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Foreword

Contrast data mining is an important and focused subarea of data mining. Its
aim is to find interesting contrast patterns that describe significant differences
between datasets satisfying various contrasting conditions. The contrasting
conditions can be defined on class, time, location, other “dimensions” of in-
terest, or their combinations. The contrast patterns can represent nontrivial
differences between classes, interesting changes over time, interesting trends
in space, and so on.

Contrast data mining has provided, and will continue to provide, a
unique angle to examine certain challenging problems and to develop pow-
erful methodologies for solving those challenging problems, both in data min-
ing research and in various applications. For the former, contrast patterns
have been used for classification, clustering, and discriminative pattern anal-
ysis. For the latter, contrast data mining has been used in a wide spectrum
of applications, such as differentiating cancerous tissues from benign ones,
distinguishing structures of toxic molecules from that of non-toxic ones, and
characterizing the differences on the issues discussed in the blogs on U.S. pres-
idential elections in 2008 and those discussed in 2012. Contrast data mining
can be performed on many kinds of data, including relational, vector, trans-
actional, numerical, textual, music, image, and multimedia data, as well as
complex structured data, such as sequences, graphs, and networks.

There have been numerous research papers published in recent years, on
contrast mining algorithms, on applying contrast patterns in classification,
clustering, and discriminative pattern analysis, and on applying contrast pat-
terns and contrast-pattern based classification and clustering to a wide range
of problems in medicine, bioinformatics, chemoinformatics, crime analysis,
blog analysis, and so on. This book, edited by two leading researchers on
contrast mining, Professors Guozhu Dong and James Bailey, and contributed
to by over 40 data mining researchers and application scientists, is a com-
prehensive and authoritative treatment of this research theme. It presents a
systematic introduction and a thorough overview of the state-of-the-art for
contrast data mining, including concepts, methodologies, algorithms, and ap-
plications.

I have high confidence that the book will appeal to a wide range of readers,
including data mining researchers and developers who want to be informed
about recent progress in this exciting and fruitful area of research, scientific
researchers who seek to find new tools to solve challenging problems in their
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own research domains, and graduate students who want to be inspired on
problem solving techniques and who want to get help with identifying and
solving novel data mining research problems in various domains.

I find the book enjoyable to read. I hope you will like it, too.

Jiawei Han

University of Illinois, Urbana-Champaign

March 19, 2012



Preface

Contrasting is one of the most basic types of analysis. Contrasting based
analysis is routinely employed, often subconsciously, by all types of people.
People use contrasting to better understand the world around them and the
challenging problems they want to solve. People use contrasting to accurately
assess the desirability of important situations, and to help them better avoid
potentially harmful situations and embrace potentially beneficial ones.

Contrasting involves the comparison of one dataset against another. The
datasets may represent data of different time periods, spatial locations, or
classes, or they may represent data satisfying different conditions. Contrast-
ing is often employed to compare cases with a desirable outcome against cases
with an undesirable one, for example comparing the benign and diseased tis-
sue classes of a cancer, or comparing students who graduate with university
degrees against those who do not. Contrasting can identify patterns that cap-
ture changes and trends over time or space, or identify discriminative patterns
that capture differences among contrasting classes or conditions.

Traditional methods for contrasting multiple datasets were often very sim-
ple so that they could be performed by hand. For example, one could compare
the respective feature means, compare the respective attribute-value distri-
butions, or compare the respective probabilities of simple patterns, in the
datasets being contrasted. However, the simplicity of such approaches has
limitations, as it is difficult to use them to identify specific patterns that of-
fer novel and actionable insights, and identify desirable sets of discriminative
patterns for building accurate and explainable classifiers.

Contrast data mining, a special and focused area of data mining, develops
concepts and algorithmic tools to help us overcome the limitations of those
simple approaches. Recently, especially in the last dozen or so years, a large
number of research papers on the concepts and algorithms of contrast data
mining, and a large number of papers on successful applications of contrast
mining in a wide range of scientific and business domains, have been reported.
However, those results were only available in widely scattered places. This
book presents the results in one place, in a comprehensive and coordinated
fashion, making them more accessible to a wider spectrum of readers.

The importance and usefulness, and the diversified nature of contrast min-
ing, have been indicated not only by the large number of papers, but also
by the many names that have been used for contrast patterns. For example,
the following names have been used: change pattern, characterization rule,
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class association rule, classification rule, concept drift, contrast set, difference
pattern, discriminative association, discriminative interaction pattern, dis-
criminative pattern, dissimilarity pattern, emerging pattern, gradient pattern,
group difference, unusual subgroups, and generalized contrast patterns such
as fuzzy/disjunctive emerging patterns and contrast inequalities/regressions.

This book is focused on the mining and utilization of contrast patterns. It
is divided into seven parts.

Part I, Preliminaries and Measures on Contrasts, contains two chapters,
on preliminaries and on statistical measures for contrast patterns, respectively.

Part II, Contrast Mining Algorithms, contains five chapters: Chapters 3
and 4 are on mining emerging patterns using tree-based structures or tree-
based searches, and using Zero-Suppressed Binary Decision Diagrams, re-
spectively. Chapter 5 is on efficient direct mining of selective discriminative
patterns for classification. Chapter 6 is on mining emerging patterns from
structured data, such as sequences and graphs. Chapter 7 is on incremental
maintenance of emerging patterns.

Part III, Generalized Contrasts, Emerging Data Cubes, and Rough
Sets, contains three chapters: Chapter 8 is on more expressive contrast pat-
terns (such as disjunctive/fuzzy emerging patterns, and contrast inequalities).
Chapter 9 is on emerging data cube representations for OLAP data mining.
Chapter 10 relates jumping emerging patterns with rough set theory.

Part IV, Contrast Mining for Classification and Clustering, contains four
chapters: Chapter 11 gives an overview and analysis of contrast pattern based
classification. Chapter 12 is on using emerging patterns in outlier and rare-
class prediction. Chapter 13 is on enhancing traditional classifiers using emerg-
ing patterns. Chapter 14 presents CPC — Contrast Pattern Based Clustering
Algorithm — together with a brief discussion on the CPCQ clustering qual-
ity index, which is based on the quality, abundance, and diversity of contrast
patterns.

Part V, Contrast Mining for Bioinformatics and Chemoinformatics, con-
tains five chapters: Chapter 15 is on emerging pattern based rules charac-
terizing subtypes of leukemia. Chapter 16 is on discriminating gene transfer
and microarray concordance analysis. Chapter 17 is on mining optimal emerg-
ing patterns when there are thousands of genes or features. Chapter 18 is on
the theory and applications of emerging chemical patterns. Chapter 19 is on
emerging molecule patterns as structural alerts for computational toxicology.

Part VI, Contrast Mining for Special Application Domains, contains five
chapters: Chapter 20 is on emerging patterns and classification for spatial and
image data. Chapter 21 is on geospatial contrast mining with applications on
vegetation, biodiversity, and election-voting analysis. Chapter 22 is on mining
emerging patterns for activity recognition. Chapter 23 is on emerging pat-
tern based prediction of heart diseases and powerline safety. Chapter 24 is on
emerging pattern based crime spots analysis and rental price prediction.

Part VII, Survey of Other Papers, contains one chapter: Chapter 25 gives
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an overview of results on contrast mining and applications, with a focus on
papers not already cited in the other chapters of the book. The chapter in-
cudes citations of papers that present algorithms on mining changes and model
shift, on mining conditional contrasts, on mining niche patterns, on discover-
ing holes and bumps, on discovering changes and emerging trends in tourism
and in music, on understanding retail customer behavior, on using patterns to
analyze and improve genetic algorithms, on using patterns to preserve privacy
and protect network security, and on summarizing knowledge level differences
between datasets.

The 25 chapters of this book were written by more than 40 authors who
conduct research in a diverse range of disciplines, including architecture en-
gineering, bioinformatics, biology, chemoinformatics, computer science, life-
science informatics, medicine, and systems engineering and engineering man-
agement. The cited papers of the book deal with topics in much wider range
of disciplines. It is also interesting to note that the book’s authors are from a
dozen countries, namely Australia, Canada, China, Cuba, Denmark, France,
Germany, Japan, Korea, Poland, Singapore, and the USA.

The 25 chapters demonstrate many useful and powerful capabilities of
contrast mining. For example, contrast patterns can be used to characterize
disease classes. They can capture discriminative gene group interactions, and
can help define interaction based importance of genes, for cancers. They can
be used to build accurate and explainable classifiers that perform well for bal-
anced classification as well as for imbalanced classification, to perform outlier
detection, to enhance traditional classifiers, to serve as feature sets of tradi-
tional classifiers, and to measure clustering quality and to construct clusters
without distance functions. They can be used in compound selection for drug
design and in molecule toxicity analysis, in crime spot analysis and in heart
disease diagnosis, in rental price prediction and in powerline safety analysis,
in activity recognition, and in image and spatial data analysis. In general,
contrast mining is useful for diversified application domains involving many
different data types.

A very interesting virtue of contrast mining is that contrast-pattern ag-
gregation based classification can be effective when very few, as few as three,
training examples per class are available. This virtue is especially useful for
situations where training data may be hard to obtain, for instance for drug
lead selection. Another interesting characteristic is that length statistics of
minimal jumping emerging patterns can be used to detect outliers, allowing
the use of one number as a measure to detect intruders. Using such a minimal
model is advantageous, since it is hard for intruders to discover and emulate
the model of the normal user in order to evade detection. A third interesting
trait of contrast mining is the ability to use the collective quality and diversity
of contrast patterns to measure clustering quality and to form clusters, with-
out relying on a distance function, which is often hard to define appropriately
in clustering-like exploratory data analysis. As you read the chapters of the
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book, you will notice many other powerful aspects of contrast patterns, which
make them very useful in solving many challenging problems.

Perhaps the most important contribution of contrast mining will come
when we no longer need to use the naive Bayes or similar simplifying ap-
proaches to handle the challenge of high dimensional data, when we have de-
veloped the methodology to systematically analyze, and accurately use, sets
of multi-feature contrast patterns instead. We believe that contrast mining
has made useful progress in this direction, and we hope that results reported
in this book will help researchers make progress on this important problem.
Success in this direction will have a large impact on the understanding and
handling of intrinsically complex processes, such as complex diseases whose
behaviors are influenced by the interaction of multiple genetic and environ-
mental factors.

We envision that, in the not too distant future, the field of contrast data
mining will become mature. Then, other disciplines such as biology, medicine,
and physics will refer to contrast mining and use methods from the contrast
mining toolbox, in the same way that they now use methods such as logis-
tic regression and PCA. We also foresee that, as the world moves towards
ubiquitous computing, people may some day have a contrasting app on their
iPhone-like device, which, when pointed at two types of things, can answer
the question “in what ways do these two types differ?”

This book demonstrates that contrast mining has been a fruitful field for
research on data mining methodology and for research on utilizing contrast
mining to solve real-life problems. There are still many interesting research
questions that deserve our attention, both in developing contrast mining
methodology within the realm of computer science and in utilizing contrast
mining to solve challenging problems in domains outside of computer science.
Let us join together in exploring the concepts, algorithms, techniques, and
applications of contrast data mining, to quickly realize its full potential.

Guozhu Dong, Wright State University
James Bailey, The University of Melbourne
March 2012
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Chapter 1

Preliminaries

Guozhu Dong

Department of Computer Science and Engineering, Wright State University

1.1 Datasets of Various Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Patterns and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contrast Patterns and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Datasets of Various Data Types

This section presents preliminaries on two frequently used data types for
data mining, namely transaction data and attribute-based vector/tuple data.
Other special data types will be described in the chapters that require them.

For transaction data, one assumes that there is a universal set of items of
interest for a given application. A transaction t is a non-empty set of items.
A transaction may also be associated with a transaction identifier (TID). A
transaction dataset D is a bag (multi-set) of transactions. Within D, the TIDs
are unique; a transaction of D can occur multiple times. Transaction datasets
are often used to describe market basket data, text data, discretized vector
data, discretized image data, etc. Table 1.1 gives an example.

For vector/tuple data, there is a universal set {A1, ..., Am} of attributes
of interest. Each attribute Ai is associated with a domain dom(Ai), and Ai

can be numerical or categorical (which is a synonym of nominal), depending
on whether its domain contains only numbers or not. It is assumed that the
domain of a categorical attribute is finite. A vector or tuple is a function t
mapping the attributes to their domains such that t(Ai) ∈ dom(Ai) for each
Ai. A vector t is often given in the form (t(A1), ..., t(Am)). Vectors are used

TABLE 1.1: A Transaction Dataset
T1 bread, cat food, cereal, egg, milk
T2 bread, juice, yogurt
T3 butter, cereal, diaper, juice, milk
T4 bread, juice, yogurt

3
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TABLE 1.2: A Vector Dataset
Age Gender Education BuyHybrid
32 female phd yes
52 female bachelor yes
62 male phd yes
29 male bachelor no
33 female masters no

to describe objects. A vector dataset is a set of vectors/tuples. Table 1.2 gives
an example; the dataset has four attributes: Age, Gender, Education, and
BuyHybrid; Age is numerical and the other three are categorical.

A transaction dataset can be represented as a binary vector dataset, where
each item is viewed as a binary attribute, and the values 0 and 1 represent
absence and presence respectively of the item in the given transactions.

A dataset D may be associated with classes. In this case, some number
k ≥ 2 of class labels C1, ..., Ck are given, and D is partitioned into k disjoint
subsets D1, ..., Dk such that Di is the dataset for class Ci. It is customary to
directly use Ci to refer to Di. Table 1.2 can be viewed as a dataset with two
classes, where the class labels are the two BuyHybrid values; the dataset then
has three attributes, namely Age, Gender, and Education, and the “yes” class
consists of the first three tuples, and the “no” class consists of the last two.

1.2 Data Preprocessing

For pattern mining, it is common to transform numerical attribute values
into “items”. Let D be a vector dataset. The transformation is achieved using
binning, also called discretization, of the numerical attributes. Binning of a
numerical attribute has two steps: First, the domain of the attribute is parti-
tioned into a finite number of disjoint intervals (bins). Then, each tuple t of D
is transformed into a new tuple t′ where, for each numerical attribute A, t′(A)
is set to the interval that t(A) belongs to. The discretized dataset of D can now
be viewed as a transaction dataset, where the items have the form (A, a), A is
an attribute and a is either a value of A (if A is categorical) or an interval of
A (if A is numerical). Here, the item (A, a) should be viewed as A = a if A is
categorical, and viewed as A ∈ a if A is numerical. For the dataset in Table 1.2,
as one possibility, one can discretize Age into three intervals, namely [0, 30),
[30, 50), [50, 100]. The first tuple is then transformed into the transaction
{Age ∈ [30, 50), Gender = female, Education = phd,BuyHybrid = yes}.

The square brackets “[” and “]” are used denote closed ends of intervals,
and the round brackets “(” and “)” are used to denote open ends. The end of
an interval whose boundary value is +∞ or −∞ should be open.



Preliminaries 5

Binning can be done either statically before performing pattern mining, or
dynamically during pattern mining. We only discuss the static case below.

Many binning methods have been developed. They can be divided into two
categories: A binning method is called supervised if the tuples have assigned
classes and the method uses the class information, and it is called unsupervised
otherwise [128]. Unsupervised binning methods include equi-width and equi-
density. Supervised binning methods include the entropy based method.

Let A be a numerical attribute of a vector dataset D, and let k be the
desired number of intervals for A.

The active range of A is given by [amin, amax], where amin and amax are
respectively the minimum and maximum values of A in D. The implicit range
of A is given by [a∗min, a

∗
max], where a∗min is the minimal value (which can be

amin or −∞ or some other value) and a∗max is the maximum value (which can
be amax or +∞ or some other value) of the domain of A.

The equi-width method divides A’s active range into intervals of equal
width. Specifically, the method uses the following intervals for A: [a∗min, amin+
we], (amin + we, amin + 2we], ..., (amin + (k − 1)we, a

∗
max], where we =

(amax−amin)
k . a∗min and a∗max are used instead of amin and amax, to enure

that the discretization applies to not only known data in D but also unseen
future data. The method’s name can be explained as follows: If only the “ac-
tive” parts, namely [amin, amin+we], (amin+we, amin+2we], ..., (amin+(k−
1)we, amax], are considered, then the intervals have the same width.

For the dataset in Table 1.2 and k = 3, the equi-width method dis-
cretizes the Age attribute into the following three intervals, [0, 40], (40, 51]
and (51, 150], assuming that the minimal and maximal age values are 0 and
150 respectively. The corresponding “active” intervals are [29, 40], (40, 51], and
(51, 62] and they have equal width.

The equi-density method divides A’s active range into intervals all having
the same number of matching tuples in D. Specifically, the method uses the
intervals [a∗min, a1], (a1, a2], ..., (ak−1, a

∗
max] such that the interval densities,

|{t | t ∈ D, t(A) ∈ the ith interval}|, are as close to |D|
k as possible. It is

customary to only use the mid-points of distinct consecutive values of the
attribute, when the values are sorted, as the interval boundaries.

To illustrate, for the dataset in Table 1.2 and k = 2, the equi-density
method may discretize the Age attribute into the following two intervals,
[0, 42.5] and (42.5, 150], assuming that the minimal and maximal age values
are 0 and 150 respectively. Densities of the two intervals are 3 and 2 respec-
tively. The method may also discretize the Age attribute into the following
two intervals, [0, 32.5] and (32.5, 150].

As suggested by the name, entropy based binning uses the entropy mea-

sure. Let D′ be a dataset having κ classes C1, ..., Cκ. Let pi =
|Ci|
|D′| for each

i. The entropy [362] of D′ is defined by

entropy(D′) = −
κ∑

i=1

pi log2 pi.
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An entropy value is often viewed as an indication of the purity of D′ – the
smaller the entropy value the “purer” (or more “skewed”) D′ is.

The entropy based binning method iteratively splits an interval into two
intervals, starting by splitting the active range of A in D. Specifically, to
determine the split value in D, the method [145] first sorts the A values in
D into an increasing list a1, ..., an. Then each mid-point between two distinct
consecutive A values in the list is a candidate split value. Each split value v
divides D into two subsets, D1 = {t ∈ D | t(A) ≤ v} and D2 = {t ∈ D |
t(A) > v}. The information gain of a split v is defined to be

infoGain(v) = entropy(D)−
2∑

i=1

|Di|
|D| entropy(Di).

The split value v′ that maximizes infoGain(v) is chosen as the split value for
A. This splits the active range of A into two intervals. If more intervals are
needed, this method is used to find the best split value for A in D1 and the
best split value for A in D2; then the better one among the two is selected
to produce one additional interval in D. This process is repeated until some
stopping condition is satisfied.

For the dataset in Table 1.2 and k = 2, the entropy based method
works as follows. The age values of D are sorted to yield the following list:
29, 32, 33, 52, 62. The candidate split values are 30.5, 32.5, 42.5, 57. It can be
verified that 42.5 is the best split. Hence the method produces the following
two intervals: [0, 42.5], (42.5, 150]. Intuitively, the D1 and D2 associated with
the split value of 42.5 are the purest among the candidate split values.

1.3 Patterns and Models

Two major categories of knowledge that are often considered in data min-
ing are patterns and models. Loosely speaking, a model is global, in the sense
that it refers to the whole population of data under consideration, whereas a
pattern is local and refers to a subset of that total population.

In general terms, a pattern is a condition on data tuples that evaluates to
either true or false. Not all conditions are considered patterns though – only
succinct conditions that are much simpler and much smaller in size than the
data they describe are worthwhile to be returned as patterns of interest.

Patterns can be specified in different pattern languages. We discuss some
commonly used ones below. More expressive pattern languages are used in the
literature and in later chapters of this book.

For transaction data, patterns are frequently given as itemsets. An itemset
is a finite set of items. A transaction t is said to satisfy or match an itemset
X if X ⊆ t.
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When vector data is discretized, the itemset concept carries over. Recall
that the form of an item here is either A = a or A ∈ a, depending on whether
A is categorical or numerical. The satisfaction of an item A = a or A ∈ a
by a vector t is defined in the natural manner. A vector t satisfies an itemset
X if each item in X is satisfied by t. Equivalently, we say that t satisfies an
itemset X if the discretized version of t satisfies X in the transaction sense.
The word “matches” is often used as a synonym of “satisfies”.

The matching data of an itemset X in a dataset D is given by mt(X,D) =
{t ∈ D | t satisfies X}. The count and support of X in D are given by

count(X,D) = |mt(X,D)| and supp(X,D) = count(X)
|D| . The concepts of item-

set, count and support given here are the same as in association mining [3].
An itemset X is closed [326] in a dataset D if there is no proper superset

itemset Y of X satisfying count(Y,D) = count(X,D). Closed patterns are
often preferred since they reduce the number of frequent patterns and yet
they can be used to recover the supports of all frequent patterns.

The equivalence class of an itemsetX with respect to a datasetD is defined
as the set of all itemsets Y satisfying mt(Y,D) = mt(X,D). Such equivalence
classes are often convex, meaning that Z is in a given equivalence class if there
exist X and Y in the given equivalence class satisfying X ⊆ Z ⊆ Y .

Convex sets of patterns can be represented by borders of the form< L,R >,
where L is the set of the minimal patterns (defined in terms of the set-
containment relationship of the itemsets of the patterns) of the convex set
and R is the set of maximal patterns of the convex set. (It is easy to see that
L and R are both anti-chains with respect to the set containment relation,
i.e. there are no patterns X and Y of L satisfying X ⊆ Y and similarly for R.)
In particular, an equivalence class has one maximal itemset (which is referred
to as the closed pattern of the equivalence class) and a set of minimal itemsets
(which are referred to as the minimal generators of the equivalence class).

We now turn to models. While many possibilities exist, here we focus on
classifiers and clusterings.

A classifier is a function from data tuples to (predicted) class labels. Classi-
fiers are often constructed from training data. A classification algorithm builds
a classifier for each given training dataset. Many types of classifiers and clas-
sification algorithms have been studied. Different classifiers are defined using
different approaches; some are easier to understand than others.

The evaluation of the quality of a classifier is an important issue. Several
measures have been considered, including accuracy, precision, recall, and F-
score. We discuss accuracy below.

The accuracy of a classifier reflects how often (as a percentage) the classifier
is correct (i.e., the predicted class is the true class). For accuracy estimation,
often a given dataset is divided into a training part and a testing part; a
classifier is built from the training part and its accuracy is determined using
the testing part. To reduce variability in accuracy evaluation, cross-validation
is performed. In k-fold cross validation, where k ≥ 2 is an integer, a given
dataset D is randomly shuffled and partitioned into k parts/folds. Stratified
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partitions, partitions where the class ratios in each fold are roughly equal to
those ratios in the whole dataset, are preferred. Then, each fold of the partition
is used as a testing dataset and the other k−1 folds are used as training data.
The average accuracy of the k classifiers built in this manner is considered as
the accuracy of the classifier (more precisely, the accuracy of the classification
algorithm). In practice, 5-fold or 10-fold cross validation is often used. To
further reduce variability, k-fold cross validation can be repeated many times
(using different shuffling results), and the average accuracy of the repeated
k-fold cross validation is considered as the accuracy of the classifier.

A clustering of a dataset D is a partition (or grouping) of D into some
desired number k of subsets C1, ..., Ck. Each subset is called a cluster in the
clustering. The quality of a clustering can be measured in many ways. Of-
ten distance based clustering quality measures are used, including the intra-
cluster difference measure; clustering algorithms often attempt to minimize
such quality measures. Given a distance function d on tuples and a clustering
C = (C1, ..., Ck) of D, the intra-cluster difference measure is defined as

ICD(C) =

k∑
i=1

∑
s∈Ci,t∈Ci,s�=t

d(s, t).

Observe that the inter-cluster difference, defined as the sum of pairwise dis-
tance of tuples in different clusters, is maximized automatically when ICD is
minimized. Average can be used in the definition instead of the sum. Many
clustering algorithms and clustering quality measures have been studied.

It is interesting to note that contrast patterns can be used to define quality
measures on clusterings and can be used as the basis of a clustering algorithm
to form clusterings, without the use of distance functions, which can be diffi-
cult to define appropriately when performing clustering analysis. Chapter 14
will discuss a contrast pattern based quality measure (called CPCQ) and a
contrast pattern based clustering algorithm (called CPC).

1.4 Contrast Patterns and Models

This section presents some basic definitions of contrast patterns and mod-
els. Specific variants will be discussed in various chapters of the book.

In general, contrasting can be performed on datasets satisfying statically
defined conditions or on datasets satisfying dynamically defined conditions.
For the former, two or more datasets are needed, and for the latter, just one
dataset is required. Often each of the datasets corresponds to a class.

We first discuss the case for statically defined conditions. Given two or
more datasets that one wishes to contrast, contrast patterns and models are
patterns and models that describe differences and similarities between/among
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the given datasets. In this book, the focus is on the difference type, although
we may discuss the similarity type occasionally.

The datasets under contrast can be subsets of a common dataset. For
example, they can be the classes of a common underlying dataset, or subsets
of a common underlying dataset satisfying various conditions. The datasets
under contrast can also be datasets for a given application collected from
different locations, or different time periods.

The datasets under contrast may also contain classes themselves. For ex-
ample, one may contrast two datasets for two different diseases, where each
dataset has two classes (e.g. normal and diseased).

According to the above, most classifiers are examples of contrast models.
Clusterings that come with patterns/models characterizing the clusters, as is
done in conceptual clustering [297, 151] (and also Chapter 14), can also be
viewed as contrasting models. As mentioned in the preface, this book, and the
discussion below, will focus on the mining and utilization of contrast patterns.

Contrast patterns are often defined as patterns whose supports differ sig-
nificantly among the datasets under contrast. There are three common ways to
define “supports differ significantly,” one being growth-rate (or support-ratio)
based, another being support-delta based, and the third using two thresholds.

Many chapters in this book refer to contrast patterns as emerging patterns
[118].

We focus on the two datasets case below, and will note how to generalize
to more datasets. Let D1 and D2 be two datasets to be contrasted.

The growth rate [118, 119], also commonly referred to as support ratio or

frequency ratio, of a pattern X for dataset Dj is gr(X,Dj) =
supp(X,Dj)
supp(X,Di)

, where

i ∈ {1, 2} − {j}. It is customary to define gr(X,Dj) = 0 if supp(X,Dj) =
supp(X,Di) = 0, and define gr(X,Dj) = ∞ if supp(X,Dj) > 0 and
supp(X,Di) = 0.

The support delta (or support difference) [42, 44] of a patternX for dataset
Dj is suppδ(X,Dj) = supp(X,Dj)− supp(X,Di), where i ∈ {1, 2} − {j}.

Definition 1.1 Given a growth-rate threshold σr > 0, a pattern X is a
σr-contrast pattern for dataset Dj if gr(X,Dj) ≥ σr. Similarly, given a
delta threshold σδ > 0, a pattern X is a σδ-contrast pattern for dataset
Dj if suppδ(X,Dj) ≥ σδ. If X is a contrast pattern for Dj, then Dj is the
home dataset (also called target dataset or positive dataset), and the other
datasets are the opposing datasets (also called background datasets or nega-
tive datasets), of X. A contrast pattern whose support is zero in its opposing
datasets but non-zero in its home dataset is called a jumping emerging pattern;
its growth rate is ∞.

When discussing σr- or σδ-contrast patterns, σr and σδ are often omitted.
Besides the support-ratio and support-delta based ways, one can also define

contrast patterns using a two-support based method. More specifically, given a
support threshold α ∈ [0, 1] for home dataset and a support threshold β ∈ [0, 1]
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for the opposing dataset, a pattern X is a (α, β)-contrast pattern [34] for
dataset Dj if supp(X,Dj) ≥ α and supp(X,Di) ≤ β (i ∈ {1, 2} − {j}).

Example 1.1 To illustrate the three definitions, consider the data shown in
Table 1.3, which can be viewed as the result of discretizing each gene Gi into
two intervals, denoted by L (low) and H (high), of microarray gene expression
data. For X0 = {G1 = L,G2 = H}, we have supp(X0, Cancer) = 0.75,
supp(X0, Normal) = 0.25, suppδ(X0) = 0.5, and gr(X0, Cancer) = 3; X0 is a
contrast pattern for σδ = 0.4 using the support-delta definition and for σr = 2
using the growth rate definition. For X1 = {G1 = L,G2 = H,G3 = L}, we
have supp(X1, Cancer) = 0.50, supp(X1, Normal) = 0, suppδ(X1) = 0.5, and
gr(X1, Cancer) =∞; X1 is a contrast pattern for σδ = 0.4 and for σr = 100.
X1 is a contrast pattern for α = 0.4 and β = 0 using the two support definition.

TABLE 1.3: Example Dataset for Contrast Patterns
Cancer Tissues Normal Tissues

G1 G2 G3 G4

L H L H
L H L L
H L L H
L H H L

G1 G2 G3 G4

H H L H
L H H H
L L L H
H H H L

Using a growth-rate as the only threshold to mine contrast patterns allows
us to obtain contrast patterns without a minimum support threshold, and to
obtain contrast patterns with high growth rate but low support. This is an
advantage for classification applications (see Chapter 11), and for situations
where we wish to identify emerging trends in time or space. Using a support-
delta threshold implies a minimum support threshold in the home dataset.

Both growth rate and support delta are example interestingness measures
on contrast patterns. Other interestingness measures such as relative risk ratio,
odds ratio, and risk difference [247, 255] have been studied in the literature.
Chapter 2 presents various measures on contrast patterns.

There are two ways to generalize to the case with more than two datasets.
We can either replace supp(X,Di) by maxi�=j supp(X,Di), or replace it by
supp(X,∪i�=jDi), in the definitions for gr(X,Dj) and suppδ(X,Dj).

So far the discussion is about the static case, where the datasets to be
contrasted are predefined. We now consider a dynamic case. Let D be a given
dataset and μ a given measure that can be applied to patterns, such as the sup-
port of itemsets, or the sum of a measure attribute as used in data cubes. We
wish to mine contrasting pairs (X1, X2) such that X1 and X2 are very similar
patterns syntactically and μ(mt(X1, D)) and μ(mt(X2, D)) differ significantly
[117, 122]. Here the datasets mt(X1, D) and mt(X2, D) are discovered on the
fly instead of given a priori. Observe that a contrasting pair (X1, X2) can also
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be given as a contrasting triple (X1 ∩ X2, X1 − X2, X2 − X1), as was done
in [122]. Using the contrasting triple notation, we can see that a contrasting
pair refers to a base condition X and two contrasting conditions X1−X2 and
X2 −X1 relative to the base.





Chapter 2

Statistical Measures for Contrast
Patterns

James Bailey

Department of Computing and Information Systems, The University of Mel-
bourne

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Measures for Assessing Quality of Discrete Contrast Patterns . . 15
2.3 Measures for Assessing Quality of Continuous Valued Contrast

Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Feature Construction and Selection: PCA and Discriminative

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Introduction

An important task when working with contrast patterns is the assessment
of their quality or discriminative ability. In this chapter, we review a range
of measures that may be used to assess the discriminative ability of contrast
patterns. Some of these measures have their origins in association rules, oth-
ers in statistics, and others in subgroup discovery. Our presentation is not
exhaustive, since dozens of measures exist. Instead we present a selection that
covers a number of the main types.

We will focus on the situation where just two classes are being contrasted.
However, many of the measures can be extended in a straightforward way to
deal with three or more classes. Work in [1] provides a useful survey of 16
different measures appropriate for the multi class case.

When considering how to assess discriminative ability, a key intuition is
that a contrast pattern can be modeled as a binary feature (i.e. the pattern
is either present or absent) of each instance/transaction in the data. There-
fore, to assess discriminative ability, one may borrow from the large range
of techniques which already exist for evaluating feature discrimination power
between two classes.

13
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2.1.1 Terminology

We first outline the scenario for transaction data. Let UD be the universe
of all items in the dataset D. A pattern is an itemset I ⊆ UD. A transaction
is a subset T of UD and a dataset D is a set of transactions. A transaction T
contains the contrast pattern I if I ⊆ T . The support of I in D is written as
support(I,D) and is equal to the percentage of transactions in D that contain
I. The count of transactions in D that contain I is written as count(I,D).
For an itemset I in dataset D, we define fD(I) = {T ∈ D|I ⊆ T }, that is all
transactions in D containing I. Thus |fD(I)| = count(I,D).

An itemset X is a closed itemset in D if for every itemset Y such that
X ⊂ Y , support(Y,D) < support(X,D). X is a (minimal) generator in D if
for every itemset Z such that Z ⊂ X , support(Z,D) > support(X,D). Using
these concepts, one may form equivalence classes for D, corresponding to sets
of transactions. For each equivalence class, there is exactly one closed pattern
and one or more generators. Both the closed pattern and the generators are
contained in all transactions in their equivalence class.

For the case where the data is non-transactional (discrete attribute val-
ued), then these definitions extend in the obvious way. A pattern I is then a
conjunction of attribute values and support(I,D) (count(I,D)) is the fraction
(count) of instances in D for which I is true.

We will assume there exist two datasets, a positive dataset Dp and a
negative datasetDn. Given a pattern I, we need to assess its ability to contrast
or discriminate between Dp versus Dn.

A useful structure we will need is the contingency table. Given I, one may
construct a contingency table CTI,Dp,Dn , representing the distribution of I
across Dp and Dn:

Dp Dn Sums
I n11 n12 a1
¬I n21 n22 a2
Sums |Dp| = b1 |Dn| = b2

∑
ij nij = N

Here n11 = count(I,Dp), n12 = count(I,Dn), n21 = |Dp| − n11 and
n22 = |Dn|−n12. Note that support(I,Dp) = n11/|Dp| and support(I,Dn) =
n12/|Dn|.

The risk of a contrast pattern I in a dataset D, denoted by risk(I,D),
is the probability that the pattern I occurs in D. It can be estimated using
the ratio of the number of times I occurs in D to the size of D, i.e. equal to
support(I,D). The odds of a contrast pattern I in a dataset D, denoted by
odds(I,D), is the probability the pattern occurs in D divided by the proba-
bility it doesn’t occur in D. It can be estimated by the ratio of the number of
times the pattern occurs in D to the number of times it doesn’t occur in D:
odds(I,D) = support(I,D)/(1− support(I,D)).
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2.2 Measures for Assessing Quality of Discrete Contrast
Patterns

We now examine measures of discrimination ability for the discrete
case, where a contrast pattern either occurs or doesn’t occur in each in-
stance/transaction of Dp and Dn.

Confidence: This is a popular measure in the association rule community.
It is aimed at assessing the predictive ability of the pattern for the positive
class. Larger values are more desirable.

conf(I,Dp, Dn) =
n11

N
= count(I,Dp)/count(I,Dp ∪Dn).

Here n11 is as defined in CTI,Dp,Dn . Note that conf is an estimate of the
probability Pr(Dp|I). When the sizes of Dp and Dn are very different, the
confidence measure can be difficult to interpret.

Growth Rate or Relative Risk: This measure assesses the frequency
ratio of the pattern between the two datasets. Larger values are more desirable.

GR(I,Dp, Dn) = support(I,Dp)/support(I,Dn).

It was used in [118] to measure the quality of emerging patterns. In [255] it
is pointed out that growth rate is the same as the statistical measure known
as relative risk, which is the ratio of the risk in Dp to the risk in Dn. i.e.
risk(I,Dp)/risk(I,Dn). It is shown in [197] that

GR(I,Dp, Dn) =
conf(I,Dp, Dn)

1− conf(I,Dp, Dn)
× |Dn|
|Dp|

and for fixed |Dn|
|Dp| the growth rate increases monotonically with confidence

(and vice versa). This helps explain why choosing patterns with high confi-
dence values can be similar to choosing patterns with high growth rate.

Support Difference or Risk Difference: This assesses the absolute
difference between the supports of the pattern in Dp and Dn. It was used in
[42] as one of the measures for assessing the quality of contrast sets. Larger
values are more desirable.

SD(I,Dp, Dn) = support(I,Dp)− support(I,Dn).

It is pointed out in [255] that this measure is the same as risk difference:
risk(I,Dp)− risk(I,Dn), that is popular in statistics.
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Odds Ratio: This is analogous to the risk ratio and was proposed in
[255, 239]. Odds ratios are popular for measuring effects in a clinical context.
The odds ratio is the ratio of odds of the pattern I in Dp to the odds of the
pattern I in Dn. Larger values are more desirable.

OddsRatio(I,Dp, Dn) =
support(I,Dp)/(1− support(I,Dp))

support(I,Dn)/(1− support(I,Dn))
.

Gain: This is a rule based measure that was used in the CPAR system
[450]. Larger values are more desirable.

gain(I,Dp, Dn) = support(I,Dp)×(log
support(I,Dp)

support(I,Dp ∪Dn)
− log

|Dp|
|Dp ∪Dn|

).

Length: This measure simply counts the number of items contained in
the contrast pattern.

length(I,Dp, Dn) = |I|.
According to the minimum description length principle, it can be argued that
shorter patterns are more desirable for discrimination [246]. From a cluster-
ing perspective, work in [277] argues that a cluster Dp which contains many
short generator contrast patterns is good, since this implies it is significantly
different from the other clusters Dn. Also, a cluster which contains many long
closed contrast patterns is also good, since it is more likely to be coherent.
Hence, one can assess the quality of a generator pattern of I in equivalence
class e with a single value: the ratio [277] between the length of the (unique)

closed pattern for e, divided by the length of I, i.e.
|Ic

e |
|I| (higher values are

more desirable). Furthermore, one may also scale this according to the sup-

port value of the pattern, i.e. support(I,Dp)× |Ic
e |
|I| .

Statistical Significance: Given the contingency table CTI,Dp,Dn one may
use classical statistical measures to test the null hypothesis that the occurrence
of the pattern I and the dataset label are independent. One way to do this is
by computing the chi-square statistic χ2 and then deriving a p-value:

χ2 =

i=2∑
i=1

j=2∑
j=1

(nij − Eij)
2

Eij
,

where Eij =
(
∑k=2

k=1 nik)×(
∑k=2

k=1 nkj)

N is the expected frequency count in cell ij of
the table. This test is used in [42] for assessing the significance of a contrast
set. Smaller values of the statistic are more desirable.

Alternatively, for situations where the datasets are small or the counts in
the contingency table are small, one may instead use the Fisher exact test [30].
This calculates the probability of finding a table where I is more positively
associated with the dataset label.

p =

min(n12,n21)∑
i=0

a1!a2!|Dp|!|Dn|!
N !(n11 + i)!(n12 − i)!(n21 − i)!(n22 + i)!

.
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Smaller values of p are more desirable. When conducting significance tests for
many contrast patterns, the issue of statistical correction for multiple testing
arises. There are various approaches to this problem and a good discussion of
the issues by Webb can be found in [430].

Mutual Information: This measures the information shared by the con-
trast pattern occurrence and the dataset label. It tells us how much knowing
whether the contrast pattern occurs reduces our uncertainty about the dataset
label and vice versa. Larger values are more desirable.

MI(I,Dp, Dn) =

i=2∑
i=1

i=2∑
j=1

nij

N
log

nij/N

aibj/N2
.

Subgroup Discovery Measures: The field of subgroup discovery has
investigated a number of interestingness measures for subgroups. These mea-
sures are similar to and can be used for assessment of contrast patterns and
we mention two examples. The first is weighted relative accuracy [229], for
which larger values are more desirable.

WRACC(I,Dp, Dn) =
n11 + n12

|Dp|+ |Dn|
(

n11

n11 + n12
− |Dp|

N
).

It is shown in [319] that

WRACC(I,Dp, Dn)

=
|Dp|

(|Dp∪Dn|) ×
|Dn|

(|Dp∪Dn|) × (support(I,Dp)− support(I,Dn))

thus closely connecting it to the support difference measure. Another subgroup
interestingness measure is the generalization quotient [155], for which larger
values are more desirable:

qg(I,Dp, Dn) =
n11

n12 + g
,

where g is a user parameter. It is shown in [319] that

GR(I,Dp, Dn) = q0(I,Dp, Dn)×
|Dn|
|Dp|

,

thus closely connecting the generalization quotient to the growth rate measure.

Assessing Sets of Contrast Patterns: Given a set of contrast patterns
I1, . . . , Ik, an obvious approach for measuring their overall quality is to com-
pute the average value of one of the above measures across all the patterns; for
example, compute the average growth rate. Another approach is to compute
the accuracy or area under the ROC curve when using the set of patterns
for a supervised classification task. Alternatively, one may use a measure to
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assess the diversity of the pattern set (with higher diversity being desirable).
Two metrics that have been proposed here [277] are item overlap between the
contrast patterns (IO) and overlap of the data instances they are contained
in (DO), for which lower values are more desirable:

IO(I1, . . . , Ik) =
2

k(k + 1)

k∑
i=1

k∑
j=i+1

ovi(Ii, Ij)

where ovi(Ii, Ij) = |Ii ∩ Ij | (the number of items shared by Ii and Ij), and

DO(I1, . . . , Ik) =
2

k(k + 1)

k∑
i=1

k∑
j=i+1

ovt(Ii, Ij)

where ovt(Ii, Ij) = |fD(Ii)∩ fD(Ij)| (the number of transactions that both Ii
and Ij are contained in).

2.3 Measures for Assessing Quality of Continuous Val-
ued Contrast Patterns

We now examine the situation where the pattern corresponds to a contin-
uous quantity. We refer to this as a contrast feature and the aim is to assess
the discrimination ability of the contrast feature between Dp and Dn. We
consider non-parametric measures. Let the values of the contrast feature in
Dp be x1, . . . , x|Dp| and values in Dn be y1, . . . , y|Dn|.

Signal to Noise Ratio: This is popular in the area of gene expression
analysis [374]:

SNR =
|μDp − μDn |
σDp + σDn

where μDi is the mean value of the contrast feature in Di and σDi is its
standard deviation. If the difference between the two means is large and the
measure of variability (the denominator) is small, this indicates stronger dis-
crimination or contrast.

Area under the ROC Curve (AUC): This views the contrast feature
value as a ranking measure and assesses whether the instances in Dp tend to
be ranked higher than those in Dn. In the simple case assuming no ties:

AUC =
1

|Dp| × |Dn|

|Dp|∑
i=1

|Dn|∑
j=1

1xi>yj
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where 1xi>yj is the indicator function equal to 1 if xi > xy and 0 otherwise. It
takes values in the range [0, 1] where 0.5 corresponds to random performance.
The value of the AUC is equivalent to the Wilcoxon Mann Whitney Statistic.

Kolmogorov Smirnov Test: This uses the maximal distance between
cumulative frequency distributions of the feature inDp andDn as the statistic.
Given the empirical distribution function for the contrast feature values in Dp

FDp(z) = 1
|Dp|

∑i=|Dp|
i=1 1xi≤z and a similarly defined empirical distribution

function for Dn, then the KS two sample test is defined as:

sup
z
|FDp(z)− FDn(z)|

where sup denotes the supremum operator.

Confidence Intervals: For these continuous contrast features, one of-
ten wishes to assess the reliability of measures. This may be done using by
constructing intervals using methods such as bootstrap sampling or empirical
likelihood [462].

2.4 Feature Construction and Selection: PCA and Dis-
criminative Methods

One may also take a different perspective on discrimination ability and
consider methods that select or construct groups of features that satisfy some
discriminative objective function. Such methods include Principal Compo-
nents Analysis (PCA), Linear Discriminant Analysis (LDA) and multivariate
analysis of variance (MANOVA). We discuss each in turn.

The goal of PCA is to reduce the dimensionality of the data while retaining
as much as possible of the variation present in the dataset. However, dimen-
sionality reduction typically results in information loss. PCA produces a new
feature space, where the features can be ranked according to the amount of
variance they capture in the full feature space. PCA finds components that
are useful for representing data. However, there is no basis to assume that
the components have good ability to discriminate between classes, and inter-
pretability of those components is an issue.

The goal of Linear Discriminant Analysis (LDA) is to perform dimension-
ality reduction whilst preserving as much of the class discriminatory informa-
tion as possible. It seeks to find directions along which the classes are best
separated and takes into consideration the scatter within-classes but also the
scatter between-classes.

Discriminant function analysis (DA) is multivariate analysis of variance
(MANOVA) reversed. In MANOVA, the independent variables are the groups



20 Contrast Data Mining: Concepts, Algorithms, and Applications

and the dependent variables are the predictors. In discriminant analysis, the
independent variables are the predictors and the dependent variables are the
groups. DA is usually used to predict membership in naturally occurring
groups; it answers the question: can a combination of variables be used to
predict group membership? Discriminant function analysis is broken into a 2-
step process: (1) testing significance of a set of discriminant functions, and (2)
classification. The first step is computationally identical to MANOVA. There
is a matrix of total variances and covariances; likewise, there is a matrix of
pooled within-group variances and covariances. The two matrices are com-
pared via multivariate F tests in order to determine whether or not there are
any significant differences (with regard to all variables) between groups. One
first performs the multivariate test, and, if statistically significant, proceeds to
see which of the variables have significantly different means across the groups.

2.5 Summary

We have reviewed a range of measures for assessing the significance of
contrasts. In our presentation, we have avoided “looking inside” the contrast
pattern to assess the relationships between items or attribute values. Recent
work in [144] presents an interesting approach in this direction and categorizes
the different types of discrimination ability a pattern may possess. As one can
see from our listing, many different measures for assessing contrast pattern
quality exist and it is far from obvious which one(s) to prefer for a particular
application. A possible heuristic here is to select one measure as the primary
one for enumerating contrast patterns and then use other measures as filters
for post processing the contrast pattern set that is mined. In general though,
choosing appropriate interestingness measures is very challenging; it is likely
to require domain knowledge insights and to require specifics of the nature of
the problem/task at hand.
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3.1 Introduction

In this chapter we consider the challenge of mining emerging patterns.
In particular, we overview three approaches that can be used for mining a
specific type of emerging pattern, known as a jumping emerging pattern. All
approaches employ a tree structure to generate the patterns.

The idea to employ a tree for emerging pattern mining is natural, given
the popularity and success of frequent pattern trees [180] for mining frequent
patterns. One advantage is that the use of trees provides the ability to com-
press the input dataset(s) via sharing with common prefixes, thus allowing
more data to be stored in memory for mining. The use of a tree contrasts
with the generate and test approach for emerging pattern mining, as outlined
in [464], which was based on the use of a set enumeration tree to explore the
search space. Storing the datasets in a tree structure means that candidate
assessment is only required for itemsets that are known to occur in the dataset
and other parts of the itemset lattice need not be explored.

Compared to the task of mining frequent patterns though, mining emerg-
ing patterns brings some new challenges. Firstly, emerging patterns are defined
with reference to both a positive and negative dataset. This necessitates the
use of multiple counts to be kept per node, one per class (in contrast to fre-
quent patterns which are defined using only a single dataset and thus only
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require a single count). Secondly, different pruning techniques are needed,
since the a-priori property does not hold for emerging patterns. Thirdly, dif-
ferent methods for recursively processing conditional sub-trees may be needed,
during search space exploration.

The first approach we mention is from [33] and we will refer to it as emerg-
ing pattern mining using a ratio tree structure. The second approach is from
[141] and we refer to it as the CP-tree structure (contrast pattern tree struc-
ture). The third approach, DPMiner, is from [247] and employs concepts based
on itemset equivalence classes (minimal generators and closed patterns) to
enumerate emerging patterns. All three techniques use a tree structure in-
spired by the approach of [180] and we will assume familiarity with that work.

3.1.1 Terminology

We briefly review some definitions that will be required. If i is an itemset,
then support(i,D) is equal to the fraction of transactions in dataset D con-
taining i. An emerging pattern is an itemset whose support in one set of data
differs significantly from its support in another. Let z be an emerging pattern,
let Dp be the positive dataset and let Dn be the negative dataset. The growth
rate of z is support(z,Dp)/support(z,Dn) = ρ. If suppport(z,Dp) = ξ and
support(z,Dn) = 0, then z is called a ξ jumping emerging pattern (ξ-JEP).
We say that z is a minimal ξ-JEP if there does not exist any other ξ-JEP z′,
for which z′ ⊆ z. It is common to set ξ equal to 1/|Dp|, which corresponds to
mining all jumping emerging patterns occurring at least once in Dp and never
in Dn. For the ξ = 1/|Dp| case, we refer to the pattern simply as a jumping
emerging pattern.

An itemset X is a closed itemset if for every itemset Y such that X ⊂ Y ,
support(Y,D) < support(X,D). X is a (minimal) generator if for every item-
set Z such that Z ⊂ X , support(Z,D) > support(X,D). Using these concepts,
one may form equivalence classes from a dataset D, corresponding to sets of
transactions. For each equivalence class, there is exactly one closed pattern
and one or more generators. Both the closed pattern and the generators are
contained in all transactions in their equivalence class.

We will illustrate some of the ideas using the following simple transactional
dataset:

ID Class Itemset (instance)
1 Dp {v,x,y,z}
2 Dp {v}
3 Dp {w,z}
4 Dp {w,x,y,z}
5 Dn {v,w}
6 Dn {x,z}
7 Dn {v,w,x,y}
8 Dn {y,z}
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3.2 Ratio Tree Structure for Mining Jumping Emerging
Patterns

As mentioned earlier, the first tree based data structure for mining JEPs
that we examine is based on the frequent pattern tree [180]. A ratio tree is
conceptually the same as a frequent pattern tree, except that extra counts
are maintained in each node. Each node in the tree is associated with some
itemset i and the node records the frequency of i in both Dp and Dn. At
a high level, to mine all minimal emerging patterns, one traverses the tree,
inspecting the counts at each node. When the node counts indicate a high
disparity (ratio) between frequency in Dp and frequency in Dn, this means
that there exists an itemset which is a candidate to be a JEP and then further
assessment is recursively required.

An important choice in building a ratio tree is determining a global or-
dering for items, since this ordering will influence the shape of the tree. The
quality of an ordering may be considered from two different angles: i) the
ordering should minimize the total number of nodes in the tree (high com-
pression), ii) the ordering should “push” JEPs higher up the tree, so that only
shorter itemsets need to be examined during tree traversal. Three potential
orderings that can be considered are:

• Frequent tree ordering. Order items according to their descending prob-
ability in (Dp ∪Dn). This ordering aims to achieve high compression of
the data via many shared prefixes in the tree.

• Ratio ordering: Let the probability of an item in Dp be p1 and its prob-
ability in Dn be p2. Order items in descending value of p = p1/p2. This
ordering aims to “push” the JEPs higher up in the tree, compared to the
frequent tree ordering, potentially allowing the JEPs to be discovered
earlier, thus allowing more effective pruning of the bottom nodes in the
tree.

• Hybrid ordering: This is a combination of the ratio tree ordering and the
frequent tree ordering. Firstly, both the ratio tree ordering and frequent
tree ordering are calculated. Then, given a user specified percentage α,
the initial α percent of items are chosen according to the ratio tree or-
dering. All items not yet used are then ordered according to the frequent
tree ordering. This ordering aims to create trees that possess a mix of
both good compression characteristics and good tree pattern character-
istics.

At a high level, the process for mining all jumping emerging patterns
using the ratio tree is as follows: A ratio tree can be viewed as a forest of
component trees, where each component tree is rooted by one of the items
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in Dp ∪ Dn. Component trees are mined successively. Within a component
tree, all prefixes (branches) in the tree are traversed in a depth first fashion.
A prefix corresponds to some path in the component tree from its root item
to some base node. If the base node contains a counter of at least 1 for Dp

and a zero counter for Dn, then the itemset spanning from the root of the
component tree to the base node is unique to Dp and hence is a potential
JEP. In such a case, by projecting out all branches which share the same root
item and base node within the component tree, we can obtain all the itemsets
from Dp containing these two items, by traversing the side links of the tree.
A diagram of the structure for the example dataset is shown in Figure 3.1.
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FIGURE 3.1: Ratio Tree for Example Dataset: Ordering is z ≺ v ≺ w ≺ x ≺ y.
There is a root node for each component subtree. Base nodes correspond to
nodes that can be reached following a path from the root and which have zero
frequency in Dn and non zero frequency in Dp.

Once all negative itemsets for a given root and base node have been col-
lected, they are then mined for JEPs using the border differential subroutine
from [119]. This subroutine computes the minimal itemsets occurring in the
itemset spanning from base to root and not occurring in any of these nega-
tive itemsets. Interestingly, this task is equivalent to computing all minimal
transversals of a hypergraph using a classic technique first developed by Berge
[35]. The border-differential approach of [119] can therefore be viewed as an
optimized version of the Berge technique for minimal hypergraph transversal
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computation. Considering again Figure 3.1 when Z is the root and Y is the
base. This is a potential JEP since Y has frequency 1 in Dp and 0 in Dn. The
following transactions from Dn containing Z and Y are then projected out:
{Z, Y }. The border differential procedure is then invoked to find the minimal
itemsets containing both Z and Y , occurring in {Z, V,X, Y } and not occur-
ring in {Z, Y }. This yields {Z, V, Y } and {Z,X, Y } as JEPs. The item Z is
then removed from {Z, V,X, Y } and the itemset {V,X, Y } is reinserted into
the tree.

The ratio tree mining algorithm is designed to compute JEPs. For com-
puting ξ-JEPs, it is necessary to perform post processing of the JEPs in order
to check the ξ constraint. In practice, experimental analysis in [33] found that
a hybrid ordering (α = 30%) was the most effective choice in reducing mining
time.

3.3 Contrast Pattern Tree Structure

We now review a second algorithm from [141], for mining emerging pat-
terns, based on the use of a contrast pattern tree. This algorithm discovers
the complete set of ξ-JEPS.

A CP-tree is a tree storing all instances from both Dp and Dn. Items in
the CP-tree are ordered according to the ratio ordering that was discussed in
the previous ratio tree algorithm. Each instance corresponds to a path in the
CP-tree from root to leaf and each node contains a set of items and counts for
each item with respect to the frequency of the induced prefixes in Dp and Dn.
Different from the ratio tree, children that share the same prefix are stored
within the one node. Figure 3.2 shows the CP-tree for our example dataset,
assuming the items have been ordered according to z ≺ v ≺ w ≺ x ≺ y. Note
how at the second level from the top of the tree, the items v, w, x, and y are
all placed in the same node, since they share the common prefix z. Compare
this with the ratio tree in Figure 3.1, where each of these items occupies its
own node.

Mining ξ-JEPs is accomplished by a depth first traversal of the tree, ex-
amining the candidates: {z}, {z, v}, {z, v, x}, {z, v, x, y}, {z, w}, {z, w, x},
{z, w, x, y}, {z, x}, {z, y}, {v}, {v, w}, {v, w, x}, {v, w, x, y}. The counts for
each candidate may need to be computed by merging subtrees. For exam-
ple, the counts for {z, y} must be computed by examining both the {z, y}
path and the {z, w, x, y} path. So when considering the candidate {z, y}, a
merging operation is performed in order to correctly compute the counts for
this itemset. We do not describe the details of the merge procedure here. Once
the correct counts have been computed, it is then straightforward to determine
whether the itemset is a ξ-JEP.

Experiments from [141] show that the CP-tree approach can outperform
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FIGURE 3.2: Contrast Pattern Tree for Example Dataset: Ordering is z ≺
v ≺ w ≺ x ≺ y. Based on [141], Copyright 2006, with permission from IEEE.

the ratio tree approach when ξ is approx. ≥ 1% and it is somewhat slower
when ξ ≤ 1%.

3.4 Tree Based Contrast Pattern Mining with Equiva-
lence Classes

The third approach we mention was proposed in [247]. At a high level,
they propose the DPMiner algorithm, which operates by enumerating the
equivalence classes that are discriminative between Dp and Dn, using depth
first traversal of the frequent pattern tree. Enumeration based on equivalence
classes brings with it the advantage of a compressed representation. Each dis-
criminative equivalence class can represented using its (unique) closed pattern
and its generators. For an equivalence class, its associated patterns occur in ex-
actly the same transactions for Dp∪Dn and one can also assess the frequencies
in Dp and Dn separately, in order to measure discriminative power. DPMiner
operates by enumerating the generators in parallel with the closed itemsets.
By using an appropriate choice of thresholds and an appropriate measure of
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statistical significance, the generators of the equivalence classes correspond
to precisely the ξ-jumping emerging patterns discriminating between Dp and
Dn.

Similar to the algorithms we saw in Sections 3.2 and 3.3, nodes in the
tree contain counters for the two classes Dp and Dn. Processing of the tree
is somewhat similar to algorithms for mining closed patterns with frequent
pattern trees, such as FPclose [167]. One interesting optimization is that the
header table does not contain items which appear in every transaction of the
database (or conditional projected database), because such items cannot be
generators. This can substantially reduce the size of the tree that is needed.
Also, unlike [167], techniques are used to avoid the need for extra checking
of whether or not patterns are closed. In addition, to speed up computation,
two hash tables are used. One hash table is used for storing generators and
checking their minimality. The other hash table is used for storing closed
itemsets, since each generator needs to be associated with the closed itemset
that represents its equivalence class. Whenever a generator is identified, its
closure is generated and a check is performed to determine whether or not the
closure is already in the hash table. Otherwise the closure needs to be inserted.
Due to its strategy of enumerating closed itemsets, DPMiner can also be used
to efficiently enumerate the frequent closed itemsets and its performance in
this regard is highly competitive with other algorithms for frequent closed
pattern mining.

3.5 Summary and Conclusion

We have briefly reviewed three approaches for mining jumping emerging
patterns based on the use of tree structures. All approaches are based on the
use of a frequent pattern tree data structure. The key idea is that counts
for both classes must be stored in each node of the tree. During tree traver-
sal, it may be necessary to examine multiple branches of the tree in order to
correctly compute the counts of the itemset prefix of the branch. The three
approaches we have examined have been found to work well in practice, with
DPMiner being the fastest overall, due to its sophisticated enumeration and
search through the tree. DPMiner may also be deployed for mining more
general patterns than ξ JEPs, known as δ discriminative patterns. Another
approach that can be used for JEP mining is to adopt a more complex struc-
ture than a tree, known as a binary decision diagram. This will be discussed
in the following chapter.
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4.1 Introduction

In this chapter, we study the computation of emerging patterns using a
sophisticated data structure, known as a zero-suppressed binary decision di-
agram (ZBDD). We will see how the ZBDD data structure can be used to
enumerate emerging patterns. The advantage of ZBDDs lies in their ability to
store input data or output patterns in a highly compressed form. This is par-
ticularly advantageous for high dimensional datasets, such as gene expression
data, where the number of features is very large and the number of emerging
patterns that are output can be huge. The ZBDD data structure provides an
interesting alternative to popular structures such as the frequent pattern tree
[180], whose variants have previously been proposed as an effective emerging
pattern mining method [33, 141], and which were reviewed in Chapter 3. The
presentation is based on our work in [283].

ZBDDs [298] are an extension of binary decision diagrams [61]. Binary
decision diagrams are a graph based data structure that allows efficient rep-
resentation and manipulation of boolean formulae, and they have proved ex-
tremely useful in a number of areas of computer science, such as SAT solvers
[78], VLSI and reliability [352].

ZBDDs are an important type of binary decision diagrams and are particu-
larly appropriate for compactly representing sparse data. From a data mining
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angle, ZBDDs have been shown to be useful for representing and manipulat-
ing input databases, and for storing output frequent patterns. Work in [301]
showed that using ZBDDs for maintaining output patterns can improve the
LCM algorithm for mining frequent itemsets. Work in [300] showed that ZB-
DDs are useful for post-processing operations on the patterns, such as pattern
matching, and extracting length-k patterns. Work in [287, 284] showed how
ZBDDs can be used for mining frequent patterns and frequent subsequences.
In the following, we will first review background about the ZBDD data struc-
ture and then examine how it can be used for mining emerging patterns.

4.2 Background on Binary Decision Diagrams
and ZBDDs

Binary Decision Diagrams are directed acyclic graphs which are compact
representations of boolean formulae and they allow logical operations (AND,
OR, XOR, etc.) to be performed in polynomial time with respect to the num-
ber of nodes. A Binary Decision Diagram is similar to a binary decision tree,
except that identical sub-trees are merged, and node fan-in is allowed as well
as fan-out. Binary Decision Diagrams have been widely used in the area of
VLSI/CAD, and in the field of reliability engineering for fault-tree analysis.

More formally, a binary decision diagram, BDD, is a canonical directed
acyclic graph consisting of one source node, multiple internal nodes, and two
sink nodes which are labelled as 0 and 1 respectively. Every node is labelled.
An internal node N with a label x, denoted by N = node(x,N1, N0), encodes
the boolean formula N = (x∧N1)∨(x∧N0), where N1 (resp. N0) is the 1-child
(resp. 0-child) of N . The edge connecting a node to its 1-child (resp. 0−child)
is also called the true-edge (false-edge). In the illustrations shown shortly, the
solid lines correspond to true-edges whereas dotted lines correspond to false-
edges. Each path from the root node to sink-1 (resp. sink-0) gives a true (resp.
false) assignment for the represented formula.

Two important properties of a BDD which explain the efficiency of its
operations include: (1) identical subtrees are shared, (2) intermediate results
from past computations are stored as much as possible. So in general, a high
degree of node sharing is achieved by the BDD and this helps ensure that the
worst-case complexity of most operations is polynomial with respect to the
number of nodes.

A Zero-suppressed Binary Decision Diagram is a special type of BDD, in-
troduced by Minato in [298] for set-manipulation in combinatorial problems.
A survey on the applications of ZBDDs can be found in [299]. ZBDDs are par-
ticularly appropriate for compactly representing sparse data, such as itemsets,
making them attractive for itemset enumeration tasks in data mining.
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(a) (b)

FIGURE 4.1: (a) Merging rule; (b) Zero-suppression rule. Based on [283],
Copyright 2006, with permission from ACM.

FIGURE 4.2: ZBDD representation of a set of itemsets
{{a, b, c, e}, {a, b, d, e}, {b, c, d}}. Based on [283], Copyright 2006, with
permission from ACM.

A ZBDD imposes a variable ordering such that the label of each node must
be of lower index than the labels of its children. ZBDDs employ the following
two reduction rules (see illustrations in Fig 4.1):

1. Merging rule: share all equivalent subtrees (to obtain canonicity).

2. Zero-suppression rule: eliminate all nodes whose true-edge points to the
sink-0 node, and bypass the incoming links to the node’s 0-child.

The zero-suppression rule is effective, since the characteristic functions
represented by ZBDDs are monotonic boolean functions, i.e. do not contain
negated variables or terms. Thus, negative variables are not necessary and
their corresponding nodes may be eliminated.

Using these rules allows a boolean formula to be represented with high
compression. An n variable formula has a space of 2n truth values. However,
the corresponding ZBDD can have exponentially fewer nodes.

A collection of itemsets can be mapped into a Boolean space. Given a
domain of n items, a set of itemsets can be represented as a Boolean function
by using n input boolean variables for each bit in the itemset. The output
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TABLE 4.1: Primitive operations on ZBDDs P and Q. Based on [283], Copy-
right 2006, with permission from ACM.

0 The empty set, ∅
1 The set of an empty itemset, {∅}
P
⋃

Z Q Union of P and Q
P ∩Z Q Intersection of P and Q
P
⋃

Zmin
Minimal union of P and Q

P \Q Subtraction of Q from P
notSupSet(P,Q) Subtraction from P of any itemset which is

is a superset of an itemset in Q

value, 1 or 0, expresses whether each item-combination specified by the input
variables is included in the set or not. Formally, an itemset p is represented by
a n-bit binary vector X = (x1;x2;. . . ;xn), here xi = 1 if item i is contained
in p. The characteristic function for a set S of itemsets is the function XS :
{0, 1}n → {0, 1}. Here XS(p) = 1 if p ∈ S, and XS(p) = 0 otherwise.

In ZBDD semantics, a node N = (x,N1, N0) represents a set S of itemsets
such that S = S0 ∪ (S1 × {x}), where S1 and S0 are the sets of itemsets
encoded by N1 and N0, respectively. An itemset p in S is interpreted as a
conjunction of the items contained in p and yields a true assignment for the
boolean formula encoded by N . A ZBDD consisting of only the sink-0 node
encodes the empty set (∅), and a ZBDD consisting of only the sink-1 node
encodes the set of empty itemsets ({∅}).

Basic set and itemset operations for ZBDDs that we will use are union
(A∪B), difference (A\B), and intersection (A∩B). They have been defined
formally in [298] and are polynomial in the number of nodes in the ZBDD.
They are listed in Table 4.1.

Example 4.1 The ZBDD encoding for a set of itemsets: {{a, b, c, e},
{a, b, d, e}, {b, c, d}} is shown in Figure 4.2 (assume lexicographic variable or-
dering). This set can also be expressed as a DNF formula: (a∧ b∧ c∧ e)∨ (a∧
b ∧ d ∧ e) ∨ (b ∧ c ∧ d).

Variable Ordering: Depending on the function being represented, the
number of nodes in a ZBDD may be highly sensitive to its variable ordering.
Work in [299] showed that a good variable ordering for compact BDDs (and
ZBDDs) has two properties: i. groups of inputs that are closely related should
be kept near to each other; ii. inputs that greatly affect the function should
be located at higher positions in the structure.

It is highly challenging to find an optimal variable ordering. One pragmatic
approach is to find an appropriate ordering before generating the binary deci-
sion diagram by adopting some heuristics [154]. Another approach is to start
with an initial ordering and permute the variables as the BDD is constructed
[356]. The latter approach is usually more effective than the former, but it
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consumes much of the computation time. In the algorithm we show shortly,
we use the former approach, by computing statistics about the frequency of
the variables in the input datasets.

4.3 Mining Emerging Patterns Using ZBDDs

We will next describe how ZBDDs can be used for mining emerging pat-
terns. Before doing so though, we need to formally specify the type of emerging
pattern that will be mined.

Given a positive datasetDp, a negative datasetDn, and support thresholds
α and β, an Emerging Pattern (EP) is an itemset p satisfying two support
constraints, i) support(p,Dn) < β and ii) support(p,Dp) ≥ α. Furthermore, p
is a minimal EP if p is minimal in the sense that it does not contain any other
itemset that also satisfies constraints i) and ii). Note that in [118], emerging
patterns were defined using an α threshold and a growth rate ρ. We choose
instead to use a β threshold, rather than ρ. This can capture the most popular
important type of emerging pattern, known as the jumping emerging pattern,
for which α = 1 and ρ =∞, or equivalently α = 1 and β = 1. (Here α and β
should be viewed as support counts.)

We next describe a ZBDD based algorithm for mining emerging patterns.
Characteristics of the ZBDD that make it particularly suitable for data mining
are its compact structure and its efficiency in performing set operations. We
can use it as a generator for pattern candidates and also for storage of the
output patterns (i.e. the itemsets which satisfy the given constraints). This is
similar to existing data mining methods which use structures such as FP-trees
[180] and Pattern trees [141]. The search space is dictated by the contents of
the negative dataset and patterns are extended in a depth-first fashion. We
will refer to the partially extended patterns as prefixes. The output ZBDD
stores the minimal emerging patterns and it is constructed bottom-up. To
increase the efficiency of the algorithm, a number of pruning strategies are
employed within the mining algorithm.

Early pruning of invalid candidates: In principle, a mining algorithm
could examine a search space covering all possible itemset combinations. How-
ever, this is unnecessary and instead we traverse a search space which avoids
generating candidate patterns which could never satisfy the β constraint. For
any given prefix p (candidate), we can partition Dn into the set of transac-
tions definitely not containing p (Dp

n) and transactions which do contain p
(Dp

n). At each step, if p needs extending, then it only needs to be extended
by an item which is not from at least one of the transactions in Dp

n, i.e. from
the complement of one of the transactions in Dp

n (otherwise a non minimal
pattern will result). It is therefore profitable for the input ZBDD to consist
of the complements of the transactions in Dn (i.e. Dn). Traversing a ZBDD



36 Contrast Data Mining: Concepts, Algorithms, and Applications

based on Dn ensures that the candidate generation space is much smaller.
This pruning method is particularly effective if |Dn| is relatively small, as is
often the case for biological data.
α constraint pruning: This strategy is based on the well-known anti-
monotonicity, or a-priori principle. Any prefix which doesn’t satisfy the α
constraint should have its supersets pruned. Also, as a pre-processing step,
any item whose support(Dp) < α can be deleted from Dp and Dn.
β constraint pruning: This strategy is based on the monotonicity of the
β constraint. If a prefix satisfies the β constraint, then it is not necessary to
extend it any further, since a non-minimal pattern would result.
Non minimal pattern pruning: Since the final output is required to only
consist of minimal patterns, it is profitable to immediately prune any non-
minimal patterns, once it can be determined that they are not globally mini-
mal.

The ZBDD algorithm for finding minimal emerging patterns is shown in
Algorithm 1. We explain the algorithm line by line. The first parameter to the
algorithm, P , is stored as a ZBDD. prefix is the partially extended pattern;
it satisfies the α constraint, but fails the β constraint. Dp and Dn correspond
to the bitmaps from the respective dataset and are used as the method for
computing support.

The algorithm is invoked by callingmineEP (Dn, prefix = {}, Dp, Dn, α, β).
It is called recursively on projections of Dn as the pattern candidates are ex-
plored.

Lines 1− 8 in the algorithm state the terminal condition of the recursion.
When it reaches a sink node, 0 or 1, it has reached the end of the search
space for extending the given prefix. If prefix passes the β constraint, i.e.
support(prefix,Dn) ≤ β, then accept prefix as a minimal emerging pattern.
Otherwise prefix cannot be part of the output ZBDD (and so the the sink-0
node is returned).

The two core operations in the algorithm are computing zOutx, which
extends prefix with the next item found in the candidates, and computing
zOutx which explores the remainder of the search space. They will each be
the subtrees in the resulting ZBDD output.

Before attempting to extend prefix with the next item, x, the algorithm
first tests whether the α and β prunings can be performed. Line 14 prunes
prefix ∪ {x} and its supersets by the α-constraint pruning. Lines 17 uses
β-constraint pruning to stop prefix from being extended. Finally, if none of
these two cases is applicable, x is appended to the prefix and instances of P
which do not contain x are explored, storing the output in zOutx.

Line 26 computes zOutx. The generated patterns in zOutx and in zOutx
are locally minimal, but may not be globally minimal. Non-minimal pattern
elimination is performed by a primitive ZBDD operation notSupSet (Line 29).

Optimizations: For the case where β = 1 (which corresponds to the common
and important case of jumping emerging patterns), the computation of zOutx
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Algorithm 1: mineEP( P , prefix, Dp, Dn, α, β )

1 Invoke mineEP( Dp
n, {}, Dp, Dn, α, β ) to begin mining initially.

Require: P : a ZBDD of the search space containing a complemented projection
of the negative dataset
prefix : a prefix itemset which project P
Dp : Bitmap of the positive dataset
Dn : Bitmap of the negative dataset
α : a min support (wrt. Dp) threshold
β : a max support (wrt. Dn) threshold

Ensure: zOut : a ZBDD representing the set of minimal emerging patterns i
satisfying support(i,Dp) ≥ α and support(i,Dn) < β.

1: if P is a ZBDD sink node, then
2: // Terminal case
3: // Reaches end of the search space for extending prefix
4: // return prefix as a minimal EP if it passes β constraint
5: if support(prefix,Dn) < β then
6: return 1
7: else
8: return 0 // Remove prefix from the output ZBDD
9: end if

10: else
11: // Let P = node(x, P1, P0)
12: // Grow prefix with the next item in the search space
13: prefixnew = prefix ∪ {x}
14: if support(prefixnew, Dp) < α, then
15: // α constraint pruning: prune prefixnew

16: zOutx = 0
17: else if support(prefixnew, Dn) < β then
18: // β constraint pruning: stop extending prefixnew

19: zOutx = 1
20: else
21: // Explore supersets of prefixnew from instances not containing x
22: zOutx = mineEP (P0, prefixnew, Dp, Dn, α, β)
23: end if
24:

25: // Explore candidates from the remaining search space
26: zOutx = mineEP (P0

⋃
Z P1, prefix,Dp, Dn, α, β)

27:

28: // Non-minimal patterns elimination
29: zOutx = notSupSet(zOutx, zOutx)
30: zOut = getNode(x, zOutx, zOutx)
31: end if
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(line 26 in the algorithm) can be optimized by passing it the minimal union
between P0 and P1, i.e. P0

⋃
Zmin

P1. As a result, the computed zOutx only
contains patterns which may be non-minimal by the item {x}. Thus, line 29
in the algorithm can be replaced by a set-difference operation zOutx \ zOutx
which is a less complex operation. This optimization cannot be used in the
general case when β > 0, since it could eliminate valid pattern candidates.

Optimal variable ordering: One may investigate a number of heuris-
tics for finding the optimal variable ordering for an efficient performance of
mineEP , using information about the item frequencies in Dp and Dn. Two
alternative ordering strategies are natural starting points.

The first heuristic places the least frequent item in Dp at the top of the
ZBDD, with subsequent items being ordered by increasing support inDp. This
aims to achieve early α support threshold pruning based on Dp, by locating
items which are more likely to be pruned, higher up in the structure.

The second heuristic places the least frequent item in Dn (i.e. occurring
most frequently in Dn) as the first item in the ZBDD, with other items being
ordered by increasing frequency in Dn This can be justified on two levels.
Firstly, consider line 22 in the algorithm. Having a smaller P0 here is likely to
be advantageous, particularly when the ZBDD at that point is large. Using
the most frequent item in Dn at the top of the tree, means that P0 is likely
to be small for the early recursive calls. Secondly, this heuristic gives higher
preference to the β constraint, in a similar manner to that for the α constraint
in the first heuristic, the aim being to achieve early β-constraint pruning.

4.4 Discussion and Summary

We have described a ZBDD based approach for mining emerging patterns.
We saw how the ZBDD data structure could be used for storing both in-
put transactions and output patterns and presented a search procedure for
traversing the ZBDD, using various pruning techniques. Experimental results
in [283] show this approach is highly effective for computing emerging patterns
and outperforms a tree based approach from [141]. It performs particularly
strongly for gene expression datasets, which are challenging to mine due to
their high dimensionality.

It is interesting to note that the ZBDD data structure may also be used
for mining other types of emerging patterns. Loekito et al. in [283] show how
it can be used for mining disjunctive emerging patterns. These generalize
emerging patterns by allowing disjunctions, as well as conjunctions in pattern
descriptions and correspond to a restricted class of CNF formulae. This is
discussed in Chapter 8 and explored in [286]. Other variants of ZBDDs, known
as weighted ZBDDs may also be used for mining emerging patterns and these
are further described in [282].
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This chapter considers the efficient direct mining of discriminative patterns.
Here, by discriminative patterns we mean those patterns that can be used as
features by some classification algorithms, to produce highly accurate classi-
fiers. The direct mining approach pushes the constraints implied by “to serve
as feature set” for classification into the mining process. As will be discussed
below, direct mining algorithms can significantly outperform two-step algo-
rithms (which first mine patterns and then select a subset of the mined pat-
terns as discriminative patterns). More specifically, this chapter will discuss
two direct mining algorithms, in addition to giving an overview of some recent
results in this direction.

5.1 Introduction

Frequent pattern based classification has been explored in recent years
and its power was demonstrated by multiple studies in several domains, in-
cluding (1) associative classification [270, 126, 258, 95, 421] on categorical
data, where a classifier is built based on high-support, high-confidence associ-
ation rules; and (2) frequent pattern based classification [221, 106, 88] on data
with complex structures such as sequences and graphs, where discriminative
frequent patterns are taken as features to build high quality classifiers. A fre-
quent itemset (pattern) is a set of items that occur in a dataset no less than
a user-specified minimum support min sup, which can be the absolute min-
imum support count, or the relative minimum support ratio. Discriminative
patterns are those patterns that can be used as features by some classification
algorithms, to produce highly accurate classifiers.

The above mentioned studies achieve promising classification accuracy and
demonstrate the success of frequent patterns (or association rules) in classi-
fication. For example, in [270, 258, 421], associative classification was found
to be competitive with traditional classification methods, such as C4.5 and
SVM, sometimes even better on categorical datasets [95]. In addition, fre-
quent patterns are also promising for classifying complex structures such as
graphs [221, 106, 88] with high accuracy.

Most of these studies [270, 126, 258, 95, 88, 106] take a two-step process:
First mine all frequent patterns or association rules whose supports ≥ min sup
and then perform a feature selection or rule ranking procedure. Figure 5.1 (A)
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(A)

dataset frequent patterns discriminative patterns
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FIGURE 5.1: Two-Step Approach (A) vs. Direct Pattern Mining (B). Source:
Reprinted from Ref. [89], Copyright 2008, with permission from IEEE.

shows the flow of the two-step framework, where a dark circle represents one
discriminative pattern. Although the approach is straightforward and achieves
high classification accuracy, it could incur high computational cost. The effi-
ciency issues exist in the following two aspects.

First, frequent pattern mining could take a long time to complete due to the
exponential combinations among items, which is common for dense datasets
or high-dimensional data. When the problem scale is large or min sup is low,
it could take a long time to complete the mining. It often turns out that the
mining results, even those for closed frequent itemsets, grow exponentially.

More importantly, the classification tasks attach great importance to the
frequent itemsets that are highly discriminative w.r.t. the class labels. Since
frequent itemsets are generated solely based on support information, not based
on discriminative power, a large number of indiscriminative itemsets can be
generated during the mining step. When the complete mining results are pro-
hibitively large, yet only the highly discriminative ones are of real interest,
it is inefficient to wait for a long time for the mining algorithm to finish and
then apply feature selection to post-process the huge set of mining results.
Even for a feature selection algorithm with linear complexity, it could be very
expensive to process a large number, such as millions, of features which is a
common scale in frequent patterns.

The computational cost raised by the two-step framework motivates re-
searchers to investigate an alternative approach: Instead of generating the
complete set of frequent patterns, directly mine highly selective discrimina-
tive patterns for classification. Figure 5.1 (B) illustrates the direct mining
methodology which first transforms data into a compact search tree, e.g., FP-
tree [180], and then searches discriminative patterns directly. In this chapter,
we review two direct discriminative pattern mining approaches, DDPMine by
Cheng et al. [89] and HARMONY by Wang and Karypis [421], and a few follow-
up works [142, 207, 160]. The direct discriminative pattern mining approaches
are shown to outperform the two-step method with significant speedup.
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5.2 DDPMine: Direct Discriminative Pattern Mining

In the DDPMine approach, there are two objectives we want to achieve: (1)
for efficiency concerns, we want to directly mine a set of highly discriminative
patterns; and (2) for accuracy consideration, we impose a feature coverage
constraint: every training instance has to be covered by one or more features.

DDPMine developed two modules to meet these two objectives: (1) a
branch-and-bound search method to identify the most discriminative pattern
in a data set; (2) an instance elimination process to remove the training in-
stances that are covered by the patterns selected so far. The branch-and-bound
search algorithm is based on the upper bound estimation of discriminative
measures derived from previous work [88], which is able to prune the search
space effectively.

DDPMine progressively reduces the dataset size by iteratively eliminating
training instances. This expedites the mining process since the mining com-
plexity is closely related to the dataset size.

Both processes are actually implemented in a compact tree structure, FP-
Tree, and are able to avoid the generation of the complete pattern set.

5.2.1 Branch-and-Bound Search

An upper bound of discriminative measures such as information gain was
derived by [88] which is a function of pattern frequency. The discriminative
power of low-frequency patterns is upper bounded by a small value. Based
on this conclusion, we design a branch-and-bound search for directly mining
discriminative patterns and pruning the indiscriminative ones. We adopt FP-
growth [180] as the basic mining methodology and show how to incorporate the
theoretical upper bound to facilitate a branch-and-bound search. For details
of FP-growth mining, please refer to [180].

The basic idea is, during the recursive FP-growth mining, we use a global
variable to record the most discriminative itemset discovered so far and its
information gain score. Before proceeding to construct a conditional FP-tree,
we first estimate the upper bound of information gain, given the size of the
conditional database. Since the support of any itemset from this conditional
database cannot be greater than the conditional database size, the informa-
tion gain of any itemset from this conditional database is bounded by the
upper bound value. If the upper bound value is no greater than the current
best value, we can safely skip this conditional FP-tree as well as any FP-tree
recursively constructed from it. Algorithm 1 shows the branch-and-bound min-
ing algorithm. IG(β) on line 6 is the information gain of frequent pattern β
and IGub(|Dβ |) on line 10 is the information gain upper bound given the
conditional database Dβ . The upper bound formulae were derived in [88].

We will illustrate this method through the following example. Table 5.1
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Algorithm 1 The Branch-and-bound Mining Algorithm

Input: An FP-tree P , min sup s, a prefix α
Output: The most discriminative feature bestPat
Global variable: maxIG := 0, bestPat := null

Procedure branch and bound(P, s, α)
1: if P = ∅
2: return;
3: for each item ai in P do
4: generate pattern β = ai ∪ α with supp(β) = supp(ai);
5: compute information gain IG(β);
6: if IG(β) > maxIG
7: maxIG := IG(β);
8: bestPat := β;
9: construct pattern β’s conditional database Dβ ;
10: IGub(|Dβ |) := upper bound(|Dβ|);
11: if maxIG ≥ IGub(Dβ)
12: skip mining on Dβ ;
13: else
14: construct β’s conditional FP-tree Pβ ;
15: branch and bound(Pβ, s, β);

shows a training database which contains eight instances and two classes. Let
min sup = 0.25. The global FP-tree is illustrated in Figure 5.2. The FP-tree
is a compact prefix-tree structure. A node represents an item with the count
and a path represents a transaction.

TABLE 5.1: A Sample Training Database D. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

TID Set of Items Class Label
100 a, b, c 1
200 a, b, c, d 1
300 a, b, c 1
400 a, b, d 1
500 c, d 0
600 b, c 0
700 a, b, c 1
800 a, b, c 1

The first frequent itemset generated is d with an information gain value
IG(d) = 0.016. Then maxIG is assigned 0.016. The conditional database and
FP-tree on d is shown in Figure 5.3. Given the size of the conditional database
is 3, the information gain upper bound is IGub(3) = 0.467. Since IGub(3) >
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FIGURE 5.2: The Global FP-tree. Source: Reprinted from Ref. [89], Copyright
2008, with permission from IEEE.
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FIGURE 5.3: Conditional DB and FP-tree on d. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

maxIG, we cannot prune the conditional FP-tree on d. Therefore, we perform
recursive mining on the conditional FP-tree and get ad, bd, cd, and abd, with
IG(ad) = 0.123, IG(bd) = 0.123, IG(cd) = 0.074 and IG(abd) = 0.123.

As the mining proceeds to the frequent itemset a, we can compute its
information gain IG(a) = 0.811 which is assigned to maxIG as well. The
conditional database and FP-tree on a is shown in Figure 5.4. Given the
size of the conditional database is 6, the information gain upper bound is
IGub(6) = 0.811. Since maxIG = IGub(6), any itemset generated from the
conditional FP-tree will have an information gain no greater than maxIG.
Therefore, the conditional FP-tree can be pruned without any mining. To
confirm our analysis, we could double check the actual mining results from
this conditional FP-tree: ab, ac, ad, abd, and abc. A careful verification shows
that the information gain of all these itemsets is no greater than maxIG,
which is consistent with our pruning decision.

5.2.2 Training Instance Elimination

The branch-and-bound search directly mines the discriminative patterns
and effectively prunes the search space. To achieve the feature coverage objec-
tive that ensures every training instance is covered by one or multiple features,
we propose a feature-centered approach to generate features and shrink the
feature search space.
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FIGURE 5.4: Conditional DB and FP-tree on a. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

Algorithm 2 The DDPMine Algorithm

Input: An FP-tree P , min sup s
Output: A set of selected features Fs

Procedure DDPMine(P, s)
1: if P = ∅
2: return;
3: α := branch and bound(P, s, null);
4: if α = null
5: return;
6: Compute the transaction id list T (α) containing α;
7: P ′ := update tree(P, T (α));
8: Fs := {α}∪ DDPMine(P ′, s);
9: return Fs;

The basic idea is, a branch-and-bound search produces the most discrim-
inative itemset α. Then we eliminate the set of transactions which contain
the itemset α, i.e., T (α), from the FP-tree and repeat the branch-and-bound
search on the updated tree. This process iterates until all transactions are
removed from the FP-tree. This approach is feature-centered in the sense that
the mining process only concerns mining the most discriminative pattern.

The DDPMine algorithm, which integrates the branch-and-bound search
and the feature-centered approach, is presented in Algorithm 2. It takes two
inputs: an FP-tree and min sup. An initial FP-tree is constructed from the
training database. branch and bound searches the most discriminative feature
α. Then the transaction set T (α) containing α is computed and removed from
P . The resulting FP-tree is P ′. Then DDPMine is recursively invoked on P ′

until the FP-tree becomes empty. If the branch and bound search function
fails to discover any feature w.r.t. min sup in the current FP-tree, the whole
procedure terminates. The final output is the set of frequent itemsets gener-
ated by the iterative mining process.
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Correspondingly, the running-time cost associated with DDPMine is

Cost = n · (Tmining + Tcheck db + Tupdate) (5.1)

where n is the number of iterations which is usually very small. We will derive
an upper bound of n in Section 5.2.3. Tupdate is the time to update the FP-tree.
We design an efficient method for the update operation in Section 5.2.2.1.

5.2.2.1 Progressively Shrinking FP-Tree

One step in the DDPMine algorithm is update tree, which removes the set
of training instances T (α) containing the feature α from the FP-tree. We
design an efficient method for update tree operation with the corresponding
data structure.

When we insert a training instance into an FP-tree, we register the trans-
action id of this instance at the node which corresponds to the very last item
in the instance. Accordingly, the FP-tree carries training instance id lists. Due
to efficiency concerns, the id lists are only registered with the global FP-tree,
but not propagated in the conditional FP-trees when performing the recursive
FP-growth mining.

When a frequent itemset α is generated, the training instances T (α) have
to be removed from the global FP-tree. Then we perform a traversal of the
FP-tree and examine the id lists associated with the tree nodes. When an id in
a node appears in T (α), this id is removed. Correspondingly, the count on this
node is reduced by 1, as well as the count on all the ancestor nodes up to the
root of the tree. When the count reaches 0 at any node, the node is removed
from the FP-tree. Clearly, the update operation basically is a traversal of the
FP-tree. Thus, the complexity of this operation is

Tupdate = O(|V |+ |D|) (5.2)

where |V | is the number of nodes in the FP-tree and |D| is the number of
training instances in the database.

In our previous example, when we discover the itemset a with T (a) =
{100, 200, 300, 400, 700, 800}, T (a) are removed from the FP-tree. Figure 5.5
shows the updated tree where the gray nodes are the nodes with 0 count and
will be removed from the updated tree. The rectangle boxes are the transac-
tion id lists associated with the nodes. Since the global FP-tree is updated
incrementally in each iteration, we call it the progressively shrinking FP-tree.

5.2.2.2 Feature Coverage

In the DDPMine algorithm, when a feature is generated, the transactions
containing this feature are removed. In real classification tasks, we may want
to generate multiple features to represent a transaction for accuracy consid-
eration. To realize this purpose, we introduce a feature coverage parameter
δ: A transaction is eliminated from further consideration when it is covered
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FIGURE 5.5: The Updated FP-tree with TID. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

by at least δ features. This feature could be easily integrated into DDPMine
with some minor changes in the data structure: We keep a counter for each
transaction. Whenever a feature is generated, the counter for each transaction
containing this feature is incremented by one. When a counter reaches δ, the
corresponding transaction is removed from the tree. The counters are stored
in an array of integers, called CTable.

Besides the counter, we need to keep a global hash table, called HTable,
to keep track of the features that are already discovered. When δ > 1, a
transaction will not be eliminated unless the counter reaches δ. As a result,
the FP-tree may remain unchanged when no transactions are eliminated in
one iteration. In such a case, we need to use a hash table to keep track of
the features that are already discovered and thus avoid generating the same
features multiple times. Let’s follow the example in Table 5.1 and assume
δ = 2. In the first iteration, we generate the feature a. The CTable and HTable
are shown in Figure 5.6. Since no counter reaches δ = 2, no transaction is
removed from the FP-tree. Thus, it remains unchanged.

