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Preface

Humans have been exploring the ways to heal wounds and sicknesses since times

we evolved as a species and started to form social structures. The earliest of these

efforts date back to prehistoric times and are, thus, older than literacy itself. Most of

the information regarding the techniques that were used in those times comes from

careful examinations of human remains and the artifacts that have been found.

Evidence shows that men used three forms of medical treatment – herbs, surgery,

and clay and earth – all used either externally with bandages for wounds or through

oral ingestion. The effects of different substances and the proper ways of applying

them had likely been found through trial and error. Furthermore, it is likely

that any form of medical treatment was accompanied by a magical or spiritual

interpretation.

The earliest written accounts of medical practice date back to around 3300 BC

and have been created in ancient Egypt. Techniques that had been known at the time

included setting of broken bones and several forms of open surgery; an elaborate set

of different drugs was also known. Evidence also shows that the ancient Egyptians

were in fact able to distinguish between different medical conditions and have

introduced the basic approach to medicine, which includes a medical examination,

diagnoses, and prognoses (much the same it is done to this day). Furthermore, there

seems to be a sense of specialization among the medical practitioners, at least

according to the ancient Greek historian Herodotus, who is quoted as saying that the

practice of medicine is so specialized among them that each physician is a healer of

one disease and no more. Medical institutions, referred to as Houses of Life, are

known to have been established in ancient Egypt as early as the First Dynasty.

The ancient Egyptian medicine heavily influenced later medical practices in

ancient Greece and Rome. The Greeks have left extensive written traces of their

medical practices. A towering figure in the history of medicine was the Greek

physician Hippocrates of Kos. He is widely considered to be the “father of modern

medicine” and has invented the famous Oath of Hippocrates, which still serves as

the fundamental ethical norm in medicine. Together with his students, Hippocrates

began the practice of categorizing illnesses as acute, chronic, endemic, and epi-

demic. Two things can be observed from this: first, the approach to medicine was
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taking up a scholarly form, with groups of masters and students studying different

medical conditions, and second, a systematic approach was taken. These

observations lead to the conclusion that medicine had been established as a scien-

tific field.

In parallel with the developments in ancient Greece and, later, Rome, the

practice of medicine has also evolved in India and China. According to the sacred

text of Charaka, based on the Hindu beliefs, health and disease are not predeter-

mined and life may be influenced by human effort. Medicine was divided into

eight branches: internal medicine, surgery and anatomy, pediatrics, toxicology,

spirit medicine, aphrodisiacs, science of rejuvenation, and eye, ear, nose, and

throat diseases. The healthcare system involved an elaborate education structure,

in which the process of training a physician took seven years. Chinese medicine,

in addition to herbal treatments and surgical operations, also introduced the

practices of acupuncture and massages.

During the Islamic Golden Age, spanning from the eighth to the fifteenth

century, scientific developments had been centered in the Middle East and driven

by Islamic scholars. Central to the medical developments at that time was the

Islamic belief that Allah had sent a cure for every ailment and that it was the duty

of Muslims to take care of the body and spirit. In essence, this meant that the cures

had been made accessible to men, allowing for an active and relatively secular

development of medical science. Islamic scholars also gathered as much of the

already acquired knowledge as they could, both from the Greek and Roman

sources, as well as the East. A sophisticated healthcare system was established,

built around public hospitals. Furthermore, physicians kept detailed records of their

practices. These data were used both for spreading and developing knowledge, as

well as could be provided for peer review in case a physician was accused of

malpractice. During the Islamic Golden Age, medical research went beyond

looking at the symptoms of an illness and finding the means to alleviate them, to

establishing the very cause of the disease.

The sixteenth century brought the Renaissance to Europe and with it a revival of

interest in science and knowledge. One of the central focuses of that age was the

“man” and the human body, leading to large leaps in the understanding of anatomy

and the human functions. Much of the research that was done was descriptive in

nature and relied heavily on postmortem examinations and autopsies. The develop-

ment of modern neurology began at this time, as well as the efforts to understand

and describe the pulmonary and circulatory systems. Pharmacological foundations

were adopted from the Islamic medicine, and significantly expanded, with the use

of minerals and chemicals as remedies, which included drugs like opium and

quinine. Major centers of medical science were situated in Italy, in Padua and

Bologna.

During the nineteenth century, the practice of medicine underwent significant

changes with rapid advances in science, as well as new approaches by physicians,

and gave rise to modern medicine. Medical practitioners began to perform much

more systematic analyses of patients’ symptoms in diagnosis. Anesthesia and

aseptic operating theaters were introduced for surgeries. Theory regarding
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microorganisms being the cause of different diseases was introduced and later

accepted. As for the means of medical research, these times saw major advances

in chemical and laboratory equipment and techniques. Another big breakthrough

was brought on by the development of statistical methods in epidemiology. Finally,

psychiatry had been established as a separate field. This rate of progress continued

well into the twentieth century, when it was also influenced by the two World Wars

and the needs they had brought forward.

The twenty-first century has witnessed the sequencing of the entire human

genome in 2003, and the subsequent developments in the genetic and proteomic

sequencing technologies, following which we can study medical conditions and

biological processes down to a very fine grain level. The body of information is

further reinforced by precise imaging and laboratory analyses. On the other hand,

following Moore’s law for more than 40 years has yielded immensely powerful

computing systems. Putting the two together points to an opportunity to study and

treat illnesses with the support of highly accurate computational models and an

opportunity to explore, in silico, how a certain patient may respond to a certain

treatment. At the same time, the introduction of digital medical records paved the

way for large-scale epidemiological analyses. Such information could lead to the

discovery of complex and well-hidden rules in the functions and interactions of

biological systems.

This book aims to deliver a high-level overview of different mathematical and

computational techniques that are currently being employed in order to further the

body of knowledge in the medical domain. The book chooses to go wide rather than

deep in the sense that the readers will only be presented the flavors, ideas, and

potentials of different techniques that are or can be used, rather than giving them

a definitive tutorial on any of these techniques. The authors hope that with such

an approach, the book might serve as an inspiration for future multidisciplinary

research and help to establish a better understanding of the opportunities that

lie ahead.

Belgrade, Serbia Goran Rakocevic
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Chapter 1

Mining Clinical Data

Argyris Kalogeratos, V. Chasanis, G. Rakocevic, A. Likas,

Z. Babovic, and M. Novakovic

1.1 Data Mining Methodology

The prerequisite of any machine learning or data mining application is to have a

clear target variable that the system will try to learn [27]. In a supervised setting, we

also need to know the value of this target variable for a set of training examples

(i.e., patient records). In the case study presented in this chapter, the value of the

considered target variable that can be used for training is the ground truth character-

izations of the coronary artery disease severity or, as a different scenario, the

progression of the patients. We either set as target variable the disease severity,

or disease progression, and then we consider a two-class problem in which we aim

to discriminate a group of patients that are characterized as “severely diseased”

or “severely progressed,” from a second group containing “mildly diseased” or

“mildly progressed” patients, respectively. This latter mild/severe characterization

is the actual value of the target variable for each patient.

In many cases, neither the target variable nor its ground truth characterization is

strictly specified by medical experts, which is a fact that introduces high complexity
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and difficulty to the data mining process. The general data mining methodology we

applied is a procedure divided into six stages:

Stage 1: Data mining problem specification

• Specify the objective of the analysis (the target variable).

• Define the ground truth for each training patient example (the specific value

of the target variable for each patient).

Stage 2: Data preparation, where some preprocessing of the raw data takes place

• Deal with data inconsistencies, different feature types (numeric and nominal),

and missing values.

Stage 4: Data subset selection

• Selection of a feature subset and/or a subgroup of patient records

Stage 5: Training of classifiers

• Build proper classifiers using the selected data subset.

Stage 6: Validate the resulting models

• Using techniques such as v-fold cross-validation.

• Compare the performance of different classifiers.

• Evaluate the overall quality of the results.

• Understand whether the specification of the data mining problem and/or the

definition of the ground truth values are appropriate in terms of what can be

extracted as knowledge from the available data.

A popular methodology to solve these classification problems is to use a decision

tree (DT) [28]. DTs are popular tools for classification that are relatively fast to both

train and make predictions, while they also have several other additional

advantages [10]. First, they naturally handle missing data; when a decision is

made on a missing value, both subbranches are traversed and a prediction is

made using a weighted vote. Second, they naturally handle nominal attributes.

For instance, a number of splits can be made equal to the number of the different

nominal values. Alternatively, a binary split can be made by grouping the nominal

values into subsets. Most important of all, a DT is an interpretable model that

represents a set of rules. This is a very desirable property when applying classifica-

tion models to medical problems since medical experts can assess the quality of the

rules that the DTs provide.

There are several algorithms to train DT models, among the most popular of

them are ID3 and its extension C4.5 [2]. The main idea of these algorithms is to start

building a tree from its root, and at each tree node, a split of the data in two subsets

is determined using the attribute that will result in the minimum entropy (maximum

information gain).

DTs are mainly used herein because they are interpretable models and have

achieved good classification accuracy in many of the considered problems.
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However, other state-of-the-art methods such as the support vector machine (SVM)

[3] may provide better accuracy at the cost of not being interpretable. Another

powerful algorithm that builds non-interpretable models is the random forest

(RF) [18]. An RF consists of a set of random DTs, each of them trained using a

small random subset of features. The final decision for a data instance is taken using

strategies such as weighted voting on the prediction of the individual random DTs.

This also implied that a decision can be made using voting on contradicting rules

and explains why these models are not interpretable. In order to assess the quality of

the DT models that we build, we compare the classification performance of DTs to

other non-interpretable classifiers such as the abovementioned SVM and RF.

Another property of DTs is that they automatically provide a measure of the

significance of the features since the most significant features are used near the root

of the DT. However, other feature selection methods can also be used to identify

which features are significant for the classification tasks that we study [7]. Most

feature selection methods search over subsets of the available features to find the

subset that maximizes some criterion [4]. Common criteria measure the correlation

between features and the target category, such as the information gain (IG) or

chi-squared measures. Among the state-of-the-art feature selection techniques are

the RFE-SVM [6], mRMR [22], and MDR [13] techniques. They differ to the

previous approaches in that they do not use single-feature evaluation criteria.

