix,
projection

constrained, 252
projection pursuit, 93–94
prospects, 135
pure premium, 124

qq-plot see plot, quantile-quantile
quadratic form, 246, 253
quality control, 140
query, 3, 6

R, 13–14, 78, 113, 126
random forests, 180–183, 209
random variable see also distribution

mixed, 112
multivariate, 241–243

rank, 264
rare events, 188–189
real-time, 32, 154, 158
record, 31, 55
regression, 68–131, 177

all subset, 59
hyperplan, 245
lasso, 64–66
least-angle, 64–66
linear, 15–30, 113–116, 123
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in classification, 149–154, 184,
189, 207

multivariate, 28–30, 152–153, 196
with transformed variables, 116

local, 69–79, 97
multidimensional, 76–77

logistic, 40–44, 135–136, 184, 189, 207
logistic, multivariate, 142–143
multinomial, 143–144
non-linear, 23, 68, 107
parametric, 80
polynomial, 18, 46–47, 49, 151, 153
projection pursuit, 93–94
proportional odds, 144–148
ridge, 63–64

regressor see variable, explanatory
residual, 21, 22, 24, 26, 27, 33, 94, 95, 113
retention action, 187, 190
ridge regression see regression, ridge
robustness, 76, 106, 158, 159
ROC see curve, ROC
root of the tree, 99, 104
rule, 5

association, 228–231
probabilistic, 229

rule, association see association rule

S, 13
S-plus, 78
sample, 79, 176

balanced, 188, 189
representative, 12
size, 53

small, 57
stratified, 188

sampling plan, 8
sensitivity, 140
set

test see test set
training see training set
validation see validation set

Sherman–Morrison, formula of, 241
Sherman-Morrison, formula of, 32
significance level, 36

effective, 231
observed see p-value

size, 4, 36, 37
skewness, 26, 115

smoother, linear, 83
software, 12, 13 see also R

open source, 13
specificity, 140
spline, 89

cubic, 80–82
natural, 80, 132

interpolation, 132
regression, 80–81, 84, 85, 117, 185, 189

multivariate adaptive seeMARS
smoothing, 81–84, 117, 163, 185, 189
tensor product, 84–85
thin plate, 83–84, 160

SQL, 6, 7, 263
standard deviation, 242
standard error

and model selection, 60
for MLE, 35–36
for multivariate multiple regression, 29
for non-parametric estimate, 75
for out-of-bag, 182
for regression parameters, 19, 20
in the binomial case, 38
lack of, 110
non canonical use of, 153
recursive calculation of, 33

statistics
medical, 140

statistics descriptive, 7, 9
StatLib, 258
stepwise selection see variable selection,

stepwise
stochastic search of the model, 177
stratification, 16, 39, 40, 188

see also sample, stratified
study

clinical, 5
experimental, 11
observational, 11

supervised learning, 68–212
support (of a rule), 230
support vector machines, 170–175, 209,

263
SVM see support vector machines

tails
distribution, 22

heavy, 22
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test
F, 97, 113, 253
likelihood ratio, 36–40
Wald, 36, 43

test set, 53–54, 87, 104, 112, 122, 130,
131, 151, 177, 179, 181, 183, 189

theorem
Bayes, 154
of Pythagoras, 249

trace, 263
trade-off, bias–variance, 49–51, 53, 72–73
training set, 53–54, 104, 112, 176

balanced, 189
treatment, 11
tree, 106, 263

binary, 99, 218
classification—, 164–168, 177, 179,

180, 183, 185, 187, 189, 207
growth of, 99–103, 177, 181
leaf of, 218
pruning of, 102–104, 118, 177
regression, 98–106, 117–119, 122

universal approximator, 93, 109
unsupervised learning see internal analysis

methods
up-sell, 123, 135

validation set, 53
value

expected, 22, 264
of a multivariate variable, 241

fitted, 18, 19, 94
leave-one-out, 54

predicted, 18
variability bands, 74–76, 117
variable

actionable, 190
binary see variable, dichotomous
categorical, 15, 19, 87, 104, 106, 134,

148, 164, 214, 225–231
and dissimilarity measures, 218
and measures of dissimilarity, 213
ordinal, 213, 214

dichotomous, 38, 40, 42, 228–231

explanatory, 16, 18, 78–80, 85, 90, 94,
106, 112, 174, 180

in linear model, 247
importance of, 104, 131, 182
independent see variable, explanatory
indicator, 19, 26, 136, 229, 264
latent, 106, 147, 169
leaker, 9
qualitative see variable, categorical and

variable, response, qualitative
quantitative, 213, 214 see also variable,

response, quantitative
response, 28, 80, 90, 106

categorical, 135
dichotomous, 38, 149
in linear model, 37, 247
qualitative, 134
quantitative, 68–133

selection, 58–60, 106, 117, 182
optimal, 59
stepwise, 59–60, 86, 113, 193

uncorrelated components, 242
variance, 49, 56, 155, 177, 264

conditional, 245
constant, 16
estimation, 19, 35
explained, 61
matrix, 242
residual, 74, 113

unbiased, 251
trade-off between bias and see trade-off,

bias–variance
vector, 240

mean value, 216
projection, 248, 249
residual, 249–251

vector space, 247–249, 251–252
orthogonal, 251

visualization, data see graphical
representation and plot

weak classifier, 179
web mining, 205–209
weight decay, 109, 117, 185, 189
window, smoothing, 70, 72, 75
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