TID Count
100 1
200 1
300 1
400 1
500 0
600 0
700 1
800 1

FID Items Info Gain
1 a 0.811

FIGURE 5.6: CTable and HTable at Iteration 1. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

In the following iterations, the HTable will be checked for duplication
whenever a new feature is discovered. If there is a “hit” in the HTable, the
new feature will be ignored and the mining proceeds. In the second itera-
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TID Count
100 2
200 2
300 2
400 2
500 0
600 0
700 2
800 2

FID Items Info Gain
1 a 0.811
2 ab 0.811

FIGURE 5.7: CTable and HTable at Iteration 2. Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

tion of this example, the mining algorithm first discovers a which exists in
HTable already. Then the algorithm ignores it and proceeds. Finally, it gener-
ates ab as the most discriminative feature. After ab is generated, the CTable
and HTable are changed and shown in Figure 5.7. Accordingly, transactions
{100, 200, 300, 400, 700, 800} are removed from the FP-tree.

5.2.3 Efficiency Analysis

DDPMine works in an iterative way and terminates when the training
database becomes empty. We derive an upper bound of the number of itera-
tions DDPMine has to go through.

Assume min sup = θ0, and DDPMine produces a frequent itemset αi in the
i-th iteration satisfying supp(αi) ≥ θ0. Clearly, DDPMine eliminates, before
further processing, the training instances in T (αi) from the current set of
training instances since they are covered by the feature αi. Then, we have the
equation below which specifies the reduction of the training instance database:

|Di| = |Di−1| − |T (αi)| (5.3)

where Di is the training instances remaining after the i-th iteration, T (αi)
is the id list of transactions which contain αi, and D0 is the complete set of
training instances.

Since supp(αi) ≥ θ0, we have |T (αi)| ≥ θ0|Di−1|. Then we have

|Di| = |Di−1| − |T (αi)| ≤ (1 − θ0)|Di−1| (5.4)

According to Eq. (5.4), we have

|Di| ≤ (1− θ0)
i|D0| (5.5)

Assume after n iterations, the training database reduces to |Dn| = 1. Since
(1− θ0)

n|D0| ≥ |Dn| = 1, we can derive

n ≤ log |D0|
log 1

1−θ0

= log 1
1−θ0

|D0| (5.6)
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According to Eq. (5.6), if θ0 = 0.5, n ≤ log2 |D0|. If θ0 = 0.2, n ≤
log1.25 |D0|. If the training database has 1 million instances, then n ≤ 20
if θ0 = 0.5; n ≤ 62 if θ0 = 0.2.

The above bound analysis assumes the feature coverage parameter δ = 1.
If δ > 1, the bound of n becomes

n ≤ δ · log |D0|
log 1

1−θ0

= δ · log 1
1−θ0

|D0| (5.7)

Eqs. (5.6) and (5.7) provide an upper bound of the number of iterations. In
each iteration, the major computational cost is the frequent itemset mining.
But it is more efficient than the original FP-growth mining, since it has the
branch-and-bound pruning mechanism. In addition, the mining becomes more
and more efficient as the training database shrinks. Combining Eqs. (5.1) and
(5.7), the running-time cost of DDPMine is

Cost ≤ δ · log 1
1−θ0

|D0| · (Tmining + Tcheck db + Tupdate) (5.8)

5.2.4 Summary

The main technical features and contributions of DDPMine are:
(a) DDPMine avoids generating a large number of indiscriminative pat-

terns, and also incrementally reduces the problem size by eliminating training
instances and progressively shrinking the FP-tree, which further speeds up
the mining process.

(b) Instead of mining a set of discriminative patterns in a batch, the
“feature-centered” mining approach exploited by DDPMine could single out
patterns sequentially in the progressively shrinking FP-tree which is shown to
be very efficient.

(c) Time complexity analysis is provided for the DDPMine algorithm. An
upper bound is derived on the number of iterations it has to go through,
showing the computational cost analytically.

5.3 Harmony: Efficiently Mining The Best Rules For
Classification

HARMONY [421] is an accurate and efficient rule-based classifier with good
scalability, where the classifier contains a set of high confidence classification
rules with a class label as the rules right hand side. The key idea behind
HARMONY is to build a classifier that instead of using various heuristic meth-
ods to discover and/or select rules, it uses the most discriminative rules for
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each training instance. It takes an instance-centric view and directly mines the
database of training instances to find at least one of the highest confidence
frequent covering rules (if there are any) and include it in the final set of clas-
sification rules. By maintaining the highest confidence among the covering
rules mined so far for each instance, HARMONY can employ some effective
search strategies and pruning methods to speed up the model learning.

The rule-discovery problem in HARMONY is defined as follows. Given a
training database D and a minimum support threshold min sup, the problem
is to find one of the highest confidence covering rules (abbreviated as HCCR)
for each of the training instances in D.

5.3.1 Rule Enumeration

Given a training databaseD and a minimum support min sup, HARMONY
first computes the frequent items by scanning D once, and sorts them to
get a list of frequent items (denoted by f list), according to a certain or-
dering scheme. Assume min sup = 0.25 and the lexicographical ordering is
the default ordering scheme, the f list computed from D in Table 5.1 is
{a, b, c, d}. HARMONY applies the divide-and-conquer method plus the depth-
first search strategy. In this example, HARMONY first mines the rules whose
body contains item ‘a’, then mines the rules whose body contains ‘b’ but
no ‘a’, ..., and finally mines the rules whose body contains only ‘d’. In
mining the rules with item ‘a’, item ‘a’ is treated as the current prefix,
and its conditional database (denoted by D|a) is built and the divide-and-
conquer method is applied recursively with the depth-first search strategy.
To build conditional database D|a, HARMONY first identifies the instances
in D containing ‘a’ and removes the infrequent items, then sorts the left
items in each instance according to the f list order, finally D|a is built as
{〈100, bc, 1〉, 〈200, bcd, 1〉, 〈300, bc, 1〉, 〈400, bd, 1〉, 〈700, bc, 1〉, 〈800, bc, 1〉}. Fol-
lowing the divide-and-conquer method, HARMONY first mines the rules with
prefix ‘ab’, then mines rules with prefix ‘ac’ but no ‘b’, and finally mines rules
with prefix ‘ad’ but no ‘b’ nor ‘c’. During the mining process, when HARMONY
gets a new prefix, it will generate a set of classification rules w.r.t. the training
instances covered by the prefix. For each training instance, it always maintains
one of its currently highest confidence rules mined so far. Assume the current
prefix P is ‘a’ (i.e., P = ‘a’). As shown in the above example, P covers six
instances with TIDs 100, 200, 300, 400, 700, and 800. HARMONY computes
the covering rules according to the class distribution w.r.t. the prefix P . In
this example, count(P,C0) = 0 and count(P,C1) = 6 (the support counts of
P in class 0 and 1 respectively), and HARMONY generates two classification
rules:

Rule 1 : a→ 0 : 0,
0

6

Rule 2 : a→ 1 : 6,
6

6
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Rule 1 covers no instance, while Rule 2 covers the instances with TIDs
100, 200, 300, 400, 700, and 800. Up to this point, we have HCCR100 =
HCCR200 = HCCR300 = HCCR400 = HCCR700 = HCCR800 = Rule 2.

5.3.2 Ordering of the Local Items

Many projection-based frequent itemset mining algorithms use the item
support to order the local frequent items. However, when the goal is to mine
the highest confidence rules w.r.t. the training instances, the support-based
ordering schemes may not be the most efficient and effective way. As a result,
the following three new ordering schemes are proposed as the alternatives.

Let the current prefix be P , its support be supp(P ), the support and
confidence of the classification rule w.r.t. prefix P and class label ci, ‘P →
ci’, be supp(P, ci) and conf ci

P , respectively, the set of local frequent items be
{x1, x2, ..., xm}, the number of prefix P ’s conditional instances containing item
xj (1 ≤ j ≤ m) and associated with class label ci (1 ≤ i ≤ k) be count(P ∪
{xj}, ci), and the support of P ∪ {xj} be supp(P ∪ {xj}) =

∑k
i=1 supp(P ∪

{xj}, ci).
Maximum confidence descending order. Given a local item xj (1 ≤ j ≤
m) w.r.t. P , we can compute k rules with body P ∪ {xj}, among which, the
i-th rule with rule head ci is:

P ∪ {xj} → ci : count(P ∪ {xj}, ci),
supp(P ∪ {xj}, ci)
supp(P ∪ {xj})

The highest confidence among the k rules with body P ∪{xj} is called the
maximum confidence of local item xj , and is defined as the following:

max1≤i≤k supp(P ∪ {xj}, ci)
supp(P ∪ {xj})

(5.9)

To mine the highest confidence covering rules as quickly as possible, a
good heuristic is to sort the local frequent items in their maximum confidence
descending order.
Entropy ascending order. The widely used entropy measure assesses the
purity of a cluster of instances. If the entropy of the set of instances containing
P ∪ {xj} (1 ≤ j ≤ m) is small, it is highly possible to generate some high
confidence rules with body P ∪ {xj}. Thus another good ordering heuristic is
to rank the set of local frequent items in their entropy ascending order, and
the entropy w.r.t. item xj is defined as follows:

− 1

log k

k∑
i=1

(
supp(P ∪ {xj}, ci)
supp(P ∪ {xj})

) log(
supp(P ∪ {xj}, ci)
supp(P ∪ {xj})

) (5.10)

Correlation coefficient ascending order. Both the maximum confidence
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descending order and entropy ascending order do not consider the class dis-
tribution of the conditional database w.r.t. prefix P , which may cause some
problems in some cases. To illustrate, assume the number of class labels k = 2,
count(P, c1) = 12, and count(P, c2) = 6, then we can get two rules with body
P as follows:

Rule 3 : P → c1 : 12,
12

18

Rule 4 : P → c2 : 6,
6

18

Suppose there are two local items, x1 and x2, and count(P ∪{x1}, c1) = 2,
count(P ∪ {x1}, c2) = 1, count(P ∪ {x2}, c1) = 1, and count(P ∪ {x2}, c2) = 2.
According to Eqs 5.9 and 5.10, the maximum confidence and entropy w.r.t.
item x1 are equal to the corresponding maximum confidence and entropy
w.r.t. x2. Thus we cannot determine which one of x1 and x2 should be ranked
higher. However, because the conditional database D|P∪{x1} has the same
class distribution as conditional database D|P , we cannot generate rules with
body P ∪ {x1} and a confidence higher than those with body P (i.e., Rule 3
and Rule 4). The two rules with body P ∪ {x1} are shown as the following.

Rule 5 : P ∪ {x1} → c1 : 2,
2

3

Rule 6 : P ∪ {x1} → c2 : 1,
1

3

If we examine the rules generated from prefix itemset P ∪ {x2} as shown
in Rule 7 and Rule 8, we can see Rule 8 has higher confidence than Rule 4,
and can be used to replace Rule 4 for the instances covered by Rule 8. In this
case, item x2 should be ranked before item x1.

Rule 7 : P ∪ {x2} → c1 : 1,
1

3

Rule 8 : P ∪ {x2} → c2 : 2,
2

3

This example suggests that the more similar the class distribution be-
tween conditional databases D|P and D|P∪{xj} (1 ≤ j ≤ m), the lower is
the possibility to generate higher confidence rules from D|P∪{xj}. Because the
correlation coefficient is a good metric in measuring the similarity between
two vectors (the larger the coefficient, the more similar the two vectors), it
can be used to rank the local items. In HARMONY, the correlation coefficient
ascending order is by default adopted to sort the local items.

Let supp(P ) be 1
k

∑k
i=1 supp(P, ci), supp(P ∪ {xj}) be 1

k

∑k
i=1 supp(P ∪

{xj}, ci), σP be

√
1
k

∑k
i=1(supp(P, ci))

2 − supp(P )
2
, and then σP∪{xj} be√

1
k

∑k
i=1(supp(P ∪ {xj}, ci))2 − supp(P ∪ {xj})

2
, the correlation coefficient

between prefix P and P ∪ {xj} (1 ≤ j ≤ m) is defined as follows.
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1
k

∑k
i=1(supp(P, ci)× supp(P ∪ {xj}, ci)− supp(P )× supp(P ∪ {xj}))

σP × σP∪{xj}
(5.11)

5.3.3 Search Space Pruning

Unlike the previous association-based algorithms [270, 258], HARMONY
directly mines the final set of classification rules. By maintaining the current
highest confidence among the covering rules for each training instance dur-
ing the mining process, some effective pruning methods can be proposed to
improve the algorithm efficiency.
Support equivalence item elimination. Given the current prefix P , among
its set of local frequent items {x1, x2, ..., xm}, some may have the same sup-
port as P . We call them support equivalence items and can be safely pruned
according to the following Lemma 5.1.

Lemma 5.1 (Support equivalence item pruning) Any local item xj w.r.t. pre-
fix P can be safely pruned if it satisfies supp(P ∪ {xj}) = supp(P ).

Unpromising item elimination. Given the current prefix P , any one of
its local frequent items, xj (1 ≤ j ≤ m), any itemset Y that can be used to
extend P ∪ {xj} (where Y can be empty and P ∪ {xj} ∪ Y is frequent), and
any class label ci (1 ≤ i ≤ k), the following equation must hold:

conf ci
P∪{xj}∪Y =

supp(P ∪ {xj} ∪ Y, ci)

supp(P ∪ {xj} ∪ Y )

≤ supp(P ∪ {xj} ∪ Y, ci)

min sup

≤ supp(P ∪ {xj}, ci)
min sup

(5.12)

Because conf ci
P∪{xj}∪Y ≤ 1 also holds, we have the following equation:

conf ci
P∪{xj}∪Y ≤ min{1, supp(P ∪ {xj}, ci)

min sup
} (5.13)

Lemma 5.2 (Unpromising item pruning) For any conditional instance
〈tl, Xl, ci〉 ∈ D|P∪{xj} (1 ≤ l ≤ |D|P∪{xj}|, and 1 ≤ i ≤ k), if the follow-
ing always holds, item xj is called an unpromising item and can be safely
pruned.

HCCRconf
tl

≥ min{1, supp(P ∪ {xj}, ci)
min sup

} (5.14)
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Unpromising conditional database elimination. Given the current prefix
P , any itemset Y (where Y can be empty and P ∪ Y is frequent), any class
label ci (1 ≤ i ≤ k), the confidence of rule ‘P ∪Y → ci’, conf

ci
P∪Y , must satisfy

the following equation:

conf ci
P∪Y =

supp(P ∪ Y, ci)

supp(P ∪ Y )
≤ supp(P ∪ Y, ci)

min sup
≤ supp(P, ci)

min sup
(5.15)

Moreover, because conf ci
P∪Y ≤ 1 also holds, we have the following equation:

conf ci
P∪Y ≤ min{1, supp(P, ci)

min sup
} (5.16)

Lemma 5.3 (Unpromising conditional database pruning) For any conditional
instance 〈tl, Xl, ci〉 ∈ D|P (∀l, 1 ≤ l ≤ |D|P |, and 1 ≤ i ≤ k), if the following
always holds, the conditional database D|P can be safely pruned.

HCCRconf
tl ≥ min{1, supp(P, ci)

min sup
} (5.17)

HARMONY enumerates the classification rules following the projection-
based frequent itemset mining framework. Given a prefix itemset pi and its
corresponding conditional database cdb, for a training instance, it checks if a
classification rule with higher confidence can be computed from the current
prefix pi. If so, it replaces the corresponding instance’s current highest confi-
dence rule with the new rule. It then finds the frequent local items by scan-
ning cdb, prunes invalid items based on the support equivalence item pruning
method and the unpromising item pruning method. If the set of valid local
items is empty or the whole conditional database cdb can be pruned based
on the unpromising conditional database pruning method, it returns directly.
Otherwise, it sorts the left frequent local items according to the correlation co-
efficient ascending order, and grows the current prefix, builds the conditional
database for the new prefix, and recursively calls itself to mine the highest
confidence rules from the new prefix.

5.3.4 Summary

In summary, HARMONY proposes different local item ordering schemes in
the projection-based frequent itemset mining framework and designs several
search space pruning strategies to achieve high computational efficiency. All
these pruning methods preserve the completeness of the resulting rule-set in
the sense that they only remove from consideration rules that are guaranteed
not to be of high quality. HARMONY mines the classification rules for all the
classes simultaneously and directly mines the final set of classification rules by
pushing the pruning methods deeply into the frequent itemset mining process.
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5.4 Performance Comparison Between DDPMine and
Harmony

In [89], a classification performance comparison was conducted on a se-
ries of UCI datasets in terms of both efficiency and accuracy, by comparing
DDPMine [89] with HARMONY [421] and PatClass [88], which are the state-
of-the-art associative classification methods. PatClass is a representative of
the two-step procedure by first mining a set of frequent itemsets followed by
a feature selection step. LIBSVM [77] is used as the classification model by
PatClass and DDPMine, while HARMONY uses the mined association rules to
build a CAEP [126] style classifier, i.e., aggregating the confidence of multiple
matching rules with the same class label for classification.

Table 5.2 shows the running time (in seconds) of the three methods. For
both DDPMine and PatClass we compute the running time for both frequent
itemset mining and feature selection; whereas for HARMONY, we compute the
running time for association rule mining. The running time was averaged over
5-fold cross validation.

From Table 5.2, we can see that, DDPMine is the most efficient algorithm,
followed by HARMONY while PatClass is the least efficient one. On average,
DDPMine outperforms HARMONY by an order of magnitude and outperforms
PatClass by two orders of magnitude.

Table 5.3 shows the accuracy comparison between these three methods.
On average, DDPMine has comparable accuracy with PatClass, and both out-
perform HARMONY by 9.8%, which is a significant improvement.

TABLE 5.2: Runtime Comparison (seconds). Source: Reprinted from Ref.
[89], Copyright 2008, with permission from IEEE.

Dataset HARMONY PatClass DDPMine
adult 60.78 1070.39 8.75
chess 37.09 113.98 1.20
crx 0.71 7.56 0.57
hypo 52.19 66.09 0.66

mushroom 0.63 34.42 0.83
sick 53.45 170.94 1.70
sonar 5.53 15.83 0.83

waveform 8.06 85.23 4.34
total 218.44 1564.44 18.88
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TABLE 5.3: Accuracy Comparison. Source: Reprinted from Ref. [89], Copy-
right 2008, with permission from IEEE.

Dataset HARMONY PatClass DDPMine
adult 81.90 84.24 84.82
chess 43.00 91.68 91.85
crx 82.46 85.06 84.93
hypo 95.24 99.24 99.24

mushroom 99.94 99.97 100.00
sick 93.88 97.49 98.36
sonar 77.44 90.86 88.74

waveform 87.28 91.22 91.83
average 82.643 92.470 92.471

5.5 Related Work

Several studies [142, 207, 160] considered further extending the direct dis-
criminative pattern mining methodology to handle different problem settings.

5.5.1 MbT: Direct Mining Discriminative Patterns via
Model-based Search Tree

To avoid the mining cost in the two-step approach, Fan et al. [142] pro-
posed MbT, a divide-and-conquer based approach to directly mine discrim-
inative patterns as features vectors. MbT builds a model-based search tree
in a top-down manner. It starts with the whole dataset and mines a set of
frequent patterns from the data. The best pattern is selected as the discrim-
inative feature in the current search tree node according to some criterion,
e.g., information gain, and used to divide the data set into two subsets, one
containing this pattern and the other not. The mining and pattern selection
procedure is repeated on each of the subsets until the subset is small enough or
the examples in the subset have the same class label. After the algorithm com-
pletes, a small set of informative features are uncovered and the corresponding
model-based search tree is constructed. Since the number of examples towards
leaf level is relatively small, MbT is able to examine patterns with extremely
low global support that could not be enumerated on the whole dataset by the
two-step method.

5.5.2 NDPMine: Direct Mining Discriminative Numerical
Features

Most existing frequent pattern based classification methods assume that
feature values of the mined patterns are binary, i.e., a pattern either exists or
not. Kim et al. [207] consider the numerical feature values, i.e., the number of
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times a pattern appears which can be more informative. Reference [207] pro-
posed NDPMine, a numerical discriminative pattern mining approach, which
employs a mathematical programming method that directly mines discrimi-
native patterns as numerical features for classification. A linear programming
problem is defined to learn a classification hyperplane (i.e., a bound with
maximum margin) and solved by column generation, a classic optimization
technique. The column generation technique starts with an empty set of con-
straints in the dual problem and iteratively adds the most violated constraints.
When there are no more violated constraints, the optimal solution under the
set of selected constraints is equal to the optimal solution under all constraints.
In NDPMine, each constraint in the dual corresponds to a class-dependent
pattern (p, c). Thus, the column generation finds a class-dependent pattern
at each iteration whose corresponding constraint is violated the most. A gain
function is defined to measure the discriminative power of class-dependent
patterns. Similar as DDPMine, NDPMine uses branch-and-bound to search for
the optimal pattern and prune the search space based on the gain function up-
per bound. NDPMine is shown to be an order of magnitude faster, significantly
more memory efficient and more accurate than current approaches.

5.5.3 uHarmony: Mining Discriminative Patterns from Un-
certain Data

Gao and Wang [160] proposed an algorithm uHARMONY which mines dis-
criminative patterns directly and effectively from uncertain data as classifica-
tion features/rules. uHARMONY adopts the same framework as HARMONY.
On uncertain data, fields of uncertain attributes no longer have certain values,
but use probability distribution functions to represent the possible values and
their corresponding probabilities. Expected support of the mined patterns is
adopted to represent pattern frequentness, while expected confidence is used as
the measurement of discrimination. The calculation of expected confidence is
non-trivial and requires careful consideration. Given an itemset x and a class c,
on uncertain database expected confidence E(conf c

x) = E(supp(x, c)/supp(x))
is not simply equal to E(supp(x, c))/E(supp(x)), although we have conf c

x =
supp(x, c)/supp(x) on certain database. Actually expected confidence is re-
lated with the probabilities of the possible worlds and is very expensive to
compute due to the extremely large number of possible worlds. Thus [160]
developed a theorem to compute the upper bound of expected confidence to
speedup the calculation.

5.5.4 Applications of Discriminative Pattern Based Classifi-
cation

The direct discriminative pattern mining methodology has also found
broad applications in classifying high dimensional gene expression data [95],
chemical compounds and proteins [444, 200], software behaviors [280, 87],
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malwares [448], and trajectories [235]. These research results demonstrate the
success of discriminative frequent patterns in classifying both transactional
and non-transactional data with complex structures, and open a new direc-
tion for frequent pattern mining.

5.5.5 Discriminative Frequent Pattern Based Classification
vs. Traditional Classification

Traditional classification models have demonstrated their power in many
challenging classification tasks, for example, support vector machines in clas-
sifying very high-dimensional text data. Compared with these traditional clas-
sification models, the discriminative frequent pattern based classification ap-
proach exploits the strong association between individual features to form
higher-order features which usually reflect the underlying semantics of the
data. The discriminative frequent pattern based approach is especially use-
ful in classifying data with complex structures, e.g., sequences and graphs,
where the simple features like sequence elements or graph vertices and edges
are not discriminative enough to express the temporal or structural patterns.
In such problems the discriminative pattern based classification method can
show its power. In [95], association rule based classifier was found to outper-
form C4.5 and SVM in classifying high-dimensional gene expression data, and
in [444], discriminative pattern based classification was shown to outperform
graph kernel approach in classifying chemical compounds. It remains a future
research topic to extend the discriminative pattern based approach to many
other domains, e.g., high-dimensional text data, as well as the emerging ones.

5.6 Conclusions

In this chapter, we introduced some state-of-the-art methods, including
DDPMine, HARMONY, MbT, NDPMine, and uHARMONY, that directly mine
a compact set of discriminative patterns for classification, without generat-
ing the complete set of frequent patterns. The proposed mining and pruning
techniques were discussed in detail. These methods greatly reduce the compu-
tational time, while not sacrificing the classification accuracy. These research
results advance the frequent pattern mining techniques and open new appli-
cations in frequent pattern based classification.
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6.1 Introduction

In Chapters 3 and 4, we have reviewed methods for mining contrast pat-
terns from transaction or vector (matrix) data. In this chapter, we now con-
sider the problem of mining emerging patterns for more complex types of
objects. In particular, we examine extensions of emerging patterns for the
case when objects may be either sequences or graphs. Two primary issues are
i) how to define emerging patterns that distinguish between sets of sequences
or graphs, and ii) how to to mine such patterns. We will initially consider the
case for sequences and then look at the situation for graphs.
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6.2 Contrasts in Sequence Data: Distinguishing Se-
quence Patterns

Databases of sequences can be found across many diverse areas and making
comparisons between sets of sequences is an important knowledge discovery
challenge. For example, in biology, huge sets of DNA sequences and protein
sequences are being collected. A set of protein sequences, for example, may
correspond to a protein family or to a collection of co-regulated genes. It is
interesting to compare such sets of sequences with the aim of uncovering sub-
sequences (motifs) that characterize and distinguish a particular family or
phenotype. For example, in [363], it is observed that biologists are very inter-
ested in identifying the most significant subsequences that discriminate be-
tween outer membrane proteins and non-outer-membrane proteins. Another
important type of sequence can be found in the domain of information re-
trieval. Web pages and books consist of sequences of words and comparisons
can be made across collections of sentences to identify distinguishing phrases.
Such phrases can be useful for improving search and indexing. Other examples
of sets of sequences can be found in weblogs, workflow histories and time series
data. Reference [124] gave a detailed coverage on sequence data analysis and
mining and on feature selection/construction approaches.

Emerging patterns for sequence data have been studied in a number of
works. In [74] emerging substrings were introduced. These are strings of items
used to differentiate between two classes of sequences. A suffix tree is used
to store all the substrings. Each tree node contains two support counters,
recording the support of the candidate from one class. Traversal on the tree
yields all the emerging substring patterns. Substring patterns satisfying a
conjunction of constraints have also been mined using version space trees
[149]. Work in [150] uses suffix arrays to find emerging substring patterns
with a minimum growth rate constraint and minimum frequency constraint
in the positive dataset. This algorithm operates in linear time to the size of
the input datasets.

In biology, there is a large amount of literature devoted to discovering mo-
tifs. In their basic form, motifs are similar to frequent substrings or frequent
subsequences. However, they typically require very high support, are not com-
puted by distinguishing against a set negative set of sequences (they focus on
the positive sequences and they often use some distribution to approximate
the negative dataset) and they also take into account various biological con-
straints.

The description that follows is based on the presentation of the framework
in [198], which describes a technique for discovering emerging subsequences,
that satisfy certain gap constraints. Hereafter, in line with [198], we will refer
to an emerging sequence pattern as a distinguishing sequence.
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6.2.1 Definitions

Consider two datasets Dp and Dn, each containing a set of sequences. A
distinguishing sequence corresponds to a sequence that is frequently found
in Dp, but not frequently found in Dn. Compared to tabular (matrix) data,
finding patterns which distinguish one set of sequences from another is chal-
lenging, since the number of dimensions is not fixed. Also, the order/position
of items is significant and the same item can be repeated within a sequence.

Given two datasets of sequences Dp and Dn, two support thresholds δ and
α and a maximum gap g, a pattern p is a minimal distinguishing subsequence
with g-gap constraint (g-MDS), if the following conditions are met:

1. Frequency condition: support(p,Dp, g) ≥ δ.

2. Infrequency condition: support(p,Dn, g) ≤ α.

3. Minimality condition: There is no subsequence of p satisfying 1 and 2.

Here support(p,Di, g) = count(p,Di, g)/|Di| and count(p,Di, g) denotes the
number of sequences in Di for which the subsequence pattern p is contained
having a gap of at most g between successive elements of p. Given Dp, Dn, α,
δ and g, the g-MDS mining problem is to discover all the g-MDSs.

We will use the following sequence database from [198] as an example:

Sequence ID Sequence Class label
1 CBAB Dp

2 AACCB Dp

3 BBAAC Dp

4 BCAB Dn

5 ABACB Dn

For the case of g = 0, the distinguishing subsequences correspond to emerg-
ing substrings [74]. In such a situation, it is preferable from an efficiency per-
spective to use a specialized approach for mining, such as a prefix tree. For
g ≥ 1, the situation is more complex, since the maximum gap constraint is
neither monotone nor anti monotone and thus pruning is not straightforward.

Consider our example database and suppose δ = 1, α = 0, and g = 1.
The 1-MDSs are bb, cc, baa, and cba. Note that bb is a subsequence of all
the negative sequences, if no gap constraint is used. However, all occurrences
of bb in Dn fail the 1-gap constraint, so bb becomes a distinguishing subse-
quence when g = 1. Observe that every super sequence of an 1-MDS fulfilling
the 1-gap constraint and support thresholds is also distinguishing. However,
these are excluded from the MDS set, since they are non-minimal and contain
redundant information.

The imposition of a minimality condition for g-MDSs has similar rationale
to imposing a minimality requirement for emerging patterns. It reduces output
volume and means that the patterns discovered are shorter (more succinct).
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FIGURE 6.1: The lexicographic tree for sequence enumeration. Based on [198],
Copyright 2005, with permission from IEEE.

6.2.2 Mining Approach

In order to mine g-MDSs, it is difficult (though not impossible) to directly
adapt the data structures we saw in Chapters 3 and 4. Instead, a simpler
and cleaner approach is to use a generate and test strategy. Subsequences
are enumerated using depth-first search in a lexicographic sequence tree, in
a manner similar to frequent subsequence mining techniques such as [29].
In the lexicographic sequence tree, each node contains a sequence s, a value
for support(s,Dp, g) and a value for support(s,Dn, g). During the depth-first
search, one extends the current node by a single item from the alphabet,
according to some given lexicographic order. For (the sequence of) each newly-
generated node n, its supports in Dp and Dn are calculated.

A key challenge relates to how support checking is performed. This is
non-trivial, due to presence of gaps. The work in [198] proposes an efficient
bitset technique that leverages a bitvector representation of itemsets and uses
efficient bitwise operations on these bitvectors to optimize support checking.

6.3 Contrasts in Graph Datasets: Minimal Contrast
Subgraph Patterns

We now consider how to compute emerging patterns that can differentiate
between sets of graphs. We will refer to such patterns as a contrast subgraph.
At a high level, a contrast subgraph is the smallest graph that appears in
one graph dataset but never appears in another graph dataset. Contrast sub-
graphs are appealing, since they can capture structural differences between
graphs. For example, a chemical compound can be represented as a graph.
Given two classes of chemical compounds, one active and the other inactive,
contrast subgraphs can then identify distinguishing characteristics between
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Algorithm 3 Candidate Gen(c,g,I,δ,α): Generate new candidates from se-
quence c. Based on [198], Copyright 2005, with permission from IEEE.

Require: c: sequence, g: maximum gap, I: alphabet, δ: minimal support in
Dp, α: maximum support in Dn.

Ensure: MDS is a global variable containing all distinguishing subsequences
generated from the entire tree.

1: ds = ∅ {to contain all distinguishing children of c}
2: for all i ∈ I do
3: if c+ i is not a supersequence of any sequence in ds then
4: nc = c+ i
5: suppDp=Support(nc,Dp,g)
6: suppDn=Support Count(nc,Dn,g)
7: if suppDp ≥ δ AND suppDn ≤ α then
8: ds = ds ∪ nc {nc is distinguishing}
9: else if suppDp ≥ δ then

10: Candidate Gen(nc,g,I,δ,α)
11: end if
12: end if
13: end for
14: MDS = MDS ∪ ds

the two classes. Alternatively, given two social networks, contrast subgraphs
can highlight the differences between the two networks. Discriminative sub-
graphs may also be useful in other contexts, such as search and indexing [81]
and querying image databases that are represented as attributed relational
graphs. The aim here is to efficiently find all objects from the database con-
tained in a given scene (query). For indexing, contrast features that have high
pruning power (save most isomorphism tests) are selected. They are features
that are contained by many graphs in the database, but are unlikely to be
contained by a query graph.

Other graph contrasting approaches include [367] which examines how
change in a time series of graphs can be determined using global distance
measures. Contrasts between graphs are a focus of [150]. They propose a
language that is able to query for fragments that are frequent in one class of
graphs, but infrequent in another.

The task of discovering contrast subgraphs is similar to the task of dis-
covering frequent subgraphs. Pioneering work in this area includes algorithms
such as gSpan [445], AGM [195], and FSG [223]. Some aspects which make
contrast subgraphs potentially different from frequent subgraph lies in the
definitions, including:

• Must the contrast subgraph be connected, or may we allow disconnected
subgraphs?
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• May the contrast subgraph have isolated vertices (vertices that are con-
nected with no edges)?

• Should the contrast subgraph possess any special structure (e.g. linear
or tree)?

• May two graphs that are isomorphic both be output as contrast sub-
graphs, or is only one allowed?

• Is minimality an important factor?

In the case that isolated vertices are prohibited, the contrast subgraph may
be referred to as an edge set. In what follows, we will review the key ideas
from [406]. This work proposes an approach for discovering the set of contrast
subgraphs, where each contrast may be disconnected, does not contain any
isolated vertices and is minimal. Also, the contrast subgraphs in the output
set are not required to be non-isomorphic from each other (i.e. a contrast
subgraph appearing in two different locations will be output twice).

6.3.1 Terminology and Definitions for Contrast Subgraphs

A labeled graph G is a 4-tuple (V,E, α, β), V is a vertex set, E ⊆ V ×V is
a set of edges, α is a function assigning labels to vertices, and β is a function
assigning labels to edges. S = (W,F, α, β) is the subgraph of G = (V,E, α, β)
iff (1) W ⊆ V and (2) F ⊆ E ∩ (W ×W ). Equivalently, G is said to be the
supergraph of S.

Given G′ = (V ′, E′, α′, β′) and G = (V,E, α, β), a subgraph isomorphism
is an injective function f : (V ′) → V such that (1) ∀e′ = (u, v) ∈ E′ ,
there exists e = (f(u), f(v)) ∈ E, (2) ∀u ∈ V ′, α′(u) = α(f(u)) and (3)
∀e′ ∈ E′, β′(e′) = β(f(e′)). If there exists such a function, then G′ is subgraph
isomorphic to G. If f : (V ′) → V is bijective, G′ is isomorphic to G. Given
the graphs Gp and Gn, C ⊆ Gp is a common subgraph iff it is subgraph
isomorphic to Gn.

An edge set is a graph with no isolated vertex. C is a common edge set iff
(1) it is an edge set and (2) a common subgraph. C is a maximal common edge
set iff it is a common edge set and there does not exist any strict superset
which is a common edge set. C is a maximum common edge set if it is a
common edge set and no other common edge set has more edges than C.

A minimal contrast subgraph is defined as follows. Given a set of positive
graphs {Gp1 , . . . , Gpl

}, and a set of negative graphs {Gn1 , . . . , Gnk
},

• C is a contrast subgraph if

– C is not subgraph isomorphic to any of {Gn1 , . . . , Gnk
}, and

– C is subgraph isomorphic to one or more of {Gp1 , . . . , Gpl
}.

C is minimal if all of its strict subgraphs are not contrast subgraphs.
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FIGURE 6.2: Examples of Contrast Subgraphs: C, D, and E are all contrast
subgraphs contained in A and not in B. Based on [406], Copyright 2006, with
permission from SIAM.

• C is a contrast edge set if (1) it is an edge set and (2) a contrast subgraph.
It is minimal if all proper subsets of C do not form contrast subgraphs.

Figure 6.2 shows some examples: Graphs C, D, and E are all contrast
subgraphs of Graph A when compared with Graph B.

6.3.2 Mining Algorithms for Minimal Contrast Subgraphs

We now describe the approach of [406] for mining minimal contrast sub-
graphs. In particular, the algorithm actually mines the minimal contrast edge
sets. Contrast subgraphs containing isolated vertices can be enumerated sep-
arately.

Given a particular positive graph Gp, the algorithm operates in three main
stages. In the first stage, it discovers the maximal common edge sets between
Gp and each given negative graph Gni , using a backtracking tree. Next, the
maximal common edge sets for all Gni are then unioned together and the
minimal hypergraph transversals of their complements computed. This yields
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the minimal contrast edge sets for Gp, with respect to the set of negative
graphs.

More formally, the connection between minimal contrast and maximal
common edge sets is as follows. Suppose S = {S1, S2, ..., } is a set of sets,
then S̄, the complement of S, is the set of complements of each of the sets, i.e.
S̄ = {S̄1, S̄2, . . . , }. Let A = A1, A2, . . . , An be a set of sets. We say a set P is
a transversal of A if (P ∩ A1 �= ∅) ∧ (P ∩A2 �= ∅) ∧ . . . . ∧ (P ∩ An �= ∅). We
say that P is a minimal transversal of A, if P is a transversal of A and each
P ′ ⊂ P is not a transversal of A. We define MinTrans(A) to be the set of
all the minimal transversals of A. The key idea is that the maximal common
edge sets and the minimal contrast edge sets are dual of one another. Given
a set of maximal common edge sets S, then the minimal transversals of S is
equal to the collection of the smallest edge sets which are not contained in
any edge sets from S (i.e. the minimal contrast edge sets).

For a particular positive graph Gp, the task of finding minimal contrast
edge sets is thus equivalent to computing the set of maximal common edge
sets between Gp and each of the negative graphs.

Given Gp and {Gn1 , . . . , Gnk
}, let Mi be the set of maximal common edge

sets between Gp and Gni . Then MinTrans(M̄1 ∪ M̄2 ∪ . . .∪ M̄k) is the set of
all minimal contrast edge sets between Gp and {Gn1 , . . . , Gnk

}.
One can compute the minimal hypergraph transversals (using a technique

such as [35]) of the complements of the edge sets to derive the complete set
of minimal contrast edge sets. This process can then be repeated for each
positive graph. Combining the minimal contrast edge sets of all the positive
graphs yields the entire set of minimal contrast edge sets of {Gn1 , . . . , Gnk

}
versus {Gp1 , . . . , Gpl

}. A full description of all the details and discussion of
alternative approaches can be found in [405].

6.4 Summary

We have reviewed two quite different scenarios for computation of con-
trast patterns in more structured data. The first scenario was related to the
discovery of subsequence patterns that are distinguishing between two sets of
sequences. The second scenario was related to the discovery of subgraphs that
are contained in a set of positive graphs, but not contained in a set of negative
graphs.

Although these two scenarios are superficially quite different from mining
emerging patterns in tabular (matrix) data, we can identify some common
themes. Firstly, minimality is an important technique for reducing the num-
ber of contrast patterns that need to be mined and can be defined using a
pattern inclusion (border) relationship. Secondly, contrast patterns may be
enumerated by either using existence in Dp as the primary constraint or ex-
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istence in Dn as the primary constraint. Contrast patterns are required to
appear in Dp and not to appear in (or have minimal appearances in) the
negative dataset Dn. This can be achieved by either i) enumerating patterns
contained in Dp and then explicitly checking their support for each object
in Dn (as we saw for distinguishing subsequence mining), or ii) enumerating
minimal patterns not contained in any object in Dn and ensuring they occur
in some object in Dp (as we saw for minimal contrast subgraph mining, as
well as the ratio tree algorithm from Chapter 3).

In addition to sequences and graphs, there are other types of structured
data such as images, time series, and so on. Chapter 20 studies approaches to
represent emerging patterns for contrasting images, utilizing occurrence count
features and utilizing spatial relationship features. Chapter 25 gives pointers
to other papers on related topics.
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Due to advances in data acquisition, storage and transfer technologies, data is
nowadays dynamically updated all the time. In addition, in many interactive
data mining applications, data is often modified repeatedly. Re-generating the
corresponding emerging patterns from scratch every time when the underlying
data is updated/modified is obviously inefficient. It is more advantageous to
incrementally maintain the emerging patterns.

In this chapter, we first present the motivations and potential applications
for incremental maintenance of emerging patterns. We then formally define
the maintenance problem, and discuss the challenges associated with solv-
ing the problem. After that, we discuss how an emerging pattern space can
be concisely represented by its border [118]. Finally, we demonstrate how an
emerging pattern space, represented by its border, can be effectively main-
tained under various data updates or modifications [249].

69



70 Contrast Data Mining: Concepts, Algorithms, and Applications

7.1 Background & Potential Applications
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FIGURE 7.1: Projected average size of data warehouses [50].

Due to advances in data generation and collection technologies, the in-
creased popularity of the Internet and the invention of cloud computing, the
amount of available data has exploded in recent years. Figure 7.1 shows the
projected sizes of data warehouses over the coming years. As pointed out by
the vice president of Google, Marissa Mayer, “data explosion is bigger than
Moore’s law.” According to various studies, the amount of available data has
grown over 15-fold in the past few years, and the annual data growth rate
is projected to increase to 45-fold by 2020 [11]. In this era of data explosion,
data is no longer static. Data is dynamically updated all the time: new records
are inserted, obsolete records are removed, and records containing errors are
corrected. When the underlying data is updated, the corresponding emerg-
ing patterns also need to be updated. The most straightforward approach is
to re-discover the emerging patterns. However, as graphically illustrated in
Figure 7.2, the size of data affected by the updates is usually much smaller
than the overall data size, and the original and the updated emerging pattern
spaces have very large overlap. Moreover, the re-discovery approach also leads
to large computational overheads, and it is likely to be practically infeasible.
A more practical solution is to incrementally maintain the emerging patterns
to reflect updates in the underlying data. In real-life applications, incremental
maintenance of emerging patterns has been employed for real-time monitoring
of critical assets [236] and diagnosis of medical conditions [323]. This chapter
discusses how emerging patterns can be incrementally maintained when the
pattern space is concisely represented by its border.

Incremental maintenance of emerging patterns is also a useful tool for
interactive mining applications. One potential application is to answer hypo-
thetical queries, including, the “what if ” queries. Data analyzers are often
interested in finding out “what” might happen to the discovered emerging
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FIGURE 7.2: (a) A graphical illustration of dynamic data updates. (b) Over-
laps between the original and the updated emerging pattern spaces.

patterns “if ”: some new transactions were inserted to the dataset, some ex-
isting transactions were removed, some existing transactions were replaced, or
some sets of items are included or excluded, etc. Useful insights can often be
discovered with interactive hypothetical queries.

Figure 7.3 (a) illustrates the näıve approach to answer what if hypothetical
queries. First, the näıve approach requires the re-discovery of emerging pat-
terns, which involves large amount of repeated computation effort. Moreover,
to answer what if queries, the näıve approach needs to compare the origi-
nal and updated pattern spaces. Since the size of emerging pattern spaces is
usually very large, the comparison is computationally expensive.

As illustrated by Figure 7.3 (b), incremental maintenance of emerging pat-
terns can be used to efficiently support the query answering process, without
using the pattern re-generation and comparison steps of the näıve approach.

FIGURE 7.3: (a) The näıve approach and (b) the incremental maintenance
approach to answer hypothetical what if queries.
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7.2 Problem Definition & Challenges

Following the definitions in Chapter 1, given two contrasting datasets
DP and DN and a support ratio threshold, σr , a pattern (or an itemset)
P is an “emerging pattern” for the positive dataset DP if and only if

SuppRatio(P,DP , DN ) = Supp(P,DP )
Supp(P,DN ) ≥ σr, where Supp(P,Dx) denotes the

support of P in dataset Dx. In some applications, the differences between
the contrasting datasets are measured based on support delta. In this case,
a pattern P is an emerging pattern for the positive dataset if and only if
SuppDelta(P,DP , DN) = Supp(P,DP ) − Supp(P,DN) ≥ σd, where σd is
the minimum support delta threshold. Given σr or σd, the “space of emerg-
ing pattern” or “emerging pattern space”, denoted as EP (DP , DN , σr) or
EP (DP , DN , σd), is the set of all valid emerging patterns. Since the support
ratio threshold, σr, is more commonly used, for ease of discussion, in this
chapter we will assume σr is used unless otherwise stated.

Types of Updates

Insertion of new instances is an update where new positive instances,
ΔP , and/or new negative instances, ΔN , are inserted into the original con-
trasting datasets. Suppose the original contrasting datasets are DP and DN .
The updated datasets then are D′P = DP ∪ ΔP and D′N = DN ∪ ΔN , and
|D′P | = |DP |+ |ΔP | and |D′N | = |DN |+ |ΔN |. (We assume that DP ∩ΔP = ∅
and DN ∩ΔN = ∅.) Insertion of new instances is the most common data man-
agement operation. It allows new data to be included in the data analysis.

Deletion of existing instances is an update where existing positive
instances, ΔP , and/or negative instances, ΔN , are removed from the current
contrasting datasets. Suppose the original contrasting datasets are DP and
DN . The updated datasets then are D′P = DP −ΔP and D′N = DN −ΔN ,
and |D′P | = |DP | − |ΔP | and |D′N | = |DN | − |ΔN |. (We assume that ΔP ⊂
DP and ΔN ⊂ DN .) Deletion of existing instances is a data management
operation that allows obsolete and invalid instances to be removed. It ensures
the generated emerging patterns are not undesirably influenced by out-of-date
or invalid instances that contain error.

When the original contrasting datasets, DP and DN , are updated
into D′P and D′N by inserting or removing instances, the task of incre-
mental maintenance is to obtain the updated emerging pattern space,
EP (D′P , D

′
N , σr), by updating the original pattern space, EP (DP , DN , σr).

Expansion of query item space is an update where new items are
included in the existing “query item space”.
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Definition 7.1 Given the positive and negative datasets, DP and DN , let
I = {i1, i2, · · · } be the “complete item space” that includes all the items in
DP and DN . The “query item space”, denoted as IQ, defines an item subspace
where IQ ⊆ I. In the context of IQ, only items in IQ will be considered for
the formation of emerging patterns, and all other items will be ignored.

In the context of query item space, IQ, the emerging pattern space,
EPIQ(DP , DN , σr), is defined as the set of emerging patterns P that P ⊆ IQ.

Expansion of query item space is an update where the existing query item
space, IQ, expands with new items IΔ. IΔ �= ∅ and IΔ ⊂ I. The updated
Query Item Space becomes I ′Q = IQ ∪ IΔ. Therefore, IQ ⊂ I ′Q ⊆ I.

Shrinkage of query item space is an update where the existing query item
space, IQ, shrinks by removing items IΔ. IΔ �= ∅ and IΔ ⊂ IQ. The updated
query item space becomes I ′Q = IQ − IΔ. This implies that I ′Q ⊂ IQ.

When the original query item space, IQ, expands or shrinks into I ′Q,
the task of incremental maintenance is to obtain the updated emerging
pattern space, EPI′

Q
(DP , DN , σr), by updating the original pattern space,

EPIQ(DP , DN , σr).

We note that, for the insertion and removal of instance updates, the query
item space is assumed to remain unchanged.

7.2.1 Potential Challenges

Data updates may invalidate existing emerging patterns and introduce
new emerging patterns. As a result, the incremental maintenance of emerging
patterns consists of two main computational tasks: to update existing patterns
and to generate new emerging patterns.

To update the existing emerging patterns, the näıve way is to scan through
all the existing patterns to find out which patterns are affected by the data
updates and then update the patterns accordingly. Suppose the dataset is
incrementally updated with m new instances. The computational complexity
of the näıve approach is O(NEP × m), where NEP refers to the number of
the existing emerging patterns. Since NEP can often be very large, the näıve
approach is often computationally too expensive to be practically feasible.
Therefore, how to update the existing patterns effectively is one of the major
challenges in incremental maintenance of emerging patterns.

The generation of new emerging patterns is also technically challenging. In
theory, the number of possible candidates for the new emerging patterns equals
to (2n−NEP ), where n is the total number of items (attribute-value pairs) and
NEP is the number of existing emerging patterns. In most applications, the
number of items can be around 500 ∼ 1, 000. Suppose there are 1, 000 items
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in the contrasting datasets. The potential search space for the new emerging
patterns will consist of over 10300 candidates. Given such a large search space,
effective techniques are needed to extract the new emerging patterns.

In the subsequent sections, we will investigate how the emerging patterns
can be effectively maintained by concisely representing the pattern space with
its border. The concept of border was first introduced in [118] as a concise
representation of emerging patterns.

7.3 Concise Representation of Pattern Space:
The Border

ID Outlook Temp. Humidity Windy AvoidOutdoor
1 rain mild high false Yes
2 rain mild normal false Yes
3 sunny Hot high false No
4 sunny Hot normal true No

(a)
{}

r m h f n

r,m r,h m,h r,f m,f h,fr,n m,n h,n f,n

r,m,h r,m,f r,h,f m,h,f r,m,n r,f,n m,f,n r,h,n m,h,n h,f,n

r,m,h,f r,m,h,nr,m,f,n m,h,f,nr,h,f,n

r,m,h,f,n

Jumping Emerging Pattern Space

        Borders of Jumping Emerging Pattern Space

(b)

FIGURE 7.4: (a) Sample dataset; “AvoidOutdoor” is the class label; “Yes”
indicates the positive class, and “No” indicates the negative class. (b) Emerg-
ing pattern space and its border. Here, we represent the attribute values using
their first letters. The JEP space for the sample dataset, marked with a dotted
line, includes 18 patterns; it can be concisely represented by its border, which
consists of only 4 patterns highlighted in solid boxes.

This section discusses how the space of emerging patterns can be concisely
represented. To illustrate the concept, we focus on a special type of emerging
patterns — the “Jumping Emerging Patterns” (JEPs) .

Definition 7.2 Given the positive and negative contrasting datasets DP and
DN , a pattern P is a jumping emerging pattern for the positive dataset
if and only if Supp(P,DP ) > 0 and Supp(P,DN ) = 0, or equivalently,
SuppRatio(P,DP , DN ) =∞.
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A jumping emerging pattern for the positive dataset is a pattern P that ap-
pears only in positive instances and does not appear in any negative instances.
For ease of discussion, when we mention “jumping emerging pattern” in sub-
sequent discussion, it refers to the jumping emerging pattern for the positive
dataset. The “space of jumping emerging pattern”, in short JEP space, is
then the pattern space that includes all valid jumping emerging patterns. We
denote the space of jumping emerging patterns as JEP (DP , DN). Jumping
emerging patterns are most commonly used in the applications of classifica-
tion, because they are often the most discriminative emerging patterns.

Figure 7.4 (a) shows a sample dataset on the relationship between the
weather conditions and whether one should avoid staying outdoors. (“Yes”
and “No” respectively denote the positive and negative classes.) Observe that,
for this simple dataset consisting of only 4 instances and 4 attributes, the
corresponding JEP space consists of 18 patterns. In the theoretical worse case,
the size of the JEP space can grow exponentially with respect to the number of
attributes. Updating and maintaining the JEP space can be computationally
expensive. Luckily, the JEP space has a useful property: it is a convex space.

Definition 7.3 A pattern space S is a convex space if, for all X, Y ∈ S,
where X ⊆ Y , it is the case that Z ∈ S whenever Z satisfies X ⊆ Z ⊆ Y .

The convexity of the JEP space implies that, given any jumping emerging
patterns X and Y , where X ⊆ Y , any pattern Z such that X ⊆ Z ⊆ Y is also
a jumping emerging pattern. This property forms the theoretical foundation
for the concise representation of the JEP space.

Given a JEP space, we define the most general emerging patterns as the
left bound of the pattern space, denoted as L; and we define the most specific
emerging patterns as the right bound of the pattern space, denoted as R. The
combination of the left and right bounds forms the border of the JEP space,
denoted as < L,R >.

Based on the convexity of the JEP space, we observe the following four
properties of its border. (a) Both the left and right bounds, L and R, are
antichains. Here, an antichain refers to a collection of patterns in which it is
true for any two patterns X and Y that X �⊆ Y and Y �⊆ X . (b) For each
pattern X in L, there exists at least one pattern Y in R such that X ⊆ Y . (c)
For each pattern Y in R, there exists at least one pattern X in L such that
X ⊆ Y . (d) Most importantly, all patterns in the JEP space are completely
covered by L and R.

As a result, the JEP space can be concisely represented by its border,
< L,R >. For the sample dataset of Figure 7.4, the JEP space (consisting
of 18 patterns) can be concisely summarized by its border, which consists of
only 4 patterns: L = {{r}, {m}} and R = {{r,m, h, f}, {r,m, n, f}}.

Moreover, based on the notations of the left and right bounds, L andR, we
can re-interpret the JEP space as a collection of patterns that are supersets
of some patterns in L and subsets of some patterns in R. The JEP space can
be expressed as [L,R] = {Z|∃X ∈ L, ∃Y ∈ R such that X ⊆ Z ⊆ Y }. Note
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that notations < L,R > and [L,R] are different from each other. < L,R >
denotes the border of the JEP space, which consists of only the left bound,
L, and the right bound, R. On the other hand, [L,R] refers to the entire JEP
space that are bounded by the border, < L,R >.

Recall that a jumping emerging pattern is a pattern that occurs only in
the positive instances, DP , but not in the negative instances, DN . Therefore,
one can obtain all the jumping emerging patterns by subtracting all patterns,
which have non-zero support in DN , from the collection of patterns that have
non-zero support in DP . This idea is graphically demonstrated in Figure 7.5.
Based on the concept of border, the collection of non–zero support patterns in
DP can be expressed as [{∅},RP ], where RP is the right bound of the pattern
space. Similarly, the collection of non-zero support patterns in DN can be
expressed as [{∅},RN ], where RN is the right bound of the pattern space.
As a result, the JEP space for the contrasting data DP and DN , denoted as
JEP (DP , DN ), can be re-written as:

JEP (DP , DN ) = [{∅},RP ]− [{∅},RN ] (7.1)

This expression of the JEP space will be used in subsequent discussions.
By concisely representing the JEP space with its border, one only needs to
incrementally update the border patterns instead of the entire pattern space,
which effectively reduces the computational complexity.

Non-zero Support 
Patterns in DN

Jumping Emerging 
Patterns

Non-zero Support 
Patterns in DP

Subtraction

FIGURE 7.5: Pattern space subtraction to obtain the JEP space.

7.4 Maintenance of Border

This section investigates how the border of the JEP space can be incremen-
tally maintained. First, Section 7.4.1 introduces some basic border operations,
including Subtraction, Union, and Intersection. The subsequent sections then
demonstrate, based on the basic operations, how the border can be effectively
maintained under various data updates. Section 7.4.2 addresses the insertion
of new instances, Section 7.4.3 the removal of existing instances, and Sec-
tions 7.4.4 and 7.4.5 the expansion and shrinkage of the query item space.
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7.4.1 Basic Border Operations

Border Subtraction: Recall that, the JEP space can be obtained by sub-
tracting the non-zero support patterns in DN , represented by [{∅},RN ], from
the set of non-zero support patterns in DP , represented by [{∅},RP ]; see Fig-
ure 7.5. That is, JEP (DP , DN ) = [{∅},RP ] − [{∅},RN ] (Eq 7.1). Based on
this formula, the border subtraction operation generates the JEP space with
respect to the given RP and RN . Figure 7.6 describes the detailed algorithm
of the border subtraction operation, where RP = {A1, ..., Ak}. The subroutine
of the operation, BorderDiff, is described in Figure 7.7.

Input: Two pattern spaces given by < {∅}, {A1, ..., Ak} > and < {∅},RN >
Output: < L,R > such that [L,R] = [{∅}, {A1, ..., Ak}]− [{∅},RN >
Method:
1: L ← { }, R ← { };
2: for j from 1 to k do
3: border = BorderDiff (< {∅}, {Aj} >,< {∅},RN >);
4: L = L ∪ left bound of border ;
5: R = R ∪ right bound of border ;
6: end for
7: return < L,R >;

FIGURE 7.6: Operation Border Subtraction.

Input: Two pattern spaces given by < {∅}, {U} > and < {∅}, {S1, ..., Sk} >
Output: < L,R > such that [L,R] = [{∅}, {U}]− [{∅}, {S1, ..., Sk}]
Method:
1: L = {{x}|x ∈ U − S1};
2: for i from 2 to k do
3: L ← {X ∪ {x}|X ∈ L, x ∈ U − Si};
4: remove patterns in L that are not most general;
5: end for
6: return < L, {U} >;

FIGURE 7.7: Procedure BorderDiff.

Border Union: Suppose DN is a set of negative instances, DP is a set of
positive instances, and DP is partitioned into two sets, DP1 and DP2 . It is
interesting to know how the JEP space JEP (DP , DN) is related to the JEP
spaces JEP (DP1 , DN ) and JEP (DP2 , DN ). We have the following answer to
that question:

Fact 7.4 Given a negative dataset DN and a positive dataset DP and a par-
tition of DP into DP1 and DP2 , we have JEP (DP , DN ) = JEP (DP1 , DN ) ∪
JEP (DP2 , DN). This fact is illustrated in Figure 7.8.
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[L1,R1]

DP1

DN

DP2

[L2,R2]

[L,R] Contrast

Contrast

Contrast

Union

DP = DP1 U DP2

JEP(DP2 ,DN)

JEP(DP1 ,DN)

JEP(DP ,DN)

DN

DP1 DP2

FIGURE 7.8: Union of two JEP spaces: given DN and DP = DP1 ∪ DP2 ,
JEP (DP , DN ) = JEP (DP1 , DN) ∪ JEP (DP2 , DN).

In the notion of border, suppose JEP (DP , DN) = [L,R], JEP (DP1 , DN ) =
[L1,R1] and JEP (DP1 , DN ) = [L2,R2]. Then, [L,R] = [L1,R1] ∪ [L2,R2].
Based on Fact 7.4, the border union operation in Figure 7.9 obtains the JEP
space border < L,R > from the borders < L1,R1 > and < L2,R2 >.

Input: < L1,R1 > representing JEP (DP1 , DN ) and < L2,R2 >
representing JEP (DP2 , DN), for some datasets DP1 , DP2 , and DN

Output: < L,R > representing JEP (DP1 ∪DP2 , DN )
% < L,R > satisfies [L,R] = [L1,R1] ∪ [L2,R2]
Method:
1: L = L1 ∪ L2;
2: R = R1 ∪R2;
3: remove patterns in L that are not most general;
4: remove patterns in R that are not most specific;

return < L,R >;

FIGURE 7.9: Operation Border Union.

Border Intersection: The border intersection operation addresses the oppo-
site scenario compared with the border union operation. We have the following
relationship between the underlying JEP spaces.

Fact 7.5 Suppose we have a positive dataset DP and a negative dataset DN ,
and a partition of DN into DN1 and DN2 . Then we have JEP (DP , DN ) =
JEP (DP , DN1) ∩ JEP (DP , DN2). This is illustrated in Figure 7.10.

In the notion of border, suppose JEP (DP , DN) = [L,R], JEP (DP , DN1) =
[L1,R1] and JEP (DP , DN2) = [L2,R2]. Then, [L,R] = [L1,R1] ∩ [L2,R2].
The border intersection operation in Figure 7.11 gives the JEP space border
< L,R > based on the borders < L1,R1 > and < L2,R2 >.

7.4.2 Insertion of New Instances

Suppose we have DP and DN as the original contrasting positive and
negative datasets, and the corresponding non-zero support pattern spaces are
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FIGURE 7.10: Intersection of two JEP spaces: given DP and DN = DN1 ∪
DN2 , JEP (DP , DN) = JEP (DP , DN1) ∩ JEP (DP , DN2).

Input: < L1,R1 > representing JEP (DP , DN1) and < L2,R2 >
representing JEP (DP , DN2), for some datasets DP , DN1 , and DN2

Output: < L,R > representing JEP (DP , DN1 ∪DN2)
% < L,R > satisfies [L,R] = [L1,R1] ∪ [L2,R2]
Method:
1: R = R1 ∩R2;
2: L = {A ∪B|A ∈ L1, B ∈ L2};
3: remove patterns in L that are not most general;
4: remove patterns P in L if � ∃Q ∈ R such that P ⊆ Q;

return < L,R >;

FIGURE 7.11: Operation Border Intersection.

[{∅},RP ] and [{∅},RN ]. Thus, the original JEP space can be expressed as
JEP (DP , DN ) = [{∅},RP ] − [{∅},RN ]. When new instances are inserted,
there can be two scenarios, where new positive instances are inserted or new
negative instances are inserted. We discuss these two scenarios separately.

Insertion of New Positive Instances: Suppose a set of new positive in-
stances, ΔP , is inserted, where ΔP ∩ DP = ∅. The updated set of positive
instances is (DP ∪ ΔP ). Let [{∅},RΔ

P ] denote the non-zero support pattern
space of ΔP . The updated JEP space with respect to (DP ∪ΔP ) and DN can
be precisely defined by the following formula.

JEP ((DP ∪ΔP ), DN )

= ([{∅},RP ] ∪ [{∅},RΔ
P ])− [{∅},RN ]

= ([{∅},RP ]− [{∅},RN ]) ∪ ([{∅},RΔ
P ]− [{∅},RN ])

= JEP (DP , DN) ∪ JEP (ΔP , DN) (7.2)

By Equation 7.2, the updated JEP space, JEP ((DP ∪ ΔP ), DN ), is the
union of the original JEP space, JEP (DP , DN ), and the JEP space contrast-
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ing ΔP and DN , JEP (ΔP , DN). Let < L,R > be the border of the original
JEP space. We can obtain the border of the updated JEP space in two steps:

Step 1. Discover the border of the JEP space contrasting ΔP and DN .
Let < L′,R′ > denote the resulting border.

Step 2. Apply the border union operation (Figure 7.9) on < L,R > and
< L′,R′ >.

Insertion of New Negative Instances: Suppose a set of new negative
instances, ΔN , is inserted, where ΔN ∩DN = ∅. Thus, the updated negative
instances are (DN ∪ΔN ). Let [{∅},RΔ

N ] denote the non-zero support pattern
space of ΔN . The updated JEP space with respect to DP and (DN ∪ ΔN )
can be precisely defined as:

JEP (DP , (DN ∪ΔN ))

= [{∅},RP ]− ([{∅},RN ] ∪ [{∅},RΔ
N)

= ([{∅},RP ]− [{∅},RN ]) ∩ ([{∅},RP ]− [{∅},RΔ
N ])

= JEP (DP , DN) ∩ JEP (DP ,ΔN ) (7.3)

We observe that, upon insertion of negative instances, ΔN , the updated
JEP space, JEP (DP , (DN ∪ΔN )), can be expressed as the intersection of the
original JEP space, JEP (DP , DN), and the JEP space contrasting DP and
ΔN , JEP (DP ,ΔN ). Let < L,R > be the border of the original JEP space.
We can obtain the border of the updated JEP space in two steps:

Step 1. Discover the border of the JEP space contrasting DP and ΔN .
Let < L′,R′ > denote the resulting border.

Step 2. Apply the intersection operation (Figure 7.11) on < L,R > and
< L′,R′ >.

7.4.3 Removal of Existing Instances

When removing existing instances, there are also two scenarios: removing
existing positive instances or removing existing negative instances. Different
from the insertion case, the maintenance of the JEP space under the two
removal scenarios is very distinct from each other.
Removal of Existing Positive Instances: Suppose a set of positive in-
stances, ΔP , is removed from the original data DP . The JEP space will shrink
upon the removal. The updated JEP space can be obtained by removing all
non-zero support patterns in ΔP . Let [{∅},RΔ

P ] denote the non-zero support
pattern space of ΔP . The updated JEP space with respect to (DP −ΔP ) and
DN is:

JEP ((DP −ΔP ), DN) = JEP (DP , DN)− [{∅},RΔ
P ] (7.4)
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Let < L,R > be the border of the original JEP space, JEP (DP , DN).
The subtraction in Eq 7.4 can be performed in the following steps:

Step 1. Discover the border of the non-zero support pattern space of
(DP −ΔP ). Let < {∅},R′P > denote the resulting border.

Step 2. Let L′ = L.
Step 3. Remove all patterns P in L′ satisfying � ∃Q ∈ R′P satisfying P ⊆ Q.

The resulting < L′,R′P > is then the border of the the updated JEP space.
Removal of Existing Negative Instances: Suppose a set of negative in-
stance, ΔN , is removed. Upon the removal of existing negative instances, the
JEP space will expand, as new emerging patterns will appear [249]. Under
this case, the maintenance of the JEP space is much more complicated. We
illustrate the process mathematically with the following formula. For ease of
discussion, we denote A = [{∅},RP ], the non-zero pattern space of the posi-
tive instances DP , B = [{∅},R′N ], the non-zero pattern space of the updated
negative instances (DN −ΔN ), and C = [{∅},RΔ

N ], the non-zero pattern space
of the removed negative instances ΔN .

JEP (DP , (DN −ΔN ))

= A− B = A− B −A ∩ B
= A− B −A ∩ B − C ∪ A ∩ C
= (A− B ∪ C) ∪ (A ∩ (C − B))
= JEP (DP , DN) ∪ (A ∩ (C − B)) (7.5)

We observe that the first term of the union, (A − B ∪ C), is equivalent
to the original JEP space, JEP (DP , DN ). The term (C − B) = ([{∅},RΔ

N ]−
[{∅},R′N ]) is then the JEP space contrasting ΔN and DN , JEP (ΔN , DN).
Let < L,R > be the border of the original JEP space, JEP (DP , DN ). The
border of the updated JEP space can be obtained as follows.

Step 1. Discover the border of JEP (ΔN , DN).
Let < L′,R′ > denote the resulting border.

Step 2. Remove all patterns P in L′ that does not appear in DP .
Step 3. Apply the border union operation on < L,R > and < L′,R′ >.

7.4.4 Expansion of Query Item Space

Let DP and DN denote the positive and negative datasets respectively. Let
I be the complete item space that includes all the items in DP and DN and
IQ be the original query item space. Suppose a new item e ∈ I is inserted in
the query item space, IQ. The query item space expands. The updated query
item space becomes I ′Q = IQ ∪ {e}.
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Let [{∅},RP ] be the non-zero support patterns in DP under the original
query item space, IQ, and let [{{e}},R′P ] be the non-zero support patterns in
DP containing item e. Under the updated updated query item space, I ′Q =
IQ ∪ {e}, the non-zero support patterns in DP can then be expressed as
[{∅},RP ] ∪ [{{e}},R′P ].

Similarly, let [{∅},RN ] be the non-zero support patterns in DN under IQ,
and let [{{e}},R′N ] be the non-zero support patterns in DN containing item
e. Under the updated updated query item space, I ′Q = IQ ∪ {e}, the non-zero
support patterns in DN can then be expressed as [{∅},RN ] ∪ [{{e}},R′N ].

Based on Equation 7.1, the updated JEP space for the expanded query
item space, I ′Q, can be expressed as:

JEPI′
Q
(DP , DN )

= ([{∅},RP ] ∪ [{{e}},R′P ])− ([{∅},RN ] ∪ [{{e}},R′N ])

= ([{∅},RP ]− [{{e}},R′N ]− [{∅},RN ]) ∪
([{{e}},R′P ]− [{∅},RN ]− [{{e}},R′N ])

= ([{∅},RP ]− [{∅},RN ]) ∪ ([{{e}},R′P ]− [{{e}},R′N ])

= JEPIQ(DP , DN ) ∪ ([{{e}},R′P ]− [{{e}},R′N ]) (7.6)

According to Equation 7.6, the updated JEP space can be obtained based
on the border, < L,R >, of the original JEP space, and it can be achieved in
two steps:

Step 1. Apply border subtraction operation to obtain the border of
[{{e}},R′P ]− [{{e}},R′N ]. Let < L′,R′ > be the resulting border.

Step 2. Apply the border union operation on < L,R > and < L′,R′ >.

7.4.5 Shrinkage of Query Item Space

Shrinkage of query item space is the opposite operation of the expansion
of query item space. Let IQ be the original query item space. Suppose an
item e ∈ IQ is removed from IQ. The query item space shrinks, and the
updated query item space becomes I ′Q = IQ−{e}. Following the notations in
Section 7.4.4, the updated JEP space for the shrunken query item space can
then be formulated as:

JEPI′
Q
(DP , DN)

= ([{∅},RP ]− [{{e}},R′P ])− ([{∅},RN ]− [{{e}},R′N ])

= ([{∅},RP ]− [{{e}},R′P ]− [{∅},RN ]) ∪
(([{∅},RP ]− [{{e}},R′P ]) ∩ [{{e}},R′N ])

= [{∅},RP ]− [{∅},RN ]− [{{e}},R′P ]
= JEPIQ(DP , DN)− [{{e}},R′P ] (7.7)
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By Equation 7.7, the updated JEP space can be obtained by removing
all existing emerging patterns that contain item e. Suppose the border of the
original JEP space is < L,R >. The border of the updated JEP space,
< L′,R′ >, can be effectively obtained as follows:

Step 1. L′ = {P |P ∈ L and e �∈ P}.
Step 2. R′ = {P |P ∈ R and e �∈ P}.
Step 3. Remove all patterns P in R′ that are not most specific.
Step 4. Remove all patterns P in R′ that do not contain any pattern in L′.

7.5 Related Work

Incremental maintenance of emerging patterns has not received as much
research attention as its discovery task. However, considerable amount of re-
search effort has been committed to the incremental maintenance of frequent
patterns. “Frequent Patterns” [3] are patterns that appear frequently in the
data. The spaces of frequent patterns and emerging patterns share many simi-
larities. For instance, both pattern spaces grow exponentially with the number
of items, and both pattern spaces are convex [249, 239]. Therefore, ideas in
frequent pattern maintenance can often be extended to the incremental main-
tenance of emerging patterns.

In the literature, the frequent pattern maintenance algorithms can be
classified into four main categories: the 1) Apriori-based algorithms, 2)
Partition-based algorithms, 3) Prefix-tree-based algorithms and 4) Concise-
representation-based algorithms [147].

FUP [91] is the first Apriori-based maintenance algorithm. Inspired by
Apriori [3], FUP updates the space of frequent patterns iteratively based on
the candidate-generation-verification framework. The key technique of FUP is
to make use of support information in previously discovered frequent pat-
terns to reduce the number of candidate patterns. Since the performance
of candidate-generation-verification based algorithms heavily depends on the
size of the candidate set, FUP outperforms Apriori. Similarly, the partition-
based algorithm SWF [233] also employs the candidate-generation-verification
framework. However, SWF applies different techniques to reduce the size of
candidate set. SWF slices a dataset into several partitions and employs a fil-
tering threshold in each partition to filter out unnecessary candidate patterns.
Even with all the candidate reduction techniques, the candidate-generation-
verification framework still leads to the enumeration of large number of unnec-
essary candidates. This greatly limits the performance of both Apriori-based
and partition-based algorithms.

To address this shortcoming of the candidate-generation-verification
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framework, tree-based algorithms have been proposed. Examples include FP-
growth [180], a prefix-tree based algoirhtm, and Apriori-TFP [94], a Total Sup-
port Tree (T-tree) based algorithm. In [236] and [323], Apriori-TFP was ex-
tended to incrementally maintain emerging patterns. Apriori-TFP enumer-
ates and generates patterns with the T-tree. A T-tree is basically a set-
enumeration tree; it ensures a complete and non-redundant enumeration of
patterns. Apriori-TFP (Total From Partial) efficiently constructs the Total
Support Tree, T-tree, based on the Partial Support Tree, P-tree. P-tree is a
summarized set-enumeration tree with partial support information of patterns
[236]. Benefiting from the “Total From Partial” idea, Apriori-TFP achieves a
good balance between time and memory efficiency. However, tree based algo-
rithms still suffer from the undesirably large size of the pattern space.

To break this bottleneck, concise representations of the frequent pattern
space have been proposed. The commonly used representations include “max-
imal patterns” [46], “closed patterns” [326], and “equivalence classes” [146].
Algorithms, such as Moment [92], ZIGZAG [415], and PSM (Pattern Space
Maintainer) [146] have been proposed to maintain these concise representa-
tions.

Concise representations are also employed to summarize the pattern space
of emerging patterns. The concept of border was first introduced in [118] to
summarize the emerging pattern space with its left and right bounds — its
border. Based on the concept of border, an effective method for incremental
maintenance of emerging patterns was proposed in [249]. This method has
been discussed in Sections 7.3 and 7.4. Reference [32] further extended the
method to address the maintenance of emerging patterns for data streams.
Since a data stream is a continuous stream of data, emerging pattern discov-
ery in data streams, as defined in [32], is to contrast the updated data with the
obsolete data. As illustrated in Figure 7.12, the contrasting positive dataset,
DP , refers to the relatively newer segment of the data stream, and the con-
trasting negative dataset, DN , refers to the more obsolete segment. Suppose
the data stream is updated in a sliding window manner. We can observe from
Figure 7.12 that: newly updated data, Δ+

P , will be included in the updated
positive dataset, D′P ; some originally positive data, Δ−P , will become obsolete
and will be converted into the negative dataset, D′N ; and, according to the
concept of sliding window, the most obsolete data, Δ−N , will be removed.

+
N

-= P
+
P

Sliding Window

DN DP

D'N D'P

-
N

FIGURE 7.12: Maintenance of emerging patterns over data streams. Note:
Δ+

P = Δ−P = Δ+
N = Δ−N
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7.6 Closing Remarks

In the current era of data explosion, data is dynamically updated all the
time. In addition, data is also often modified to perform interactive mining. Re-
generating emerging patterns every time when the underlying data is updated
or modified involves large amount of redundancy and is practically infeasible.
The practical solution is to incrementally maintain the discovered emerging
patterns.

The pattern space of emerging patterns is usually very large. Updating
every single pattern in the pattern space can be computationally expensive.
This bottleneck can be addressed by summarizing the emerging pattern space
using a concise representation. Compared with the entire pattern space, the
concise representation consists of a much smaller number of patterns, thus it
can be maintained with much lower computational cost.

To illustrate the concept, we focused on the jumping emerging patterns
— the most discriminative emerging patterns. In Section 7.3, we discussed
how the jumping emerging pattern space can be summarized with its concise
representation, its border. In Section 7.4, we further discussed how the border
of the jumping emerging pattern space can be effectively maintained under
various data updates. The types of data updates that we have addressed in-
clude: insertion of new instances, removal of existing instances, expansion, and
shrinkage of the query item space.
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8.1 Introduction

This chapter presents the definition and mining of several types of general-
ized contrast patterns, including disjunctive emerging patterns, fuzzy emerg-
ing patterns, inequality contrasts, and contrast equations. The generalized
contrast patterns use more expressive constructs, including disjunction (OR),
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Dp Dn

A B C Class
a1 b2 c1 Positive
a1 b1 c3 Positive
a2 b3 c2 Positive
a3 b2 c2 Positive

A B C Class
a1 b3 c1 Negative
a2 b1 c2 Negative
a2 b3 c2 Negative
a3 b2 c1 Negative

TABLE 8.1: A small example dataset for disjunctive emerging patterns

fuzzy concepts, equality and inequality involving arithmetic expressions over
multiple attributes. In comparison, the standard contrast patterns are of-
ten limited to conjunctions (AND) of simple single-attribute conditions. The
more powerful constructs give the generalized contrast patterns more mod-
eling power. The generalized contrast patterns may also be more intuitive.
The disjunctive emerging patterns are generalized contrast patterns defined
for nominal features, whereas the other three are generalized contrast patterns
defined for numerical features.

8.2 Disjunctive Emerging Pattern Mining

8.2.1 Basic Definitions

To motivate the concept of disjunctive emerging pattern, consider the Dp

and Dn datasets given in Table 8.1. While EPs (e.g. {a1, b2}) exist for (α =
0.25, β = 0), no EP exists for (α = 0.5, β = 0). (Here we consider emerging
patterns (EPs) defined using two support thresholds α and β; EPs are itemsets
X satisfying supp(X,Dp) ≥ α and supp(X,Dn) ≤ β.)

It is natural to ask: Can we generalize the concept of EPs so that discrim-
inative patterns at the (α = 0.5, β = 0) level can be captured?

It is worth noting that EPs are conjunctions of simple single-attribute
conditions. For the data in Table 8.1, {a1, b2} actually represents A = a1 ∧
B = b2. One natural way to generalize is to also use disjunction, in addition
to conjunction. This leads to the following definitions from [283].

A disjunctive item is the disjunction of a set of items on one common
attribute. For the data in Table 8.1, a1 ∨ a3 is a disjunctive item but a1 ∨ b1
is not. A disjunctive itemset X is the conjunction of the disjunctive items in
X . The support of a disjunctive itemset X in a dataset D is defined in the
natural manner, as the fraction of tuples of D that satisfy X .

Given a positive dataset Dp, a negative dataset Dn, and support thresh-
olds α and β, a disjunctive emerging pattern (disjunctive EP) is a disjunctive
itemset X satisfying supp(X,Dp) ≥ α and supp(X,Dn) ≤ β.
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For the data in Table 8.1, both X = (a1 ∨ a3) ∧ (b1 ∨ b2 ∨ b3) ∧ (c2 ∨
c3) and (a1 ∨ a2) ∧ (b1 ∨ b2) ∧ (c1 ∨ c3) are disjunctive EPs at the (α = 0.5,
β = 0) level. The support of X in Dp is 0.5 and its support in Dn is 0.

Some disjunctive items are trivial – they are satisfied by all possible tuples
in the data. For example, for the data in Table 8.1, (b1 ∨ b2 ∨ b3) is a trivial
disjunctive item. Trivial disjunctive items can be removed from disjunctive
itemsets without causing any changes to the statistics of the disjunctive item-
sets. So, there is no need to include the requirement that each disjunctive EP
contain a disjunctive item for each attribute (which was included in [283]).

As discussed earlier, for given thresholds α and β, it can happen that
many disjunctive EPs exist but no EP exists. Below, we discuss other rela-
tionships/differences between EPs and disjunctive EPs. Generally speaking,
disjunctive EPs are more expressive, allowing them to capture contrast pat-
terns of greater complexity. These are indicated by observations given below.

Theorem 8.1 Given support thresholds α and β and datasets Dp and Dn,
each emerging pattern X is a disjunctive emerging pattern.

The converse of this theorem does not hold.
Sometimes disjunctive EPs can represent multiple EPs in a concise manner.

This happens when several EPs of lower support can be merged together to
form a disjunctive EP. For example, {a1, b1} (≡ a1∧ b1) and {a1, b2} (≡ a1∧
b2) are EPs for Table 8.1 and (α = 0.25, β = 0). Both have supp(Dp) = 0.25
and supp(Dn) = 0. These two EPs can be “unioned” to yield the disjunctive
EP X = a1 ∧ (b1 ∨ b2) having supp(X,Dp) = 0.5 and supp(X,Dn) = 0.

An interesting special case exists when each attribute’s domain contains
exactly two values. In this case, the two types of EPs coincide.

It can be argued that disjunctive EPs are especially suitable for data which
calls for contrasts involving disjunctions of items within specific dimensions.

Being more expressive, disjunctive EPs are harder to compute. Below we
present one algorithm for mining disjunctive EPs.

8.2.2 ZBDD Based Approach to Disjunctive EP Mining

Reference [283] gives a ZBDD (Zero-suppressed Binary Decision Diagram)
based method, called mineDEP , for mining EPs and disjunctive EPs. The
key ideas ofmineDEP include using ZBDD for generating pattern candidates,
and also for storing the output patterns. Below we present that method.

We use Figure 8.1 to illustrate ZBDD (see Chapter 4 for details on ZBDD).
Each root-to-sink-1 path π from the root to the sink-1 node represents a set
Sπ as follows: The meaning of a “solid edge” in π is that the item of the
parent node is “in” Sπ, and that of a “dotted edge” is that the item of the
parent node is “not in” Sπ. Observe that edges leading to the sink-1 node are
always solid, whereas edges leading to the sink-0 node are always dotted. So,
the path a2–b3–c2–1 represents the itemset {a2, b3, c2}, and the path a2–b3··c2–
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b1–1 represents the itemset {a2, c2, b1}. Paths from the root to the sink-0 node
always represents {}.

The search space of mineDEP is dictated by the contents of the neg-
ative dataset. For efficiency purposes, mineDEP works with pattern com-
plements, which are likely to contain fewer items, rather than the patterns
themselves. Candidate patterns are generated by growing prefixes in the
complemented pattern space. For each prefix P , the complement of P (de-
noted by P̄ ) represents a disjunctive itemset; for the example data in Ta-
ble 8.1, {a2, c1} = {a1, a3, b1, b2, b3, c2, c3}, representing the disjunctive item-
set (a1 ∨ a3) ∧ (b1 ∨ b2 ∨ b3) ∧ (c2 ∨ c3) (the conjunction of the disjunctive
items each defined by the disjunction of the items for one attribute).

The initial input of mineDEP includes: a ZBDD ZD representing a pro-
jection of the negative dataset Dn, a prefix itemset P (with initial value of
{}) which defines a projection of ZD, bitmaps of the positive and negative
datasets Dp and Dn, a min support threshold α, a max support threshold β.

Mining proceeds by calling mineDEP on recursive projections of Dn,
starting from Dn. Before attempting to grow a prefix P with the next item,
x, the algorithm first tests whether the α and β pruning can be performed;
that is, exploration of the search space stops if one of the following conditions
is satisfied: (a) supp(P ∪ {x}, Dp) < α, (b) supp(P ∪ {x}, Dn) ≤ β. For (a),
exploration stops since no expansion of P ∪ {x} will get a desired disjunctive
EP. For (b), we stop expanding P ∪{x} with P ∪ {x} as a maximal disjunctive
EP (more expansion will only find non-maximal disjunctive EPs). (Note: we
want to mine the maximal disjunctive EPs.) If no pruning is applicable, x is
appended to the P . Then instances which do not contain x are explored (fol-
lowing the left child of x), with the output stored in zOutx. The next routine
is to compute zOutx from a projection of the database of instances containing
x, namely the set obtained by following the right child of x. Some itemsets in
zOutx may be contained by some itemsets in zOutx; the non-minimal patterns
are pruned. zOutx and zOutx will be the two subtrees of the ZBDD output.

When the prefix P reaches a sink node, it has reached the end of the search
space for growing. If P passes the β constraint, it is a satisfying maximal dis-
junctive EP and the ZBDD sink-1 node is returned. Otherwise, prefix cannot
be part of the output ZBDD, so the sink-0 node is returned.

Finally, the output ZBDD stores the maximal disjunctive EPs.
Figure 8.1 gives a ZBDD for Dn, and the bitmaps of Dp and Dn, of Ta-

ble 8.1. As stated before, (a1∨a3) ∧ (b1 ∨ b2 ∨ b3) ∧ (c2 ∨ c3) is a disjunctive
EP for that dataset at the (α = 0.5, β = 0) level. Below, we demonstrate how
mineDEP discovers this and other maximal disjunctive EPs.

Initially, the prefix P is {} and the first candidate item x is a2. The bitmaps
show that neither α nor β pruning is applicable for a2. Thus, a2 is appended
to P , yielding P = {a2}. Next, zOutx of a2 is produced by exploring the left
subtree of a2, which represents instances not containing a2. When growing
the prefix with the next item c1, we see that supp({a2, c1}, Dp) = α and

supp({a2, c1}, Dn) = β. So β constraint pruning is preformed for the prefix
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FIGURE 8.1: The ZBDD of Dn and bitmaps of Dp and Dn of Table 8.1.

{a2.c1}, and the zOutx of c1 is assigned 1. So there is now a solid path a2-c1-1
in the output ZBDD of mineDEP , and hence {a2, c1} = (a1 ∨ a3) ∧ (b1 ∨ b2
∨ b3) ∧ (c2 ∨ c3)) becomes a newly discovered maximal disjunctive EP.

In another case, with prefix P = {a2} and when growing with the item
b3, supp({a2, b3}, Dp) > α, and supp({a2, b3}, Dn) > β. So, we grow P to
P = {a2, b3}. Then, zOutx of b3 is obtained by exploring the left subtree of
b3 (instances containing neither a2 nor b3). When growing the prefix with a3,
supp({a2, a3, b3}, Dp) > α, but supp({a2, a3, b3}, Dn) = β. So, β constraint
pruning is preformed. The prefix stops growing and the zOutx of c1 is as-
signed 1. The path {a2,b3,a3} is a solid path to sink-1 node in the output
ZBDD of mineDEP . So {a2, a3, b3} = ({a1, b1, b2, c1, c2, c3}) becomes a dis-
covered maximal disjunctive EP. For growing the prefix P = {a2, b3} with b2,
supp({a2, b3, b2}, Dp) < α. So {a2,b2,b3} becomes a dotted path to sink-0 node

in the output ZBDD ({a2, b2, b3} is not a maximal disjunctive EP).
Similarly, the other two maximal disjunctive EPs {(a1 ∨ a2 ∨ a3) ∧ (b1 ∨

b2 ∨ b3)∧ c3, (a1 ∨ a2) ∧ (b1 ∨ b2)∧ (c1 ∨ c3)} can be discovered.
A number of pruning strategies were also presented in [283] to further

optimize the algorithm.

8.3 Fuzzy Emerging Pattern Mining

This section discusses fuzzy emerging patterns (FEPs), a mixture of the
concepts of fuzzy logic [456] and emerging patterns [118]. After motivating
and defining the basic concepts, this section presents an algorithm for mining
FEPs, and briefly discusses a method for using FEPs in classification.

8.3.1 Advantages of Fuzzy Logic

Since its inception in 1965 [456], fuzzy logic has had a significant impact
on science and technology because it allows computers to reason in a manner
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similarly the way people do, and because fuzzy systems allow us to model
systems in a way closer to the way people understand them.

A fuzzy set S is specified by a fuzzy membership function μS : X → [0, 1]
that maps each value x ∈ X to its degree of membership μS(x) in the set S.
A fuzzy set defines a fuzzy concept. For example, the first diagram in Figure
8.2 shows three fuzzy sets for three fuzzy concepts of temperature. We note
that 10oC has membership of 0.5 in both fuzzy sets “cool” and “warm”, while
it has no membership at all in fuzzy set “hot”. The fuzzy sets allows us to say
that 10oC is somewhat cool and somewhat warm, but it is not hot at all.

0
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1

0 20 40 °C

cool warm hot

0

0.5

1

900 1000 1100 hPa

low average high

0

0.5

1

0 50 100%

dry medium wet

Temperature (T) Pressure (P) Humidity (H) 

FIGURE 8.2: Fuzzy sets describing temperatures, humidity, and pressure.

The fuzzy curve of Figure 8.2 describes the concept “hot” more meaning-
fully and accurately than the crisp condition Temperature > 40. Using the
crisp condition, the temperature 39.5oC is not hot at all, but 40.5oC is fully
hot. In contrast, using the fuzzy curve, 39.5oC is very close to being hot, and
39.5oC and 40oC are very close to each other regarding hotness, which is very
similar to the way people understand the concept “hot”.

The concepts of fuzzy emerging patterns were introduced to alleviate some
drawbacks of crisp patterns which rely on crisp boundaries on numerical fea-
tures, to make the pattern fulfillment relation more flexible, and to make it
easier to read and explain patterns.

8.3.2 Fuzzy Emerging Patterns Defined

A fuzzy pattern is a fuzzy conjunction of fuzzy items of the form [A ∈ FS],
where A is an attribute, FS is a fuzzy set, and ∈ refers to the membership of
(the value of) A to FS.

Example 8.1 [Temperature ∈ hot] ∧ [Humidity ∈ normal] is a fuzzy pat-
tern. It can be read and understood in plain English as “Temperature is hot
and Humidity is normal”.

Additionally, fuzzy sets can be modified by linguistic hedges like “very”,
“somewhat”, and “above”. Linguistic hedges modify the meaning (and shape)
of fuzzy sets like adverbs modify verbs and adjectives in natural languages.
These hedges are very important because they modify in different ways the
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semantic and shape of the original fuzzy sets, making the modified sets closer
to the intended concepts in the problem domain.

Example 8.2
[
Temperature ∈ very(hot)

]
∧
[
Humidity ∈ somewhat(normal)

]
is a fuzzy pattern using linguistic hedges “very” and “somewhat”. The seman-
tic of the expression can be easily understood based on the definition of “hot”
and “normal”.

Instead of the simple 0-1 approach to defining “support” for crisp patterns
where an object supports a pattern either 100% or 0%, an object supports
every fuzzy pattern to some degree according to its membership to the fuzzy
items of the fuzzy pattern. The individual fuzzy support of an object o for a
given fuzzy pattern F is defined as the minimum membership (μ) of all its
attribute values in their respective fuzzy sets:

fsup(o, F ) = min
f∈F

{
μf (o)

}
.