Instead, they try to eliminate redundant features that do not contain much informa-

tion. In this way, a feature that is highly correlated with other features is more

probable to be eliminated than a feature that may have less IG (as single-feature

evaluation measure) comparing to the IG of the first but at the same time carries

information that is not highly correlated with other features [11].

1.2 Data Mining Algorithms

In this section we briefly describe the various algorithms used in our study for

classifier construction and feature evaluation/selection, as well as the measures we

used to assess the generalization performance of the obtained models.

1.2.1 Classification Methods

1.2.1.1 Decision Trees

A decision tree (DT) is a decision support tool that uses a treelike graph represen-

tation to illustrate the sequence of decisions made in order to assign an input

instance to one of the classes. The internal node of a decision tree corresponds to

an attribute test. The branches between the nodes tell us the possible values that

these attributes can have in the observed samples, while the terminal (leaf ) nodes

provide the final value (classification label) of the dependent variable.

1 Mining Clinical Data 3



A popular solution is the J48 algorithm for building DTs that has been

implemented in the very popular Weka software for DM [2]. It is actually an

implementation of the well-known and widely studied C4.5 algorithm for building

decision trees [15]. The tree is built in a top-down fashion, and at each step, the

algorithm splits a leaf node by identifying the attribute that best discriminates

the subset of instances that correspond to that node. A typical criterion that is

commonly used to quantify the splitting quality is the information gain. If a node of

high-class purity is encountered, then this node is considered as a terminal node and

is assigned the label of the major class. Several post-processing pruning operations

also take place using a validation in order obtain relatively short trees that are

expected to have better generalization.

It is obvious that the great advantage of DTs as classification models is their

interpretability, i.e., their ability to provide the sequence of decisions made in order

to get the final classification result. Another related advantage is that the learned

knowledge is stored in a comprehensible way, since each decision tree can be easily

transformed to a set of rules. Those advantages make the decision trees very strong

choices for data mining problems especially in the medical domain, where inter-

pretability is a critical issue.

1.2.1.2 Random Forests

A random forest (RF) is an ensemble of decision trees (DTs), i.e., it combines the

prediction made by multiple DTs, each one generated using a different randomly

selected subset of the attributes [18]. The output combination can be done using

either simple voting or weighted voting. The RF approach is considered to provide

superior results to a single DT and is considered as a very effective classification

method competitive to support vector machines. However, its disadvantage com-

pared to DTs is that model interpretability is lost since a decision could be made

using voting on contradicting rules.

1.2.1.3 Support Vector Machines

The support vector machine classifier (SVM) [6, 16] is a supervised learning

technique applicable to both classification and regression. It provides state-of-the-

art performance and scales well even with large dimension of the feature vector.

More specifically, suppose we are given a training set of l vector with d dimensions,

xi ∈ Rd, i ¼ 1, . . ., n, and a vector y ∈ Rl with yi ∈ {1, � 1} denoting the class

of vector xi. The classical SVM classifier finds an optimal hyperplane which

separates data points of two classes in such way that the margin of separation

between the two classes is maximized. The margin is the minimal distance from the

separating hyperplane to the closest data points of the two classes. Any hyperplane

can be written as the set of points x satisfying wTx + b ¼ 0. The vector w is a

normal vector and is perpendicular to the hyperplane. A mapping function φ(x) is

4 A. Kalogeratos et al.



assumed that maps each training vector to a higher dimensional space, and the

corresponding kernel function defined as the inner product K(x,y) ¼ φT(x) � φ(y).
Then the SVM classifier is obtained by solving the following primal optimiza-

tion problem:

min
w, b, ξ

1

2
wTwþ Ci

Xl
i¼1

ξi (1.1)

ð1:2Þ

where ξi is called slack variable and measures the extent to which the example xi
violates the margin condition and C a tuning parameter which controls the balance

between training error and the margin. The decision function is thus given from the

following equation:

sqn
Xl
i¼1

wiK xi; xð Þ þ b

 !
, whereK xi; xj

� � ¼ ϕT xið Þϕ xj
� �

(1.3)

A notable characteristic of SVMs is that, after training, usually most of the

training instances xi have wi ¼ 0 in the above equation [17]. In other words, they do

not contribute to the decision function. Those xi for which wi ¼ 0 are retained in the

SVM model and called support vectors (SVs). In our approach we tested the linear

SVM (i.e., with linear kernel function K(xi,xj) ¼ xi
T � xj) and the SVM with RBF

kernel function with no significant performance difference. For this reason we have

adopted the linear SVM approach. The optimal value of the parameter C for each

classification problem was determined through cross-validation.

1.2.1.4 Naı̈ve Bayes Classifier

The naı̈ve Bayes (NB) [19] is a probabilistic classifier that builds a model p(x|Ck)

for the probability density of each class Ck. These models are used to classify a new

instance x as follows: First the posterior probability P(Ck|x) is computed for each

class Ck using the Bayes theorem:

P Ckjxð Þ ¼ P xjCkð ÞP Ckð Þ
P xð Þ (1.4)

where P(x) and P(Ck) represent the a priori probabilities. Then the input x is

assigned to the class with maximum P(Ck|x).

In the NB approach, we made the assumption that the attributes xi of x are

independent to each other. Thus, P(x|Ck) can be computed as the product of the

1 Mining Clinical Data 5



one-dimensional densities p(xi|Ck). The assumption of variable independence dras-

tically simplifies model generation since the probabilities p(xi|Ck) can be easily

estimated, especially in the case of the discrete attributes where they can be

computed using histograms (frequencies). The NB approach has been proved

successful in the analysis of the genetic data.

1.2.1.5 Bayesian Neural Networks

A new methodology has been recently proposed for training feed-forward neural

networks and more specifically the multilayer perceptron (MLP) [29]. This Bayes-

ian methodology provides a viable solution to the well-studied problem of

estimating the number of hidden units in MLPs. The method is based on treating

the MLP as a linear model, whose basis functions are the hidden units. Then, a

sparse Bayesian prior is imposed on the weights of the linear model that enforces

irrelevant basis functions (equivalently unnecessary hidden units) to be pruned

from the model. In order to train the model, an incremental training algorithm is

used which, in each iteration, attempts to add a hidden unit to the network and to

adjust its parameters assuming a sparse Bayesian learning framework. The method

has been tested on several classification problems with performance comparable to

SVMs. However, its execution time was much higher compared to SVM.

1.2.1.6 Logistic Regression

Logistic regression (LR) is the most popular traditional method used for statistical

modeling [20] of binary response variables, which is the case in most problems of

our study. LR has been used extensively in the medical and social sciences. It is

actually a linear model in which the logistic function is included in the linear model

output to constraint its value in the range from zero to one. In this way, the output

can be interpreted as the probability of the input belonging to one of the two classes.

Since the underlying model is linear, it is easy to train using various techniques.

1.2.2 Generalization Measures

In order to validate the performance of the classification models and evaluate their

generalization ability, a number of typical cross-validation techniques and two

performance evaluation measures were used. In this section we will cover two of

them: classification accuracy and the kappa statistic.

In k-fold cross-validation [1], we partition the available data into k-folds.

Then, iteratively, each of these folds is used as a test set, while the remaining

6 A. Kalogeratos et al.



folds are used to train a classification model, which is evaluated on the test set.

The average classifier performance on all test sets provides a unique measure of

the classifier’s performance on the discrimination problem. Leave-one-out

validation technique is a special case of cross validation, where the test set contains

only a single data instance each time that is left out of the training set, i.e., leave-

one-out is actual N-fold cross validation where N is the number of data objects.

The accuracy performance evaluation measure is very simple and provides the

percentage of correctly classified instances. It must be emphasized that its absolute

value is not important in the case of unbalanced problems, i.e., an accuracy of 90 %

may not be considered important when the percentage of data instances belonging

to the major class is 90 %. For this reason we always report the accuracy gain as

well, which is the difference between the accuracy of the classifier and the percent-

age of the major class instances.

The kappa statistic is another reported evaluation measure calculated as

Kappa ¼ P Að Þ � P Eð Þ
1� P Eð Þ (1.5)

where P(A) is the percentage of observed agreement between the predictions and

actual values and P(E) the percentage of chance agreement between the predictions

and actual values. A typical interpretation of the values of the kappa statistic is

provided in Table 1.1.

1.2.2.1 Feature Selection and Ranking

A wide variety of feature (or attribute) selection methods have been proposed to

identify which features are significant for a classification task [4]. Identification of

significant feature subsets is important for two main reasons. First, the complexity

of solving the classification problem is reduced, and data quality is improved by

ignoring the irrelevant features. Second, in several domains such as medical

domain, the identification of discriminative features is actually new knowledge

for the problem domain (e.g., discovery of new gene markers using bioinformatics

datasets or SNPs in our study using the genetic dataset).

Table 1.1 Interpretation of the kappa statistic value

Kappa

value <0 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.81–1

Interpretation No

agreement

Slight

agreement

Fair

agreement

Moderate

agreement

Substantial

agreement

Almost

perfect

agreement

1 Mining Clinical Data 7



1.2.2.2 Single-Feature Evaluation

Simple feature selection methods rank the features using various criteria that

measure the discriminative power of each feature when used alone. Typical criteria

compute the correlation between the feature and the target category, such as the

information gain and chi-squared measure, which we have used in our study.

Information Gain

Information gain (IG) of a feature X with respect to class Y(I(Y;X)) is the reduction

in uncertainty about the value of Y when the value of X is known. The uncertainty

of a variable X is measured by its entropy H(X), and the uncertainty about the

value of Y, when the value of X is known, is given by its conditional entropy

H(Y|X). Thus, information gain I(Y;X) can be defined as

I Y;Xð Þ ¼ H Yð Þ � H Y Xj Þð (1.6)

For discrete features, the entropies are calculated as

H Yð Þ ¼ �
Xl
j¼1

P Y ¼ yj

� �
log2 P Y ¼ yj

� �� �
(1.7)

H YjXð Þ ¼ �
Xl
j¼1

P X ¼ xj
� �

H Y X ¼ xj
�� ��

(1.8)

Alternatively, IG can be calculated as

I Y;Xð Þ ¼ H Xð Þ þ H Yð Þ � H Y;Xð Þ (1.9)

For continuous features, discretization is necessary.