The support of a fuzzy pattern F in a class Ci as the sum of the individual
fuzzy support for all objects in Ci:

FSup(F,Ci) =
∑
o∈Ci

fsup(o, F ).

We measure the relevance of a fuzzy pattern using the concept of Trust .
The Trust of a fuzzy pattern F measures the ratio of F ’s support in the class
with the highest support, with respect to F ’s total support in all the classes:

Trust(F ) =
maxCi FSup(F,Ci)∑

Ci
FSup(F,Ci)

.

We can view Trust(F ) as a measure on F ’s discriminating power between
the classes. A Trust above 0.5 means the pattern has higher support in the
highest supported class than in the other classes. Trust can be used as voting
weight of fuzzy emerging patterns in classification.

Based on the above discussion, we can now define a fuzzy emerging pattern
(FEP) as a fuzzy pattern F with Trust(F ) > 0.5.

8.3.3 Mining Fuzzy Emerging Patterns

Fuzzy emerging patterns can be mined using a diversified decision tree
based approach [161]. This approach first induces a diverse collection of deci-
sion trees, and then extracts fuzzy emerging patterns from the decision trees.
This method avoids the global discretization step, and allows patterns to be
expressed with a rich set of properties that include operators such as <,≥, �=.

Diversified decision tree based pattern miners have the following steps:
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1. Induce a set of decision trees, using a technique to ensure diversity
among the trees.

2. Extract patterns from each induced decision tree. Each extracted
pattern corresponds to the conjunction of the properties in the
path from the root node to a leaf node.

3. Merge the set of patterns extracted from all induced decision trees.
4. Filter the set of the patterns.

The algorithm for mining fuzzy emerging pattern, named FEPM [162], is
based on fuzzy decision trees. FEPM uses a variant of ID3 [344] tailored for
the fuzzy case, with the following five differences (a–e):

(a) The candidate splits include the following fuzzy sets and their fuzzy
negation: (a1) all the fuzzy sets obtained in the fuzzyfication1 step, and (a2)
all fuzzy sets in (a1), modified by all different predefined hedges. The hedges
should be defined by the user according to the problem domain.

Observe that one attribute can contribute multiple splits. This differs
from standard decision trees, where an attribute contributes exactly one split.
(Some decision trees use a nominal value and its complement to split nodes.)

(b) In classical ID3, each object in a decision node is assigned to a single
child node. In the fuzzy version, each object is assigned to all children nodes
with appropriate membership values. Hence, every object belongs to every
node in the fuzzy tree with a different membership value. To calculate the
object membership in a child node, the FEPM algorithm applies a fuzzy AND
between the object membership in the parent node and the membership of
the object to the fuzzy set associated to the child node.

(c) If the membership of an object to a node is below a given threshold
μmin (usually μmin is set to 0.05), the object is deleted from the node.

(d) Let μN (o) denote the membership of an object o to a node N . The
quality of a split is evaluated using fuzzy information gain [127]:

fig(N) = fimp(N)−
∑

Nc∈child(N)

fimp(Nc)×
∑

o∈Nc
μNc(o)∑

o∈N μN (o)

where fimp(N ′), the fuzzy impurity of a node N ′, is defined as:

fimp(N ′) = −
∑

C∈classes(N ′)

∑
o∈C μN ′(o)∑
μN ′(o)

× log(

∑
o∈C μN ′(o)∑
μN ′(o)

)

(e) The following stop criteria are used: (e1) The node is pure, i.e. all the
objects in the node belong to the same class. (e2) The node is empty. (e3) No
split provides an improvement in the fuzzy information gain.

To guarantee diversity among the trees used to extract the fuzzy emerging
patterns, FEPM produces a set of trees using a trade-off between computing

1Fuzzification transforms a numerical variable into a collection of fuzzy sets covering the
variable domain. See Figure 8.2 for examples.
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only the best tree (by always selecting the split with the highest fuzzy infor-
mation gain at each node) and building all possible trees (which may be hard
to apply to nontrivial problems because of its time complexity). Specifically,
FEPM expands the best k candidate splits2 for the root node, k − 1 for its
children, k− 2 for its grandchildren, and so on. For nodes at level k or higher,
FEPM expands only the best candidate split. This allows higher diversity in
upper nodes, where there are often more good splits, reducing the diversity in
lower nodes, where there are fewer good splits. The total number of generated
decision trees might be less than k!, since some of the trees might be identical
because its induction procedure ends before the tree level k.

From each tree, FEPM extracts all the fuzzy patterns, and assigns each
pattern to the class with the highest fuzzy support. Finally, FEPM removes
duplicated patterns and patterns which are not emerging (with Trust ≤ 0.5).

To illustrate, consider the dataset containing exactly the three objects
given in Table 8.2, using the membership functions given in Figure 8.2.

Object Temperature (oC) Humidity (%) Pressure (hPa) Class
o1 20 0 1095 BadDay
o2 37 12 1005 GoodDay
o3 18 60 975 BadDay

TABLE 8.2: Description of the objects used in the example

For k = 5, the diversified tree generation procedure generates k! = 120
fuzzy decision trees, for the level-diversity vectors starting from (1, 1, 1, 1, 1)
and ending at (5, 4, 3, 2, 1).

For example, the tree for (2, 1, 3, 2, 1) is built using the second best split
for the root node, the best split for nodes at the second level, the third best
split for nodes at the third level, and so on.

The candidate splits for each node are given by the set {(A, h(fA),
not(h(fA))) | A ∈ {T,H, P}, fA is a fuzzy concept for A, h is a linguistic
hedge for A}. There are 9 candidate spits if there are no linguistic hedges.

Figure 8.3 shows the complete fuzzy decision tree. As this tree has four
leaves, four fuzzy emerging patterns are extracted, as shown in Table 8.3.
In this case, no pattern is discarded, because they all have Trust > 0.5. It is
important to appreciate the expressivity and ease to understand the extracted
patterns.

To illustrate, the following are three representative fuzzy emerging pat-
terns with very high trust mined from the Iris of UCI Machine Learning
Repository:

[petallength ∈ extremely(low)]
∧
[petalwidth ∈ low],

class: iris-setosa, Trust = 0.99
[petalwidth ∈ extremely(high)],
class: iris-virginica, Trust = 0.95

2k is a fixed positive number
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o1(1), o2(1), o3(1) 

very(dry) not(very(dry)) 

o1(1), o2(0.5) o2(0.5), o3(1) 

high not(high) 

o1(0.95), o2(0.01) o1(0.05), o2(0.49) 

above(hot) not(above(hot)) 

o2(0.4) o2(0.1), o3(1) 

FIGURE 8.3: A fuzzy tree for data in Table 8.2. The membership of the
objects to each node are given, in addition to the split condition for the node.

Class FEP Trust
BadDay [Hum ∈ very(dry)] ∧ [Pres ∈ high] 0.99

[Hum ∈ not(very(dry))]∧ [Temp ∈ not(above(hot))] 0.91
GoodDay [Hum ∈ very(dry)]∧ [Pres ∈ not(high)] 0.90

[Hum ∈ very(dry)]∧ [Temp ∈ above(hot)] 1.00

TABLE 8.3: Fuzzy emerging patterns extracted from the tree in Figure 8.3.
Hum: Humidity; Temp: Temperature; Pres: Pressure.

[petallength ∈ positively(medium)]
∧
[petalwidth ∈ medium]∧

[petallength ∈ not(extremely(high))],
class: iris-versicolor, Trust = 0.96

In experiments reported here and in the next subsection, shapes using
straight lines similar to those used in Figure 8.2 are used to define the fuzzy
concepts. The split values were determined using equi-width binning.

8.3.4 Using Fuzzy Emerging Patterns in Classification

Below we briefly discuss how FEPC [162] uses fuzzy emerging patterns in
classification, in the CAEP [126] style. Since the fuzzy hedges complicate the
relationship among the patterns, we need to extend the concepts regarding
the specific vs general relationship among patterns to the fuzzy case.

Definition 8.1 A fuzzy item f1 ≡ [Attr1 ∈ FS1] is more specific than another
fuzzy item f2 ≡ [Attr2 ∈ FS2] if Attr1 = Attr2 and3 FS1 ⊂ FS2.

The concept is similar to that in the crisp case. For the fuzzy case it helps
to think in the relation between extensions of the concepts (i.e. which objects
belong to the concept), and not the subset inclusion of the items. A pattern

3This is the fuzzy subset relation. A fuzzy set S1 is subset of another fuzzy set S2 if S1

has lower or equal membership values than S2 for all values in the domain.
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is then more specific if it covers a subset of the other concept. For example,
pattern “hot and high” is more specific than “hot” and than “high”, which are
more general. For fuzzy patterns, we substitute crisp subset by fuzzy subset.
Hence, the pattern “very(hot)” is more specific than “hot” because the degree
to very(hot) is always below the membership to hot. (In English, every very-
hot temperature is always hot, but the contrary is not true.)

Definition 8.2 Let F1 and F2 be two fuzzy emerging patterns. F1 is more
specific than F2, and F2 is more general than F1, if for each fuzzy item f2 in
F2, F1 contains an equal or more specific fuzzy item f1.

If two patterns contain linguistic hedges, we use the fuzzy subset inclu-
sion between them to determine which is more general. For example, the
fuzzy item very(high) is more general than extremly(high), but less general
than somewhat(high). The “more general” relation is antisymmetric, and two
patterns may be incomparable with each other. By Definition 8.2, an object
supports a more general pattern with higher degree than a less general pattern.

To select which patterns to use for classification is a complex task [161]. Us-
ing more specific patterns reduces duplicate pattern contribution and provides
more information about relationships between features, but specific patterns
occur less often in query objects, causing abstention4. On the other hand, gen-
eral patterns are more resistant to noise and can be mined with less computa-
tional effort. Nevertheless, aggregating many minimal (most general) patterns
may cause duplicate contributions and decrease in classification accuracy.

FEPC organizes all available patterns in a pattern graph, where (1) each
node represents a fuzzy emerging pattern, and (2) there is an arc from node
N1 to node N2 if the pattern for N1 is more specific than the pattern for N2.
In this graph, nodes with no ancestors are maximal patterns (most specific),
and nodes with no descendants are minimal patterns (most general).

The following simplification procedure is applied to the graph, to help
avoid considering a more general pattern while a more specific one has not
been examined in the classification process: Discard an arc A from node N1 to
node N2 if there is a longer path connecting N1 and N2 in the same direction.

To compute the votes per class of a query object O, FEPC starts by
evaluating the patterns with no ancestors. If an evaluated pattern matches
O (with a fuzzy support above a certain threshold) the vote to its class is
increased with its Trust, while all its descendants are discarded. Otherwise,
all immediate descendants are evaluated in the same way. The process ends
when every node has been evaluated or discarded. Finally, FEPC assigns to
O the class with the highest total vote.

Example 8.3 Consider the following patterns ABE, ABD, DE, AB, A,
and D. Here A, B, C, D, and E represent fuzzy items. The pattern graph

4Abstention happens when no emerging pattern matches the query object, thus giving
no evidence for the classifier to select a class.
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contains the following edges: ABE→ AB, ABD→ AB, AB→ A, ABD→
D, and DE → D. Observe that ABE → A is not in the graph due to the
presence of a longer path from ABE to A. To classify an object Q = ABC
(which is a short way of saying that Q has positive membership in A, B, and
C and zero membership in D and E), FEPC first considers the patterns with
no ancestors: ABE, ABD, and DE. None of them matches Q, so FEPC
considers their immediate descendants: AB and D. Since Q matches AB,
the pattern A is discarded. Finally, AB is the only pattern that contributes
a vote for the classification of Q. FEPC classifies the object ADE using the
votes of DE and A.

FEPC tries to classify each object O with fuzzy emerging patterns that
are as specific as possible. The classifier uses a more general pattern Y that
matches O only if none of the more specific patterns of Y matches O. This
allows us to combine specific patterns having low errors with general patterns
with low abstention, and helps us to avoid vote duplication by similar patterns.

Experiments on a range of numerical datasets from the UCI repository
show that FEPC has very good performance and often significantly outper-
forms other classifiers such as Boosting, Bagging, C4.5, Random Forest, and
SVM; the outperformance over the best of those classifiers is at least 5% (ab-
solute improvement) on average, on a selection of 16 UCI datasets. (See [161].)
As in the last subsection, in experiments reported here, fuzzy concepts were
defined using straight line shapes similar to those used in Figure 8.2, and the
split values were automatically extracted using equi-width binning.

8.4 Contrast Inequality Discovery

8.4.1 Basic Definitions

Informally speaking, a contrast inequality describes a discriminating con-
dition concerning several numerical attributes, which is frequently satisfied by
objects of one class but is seldom satisfied by objects of the other classes.

We first give some examples before defining the formal concepts.

Example 8.4 Consider the data in Table 8.4, concerning the average
monthly salary of five economic sectors in three coastal and three in-
land cities (in some given year). The following two inequalities are sat-
isfied by all coastal cities but are not satisfied by any inland city:

Insurance < Catering,
IT > Retailing + Finances.

Inequality based contrasting relationships such as the two above occur
frequently in the real world. For example, the condition “ w

h2 ≤ 25”, where
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TABLE 8.4: Income in industry sectors in coastal and inland cities

IT Insurance Retailing F inances Catering Class
city1 2200 1100 400 1300 2200 coastal
city2 3100 1300 590 1400 1500 coastal
city3 3200 1250 630 690 1600 coastal
city4 2000 1500 830 1200 1400 inland
city5 1900 1800 970 930 1800 inland
city6 1500 1350 840 700 1300 inland

w and h are respectively a person’s weight in kg and height in meters, is
a contrast inequality discriminating “not-obese” persons and other persons.
( w
h2 is the well known Body Mass Index (BMI)). As another example, the

driving safety tip that says, “If your car travels the distance between you and
the car in front in less than 3 seconds, then you are not driving safely” can
be expressed as a contrast inequality discriminating unsafe driving and safe
driving.

We consider inequalities of the form of exp1 θ exp2, where each expi is
an expression and θ is a relational operator. Expressions are constructed from
terms and functions; a term is either an attribute or a constant, and the terms
in an expression are connected by functions; the functions can include addition
(+), subtraction (-), multiplication (*), division (/), log, sine, and so on. (The
set of functions for use in inequalities can vary depending on the application.)
The number of arguments or operands of a function will be called the arity
of the function. A relational operator is one of < and ≤. (> and ≥ are not
needed, since inequalities involving them can be expressed using < and ≤. For
example, A > B is equivalent to B < A.) An inequality with n terms is called
a n-term inequality. For example, A > B + C is a 3-term inequality.

The concept of satisfaction of inequalities by data objects is defined in the
natural manner. For example, in Table 8.4, the relationship IT > Retailing+
Finances is satisfied by all coastal cities but not satisfied by any inland cities.

Let η be an inequality. The support of η in datasetD, denoted as suppD(η),
is defined in the standard way. A contrast inequality is an inequality η whose
support changes significantly from one dataset, D1, to another, D2. The con-
trast significance of η from D1 to D2 is evaluated by the support ratio of the
supports between D1 and D2, denoted as CSD1→D2 = suppD2

(η) / suppD1
(η).

(The value of CSD1→D2 is ∞, if suppD2
(η) �= 0 and suppD1

(η) = 0.) The goal
of contrast inequality mining is finding all contrast inequalities from D1 to D2

satisfying the given support ratio threshold. We refer to D1 as the opposing
dataset andD2 as the home dataset of the contrast inequality, and the contrast
inequality is called a contrast inequality of D2. When applied to datasets with
classes, contrast inequalities can capture useful contrasts between the classes.

We note that each contrast inequality with 100% support in D2 and 0%
support in D1 can be converted into a contrast inequality with 100% support
in D1 and 0% support D2, by reversing the direction of the relational operator.
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While the concept of contrast inequality is similar to that of EPs (both
capture distinguishing characteristics between two datasets/classes), there are
differences. The main differences are that EPs are composed of single-attribute
conditions and discretization of numeric attributes is often needed before EP
mining, whereas contrast inequalities typically describe non-decomposable
contrasting relationships involving multiple attributes and discretization on
numerical attributes is not needed before contrast inequality mining.

Compared with EP mining, contrast inequality mining is more challenging
since the construction of inequalities involves not only a set of attributes, but
also a set of functions and a multitude of ways to combine the attributes and
functions. Naive enumeration based search is way too expensive.

Below we discuss a heuristic method to discover some high quality contrast
inequalities. Since contrast inequalities can be arbitrarily long and it is not
feasible to examine all contrast inequalities of arbitrary lengths, we impose a
length constraint n on the maximal number of terms the inequalities can use.

8.4.2 Brief Introduction to GEP

As mentioned above, the space of candidate contrast inequalities is large
and complex, especially for a high dimensional dataset. It makes sense to
use some heuristic methods in order to be able to efficiently find some high
quality contrast inequalities. Below we present a contrast inequality mining al-
gorithm using a recently developed variation of Genetic Algorithms (GA) and
Genetic Programming (GP), namely Gene Expression Programming (GEP).
This method can find multiple high quality contrast inequalities, when used
multiple times using different seeds.

GEP uses both linear symbolic strings of fixed length (similar to the chro-
mosomes of GA) and tree structures of different sizes and shapes (similar to
the parse trees of GP). This allows GEP to provide flexible and efficient ways
to program evolutionary computation [148]. GEP offers great potential for
solving complex modeling and optimization problems, and has been used in
many applications concerning symbolic regression, classification, time series
analysis, cellular automata, and neural network design, etc. The details of
GEP are beyond the scope of this chapter; a brief introduction is given below.

The main steps of GEP are very similar to those of GA and GP: GEP
uses populations of individuals to represent candidate solutions, GEP selects
preferred individuals based on their fitness, and GEP uses genetic modification
to generate individuals of successive generations.

In GEP, an individual is given by some fixed number of genes. Unlike
GA and GP, each GEP gene has access to a genotype and a corresponding
phenotype. The genotype is a symbolic string of some fixed length, and the
phenotype is the tree structure for the expression coded by that string. The
string is divided into a head part and a tail part, both having fixed lengths;
the tail can only contain term symbols. The length of the head (h) and the
length of the tail (t) were selected such that t = h * (α – 1) + 1, where α is
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the maximal arity of the functions under consideration. The values of h and t
remain unchanged in the middle of an execution of a given GEP algorithm.

Although the length (= h + t) of the genes is fixed, the tree structures
constructed from the coding region of the genes can have different sizes and
shapes. (The coding region is determined by the level based traversal of the
tree for the gene that produces a valid mathematical expression.) The con-
straints described in the above paragraph are used to ensure that each gene
produces a valid mathematical expression.

The four genes given in Figure 8.4 all have the same head and tail lengths
of 4 and 5 respectively, but their expression trees (the children of the topmost
+ operators) have different sizes and shapes. Only the first 5 symbols for gene
2 (“-a/eb????”) are in the coding region of the corresponding gene. (We use
’?’ to denote a symbol in the non-coding region.)

GEP starts with a random generation of some number of seed individuals.
Then GEP selects some individuals according to their fitness, and reproduces
new individuals by modifying the selected individuals. Genetic modification,
which creates the necessary genetic diversity, ensures that GEP can eventually
produce some optimal solution in the long evolutionary process.

There are three kinds of genetic modifications, namely mutation, trans-
position, and recombination. Mutation and transposition operate on a single
individual, and recombination takes place on two individuals. A mutation
can change a symbol in a gene into another symbol, as long as it does not
introduce function symbols in the tail. Transposition rearranges short frag-
ments within a gene, under some limitations. Recombination exchanges some
elements between two randomly chosen individuals to form two new individ-
uals. All newly created GEP individuals are syntactically correct candidate
solutions. This feature distinguishes GEP from GP, where some genetic mod-
ifications can produce invalid solutions. More details can be found in [148].

The individuals of each new generation undergo the same processes of
selection and reproduction with modification as in the preceding generation.
The evolution process repeats until some stop condition (given in terms of
number of generations, quality of solutions, and so on) is satisfied.

8.4.3 GEP Algorithm for Mining Contrast Inequalities

Two-genome Individual for Contrast Inequality Mining: For con-
trast inequality mining, we need to ensure that each GEP individual represents
a valid inequality. This can be done by using the two-genome individual struc-
ture [131]. A two-genome individual is a triple (G1, G2, θ), where G1 and G2

are genomes and θ is a relational operator and G1 and G2 respectively corre-
spond to the left and right operands of θ. A genome consists of k ≥ 1 genes,
which are connected by a linking function, where k is the arity of the function.
Each two-genome individual is guaranteed to represent a valid inequality.

Figure 8.4 gives an example of a two-genome individual (G1, G2, <) repre-
senting an inequality. EachGi is a genome with two genes which are connected
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by +. For each of the four genes, the head length is 4, the tail length is 5, the
function set is {+, -, *, /}, and the term set is {a, b, c, d, e, f}.

FIGURE 8.4: Inequality tree of a two-genome individual.

Fitness Function Design: The fitness function is important for GEP
algorithms since it measures the goodness of candidate solutions and controls
the direction of evolution. Since the aim of contrast inequality mining is finding
highly discriminative inequalities between the classes, we can measure the
fitness of an individual η using the ratio between the supports of η in the
datasets/classes. To mine contrast inequality between D1 and D2 having D2

as the home dataset, the fitness of individual η is defined by Equation 8.1.

fit(η) = (suppD2
(η) * |D2| + 1) / (suppD1

(η) * |D1| + 1) (8.1)

The pseudo-count of 1 is used to avoid division by zero. Clearly, all fitness
values are positive, with maximum of (|D2| + 1) and minimum of 1/(|D1|
+ 1). Equation 8.1 appears to be more likely to guide GEP to find contrast
inequalities with zero occurrence in D1, than the fitness function definition
using support-difference of suppD2

(η) – suppD1
(η).
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Input: (1) the opposing dataset: D1; (2) the home dataset: D2

Output: a contrast inequality with highest fitness value
Method:
1: pop← CreateSeedIndividuals( );
2: FitEval(pop,D1,D2);
3: bestIndividual ← GetBestIndividual(pop);
4: repeat steps (5-8) until the stop condition is satisfied
5: pop← Select(pop);
6: GeneticModification(pop);
7: FitEval(pop,D1,D2);
8: bestIndividual ← GetBestIndividual(pop);
9: return contrast inequality represented by bestIndividual;

FIGURE 8.5: The pseudocode of GEPCIM.

GEPCIM: The GEP based algorithm for mining contrast inequality,
GEPCIM, is given in Figure 8.5. Step 1 of GEPCIM creates the initial popu-
lation. Steps 2 and 7 calculate the fitness of each individual in pop. In Steps
3 and 8, function GetBestIndividual( ) selects the best individual discovered
so far. From Step 5 to Step 6, the selected individuals are modified by genetic
operations. The algorithm stops when the stop condition is satisfied and the
individual with highest fitness discovered is returned.

The individuals in the initial population are generated by randomly se-
lecting function/term symbols for different positions in the genes, under the
restriction that functions cannot be used in the gene tails. Due to the random-
ness, the initial populations in different executions of the algorithm tend to
be different. Moreover, the selection of individuals as input to genetic modifi-
cations is also performed randomly among the fitting individuals. As a result,
different contrast inequalities can result from different GEPCIM executions.

In each run of a GEP based algorithm, the number of individuals in the
population remains the same in the whole evolution process. So memory space
consumption will not increase no matter how many generations are produced.

Combining the above two paragraphs, we see that GEPCIM is a useful
tool for efficiently mining a diversified set of highly discriminative contrast
inequalities from high dimensional data. Experiments, discussed next, confirm
this.

8.4.4 Experimental Evaluation of GEPCIM

We now discuss an experimental evaluation of the GEPCIM algorithm.
We selected two microarray datasets, Colon Tumor [9] and ALL/AML [166],
which have often been used in previous EP mining studies.

For each of Colon Tumor and ALL/AML, 20 attributes with highest infor-
mation gain are selected for contrast inequality mining. In Colon Tumor, the
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TABLE 8.5: Contrast inequalities mined from Colon Tumor

(g513 + g1227) ∗ g267/(g245 + g1293) + (g897 − g652)/(g780 − g1293)
< (g493 − g625 ∗ g1293/g652 + g249/g245 ∗ g1227)
supports in Dp and Dn: 22 and 0; # generations: 15518

g780 + g1772/(g652 − g625) ∗ g493
≥ g1042/g1227 ∗ (g625 + g399) + g267 − g765 + g652 − g493 − g1423
supports in Dp and Dn: 22 and 0; # generations: 14507

TABLE 8.6: Contrast inequalities mined from ALL/AML

g760/g2354/g248 − g1882 + g2354 > g2020 + g6218 − g1745
supports in ALL and AML: 27 and 0; # generations: 0

g5772 + g6041/g6376 ≥ g4847 + g4499;
supports in ALL and AML: 27 and 0; # generations: 1

positive and the negative classes are respectively used as the home dataset
(Dp) and the opposing dataset (Dn); in ALL/AML, the ALL and the AML
classes are respectively used as the home dataset (Dp) and the opposing
dataset (Dn). We set the maximal number of generations at 20000, and run
GEPCIM 20 times per dataset. For Colon Tumor, the average fitness of the
mined contrast inequalities is 24.8, using on average 9908.7 generations for
finding them. For ALL/AML, the average fitness of the contrast inequalities
is 28, using on average 3.2 generations to find them. Two of the best discovered
contrast inequalities for each dataset are listed in Tables 8.5 and 8.6; variable
gi represents the i-th gene of the original microarray dataset.

We now compare the results of GEPCIM against the results of EP mining
[253]. Tables 8.5 and 8.6 show that GEPCIM can find contrast inequalities
from the 20 genes with highest information gain whose discriminativeness
is higher than the discriminativenes of EPs from the 35 genes with highest
information gain. For Colon Tumor, among the jumping EPs of the positive
class mined from the 35 genes, the highest support in the positive class is 17;
in contrast, among the discovered contrast inequalities with zero support in
the negative class, the highest support in the positive class is 22.

8.4.5 Future Work

Many interesting questions remain for contrast inequality mining, includ-
ing: How to design efficient algorithms to discover all contrast inequalities from
a given dataset? How to discover diversified sets of contrast inequalities when
it is too hard to mine all contrast inequalities? How to make use of contrast
inequalities to construct accurate classifiers? How to use domain knowledge
in efficient mining of actionable contrast inequalities? How to design a sim-
plification routine in GEP to find compact contrast inequalities equivalent to
given contrast inequalities?
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TABLE 8.7: Example data for contrast equation

A1 A2 A3 A4 A5 Class
s1 2 4 4 9 5 C1

s2 1 1 2 4 9 C1

s3 4 3 1 8 3 C1

s4 3 4 3 8 1 C2

s5 4 5 2 6 8 C2

s6 6 2 4 7 9 C2

8.5 Contrast Equation Mining

Sometimes, mathematical equations can provide elegant and easy-to-
understand descriptions of discriminating relationships among classes. For
example, arm span = height is an equation differentiating normal persons
from professional basketball players, since it is well known the equation is
true for most people but it is not true for professional basketball players.

We consider equations of the form of η = c, where η is a mathematical
expression built from attributes and functions, and c is a constant. Let η(s)
denote the value of η on data object s, and let Err(η(s), c) = |η(s) – c| denote
the absolute difference between η(s) and c. (One can also consider the relative
difference.) For a given dataset D, let AvgErr(η(D, c)) = (Σs∈DErr(η(s), c))
/ |D| be the average error of η on D. A contrast equation is an equation whose
average error changes significantly from one dataset, D1, to another,D2. More
specifically, for a given error threshold t (t > 0) and an error ratio threshold
ε (0 < ε < 1), a contrast equation from D1 and D2 is an equation η = c
satisfying AvgErr(η(D2 , c)) < t and AvgErr(η(D2 , c)) / AvgErr(η(D1, c))
< ε; we refer to D2 as the home dataset and D1 as the opposing dataset of the
contrast equation. When applied to datasets with classes, contrast equations
can capture useful contrasts between the classes.

Example 8.5 Consider the 6 samples of classes c1 and c2 of Table 8.7. Let
η be a1 + a2 + a3 – a4 and c = 0. The average error of η in C1 and C2 are
0.3333 and 4.0 respectively. If the error threshold (t) is 0.4 and the error ratio
threshold (ε) is 0.25, η = 0 is a contrast equation.

Similar to contrast inequality mining, contrast equation mining is also very
challenging and näıve enumeration based search is clearly way too expensive.
As a result, heuristic methods are desirable for discovering some high quality
contrast equations. Like contrast inequalities, contrast equations can be arbi-
trarily long and it is not feasible to examine all contrast equations of arbitrary
lengths, we also impose a length constraint n in the form of an upper bound on
the number of terms. The set of functions that are to be used in the equation
construction also needs to be fixed.
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Below we discuss a GEP-based algorithm similar to that of GPCIM for
mining high quality contrast equations. Many of the ideas of GEPCIM can be
easily modified for mining contrast equations. We only discuss how to design
an appropriate fitness function here. Let pErr denote the average error of
the individual f under consideration in the home dataset of f (as a contrast
equation), and nErr the average error of f in the opposing dataset. Suppose
t is the given error threshold. The fitness of f is defined [130] as follows.

fit(f) =

{
1/pErr ∗ t ∗ 0.5 pErr > t
(1 − pErr/nErr) ∗ 0.5 + 0.5 pErr ≤ t

The fitness value falls into (0, 0.5] when pErr > t, and it falls into [0.5,
1.0] when pErr ≤ t. Using this fitness function, a GEP individual will get high
fitness value if its pErr is not greater than t and its error ratio (pErr/nErr)
is small. Such individuals will have more opportunities to survive and produce
offspring, contributing the high quality of the final solution.

Experiments indicate that the GEP based algorithm can efficiently find
contrast equations [130]. The details are omitted here.

If we define the concept of satisfaction of an equation by a data object in
the contrast inequality manner, the discriminativeness of a contrast equation
can also be evaluated by the support ratio of the supports between any two
datasets. In this case, the problem of contrast equation mining is a special case
of contrast inequality mining when the relational operator is equal. GEPCIM
can be applied to the contrast equation discovery directly.

There are many questions worthy of future study, such as how to discover
all contrast equations efficiently for a given dataset? How to design a min-
ing method that can adjust the error threshold adaptively without human
intervention? How to find the most compact contrast equations?

8.6 Discussion

Reference [342] studied the mining of generalized emerging patterns in the
presence of hierarchies/taxonomies in attribute domains.

In addition to using expressive constructs in defining more expressive con-
trast patterns as discussed in this chapter, one can also use structural prop-
erties of data (e.g. spatial/directional relationships for image data; see Chap-
ter 20) in defining more expressive contrast patterns. Other possibilities can
also be explored. For contrast inequality mining and contrast equation mining,
future research questions are also presented in Section 8.4.5 and at the end of
Section 8.5.
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9.1 Introduction

Decision makers are generally interested in discovering interesting trends
by using a data warehouse to analyze data collected from a “population”.
The data warehouse contains data concerning various measures which are
observed with respect to different attributes called dimensions. More precisely,
all the possible combinations of dimensions can be relevant and considered at
all possible granularity levels. In order to meet decision makers’ needs, the
concept of a data cube was introduced [168]. It groups the tuples according
to all the dimension combinations along with their associated measures. The
main interest of this structure is to support an interactive analysis of data,
because all the possible trends are not yet computed. Of course, due to its
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very nature (the very great volume of original data and exponential number
of dimension combinations), a data cube can be very large.

Let us assume that we have a data cube computed from a set of data ac-
cumulated so far in a data warehouse, and imagine that a refresh operation
has to be performed in order to insert new collected data. Particularly inter-
esting knowledge can be gained from the comparison between the cubes of
these two datasets: which novelties does the refreshment bring? which trends,
unknown until now, appear? or in contrast, which existing trends disappear?
Similar knowledge can be obtained every time two semantically comparable
data cubes are compared. For instance, if two datasets are collected in two
different geographical areas or for two population samples, it is possible to
highlight the behavior modifications, the contrast between their characteris-
tics or the deviations with respect to a witness sample.

In order to capture trend reversals in data warehouses, we have proposed
the concept of Emerging Cube [311, 309]. It results from coupling two inter-
esting structures: the data cube [168] and the emerging patterns [119, 118].
From the cube of two database relations, the Emerging Cube gathers all the
tuples satisfying a twofold emergence constraint: the value of their measure is
weak in one relation (C1 constraint) and significant in the other relation (C2

constraint). Computing an Emerging Cube is a difficult problem because two
data cubes have to be computed and then compared. As mentioned above,
the computation of the cubes is costly and their comparison is likely to have a
significant cost because their size is very large. Thus, to really take advantage
of the new knowledge captured by the Emerging Cube, it is critical to avoid
the computation of the two data cubes.

In data mining, various research works have studied reduced representa-
tions and shown their usefulness. For instance, the covers for frequent patterns
which generally discard numerous patterns and keep only the most represen-
tative ones while preserving the same expressiveness [326, 333, 46, 459]. In a
similar spirit, some approaches aim to provide reduced representations for the
data cube in order to avoid the storage explosion problem [67, 227, 439, 302].
We have studied these kinds of representations in the Emerging Cube per-
spective.

Decision makers can have several uses of trend reversals. The first one is
to know whether a certain trend is emerging or not. The underlying objective
is to obtain an efficient classifier like in [119] but in an Olap context. The
second use is Olap querying. In this case, the user wishes to retrieve the
measure values associated with any emerging tuple. This kind of knowledge
makes it possible to quantify the strength of the trend reversals. The third use
is the navigation within the Emerging Cube at various granularity levels. For
example, if a strong trend reversal appears in a very aggregated tuple, it is
probably interesting for the user to understand the phenomenon’s origin and
drill down into the Emerging Cube for retrieving more detailed tuples which
explain such a phenomenon.

There is a strong relationship between the three quoted uses. A repre-



Emerging Data Cube Representations for OLAP Database Mining 111

sentation with navigation capabilities also has querying capabilities, while a
representation from which queries can be answered also has classification ca-
pacities. The more complex the use is, the richer the representation will be.

This chapter presents three types of representations, each one adapted to
a specific use. These representations and their uses are the following:

(1) Borders are used to represent the boundaries of the solution space.
They offer the the most reduced representations possible, but at the cost of
losing the measure values. In addition to containing enough information for
building classifiers, they place emphasis on certain particular tuples, which
can be a good starting point of a navigation within the Emerging Cube. The
first couple of borders group the lower and the upper frontiers corresponding
to the most aggregated and the most detailed tuples satisfying the emergence
constraint [309]. In the second couple of borders, we replace the lower border
by a new one called U � [310]. This new border encompasses the most detailed
tuples which satisfy the C2 constraint, but not the C1 one.

(2) The second type of representations is the Emerging Closed Cube [313,
312, 311]. Its objective is to retrieve the values of the measures while elimi-
nating most redundancies. Such redundancies are captured by subsets of ag-
gregated tuples which share a similar semantics. In fact, they are computed
from the very same data of the original relation but they differ from their
granularity level or their involved dimensions. In the Emerging Closed Cubes,
we only keep a representative tuple for these subsets of redundant tuples. The
result is a set of emerging closed tuples. Nevertheless, these closed tuples are
not sufficient to get a lossless representation and we have to add to them one
of the borders. In this context, we show that U � can be refined and reduced
by removing another kind of redundancy.

(3) The third representation is the Emerging Quotient Cube [312]. In the
same spirit as the Emerging Closed Cube, it aims to eliminate redundancies
but it keeps enough information to preserve navigation capabilities. Obviously,
the consequence is that the size of this representation is greater than the size
of the previous one.

This chapter provides a synthesis of research work performed around the
Emerging Cube and its representations. The remainder of this chapter presents
the concepts related to the Emerging Cube, the representations of the Emerg-
ing Cube, and relationships between the representations.

9.2 Emerging Cube

In this section, we review and summarize the issue addressed when propos-
ing the concept of Emerging Cube.

Let us consider a relation r with a set of dimensions (denoted by D1, D2,
. . . ,Dn) and a measure (denotedM). The Emerging Cube characterization fits
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TABLE 9.1: Relation example Sales1
City Month Category Quantity

Paris 11/06 Clothes 100
Paris 11/06 Video Game 100

London 11/09 Video Game 100
Berlin 11/09 Video Game 600
London 11/06 Video Game 100

TABLE 9.2: Relation example Sales2
City Month Category Quantity

London 11/06 Clothes 300
London 11/09 Video Game 300
London 11/06 Video Game 300
Paris 11/06 Clothes 300
Berlin 11/09 Video Game 200
Berlin 11/09 Clothes 200
Berlin 11/06 Video Game 100

in the more general framework of the Cube Lattice of the relation r: CL(r) [67].
The latter is a suitable search space which is to be considered when computing
the data cube of r. It organizes the multidimensional tuples, possible solutions
of the problem, according to a generalization / specialization order, denoted
by �s [227]

1. These tuples are structured according to the dimensions of r and
the special value ALL [168]. Moreover, we append to these tuples a virtual
tuple which only encompasses empty values in order to close the structure.
Any tuple of the Cube Lattice generalizes the tuple of empty values. For
handling the tuples of CL(r), the operator + is defined. Given two tuples, it
yields the most specific tuple in CL(r) which generalizes the two operands.

Example 9.1 Table 9.1 contains data about sales. The dimensions are: the
customer’s city, the sale month and the product category.

In CL(Sales1), let us consider the June’s sales in Paris, i.e. the multidi-
mensional tuple (Paris, 11/06, ALL). This tuple is specialized by the following
two tuples of the relation: (Paris, 11/06, Clothes) and (Paris, 11/06, Video
Game). Furthermore, (Paris, 11/06, ALL) �s (Paris, 11/06, Clothes) exem-
plifies the specialization order between tuples. Moreover we have (Paris, 11/06,
Clothes) + (Paris, 11/06, Video Game) = (Paris, 11/06, ALL).

Definition 9.1 (Measure Function) Let f be an aggregate function, r a
database relation and t a multidimensional tuple. We denote by fval(t, r) the
value of the aggregate function f for the tuple t in the relation r.

1t1 �s t2 means that t1 is less specific than t2, i.e. it is less detailed.
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Example 9.2 In the Sales1 relation, the total sale in Paris for the month
11/06 and any product category can be given by Sumval((Paris, 11/06, ALL),
Sales1) = 200.

In the remainder of the chapter, we only consider additive aggregate func-
tions [332] such as Count, Sum, Min, Max.

Definition 9.2 (Emerging Tuple) Let r1 and r2 be two compatible rela-
tions (same set of dimensions and measures). A tuple t ∈ CL(r1 ∪ r2) is
said to be emerging from r1 to r2 if and only if it satisfies the following two
constraints C1 and C2:{

fval(t, r1) < MinThreshold1 (C1)
fval(t, r2) ≥MinThreshold2 (C2)

Example 9.3 Let us consider the Sales1 ( cf. Table 9.1) and Sales2 ( cf.
Table 9.2) relations. We suppose that they correspond to the datasets of two
different websites. Let MinThreshold1 = 200 be the threshold for the relation
Sales1 and MinThreshold2 = 200 the threshold for Sales2.

Then the tuple t1 =(London, 11/06, ALL) is emerging from Sales1
to Sales2 because Sumval(t1, Sales1) = 100 (< MinThreshold1) and
Sumval(t1, Sales2) = 600 (≥ MinThreshold2). In contrast, the tuple t2
= (Berlin, 11/06, ALL) is not emerging because Sumval(t2, Sales2) = 100
(< MinThreshold2).

Definition 9.3 (Emergence Rate) Let r1 and r2 be two compatible rela-
tions, t ∈ CL(r1 ∪ r2) a tuple and f an additive function. The emergence rate
of t from r1 to r2, denoted by ER(t), is defined by:

ER(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if fval(t, r1) = 0 and fval(t, r2) = 0
∞ if fval(t, r1) = 0 and fval(t, r2) �= 0
fval(t, r2)

fval(t, r1)
otherwise.

We observe that when the emergence rate is greater than 1, it characterizes
trends significant in r2 and not so clear-cut in r1. In contrast, when the rate
is lower than 1, it highlights disappearing trends, relevant in r1 and not in r2.

Example 9.4 From the two relations, Sales1 and Sales2, we compute
ER((London, 11/06, ALL)) = 600/100. Of course, the higher the emergence
rate is, the more distinctive the trend is. Therefore, the quoted tuple means a
jump of the sales in London for the month 11/06 between Sales1 and Sales2.

Definition 9.4 (Emerging Cube) Let C1(t) and C2(t) be given emerging
constraints (cf. definition 9.2). The set of all the tuples of CL(r1∪r2) emerging
from r1 to r2 is called the Emerging Cube, and is defined by Ec(r1, r2) = {t ∈
CL(r1 ∪ r2) | C1(t) ∧ C2(t)}.
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Example 9.5 Figure 9.1 provides the Cube emerging from the relations
Sales1 to Sales2 with the thresholds MinThreshold1 = 200 and MinThre-
shold2 = 200. The emerging tuples are the ones appearing in a rectangle. For
the sake of readability, the dimension values are coded as follows:

City Month Category

Paris = P 11/06 = 1 Video Game = V
London = L 11/09 = 2 Clothes = C
Berlin = B

Moreover, ’∗’ stands for the ALL value.

9.3 Representations of the Emerging Cube

Like the data cube, the Emerging Cube is particularly large. Thus it is
relevant to look for representations combining two qualities: they must be
both reduced and adapted to the intended uses. This section presents three
types of representations devoted to the three main uses of Emerging Cubes.

9.3.1 Representations for OLAP Classification

Borders provide a condensed representation of Emerging Cubes and have
additional advantages. First of all, trend reversals, jumping or plunging down,
can be very efficiently isolated and with lowest cost, because it is not neces-
sary to compute and store the two underlying data cubes. Thus we save both
execution time and storage space. Then we can immediately answer queries
like “Is this trend emerging?” In order to systematically manage these kinds
of queries, we can devise efficient classifiers to decide whether a trend is rele-
vant or not. Moreover, the Emerging Cube borders, by focusing on particular
tuples, provide an interesting starting point to navigate within cubes.

In this section we present the classical borders [L;U ] and introduce a new
condensed representation: the borders ]U �;U ].

9.3.1.1 Borders [L;U ]

The C1 and C2 emergence constraints are monotone and anti-monotone
respectively. Thus, for each tuple t satisfying the constraint C1, we know that
all the tuples more specific than t also satisfy C1. Therefore the most general
tuples (w.r.t �s) satisfying C1 are the most useful. In contrast, for the C2

constraint, the most specific tuples (w.r.t �s) are the most useful. These two
sets of tuples stand at the boundaries of the Emerging Cube.



Emerging Data Cube Representations for OLAP Database Mining 115

(*
,
*
,
*
)

(P
,
*
,
*
)

(*
,
*
,
C
)

(L
,
*
,
*
)

(*
,
2
,
*
)

(*
,
1
,
*
)

(*
,
*
,
V
)

(B
,
*
,
*
)

(P
,
2
,
*
)(
P
,
*
,
V
)(
*
,
2
,
C
)

(P
,
*
,
C
)
(P

,
1
,
*
)
(L

,
*
,
C
)
(*
,
1
,
C
)
(L

,
2
,
*
)
(L

,
1
,
*
)
(L

,
*
,
V
)
(*
,
1
,
V
)

(*
,
2
,
V
)
(B

,
*
,
C
)(
B
,
2
,
*
)(
B
,
1
,
*
)(
B
,
*
,
V
)

(L
,
2
,
C
)
(P

,
2
,
C
)
(P

,
1
,
V
)
(P

,
2
,
V
)
(P

,
1
,
C
)
(L

,
1
,
C
)
(L

,
2
,
V
)
(L

,
1
,
V
)
(B

,
2
,
C
)
(B

,
1
,
C
)(
B
,
2
,
V
)

(B
,
1
,
V
)

(∅
,
∅,

∅)

F
IG

U
R
E

9
.1
:
R
ep

re
se
n
ta
ti
o
n
o
f
th
e
E
m
er
g
in
g
C
u
b
e
(f
ro
m

S
a
l
e
s 1

to
S
a
l
e
s 2
)
a
n
d
it
s
b
o
rd
er
s.



116 Contrast Data Mining: Concepts, Algorithms, and Applications

Definition 9.5 (Borders [L;U ]) The Emerging Cube can be represented by
the borders: U which encompasses the maximal emerging tuples and L which
contains all the minimal emerging tuples according to the specialization order.{

L = min	s({t ∈ CL(r1 ∪ r2) | C1(t) ∧ C2(t)})
U = max	s({t ∈ CL(r1 ∪ r2) | C1(t) ∧ C2(t)})

Proposition 9.1 The borders [L;U ] are a representation for the Emerging
Cube: ∀ t ∈ CL(r1 ∪ r2), t is emerging from r1 to r2 if and only if ∃(l, u) ∈
(L,U) such that l �s t �s u. In other words, t is emerging if and only if it
belongs to the “range” [L; U ].

Example 9.6 With our example relations Sale1 and Sale2, Figure 9.1 gives
the borders [L;U ] for the Emerging Cube. The L border is the set of tuples
circled by a dashed line and the U border is the tuples circled by a dotted line.

9.3.1.2 Borders ]U �;U ]

This section introduces a condensed representation: the borders ]U �;U ].
This representation is based on the maximal tuples satisfying the C2 constraint
(they are significant in r2) without satisfying C1 (thus they are also significant
in r1 and hence are not emerging). Moreover we provide an optimization of
our search space because we no longer consider the Cube Lattice of r1∪r2, but
only the Cube Lattice of r2. Actually, by its very definition (cf. C2 constraint)
any emerging tuple is necessarily a tuple of CL(r2).

Definition 9.6 (Borders ]U �;U ]) The Emerging Cube can be represented
through two borders: U (cf. definition 9.5) and U � encompassing all the max-
imal tuples not satisfying the C1 monotone constraint but satisfying the C2

anti-monotone constraint. Thus, we have:{
U � = max	S ({t ∈ CL(r2) | ¬C1(t) ∧ C2(t)})
U = max	S ({t ∈ CL(r2) | C1(t) ∧ C2(t)})

Contrarily to the border L which belongs to the solution space, U � encom-
passes the maximal tuples just below the solution space (because they do not
satisfy C1) thus just below the border L.

Example 9.7 Figure 9.1 gives the borders ]U �;U ] of the cube emerging from
Sale1 to Sale2. The U � border is the set of tuples circled by a dashed dotted
line and the U border is the set of tuples circled by a dotted line.

With the following proposition, we are provided with a simple mechanism
to know whether a tuple is emerging or not by using the borders ]U �;U ].

Proposition 9.2 The borders ]U �;U ] are a condensed representation for the
Emerging Cube: ∀ t ∈ CL(r2), t is emerging from r1 to r2 if and only if
∀ l ∈ U �, l �s t and ∃u ∈ U such that t �s u. Thus t is emerging if and only
if it belongs to the “range” ]U �; U ].
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Example 9.8 With our example relations, the tuple (Paris, ALL, Clothes) is
emerging because it generalizes the tuple (Paris, 11/06, Clothes) which belongs
to the border U and does not generalize any tuple of the border U �. Moreover
the tuple (ALL, ALL, Video Game) is not emerging because it generalizes the
tuple (ALL, 11/09, Video Game) of the border U �.

9.3.2 Representations for OLAP Querying

The idea of reducing the representations is popular in the contexts of
frequent patterns [459] or Olap [303]. We investigate it in the context of
Emerging Cubes and propose three lossless representations: the L-Emerging
Closed Cube, the U �-Emerging Closed Cube and the Reduced U �-Emerging
Closed Cube.

The Closed Cube encompassing the set of the closed tuples is presently one
of the most reduced representations for the data cube [67]. Thus it is inter-
esting to propose a structure supported by the concepts associated with the
Closed Cube for the Emerging Cube. Unfortunately a representation which is
only based on emerging closed tuples is not sufficient to be a lossless represen-
tation. We show that for certain tuples the measure value cannot be retrieved.
To avoid this drawback, we add the required information in order to obtain a
new and lossless representation. This information is one of the borders.

9.3.2.1 L-Emerging Closed Cubes

The L-Emerging Closed Cube includes both (i) the set of emerging closed
tuples and (ii) the L border. This approach is in the same spirit as the one pro-
posed in [53] in the context of transaction databases and which encompasses
the constrained closed patterns and the lower border (L).

The idea behind our representation is to remove redundancies existing
within Emerging Cubes. Actually certain tuples S share a similar semantics
with other tuples T which are more aggregated. In fact S and T are built up
by aggregating the very same tuples of the original relation, but at different
granularity levels. Thus a single tuple, the most specific of tuples with the
same semantics, can stand for the whole set. The Cube Closure operator,
introduced in [67], is intended for computing this representative tuple.

Definition 9.7 (Cube Closure) The Cube Closure operator C : CL(r) →
CL(r) is defined, for each tuple t ∈ CL(r) and each set of tuples T ⊆ CL(r),
as follows:

C(t, T ) =
∑
t′∈T,

t�st′

t′

where the
∑

operator has the very same semantics as the + operator but
operates on a set of tuples. Let us note that C(t, T ) = (∅, . . . , ∅) if T = ∅.
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Let us consider aggregating all the tuples t′ in T together by using the +
operator. We obtain a new tuple which generalizes all the tuples t′ and which
is the most specific one. This new tuple is the Cube Closure of t over T .

Example 9.9 We get the Cube Closure of the tuple (London, ALL, ALL) in
the relation Sale1 by aggregating all the tuples which specialize it by using
the operator + : C((L, ∗, ∗), Sale1) = (L, 1, V ) + (L, 2, V ) = (L, ∗, V ).

Definition 9.8 (Measure Function Compatible with the Cube Closure)
A measure function, fval, relative to an aggregate function f , from CL(r)→ R
is compatible with the closure operator C over T if and only if ∀t, u ∈ CL(r),
the following three properties are satisfied:

1. t �s u⇒ fval(t, T ) ≥ fval(u, T ) or fval(t, T ) ≤ fval(u, T ),

2. C(t, T ) = C(u, T )⇒ fval(t, T ) = fval(u, T ),

3. t �s u and fval(t, T ) = fval(u, T )⇒ C(t, T ) = C(u, T ).

This function is an adaptation, specific to the cube lattice framework, of
the weight function introduced in [382] for any closure system of the power
set. For example the measure functions Count and Sum are compatible with
the Cube Closure operator.

Definition 9.9 (Emerging Closed Tuple) A tuple t ∈ CL(r) is an emerg-
ing closed tuple if and only if (1) t is an emerging tuple and (2) C(t, r1∪r2) = t.

Example 9.10 The tuple (Paris, 11/06, Clothes) is an emerging closed tuple
because:

1. (Paris, 11/06, Clothes) is an emerging tuple (cf. Figure 9.1)

2. C((Paris, 11/06, Clothes), Sale1∪ Sale2) = (Paris, 11/06, Clothes)

The set of emerging closed tuples is not a lossless representation of the
Emerging Cube because for certain tuples it is not possible to decide whether
they are emerging or not. They are all the tuples more general than the most
general emerging closed tuples.

For instance, let us consider the set of all emerging closed tuples (T ) of the
Figure 9.2. The tuples (ALL, ALL, Clothes) and (ALL, 11/06, ALL) share
the same closure on T : (ALL, 11/06, Clothes) which is emerging. The former
tuple is also emerging while the latter is not.

In order to achieve a lossless representation, we combine the set of emerg-
ing closed tuples from which the measure values can be retrieved and the
borders which delimit the space of solutions. However, the border U is al-
ready included in the closed tuple set, because the elements of U are the most
detailed (specific) emerging tuples. Thus they are necessarily closed tuples.
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(P, *, *) (*, *, C) (L, *, *) (*, 1, V)

(L, *, *)

(*, 1, C) (L, 1, *) (L, *, V)

(P, 1, C) (L, 1, C) (L, 1, V) (L, 2, V)

(∅, ∅, ∅)

FIGURE 9.2: L-Emerging Closed Cube from Sales1 to Sales2.

Definition 9.10 (L-Emerging Closed Cube)
L-Ecc(r1, r2) = {t ∈ CL(r1∪r2) such that t is an emerging closed tuple}∪L.

Example 9.11 The L-Emerging Closed Cube is represented in Figure 9.2.

To prove that the L-Emerging Closed Cube is a lossless representation for
the Emerging Cube we introduce two propositions. The first shows that for
any emerging tuple, we can compute its Cube Closure from either r1 ∪ r2 or
the L-Emerging Closed Cube, and obtain the same result. The second shows
that two tuples having the same Cube Closure have the same emergence rate.

Proposition 9.3 For all the emerging closed tuples t, C(t,L-Ecc(r1, r2)) =
C(t, r1 ∪ r2).

Proposition 9.4 Let t and u be two tuples of EC(r1, r2), if t and u have the
same Cube Closure over r1∪r2, then their emergence rate is the same: ∀t, u ∈
EC(r1, r2) such that C(t, r1 ∪ r2) = C(u, r1 ∪ r2), we have ER(t) = ER(u).

In order to make the L-Emerging Closed Cube a lossless representation,
we have to compute the Cube Closure over r1 ∪ r2, because two tuples can
have the same Cube Closures on r1 and on r2, but different cube closure on
r1 ∪ r2. The next proposition makes sure that the L-Emerging Closed Cube
is a lossless representation for the Emerging Cube.

Proposition 9.5 The L-Emerging Closed Cube is a lossless representation
for the Emerging Cube:

∀ t ∈ CL(r1 ∪ r2), t ∈ Ec⇔ C(t,L-Ecc(r1, r2)) ∈ L-Ecc(r1, r2)\L.

For instance, consider the emergence rate of t =(Paris, ALL, ALL). We
know that t is emerging because it is in the range [L;U ] (cf. Figure 9.1). By
computing its Cube Closure over L-Ecc(Sale1, Sale2), we obtain the tuple
(Paris, 11/06, Clothes). Since the emerging rate of the previous tuple is 3 (cf.
Figure 9.2), we know that the emerging rate of t is also 3.
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(*, 1, *) (*, 2, V)

(L, *, *)

(*, 1, C) (L, 1, *) (L, *, V)

(P, 1, C) (L, 1, C) (L, 1, V) (L, 2, V)

(∅, ∅, ∅)

FIGURE 9.3: U �-Emerging Closed Cube from Sales1 to Sales2.

9.3.2.2 U �-Emerging Closed Cubes

In this section, we introduce a new structure, the U �-Emerging Closed
Cube by using the U � border instead of the L border.

Definition 9.11 (U �-Emerging Closed Cube)
U�-Ecc(r1, r2) = {t ∈ CL(r2) such that t is an emerging closed tuple} ∪ U �.

Example 9.12 The U �-Emerging Closed Cube is represented in Figure 9.3.

In order to prove that the U �-Emerging Closed Cube is a cover for the
Emerging Cube we present a proposition showing that for any emerging tuple,
we can compute its Cube Closure from either r1∪r2 or the U �-Emerging Closed
Cube, and of course obtain the same result.

Proposition 9.6 For all the emerging closed tuples t, C(t,U�-Ecc(r1, r2)) =
C(t, r1 ∪ r2).

In order to make the U �-Emerging Closed Cube a lossless representation,
we have to compute the Cube Closure over r1 ∪ r2, because two tuples can
have the same Cube Closure on r1 and on r2, but different Cube Closures on
r1 ∪ r2. In such cases it is impossible to compute the Cube Closure with only
a single relation. The proposition below makes sure that the U �-Emerging
Closed Cube is a cover for the Emerging Cube.

Proposition 9.7 The U �-Emerging Closed Cube is a lossless representation
for the Emerging Cube:

∀ t ∈ CL(r2), t ∈ Ec⇔ C(t,U�-Ecc(r1, r2)) ∈ U�-Ecc(r1, r2)\U �.

For instance, consider the emergence rate of t = (Paris, ALL, Clothes).
We know that t is emerging because it is in the range ]U �;U ] (cf. Figure 9.1).
By computing its Cube Closure over U�-Ecc(Sales1, Sales2), we obtain the
tuple (Paris, 11/06, Clothes). Since the emerging rate of the previous tuple is
3, we make sure that the emerging rate of t is also 3.
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9.3.2.3 Reduced U �-Emerging Closed Cubes

In the previous section, we have shown that the border U � must be ap-
pended to the emerging closed tuples in order to achieve a lossless representa-
tion of the Emerging Cube. By making use of the Cube Closure, we simplify
the border U � by discarding all the redundancies that it can encompass. In
this way, we obtain a new cover: the Reduced U �-Emerging Closed Cube.

Definition 9.12 (Redundant Closed Tuple) For all the tuples t ∈ U �, t
is a redundant closed tuple if and only if C(t,U�-Ecc(r1, r2)\{t}) = t.

Example 9.13 The tuple (London, ALL, Video Game) is a redundant closed
tuple because:

C((L, ∗, V ),U�-Ecc(Sales1,Sales2)\{(L, ∗, V )}) = (L, 2, V ) + (L, 1, V )

= (L, ∗, V ).

Definition 9.13 (Reduced U � Border) The Reduced U � Border, denoted
by U ��, is composed of the tuples of U � which are not redundant :

U �� = {t ∈ U � | t is not a redundant closed tuple}.

Example 9.14 With our example, the Reduced U � Border only encompasses
the tuple (ALL, 11/09, Video Game). The other tuple in U � is discarded (cf.
Definition 9.12).

Let us recall that, like all the tuples of U �, all the tuples of U �� satisfy the C2

anti-monotone constraint.

Definition 9.14 (Reduced U �-Emerging Closed Cubes) The Reduced U �-
Emerging Closed Cube, denoted by R-Ecc, is defined as follows:

R-Ecc(r1, r2) = {t ∈ CL(r2) | t is an emerging closed tuple} ∪ U ��.

Example 9.15 With our example relations, the Reduced U �-Emerging Closed
Cube is composed of the emerging closed tuples given in Figure 9.3, and the
Reduced U � Border is limited to the single tuple (ALL, 11/09, Video Game).

The following proposition shows that removing redundant closed tuples
from the border U � does not alter the closure computation for the emerging
closed tuples. Thus the Reduced U �-Emerging Closed Cube is a lossless repre-
sentation for the U �-Emerging Closed Cube and by transitivity it is a lossless
representation for the Emerging Cube (cf. Proposition 9.9).

Proposition 9.8 ∀ t ∈ R-Ecc(r1, r2),C(t,R-Ecc(r1, r2)) = C(t,Ecc(r1, r2)).

Proposition 9.9 The Reduced Emerging Closed Cube is a lossless represen-
tation for the Emerging Cube:

∀t ∈ CL(r2), t ∈ Ec⇔ C(t,R-Ecc(r1, r2)) is an emerging closed tuple.
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Example 9.16 Let us derive the emergence rate of the tuple (Paris, ALL,
Clothes). We know that this tuple is possibly emerging because it generalizes
the tuple (Paris, 11/06, Clothes) of U . By computing its Cube Closure over
R-Ecc(Sales1, Sales2), we obtain the tuple (Paris, 11/06, Clothes). Since
this closed tuple is an emerging closed tuple, and its emergence rate is 3, we
can assert that the emergence rate of (Paris, ALL, Clothes) is 3.

For (ALL, 11/06, ALL), we can say that this tuple is possibly emerging
because it generalizes the tuple (London, 11/06, Video Game) belonging to the
U border. However, its Cube Closure over R-Ecc(Sales1, Sales2), i.e. the
tuple (ALL, 11/06, Video Game), does not belong to the set of emerging closed
tuples. So we can say that (ALL, 11/06, ALL) is not emerging.

9.3.3 Representation for OLAP Navigation

In a similar spirit, we study the Quotient Cube [227] which is also a re-
duced representation for Data Cubes. In this section, we state a link between
the Quotient Cube and the Closed Cube, and use this property for proposing
a new representation: the Emerging Quotient Cube; while the Emerging Quo-
tient Cube is not as reduced as the L-Emerging Closed Cube, it has another
advantage which is detailed later.

A Quotient Cube [227] provides a summary of a data cube for certain
aggregate functions like Count, Sum, ... Moreover the Quotient Cube pre-
serves the semantics of the operators Roll-Up/Drill-Down within the data
cube [168]. Hence it is relevant to study this structure from the perspective
of the Emerging Cube. Before giving our proposal, we revisit the original
definitions of the Quotient Cube in the Cube Lattice environment.

The idea behind the Quotient Cube is to discard redundancies by gather-
ing together tuples sharing an equivalent information. This results in a set of
equivalence classes partitioning the tuples of the data cube. Such a partition-
ing can be performed in various ways. But, in order to preserve navigation
capabilities, it is necessary to deal with convex classes.

Definition 9.15 (Convex Equivalence Class) Let C ⊆ CL(r) be an
equivalence class. We say that C is convex if and only if:

∀t ∈ CL(r) if ∃t′, t′′ ∈ C such that t′ �s t �s t
′′ then t ∈ C.

A partition P of CL(r) which encompasses only convex equivalence classes is
called a convex partition.

The convexity property makes it possible to represent each equivalence
class through its maximal and minimal tuples. Intermediary tuples are no
longer useful and the underlying representation is reduced. To ensure that the
partition is convex, the following equivalence relation is used.

Definition 9.16 (Quotient Equivalence Relation) Let fval be a measure
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function. We define the ≡f equivalence relation as the reflexive transitive clo-
sure of the following relation τ : let t, t′ be two tuples, t τ t′ holds if and only
if (i) fval(t, r) = fval(t

′, r) and (ii) t is either a parent or a child of t′.
The equivalence relation ≡f is said to be a quotient equivalence relation if
and only if it satisfies the property of weak congruence: ∀t, t′, u, u′ ∈ CL(r), if
t ≡f t′, u ≡f u′, t �s u and u′ �s t

′, then t ≡f u.

We denote by [t]≡f
the equivalence class of t ([t]≡f

= {t′ ∈
CL(r) such that t ≡f t′}). Then the Quotient Cube is defined as the set of
equivalence classes, each one being provided by the value of the measure.

Definition 9.17 (Quotient Cube) Let CL(r) be the Cube Lattice of the
database relation r and ≡f a quotient equivalence relation. The Quotient Cube
of r, denoted by QuotientCube(r,≡f), is defined as follows:

QuotientCube(r,≡f) = {([t]≡f
, fval(t, r)) such that t ∈ CL(r)}.

The Quotient Cube of r is a convex partition of CL(r).

For two equivalence classes C, C′ ∈ QuotientCube(r,≡f), C �QC C′ when
∃t ∈ C and ∃t′ ∈ C′ such that t �s t

′.
The construction of a Quotient Cube depends on the chosen quotient

equivalence relation. As a consequence for two quotient equivalence relations,
their related Quotient Cubes can be different. Moreover, the most useful quo-
tient equivalence relation is the cover equivalence relation. The cover of any
tuple t is the set of all tuples aggregated together to achieve t.

Definition 9.18 (Cover) Let t ∈ CL(r) be a tuple. The cover of t is the set
of tuples of r that are generalized by t (i.e. cov(t, r) = {t′ ∈ r such that t �s

t′}). Two tuples t, t′ ∈ CL(r) are cover equivalent over r, t ≡cov t′, if they
have the same cover, i.e. cov(t, r) = cov(t′, r).

Using the cover equivalence relation as an instance of ≡f in Definition 9.17,
we can define the Cover Quotient Cube.

Now we show that the Cover Quotient Cube is strongly related to the
Cube Closure. Two tuples t, t′ ∈ CL(r) are Cube Closure equivalent, t ≡C t′,
if and only if C(t, r) = C(t′, r).

Proposition 9.10 Let t, t′ ∈ CL(r). Then t is cover equivalent to t′ over r
if and only if t is Cube Closure equivalent to t′.

The above proposition states the relationship between the Quotient Cube
and the concepts related with the Cube Closure. Moreover it shows that it
is possible to define a Cover Quotient Cube by using any aggregate function
compatible with the Cube Closure.
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Emerging Quotient Cubes

Motivated by the relevant properties of the Quotient Cube, such a repre-
sentation can be used for condensing Emerging Cubes. Since the emergence
rate is not a monotone measure function, the underlying adaptation is difficult
to express using the original concepts. This is why we state the link between
the Quotient Cube and the concepts related to Cube Closure. We underline
that this link requires a measure function compatible with the Cube Closure
operator. It is possible for two tuples, related by the generalization order, to
have both an infinite emergence rate. Nevertheless, these two tuples can have
a different closure. As a consequence, the emergence rate is not compatible
with the Cube Closure because the third property of Definition 9.8 does not
hold. Thus for defining the Emerging Quotient Cube, it is not possible to use
the emergence rate as a measure function. Instead, we make use of the cou-
ple (fval(t, r1), fval(t, r2)) because it is composed of two functions which are
themselves compatible with the Cube Closure.

Definition 9.19 (Emerging Quotient Cube) The set of equivalence classes
of CL(r1 ∪ r2) emerging from r1 to r2, denoted by EQC(r1, r2), is called the
Emerging Quotient Cube from r1 to r2:

EQC(r1, r2) = {([t]≡f
,fval(t, r1), fval(t, r2)) |
[t]≡f

∈ QuotientCube(r1 ∪ r2,≡f ) ∧ t ∈ Ec(r1, r2)}.

Each equivalence class of the Emerging Quotient Cube is represented by
its maximal element which is an emerging closed tuple. The next proposition
shows that the U and L borders are included in the Emerging Quotient Cube.
More precisely U contains the maximal element of the maximal classes (which
are closed tuples) while L encompasses the minimal elements (or key tuples)
of the minimal classes. Thus navigating within the Emerging Quotient Cube
is possible.

Proposition 9.11 The classical lower and upper borders are included in the
Emerging Quotient Cube. The characterization of these borders based on the
Emerging Quotient Cube is the following:

1. U = max	s({max	QC ({[t]≡f
})}) such that

([t]≡f
, fval(t, r1), fval(t, r2)) ∈ EQC(r1, r2).

2. L = min	s({min	QC ({[t]≡f
})}) such that

([t]≡f
, fval(t, r1), fval(t, r2)) ∈ EQC(r1, r2).

The next proposition proves the correctness of the above representation.

Proposition 9.12 The Emerging Quotient Cube is a summary of the
Emerging Cube: ∀ t ∈ CL(r1 ∪ r2), t is emerging if and only if
([t]≡f

, fval(t, r1), fval(t, r2)) belongs to the Emerging Quotient Cube.
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(P, *, *) (*, *, C) (L, *, *)
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(∅, ∅, ∅)

FIGURE 9.4: Illustration of the Emerging Quotient Cube.

Example 9.17 With Sales1 and Sales2, Figure 9.4 presents the associated
Emerging Quotient Cube. The equivalence classes are marked. All the tuples
in an equivalence class share the same couple (Sumval(t, r2),Sumval(t, r1))
of aggregated measures. The leftmost class is represented by its maximal and
minimal tuples, intermediary tuples which are redundant must be discarded.

9.4 Discussion

We have presented different representations intended to reduce the size
of the Emerging Cube. Each of them has particular uses. The two pairs of
borders provide accurate Olap classifiers. The Emerging Closed Cube adds
to classification tasks querying capabilities and the Emerging Quotient Cube
enriches the quoted functionalities with navigation possibilities. The L based
representations are also related through an inclusion link as shown below.

Theorem 9.1 Let [L;U ], L-Ecc and Eqc be the different representations
for the Emerging Cube (Ec) of two relations r1 and r2. Then we have:

[L;U ] ⊆ L-Ecc ⊆ Eqc ⊆ Ec.

Figure 9.5 illustrates the uses of the different structures and their relation-
ships. It exemplifies the intuition that the more the users need functionalities,
the more information is required.

We do not mention the representations encompassing the U � border be-
cause of two reasons. Firstly, an inclusion link cannot be stated between the
U � based representations. Secondly, the sizes of L and U � are theoretically
equivalent. Nevertheless, experimental evaluations [311, 310] have shown that
the U � border is in practice more reduced than L. These experimental results
lead to the following order between the size of all the representations:

|[U �;U ]| ≤ |[L;U ]| ≤ |R-Ecc| ≤ |U�-Ecc| ≤ |L-Ecc| ≤ |Eqc| ≤ |Ec|.
Depending on the expected uses and the available computation tools, the user
can choose the most suitable representation.
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[L;U] Borders

L-Emerging
Closed Cube

Emerging
Quotient Cube

Closed tuples

+ C

Key tuples
+ ≡f

Classification
Olap Querying
Classification

Navigation
Olap Querying
Classification

FIGURE 9.5: Relationships between and uses of the L based representations.
Source: Reprinted from Ref. [307].

9.5 Conclusion

The users of Olap systems are interested in great trends hidden in large
datasets. We believe that the way in which trends evolve captures relevant
knowledge for decision makers. In order to obtain such knowledge, we have
proposed the concept of Emerging Cube. Around this concept, we have studied
several related issues. For each of them, we make proposals in order to devise a
global approach for dealing with trend reversals. This chapter aims to synthe-
size the research work about the main concern among the different issues, i.e.
the reduced representations of the Emerging Cube. We propose three types of
representations centered on three different uses. We start with the simplest and
smallest one which supports a single use: Olap classification. We follow with
an intermediary representation requiring more information than the previous
one but enriching the offered functionalities with Olap querying. We end by
proposing the most sophisticated and largest representation which adds, to
previous capabilities, the navigation within the Emerging Cube. According to
their needs, the decision makers can choose the most suitable representation.

In addition to these representations, we tackled another issue: size estima-
tion of Emerging Cubes [308]. Providing such an estimation makes it possible,
before any cube computation, to know the result size and therefore to best
calibrate the emergence constraint. By predicting the result size, the user can
know if the representation will be manageable. Then the size estimation can
be seen as another criterion to choose the adequate representation. The tool
devised for such a prediction is particularly efficient and yields an approximate
size no more than 5% different from the true size.

In order to complement the described contributions, algorithms have to
be devised with two important qualities: efficiency and integrability within
Rdbmss. We are currently working on different algorithms computing the
various representations and integrated within an homogeneous algorithmic
platform [314]. By devising a seamless and integrated relational approach, it
is possible to take advantage of existing Rolap analysis tools. Then, contrary
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to [438], the Emerging Cube will be a particular data cube and like the original
one it will be possible to express queries, explore and navigate within it.
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10.1 Introduction

Since its introduction in 1982, rough set theory (RST) [328] has become a
robust knowledge discovery framework that does well in handling incomplete-
ness, vagueness, and uncertainty in data [331, 330, 103, 341]. RST research
has revealed numerous connections and led to hybrid concepts in important
fields, such as probability theory [469], Dempster-Shafer theory of evidence
[370], neural networks [266], fuzzy sets, granular computing [263], or data
mining [169].

Extensive work on rule induction, classification [329, 47], feature selection,
and data reduction [385] overlaps with areas of application of emerging pat-

129
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TABLE 10.1: A sample decision table (U , C, d) = ({u1, ...u8}, {a1, ..., a4}, d)

a1 a2 a3 a4 d
u1 0 0 2 4 0
u2 0 1 0 1 0
u3 0 1 1 3 0
u4 0 1 1 3 1

a1 a2 a3 a4 d
u5 1 1 0 1 1
u6 1 0 1 0 1
u7 0 2 0 5 2
u8 1 0 1 2 2

terns. While each approach uses a specific formal apparatus and a different
representation of data, the fundamental objectives and notions are common.

RST considers a universe of objects characterized by means of functions
called attributes. Furthermore, knowledge is interpreted as an ability to dis-
criminate objects and, thus, each attribute set carries certain amount of infor-
mation. Assuming that only certain attributes are available, indiscernibility of
objects leads to the most fundamental concept of a rough set. It approximates
a conventional set by means of two sets, a lower and an upper approxima-
tion, which refer to objects definitely included in the set and the ones it may
contain, respectively.

The rough perspective on data reduction is built around reducts - highly
informative attribute sets. The most generic reducts provide the same infor-
mation as all available attributes and remain minimal with respect to the
inclusion relation. This concept and its many variants have close relatives in
the family of emerging patterns. Proofs of the relations given in this chapter
are available in [398, 402, 400, 399].

10.2 Theoretical Foundations

Decision problems are often facilitated with a decision table in which each
observation carries information on conditions and corresponding decisions.
This notation corresponds to a vector dataset with a distinguished decision
attribute. The decision attribute can be interpreted as a class label.

Definition 10.1 A decision table is a triple (U , C, d), where U is a non-empty
finite set of objects called the universe, C is a non-empty finite set of condition
attributes and d is a decision attribute. We will use A to denote C∪{d}. Each
attribute a ∈ A is a function a : U �→ Va, where Va is the domain for a.

Example 10.1 Table 10.1 gives a decision table (U , C, d) (our running exam-
ple), where a1, a2, a3, a4 are condition attributes and d is a decision one. At-
tributes map objects to values, for example a1(u1) = 0, a2(u4) = 1, d(u8) = 2.
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Objects are comparable by means of available attributes. Indiscernibility
of objects can be expressed by an equivalence relation based on attribute
equality. This relation contains all pairs of objects that cannot be discerned
with a given set of attributes. The rest of the definitions are formulated for a
given decision table DT = (U , C, d).
Definition 10.2 For B ⊆ A, an indiscernibility relation is defined as

INDDT (B) = {(u, v) ∈ U × U|∀a∈B a(u) = a(v)}.
The indiscernibility relation defines a partition of the universe U denoted

by U/INDDT (B). A block of this partition that contains an object u ∈ U is
denoted by BDT (u), or B(u) if DT is understood from the context.

Example 10.2 Fewer condition attributes often lead to more indiscernible
pairs. For example, IND(C) = {(ui, ui) | 1 ≤ i ≤ 8}∪{(u3, u4), (u4, u3)} gen-
erates the partition {{u1}, {u2}, {u3, u4}, {u5}, {u6}, {u7}, {u8}}; in contrast,
IND({a1, a2}) = {(ui, ui) | 1 ≤ i ≤ 8} ∪{(u3, u4), (u4, u3), (u2, u3), (u3, u2),
(u2, u4), (u4, u2), (u6, u8), (u8, u6)} generates the partition {{u1}, {u2, u3, u4},
{u5}, {u6, u8}, {u7}}.

An attribute set B ⊆ C represents a certain amount of knowledge on the
universe. Since each block of the corresponding partition U/INDDT (B) con-
tains mutually indiscernible objects, one may use these blocks to approximate
sets of objects.

Definition 10.3 For B ⊆ C, a B-lower approximation of a set X ⊆ U is
defined as BDT (X) = {u ∈ U | BDT (u) ⊆ X}. Observe that BDT (X) is the
union of equivalence classes contained in X.

Example 10.3 We have: {a1, a2}({u1, u2, u3, u4, u5, u6}}) = {u1}∪{u2, u3, u4}∪
{u5} = {u1, u2, u3, u4, u5} and C({u4, u5, u6}}) = {u5} ∪ {u6} = {u5, u6}.

The decision attribute allows us to partition the universe into blocks de-
termined by possible decisions.

Definition 10.4 For k ∈ Vd, a decision class k is defined by Uk =
{u ∈ U|d(u) = k}.

If information on the objects is available through an attribute set B ⊆
C, the decision classes can be approximated by means of the blocks of the
partition U/IND(B). The lower approximations of the classes indicate objects
that can be consistently classified. Note that, in general, this property does
not hold. Some objects may be indiscernible with respect to B but belong to
different decision classes.

Definition 10.5 For B ⊆ C, a B-positive region with respect to a decision
attribute d is defined as

POSDT (B, d) =
⋃

X∈U/INDDT ({d})
BDT (X).
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Example 10.4 The decision attribute generates the partition of the universe
into decision classes: U/INDDT ({d}) = {{u1, u2, u3}, {u4, u5, u6}, {u7, u8}}.
The objects u3 and u4 are indiscernible by means of all the condition at-
tributes and belong to different classes. Consequently, the positive region for C
excludes these objects and is equal to POS(C, d) =

⋃
X∈U/IND({d}) C(X) =

C({{u1, u2, u3}) ∪ C({u4, u5, u6}}) ∪ C({u7, u8}}) = {u1, u2} ∪ {u5, u6} ∪
{u7, u8} = {u1, u2, u5, u6, u7, u8}.

Definition 10.6 For an object u ∈ U , an attribute set B ⊆ C is a local super
reduct iff ∀(c ∈ Vd)(C(u)∩Uc = ∅ =⇒ B(u) ∩Uc = ∅). B is a local reduct iff
B is a local super reduct and none of its proper subset is a local super reduct.

The set of all local reducts for the object u is denoted by REDLOCDT (u, d).

For objects from the positive region, the definition of a local reduct be-
comes simpler.

Lemma 10.1 ([385]) For u ∈ POS(C, d), we have:
B ∈ REDLOCDT (u, d)⇐⇒ B is a minimal set such that B(u) ⊆ Ud(u).

Example 10.5 We have REDLOC(u2, d) = {{a1, a2, a3}, {a1, a4}}. Both
attribute sets allow us to discern u2 from all objects from other classes,
i.e. {u4, .., u8}. Formally, from Lemma 10.1, the corresponding blocks
for u2 are subsumed by the class d(u2) = 0: {a1, a2, a3}({u2}) =
{u2} ⊆ U0, {a1, a4}({u2}) = {u2} ⊆ U0. In addition, this prop-
erty does not hold for any proper subset of these attribute sets, namely
{Ø, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}} and {Ø, {a1}, {a4}}. In par-
ticular, we have ∅({u2}) = {u1, u2, u3, u4, u5, u6, u7, u8}, {a1}({u2}) =
{u1, u2, u3, u4, u7} and {a4}({u2}) = {u2, u5}. On the other hand,
REDLOC(u3, d) = REDLOC(u4, d) = ∅, since u3 and u4 are indiscernible
and belong to different decision classes.

For brevity of our discussion, we define a transactional equivalent for a
decision table that specifies a domain of items for all transactions and uses
decision items to encode class membership.

Definition 10.7 A decision transaction system is a tuple (D, I, Id), where
D is a transaction dataset (multiset) over a universal set of items (I ∪ Id))
and ∀(T ∈ D)(|T ∩ Id| = 1). Elements of I and Id are called condition and
decision items, respectively.

Similarly to decision tables, we introduce a notation for transactions cor-
responding to the same decision.

Definition 10.8 For k ∈ Id, a decision class k is defined as Dk = {T ∈
D|T ∩ Id = {k}}. We use the symbols Dk and D{k} interchangeably.
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10.3 JEPs with Negation

Transactions express facts directly observed in the domain such as event
occurrences or object characteristics. Consequently, itemsets from such trans-
actions represent information that is observable. Further, we use the term
positive to refer to this kind of knowledge. On the contrary, one may consider
itemsets that complement positive transactions to a given itemspace. They
cover information that is not available directly, but can be easily inferred.
This approach leads to a type of knowledge referred to as negative.

A decision table can be easily transformed into a transaction database.
Relations between reducts and emerging patterns for data given originally
by a decision table [402, 398] allow us to use rough set methods to discover
JEPs. One could ask if there is any relation to RST for input data provided
in transactional form. Interestingly, this matter is closely related to negative
knowledge in transaction databases.

We generalize JEPs to JEPs with negation (JEPNs) by taking into ac-
count both positive and negative items. It is shown that they correspond to
classic JEPs in appropriately defined transaction databases [400]. At the same
time, an information-preserving transformation of an input database to a bi-
nary decision table gives us a basis to consider relations to rough set reducts.
In particular, we demonstrate that local reducts provide a way to identify
minimal JEPNs.

Originally, negative relationships were introduced in [59], where a chi-
square model was applied to estimate independence between two variables.
As far as data mining is concerned, the vast majority of publications em-
ploy the idea of negation to formulate new interesting association rules. The
proposed algorithms include variants of frequent itemset mining [357].

The extended pattern definition results in search space enlargement. Sev-
eral approaches have been put forward to alleviate this effect. In [437, 18],
the support-confidence framework is supplemented with additional measures
of interestingness, thus, creating more pruning opportunities. Another option
is to constrain the rule syntax. For example, in negative association rules [437]
and confined association rules [18], only a complete antecedent or consequent
can be negated, whereas in unexpected rules [322] and exception rules [192]
negative items in antecedents are used to represent exceptions to regular asso-
ciations. Some other approaches make use of domain knowledge to formulate
valuable rules [455]. Last but not least, the problem of mining frequent item-
sets with negation can be addressed with concise data representations [220].

10.3.1 Negative Knowledge in Transaction Databases

We propose a formal apparatus to deal with positive and negative infor-
mation in classified transactional datasets. In our convention, new types of
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knowledge can be considered with the standard framework for emerging pat-
terns, as long as the input data are appropriately transformed. Also, the new
concepts provide a basis for pattern discovery approaches.

Hereinafter, we assume that our data are given by a decision transaction
system DT S = (D, I, Id), where D = {T1, .., Tn}, I = {I1, .., Im}, Id =
{c1, .., cp}.

In order to express both positive and negative knowledge in the context of
DT S, we generalize the concepts of an itemspace, itemset, and item. In this
section, the original meaning of these terms is preserved by preceding them
with the adjective positive, e.g. a positive item.

Definition 10.9 For a positive itemspace I, a negative itemspace and an
extended itemspace are defined as I = {i|i ∈ I} and I ∪ I, respectively. The
elements of these three itemspaces are called positive, negative, and extended
items, respectively.

A positive itemset with negation, a negative itemset with negation and an
itemset with negation are any subsets of the respective itemspaces.

Our discussion pertains mostly to itemsets with negation. Thus, for brevity,
we usually use short names: itemsets or patterns.

Negative items express the absence of the corresponding positive items in
transactions. Consequently, itemsets that contain at least one positive item
and its corresponding negative item have a self-contradictory interpretation.
We distinguish a set of patterns that make sense in the considered setting.

Definition 10.10 The set of valid itemsets is defined as P = {p ⊆
I ∪ I|∀i∈Ii ∈ p =⇒ i �∈ p}. Accordingly, each itemset from P is called valid.

For brevity, we introduce the following notations.

Definition 10.11 For an itemset X ∈ P, we define: the positive part Xp =
X∩I, the negative part Xn = X∩I, the negated pattern X = {i|i ∈ X}, the

contradictory pattern X̂ = (I ∪ I)−X, the extended pattern X̃ = X ∪ X̂.

We assume that i = i.

In other words, a positive (negative) part refers to the set of all positive
(negative) items of a given pattern. A negated pattern is obtained by changing
each positive item of a given pattern to the corresponding negative item and
vice versa. A contradictory pattern is a complement of a negated pattern
to the extended itemspace. Finally, an extended pattern is a sum of a given
pattern and its contradictory pattern.

Now, we generalize basic measures defined for positive patterns, so that
they can be used for itemsets with negation.

Definition 10.12 The extended support of an itemset X ∈ P in a database

D ⊆ D is defined as exsuppD(X) =
|{T∈D|Xp⊆T∧Xn⊆I−T}|

|D| .
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With this extended definition of support, we can accordingly introduce the
notion of extended growth rate in terms of extended supports.

Definition 10.13 The extended growth rate of an itemset X ⊆ I from D1

to D2 is defined as

exgrD1→D2(X) =

⎧⎪⎨⎪⎩
0, exsuppD1(X) = exsuppD2(X) = 0
∞, exsuppD1(X) = 0 and exsuppD2(X) �= 0
exsuppD2 (X)

exsuppD1 (X) , otherwise.

Based on the above definitions, one may consider patterns analogous to
positive emerging patterns. We focus solely on JEPs.

Definition 10.14 A jumping emerging pattern with negation (JEPN) from
D1 to D2 is an itemset X ∈ P with infinite extended growth rate.

For convenience, we introduce the following sets of JEPNs.

Definition 10.15 For D1, D2 ⊆ D, we define (a) a JEPN space,
JEPNDT S(D1, D2), as the set of all JEPNs from D1 to D2, (b) a posi-
tive JEPN space as posJEPNDT S(D1, D2) = {J ∈ JEPNDT S(D1, D2)|J ⊆
I}, and (c) a negative JEPNs space as negJEPNDT S(D1, D2) = {J ∈
JEPNDT S(D1, D2)|J ⊆ I}.

Itemsets with negation are considered for a decision transaction system.
We define two derivative systems to focus on just positive or negative itemsets.

Definition 10.16 A contradictory decision transaction system based on

DT S is a decision transaction system D̂T S = ({T ′1, .., T ′n}, I, Id), where

T ′i = T̂i ∪ (Ti ∩ Id), for each i = 1, .., n.

To construct a contradictory decision transaction system, each transaction
of DT S is replaced by its corresponding contradictory pattern, a decision
item is excluded. Items complementing transactions of DT S to the positive

itemspace can be directly observed in transactions of D̂T S as negative items.

Definition 10.17 An extended decision transaction system based on DT S
is a decision transaction system D̃T S = ({T ′1, .., T ′n}, I ∪ I, Id), where T ′i =

T̃i ∪ (Ti ∩ Id), for each i = 1, .., n.

In other words, each transaction of DT S is extended to include its negated

complements. All transactions of D̃T S have the same size |I|.
Example 10.6 Let us consider the decision transaction system DT S in Ta-
ble 10.2. We have I = {a, b, c, d, e, f}, Id = {c0, c1}, I = {a, b, c, d, e, f}
and P = {p ⊆ I ∪ I|∀i∈Ii ∈ p =⇒ i �∈ p}. Thus, for example, we have:
abbc, aae �∈ P. Although transactions in DT S cannot contain negative items,
they can still support patterns belonging to P, when the extended definition of
support is being used, e.g. exsuppD0(ce) = 2. The contradictory and extended
decision systems based on DT S are also given in Table 10.2.
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TABLE 10.2: Decision transaction systems: DT S, D̂T S, D̃T S

I Id

T1 cef c0
T2 de c0
T3 e c0
T4 bcd c1
T5 df c1
T6 ace c1

I Id

T1 abd c0
T2 abcf c0
T3 abcdf c0
T4 aef c1
T5 abce c1
T6 bdf c1

I ∪ I Id

T1 cefabd c0
T2 deabcf c0
T3 eabcdf c0
T4 bcdaef c1
T5 dfabce c1
T6 acebdf c1

10.3.2 Transformation to Decision Table

Transactional data can be represented in the form of a decision table. We
consider a transformation, in which objects are mapped to transactions and
each item is assigned a binary attribute [179]. The attribute indicates the
presence of the item in the respective transaction.

Definition 10.18 A binary decision table based on DT S is a decision ta-
ble BDT DT S = (U , C, d) where U = {u1, .., un}, C = {a1, .., am}, and
Vd = {c1, .., cp} such that d(ui) = c where {c} = Ti ∩ Id, ∀i∈1..n, and

aj(ui) =

{
0, Ij �∈ Ti

1, Ij ∈ Ti
, ∀i∈1..n,j∈1..m,

In this data representation, the fact whether an item belongs to a particular
transaction or not is encoded by certain attribute values. Therefore, itemsets
generated by an object and attribute set can contain negative items.

Definition 10.19 For BDT DT S , u ∈ U , B = {ak|k ∈ K} and K ⊆
{1, ..,m}, we define a binary pattern based on the object u and attribute set B
as

binPatt(u,B) = {Ik ∈ I|ak(u) = 1} ∪ {Ik ∈ I|ak(u) = 0}.

Example 10.7 In order to describe the data in the decision transaction sys-
tem DT S, we can use the binary decision table (U , C, d) based on DT S, where
U = {u1, u2, u3, u4, u5, u6}, C = {a1, a2, a3, a4, a5, a6}, Vd = {c0, c1}.

Note that we use the same symbol to denote an item and the respective
attribute, even though the latter is a function. Values of the attributes are
given in Table 10.3.
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TABLE 10.3: The corresponding binary decision table
({u1, u2, u3, u4, u5, u6}, {a1, a2, a3, a4, a5, a6}, d) based on DT S

a1 a2 a3 a4 a5 a6 d
u1 0 0 1 0 1 1 0
u2 0 0 0 1 1 0 0
u3 0 0 0 0 1 0 0
u4 0 1 1 1 0 0 1
u5 0 0 0 1 0 1 1
u6 1 0 1 0 1 0 1

10.3.3 Properties

This section looks at basic properties of JEPNs and their relation to rough
set theory. We continue to consider the decision transaction system DT S =
(D, I, Id).

The following two facts demonstrate equivalence of the support (growth
rate) of a given pattern with negation in the extended decision transaction

system D̃T S as well as the extended support (extended growth rate) of this
pattern in the original decision transaction system DT S.

Theorem 10.1 Let D ⊆ D. Then ∀X⊆I∪IsuppD̃(X) = exsuppD(X).

Remark 10.1 Let D ⊆ D. Then ∀X⊆I∪IgrD̃1→D̃2
(X) = exgrD1→D2(X).

In light of these facts, it becomes evident that JEPNs in DT S are also

JEPs in D̃T S and vice versa.

Theorem 10.2 Let D1, D2 ⊆ D. Then JEPNDT S(D1, D2) = JEPD̃T S(D1, D2).

Example 10.8 Let us consider the patterns abc, df ∈ P . In the system

D̃T S, we have supp
D̃0

(abc) = 2, supp
D̃1

(abc) = 1 and gr
D̃1→D̃0

(abc) =

2/1 < +∞, which gives abc �∈ JEPD̃T S(D1, D0). In the system DT S,

we have exsuppD0(abc) = 2, exsuppD1(abc) = 1 and exgrD1→D0 (abc) =
2/1 < +∞, therefore, abc �∈ JEPNDT S(D1, D0). At the same time, in
DT S, we have supp

D̃0
(df) = 2, supp

D̃1
(df) = 0 and gr

D̃1→D̃0
(df) = +∞,

thus, df ∈ JEPD̃T S(D1, D0). Now, in DT S, we have exsuppD0(df) =

2, exsuppD1(df) = 1 and exgrD1→D0(df) = +∞, thus, df ∈
JEPNDT S(D1, D0). Note that df is also a minimal pattern.

As we can see, extended support, extended growth rate and being a JEPN in
DT S can be equivalently concluded in the extended decision transaction system

D̃T S, which remains consistent with Theorems 10.1, 10.2 and Remark 10.1.

Since JEPNDT S(D1, D2) is a JEP space, it is convex and can be concisely
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represented by a set interval. Throughout the rest of this section, we consider
spaces JEPNDT S(D′k, Dk) = [Lk,Rk] for k ∈ Vd.

Itemsets with negation are closely related to attribute sets in the respec-
tive binary decision table. The following theorem demonstrates equivalence
between a JEPN in DT S and a pattern generated by an attribute set and
object from the positive region induced by this set in BDT DT S .

Theorem 10.3 Let (U , C, d) be the binary decision table based on DT S.
∀k∈Vd

∀P⊆C∀u∈Uu ∈ POS(P, k, d)⇐⇒ binPatt(u, P ) ∈ JEPN(D′k, Dk).

In addition to the above, rough set theory provides a way of finding mini-
mal JEPNs. In fact, the left bound of a JEPN space can be generated by means
of local reducts induced for each object in the positive region of BDT DT S .

Theorem 10.4 Let (U , C, d) be the binary decision table based on DT S.
∀P⊆C∀u∈POS(C,d)P ∈ REDLOC(u, d)⇐⇒ binPatt(u, P ) ∈ Ld(u).

Example 10.9 Let us consider the decision transaction system DTS and
corresponding binary decision table BDT DT S , the itemset P = {a, b, c}
and the class k = 0. We have POS({a, b, c}, 0, d) = {u1, u4, u6} and
binPatt({a, b, c}, u1) = {a, b, c}. In addition, we have exgrD1→D0(abc) = +∞,
thus, abc ∈ JEPNDT S(D1, D0). Besides, {a, b, c} ∈ REDLOC(u1, d), u1 ∈
POS(C, d) and abc ∈ L0, where [L0,R0] represents JEPNDT S(D1, D0). Note
that the situation is quite different for binPatt({a, b, c}, u2) = {abc}. Here, we
have u2 �∈ POS({a, b, c}, 0, d), thus, abc is not even a JEPN.

On the other hand, the right bound can be derived directly from the pos-
itive region of a binary decision table.

Theorem 10.5 Let (U , C, d) be the binary decision table based on DT S.
Rk = {binPatt(u, C) ⊆ P|u ∈ POS(C, k, d)}.

Example 10.10 Let us consider the decision transaction system DTS, cor-
responding binary decision table BDT DT S and class k = 0. We have
{binPatt(u, C) ⊆ P|u ∈ POS(C, 0, d)} = {binPatt(u, C) ⊆ P|u ∈
{u1, u2, u3}} = {abcdef, abcdef, abcdef}. Note that this collection is equal
to the right bound R0.

The theorems provided so far offer two ways of finding JEPNs. First -
by finding JEPs in an extended decision transaction system, and second - by
finding local reducts in a binary decision table. These methods allow us to
indirectly find positive or negative JEPNs by means of filtering the bounds of
the set interval of a JEPN space. The following theorem demonstrates that
both collections can also be obtained directly, if an original or a contradictory
database is considered, respectively.

Theorem 10.6 Let D1, D2 ∈ D. posJEPND̃T S(D1, D2) = JEPDT S(D1, D2)
and negJEPND̃T S(D1, D2) = JEPD̂T S(D1, D2).
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Example 10.11 The space JEPNDT S(D1, D0) can be represented by the
border [L0,R0], where L0 = {ef, df, de, cf , ce, cd, cf, bdf, ae, ad, abf , abc} and
R0 = {abcdef, abcdef, abcdef}.

From the previous example, the set interval representing JEPDT S(D1, D0)
is equal to [{ef, de, cf}, {de, cef}]. This collection comprises all positive
JEPNs, namely the collection posJEPNDT S(D1, D0).

For the system D̂T S, we obtain the space JEPD̂T S(D1, D0) that is repre-

sented by the following set interval [{cf , cd, ad, abf}, {abd, abcf, abcdf}] and
equal to the collection negJEPNDT S(D1, D0).

As we can observe, JEPNDT S(D1, D0) contains all the itemsets from both
posJEPNDT S(D1, D0) and negJEPNDT S(D1, D0). Besides that, it includes
itemsets that contain positive and negative items at the same time.

10.3.4 Mining Approaches

Let us consider a decision transaction system DT S = (D, I, Id). We are
interested in finding the space of all jumping emerging patterns with negation,
JEPNDT S(D′k, Dk), for each decision class k ∈ VZ . Owing to the fact that,
according to Theorem 10.2, each space of this kind is convex, our task can be
defined as finding the respective set intervals [Lk,Rk].

The relations studied in the previous section provide us with two methods
of finding JEPNs. The first one, given in Figure 10.1, requires building the

extended decision transaction system D̃T S based on DT S. Then, for each
decision class k ∈ VZ , the databases Dk and D′k are considered and the set
interval for JEPD̃T S(D

′
k, Dk) is computed. According to Theorem 10.2, the

resulting set intervals are also equal to JEPNDT S(D′k, Dk). For a database
pair, a set interval can be obtained by means of one of the widely-known
algorithms, like JEP-Producer [118] or CP-Tree mining [137].

Input: DT S
Output: all minimal JEPs
Method:
1: Lk = ∅ for each k ∈ Id
2: for (k = 1; 1 <= |Id|; k ++)

3: Construct the extended decision transaction system D̃T S
4: Compute the set interval [L̃k, R̃k] for a JEPD̃T S(D

′
k, Dk)

5: Lk = L̃k
6: return Lk|k ∈ Id

FIGURE 10.1: The JEPNBasic Algorithm. Adapted from Ref. [400], with kind
permission from Springer Science+Business Media.

The second approach, given in Figure 10.2, involves building a binary deci-
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sion table BDT DT S = (U , C, d) and applying the rough set framework to mine
minimal patterns for each class. For each u ∈ U , we compute the collection
of local reducts REDLOC(u, d). Then, by Theorem 10.4, the left bound of
the respective set interval, for each class k ∈ VZ , can be found by taking each
object u ∈ POS(C, k, d) and generating patterns with all local reducts com-
puted for u, i.e Lk = {binPatt(u, P )|u ∈ POS(C, k, d)∧P ∈ REDLOC(u, d)}.
Moreover, from Theorem 10.5, the respective right bounds Rk are trivial,
i.e. Rk = {binPatt(u, C)|u ∈ POS(C, k, d)}. The most important step is
to efficiently mine the complete sets of local reducts for each object. Sev-
eral methods have been proposed in the literature, such as minimization of
monotonous boolean functions [48, 219], traversing the lattice of all possible
monoms [355, 403], identifying maximal monoms [219] and parallel approaches
[384].

Input: DT S
Output: all minimal JEPs
Method:
1: Lk = ∅ for each k ∈ Id
2: for(i = 1; 1 <= |D|; i++)
3: Construct a binary decision table BDT DT S
4: Compute REDLOC(ui, d) in BDT DT S
5: Lk = Lk ∪ {binPattDTS(ui, R)|R ∈ REDLOC(ui, d)}, k = Ti ∪ Id
6: return Lk|k ∈ Id

FIGURE 10.2: The JEPNRedLoc Algorithm. Adapted from Ref. [400], with
kind permission from Springer Science+Business Media.

A JEPN space can be used to compute the corresponding JEP space.
Indeed, according to Theorem 10.6, JEPs are equivalent to posJEPNs and
the latter are all included in the JEPN space. From the definition, posJEPNs
can be obtained by simple filtering out patterns with negative items from the
bounds of the set interval representing the JEPN space. This filtering can
be incorporated in the last step of the loop in either of the algorithm. For
example, one may generate a pattern binPattDT S(u,R) only for an object
u ∈ U and a local reduct R ⊆ A, for which ∀a∈Ra(i) = 1.

Although this approach allows us to discover JEPs, it comes with a signif-
icant overhead of additionally generated patterns and, thus, remain impracti-
cal. In Section 10.4, more efficient variants of this method are presented.
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TABLE 10.4: A sample decision transaction system DT S =
{{T1, .., T6}, {a, b, c, d, e, f, g, h}, {c0, c1}}

T1 adh c0
T2 afg c0
T3 ceg c0

T4 ce c1
T5 beh c1
T6 bfg c1

TABLE 10.5: JEP and JEPN spaces for DT S

Space Set interval
JEP (D1, D0) [{eg, d, cg, a}, {adh, afg, ceg}]
JEP (D0, D1) [{eh, b}, {ce, beh, bfg}]
JEPN(D1, D0) [{fg, eh, eg, ef, eg, d, cg, bh, bg, bf, be, bc, a},

{abcdefgh, abcdefgh, abcdegh}]
JEPN(D0, D1) [{gh, eh, eg, dh, dg, ce, cdf , cg, b, ah, ag, af, ae, ac},

{abcdefgh, abcdefgh, abcdefgh}]

10.4 JEP Mining by Means of Local Reducts

Transactional data can be transformed to the form of a binary decision
table (see Section 10.3.2) and tackled by rough set methods. In particular,
local reducts allow us to find JEPs as a side effect of JEPN discovery (Theo-
rem 10.6). A major disadvantage of this approach is that itemspaces are usu-
ally large and result in high-dimensional decision tables. At the same time,
much of the computation effort is wasted on finding undesirable patterns with
negative items, that need to be filtered out anyway.

Example 10.12 Consider the decision transaction system given in Ta-
ble 10.4. A comparison of JEP and JEPN spaces given in Table 10.5 shows
that the overhead of non-positive JEPNs can be overwhelming.

This section discusses how to lower the dimensionality of decision tables by
applying appropriate transformations. Our approaches are based on the fact
that transactional data is usually sparse. Indeed, sometimes average transac-
tions of real-life datasets can contain just a few items. Discovery methods may
benefit from more concise data representations.

Hereinafter, we assume that our input data are represented by a decision
transaction system DT S = (D, I, Id), where D = (T1, .., Tn), I = {I1, .., Im},
Id = {c1, .., cp}, K = {1, .., n}.
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10.4.1 Global Condensation

In a binary decision table based on a decision transaction system, each
binary attribute refers to a single item. One possible modification of this
approach is to use multi-valued attributes to encode groups of items. The
itemspace can be partitioned into blocks and each block is assigned a new
attribute. We refer to this transformation as global condensation.

Local reducts in a binary decision table correspond to JEPNs. For a given
target class, all the JEPNs constitute a convex space that also contains the
JEPs. After performing global condensation, local reducts in the resulting de-
cision table may no longer map to all the possible JEPNs. This fact is advan-
tageous, since it diminishes the overhead of unnecessarily generated patterns.
The method remains correct as long as the complete set of the positive JEPNs
(JEPs) can be discovered.

10.4.1.1 Condensed Decision Table

In order to ensure that global condensation leads to a complete set of JEPs,
we introduce a special type of a partition of an itemspace. Each transaction
and each block are required to have at most one item in common.

Definition 10.20 A partition {p1, .., pr} of I is called proper
iff ∀T∈D∀j∈{1,..,r}|T ∩ pj| <= 1.

If a partition is proper, for each block pi, we have at most |pi| different
intersections of pi with transactions of D, where i ∈ {1, .., r}. Each of these
intersections refers to at most one item and can be mapped to a distinct
value of a single multi-valued attribute. We express the transformed dataset
by means of a decision table.

Definition 10.21 For a given a proper partition P = {p1, .., pr} of I, and
a set F = {f1, .., fr} where fj : 2pj �→ N and fj is a bijection for each
j ∈ {1, .., r}, a condensed decision table based on DT S, P and F is a decision
table CDT DT S,P,F = (U , C, d) with U = {u1, .., un}, C = {a1, .., ar}, and
Vd = {d1, .., dp} such that

aj(ui) = fj(Ti ∪ pj), ∀i∈1..n,j∈1..r
d(ui) = Ti ∩ Id, ∀i∈1..n

The choice of the function F does not affect the structure of the decision
table and is a matter of convention.

For the sake of convenience, we introduce a new notation to refer to pat-
terns generated by an object and attribute set in a condensed decision table.

Definition 10.22 For CDT DT S , u ∈ U , B = {ak|k ∈ K} and K ⊆ {1, ..,m},
a condensed pattern based on the object u and attribute set B is an itemset
condPatt(u,B) =

⋃
k∈K f−1

k (ak(u)), where u ∈ U , B = {ak|k ∈ K}.



Relation Between Jumping Emerging Patterns and Rough Set Theory 143

TABLE 10.6: The binary and condensed decision table based on DT S from
Table 10.4 and the proper partition {{a, b, c}, {d, e, f}, {g, h}}

a b c d e f g h d
u1 1 0 0 1 0 0 0 1 0
u2 1 0 0 0 0 1 1 0 0
u3 0 0 1 0 1 0 1 0 0
u4 0 0 1 0 1 0 0 0 1
u5 0 1 0 0 1 0 0 1 1
u6 0 1 0 0 0 1 1 0 1

a1 a2 a3 d
u1 0 0 0 0
u2 0 1 1 0
u3 1 2 1 0
u4 1 2 2 1
u5 2 2 0 1
u6 2 1 1 1

Example 10.13 In Table 10.6 we present a transformation from a sample
transactional dataset, through the respective binary table, to the condensed ta-
ble that is generated for the proper partition {{a, b, c}, {d, e, f}, {g, h}}. Each
attribute of the condensed table refers to a block of a partition and each at-
tribute value to one item at most. In particular, for attribute a3 we have:
condPatt(u4, a3) = ∅, condPatt(u5, a3) = h and condPatt(u6, a3) = g.
Note that the partition {{a, b, c}, {d, e, f, g, h}} is not proper, since |T1 ∩
{d, e, f, g, h}| = 2 > 1.

Let us consider a condensed decision table CDT DT S,P,F = (U , C, d). The
following theorem demonstrates that an object from the positive region of the
condensed decision table can be used to generate a JEP, when one applies an
attribute set whose each element maps to a non-empty itemset.

Theorem 10.7 ∀R⊆C∀u∈U (∀j∈{1,..,r}aj ∈ R =⇒ aj(u) �= fj(∅)) =⇒
(u ∈ POS(R, d) ∩ Ud−1(u) ⇐⇒ condPatt(u,R) ∈ JEP (C ′d−1(u), Cd−1(u)))

Furthermore, the theorem below states that if such an attribute set is a
local reduct, it generates a minimal JEP.

Theorem 10.8 ∀R⊆C∀u∈POS(C,d)(∀j∈{1,..,r}aj ∈ R =⇒ aj(u) �= fj(∅)) =⇒
(R ∈ REDLOC(u, d)⇐⇒ condPatt(u,R) ∈ Ld−1(u))

10.4.1.2 Proper Partition Finding as Graph Coloring

The choice of a proper partition is critical for construction of a condensed
decision table. This problem can be expressed in the language of the graph
theory. We construct a graph in which each vertex corresponds to an item from
an itemspace. Two vertices are connected with an edge only if there is at least
one transaction that contains both corresponding items. From the definition,
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these two items cannot belong to the same block of a proper partition, which is
substantial for JEP discovery. Otherwise, one attribute value would represent
both items and patterns that contain only one of these items would not be
considered in the further mining.

Definition 10.23 An item-conflict graph based on DT S is an undirected
graph ICGDT S = (V,E) such that:
∀x,y∈{1,..,m}{vx, vy} ∈ E ⇐⇒ ∃T∈Dix, iy ∈ T , where V = {v1, .., vm}.

Let us consider an item-conflict graph ICGDT S = (V,E). In fact, every
proper partition of the itemspace I corresponds to a coloring of this graph.
For consistency, we represent colorings as partitions of the set of vertices V .

Theorem 10.9 For a partition {w1, .., wr} of V and partition {p1, .., pr} of
I such that ∀j∈{1,..,m}∀k∈{1,..,r}vj ∈ wk ⇐⇒ ij ∈ pk, we have:
{w1, .., wr} is a coloring of ICGDT S ⇐⇒

{p1, .., pr} is a proper partition for DT S

Example 10.14 The item-conflict graph ICGDT S based on DT S from Ta-
ble 10.6 is presented in Figure 10.3. Vertices connected with an edge cannot
have the same color. {{a, b, c}, {d, e, f}, {g, h}} is one possible coloring. Note
that this coloring also determines a proper partition in which colors correspond
to blocks. Each of the transactions T1, .., T6 contains, at most, one of the items
of each block.

FIGURE 10.3: The item-conflict graph based on the decision transaction sys-
tem DT S from Table 10.6. Adapted from Ref. [399], with kind permission
from Springer Science+Business Media.

10.4.1.3 Discovery Method

We present how global condensation can be employed in identification of
JEP spaces for the decision transaction system DT S. The first stage of our
method is to find a proper partition of the itemspace and use it to construct
the respective condensed decision table. It is not obvious which partition is
optimal for a given dataset and reduct finding algorithm. Since dimensionality
is usually the most significant factor, we choose a criterion stating that fewer
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blocks of a partition lead to better performance. Following Theorem 10.9, one
may consider an item-conflict graph ICGDT S and reduce this optimization
problem to graph coloring. Furthermore, since this is a preprocessing stage and
suboptimal solutions are acceptable, widely known heuristics, like LF, SLR,
RLF, SR [99], can be applied. The resulting partition allows us to transform
DT S to a condensed decision table CDT DT S .

Discovery of minimal patterns for the condensed decision table CDT DT S =
{U , C, d} is the most expensive phase. A reduct finding method is used to
identify REDLOC(u, d) for each object u ∈ U . Every local reduct B ⊆ C
refers to the minimal pattern condPatt(u,B). All the patterns found for the
objects from a given class constitute the left bound of a respective JEP space.

Input: DT S
Output: all minimal JEPs
Method:
1: Lc = ∅ for each c ∈ Id
2: Construct an item-conflict graph ICGDT S
3: Find a minimal coloring C in ICGDT S
4: Construct the condensed decision table CDT DT S,P,F = {U , C, d},
where P corresponds to the coloring C and F is any fixed mapping
5: for(k = 1; k <= |U|; k ++)
6: Compute REDLOC(uk, d) in CDT DT S
7: Lc = Lc ∪ {condPattDT S(ui, R)|R ∈ REDLOC(ui, d)}, c = d(ui)
8: return Lc|c ∈ Id

FIGURE 10.4: The JEPGlobalCond algorithm. Adapted from Ref. [399], with
kind permission from Springer Science+Business Media.

10.4.2 Local Projection

Global condensation is performed once for a whole decision transaction
system and generates an insignificant additional overhead while attribute val-
ues are translated back into items. Unfortunately, this method remains very
sensitive to the distribution of items across transactions and, in the general
case, finding a proper partition that substantially lowers the overall dimen-
sionality may be very hard.

This problem can be alleviated by the following observation. Actual com-
putation of local reducts is performed separately for each object and involves
only a subset of the universe. Thus, instead of employing global condensation,
one may want to focus only on transactions applicable to a particular reduct
finding process. Conceivably, fewer transactions may lead to better partitions
and overall efficiency, even though the pre-processing overhead is higher. We
call this procedure local condensation [401].

Here, we present a different idea, local projection, that can potentially
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achieve much higher dimensionality reduction. It transforms input data with
respect to each individual transaction. However, instead of grouping items into
blocks, one takes into account only those from the considered transaction.

10.4.2.1 Locally Projected Decision Table

Let us consider a single transaction from D. We construct a decision table
that has binary attributes for all items from this transaction.

Definition 10.24 For a transaction Ti ∈ D, where i = 1, .., |D|, a locally pro-
jected decision table based on DT S is a binary decision table LPDT DT S,Ti =
BDT DT Si

, where DT Si = (Di, Ti, Id) and Di = (Tk ∩ Ti)k∈K .

Hardness of an input decision system DT S can be characterized by the
dimensionality of corresponding locally projected decision tables for all dis-
cernable transactions.

Definition 10.25 The average and maximum dimensionality of locally pro-
jected decision tables based on DT S are defined as

avgDim(DT S) = |{|T ||T ∈ Rc ∧ c ∈ Id}|/
∑

c∈Id |Rc|

maxDim(DT S) = maxT∈Rc∧c∈Id |T |, respectively.

Note that, when all transactions are discernable, these parameters refer to
the average (maximum) transaction length in DT S.

Again, we introduce a concise notation to represent patterns generated by
an object and attribute set in a locally projected decision table.

Definition 10.26 For Ti = {Ik|k ∈M ′}, u ∈ U , B ⊆ Ci = {ak|k ∈M ′}, a
locally projected pattern based on the object and attribute set is an itemset
itemPattDT S,Ti(u,B) = {Ik ∈ Ti|ak ∈ B ∧ ak(u) = 1 ∧ k ∈ M ′}, where
M ′ ⊆ {1, ..,m} and LPDT DT S,Ti = (U , Ci, d).

Note that |itemPattDT S,Ti(ui, B)| = |B|. Whenever a decision transaction
system is known from the context, the respective subscript is omitted.

Example 10.15 In Table 10.7 we present the locally projected table based on
the decision transaction system DT S (Table 10.6) and the transactions: T1,T2,
T3, respectively. In particular, the attribute set {d, h} generates the following
patterns: itemPattT1(u1, {d, h}) = dh, itemPattT1(u5, {d, h}) = h. For this
dataset, we may calculate avgDim = (3 + 3 + 3 + 2 + 3 + 3)/6 = 17/6 = 2.83
and maxDim = 3, which gives 64.6% and 62.5% of a dimensionality gain
comparing to a binary decision table.

Theorem 10.10 states that the complete JEP space for a decision transac-
tion system and given class can be obtained by finding the locally projected
table for each discernable transaction and generating patterns for the object
corresponding to this transaction and all attribute sets from this table.
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TABLE 10.7: The locally projected tables: LPDT DT S,T1 , LPDT DT S,T2 ,
LPDT DT S,T3

a d h d
u1 1 1 1 0
u2 1 0 0 0
u3 0 0 0 0
u4 0 0 0 1
u5 0 0 1 1
u6 0 0 0 1

a f g d
u1 1 0 0 0
u2 1 1 1 0
u3 0 0 1 0
u4 0 0 0 1
u5 0 0 0 1
u6 0 1 1 1

c e g d
u1 0 0 0 0
u2 0 0 1 0
u3 1 1 1 0
u4 1 1 0 1
u5 0 1 0 1
u6 0 0 1 1

Theorem 10.10 ∀c∈Id{itemPattDT S,Ti(ui, R)|i ∈ K∧ui ∈ POS(Ci, d)∩Uc∧
LPDT DT S,Ti = (U , Ci, d) ∧R ⊆ Ci} = JEP (C ′c, Cc).

The respective left bound of a JEP space can be found by applying local
reducts for a given object rather than arbitrary attribute sets.

Theorem 10.11 ∀c∈Id{itemPattDT S,Ti(ui, R)|i ∈ K∧ui ∈ POS(Ci, d)∩Uc∧
LPDT DT S,Ti = (U , Ci, d) ∧R ∈ REDLOC(ui, d)} = Lc.

Example 10.16 In order to illustrate Theorem 10.11, let us consider the
class 0. For LPDT DT S,T3 we have REDLOC(u3, d) = {{c, g}, {e, g}}. Each
of these reducts refer to certain minimal patterns from L0. On the other
hand, the pattern a is a minimal JEP, thus, we are able to find a re-
spective set of local reducts and a respective locally projected table, namely:
{a} = REDLOC(u1, d) for LPDT DT S,T1 .

10.4.2.2 Discovery Method

Minimal jumping emerging patterns can be identified by local reduct com-
putation in locally condensed tables based on consecutive transactions of a
dataset. The actual procedure follows from Theorem 10.8.

Let us consider a decision transaction system DT S = (D, I, Id). For
each transaction Tk ∈ D, we build the locally projected decision table
LPDT DT S,Tk

= (U , Ck, d), where k = 1, .., |D|. Then, local reducts for
the object uk, that refers to Tk, are computed. Finally, each local reduct
R ∈ REDLOC(uk, d) is mapped to the respective pattern itemPattTk

(u,R)
and added to the minimal JEP collection for the class (Tk∩Id). Once all trans-
actions of DT S are processed, we obtain the complete collections {Lc|c ∈ Id}.

Local projection can significantly reduce problem dimensionality, espe-
cially for sparse data. Although reduct computation remains the pivotal and
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Input: DT S
Output: all minimal JEPs
Method:
1: Lc = ∅ for each c ∈ Id
2: for(k = 1; k <= |D|; k ++)
3: Construct the locally projected decision table LPDT DT S,Tk

4: Compute REDLOC(uk, d) in LPDT DT S,Tk

5: Lc = Lc ∪ {itemPattDTS,Tk
(uk, R)|R ∈ REDLOC(uk, d)},c = Tk ∪ Id

6: return Lc|c ∈ Id

FIGURE 10.5: The JEPLocalProj algorithm. Adapted from Ref. [397], with
kind permission from Springer Science+Business Media.

hardest task, additional processing of polynomial complexity may start to
have noticeable negative impact on overall efficiency of the algorithm. Below,
we comment on five optimizations that can potentially alleviate this effect.

(a) It is not necessary to build tables LPDT DT S,Ti , for each Ti ∈ D,
explicitly. It suffices to construct respective discernibility sets. Note that, when
local reducts are being computed for a certain object, one takes into account
only objects from other classes from the class of this object. Consequently, for
a given locally projected decision table, only the elements of the discernibility
set that correspond to this object are meaningful for reduct finding.

(b) Transactions that are not maximal JEPs can be eliminated upfront,
since they cannot introduce any new JEPs to the solution.

(c) A significant improvement can be achieved by grouping transactions
by their classes. This allows us to iterate over only these objects that are
necessary for particular processing.

(d) Discernibility sets for objects in one class share information on
common attributes. Let us consider BDT DT S = (U , C, d). We have {X ∩
{ai}|DCDT S,T1} = {X ∩ {ai}|DCDT S,T2}, for each c ∈ Id, T1, T2 ∈ Dc,
T1 ∩ T2 �= ∅ and Ii ∈ T1 ∩ T2. This per-attribute information may be precom-
puted for each class and each attribute that belongs to some transaction in this
class or computed lazily and stored when successive transactions are consid-
ered. As a result, one obtains a cache of the form {(c, Ii, {u|u ∈ U−Uc∧a(i) =
0})|c ∈ Id∧ i ∈ {1, ..,m}}, which is later used to build discernibility sets with-
out examining the database every time. After construction from the cache, a
set has to be reduced, since respective locally projected tables are different.

(e) For sparse datasets with a large number of transactions, elements of the
discernibility collection of LPDCDT S,Ti = (U , Ci, d), for i ∈ K, are often close
in size to |Ci|. Therefore, it may be more efficient to store their complements.
In other words, for each object, one may generate an element consisting of
attributes with values equal to 1.
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11.1 Introduction

This chapter presents a high-level overview and analysis of contrast pattern
(CP) based classification. It identifies two main issues for CP-based classifica-
tion, namely CP model selection and CP-based classification strategy. It de-
scribes and compares representative CP-based classification algorithms, with
respect to how they deal with the two main issues. It also discusses how and
why CP-based classifiers can achieve high classification accuracy. Together,
the presented algorithms use many of the important techniques that have
been introduced in the general CP-based classification paradigm.
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A contrast pattern based classification algorithm builds a CP
model in the training phase, and uses the CPs in the CP model according
to some classification strategy to arrive at classification decisions.

This chapter also provides an analysis of the learning capability of CP-
based classification models using the bias-variance decomposition (BVD) for
classification errors, of the ability of those models to avoid overfitting, and of
the ability of those models to solve the imbalanced classification problem.

It is widely recognized that CP-based classifiers often achieve high accu-
racy and offer various desirable properties (such as explainability, noise tol-
erance, suitability for imbalanced classification). This book contains several
chapters related to CP-based classification, each dealing with a special way
of CP-based classification, or a special application domain, including: using
length statistics of emerging patterns1 (EPs) in outlier and rare-class predic-
tion (Chapter 12) and on using EPs to enhance traditional classifiers (Chap-
ter 13); on EP-based rules for classifying/characterizing subtypes of leukemia
(Chapter 15) in the field of bioinformatics; on emerging chemical pattern based
classification of chemical compounds (Chapter 18) and emerging molecular
pattern based analysis of toxicity of chemical molecules (Chapter 19) in the
field of chemoinformatics; on EP-based classification for spatial/image data
(Chapter 20); on EP-based crime spots analysis and rental price prediction
(Chapter 24), on EP-based diagnosis of heart diseases and prediction of pow-
erline safety (Chapter 23), and on EP-based activity recognition (Chapter 22).

CP-based classifiers, especially CAEP-style aggregation based classifiers,
have been proven to be generally accurate and explainable, to perform well
for imbalanced classification, and, as discussed in Chapter 18, to be useful for
situations where few training examples are available.

11.2 Main Issues in Contrast Pattern Based Classifica-
tion

Contrast patterns between data of different classes represent differences
between the classes. (See Chapter 1 for more details regarding various prelim-
inaries on contrast patterns.) CPs often capture class-discriminating signals
with very high confidence (often 100%). However, a single CP by itself is often
too weak as a prediction model to predict the class label for instances, as it
typically occurs in only a small portion of data objects. Luckily, some carefully
selected set of CPs can collectively form an accurate classification model for
predicting the class label for query instances.

1Emerging patterns (EPs) are a special kind/name of CPs.
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Two major issues must be addressed when developing CP-based classifiers.
We give an overview on the two issues and their sub-issues below, and will give
detailed explanations on, and approaches to address, those sub-issues later.

(1) CP Model Selection. What set of contrast patterns are selected for
use in the classification process? We will refer to the set of CPs as a CP-based
classification model. While including all CPs in the CP model is intuitively
attractive, because the complete set of CPs describes the difference between
the classes in all possible ways and this set gives the classifier more flexibility
in selecting CPs in the classification process, it is not feasible in practical ap-
plications, since computing all possible CPs may be computationally infeasible
and since the CP model may become too large. An ideal CP model should be
a relatively small set of diversified representative high-quality CPs.

This issue can be either addressed in two separate processes, where pattern
selection happens after pattern mining, or in a combined one where pattern
selection is pushed into the pattern mining process. Pattern mining and selec-
tion can be performed in the eager manner, where a CP model is built once
and used for the classification of all data objects, or in the lazy manner, where
a CP model is built and used just for classifying a single data object.

When selecting CPs for inclusion in a CP model, the utility of individual
patterns for predicting class labels is often considered; important factors in-
clude supports, support difference, support growth rate, and pattern length
ratio (see Chapter 14 and Ref. [277]). Besides utility of individual CPs, rela-
tionships among patterns, such as item-based or matching-data based pattern
similarity, improvement on discriminative power (similar to lift), or total cov-
erage of selected patterns, are also important factors in CP model selection.

(2) CP-Based Classification Strategy. How are the contrast patterns
in the CP model used in the classification process? We will refer to the ap-
proach designed to answer this question as a CP-based classification strategy.

Many choices are possible here: The classification strategy can use the
“sequential-one-rule” approach, or use a method based on the “multi-pattern
aggregation” approach. Moreover, there are many possible variations for each
approach, especially for the “multi-pattern aggregation” one, regarding how
the patterns are used to make classification decisions. Some methods even use
length statistics of CPs to classify data objects (see [82] and Chapter 12).

Other problems need to be considered in designing a CP-based classifi-
cation strategy, such as avoiding counting duplicate contributions (by similar
CPs), and normalization (to counter pattern polarization – some classes’s CPs
are poorer in quantity and quality than others).

In general, the CP-based classification strategy issue has a bigger impact
on constructing desirable classifiers.
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11.3 Representative Approaches

The first contrast pattern based classification algorithms are CBA [270],
and CAEP2 [126]. Major representative CP-based classification systems after
CBA and CAEP include iCAEP [465], JEP-C [244], DeEPs [245], CMAR [258],
and CPAR [450]. CAEP was the first to use the multi-pattern aggregation
way to make classification decisions. All of the above, except CBA, use the
pattern aggregation approach; CBA is the only one that treats its CP model
as a sequence. CBA, CMAR, and CPAR referred to CPs as class association
rules.

The above representative CP-based classification models mine, select, and
use CPs differently. Below we discuss how they deal with the two main issues.

11.3.1 Contrast Pattern Mining and Selection

The mining and selection of CPs for inclusion in the CP model typically
rely on decisions on three factors.

(1) Thresholds. Thresholds are evaluated on individual patterns to de-
termine if they are excluded. Commonly used thresholds include thresholds on
pattern support in the whole dataset, on confidence, on supports in individual
classes, and on growth rate (support ratio). Using thresholds on whole-dataset
support may not be desirable for imbalanced classification or situations where
some classes have many high support CPs, while some classes have few or no
high support CPs. Almost all CP-based classification algorithms use support
thresholds, although jumping emerging pattern based approaches only rely on
thresholds on growth rates. (Recall that jumping EPs are EPs with infinite
growth rate – they occur in their home class but never in other classes.) Min-
ing with growth rate based thresholds allow us to mine CPs without support
thresholds, and hence allow us to obtain useful CPs with high growth rate
and low support. However, using ∞ as minimum growth rate threshold can
also be undesirable in situations where few patterns satisfy this threshold.

(2) Pattern Pruning Method. By a pattern pruning method, we mean
a method where certain patterns are excluded when certain other related
patterns are already selected. Pattern pruning can be performed within or
after the mining process. There are two general pattern pruning methods.

(2a) Only patterns in the left bounds of borders can be selected and pat-
terns not in the left bounds of borders are all excluded. Recall that a border
has the form < L,R > where L and R are anti-chain sets of itemsets such
that each X ∈ L is a subset of some Y in R and vice versa; the border repre-
sents the set of all itemsets Z where there exist X ∈ L and Y ∈ R satisfying
X ⊆ Z ⊆ Y . For example, < {ab, ac}, {abcd} > is a border, representing

2The research on CAEP as reported in [126] was done during July 1998 — February
1999.
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the set {ab, ac, abc, abd, acd, abcd} of itemsets. Patterns in the left bound of a
border for EPs are the most general and considered the most expressive, since
they have the highest support among all patterns represented by the border,
and since, in the case of jumping EPs, any proper subset of a jumping EP in
the left bound is no longer a jumping EP. Several jumping EP based methods
(e.g. DeEPs) use this method to mine/select CPs in the CP model. In one
sense, EPs in the left bounds of borders are used to prune all superset EPs.

(2b) Patterns that do not offer significant improvement over related se-
lected patterns are excluded. In general, a pattern X is related to a pattern

Y if X is very similar to Y ; similarity can be defined by item overlap ( |X∩Y ||X∪Y |),

by matching tuple overlap ( |mt(X)∩mt(Y )|
|mt(X)∪mt(Y )|), or simply by the subset-superset

relationship (X ⊂ Y and perhaps also |Y −X | is small). The subset-superset
relationship is often used, with some improvement thresholds on support,
growth rate and other factors. For example, if Y is a superset of a selected CP
X and gr(Y ) is not significantly higher than gr(X), then Y is not selected.

CAEP and iCAEP both use the subset-superset (general-specific) based
pruning method. (To our knowledge, the other similarity measures discussed
above have not been considered in CP model determination.) CMAR defines
a rank order on CPs (with high χ2 value) in terms of confidence and support.
Then CMAR uses higher ranked more general CPs to prune lower ranked
more specific CPs, and also uses data coverage of CPs (somehow similar to
the strategy of CBA) to prune CPs. CPAR’s greedy approach to mining CPs
using information gain improvement also belongs to this category. Sometimes
“improvement” may be expressed as “the next best”, as is the case for CBA.
The “improvement based selection method” does not prune all supersets of
selected CPs in general, unlike the “left bound” method.

(3) Pattern Mining Time. While most CP-based classification algo-
rithms build the CP model in an eager manner, some builds the CP model
in the lazy manner. For example, DeEPs builds the CP model after a test
example is given for classification, using only the projection of training data
limited to the items in the test example.

11.3.2 Classification Strategy

Many contrast pattern based classification strategies have been proposed.
We analyze them with focus on how they deal with these four major issues:

(1) The classification score formula. This deals with how the discrim-
inative power of CPs matching given test instances are used to arrive at a
classification score for the classes.

(2) Matching CP selection. Should one use all matching CPs of an
instance t in the CP model, or should one use a selective subset of matching
CPs? Selecting a desirable subset can help avoid counting duplicate score
contributions made by similar CPs (see item 4 below).

(3) Classification score normalization. Sometimes there is an imbal-
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ance in the number and quality of CPs of different classes – some classes
have many high quality CPs while some other classes have very few (high
quality) CPs and instances of the CP-poor classes may be classified to the
CP-rich classes. This problem is often related to the imbalanced classification
problem defined in terms of the training set size imbalance, but not always.
Normalization is one approach to solve the problem.

(4) Duplicate score contribution avoidance. Two CPs can be very
similar to each other (when measured by their items or by the matching data)
and it may be a good idea to count their discrimination signals only once.

CAEP makes classification decisions by aggregating support-weighted
probabilities of all CPs (in its CP model) matching a test instance. (The
CP model of CAEP is obtained using support and growth rate improvement
between subset-superset EPs.) Each EP X can differentiate the class mem-
bership of a fraction of instances that match X , and the degree of X ’s support
change in the classes signifies the odds that an instance matching X belongs
to the class of X . For example, given an EP X with a support ratio of 5 : 1
between class C1 and class C2, an instance matching X has a 5 : 1 odds
to belong to class C1 if the two classes have roughly equal population sizes.
The aggregation approach was proposed in [126], based on the intuition that
combining (summing) those odds of all matching EPs can help make a more
accurate classification. CAEP also considers the frequency of EPs, in addition
to the odds; it favors high support EPs and lets such EPs give more influence
on the classification scores. Let E(Cj) denote the EPs of a class Cj . Let t
be a test case, and let Et(Cj) be the set of EPs in E(Cj) that match t. The
aggregate score of t for Cj is given by

score(t, Cj) =
∑

X∈Et(Cj)

supp(X,Cj)×
gr(X)

gr(X) + 1
. (11.1)

Observe that the above can be rewritten as

score(t, Cj) =
∑

X∈Et(Cj)

supp(X,Cj)×
supp(X,Cj)

supp(X,Cj) + supp(X,∪i�=jCi)
. (11.2)

In Equation 11.1 the contribution of each CP X to score(t, Cj) can be
divided into two components: The first is the support of X in Cj , and the
second is roughly the probability that t belongs to class Cj . Thus the score is
the sum of frequency weighted probability of the matching EPs of t.

CAEP uses some fixed percentile of scores for training data in each class
Cj to normalize the score for Cj as follows: Let sc1, ..., scnj be the sorted list
of score(s, Cj) defined by Equation 11.1 for training instances s of Cj and
class Cj ; let sc median(Cj) denote the median of sc1, ..., scnj . Then, we select

the class Ci that maximizes the normalized score
score(t,Cj)

sc median(Cj)
as the class of

t. Normalization using other fixed percentile can also work. This was shown
to help increase the odds for classifying instances of a CP-poor class (with few
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high quality EPs) to that class. To the best of our knowledge, CAEP was the
first to use normalization to overcome the CP/class imbalance problem.

iCAEP adopts a minimum description/message length (MDL/MML)
based approach to aggregate the discrimination signals of multiple selected
EPs matching a test instance. MDL [354] and MML [417] assess the quality
of model M for dataset D, using the total length needed to describe M and
to describe D using M ; the best model is one achieving minimum description
length. Moreover, iCAEP uses ConsEPMiner [464] to mine EPs, hence growth
rate improvement is used to prune EP Y if there exists some EP X in the CP
model of iCAEP satisfying X ⊂ Y and gr(Y )−gr(X) < some given threshold.

Both the selection of EPs and classification score derivation pay attention
to description length minimization.

Let t be a test case. iCAEP selects, for each class Cj , a subset Etj of EPs of
class Cj that match t such that Etj gives a partition of t (when t is viewed as
a set). The “partition” requirement is chosen to ensure that a small number
of EPs are used to classify an instance, which helps avoid counting duplicate
contributions made by similar patterns. To ensure that every instance has a
partition by EPs, each singleton itemset is considered as an EP of every class;
poor quality singleton EPs will give poor contribution to the classification
score (see Equation 11.3). The heuristic of preferring “longer” EPs with more
items (based on the intuition that such EPs capture important interaction
among large number of items), and the heuristic of preferring EPs with high
growth rate among EPs with equal length, are used in determining Etj .

After Etj of EPs of class Cj is determined for each class Cj , the encoding
length of t for class Cj is defined as follows:

L(t, Cj) = −
∑
X∈Et

j

log2P (X |Cj). (11.3)

The estimated probability of X given Cj is

P (X |Cj) =
|mt(X,Cj)|+ 2|mt(X,∪iCi)|/| ∪i Ci)|

|Cj |+ 2
.

(Recall that mt(X,D) = {t ∈ D | X matches t}.) The instance t is assigned
to the class Ci that minimizes L(t, Cj).

We will use experiments to demonstrate the good performance of iCAEP.
The CP model of JEP-C contains the jumping EPs that belong to the left

bounds of borders [118] of jumping EPs. Jumping EPs in the left bounds of
borders of jumping EPs are considered as the most expressive jumping EPs,
since they have the highest support among all jumping EPs and the results
of removal of any item from such jumping EPs are not jumping EPs. Given a
test instance t, let Etj be the set of the “left-bound” jumping EPs of class Cj

that match t. Then the score of t for class Cj is given by∑
X∈Et

j

supp(X,Cj). (11.4)
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(Equation 11.4 is a special case of Equation 11.1, since gr(X)
gr(X)+1 = 1 when

gr(X) = ∞.) The instance t is classified to the class Ci that maximizes∑
X∈Et

j
supp(X,Cj).

DeEPs adopts a lazy approach to classification using jumping EPs. Simi-
larly to JEP-C, it uses only jumping EPs for classification and selects jumping
EPs from the left bounds of borders of jumping EPs. Differently from JEP-
C, where jumping EPs of the CP model are computed at the training stage,
DeEPs computes the jumping EPs at the classification stage after a test in-
stance t is given, from the projecting out the items of the instances that do not
occur in t. Those mined “left-bound” jumping EPs are then used to match in-
stances of the classes, and the sizes (normalized by the corresponding classes’
sizes) of the matching data in the classes are used to decide the class of t –
the class Ci that maximizes the normalized size is then deemed as the class of
t. Specifically, let Et(Cj) denote the set of “left-bound” jumping EPs for class
Cj mined for t, the classification score of t for class Cj is defined as:

|{x ∈ Cj |X ∈ Et(Cj), X matches x}|
|Cj |

(11.5)

The scoring strategy of DeEPs is motivated to avoid the duplicate contribution
counting problem and to avoid the abstention problem (where a test instance
may not match any mined CPs).

In CBA, the first rule (in a sequence of CPs representing the CP model)
whose body matches an example t is used to classify t. Rules are ranked by
their confidence, support, and number of conditions in the antecedent. CBA
does not use aggregation of multiple CPs. While relying on a single rule for
classification offers the ability to give straight forward explanation of classifi-
cation decisions, the approach can suffer from low classification accuracy.

CMAR uses a weighted χ2 approach to aggregate the combined effect of
the multiple CPs for a class. Specifically, for each instance t, each matching
CPX of t in a class Cj contributes the value of

v
max vv, where v is the χ2 value

(for evaluating the correlation of X with class Cj) and max v is an estimated
maximum χ2 value, to the score of t for class Cj .

CPAR uses the average probability of the best k patterns that matches
a test instance t (for a fixed k). Specifically, the classification accuracy of a

pattern X of class Cj is estimated as
supp(X,Cj)

supp(X,∪iCi)
. The average accuracy of the

k patterns for class Cj with the highest probabilities is then used as the score
of t for Cj ; and t is classified to the class with the highest average accuracy.

We now discuss how two other EP based classifiers select and aggregate
multiple EPs. PCL (see [248] and Chapter 15) aggregates the discriminating
power of multiple CPs using a normalized contribution: Let Ej be the set
of EPs for class Cj in the CP model. Let s1(Cj), ..., snj (Cj) be the sorted
(descending order) list of supp(X,Cj), the support of EPs X of class Cj .
For a test instance t, let Etj be the subset of EPs in Ej that match t; let
st1(Cj), ..., s

t
mj

(Cj) be the sorted list (descending order) of the supports for
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EPs in Etj . Then the score of t for class Cj is given by
∑k

i=1
sti(Cj)
sti(Cj)

(for a fixed

k). This approach normalizes the supports of matching EPs of a class by the
supports of the top-support EPs of the class. FEPC selects more specific fuzzy
EPs and excludes more general ones of selected fuzzy EPs in the aggregation
of multiple fuzzy matching EPs of test instances; see [162] and Chapter 8.

11.3.3 Summary

(1) For pattern mining, most classification algorithms use some heuristics
when exploring the pattern space. Various heuristics have been proposed to
reduce the number of patterns that need to be examined, including various
improvement based pruning methods that prune more specific CPs after more
general CPs have been mined. The jumping EP-based approaches (JEP-C and
DeEPs) adopt border-based algorithms for mining patterns, hence avoiding
exploring the huge pattern search space; they also allow us to mine useful
CPs without support thresholds.

(2) For CP model selection, various improvement based methods have been
used to prune more specific CPs after more general CPs have been selected.

(3) To select patterns from the CP model to classify a test instance t, most
classifiers use all applicable CPs in the CP model, except iCAEP, CBA, PCL,
and CPAR. CBA employs the first matching rule approach. iCAEP chooses a
group of long CPs that partitions a given test instance, and PCL and CPAR
use certain k best matching patterns.

(4) Classifiers differ greatly in their strategy of using patterns or rules for
classification. The different classification strategies are all developed based on
different intuitions of making use of patterns for classification. Different classi-
fication strategies can result in different classification accuracies. The following
aggregation approaches have been considered: support weighted probability,
minimal encoding length, support (of jumping EPs), χ2-proportion weighted
χ2, average probability of best k patterns, and normalized support of best k
patterns. Observe that some of these have impact on avoiding counting dupli-
cate contribution, and some of these have impact on countering the CP-rich
vs CP-poor imbalanced classification problem.

Contrast pattern based classifiers have been shown to make consistently
more accurate predictions than popular classification models including the de-
cision tree, Naive Bayes, Nearest Neighbor, bagging, boosting, even SVM. The
good classification performance of CP-based classifiers can be attributed to:
(a) CPs can describe sharp multi-dimensional contrasts between data classes
which can reveal important discriminative interactions among attributes. (b)
The matching-pattern based classification of CP-based classifiers allows us
to use the conditions on multiple attributes contained a multi-dimensional
discriminative pattern synergistically. (c) The CP models used by CP-based
classifiers are more flexible and the CPs are mined from a search space much
bigger than the search space of greedy search methods such as the decision
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tree approach. (d) Most importantly, the aggregation approach allows us to
combine the discriminative power of multiple matching CPs for test instances.

Approaches having more flexibility in selecting the CPs and in the aggrega-
tion strategy can be applied to more applications, including situations where
the difference between the contrasting classes is subtle (the CPs can have
fairly small growth rates and/or they have fairly low support). Approaches
with a more restricted CP model and a more restricted way of using the CPs
may suffer when very few CPs with high support or high growth rate exist for
inclusion in the CP model.

11.4 Bias Variance Analysis of iCAEP and Others

Bias-variance decomposition (BVD) has often been used to analyze clas-
sification algorithms [41, 216]. Below we present the BVD of a representative
contrast patten based classifier, iCAEP, and compare its BVD against that
of three popular classification schemes of C4.5, Naive Bayes, and kNN. This
BVD analysis allows us to characterize the bias and variance of the iCAEP
classifier. Moreover, using the BVD profile, we can identify opportunities to
develop new strategies to further improve CP-based classification models.

The BVD analysis decomposes classification errors into three terms,
namely bias, variance, and noise. To define them, we need some preliminaries.
Let D = {(x1, y1), ..., (xn, yn)} be a training dataset of (example, class label)
pairs, and let {D1, ..., Dm} be a set of training datasets, with eachDj obtained
from D by sampling with replacement. A given classification algorithm builds
a classifier fj for each Dj . A loss function L(yi, y) is used in the BVD analysis
to measure the cost of predicting y when the true class is yi. We consider the
zero-one loss function L here: L(yi, y) = 0 if y = yi and L(yi, y) = 1 otherwise.
For each xi, let y

∗
i denote the optimal prediction y minimizing Ey[L(y

∗
i , y)]; the

main prediction for the m classifiers f1, ..., fm (and the zero-one loss function
L) is the mode (most frequent) of {f1(xi), ..., fm(xi)}, denoted by ymi .

In BVD, bias is the loss incurred by the main prediction relative to the opti-
mal prediction, defined by Ei[L(y

∗
i , y

m
i )]. Variance is the average loss incurred

by predictions relative to the main prediction, defined by EiEj [L(y
m
i , fj(xi))].

Noise measures the unavoidable component of the loss, incurred independently
of the learning algorithm; it is defined as Ei[L(yi, y

∗
i )].

We use the BVD methodology of Domingos’ unified framework [111] (that
article also describes how to decompose the prediction error on an example xi

into contributions to the bias, variance, and noise components). Also, following
the procedure described in [429], ten-fold cross validation experiments were
repeated 50 times to compute the bias and variance of iCAEP and the other
classifiers. Table 11.1 lists the datasets used in our experiments.

It should be noted that, in empirical studies, classification errors are gen-
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Dataset Size #classes #attr
German 1,000 2 20
Hepatitis prognosis 155 2 19
Iris 150 3 4
Pima 768 2 8
Tic-tac-toe 958 2 9
Wine 178 3 13

TABLE 11.1: Datasets Used in BVD Experiments

erally decomposed into the bias and variance components only, with the bias
component including the noise component (since it is hard to estimate the
noise component). The discussion below also follows this treatment.

Dataset Loss Bias Var Varp Varn Varc
iris 0.139 0.060 0.079 0.102 0.025 0.023
german 0.261 0.248 0.013 0.041 0.028 0.028
hepatitis 0.163 0.154 0.009 0.021 0.012 0.012
pima 0.263 0.254 0.009 0.037 0.027 0.027
ttt 0.081 0.069 0.012 0.022 0.010 0.010
wine 0.015 0.011 0.004 0.005 0.001 0.001

TABLE 11.2: The BVD Result for iCAEP

Table 11.2 contains the BVD experimental results for iCAEP. Loss, Bias,
and Var represent respectively the average loss, bias, and variance. Varp and
Varn represent the average contribution to variance from the unbiased and
biased instances respectively. (An instance xi is biased if it gives a positive
contribution to bias, i.e. the main prediction and the optimal prediction for xi

differ.) Varc represents the average contribution to variance from the biased
instances, with the variance from each instance weighted by the probability
that the class predicted is the optimal prediction, given that it is not the
main prediction. Var = Varp − Varn and Varn = Varc in a two-class problem,
whereas Var = Varp − Varc in non-two-class problems.

Clearly, Table 11.2 indicates that iCAEP tends to produce stable classifi-
cation models in different application domains; it is not sensitive to variations
in training data. This is true for contrast pattern based classification models
in general. This may be partly attributable to the classification strategy of
aggregating multiple contrast patterns for classifying test examples.

Moreover, Table 11.2 indicates that iCAEP as a classification model has
high bias, since bias is almost always the main component for the overall clas-
sification loss. The average contribution of bias to classification errors varies
from 43.2% (Iris) to 96.6% (Pima), with an average contribution of 81.3%.

Figure 11.1 compares the BVD performance of iCAEP with that of three
other popular classification models, namely C4.5, kNN, and NB. In general,
iCAEP achieves the lowest error (except on Iris) among all algorithms. This
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FIGURE 11.1: The BVD Results.

suggests that in general iCAEP is a more accurate classification scheme than
C4.5, kNN, and NB. Comparing the contribution of the bias component
towards the overall error, iCAEP has the highest relative bias component
(81.3%); in contrast C4.5 has 53.5%, kNN has 59.4%, and NB has 70.2%
contribution from the bias component, which are much lower than iCAEP’s.

The experiments suggest that there is room to improve contrast pattern
based classification algorithms. In general the multi-variate CPs and the ag-
gregation style of classification provide more powerful ways to capture/utilize
discriminative interactions among attributes, compared to the patterns formed
and the way patterns are used, by the one-attribute-at-a-time decision trees,
and therefore CP based classifiers achieve accurate classification. Neverthe-
less the high bias behavior in CP based classification schemes indicate that
there is potential for finding low bias CP-based classification strategies to im-
prove CP-based classification. Research in this direction may likely depend on
more advanced approaches to aggregate the discriminating power of CPs, in
addition to more advanced approaches to selecting CPs.

11.5 Overfitting Avoidance by CP-Based Approaches

Overfitting refers to the phenomenon where a classifier is much more ac-
curate on the training data than on unseen testing data. Overfitting occurs if
a model is developed to fit the training data precisely, to the extent that it
loses generality for unseen test data. Overfitting is an important issue in clas-
sification model induction. It is believed that strategies to reduce overfitting
can improve the generalizability of classification models and therefore improve
their predictive accuracy. This section discusses ways to avoid overfitting in
the induction of contrast pattern based classifiers.
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There are three general approaches to avoid overfitting in the model devel-
opment process. One approach is forward pruning or pre-pruning [433] — the
process of searching for the best model is stopped when a sufficiently complex
model is found, and hence models which are more complex than the current
one are pruned before they are computed. An example is the early stopping
strategy in decision tree learning [345]. Another approach to avoiding overfit-
ting is backward pruning or post-pruning [433] – a complex model that fits
the training data well is first developed and then pruned to simplify it. An
example is the post-pruning strategy in decision tree learning [345], where
a decision tree is first fully grown and then pruned to improve its general-
ization performance. The ensemble approach such as bagging [58] is a third
approach to avoiding overfitting, which is especially effective since this reduces
the variance of the component classifiers of the ensembles.

Contrast pattern based classifiers generally aggregated multiple patterns
to reach a classification decision (except CBA). It has been reported in the
literature that this induction strategy can achieve high classification accuracy
and usually does not have the overfitting problem. The strategy of aggre-
gating patterns for classification is similar in spirit to bagging predictors for
classification, and thus can avoid overfitting.

In some sense, some CP-based classifiers also utilize pre-pruning in the CP
mining process and post-pruning in selecting rules in the aggregation based
scoring process. Generally the support and support growth rate thresholds
are used as a simple measure to select the patterns. Moreover, some CP-
based classifiers use some other strategies to select patterns; for example,
“improvement based pruning” prunes a CP Y which is a superset of some
selected CP X if the support and/or growth rate of Y are not much more
desirable than those of X .

In iCAEP inter-pattern constraints are used to remove patterns, from the
classification model, meeting given support and support growth rate thresh-
olds if they are subsumed by any selected pattern. Moreover, patterns in the
classification model are selectively used to classify test instances — long pat-
terns are preferred over short ones, and among pattern sets that cover a test
instance, those sets that have no item overlap between patterns are used.

In JEP-C and DeEPs, only patterns with infinite support growth rate are
included in the model; no specific pre-pruning or post-pruning is performed.
In CMAR, several strategies are used to prune less significant rules for classi-
fication, considering factors like the subsumption relationship between rules,
and the coverage training instances of rules. In CPAR, only the best k rules
for each class are selected to classify a test instance.

It has been reported that the heuristic-based forward pruning strategy,
together with the aggregation approach to applying patterns for classification
has achieved reasonably effective overfitting avoidance and has ensured high
classification accuracy for unseen test examples.
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11.6 Solving the Imbalanced Classification Problem

The class imbalance problem exists in many classification applications,
where the examples of primary interest are from the minority class. In such
applications, standard classification models tend to pay too much attention on
the majority class and pay too little attention on the minority class. This sec-
tion examines how contrast pattern based algorithms perform for imbalanced
classification, using the example of iCAEP. The discussion below is focused on
two-class problems, and the minority class is often referred to as the positive
class and the majority class is referred to as the negative class.

We now give some background on studies on imbalanced classification. Re-
sampling and cost-sensitive learning techniques are two popular techniques to
combat imbalanced class distribution for classification. Various re-sampling
strategies have been proposed, including random oversampling with replace-
ment, random undersampling, focused oversampling, focused undersampling,
and synthetic oversampling (see [80] for an overview). In the cost-sensitive
learning approach, a weight is associated with the training examples to counter
the imbalance of data distribution. Emerging patterns have been used to im-
prove the re-sampling and cost-sensitive learning process for classifying rare
classes [5, 8, 140]. However, the performance and properties of the associative
classification models in general, and the contrast pattern based classification
models in particular, have not been systematically studied for imbalanced clas-
sification. Recently [21] studied along this line and it was shown that classifiers
based on contrast patterns can be effective for classifying rare examples.

11.6.1 Advantages of Contrast Pattern Based Classification

Rather than re-sampling or re-weighting in the original feature space, it
may be better to work in the EP space and use CAEP-style classification to
deal with imbalanced data distribution. There are three reasons for this:

(a) Each EP is a multi-variate condition involving several attributes. A
set of EPs can more precisely capture discriminative conditions that exist in
the minority class but rarely exist in the majority class, than other classifiers
such as a decision tree or NB. It is also better than distance based classifiers
such as kNN, since distance can become meaningless [51] in high dimensional
spaces.

(b) For each EP of the minority class, its importance is relative to its sup-
port in the minority class, instead of relative to its absolute count. This implies
that patterns that may be considered insignificant measured by support in the
entire dataset can become significant now. This bias can help counter-balance
the class imbalance issue. (In standard classifiers, patterns with small support
relative to the whole dataset are simply discarded, which is likely a major rea-
son why these classifiers’ performance degrades significantly in the presence
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Dataset #features #instances # instances in minority class
CM1 21 498 49 (9.8%)
KC1 21 2109 326 (15.45%)
PC1 21 1109 77 (6.94%)
Labor 16 58 20 (35.09%)
Spambase 57 4601 1831 (39.80%)
Mushroom 22 8124 3916 (48.20%)

TABLE 11.3: Imbalanced and Balanced Datasets

of class imbalance.) Consider an imbalanced dataset of 10000 instances where
the minority class C1 has only 100 (1%) instances. Consider an EP e1 of C1

with supp(e1, C1) = 10% and an EP e2 of C2 with supp(e2, C2) = 10%. They
will be considered as equally important, since their relative support in the two
classes is the same, even though their absolute support count is 10 and 990
respectively. We will show below that this simple but effective bias, combined
with other strategies, can achieve accurate classification for rare examples.

(c) The CAEP-style classification aggregates all matching EPs of a test
instance t in each class C to arrive at the classification score for t in C.
This allows us to combine all available discriminative signals contained in t to
classify it. Combined with (a) and (b), the CAEP-style classification can work
well for imbalanced classification problems. This is confirmed by experiments.

11.6.2 Performance Results of iCAEP

Experiments were conducted to examine the performance of iCAEP, and to
compare it against state-of-the-art re-sampling and cost-sensitive techniques
for imbalanced classification. Meta-cost [110] is a technique that makes a base
classifier cost-sensitive; it requires a misclassification cost measure, which is set
to the inverse of class distribution in our experiments. SMOTE [79] re-samples
a dataset by applying the synthetic minority oversampling technique.

For imbalanced classification, three real-world imbalanced datasets (see
Table 11.3) from the software engineering discipline were used. They are avail-
able at the NASA IV&V Facility Metrics Data Program (MDP) repository
(http://mdp.ivv.nasa.gov/index.html). They are software metrics data at
the module (function/method) level for NASA software development projects.
Using static software metrics at the module level to predict software defects
has been shown useful [295]. Software defect prediction is a binary problem
where a module is classified as having defects or not. A minority of modules
(around 10% on average) contain defects.

Experiments were also conducted to test all algorithms for balanced clas-
sification, using three balanced datasets (Table 11.3) from the UCI repository.

Implementations in the data mining toolkit WEKA (version 3.6.0) [176]
were used for Naive Bayes (NB), MetaCost-NB, SMOTE-NB, and Decision
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Dataset iCAEP NB Meta- Smote- DT Meta- Smote-
NB NB DT DT

CM1 0.71 0.66 0.71 0.67 0.56 0.63 0.62
KC1 0.79 0.79 0.78 0.79 0.69 0.69 0.72
PC1 0.69 0.65 0.67 0.66 0.67 0.67 0.70

TABLE 11.4: AUC – Imbalanced Data. Bold: best results (AUC differing by
≤ 0.01 are considered equivalent). NB: Naive Bayes; DT: Decision Tree.

Tree (DT) (the J48 classifier in WEKA), MetaCost-DT and SMOTE-DT.
Ten-fold cross validation tests were used to measure all algorithms.

While overall accuracy is used to evaluate performance in balanced classifi-
cation, it is not suitable in imbalanced classification — a trivial classifier that
predicts every instance as in the majority class can achieve very high overall
accuracy yet its prediction for the rare class is extremely poor. Instead, the
following evaluation metrics are used. (a) True positive rate (TP-rate) and
true negative rate (FP-rate) measure respectively the prediction accuracy on
positive and negative classes, and false positive rate (FP-rate) and false nega-
tive rate (FN-rate) measure the error rate on the positive and negative classes.
(b) The Receiver Operating Characteristic (ROC) curve is a standard tech-
nique for summarizing classifier performance over possible tradeoffs between
TP-rate and FP-rate. The x-y axes are the FP-rate and the TP-rate. A good
classifier should have low FP-rates while maintaining high TP-rates. Area un-
der ROC (AUC) is often used as a single comprehensive measurement for the
performance for positive class prediction.

Table 11.4 shows the AUC for all classification algorithms on the 3 im-
balanced datasets, and Figure 11.2 shows the corresponding ROC curves. In
Table 11.4 the AUC for iCAEP compares favorably with all other algorithms
on all three datasets. Figure 11.2 shows that iCAEP achieves steadily high
TP-rate at very low FP-rate (≤ 20%) on all datasets except PC1. Figure 11.2
(a–c) shows that iCAEP outperforms NB, MetaCost-NB, and Smote-NB on
all datasets, confirming our belief that representative contrast patterns are
powerful for classifying rare examples. NB performs reasonably well on imbal-
anced datasets, despite being a simple model; MetaCost and SMOTE did not
improve the performance of NB significantly. In contrast, Figure 11.2 (d–f)
shows that Decision Tree suffers significantly from class imbalance. However
probably due to the above, Decision Tree responds well to MetaCost and
SMOTE to produce significant improvement.

The overall accuracy of all classification algorithms on the balanced
datasets is shown in Table 11.5. iCAEP obviously maintains a high overall
accuracy on all three balanced datasets and performs steadily well. In con-
trast, MetaCost and SMOTE have varying performance on these datasets.
Rather than maintaining the accuracy of base classifiers, on Labor, SMOTE
decreases the accuracy of DT from 79% to 70.17%, whereas on Spambase,
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Dataset iCAEP NB Meta- Smote- DT Meta- Smote-
NB NB DT DT

Labor 89.7 86.3 89.5 89.5 79.0 85.9 70.2
Spambase 91.2 89.9 80.6 79.7 93.0 93.1 92.9
Mushroom 99.8 99.7 92.9 96.0 100 100 100

TABLE 11.5: Accuracy – Balanced Data. NB and DT: see Table 11.4

MetaCost decreases the accuracy of DT from 89.87% to 79.72%. This may be
due to the inherent randomness of both techniques, even when the balanced
class distribution information is available to the model.

11.7 Conclusion and Discussion

Contrast pattern based classification has been proven to be both a fruitful
direction of research and a desirable method to solve real world problems in
many domains. Many highly effective CP-based classification algorithms have
been proposed, and have been shown to have high accuracy and to perform
well for imbalanced classification problems.

This chapter has provided a high level overview and analysis of contrast
pattern based classification algorithms. This was done by considering how
those algorithms handle the two main issues for contrast pattern based clas-
sification, namely contrast model selection and classification strategy using
the contrast patterns. This chapter also provided experimental evaluation of
contrast pattern based algorithms, with respect to the bias-variance decom-
position and how they behave for imbalanced classification.

We now briefly discuss some related work. Several papers (e.g. [257, 38])
studied selecting representative patterns for the CBA-style classification. [121,
60, 351] gave overviews on pattern based classification. [71] considered EP
based classification for relational data. [383, 139] studied noise tolerance of
CAEP-style classifiers. [453] considered a “causal associative classification”
approach. [428] considered using maximal EPs for classification.

There are many interesting problems to solve regarding improving CP-
based classification. As mentioned earlier, an ideal CP model for a classifier
should be a relatively small set of diversified representative high-quality CPs.
The ideas proposed for measuring clustering quality and constructing clus-
ters based on quality, abundance, and diversity of CPs (see [276, 152, 277]
and Chapter 14) can be useful here. There are many challenging classifica-
tion/prediction problems that require both high accuracy and highly explain-
able classification decisions; this book contains several chapters on using EP
based classifiers to solve a range of classification/prediction problems of that
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kind (see Section 11.1), and other papers solving those problems will be cited
in Chapter 25.
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(a) CM1

(b) KC1

(c) PC1

(d) CM1

(e) KC1

(f) PC1

FIGURE 11.2: Performance on Imbalanced Datasets. (a–c): iCAEP vs
MetaCost-NB and SMOTE-NB; (d–f): iCAEP vs MetaCost-DT and SMOTE-
DT. NB: Naive Bayes; DT: Decision Tree.





Chapter 12

Using Emerging Patterns in Outlier
and Rare-Class Prediction

Lijun Chen

Blue Systems Integration, BlueCross BlueShield of Tennessee

Guozhu Dong

Department of Computer Science and Engineering, Wright State University

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.2 EP-length Statistic Based Outlier Detection . . . . . . . . . . . . . . . . . . . . 172

12.2.1 EP Based Discriminative Information for One Class . . . 173
12.2.2 Mining EPs From One-class Data . . . . . . . . . . . . . . . . . . . . . . . 173
12.2.3 Defining the Length Statistics of EPs . . . . . . . . . . . . . . . . . . . 174
12.2.4 Using Average Length Statistics for Classification . . . . . . 174
12.2.5 The Complete OCLEP Classifier . . . . . . . . . . . . . . . . . . . . . . . . 175

12.3 Experiments on OCLEP on Masquerader Detection . . . . . . . . . . . . 175
12.3.1 Masquerader Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.3.2 Data Used and Evaluation Settings . . . . . . . . . . . . . . . . . . . . . 176
12.3.3 Data Preprocessing and Feature Construction . . . . . . . . . . 177
12.3.4 One-class Support Vector Machine (ocSVM) . . . . . . . . . . . 178
12.3.5 Experiment Results Using OCLEP . . . . . . . . . . . . . . . . . . . . . . 178

12.3.5.1 SEA Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.3.5.2 1v49’ Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.3.5.3 Situations When OCLEP is Better . . . . . . . . 181
12.3.5.4 Feature Based OCLEP Ensemble . . . . . . . . . . 182

12.4 Rare-class Classification Using EPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
12.5 Advantages of EP-based Rare-class Instance Creation . . . . . . . . . . 184
12.6 Related Work and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.1 Introduction

This chapter presents approaches that use length statistics of emerging
patterns (EPs) to detect outliers, and use EPs in rare-class classification.

An outlier is “an observation which deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism”
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[184]. Outlier detection is a core task in data mining, and has attracted a great
deal of attention from the research communities [189, 2, 215, 231].

Rare-class classification is concerned with classification when very little
training data about the target class of interest (the rare class) is available.
This is also a very challenging problem, since the lack of training data often
implies a lack of high quality discriminative information for the rare class
and often weakens the performance of main stream classification algorithms.
Considerable attention has been given to this problem [182, 185, 2].

While the outlier detection and rare-class classification problems each have
their unique challenges, they both face the common challenge of skewed data,
i.e. with none or very little training data about an important class of interest.

Sections 12.2 and 12.3 are based on [82], whereas Section 12.4 is based on
[5].

12.2 EP-length Statistic Based Outlier Detection

We now discuss the OCLEP approach for outlier detection. Roughly speak-
ing, OCLEP uses the training data for a given class to build some EP length
statistics, and uses the training data to derive the length statistics for each
new test case and to classify the test cases based on the relationship of the
length statistics for the test case and the length statistics of the training data.

OCLEP has several interesting features: (1) OCLEP achieves one-class
classification by using EPs. This is the first time EPs are used in the one-class
setting, although EPs have been used many times for multi-class classification.
This becomes more interesting if one considers the way EPs are defined – EPs
are patterns with significant support differences between classes. (2) OCLEP
does not use the EPs themselves for classification; it uses some length statis-
tics. This implies that OCLEP is virtually model free and that there is little
need for keeping complex models for the normal and outlier classes; as a re-
sult, OCELP can have a better chance of performing well than complex model
based outlier detection, since outlier cases such as intruders may change their
behavior model in order to evade detection.

The discussion below on OCLEP will address these issues: (1) what kind
of discriminative information can one-class EPs give, (2) how to mine EPs
with one-class data, (3) how to define the EP length statistics, and (4) how to
use length statistics to make the classification decision. The complete OCLEP
method will be given after discussing those four issues.

We now briefly review the BorderDiff operation [118], which was used by the
OCLEP approach. (Other emerging/contrast pattern mining algorithms can
also be used.) Given a tuple (represented as transaction) t and a set T of tuples,
BorderDiff(t, T ) returns the set of minimal jumping EPs that occur in t but
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never occur in any tuples in T . For example, BorderDiff(t, T ) = {{1}, {2, 3, 4}}
for t = {1, 2, 3, 4} and T = {{2, 3, 5, 6}, {2, 4, 7, 8}, {3, 4, 6, 8}}.

12.2.1 EP Based Discriminative Information for One Class

We must first answer this question: What kind of EP based discriminative
information can we use in one-class classification?

To answer that question, let’s pretend that we have a two-class classifica-
tion problem. Let Di be the set of training data for class i, i = 1, 2. Suppose
for the time being that Di consists of transactions. Let us consider what kind
of difference we may get between the following two invocations of BorderDiff:
In one invocation we pick a transaction t1 from D1 and pick a subset T1 of
D1−{t1}, and compute BorderDiff(t1, T1). In the other, we pick a t′2 from D2

and pick a subset T ′1 of D1, and compute BorderDiff(t′2, T
′
1).

Naturally, data instances within a class are highly similar to each other
and data instances of difference classes are highly different from each other.
So BorderDiff(t1, T1) should contain long1 patterns, while BorderDiff(t′2, T

′
1)

should contain short patterns. The reasons are: Since t1 is quite similar to the
transactions in T1 (they all come from class 1), we need long patterns to tell t1
apart from instances in T1. On the other hand, since t′2 is quite different from
the transactions in T ′1 (they come from different classes), we only need short
patterns to tell t′2 apart from T ′1. This leads to the following key observation:

Property 12.1 Provided that all transactions of T come from one class,
BorderDiff(t, T ) tends to contain long minimal EPs when t and T come from
the same class, and it tends to contain short minimal EPs when t and T come
from different classes.

Experiments on the Mushroom data from UCI Machine Learning Repos-
itory also confirmed this observation. In fact, the average length of 1000
BorderDiff(t, T ) invocations where t and T come from the same class is 7.78
(7.5 when t is from Edible, 8.05 when t is from Poisonous), and the average
length of 1000 BorderDiff(t, T ) invocations where t and T come from different
classes is 3.03 (2.94 when t is from Edible and T are from Poisonous, 3.11
when t is from Poisonous and T are from Edible).

12.2.2 Mining EPs From One-class Data

The previous subsection also hinted on how to mine EPs from one-class.

One-class EP Mining Method: For each tuple t from a dataset D
for one given class, pick a subset T of D − {t} of suitable size k,
and compute BorderDiff(t, T ).

1We refer to the cardinality of an itemset as its length.
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The suitable size k is determined as follows: IfD is large, we choose k in the
range of [200, 800]. If D is not very large, we choose k to be |D|−1. By choosing
a larger k we use more tuples as background data to be compared against t.
However, if k is too large, then more computation time is needed, without the
benefit of additional discriminative information (compared against smaller k).
A k in the hundreds range usually offers good speed-information tradeoff.

For training, we perform BorderDiff(t, T ) for all t ∈ D if D is small, and
for a sample of several hundreds of t if D is large.

12.2.3 Defining the Length Statistics of EPs

For one-class classification, the individual EPs in BorderDiff(t, T ) for all the
t’s may be too detailed/specific to be useful. We introduce a length statistic
that allows us to make good use of Property 12.1 for one-class classification.

Definition 12.1 The average length of a non-empty set S of patterns is

avgLen(S) = [
∑
i

(Ni ∗ i)]/|S|, (12.1)

where Ni is the count of EPs in S with length i for each i.

We compute the associated avgLen(BorderDiff(t, T )) for each BorderDiff(t, T )
invocation, and use the average lengths for multiple BorderDiff(t, T ) invoca-
tions for classification decision.

12.2.4 Using Average Length Statistics for Classification

Let D be the training data for a given class. In the training phase, we call
BorderDiff(t, T ) for a number of t’s in D (and the associated T obtained as
described in Section 12.2.2), and get the associated avgLen(BorderDiff(t, T )).
This produces a set of average lengths. Let a and b be the minimum and
maximum of those average lengths. Then any number c satisfying a ≤ c ≤ b
can be used as a cut-off threshold for classification decisions.

For classification, let s be a new case to be tested. We apply
BorderDiff(s, T ) to get the minimal jumping EPs for s against T as follows.
If D is small, we let T = D and let avgLen(s) = avgLen(BorderDiff(s,D)).
Otherwise, we use 20 random samples, T1, ..., T20, of D, and let avgLen(s) =
avg20i=1(avgLen(BorderDiff(s, Ti)). If avgLen(s) < c then we classify s as outlier;
otherwise, we classify s as normal.

For outlier detection, there is always a trade-off between the hit rate (cor-
rectly identified outliers) and the false positive (FP) rate (mistakenly identified
outliers). The distribution of avgLen(BorderDiff(t, T )) for the training phase
can be used in selecting the cut-off to achieve a desired trade-off. A cut-off
close to a will lead to low FP rate and low hit rate, while a cut-off close to b
will lead to high hit rate but also high FP rate. Since a low FP rate is highly



Using Emerging Patterns in Outlier and Rare-Class Prediction 175

desired for outlier detection, we usually choose the cut-off point to be close to
a.

12.2.5 The Complete OCLEP Classifier

Given training dataset D for the normal class, the OCLEP classifier for
outlier detection is built and used as follows:
1. Preprocessing: Choose a feature construction strategy to transform the
data in D into transactional format. The next section will discuss this for the
intrusion detection scenario.
2. Mine the EPs from the training data: Call BorderDiff(t, T ) m times for m
distinct combinations of t ∈ D and T ⊆ D − {t} as follows. If D is small,
randomly select m = |D| different tuples t ∈ D and let T = D − {t} be t’s
corresponding T . If D is large, let m = 100, randomly select m different t
from D, and let T be a random subset of D− {t} such that 200 ≤ |T | ≤ 800.
3. Get length statistics of the mined EPs: Compute the list of all average
lengths for all BorderDiff(t, T ) invocations of the last step. Sort the list into
increasing order. Let a be the low and b the high in the sorted list.
4. Choose a classification cut-off point: A cut-off point c such that a ≤ c ≤ b
is chosen. (A smaller c will give low FP and hit rates, while a larger c will give
high FP and high hit rates.)
5. Classification: Let s be a new case. If D is small, let T = D and avgLen(s) =
avgLen(BorderDiff(s,D)). Otherwise, let T1, ..., T20 be 20 random samples of
D and let avgLen(s) = avgi(avgLen(BorderDiff(s, Ti)). If avgLen(s) < c then
we classify s as outlier; otherwise, we classify s as normal.

12.3 Experiments on OCLEP on Masquerader Detection

The OCLEP approach can be applied on many outlier detection or one-
class classification problems. This section uses an empirical evaluation on mas-
querader detection to illustrate the effectiveness of the OCLEP approach.

There are five subsections, dealing with (1) some background about mas-
querader detection, (2) the data used in masquerader detection and the associ-
ated common training/testing methods, (3) the best one-class training method
reported on the masquerader detection dataset, (4) our data preprocessing and
feature selection approach, and (5) experimental results using OCLEP.

The experiments show that OCLEP can achieve very good detection accu-
racy while keeping the false positive rate low, it achieves slightly better area-
under-the-curve than SVM, which is the best reported one-class approach. It
can achieve good results when other approaches do not. OCLEP also shows
promising results when used as OCLEP ensembles. OCLEP achieves all of
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the above by using a much simpler model, namely one number (length), for
differentiating the normal and outlier classes.

12.3.1 Masquerader Detection

Masquerader attacks, in which an intruder pretends to be another person
and uses another person’s identity to do something, may be one of the most
serious security problems.

Masquerader attacks often happen inside the protection of the firewalls,
etc; study [100] shows that insiders can cause more damage, and are harder
to catch, than outsiders. Authentication cannot detect masquerader attacks.
Masqueraders are unknown ahead of their attacks. Masqueraders usually
mimic a genuine user by stealing his/her identification, and the login details
cannot distinguish between a legitimate user and masqueraders.

There are many efforts to build masquerader detection systems [28] in
terms of user-command sequences. A common approach is to compare a user’s
recent behavior against his/her profile of typical behavior and to use deviation
as indication of masquerading. There are several studies that model a user’s
behavior in order to detect anomalous misconduct, e.g. [133].

There have been several two-class training approaches [133, 294], which use
information on both the legitimate user and the masqueraders. Such methods
may not be realistic in practice since we usually do not have masqueraders’
information and we may encounter unknown masqueraders.

A practical approach to detect masqueraders is to only use a legitimate
user’s own profile as training data, called one-class training, because it is easier
to build a legitimate user’s profile than a masquerader’s and the masqueraders
are unknown at training time. Studies in [422] show that the one-class training
approach can achieve comparable performance to that achieved by two-class
training approaches. It was noted that the one-class SVM performs better
than one-class Näıve Bayes approaches, and even better than some two-class
training approaches. However, the results reported were based on the theoret-
ical optimal performance of SVM. It is hard to tune the system to discover
the optimal parameters.

Studies in [82] and this chapter show that EP-based approach is very
effective for masquerader detection.

12.3.2 Data Used and Evaluation Settings

The data for masquerader detection usually takes the form of user-
command sequences. The detection system examines a block of (e.g. 100 of)
a user’s recent commands to decide if the user is a masquerader. The dataset
provided by Schonlau et al [133], available at http://www.schonlau.net, is
frequently used. It consists of sequences of “truncated” commands for 50
users; each user is represented by a sequence of 15,000 commands. The first
5,000 commands of each user are “clean data” (i.e. legitimately issued by the
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user), and the last 10,000 commands were probabilistically injected with com-
mands issued by 20 users outside the community of the 50. The commands
are grouped into blocks of 100 commands. The commands in one block are
either all clean or all masquerade attacks, called “dirty blocks”. The task is to
accurately classify the user-command blocks into two categories: self (i.e. the
clean blocks) and masqueraders (i.e. the dirty blocks).

The following three training/testing experiment settings have been used
in the literature for evaluating detection methods; all consider a given user
as the true “self,” but they differ regarding whether they use the other users’
information for training and what data is used for testing.

SEA: This is a two-class training experiment setting [133]. The training
uses the first 5,000 commands of all users. When a given user is the self, the
test data are the remaining 10,000 commands of the user; the 5,000 commands
of the other 49 users can be used to build models/profiles of non-self.

1v49: This is a one-class training experiment setting [294]. Only the first
5,000 commands of self are used as training data, and the first 5,000 commands
of the other 49 users (considered as masqueraders) are used as testing data.

1v49’: This is also a one-class training experiment setting [422]. Only the
first 5,000 commands of self are used as training data, and the first 5,000
commands of the other 49 users (considered as masqueraders), together with
the rest of the 10,000 commands of the self, are used as testing data.

12.3.3 Data Preprocessing and Feature Construction

For preprocessing, we group the commands for a given user into blocks,
with 100 commands per block, similarly to other studies. Each block is then
converted into a feature vector, using a selected feature construction strategy.

There are many ways to construct features, depending on whether we treat
the command blocks as sets, sequences, or bags. We studied the following six:

(1) Binary. Each command is a feature. The feature vector for a block B
of commands contains, for each command C, a 1 or 0 to indicate whether or
not C occurs in B. There are around 870 distinct commands in the dataset.

(2) Frequency equal-length and (3) frequency equal-density. For both meth-
ods, the frequency of each command in a block is considered. The frequency is
transformed into binary format by using either equal length binning or equal
density binning [179] approaches.

(4) Pair. In each block, each adjacent command pair is considered as a
feature. There are a maximum of 99 features in a block.

(5) Skip-one-pair. We consider pairs of commands as features, if they are
separated by exactly one command. For example, if c1c2c3 is a subsequence in
a block then c1c3 is a feature. There are a maximum of 98 features in a block.

(6) Triple. In each block, each adjacent command triple is considered as a
feature. There are a maximum of 98 features in a block.

As will be discussed in Section 12.3.5, the binary approach is the simplest
and can achieve the best overall performance in terms of getting low FP rate.



178 Contrast Data Mining: Concepts, Algorithms, and Applications

The frequency approaches perform worst among the six approaches. The other
approaches can improve the hit rate, but also lead to high FP rate.

12.3.4 One-class Support Vector Machine (ocSVM)

Support Vector Machines (SVM) [413] are maximal margin classifiers. In
the two-class case, the basic idea is to map feature vectors to a high dimen-
sional space via a kernel function and to compute a hyperplane in that space
that (a) separates the training vectors from different classes and (b) maximizes
the separation margin. One-class Support Vector Machine (ocSVM) uses ex-
amples from one-class, instead of multiple classes, for training. It treats the
origin as the only example from “other classes”, and finds the maximal margin
hyperplane that best separates the training data from the origin. ocSVM has
been shown to be very effective in document classification [289] and masquer-
ader detection [422].

We used the LIBSVM 2.8 [77] with the default RBF kernel. We note that
the ocSVM results reported here are the theoretically best: We simply let the
SVM calculates all the distances, and the decision point (hyperplane) is then
chosen by looking at all the test data together. The overall performance is the
average over all the best solution for all users.

We considered different feature representations (see Section 12.3.3) for
ocSVM. The results show that the binary approach achieved the best hit rate
with FP rate similar to other feature approaches (all < 1%); the performance
for the binary case is consistent with [422]. So the binary approach is used
below for ocSVM unless mentioned otherwise.

12.3.5 Experiment Results Using OCLEP

We now present the empirical evaluation results of the OCLEP approach
for masquerader detection. We will mainly compare OCLEP with the one-
class SVM – the best one-class training method for this problem, and briefly
mention reported results of other methods.

We will conduct the SEA and the 1v49’ experiments mentioned above.

12.3.5.1 SEA Experiment

In this experiment setting, OCLEP and ocSVM are only trained on the
first 5,000 commands of the user (the clean data), which is slightly different
than the original SEA. The classifiers are tested on the remaining 10,000
commands of the user. The reported performance is the average performance
over all 50 users.

In classification, we are often concerned with the trade-off between hits (or
correct detection) and false positives (or false detection). This is often depicted
on a receiver operating characteristic (ROC) curve where the percentages of
hits and false positive are shown on the y-axis and x-axis respectively. The
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FIGURE 12.1: ROC curves for OCLEP and ocSVM.

area under the ROC curve (AUC) is often used to evaluate the overall perfor-
mance of classification algorithms. Figure 12.1 shows ROC curves for OCLEP
method and ocSVM. The AUC for OCLEP and ocSVM are 0.7423 and 0.7419,
respectively. The AUC for OCLEP is slightly larger, although the two AUC
values are very close.

For the masquerader detection problem, it is important to have a low
false positive (FP) rate, say less than 1%. In this respect, ocSVM is a very
promising method and is better than OCLEP. In fact, ocSVM is better than
most of the two-class methods. ocSVM is the only method that can get the FP
rate under 1% while still has reasonable hit rate. OCLEP can achieve 2.9% FP
rate with 59.2% hits, which is ranged in the middle. Figure 12.2 gives a broad
view of where the methods stands by including the ROC curves of OCLEP
and ocSVM, and the best-outcome results2 of other methods.

For each method, the best result is the one that achieves high hit rate and
low false positive (FP) rate. Table 12.1 shows the result. We also note that
no method completely dominates another method in term of the ROC curves,
which is commonly used to show the trade-off between hits and FP rate.

Recall that the best result for ocSVM is the theoretical best, which is very
hard (if not impossible) to obtain in real applications. But these results can
be a good benchmark to compare with. In contrast, our OCLEP is parameter-
free if we want to have the lowest FP possible: For each user, we simply pick
the cut-off point as the minimum average length. This easy-to-use feature is
very desirable for practical masquerader detection systems.

Table 12.2 shows the average performance over 50 users when different
feature construction strategies are used in the OCLEP method. We can see
that the binary approach has the best performance in terms of getting low

2The one-class version of Näıve Bayes classifiers was only used in the 1v49 experiment
setting [294]. In [422], the performance was shown to be worse than ocSVM.
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1-step Markov, (6.7% FP, 69.3% HR)
Bayes, no updating, (4.6% FP, 66.2% HR)
Bayes, updating, (1.3% FP, 61.5% HR)
Hybrid Markov, (3.2% FP, 49.3% HR)
IPAM, (2.7% FP, 41.1% HR)
Uniqueness, (1.4% FP, 39.4% HR)
Sequence matching, (3.7% FP, 36.8% HR)
Compression, (5% FP, 34.2% HR)

OCLEP
ocSVM

FIGURE 12.2: ROC curves for OCLEP, ocSVM; best reported results for
other methods. Courtesy of IEEE from [82].

Methods Hits % FP % One/two Source

Uniqueness 39.4 1.4 Two
IPAM 41.1 2.7 Two

Hybrid Markov 49.3 3.2 Two [133]
Sequence Matching 36.8 3.7 Two

Compression 34.2 5.0 Two
1-step Markov 69.3 6.7 Two

N. Bayes (updating) 61.5 1.3 Two [294]
N. Bayes (no updating) 66.2 4.6 Two

ocSVM 42 0 One [422]
OCLEP 59.2 2.9 One [82]

TABLE 12.1: Best results of all methods

Feature Construction Strategy Hits % FP %

Binary 59.16 2.91
Frequency equal-length 44 2.92
Frequency equal-density 54.04 5.12

Pair 72.59 4.9
Skip-one-pair 69.96 5.06

Triple 70.85 4.62

TABLE 12.2: Average performance of OCLEP over 50 users when different
feature construction strategies are used in the SEA experiment. Courtesy of
IEEE from [82].
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FP rate. The results of other approaches are also very appealing compared
with other existing two-class approaches. For example, when using the pair
approach, OCLEP can achieve 72.59% hits and 4.9% FP rate.