Chi-Square

The chi-square (also denoted as chi-squared or χ2) is another popular criterion for

feature selection. Features are individually evaluated by measuring their

chi-squared statistic with respect to the classes [21].

1.2.2.3 Feature Subset Selection

The techniques described below are more powerful but computationally expensive.

They differ from previous approaches in that they do not use single-feature

evaluation criteria and result in the selection of feature subsets. They aim to

8 A. Kalogeratos et al.



eliminate features that are highly correlated to other already-selected features.

The following methods have been used:

Recursive Feature Elimination SVM (RFE-SVM)

Recursive feature elimination SVM (RFE-SVM) [6] is a method that recursively

trains an SVM classifier in order to determine which features are the most redundant,

non-informative, or noisy for a discrimination problem. Based on the ranking

produced at each step, the method eliminates the feature of the lower ranking

(or more than one feature). More specifically, the trained SVM uses the linear

kernel, and its decision function for a data vector xi of class yi ¼ {�1 or + 1} is

D xð Þ ¼ w � x1 þ b, (1.10)

where b the bias and w the weight vector computed as a linear combination of the

N data vectors:

w ¼
XN
i¼1

aiyixi, (1.11)

b ¼ 1

N

XN
i¼1

yi � w � xið Þ: (1.12)

Most of ai weights are zero, while the weights that correspond to the marginal

support vectors (SVs) are greater than zero and sum to the cost parameter C. These

parameters are the output of the trained SVM of a step, and then the algorithm

computes the w feature weight vector that describes how useful each feature is

based on the derived SVs. The ranking criterion used by the RFE-SVM is the wi
2,

and the feature that is eliminated is given by r ¼ argmin(wi
2).

Minimum Redundancy, Maximum Relevance (mRMR)

Minimum redundancy, maximum relevance (mRMR) [22] is an efficient incremen-

tal feature subset selection method that adds features to the subset based on the

trade-off between feature relevance (discriminative power) and feature redundancy

(correlation with the already-selected features).

Feature redundancy is computed through minimizing the mutual information

(information gain of one feature with respect to the others) of the selected features:

WI ¼ 1

Sj j2
X
i, j∈S

I i; jð Þ, (1.13)

where S is the subset of the selected features. Relevance is computed as the total

information gain of all features in S:
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VI ¼ 1

Sj j
X
i∈S

I h; ið Þ, (1.14)

Optimization with respect to both criteria requires to combine them into a single

criterion function: max(Vl�Wl) or max(Vl/Wl).

K-Way Interaction Information/Interaction Graphs

K-way interaction information (KWII) [30] is a multivariate measure of information

gain, taking into the account the information that cannot be obtained without observ-

ing all k features at the same time [25]. Feature interaction can be visualized by

use of interaction graphs [31]. In such a graph, individual attributes are represented

as graph nodes and a selection of the 3-way interactions as edges (Fig. 1.1).

Multifactor Dimensionality Reduction (MDR)

Multifactor dimensionality reduction (MDR) [13] is an approach for detecting and

characterizing combinations of attributes that interact to influence a class variable.

Features are pooled together into groups taking a certain value of the class label

(original target of MDR were genetic datasets, thus most commonly, multilocus

genotypes are pulled together into low-risk and high-risk groups). This process is

referred to as constructive induction. For low orders of interactions and numbers of

attributes, an exhaustive search is possible to be conducted. However, for higher

numbers, exhaustive search becomes intractable, and other approaches are neces-

sary (preselecting the attributes, random searches, etc.). The MDR approach has

been used for SNP selection in the genetic dataset (Fig. 1.2).

AMBIENCE Algorithm

AMBIENCE [12] is an information theoretic search method for selecting

combinations of interacting attributes based around KWII. Rather than calculating

Fig. 1.1 Example of feature interaction graphs. Features (in this example SNPs) are represented

as graph nodes and a selection of the three-way interactions as edges. Numbers in nodes represent

individual information gains, and the numbers on edges represent the two-way interaction infor-

mation between the connected attributes, all with respect to the class attribute

10 A. Kalogeratos et al.



KWII in each step (a procedure which requires the computations of super-sets, thus

growing exponentially), AMBIENCE employs the total correlation information

(TCI) defined as

TCI X1,X2, � � �Xkð Þ ¼
Xk
i¼1

H Xið Þ � H X1X2� � �Xkð Þ (1.15)

where H denotes the entropy.

A metric called phenotype-associated information (PAI) is constructed as

PAI X1;X2; . . . ;Xk; Yð Þ ¼ TCI X1;X2; . . . ;Xk; Yð Þ � TCI X1;X2; . . . ;Xkð Þ (1.16)

The algorithm starts from n subsets of attributes, each containing one of the n

attributes with the highest individual information gain with respect to the class

label. In each step, n new subsets containing combinations with highest PAI are

greedily selected, from all of the combinations created by adding each attribute to

each subset from the previous step. The procedure is repeated t times. After

t iterations KWII is calculated for the resulting n subsets. The AMBIENCE

algorithm has been successfully employed in the analysis of the genetic dataset.

1.2.3 Treating Missing Values and Nominal Features

Missing values problem is a major preprocessing issue in all kinds of data mining

applications. The primary reason is that not all classification algorithms are able to

handle data with missing values. Another reason is that when a feature has values

that are missing for some patients, then the algorithm may under-/overestimate its

Fig. 1.2 MDR example. Combinations of attribute values are divided into “buckets.” Each bucket

is marked as low or high risk, according to a majority vote
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importance for the discrimination problem. A second preprocessing issue of less

importance is the existence of nominal features in the dataset, e.g., features that take

string values or date features. There are several methods that require numeric data

vectors without missing values (e.g., SVM).

The nominal features can easily be converted to numerical, for example, by

assigning a different integer value to each distinct nominal value of the feature.

Dates are often converted to some kind of time difference (i.e., hours, days, or

years) with respect to a second reference date. One should be cautious and

renormalize the data vectors, since the differences in the order of magnitude of

feature values affect the training procedure (features taking larger values will play

crucial role to the model training).

On the other hand, missing values is a complicated problem, and often there is

not much space for sophisticated things to do. Among the simple and straightfor-

ward approaches to treat missing values are:

• The complete elimination of features that have missing values. Obviously, if a

feature is important for a classification problem, this may be not acceptable.

• The replacement with specific computed or default values

– Such values may be the average or median value of the existing numeric

values and, for a nominal feature, the nominal value with higher frequency.

This latter can also be used when the numeric values are discrete and

generally small in number. In some cases it is convenient to put zero values

in the place of missing values, but this can also be catastrophic in other cases.

– Another approach is to use the K-nearest neighborhood for the data objects

that have missing values and then try to fill them with values that are more

frequent in the neighborhood objects. If an object is similar to another, based

on all the data features, then it is highly probable that the missing value would

be similar to the respective value of its neighbor.

– In some cases, it is possible to take advantage of the special properties of a

feature and its correlation to other features in order to figure out good

estimations for the missing values. We describe such a special procedure in

the case study at end of the chapter.

• The conversion of a nominal feature to a single binary when the existing values

are quite rare in terms of frequency and have similar meaning. In this way, the

binary feature takes a “false” value only in the cases where the initial feature had

a missing value.

• The conversion of a nominal feature to multiple binary features. This approach

is called feature extension, or binarization, or 1-out-of-k encoding (for k

nominal values). More specifically, a binary feature is created for each unique

nominal value, and the value of the initial nominal feature for a data object is

indicated by a “true” value at the respective created binary feature. Conversely,

a missing value is encoded with “false” values to all the binary extensions of

the initial feature.
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1.3 Case Study: Coronary Artery Disease

This section presents a case study based on the mining on medical data carried out

as a part of ARTreat project, funded by the European Commission under the

umbrella of the Seventh Framework Program for Research and Technological

Development, in the period 2008–2013 [32]. The project was a large, multinational

collaborative effort to advance the knowledge and technological resources related

to treatment of coronary artery disease. The specific work used as the background

for the following text was carried out in a cooperation of Foundation for Research

and Technology Hellas (Ioannina, Greece), University of Kragujevac (Serbia), and

Consiglio Nazionale delle Ricerche (Pisa, Italy). Moreover, the patient databases

used in our analysis were collected and provided by the Consiglio Nazionale delle

Ricerche.

1.3.1 Coronary Artery Disease

Coronary artery disease (CAD) is the leading cause of death in both men and

women in developed countries. CAD, specifically coronary atherosclerosis

(ATS), occurs in about 5–9 % of people aged 20 and older (depending on sex and

race). The death rate increases with age and overall is higher for men than for

women, particularly between the ages of 35 and 55. After the age of 55, the death

rate for men declines, and the rate for women continues to climb. After age 70–75,

the death rate for women exceeds that for men who are the same age.

Coronary artery stenosis is almost always due to the gradual, lasting even years,

buildup of cholesterol and other fatty materials (called atheromas or atherosclerotic

plaques) in the wall of a coronary artery [24]. As an atheroma grows, it may bulge

into the artery, narrowing the interior of the artery (lumen) and partially blocking

blood flow. As an atheroma blocks more and more of a coronary artery, the supply

of oxygen-rich blood to the heart muscle (myocardium) becomes more inadequate.

An inadequate blood supply to the heart muscle, by any cause, is called myocardial

ischemia. If the heart does not receive enough blood, it can no longer contract and

pump blood normally. An atheroma, even one that is not blocking much the blood

flow, may rupture suddenly. The rupture of an atheroma often triggers the formation

of a blood clot (thrombus) which further narrows, or completely blocks, the artery,

causing acute myocardial ischemia (AMI).