Feature Construction OCLEP ocSVM
Strategy Hits % FP % Hits % FP %

Binary 25.67 2.9 42.92 0.82
Frequency equal-length 22.54 21.1 9.82 0.77
Frequency equal-density 16.8 14.07 11.87 0.82

Pair 43.65 5 34.73 0.82
Skip-one-pair 46.63 5.14 31.23 0.89

Triple 36.88 4.64 29.67 0.75

TABLE 12.3: Average performance over 50 users when different feature
construction strategies are used in OCLEP and ocSVM in 1v49’ experiment.
Courtesy of IEEE from [82].

12.3.5.2 1v49’ Experiment

Here, training is still based on the first 5,000 commands of a given user,
similarly to the SEA experiment. The resultant classifier is tested not only on
the rest of the 10,000 commands of the user, but also the first 5,000 commands
of other 49 users. The data from other users are treated as masqueraders,
yielding at least 50 ∗ 49 = 2450 masquerader blocks for each user.

Similarly to the SEA experiment, ocSVM theoretically performs better
than OCLEP on average for 50 users. We also tested the impact of different
feature construction strategies on both methods. Although the overall hit rates
are low for all methods, from Table 12.3 we can see that binary approach is still
the best for both methods. Notice that feature construction makes a difference
for OCLEP. We can see that the pair, skip-one-pair, and triple approaches get
much better hit rate only with slightly increased FP rate.

12.3.5.3 Situations When OCLEP is Better

Even though ocSVM outperforms OCLEP on average in terms of getting
lower FP, OCLEP performed much better for several users. Table 12.4 lists
several such users.

By analyzing the training data, we found that OCLEP performs better
than ocSVM when there are more unique commands in each block. On the
other hand, if there are many repeated commands in each block, ocSVM per-
forms better. For example, for user5, there are more than 30 unique commands
on average in each block, but the number is less than that for user2. This ob-
servation suggests that the performance of OCLEP could be improved if we
use a different block size so that each block contains more distinct commands.
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Users OCLEP ocSVM
Hits % FP % Hits % FP %

User5 58.04 0 27.67 1
User15 27.24 1 20.48 1
User24 60.66 1.27 49.7 1.27
User34 66.65 1.1 30.99 1.1

TABLE 12.4: Some users where OCLEP performed much better than the
ocSVM method when the binary feature construction was used in the 1v49’
experiment. Courtesy of IEEE from [82].

We also note that there are more situations where OCLEP outperforms
ocSVM when other feature construction strategies are used.

12.3.5.4 Feature Based OCLEP Ensemble

We examined the effectiveness of the ensemble classifier approach where
we combine decisions of multiple OCLEP classifiers (where the ensemble for
a set of feature selection methods contains exactly one OCLEP classifier per
feature selection method). Table 12.5 lists some results in the SEA experiment
setting. We see that this approach can improve the hit rate while keeping the
FP rate at the same level. Notice that we can also achieve even lower FP in
some cases; for example, we get 1.2% FP with 48.9% hit rate if we combine
all six feature construction methods. This is a very encouraging result, and
deserves further study.

Feature Construction Methods Hits % FP %
Binary, Pair, Skip-one-pair 66.5 3.4

Binary, Frequency ED, Skip-one-pair 53 2.2
Binary, Frequency EW, Pair, Skip-one-pair, Triple 64.3 2.7

All six 48.9 1.2

TABLE 12.5: Results of the ensemble classifier approach in the SEA
experiment, where we combine OCLEP decisions for different feature con-
struction approaches. ED: equi-density; EW: equi-width. Courtesy of IEEE
from [82].
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12.4 Rare-class Classification Using EPs

Rare-class classification problems exist in many real-world applications
across a wide range of domains, such as network intrusion detection, diagno-
sis of rare medical conditions, video surveillance, etc. All these applications
share a common characteristic: samples of one class are extremely rare, while
the number of samples of the other classes is large. In addition, it is more
important to correctly classify the rare class samples than the other samples.
The scarcity of the rare class cases makes it difficult to classify them correctly
using traditional classifiers, especially for high dimensional data. References
[182, 185, 2] studied techniques for rare class classification.

Reference [5] presented an approach called EPDT that combines emerging
patterns (EPs) and decision trees for rare-class classification. The approach
consists of two main steps in the EP enhanced decision tree building process:
1) using mined EPs for the rare class to create new rare-class instances, and 2)
over-sampling important rare-class instances in decision tree building. (Refer-
ence [6] also considered expanding training data of rare class using EPs.)

The first step uses the rare-class EPs to create new rare-class instances.
Given a training dataset D, let E be a set of mined rare-class EPs. E is
divided into groups such that EPs of each group have values for most of
the attributes of the dataset. The new rare-class instances are created by
combining the EPs in each group, and also the attribute values with the
highest support growth rate for attributes not occurring in the EP group. We
use an example to illustrate the process. Suppose D has the seven attributes of
(A1, ..., A7), and suppose one EP group of the rare class contains the three EPs
of E1 = {(A1 = 1), (A2 = a1)}, E2 = {(A5 = b1), (A6 = 2), (A7 = 3)}, and
E3 = {(A2 = a2), (A3 = 4), (A5 = b2)}. For attribute A4, there is no attribute
value in the EP group; the A4 value, say a4, with the highest support growth
rate from the major classes to the rare class is used. Combining the values in
the EP group and the value a4, the following four new instances are created
and added to the training data of the rare class:

{(A1 = 1, A2 = ai, A3 = 4, A4 = a4, A5 = bj , A6 = 2, A7 = 3) | 1 ≤ i, j ≤ 2}.

The second step uses selective over-sampling of certain “important” rare-
class instances to balance the rare-class dataset. The hope is that the over-
sampling helps build better decision trees. However, over-sampling the rare-
class instances randomly may affect the performance negatively [265] due to
possible noise amplification. The selective over-sampling of EPDT overcomes
this problem by duplicating the most important instances only: It only du-
plicates instances that contain rare-class EPs, based on the belief that these
instances have the most important information that can aid the classification
process and do not contribute noise in the space of rare-class instances.

Experiments on five previously studied rare-class classification datasets
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show that using EP-based new rare-class instance creation and selective EP-
based over-sampling improves decision trees’ performance for rare class clas-
sification. Specifically, EPDT gave significant improvement on weighted accu-
racy, recall, precision, and F-measure over methods such as C4.5 andMetacost,
etc.

12.5 Advantages of EP-based Rare-class Instance Cre-
ation

EP-based rare-class instance generation has several advantages3 over sam-
pling based approaches.

In general, EP-based rare-class instance creation is an efficient way of
generating new instances satisfying the implicit underlying multi-variate dis-
tributions of the training data. In some sense, EPs implicitly carry various
conditional probabilities among the items and classes; using EPs allows us to
generate new instances to better reflect the underlying distributions. More-
over, the EP-based new rare-class instance creation approach can give more
diversity in the rare-class training data than other sampling based approaches.

Indeed, in a sampling approach we often sample instances from the original
training data. Since the resulting training data is just like the original, this
sampling approach does not add diversity to the training data. In case we use
the naive Bayes method to generate new training instances, we have challenges
since we need to estimate the parameters (using very small training data) and
we need to rely on the independence assumption, and we may also need to
rely on some simple distribution (e.g. the normal distribution). In case we
use some model such as a Bayesian Network to guide the sampling process,
we have an additional challenge of estimating many parameters using a very
small training dataset.

On the other hand, EPs implicitly capture relationships on subsets of fea-
tures. Such relationships can reflect joint distributions of those features. Using
EPs to generate new instances is, in some sense, based on using the implicit
joint distributions. The fact that EP-based classification (see Chapter 11) can
achieve very high classification accuracy indicates that EPs are useful for esti-
mating probabilities of tuples in classes (see [465, 138]). Perhaps it can be said
that EP-based rare class instance creation can create new instances based on
their probabilities to occur in the rare class. The above and the advantage of
EP-based rare-class instance generation are reinforced by the fact that EP-
based classification can generate very good classification results even when
very few training instances (three instances per class) are available [25] (see
also Chapter 18).

3We thank Kotagiri Ramamohanarao for some of the ideas of this section.
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12.6 Related Work and Discussion

Here we provide more details for several masquerade detection methods
that were compared against our OCLEPmethod. We already touched on other
related works in previous sections.

Reference [133] identified six masquerade detection methods: Bayes 1-Step
Markov, Hybrid Multi-Step Markov, Incremental Probabilistic Action Model-
ing (IPAM), Uniqueness, Sequence-Match, and Compression. These methods
were trained to build a profile of self and a profile of non-self. The paper used
the SEA experiment setting to evaluate the methods.

Reference [294] used the Näıve Bayes classification algorithm (two versions:
one without updating, another one with updating) to solve the masquerader
detection problem and obtained better results than those reported in [133].
In addition to evaluating the classifiers in the SEA experiment setting, the
paper also designed the 1v49 experiment setting in order to (1) investigate
the Näıve Bayes classification errors, and to (2) provide some insight on why
some users are good masqueraders (i.e. hard to detect) and others are not.

Reference [422] used the one-class SVM algorithm on masquerader detec-
tion. It conducted experiments in both SEA and 1v49’ experiment settings.
The paper’s experiments showed that the one-class training works as well
as the multi-class training approaches, and the one-class SVM using binary
features performs best among the one-class training approaches.

We have seen that EPs are a very powerful tool. EPs themselves have
been used to solve many real-world problems, such as building robust and ac-
curate classification, classification of cancer using microarray data, expanding
training data, and so on. These are discussed in other chapters of the book.

This chapter showed that the length statistics of EPs can be used to de-
tect outliers and to perform rare-class classification. Even though we only
conducted experiments on the masquerader detection dataset, we believe that
the OCLEP approach can also be used in other real-world applications, such
as fraud detection, network intrusion detection, diagnosis of rare medical con-
ditions, etc. It remains to be seen how OCLEP will perform on those domains.

In addition, we believe that EP length statistics and EP themselves can
be used together to solve problems. In fact this was done for clustering and
clustering quality evaluation (see [276, 277] and Chapter 14). Other possibil-
ities still exist. We can also expect other interesting features (other than the
length statistics) about EPs might be discovered and used to solve problems.

Regarding rare-class classification, Chapter 11 gives more background in-
formation on imbalanced classification and discusses how EP based classifi-
cation (iCAEP) can give good performance results. It also compares iCAEP
with popular approaches such as cost-sensitive learning techniques (repre-
sented by meta-cost [110]) and re-sampling learning techniques (represented
by SMOTE [79]).
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13.1 Introduction

This chapter discusses how emerging patterns can be used to help improve
traditional classification algorithms. It focuses on two specific approaches,
one [140, 461] using emerging patterns (EPs) [118] in weighted/fuzzy support
vector machine (SVM) construction, and the other [8] using EPs in weighted
decision tree construction. In the first approach, each training data instance is
first given an EP based “relevance weight” to reflect its perceived importance
for weighted SVMs (three weighting methods are discussed); in the second,
each training data instance is first given a “class membership weight vector”, of
weighted membership for the classes. As will be seen below, the two approaches
lead to significant improvement in classification accuracy and other benefits.
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Chapter 12 has a related section on improving rare-class classification using
emerging patterns.

The discussion below assumes that a dataset D with k ≥ 2 classes
(C1, ..., Ck) is given.

13.2 Emerging Pattern Based Class Membership Score

The approaches presented below all use the EP based class membership
scoring function of CAEP [126] for the determination of weights. The scoring
function is based on the observation that EPs are strong signals for discrimi-
nating data of different classes, due to the large differences of their supports
in the classes. To determine the membership score of data tuple t in class C,
the scoring function uses all EPs of C that match t. It should be noted that
the score depends on not only the quality (support growth rate and support
in class C), but also the number, of the matching EPs of tuple t in class C.

For each i, let ECi be the set of (minimal) EPs of Ci for some given
thresholds (on minimal support growth rate and minimal home-class support).
When k ≥ 3, ECi is defined to be the set of EPs with class Ci as the home
dataset, and the union of the other classes, namely ∪kj=1,j �=iCj , as the opposing
dataset. The EPs are mined after first discretizing numerical attributes, often
using the entropy based method [214]. It should be noted that discretization
is only used in the EP mining process; in the classification process the original
non-discretized data is used.

A data instance t’s EP based membership score in a class Ci is defined by

MScoreep(t, Ci) =
∑

X⊆t,X∈ECi

gr(X)

gr(X) + 1
∗ supp(X,Ci),

where gr(X) is the growth rate (or support ratio) of X (see Chapter 1 for the
definition). This class membership score represents the aggregated discrimi-
native power of the EPs of class Ci that match data instance t.

13.3 Emerging Pattern Enhanced Weighted/Fuzzy SVM

Support vector machines (SVMs) [98] are very popular for solving classi-
fication problems and have been used in many application fields. Traditional
SVM algorithms treat all training data instances as equally important. It can
be advantageous if different data instances are given different weights to re-
flect their importance and relevance. For example, it is desirable to give noise
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and outlier data instances less weight, and give high quality data instances
with unambiguous class membership more weight. In general, it makes sense
to assign weights to data instances so that the weights are proportional to
our confidence on the membership of the instances in their assigned classes.
(It may make sense to refer to this weight as the class membership weight.)
From such weighted data one can build weighted/fuzzy1 SVMs, which extend
standard SVMs by considering instance weights in their construction and clas-
sification decision. The weighted SVM can be more accurate than plain SVM
if we can assign appropriate weights to different data instances.

This section provides three EP based methods to realize that advantage.
It presents (1) three EP based methods to determine the weights assigned
to data instances, (2) an algorithm to build weighted SVM from weighted
data, and (3) a performance evaluation to demonstrate the advantage of the
constructed weighted SVMs.

13.3.1 Determining Instance Relevance Weight

The rationale used by the EP-based methods when assigning relevance
weights is the following: A high quality training data instance often contains
many high quality EPs of its home class and it contains no or few EPs of the
opposing classes. On the other hand, a low quality one (e.g. an outlier of the
classes) often contains few or no EPs of its home class, or it contains EPs of
both its home class and its opposing classes and the EPs of the home class
are not significantly stronger than the EPs of the opposing classes.

The first EP-based function [140] determines the relevance weights based
on the difference of the MScoreep of the home class and the MScoreep of the
opposing classes. The function uses a raw difference based score, denoted by
MSDep. For each instance t of a given class Cj , we define the normalized
membership delta weight as follows:

MSDep(t) = MScoreep(t, Cj)−
k∑

i=1,i�=j

MScoreep(t, Ci). (13.1)

The range of the MSDep values is (−∞,∞). It is desirable to normalize
MSDep to get weights whose range is [0, 1]. This is done one class at a time.
Let Cj be a class, and let maxSj and minSj be the maximum and minimum
MSDep values of data instances of Cj .

One may be tempted to normalize MSDep(t) (for instance t of class Cj)

by directly using the linear mapping given by
MSDep(t)−minSj

maxSj−minSj
or the log-based

mapping given by log(1 + (e− 1)
MSDep(t)−minSj

maxSj−minSj
). There are several problems

with these mappings: (1) If maxSj is much larger than most MSDep values,
we will end up with many small weights (close to 0). (2) If minSj is much

1Weighted SVMs are also called fuzzy SVMs in the literature [260].
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smaller than most MSDep values, we will end up with many big weights (close
to 1). When problems (1) and (2) actually occur the outcome is clearly not
good. (3) The two mappings often assign half of the training instances a weight
less than 0.5 and assign the other half a weight more than 0.5. This is very
undesirable because too many examples will have small weights and hence will
be considered as having little value for the classification task.

One way to solve the problems is to use a mapping that controls the
density of instances in various weight intervals. One particular method is the
following. The MSDep values are sorted and divided into three intervals: the
top 80%, the next 15%, and the bottom 5%. Then the top 80% of the values
are mapped to the range of (0.8, 1], the next 15% are mapped to (0.5, 0.8],
and the remaining 5% are mapped to [0, 0.5]. These mappings are achieved
by using slightly modified versions of the log-based mapping given above. The
exact formulas can be obtained by adjusting the min and max values in the
original formula and controlling the ranges of the mapped values.

The method described in the last paragraph was designed based on the
following assumptions: (a) Most instances (80%) are good for classification.
(b) Some instances (15%) can provide some useful information. (c) A small
number (5%) of instances are outliers or noisy data; they are likely to provide
misleading information and are likely to be harmful to the classification task.

The normalized MSDep based function for assigning relevance weights de-
scribed above may suffer in multi-class classification problems. For example,
suppose there are four classes, and the MScoreep values of two particular in-
stances t1 and t2, both of class C1, in the four classes are respectively (5, 2, 2, 1)
and (5, 5, 0, 0). Then the MSDep values of both t1 and t1 are equal to 0, and
hence these two instances will exert equal influence during training. However,
the two instances are quite different and should not be treated as the same.
Indeed, we have near 100% that t2 is in C1 ∪C2 and it is not in C3 ∪C4, but
we do not have such confidence on any combination of classes for t1.

The second EP-based function [461] for assigning relevance weights is
an improvement of the first. The improvement uses a home-weighted MSDep-
difference, denoted by HWMSDep. (In [461] HWMSDep is called total weight.)
For each instance t of a given class Cj , we define

HWMSDep(t) =√√√√MSDep(t, Cj)×
∑k−1

p=1

∑k
q=p+1 |MSDep(t, Cp)−MSDep(t, cq)|(

k
2

) (13.2)

This definition uses the average pairwise MSDep difference. It also uses the
term MSDep(t, Cj) for home class weight, which is important. Without this
term, two instances in a common class (say C1) with dms values of (9, 1) and
(1, 9) for two classes respectively will get the same relevance weight.

Using the HWMSDep function, the two instances t1 and t2 with MScoreep
values of (5, 2, 2, 1) and (5, 5, 0, 0) will get instance weights of 3.16 and 4.06
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respectively. Hence t2 is more important than t1. To realize why t2 is of higher
value for classification than t1, it is instructive to think that many two class
classification sub-problems of a given multi-class classification problem can be
very useful in making the classifier for the multi-class problem more accurate.
As mentioned earlier, t2 is of high value for the two-class classification problem
of C1∪C2 vs C3∪C4, but this is not true with t1 for any two class sub-problem.

Experiments indicate the second function is usually better than the first
function.

The third EP-based function for assigning weights to instances is a variant
of HWMSDep, using a standard-deviation like method. Specifically, it replaces
the average pairwise difference given by∑k−1

p=1

∑k
q=p+1 |MSDep(t, Cp)−MSDep(t, cq)|(

k
2

) (13.3)

by a standard deviation like formula given by∑k
p=1(MSDep(t, Cp)− avgkq=1MSDep(t, cq))

2

k
. (13.4)

Experiments show that, in general, the third function is not as good the sec-
ond.

In addition to the above three relevance weighting functions, a “distance
to class center” based approach was given [260]. Experiments show that that
method is not as effective as the EP based methods.

13.3.2 Constructing Weighted SVM

The weighted SVM was first proposed in [260] (where it was called fuzzy
support vector machine). This machine treats each individual data instance
differently, according to its weight which reflect its importance to the classifi-
cation problem under consideration. The formulation given below is based on
[260].

To construct a weighted SVM (for two classes), we are given a set of labeled
training data with weights: (x1, y1, s1), ..., (xm, ym, sm), where, for each i, xi

is a training data instance, yi ∈ {−1,+1} is the class of xi, and si satisfying
0 < si ≤ 1 is the weight of xi.

Like SVM, we construct a weighted SVM by finding a hyperplane that
maximizes the margin of separation and minimizes the classification error,
paying attention to the weights on the training data instances. The optimal
hyperplane can be given by the solution to the optimization problem that
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minimizes τ(w, ξ, s) subject to the 2m constraints given below:

τ(w, ξ, s) =
1

2
w ·w + α

m∑
i=1

siξi

yi(w · xi + b) ≥ 1− ξi, for 1 ≤ i ≤ m

ξi ≥ 0, for 1 ≤ i ≤ m

Here α is a (complexity) constant to be set, and w represents the normal
vector to the separating hyperplane. Clearly a small si reduces the effect of
the parameter ξi and the importance of the corresponding point (xi, yi), in
the optimization problem and the corresponding classification problem.

As in the standard SVM case, kernel functions can be used.

13.3.3 Performance Evaluation

Experiments [140, 461] on a large number of datasets from the UCI repos-
itory shows that the EP based weighting methods lead to good performance
of weighted SVMs, improving the performance of weighted SVMs of [260] and
outperforming standard SVMs. In the experiments, the accuracy was obtained
by using stratified ten-fold cross-validation (CV-10), the complexity constant
α was selected from {1, 5, 10, 50, 100, 500}, and WEKA’s implementation of
SVM [176] was used. The polynomial and Radial-Basis Function (RBF) ker-
nels were considered. The discussion below uses relative improvement when
we say one method is x% better than another method.

We first consider the performance of the first weighting function [140]. For
the polynomial kernel case, the weighted SVM with normalized MSDep-based
weighting is about 2.3% percent better than the standard SVM on average.
For the RBF kernel case, the weighted SVM with normalized MSDep-based
weighting is about 1.7% percent better than the standard SVM on average.
So the weighted SVM with normalized MSDep-based weighting is much better
than the standard SVM. Moreover, the weighted SVM using distance-to-class-
center based weighting [260] is about 1.6% worse than the weighted SVM with
normalized MSDep-based weighting on average, and the weighted SVM with
random weighting is about 2.1% percent worse than the standard SVM on
average. Those results show that the normalized MSDep-based weighting has
advantage and can accurately reflect the true relevance of data instances for
classification.

We next consider the performance of the second weighting function [461].
For the polynomial kernel case, the weighted SVM with HWMSDep-based
weighting is about 5.7% percent better than the standard SVM on average. For
the RBF kernel case, the weighted SVM with HWMSDep-based weighting is
about 3.0% percent better than the standard SVM on average. So the weighted
SVM with HWMSDep-based weighting is much better than the standard SVM.
Comparing the relative improvement achieved by the two weighting functions,
we can see that HWMSDep is better. (It should be noted that the two papers
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[140, 461] used slightly different sets of datasets from UCI.) Experiments also
show that HWMSDep is better than the third weight function.

Experiments [461] also show that weighted SVM with HWMSDep-based
weighting is more resistent to noise than standard SVM. That is, the difference
between the SVM with HWMSDep-based weighting built from original datasets
and the one built from datasets obtained by adding noise to the original
datasets is smaller than that difference for standard SVM.

13.4 Emerging Pattern Based Weighted Decision Trees

Decision trees [344] are one of the most important and popular methods
for the classification problem, and have been shown to have excellent per-
formance. However, traditional decision tree algorithms assume that training
data instances have crisp class membership. In reality, it is more preferable
to assume that training data instances have weighted membership for the
classes. Classifier performance may improve if weighted membership can be
determined automatically and appropriately.

This section presents (1) an EP based method to determine the class mem-
bership weights, (2) an algorithm to build weighted decision trees, and (3) a
performance evaluation of the resulting weighted decision trees.

When assigning crisp class membership, domain experts typically use the
following general approach: They first give scores to each data instance ac-
cording to certain perceived relation of the instance with the classes, and then
assign the class with the highest score to this instance. In this way, they ig-
nore the relation between this instance and the other classes whose scores are
lower than that of the assigned class. This approach may have significant un-
desirable consequences in some situations, e.g. when the highest and second
highest scores are quite close (e.g. those two scores are 51 and 49 respectively).

In the weighted class approach, the class membership weight for each data
instance is distributed among all classes, and the weight assigned to a class
is proportional to the strength of the relation between the class and the data
instance. Specifically, for each instance t and class C, let wC(t) denote the
class membership of t for C. The wC() functions are required to satisfy these

two conditions: 0 ≤ wC(t) ≤ 1 and
∑k

i=1 wCi(t) = 1.

13.4.1 Determining Class Membership Weight

One might be tempted to directly use the score(t, C) values to assign class
membership weights. However, that approach has a problem: Some classes are
highly EP-rich and some other classes are highly EP-poor, in the sense that
the former classes have many more EPs than latter classes, and this imbalance
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can cause data instances of EP-poor classes to have smaller score value for
their home classes than for the opposing EP-rich classes. One solution for this
problem is to normalize the score values of each class by dividing them using
certain score values at some fixed percentile (e.g. 85% or median) of the class.
This division corrects the EP-rich vs EP-poor imbalance, ensuring that data
instances of EP-poor classes have high score in their home classes than in
EP-rich opposing classes. This normalization idea was first used in [126].

Specifically, the normalization is done as follows. For each class Cj , let
median(Cj) be the median of the score(x,Cj) values of all instances x of
class Cj . For each instance t (not necessarily of class Cj), let

mscore(t, Cj) =
score(t, Cj)

median(Cj)
,

and let the weight of t for class Cj be defined as

wCj (t) =
mscore(t, Cj)∑k
i=1 mscore(t, Ci)

.

Clearly 0 ≤ wCj (t) ≤ 1, and it is the case that
∑k

i=1 wCi(t) = 1 if data
instance t matches one or more EPs of some classes.

Besides the EP-based class membership weighting method, [8] also consid-
ered a nearest neighbor based approach to assigning class membership weights.
Specifically, it considers a fixed number � (e.g. 10) of nearest neighbors for each
data instance t (including t as a nearest neighbor). The weight of t for class
Ci is

ni

� , where ni is the number of instances among the � nearest neighbors
of t that belongs to class Ci.

13.4.2 Constructing Weighted Decision Trees

The main idea of the approach for building weighted decision trees dis-
cussed below is to adapt/generalize the probability, entropy, and informa-
tion gain concepts for the crisp class case to the weighted class case. Below
we present that generalization. Let D be a set of training data instances,
each assigned weighted class membership using wCi() functions for the classes
C1, ..., Ck. The probability of class Cj in D for the weighted class case is

p̂j(D) =

∑
t∈D wCj (t)

|D| .

Observe that this probability is estimated by considering all instances of D.
The information conveyed by the class probabilities, or the entropy, of D, for
the weighted class case is defined by

Infow(D) = −
k∑

j=1

p̂j(D) ∗ log2(p̂j(D)).
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The information of an attribute A with m values a1, ..., am for the weighted
class case is given by

Infow(A,D) =
m∑
i=1

|Di|
|D| Infow(Di),

where Di = {t ∈ D | t[A] = ai}. The information of numerical attributes
is defined in terms of split values, similarly to how it is done for the case of
standard decision trees. The information gain of A for the weighted class case
is then given by

Gainw(A, T ) = Infow(D)− Infow(A, T ).

The gain ratio measure is defined similarly as done in the standard decision
tree case, to avoid giving preference to attributes with large number of values.

Now, to build a weighted decision tree, one uses the standard decision tree
algorithm [344], except that the above weighted version of information gain is
used instead of the standard information gain.

13.4.3 Performance Evaluation

An extensive set of experiments [8] on a large number of 34 benchmark
datasets from the UCI repository shows that the weighting decision trees often
significantly improve the performance of standard decision trees and often
outperform SVMs. Indeed, the EP-weight based weighted decision trees are
about 4% more accurate (in the absolute sense) than the standard decision
trees on average, and are about 0.5% more accurate than SVM on average.
Moreover, the EP-weight based weighted decision trees are about 2.7% more
accurate than the nearest-neighbor-weight based weighted decision trees. The
accuracy is estimated using stratified 10-fold cross validation.

13.4.4 Discussion

The EP-weight based weighted decision trees are usually much faster than
typical EP-based classifiers in the classification process, since they use decision
trees, instead of using all matching EPs, to classify data instances.

The EP-weight based weighted decision trees are also shown to be more
noise tolerant than standard decision trees and SVM. This was confirmed by
running the classifiers on datasets injected with varying degrees of noise, and
comparing the accuracy loss slopes of the different classifiers. The experiments
show that the accuracies of the EP-weight based weighted decision trees de-
crease much more slowly than those of SVM, and those of SVM decrease more
slowly than those of standard decision trees.

Reference [8] also considered the impact of the minimum support threshold
and the minimum support ratio threshold used in EP mining on the accuracy
of the EP-weight based weighted decision trees. In the experiments of the
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paper, the minimum support threshold was set to 1%. It was observed that
when changing the minimum support ratio from small to large, the classi-
fier’s accuracies first increase, then stay flat for a while, and finally decrease.
This observation was explained by dividing EPs into two major categories: the
noisy EPs (those with very small support ratios) and the sharp EPs (those
with very large support ratios). Initially, the increase of the minimum support
ratio threshold causes the elimination of some noisy EPs. By using all sharp
EPs and using fewer noisy EPs, the assigned weights improve in quality and
the classification accuracies increase. Later, the increase in minimum support
ratio leads to complete elimination of noisy EPs and the elimination of a small
number of sharp EPs. As a result, the accuracy does not change substantially.
Finally, the increase in the minimum support ratio threshold causes the elim-
ination of some sharp EPs. The elimination of these important EPs leads to
the decrease in accuracy.

13.5 Related Work

Reference [418] considered using emerging patterns to enhance the KNN
classifier. Reference [426] considered building emerging pattern random forest
for recognition of image data. Reference [304] studied incorporating contrast
pattern into decision tree-based classifier.
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14.1 Introduction

Cluster analysis is concerned with grouping objects according to measured
or intrinsic characteristics or similarity [196]. Clustering is often applied for
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exploratory data analysis, where prior domain knowledge is scarce. This can
be problematic for traditional clustering approaches, which often rely on a
distance function to define the similarity between objects and evaluate the
clustering’s quality. The design of a good distance function requires a deep
understanding of the dataset under consideration, and standard distance func-
tions (e.g. Euclidean) may be inappropriate for the domain. Moreover, it is
well known that distance is not very meaningful in high-dimensional data [51],
which includes most cases of categorical data.

This chapter introduces a novel clustering algorithm that relies only on
frequent patterns. It focuses on discovering coherence among diverse frequent
patterns and does not require a distance function or other prior knowledge of
the dataset under consideration.

The algorithm is related to a so-called Contrast Pattern-based Clustering
Quality index (CPCQ) introduced in [276]. A contrast pattern (CP) of a clus-
tering is a pattern (an itemset) appearing with significantly greater frequency
in its home cluster than in any other, similar to the concept of CPs in the
context of data with classes (e.g. [118]). The difference in frequency makes
a CP a highly discriminative pattern to describe its home cluster and distin-
guish that cluster from the others. CPCQ was designed to measure the quality,
abundance, and diversity of each cluster’s CPs. Reference [276] demonstrated
that CPCQ consistently prefers expert-given classes to other clusterings.

The algorithm proposed in this chapter, namely the Contrast Pattern-
based Clustering algorithm (CPC), constructs clusters on the basis of CPs
and uses the same concepts of CP quality, abundance, and diversity. The goals
of CPC are 1) to ensure that each cluster has an abundance of high-quality
and diverse CPs, and 2) to ensure that no cluster can be further partitioned
without significantly decreasing the total number of CPs in the clustering. The
rationale for goal 1 is similar to that described in [276]; essentially, there should
be many different ways to describe/distinguish a high-quality cluster. Goal
2 is included to ensure intra-cluster coherence. To understand its rationale,
consider merging two clusters C1 and C2 to form a larger cluster C3. If the
inter-cluster separation between C1 and C2 is very high, then they should
share very few patterns, making C3’s CP set approximately the union of C1’s
and C2’s. That is, few CPs would be gained by merging C1 with C2 because
they are unrelated, and few would be lost by partitioning C3 into C1 and C2

because its intra-cluster coherence is low.
By achieving the above goals, CPC is able to not only achieve higher CPCQ

scores, but also recover expert-given clusterings with significantly greater ac-
curacy than popular clustering algorithms. Experiments show that this is true
for categorical datasets as well as numerical and mixed-type datasets.

CPC’s main strengths include the following:
(1) By requiring no distance function, CPC is highly useful in exploratory
studies and for alternative clustering.
(2) By relying only on frequent patterns, CPC is well suited to high-
dimensional data, where distance-based methods often suffer.
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(3) Pattern quality, abundance, diversity, and coherence may play an im-
portant role in defining ideal distance functions by capturing that “intrinsic
similarity” between tuples. CPC-produced clusterings can be used as the basis
towards defining such distance functions.
(4) The clusters constructed by CPC can be described succinctly by small sets
of CPs. So, CPC can be used as a conceptual clustering algorithm. We note
that CPC uses CPs to describe clusters, in contrast with cluster descriptions
using (conditional) probabilities [296, 151].

Additionally, CPC provides a useful link between clustering and frequent
patterns/contrast patterns, just as CBA [270] and CAEP [126] provide useful
links between classification and association rules/contrast patterns.

14.2 Related Work

This section briefly reviews seven other clustering algorithms known to not
require distance functions.

RObust Clustering using linKs (ROCK) [172], LargeItem [423], and
Clustering with sLOPE (CLOPE) [446] are clustering algorithms based pri-
marily on item matching. ROCK measures the similarity between tuples t1
and t2 by focusing on the number of tuples sharing items with both t1 and
t2. LargeItem assigns tuples to clusters based on a cost function that discour-
ages the inter-cluster sharing of frequent items and the presence of infrequent
items within clusters. CLOPE attempts to maximize the intra-cluster over-
lapping of items within clusters, by assigning tuples to clusters to maximize
the height-to-width ratio of each cluster’s item-frequency histogram.

COOLCAT [39], sequential Information Bottleneck (sIB) [371], and
scaLable InforMation BOttleneck (LIMBO) [15] are entropy-minimization-
based clustering algorithms. COOLCAT samples tuples to find k cluster repre-
sentatives, and then assigns remaining tuples to clusters, minimizing entropy
at each step. sIB begins with a random clustering and repeatedly reassigns
tuples to reduce entropy. LIMBO uses a hierarchical approach.

Expectation Maximization (EM) [102] uses a mixture model to represent
k clusters and performs iterative refinements to fit the model to the data. EM
begins with an initial estimate of the model’s parameters. Then, it iteratively
re-scores tuples against the mixture density produced by those parameters
and refines the parameter estimates based on the re-scored tuples.

Each of these algorithms has shortcomings inherent in its premise. Item-
matching algorithms tend to treat all attributes/items as equally important,
and they ignore discriminative multi-item patterns. Entropy-based algorithms
focus on intra-cluster purity, ignoring inter-cluster separation as well as the
frequency of multi-item patterns. Mixture-model-based algorithms such as EM
represent a cluster by some distribution around a mean/mode.
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CPs, which are typically multi-item patterns, naturally provide inter-
cluster separation and intra-cluster coherence, and they can represent diverse
characteristics within a single cluster. The CPC algorithm carefully assigns
such CPs using a coherence measure which considers all frequent patterns in
the dataset. Thus, CPC’s tuple assignments are ultimately based on a greater
amount of information than those of the seven algorithms described above.

14.3 Preliminaries

14.3.1 Equivalence Classes of Frequent Itemsets

Given a frequent itemset I for some support threshold, let |I| denote the
number of items in I (i.e. the length of I), and let mt(I) denote the set of
tuples (in the dataset under consideration) that match (i.e. contain) I.

Each frequent itemset I is associated with an equivalence class (EC) of
itemsets defined as EC(I) = {J | mt(J) = mt(I)}. Each EC can be concisely
described by a closed itemset (the longest in the EC) and a set of minimal-
generator (MG) itemsets (minimal in the EC with respect to ⊆). An EC
contains exactly the itemsets I satisfying “I is a superset of some MG itemset”
and “I is a subset of the closed itemset”.

Importantly, CPC treats frequent ECs, rather than frequent itemsets, as
basic pattern units. This is done both for efficiency and because conceptually,
itemsets that always co-occur can be considered to have the same behav-
ior/meaning. Below, we will use the term “pattern” as a synonym of
“EC”; this also applies to the terms “CP” and “frequent pattern”.

Given a pattern (i.e. an EC) P , let mgLen(P ) denote the average length
of the MG itemsets in P , and let Pmax denote P ’s closed itemset. Given a set
PS of patterns, let mt(PS) denote

⋃{mt(P ) | P ∈ PS}. We often say that P
overlaps a tuple set TS if mt(P ) ∩ TS �= ∅.

14.3.2 CPCQ: Contrast Pattern Based Clustering Quality
Index

The CPCQ index [276] is designed to recognize high-quality clusterings in
categorical datasets without the need for a distance function. A high-CPCQ
clustering is one having many diverse, high-quality CPs in each cluster. Below,
we explain the concepts of CP quality, CP diversity, and CP groups.

CP Quality: An individual CP is considered to have high quality if its MG
itemsets are short, its closed itemset is long, and its support in its home cluster
is high. A short MG itemset acts as a highly effective discriminator, since few
items are needed to distinguish its matching tuple set. If the closed itemset
is long, a large portion of each matching tuple is part of the CP, indicating
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high coherence in the CP’s matching tuple set. If a CP’s support in its home
cluster is high, it describes a large portion of the cluster and increases the
usefulness of the two length-based values.

In CPC, given a pattern P , we use the term length ratio to denote the
ratio of P ’s closed itemset length to the average length of P ’s MG itemsets, or
|Pmax|/mgLen(P ). This is a slight departure from [276], which uses the length
of a single, representative MG itemset in place of mgLen(P ) to evaluate length
ratio in CPCQ. In both CPCQ and CPC, higher length ratios are preferred.

CP Diversity: The diversity requirement of CPCQ is motivated by the
fact that natural concepts (captured by clusterings) (e.g. gender: male/female)
often can be distinguished/characterized in many highly different ways. CPCQ
measures the diversity of two CPs in terms of their matching tuples and the
items in their representative MG itemsets. If the MG itemsets share few items,
then item overlap is low, and item diversity is high. Similarly, if the CPs share
few tuples, then tuple overlap is low, and tuple diversity is high. Given two
sets S1 and S2 of CPs, item/tuple diversity is measured by averaging the
item/tuple diversity of all pairs of CPs in S1 × S2.

CP Groups: To measure the abundance and diversity of CPs, CPCQ builds
several (some fixed number of) CP groups for each cluster. Ideally, each CP
group should be a set of highly diverse, high-quality CPs, and the CPs in
each CP group should together cover all tuples in their cluster. Between CP
groups, item diversity should also be high (tuple diversity between CP groups
is meaningless since each CP group often covers its cluster).

The detailed formulae for CPCQ definitions are given below. We note that
these formulae are not necessary to understand or implement CPC. In these
formulae, a “pattern” is a representative MG itemset of an EC (rather than
the EC itself).

The quality of a CP P of a cluster C is defined as QCC(P ) = suppC(P )×
|Pmax|
|P | . Item overlap and tuple overlap between two CPs P1 and P2 are respec-

tively defined as ovi(P1, P2) = |P1 ∩ P2| and ovt(P1, P2) = |mt(P1) ∩mt(P2)|.
Item overlap and tuple overlap among CPs in a set G of CPs are de-
fined as ovi(G) = avg{ovi(P1, P2) | P1, P2 ∈ G,P1 �= P2} and ovt(G) =
avg{ovt(P1, P2) | P1, P2 ∈ G,P1 �= P2}. For a pair of groups G1 and G2,
ovi(G1, G2) = avg{ovi(P1, P2) | P1 ∈ G1, P2 ∈ G2}.

The CPCQ quality of a cluster C w.r.t. a CP group G is defined as

QCG(C) =
∑

P∈G QCC(P )

(1+ovt(G))×(1+ovi(G)) . The CPCQ quality of C w.r.t. N CP groups

G1, ..., GN (N ≥ 1) is defined as QCG1..N (C) =
∑N

i=1 QCGi
(C)

1+avg{ovi(Gi,Gj)|1≤i<j≤N} .

Finally, the CPCQ of a clustering C = (C1, ..., Ck) for a dataset D w.r.t. N
groups Gi

1, ..., G
i
N for cluster Ci, 1 ≤ i ≤ k, is defined as CPCQ(C) =

1
|D|

∑k
i=1 |Ci| × QCGi

1..N
(Ci). The CPCQ value of a clustering is determined

by the best CP groups that can be found (often determined by greedy search),
and N is set to 5 in our experiments.
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14.4 CPC Design and Rationale

14.4.1 Overview

The CPC algorithm begins with the frequent patterns mined from a cate-
gorical dataset (to be clustered) and constructs a clustering with a high CPCQ
value using the concepts of CP diversity, quality, and coherence. CPC does
not directly use CPCQ. (Numerical data are first discretized.) The preliminary
step, then, is to generate the frequent patterns; in our implementation, that
was done using a frequent equivalence class miner [146] based on FP-growth
[181].

Once frequent patterns are found, CPC uses a matching-data centric coher-
ence measure to guide the clustering process. This coherence measure, termed
Mutual Pattern Quality (MPQ), can be viewed as a distance function on a
pair of patterns (rather than tuples). MPQ essentially measures the number
(richness) and quality of other patterns that may become CPs when two tuple-
diverse patterns become CPs of the same cluster. (Patterns are tuple-diverse
if their matching datasets have very small overlap.) A high MPQ value in-
dicates that the two patterns should belong to the same cluster, while a low
value indicates they should belong to different clusters.

CPC constructs clusters in four main steps:
(1) Find weakly-related seed patterns (having low pairwise MPQ values) to
initially define the clusters.
(2) Iteratively assign patterns to clusters based on high MPQ values between
patterns and CPs already assigned to clusters. This builds one diversified CP
group per cluster and ensures that many CPs exist for additional CP groups.
(3) Assign remaining patterns as CPs to clusters based on their tuple overlaps
with the CP groups created in Step 2.
(4) Assign tuples to clusters based on the CPs they match.

Below, we provide the rationale, formulae, and algorithms.

14.4.2 MPQ

Mutual Patterns and Coherence: A mutual pattern of two patterns P1 and
P2 is a pattern X distinct from P1 and P2 such that mt(X) intersects both
mt(P1) and mt(P2). Below, we often use X to denote a mutual pattern.

Mutual patterns play a key role in determining clusters in CPC by creating
coherence between diverse CPs. As noted in [276], a highly diverse set of
CPs often exists in each cluster of a natural clustering (e.g. expert-defined
classes). However, because diverse CPs share few items and tuples, neither the
patterns themselves nor their matching datasets indicate coherence. Instead,
we postulate that their coherence is reflected indirectly by the gain or loss of
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other CPs after reassigning one of the two CPs (and its matching dataset) to
a different cluster. This important observation is key to our MPQ measure.

Consider a mutual pattern X sharing a significant number of tuples with
two tuple-diverse CPs P1 and P2. Then, X is very likely to also be a CP if P1

and P2 belong to a common cluster. On the other hand, if P1 and P2 belong
to separate clusters, then X cannot be a CP since it would share a significant
number of tuples with two clusters. Figure 14.1 illustrates this; here, each box
represents a CP, and the shaded areas represent clusters C1 and C2.

DatasetDataset
items .....C1

C2
tuples

P1

P2

X
P1

P2

X
mt(P1)

FIGURE 14.1: The mutual pattern X of P1 and P2 significantly overlaps
mt(P1) and mt(P2). Left: P1 and P2 are made CPs of C1, and X becomes a
CP of C1. Right: P1 and P2 are made CPs of different clusters, and X is not
a high-quality CP of any cluster.

When a mutual pattern X relates to P1 and P2 in the manner described by
the left panel of Figure 14.1, it is considered as providing significant coherence
between P1 and P2, and we say that X “connects” P1 and P2.

Quality of Individual Mutual Patterns : The mutual pattern quality (MPQ)
value for tuple-diverse patterns P1 and P2, denoted MPQ(P1, P2), is defined
as a normalized sum of certain weights given to their mutual patterns. The
weight, or quality, of each mutual pattern is intended to capture the coherence
it provides to P1 and P2. More specifically, each weight is intended to reflect
the following: A mutual pattern X is strong in connecting P1 and P2 if a)
assigning P1 and P2 to the same cluster causes X to be a CP of that cluster,
and if b) assigning P1 and P2 to different clusters prevents X from being a
CP of any cluster. Similarly, X is weak in connecting P1 and P2 if its status
as a CP is independent of the cluster assignments of P1 and P2. To reflect
the certainty of (a), the weight of X is increased if its support count outside
of mt(P1) ∪mt(P2) is low. To reflect the certainty of (b), the weight of X is
increased if mt(X) ∩ mt(P1) and mt(X) ∩ mt(P2) are both large. [If X has
high overlap with mt(P1) but low overlap with mt(P2), then assigning P1 and
P2 to different clusters would not necessarily prevent X from being a CP; see
Figure 14.2.] Finally, because X is a candidate CP, its weight also increases
with its length ratio (a measure of CP quality).
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High-Quality 
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mt(P2)

P1

P2

X

FIGURE 14.2: High-Quality and Low-Quality Mutual Patterns X . Left: X is
a CP if, and only if, P1 and P2 are CPs belonging to a common cluster. Right:
X ’s status as a CP is independent of P1 and P2.

Gross Mutual Pattern Quality : The summation of mutual pattern weights
described above is termed Gross Mutual Pattern Quality (PQ2). Formally,
PQ2 for patterns P1 and P2, denoted PQ2(P1, P2), is defined as:

PQ2(P1, P2) =
∑
X

(
|mt(P1) ∩mt(X)| ∗ |mt(P2) ∩mt(X)|

|mt(X)| ∗
( |Xmax|
mgLen(X)|

)2
)

Here, X is any pattern except P1 or P2, and tuple overlap between P1 and P2

is assumed to be very small. Notice that X ’s contribution to PQ2 reflects the
properties described above, while X ’s highest possible contribution is propor-
tional to its total support in the dataset (a factor of its CP quality).

Remark: Length ratio is squared in all CPC formulae only for empirical
reasons. Experiments show that this improves results compared to using length
ratio linearly or with other powers.

We similarly define PQ2 for a pattern P and pattern set PS, as

PQ2(P, PS) =
∑
X

(
|mt(P ) ∩mt(X)| ∗ |mt(PS) ∩mt(X)|

|mt(X)| ∗
( |Xmax|
mgLen(X)

)2
)

where X ranges over all patterns not in PS ∪ {P}.
PQ2 Normalization: PQ2(P1, P2) essentially measures the number and

quality of mutual patterns connecting P1 and P2. However, the PQ2(P1, P2)
value alone is not meaningful because it does not reflect exclusivity. That is,
PQ2(P1, P2) does not consider the number and quality of patterns overlapping
mt(P1) ∪ mt(P2) that are not mutual patterns of P1 and P2. Consider these
two situations: a) the majority of the patterns overlapping mt(P1)∪mt(P2) do
not contribute to PQ2(P1, P2) and instead create alternate connections (i.e.
they are mutual patterns of P1 or P2 and another pattern); b) most or all
patterns overlapping mt(P1) ∪mt(P2) are high-quality mutual patterns of P1
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and P2. Clearly, we prefer case (b) if P1 and P2 are to belong to a common
cluster (even if PQ2(P1, P2) is smaller in case (b)). Therefore, PQ2 must be
adjusted to distinguish between (a) and (b).

We adjust PQ2(P1, P2) by normalizing it. To that end, we measure the
number and quality of all patterns overlapping mt(Pi) for each i. This value,
termed Overlap-Weighted Pattern Quality (PQ1), is defined for a pattern Q
as a weighted sum of its overlapping patterns:

PQ1(Q) =
∑
P

|mt(P ) ∩mt(Q)|
( |Pmax|
mgLen(P )

)2

In this formula, P ranges over all possible patterns; the weight given to P in-
creases with its length ratio and its overlap with mt(Q), reflecting its potential
to contribute to a PQ2 value of Q and another pattern. Now, a strong connec-
tion between P1 and P2 requires that the patterns contributing to PQ2(P1, P2)
represent a large portion of PQ1(P1) or PQ1(P2). We similarly define PQ1
for a set PS of patterns as

PQ1(PS) =
∑
P

|mt(P ) ∩mt(PS)|
( |Pmax|
mgLen(P )

)2

MPQ Definition: We define the MPQ value for patterns P1 and P2 as

MPQ(P1, P2) =
PQ2(P1, P2)

PQ1(P1) ∗ PQ1(P2)

Again, tuple overlap between P1 and P2 is assumed to be very small (enforced
by CPC). We similarly define MPQ for a pattern P and pattern set PS as

MPQ(P, PS) =
PQ2(P, PS)

PQ1(P ) ∗ PQ1(PS)

Remarks: a) Notice that MPQ relies only on the length ratios and matching
datasets of candidate CPs; the itemsets themselves are not used. b) PQ1 and
PQ2 are defined in terms of support count, but we could equivalently define
them in terms of support; this would only affect MPQ by a constant factor.

14.4.3 The CPC Algorithm

The CPC algorithm constructs clusters on the basis of patterns using the
four steps outlined in Section 14.4.1 and illustrated in Figure 14.3. The four
steps are described in detail below.

1. Find Seeds by MPQ Minimization: To initialize k clusters, we define
a set of seed patterns as k patterns where the maximum MPQ value between
pairs of patterns in the set is very low. Exhaustively searching each possible
set is too expensive, so we use a heuristic. Roughly speaking, M seed sets
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FIGURE 14.3: CPC steps.

are generated at random, the best N are selected for refinement, and the
best refined set is returned. (If there is a tie, the set having the highest total
support is chosen.) To refine a set, the seed pair responsible for its maximum
MPQ value is targeted; a best replacement P is found for each of these two
seeds (measured by P ’s maximum MPQ value with the other k − 1 seeds),
and the seed having the better improvement is replaced by its respective P .
This refinement repeats until no improvement is found.

When generating candidate seed sets, we only consider patterns in the
set {P ∈ PS | |mt(P )| ≥ medSC}, where medSC is the median support
count in the set PS of all frequent patterns in the dataset. Also, for distinct
patterns P and Q of any candidate seed set, the tuple-overlap constraint
|mt(P ) ∩mt(Q)| ≤ threshold ∗min(|mt(P )|, |mt(Q)|) must hold.

The medSC restriction balances the number of candidates with their min-
imum support, since a high value is desired for each. We use threshold =
0.05/(k − 1) so that the total overlap between any seed P and the other
k − 1 seeds cannot exceed 5% of |mt(P )|. The values for M and N can
be adjusted to compromise between speed and seed quality. We use M =
max{105, 2000/minS}, where minS is the minimum support (fraction, not
count) in PS, and N = max{5, 250 ∗minS, 5 ∗ 105/|PS| − 20}.
2. Assign Patterns by MPQ Maximization: Following step 1, each seed
pattern is added to the (initially empty) CP group G of a unique cluster
Ci, denoted G(Ci). Step 2 adds strongly-related patterns P to CP groups
G(C1),...,G(Ck) by repeatedly searching for the (P,G(Ci)) pair that max-
imizes MPQ(P,G(Ci)) and adding P to G(Ci). As said above, only pat-
terns P for which |mt(P ) ∩mt(G(Ci))| is small (our implementation uses
threshold = 0.05/(k − 1)) are candidates in this step. Patterns are added
until no such candidate pattern exists. Pseudocode is shown in Figure 14.4.
3. Assign Patterns by PCM Maximization: After step 2, MPQ can no
longer be used to assign patterns to clusters, since no patterns meet the small-
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Input: k: the number of clusters; PS: the set of mined patterns;
PS1, ..., PSk: seed patterns for the clusters (returned by step 1)
Output: G(C1), ..., G(Ck): k CP groups representing k clusters
Method:
1: FOR i = 1 to k, let G(Ci) = {PSi}; // initialize each G(C)
2: REPEAT
3: Let PScand be the set of patterns P in PS satisfying

|mt(P ) ∩mt(G(Ci))| ≤
threshold ∗min (|mt(P )|, |mt(G(Ci))|) for 1 ≤ i ≤ k;

4: IF (PScand = ∅) THEN BREAK;
5: Let Pbest be the pattern in PS maximizing MPQ(P,G(C)),

and let Cbest be the C for which that maximum occurred;
6: IF ( MPQ(Pbest, Cbest) > 0 AND Cbest is unique ) THEN
7: G(Cbest) = G(Cbest) ∪ {Pbest};
8: ELSE BREAK;
9: END REPEAT;
10: RETURN G(C1), ..., G(Ck);

FIGURE 14.4: CPC step 2 pseudocode.

tuple-overlap constraint. However, the vast majority of potential CPs have not
been assigned. Moreover, the CP groups created in step 2 are unlikely to cover
the entire dataset under consideration. Step 3 therefore assigns patterns based
on their tuple overlaps with each CP group. Together with the CPs already
assigned, these CPs typically cover the entire dataset and allow each tuple’s
cluster membership to be determined.

Each remaining pattern is assigned to a cluster according to its maximum
Pattern-Cluster Membership (PCM) value among all clusters. (Although many
of these patterns may be poor CPs, their qualities will be quantified in step
4.) The PCM value for a pattern P with respect to a cluster C, denoted
PCM(P,C), is defined as the fraction of PQ1(G(C)) represented by P :

PCM(P,C) =
|mt (P ) ∩mt (G(C))|

PQ1 (G(C))

(P ’s length ratio is unnecessary since it is a constant in P ’s PCM values for
all clusters.) Conceptually, PCM(P,C) measures the fraction of C’s pattern-
based description represented by P , or P ’s “prevalence” in C. For example, if
a cluster C1 is described by many patterns while a cluster C2 is described by
very few, then a pattern with equal supports in C1 and C2 would be assigned
to C2 since it is more prevalent in C2 (and similarly if C1 is described by n
high-quality patterns while C2 is described by n low-quality patterns).

This step creates a complete CP set for each cluster C, denoted PS(C).
The union of these sets contains all frequent patterns except those whose
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maximum PCM values occur at two or more clusters.G(C) remains unchanged
in this step (i.e. PS(C) ⊃ G(C)), so patterns can be considered in any order.

Note: If PCM values are used outside the CPC algorithm (e.g. for analysis),
then PCM(P,C) must be multiplied by (|Pmax|/mgLen(P ))2 for correctness.
4. Assign Tuples to Clusters: Once frequent patterns are assigned to clus-
ters as CPs, tuples t of the dataset can be assigned to clusters. This is done
based on each CP P ’s vote for t’s membership in cluster C. The vote, denoted
vote(P ), reflects P ’s quality (measured by length ratio), P ’s prevalence in C
(measured by PCM), and P ’s exclusivity to C. P ’s exclusivity to C is maxi-
mized if it belongs only to C, and minimized if it is nearly equally prevalent
in another cluster. These qualities are captured in formula by:

vote(P ) =
PCM(P,C1st)− PCM(P,C2nd)∑k

i=1 PCM(P,Ci)
∗
( |Pmax|
mgLen(P )

)2

Here, C1st and C2nd denote the two clusters respectively associated with P ’s
highest and second-highest PCM values. By normalizing the PCM difference
value, we also take into consideration P ’s PCM values in other clusters.

Summing votes of all patterns for a single cluster C, we get t’s Tuple-
Cluster Membership (TCM) value for C:

TCM(t, C) =
∑
P

{vote(P ) | P ∈ PS(C) ∧ t ∈ mt(P )}

A tuple t is assigned to the cluster C that maximizes TCM(t, C). [If t’s highest
TCM value is attained at multiple clusters, it can be assigned later by another
method (e.g. a classification algorithm).]

14.4.4 CPC Illustration

The simple dataset SynD below (Table 14.1) is clustered using CPC. Given
a minimum support count of 2, there are 15 patterns, each identified by a
singleton MG itemset composed of one of the 15 items: {a1}, {a2}, ..., {d3}.
We can see that the listed clustering is the best for two clusters since any
other clustering {C1, C2} would significantly increase the number of patterns
shared between C1 and C2. Notice that 7 CPs exist in each cluster (only {d2}
is not a CP), and each CP acts as a mutual pattern connecting other diverse
CPs in its cluster (e.g. {b2} connects {a1} and {a2}, etc.).
CPC constructs C1 and C2 using the following four steps:

1) Find Seeds by MPQ Minimization: Several candidate seed sets exist
which are not connected by mutual patterns, giving each a maximum MPQ
value of zero. Of these sets, {{d1},{d3}} has the highest aggregate support in
SynD, so {d1} is assigned to G(C1), and {d3} is assigned to G(C2).

2) Assign Patterns by MPQ Maximization: Only {d2} meets the small-
tuple-overlap constraint with respect to G(C1) and G(C2). Since {d2} has
equal MPQ values with G(C1) and G(C2), it is not assigned to any cluster.
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TABLE 14.1: SynD and its CPC Clustering

Tuple ID A1 A2 A3 A4 Cluster ID

t1 a1 b1 c1 d1 C1

t2 a1 b2 c2 d1 C1

t3 a2 b2 c1 d1 C1

t4 a2 b1 c2 d2 C1

t5 a3 b3 c3 d2 C2

t6 a3 b4 c4 d3 C2

t7 a4 b4 c3 d3 C2

t8 a4 b3 c4 d3 C2

3) Assign Patterns by PCM Maximization: Patterns {a1}, {a2}, {b1},
{b2}, {c1}, {c2}, and {d1} are added to PS(C1), since each overlaps
mt(G(C1)) but not mt(G(C2)) (so their PCM values are positive only for C1).
Similarly, patterns {a3}, {a4}, {b3}, {b4}, {c3}, {c4}, and {d3} are added to
PS(C2). The only remaining pattern, {d2}, overlaps neither CP group, so it
is not assigned.

4) Assign Tuples by TCM Maximization: Since tuples t1-t4 only match
patterns in PS(C1), TCM(ti, C1) > TCM(ti, C2) = 0 for 1 ≤ i ≤ 4, and they
are assigned to C1. Similarly, tuples t5-t8 are assigned to C2.

14.4.5 Optimization and Implementation Details

MPQ Evaluation: Repeatedly evaluating MPQ can be computationally
expensive, so we precompute and store |mt(P1) ∩mt(P2)| for each pattern pair
(P1, P2), and PQ1(P ) for each pattern P . These values can be directly used
in MPQ(P1, P2). To make use of these precomputed values when evaluating
MPQ(P, PS) for a pattern set PS, we note that the following formula is equal
toMPQ(P, PS) when

⋂ {mt(Pi) | Pi ∈ PS} = ∅ (a close approximation when
evaluating MPQ(P, PS) in CPC):

MPQ(P, PS) ≈
∑ {MPQ(P, Pi) ∗ PQ1(Pi) | Pi ∈ PS}∑ {PQ1(Pi) | Pi ∈ PS}

In our tests, this approximation rarely deviated from MPQ(P, PS) (and
never deviated by more than 0.5%) and did not result in different cluster-
ings. Given k clusters C1, ..., Ck, each represented by a CP group G(Ci), this
approximation allows MPQ(P,G(Ci)) to be stored for each (P,Ci) pair and
incrementally updated as necessary by computing only MPQ(P, Plast), where
Plast is the pattern last added to G(Ci). Together, these optimizations signif-
icantly reduce execution time, often by two orders of magnitude in our tests.

Reducing the Number of Frequent Patterns: By enforcing a minimum length
ratio (related to intrinsic pattern qualities), the number of frequent patterns
can be reduced, leading to substantially reduced memory use and execution
time. This is preferred to increasing the minimum support threshold because
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the former typically has a much smaller impact on the computed clustering’s
quality value.

Given a value maxP for the maximum allowable number of patterns, CPC
finds the highest length ratio threshold that maxP patterns meet, and all
patterns with lower length ratios are deleted. Then, among the remaining
patterns, those with the lowest length ratio are randomly deleted until only
maxP remain. Experiments show that this method reduces the number of
patterns without a significant impact on the clustering’s quality value.

Finally, we note that the majority of computations needed by each step of
CPC are independent and could be done in parallel.

14.5 Experimental Evaluation

We evaluated CPC based on its CPCQ scores as well as its ability to
recover expert-given classes (measured by F-score). Below, we show results for
two categorical and one numerical datasets, all from the UCI Repository [23]
and chosen to represent a variety of domains. [We also considered Mushroom
(categorical), Breast Cancer Wisconsin Diagnostic (numerical), and Statlog
Heart (mixed-type), also from UCI; the results are omitted here to save space.]
Four other clustering algorithms were used for comparison. Additionally, we
show CPC’s results for the BlogCatalog dataset [457] to demonstrate CPC’s
potential for text/document clustering and to show the descriptiveness of its
CPs.

To adapt CPC and CPCQ to numerical data, we used equi-density binning
with 10 bins per attribute. Other clustering algorithms used the original data,
if they were designed for numerical data.

In each results table, clusterings are ranked by their F-scores with re-
spect to the expert-given classes (called the “expert clustering”). In all six
datasets from UCI, CPC achieved the highest F-score, while in four of those
six datasets, CPC achieved the highest CPCQ score.

14.5.1 Datasets and Clustering Algorithms

The two categorical datasets are SPECT Heart (T=267, A=22, C=2) (‘T’
for #tuples, ‘A’ for #attributes, and ‘C’ for #classes) and Molecular Biology
Splice-junction Gene Sequences (T=3190, A=60, C=3). The numerical dataset
is Ionosphere (T=351, A=34, C=2).

The four clustering algorithms used for comparison are EM, sIB, CLOPE,
and Simple K-means. EM, sIB, and CLOPE (described earlier) require no
distance function. Simple K-means, which uses a distance function, is included
for its popularity. We used WEKA’s implementation of the algorithms [176].

Remark: Although implementations of ROCK, LargeItem, COOLCAT,
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and LIMBO were unavailable, they are represented by algorithms based on
the same principles (ROCK and LargeItem are similar to CLOPE; COOLCAT
and LIMBO are similar to sIB).

WEKA’s EM implementation initializes its parameters based on the best
of 10 runs of Simple K-means, and it handles categorical attributes using a
symbol-count based probability estimator. It takes four parameters: number of
iterations (default: 100), minimum standard deviation (default: 10−6), number
of clusters (k), and a random number seed (s) to initialize centroids.

WEKA’s Simple K-means implementation uses the Euclidean distance
function by default, which amounts to the Hamming distance for categori-
cal attributes. Cluster centroids are defined by modes for categorical data.
It takes four parameters: distance function, maximum number of iterations
(default: 500), number of clusters (k), and a random number seed (s).

WEKA’s sIB only accepts numerical datasets. It takes six parameters,
controlling: maximum number of iterations (default: 100), minimum change
in tuple assignments (default: 0), number of clusters (k), number of restarts
(default: 5), and a random number seed (s) for an initial clustering.

WEKA’s CLOPE implementation only accepts categorical datasets. It
takes one parameter: repulsion (r).

14.5.2 CPC Parameters

Our CPC implementation takes three parameters: minimum support
threshold (minS), number of clusters (k), and maximum number of patterns
to consider (maxP ). Since CPC begins by mining frequent patterns, a minS
value must be specified. The maxP parameter is optional (for speed).

Recommended Settings: For categorical datasets, we generally recommend
minS values ≤ 0.08 unless the resulting minimum support count is < 15. For
numerical and mixed-type datasets (with each attribute discretized to 10 equi-
density bins), we recommend minS values ≤ 0.01, regardless of the minimum
support count. (Smaller minS values allow smaller clusters to be discovered.)

Typically, CPC’s clustering quality is fairly trendless within the minS lim-
its above. However, minS- and/or maxP -dependent trends may exist (e.g. in
the SPECT Heart dataset, discussed later). Therefore, we recommend trying
many minS and maxP values and keeping the highest-CPCQ clustering.

14.5.3 Experiment Settings

For all algorithms, k was set to the number of expert-given classes
(CLOPE’s r parameter was set to produce k clusters). For EM, sIB, and
Simple K-Means, we used s = {1, 2, 3}. For each dataset, only the best F-
score for each of the other algorithms is shown. All other parameters were set
to WEKA’s default values, unless higher F-scores were found using different
values. (The default values resulted in the highest F-scores in all cases shown.)

For CPC with categorical datasets, we chose the three lowest minS val-
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ues (to the nearest 0.01) meeting our recommendations above and such that
≤2GB memory was required to precompute tuple overlap. When this was not
possible, maxP was used to reduce memory use. For numerical and mixed-
type datasets, we used minS = {0.01, 0.0075, 0.005}, and again used maxP
whenever >2GB memory was needed to precompute tuple overlap.

For CPCQ, the minimum support threshold (minS) was set to a reason-
able value based on the dataset type/size (as above) and on the resulting
number of frequent patterns (≥10,000 patterns are desired); the maximum
number of CP groups to build was set to 5; the nDelta parameter for a CP’s
maximum allowable support count outside its home cluster was set as 10% of
the minimum support count.

14.5.4 Categorical Datasets

Splice-Junction Gene Sequences Dataset: Results are shown in Table 14.2.
CPC achieved significantly higher F-scores than all other algorithms. Although
CLOPE (r = 0.9) achieved the highest CPCQ score, one of its three clusters
was very small (containing <0.5% of the dataset), effectively making it a
high-CPCQ clustering for k = 2.

TABLE 14.2: Splice-Junction Sequences: F-scores vs CPCQ scores

Clustering F-score CPCQ score
minS = 0.02, nDelta = 6

Expert 1.000 0.517
CPC: minS = 0.06 0.928 0.655
CPC: minS = 0.05 0.903 0.634
CPC: minS = 0.07 0.887 0.580
EM: s = 1, 2, 3 0.735 0.216
CLOPE: r = 0.9 0.618 1.470
K-Means: s = 3 0.428 0.203

SPECT Heart Dataset: This dataset contains preprocessed SPECT image
data. Results are shown in Table 14.3. In this dataset, every minS value
meeting our recommendations results in >5 ∗ 105 patterns, requiring >200GB
memory to precompute tuple overlap. We therefore sought an optimal maxP
value by gradually increasing maxP from 5,000 to 35,000 for a single minS
value (we chose 0.07), and the maxP value resulting in a local maximum in
CPCQ scores was chosen: 15,000. All CPC results below used this value. De-
spite deleting a large number (>97%) of patterns, CPC achieved the highest
F-scores and highest two CPCQ scores.

In a previous study on this dataset [224], the CLIP3 supervised learn-
ing algorithm generated rules that were 84% accurate. In comparison, CPC’s
highest accuracy is 83%, which is remarkable since CPC is unsupervised.
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TABLE 14.3: SPECT Heart: F-scores vs CPCQ scores

Clustering F-score CPCQ score:
minS = 0.06, nDelta = 1

Expert 1.000 1.52
CPC: minS = 0.07 0.831 2.79
CPC: minS = 0.08 0.829 2.47
CPC: minS = 0.06 0.801 2.80
K-Means: s = 2 0.661 2.67
EM: s = 1, 2, 3 0.652 2.01
CLOPE: r = 2 0.612 2.56

14.5.5 Numerical Dataset

As said above, we used minS = {0.01, 0.0075, 0.005} for CPC with
numerical/mixed-type datasets. In some cases, precomputing tuple overlap
required >2GB memory, so the maxP parameter was used. For all such cases,
we found no trend in CPCQ scores for a range of maxP values, so we chose
a reasonably high maxP of 35,000 to limit CPC’s memory use.
Ionosphere Dataset: Results are shown in Table 14.4. CPC achieved the highest
F-scores here by a significant margin, as well as the highest two CPCQ scores.

TABLE 14.4: Ionosphere: F-scores vs CPCQ scores

Clustering F-score CPCQ score:
minS = 0.03, nDelta = 1

Expert 1.000 43.20
CPC: minS = 0.005,maxP = 35k 0.898 42.00
CPC: minS = 0.0075,maxP = 35k 0.851 8.53
CPC: minS = 0.01,maxP = 35k 0.839 42.80

EM: s = 1, 2, 3 0.754 8.03
K-Means: s = 1, 2, 3 0.709 8.76

sIB: s = 1, 2, 3 0.690 10.64

14.5.6 Document Clustering

The results shown in Table 14.5 demonstrate CPC’s potential to serve
as a document clustering algorithm. We selected four categories (sets of we-
blogs), namely health, music, sports, and business, from the BlogCatalog [457]
dataset, merged the categories as shown in row 1 of Table 14.5, and clustered
the merged data using CPC (with k set to the number of merged categories).
Data was preprocessed by removing duplicate weblogs, removing stopwords,
and stemming; words were treated as items. CPCQ scores used minS = 0.01,
5 CP groups, and nDelta set to 10% of the minimum support count. As
with attribute-based datasets, high CPCQ scores tend to coincide with high
F-scores, allowing CPCQ to be used in selecting a best CPC-clustering.
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TABLE 14.5: BlogCatalog: F-scores vs CPCQ scores

health, music sports, business health, music
sports, business

minS = F-score CPCQ F-score CPCQ F-score CPCQ
0.03 0.890 3.28 0.846 0.625 0.757 0.456
0.02 0.893 11.40 0.830 0.650 0.772 0.411
0.01 0.897 12.00 0.828 0.690 0.710 0.366

CP-based Cluster Descriptions: As said in the introduction, the clusters
created by CPC can be described by small sets of CPs. We show these sets in
Table 14.6 for the k = 4,minS = 0.03 clustering. We used CPCQ to return
these sets, and we show the first two CP groups G1 and G2.

TABLE 14.6: Example Cluster Descriptions

Cluster 1 Cluster 2 Cluster 3 Cluster 4
G1 {busi, market} {band, song} {symptom} {team, game}
G2 {monei, internet} {love, song} {peopl, disea} {season, game}

Based only on these cluster descriptions, one can easily estimate the themes
of clusters 1-4 to be business, music, health, and sports. Notice that the themes
are made clearer by multi-item patterns (e.g. “season” or “game” alone may
not indicate a sports theme, but together they do). Such succinct descriptions
are useful when the data does not come with category names.

14.5.7 CPC Execution Time and Memory Use

CPC’s execution time depends mostly on the numbers of patterns (p) and
tuples (n). Since precomputing tuple overlap (the potentially longest-running
step) requires an n-size tuple-set intersection for each pair of patterns, CPC
has O(n ∗ p2) time complexity. Figure 14.5 (left scale) shows CPC’s actual
execution time on the Mushroom dataset (from UCI, with 8124 tuples and 22
attributes) with minS = 0.01 and maxP increasing from 5,000 to 35,000. The
tests were run using a 2.4GHz Intel Core 2 Duo processor (without multiple
threading or SIMD operations). The times shown include frequent pattern
mining, precomputing tuple overlap, and clustering.

Memory use also mostly depends on p and n. Storing a precomputed tuple-
overlap value for each pattern pair and a bit-set representing each pattern’s
tuple set, gives CPC a O(p2 + p ∗ n) space complexity. Actual memory use
under the same conditions as above is shown in Figure 14.5 (right scale). For
maxP ≤ 15, 000, CPC required less memory than the frequent pattern miner.

If tuple overlap is not precomputed, then CPC has O(p ∗ n) space com-
plexity (typically using less memory than the frequent pattern miner), but
this causes execution times to be roughly 50 times higher.
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FIGURE 14.5: CPC Execution Time and Peak Memory Use.

14.5.8 Effect of Pattern Limit on Clustering Quality

Here, we use the SPECT Heart and Mushroom datasets to show maxP ’s
effect on F-scores and CPCQ scores (see Figure 14.6). For Mushroom, we
used the same tests as above. The trend shows no significant change in either
score as maxP is decreased. For SPECT Heart, minS was fixed at 0.07 while
maxP was varied. In this case, local maxima in both CPCQ and F-scores
occur at maxP = 15,000. In both datasets, maxP was reduced to well below
the original number of patterns without adversely affecting clustering quality.
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14.6 Discussion and Future Work

14.6.1 Alternate MPQ Definition

Conceptually, an MPQ value is high if the mutual patterns of its argu-
ments are prevalent in each argument’s matching dataset and not prevalent
elsewhere. Below, we give an alternate MPQ definition to match this descrip-
tion. We first generalize PCM’s definition to be in terms of a pattern P and
any tuple set TS:

PCM(P, TS) =
|mt(P ) ∩ TS|

(
|Pmax|

mgLen(P )

)2

PQ1(TS)

(The term “Pattern-Cluster Membership” is now a misnomer since TS is not
necessarily a cluster.) Here, PQ1(TS) is defined similarly to PQ1(P ):

PQ1(TS) =
∑
P

|mt(P ) ∩ TS|
( |Pmax|
mgLen(P )

)2

Like PCM(P,C), PCM(P, TS) represents the fraction of TS’s pattern-based
description represented by P (i.e., P ’s prevalence in TS). We can now give
the alternate definition of MPQ(P1, P2):

MPQ(P1, P2) =
∑
X

PCM(X,mt(P1)) ∗ PCM(X,mt(P2))

PCM(X,D)

where X /∈ {P1, P2} and D is the set of all tuples in the dataset. This MPQ
definition matches our description above and only differs from our original
definition by a factor of PQ1(D) (a constant), making them equivalent.

14.6.2 Future Work

Potential for improvements to CPC exists in several directions: (a) CPC
relies on a frequent pattern miner, which may be less memory-efficient than
the main part of CPC. Therefore, CPC may benefit from a more efficient fre-
quent pattern miner (perhaps tailored for CPC). (b) CPC currently does not
consider the item diversity between patterns. Properly doing so may improve
results. (c) Step 1 of CPC relies on random sampling to produce an initial seed
set. Better seeding algorithms may be possible. (d) Step 2 of CPC continues
until no patterns meet the small-tuple-overlap constraint. Since the candidate
pool shrinks after each CP is assigned, so does the likelihood that the best
candidate is a good CP. A smarter stopping condition could improve results.
(e) To adapt CPC to numerical data, we used only equi-density binning. Bet-
ter methods may be possible. (f) Use CPC to extract useful knowledge from
CPC clusterings based on their CPs and MPQ, PCM, vote, and TCM values.
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15.1 Introduction

Simple rules are preferable to non-linear distance or kernel functions for
classifying gene expression profiles or other types of medical data. This is
because rules help us understand more about the application, in addition to
performing an accurate classification. In this chapter, we use emerging pat-
tern (EP) mining algorithms to discover some novel rules that describe the
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gene expression profiles of more than six subtypes of childhood acute lym-
phoblastic leukemia (ALL) patients. We also describe an EP-based classifier,
named PCL, to make effective use of these rules for the subtype classifica-
tion of leukemia patients. PCL is very accurate in this application, handling
multiple parallel classifications as well. This method is evaluated on 327 het-
erogeneous ALL samples. Its test error rate is competitive to that of support
vector machines. It is 71% better than C4.5, 50% better than Naive Bayes,
and 43% better than the k-nearest neighbor classifier. Experimental results
on another independent dataset are also presented to show the strength of
PCL. This chapter is adapted from Ref. [248], c©2003, with permission from
Oxford University Press.

15.2 Motivation and Overview of PCL

Childhood ALL is a heterogeneous disease of many subtypes. Since dif-
ferent subtypes of the disease respond differently to the same therapy, it is
important to customize treatments for patients using risk-based stratifica-
tion. The problem of accurate subtype classification and outcome prediction
in childhood ALL has been studied previously [449] using microarray gene
expression profiling and supervised machine learning algorithms. We use the
same dataset from [449], but we report novel rules that describe the expres-
sion profiles of more than six subtypes of 327 childhood ALL samples. We
also describe a different EP-based classification method that makes use of the
discriminating power of the discovered rules for accurate classification.

Classification and rule induction are two closely related but different as-
pects of supervised learning problems. Classification can be done with high
accuracy by high-dimensional non-linear models like neural networks and sup-
port vector machines, but it it is hard for these models to provide rules. An
ideal learning model should be accurate and, at the same time, can induce
valid, novel, and useful rules, because such rules help us gain a deep under-
standing of the problem at hand.

The classifier presented in this chapter, named PCL (which is short for
Prediction by Collective Likelihoods), has the desirable attributes discussed
above. PCL is accurate, can handle multiple parallel classifications, and can
provide valid and useful rules.

PCL is based on the concept of emerging patterns [118]. An emerging
pattern (EP) is, in the context of this chapter, a conjunction pattern of ex-
pression intervals of multiple genes, whose frequency increases significantly
from one class of data to another class of data. For example, if a pattern has
10% frequency in one class and 0.1% frequency in another class, then it is an
emerging pattern with a 100-fold frequency change between the two classes.
These emerging patterns are:
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(a) useful because they can provide reliable rules for predicting classes,
(b) understandable because they are conjunction of simple single-attribute

conditions, and
(c) non-obvious because they involve correlations of multiple features.

Additionally, the validity of these patterns can be conveniently assessed by
cross validations and blinded samples. In this chapter, we focus on a special
type of emerging patterns: those with zero frequency in one class but high fre-
quency in another class. These patterns are naturally more interesting because
they have an infinite frequency change rate.

With the discovery of emerging patterns, PCL proceeds to calculate a
classification score for every class when a test sample is presented. Then, the
class with the highest score is predicted as the class of the test sample. The
classification scores are calculated by aggregating the frequencies of multiple
top-ranked EPs, as the “committee” of patterns and their collective discrimi-
nating power show strong synergistic strength in the classification.

In one of our previous work [253], we have used the concept of emerging
patterns to discover diagnostic gene groups from a colon tumor dataset [9]
and a leukemia dataset [166]. The colon data set contains 62 samples divided
into two classes, and the leukemia data set consists of 38 training and 34 test
samples with two classes as well. Here, we would like to see the effectiveness
of emerging patterns when applied to large datasets—the data used in this
chapter have hundreds of samples with multiple classes.

15.3 Data Used in the Study

The data used is available at http://www.stjuderesearch.org/data/ALL1.
The data consist of gene expression profiles of 327 childhood ALL sam-
ples [449]. These profiles were obtained by hydridization on the Affymetrix
U95A GeneChip containing probes for 12558 genes. The samples cover all of
the known childhood ALL subtypes, including T-cell (T-ALL), E2A-PBX1,
TEL-AML1, MLL, BCR-ABL, and hyperdiploid (Hyperdip>50). The data
were divided into a training set of 215 samples and a blind testing set of 112
samples [449]. There are 28, 18, 52, 9, 14, and 42 training instances and 15, 9,
27, 6, 6, and 22 test samples respectively for T-ALL, E2A-PBX1, TEL-AML1,
BCR-ABL, MLL, and Hyperdip>50. There are also 52 training and 27 test
samples of other miscellaneous subtypes named OTHERS here.
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15.4 Discovery of Emerging Patterns

In this study the discovery of emerging patterns from the training data
takes a two-step process [253]. First, a small number of discriminatory genes
are selected from the 12558 genes. Second, emerging patterns are discovered
by border-based algorithms [118, 249] from the selected genes’ data.

15.4.1 Step 1: Gene Selection and Discretization

An entropy-based discretization method [145] can select important fea-
tures for accurate classification. This method can be used to automatically
remove about 90-95% of the whole feature space as many of the features ex-
hibit random expression distributions. It can also automatically detect “ideal
discriminatory genes” that contain clear expression boundaries separating two
classes of cells.

Single genes whose expressions have a clear two-ended distribution, where
only data from one class appear in each of the two ends, are very useful for
classification. We found five such ideal discriminatory genes (Table 15.1) from
the training data pair: E2A-PBX1 versus all other subtypes of ALL. As an
example, the expression cut point of gene 32063 at1 is 4068.7. This cut point
partitions the expression range of this gene over all of the training samples into
two intervals [0, 4068.7) and [4068.7,+∞). Moreover, the expression values of
this gene in all of the E2A-PBX1 samples (cells) are ≥ 4068.7, falling into the
right interval, while its expression values in samples of any other subtypes are
< 4068.7, falling into the left interval. Note that the above rule is valid with
respect to the 215 training samples without any exception. This rule is also
100% valid when applied to the reserved 112 testing samples (see Table 15.1).

However, the other genes’ expression does not exhibit such a two-ended dis-
tribution. In contrast, about 11840 genes (94.28% of all genes) have a random
expression distribution without any interval covering a sufficient percentage
of E2A-PBX1 or other subtypes of samples. Obviously, these genes are not
very relevant for classifying E2A-PBX1 from other subtypes, and they are
excluded from our consideration.

The remaining 713 genes are sub-optimal in classification. Their expres-
sions are not randomly distributed, but they are not ideally polarized either
(there is no cut point such that each of the resulting two intervals contains
only cells of one class). We list 5 of them in Table 15.2.

The entropy-based discretization method [145] can find the “best” cut
points for every feature and, it can also identify the ideal discriminatory fea-
tures, sub-optimal features, and those genes with random expression distribu-
tions. Applied to our dataset, this feature selection method ignores most of

1This is actually the probe id of a gene on the microarray. Here, abusing notation slightly,
we use the term gene instead of probe id.
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TABLE 15.1: Five ideal discriminatory genes discovered from the training
data for differentiating E2A-PBX1 (denoted by C1) from all other subtypes
(denoted by C2). The expression cut points can separate C1 and C2 samples
clearly. The expression distribution of the test data are shown in parenthe-
sis. Source: Reprinted from Ref. [248], c©2003, with permission from Oxford
University Press.

Probes # of samples in the expression # of samples in the
left interval [0, x) cut point right interval [x, : ∞)
C1 : C2 (x) C1 : C2

32063 at 0 : 197 (0 : 103, test) 4068.7 18 : 0 (9 : 0, test)
41146 at 0 : 197 (1 : 102, test) 25842.15 18 : 0 (8 : 1, test)
33355 at 0 : 197 (0 : 103, test) 10966 18 : 0 (9 : 0, test)
1287 at 0 : 197 (1 : 103, test) 34313.9 18 : 0 (8 : 0, test)
430 at 0 : 197 (0 : 101, test) 30246.05 18 : 0 (9 : 2, test)

TABLE 15.2: Five sub-optimal genes which cannot individually differentiate
E2A-PBX1 from other subtypes clearly, but their combinations can. C1: E2A-
PBX1, C2: other subtypes. Source: Reprinted from Ref. [248], c©2003, with
permission from Oxford University Press.

Probes # of samples in the # of samples in the
left interval [0, x) cut points (x) right interval [x,+∞)
C1 : C2 C1 : C2

40454 at 0 : 187 (0 : 96, test) 8280.25 18 : 10 (9 : 7, test)
41425 at 0 : 183 (0 : 93, test) 6821.75 18 : 14 (9 : 10, test)
753 at 2 : 197 (6 : 102, test) 7106.35 16 : 0 (3 : 1, test)
35974 at 0 : 189 (0 : 99, test) 43730.15 18 : 8 (9 : 4, test)
37493 at 1 : 189 (0 : 95, test) 4543.55 17 : 8 (9 : 8, test)

the 12558 genes. Only about 1000 genes are considered useful in classification.
This 10% selection rate provides a much easier basis to derive important clas-
sification rules. However, to manually examine 1000 or so genes is still tedious.
We then use the Chi-Squared (X 2) method [275, 433] to further narrow down
to the important genes. Here, if there exist ideal discriminatory genes for a
pair of training datasets, then we use those ideal genes for deriving emerging
patterns. Otherwise we use 20 top-ranked genes by the X 2 method.

15.4.2 Step 2: Discovering EPs

As discussed, there exist only a small number of genes (e.g., those discussed
in Table 15.1) that can each act as an arbitrator by itself alone to clearly
distinguish the expression from one subtype to others. However, we found
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many gene combinations (gene groups) which can be used to separate clearly
one subtype from others. For example, an ideal multi-gene discriminator can
be obtained if the gene 40454 at and the gene 41425 at (shown in Table 15.2)
are combined into a group. The rule is interpreted as:

If the expression of 40454 at is ≥ 8280.25 and that of 41425 at is
≥ 6821.75, then the sample is an E2A-PBX1. Otherwise it belongs
to another subtype.

This rule can be denoted as a set with two conditions on the two genes [253]:

{40454 at@[8280.25,+∞), 41425 at@[6821.75,+∞)}.

Such patterns are real examples of emerging patterns [118]. They are also a
special type of emerging pattern known as jumping emerging patterns. As
100% of the E2A-PBX1 training samples satisfy these two conditions, we say
the pattern’s frequency in the E2A-PBX1 class is 100%. As an ideal discrimi-
nator, the pattern’s frequency in the other subtypes is 0%. That is, no samples
from any other subtypes satisfy these two conditions.

We use border-based algorithms [118, 249] to discover EPs.

15.5 Deriving Rules from Tree-Structured Leukemia
Datasets

A tree-structured decision system was used to classify the childhood
ALL samples, as shown in Figure 19 in Supplementary Information of [449]
(http://www.stjuderesearch.org/data/ALL1). By using this tree, a sample is
first tested to be either a T-ALL or a sample of other subtypes. If it is classified
as T-ALL, then the process is terminated. Otherwise, the process is moved to
level 2 to see whether the sample can be classified as E2A-PBX1 or the re-
maining other subtypes. Similarly, the system can determine whether the test
sample is one of TEL-AML1, BCR-ABL, MLL, Hyperdip>50, or OTHERS.

In correspondence with this hierarchical decision system, six pairs of train-
ing and test subsets, one for each level of the tree, were generated from the
original training and test data [449]. Below we describe rules discovered from
each level’s training data; they are then applied to the test data and the error
rates of the PCL classifier are computed.

This tree-structured classification scheme was suggested by Drs. Yeoh and
Downing, who have extensive domain knowledge. Alternative perspectives are
possible, including classifying the 327 samples in a parallel manner (which will
be discussed later) instead of hierarchically.
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15.5.1 Rules for T-ALL vs OTHERS1

For the first pair of training datasets, T-ALL vs OTHERS1, we found one
and only one ideal discriminatory gene, namely 38319 at. Here, OTHERS1
={E2A-PBX1, TEL-AML1, BCR-ABL, Hyperdip>50, MLL, OTHERS}. The
discretization method partitions this gene’s expression range into two inter-
vals: (−∞, 15975.6) and [15975.6,+∞). EP mining found two EPs:

{gene (38319 at)@(−∞, 15975.6)}, {gene (38319 at)@[15975.6,+∞)}.

The former has a 100% frequency in the T-ALL class but a zero frequency in
the OTHERS1 class. The latter has a zero frequency in T-ALL, but a 100%
frequency in OTHERS1. Therefore, we have the following rule:

If the expression of 38319 at is less than 15975.6, then this child-
hood ALL sample is a T-ALL. Otherwise it is a subtype in OTH-
ERS1.

This simple rule is correct on the 215 (28 T-ALL plus 187 OTHERS1) child-
hood ALL training samples without any exception.

15.5.2 Rules for E2A-PBX1 vs OTHERS2

We also found a simple rule for contrasting between E2A-PBX1 and OTH-
ERS2. Here, OTHERS2 = {TEL-AML1, BCR-ABL, Hyperdip>50, MLL,
OTHERS}. One gene, 33355 at, is identified and, it is then discretized into two
intervals: (−∞, 10966) and [10966,+∞). Then {gene (33355 at)@(−∞, 10966)}
and {gene (33355 at)@[10966,+∞)} are found to be EPs with 100% frequency
in E2A-PBX1 and OTHERS2 respectively. So, the following is a rule for these
187 (18 E2A-PBX1 plus 169 OTHERS2) childhood ALL samples:

If the expression of 33355 at is less than 10966, then this child-
hood ALL sample is an E2A-PBX1. Otherwise it is a subtype in
OTHERS2.

15.5.3 Rules through Level 3 to Level 6

For the remaining four pairs of datasets, we did not find any ideal dis-
criminatory gene. So, we used the X 2 method to select 20 top-ranked genes
for each of those pairs of datasets. After discretizing the selected genes, two
groups of EPs are discovered for each of these pairs of datasets. Table 15.3
shows the numbers of discovered emerging patterns. Table 15.4 lists the top
10 EPs (according to their frequency) discovered at Level 3’s training data.
Observe that some EPs can reach a frequency of 98.94% and most have fre-
quency around 80%. Even though a top-ranked EP may not cover an entire
class of samples, it covers a large portion of the whole class.

A rule can be obtained by translating an EP. For example, the first EP of
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TABLE 15.3: Total number of EPs discovered from the remaining four pairs
of training data sets. Source: Reprinted from Ref. [248], c©2003, with permis-
sion from Oxford University Press.