The ATS disease can be medically treated using pharmaceutical drugs, but

this cannot decrease the existing stenoses but rather delay their development.

A different treatment approach applies an interventional therapeutic procedure to

a stenosed coronary artery, such as percutaneous coronary artery angioplasty

(PTCA, balloon angioplasty) and coronary artery bypass graft surgery (CABG).

PTCA is one way to widen a coronary artery. Some patients who undergo PTCA

have restenosis (i.e., renarrowing) of the widened segment within about 6 months
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after the procedure. It is believed that the mechanism of this phenomenon, called

“restenosis,” is not related with the progression of ATS disease but rather with the

body’s immune system response to the injury of the angioplasty. Restenosis that is

caused by neointimal hyperplasia is a slow process, and it was suggested that

the local administration of a drug would be helpful in preventing the phenomenon.

Stent-based local drug delivery provides sustained drug release with the use

of stents that have special features for drug release, such as a polymer coating.

However, cell-culture experiments indicate that even brief contact between

vascular smooth-muscle cells and lipophilic taxane compounds can inhibit the

proliferation of such cells for a long period. Restenosed arteries may have to

undergo another angioplasty. CABG is more invasive than PTCA as a procedure.

Instead of reducing the stenosis of an artery, it bypasses the stenosed artery using

vessel grafts.

Coronary angiography, or coronography, (CANGIO) is an X-ray examination

of the artery of the heart. A very small tube (catheter) is inserted into an artery.

The tip of the tube is positioned either in the heart or at the beginning of the arteries

supplying the heart, and a special fluid (called a contrast medium or dye) is injected.

This fluid is visible by X-ray and hence pictures are obtained. The severity,

or degree, of stenosis is measured in the cardiac cath lab by comparing the area

of narrowing to an adjacent normal segment. The most severe narrowing is deter-

mined based on the percentage reduction and calculated in the projection. Many

experienced cardiologists are able to visually determine the severity of stenosis and

semiquantitatively measure the vessel diameter. However, for greatest accuracy,

digital cath labs have the capability of making these measurements and calculations

with computer processing of a still image. The computer can provide a measure-

ment of the vessel diameter, the minimal luminal diameter at the lesion site, and

the severity of the stenosis as a percentage of the normal vessel. It uses the catheter

as a reference for size.

The left coronary artery, also called left main artery (TC), usually divides into

two branches (Fig. 1.3), known as the left anterior descending (LAD) and the

circumflex (CX) coronary arteries. In some patients, a third branch arises in

between the LAD and the CX known as the ramus intermediate (I). The LAD

travels in the anterior interventricular groove that separates the right and the left

ventricle, in the front of the heart. The diagonal (D) branch comes off the LAD and

runs diagonally across the anterior wall towards its outer or lateral portion. Thus, D

artery supplies blood to the anterolateral portion of the left ventricle. A patient may

have one or several D branches. The LAD gives rise to septal branches (S). The CX

travels in the left atrioventricular groove that separates the left atrium from the left

ventricle. The CX moves away from the LAD and wraps around to the back of the

heart. The major branches that it gives off in the proximal or initial portion are

known as obtuse, or oblique, marginal coronary arteries (MO). As it makes its way

to the posterior portion of the heart, it gives off one or more left posterolateral

(PL) branches. In 85 % of cases, the CX terminates at this point and is known as a

nondominant left coronary artery system.
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The right coronary artery (RC) travels in the right atrioventricular (RAV)

groove, between the right atrium and the right ventricle. The right coronary artery

then gives rise to the acute marginal branch that travels along the anterior portion of

the right ventricle. The RC then continues to travel in the RAV groove. In 85 % of

cases, the RC is a dominant vessel and supplies the posterior descending

(DP) branch that travels in the PIV groove. The RC then supplies one or more

posterolateral (PL) branches. The dominant RC system also supplies a branch to the

right atrioventricular node just as it leaves the right AV groove, and the PD branch

supplies septal perforators to the inferior portion of the septum. In the remaining

15 % of the general population, the CX is “dominant” and supplies the branch that

travels in the posterior interventricular (PIV) groove. Selective coronary angiogra-

phy offers the only means of establishing the seriousness, extent, and site of

coronary sclerosis.

Extensive clinical and statistical studies have identified several factors that

increase the risk of coronary heart disease and heart attack [9]. Note that coronary

heart disease usually implies CAD where the stenoses are caused by atherosclero-

sis; however there can be also causes other than that. Important risk factors are

those that research has shown to significantly increase the risk of heart and blood

vessel (cardiovascular) disease [8]. Other factors are associated with increased risk

Fig. 1.3 The coronary arteries structure of the heart
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of cardiovascular disease, called contributing risk factors, but their significance

and prevalence have not yet been precisely specified. The more risk factors

you have, the greater your chance of developing the disease. However, the disease

may develop without the presence of any classic risk factor. Researchers are

studying other possible factors, including C-reactive protein and omocistein.

On the other way, researchers are moving to identify in risk subgroups of subjects,

a decisive factor for the selection of high-risk patients to be submitted to most

aggressive treatment.

Genetic studies of coronary heart disease and infarction are lagging behind other

cardiovascular disorders. The major reason for the limited success in this field of

genetics is that it is a complex disease which is believed to be caused by many

genetic factors, environmental factors, as well as interactions among these factors.

Indeed, many risk factors have been identified, and, among these factors, family

history is one of the most significant independent risk factor for the disease. Unlike

single-gene disorders, complex genetic disorders arise from the simultaneous

contribution of many genes. Genetic variants or single-nucleotide polymorphisms

(SNPs) are identified in the literature, and many candidate genes with physiologic

relevance to coronary artery disease have been found to be associated with

increased or decreased risks for coronary heart disease [23, 26]. The frequencies

of SNP alleles or genotypes are analyzed and an allele or genotype is associated

with the disease if its occurrence is significantly different from that reported in the

control [14]. The identification of the key complement of genes that contribute to

cardiovascular diseases, in particular CAD, will lead to new types of genetic tests

that can assess an individual’s risk for disease development. Subsequently, the

latter may also lead to more effective treatment strategies for the delay or even

prevention of the disease altogether.

1.3.2 The Main Database (M-DB)

We have considered two databases: the main database (M-DB) concerning 3,000

patients on which most of the data mining work was focused and a second database

with about 676 patient records with detailed scintigraphy results.

M-DB contains detailed information for 3,000 patients who suffer from some

kind of symptoms related to the ATS disease that were presented to them and made

them go to the hospital. For most of the patients, these symptoms correctly indicate

that they have stenosed arteries in a sensible extend, while for not quite a small

number of other patients, their symptoms are a false-positive indication of impor-

tant stenoses in critical arteries for the heart function. Patient’s history describes the

profile of a patient when hospitalized and includes the following:

• Age when hospitalized, sex

• Family history related to the ATS disease
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• History of interventional treatment (bypass or angioplasty operations)

• Acute myocardial infarction (AMI) and history of previous myocardial

infarction (PMI)

• Angina on effort/at rest

• Ischemia on effort/at rest

• Arrhythmias, cardiomyopathy, diabetes, cholesterol, and akinesia

• The presence of risk factors such as obesity and smoking

A series of medical examinations is provided:

• Blood tests

• Functional examinations

• Electrocardiogram (ECG) during exercise stress test

• ECG during rest

• Imaging examinations

• A first coronary angiography (CANGIO) examination

• A second CANGIO examination available only for 430 patients

• Medical treatment after the entrance of patient to the hospital include,

• Pharmaceutical treatment

• Interventional procedures (bypass or PTCA operations)

Follow-up information reports events such as:

• Death events and a diagnosed reason for it

• Events of acute myocardial infarctions

• Interventional treatment procedures (also mentioned in the medical treatment

category)

• Other cardiac events (pacemaker implantation, etc.)

Genetic information that includes the expressions of 57 genes is available only

for 450 patients.

Particularly for the CANGIO examination, the database reports the stenosis level

on the four major coronary arteries TC, LAD, CX, and RC if that level is at least

50 %. For each of the major arteries it is also available, for many but not all cases,

the exact site of the artery where the narrowing is located, namely, proximal,

medial, and distal. A stenosis is more severe when sited at the proximal part of

the artery and less severe at distal, since the blood flow at the early part of the artery

affects the flow in larger part of the heart (Fig. 1.3). Moreover, the CANGIO also

provides the degree of stenosis for a number of secondary arteries, such as D, I, and

MO. Table 1.2 presents some examples of CANGIO examinations, the extent

of stenosis for the major and secondary vessels (luminal diameter reduction).

The Max columns indicate the maximum stenosis in the length of the respective

artery. For some cases the medical expert was not in position to specify the site of

a stenosis, whereas he identified the extent of the functional problem, i.e., the

percentage of the stenosis.
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1.3.3 The Database with Scintigraphies (S-DB)

The scintigraphic dataset (S-DB) is a dataset containing records for about

440 patients with laboratory tests, 12-lead electrocardiography (ECG), stress/rest

gated SPECT, clinical evaluation, and the results of CANGIO. More specifically:

• Clinical Examinations

The available clinical variables include patient age, sex, and history of angina

(at rest, on effort, or mixed), previous MI, and cardiovascular risk factors: family

history of premature IHD, presence of diabetes mellitus, arterial hypertension,

hypercholesterolemia, hypertriglyceridemia, obesity, and being a current or

former smoker.

• Laboratory Examinations

The laboratory data available include erythrocyte sedimentation rate, fasting

glucose, serum creatinine, total cholesterol, HDL and LDL levels, triglycerides,

lipoprotein, thyrotropin, free triiodothyronine, free thyroxine, C-reactive protein,

and fibrinogen.

• Electrocardiographic Data

The ECG data include 12-lead ECG results (normal/abnormal), exercise stress

test results, and maximal workload on effort.

• Echocardiographic Data

Two-dimensional echocardiographic data include left ventricular ejection frac-

tion (LVEF), left ventricular end-diastolic diameter, wall motion score index,

and end-diastolic thickness of the interventricular septum and posterior wall.