Dataset pair Number of EPs Number of EPs Total
(D1 vs D2) in D1 in D2

TEL-AML1 vs OTHERS3 2178 943 3121
BCR-ABL vs OTHERS4 101 230 313
MLL vs OTHERS5 155 597 752
Hyperdip>50 vs OTHERS 2213 2158 4371

the TEL-AML1 class is {2, 33}. The reference number 2 in this EP represents
the right interval of the gene 38652 at, and stands for the condition that: the
expression of 38652 at is larger than or equal to 8997.35. Similarly, the refer-
ence number 33 represents the left interval of the gene 36937 s at, and stands
for the condition that: the expression of 36937 s at is less than 13617.05. Thus
the pattern {2, 33} says that 92.31% of the TEL-AML1 class (48 out of the
52 samples) satisfy the two conditions above, but no sample from OTHERS3
satisfies both of these conditions.

15.6 Classification by PCL on the Tree-Structured Data

Through discovering EPs, many non-obvious novel rules are derived that
can well describe the gene expression profiles of more than six subtypes of ALL
samples. An important methodology to test the reliability of the rules is to
apply them to unseen samples (the so-called blind testing samples). Recall that
we have reserved 112 blind testing samples. Our testing results are highlighted
as follows: At level 1, all of the 15 T-ALL samples are correctly predicted as
T-ALL; all of the 97 OTHERS1 samples are correctly predicted as OTHERS1.
At level 2, all of the 9 E2A-PBX1 samples are correctly predicted as E2A-
PBX1; all of the 88 OTHERS2 samples are correctly predicted as OTHERS2.
For levels 3 to 6, we misclassified only 4-7 samples depending on the number
of EPs used. Our method PCL is described below.

15.6.1 PCL: Prediction by Collective Likelihood of Emerging
Patterns

For each of level 1 and level 2 of the hierarchical tree-structured datasets,
we only have one rule. So, there is no ambiguity on using rules for those two
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TABLE 15.4: Ten most frequent EPs in the TEL-AML and OTHERS3
classes. Here, an index number refers to a specific gene combined with a
specific expression interval. Source: Reprinted from Ref. [248], c©2003, with
permission from Oxford University Press.

EPs % frequency in % frequency in
{index numbers} TEL-AML1 OTHERS3
{2, 33} 92.31 0.00
{16, 22, 33} 90.38 0.00
{20, 22, 33} 88.46 0.00
{5, 33} 86.54 0.00
{22, 28, 33} 84.62 0.00
{16, 33, 43} 82.69 0.00
{22, 30, 33} 82.69 0.00
{2, 36} 82.69 0.00
{20, 43} 82.69 0.00
{22, 36} 82.69 0.00
{1, 23, 40} 0.00 88.89
{17, 29} 0.00 88.89
{1, 17, 40} 0.00 88.03
{1, 9, 40} 0.00 88.03
{15, 17} 0.00 88.03
{1, 23, 29} 0.00 87.18
{17, 25, 40} 0.00 87.18
{17, 23, 40} 0.00 87.18
{9, 17, 40} 0.00 87.18
{1, 9, 29} 0.00 87.18

levels. However, a large number of EPs are discovered for the remaining levels
of the tree. A testing sample may contain not only EPs from its own class,
but also EPs from its counterpart class. This makes the prediction a bit more
complicated. In general, a testing sample should contain many top-ranked
EPs from its own class and may contain a few low-ranked EPs—preferably
none—from its opposite class. However, according to our observations, a test-
ing sample can sometimes, though rarely, contain 10 to 20 top-ranked EPs
from its counterpart class. To make reliable predictions, it is reasonable to
use multiple highly frequent EPs of the “home” class to avoid the confusing
signals from counterpart EPs.

Given two training datasets DP and DN , and a testing sample T , the first
phase of the PCL classifier is to discover EPs from DP and DN . Let’s denote
the EPs of DP in the descending order of their frequency as

EP
(P )
1 , EP

(P )
2 , · · · , EP

(P )
i .

Similarly, denote the EPs of DN in the descending order of their frequency as

EP
(N)
1 , EP

(N)
2 , · · · , EP

(N)
j .
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Suppose T contains the following EPs of DP :

EP
(P )
i1

, EP
(P )
i2

, · · · , EP
(P )
ix

, i1 < i2 < · · · < ix ≤ i,

and T contains the following EPs of DN :

EP
(N)
j1

, EP
(N)
j2

, · · · , EP
(N)
jy

, j1 < j2 < · · · < jy ≤ j.

The next step is to calculate two scores for predicting the class label of T .
Assume that k (k  i and k  j) top-ranked EPs of DP and DN are used.
The score of T in the DP class is defined as

score(T ) DP =
k∑

m=1

frequency(EP
(P )
im

)

frequency(EP
(P )
m )

,

and, similarly, the score in the DN class is defined as

score(T ) DN =

k∑
m=1

frequency(EP
(N)
jm

)

frequency(EP
(N)
m )

.

If score(T ) DP > score(T ) DN , then T ’s class is predicted to be the class of
DP . Otherwise T ’s class is predicted to be the class of DN . We use the sizes
of DP and DN to break the tie.

The key idea in this classification is to measure how far away the top k EPs
contained in T are from the top k EPs of a class. If k = 1, then score(T ) DP

indicates whether the number one EP contained in T is far or not from the
most frequent EP of DP . If the score is the maximum value 1, then the “dis-
tance” is very close, namely the most common property of DP is also present
in this testing sample. With smaller scores, the distance becomes further.
Thus the likelihood of T belonging to the class of DP becomes weaker. Using
more than one top-ranked EPs, we intend to utilize a “collective” likelihood
for more reliable predictions.

With k set at 20, 25, and 30, PCL made only 4 mis-classifications on the
samples 94-0359-U95A, 89-0142-U95A, 91-0697-U95A, and 96-0379-U95A.

15.6.2 Strengthening the Prediction Method
at Levels 1 & 2

At level 1 or 2, there is only one gene that is used for classification and pre-
diction. In order to be more robust against possible human errors on recording
data and noise in microarray gene expression assays, we propose using more
than one gene to strengthen our classification method at levels 1 and 2.

The previously selected gene 38319 at at level 1 is an ideal discriminatory
gene. There is no other such gene. Besides this gene, we choose also the top 20
genes ranked by the X 2 method to classify the T-ALL and OTHERS1 testing
samples. There are 96 EPs in the T-ALL class and 146 EPs in the OTHERS1
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class. Using our prediction method, the same perfect accuracy 100% on those
blind testing samples is achieved as the one ideal discriminatory gene does.

At level 2 there are a total of five ideal discriminatory genes. These
five genes are: 430 at, 1287 at, 33355 at, 41146 at, and 32063 at. Note that
33355 at is already discussed beforehand. All of the five genes are partitioned
into two intervals with the following cut points respectively: 30246.05, 34313.9,
10966, 25842.15, and 4068.7. Consequently, there are five EPs in the E2A-
PBX1 class and also five EPs in the OTHERS2 class with 100% frequency.
Using our prediction method, we correctly classified all the testing samples
(at level 2) without any mistake, achieving the perfect 100% accuracy again.

15.6.3 Comparison with Other Methods

There are many notable prediction methods in the machine learning field,
including k-nearest neighbor (k-NN) [99], C4.5 [345], Support Vector Machines
(SVM) [98, 63], Naive Bayes (NB) [228], etc. C4.5 is a widely used learning
algorithm that induces from training data rules that are easy to comprehend.
However, it may not have good performance if the real decision boundary
underlying the data is not linear. NB uses Bayesian rules to compute a prob-
abilistic summary for each class. Given a testing sample, NB uses the proba-
bilistic summary to estimate the probabilities of the test sample for the classes,
and assigns the sample to the highest scoring class. An important assumption
used in NB is that the underlying features are mutually independent. However,
this is not appropriate for gene expression data analysis as subsets of genes
involved in an expression profile are often interacting in a biological pathway
and are not independent. The k-NN method assigns a testing sample the class
of its nearest training sample in terms of some non-linear distance functions.
Even though k-NN is intuitive and has good performance, it is not helpful for
understanding complex cases in depth. SVM methods use non-linear kernel
functions to construct a complicated mapping between samples and their class
labels. SVM has good performance, but it functions as a black box.

We compare PCL’s prediction accuracy with the accuracy of k-NN, C4.5,
NB, and SVM to demonstrate the competency of PCL. Note that the best
accuracy of k-NN and SVM reported in [449] was achieved by using the top 20
χ2 selected genes. For a fair comparison, the same genes and the same training
and testing samples are used by PCL, C4.5, and NB. The classification was
conducted by using the WEKA machine learning software package with its
standard settings [433]. We found that PCL reduces the misclassifications by
71% from C4.5’s 14, by 50% from NB’s 8, by 43% from k-NN’s 7, and by 33%
from SVM’s 6. From the medical treatment point of view, this error reduction
can benefit patients greatly.

An interesting observation is that the accuracy becomes worse if the orig-
inal data with the entire set of 12558 genes are applied to the prediction
methods. SVM, k-NN, NB, and C4.5 made respectively 23, 23, 63, and 26
mis-classifications on the blind 112 testing samples. These results are much
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worse than the error rates when the reduced data were applied. So, feature
selection has played an important role for the classification models to obtain
a high accuracy.

An obvious advantage of PCL over SVM, NB, and k-NN is that meaningful
and reliable patterns and rules can be derived. The emerging patterns can
provide novel insight into the correlation and interaction of the genes and can
help understand the samples beyond a mere classification. Though C4.5 can
generate similar rules, it sometimes performs badly (e.g. at level 6) and, its
rules are often not very reliable.

15.7 Generalized PCL for Parallel Multi-Class Classifi-
cation

The hierarchical tree-structured strategy for the subtype classification of
ALL samples was initially suggested by the doctors with domain knowledge
[449]. Our results above have shown the strength of the structure for classifica-
tion. However, in the community of machine learning, parallel classification of
heterogeneous data is commonly adopted. The parallel classification of multi-
class data has the advantage that it does not need any prior knowledge to
construct a special classification structure.

Taking the parallel approach, we can discover lists of ranked genes and
multi-gene discriminators for differentiating one subtype from all other sub-
types. The distinction is global as it is one subtype against all others. In
contrast, under the hierarchical tree-structured classification strategy, the dif-
ferentiation is somewhat local since the rules are discovered in terms of one
subtype against the remaining subtypes below it. Below, we generalize the PCL
method to handle data with more than two classes. The generalized PCL is
then applied to the data of [449] and to another independent dataset [20].

Suppose we are given c (c ≥ 2) classes of data, denoted by D1, D2, ...,
Dc. In the first phase, the generalized PCL discovers c groups of EPs. The
nth (1 ≤ n ≤ c) group is for Dn (versus

⋃
i�=nDi). The feature selection

and discretization are done in the same way as used in dealing with typical
two-class data. Denote the ranked EPs of Dn as,

EP
(n)
1 , EP

(n)
2 , · · · , EP

(n)
in

,

in descending order of their frequency.
Suppose a test sample T contains the following EPs of Dn:

EP
(n)
j1

, EP
(n)
j2

, · · · , EP
(n)
jx

, j1 < j2 < · · · < jx ≤ in.

Then c scores are computed for predicting the class label of T . Suppose we
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use k (k  in) top-ranked EPs. Then the score of T in the Dn class is defined
as

score(T ) Dn =

k∑
m=1

frequency(EP
(n)
jm

)

frequency(EP
(n)
m )

,

and similarly for the scores of other classes.
The class with the highest score is predicted as the class of T . We use the

sizes of Dn, 1 ≤ n ≤ c, to break a tie.
We use an example to illustrate the scores used by the parallel PCL. A

BCR-ABL test sample contains almost all of the top-20 BCR-ABL discrimi-
nators, and a score of 19.6 is assigned to it. Several top-20 OTHERS discrim-
inators together with some EPs beyond the top-20 list are also contained in
this test sample. So, another score of 6.97 is computed. This test sample does
not contain any discriminators of E2A-PBX1, Hyperdip>50, or T-ALL. So,
the scores are as follows:

subtype BCR-ABL E2A-PBX1 Hyperdip>50
score 19.63 0.00 0.00
subtype T-ALL MLL TEL-AML1 OTHERS
score 0.00 0.71 2.96 6.97

Therefore, this BCR-ABL sample is correctly predicted as BCR-ABL with a
very high confidence.

By this method, we made only 6 to 8 misclassifications for the total 112
testing samples when varying k from 15 to 35. However, C4.5, SVM, NB, and
3-NN made 27, 26, 29, and 11 mistakes respectively.

The data of [20] have only three subtypes (AML, ALL, MLL). There are
57 training samples (20, 17, and 20 resp. for ALL, MLL, and AML) and 15
test samples (4, 3, and 8 resp. for ALL, MLL, and AML). PCL, C4.5, SVM,
NB, and k-NN made 0, 3, 1, 0, and 1 mistakes respectively for the 15 test
samples.

15.8 Performance Using Randomly Selected Genes

We have shown that the selected top-1 genes or top-20 genes are very use-
ful for classifying the subtypes of childhood leukemia. Experiments show that,
if we select genes randomly instead of selecting the top-1 or top-20, then the
classifiers’ performance will deteriorate significantly. Therefore, feature selec-
tion is an important preliminary step before reliable and accurate prediction
models are applied.
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15.9 Summary

In this chapter, we have reported simple rules discovered from gene ex-
pression profiles of childhood leukemia patients. We have compared the per-
formance of different classification methods under the same reduced training
and test data. It is known that the performance of a classifier may vary if the
number of selected genes is changed. It is also known that there is no theo-
retical estimation of the optimal number of selected genes even for a specific
classifier on a particular application. It will be interesting to see which gene-
set size and classification model combination is the best for classifying the
subtype of childhood leukemia. Some interesting future work includes a sys-
tematic evaluation of gene selection methods and refinements of our method,
particularly in techniques for measuring the “interestingness” of individual
EPs. Another direction is to consider automatic ways for determining optimal
numbers of the most discriminatory genes used for EP discovery.



Chapter 16

Discriminating Gene Transfer and
Microarray Concordance Analysis

Shihong Mao

Department of Obstetrics and Gynaecology, Wayne State University

Guozhu Dong

Department of Computer Science and Engineering, Wright State University

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.2 Datasets Used in Experiments and Preprocessing . . . . . . . . . . . . . . . 234
16.3 Discriminating Genes and Associated Classifiers . . . . . . . . . . . . . . . . 236
16.4 Measures for Transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

16.4.1 Measures for Discriminative Gene Transferability . . . . . . 237
16.4.2 Measures for Classifier Transferability . . . . . . . . . . . . . . . . . . 238

16.5 Findings on Microarray Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
16.5.1 Concordance Test by Classifier Transferability . . . . . . . . . 238
16.5.2 Split Value Consistency Rate Analysis . . . . . . . . . . . . . . . . . . 238
16.5.3 Shared Discriminating Gene Based P-Value . . . . . . . . . . . . 239

16.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

16.1 Introduction

Large amounts of microarray gene expression data have been gener-
ated/collected using a variety of platforms, from different laboratories, under
different conditions. Suitable analysis of such data can lead to better under-
standing of diseases, and better ways to diagnose and treat diseases. However,
during microarray data collection processes, several factors, including platform
difference (due to variation of probe sequences targeted by different platforms)
and laboratory condition difference, may affect the consistency of the collected
data. The consistency of microarray data, with respect to various technology
platforms and laboratory conditions, needs to be evaluated before data anal-
ysis results from microarray data can be successfully and reliably applied in
biological/clinical practices and regulatory decision-making.

The cross platform/laboratory concordance problem has been studied by
many research groups using various methods [222, 391, 183, 365, 173, 293].
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However, most previous studies used the assumption that the expression val-
ues of all genes are equally important. That assumption is not appropriate for
comparative studies, where the focus is on certain classes of interest. Compar-
ative studies are especially interested in the features that are important to the
classes. They aim to discover fundamental patterns of gene regulation related
to the classes, and they aim to form/test new class-relevant hypothesis. In
order to get reliable concordance results for use in comparative studies, it is
desirable to evaluate concordance using appropriate comparative methodolo-
gies.

This chapter presents comparative methods for evaluating the concor-
dance of microarray data collected from different platforms and different
laboratories. The presented methods evaluate this concordance by measur-
ing the preservation and transferability of discriminating genes and classifiers
across platforms and laboratories. These methods give more emphasis to the
discriminating genes and ignore the non-discriminating genes; discriminting
genes are those that participate in high quality emerging patterns for the
classes. If the microarray datasets are concordant with each other with re-
spect to discriminating genes/classifiers, then the knowledge on discriminat-
ing genes/classifiers gained from one platform/laboratory can be transferred
to another platform/laboratory. This chapter is based on [292].

The discussion in this chapter will often refer to concordance between
two datasets. This approach makes the discussion applicable to concordance
between platforms or concordance between laboratories.

16.2 Datasets Used in Experiments and Preprocessing

The concordance analysis methodology reported in this chapter was eval-
uated on the datasets provided by the Microarray Quality Control (MAQC)
project [293]. The datasets were generated using more than 10 platforms in
more than 30 laboratories. The experiments reported below used the data gen-
erated by 12 laboratories using four major commercial platforms (Affymetrix
(AFX), Applied Biosystem (ABI), Agilent one color array (AG1), and GE
Healthcare (GEH)), leading to a total of 12 datasets. For each platform, there
are three repeated datasets, each from one of three laboratories; this design
makes both inter/intra platforms comparison possible.

All laboratories used the same 20 samples, which will be denoted by
s1, ..., s20, to produce the laboratories’ datasets by hybridizing those 20 sam-
ples to microarray chips. The 20 samples were obtained from the same four
standard mRNA samples (which will be referred to as the sample types),
which implies that biological variation has been eliminated. The four mRNAs
were named as A, B, C (75%A + 25%B), and D (25%A + 75%B). The 20
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samples were generated by having 5 duplicated samples of each of the four
mRNA types.

Since C contained more A than B whereas D contained more B than A,
mRNAs A and C were grouped into one class, whereas mRNAs B and D were
grouped into the other class. This division is used in all datasets.

For each platform, each mRNA sample was measured three times in three
different labs, generating three microarray vectors (which will be called re-
peats). An average dataset for the platform was constructed and used in
cross-platform concordance analysis. The average dataset for a given plat-
form was constructed as follows: Let um(gi, sj) denote the gene expression
value of sample sj on gene gi in the mth repeat of the given platform,
and let u(gi, sj) denote the average of the three repeats of sj on gi; then
u(gi, sj) = (u1(gi, sj) + u2(gi, sj) + u3(gi, sj))/3. The average dataset for a
given platform consists of the average vectors for all samples sj .

Different platforms may use different gene probes. UniGene IDs are often
used to identify common genes shared by different microarray platforms [419].
In this study, 16140 common genes were identified as being present on all
four of the analyzed platforms. Gene expression values were averaged in cases
where multiple probes for a given UniGene ID were present on the chip.

The gene expression values generated using different platforms cannot be
directly compared, because different labeling methods and different probe se-
quences used by the platforms may give rise to variable signals for the same
target (gene). A per-gene baseline adjustment is performed to normalize these
datasets. Suppose datasets D1 and D2 share m genes (g1,...,gm). Let Vi(gk, sj)
denote gene gk’s expression value for sample sj in Di, where 1 ≤ i ≤ 2,
1 ≤ k ≤ m and 1 ≤ j ≤ 20. Define

MaxDi,k = max{Vi(gk, sj) | 1 ≤ j ≤ 20},
MinDi,k = min{Vi(gk, sj) | 1 ≤ j ≤ 20}.

The following formula is used to generate the normalized dataset D′1 from D1.

V ′1(gk, sj) =
V1(gk, sj)−MinD1,k

MaxD2,k −MinD2,k
+MinD1,k (16.1)

Here, V ′1(gk, sj) denote gene gk’s expression value for sample sj in D′1. A
similar formula is applied to generate the normalized dataset D′2, where the
subscript 1 was exchanged with the subscript 2. The concordance between D1

and D2 can be investigated by checking D′1 and D2 (or equivalently D1 and
D′2) using concordance measures discussed below.
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16.3 Discriminating Genes and Associated Classifiers

Before presenting the use of transferability of discriminating genes and of
the associated classifiers between datasets to evaluate concordance, in this sec-
tion we discuss the concepts of discriminating genes and associated classifiers.

For a given dataset, the discriminating genes (DGs) are the genes that are
highly correlated with the classes. More specifically, the DGs are the genes
that participate in jumping emerging patterns (JEPs) [118, 119]. JEPs are
patterns that appear in one class but never appear in other classes. The JEPs
are conjunctions of conditions of one of two forms, “g ≤ vg” or “g > vg”,
where g is a gene and vg is the split value for g determined by the entropy
based method [128]. We refer to a JEP with k conditions as a k-gene JEP.
JEPs involving multiple genes are important since multiple genes orchestrate
physiological functions in the tissues.

In this study, a gene is called a discriminating gene (DG) for a given
dataset if it occurs in some JEPs for the dataset involving between one and
three genes. After determining the discriminative split value [128] for each
gene, the so-called “iterative gene club formation algorithm” [291] (see also
Chapter 17) was employed to discover the 2-gene and 3-gene JEPs from the
two classes of each MAQC microarray dataset. The one-gene JEPs were found
by checking the frequencies of g ≤ vg and of g > vg in the two classes for all
genes g and their associated split values vg. Only the JEPs having 100%
frequency in their home class (where the JEPs occur) were selected. Observe
that by definition of JEPs, each such JEP has 0% in the non-home class. So
the DGs are frequently involved in highly discriminative interactions among
genes.

We now turn to defining a simple classifier built using the discriminating
genes, which will be used in our concordance analysis methodology. Much has
been done on building accurate and noise-tolerant classifiers using emerging
patterns (see Chapter 11), for many different data types including microarray
data. For classifier-transferability based concordance analysis, it is desirable
to use a very simple kind of classifier. To that end, we consider a “vote-by-
discriminating-genes” (VBDG) classifier.

The VBDG classifier (for a given dataset D) works as follows: For each
discriminating gene g, suppose vg is g’s split value (determined by the entropy
based method), and Cg,low and Cg,high are respectively the majority classes
of the g ≤ vg and g > vg intervals in D. For each case t to be classified, g
gives a vote to the class Cg,low or Cg,high, depending on whether t(g) ≤ vg or
t(g) > vg is true. The VBDG classifier classifies t to the class C that has the
most of the votes by the DGs.
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16.4 Measures for Transferability

16.4.1 Measures for Discriminative Gene Transferability

Generally speaking, we say that the DGs are transferable between two
datasets D1 and D2, if the DGs of D1 are highly likely to be DGs of D2 and
vice versa.We present two ways to measure discriminative gene transferability.

The first discriminative gene transferability measure is the so-called split-
value consistency rate, denoted by SVCR. This ratio measures how class dis-
crimination is transferred between two datasets.

Let D1 and D2 be two datasets. Let Vi(g, sj) denote gene g’s expression
value for sample sj in Di. For each i ∈ {1, 2} and each gene g, let vig be the
split value of g in Di. For each gene g and sample sj , define agree(g, sj) = 1 if
(V1(g, sj) ≤ v1g) & (V2(g, sj) ≤ v2g) is true or (V1(g, sj) > v1g) & (V2(g, sj) >
v2g) is true, and define agree(g, sj) = 0 otherwise. So agree(g, sj) is 1 iff the
tuples for sj in the two datasets agree with the split values of gene g. The
SVCR between D1 and D2 with respect to a given set G of genes is defined by

SVCRG(D1, D2) =

∑20
j=1

∑
g∈G agree(g, sj)

20 ∗ |G| . (16.2)

In the experiments two choices for G were considered: G is the set of all genes
or G is the set of all discriminative genes.

The second discriminative gene transferability measure is based on the
number of discriminating genes shared by two given datasets D1 and D2. A
gene is a shared discriminative gene if it is a discriminative gene for both D1

and D2. While the number of shared discriminative genes can be directly used
to evaluate the concordance of D1 and D2, a permutation based approach is
used to derive the P-value to measure how much evidence we have against the
null hypotheses (that there is no difference between two given datasets).

Intuitively, if two given datasets D1 and D2 are very similar, then a per-
mutation of sample sj of D1 and sample sj of D2 will cause a very small
change to the set of shared DGs. In other words, the set of shared DGs for
the two datasets after the permutation should be very similar to the set for
the original two datasets. Thus, by comparing the set of shared DGs from
the dataset pair before and after the permutation, we can detect whether the
original dataset pair is concordant or not.

We perform a sequence of random permutations, and use the series of
shared DG sets of the permutated datasets to derive the P-value. More specif-
ically, let CG0 be the set of shared discriminating genes of the original dataset
pair. For i ∈ {1, ...,m} and m = 100, let Di

1 and Di
2 be the respective result

of some random number of random permutations of samples between D1 and
D2, and let CGi be the set of shared discriminating genes of Di

1 and Di
2. (In

the experiments, m was also set to 300; having m = 300 generated results
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similar to the case of m = 100.) Let F = |CG0| and Fi = |CGi ∩CG0|. Let μ
and σ be the mean and standard deviation of F1, ..., Fm. Then the Chebyshev
inequality can be used to estimate (an upper bound of) the P-value.

16.4.2 Measures for Classifier Transferability

In assessing classifier transferability between two datasets D1 and D2, the
average of the accuracy of the VBDG classifier built from D1 to classify D2

and that of the VBDG classifier built from D2 to classify D1, is used as the
numerical measure for classifier transferability. Below we will call that average
accuracy the cross platform classifier accuracy.

16.5 Findings on Microarray Concordance

16.5.1 Concordance Test by Classifier Transferability

We used classifier transferability to evaluate both cross-laboratory concor-
dance and cross-platform concordance.

For cross-laboratory concordance, the classifier transferability accuracy is
100% for any given platform.

For cross-platform concordance, the results indicate that the three plat-
forms of AFX, ABI, and GEH are highly concordant with each other, but
the AG1 platform is less concordant with the other three platforms. More
specifically, the cross platform classifier accuracy is 100% between any pairs
of platforms among AFX, ABI, and GEH, and it is ≤ 62.5% when AG1 is one
of the platforms.

16.5.2 Split Value Consistency Rate Analysis

Split value consistency rate was examined in two ways. In the first way
all genes were considered, and in the other way only the discriminating genes
were considered.

For cross-laboratory comparison, the SVCR is around 75% for all platforms
if all genes were considered, and it is between 92% and 98.5% if only the
discriminating genes were considered.

For cross-platform comparison, the SVCR is around 70% between the ABI,
AFX, and GEH platforms, and it is around 50% if AG1 is one of the platform,
if all genes were considered; the SVCR is at least 84% between the ABI, AFX,
and GEH platforms, and it is around 50% if AG1 is one of the platform, if
only the discriminating genes were considered.

In both types of concordance analysis, we see that, for the ABI, AFX, and
GEH platforms, SVCR for the case when only discriminating genes are consid-
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ered is strictly higher than SVCR for the case when all genes are considered.
The above is not true when AG1 is one of the platforms.

16.5.3 Shared Discriminating Gene Based P-Value

According to the shared discriminating gene based P-values, there is no
statistical significance (P > 0.05; the actual P-values are ≥ 0.2) between
different laboratories using a common platform, which implies that the labo-
ratories are concordant with each other if they use the same platform. On the
other hand, there is no statistical significance between the dataset pairs from
platform ABI, AFX, and GEH (P > 0.05; the actual P-values are ≥ 0.198),
which again implies concordance among those platforms; however, the dataset
from AG1 is significantly different from the other three platforms (P < 0.05;
the actual P-values are ≤ 0.012), which implies non-concordance.

16.6 Discussion

In this chapter we discussed methods that use discriminating gene trans-
ferability and discriminating gene based classifier transferability to evaluate
cross-laboratory and cross-platform concordance for microarray technology.
The experimental results show that different conclusions can be reached if all
genes were considered rather than the discriminating genes.

Guo et al. [173] used six gene selection methods to choose and rank genes,
reaching different concordance results from their different gene selection meth-
ods. Compared with their results, we reached the same conclusion that the
datasets within a given platform are highly concordant, and that the datasets
from non-AG1 platforms are fairly concordant with each other. However, our
discriminating gene based methods conclude that the AG1 platform has low
concordance with the three other platforms, whereas [173] concluded that the
AG1 platform is also concordant with other platforms.

Guo et al. also noticed the importance of discriminating genes in con-
cordance evaluation, although they used the fold change ranking method to
discover discriminating genes. It should be pointed out that their criteria for
discriminating gene selection are very different from ours. The fold change
method uses the ratio of average of expression values in the two classes to
rank genes. Our methods select discriminating genes based on participation
in high frequency jumping emerging patterns after entropy based binning.
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17.1 Introduction

It is commonly believed that careful analysis of microarray gene expression
data can lead to better understanding of, and better ways to diagnose and
treat, the associated diseases of the data. It is of interest to discover, from
the gene expression data, the gene interaction networks and perhaps even
pathways underlying the given diseases. Emerging patterns (EPs), especially
the highly discriminative ones, may provide useful insights in such an analysis.

Discovering highly discriminative EPs from microarray datasets is a big
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challenge because microarray data have extremely high dimensionality1, be-
cause the problem has high computational complexity [427], and because the
number of features that can be effectively handled by typical EP mining al-
gorithms is much smaller than the total number of available features. One
frequently used approach, which will be referred to as the top-k method,
solves the problem by selecting the top k genes ranked in the information
gain order or other feature preference order (such as the Chi2-based one of
[275]) and performing EP mining on those genes [252]. The top-k approach
is not satisfactory since the mined EPs reveal only gene interactions for the
underlying disease among the k selected genes. It is desirable to find all EPs
that correspond to the most striking gene interactions among all of the genes,
or find the optimal EPs containing each of some large subset of the genes.

This chapter presents gene-club based methods to overcome the dimen-
sionality hurdle. After presenting the methods, it reports experimental results
to show that those methods can efficiently discover high quality EPs involving
each of (a large subset of) the genes, and they can discover EPs with much
better quality than previous methods, including quite a few signature EPs
involving genes that are ranked below the 50th percentile in the information
gain based rank. Moreover, it presents an interaction based gene importance
index, using the high quality EPs mined using the gene club based methods,
to measure the importance of genes based on their participation in important
gene groups, for the disease/dataset under consideration.

Important to the methods of this chapter is the following concept. A gene
club of a gene g consists of a set of genes that are highly interactive with g;
g is called the owner of the gene club, and the number of genes in the club is
the size of the club. The owner gene g is always a member of g’s gene club.

In general, a gene club based EP mining method works as follows: (1)
Form a gene club for each gene g of interest. (2) For each gene club, use an
EP mining algorithm to mine the EPs on the genes in the gene club. (3) Select
the desired EPs from the mined EPs that result from steps (1) and (2). In
steps (1) and (2), for efficiency reasons one may choose to consider a subset
of all available genes, instead of all genes, as gene club owners.

In this chapter, by EPs we refer to jumping EPs (EPs whose support is
zero in non-home classes). The quality/discriminativeness of such EPs can be
indicated by their support in their home class.

This chapter is based on [291].

1For example, the Illumina human HT12 chip contains over 47,000 gene probes (features).
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17.2 Gene Club Formation Methods

This section presents four gene club formation methods, after some general
discussion on issues relevant to all those methods.

The size k of gene clubs must be determined when using gene club forma-
tion methods. In general, k should be as large as possible to ensure that many
genes that are potentially interactive with each other are in the same club, but
at the same time k should not be too big to ensure that current EP mining
algorithms can effectively handle data with k genes using available computing
resources. Gene club formation methods will have k as a parameter.

All gene club formation methods discussed below use some variants of the
information gain measure to evaluate class-related interaction among genes.
Intuitively, the ability of a group of genes to collectively generate pure parti-
tions with respect to the classes is used as indication of the degree of interac-
tion among the genes.

Before EP mining, microarray gene expression data need to be pre-
processed. We use the entropy based method [128] to split/discretize the value
range for each gene into two intervals/bins and to rank the genes; one bin will
be called “high” and the other “low”. The associated ranking of the genes will
be referred to as the information gain based rank. More details about data
pre-processing can be found in Chapter 1.

The discretized microarray data will be used in defining information gain
for groups of genes, which generalizes the definition for a single gene. Let S
be a given dataset (of data tuples with class labels). Let {g1, g2, ...gm} be a
set of m genes. For each string B = b1b2...bm, where each bi is either “low”
or “high”, of length m, let SB be the set of tuples in S such that “gi = bi” is
true for each i. Let Entropy(SB) denote the entropy of SB. (See Chapter 1.)
The information for gene group {g1, g2, ..., gm} is

I(g1, g2, ..., gm) =
∑
B

|SB|
|S| Entropy(SB),

where B ranges over all possible strings over {low, high} of length m. The
information gain for gene group {g1, g2, ..., gm} is

InfoGain(g1, g2, ..., gm) = Entropy(S)− I(g1, g2, ..., gm).

Although the determination of gene clubs share similarities with feature
selection methods, it has some unique characteristics: It is centered around
the owner gene of a gene club, it is based on the interaction among genes, and
it tries to form many gene clubs centered around many given owner genes.
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17.2.1 The Independent Gene Club Formation Method

The independent gene club formation method (GCIN) forms a gene club for
owner gene g by selecting the genes that are independently the most interactive
with g. The condtional information gain of gene g′ with respect to gene g,

InfoGain(g′ | g) = InfoGain(g, g′)− InfoGain(g),

is used to measure the degree of interaction between g′ and g.
The gene club of size k for g formed by GCIN is {g, g1, ..., gk−1}, where

g1, g2, ..., gk−1 are the top k − 1 genes, ranked by InfoGain(g′ | g).
Observe that the genes in a gene club are selected based on their interaction

with the club owner only; no attention is given to the interaction among the
selected non-owner genes.

17.2.2 The Iterative Gene Club Formation Method

The iterative gene club formation method (GCIT) forms a gene club by
iteratively selecting the genes that are the most interactive with the entire
current partial gene club. This is different from the GCIN method, which does
not consider the interaction of a new gene with other selected genes.

GCIT is based on the notion of generalized conditional information gain for
a gene g′ with respect to a partial gene club {g1, ..., gm, g} for owner gene g:

InfoGain(g′ | g1, g2, ...gm, g) = InfoGain(g1, g2, ...gm, g, g′)
−InfoGain(g1, g2, ...gm, g).

GCIT finds a gene club of size k for g iteratively as follows: It first selects
the gene g1 having the highest InfoGain(g′ | g) among all genes g′ �= g and
initializes the gene club to {g, g1}; then, for i = 2..k − 1, it repeatedly selects
the next gene gi having the highest InfoGain(g′ | g1, ..., gi−1, g) among all
remaining genes g′ and adds gi to the partial gene club.

17.2.3 Two Divisive Gene Club Formation Methods

We now present two divisive methods that are derived from GCIN and
GCIT. They are called divisive because they first divide the total dataset under
consideration into two partitions and then choose the genes from those selected
by GCIN or GCIT from the two partitions.

Given a club owner gene g and a desired gene club size k, we first divide
the total dataset D under consideration into two partitions D1 and D2 using
a split value v (determined using the information gain method), where D1 =
{t ∈ D | t(g) ≤ v} and D2 = {t ∈ D | t(g) > v}. We then use one of GCIN

and GCIT to select up to k genes (in a gene club for g) from D1 and up to k
genes from D2, as candidate members for the gene club for g over D. If GCIN is
used for both partitions, the method is called the divisive independent method
(GCDIN); if GCIT is used, the method is called the divisive iterative method
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(GCDIT). (One can also consider two other combinations, where GCIN is used
for one partition and GCIT is used for the other partition.)

The selected genes from D1 and D2 are then used to form the overall gene
club for g over D, as follows.

GCDIN first selects up to 1/3 of the k gene club members from each partition
having highest conditional information gain, among the genes with non-zero
conditional information gain. The last 1/3 (or more if any partitions did not
contribute 1/3 of k genes in the previous step) is chosen by selecting, from the
remaining candidate genes selected from the two partitions, the genes having
highest conditional information gain values. (Observe that the conditional
information gain used here can come from one or two of the two partitions.)

GCDIT is similar to GCDIN except that, in the final step, it uses a normalized
version of generalized conditional information gain to choose the last 1/3 of
the genes. Normalization of a conditional information gain is done by dividing
it by the partial gene club size; this is done since it is not very meaningful to
compare raw information gain over gene groups with large size differences.

17.3 Interaction Based Importance Index of Genes

Experiments indicate that some genes may not be strongly related with
the disease classes individually, but they are very important for the classes
when combined with other genes. In other words, they are important for the
classes when we consider how they interact with other genes in high quality
EPs, but they are not that important when we consider them in isolation.

The commonly used methods for gene ranking, including those based on
fold-change and t-statistics [432], together with the entropy based ranking,
are all examples where the importance of genes is determined in isolation.

We now present an index for measuring the importance of genes, called
interaction based gene importance, for a given disease. The index measures the
importance of a gene based on how often the gene participates in high quality
EPs of the dataset for the given disease and the quality of those EPs. We use
IBIG(g) to denote the index value of a gene g in this index.

The method to compute IBIG is as follows. First, for each gene g′, use one
or more gene club formation methods to find gene clubs for g′. Second, mine
the EPs over each of those gene clubs. Third, for each gene g select from the
mined EPs the one EP that has the highest support in its home class among
the EPs containing g. Let H denote the set of the selected EPs, for all genes.

The IBIG of a gene g is defined as

IBIG(g) =
∑

g∈P,P∈H
supp(P ).

The IBIG indexes for different diseases can be different.
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17.4 Computing IBIG and Highest Support EPs for Top
IBIG Genes

In the above discussion we considered mining EPs for gene clubs of a
given set of genes. It will be helpful if we can automatically identify the most
important n genes (without asking the user to identify them) and mine the
highest support EPs containing those genes, for some fairly large number n.

We now present a method, which we will refer to as Top IBIG, to achieve
the above goal, and computes the IBIG value for each of the top n IBIG ranked
genes. It works in iterations as follows. In each iteration, we consider only the
top n genes, as gene club owners. In the first iteration, we select the top n
genes using the information gain rank. In each subsequent iteration, we select
the top n genes ranked by the IBIG computed in the previous iteration. The
procedure ends when IBIG converges.

17.5 Experimental Evaluation of Gene Club Methods

The effectiveness of gene club based methods was evaluated in two ex-
periments: (i) the ability to mine the best possible EPs from some 75 genes,
and (ii) the ability to mine high quality EPs for all genes by using the gene
clubs for some 20 genes. Both experiments indicate that the gene club based
methods lead to significant improvement over the top-k mining method. The
section also gives an experimental comparison of the four methods.

Below we focus on the colon cancer dataset [9]. Experiments were also
conducted on the prostate cancer data [369], breast cancer data [412], and
ovarian cancer data [335]; the gene club based methods also produced signifi-
cant improvement over the top-k method on those datasets.

17.5.1 Ability to Find Top Quality EPs from 75 Genes

Experiments show that the gene club based methods can often find the
EPs whose frequencies are very close to the best possible EPs.

To demonstrate the ability claimed above, we conducted experiments on
the colon cancer data using the following experiment design (which gives us
access to all possible EPs): The top 75 genes ranked by information gain were
selected. EPs were exhaustively mined from the 75 genes using one invocation
of the border-diff algorithm [118] on all those genes. For each gene g among the
75 genes, let supEPex(g) be the highest frequency (support) of the discovered
EPs containing g. Next, the four gene club based methods, and the top-k
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method were used to mine EPs from the 75 genes. The gene club size was set
to 20 and the top-k method worked on the top 20 genes among the 75 genes.

For each gene g, we checked whether a given method can find an EP
containing g with frequency of supEPex(g) from the 75 genes. We considered
how often a method can achieve this. The experiments’s results are as follows.

GCIT can find the strongest EPs for about 82.5% of the genes. Moreover,
the average frequency (over the 75 genes) of the strongest EPs found by GCIT

is more than 98% of the average support of the strongest EPs that exist for the
75 genes. The other three gene club methods also generated similar results.

In contrast, the top-k method can only find the strongest EPs for 32.5%
of the genes, and the average frequency of the strongest EPs found by that
method is about 77% of the average frequency of the strongest EPs. So the
gene club based methods improve over the top-k method by a large margin.

Experiments over randomly selected 75 genes showed similar results.

17.5.2 Ability to Discover High Support EPs and Signature
EPs, Possibly Involving Lowly Ranked Genes

Experiments show that the gene club based methods can often find very
high quality EPs, even when those high quality EPs involve genes which are
ranked very low in the information gain rank. Moreover, the gene club based
methods produce significant improvement on the quality of the mined EPs
over the top-k method.

Indeed, using the top-k method with k = 35, the highest frequency of the
mined EPs of the normal tissue class is 77%, and that of the cancer tissue
class is 70% [253]. The quality is lower if k = 20 is used.

In contrast, using the gene club based methods with gene club size k = 20
and considering only gene clubs of the top 20 genes under the information
gain rank, the highest frequency of the mined EPs of the normal tissue class
is 100%, and that of the cancer tissue class is also 100%. Moreover, using the
gene club based methods, 11 EPs of 100% frequency and 19 EPs of 97.5%
frequency of the cancer tissue class were mined, and 4 EPs of 100% frequency
and 16 EPs of 95.5% frequency of the normal tissue class were mined.

Clearly, all of those 50 high frequency EPs mined by the gene club based
methods involve genes whose information gain rank is larger than 35 (since
none of them were mined by the top-k method for k = 35). In fact, all those
EPs involve a gene whose information gain rank is at least 69. Each of those
mined EPs with 100% frequency involves at least one gene whose information
gain rank is 113 or larger, and such mined EPs involve genes whose information
gain rank is as large as 700. The largest information gain rank of genes involved
in the 30 mined EPs of the cancer tissue class mentioned above is 1089, and
that of the normal tissue class is 1261. Incidentally, a total of 255 out of the
2000 genes of the colon cancer data is a member of at least one of the gene
clubs of the top 20 genes.

The most desirable EPs are those so-called signature EPs. We call an EP of
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a class a signature EP of the class if its frequency in the class is 100%. Since
signature EPs can completely characterize the diseased tissue class or the
normal tissue class respectively, they may be highly useful for understanding
gene functions/roles in diseases. The discussion above shows that the gene
club based methods can discover signature EPs.

We observe that several signature EPs involve genes ranked as low as 700 in
the information gain order, and several EPs whose home class frequency is >
95% involve genes ranked as low as 1089 and 1261. This implies that such genes
are very weak for characterizing the cancer individually by themselves, but
they can completely characterize the cancer when combined with several other
genes. Such genes may not have received enough investigation and deserve
attention in future research.

17.5.3 High Support Emerging Patterns Mined

Tables 17.1, 17.2, 17.3, and 17.4 list, respectively, the EPs with highest
support mined in diseased tissues and normal tissues for the colon cancer data
and for the prostate data. Each number represents a gene, and the number is
determined by the gene’s rank according to the information gain order. The
signs of + and − represent high and low respectively, e.g. 1+ is for gene 1 is
high, and 4 – is for gene 4 is low. The accession number and description for
some of the genes, together with their split values, can be found in [291].

TABLE 17.1: EPs with Highest Support – Colon Diseased Class. support
in normal class is 0 for all listed EPs. Source: Adapted from [291], Copyright
2005, with permission from World Scientific.

support in support in
EP diseased EP diseased

class class

{1+ 4- 112+ 113+} 100 {1+ 4- 113+ 116+} 100
{1+ 4- 113+ 221+} 100 {1+ 4- 113+ 696+} 100
{1+ 108- 112+ 113+} 100 {1+ 108- 113+ 116+} 100
{4- 108- 112+ 113+} 100 {4- 109+ 113+ 700+} 100
{4- 110+ 112+ 113+} 100 {4- 112+ 113+ 700+} 100
{4- 113+ 117+ 700+} 100 {1+ 6+ 8- 700+} 97.5
{1+ 8- 110+ 112+} 97.5 {1+ 8- 112+ 216+} 97.5
{1+ 8- 112+ 222+} 97.5 {1+ 8- 112+ 700+} 97.5
{1+ 8- 112+ 1089-} 97.5 {1+ 8- 116+ 1089-} 97.5
{1+ 110+ 116+ 263-} 97.5 {1+ 112+ 113+ 263-} 97.5
{1+ 112+ 263- 1089-} 97.5 {1+ 116+ 263- 1089-} 97.5
{4- 8- 112+ 216+} 97.5 {4- 112+ 113+ 263-} 97.5
{4- 112+ 113+ 1089-} 97.5 {6+ 8- 113+ 116+} 97.5
{6+ 8- 113+ 696+} 97.5 {6+ 8- 113+ 700+} 97.5
{8- 38+ 112+ 216+} 97.5 {8- 113+ 114+ 222+ 700+} 97.5
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TABLE 17.2: EPs with Highest Support – Colon Normal Class. support in
diseased class is 0 for all listed EPs. Source: Adapted from [291], Copyright
2005, with permission from World Scientific.

support in support in
EP normal EP normal

class class

{12- 21- 35+ 40+ {12- 35+ 40+ 71- }
137+ 254+} 100 137+ 254+} 100

{20- 21- 35+ 137+ 254+} 100 {20- 35+ 71- 137+ 254+} 100
{5- 35+ 137+ 177+} 95.5 {5- 35+ 137+ 254+} 95.5
{5- 35+ 137+ 419-} 95.5 {5- 137+ 177+ 309+} 95.5
{5- 137+ 254+ 309+} 95.5 {7- 21- 33+ 35+ 69+} 95.5
{7- 21- 33+ 69+ 309+} 95.5 {7- 21- 33+ 69+ 1261+} 95.5
{7- 34- 35+ 69+} 95.5 {7- 34- 69+ 309+} 95.5
{12- 34- 35+ 69+ 136-} 95.5 {12- 35+ 40+ 188- 254+} 95.5
{12- 35+ 69+ 136- 309+} 95.5 {18- 33+ 35+ 40+ 254+} 95.5
{18- 33+ 254+ 309+} 95.5 {21- 35+ 188- 254+} 95.5

TABLE 17.3: EPs with Highest Support – Prostate Diseased Class. support
in normal class is 0 for all listed EPs. Source: Adapted from [291], Copyright
2005, with permission from World Scientific.

support in support in
EP diseased EP diseased

class class

{07- 331- 557+ 5011-} 98.1 {07- 331- 564+ 5011-} 98.1
{07- 331- 708+ 5011-} 98.1 {07- 331- 719- 5011-} 98.1
{07- 557- 657- 5011-} 98.1 {07- 564+ 657- 713+ 5011-} 98.1
{07- 657- 708+ 5011-} 98.1 {07- 657- 719- 5011-} 98.1
{01- 947- 1271-} 96.1 {01- 1271- 2083-} 96.1

17.5.4 Comparison of the Four Gene Club Methods

The four gene club formation methods differ slightly in their ability to
identify the high quality EPs and signature EPs.

We first compare the four methods by considering their performance on
the top 75 genes. Compared with the exhaustive method (see the second para-
graph of Section 17.5.1), the average support of the strongest EPs found by
the four gene club based methods are 94.9% of that found by the exhaustive
method for GCIN, 94.2% for GCDIN, 98.3% for GCIT and 96.9% for GCDIT. The
iterative methods (GCIT and GCDIT) have overall stronger ability to identify
high quality EPs than the independent methods (GCIN and GCDIN). (So, if
only one gene club method is used for computation time reasons, then one
should use GCIT.) This can be attributed to the fact that the gene club mem-
bers formed by the iterative methods are more strongly correlated than those
formed by the independent methods, due to the difference in the corresponding
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TABLE 17.4: EPs with Highest Support – Prostate Normal Class. support
in diseased class is 0 for all listed EPs. Source: Adapted from [291], Copyright
2005, with permission from World Scientific.

support in support in
EP normal EP normal

class class

{11- 19- 20+ 41+} 86 {11- 20+ 41+ 3890+} 86
{11- 20+ 41+ 122-} 86 {11- 41+ 78-} 86
{19- 41+ 78- 122-} 86 {01+ 06- 2002+} 84
{04- 11- 19- 41+} 84 {04- 11- 41+ 122-} 84
{04- 11- 41+ 3890+} 84 {04- 18+ 507+ 1937+} 84

conditional information gain definitions. Surprisingly, the average supports of
EPs found by the divisive methods are lower than that found by the none-
divisive methods. One possible explanation is: the genes deemed useful in one
partition may not be very desirable in the other partition.

We next discuss the contribution of the four methods towards finding high
frequency EPs based on the gene clubs of the top 20 genes. The discussion
below refers to the experiments that were discussed in Section 17.5.2. The
majority of the top EPs were mined by GCIT method. For instance, among
the 15 signature EPs mined from the colon cancer dataset, 13 were found
by the GCIT method and the other two are by the GCIN method. It should
also be noted that, experiment results also indicate that GCIT cannot produce
all the high quality EPs found by the other methods. Indeed, for the colon
dataset, while GCDIN and GCDIT did not contribute any signature EPs, they
contributed EPs of support of 97.5% in the diseased class and 95.5% in the
normal class, which are in the top 50 EPs list ranked by support.

17.5.5 IBIG vs Information Gain Based Ranking

Table 17.5 compares the IBIG rank against the information gain based
rank of some genes for Colon Cancer data. We observe that the gene ranked
as the 10th most important by IBIG was ranked at 401 by the information
gain rank. (There are a total of 2000 genes.) The genes ranked at 2 and 3 by
IBIG are ranked at 114 and 115 by information gain rank.

17.6 Discussion

In many previous gene expression analysis studies, genes are typically
grouped by similarity of their expression profiles [166]. We would like to pro-
pose a different approach – we group genes using high quality EPs, i.e., genes
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TABLE 17.5: IBIG Rank vs IG (information gain based) Rank for Colon
Data. Source: Adapted from [291], Copyright 2005, with permission from
World Scientific.

IBIG Gene IG
Rank No. Rank

1 1422 8
2 681 114
3 575 115
4 1670 1
5 1041 7
6 1923 242
7 1581 16
8 624 6
9 1632 217
10 174 401

IBIG Gene IG
Rank No. Rank

11 1634 34
12 764 4
13 1559 132
14 257 12
15 1885 212
16 492 3
17 248 2
18 580 39
19 1327 66
20 398 14

should be grouped together if they match some high quality EPs. The value
of high quality EPs in such grouping is based on the fact that EPs capture the
following information: in one of the disease states, some genes are correlated
(perhaps because they participate in some common pathway under normal
situation) and are fully “in sync”, but in the other disease states these genes
are no longer “in sync” (perhaps because the pathway is disrupted).

It is also worth noting that EPs mined using gene club based methods can
also be used to form EP-based classifiers.

Incidently, we note that the “frequent-item based projection” method will
not help significantly regarding the dimensionality challenge for mining high
quality EPs in microarray data. Indeed, for the colon cancer data, the average
length of projected tuples are still 510 and 820 for the cancer and normal
classes respectively, after removing items whose support is < 90% in the class.

Reference [291] reported that many genes in the discovered EPs with high
support are known to be related to the studied diseases. However, some genes
in such EPs, especially the low-ranked genes, have not received enough inves-
tigation. The fact that these genes occur in those high support EPs indicates
that these genes are important for the disease under consideration, and they
should be studied further in the biology and medicine fields. Finally, the dis-
covered EPs capture high potential gene interactions and can be used to sug-
gest research directions to find gene functions and to discover new pathways.

Interestingly, for some diseases such as leukemia and lung cancer, the gene
club methods produced smaller improvement over the top-k approach than for
other diseases. This happened because the top-k approach has achieved very
high average support (89% in leukemia and 94% in lung cancer data) already,
and there is little room for further improvement. Interestingly, this implies
that most of the important gene groups for these diseases only involve top
ranked genes under the entropy measure. We suggest that this might be used
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as an indication that these diseases have relatively low disease complexity. On
the other hand, colon and prostate cancers may have high disease complexity,
since there are important gene groups for these diseases that involve genes
that are ranked quite low under the entropy measure.
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18.1 Introduction

In chemoinformatics, computational methods are developed and applied to
analyze and predict properties of small molecules including their behavior in
biological systems. In fact, the prediction of biological activities of chemical
compounds is one of the central themes in the chemoinformatics field. Es-
pecially during the early stages of pharmaceutical research, chemoinformatics
methods are frequently used to help identify novel active compounds, so-called
hits, in combination with experimental studies and further optimize their
target-specific potency and other drug discovery-relevant parameters (such
as, for example, solubility or metabolic stability).

Thus, compound classification techniques play a major role in chemoinfor-
matics and computer-aided medicinal chemistry [36]. For the majority of these
compound classification tasks, machine learning methods are applied [165]. Su-
pervised machine learning approaches rely on the use of training sets to derive
predictive models. For the classification of active compounds and the search
for new hits, this often poses a problem, especially if computational methods
should be applied in drug discovery to complement early stages of chemical
optimization efforts. In such situations, there are often not enough known ac-
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tive reference compounds available to assemble sufficiently large training sets
for conventional machine learning approaches such as decision trees, neural
networks, or support vector machines [165]. These potential limitations have
motivated us to explore machine learning or pattern recognition concepts that
might be capable of deriving high-quality predictive models on the basis of
only limited training data. In this context, we have become particularly in-
terested in an approach termed emerging patterns [118, 126], which makes it
possible to systematically generate feature patterns for objects with different
class labels and identify feature signatures that appear with high frequency in
one class, but not other(s). The emerging pattern approach has originated in
computer science but has also been applied to biological problems such as the
analysis of gene expression profiles [253]. In addition to such bioinformatics ap-
plications, we have adapted the emerging pattern methodology for compound
classification in chemoinformatics and hence termed our adaptation emerging
chemical pattern (ECP) [25]. Our studies have confirmed that ECP is indeed
capable of deriving high-quality class label prediction models on the basis
of very small training sets, which makes the approach highly attractive for
molecular classification and other applications in the area of medicinal chem-
istry including simulation of lead optimization efforts [25], sequential screening
campaigns [26], and bioactive compound conformation analysis [24].

Below, we first provide a brief account of the theory behind the ECP ap-
proach. For further details, the reader is referred to original publications of
the emerging pattern methodology by Dong and colleagues, some of which are
referenced in this chapter. Then, we discuss the application of ECP to com-
pound classification in comparison with other chemoinformatics approaches.
Finally, we present additional medicinal chemistry-relevant applications.

18.2 Theory

TABLE 18.1: Classification of molecular descriptors. Depending on the
molecular information required for their computation, molecular descriptors
can be partitioned into four classes.

Type Derived from Examples

I
Global (bulk) molecular
properties

Molecular weight, atom
counts

II
2D structure (molecular
graph)

Structural keys, connectivity
indices

III 3D structure
Surface properties, radius of
gyration

IV Biological properties Biological activity bit strings
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The description and prediction of desirable properties shared by chemical
compounds such as a specific biological activity are prime topics in chemoin-
formatics and pharmaceutical research. A simple, yet very popular example
is Lipinski’s rule of five [268], a heuristic that a bioactive compound should
comply with in order to eventually qualify as an orally available bioactive drug
candidate. The rule uses four numerical properties derived from the chemical
structure of a compound: molecular mass, octanol-water partition coefficient
(logP; a measure for hydrophobicity or lipophilicity), and the number of hy-
drogen bond donors and acceptors. In order to comply with Lipinski’s rule of
five, a compound should meet at least three of the following four criteria:

1. at most five hydrogen bond donors

2. at most 10 hydrogen bond acceptors

3. molecular mass less than 500 Dalton

4. logP of maximally 5

The four properties are examples of a more general concept, i.e., the “math-
ematical representation of a molecule resulting from a procedure transform-
ing the structural information encoded within a symbolic representation of a
molecule” [395]. Such mathematical representations are called molecular or
chemical descriptors that can considerably vary in their complexity and in-
formation content. The “Handbook of Molecular Descriptors” [407] provides
an extensive reference of literally thousands of descriptors, ranging from sim-
ple properties like atom counts over topological descriptors derived from the
molecular graph to complex combinations of properties derived from the three-
dimensional shape of a molecule. All these descriptors can be classified based
on the molecular representation required to compute them (see Table 18.1).
Unfortunately, knowledge about experimentally validated three-dimensional
bioactive compound conformations is usually rather limited and researchers
often need to use descriptors that do not rely on conformational information,
but that represent only structural properties of the compounds under inves-
tigation. However, the molecular graph often encodes enough information to
define meaningful descriptors for the characterization of biological activity.

Given a database of descriptor values, Lipinski’s rule of five might be
rationalized as an emerging pattern [118], separating orally available from
unavailable compounds. Going beyond this simple example, we have further
adapted and refined the notion of emerging patterns for processing of chemical
compounds and identifying discriminating ECPs.

For the analysis of emerging patterns, input data consist of feature values
for sets of objects with different class labels. In the context of ECPs, these are
typically values of numerical chemical property descriptors as described above
calculated for different types of small molecules such as compounds with (“ac-
tive”) or without (“inactive”) a specific biological activity. For the derivation
of attribute-value pairs that constitute patterns, observed descriptor values
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ranges must be discretized into meaningful intervals. For ECP, a (compound)
class information entropy-dependent discretization method relying on training
data was applied [145, 433]. Alternatively, an unsupervised method discretiz-
ing values into three ranges based upon the mean and standard deviation of
descriptor values also has been applied [26].

Chemical patterns are defined as class-specific combinations of chemical
descriptor value ranges. A descriptor value range is denoted as a designated
pair D : [low; upp), where D is the descriptor name while low and upp define
the lower and upper bound of the value range, respectively. Round parentheses
and square brackets are used to distinguish between open and closed intervals,
respectively. A compound matches a descriptor value range if the correspond-
ing descriptor value for that compound lies between the lower and upper
boundaries of the interval. A chemical pattern p can then be interpreted as a
combination of descriptor value ranges, i.e. p = {A1 : [low1, upp1), . . . , An :
[lown, uppn)} where all Ai are distinct. The support suppp(A) of a pattern p in
a data set S is the percentage of compounds in S matching all descriptor value
ranges. Patterns with strong support in one dataset D1 of objects and weak
support in another dataset D2 are called emerging patterns [118, 126, 253]. If
we study two compound classes (i.e., “active” vs. “inactive”) represented by
two data sets, ECPs can be searched for. The significance of an ECP can be
quantified using the growth rate, defined as the ratio of the support a pattern
has in two datasets:

growthD1,D2
(p) =

suppp(D1)

suppp(D2)

If the support of a pattern is non-zero in D1 but zero in D2, the pattern
is termed a jumping emerging pattern (JEP) [243] for which the growth is
not defined and informally said to be infinite. JEPs are expected to be highly
discriminatory. Chemical patterns can be partially ordered by a subset rela-
tionship, where a pattern s is considered to be a subset of pattern p if it is less
restrictive than p. This means it consists of a subset of the descriptors present
in p and each of the values ranges for descriptors in s contains the correspond-
ing value range in p. Thus, any set that contains a JEP as a subset is also a
JEP. This gives rise to the notion of most expressive JEPs. Most expressive
JEPs are JEPs that are minimal with respect to the subset relationship, i.e.,
they do no contain any pattern that is itself a JEP [243]. Accordingly, most ex-
pressive JEPs represent highly discriminatory features for classification. Given
the computational complexity of JEP mining (which represents an NP-hard
problem) [427], a hypergraph-based algorithm [35] has been applied to identify
most expressive JEPs for binary classification tasks. For classification and pre-
diction of active compounds, we focus on most expressive JEPs. Specifically,
we define ECPs as the most expressive JEPs identified by numerical chemical
descriptor analysis [25].
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18.3 Compound Classification

TABLE 18.2: Compound datasets for ECP classification. N is the number
of compounds per set and compound potencies are reported as IC50 values
(μM). The table has been generated using data taken from reference [25].

Class N < 1μM ≥ 1μM

BZR 321 283 38
DHR 586 249 337
GSK 464 281 183
HIV 967 821 146

For classification, ECPs are determined for an active and an inactive com-
pound class used for training. Then, class labels are predicted for test com-
pounds as follows: For each compound with unknown activity state, all pre-
computed ECPs from each class are determined. For these ECPs, the cumu-
lative support in the positive (active) and negative (inactive) training data
is calculated, yielding two scores. The higher of the two scores determines
whether the compound is classified as active or inactive. A normalization pro-
cedure is applied to account for the possibility that unevenly sized training sets
generate significantly different numbers of ECPs for classification. Therefore,
for each test compound, the cumulative support of ECPs is divided by the sum
of all ECPs computed for the training data. The calculation of the cumulative
score follows the CAEP (Classification by Aggregating Emerging Patterns)
[126, 243] method except for the normalization step, which in our case will
yield scores in the range 0 to 1. Classification is of course not limited to two
classes of compounds (active and inactive). For example, compounds belonging
to different activity classes might be classified or, alternatively, classification
of compounds (belonging to an individual class) according to different activ-
ity (potency) levels might be attempted. In an exemplary application, ECP-
based classification was performed on four datasets of active compounds [6]
including benzodiazepines (BZR), dihydrofolate reductase inhibitors (DHR),
glycogen synthase kinase-3 inhibitors (GSK3), and HIV protease inhibitors
(HIV). These compound sets are summarized in Table 18.2.

The datasets were separated into two subsets (classes) of compounds
with potency above or below 1 μM to obtain compound classes with higher
(nanomolar) and lower (micromolar) potency. For different classification trials,
initially, training sets of increasing size comprising 10%–50% of all micromo-
lar or nanomolar compounds were selected. Then, much smaller training sets
consisting of only three to 10 compounds were assembled. ECP-based classi-
fication was compared to two other classification approaches that are popular
in the chemoinformatics field including binary QSAR [225] and decision trees
[358]. For all three approaches, classification models were derived for series
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of 500 randomly selected training sets that were then applied to predict the
micromolar or nanomolar class label of the remaining test compounds. As
features, a set of 61 conformation-independent numerical molecular property
descriptors with limited pair-wise correlation was evaluated [25]. Value ranges
of these descriptors for each dataset were binned using information entropy-
based discretization. For ECP classification, individual descriptors whose val-
ues only mapped to a single interval were omitted.

TABLE 18.3: Classification results for small training sets. Average predic-
tion accuracies are reported for very small training sets of N = 3, 5, or 10
nanomolar and micromolar compounds using ECP, binary QSAR (BIN), and
decision tree (DT) calculations. The table has been generated using data taken
from reference [25].

Nanomolar compounds

Training N=3 N=5 N=10

ECP BIN DT ECP BIN DT ECP BIN DT

BZR 0.62 0.72 1.00 0.75 0.58 0.57 0.74 0.57 0.59
DHR 0.54 0.68 1.00 0.72 0.54 0.58 0.73 0.71 0.59
GSK 0.57 0.74 1.00 0.80 0.64 0.68 0.82 0.51 0.69
HIV 0.79 0.73 1.00 0.78 0.65 0.63 0.81 0.57 0.66

Micromolar compounds

Training N=3 N=5 N=10

ECP BIN DT ECP BIN DT ECP BIN DT

BZR 0.88 0.45 0.0 0.75 0.55 0.64 0.79 0.58 0.63
DHR 0.75 0.39 0.0 0.55 0.55 0.50 0.59 0.44 0.50
GSK 0.86 0.44 0.0 0.68 0.52 0.65 0.72 0.70 0.62
HIV 0.57 0.45 0.0 0.61 0.52 0.59 0.65 0.62 0.63

For training sets consisting of 10%–50% of all micro- or nanomolar com-
pounds, the three classification methods yielded similarly high performance,
achieving an overall classification accuracy of ca. 80%. Thus, under these train-
ing conditions, ECP classification reached the performance level of standard
chemoinformatics approaches. Then, classification performance was evaluated
for unusually small training sets of three, five, or 10 compounds, which would
usually not be considered for machine learning applications in chemoinformat-
ics. Under these conditions, the ECP approach clearly showed higher predic-
tion accuracy than binary QSAR or decision trees. The results are summarized
in Table 18.3. For the smallest (N = 3) learning sets, decision trees had no
predictive ability because they classified all test compounds as nanomolar
(yielding an artificial prediction accuracy of 100% for this class). In three
instances, binary QSAR produced slightly better predictions than ECP for
nanomolar compounds. However, for training sets of three micromolar com-
pounds, binary QSAR prediction accuracy was worse than random (50%). For
training sets of five compounds, prediction accuracy of ECP calculations was
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consistently and significantly higher than for binary QSAR or decision trees.
Taken together, the results revealed that only ECP calculations produced
meaningful classification results for very small training sets.

These findings confirmed that ECP analysis was capable of extracting
highly discriminatory feature patterns from only a few training examples,
which set the approach apart from standard machine learning methods for
compound classification. We considered the ability of ECP to successfully
operate on the basis of very small training sets a cardinal feature of this
approach, which opened the door to address a number of special applications,
for which other methods were difficult to apply.

18.4 Computational Medicinal Chemistry Applications

For several types of applications that are particularly relevant for medicinal
chemistry projects, only a limited number of compounds are usually available
for knowledge extraction and learning. Exemplary applications are discussed
in the following.

18.4.1 Simulated Lead Optimization

In medicinal chemistry, the lead optimization process aims at converting
newly identified active compounds into highly potent molecules with favorable
molecular properties that ultimately qualify these leads for pre-clinical and
clinical evaluation. Leads are typically optimized by subjecting them to a
series of chemical modifications that cause desired potency progression. Thus,
during the early stages of such medicinal chemistry projects, only a few active
compounds (analogs) are available to guide optimization efforts.

To simulate lead optimization, we applied an iterative ECP classification
protocol on the basis of small training sets (N = 5 or 10) [6]. The goal of these
calculations was to gradually increase the potency of selected compounds. This
corresponds to the ability to progressively predict more potent compounds on
the basis of only few known actives, consistent with the goals of chemical
optimization.

The analysis was carried out for the compound sets reported in Table 18.2.
After an initial ECP classifier was derived, 10 iterations were carried out per
compound set, representing an optimization trial. A total of 500 independent
trials were carried out for each of the four compound datasets (and the re-
sults were averaged). During each iteration of a trial, training sets of five or
10 nano- and micromolar compounds were randomly selected from the cur-
rent compound pool. This compound set was used to train the ECP classifier
for this iteration, and the class label of all remaining test compounds was
predicted. Then, all predicted micromolar (weakly active) compounds were
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removed from the test set and only compounds predicted to have nanomolar
potency were retained for the next iteration. Over all iterations of a trial,
the enrichment of nanomolar compounds in test sets of decreasing size was
monitored and average potency values of these compounds were calculated.
Thus, it was attempted to continuously refine ECP classification during search
trials. Representative results are shown in Figure 18.1. All calculations with
N = 5 or N = 10 training sets reached convergence during the first eight
iterations producing final selection sets of fewer than 10 compounds with av-
erage nanomolar potency. Dependent on the compound class, average potency
increases ranged from one to three orders of magnitude. In the course of the
optimization, a sharp decline in compound numbers was generally accompa-
nied by large increases in potency. Thus, for small training sets that were then
further divided into subsets based on a simple potency ranking, ECP analysis
was capable of identifying test compounds with significantly increased average
potency within only a few iterations. These findings also revealed the success-
ful identification of highly discriminatory patterns on the basis of only very few
training examples, which then predicted increasingly potent compounds at a
high rate. Hence, on the basis of these results, ECP classification should have
significant potential to support early chemical optimization efforts through
the prediction of new active compounds on the basis of alternative candidate
compounds and/or small series of analogs.

18.4.2 Simulated Sequential Screening

Biological compound screening is the major source of new active com-
pounds for medicinal chemistry [37]. Experimental and computational screen-
ing approaches can be applied in a synergistic manner, giving rise to sequen-
tial (or iterative) screening schemes [37]. In sequential screening, computa-
tional methods are applied to pre-select subsets of large compound libraries
for experimental evaluation based on the likelihood of database compounds
to display a desired biological activity. The computational pre-selection typ-
ically requires known active compounds as input (reference molecules). The
selected database subset is then experimentally tested and newly identified ac-
tive compounds are used as additional reference molecules for the next round
of computational selection from the remaining non-tested compounds. The
new candidates are again experimentally screened and this iterative process
is continued until a sufficient number of new and chemically interesting active
compounds is identified. The basic idea of this combined computational and
experimental screening process is to substantially reduce the number of screen-
ing experiments required for hit identification [37]. However, for sequential
screening, only very small numbers of active reference molecules are usually
available compared to the size of screening libraries. Hence, it has also been
attractive to investigate the ECP approach for the simulation of sequential
screening trials. For this purpose, a publicly available dihydrofolate reductase
inhibitor screening dataset was used in a pilot study [26]. This screening set
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consisted of 50,000 compounds, only 32 of which were experimentally con-
firmed to inhibit dihydrofolate reductase. ECP classifiers were trained using
sets of five randomly selected inhibitors and 20 inactive screening set com-
pounds. The same descriptor set and discretization procedure as described
above were applied. Using these ECP classifiers, test compounds were ranked
on the basis of matching patterns derived from active training sets. Hence, in-
stead of binary classification (active vs. inactive), pattern-based ranking was
carried out in this case according to the likelihood of activity. To simulate
sequential screening, the highest ranked 10, 100, or 500 compounds were se-
lected from the screening set and active compounds were identified (hence
mimicking the experimental testing phase). In each case, the top-ranked 10
compounds were added to the training set for the next round (regardless of
whether they were active or inactive) and all remaining newly identified hits.
This procedure was applied to further refine the classifier for the subsequent
iteration. For each selection set size (10, 100, or 500 molecules), 100 individual
search trials were carried out. Each trial consisted of nine screening iterations
such that the total number of evaluated screening dataset compounds was
smaller than 10% (for the largest selection set size). Because five inhibitors
were used for training, the screening set of nearly 50,000 molecules contained
only 27 active test compounds. Thus, this simulated screening scenario was
akin to a search for “needles in haystacks”. During training, we monitored
the distribution of patterns derived for classification. For active training com-
pounds, on average ca. 10,700 patterns consisting of ca. 7.5 descriptor value
pairs per pattern were generated. However, for inactive compounds, on aver-
age only ca. 170 patterns with ca. 3.3 descriptor value pairs were obtained.
The likely reason for this observation was that an active training compound
needed to be distinguished from many more inactive ones than vice versa. Ac-
cordingly, the large difference in the number of patterns between active and
inactive compounds was due to the fact that the number of possible patterns
exponentially grows in descriptor spaces of increasing dimensionality.

Table 18.4 reports average cumulative recovery rates of active compounds.
For selection sets of 10, 100, and 500 database compounds, rates of ca. 19%,
26%, and 39% were observed, respectively. For selection sets of 10 compounds,
the rate corresponded to the identification of approx. five new active com-
pounds among only 115 evaluated database molecules. For the largest selection
set, 10–11 active compounds were detected among 4525 database molecules. A
steady increase in average recovery rates over different iterations was observed.
Particularly noteworthy was the detection of proportionally large numbers
of active compounds within the smallest selection sets (using only five ac-
tive compounds for training). On average, evaluating 50 times more database
molecules only doubled the number identified active compounds compared to
the smallest selection sets.

Taken together, the results of this study [26] further confirmed that ECP
classification could be successfully carried out on the basis of small training
sets. Moreover, ECP calculations in the context of sequential screening tri-
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TABLE 18.4: Average cumulative ECP recovery rates of active compounds.
Average results are reported for 100 independent search trials and selection
sets of 10, 100, and 500 database molecules. The total number of evaluated
database compounds (“tested”) and the average cumulative recovery rates
(“RR”) are listed for subsequent iterations (“It.”). “TR” gives the size of the
training sets and “ACT” the total number of active compounds that were
detected. Newly identified hits were included in the training for the next iter-
ation. The table has been generated using data taken from reference [26].

10 100

It. Tested TR ACT RR Tested TR ACT RR

1 35 35 1.32 4.9% 125 36.00 2.41 8.9%
2 45 45 1.78 6.6% 225 46.84 3.78 14.0%
3 55 55 2.73 10.1% 325 57.26 4.69 17.4%
4 65 65 3.53 13.1% 425 67.74 5.41 20.0%
5 75 75 4.00 14.8% 525 78.00 5.80 21.3%
6 85 85 4.50 16.6% 625 89.00 6.40 23.7%
7 95 95 4.90 18.2% 725 99.00 6.60 24.6%
8 105 105 5.10 18.9% 825 109.00 6.90 25.6%
9 115 115 5.20 19.4% 925 119.00 7.10 26.3%

500

It. Tested TR ACT RR

1 525 37.40 3.94 14.6%
2 1025 49.09 6.29 23.3%
3 1525 60.01 7.47 27.7%
4 2025 70.61 8.26 30.6%
5 2525 81.24 8.94 33.1%
6 3025 91.80 9.52 35.3%
7 3525 102.15 9.95 36.9%
8 4025 112.40 10.20 37.8%
9 4525 122.71 10.60 39.1%

als were characterized by a high level of sensitivity and specificity for small
compound selection sets. ECP analysis detected ca. 20% of available active
compounds in only ca. 100 of 50,000 screening set compounds that were eval-
uated, providing considerable theoretical support for the sequential screening
paradigm.

18.4.3 Bioactive Conformation Analysis

A major problem in medicinal chemistry and drug design is the correct
prediction of bioactive compound conformations (i.e., the 3D structures that
active compounds adopt upon specific binding to their biological targets)
[107, 334]. To this date, consistently successful predictions are not feasible.
We were interested in exploring the question whether it might be possible to
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systematically distinguish between experimentally observed binding confor-
mations and modeled low-energy conformations of active compounds. Typi-
cally, only small numbers of observed bioactive conformations are available
for a compound activity class, which makes ECP classification an attractive
approach to address this question. Thus, the major goal of our analysis was
the search for specific descriptor patterns that might effectively distinguish
between bioactive and modeled conformations. However, different from the
lead optimization and sequential screening tasks, this objective required the
exploration of three-dimensional descriptors.

Bioactive and modeled conformations were systematically compared for
sets of compounds active against 18 different target proteins [24]. Bioactive
conformations of compounds available in X-ray structures of their targets were
extracted from these complexes. For each compound, one or more low energy
conformations were modeled using a stochastic conformational search protocol
that iteratively sampled local energy minima, as illustrated in Figure 18.2. Low
energy conformations were retained if the root mean square (RMS) gradient of
the chosen force field function met the pre-defined threshold value for relaxed

structures of 0.001 kcalmol−1Å
−1

and if the conformations differed from each
other in their all heavy-atom RMS deviation (RMSD) by at least 0.1 Å. For
the 18 target protein sets, between five and 30 compounds with experimental
binding conformations were collected and for these compounds, between 16
and 247 low-energy conformers were sampled. On average, experimental bind-
ing and theoretical low-energy conformations displayed heavy atom RMSDs
between 2 and 3 Å. Thus, these conformations typically departed from each
other. These sets of experimental vs. modeled conformations were then uti-
lized for pattern analysis and ECP classification. As descriptors, a set of 67
conformation-dependent (3D) descriptors was used that represented charge
distributions, molecular surface-, or volume-derived properties [24].

ECP analysis was then carried out in order to identify patterns that dis-
criminated between bioactive and modeled conformations. Encouragingly, for
each of the 18 target sets such patterns could be identified [24]. In most in-
stances between 10 and 30 discriminatory ECPs were obtained and the de-
scriptor composition of these patterns often varied in a target set-specific
manner. The majority of strongly discriminatory ECPs had infinite growth,
i.e., these patterns only appeared in bioactive, but not modeled conforma-
tions. Despite target set variations among discriminatory patterns, there were
common trends. For example, it is well known that binding to target pro-
teins generally induces energetic strain in ligands [334]. Accordingly, many
discriminatory patterns that were highly specific for bioactive conformations
contained various energy descriptors including, for example, potential, tor-
sional, or out-of-plane energy terms. Occasionally, patterns containing a single
energy descriptor value range combination were identified. Nevertheless, dis-
criminatory patterns without energy descriptors were also found in a number
of instances. Importantly, in many cases, it was possible to interpret discrim-
inatory patterns on the basis of ligand conformations and/or protein-ligand
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TABLE 18.5: Most discriminatory ECPs for adenosine deaminase inhibitors.
Reported are the 10 ECPs (“Patterns”) that best discriminated between bioac-
tive and modeled inhibitor conformations. The growth of these patterns is
reported. “B” stands for bioactive/binding,“M” for modeled conformations,
and “E” for energy descriptors (accounting for various bonded and non-bonded
energy terms). For the purpose of our discussion, detailed definition of indi-
vidual descriptors is not required. The table has been generated using data
taken from reference [24].

Growth B [%] B M [%] M Pattern

∞ 93 14 0 0 Estrain = (24.46 :∞]
∞ 80 12 0 0 Estr = (14.90 :∞]

∞ 53 8 0 0
{Etor = (1.88 :∞],
std.dim.2 = (1.81 :∞]}

∞ 53 8 0 0
{Etor = (1.88 :∞],
pmiY = (1141.06 :∞]}

∞ 53 8 0 0 Eoop = (1.64 :∞]
∞ 53 8 0 0 Eang = (17.54 :∞]
∞ 100 15 0 0 Estrain = (15.69 :∞]
∞ 87 13 0 0 Estr = (10.26 :∞]
∞ 73 11 0 0 Eang = (13.51 :∞]
∞ 53 8 0 0 Estb = (0.96 :∞]

interactions seen in x-ray structures and thus rationalize why these patterns
discriminated between experimental and theoretical conformations [24]. The
frequent interpretability of discriminatory ECPs very well complemented their
predictive power in data mining and compound classification. In the following,
two exemplary cases are discussed to illustrate major findings of ECP-based
conformation analysis.

The adenosine deaminase set contained five inhibitors with known bioac-
tive conformations and 139 theoretical conformers of these inhibitors, with
an average RMSD of 2.45 Å. Table 18.5 reports the top 10 most discrimi-
natory patterns for this set (all of which have infinite growth). All of these
patterns are formed by a single or maximally two descriptor-value range pairs.
In each pattern, an energy descriptor is found that accounts for strain, tor-
sional, out-of-plane, or angular energy terms. These findings can be rational-
ized by comparing experimental and theoretical conformations, as illustrated
in Figure 18.3. In the bioactive conformation of the inhibitor, all rings are
to a more or lesser extent twisted, which maximizes van der Waals interac-
tions between these rings and the binding pocket of the enzyme. This induced
fit compensates for the unfavorable ring geometry. In the modeled low-energy
conformations, these rings adopt energetically preferred planar geometry. This
is the major discrepancy between experimental and theoretical conformations,
which is well reflected by the various associated energy terms that occur in
the most discriminatory ECPs.
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TABLE 18.6: Most discriminatory ECPs for trypsin inhibitors. Reported are
the top three most discriminatory ECPs (“Patterns”) for experimental and
modeled trypsin inhibitor conformers. “B” stands for bioactive/binding,“M”
for modeled conformations, and “E” for energy descriptors. For the purpose
of our discussion, detailed definition of individual descriptors is not required.
The table has been generated using data taken from reference [24].

Growth B [%] B M [%] M Pattern

∞ 100 30 0 0 Estrain = (5.11 :∞]
∞ 63 19 0 0 Estr = (10.03 :∞]
∞ 63 19 0 0 Estb = (0.53 :∞]

As a second example, trypsin inhibitors are presented. This set contained
30 inhibitors with known bioactive conformations and 195 modeled conform-
ers. In this case, the average RMSD between experimental and theoretical con-
formers was only 1.74 Å (i.e., smaller than in most other cases). Hence, struc-
tural differences between many bioactive and modeled conformations were
relatively subtle here. However, compared to modeled low-energy conform-
ers, nearly 80% of all bioactive conformations showed increased, strain, bond
stretching, angle bending, and potential energy, which was again well reflected
by the top three discriminatory ECPs in Table 18.6.

In Figure 18.4, a major structural difference between bioactive confor-
mations and modeled conformers of trypsin inhibitors is highlighted. In the
experimental conformation, the diaminomethyl group is in axial position (be-
cause it is constrained by strong hydrogen bonding interactions within its
binding pocket), whereas this group is in the lower-energy equatorial position
in modeled conformers. Thus, energetic effects associated with relatively small
yet well-defined structural differences between experimental binding confor-
mations and theoretical low-energy conformers of these trypsin inhibitors were
captured by most discriminatory ECPs.

18.5 Chemoinformatics Glossary

Compound Classification: A process that divides compound datasets into
different subsets or classes having different properties. In chemoinformat-
ics, typical class labels include “active” and “inactive” with respect to a
given biological activity or “activity 1”,“activity 2”, “activity 3” . . . for
classification according to different specific biological activities.

Conformational Sampling: Computational search for preferred conforma-
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tions of molecules on the basis of randomly or systematically introduced
structural changes followed by potential energy evaluation.

Emerging Chemical Patterns: The most expressive jumping emerging
patterns identified by numerical chemical descriptor analysis.

Hit: A new active compound identified through biological screening or com-
putational analysis followed by experimental confirmation.

Lead Optimization: A central task in medicinal chemistry where the po-
tency of specifically active compounds and other molecular properties are
optimized through a series of chemical modifications to ultimately gener-
ate candidates for pre-clinical and clinical evaluation.

QSAR: Quantitative structure-activity relationship analysis.

Sequential Screening: A compound screening strategy that involves itera-
tive cycles of computational candidate selection and experimental testing,
taking information from newly identified active compounds into account
during subsequent rounds.
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FIGURE 18.1: Simulated Lead Optimization. Representative search results
are shown for compound activity class BZR and training sets of N = 5 and 10
compounds. Box plot representations report the average potency values and
numbers of test compounds for 500 independent search trials. The box shows
the 0.75 (top) and 0.25 quartile (bottom) separated by the median (horizontal
bar). The lines indicate the largest and smallest values within a distance of
maximal 1.5 times of the box size (relative to the nearest boundary).
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FIGURE 18.2: Illustration of conformer generation. For ligands with experi-
mentally determined binding conformations (bioactive conformations), theo-
retical low-energy conformations were generated by stochastic conformational
sampling in combination with energy minimization to screen local energy min-
ima on a theoretical potential energy surface.

FIGURE 18.3: Conformational analysis of an adenosine deaminase inhibitor.
Most distorted ring systems in the bioactive conformation that are regularized
in energy-minimized conformers are encircled. On the left, the experimental
binding conformation is shown and on the right, a modeled low-energy con-
formation.

FIGURE 18.4: Conformational analysis of a trypsin inhibitor. Different posi-
tions of the diaminomethyl group in the bioactive and modeled conformations
are encircled. On the left, the experimental binding conformation is shown
and on the right, a modeled low-energy conformation.



Chapter 19

Emerging Patterns as Structural
Alerts for Computational Toxicology

Bertrand Cuissart, Guillaume Poezevara, Bruno Crémilleux

Groupe de Recherche en Informatique, Image, Automatique et Instrumenta-
tion de Caen, University of Caen Basse-Normandie, CNRS UMR 6072

Alban Lepailleur

Centre d’Etudes et de Recherche sur le Médicament de Normandie, University
of Caen Basse-Normandie, UPRES EA 4258 - FR CNRS 3038

Ronan Bureau

Centre d’Etudes et de Recherche sur le Médicament de Normandie, University
of Caen Basse-Normandie, UPRES EA 4258 - FR CNRS 3038

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
19.2 Frequent Emerging Molecular Patterns as Potential Structural

Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
19.2.1 Definition of Frequent Emerging Molecular Pattern . . . . 271
19.2.2 Using RPMPs as Condensed Representation of FEMPs 272
19.2.3 Notes on the Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
19.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

19.3 Experiments in Predictive Toxicology . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
19.3.1 Materials and Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 275
Chemical Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
19.3.2 Generalization of the RPMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Generalization of the Properties of the RPMPs . . . . . . . . . . . . . . . . . 276
The RPMPs for Predicting Toxicity of Molecules . . . . . . . . . . . . . . . 277

19.4 A Chemical Analysis of RPMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Alkyl Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Aromatic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

19.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

269



270 Contrast Data Mining: Concepts, Algorithms, and Applications

19.1 Introduction

Thanks to significant advances on both the algorithmic and the practical
sides, mining graph data has turned into a key domain of data mining. Vari-
ous domains use graphs to model their data and graph patterns have widely
demonstrated their potential, especially in the field of chemoinformatics where
chemical structures are commonly modeled as graphs. Computational toxicol-
ogy, which aims at studying toxicity by using computer tools, is a typical
example of an important field for developing graph mining methods. Even
though there already exist useful tools such as Derek [353] that rely on frag-
ments for assessing the toxic behavior of molecules, these methods suffer from
two limitations [411]: (i) there is a lack of objectivity when a human expert
assesses the level of toxicity caused by a molecular fragment and (ii) there
is no decision rule based on the conjunction of two or more molecular frag-
ments. Thus, there is a strong need of methods that can extract conjunctions
of molecular fragments whose occurrences demonstrate relationships with a
toxic behavior.

The chapter meets this need by designing a method, based on the notion
of emerging pattern [118], called the Frequent Emerging Molecular Pattern
(FEMP) [339, 340]. Given a chemical dataset partitioned into two classes
(e.g. toxic molecules and non-toxic ones), a FEMP is a conjunction of molecu-
lar fragments such that: (i) its frequencies between the classes are sufficiently
different and (ii) its frequency in the target class is high enough to be sig-
nificant to support further use. In chemoinformatics, this notion positively
answers the need of an automatic and understandable method for extract-
ing the conjunctions of fragments related to a given behavior: FEMPs have
already demonstrated their usefulness in computational ecotoxicology [288].

Section 19.2 explains our methodological contributions, i.e. (i) the FEMPs,
their computation, and (ii) a condensed representation summarizing the ex-
tracted information. Section 19.3 gives the key results of an experimental
study, where we quantitatively assess the effectiveness of the FEMPs as struc-
tural alerts in computational toxicology. Section 19.4 provides a thorough
chemical analysis of the information brought by the extracted FEMPs. That
chemical analysis represents a solid qualitative reasoning that advocates and
demonstrates the advantages of the use of the FEMPs in computational toxi-
cology.
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19.2 Frequent Emerging Molecular Patterns as Potential
Structural Alerts

This section introduces the notion of a Frequent Emerging Molecular Pat-
tern (FEMP). Here, we stress on the intuitions and the key ideas, and illustrate
them by the example in Figure 19.1. Formal definitions and proofs of the re-
sults are given in [340]. Sections 19.3 and 19.4 will show that FEMPs are at
the core of the chemical information discovered by data mining processes.

19.2.1 Definition of Frequent Emerging Molecular Pattern

The left side of Figure 19.1 displays molecular structures in the usual
manner: 2D molecular graphs. Graphs are frequently used to model elements
having relationships – the edges of the graphs represent relationships. Then, a
molecular structure is depicted as a set of elements, the atoms, that interact by
means of edges, the chemical bonds. An element of a molecular graph is labeled
with the atomic number it represents, while the label of an edge indicates the
type of the chemical bond. In Figure 19.1, the chemical dataset is partitioned
in two parts: toxic molecules and non-toxic ones.
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FIGURE 19.1: An illustrative chemical dataset.

The right side of Figure 19.1 displays molecular fragments; a molecular
fragment represents a part of a molecule. A fragment is said to occur within
a molecule if there is an embedding of the fragment in the molecule that
satisfies both the relational structure of the fragment (the presence and the
absence of every edge) and the labeling scheme of the edges. As an example,
the embedding of the fragment g1 is shown in bold on the molecular graphs.
The frequency of a fragment in a chemical dataset quantifies the portion of
molecules of the dataset where the fragment occurs. For instance, g1 occurs in
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100% of the toxic molecules and 50% in the non-toxic ones (cf. Figure 19.1).
A molecular pattern is defined to be a set of molecular fragments. The length
of a molecular pattern corresponds to the number of fragments it contains. A
molecular pattern occurs in a molecule if each one of its fragments occurs in
the molecule. The frequency of a pattern in a chemical dataset quantifies the
portion of molecules of the dataset where the pattern occurs. In Figure 19.1,
the pattern p0 has a frequency of 50% in the non-toxic molecules.

In order to automatically discover structural alerts, it appears to be highly
appropriate to look for contrasts between toxic and non-toxic molecules. When
a molecular pattern sufficiently occurs within the toxic molecules and has a
frequency which significantly increases from the non-toxic molecules to the
toxic ones, then it stands as a potential structural alert related to the toxicity.

The notion of a Frequent Emerging Molecular Pattern embodies this nat-
ural idea by using the growth-rate measure. When a dataset is partitioned
between targeted examples and non-targeted ones (also called “classes”), the
growth-rate of a pattern p is defined to be the ratio between the frequency
of p in the target class over its frequency outside the target class. Following
our example, the growth-rate of a molecular pattern is obtained by dividing
its frequency in the toxic molecules by its frequency in the non-toxic ones. As
usual when the denominator is equal to zero (and the numerator is different
of zero), the value of the growth-rate is denoted with the infinity symbol,
∞. An emerging pattern [118] is a pattern whose growth-rate value exceeds
a threshold given by the user. For example, in Figure 19.1, the growth-rate
value of the molecular pattern p0 is equal to 2. Thus, as soon as the minimum
threshold is set to less than 2, p0 is an emerging pattern, from the non-toxic
molecules to the toxic molecules. We can now state the definition of a FEMP:

Definition 19.1 (Frequent Emerging Molecular Pattern (FEMP)) Let
G be a chemical dataset whose molecules are partitioned into two classes. Given
a frequency threshold fmin and a growth-rate threshold ρmin, a molecular pat-
tern p is a frequent emerging molecular pattern if its frequency in the target
class is greater or equal than fmin and its growth-rate from the non-target
class molecules to the target class is greater or equal than ρmin.

To simplify, henceforth the property “being a FEMP in the chemical
dataset G partitioned according to a classification and given a frequency
threshold fmin and a growth-rate threshold ρmin” will be abbreviated as “be-
ing a FEMP”.

19.2.2 Using RPMPs as Condensed Representation of
FEMPs

In practice, FEMPs are often numerous and include redundant informa-
tion. This section deals with this issue by proposing a condensed representa-
tion of the FEMPs – the Representative Pruned Molecular Patterns (RPMP).

The growth-rate of a molecular pattern is computed from its frequencies
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in the classes in the chemical dataset. It implies that the property of being a
FEMP only relies on its extent, the set of molecules of the input dataset in
which the molecular pattern occurs. Patterns can be condensed by using spe-
cific forms of patterns such as the closed patterns [326, 375]; by condensation
we mean that all FEMPs can be regenerated (from the condensed patterns)
with their exact values of growth-rate and frequency. A closed pattern is a
pattern from which no element can be added without decreasing its extent.
Given any extent of the input dataset, there is at most one closed graph pat-
tern corresponding to this extent. Relying on this property, one can condense
a set of FEMPs by retaining only the related closed FEMPs. This significantly
reduces the number of patterns without losing information.

A molecular fragment may occur in another fragment, in the same way as
a molecular fragment occurs in a molecule. As a consequence, the relationship
“occurs in” induces a partial order between the molecular structures, depicting
either a molecule or a fragment. The fact that g1 occurs in g2 is denoted
g1 ! g2. As it is a partial order, the relation ! is transitive and it follows that
the extent of a fragment is included in the extent of any of its “subfragments”.
For example, the benzene ring ( ) is a subfragment of the fragment g1 of
Figure 19.1, and its extent in the chemical dataset G, namely {G1, G2, G3, G4},
contains the extent of g1, namely {G1, G2, G3}. Thus, one can add a new
fragment to a molecular pattern without decreasing its extent, as long as the
added fragment is a subfragment of an element of the pattern. For example,
adding the benzene ring to the molecular pattern po in Figure 19.1 will not
change the extent of p0 because the benzene is a subfragment of g1, which is an
element of p0. As a consequence, a closed molecular pattern always contains
all the subfragments of any of its fragments.

In practice, closed patterns tend to be long patterns and a large portion of
their fragments are subfragments of another bigger fragment. These subfrag-
ments have no meaning and can be removed without loss of information. By
pruning any fragment of a closed pattern p which is a subfragment of another
fragment of p, we get a shorter representation of the closed pattern. We call
the resulting patterns Representative Pruned Molecular Patterns (RPMPs).
There is a one-to-one correspondence between the RPMPs and the closed
molecular patterns, and this correspondence preserves the extent [340]. For
example, in Figure 19.1, the pattern p1 is the closed pattern sharing the same
extent as the pattern p0. Not only p1 contains g1, but also all its subfrag-
ments. p2 is the RPMP associated to the closed pattern p1; p2 has been built
by removing any fragment of p1 that is a subfragment of another fragment of
p1. p2 enables us to provide a meaningful and understandable representation
of p1.

Definition 19.2 (Representative Pruned Molecular Pattern (RPMP))
Let G be a chemical dataset. A molecular pattern p is a representative pruned
molecular pattern if the molecular pattern obtained by adding all the subfrag-
ments of the elements of p is a closed molecular pattern in G.
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Given a chemical dataset partitioned between targeted and non-targeted
molecules, a minimum frequency threshold and a minimum growth-rate
threshold, we have designed a method to mine the set of the Representative
Pruned Molecular Patterns that are Frequent Emerging Molecular Patterns.
This is discussed next.

19.2.3 Notes on the Computation

This section gives a sketch of our method for computing RPMPs. Let G
be a given dataset partitioned into targeted molecules and non-targeted ones.
Recall that a FEMP is a molecular pattern whose frequency amongst the
targeted molecules exceeds a given frequency threshold fmin. Since the relation
“occurs in” is transitive, the frequencies, in the target class of molecules, of all
molecular fragments in a FEMP must also exceed fmin. Our method uses this
property by firstly extracting these frequent fragments. Second, it describes
each molecule of the dataset by indicating for each of the frequent fragments
whether it occurs or not in the molecule. Third, relying on this new description,
one extracts the FEMPs by using an existing method dedicated to discover
the emerging patterns.

The FEMPs and their associated RPMPs are computed by integrating
three existing tools: Gaston [317], MicMac [375], and VFLib [96]. First,
frequent fragments amongst the targeted molecules are extracted using the
graph mining tool Gaston. Gaston computes the extent of a frequent frag-
ment amongst the targeted molecules. We have updated it in order to simul-
taneously provide the extent of a frequent fragment in the whole input G.
The result of the step is a dataset D which is a description of G based on the
occurrences of the frequent fragments amongst the targeted molecules. Then,
MicMac mines from D the closed patterns that also are frequent emerging
patterns. Finally, the RPMPs are obtained by pruning these closed patterns:
a fragment is removed from a closed pattern p as soon as it is a subfragment
of another fragment of p. This step requires to perform subgraph isomorphism
tests; they are done using an implementation based on the functionalities pro-
vided by the graph matching library VFLib.

19.2.4 Related Work

Several methods have been designed for discovering graphs that are corre-
lated to a given class. All these algorithms operate on a graph dataset parti-
tioned into two classes, targeted examples and non-targeted ones.

Molfea [218] relies on a level-wise algorithm. It extracts the linear sub-
graphs(chains) which are frequent amongst the targeted examples and infre-
quent amongst the non-targeted ones. However, the restriction to linear sub-
graphs disables a direct extraction of the fragments containing a branching
point or a ring, as the benzene.
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Moss [54] is a program dedicated to discovering frequent fragments by
mining molecular graphs; it can be extended to find the discriminative frag-
ments. Given two frequency thresholds fM and fm, a discriminative fragment
corresponds to a connected fragment whose frequency is above fM amongst
the targeted molecules and below fm amongst the non-targeted ones. This
definition differs from the usual notion of emergence which is based on the
growth-rate measure as introduced in the previous section. Note that the set
of the discriminative fragments according to the thresholds fM and fm does
not contain the whole set of the FEMPs having a growth rate higher than
fM/fm or any other given growth rate threshold. Moreover, such fragments
only correspond to patterns of length 1.

Another work has been dedicated to the discovery of the contrast frag-
ments [406]. A contrast fragment is a fragment that occurs in the targeted
examples and never occurs in the non-targeted ones. Although this notion is
very interesting, it requires a lot of computation. To the best of our knowledge,
the calculus is limited to graph datasets containing one targeted example and
the mining of a molecule exceeding 20 atoms brings up a significant challenge.

19.3 Experiments in Predictive Toxicology

This section aims to experimentally assess the utility of the Frequent
Emerging Molecular Patterns (FEMPs) for predictive toxicology. Following
the results shown in the previous section, we use Representative Pruned Molec-
ular Patterns (RPMPs) as a condensed representation of the FEMPs. For the
sake of simplicity, in the following by a RPMP we mean a RPMP which is
also a FEMP. In this section, first, the chemical dataset and the experimental
setup are detailed, then the potential of the FEMPs is assessed by examining
whether they retain their properties outside a learning set. Finally, quantita-
tive results about the RPMPs in predictive toxicology are provided.

19.3.1 Materials and Experimental Setup

Chemical Dataset

Data were obtained from the EPA Fathead Minnow Acute Toxicity
Database (EPAFHM) [134]. The data were collected by the Environment Pro-
tection Agency of the United States. EPAFHM has already been used for
expert systems in computational toxicology [414]. The chemical dataset used
here include molecules selected from EPAFHM based on the LC50 value as-
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Growth-rate Category (%)
threshold i ii iii iv v

2 25.2 13.1 30.0 16.7 14.6
5 24.4 12.0 32.1 11.1 20.1
10 27.6 8.7 34.1 6.6 22.8
25 33.7 1.2 31.3 3.0 30.5
∞ 34.8 0.0 29.3 2.6 33.1

TABLE 19.1: The RPMPs outside the learning set.

sociated to the molecules1 – we selected the molecules known as very toxic or
non-toxic. The dataset includs 297 molecules, partitioned according to their
level of toxicity: 74 molecules are very toxic and 172 are non-toxic.

Experimental Setup

Results given in this section are obtained from averaging over a five-folds
cross-validation scheme: The dataset was randomly shuffled and then divided
into five folds, such that each fold preserves the initial ratio between very
toxic molecules and non-toxic ones. Each fold is successively the test set, with
the union of the four other folds forming the learning set. A learning set
averages 196.8 molecules (59.2 very toxic and 137.6 non-toxic) whereas a test
set averages 49.2 molecules (14.8 very toxic and 34.4 non-toxic).

By definition, the property of “being a RPMP” relies on two thresholds:
a minimum frequency value and a minimum growth-rate value. Throughout
this experiment, the minimum frequency threshold is set to 8% (i.e., a pattern
has to appear in 5 very toxic molecules to be extracted) and the minimum
growth-rate threshold varies. With this minimum frequency threshold, 104.2
frequent fragments are extracted on average from a learning set (consisting
of the very toxic molecules), and these frequent fragments contain on average
5.7 atoms. The number of RPMPs decreases from 318 (when the growth-rate
value is 2) to 43.3 (when the growth-rate value is set to ∞). The RPMPs are
mostly conjunctions of several molecular fragments and their average length
is between 2 and 3 fragments, whatever the growth-rate threshold value is.

19.3.2 Generalization of the RPMPs

Generalization of the Properties of the RPMPs

As previously seen, “being a RPMP” relies on two key properties: (i) a
RPMP is frequent enough to be representative and to ensure further uses
and (ii) its growth-rate value conveys a relation between the RPMP and the
toxicity. This section assesses whether these key properties can be general-

1The Lethal Concentration 50 (LC50) of a molecule indicates the concentration that kills
half of a population of fish; for the sake of simplicity, the term “toxicity” is used even if the
LC50 indicates the ecotoxicity of a molecule.
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Growth-rate Coverage Success (%)
threshold

Length (l)
rate (%) contrast TP TN OV

2
l≥1 71.1 1.54 94.5 38.9 55.69
l=1 64.2 1.84 94.5 48.8 62.6

5
l≥1 44.7 3.0 83.7 72.0 75.6
l=1 37.8 4.03 79.7 80.2 80.08

10
l≥1 34.1 4.9 77.0 84.3 82.11
l=1 26.4 6.06 63.5 89.5 81.7

25
l≥1 23.1 6.5 56.7 91.2 80.89
l=1 13.0 6.97 32.4 95.3 76.42

∞ l≥1 20.3 5.97 48.6 91.8 78.86
l=1 9.3 8.36 24.3 97.0 75.2

TABLE 19.2: Prediction of the toxicity of a molecule thanks to the RPMPs.

ized outside the learning set. For that purpose, we follow the cross-validation
scheme and examine the behavior of every RPMP in the test set related to
the learning set it has been extracted from. By examining its extent in the
test set, each RPMP is classified into one of the following five exclusive cate-
gories: (i) the RPMP meets both the frequency threshold and the growth-rate
threshold, (ii) it only meets the frequency threshold, (iii) it only meets the
growth-rate threshold, (iv) it meets neither the frequency threshold nor the
growth-rate one, (v) it does not occur in the test set.

Table 19.1 gives the portions of the RPMPs in each category for several
growth-rate thresholds. The sum of the portions of the first three categories
shows that two-thirds of the RPMPs still meet the frequency threshold or the
growth-rate one in a test set. By comparing results in categories (ii) and (iii),
one note that a RPMP more often meets the growth-rate threshold than the
frequency one (a half of the RPMP meets the growth-rate threshold whereas
only a third still meets the frequency one). Taken together, these results in-
dicate that the key properties associated to a RPMP are satisfied outside the
learning set.

The RPMPs for Predicting Toxicity of Molecules

In order to quantitatively assess the RPMPs in predictive toxicology, the
following decision rule has been implemented: a molecule is classified as very
toxic if it contains at least one RPMP. Table 19.2 displays the results by
using such a classification rule on the related test set. The first column gives
the value of the growth-rate that has been used for extracting the RPMPs.
The coverage rate indicates the portion of the molecules of a test set that
contains at least one RPMP. The coverage contrast corresponds to the ratio
of the coverage rate amongst the very toxic molecules over the coverage rate
amongst the non-toxic ones. TP (i.e., True Positive) displays the portion of
very toxic molecules that are correctly processed by the decision rule and TN
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(i.e. True Negative) is the ratio of non-toxic molecules correctly processed.
OV indicates the overall success rate of the decision rule.

Results show that such a decision rule is able to reach fair overall suc-
cess rates, greater than 80%. Moreover the contrast values indicate that the
decision rule is more often triggered in the very toxic molecules than in the
non-toxic ones; such a result indicates the reliability of the process. Table 19.2
also provides the results obtained by using only the RPMPs of length 1. We
see that the portions of very toxic molecules that are correctly classified (i.e.
TP) are significantly higher by using the whole set of RPMPs instead of
RPMPs of length 1. Thus, one concludes that there exist conjunctions of non-
emerging molecular fragments that have an influence on the toxic behavior of
a molecule. Relationships between the chemical composition of some RPMPs
and their effect on toxicity are discussed in the following section.

19.4 A Chemical Analysis of RPMPs

RPMPs have the advantage to support a chemical analysis. This section
describes such an analysis that gives valuable new information for structure-
toxicity relationships. The analysis is carried out according to two chemical
functions or groups, the alkyl chains and the aromatic groups.

Alkyl Chains

Growth rate Molecular fragment

2.7
C

C

C

C

C

C

6.9
C

C

C

C

C

C

C

11.5
C

C

C

C

C

C

C

C

13.8
C

C

C

C

C

C

C

C

C

∞
C

C

C

C

C

C

C

C

C

C

C

TABLE 19.3: Growth-rate values of the alkyl chains according to their order

A first illustration deals with the impact of the order associated to the
alkyl chains (the fragments are ordered by their number of atoms). The corre-
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sponding discovered patterns (cf. Table 19.3) show a clear relation between the
growth-rate values and their orders of the fragments. The meaningful order
of the alkyl chains begins for C6 (6 carbons, growth-rate of 2.7), it increases
strongly for C7 (growth-rate of 6.9) to reach a maximum value for C11 (a
growth-rate of∞). It is well known that the hydrophobicity of an alkyl chain
correlates with its order and that hydrophobicity of a fragment favors a toxic
behavior. The above analysis shows that the growth-rate values match the
chemical knowledge on toxicity.

Aromatic Groups

The second illustration is related to the aromatic groups. These groups
have a strong impact on the toxicity of chemicals. Our analysis shows that
the nature of the substituents on the aromatic ring plays a major role on
toxicity.

Growth rate Molecular fragments

3.01

3.06 C

C

10.7 C

C

C

20.7 C

C

C

C

TABLE 19.4: Association between alkyl chains and aromatic groups

The first example is the combination between an aromatic group and an
alkyl chain. An aromatic group alone has a growth-rate value of 3. Associated
with a C2 alkyl chain, we do not observe a modification of the growth-rate
value but the growth-rate increases strongly for C3 and C4 alkyl chains (cf.
Table 19.4).

The second example corresponds to the chlorinated benzenes or chlorinated
phenols (cf. Table 19.5, the dotted lines depict a flexibility for the nature of
the last atom associated to the aromatic feature). Chlorine atoms on aromatic
groups lead to an increase of toxicity. This point clearly appears in our study.
The addition of one chlorine increases the growth-rate by a factor of around 4.
The addition of two chlorines increases the growth-rate by a factor of 8, reach-
ing a maximum value with two chlorines in ortho positions on the aromatic
group. We observe the same evolution for the phenol functions.

The third example concerns the combination between an alkene function
and an aromatic group (cf. Table 19.6-A). The growth-rate is maximum (i.e.
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Chlorines in the benzene function Chlorines in the phenol function
Growth rate Molecular fragments Growth rate Molecular fragments

2.08 3.64 O

7.66

Cl

13.8 OCl

16.1

Cl

Cl

∞
OCl

Cl

∞
Cl

Cl

TABLE 19.5: Addition of chlorines

∞), showing the potentially high toxicity of the association. One can note
that the alkene function alone has a high growth-rate value (10.73).

The last example deals with the association between a carbonyl function
and an aromatic group (cf. Table 19.6-B). In this case, we observe no signif-
icant evolution of the growth-rate values compared to the patterns without
this function (see the alkyl chains and the aromatic group in Table 19.4). So,
the impact of the carbonyl function on the toxicity is not characterized.

19.5 Conclusion

In this chapter, we have defined the notion of frequent emerging molecular
patterns, and have shown that such patterns are useful in chemoinformatics.
We have shown that the whole set of frequent emerging molecular patterns
can be condensed by means of their related representative pruned molecular
patterns. An experimental study has been carried out on a chemical dataset.
This study has indicated the effectiveness of using the information provided
by the occurrences of frequent emerging molecular patterns in predictive tox-
icology: a decision rule based on such patterns can distinguish between a very
toxic molecule and non-toxic one in 80% of the cases. Besides, it has been
shown in Section 19.4 that the evolution of the growth-rate values associated
to each Representative Pruned Molecular Patterns gives new keys to under-
stand the impact of an atom, a group of atoms, or a chemical function on the
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A- Alkene and aromatic group B- Carbonyl function and aromatic group
Growth Molecular Growth Molecular

rate fragments rate fragments

10.73 C C 3.06 C O

∞ C C 10.35 C O
C

C

C

16.01 C O
C

C

C

C

TABLE 19.6: Combination with an aromatic group

toxicity of a chemical derivative. These results strongly advocate the potential
of this new approach for computational toxicology.
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20.1 Introduction

One of the most burning issues in computing currently is to develop meth-
ods, which will allow us to cope with the stream of multimedia data that is
being generated and disseminated through the Internet every day. This must
be done by providing a way to intelligently filter the incoming information,
classify and present it to the users in a comprehensible manner. Much work
has been done already in the field of processing large quantities of numeric
and textual data and also in the field of multimedia data processing. Provid-
ing efficient algorithms for processing the amount of multimedia data we have
available today remains to be a major challenge.

There are several specific problems associated with the domain of image
and, more generally, multimedia data that need to be tackled in order to pro-
vide a successful solution to any of the tasks most commonly considered in
the case of data mining. The diversity of multimedia requires that such data
undergoes a preliminary transformation step, which is tightly connected with
the particular type of data being analyzed. Multimedia data is unstructured

285
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and as such needs to be preprocessed to enable any type of further analysis.
This data is also of a spatial (image) or spatio-temporal (video) character
and only methods taking into account this multi-dimensionality may be ap-
plied to it. Finally, multimedia data seems to convey information in a relative
way, much more than in absolute values, as in regular databases. Differences
between objects and background, contrast, movement are the characteristics
that need to be taken into account in the analysis of such data.

A number of new techniques for data analysis have been developed in the
course of the fruitful research in the area of contrast pattern mining. Following
their success in many areas of application, we propose a supervised learning
approach to classifying multimedia data, which uses classifiers created on the
basis of Jumping Emerging Patterns mined from training data. In this chapter
we address the problem of efficiently discovering JEPs and using them directly
for classifying multimedia data. We propose an enhancement of the traditional
transactional database representation to include important information about
spatial (and possibly temporal) relationships between features, which may be
discovered in data. We also introduce new types of patterns to tackle such data
– the jumping emerging patterns with occurrence counts (occJEPs) and spatial
emerging patterns (SEPs). On the basis of the proposed image representation
method, we also show a possible application of jumping emerging substrings
(JESs) to the problem of multimedia data mining.

20.2 Previous Work

Many applications of emerging patterns (EPs) have been proposed to date,
with a particularly fruitful research in the area of bioinformatics, specifically
classification and finding relationships in gene data. The first EP-based algo-
rithms concerning analysis of such data have been proposed in [252, 253].

The concept of recurrent items in transactional data has been presented
in the area of multimedia data analysis in [458] in the context of association
rules, and general and efficient algorithms for discovering rules with recurrent
items have been studied in [320] and [347]. The extension of jumping emerging
patterns to include recurrent items and using them for building classifiers has
been proposed in [210]. The idea of mining emerging substrings as means of
capturing interesting relationships in textual data has been proposed in [74].
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20.3 Image Representation

The ability to reason in a multimedia database on the basis of image
content relies in a great manner on the method of representing the visual
information in a structured way. This is most commonly done by creating
constant-size feature vectors, which should correspond to human perception
of an image as closely as possible. Many approaches to spatial and image
data representation have been proposed, namely approaches using low-level
visual features, an intermediate semantic representation, or local image rep-
resentation. Here, we propose a straightforward tile-based approach to image
representation, which allows us to capture important characteristics of the
underlying data and use it in pattern-based classification methods.

The images are uniformly divided into a grid of x × y tiles, where x and
y are the numbers of rows and columns respectively, and for each of the tiles
image features are calculated. In our experiments we have selected to use
color and texture features of the images. Color features are represented by a
histogram calculated in the HSV color space, with the hue channel quantized
to h discrete ranges, while saturation and value channels to s and v ranges
respectively. In effect, the representation takes the form of a h× s× v element
vector of real values between 0 and 1. For the representation of texture we use
a feature vector consisting of mean and standard deviation values calculated
from the result of filtering an original image with a bank of Gabor functions.
These filters are scaled and rotated versions of the base function, which is a
product of a Gaussian and a sine function. By using m orientations and n
scales we get a feature vector consisting of mean (μ) and standard deviation
(σ) values, and thus having a size of 2×m× n values for each filtered image.

In the next step we aggregate all calculated image features and employ
a clustering algorithm to reduce the number of values into a chosen num-
ber of groups. In this way, we create a dictionary that consists of the most
representative color and texture features of the images in the learning set.
The clustering is performed using the k-Means algorithm with a histogram
intersection measure for comparing color feature vectors fc and Gabor feature
distance for comparing texture feature vectors ft. Centroids resulting from
the clustering operation become the elements of the dictionary and are la-
beled B1, . . . , Bk in case of color and T1, . . . , Tk in case of texture features,
where k is the feature dictionary size. These identifiers are then used to de-
scribe the images in the database by associating an appropriate label with
every tile of each image. This is performed by finding the closest centroid to
a feature vector calculated for a given image tile, using appropriate distance
measures for each of the features. The dictionary created for the learning set
is reused during the classification phase.

Figure 20.1 presents an example of such a symbolic image representation,
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DB Representation

D B1, B2, B3, B4,
B6, B7, B8

T1, T2, T3, T4,
T7, T8

Dr 1 ·B1, 2 · B2, 8 · B3, 3 ·B4,
41 · B6, 3 ·B7, 6 ·B8

1 · T1, 5 · T2, 4 · T3, 11 · T4,
5 · T7, 38 · T8

FIGURE 20.1: A symbolic representation of an image from the food dataset.
D – binary transaction system, Dr – transaction system with recurrent items.
Source: Adapted from Ref. [213], with kind permission from Springer Sci-
ence+Business Media.

showing labels of its individual tiles and the representation of the whole image
as a binary transaction and a transaction with recurrent items.

20.4 Jumping Emerging Patterns with Occurrence
Counts

20.4.1 Formal Definition

Let a transaction system with recurrent items be a pair (Dr, I), whereDr is
a database and I is an itemspace (namely a set of standard items). We define
database Dr as a finite set of transactions {T r

1 , . . . , T
r
n}. We define a recurrent

itemset (a multiset of items) Xr as a set of pairs: Xr = {(x1, p1), ..., (xm, pm)},
where x1, ..., xm are distinct items in I, each pi ∈ N, and m is a natural
number. For convenience we represent the pi’s using a function p on the items
such that p(xi) = pi. We will also writeXr = (X, p). We say that x ∈ Xr ⇐⇒
p(x) ≥ 1 and define X = {x | x ∈ Xr}. Each transaction T r in database Dr is
a recurrent itemset.

Given two recurrent itemsets Xr = (X, p), Y r = (Y, q) and an occurrence
threshold θ ≥ 1 we define an inclusion relation between the itemsets as follows:

Xr
θ
⊆ Y r ⇐⇒ ∀x∈I q(x) ≥ θ · p(x). (20.1)

Based on the above definition we may say that for the given occurrence thresh-
old the matching data of a recurrent itemset Xr in a dataset Dr is given by

mt(Xr, Dr, θ) = {T r | T r ∈ Dr, T r
θ
⊇ Xr}. The count and support are mod-

ified accordingly: count(Xr, Dr, θ) = |mt(Xr, Dr, θ)| and supp(Xr, Dr, θ) =
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count(Xr,Dr,θ)
|Dr| . We will assume that the relation ⊆ is equivalent to

1
⊆ in the

context of two recurrent itemsets.

Example 20.1 The support of a recurrent itemset Xr = {1·white, 2·yellow}
for threshold θ = 1 in transaction dataset Dr

1 = (T r
1,2,3) given by Table 20.1

is supp(Xr, Dr
1, 1) = 0. Similarly, for Dr

2 = (T r
4,5), supp(X

r, Dr
2, 1) = 1. Given

the threshold θ = 2, supp(Xr, Dr
1, 2) = 0 and supp(Xr, Dr

2, 2) = 0.

TABLE 20.1: Transaction database example. Ti – transactions with binary
items, T r

i – transactions with recurrent items. Source: Adapted from Ref. [213],
with kind permission from Springer Science+Business Media.

i Ti T r
i

Dr
1 1 blue, green, white, yellow 8 · blue, 4 · green, 3 · white, 1 · yellow

2 beige, red, yellow 10 · beige, 3 · red, 3 · yellow
3 white, magenta 12 · white, 4 ·magenta

Dr
2 4 blue, brown, white 6 · blue, 2 · brown, 8 · white

5 black, white, red, yellow 9 · black, 2 · white, 3 · red, 2 · yellow

We now extend the definition of a transaction system to differentiate items,
which represent class labels and call them “decision items”. The definition will
be used in Section 20.4.3 to formally describe the classification algorithm.

Let a decision transaction system be a tuple (Dr, I, Id), where (Dr, I ∪Id)
is a transaction system with recurrent items and ∀T r∈Dr |T ∩Id| = 1. Elements
of I and Id are called condition and decision items, respectively. A support
for a decision transaction system (Dr, I, Id) is understood as a support in
the transaction system (Dr, I ∪ Id). For each decision item c ∈ Id we may
distinguish a dataset of class c as Cr

c = {T r | T r ∈ Dr, c ∈ T r}. In addition,
for a dataset Dr ⊆ Dr we define a complementary dataset Dr′ = Dr −Dr.

Given two databases Dr
1, D

r
2 ⊆ Dr we call a recurrent itemset Xr a jump-

ing emerging pattern with occurrence counts (occJEP) from Dr
1 to Dr

2, if
supp(Xr, Dr

1, 1) = 0 ∧ supp(Xr, Dr
2, θ) > 0, where θ is the occurrence thresh-

old. A set of all occJEPs with a threshold θ from Dr
1 to Dr

2 is called an occJEP
space and denoted by occJEP (Dr

1, D
r
2, θ). We distinguish the set of all mini-

mal occJEPs as occJEPm, occJEPm(D
r
1, D

r
2, θ) ⊆ occJEP (Dr

1, D
r
2, θ). Notice

also that occJEP (Dr
1, D

r
2, θ) ⊆ occJEP (Dr

1, D
r
2, θ − 1) for θ ≥ 2. In the rest

of the paper we will refer to recurrent itemsets as itemsets and use the symbol
Xr to avoid confusion.

Example 20.2 For Dr
1 = (T r

1,2,3) and Dr
2 = (T r

4,5) from Table 20.1, the set of
minimal occJEPs from Dr

1 to Dr
2 with threshold θ = 1 is equal to: {{1 · black},

{1 · brown}, {1 · blue, 4 · white}, {1 · red, 1 · white}, {1 · white, 2 · yellow}}.
Changing the threshold to θ = 2 results in reducing the set of patterns to:
{{1·black}, {1·brown}, {1·blue, 4·white}, {1·red, 1·white}}. This is because
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supp({1·white, 2·yellow}, Dr
1, 1) = 0 and supp({1·white, 2·yellow}, Dr

2, 1) > 1,
but supp({1 · white, 2 · yellow}, Dr

2, 2) = 0.

The introduction of an occurrence threshold θ allows for differentiating
transactions containing the same sets of items with a specified tolerance mar-
gin of occurrence counts. It is thus possible to define a difference in the number
of occurrences, which is necessary to consider such a pair of transactions as
distinct sets of items.

For the example image database given by Table 20.1 we can see that the
differences between counts of such items as white and yellow may be too small
to assume they represent a general pattern present in the database that would
allow building a classifier. Setting the threshold to a higher value results in a
smaller number of patterns, but the discovered ones have a greater confidence.

20.4.2 Mining Algorithm

The border-based occJEP discovery algorithm is an extension of the EP-
mining method described in [119]. Similarly, as proved in [250] for regular
emerging patterns, we can use the concept of borders to represent a collection
of occJEPs. This is because the occJEP space Sr is convex, that is, it satisfies:
∀Xr, Zr ∈ Sr ∀Y r(Xr ⊆ Y r ⊆ Zr ⇒ Y r ∈ Sr). For the sake of readability
we will now onward denote particular items with consecutive alphabet letters,
with an index indicating the occurrence count, and skip individual brackets,
e.g. {a1b2, c3} instead of {{1 · i1, 2 · i2}, {3 · i3}}.
Example 20.3 Sr = {a1, a1b1, a1b2, a1c1, a1b1c1, a1b2c1} is a convex col-
lection of sets, but Sr′ = {a1, a1b1, a1c1, a1b1c1, a1b2c1} is not convex. We
can partition it into two convex collections Sr′1 = {a1, a1b1} and Sr′2 =
{a1c1, a1b1c1, a1b2c1}.

A border is an ordered pair < L,R > such that L and R are antichains,
∀Xr ∈ L ∃Y r ∈ R such that Xr ⊆ Y r and ∀Xr ∈ R ∃Y r ∈ L such that Y r ⊆
Xr. The collection of sets represented by a border < L,R > is equal to:

[L,R] = {Y r | ∃Xr ∈ L, ∃Zr ∈ R such that Xr ⊆ Y r ⊆ Zr}. (20.2)

Example 20.4 The border of collection Sr, introduced in earlier example, is
equal to [L,R] = [{a1}, {a1b2c1}].

The most basic operation involving borders is a border differential, defined
as:

< L,R >=< {∅},R1 > − < {∅},R2 > . (20.3)

As proven in [250] this operation may be reduced to a series of simpler
operations. For R1 = {U r

1, . . . , U
r
m}:

< Li,Ri > = < {∅}, {U r
i } > − < {∅},R2 > . (20.4)

< L,R > = <
m⋃
i=1

Li,
m⋃
i=1

Ri > . (20.5)
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A direct approach to calculating the border differential would be to expand
the borders and compute set differences.

Example 20.5 The border differential between [{∅}, {a1b2c1}] and [{∅}, {a1c1}]
is equal to [{b1}, {a1b2c1}]. This is because:

[{∅}, {a1b2c1}] = {∅, a1, b1, b2, c1, a1b1, a1b2, a1c1, b1c1, b2c1, a1b1c1, a1b2c1}
[{∅}, {a1c1}] = {∅, a1, c1, a1c1}

[{∅}, {a1b2c1}] − [{∅}, {a1c1}] = {b1, b2, a1b1, a1b2, b1c1, b2c1, a1b1c1, a1b2c1}

On the basis of optimizations proposed in [119], we now show the ex-
tensions necessary for discovering emerging patterns with occurrence counts.
All of the ideas presented there for reducing the number of operations de-
scribed in the context of regular EPs are also applicable for recurrent pat-
terns. The first idea allows avoiding the expansion of borders when calcu-
lating the collection of minimal itemsets Min(Sr) in a border differential
Sr = [{∅}, {U r}]− [{∅}, {Sr

1, . . . , S
r
k}]. It has been proven in [119] that Min(S)

is equivalent to:

Min(S) = Min({
⋃
{s1, . . . , sk} | si ∈ U − Si, 1 ≤ i ≤ k}). (20.6)

In the case of emerging patterns with occurrence counts we need to define
the left-bound union and set theoretic difference operations between recurrent
itemsets Xr = (X, p) and Y r = (Y, q). These operations guarantee that the
resulting patterns are still minimal.

Definition 20.1 The left-bound union of recurrent itemsets Xr ∪ Y r = Zr =
(Z, r), where Z = {z | z ∈ X ∨ z ∈ Y } and r(z) = max(p(z), q(z)) ∀z ∈ Z.

Definition 20.2 The left-bound set theoretic difference of recurrent itemsets
Xr−Y r = Zr = (Z, r), where Z = {z | z ∈ X∧p(z) > q(z)} and r(z) = q(z)+1
∀z ∈ Z.

Observe that r(z) = q(z) + 1 is the smallest number i such that zi occurs
in Xr and zi does not occur in Y r.

Example 20.6 For the differential: [{∅}, {a1b3c1d1}]−[{∅}, {b1c1}, {b3d1}, {c1d1}].
U r = {a1b3c1d1}, Sr

1 = {b1c1}, Sr
2 = {b3d1}, Sr

3 = {c1d1}. U r−Sr
1 = {a1b2d1},

U r − Sr
2 = {a1c1}, U r − Sr

3 = {a1b1}. Calculating the Min function:

Min([{∅}, {a1b3c1d1}]− [{∅}, {b1c1}, {b3d1}, {c1d1}]) =

= Min({a1a1a1, a1a1b1, a1c1a1, a1c1b1, b2a1a1,
b2a1b1, b2c1b1, d1a1a1, d1a1b1, d1c1a1, d1c1b1}) =

= Min({a1, a1b1, a1c1, a1b1c1, a1b2, a1b2, b2c1, a1d1, a1b1d1, a1c1d1, b1c1d1}) =

= {a1, b2c1, b1c1d1}.
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Similar changes are necessary when performing the border expansion in an
incremental manner, which has been proposed as the second possible algorithm
optimization. The union and difference operations in the following steps need
to be conducted according to Definitions 20.1 and 20.2 above, see Algorithm 4.

Algorithm 4 Incremental Expansion

Input: U r, Sr
i

Output: L
1: L ←− {{x} | x ∈ U r − Sr

1};
2: for i = 2 to k do
3: L ←− Min{Xr ∪ {x} | Xr ∈ L, x ∈ U r − Sr

i}
4: end

Lastly, a few points need to be considered when performing the third
optimization (avoiding generating nonminimal itemsets). Originally, the idea
was to avoid expanding such itemsets during incremental processing, which
are known to be minimal beforehand. This is the case when the same item is
present both in an itemset in the old L and in the set difference U r−Sr

i (line
3 of Algorithm 4). In case of recurrent patterns this condition is too weak to
guarantee that all patterns are still going to be generated, as we have to deal
with differences in the number of item occurrences. The modified conditions
of itemset removal are thus as follows:

1. If an itemset Xr in the old L contains an item x from T r
i = U r−Sr

i and
its occurrence count is equal or greater than the one in T r

i , then move
Xr from L to NewL.

2. If the moved Xr is a singleton set {(x, p(x))} and its occurrence count
is the same in L and T r

i , then remove x from T r
i .

Example 20.7 Let U r = {a1b2}, Sr
1 = {a1}, Sr

2 = {b1}. Then T r
1 = U r−Sr

1 =
{b1} and T r

2 = U r − Sr
2 = {a1b2}. We initialize L = {b1} and check it against

T r
2 . While T r

2 contains {b2}, {b1} may not be moved directly to NewL, as
this would falsely result in returning {b1} as the only minimal itemset, instead
of {a1b1, b2}. Suppose Sr

1 = {a1b1}, then initial L = {b2} and this time we
can see that {b2} does not have to be expanded, as the same item with at least
equal occurrence count is present in T r

2 . Thus, {b2} is moved directly to NewL,
removed from T r

2 and returned as a minimal itemset.

The final algorithm, consisting of all proposed modifications, is presented
below as Algorithm 5.
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Algorithm 5 Border Differential

Input: < {∅}, {U r} >, < {∅}, {Sr
1, . . . , S

r
k} >

Output: L
1: T r

i ←− U r − Sr
i for 1 ≤ i ≤ k;

2: if ∃T r
i = {∅} then

3: return < {}, {} >
4: end;
5: L ←− {{x} | x ∈ T r

1};
6: for i = 2 to k do
7: NewL←− {Xr = (X, p) ∈ L | X ∩ Ti �= ∅ ∧ ∀x ∈ (X ∩ Ti) p(x) ≥ t(x)};
8: L ←− L−NewL;
9: T r

i ←− T r
i − {x | {(x, p(x))} ∈ NewL};

10: for each Xr ∈ L sorted according to increasing cardinality do
11: for each x ∈ Ti do
12: if ∀Zr ∈ NewL supp(Xr ∪ {x}, Zr, 1) = 0 then
13: NewL←− NewL ∪ (Xr ∪ {x})
14: end
15: end
16: end;
17: L ←− NewL;
18: end

20.4.3 Use in Classification

Creating an occJEP-based classifier involves discovering all minimal occ-
JEPs to each of the classes present in a particular decision system. We can for-
mally define the set of patterns in a classifier occJEP θ

C for a given occurrence
threshold θ as: occJEP θ

C =
⋃

c∈Id occJEPm(C
r
c
′, Cr

c, θ), where Cr
c ⊆ Dr

L is a

dataset of class c and Cr
c
′ is a complementary dataset in a learning database

Dr
L.
To discover patterns between two dataset pairs, we first need to remove

non-maximal itemsets from each of them. Next, we multiply the occurrence
counts of itemsets in the background dataset by the user-specified threshold.
Finally, we need to iteratively call the Border-differential function and create
a union of the results to find the set of all minimal jumping emerging patterns
with occurrence counts from Cr

c
′ to Cr

c (see Algorithm 6).

Example 20.8 Consider a learning database Dr
L containing transactions of

three distinct classes: Cr
1, C

r
2, C

r
3 ⊂ Dr

L. Cr
1 = {b2, a1c1}, Cr

2 = {a1b1, c3d1}
and Cr

3 = {a3, b1c1d1}. We need to discover occJEPs to each of these classes:
occJEPm(C

r
2 ∪ Cr

3, C
r
1, θ), occJEPm(Cr

1 ∪ Cr
3, C

r
2, θ), and occJEPm(C

r
1 ∪

Cr
2, C

r
3, θ). Suppose θ = 2. Calculating the set of all minimal patterns involves

invoking the Discover-minimal-occJEPs function three times, in which the base
Border-differential function is called twice each time and the resulting occJEPs
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Algorithm 6 Discover Minimal occJEPs

Input: Cr
c
′, Cr

c, θ
Output: J
1: L = Remove-non-maximal-itemsets(Cr

c);
2: R = Remove-non-maximal-itemsets(Cr

c
′);

3: for Sr
i ∈ R do

4: Sr
i ←− (Si, s(x) · θ)

5: end;
6: J ←− {∅};
7: for Lr

i ∈ L do
8: J ←− J ∪ Border-differential(< {∅}, {Lr

i} >,< {∅}, {Sr
1, . . . , S

r
k} >);

9: end

are as follows: {a1c1} to class 1, {c3, a1b1} to class 2 and {a3, b1c1, b1d1} to
class 3.

Classification of a particular transaction in the testing database Dr
T is per-

formed by aggregating all minimal occJEPs, which are supported by it [141].
A scoring function is calculated and a category label is chosen by finding the
class with the maximum score:

score(T r, c) =
∑
Xr

suppCr
c
(Xr), (20.7)

where Cr
c ⊆ Dr

T and Xr ∈ occJEPm(C
r
c
′, Cr

c), such that Xr ⊆ T r. It is possible
to normalize the score to reduce the bias induced by unequal sizes of datasets
of particular classes. This is performed by dividing the calculated score by
a normalization factor: norm-score(T r, c) = score(T r, c)/base-score(c), where
base-score is the median of scores of all transactions with decision item c in
the learning database: base-score(c) = median{score(T r, c) | T r ∈ Cr

c ⊆ Dr
L}.

20.5 Spatial Emerging Patterns

The method of mining jumping emerging patterns described in the pre-
vious section helps to capture information about recurrent features present
on images of a particular class and allows to contrast it with images of dif-
ferent categories. An equally important source of information is the spatial
arrangement of features or objects on an image. One approach is to include
the information about spatial context into the symbolic representation itself.
In the 9DLT representation [76] the relationships between objects are denoted
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by associating directional codes with pairs of items, which provide informa-
tion about the angle between two image features. The 9DLT representation
defines nine directional codes, R = {0, 1, . . . , 8}, which are an equivalent of a
range of angles between two objects in a scene. Figure 20.2(a) depicts the use
of codes: ”0” means ”the same spatial location as”, ”1” means ”the north of”,
”2” means ”the north-west of”, and so on.

(a) (b) (c)

FIGURE 20.2: The 9DLT representation: (a) directional codes, (b) example
scene, (c) its symbolic representation. Source: Adapted from Ref. [212], with
kind permission from Springer Science+Business Media.

We use the definition of a spatial pattern, presented in [232], to extend
the definition of our transactional system. A spatial pattern Xs is defined as
a pattern of a form Xs = (i1, i2, . . . , in, r1, r2, . . . , rm), where ij ∈ I are items
and rk ∈ R are directional codes. Here, m = Cn

2 = n(n− 1)/2, 1 ≤ j ≤ n and
n ≥ 2. Each of the directional codes, 1 ≤ k ≤ m, denotes a spatial relationship
between two corresponding items, taken from left to right, e.g. the relationship
between i1 and i2 is r1, while between i1 and i3 is r2.

Example 20.9 Consider the image presented on Fig. 20.2(b). Its symbolic
representation as a spatial pattern takes the form shown on Fig. 20.2(c).

We say that spatial pattern Y s = (i′1, i
′
2, . . . , i

′
k, r

′
1, r

′
2, . . . , r

′
l) is a sub-

pattern of a pattern Xs = (i1, i2, . . . , in, r1, r2, . . . , rm), denoted as Y s ! Xs,
when {i′1, i′2, . . . , i′k} ⊆ {i1, i2, . . . , in} and each spatial relationship between
every two items is exactly the same in both patterns. Furthermore, we say
that two spatial relationships ri, rj �= 0 are complementary, when ri = (rj +
4) mod 8.

Example 20.10 Consider the following 4-element spatial pattern: Xs =
(A,B,C,D, 8, 7, 8, 6, 1, 2). There are four 3-element sub-patterns of pattern
Xs: Y s

1 = (A,B,C, 8, 7, 6), Y s
2 = (A,B,D, 8, 8, 1), Y s

3 = (A,C,D, 7, 8, 2) and
Y s
4 = (B,C,D, 6, 1, 2).

A spatial transactional system is a pair (Ds, I), where Ds is a fi-
nite set of transactions {T s

1 , . . . , T
s
n}. Each transaction is a pattern

(i1, i2, . . . , in, r1, r2, . . . , rm), where ij ∈ I are items and rk ∈ R are direc-
tional codes. The matching data of a spatial pattern Xs in a dataset Ds
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is thus defined as: mt(Xs, Ds) = {T s | T s ∈ Ds, T s # Xs}. Consequently,
count(Xs, Ds) = |mt(Xs, Ds)| and the support of a spatial pattern Xs in a

dataset Ds is defined as: supp(Xs, Ds) = count(Xs,Ds)
|Ds| .

Based on the earlier definitions, we now define a new kind of pattern,
namely a Spatial Emerging Pattern (SEP), which is able to capture interesting
differences between sets of spatial data. Given two spatial databases Ds

1 and
Ds

2, we define the support ratio of a pattern Xs in the same way as stated in
Chapter 1, but using the definition of support presented above. Having a ratio
threshold σr, we define a pattern Xs to be a σr-spatial emerging pattern (σr-
SEP) from Ds

1 to Ds
2 if gr(Xs, Ds

2) > σr. The definition of a Jumping Spatial
Emerging Pattern (JSEP) is analogous to the one proposed for regular EPs.

We may introduce another way of representing spatial emerging patterns,
which shows the connection between SEPs and regular emerging patterns. By
enumerating all encoded relationships and creating unique item for each of
them, we get a new space of items, defined by I ′ = I × R × I. Then, each
pattern of a form Xs = (i1, i2, . . . , in, r1, r2, . . . , rm) may be represented as:

Xs = (i1i2r1, i1i3r2, . . . , i1inrk, . . . , in−1inrm). (20.8)

Example 20.11 A pattern Xs = (A,B,C, 1, 8, 6) may also be represented as
Xs = (AB1, AC8, BC6), written for convenience as Xs = (A1B,A8C,B6C).

Remark: While all patterns may be represented in the second manner, not
all patterns may be described in the original, shortened form.

Example 20.12 Consider two sets of spatial data, represented by 9DLT
patterns: Ds

1 = ((A,B,C, 1, 8, 6)) = ((A1B,A8C,B6C)) and Ds
2 =

((A,B, 1), (A,C, 8), (B,C, 7)) = ((A1B), (A8C), (B7C)). We mine strong
JSEPs between these sets by looking for minimal patterns, which occur in
one set and never in the other. In the case of JSEPs from Ds

1 to Ds
2 we have

JSEP1 = (B,C, 6) = (B6C) and JSEP2 = (A,B,C, 1, 8, ?) = (A1B,A8C).
Similarly, in the direction of Ds

2 to Ds
1 we have JSEP3 = (B,C, 7) = (B7C).

Here, we are only interested in mining patterns for the use in building clas-
sifiers. For that reason we may limit ourselves to mining only strong jump-
ing spatial emerging patterns, that is JSEPs, which are minimal and have
a specified minimum support in one of the databases. For this purpose, the
border-based algorithm proposed by [119] may be used. Classification is per-
formed using the same methodology as for regular JEPs and occJEPs (see
Section 20.4.3).
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20.6 Jumping Emerging Substrings

In this section we describe an alternative approach of spatial data repre-
sentation, in which sequences of symbols are taken into consideration when
discovering contrast patterns. We use a substring mining algorithm, proposed
by [74] to discover strings, which characterize particular classes of images
and then use them for classification of unknown data. The strings are formed
by concatenating the horizontal, vertical, and diagonal sequences of symbols,
taken from the tile-based representation of a particular image, as described in
Section 20.3 (see Fig. 20.3).

FIGURE 20.3: Representation used to mine JESs between classes of images.
Strings are formed from horizontal, vertical, and diagonal sequences of sym-
bols.

Formally, a sequence is a non-empty string with finite length over an al-
phabet Σ = {a1, a2, . . . , am}. Having a string s = s1s2 . . . sk of length k and a
sequence T t = t1t2 . . . tl of length l, we say that s is a substring of T t, denoted
as s ! T t if ∃i ∈ 1 . . . (l − k + 1) such that s1s2 . . . sk = titi+1 . . . ti+k−1. If
s �= T t, s is a proper substring of T t, denoted as s � T t.

A database Dt is a set of sequences T t
i , each associated with a class label

cT t
i
∈ C = {c1, c2, . . . , cn}. The support of a string s in a dataset Dt is the

fraction of sequences in Dt that s is a substring of: supp(s,Dt) = count(s,Dt)
|Dt| ,

where count(s,Dt) = |mt(s,Dt)| and mt(s,Dt) = {T t | T t ∈ Dt, T t # s}.
Given two databases Dt

1, D
t
2 ⊆ Dt we say that a string s is a jumping emerg-

ing substring (JES) from Dt
1 to Dt

2 if supp(s,Dt
1) = 0 ∧ supp(s,Dt

2) > 0.
The task of JES mining is to find all strings having a given minimum sup-
port θ in Dt

2, being a JES from Dt
1 to Dt

2. We will denote this set of
strings as JES(Dt

1, D
t
2, θ). Furthermore, we can distinguish the set of only

minimal JESs, that is sequences, for which no frequent substrings exist:
JESm(D

t
1, D

t
2, θ) = {T ∈ JES(Dt

1, D
t
2, θ) | ¬∃s ∈ JES(Dt

1, D
t
2, θ) s � T }.

Example 20.13 Table 20.2 shows a simple two-class database and its jump-
ing emerging substrings. Based on the definition presented above, we look at all
possible substrings of strings in class A and find these, which are not present in
class B. Similarly, we check for JESs from class B to A. The string ”ac” would
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be the only JES, if we were to find only jumping emerging substrings with min-
imum support of 1. Finally, we reduce the set of discovered patterns to only
minimal JESs: JESm(D

t
A, D

t
B, 1/2) = {b, e}, JESm(D

t
B , D

t
A, 1/2) = {ac}.

TABLE 20.2: Example database and its jumping emerging substrings.
Source: Adapted from Ref. [211], with kind permission from Springer Sci-
ence+Business Media.

class A class B

acd cde
ac ab

JES support direction
class A class B

b 0 1/2 A → B
e 0 1/2 A → B
ab 0 1/2 A → B
ac 1 0 B → A
de 0 1/2 A → B
acd 1/2 0 B → A
cde 0 1/2 A → B

The classifier is created on the basis of the substrings mined for each of
the classes. We then use the classifier to assign previously unseen images to
respective categories. This is done by aggregating all minimal JESs that match
the representation of a particular image and determining the majority class of
the patterns. The winning category is then assigned to the example, similarly
as described in Section 20.4.3.

20.7 Experimental Results

Here we provide the results of experiments and accuracy comparison of the
most commonly used classification methods with a classifier based on regular
JEPs, the proposed JEPs with occurrence counts and jumping emerging sub-
strings. We are not directly comparing these methods to the spatial emerging
pattern-based classifier, as it is using a different image representation model.
The experiments have been conducted on the dataset, which is a collection of
images made available by the authors of the SIMPLIcity CBIR system [420].
It consists of 1000 photographs, which are JPEG color image files, having a
resolution of 384× 256 pixels. The images used in the experiments have been
classified into four categories: flower, food, mountain, and elephant. The data
contains ca. 400 instances and 16 recurrent attributes, where each instance
is an image represented by 8 types of texture and 8 types of color features,
possibly occurring multiple times on a single image; here a type corresponds
to a cluster. An example selection of photographs is presented on Figure 20.4.

We have used the following parameter values for the experiments: images
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FIGURE 20.4: Example images from the SIMPLIcity test database.

partitioned into 8× 8 tiles (x = y = 8), the sizes of feature vectors |fc| = 162
(h = 18, s = 3, v = 3), and |ft| = 48 (m = 6, n = 4) values. The dictionary
size was set at k = 8 values. The parameters are dataset dependent: the
number of tiles should be chosen based on the resolution of analyzed images
and the dictionary size reflects the diversity of the dataset.

The accuracy achieved by applying the classifier based on regular JEPs and
occJEPs, along with a comparison with other frequently used classification
methods is presented in Table 20.3. All experiments have been conducted as
a ten-fold cross-validation using the WEKA package [433], having discretized
the data into 10 equal-frequency bins for all algorithms, except the occJEP
method. The parameters of all used classifiers have been left at their default
values. The results of experiments using the JES method on the same data is
presented in Table 20.4.

TABLE 20.3: Classification accuracy of the SIMPLIcity dataset with the
classifier based on jumping emerging patterns (JEPs and occJEPs) and com-
parison with other state of the art methods.

method accuracy (%)
flower/ flower/ flower/ food/ food/ elephant/
food elephant mountain elephant mountain mountain

JEP 95.83 91.67 96.35 88.50 93.50 83.50
occJEP 97.92 98.96 97.92 88.00 91.00 88.50
C4.5 93.23 89.58 85.94 87.50 92.50 82.00
SVM 90.63 91.15 93.75 87.50 84.50 84.50

In case of the spatial emerging pattern-based classifier we have performed
experiments using synthetic data. We have verified the influence of the rela-
tion between pattern and image sizes on classification accuracy and the time
needed to mine spatial patterns. The results are presented in Table 20.5 and
show an increase of accuracy when pattern size approaches the size of the im-
age. (Here the meaning of “image size” and “pattern size” is as follows: With
“image size” of 7, an image is divided into 7× 7 tiles; and with “pattern size”
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TABLE 20.4: Classification accuracy of the SIMPLIcity dataset with a clas-
sifier based on the jumping emerging substrings (JESs).

minimum accuracy (%)
support flower/ flower/ flower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

0.250 92.26 93.68 96.37 30.50 83.50 58.00
0.200 94.79 95.26 96.89 41.00 89.50 66.00
0.150 96.37 97.89 96.89 63.50 93.00 74.50
0.100 97.94 98.95 96.89 85.00 94.00 89.00
0.050 98.47 98.95 96.89 93.00 95.50 92.00
0.025 98.47 98.95 96.89 93.00 96.00 93.50
0.005 98.47 98.95 96.89 93.00 95.50 93.50

TABLE 20.5: Classification accuracy of the synthetic dataset with relation to
image and pattern sizes. Source: Adapted from Ref. [212], with kind permission
from Springer Science+Business Media.

Image size Accuracy Time
(n) (%) (ms)

4 95,50 1738
5 92,20 2790
6 94,30 3218
7 92,70 3607
8 95,00 3752
9 93,10 3934

10 92,90 3653

Pattern size Accuracy Time
(m) (%) (ms)

2 82,00 2397
3 95,00 3545
4 98,00 5840
5 98,50 8109

of 3, a pattern has 3× 3 tiles (overlayed on images).) This is because there is
relatively less random noise in the generated data in comparison to the differ-
entiating pattern. The image size alone, however, does not directly influence
the classification accuracy or pattern mining time, as it has no relation to the
size of 9DLT representation and number of discovered JSEPs.

20.8 Conclusions

We have proposed new types of patterns that may be used to build accurate
classifiers for multimedia data. The presented results show that the proposed
methods may achieve equal or better performance than well-known tree-based
C4.5 algorithm and support vector machines (SVMs). The main advantage of
using a pattern-based classifier over other algorithms is the high accuracy and
interpretability of the classifier, which may be analyzed by a human expert.
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The biggest drawback of the method lies in the number of discovered patterns,
which is however less than in the case of regular JEPs found in discretized
data.
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21.1 Introduction

Geospatial data identifies the geographic location and characteristics of
natural, constructed, or socially-based features. A set of geographically co-
registered geospatial datasets captures various aspects of an environmental
process, involving variables that are highly coupled through a complex chain
of mutual interactions and feedback loops. The analysis of relationships among
different variables is challenging due to inherent nonlinearity and spatial vari-
ability of such systems. Recent advances in data collecting techniques (for
example, satellite-based remote sensing) result in the “data rich” setting and
provide an opportunity for more thorough analysis. However, the full benefit
of these enormous quantities of data can only be realized by automating the
process of extracting relevant information and summarizing it in a fashion
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that is comprehensible and meaningful to a domain expert. In this chapter,
we introduce a framework of discovery and summarization of empirical knowl-
edge contained in spatial patterns observed in geospatial data using a fusion
of techniques, including association analysis, reinforcement learning, and sim-
ilarity measurement.

Given a geospatial dataset classified into two binary (yes/no) classes, our
goal is to discover patterns in terms of (explanatory) variables that are ca-
pable of distinguishing between the two classes. Emerging patterns proposed
and studied in [118, 247, 255, 141] can be used towards achieving that goal.
However, not much work has been done to understand the contrasts between
spatially extended classes. Generalizing the methods of standard emerging
patterns to spatial domain is a non-trivial task. Geospatial data often contain
continuous variables that need to be categorized in order to be subjected to
association analysis. Categorization inevitably leads to information loss as it
introduces sharp artificial boundaries between different regions. Furthermore,
in contrast to the assumption that data instances are independent in tradi-
tional data mining, spatial data often exhibit spatial continuity and exhibit
high autocorrelation among geographically nearby features.

Our proposed methodology aims at addressing these problems (Fig. 21.1).
Specifically, we focus on the following three challenges: (1) identifying repre-
sentative patterns in terms of explanatory variables that capture statistical
difference between geospatial classes, (2) seeking the optimal spatial boundary
between classes to help us discover high quality class-discriminating patterns,
and (3) summarizing the identified patterns and presenting domain experts
with a relevant and concise report. To address challenges (1) and (2), we in-
troduce the concept of geospatial discriminating patterns and propose a new
value-iteration method designed to find the optimal geospatial boundary be-
tween classes using a reinforcement-learning model. To address challenge (3),
we define a similarity measure using information theory and use the proposed
similarity metric to summarize identified patterns by clustering them into a
small number of “super-patterns”. We design and implement a set of algo-
rithms to efficiently mine class-discriminating patterns.

This chapter also presents results obtained by applying our algorithm
and approach in several important applications, including vegetation analysis,
presidential election analysis, and biodiversity analysis.

21.2 Related Work

Firstly introduced by Dong et al. in [118], emerging patterns are those
patterns whose supports increase significantly from one dataset to another.
Li et al. [247, 255] have systematically studied various statistical measures
of “emergence”, including relative risk ratio, odds ratio, risk difference, and
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FIGURE 21.1: Overall design of the proposed method for auto-generating an em-
pirical model of class variable dependence on explanatory variables.

delta-discriminative emerging patterns. In our work, we adopt the relative
risk ratio as the measure of pattern emergence. Emerging patterns have been
applied to many scientific applications, including medical science [57, 255],
network traffic control [97], and data credibility analysis [338], etc. However,
little work has been done with respect to analyzing emerging patterns in
spatial datasets.

Identifying emerging patterns in spatial datasets has its own challenges.
Geospatial variables are highly coupled through a complex chain of inter-
actions resulting in their mutual inter-dependence. Ceci et al. [70] applied
emerging patterns to spatial databases, although that paper did not consider
spatial neighboring relationship in spatial data. We propose a different solu-
tion by first seeking the optimal spatial boundary between the classes, from
which geospatial discriminating patterns are identified. One of our ultimate
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goals is to discover a set of controlling factors that provides knowledge for
building empirical models of the classes of given applications.

Other studies indirectly related with our present work are spatial associa-
tion and co-location mining [364, 441, 191, 451]. These methods have studied
the discovery of spatial associations. Our work is to find patterns that capture
statically important differences between two classes.

21.3 Problem Formulation

The proposed method is organized around a raster data format; a raster,
R(x, y), x = 1, . . . , Nx, y = 1, . . . , Ny, is a 2-D array of constituent grid
cells (hereafter referred to as pixels). Each pixel holds an object o =
{x, y; f1, f2, ..., fm; c}, where x and y are pixel’s spatial coordinates, fi, i =
1, . . . ,m, are values of m explanatory variables as measured at (x, y), and
c is the value (label) of class variable. Without a loss of generality we will
consider a binary class variable with the pixels belonging to an “interesting”
class labeled c = 1 and the remaining pixels labeled c = 0. From the data min-
ing point of view, each pixel (after disregarding its spatial coordinates and its
class label) is a transaction containing a set of exactly m items {f1, f2, ..., fm}.
The entire raster can be viewed as a set of Nx×Ny fixed-length transactions.
An itemset (hereafter also referred to as a pattern) is a set of items. A trans-
action supports an itemset if the itemset is a subset of this transaction; the
number of all transactions supporting a pattern is referred to as a support of
this pattern. Because transactions have spatial locations, there is also a spatial
manifestation of support which we call a footprint of a pattern.

21.4 Identification of Geospatial Discriminative Pat-
terns and Discovery of Optimal Boundary

A discriminating pattern X is an itemset representing a condition on ex-
planatory variables that has much larger support in Op than in On, where
Op is the set of transactions stemming from pixels with c = 1 and On is the
set stemming from pixels with c = 0. For a pattern X to be accepted as a

discriminating pattern, its growth rate,
sup(X,Op)
sup(X,On)

, must exceed a predefined

threshold δ, where sup() is the support of X in a dataset. The difference be-
tween a discriminating pattern and a better known notion of emerging pattern
is that we require a discriminating pattern to be a closed [326] and frequent
pattern. We opt for closed patterns to increase computational efficiency of
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our method. Closed patterns represent a minimal representation of a set of
non-closed itemsets, yet they preserve the information about support of cor-
responding non-closed itemsets. Furthermore, we have proved in [109] that
footprints of closed frequent patterns supersede the footprints of correspond-
ing non-closed itemsets. This property allows us to determine a boundary
between Op and On regions without mining for all non-closed frequent pat-
terns. We opt for patterns that are frequent in Op because only such patterns
can sufficiently reflect a phenomenon we want to model. Infrequent patterns
are just not interesting enough from the point of view of building an empirical
model of a given phenomenon.

Mining for discriminating patterns requires a prior existence of binary
classification of class variable. In most problems stemming from natural phe-
nomena, such division does not occur automatically; this is in contrast to
a situation in say, medicine, where clear distinction exists between sick and
healthy subjects. Instead, in natural phenomena, a division into Op and On

is introduced be means of arbitrarily defined threshold value. However, we
have noticed that threshold-based division of class variable may lead to spuri-
ous results as the natural boundaries are rarely as sharp as those introduced
by a threshold. Another way of defining an extent of the phenomenon is by
tracking the presence of its controlling factors instead of the values of its mag-
nitude. We propose to find the controlling factors (discriminating patterns)
and the optimal boundary between Op and On simultaneously using an it-
erative procedure. In our context, the boundary is optimal when it provides
a best compromise between the threshold-based and controlling factor-based
definitions of Op. The optimal region is as close as possible to the union of the
footprints of all discriminating patterns (making a discrimination between Op

and On strong), but, at the same time, the values inside Op drop below the
threshold in as few places as possible.

To achieve this goal, we propose an interactive approach based on the
reinforcement learning model [49]. In this model, an algorithm learns how to
achieve its goal by trial-and-error interactions with its environment. The three
steps of the proposed procedure are as follows:

(1) Initialization. We first define the initial O0
p and O0

n using an arbi-
trary threshold on the value of the class variable. Using this initial division
of the scene, our algorithm mines for discriminating patterns. We calculate
a footprint of each pattern and the union of all footprints. The union of the
footprints intersects, but is not identical to O0

p.
(2) Modification of Op. In this step we calculate the next iteration of

the region of interest, O1
p, and the new set of discriminating patterns. The

pixels that are initially in O0
n are added to O1

p if they are in the union of
footprints of the patterns calculated in step 1, their class variable values are
“high enough,” and they touch O0

p. Because of this last requirement, step 2 is
in itself an iterative procedure implemented in the form of cellular automata
[174] in order to allow the expansion of O0

p beyond its immediate neighbors.
(The cellular automata will iteratively evaluate a pixel’s Moore neighborhood
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of eight neighbors.) The requirement that values of incorporated pixels have
“high enough” values of class variable is fulfilled by defining a buffer zone.
The buffer zone is easily defined in a raster of ordinal values; it consists of
pixels having a value one-scale less than the minimum value allowed in O0

p.
Once O1

p is established, a new (iteration 1) set of discriminating patterns is
calculated.

(3) Iteration until convergence. Finally, we repeat step 2 calculating
Oi

p and its corresponding set of discriminating patterns from the results of
iteration i− 1 until the iteration process converges. Note that convergence is
assured by the design of the process which utilizes the Bellman update [49]
in the reinforcement learning model. The result is the optimal division of the
scene and the optimal set of discriminating patterns.

We now give some highlights of the reinforcement learning model. A par-
titioning of O into Op and On is called a state. Let reward(s) denote some
quality measure (we use the average growth rate) of the top k discriminating
patterns for a state s. We transform one state s to another one s′ using some
action a, denoted as transit(s, a, s′). The desirability of a state is defined by its
utility utility(s). The utilities of the states can be solved by Bellman update
[49]:

utilityi+1(s)← reward(s) +maxa

∑
s′

transit(s, a, s′)× utilityi(s
′).

We use this equation to update the utility of each state from the utilities of its
neighbors. The fixed point of the algorithm is the optimal boundary solution.

21.5 Pattern Summarization

In the iterative method discussed above, a relatively large k needs to be se-
lected to give near-complete coverage on the footprint of Op. In our case study
experiments we use 1, 500 to 2, 000 best geospatial discriminating patterns.
Once the optimal boundary between Op and On is identified, it is desirable to
summarize the top k patterns derived from classes Op and On so the results
are usable to a domain scientist. Such summarization is achieved by clustering
the k patterns into a small number of “super-patterns”. A distance function is
needed in order to use the clustering algorithm we selected to use. One typical
way to measure the distance is using similarity measure between the patterns
and then convert it into a distance measure with distance = 1

similarity − 1.
We define a new similarity measure between patterns, based on information

theory and inspired by the method proposed by Lin in [261]. Our similarity
measure takes advantage of the fact that discretization of explanatory vari-
ables results in a set of ordinal variables, since the original features values are
numerical and the order between feature values is meaningful.
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We define the similarity between two geospatial discriminating patterns X
and Y as the average similarity of the two patterns on all attributes:

s(X,Y ) =

∑m
i=1 s(Xi, Yi)

m
(21.1)

where Xi, Yi are the value of i
th feature, fi, of patterns X and Y , respectively.

Lin in [261] defines a similarity metric in information theoretic terms,
which has been proven to be effective for measuring the similarity between
ordinal values. Specifically, the similarity between two ordinal values Xi and
Yi is measured by the ratio between the amount of information on the com-
monality of Xi and Yi and the information needed to describe both Xi and
Yi. However, in the context of geospatial discriminating patterns, a feature
fi is not always present in both patterns, and there are four possible cases
regarding the presence and absence. Using “–” to denote the absence of fi in
a pattern, we need to consider four cases to define s(Xi, Yi).

Let Z1, ..., Zn be all of the ordinal values of fi listed in decreasing order.
Case 1: None of the two ordinal values Xi and Yi is “–” (i.e. feature fi is
present in both X and Y ). Then the similarity between Xi and Yi is

s(Xi, Yi) =
2× log P (Z� ∨ Z�+1 . . . ∨ Zh)

log P (Xi) + log P (Yi)
=

2× log (
∑h

j=� P (Zj))

log P (Xi) + log P (Yi)
(21.2)

where P (Zj) is the probability of Zj inO (which is estimated using frequency),
and Z�, Z�+1, . . . , Zh are the intervals delimited by Xi and Yi (i.e. Xi = Z�

and Yi = Zh, or Yi = Z� and Xi = Zh). The commonality between two ordinal
values is the interval of ordinal values delimited by them.
Case 2: The ordinal value Xi is “–” and Yi is not (i.e. feature fi is absent in X
and present in Y ). Intuitively, we want to define s(−, Yi) as a weighted average
between Yi and the ordinal values Zj present in the footprint of pattern X .
We choose to use the probability of value Zj in transactions that support X ,
PX(Zj), as the weight. Formally, we define the similarity as

s(−, Yi) =

n∑
j=1

PX(Zj)s(Zj , Yi). (21.3)

Observe that Yi ∈ {Z1, Z2, . . . , Zn} and
∑n

j=1 PX(Zj) = 1.
Case 3: The ordinal value Yi is “–” and Xi is not. Similarly, we define

s(Xi,−) =
n∑

j=1

PY (Zj)s(Xi, Zj) (21.4)

where PY (Zj) is the probability of value Zj in transactions that support Y .
Case 4: Both Xi and Yi are “–”. Again we use a weighted average and define

s(−,−) =
n∑

j=1

n∑
l=1

PX(Zj)PY (Zl)s(Zj , Zl). (21.5)



310 Contrast Data Mining: Concepts, Algorithms, and Applications

21.6 Application on Vegetation Analysis

In this section, we present the results of applying our methods to a case
study featuring real geospatial data. We have constructed a fusion of sev-
eral datasets that pertain to the distribution of topography, climate, and soil
properties across the continental United States. Our purpose is to identify
dominant factors responsible for spatial distribution of the region of high veg-
etation density. The spatial distribution of vegetation density is approximated
by the distribution of the Normalized Difference Vegetation Index (NDVI).
The NDVI is an index calculated from visible and near-infrared channels of
satellite observations, and it serves as a standard proxy for vegetation density.
The 8 explanatory variables can be divided into climate-related (average an-
nual precipitation rate, average minimum annual temperature, average max-
imum annual temperature, and average dew point temperature), soil-related
(available water capacity, permeability, and soil pH), and topography-related
(elevation). The available water capacity is the volume of water that soil can
store for plants. The pH measures the degree to which water in soil is acid
or alkaline. Bulk permeability relates to the physical form of the soil. The
dew temperature is an indicator of relative humidity. These datasets are from
different sources and are available in different spatial resolutions. We have
fused all the datasets to 9 co-registered latitude-longitude grids with a reso-
lution of 0.5o × 0.5o. Each grid has 618 × 982 pixels, of which 361,882 pixels
(59.6% = 361882

618×982 ) have values for all the 9 variables.
The optimal boundary between Op and On is depicted in Figure 21.2(b).

Figure 21.2(c) overlays the footprints of the new Op with the original Op and
O−p . Here, O−p is the subset of transactions t in On such that t corresponds
to a pixel whose class attribute value is highest in On. As illustrated in the
figure, the boundary is expanded in the buffer zone of O−p , but it does not
exactly overlay the buffer zone. The top geospatial discriminating patterns,
derived from the optimized split between Op and On, have a significantly
higher growth ratio than the top patterns derived from an initial, arbitrary
boundary. This is exactly what we have expected because the boundary is
optimized using those top patterns.

We classify the top 2, 000 emerging patterns into 5 groups of super-patterns
using the K-means clustering algorithm. Figures 21.2(d-h) depict the foot-
prints of the 5 super-patterns. The super-patterns represent five different ma-
jor combinations of controlling factors that lead to high vegetation density;
high vegetation density is associated with different factors in different spa-
tial locations. Each super-pattern can be succinctly described on the basis of
its constituent patterns. For example, the super-pattern depicted on Figure
21.2(g) represents high values of temperature and humidity and low values
of elevation, whereas the super-pattern depicted on Figure 21.2(d) represents
only average values of temperature and humidity, but higher values of ele-
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FIGURE 21.2: Experimental Results of the vegetation-cover dataset. (a) Orig-
inal boundary between high vegetation cover and not-high vegetation cover.
(b) Optimal boundary of high vegetation cover. (c) Optimal boundary vs.
original high vegetation cover and the buffer zone. (d)-(h) Footprints of 5
groups of geospatial discriminating patterns. Color: orange - footprints of Op,
yellow - footprints of O−P , blue - footprints of On, green - footprints of identi-
fied 5 super-patterns. Source: Reprinted from Ref.[109], Copyright 2009, with
permission from Society for Industrial and Applied Mathematics.

vation. Both combinations are apparently compatible with high vegetation
density, but they occur in different geographical locations. The results con-
form to the domain knowledge of the climate and soil conditions that support
high density of vegetation. Overall, our case study shows that the range of
patterns supporting high vegetation density is not completely separated in the
spatial domain as is made clear from overlaps of footprints shown on Figures
21.2(d-h).

The results indicate that there does not exist highly nonlinear dependency
of vegetation density on its controlling factors. Examination of patterns related
to the high vegetation cover provides a summary of data dependencies that
help to develop a better empirical model of vegetation growth.
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21.7 Application on Presidential Election Data Analysis

We use the county-level 2008 presidential election data for 3,108 counties
within the contiguous United States as an expository example to apply our
method to the area of political analysis [380]. For these counties we have
selected 13 socio-economics indicators using the Census Bureau data. These
indicators are: (1) population density, (2) % of urban population, (3) % of
female population, (4) % of foreign-born population, (5) per capita income,
(6) median household income, (7) % of population with high school or higher
education, (8) % of population with bachelor degree or higher education, (9)
% of population that is white, (10) % of population living in poverty, (11) %
of houses occupied by owners, (12) percentage of population receiving Social
Security benefits, (13) average Social Security monthly benefit. The socio-
economic indicators are transformed into ordinal-valued attributes using K-
means to identify natural break points in order to fulfill association analysis
requirement for categorical variables. We use five categories (bins) denoted as
“lowest”, “low”, “average”, “high”, and “highest”, respectively.

We conducted two different experiments: (1) using a single transaction for
each county (all counties contribute equally regardless of their population)
(2) using a number of (identical) transactions for each county in proportion
to the its population. The results of the two experiments differ; due to space
limitations we report here only on the results of experiment (1). Discriminative
patterns were found using a growth rate threshold δ = 15. With such threshold
3,097 patterns were found ranging in support from as little as 9 counties to
as much as 103.

In-depth analysis of the 3,097 patterns of different levels of specificities and
supports is not practical. We use our pattern similarity measure to cluster the
patterns into a small number of clusters of patterns (called super-patterns).
Fig.21.3 shows the result of such clustering. Panel A is the Sammon map that
visualizes in 2-D the “distances” between the patterns - similar patterns are
close to each other on the Sammon map. The map reveals that all patterns
could be naturally divided into just two large clusters. The four different
colors of points corresponding to patterns on the map represents four clus-
ters found using the agglomerative clustering (see panel B). The hierarchy of
clustering is terminated (arbitrarily) at four clusters; three of these (closely
related) clusters correspond to the agglomeration seen in the left-upper cor-
ner of the Sammon map. Panel C shows geographical distribution of footprints
corresponding to the four super-patterns. Each supper-pattern agglomerates
a large number (from as little as 550 to as much as 1185) individual patterns.
Panel D gives a brief socio-economic interpretation to each super-pattern.
Note that super-patterns, just like individual patterns, are not described in
terms of all potential indicators. Super-pattern 1 is found in sparsely popu-
lated, low income counties with large minority populations. The other three
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super-patterns are found in counties dominated by urban populations. In ad-
dition, super-patterns 2 and 3 are associated with counties with disproportion-
ately large female populations, and super-patterns 2 and 3 are associated with
low percentage of home ownership. The footprints of different super-patterns
overlap; however, there are only six counties where all four patterns are found.
There is little geographical overlap between the footprint of super-pattern 1
and the other super-patterns. There are 125 counties (mostly associated with
major cities) where footprints of all three urban super-patterns overlap.

21.8 Application on Biodiversity Analysis of Bird
Species

We aim to discover associations between environmental factors and the
spatial distribution of biodiversity across the contiguous United States.
Roughly, biodiversity measures a number of different species (of plants and/or
animals) within a spatial region. A pressing problem in biodiversity studies is
to find the optimal strategy for protecting the species given limited resources.
In order to design such a strategy it is necessary to understand associations
between environmental factors and the spatial distribution of biodiversity. In
this context we aim to discover existence of different environments (patterns
or motifs of environmental factors) which associate with the high levels of
biodiversity [381].

The database is composed of spatial accounting units resulting from tessel-
lation of the US territory into equal area hexagons with center-to-center spac-
ing of approximately 27 km. For each unit the measure of biodiversity (class
variable) and the values of environmental variables (attributes) are given. The
biodiversity measure is provided by the number of species of birds exceeding
a specific threshold of probability of occurrence in a given unit. The envi-
ronmental attributes include terrain, climatic, landscape metric, land cover,
and environmental stress variables that are hypothesized to influence biodiver-
sity; we consider m=32 such attributes. The class variable and the attributes
are discretized into up to seven ordinal categories (lowest, low, medium-low,
medium, medium-high, high, highest) using the “natural brakes” method.

First we have transformed the hexagon-based dataset into the square-based
dataset. Each square unit (pixel) has a size of 22 × 22 km and there are
N=21,039 data-carrying pixels in the transformed dataset. The dataset does
not have explicit labels. Because we are interested in contrasting the region
characterized by high biodiversity with the region characterized by not-high
biodiversity we have partitioned the dataset into Op corresponding to c = 1
class and consisting initially of the objects having high and highest categories
of biodiversity and On corresponding to c = 0 class and consisting initially of
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FIGURE 21.3: (A) Sammon’s map showing topological relations between
3,907 discriminative patterns. (B) Dendrogram showing results of agglomera-
tive clustering of 3,097 discriminative patterns into 4 super-patterns; the four
clusters contain 1185, 667, 550 and 695 discriminative patterns respectively
(top to bottom). (C) Geographical distribution of footprints of the 4 identified
super-patterns. (D) Meaning of 4 super-patterns in terms of socio-economic
indicators. Source: Reprinted from Ref. [380], copyright 2010, with permission
from ACM.
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the objects having lowest to medium-high categories of biodiversity. The label
disambiguation module modifies the initial partition during the consecutive
rounds of discriminative data mining.

We identify frequent closed patterns discriminating between Op and On

using an efficient depth-first search method [62]. We mine for patterns having
growth rate ≥50 and are fulfilled by at least 2% of transactions (pixels) in
Op. We also keep only the patterns that consist of eight or more attributes;
shorter patterns are not specific enough to be of interest to us. We have found
1,503 such patterns. The patterns have lengths between 8 and 20 attributes;
the pattern length is broadly distributed with the maximum occurring at 12
attributes. Pattern size (support) varies from 31 to 91 pixels; the distribution
of pattern size is skewed toward the high values and the maximum occurs at
40 pixels.

We report 5 super-pattern clusters that discriminate high-biodiversity from
from-biodiversity. Fig. 21.4(A) illustrates the footprints of the 5 super-pattern
clusters, and Fig. 21.4(B) shows the bar-coded description for the 5 clusters
corresponding to different biodiversity regimes. If a given category is absent
within a cluster the bar is gray; black bars with increasing thickness denote
categories with increasingly large presence in a cluster. Five clusters indicate
5 distinct motifs of environmental attributes associated with high levels of
biodiversity. The results can help develop optimal strategies for protecting
bird species given limited resources.

21.9 Conclusion

In this chapter, we have formulated the problem of mining geospatial dis-
criminating patterns in the domain of geoscience. This domain uses remote
sensing datasets that are mostly in the form of spatially co-registered rasters,
which exhibits complex interactions among multiple attributes. We proposed
a value-iteration method gearing to identify the optimal boundary between
geospatial classes, thus maximizing the (growth rate of the) patterns to be
identified. We introduced a new similarity metric that is specially designed
for ordinal variables. We applied our methods to three important real spatial
datasets, US vegetation data, presidential election data, and biodiversity of
bird species. Discovered patterns conform to existing knowledge, and they de-
liver this knowledge in a quantitative, as well as comprehensive and systematic
manner.
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FIGURE 21.4: (A) Spatial footprints of five pattern clusters. White – not high
biodiversity region; gray – high biodiversity region; purple (cluster #1), light
green (cluster #2), yellow (cluster #3), blue (cluster #4), and red (cluster #5)
– footprints of the five clusters. (B) Bar-code representation of the five regimes
(clusters) of high biodiversity. Source: Reprinted from Ref. [381], copyright
2010, with kind permission from Springer Science+Business Media.
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22.1 Introduction

With the rapid advances of sensors and wireless networks, recognizing
human activity based on sensor readings has been recently attracting much
research interest in the pervasive computing community. A typical application
is monitoring activities for the elderly and cognitively impaired people, and
providing them with proactive assistance.

In real life, people perform activities in not only a sequential manner (i.e.,
performing one activity after another), but also an interleaved (i.e., switching
between the steps of two or more activities) or concurrent manner (i.e., per-
forming two or more activities simultaneously). Recognizing activities in such
a complex situation is important not only for meeting real life needs but also
for advancing the field of pervasive computing.

In this chapter, we formulate activity recognition [394, 336] as a pattern
based classification problem, and propose a novel Emerging Patterns based
approach to recognize sequential, interleaved, and concurrent activities. We
build our activity models based on Emerging Patterns (EPs) [118]. We mine a
set of EPs for each sequential activity from the training dataset, and use the
sets of EPs obtained to recognize not only simple (i.e., sequential), but also
complex (i.e., interleaved and concurrent) activities. This approach does not
require training for complex activities; and hence it has great flexibility and
applicability for real-life pervasive computing applications. Evaluation results
on a real-world activity trace collection on four volunteers in a smart home
environment demonstrate both the effectiveness and flexibility of our solution.

22.2 Data Preprocessing

We built a wireless sensor platform [170] from off-the-shelf sensors to collect
sensor information. Our sensor platform measures a user’s movement (i.e., left
hand, right hand, and body movements), user location, the living environment
(i.e., temperature, humidity and light), and the human-object interaction (i.e.,
the objects that a user touches). To process the data, we first convert the
sensor readings to a series of observation vectors where each observation vector
consists of 15 features as shown below.

o =[accel body x, accel body y, accel body z, accel right x, accel right y,

accel right z, accel left x, accel left y, accel left z, temperature,

humidity, light, location, left object, right object]

Here, accel, temperature, humidity, light refer to acceleration, temperature,
humidity, and light data obtained by wearable sensors; location refers to user
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location detected by RFID readers; body, left, right refer to sensors located on
user’s body, left hand, and right hand, respectively; x, y, z refer to acceleration
directed on the x, y, and z−axes, respectively.

We compute each observation vector in a fixed time interval which
is set to one second in our experiments. We then transform these ob-
servation vectors into feature vectors . A feature vector consists of fea-
ture items, where a feature item refers to a feature-value pair in which
a feature can be numeric or nominal. A numeric feature is denoted as
numfeaturei. We call numfeaturei@[a, b] a numeric feature item, meaning
that the value of numfeaturei is limited inclusively between a and b (e.g.,
accel body x@(−737.5,−614.5]). The entropy-based discretization method
[145] is used to discretize numeric features. We denote a nominal attribute
as nomfeaturej. We call nomfeaturej@n a nominal feature item, meaning
that the value of nomfeaturej is n (e.g. object@cup). These feature items are
indexed by a simple encoding scheme and will be used as inputs to the EPs
mining process described in the next section.

22.3 Mining Emerging Patterns For Activity Recogni-
tion

22.3.1 Problem Statement

We formulate the problem of sequential, interleaved, and concurrent activ-
ity recognition as follows. Given a training dataset that consists of a sequence
of observations for sequential activities only (i.e., formally, a training trace
O consists of T observations, O = {o1, o2, ..., oT }, associated with sequential
activity labels {SA1, SA2, ..., SAm}, where there are m sequential activities),
our objective is to train a model that can assign each new observation with
the correct activity label(s) and segment the new activity trace.

22.3.2 Mining Emerging Patterns from Sequential Activity
Instances

We use sequential activity instances for training. Note that the instances
of interleaved and concurrent activities are not used in our mining process.
An instance here refers to the union of all the observations that belong to
a sequential activity during a continuous period of time. For each sequential
activity class SAi, we mine a set of EPs to contrast its instances, DSAi

,
against all other activity instances D′SAi

, where D′SAi
= D −DSAi

and D is
the entire sequential activity dataset. We refer EPSAi

as the EPs of sequential
activity SAi. We discover the EPs by an efficient algorithm described in [247].
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TABLE 22.1: A subset of EPs for activity Cleaning a Dining Table.
Source: Adapted from Ref. [170], with permission from IEEE.
EPs Support(%) Growth rate
location@kichen, object@plate 100 ∞
object@cleanser, object@plate, object@wash cloth,
location@kichen

95.24 ∞

object@bowl, accel body x@(−155.25,−52.25],
light@(24.5, 28.5], object@plate

66.67 256

object@bowl, accel left z@(−684.5,−453.5],
object@plate, location@kichen, light@(24.5, 28.5]

66.67 ∞

The algorithm mines closed patterns and generators simultaneously under one
depth-first search scheme.

After computation, we get n sets of EPs, one set per sequential activ-
ity class. TABLE 22.1 presents an example of the EPs of the cleaning a
dining table activity. For example, the EP {object@cleanser, object@plate,
object@wash cloth, location@kichen} has a support of 95.24% and a growth
rate of∞. It has an intuitive meaning that cleanser, plate, and wash cloth are
the common objects involved in this activity, and this activity usually occurs
in the kitchen. In fact, one of the advantages of EPs is that they are easy to
understand.

22.4 The epSICAR Algorithm

22.4.1 Score Function for Sequential Activity

22.4.1.1 EP Score

Given a test instance St∼t+LSAi
for a possible activity SAi with average

duration LSAi , the EP score measures the likelihood of a set of SAi’s EPs con-
tained in this instance. It provides a probabilistic measurement on the fraction
of EPSAi (i.e., the discriminating features of SAi) contained in St∼t+LSAi

. To
make use of each EP set, we combine the strength of each set of EPs based
on the aggregation method described in [126].

Suppose an instance St∼t+LSAi
contains an EP, X , where X ∈ EPSAi ,

then the odds that St∼t+LSAi
belongs to SAi is defined as growth rate(X)

growth rate(X)+1 .

The differentiating power of a single EP is then defined by the odds and
the fraction of the population of class that contain the EP. More specifically,

the differentiating power of X is given by growth rate(X)
growth rate(X)+1 ∗ suppSAi(X). The
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aggregated EP score of St∼t+LSAi
for SAi is defined as

aggregated score(SAi, St∼t+LSAi
) =

∑

X⊆St∼t+LSAi
,X∈EPSAi

growth rate(X)

growth rate(X) + 1
∗ suppSAi(X) (22.1)

where suppSAi(X) is the support of X in class SAi, and growth rate(X) is
suppSAi(X) divided by the X ’s support in non-SAi class. The EP score of
each activity is then normalized using a baseline score; we define the EP score
as

ep score(SAi, St∼t+LSAi
) =

aggregated score(SAi, St∼t+LSAi
)

base score(SAi)
(22.2)

where base score(SAi) is the median value of the aggregated score(SAi,
St∼t+LSAi

) values of all the training instances of SAi.

22.4.1.2 Coverage Score

Given a test instance St∼t+LSAi
for a possible activity SAi, the Sliding-

Window Coverage score (coverage score for short) measures a fraction of irrel-
evant observations contained in this instance with respect to SAi. The lower
the percentage of irrelevant observations covered, the larger the coverage score
is obtained. We denote coverage score(SAi, St∼t+LSAi

) as the coverage score
of instance St∼t+LSAi

for SAi. This score is computed based on a function,
relevance(SAi, fp), where fp is a feature vector contained in LSAi. We first
compute relevance(SAi, itemh) for each itemh ∈ fp, and then aggregate their
scores for computing relevance(SAi, fp).

relevance(SAi, itemh) = P (itemh|SAi) +
∑

itemh∈X,X∈EPSAi

suppSAi(X)
(22.3)

where the probability P (itemh|SAi) is obtained from the training data, and∑
itemh∈X,X∈EPSAi

suppSAi(X) indicates that more weights are given to an item

which appears in EPSAi .
We now aggregate the values of relevance(SAi, itemh) for all itemh ∈ fp.

The aggregation can be simply done using
∑

itemh∈fp
relevance(SAi, itemh).

However, if EPSAi has many more items than EPSAj , then a feature vector
usually gets higher scores for SAi than SAj even for the feature vectors of
SAj . Hence, we need a normalized scheme. The normalized relevance(SAi, fp)
is computed as follows:

relevance(SAi, fp) =
unnorm relevance(SAi, fp)

base relevance(SAi)
(22.4)

where unnorm relevance(SAi, fp) =
∑

itemh∈fp
relevance(SAi, itemh), and
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base relevance(SAi) be the median of the values of unnorm relevance(SAi, fp)
in the training data.