• Scintigraphic Data

The detailed scintigraphic data available include the values of SRS, SSS, SDS,

EDV on effort, ESV on effort, SMS on effort, and STS on effort.

The objectives of the analysis are the same as with the main database, i.e., to

build classification models predicting the severity of ATS using the other features

and mainly the scintigraphic information.

1.3.4 Defining Disease Severity

As mentioned before, the target variable needed for the present learning problem is

the “correct” ground truth class, namely, severe or mild-normal, of each patient

instance and this must be set in advance of any supervised model training. Next, the

classification algorithms try to learn how to discriminate the patients of each

category. Generally, the characteristics of the real-world problem under investiga-

tion and the quality/quantity of the provided examples affect directly the level of

difficulty of the learning problem.

Apart from any data quality issues, the real problem of predicting the severity of

a patient’s ATS condition presents additional difficulties regarding the very
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fundamental definition of the disease severity categories for the known training

dataset. To define the target variable of the classification problems, we used the

information of the CANGIO examinations which can express the atherosclerotic

burden of a patient at the time being examined. The CANGIO indicates which

arteries are stenosed, when the narrowing percentage is at least 50 %, and the

stenosis is characterized by that percentage. In particular, five different percentage

values are reported in the database: 0 %, 50 %, 75 %, 90 %, and 100 %.

The first issue that arises is that we need to define a way to utilize all these

measurements to a single indication about disease severity. The second issue is that

these indications about stenotic vessels are provided by the doctor that did the

CANGIO, and the diagnosis may depend on the personal opinion of the expert (may

vary for different doctors) and the technology of the hardware and the procedures

used for the examination (e.g., the CANGIO back in 1970 cannot be as good as a

modern diagnosis). In the following paragraphs of this section, we describe the

different severity definitions we considered and how a two-class classification

problem was set up.

1.3.4.1 The Number of Diseased Vessels

The number of the diseased major vessels (TC, LAD, CX, RC) and the extent of

stenosis on each of them can be used to quantify the ATS disease severity. Thus,

patients can be categorized by the following simple rule:

• Severely diseased having > ¼ A diseased vessels with > ¼ T stenosis

• Mild, otherwise

The values of the two parameters vary:

• A ¼ 1; 2; 3f g
• T ¼ 50%, 75%, 100%f g

This disease severity definition is denoted as DefA.

1.3.4.2 Angiographic Score17

The more detailed special angiographic score proposed in [5] can be utilized

for quantifying the severity of the disease. This score, herein denoted as Score17,

assigns a severity level to a patient in the range of [0,. . .,17] with 17 being the most

severe condition, while zero correspond to a normal patient. More specifically, this

metric examines all the sites of the 4 major coronary arteries (e.g., the proximal,

medial, and distal site of LAD) for lesions exceeding a predefined stenosis

threshold. The exact computation of Score17 is presented in Fig. 1.4.
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Based on this score, four medically meaningful categories are defined:

a. Score17 ¼ 0: Normal vessels

b. Score17 less or equal to 7: Mild ATS condition

c. Score17 between 7 and 10: Moderate ATS condition

d. Score17 between 10 and 17: Severe ATS condition

These can be used to directly set up a four-class problem denoted as S-vs-M-vs-

M-vs-N. Furthermore, we defined a series of cases by grouping together the above

subgroups, e.g., SM-vs-MN is the problem where the “Severe” class contains

patients with severe ATS (case (a)) or moderate ATS severity (case (b)), while

the mild and normal ATS diseased patients (cases (c) and (d)) constitute the “Mild”

class. This definition is denoted as DefB.

1.3.4.3 HybridScore: A Hybrid Angiographic Score

Undoubtedly, Score17 gives more freedom to the specification of the target value of

the problem. However, the need to define the threshold leads again in a large set of

problem variants. To tackle this situation, we have developed an extension of this

score that does not depend on a stenosis threshold. The basic idea is the use of a set

of weights, each of them corresponding to different ranges of stenosis degree. These

weights are incorporated to the score computation in order to add fuzziness to

patient characterization. An example would explain the behavior of the modified

Score17 denoted as HybridScore (Table 1.3).

Examples:

a. Supposing that a patient has 50 % stenosis at TC, 50% at RC proximal, 90 % at RC

distal, and the rest ofhis vessels are normal, then the classic Score17,with a threshold

at 75 % stenosis, assigns a disease severity level 3 for the DX distal stenosis.

if stenosis is found in TC then 
Score17 = 12 points  
Ignore stenosis in LAD and CX

if there is a stenosis in RC then
Score17 = Score17 + the most severe case from RC 

(5 for proximal and medial, or 3 for distal)
end

else 
Score17 = the most severe stenosis from LAD 

(7 points for proximal, 5 medial, or 3 for distal)
Score17  = Score17  + the most severe stenosis from CX 

(5 for proximal and medial, or 3 for distal)
Score17  = Score17  + the most severe stenosis from RC 

(5 for proximal and medial, or 3 for distal)
end

Fig. 1.4 The algorithm to compute Score17
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The developed HybridScore17 assigns 12*1/2(for TC) + max{5*1/2, 3*1} ¼ 9.

Note that for multiple stenoses at the same vessel, this score takes into account

the most serious with respect to the combined weighted severity.

b. Let us examine another patient with exactly the same TC and RC findings, but

having as well 90 % stenosis at LAD proximal and 90 % at CX medial. The

traditional Score17 ignores these latter two, because they belong to the left coronary

tree where TC is the most important part and exceeds the elementary threshold of

50 % stenosis (over which a vessel is generally considered as occluded). On the

other hand, HybridScore17 would assign a severity value by computing the max

{9(the previous result), 7 * 1(for LAD proximal) + 5 * 1(for CX medial)} ¼ 12.

Table 1.4 provides the values for the different CANGIO scores. For the Score17

the table provides the values with different stenosis thresholds: 50 % (T50), 75 %

(T75), and 90 % (T90). Note also that the site of the stenosis might not reported by

the medical expert during the examination. In these cases we assume that the

stenosis is located at the proximal site (the most serious scenario). It is worth

mentioning that the threshold of Score17 plays a crucial role in evaluating the

ATS burden of a patient. In the eleventh line of Table 1.4, we observe that using a

threshold of 50 % stenosis, the score gives a value equal to 17 and with 75 %

threshold the score is 12, while for 90 % threshold this value becomes 7. On the

other hand, HybridScore is a single measurement with a value equal to 12.

To illustrate the way the presented scores work, we provide the following graph

that presents the cumulative density function (cdf) for the range of values 0–17, for

the original Score17 using three different thresholds and the HybridScore. The

scores have been computed for the 3,000 patient records of M-DB dataset.

The value at ATS score ¼ 0 corresponds to the number of patients that have a

score value in [0,1], for ATS score ¼ 1 a computed score in [0,1] or in [1,2], and so

on. For example, looking at the Score17-T90 line, over 40 % of the 3,000 patients

database are assigned with a score value equal to 0 and very few patients exist with

score values larger than zero and less than or equal to 3. Apparently, there is a large

group of patients (about 20 % of the total patients) that have a score over 3 and at

most 4 (Figs. 1.5 and 1.6).

Next, we present the respective figures, Figs. 1.7 and 1.8, for the M-DB after

excluding a subset of patients with a recorded history of PMI or AMI. These

patients are generally cases of more serious ATS burden. This is depicted by the

increased frequencies of the lower ATS scores in the cdf of Fig. 1.7 compared with

the cdf in Fig. 1.5 of the full database of 3,000 patients.

To define a classification problem based on this angiographic score, a proper

threshold needs to be specified. A value of HybridScore over that threshold would

imply that a patient is severely diseased, and is mildly diseased, or even in normal

condition, if his score is below threshold. This definition of ATS disease severity is

denoted as DefC.

Table 1.3 The weights used

by the HybridScore
Stenosis range <50 % 50–75 % 75–90 % 90–100 %

Weight value 0 1/2 2/3 1
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Fig. 1.5 The cumulative density functions of the Score17 and HybridScore for M-DB

Fig. 1.6 The histogram of the different HybridScore values for M-DB patients (x-axis)
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Fig. 1.7 The cumulative density functions of the Score17 and HybridScore for M-DB, excluding

the patients with PMI/AMI history

Fig. 1.8 The histogram of the different HybridScore values for M-DB, excluding the patients with

PMI/AMI history (x-axis)
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1.3.4.4 Discussion on Angiographic Scores

The introduction of the HybridScore proposed in this study has been proved very

beneficial since it allows the complete characterization of the CANGIO examina-

tion using a single numeric value, while the existing characterization is using two

numeric values (namely, Score17 and a stenosis threshold to compute the score).

In this way it is straightforward to define the various classification problems

that emerge by setting a threshold value (th) to this HybridScore (Mild class, hybrid

score < th and Severe class, hybrid score > ¼ th). As the threshold value (th)

increases from 0 to 17, we obtain a sequence of meaningful classification problems.

The proposed HybridScore definition allows for the direct computation of the

difference between two coronary examinations. To our knowledge, this is the first

time such a difference is quantified in literature with a convenient measure which is

also applicable for the quantification of ATS progression.

1.3.5 Results for Data Mining Tasks

This section will illustrate some of the results obtained during the analyses of the

data in the described tasks. It should be noted that the presented results are provided

as examples of the results that can be achieved by mining clinical data, and not as a

facts that should be considered, or accepted, as having medical validity.

1.3.5.1 Correlating Patients’ Profile and ATS Burden

Data Preprocessing

In this task we used the information about the patients’ history and the first

CANGIO examination. Initially, each patient record contains 70 features, some of

them having missing values. For the nominal features that have missing values, we

apply some of the feature transformations presented earlier in the chapter.

• Binarize a Feature by Merging Rare Feature Values

For nominal features that take several values each of them having a very low

frequency while at the same time having many missing values, we merge all

existing different values to a “true” value, and the “false” value was assigned to

themissing value cases. To be this transformation appropriate, the values thatwould

bemerged should express similar findings for the patient, i.e., all the values grouped

into “true” should have similar medical meaning, all negative or all positive. An

example is the feature describing the diagnosis for akinesia that takes values such as

API (1.70 %), SET (0.97 %), INF (6.70 %), POS (0.23 %), LAT (0.13 %), ANT

(0.03 %), and combinations of these values (14.96 %), while the rest 75.30 % are

missing values. Apparently, all the reported values have the same negative medical

meaning about negative findings diagnosed to the patients. In this case, the new
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binary feature has 75.30 % the “true” value and 24.70 % the “false” value. Other

similar cases are dyskinesia, hypokinesia, and AMI complications.

• Feature Extension for Nominal Features with Missing Values

Only one of the new binary features can be “true,” while a missing value is

encoded as an instance where all these new features are “false.” This transfor-

mation is used for features such as AMISTEMI and PMISTEMI.

Missing values are present for numeric features as well. To deal with these cases,

we apply the following transformations:

• Firstly, we eliminated all such features that have a frequency of missing values

over 11 %. These features were hdl (missing, 25.53 %), ldl (missing, 27.73 %),

rpp (missing, 57.83 %), watt (missing, 57.87 %), septup (missing, 16.97 %), and

posteriorwall (missing, 17.90 %).

• For the features that have less that 11 % missing values percentage, we filled

them with the average feature value. This category of features includes hr

(missing, 7.23 %), pressmin (missing, 1.20 %), pressmax (missing, 1.20 %),

creatinine (missing, 9.70 %), cholesterol (missing, 6.60 %), triglic (missing,

8.63 %), and glicemia (missing, 10.53 %).

Special cases of features with missing values are the ejection fraction of the left

ventricular of the heart (EF) and the diagnosis of a dysfunction of that ventricular

(ECHO left ventricular dysfunction). These two findings are commonly measured

by an electrocardiogram and are closely correlated since, usually, a dysfunction of

the ventricle results in a low ejection fraction. The more serious a problem is

diagnosed to the ventricle, the less fraction of the blood in the ventricle in

end-diastole state is pumped out of the ventricle. In the M-DB, there are patient

records where (a) both measurements are provided and (b) only one of the

measurements is reported. We developed the heuristic procedure of Fig. 1.9.

The final step of the above procedure applies feature expansion to the dysfunction

of the ventricular. This is done in order to prepare the data for classification

algorithms such as SVM, where the different nominal values cannot be handled.

After the preprocessing we described, each patient record of the M-DB contains

92 features. This is the full set feature that we finally used.

(1) Compute the average and standard deviation for the EF values of each ventricular dys-
function category (Normal, Regional, Global).

(2) Fill the missing EF values for patients without a dysfunction (Normal) cases with the av-
erage EF value measured for the Normal patients. The same for the other dysfunctions
(Regional and Global).

(3) Using the probability p(type of dysfunction | EF), computed assuming a Gaussian distri- 
bution to model the values of each dysfunction type, fill the missing dysfunction charac-
terization based on the available EF value.

(4) Apply feature extension to Echo left ventricular dysfunction.

Fig. 1.9 The procedure of filling EF and ECHO left ventricular dysfunction missing values
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The AMI date was converted to an integer feature expressing the positive time

difference in days between that date and the hospitalization date of the patient,

similarly for the PMI date. The missing values of these features are filled with zeros.

The results regarding the feature evaluation did not indicate that the elimination

of certain features could lead to better predictions. In fact, there are some features

that do not have much information associated with the value of the target variable

that is predicted (the class of each patient) and are ranked in low positions, but, at the

same time, when eliminated the performance of the models does not improve at all.

Thus, we did not aim further on feature selection by means of computational feature

evaluation. Instead, we considered a second version of each database for these two

tasks where we discarded a number of features that are known to be medically high

correlated with the ATS disease. This approach would force the training algorithms

to use the remaining features and may reveal nontrivial connections between patient

characteristics and the disease. The exact features discarded are ischemia at rest,

AMI, AMI date, AMI STEMI (all the binary expansions), AMI NSTEMI, AMI

complications, PMI, PMI date, PMI STEMI, PMI NSTEMI, history of CABG,

history of PTCA, and ischemia on effort before (hospitalization). For AMI

STEMI, AMI NSTEMI, PMI STEMI, and PMI NSTEMI, all the features of the

feature expansion were eliminated. The set of features is then called “reduced.”

Evaluating the Trained Classification Models

In this task we aimed to build efficient systems that can discriminate the patients

into two classes regarding the severity of their ATS disease condition that can be

characterized as normal-mild or severe. In the previous section, we discussed how

we can quantify the CANGIO examination into one single value using the proposed

HybridScore. Based on that, we have defined the target variable for training

classifiers. From the machine learning standpoint, we also need the value of the

target variable for each patient, i.e., the indication about the class each patient

belongs. Unfortunately, this requires medical knowledge about specific values of

the ATS scores that could be used as thresholds. This cannot be provided since there

are not any related studies in the literature that propose such a cutoff value. In fact

one could make reasonable choices but there is no gold standard to use.

As a result, we should test all possible settings ofATS score and build classifiers for

all these cases. For example, we choose to use all integer values of the HybridScore in

[0,17]. Then we need to evaluate the classifiers produced for a fixed classification

problem, with a specific cutoff threshold. An evaluation of the produced classifiers is

also needed in a second level: to understand which classification is medically more

meaningful or easier to solve based on the available data. In other words, the

objectives of the analysis are both to find the interesting discrimination problems as

well as to find interesting solutions for them. In fact, this is a complex procedure where

the final classifiers are somehow evaluated by both supervised and unsupervised way.

And this is the most challenging issue we had to deal with in this study.

Supposing we have produced all classifiers for all thresholds of HybridScore, we

evaluate the produced system using multiple quality indicators. The first category of
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indicators is the classification accuracy and indices such as kappa statistic. Different

classifiers trained on the same target values (same threshold) can be directly

compared in terms of their classification accuracy measured using cross-validation.

On the other hand, if two classifiers have been trained on different values of the

target variable, then it is not trivial to compare them in a strict way.

Thus a different level in which we examine how interesting each specific

classifier is compared to other classifiers produced for different HybridScore

thresholds is to measure the gain in classification accuracy they present with respect

to an “empty-box” decision system that decides always for the largest class of

patients in every case. For instance, let us consider a discrimination problem with

60 % seriously diseased patients and 40 % normal-mild cases for which a classifier

gives 75 % prediction accuracy. Let us consider the second problem with 80–20 %

distribution of patients and a respective classifier achieving 82 % accuracy. We can

conclude that the first system with 15 % gain in accuracy retrieves a greater amount

of information from the available classes compared to the 2 % of the second one.

The class distribution is also called “class balance” and is an important determi-

nant for most of training algorithms. When one of the classes is overrepresented in a

training set, then the classification algorithm will eventually focus on the larger data

class and probably will lose the fine-detail information in the smaller class. To this

end, we adopted an additional evaluation strategy for the classification problems. In

particular, we selected all the patients from the smaller class and an equal number of

randomly selected patients from the larger class to train a classifier. This is repeated

five times and the reported accuracy is the average accuracy of the five classifiers.

This approach is denoted as “Balanced.” Secondly, we select at most 200 patients

from the two classes and follow the previous workflow. This strategy is called

“Balanced200.” The second strategy may reveal how a classifier scales to the size of

database, the number of patients provided for training, in a problem with a fixed

HybridScore threshold. If the accuracy does not drop dramatically when fewer

patients are used for training, then this is an indication of getting stable results. Note

that this is only an evaluation methodology since the final classifiers we created

were trained on the full dataset at each time, for the selected class definition.

Classification Results

Defining ATS Disease Severity Using DefA

According to the ATS severity definition DefA, which combines the number of

diseased vessels and the stenosis level, we trained classifiers for all possible

discrimination problems that could be set. In Fig. 1.10 we used the SVM classifiers

to evaluate the different discriminating problems. The last one considers the normal

or mildly diseased patients to be those with at most two arteries with at most 75 %

stenosis. The green line indicates the size of the largest class in each definition of

the mild-severe classes. The brown line is the SVM accuracy on all the data of the

M-DB, and the blue is the gain in accuracy, i.e., the difference between the SVM

accuracy and the largest class (green line). The large gain values indicate the

settings under which the classifier managed to retrieve much more information

from the data than that of the empty-box classifier.
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The gain might be increased for mainly two possible reasons. The first is the fact

that the problem setting we considered is more separable comparing to the other

settings. Thus the data properties (the characteristics of patients) are better

described by this specific class definition, and this also indicates that it is interesting

to understand the properties that led to this classification grouping “preference.”

The second reason might be the class balance. When classes are balanced in size,

the classifier may achieve lower accuracy value, but still with remarkable gain. This

is the role of the experiments we do on balanced subsets of the M-DB. The deep blue

line shows the average accuracy of the SVM for the 5 balanced data subsets, and the

red is the balanced case of 200 patients per class. If these two lines are close enough in

performance, it is evident that the classification performance is not heavily dependent

on the amount of available data (similarly one could state that the classifier retrieves as

much information as the data let under the specific class definition).

Having all these in mind, we can look back in Fig. 1.10 to observe that the

balanced class definitions clearly indicate the first three cases as the best out of all.

In particular, the first one, defining the severe class as having all patients with at

least one artery with at least 90 % stenosis level, is the overall best since the class

sizes of the full DB are more balanced. Table 1.5 summarizes the classification

results for all the patients and features of M-DB. The largest class is indicated as

Fig. 1.10 Classification results using SVM for different definitions (DefA) of discrimination

problems on M-DB
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Severe (S) or Mild (M); the size of a decision tree (DT) is denoted as (number of

leaves/number of total tree nodes). The performance of random forest (RF) and

SVM is also reported. The three different evaluation indices are denoted in the first

line: accuracy, kappa statistic, and accuracy gain. “Bal” indicates the subset of the

M-DB with balanced data classes, and “Bal200” are subsets that contain balanced

classes with at most 200 patients each. The k-statistic also indicates that in the first

three cases, the DT J48 retrieves the “real structure” of the data defined by the

considered class labels for the patients.