We now can compute coverage score(SAi, St∼t+LSAi
). A simply way is

to sum up all the relevance(SAi, fp) in LSAi . However, it may bias towards
longer activities. Hence, we compute coverage score(SAi, St∼t+LSAi

) by av-
eraging all the relevance(SAi, fp) as follows:

coverage score(SAi, St∼t+LSAi
) =

1

LSAi

∑

fp∈LSAi

relevance(SAi, fp) (22.5)

22.4.1.3 Correlation Score

Human activities are usually performed in a non-deterministic fashion.
However, there exist some correlations between them, i.e., when an activity
SAj has been performed, there is some likelihood that another activity SAi is
performed. We use conditional probability to model such correlations between
activities, i.e., P (SAi|SAj) which is the conditional probability of SAi given
SAj . We can easily obtain such probabilities from training dataset. Note that
the initial value is set to zero, i.e., P (SAi|NULL) = 0.

22.4.2 Score Function for Interleaved and Concurrent Activ-
ities

We denote CAi as both interleaved activities (i.e., in this case, we denote
CAi as SAa&SAb) and concurrent activities (i.e., in this case, we denote CAi

as SAa + SAb), where two single activities SAa and SAb are involved1. We
define the sliding-window length of CAi as LCAi = LSAa + LSAb

, and use
LCAi to get the test instance St∼t+LCAi

. Since an instance of CAi containing
both EPSAa and EPSAb

(i.e., some of the steps that belong to SAa and SAb

respectively are interleaved or overlapped), we compute the EP score of CAi

as follows:

ep score(CAi, St∼t+LCAi
)

= max[ep score(SAa, St∼t+LCAi
), ep score(SAb, St∼t+LCAi

)]
(22.6)

When computing the coverage score of CAi, we choose the higher score
from relevance(SAa, fp) and relevance(SAb, fp) since CAi contains both
the observations of SAa and SAb in St∼t+LCAi

, i.e., relevance(CAi, fp) =
max(relevance(SAa, fp), relevance(SAb, fp)). Then the coverage score of
CAi can be computed as follows:

coverage score(CAi, St∼t+LCAi
) =

1

LCAi

∑

fp∈LCAi

relevance(CAi, fp) (22.7)

1We set the number of single activities involved in interleaved or concurrent activities to
two for illustrations although in theory it can be more than two.
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There are three situations when computing the correlation score: a sequen-
tial activity followed by an interleaved or a concurrent activity, an interleaved
or a concurrent activity followed by a sequential activity, and an interleaved
or a concurrent activity followed by another interleaved or concurrent activ-
ity. We choose the maximum value of all possible conditional probabilities for
all these cases. To illustrate, given an interleaved or concurrent activity CAj

involving SAc and SAd, such probability for CAi involving SAa and SAb can
be computed as follows.

P (CAi|CAj) = max(P (SAa|SAc), P (SAa|SAd), P (SAb|SAc), P (SAb|SAd))
(22.8)

The computation of P (SAi|CAj) and P (CAi|SAj) follows a similar
method, and we use P (Ai|Aj) to denote all the three cases. In addition, we
apply correlation analysis to measure the likelihood of SAa and SAb appeared
in an interleaved (SAa&SAb) or concurrent (SAa+SAb) activity. This proba-
bility can be computed as P (SAaSAb). Finally, we define the correlation score
as follows.

correlation(Ai) = P (Ai|Aj)P (SAaSAb) (22.9)

where Ai can be CAi or SAi, Aj can be CAj or SAj , SAa and SAb are two
single activities involved in CAi. When Ai is SAi, P (SAaSAb) is defined as
P (Ai).

In summary, the score function for sequential, interleaved, and concurrent
activities is defined as follows.

Definition 3 Given a time t, and an activity Aj which ends at t, for
each activity Ai, a test instance St∼t+LAi

is obtained from t to t + LAi , the
likelihood of Ai is computed as follows:

score(Ai, Aj , St∼t+LAi
) = c1 ∗ ep score(Ai, St∼t+LAi

)+

c2 ∗ coverage score(Ai, St∼t+LAi
) + c3 ∗ correlation(Ai)

(22.10)

Here, c1, c2, and c3 are coefficients, representing the weight of each individual
score. These coefficients have different implications. For example, a higher c1
implies that the subject always performs his activities in a consistent man-
ner. A higher c2 implies that all the instances of the activity are performed
in a constant duration whereas a lower c2 implies that the variance of the
instances can be large. A higher c3 implies that the subject usually performs
his activities in certain order. These weights reflect a subject’s habit in his
daily routine.

22.4.3 The epSICAR Algorithm

We now can apply the score function to recognize the activity label in
the test instance obtained using a slide window method. Given m sequential
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Algorithm: slidingWinRecog
Input: feature vector of length Lmax: F = {ft, ft+1, ft+2, ..., ft+Lmax},

where prediction starts at time t,
predicted activity Aj in the previous sliding window;

Output: An ordered pair < Ai, A
′
i >, where Ai is the activity label

with the highest score and A′
i is the activity label with the second

highest score;
Method:
1: for each activity Ai, i = 1, 2, ..., m2 do

2: get instance St∼t+LAi
=

t+LAi∪
p=t

fp;

3: compute score(Ai, Aj , St∼t+LAi
);

4: end for
5: return < Ai, A

′
i >;

FIGURE 22.1: Sliding-window based Recognition Algorithm.

activities, the number of interleaved and concurrent activities can be computed
by m(m − 1). Then the total number of activities is m2. We define Lmax as
max{LAk

| k = 1, 2, ...,m2}. A straightforward method is to test each activity
label using its corresponding slide window and the one with the highest score
wins out. Figure 22.1 describes this approach. Then the entire process in the
epSICAR algorithm is as shown in Figure 22.2 2.

22.5 Empirical Studies

To evaluate our proposed algorithm, we conducted our own trace collec-
tion in a complex, real-world situation. In this section, we first describe our
experimental setup and metric, then present and discuss the results obtained
from a series of experiments.

22.5.1 Trace Collection and Evaluation Methodology

Trace collection was done in StarHome - a real smart home built by us.
We deployed our sensor platform and tagged over 100 objects. We randomly
selected 26 activities out of common activities. We then chose 15 interleaved
activities and 16 concurrent activities. The data were collected over a period
of two weeks. We collected a total number of 532 activity instances in which
the numbers of sequential, interleaved, and concurrent activities are 422, 44,

2The adjustBoundary algorithm is for accurate activity trace segmentation; please refer
to [170] for more details.
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Algorithm: epSICAR
Input: an observation sequence O = {o1, o2, ..., oT } with a length of T;
m sequential activities {SA1, SA2, ..., SAm};
Output: assign the activity label to each observation;
Method:
1: pre-process O to obtain feature vectors F = {f1, f2, ..., fT };
2: t = 1;
3: Aprevious = null; Acurrent = null; Acandidate = null;
4: while t � T
5: < Acurrent, A

′
current >=slidingWinRecog(Ft,t+Lmax , Aprevious);

6: LAcurrent = adjustBoundary(Ft,t+Lmax , Acurrent, A
′
current)− t;

7: if t = 1 or Acurrent = Acandidate

8: Assign label Acurrent to ot ∼ ot+LAcurrent
;

9: t = t+ LAcurrent ;
10: Aprevious = Acurrent;
11: Acandidate = null;
12: else if Acandidate 
= Acurrent

13: t = adjustBoundary(Ft−LAprevious
,t+LAcurrent

, Aprevious, Acurrent);

14: Acandidate = Acurrent;
15: end if
16: end while

FIGURE 22.2: epSICAR Activity Recognition Algorithm.

and 66, respectively 3. We use ten-fold cross-validation and time-slice accuracy
defined as follows to evaluate the performance of our algorithm:

Slice Accuracy =

∑
SAi∈LBG∩LBR

LSAi

∑
SAi∈LBG∪LBR

LSAi

(22.11)

Here LBG are the ground-truth label(s), and LBR are the predicted label(s).

22.5.2 Experiment 1: Accuracy Performance

In this experiment, we evaluate time-slice accuracy for different activity
cases. The average accuracies of sequential, interleaved, and concurrent activ-
ities are 90.96%, 88.10%, and 82.53% respectively, and the overall accuracy
is 88.67%. The accuracy of sequential activity is the highest among all the
three cases, while the accuracies of interleaved and concurrent activities are
lower. The result probably can be explained as follows. Firstly, each of the four
volunteers may perform his interleaved or concurrent activities in a different
manner. This difference does not influence the sequential activity recognition
much but some of the specific characteristics of interleaved and concurrent

3More details about this trace collection could be found in [170].



326 Contrast Data Mining: Concepts, Algorithms, and Applications

FIGURE 22.3: Analysis of the score function. Source: Adapted from Ref. [170],
with permission from IEEE.

activities performed by different individuals may not be captured. Neverthe-
less, the result is reasonably good, and we achieve our objective of building a
unified activity model to recognize all the three activity cases based on sequen-
tial activity training data only. Second, the accuracy of concurrent activity is
5.57% lower than that of interleaved activity while the accuracy of interleaved
activity is close to that of sequential activity. It is probably due to the sliding-
window length. We apply LCAi = LSAa+LSAb

to calculate the sliding-window
length of CAi. This estimation seems to work well in the case of interleaved
activity as the observations of SAa and SAb do not overlap each other. How-
ever, for concurrent activity, there exists some overlapped steps between SAa

and SAb, hence LCAi should be much shorter than LSAa + LSAb
.

22.5.3 Experiment 2: Model Analysis

In this experiment, we evaluate and analyze the epSICAR algorithm with
respect to our score function. Figure 22.3 shows that the accuracies of the
epSICAR algorithm with EP score, EP score + coverage score, and EP score
+ coverage score + activity-correlation score, respectively. The figure suggests
that epSICAR achieves an accuracy of 65% on average with the EP score
only, demonstrating that the concept of EPs works effectively. However, the
effectiveness of the EP score is not as high as expected and there exists some
variations. More sensor features can be developed to improve the result. Figure
22.3 also suggests that, by introducing the coverage score, the accuracy is
improved significantly by about 15% and the variance also decreases. We also
observe that the accuracy is further improved by about 2% when adding in
the activity-correlation score.
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22.6 Conclusion

In this chapter, we studied the problem of human activity recognition based
on sensor readings in a smart home. We investigated a challenging problem
of how we can apply a model, which can be learnt from sequential activity
instances only, in recognizing both simple (i.e., sequential) and complex (i.e.,
interleaved and concurrent) activities. We exploited EPs as powerful discrim-
inators to differentiate activities and proposed the epSICAR algorithm. We
conducted comprehensive evaluation studies using our data set and analyze
our algorithm in detail. The results demonstrated both the effectiveness and
flexibility of our algorithm.
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23.1 Introduction

Emerging patterns (EPs) are itemsets whose supports increase significantly
from one dataset to another. EPs can capture emerging trends in timestamped
databases, or useful contrasts between data classes. In this chapter, we intro-
duce three applications of EPs: prediction of myocardial ischemia (MI), coro-
nary artery disease (CAD) diagnosis, and classification of powerline safety. We
present the background of these three applications, the classification problems,
the important features, and how to prepare the data for mining EPs. We also
give some EPs examples for these applications.

For the prediction of MI, diagnostic features are extracted from ST seg-
ments and used for building the EP based prediction model. For the diagnosis
of CAD, linear and non-linear features are created after Heart Rate Vari-
ability (HRV) analysis and used to perform the disease diagnosis. For the
classification of powerline safety, load factors are extracted from daily load
consumption data and used to predict non-safe powerlines (those more likely
to result in dangerous situations like power failure, fire, etc.). This chapter
uses classification by aggregating emerging pattern (CAEP) [126] to perform
prediction in these applications. CAEP uses the following scoring function to
make classification decisions.

∗This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MEST)(No. 2011-0001044).
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Definition 23.1 (SC: score) Given a test T and a set E(Ci) of EPs for class
Ci, the aggregate score of T for Ci is,

SC(T,Ci) =
∑

Str(X) =
∑ GR(X)

GR(X) + 1
× sup(X),

where the summation ranges over all EPs of E(Ci) that match T, and GR(X)
denotes the growth rate of X (defined as the support ratio of the support X
in Ci and in the complement of Ci). The class with the highest (normalized)
score is the predicted class of T.

The aggregate score, especially when normalized by the median score of
training instances of each class, have been used in CAEP to achieve high
predictive accuracy.

23.2 Prediction of Myocardial Ischemia

Ischemia is an absolute or relative lack of blood supply to an organ. Is-
chemia could result in tissue damage due to the lack of oxygen and nutrients.
Ultimately, this causes great damage because of a buildup of metabolic wastes.
Electrocardiogram (ECG), which records the electrical activity of the heart
over time is widely used for the diagnosis of heart disease like Myocardial
Ischemia (MI). A schematic representation of ECG is shown in Figure 23.1.

FIGURE 23.1: Schematic representation of ECG. Source: Reprinted from Ref.
[337], Copyright 2009, with permission from IEEE Press.

Statistical and data mining approaches to analyzing the ECG data are of-
ten used to find effective ways of the diagnosis and treatment of heart diseases.
From previous data mining based studies, we can see that the approaches have
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achieved good results, but there are still several weaknesses that have to be
addressed, i.e., neural-network based approaches do not provide explanations
for the classification decisions even though they achieve high performance.
In contrast, rule-based approaches give more explainable results, but their
accuracy is lower.

ST slopeST Slope

ioselectric
lineIsoelectric

ST80ST80 (J80)
Line

ST0ST0 (J0)

ST integral

Isoelectric
Line

ST80 (J80)ST80 (J80)

ST0 (J0)

FIGURE 23.2: ECG features extracted from recordings. Source: Reprinted
from Ref. [337], Copyright 2009, with permission from IEEE Press.

In [337], a dataset that consists of 99 patients with MI and 94 control
subjects is used to test the EP based prediction methodology. For each sam-
ple subject, four features are extracted from recorded ECG signals [135]: ST0
(J0 ), ST80 (J80 ), ST Slope, and ST integral. ST80 is the value of ST 80ms
after ST0 point (heart rate 120 beats/min). The ST slope is the slope of the
line connecting the ST0 point and ST80, ST integral is the area between the
isoelectric line and the points ST0 and ST80 as shown in Figure 23.2. More-
over, each subject’s clinical information is also collected, concerning Blood
Pressure, Glucose Content and presence of lipids in the blood, etc. Details of
used clinical information are:

• HBP (hbp/normal): Hyper Blood Pressure

• DM (dm/normal): Diabetes Mellitus

• OLDMI (Experience/normal): Old Myocardial Infraction

• EF (continuous): Ejection Fraction

• Glucose (continuous): Blood Glucose

• Uricacid (continuous): Uric acid

• TC (continuous): Total Cholesterol

• TP (continuous): Triglyceride

• Hyperlip (hyperlipid/normal): Hyperlipidemia

• SBP (continuous): Systolic Blood Pressure

• DBP (continuous): Diastolic Blood Pressure

• Smoking (smoker/nonsmoker): Smoking habit
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Since several features are continuous variables, entropy-based discretiza-
tion method has been used. Each continuous variable is discretized into a
number of intervals.

The performance of the methodology is compared with several algorithms
using the same dataset as shown in Figure 23.3. This figure shows that different
accuracy is achieved when different numbers of bins are used. With 9 bins,
subjects with MI are all predicted as MI, although there are misclassified
subjects in the Control group - 28 subjects in Control group are predicted as
MI (the used dataset has 99 MI and 94 Control). Since the MI group is the
focus of this application, the error rate in the control group is acceptable to a
certain degree. Table 23.1 shows the sample of derived emerging patterns for
the MI class.

FIGURE 23.3: Comparison of classification accuracy. Source: Reprinted from
Ref. [337], Copyright 2009, with permission from IEEE Press.

TABLE 23.1: Example emerging patterns of the myocardial ischemia class.
Source: Reprinted from [337], Copyright 2009, with permission from IEEE.

Emerging Patterns Sup.(MI) GR
EF=(66.2-72.1], DBP=(66.7-70], OLDMI=nomi 0.26 2.06
ST80=(0.0343-0.190367], EF=(66.2-72.1], DBP=(66.7-70],
OLDMI=nomi

0.07 2.21

EF=(66.2-72.1], DBP=(66.7-70], DM=normal, OLDMI=nomi 0.23 2.18
SBP=(113.3-120], EF=(66.2-72.1], OLDMI=nomi 0.15 2.03
HBP=normal, HYPERLIP=hyperlipidemia,
SMOKING=nonsmoker, OLDMI=nomi

0.09 2.14

DBP= (76.7-80], HBP=normal, OLDMI=nomi 0.13 2.47
ST0=(0.041656-0.198167], HBP=normal,
HYPERLIP=hyperlipidemia

0.05 2.37

EF=(66.2-72.1], DBP=(66.7-70], HYPERLIP=hyperlipidemia 0.16 2.53
INTEGRAL=(-inf-4.816611], HBP=hbp, DM=normal,
SMOKING=nonsmoker

0.17 2.02

CLUCOSE=(-inf-113.6], DBP=(76.7-80], EF=(66.2-72.1] 0.03 ∞
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23.3 Coronary Artery Disease Diagnosis

Coronary artery disease (CAD; also known as atherosclerotic heart disease,
coronary heart disease) is a narrowing of the small blood vessels that supply
blood and oxygen to the heart: producing blockages in the vessels which nour-
ish the heart itself. ECG is a diagnostic tool that is routinely used to assess
the electrical and muscular functions of the heart. HRV is considered by sci-
entists and physicians to be an excellent non-invasive measurement of nervous
system activity and heart health. HRV can be calculated from basic pulse rate
data.

In [234], the ECG signals are retrieved to measure consecutive RR intervals
by using the MATLAB based R wave detection software. For HRV analysis,
last 512 stationary RR intervals are obtained from each signal of recumbent
position. The power spectra of the 512 RR intervals are obtained by means
of fast Fourier Transformation. The direct current component is excluded in
the calculation of power spectrum to remove the non-harmonic components
in the very low-frequency region (< 0.004Hz). The area of spectral peaks
within the whole range of 0 to 0.4Hz was defined as Total Power (TP), the
area of spectral peaks within the ranges of 0 to 0.15Hz as Low Frequency
Power (LF), and the area of spectral peaks within the range of 0.15 to 0.4Hz
as High Frequency Power (HF), respectively. The Normalized Low Frequency
Power (nLF=100·LF/TP) is used as an index of sympathetic modulation;
the Normalized High Frequency Power (nHF=100·HF/TP) as the index of
sympathovagal balance.

• TP: The variance of normal RR intervals in HRV over 5 min (≤ 0.40Hz)

• VLF: Power in very low frequency range (<0.04Hz)

• LF: Power in low frequency range (0.04∼0.15Hz)

• HF: Power in high frequency range (0.15∼0.40Hz)

• LF/HF: LF/HF

• nLF: Normalized Low Frequency Power (LF/TP×100)

• nHF: Normalized High Frequency Power (HF/TP×100)

• SDNN: The standard deviation of NN intervals

Clinical information is also useful in diagnosis and treatment of heart
disease because it is the first type of medical examination on the patients.
Relevant clinical features include: age, hyper blood pressure, diabetes melli-
tus, smoking, old myocardial infarction, ejection fraction, blood glucose, total
cholesterol, triglyceride, hyperlipidemia, systolic blood pressure, and diastolic
blood pressure. The multi-interval discretization method [145] is used to dis-
cretize continuous features.

After EP mining, a set of EPs is selected for classification. Patients with
stenosis of the luminal narrowing greater than 0.5 were recruited as the CAD
group, the others were classified as the normal group. The accuracy was ob-
tained by using stratified 10 fold cross validation method. The result was
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compared with Näıve Bayesian, C4.5 [345], CBA [270], and CMAR [258] as
shown in Figure 23.4. The EP based classifier has achieved higher precision in
CAD group; thus it misclassifies fewer CAD cases as Control and it success-
fully detects many patients with CAD.

FIGURE 23.4: Comparison with other classifiers on CAD diagnosis.

23.4 Classification of Powerline Safety

The use of data mining techniques on power load management can help
electricity related industries to make more accurate decisions based on in-
formation obtained from the classification models. Classification models are
used for predicting power load to find relationships between input and out-
put variables. Classification methods are used in customer classification or
pattern recognition to discover new unseen rules. Application of clustering
methods could help the identification and analysis of load profiles. Also, using
temporal and spatial analysis techniques enables examination of the current
situation and problems, facilitates demand analysis and load management and
the analysis of the relationship and impact between customers, facilities, load
and outages [366].

In [236], power consumption data of customers obtained from Korea Elec-
tric Power Research Institute (KEPRI) is used to evaluate an EP based ap-
proach for powerline safety analysis. Selected power load patterns are restruc-
tured as daily representative vectors in Eqn 23.1:

V (c) = {V (c)
0 , . . . , V

(c)
h , . . . , V

(c)
H } (23.1)
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where c=customer, 0 < h < H , and H=2345. For each customer c, V (c)

denotes the total daily power usage of c for 24 hours. The power usage is
measured once every 15 minutes, hence each total daily power usages vector
has 96 dimensions. Dimension names are noted as 0000, 0015, 0030, . . . , 1415,
1430, . . . , 2345. A value such as 1415 means the measured time 14:15 PM.

TABLE 23.2: Extracted load factors. Source: Reprinted from Ref. [324],
Copyright 2009, with permission from IEEE Press.

The Load Factors Formula

F1: Load Factor (24h) F1 = Avg.for day
Max.for day

F2: Night Impact (8h: 23pm∼07am) F2 = 1
3
× Avg.for night

Avg.for day

F3: Lunch Impact (3h: 12am∼03pm) F3 = 1
8
× Avg.for lunch

Avg.for day

F4: Midnight Impact (7h: 00am∼07am) F4 = 7
24

× Avg.for night
Avg.for day

F5: Morning Impact (3h: 09pm∼12pm) F5 = 1
8
× Avg.for morning

Avg.for day

F6: Afternoon Impact (3h: 13pm∼17pm) F6 = 1
8
× Avg.for afternoon

Avg.for day

F7: Evening Impact (4h: 19pm∼23pm) F7 = 1
6
× Avg.for evening

Avg.for day

For dimensionality reduction, seven load factors are extracted (see Ta-
ble 23.2): F1 measures the usage for the full 24 hours, night impact F2 mea-
sures the usage from 23:00 to 07:00 (8h), lunch impact F3 measures the usage
from 12:00 to 15:00 (3h), midnight impact F4 measures the usage from 00:00
to 07:00 (7h), morning impact F5 measures the usage from 09:00 to 12:00 (3h),
afternoon impact F6 measures the usage from 13:00 to 17:00 (3h), evening im-
pact F7 measures the usage from 19:00 to 23:00 (4h). Definition of these time
intervals depends on characteristics of the datasets, and they were determined
after discussion with power related experts for the accurate extraction of load
factors. Avg. and Max. values, which are used in the Table 23.2, are the aver-
age and maximum values of the measured power usages during corresponding
time intervals. For example, for load factor F1, the Avg.for day is the average
value of the total daily power usage V (c) during 24 hours.

Since these factors have different relative importance some weights have
been applied. Maximizing the utility of load factors is the most challenging
task in this application. After that, information entropy minimization heuris-
tic is used to discretize the continuous-valued attributes into nominal forms.

As shown in Table 23.3, EP based classifier resulted in higher accuracy
than other classifiers on non-safe power lines, while other classifiers resulted
in higher accuracy on the safe power lines. Lower accuracy at safe lines may
decrease the total accuracy of EPs based classifier; however, the performance
of EP based classifier is more desirable since the main purpose of this appli-
cation is to find the non-safe lines.
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TABLE 23.3: Comparison with other algorithms.

Algorithms
Predicted class(%)
Safe Non-safe

EPs based
Safe 92.95 7.05

Non-safe 4.63 95.37

CMAR
Safe 83.87 16.13

Non-safe 20.50 79.50

Bayesian Network
Safe 97.08 2.92

Non-safe 11.44 88.56

Näıve Bayesian
Safe 97.06 2.94

Non-safe 11.44 88.56

SVM
Safe 98.97 1.03

Non-safe 11.30 88.70

C4.5
Safe 94.86 5.14

Non-safe 7.27 92.73

23.5 Conclusion

Applications often raise new research issues and bring deep insight on
the strength and weakness of an existing solution. This is also true for EP
mining. We feel the bottleneck of EP mining is not on whether we can derive
the complete set of EPs under certain constraints efficiently but on whether
we can derive a compact but high quality set of patterns that are most useful
in applications. The set of EPs derived by most of the current pattern mining
methods is too huge for effective usage [118, 249, 33]. There are proposals on
reduction of a huge set of frequent patterns and we can apply these methods on
mining of EPs to reduce the size of EPs. However, it is important to analyze
the theoretical properties of different solutions. Furthermore, it is still not
clear what kind of EPs (such as Jumping EPs and Strong EPs) will give us
satisfactory pattern sets in both compactness and representative quality for
a particular application. Much research is still needed to substantially reduce
the size of derived pattern sets and enhance the quality of retained EPs [178].

From the examples given in this chapter, we can see that it is important to
select powerful features to build high quality EP based classifiers. To improve
the performance of the EP based classification and to improve the usability of
EP based classification, it will be nice to have some easy-to-use tools to help
make it easier to carry out this feature selection and feature discretization for
EP mining and for building accurate EP based classifiers.
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24.1 Introduction

This chapters presents two applications of emerging patterns (EPs). The
first is an analysis of crime occurrences [387] and the second is a prediction of
apartment rental price [390]. For each application, we will explain details of
data used, how EPs are extracted, and how the EPs help to obtain accurate
prediction models.

24.2 Street Crime Analysis

Since street crimes have a big impact on the quality of life and can even
be life-threatening, reduction of them is an important issue for urban police.
It has been empirically known that street crime tends to occur not randomly

337
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but in particular places of urban areas. That is, incidents of street crime seems
to relate very much to the spatial configuration of locations on the streets.
Based on this premise the idea called Crime Prevention Through Environmen-
tal Design (CPTED) was proposed in the United States in the 1970s [315],
and it has now come to be implemented throughout the world. CPTED per-
forms environmental design based on the concepts of natural surveillance,
natural territorial control, and natural access control. Since these concepts
are given empirically, the quantitative validation on the relation between spa-
tial attributes and crime has started in recent years after the development
of geographic information systems [360]. Previous studies have mainly ana-
lyzed only crime places but have not considered intensively crime-free areas.
Therefore, understanding the difference of criminal tendency among locations
has not been achieved yet. Moreover, since it can be thought that crime in-
cidents depend on multiple factors such as population distribution, number
of pedestrians, building type, etc., the analysis by a simple model such as a
linear regression model is not sufficient. From those backgrounds, we apply
CAEP [126] to the data of bag-snatching in Kyoto City and reveal the dif-
ference between crime places and other areas [387]. In addition to this study,
we have performed crime analysis by applying emerging patterns in [388] and
[389]. Meanwhile, criminal analysis and crime prevention are classified into
an accident analysis [346] in a broad sense. Accident analysis tries to identify
the causality of an accident and ties the cause to its prevention. The idea
and methodology are mainly applied to traffic accident analysis, plant break-
down analysis, and so on. We can expect that the technology of data mining
will serve as a knowledge discovery tool of the preliminary step of causality
analysis.

24.2.1 Studied Area and Databases

The studied area is located in the center of Fushimi-ku, a suburb of Kyoto
City in Japan. The area is a rectangle of about 0.8 km by 1 km and the total
length of the streets studied is about 20 km. This area includes three train
stations. We also consider four other stations when estimating the number of
pedestrians by a random walk approach in the next section.

We use seven databases in this study. Database 1 (DB1) includes the
data on snatching incidents. From January 2004 to December 2005, 343 in-
cidents of bag-snatching were recorded in the Fushimi-ku area, 52 of which
took place in the area studied. The other databases are a Digital Map 2500
(Spatial Data Framework) (DB2), a land-use map (DB3), a map of detailed
building-footprints (DB4), population census data (DB5), enterprise census
data (DB6), and all-around image data by Asia Air Survey Co. Ltd. (DB7).
In addition, we measured the illuminance on the streets during the night.
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24.2.2 Attributes on Visibility

Wall Visibility: Space visibility is a central concept in natural surveil-
lance. The visibility analysis proposed here investigates the openness of a plane
and can be executed at any point outside building polygons. We also consider
the effect of wall components. So we need a method that precisely detects
the building walls (see Figure 24.1(a)). This is a simple visibility-graph-based
method that detects both endpoints of a line segment w that indicates the sur-
face of a wall within a radius of vr meters from a viewpoint v. Wv represents
the set of line segments visible from v, and the radius vr limits the visible
range. v is selected as a sampling point along a road side (see Section 24.2.3).
We set vr = 40 meters. For each detected visible line segment w, we calculate
the Euclidean distance between v and the line segment d(v, w), the angle of
spread of the line segment θ(v, w), and the length of the visible line segment
l(v, w) as basic geometric information on the visible wall associated with w;
see Figure 24.1(b). Then, the amount of base wall visibility of a wall w from a
viewpoint v is given by the product of normalized visible angle and normalized
distance to the wall:

bwv(v, w) =
θ(v, w)

π

vr − d(v, w)

vr
. (24.1)

(a) (b)

FIGURE 24.1: Visibility analysis. Source: Modified from Ref.[387], Copyright
2011, with permission from Elsevier.

We also consider the area of various types of wall components, namely
wc ∈ {door(dr), normal window(wn), grilled window(wg), Kyoto-style grilled
window(wk), window with a shutter(ws), piloti or non-wall facade(pn), shut-
ter(sh)}. The total area of each wc in wall w is denoted as ac(w,wc). In this
study, the effect of a wall component wc on natural surveillance is the ratio
of the total area of wc to the area of the first-floor portion of the wall. The
height of the first floor for all walls is wh, which we set to wh = 3.5 meters.
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The amount of base wall visibility bwvc(v, w,wc) that w gives to v for wc is

bwvc(v, w,wc) = bwv(v, w)
ac(w,wc)

l(v, w)wh
. (24.2)

The second term is the ratio of the area of wc to the area of w. In addition, we
consider the effect of two different building categories Btype1 and Btype2 de-
fined in DB4: Btype1={general building(gb), landmark building(tb), non-wall
building(nw)}, and Btype2 = {public building(pb), apartment building(ab),
individual house(ih), business institutions(bi), other building(ob)}.

For each bt ∈ Btype1 ∪Btype2, let Wv(bt) ⊂Wv denote the subset of line
segments in Wv that belong to a building of the building type bt. Then, for a
point v the amount of wall visibility with respect to all walls that belong to
buildings of building type bt is defined as follows.

awvb(v, bt) =
∑

w∈Wv(bt)

bwv(v, w). (24.3)

Its feature name is denoted as awvb bt; an example is amvb nw.
In addition, for a wall component wc belonging in the wall w at a point v

the amount of wall visibility for the building type bt is defined as follows.

awvbc(v, bt, wc) =
∑

w∈Wv(bt)

bwvc(v, w,wc). (24.4)

Its feature name is denoted as awvbc bt wc; an example is awvbc nw pn.
Although four other indices on visibility were defined in [387], here we

focus on the ones used in the top EPs in Tables 24.1 and 24.2 to save space.
Number of Pedestrians on the Street: Since most incidents of bag-

snatching occur on the street, it is important to know the pedestrian flow.
However, it is difficult to know it because several complicated factors affect it.
In this study, the pedestrian movement in the area surrounding each station
is approximated by random walks.

Initially, a pedestrian agent is placed at one of the stations. Then, the
agent is moved randomly to a new vertex connected to the current vertex.
The random walk is repeated until the agent moves beyond the movement
range which is set to 1.2 km from the station where the agent started from.
The estimated number of pedestrians at a point on the street who started from
station st is denoted rw st where st ∈{Keihan Kangetsukyo (KKG), Keihan
Tambabashi (KTB), Keihan Chushojima (KCJ), Keihan Fushimimomoyama
(KFM), Kintetsu Tambabashi (CTB), Kintetsu Momoyamagoryomae (CMG),
JR Momoyama (MY)}. We also define the expected sum of pedestrians that
pass a node from the seven stations by considering the number of passengers
using each station per day. It is denoted rw TTL.

Other Attributes: In addition to those indices, we define many other at-
tributes; the number of restaurants and stores along the roadside, the number
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of clerks along the roadside, the shortest network distance from the nearest
station, the population density of the small area surrounding a point, the
average illuminance of the street, and the nearest land-use excluding roads.

24.2.3 Preparation of the Analysis

The unit of analysis is a point. Since pedestrians tend to walk on the edge
of the road, the sampling points are placed 1 meter inward from the boundary
of the road. The interval of sampling points on the road is set to 10 meter.
In this way, 2,769 sampling points are generated. A class label of P or N
representing occurrence or non-occurrence of bag-snatching, respectively, is
assigned to each sampling point and to the 52 crime points.

It is said that a criminal of bag-snatching selects a victim from a distance,
shadows the victim, and conducts the crime when the opportunity comes.
Therefore, it is reasonable to assume that not only actual crime points but
also their neighboring points which are visible from each crime point should
be labeled with P. In order to define the neighboring area, we use the semi-
supervised point clustering method [387] (the details are omitted). As a result,
505 points labeled as P and 2,380 points are labeled as N.

To apply CAEP to the datasets, we discretize the values of the
original numeric attributes using the equi-density method with three
subintervals. The discretized attribute is expressed as attributename =
(−inf, value1], (value1, value2], (value3, inf), where inf represents infinity.

We apply an apriori algorithm [3] to extract item sets, with minimum sup-
port set to 0.01. The CAEP parameter values are as follows: minimum growth
rate = 3, and maximum dimension of itemset = 2 (a higher maximum dimen-
sion improves the classification accuracy, but the computation time increases
significantly).

24.2.4 Result

The classification accuracy by CAEP through 10-fold cross validation is
evaluated by TPrate, TNrate, and Precision, and they are all 0.857. Consid-
ering the uncertainty of criminal occurrence, it can be said that this accuracy
is satisfactory.

CAEP found 1,452 EPs in class P and 2,015 EPs in class N. The EPs with
the ten highest contributions are listed in Tables 24.1 and 24.2. The definition
of contribution on our analysis is as follows. Suppose an attribute A has two
distinct class labels C and C, and consider datasets DC and DC obtained by
partitioning the original dataset D. In our application, D corresponds to the
entire dataset for all sampled points, and it is partitioned into two datasets
depending on its class label clustered as P or N. Let t denote a record that
belongs to C, e ⊆ t denote an itemset (spatial pattern) of t, supC(e) denote
the support of e containing t in DC , and growth rateC(e) denote the growth



342 Contrast Data Mining: Concepts, Algorithms, and Applications

TABLE 24.1: Class P: EPs with the five highest contributions. Source: Mod-
ified from Ref.[387], Copyright 2011, with permission from Elsevier.

Item 1 Item 2 Contribution
rw MY=(-inf, 0.050] awvb nw=(0.014, inf) 0.158
rw MY=(0.581, inf) awvbc bi pn=(-inf, 0.000] 0.155
rw KTB=(-inf, 0.101] awvb nw=(0.014, inf) 0.154
rw KKG=(0.818, inf) rw TTL=(36820, inf) 0.152
rw CTB=(-inf, 0.147] awvb nw=(0.014, inf) 0.152

TABLE 24.2: Class N: EPs with the five highest contributions. Source: Mod-
ified from Ref.[387], Copyright 2011, with permission from Elsevier.

Item 1 Item 2 Contribution
rw KFM=(-inf, 0.711] awvbc nw sh=(-inf, 0.000] 0.316
rw KFM=(-inf, 0.711] awvbc nw dr=(-inf, 0.000] 0.315
rw KFM=(-inf, 0.711] rw CMG=(-inf, 0.199] 0.311
rw KFM=(-inf, 0.711] 0.310
rw KTB=(-inf, 0.101] rw KFM=(-inf, 0.711] 0.309

rate of e from DC to DC . Then, the contribution of itemset e to class C is

contribution(e) =
growth rateC(e)

growth rateC(e) + 1
supC(e). (24.5)

For class P, we see a combination of itemsets such as rw***=(some value
other than infinity, inf), which indicates a relatively large number of pedes-
trians, and awvb*** which indicates that the natural surveillance level from
walls with various building types and components is important. For class N,
we see the itemset rw KFM=(-inf, 0.711] in all the EPs. In the case of class
N, the influence of the number of pedestrians from a specific station is strong,
whereas in the case of class P, both this number and the existence of certain
wall components in the neighborhood seem to affect the criminal activity.

Figure 24.2 shows the classification result for each point. The circles of
various sizes represent the area of the sampling points labeled with P for each
crime point by the clustering method [387]. It can be said that the classi-
fication by CAEP works well as a whole. Figure 24.3 shows two panoramic
images at points A and B indicated in Figure 24.2, where the sum of the
contribution of the EPs is the highest. At point A (for Class P), we can see
a concrete block wall; there are no residential buildings nearby. We can also
see a multilevel parking tower, which is the type of non-wall building. Thus,
many class-P patterns revealed by CAEP are included at point A. Point B
(for Class N) is located at a riverside point far from the stations. It is not
crowded with buildings, and single-family houses face the roadside. At point
B, many patterns that correspond to class N can be observed, e.g., a large
distance from Keihan Fushimimomoyama Station.

We draw the following conclusion from the above results. Criminal activity
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Keihan Chushojima Sta.

Kintetsu Momoyamagoryomae Sta.

A

B

Keihan Fushimimomoyama Sta.

FIGURE 24.2: Classification of sampling points and actual crime points by
CAEP. A circle indicates an area of sampling points clustered as P; we call it as
a P-area. A sampling point or an actual crime point painted in black represents
that it is correctly classified as P, a point painted in white represents that it
is correctly classified as N, a point painted in gray and included in a P-area
represents that is is misclassified as N, and a point painted in gray and not
included in any P-area represents that it is misclassified as P. Source: Modified
from Ref.[387], Copyright 2011, with permission from Elsevier.

Class P: at point A Class N: at point B

FIGURE 24.3: Panoramic images from DB7 with the highest contribution
of EPs. Source: Reprinted from LOCATION VIEW, Copyright 2010, with
permission from Asia Air Survey Co., Ltd.
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is more likely near non-wall buildings, where there are few people during the
day, and near office buildings, where there are few people at night. Crimi-
nal activity is less likely when there are fewer pedestrians from stations and
more residential houses or apartments with certain wall components. By using
CAEP, we obtained both good classification result leading to crime prediction
and a lot of spatial patterns for enhancing the understanding of the relation-
ship between street crimes and spatial configuration.

24.3 Prediction of Apartment Rental Price

24.3.1 Background and Motivation

In this section, we will present the price analysis of rental residences of
apartment buildings. In a general hedonic approach for dwellings, the value
(i.e. price or rent) of a residence is estimated based on attributes such as
the occupied area, the distance from the nearest station, the building age,
facilities and so on [267, 132]. However the information of the room layout
has not been fully used in the conventional approach although it seems to be
crucial to evaluate usability and fineness of space.

The room layout can be represented by a graph, but a graph itself can-
not be directly handled by a fundamental method such as multiple regression
analysis since conventional statistical analysis usually can deal with only nu-
merical or categorical data. However, the room layout has often been used for
spatial analysis in the field of architecture and urban planning [188]. When
focusing on the effect of a room layout to rent price, it is not plausible that
the whole room layout influences the rent price, but there may be a certain
key substructure that greatly affects the rent price.

In order to extract such substructures, we will apply a graph mining
method [223] to those subgraph structures that frequently appear in room
layouts of targeted apartments. Among those extracted, we will further select
those that are highly related to rent price by examining emerging patterns. We
will then construct a prediction model with high accuracy by incorporating
those substructures into explanatory variables.

24.3.2 Data

We use the data of CHINTAI Web (http://www.chintai.net/) which is one
of the most popular websites on real estate especially rental apartments in
Japan. We limit the target of our research to the family-oriented residences of
apartments classified as “3LDK”, “3DK”, or “3K”. In Japan, dwelling-types
are distinguished by the term such as 3LDK where “3” means the number of
bed rooms, “L” a family room, “D” a dining room and “K” a kitchen. In fact,
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3LDK, 3DK or 3K dwelling-types are most popular among condominiums in
Japan.

We choose the target area as that along the railways of Hankyu Kyoto
Line and JR Tokaido Line located in the south west of Kyoto City. These
areas have common features as dormitory suburb of Kyoto or Osaka. Among
them 15 areas are selected and classified according to the nearest station
of these railways. We obtained 996 records by downloading html files from
CHINTAI Webpage. The attributes of each record include the area and the
nearest railway station, and image data of the room layout.

Tables 24.3, 24.4, and 24.5 show numerical and categorical attributes re-
spectively. Rent does not include utility fee.

TABLE 24.3: List of numerical attributes (part I). Source: Reprinted from
Ref.[390], Copyright 2007, with permission from IEEE.

attribute mean standard deviation
rent price 81,770 yen 14,866
building age 16.5 years 7
occupied area 60.4 m2 7.4
area of the largest Japanese room 6.0 jou 0.7
area of the middle Japanese room 3.2 jou 2.7
area of the smallest Japanese room 0.1 jou 0.7
area of the largest western room 5.7 jou 1.2
area of the middle western room 2.2 jou 2.7
area of the smallest western room 0.1 jou 0.5
area of dining room 9.6 jou 2.7

TABLE 24.4: List of numerical attributes (part II). Source: Reprinted from
Ref.[390], Copyright 2007, with permission from IEEE.

attribute mean standard deviation
number of stories 4.8 2.2
distance to the nearest station 13.1 minutes 6.9
distance to a super market 418m 254
distance to a convenience store 501m 286
distance to a hospital 258m 216
distance to a police 657m 288
distance to a kindergarten 417m 205
distance to an elementary school 504m 255
distance to a junior high school 753m 377
distance to a high school 1,242m 608

As shown in Figure 24.4, a room layout image is converted manually to a
graph structure (called room layout graph data), where a vertex represents a
room and edges represent adjacency relationship. We now explain the details
of vertex and edge types.

a. Vertex types: We define the following eight vertex types.
e©: an entrance vertex. It can be found in all floor plans. For example, an

entrance vertex is defined even if an entrance is directly connected to a dining
room. The detail will be explained next.
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TABLE 24.5: List of categorical attributes. Source: Reprinted from Ref.[390],
Copyright 2007, with permission from IEEE.

attribute value (no. of records)
room layout type 3LDK(707), 3DK(285), 3K(4)
residence type apartment(914), cooperative(5), tenement(4), others(73)
structure type reinforced concrete (821), steel framed reinforced concrete (28),

steel-framed (68), light gauge steel (59), timber structure(17), others (3)
orientation of main east (361), west (84), south (450), north (9), south east (31),
opening south west (47), north east (13), north west (1)
nearest station 8 stations of Hankyu Kyoto line, 2 stations of Hankyu Arashiyama line,

4 stations of JR Tokaido line, one station of Keifuku Arashiyama line
Facility parking lot (813), city gas (745), air conditioner (498),

pets allowed (61), piano allowed (34),
internet (24), card key entry (7), and etc (total 45 attributes)
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FIGURE 24.4: Conversion from room layout image to a room layout graph.
Source: Reprinted from Ref.[390], Copyright 2007, with permission from IEEE.

h©: a hall vertex which is defined as the space which is between an entrance
and a dining room. A hall vertex is defined if it is partitioned by a door or a
fusuma (fusuma is a Japanese sliding door).

d©: a dining room vertex. In modern Japanese residences, a dining room
usually contains a kitchen and a living room. They are usually distinguished
by the term such as 3K, 3DK, or 3LDK. However in this paper we do not
distinguish them.

j©: a Japanese room vertex which is a traditional room with tatami,
fusuma, oshiire, and other traditional Japanese fittings as shown in Fig-
ure 24.5. Tatami is a Japanese floor mat which is made of rush. Fusuma
is a sliding door. Oshiire is a Japanese closet whose opening is fusuma.

w©: a western room vertex. The term “western” is contrasted with
“Japanese”. A western room has flooring or carpet, door, and curtain.

b©: a balcony vertex. Balcony is not usually large in Japan. The main
function of the balcony is to hang out the laundry. If the room is on the first
floor and has its own garden outside, we regard the garden as a balcony.

c©: any kind of closet, including oshiire, is represented by this vertex. If
there is more than one closet in a room, they are combined into a single closet
vertex.
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Tatami

Fusuma 

Oshiire 

FIGURE 24.5: Japanese style room. Source: Reprinted from Ref.[390], Copy-
right 2007, with permission from IEEE.

k©: a kitchen vertex which is defined only if the kitchen is separated from
the dining room as shown in Figure 24.6. This is an important distinction.

Kitchen 

Dining 

(a) (b)

Dining 

Kitchen 

FIGURE 24.6: Distinction of kitchen vertices; (a) has a kitchen vertex and (b)
does not. Source: Reprinted from Ref.[390], Copyright 2007, with permission
from IEEE.

b. Edge types: We classify adjacency relationship between rooms into the
following five types: door (d), closet (s), glass (g), fusuma (f), non-partition
(n). Glass edge is only used to denote glass door between a dining room (or
a living room) and a balcony.

24.3.3 Extracting Frequent Subgraphs

Frequent subgraphs are extracted by using a graph mining tool, and those
“subgraph data” is constructed and analyzed. Subgraph data is then trans-
formed to a 0-1 categorical one which indicates the absence presence of the sub-
graph in the room layout. We used the graph mining algorithm gSPAN [445]
to do frequent subgraph mining. The minimum support of a subgraph is set
to be 0.5%. This corresponds to 5 transactions in our dataset consisting of 996
residences. This seems to be very small. However, considering the diversity of
floor plans, general patterns with large frequency do not seem to be enough
for evaluating room layouts. Rarer patterns with small frequency should be
considered. As a result of graph mining, 8,556 subgraphs were extracted.



348 Contrast Data Mining: Concepts, Algorithms, and Applications

24.3.4 Discovering Primary Subgraphs by Emerging Pat-
terns

This subsection examines the influence of subgraphs on rent. For this, we
will use Emerging Patterns (EPs) [118]. Many subgraphs for which in parent-
child relationship holds tend to have the same growth-rate (gr for short).

We divide the whole data into two classes H and L such that class H (resp.
L) is the subset of data whose rent price falls into the upper (resp. lower) half
among those whose nearest railway station is the same. The sizes of classes H
and L are 490 and 506, respectively.
1) The top three EPs on classes H and L are shown in Figure 24.7. We select
EPs having at least 10 residences (about 1% of the whole data) in order to
keep the minimum amount of generality. Consider the top EPs for class H in
Figure 24.7 (left figure). The three one-edge subgraphs, 1-22, 1-16 and 1-12,
respectively indicate “a separate kitchen”, “a dining room facing a balcony”,
and “the existence of a closet in the western style room”. The three two-edge
subgraphs, 2-71, 2-66 and 2-57, respectively indicate “two western style rooms
connected to a balcony”, “a dining room with a separate kitchen that faces a
balcony”, and “a dining room with a separate kitchen connected to a western
style room”. Notice that the last two graphs, 2-66 and 2-57, contain as their
subgraphs the one-edge EPs shown in the upper part of the figure. In addition,
we observe that as the number of edges increases, gr tends to become larger.

Figure 24.7 (right figure) shows EPs for the lower half (class L). The single-
edge graphs 1-21, 1-23, and 1-0 respectively indicate “a dining room directly
connected to a hall without any partition”, “a dining room connected to an
entrance”, and “a dining room connected to a Japanese style room through
a door”. The two-edge graphs 2-37, 2-48, and 2-103 respectively indicate “a
dining room connected to a hall through a fusuma and to a Japanese style
room through a door”, “a dining room connected to an entrance without
any partition and to a western style room through a door”, and “a dining
room connected to a hall without any partition and to a Japanese style room
through a fusuma”. Each of these two-edge EPs contains at least one of the
three one-edge EPs as subgraphs. Grs of EPs for the lower half (class L) are
larger than those for class H, implying that the existence of a small portion
of room layout has a crucial negative influence on the rent price.
2) Residences whose rent is close to the average may obscure the influence
of subgraphs on rent price in the analysis given above. In order to see more
clearly the influence of subgraphs, we select the upper half of the class H
(denoted by class HH) and the lower half of the class L (denoted by class LL).
The numbers of residences in HH and LL are 206 and 187, respectively. Since
the sizes of classes HH and LL are small and simple subgraphs with one or
two edges have small gr, EPs are sought without limiting the number of edges.

Figure 24.8 (left) shows the top two EPs for class HH. These two graphs,
4-502 and 6-989, respectively indicate “a dining room facing a balcony”, and
“a dining room connected to a western style room and a hall through doors”.
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FIGURE 24.7: EPs for the class H (on the left) and L (on the right). Numbers

such as 1-22 are ids for subgraphs. Fractions such as 195/76 represent the frequency

ratios of numbers of residences in classes H and L (left figure), and in classes L and H

(right figure), respectively. Source: Reprinted from Ref.[390], Copyright 2007, with

permission from IEEE.

Both EPs have common characteristics such as a separate kitchen and a dining
room connected to a Japanese style room through a fusuma.

Figure 24.8 (right) shows the top three EPs for the class LL. The graphs
2-49, 4-935, and 8-778 in the figure respectively indicate “a dining room di-
rectly connected to a hall”, “a dining room directly connected to an entrance
without any partition and to a western style room through a fusuma”, and
“two Japanese style rooms facing a balcony”. From these observations we ob-
tain the conclusion that the segregation level of a dining from an entrance and
a hall, the presence or the absence of a separate kitchen, and the position of
a Japanese style room seem to greatly influence the rent.
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FIGURE 24.8: Top EPs for the class HH (left) and LL (right). Meaning of fractions

c/d is similar to Figure 24.7. Source: Reprinted from Ref.[390], Copyright 2007,
with permission from IEEE.

24.3.5 Rent Price Prediction Model

We created three rent price prediction models based on multiple regression.
Model 1 uses only numerical and categorical data as explanatory attributes
while Model 2 uses only subgraph data. Model 3 uses numerical and categor-
ical data as well as subgraph data. Since 8,556 subgraphs are extracted as
mentioned in Section 24.3.3, we first reduced the size of such subgraph data
to 54 by applying correlation-based feature subset selection (CFS) [177].

Table 24.6 presents prediction accuracy of these three models. Model 3
exhibits the highest decision coefficient which is higher than Model 2 by 0.09,
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and the lowest absolute error which is 700 yen smaller than Model 2. Decision
coefficient 0.552 obtained by Model 2 shows that we can predict rent price to
a certain degree even if we use only room layouts.

Table 24.7 shows the attributes having ten highest/lowest coefficients, re-
spectively. Six of the ten attributes of Table 24.7.a are subgraphs. Each sub-
graph in Table 24.7.a is an emerging pattern of class P and each subgraph
except 5-360 in Table 24.7.b is an EP of class N. Each attribute representing
a subgraph is binary, taking the value 1 if the subgraph appears in the room
layout. Other binary attributes such as “For company only” are assigned value
in the natural manner.

In Table 24.7.b coefficients of some subgraphs take large values while at-
tributes concerning distance, building age are large as can be expected. From
these results, we can confirm the significant influence of room layout. More-
over, subgraphs in Table 24.7.a all contain more than five edges, while those
subgraphs which appear in Table 24.7.b have fewer edges. This result implies
that house renters evaluate a residence by demerit system such that they put
a low value on the entire residence if it has a little fault in the room layout.

TABLE 24.6: Prediction accuracy of three models. Source: Reprinted from
Ref.[390], Copyright 2007, with permission from IEEE.

Model 1 Model 2 Model 3
multiple correlation coefficient 0.823 0.743 0.876
mean absolute error (yen) 5,985 7,421 5,298

TABLE 24.7: 10 attributes of most positive partial regression coefficients
(a) and 10 attributes of most negative coefficients (b) in Model 3. Source:
Reprinted from Ref.[390], Copyright 2007, with permission from IEEE.

(a)
attribute coefficient
Occupied area 27100.7
For company only 16288.1
8-780 11716.5
5-397 11593.8
5-1042 8961.4
6-748 8961.4
Area of a family room 8817.4
5-879 7190.4
Area of the smallest
western style room 6865.8
5-1436 6721.1

(b)
attribute coefficient
Walking time to
the nearest station -15752.6
Building age -14373.2
4-893 -12951.4
Tenement -12686.6
Card key system -10787.4
Distance to a hospital -10101.7
Piano allowed -8128.6
5-360 -6574.2
2-49 -6048.7
5-440 -5825.0
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This chapter provides a structured outline of, and pointers to, representative
publications on contrast data mining and applications, for various major topic
areas, with a focus on papers not already cited in previous chapters. To prevent
the book from becoming too long, we have not tried to be complete, and we
apologize if some related papers are not included here. References are given
to chapters, but papers cited in those chapters will normally not be repeated
here. Combined with references to earlier chapters, this chapter serves as a
topic based outline of results on contrast data mining and applications.
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25.1 General Papers, Events, PhD Dissertations

Several related survey/overview papers have been published, including a
survey [114] on the main results of contrast data mining and applications,
a survey [129] on emerging pattern based contrast mining and applications
(in Chinese), a survey [319] on contrast set, emerging pattern and subgroup
mining, and a review [55] on contrast and change mining. References [427][175]
gave complexity results on the emerging pattern mining problem and certain
related algorithms.

Two special events on contrast data mining and applications took place
in the last few years, including a tutorial [31] at ICDM 2007 presented by
Bailey and Dong and a workshop [113] at ICDM 2011 organized by Dong and
Bailey. The name “contrast data mining” was coined during James Bailey’s
sabbatical visit with Guozhu Dong at Wright State University in 2004; other
names such as “comparative data mining” were also discussed.

Historically, reference [64] was an earlier work on mining patterns for char-
acterizing and differentiating classes, although it focused on high support pat-
terns obtained using the attribute-oriented-induction approach.

Contrast data mining is related to “comparative data analysis,” which
is focused on finding commonalities and uniqueness of several datasets, or
classes. For example, comparative data analysis can aim to organize two Web
search result sets into clusters with common/unique descriptive themes [226],
to help users quickly get a sense of the relationship between the two sets.

Contrast data mining can be especially useful in “domain driven data
mining” [65], when domain specifics are captured by the classes or conditions
to be contrasted. It can also be used in multi-dataset mining [201].

While feature selection [274] and general classification (see e.g., [179]) can
both be considered as belonging to contrast data mining, they are excluded
in this book, since our focus is mining and utilizing contrasting patterns.

The following are PhD dissertations (known to us) on topics closely related
to contrast data mining and applications: [241], [463], [136], [4], [290], [197],
[27], [208], [307], [396], [86], [282], [164], [161]. There are also a number of
highly related MS theses, some of them cited elsewhere in the book.

25.2 Analysis and Measures on Contrasts and Similarity

Chapter 2 discusses various measures on contrasts, including some tra-
ditional ones from statistics. Reference [460] considered measuring the un-
certainty of differences for contrasting groups. Reference [343] studied the
estimation of confidence intervals for structural differences between contrast
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groups with missing data. Reference [30] used the Fisher test to select sig-
nificant contrast patterns. Reference [1] considered evaluation measures for
multi-class subgroup discovery.

Comprehension and utility of contrast patterns for domain experts is de-
pendent on the relationship among the constituent items present in the pat-
terns. Reference [144] provided an analysis of the types of interactions that
may occur among items in contrast patterns, and proposed to categorize con-
trast patterns according to four types of item interaction, namely, driver-
passenger, coherent, independent additive, and synergistic beyond indepen-
dent additive.

Reference [202] gave a tree-based framework for difference summarization.
Reference [159] gave a framework for measuring changes in data characteris-
tics.

Reference [416] considered using cross dataset minimum coding length
difference to define similarity between datasets. Reference [325] studied ex-
ploiting dataset similarity for distributed mining. Reference [101] considered
context-based similarity measures between attributes and sub-relations in cat-
egorical databases.

25.3 Contrast Mining Algorithms

The following chapters are concerned with mining algorithms for various
kinds of contrasts in various types of data: Chapter 3 is on tree-based con-
trast mining algorithms, Chapter 4 is on the ZBDD-based contrast mining
algorithm, Chapter 5 is on efficient direct mining of selective discriminative
patterns for classification, Chapter 6 is on contrast mining for more struc-
tured data, Chapter 17 is on mining optimal emerging patterns when there
are thousands of genes, Chapter 7 is on incremental maintenance of emerging
patterns, Chapter 8 is on more general contrast patterns, such as disjunc-
tive emerging patterns and fuzzy emerging patterns and contrast inequalities,
and their mining, Chapter 20 is on mining emerging patterns with occurrence
counts (and other variants) for image data, Chapter 9 is on emerging data
cube representations for OLAP database mining, Chapter 10 is on mining
algorithms based on relationship between emerging patterns and rough set
theory, and Chapter 21 is on geospatial contrast mining on labeled spatial
data.

25.3.1 Mining Contrasts and Changes in General Data

Reference [271] considered discovering fundamental rule changes. Refer-
ence [269] considered mining changes for real-life applications. Reference [424]
considered mining changes of classification by correspondence tracing. Refer-
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ence [256] linked emerging pattern mining with mining high confidence asso-
ciation rules without support threshold. Reference [115] studied niche pattern
mining based on emerging patterns, and reference [237] studied the excep-
tional model mining problem, both concerned with mining local patterns that
contradict some global patterns/models. Reference [285] studied mining influ-
ential attributes that capture class and group contrast behavior, and reference
[17] considered the problem of discovering attributes/properties that account
for the abnormality of a given group of anomalous individuals (the outliers)
with respect to an overall given population (the inliers). Reference [254] ex-
amined the structural issues of the space of emerging patterns. Reference [143]
considered mining low-support discriminative patterns from dense and high-
dimensional data. Reference [431] studied the problem of mining group differ-
ences. Reference [462] studied detecting differences between contrast groups.
Reference [318] studied mining contrast set through subgroup discovery. Refer-
ence [305] gave a framework to mine high-level emerging patterns by attribute-
oriented induction. Reference [193] gave a method for finding emerging large
itemsets. Reference [137] gave an efficient single-scan algorithm for mining “es-
sential” jumping emerging patterns for classification. Reference [194] studied
discovering emerging patterns from nearest neighbors. Reference [14] consid-
ered constrained logistic regression for discriminating pattern mining. Refer-
ence [368] studied exploratory quantitative contrast set mining using a dis-
cretization approach. Reference [361] considered a new approach concerning
contrasting the contrast sets. Reference [187] considered statistical method-
ologies for mining potentially interesting contrast sets. Reference [434] studied
the mining of negative contrasts. Reference [13] studied mining diverging pat-
terns with significant frequency change dissimilarities. Reference [19] studied
discovering relational emerging patterns. Reference [40] considered mining flip-
ping correlations from large datasets with taxonomies. Reference [377] studied
condensed representation of emerging patterns. Reference [66] considered vi-
sual representations to visually contrast two collections of frequent itemsets.
Reference [84] studied mining emerging patterns shared by two datasets. Ref-
erence [376] studied summarizing contrasts by recursive pattern mining. Ref-
erence [272] considered discovering holes in data, and reference [153] studied
bump hunting in data.

Reference [238] studied the mining of contrasting correlations among items
by an efficient double-clique condition. Reference [393] considered a kind of
hidden conditional correlation patterns. A conditional correlation is a pair of
itemsets whose degrees of correlations are higher in a given local dataset than
in the global dataset. Reference [52] considered the mining of “stimulating
patterns,” namely patterns X for which there exist many closed patterns Y ,
such that adding X to Y reduces the support in the negative class much
more than in the positive class. These two kinds of patterns are related to
conditional contrasts [122] discussed below.
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25.3.2 Mining Contrasts in Stream, Temporal, Sequence
Data

On streaming data, reference [7] studied mining emerging patterns and
classification in data streams. Reference [12] studied instance-based classifica-
tion of streaming data using emerging patterns. Reference [69] studied nov-
elty detection from evolving complex data streams. Reference [264] considered
mining discriminative items in multiple data streams. Reference [447] studied
mining in anticipation for concept change and proactive-reactive prediction
in data streams. Reference [206] studied detecting change in data streams.
Reference [278] studied mining distribution change in stock order streams.
Reference [262] extended the notion of contrast sets to time series and mul-
timedia data. Reference [93] considered efficient mining of temporal emerging
itemsets from data streams.

On temporal data, reference [22] studied relational temporal difference
mining. Reference [205] gave a sliding-window dual-support framework for
mining emerging trends.

On sequence data, references [198, 199] (also see Chapter 6) studied min-
ing minimal distinguishing subsequence patterns with gap constraints. Ref-
erence [468] considered finding novel diagnostic gene patterns based on in-
teresting non-redundant contrast sequence rules. Reference [281] considered
mining closed discriminative dyadic sequential patterns (from input sequence
pairs both coming from the same class). Reference [408] gave a change detec-
tion method for sequential patterns. Reference [105] gave an occurrence based
approach to mine emerging sequences. Reference [104] studied contrasting se-
quence groups by emerging sequences. Reference [124] contains chapters on
contrast mining and feature selection/construction for sequences.

25.3.3 Mining Contrasts in Spatial, Image, and Graph Data

Reference [72] studied “sustained” emerging spatio-temporal co-occurrence
pattern mining. Reference [380] studied discovering spatio-social discrimina-
tive pattern mining on electoral data, reference [109] considered discovery of
geospatial discriminating patterns from remote sensing data, and reference
[379] studied discovering controlling factors of geospatial variables (also see
Chapter 21). Reference [70] studied discovering emerging patterns in spatial
databases using a multi-relational approach.

Chapter 20 studied mining emerging patterns with occurrence counts (and
other variants) and using those EPs for classification in image data. Refer-
ence [108] gave a visual word weighting scheme based on emerging itemsets
for video annotation.

Reference [279] gave a graph classification approach based on frequent
closed emerging patterns. Reference [340] considered extracting and summa-
rizing the frequent emerging graph patterns from a dataset of graphs. Refer-
ence [339] studied discovering emerging graph patterns from chemicals. Ref-
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erence [73] studied discovering and summarizing regions of correlated spatio-
temporal change in evolving graphs. Reference [321] studied mining correlation
and contrast link formation patterns in a time evolving graph. Reference [158]
studied the mining of top-k “breaker” emerging subgraph patterns from graph
data.

25.3.4 Unusual Subgroup Discovery and Description

Subgroup discovery [435, 229] is concerned with finding subgroups of an
underling population that are statistically “most interesting”, e.g. they are
large and have unusual statistical (distributional) characteristics with respect
to a target variable. Subgroup discovery produces a relatively small set of
subgroup descriptions of the matching populations of the subgroups. Ref-
erence [319] gave a survey on contrast set, emerging pattern and subgroup
mining. An overview on subgroup discovery was given in [186].

25.3.5 Mining Conditional Contrasts and Gradients

Reference [122] introduced the problem of mining conditional contrasts,
which capture situations where a small change in patterns is associated with
a big change in the matching data of the patterns. More precisely, a conditional
contrast is a triple (B,F1, F2), where B is the condition/context pattern, and
F1 and F2 are the contrasting factor patterns. It can offer insights on discrim-
inating patterns given condition B, and it is of interest if the item difference,
|(F1 − F2) ∪ (F2 − F1)|, is relatively small, and the matching data difference
between the matching datasets mt(B ∪F1) and mt(B ∪F2) is relatively large.
All three of B, F1, and F2 are dynamically mined from one given dataset.
Conditional contrasts are related to gradients [117] in data cubes; a gradient
is a pair of patterns (data cube cells) that are very similar to each other in
dimension values but very different in measure values. They are also related
to stimulating patterns and contrasting correlation patterns discussed earlier.

25.4 Contrast Pattern Based Classification

The following chapters are related to contrast-pattern based or enhanced
classification: Chapter 11 is an overview and analysis of contrast pattern based
classification, Chapter 12 is on using length statistics of emerging patterns
(EPs) in outlier detection and rare-class prediction, Chapter 13 is on using
EPs to enhance traditional classifiers, Chapter 15 is on using EP-based rules
for classifying/characterizing subtypes of leukemia in the field of bioinformat-
ics, Chapter 18 is on emerging chemical pattern based classification of chemical
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compounds in the field of chemoinformatics, Chapter 19 is on emerging molec-
ular pattern based analysis of toxicity of chemical molecules in the field of
chemoinformatics, Chapter 20 is on EP-based classification for spatial/image
data, Chapter 24 is on EP-based crime spots analysis and rental price predic-
tion, Chapter 23 is on EP-based diagnosis of heart diseases and prediction of
powerline safety, and Chapter 22 is on EP-based activity recognition.

There are many papers on contrast pattern based classification. Refer-
ence [242] studied instance-based classification by emerging patterns. Ref-
erences [243, 251] considered emerging pattern based classification. Refer-
ence [466] studied using emerging-pattern based behavior knowledge in classi-
fication. Reference [138] considered a Bayesian approach to use emerging pat-
terns for classification. References [34, 350] studied classification using (con-
strained) emerging patterns. Reference [156] considered classification based
on the highest impact jumping emerging patterns. Reference [359] considered
using emerging subsequence in classifying protein structural classes. Refer-
ence [163] gave an algorithm for mining discriminative regularities and its
application in classification. Reference [467] considered CAEP-based predic-
tion of translation initiation sites, and Reference [85] considered emerging
patterns and classification algorithms, for DNA sequences. Reference [75] con-
sidered using emerging substrings for sequence classification. Reference [440]
studied mining sequence classifiers for early prediction. References [410][409]
considered emerging pattern based prediction of polyadenylation sites. Ref-
erence [392] used CAEP and JEPC for music melody classification. Refer-
ence [279] gave a graph classification approach based on frequent closed emerg-
ing patterns. Reference [280] studied classification of software behaviors for
failure detection using discriminative patterns. Reference [286] examined us-
ing highly expressive contrast patterns for classification. Reference [316] con-
sidered efficiently finding the best parameter for the emerging pattern-based
classifier PCL. Reference [304] considered decision tree-based classifier incor-
porating contrast patterns. Ramamohanarao gave several invited talks on con-
trast pattern mining and application for building robust classifiers [348, 349].
Reference [404] gave a review of associative classification.

25.5 Contrast Pattern Based Clustering

Chapter 14 presents CPC, a contrast pattern based clustering algorithm,
and CPCQ, a contrast pattern based clustering quality measure. On given
datasets, CPC forms clusters and describes the clusters using small sets of
high quality contrast patterns. No distance function is needed.

Reference [116] studied discovering and describing dynamic logical blog
communities based on their contrast patterns (also called distinct interest
profiles), using CPC. Reference [125] considered describing contrasting blog
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collections using small sets of discriminating words, which make a highly accu-
rate naive Bayes classifier for the clusters; the NBC was chosen to “simulate”
how humans get a sense of what the clusters contain by looking at those
discriminating words only. Reference [203] studied selecting minimal discrim-
inative patterns to probabilistically characterize clusters. Reference [209] con-
sidered emerging pattern based subspace clustering of microarray gene expres-
sion data using mixture models. Reference [10] studied detecting significant
distinguishing sets among bi-clusters.

25.6 Contrast Mining and Bioinformatics and Chemoin-
formatics

Three chapters are related to bionformatics: Chapter 15 is on using EP-
based rules for classifying/characterizing subtypes of leukemia, Chapter 17
is on mining optimal emerging patterns when there are thousands of genes,
Chapter 16 is on discriminating-gene transferability based microarray concor-
dance analysis. A very notable feature of Chapter 17 is the interaction-based
importance index (IBIG) of genes, for the analysis of complex diseases.

Two chapters are related to chemoinformatics: Chapter 18 is on emerg-
ing chemical pattern (ECP) based classification of chemical compounds. It
reported that studies have confirmed that ECP can derive high-quality class
prediction models on the basis of very small training sets, which makes the
approach highly attractive for molecular classification and other applications
in medicinal chemistry including simulation of (drug) lead optimization [25],
sequential screening campaigns [26], and bioactive compound conformation
analysis [24]. Chapter 19 is on emerging molecular pattern based analysis of
toxicity of chemical molecules, using emerging graph patterns.

Reference [56] considered mining interaction structures of the emerging
pattern type from microarray data. Reference [209] studied emerging pattern
based subspace clustering of microarray gene expression data using mixture
models. Reference [452] considered application of emerging patterns for multi-
source bio-data classification and analysis. Reference [112] considered classify-
ing chemical compounds using contrast and common patterns. Reference [120]
gave an overview of applications of emerging patterns for microarray gene ex-
pression data analysis. Reference [123] examined the use of emerging patterns
in the analysis of gene expression profiles for the diagnosis and understand-
ing of diseases. Reference [10] studied detecting significant distinguishing sets
among bi-clusters. Reference [157] considered a classification method using ar-
ray comparative genome hybridization data, based on the concept of limited
jumping emerging patterns.
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25.7 Contrast Mining Applications in Various Domains

25.7.1 Medicine, Environment, Security, Privacy, Activity
Recognition

For medicine and environment protection, reference [217] considered con-
trast set mining for distinguishing between similar diseases. Reference [190]
studied adverse drug reaction patterns in sub-population groups using con-
trast pattern mining approach. Reference [327] considered mining discrimina-
tive mutation chains in virus sequences. Reference [372] studied the mining of
trends from noisy longitudinal data with application on a study in diabetic
retinopathy. Reference [454] studied using emerging pattern based projected
clustering and gene expression data for cancer detection. Reference [436] stud-
ied emerging pattern based birth defect detection. Reference [378] considered
using emerging patterns from clusters to characterize social subgroups of pa-
tients affected by atherosclerosis. Reference [273] studied mining the change
of event trends for decision support in environmental scanning.

For security, references [442][68] considered discovering and using emerg-
ing patterns in intrusion detection and anomaly detection in network connec-
tion data. Reference [443] studied metamorphic malware detection technology
based on aggregating emerging patterns. Chapter 12 presents the use of length
statistics of emerging patterns in outlier and rare-class prediction, with spe-
cial application on masquerader detection using command sequences as input.
Reference [259] considered emerging pattern based e-mail categorization and
filtering.

For privacy, reference [90] considered hiding emerging patterns with local
recoding generalization for privacy presentation, and reference [16] considered
lazy DeEPs-based approach to privacy preserving classification with emerging
patterns.

For crime analysis, references [388][389][387] considered using emerging
patterns and CAEP on urban spatial data for risk discovery of car-related
crimes, snatch theft crimes, and crime occurrence locations.

Chapter 22 studied emerging pattern based activity recognition. Refer-
ence [171] studied mining emerging patterns for recognizing activities of mul-
tiple users.

25.7.2 Business, Customer Behavior, Music, Video, Blog

For business and customer behavior mining, reference [373] studied mining
changes (including emerging patterns) of customer behavior in an Internet
shopping mall. Reference [83] considered mining changes in customer behavior
in retail marketing. Reference [306] reported a contrast pattern based study on
the impact of media contact on the purchase process. Reference [230] studied
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identifying changes and trends in tourism. Reference [386] gave an analysis of
Kansei evaluation on entrance halls of rental office buildings using CAEP.

For music analysis, reference [240] studied mining emerging melody struc-
tures from music query data to show new trends in music. Reference [392]
used CAEP and JEPC for music melody classification.

For video and image analysis, Chapter 20 studied mining emerging pat-
terns with occurrence counts (and other variants) and using those EPs for
classification in image data. Reference [108] gave a visual word weighting
scheme based on emerging itemsets for video annotation. Reference [425] gave
an emerging pattern based method to instantly tell what happens in a video
sequence. For blog analysis, reference [116] studied discovering and describ-
ing dynamic logical blog communities based on their distinct interest profiles,
and reference [125] considered describing contrasting blog collections using
small sets of discriminating words, which make a highly accurate naive Bayes
classifier of the clusters.

25.7.3 Model Error Analysis, and Genetic Algorithm Im-
provement

References [43, 45] considered using contrast sets to characterize model
errors and differences. Reference [204] considered preserving frequent patterns
contained in good solutions during genetic mutations of genetic algorithms,
and included “preserving emerging patterns” as a future research direction.
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[105] Kang Deng and Osmar R. Zäıane. An occurrence based approach to
mine emerging sequences. In Proc. of Int’l Conf. on Data Warehousing
and Knowledge Discovery, pages 275–284, 2010.

[106] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George
Karypis. Frequent substructure-based approaches for classifying chem-
ical compounds. IEEE Trans. on Knowledge and Data Engineering,
17(8):1036–1050, 2005.

[107] David J. Diller and Kenneth M. Merz. Can we separate active from
inactive conformations? Journal of Computer-Aided Molecular Design,
16:105–112, 2002.

[108] Guiguang Ding, Jianmin Wang, and Kai Qin. A visual word weighting
scheme based on emerging itemsets for video annotation. Inf. Process.
Lett., 110(16):692–696, 2010.



372 Contrast Data Mining: Concepts, Algorithms, and Applications

[109] Wei Ding, Tomasz F. Stepinski, and Josue Salazar. Discovery of geospa-
tial discriminating patterns from remote sensing datasets. In Proc. of
SIAM Int’l Conf. on Data Mining (SDM), pages 425–436, 2009.

[110] Pedro Domingos. MetaCost: A general method for making classifiers
cost-sensitive. In Proc. of ACM Int’l Conf. on Knowledge Discovery
and Data Mining (KDD), pages 155–164, 1999.

[111] Pedro Domingos. A unified bias-variance decomposition and its appli-
cations. In Proc. of Int’l Conf. on Machine Learning, pages 231–238,
2000.

[112] Andrzej Dominik, Zbigniew Walczak, and Jacek Wojciechowski. Clas-
sifying chemical compounds using contrast and common patterns. In
Proc. of 8th Int’l Conf. on Adaptive and Natural Computing Algorithms
(ICANNGA), pages 772–781, 2007.

[113] Guozhu Dong and James Bailey. IEEE ICDM Workshops: Workshop
on Contrast Data Mining and Applications, 2011.

[114] Guozhu Dong and James Bailey. Overview of contrast data mining
as a field and preview of an upcoming book. In Proc. of IEEE ICDM
Workshops: Workshop on Contrast Data Mining and Applications, pages
1141–1146, 2011.

[115] Guozhu Dong and Kaustubh Deshpande. Efficient mining of niches and
set routines. In Proc. of Pacific-Asia Conf. on Knowledge Discovery
and Data Mining (PAKDD), pages 234–246, 2001.

[116] Guozhu Dong and Neil Fore. Discovering dynamic logical blog commu-
nities based on their distinct interest profiles. In Proc. of Int’l Conf. on
Social Eco-Informatics (SOTICS), 2011.

[117] Guozhu Dong, Jiawei Han, Joyce M. W. Lam, Jian Pei, Ke Wang, and
Wei Zou. Mining constrained gradients in large databases. IEEE Trans.
Knowl. Data Eng., 16(8):922–938, 2004.

[118] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns:
Discovering trends and differences. In Proc. of ACM Conf. on Knowledge
Discovery and Data Mining (KDD), pages 43–52, 1999.

[119] Guozhu Dong and Jinyan Li. Mining border descriptions of emerging
patterns from dataset pairs. Knowl. Inf. Syst., 8(2):178–202, 2005.

[120] Guozhu Dong and Jinyan Li. Applications of emerging patterns for
microarray gene expression data analysis. In Encyclopedia of Database
Systems, page 107. 2009.

[121] Guozhu Dong and Jinyan Li. Emerging pattern based classification. In
Encyclopedia of Database Systems, page 985. 2009.



Bibliography 373

[122] Guozhu Dong, Jinyan Li, Guimei Liu, and Limsoon Wong. Mining
Conditional Contrast Patterns. Chapter in Post-Mining of Association
Rules: Techniques for Effective Knowledge Extraction. Yanchang Zhao
and Chengqi Zhang and Longbing Cao eds. IGI Global, 2009.

[123] Guozhu Dong, Jinyan Li, and Limsoon Wong. The Use of Emerging
Patterns in the Analysis of Gene Expression Profiles for the Diagno-
sis and Understanding of Diseases. In New Generation of Data Mining
Applications, Mehmed Kantardzic and Jozef Zurada Eds, IEEE Press.,
2005.

[124] Guozhu Dong and Jian Pei. Sequence Data Mining. Springer, 2007.

[125] Guozhu Dong and Ting Sa. Analyzing and tracking weblog communities
using discriminative collection representatives. In Proc. of Advances in
Social Computing, Third Int’l Conf. on Social Computing, Behavioral
Modeling, and Prediction (SBP), pages 256–264, 2010.

[126] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. CAEP:
Classification by aggregating emerging patterns. In Proc. of Discovery
Science, pages 30–42, 1999.

[127] Ming Dong and Ravi Kothari. Look-ahead based fuzzy decision tree
induction. IEEE Trans. on Fuzzy Systems, 9(3):461–468, 2001.

[128] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and un-
supervised discretization of continuous features. In Proc. of Int’l Conf.
on Machine Learning (ICML), pages 194–202, 1995.

[129] Lei Duan, Changjie Tang, Guozhu Dong, Ning Yang, and Chi Gou.
Survey on emerging pattern based contrast mining and applications.
Journal of Computer Applications, 32(2):304–308, 2012.

[130] Lei Duan, Changjie Tang, Liang Tang, Tianqing Zhang, and Jie
Zuo. Mining class contrast functions by gene expression programming.
In Proc. of Int’l Conf. on Advanced Data Mining and Applications
(ADMA), pages 116–127, 2009.

[131] Lei Duan, Jie Zuo, Tianqing Zhang, Jing Peng, and Jie Gong. Mining
contrast inequalities in numeric dataset. In Proc. of Int’l Conf. on Web-
Age Information Management (WAIM), pages 194–205, 2010.

[132] R. A. Dubin. Predicting house prices using multiple listings data. Jour-
nal of Real Estate Finance and Economics, 17:35–59(1), 1998.

[133] William DuMouchel, Wen-Hua Ju, Alan F. Karr, Matthias Schonlau,
Martin Theusan, and Yehuda Vardi. Computer intrusion: Detecting
masquerades. Statistical Science, 16(1):1–17, 2001.



374 Contrast Data Mining: Concepts, Algorithms, and Applications

[134] EPAFHM. Environement Protection Agency Fathead Minnow
Acute Toxicity, 2008. http://www.epa.gov/med/Prods Pubs/
fathead minnow.htm.

[135] Themis P. Exarchos, Costas Papaloukas, Dimitrios I. Fotiadis, and Lam-
pros K. Michalis. An association rule mining-based methodology for au-
tomated detection of ischemic ECG beats. IEEE Trans. on Biomedical
Engineering, 53(8):1531–1540, 2006.

[136] Hongjian Fan. Efficient Mining of Interesting Emerging Patterns and
Their Effective Use in Classification. PhD Thesis, University of Mel-
bourne, May 2004.

[137] Hongjian Fan and Kotagiri Ramamohanarao. An efficient single-scan
algorithm for mining essential jumping emerging patterns for classifica-
tion. In Proc. of Pacific-Asia Conf. on Knowledge Discovery and Data
Mining (PAKDD), pages 456–462, 2002.

[138] Hongjian Fan and Kotagiri Ramamohanarao. A Bayesian approach
to use emerging patterns for classification. In Proc. of Australasian
Database Conf., pages 39–48, 2003.

[139] Hongjian Fan and Kotagiri Ramamohanarao. Noise tolerant classifica-
tion by chi emerging patterns. In Proc. of Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining (PAKDD), pages 201–206, 2004.

[140] Hongjian Fan and Kotagiri Ramamohanarao. A weighting scheme based
on emerging patterns for weighted support vector machines. In Proc. of
IEEE Int’l Conf. on Granular Computing, pages 435–440, 2005.

[141] Hongjian Fan and Kotagiri Ramamohanarao. Fast discovery and the
generalization of strong jumping emerging patterns for building compact
and accurate classifiers. IEEE Trans. Knowl. Data Eng., 18(6):721–737,
2006.

[142] Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han,
Philip S. Yu, and Olivier Verscheure. Direct mining of discriminative
and essential frequent patterns via model-based search tree. In Proc. of
ACM Conf. on Knowledge Discovery and Data Mining (KDD), pages
230–238, 2008.

[143] Gang Fang, Gaurav Pandey, Wen Wang, Manish Gupta, Michael Stein-
bach, and Vipin Kumar. Mining low-support discriminative patterns
from dense and high-dimensional data. CSE-TR 09-011, University of
Minnesota, 2009.

[144] Gang Fang, Wen Wang, Benjamin Oatley, Brian Van Ness, Michael
Steinbach, and Vipin Kumar. Characterizing discriminative patterns.
Computing Research Repository, abs/1102.4, 2011.



Bibliography 375

[145] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In Proc. of Int’l
Joint Conf. on Artificial Intelligence (IJCAI), pages 1022–1029, 1993.

[146] Mengling Feng, Guozhu Dong, Jinyan Li, Yap-Peng Tan, and Limsoon
Wong. Pattern space maintenance for data updates and interactive
mining. Computational Intelligence, 26(3):282–317, 2010.

[147] Mengling Feng, Jinyan Li, Guozhu Dong, and Limsoon Wong. Mainte-
nance of Frequent Patterns: A Survey. Chapter in Post-Mining of Asso-
ciation Rules: Techniques for Effective Knowledge Extraction. Yanchang
Zhao and Chengqi Zhang and Longbing Cao eds. IGI Global, 2009.

[148] Cândida Ferreira. Gene expression programming: A new adaptive algo-
rithm for solving problems. Complex Systems, 13:87–129, 2001.

[149] Johannes Fischer, Volker Heun, and Stefan Kramer. Fast frequent string
mining using suffix arrays. Proc. of IEEE Int’l Conf. on Data Mining
(ICDM), pages 609–612, 2005.

[150] Johannes Fischer, Volker Heun, and Stefan Kramer. Optimal string
mining under frequency constraints. In Proc. of 10th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases
(PKDD), pages 139–150, 2006.

[151] Douglas H. Fisher and Pat Langley. Approaches to conceptual clus-
tering. In Proc. of Int’l Joint Conf. on Artificial Intelligence (IJCAI),
pages 691–697, 1985.

[152] Neil Fore and Guozhu Dong. CPC: A contrast pattern based clustering
algorithm requiring no distance function. Technical report, Department
of Computer Science and Engineering, Wright State University, 2011.

[153] Jerome H. Friedman and Nicholas I. Fisher. Bump hunting in high-
dimensional data. Statistics and Computing, 9(2):123143, 1999.

[154] Hiroshige Fujii, Goichi Ootomo, and Chikahiro Hori. Interleaving based
variable ordering methods for ordered binary decision diagrams. In
Proc. of IEEE/ACM Int’l Conf. on Computer-Aided Design, pages 38–
41, 1993.

[155] Dragan Gamberger and Nada Lavrac. Expert-guided subgroup discov-
ery: Methodology and application. Journal of Artificial Intelligence Re-
search, 17:501–527, 2002.

[156] Tomasz Gambin and Krzysztof Walczak. Classification based on the
highest impact jumping emerging patterns. In Proc. of Int’l Multicon-
ference on Computer Science and Information Technology, pages 37–42,
2009.



376 Contrast Data Mining: Concepts, Algorithms, and Applications

[157] Tomasz Gambin and Krzysztof Walczak. A new classification method
using array comparative genome hybridization data, based on the con-
cept of limited jumping emerging patterns. BMC Bioinformatics, 10(S-
1), 2009.

[158] Min Gan and Honghua Dai. Efficient mining of top-k breaker emerging
subgraph patterns from graph datasets. In Proc. of Australasian Data
Mining Conference (AusDM), 2009.

[159] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. A frame-
work for measuring changes in data characteristics. In Proc. of ACM
Symp. on Principles of Database Systems (PODS), pages 126–137, 1999.

[160] Chuancong Gao and Jianyong Wang. Direct mining of discriminative
patterns for classifying uncertain data. In Proc. of ACM Int’l Conf. on
Knowledge Discovery and Data Mining (KDD), pages 861–870, 2010.

[161] Milton Garcia-Borroto. Searching Extended Emerging Patterns for Su-
pervised Classification. PhD Thesis, National Institute for Astrophysics
Optics and Electronics, Puebla, Mexico, 2010.
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LCMine: An efficient algorithm for mining discriminative regularities
and its application in supervised classification. Pattern Recognition,
43(9):3025–3034, 2010.

[164] Dominique Gay. Constraint-based pattern mining for classification pur-
pose. PhD Thesis, Universit de Nouvelle Caldonie INSA de Lyon, 2009.

[165] Hanna Geppert, Martin Vogt, and Jürgen Bajorath. Current trends in
ligand-based virtual screening: molecular representations, data mining
methods, new application areas, and performance evaluation. Journal
of Chemical Information and Modeling, 50:205–216, 2010.

[166] T. R. Golub and D. K. Slonim et al. Molecular classification of can-
cer: class discovery and class prediction by gene expression monitoring.
Science, 286(5439):531–537, 1999.

[167] Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset
mining using FP-trees. IEEE Transactions on Knowledge and Data
Engineering, 17(10):1347–1362, 2005.

[168] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data



Bibliography 377

cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[169] Jerzy W. Grzymala-Busse and Wojciech Ziarko. Data mining based on
rough sets. Data mining: opportunities and challenges, pages 142–173,
2003.

[170] Tao Gu, Zhanqing Wu, XianPing Tao, Hung Keng Pung, and Jian Lu.
epSICAR: An emerging patterns based approach to sequential, inter-
leaved and concurrent activity recognition. In Proc. of IEEE Int’l Conf.
on Pervasive Computing and Communications (PerCom), pages 1–9,
2009.

[171] Tao Gu, Zhanqing Wu, Liang Wang, Xianping Tao, and Jian Lu. Mining
emerging patterns for recognizing activities of multiple users in pervasive
computing. In Proc. of Mobile and Ubiquitous Systems, 2009.

[172] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust
clustering algorithm for categorical attributes. Inf. Syst., 25(5):345–366,
2000.

[173] Lei Guo, Edward K Lobenhofer, and Charles Wang et al. Rat toxicoge-
nomic study reveals analytical consistency across microarray platforms.
Nature Biotechnology, 24:1162–1169, 2006.

[174] Howard Gutowitz. Cellular Automata: Theory and Experiment. Brad-
ford Books, 1991.

[175] Matthias Hagen. Lower bounds for three algorithms for the transver-
sal hypergraph generation. In Proc. of Workshop on Graph-Theoretic
Concepts in Computer Science, pages 316–327, 2007.

[176] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, and Ian H. Witten. The WEKA data mining
software: an update. SIGKDD Explor. Newsl., 11(1):10–18, 2009.
http://www.cs.waikato.ac.nz/ml/weka/.

[177] Mark A. Hall. Correlation-based Feature Subset Selection for Machine
Learning. PhD thesis, The University of Waikato, New Zealand, 1999.

[178] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern
mining: current status and future directions. Data Mining and Knowl-
edge Discovery, 15(1):55–86, 2007.

[179] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts
and Techniques (3rd edition). Morgan Kaufmann, 2011.

[180] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In Proc. of ACM Int’l Conf. on Management of
Data (SIGMOD), pages 1–12, 2000.



378 Contrast Data Mining: Concepts, Algorithms, and Applications

[181] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining fre-
quent patterns without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[182] Shuli Han, Bo Yuan, and Wenhuang Liu. Rare class mining: Progress
and prospect. In Proc. of Chinese Conf. on Pattern Recognition
(CCPR), pages 1–5, 2009.

[183] Gary Hardiman. Microarray platforms — comparisons and contrasts.
Pharmacogenomics, 5(5):487–502, 2004.

[184] D. M. Hawkins. Identification of outliers. Monographs on applied prob-
ability and statistics. Chapman and Hall, 1980.

[185] He He and Ali Ghodsi. Rare class classification by support vector ma-
chine. In Proc. of Int’l Conf. on Pattern Recognition (ICPR), pages
548–551, 2010.
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Cubes fermés / quotients émergents. In EGC 2010 – Extraction et
gestion des connaissances, volume RNTI-E-19 of Revue des Nouvelles
Technologies de l’Information, pages 285–296. Cépaduès-Éditions, 2010.
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