The DT corresponding to the first line of Table 1.5 is presented in Fig. 1.11.

The quality of a rule is indicated by the two numbers inside the rectangle leaf,

the first is the number of patients that this leaf decides for and – after the “/”

character – the number of patients that were incorrectly classified in the class of

the leaf.
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Chapter 2

Applications of Probabilistic and Related

Logics to Decision Support in Medicine

Aleksandar Perović, Dragan Doder, and Zoran Ognjanović

2.1 Introduction

Since the late 60s, probability theory has found application in development of

various medical expert systems. Bayesian analysis, which is essentially an optimal

path finding through a graph called Bayesian network, has been (and still is)

successfully applied in so-called sequential diagnostics, when the large amount of

reliable relevant data is available. The graph (network) represents our knowledge

about connections between studied medical entities (symptoms, signs, diseases);

the Bayes formula is applied in order to find the path (connection) with maximal

conditional probability. Moreover, a priori and conditional probabilities were used

to define a number of measures designed specifically to handle uncertainty, vague

notions, and imprecise knowledge. Some of those measures were implemented in

MYCIN in the early 70s [96]. The success of MYCIN has initiated construction of

rule-based expert systems in various fields.

However, expert systems with the large number of rules (some of them like

CADIAG-2 have more than 10,000) are designed without any proper knowledge of

mathematical logic. As an unfortunate consequence, most of them are turned to be

inconsistent. On the other hand, the emergence of theoretical computer science as a
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Faculty of Transportation and Traffic Engineering, University of Belgrade,

Vojvode Stepe 305, 11000 Belgrade, Serbia

e-mail: pera@sf.bg.ac.rs

D. Doder

Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16,

11000 Belgrade, Serbia

e-mail: ddoder@mas.bg.ac.rs

Z. Ognjanović
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new scientific discipline has lead to discovery that the completeness techniques

form mathematical logic are the only known methods for proving correctness of

hardware and software. Consequently, mathematical logic has become a theoretical

foundation of artificial intelligence.

The last two decades has brought a rapid development of various formal logics

that can describe plethora of AI settings. Arguably, the most significant among those

are fuzzy logics [18, 28, 29, 35], possibilistic logics [16–18], and probability logics.

Our focus will be solely on the probability logics, since it is our field of expertise.

Besides the introduction, this chapter is divided into six sections: probability

logic, nonmonotonic reasoning and conditional probabilities, probabilistic

approach to measuring inconsistency, reasoning about evidence, MYCIN, and

CADIAG-2.

In the second section we give a short overview of the meaning and scope of

probability logic. The emphasis is on decidability (existence of automated

satisfiability checking of probability assertions), complexity of decision procedure

(assessment of the running time and hardware resources needed for the execution

of decision procedure), heuristical SAT (SAT means satisfiability) solving based

on genetic algorithms, and the novel application of probability in classification

problems (e.g., handling queries in fuzzy relational databases).

The third section brings a short overview of the theory of nonmonotonic

inference and its deep connections with probability logic. A number of inference

systems are presented. Though this part is a rather technical, we believe that it

should be useful to any physician who wishes to identify the atomic steps in

the personal diagnostic practice – a necessary step for the construction of any

successful medical expert system.

The fourth section presents recently developed probabilistic approach to

managing inconsistency in knowledge bases. The fifth section is a brief overview

of recent results in the logical treatment of evidence and probabilistic spatiotempo-

ral reasoning.

The last two sections present a brief overview of the two significant medical

support systems: MYCIN, developed at the Stanford University in the early 70s by

Edward Shortliffe and others, and CADIAG-2, an ongoing project of the Institute

for medical expert and knowledge-based systems and the Medical University of

Vienna that is initiated and carried out primarily by K.-P. Adlassing.

2.2 Probability Logic

2.2.1 Overview

In broader sense, probability (or probabilistic) logic can be understood as a tool

for reasoning with incomplete or imprecise information (knowledge), where

the uncertainty of the premises is expressed by qualitative or quantitative
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probability statements. The typical forms of the qualitative statements are

“α is the probable cause for β,” like in “the seasonal flue is the probable cause for

the patient’s fever,” and “α is more probable than β,” like in “the HPV is more

probable cause for the observed cervical cancer than exposure to gamma radiation.”

The typical form of the quantitative probability statements is “the probability of α
is approximately equal to s,” like in “the incidence of monozygotic twinning is

about 3/1,000,” or in “around 30 % cases of the coronary thrombosis are caused

by smoking.” Generally, the quantitative statements can express more complex

conditions on the probability values (e.g., linear or polynomial inequalities).

Mathematical representation of probabilistic reasoning extends basic logical

language (that involves propositional connectives and universal and existential

quantifiers) with probabilistic operators and probabilistic quantifiers. Though

the roots of probability logic can be traced at least to Leibnitz, the modern era of

probability logic has started with the work of Jerome Keisler [47–49] throughout

the 70s and the mid-80s of the twentieth century. It is worth mentioning that

Bayesian analysis (application of Bayes formula in determination of optimal

diagnostic/therapy strategies) has been successfully applied in early clinical

decision support systems specialized in sequential diagnostics in the late 60s

(see for instance [30]).

The modal representation of probability, i.e., introduction of modal-like proba-

bility operators in classical reasoning, deeply motivated by intensive application

in various expert systems, was initiated by Nils Nilsson [59, 60] in the mid-80s

and early 90s. A major breakthrough along these lines was made by Ronald

Fagin, Joseph Halpern, and Nimrod Megiddo [21], especially in terms of

decidability and computational complexity (so-called small model theorems).

Though the introduced syntax was not modal per se, it was very similar to it and

the developed modal probability semantics has become the standard one.

The first probability logic with unary modal probability operator was introduced

by Miodrag Rašković in the early 90s [86]. Soon after, a rather rapid development

of the subject has followed. We shall track a selection of the existing research in the

field of probability logic: primarily our own contributions, “seasoned” with certain

papers (books) that are closely related to our work.

To begin with, an extensive study of finitely additive probability measures was

given in [93]. Historical development, various boundaries of probability functions,

and many other important concepts regarding sentential probability logics are

given in [34]. An extensive study of uncertainty and its connection with probability

was given in [36]. Various formalizations of probability with variety of scopes –

simple probabilities, higher-order (nesting of probability operators) probabilities,

conditional probabilities, representation of default reasoning, etc. – are presented

in [1, 3, 4, 10–15, 20, 21, 28, 29, 42–46, 55, 57–73, 75–78, 82–92, 104]. Authors of

those papers usually did not consider assumptions about the corresponding proba-

bilistic distributions. Then, as probabilities are generally not truth-functional,

the best one can do is to calculate bounds on probabilities of conclusions starting

from probabilities of assumptions [34].
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One of the main proof-theoretical problems is providing an axiom system that

would be strongly complete in the sense that every consistent theory has a model.

This problem originates from the inherent non-compactness of the so-called nonre-

stricted real-valued probability logics. Namely, in such formalisms it is possible

to define an inconsistent infinite set of formulas, every finite subset of which is

consistent. For example, one such theory is given by

P>0αf g[ P
<1
n
α : n is a positive integer

n o
:

As it was pointed in [63, 104], there is an unpleasant consequence of finitary

axiomatization in that case: there exist unsatisfiable sets of formulas that are

consistent with respect to the assumed finite axiomatic system (since all finite

subsets are consistent and deductions are finite sequences). Another important

theoretical problem is related to the decidability issue.

2.2.2 LPP2 Logic

We shall briefly describe the LPP2 probability logic. Detailed exposition can be

found in [71]. It is an extension of the classical propositional logic with probability

operators of the form P� s, where s can be any rational number between 0 and

1 (including both of them).

The initial syntactical layer is formed of classical propositional formulas; they

will be denoted by α, β and γ, indexed or primed if necessary. Basic probability

formulas are expressions of the form

P�sα:

The intended meaning of P�sα is rather obvious: the probability of α is at least s.
Finally, complex probability formulas are formed from the basic ones by applica-

tion of logical connectives: negation (denoted by Ø) and implication (denoted

by !). Probability formulas will be denoted by A, B and C, indexed or primed if

necessary. Some standard abbreviations (e.g., formal introduction of conjunction,

disjunction and equivalence) are defined in the usual way:

• A ^ B¼defØ A ! ØBð Þ:
• A _ B¼defØA ! B:
• A $ B¼def A ! Bð Þ ^ B ! Að Þ:
• P�sα¼def P�sØα:
• P>sα¼def P�sα ^ ØP�sα:
• P<sα¼def P�sα ^ ØP�sα:
• P¼sα¼def P�sα ^ P�sα:
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Due to the modal nature of probability operators, the standard probabilistic

semantics is defined on the so-called probability Kripke structures. A probability

Kripke structure is any triple (W,H,μ) with the following properties:

1. W is a nonempty subset of the set of all classical evaluations {0,1}Var.

2. H is an algebra of sets (it is nonempty and closed under intersection, union and

complement) that contains all sets of the form [α]. Here by [α] we have denoted
the set of all evaluations satisfying α.

3. μ : H ! [0,1] is a finitely additive probability measure.

The satisfiability relation ⊨ is defined in the following way:

• (W,H,μ) ⊨ α iff [α] ¼ W.

• (W,H,μ) ⊨ P� sα iff μ([α]) � s.
• (W,H,μ) ⊨ ØA iff (W,H,μ) ⊭ A.
• (W,H,μ) ⊨ A ! B iff either (W,H,μ) ⊭ A, or (W,H,μ) ⊨ A and (W,H,μ) ⊨ B.

The axioms of the LPP2 logic are the following ten schemata:

• A � 1: α ! (β ! α).
• A � 2: (α ! (β ! γ)) ! ((α ! β) ! (α ! γ)).
• A � 3: (Øβ ! Øα) ! (α ! β).
• A � 4: A ! (B ! A).
• A � 5: (A ! (B ! C)) ! ((A ! B) ! (A ! C)).
• A � 6: (ØB ! ØA) ! (A ! B).
• A � 7: P� 0α.
• A � 8: P� sα ! P> rα for all r < s.
• A � 9: P� sα ^ P� rβ ^ P¼ 0(α ^ β) ! P� min(r + s,1)(α _ β).
• A � 10: P� sα ^ P� rβ ! P� min(r + s,1)(α _ β).

The inference rules of the LPP2 logic are the following one:

• Modus ponens for classical formulas: from α and α ! β infer β.
• Modus ponens for probability formulas: from A and A ! B infer B.
• Necessitation: from α infer P¼ 1α.
• Archimedean rule: from the set of premises {A ! P� rα : r < s} infer

A ! P� sα.

The notion of deduction differs from the classical one only in the length of the

inference: since Archimedean rule has countably many premises, the length of the

inference can be any countable successor ordinal.

Intuitively, Archimedean rule should be understood in the following way: if the

probability of α is infinitely close to the rational number s, then it must be equal to s.
As a consequence, “problematic” finitely satisfiable but unsatisfiable theories such

as previously mentioned theory P>0αf g[ P<1
n
α : n is a positive integer

n o
become

inconsistent in LPP2. The proof of the strong completeness theorem for LPP2 logic

can be found in [71].
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2.2.3 Decidability and Complexity

Any potential or actual application of weighted logics in artificial intelligence is

closely related to the satisfiability problem and related computational complexity

estimation. Here we shall outline the satisfiability procedure for the LPP2-formulas

and give its exact complexity. So, let A ∈ ForP. Recall that an atom a of A is a

formula of the form � p1 ^ � � � ^ � pn, where � pi is either pi or Øpi, and

p1, . . ., pn are all primitive propositions appearing in A. For example, if A is the

formula P� 0.9( p _ q), then its atoms are p ^ q, p ^ Øq, Øp ^ q and Øp ^ Øq.
Note that atoms are pairwise disjoint. Hence, for any probability measure μ and

any pair of atoms ai and aj(ai 6¼ aj), we have that

μ ai _ aj
� � ¼ μ aið Þ þ μ aj

� �
:

As a next step we can equivalently transform the given formula A into its

complete disjunctive normal form

DNF Að Þ ¼
_m
i¼1

k̂i

j¼1

Xi, j p1; . . . ; pnð Þ,

where:

• Xi,j is one of probability operators P�si, j and P<si, j .

• Xi,j( p1, . . .,pn) denotes the fact that the propositional formula which is in the

complete disjunctive normal form, i.e., the propositional formula is a disjunction

of the atoms of A.

Example. The complete disjoint normal form of the formula A defined by

P<0:1p _ P�0:8q

is disjunction of the following four formulas:

• P<0:1 p ^ qð Þ _ p ^ Øqð Þð Þ ^ P�0:8 p ^ qð Þ _ Øp ^ qð Þð Þ:
• P<0:1 p ^ qð Þ _ p ^ Øqð Þð Þ ^ P<0:8 p ^ qð Þ _ Øp ^ qð Þð Þ:
• P�0:1 p ^ qð Þ _ p ^ Øqð Þð Þ ^ P�0:8 p ^ qð Þ _ Øp ^ qð Þð Þ:
• P�0:1 p ^ qð Þ _ p ^ Øqð Þð Þ ^ P<0:8 p ^ qð Þ _ Øp ^ qð Þð Þ:

The logic LPP2 is decidable, i.e., the satisfiability and validity of LPP2-formulas is

algorithmically solvable. Firstly we will outline satisfiability algorithm in general

case, and then we will apply it on the previous example.

The first step is to transform the given ForP-formula A to its complete disjunc-

tive normal form DNF Að Þ ¼ _m
i¼1 ^ki

j¼1 X
i, j p1; . . . ; pnð Þ . So, satisfiability of A is

equivalently reduced to the satisfiability ofDNF(A). Thus, A is satisfiable iff at least
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one disjunct from DNF(A) is satisfiable. Let the measure of the atom ai be

denoted by yi. We use an expression of the form at ∈ X( p1, . . .,pn) to denote

that the atom at appears in the propositional part of X( p1, . . .,pn). Furthermore, a

disjunct D ¼ ^ j ¼ 1
kXj( p1, . . .,pn) from DNF(A) is satisfiable iff the following

system of linear equalities and inequalities is satisfiable:

y1 þ � � � þ y2n ¼ 1

y1 � 0

⋮
y2n � 0

X
at∈X1 p1;...;pnð Þ∈D

yt�X1

s1

⋮X
at∈Xk p1;...;pnð Þ∈D

yt�Xk

sk,

where �Xi ¼� if Xi ¼ P�si , otherwise �Xi ¼<.

Since the satisfiability of A is reduced to the linear systems solving problem, the

satisfiability problem for LPP2-logic is decidable. Finally, since A is valid iff ØA is

unsatisfiable, the validity problem is also decidable.

Back to the previous example: the atoms of the given probability formula

A ¼ P<0.1p _ P� 0.8q are p ^ q, p ^ Øq, Øp ^ q and Øp ^ Øq. By y1, . . ., y4
we will denote their unknown probabilities. The first disjunct in DNF(A) generates
the following system:

y1 þ y2 þ y3 þ y4 ¼ 1

y1 � 0

y2 � 0

y3 � 0

y4 � 0

y1 þ y2 < 0:1

y1 þ y3 � 0:8:

One solution of this system is given by y1 ¼ y2 ¼ 0, y3 ¼ 0.8 and y4 ¼ 0.2, so

the formula A is satisfiable.

Concerning complexity estimation of the decision procedure, we shall show that

it is NP-complete. Indeed, the lower bound follows from the complexity of the same

problem for classical propositional logic. The upper bound is a consequence of the

NP-complexity of the satisfiability problem for linear weight formulas from [21].
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2.2.4 A Heuristical Approach to Satisfiability Problem

Since the LPP2-satisfiability problem is NP-complete, it is natural to try to solve its

instances using certain heuristics. Here we shall describe such an approach based on

the so-called genetic algorithms.

As the name suggests, genetic algorithms (GA) imitate the basic genetic

postulates (e.g., selection, mutation) in the automated search of the solution within

the specified data set. In order to endow the method as fully as possible, the

technical vocabulary was not changed in this new setting. As a consequence, in

the application of genetic algorithms, one will refer to various potentially inanimate

objects (e.g., quadruple of real numbers from the unit real interval [0,1]) as

chromosomes.

Each individual (also called chromosome) is seen as a possible solution in the

search space for the particular problem. Thus, a GA can be seen as a searching

procedure for the global optima of the corresponding problem. Individuals are

represented by genetic code over a finite alphabet.

An evaluation function assigning fitness values to individuals has to be defined.

Fitness values indicate quality of the corresponding individuals, while average

fitness of entire populations may be good measures of obtained quality of the

procedures. GAs consist of applications of the genetic operators to populations

that must ensure that average fitness values are continually improved from each

generation to subsequent. Basic genetic operators are selection, crossover, and

mutation, but some additional operators such as inversion or local search may be

used as well.

Selection mechanism favorizes highly fitted individuals (as well as parts of

genetic code of individuals, i.e., genes) to have better chances for reproduction

into next generations. On the other hand, chances for reproduction for less fitted

members are reduced, and they are gradually wiped out from populations.

Crossover operator partitions a population into a set of pairs of individuals

named parents. For each pair a recombination of their genetic material is performed

with some probability. In that way nondeterministic exchange of genetic material in

populations is obtained.

Multiple applications of selection and crossover operators may produce that

the variety of genetic materials is lost. It means that some areas of search spaces

become not reachable. This usually causes the convergence in local optimums far

from the global optimal values. Mutation operator can help to avoid this shortcom-

ing. Parts of individuals (genes) can be changed with some small probability to

increase diversibility of genetic material. An initial population is usually generated

by random, although sometimes it may be fully or partially produced by an initial

heuristic.

A general description of GAs is given in Fig. 2.1, where Npop and pi denote
the number of individuals and their objective values, respectively. The objective

value of an individual corresponds to the value which the individual owns in the

case of the considered problem. The for-loop is repeated until a finishing criterion
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(the global optima is found, the maximal number of iterations is reached,. . .) is
satisfied. Since the procedure is not complete, if the maximal number of iterations is

reached, we do not know whether the considered problem is solvable. Heuristic-

Improvement() can be optionally included to improve efficiency of GA and/or to

help the procedure to escape from local optima.

Genetic algorithm will be applied on linear weight formulas, i.e., formulas of

the form

a1w α1ð Þ þ � � � þ anw αnð Þ � c,

where ai’s and c are rational numbers and αi’s are classical propositional formulas

containing primitive propositions from A. The intended meaning of w(α) is “the

probability of α.” In the wider context w(α) refers to the weight of α, which is a

mathematical model for agent’s (expert’s) estimation of importance (or agent’s

confidence) of α.
A weight literal is an expression of the form Σi aiw αið Þ � c or Σi aiw αið Þ < c.
The logic that allows such kind of formulas is still NP-complete; so by using this

logic, we just add some expressiveness to our language.

Since ForP-formulas can be equivalently translated into their disjunctive normal

forms and a disjunction is satisfiable if at least one disjunct is satisfiable, from now

on we will only consider formulas of the following form:

aj, 1w DNF αj, 1
� �� �þ � � � þ aj, nj DNF αj, nj

� �� �
ρjcj,

where ρj ∈ {�, <}, aj,i’s and cj are rational numbers, and DNF(α) denotes the

complete disjunctive normal form of α. We say that such a formula is in the weight

conjunctive form (wfc-form). Also, we will use at ∈ DNF(α) to denote the fact that
the atom at appears in DNF(α).

The input for the LPP2-satisfiability checker based on genetic algorithms is a

weight formula f in the wfc-form with L weight literals. Without loss of generality,

we demand that classical formulas appearing in weight terms are in complete

disjunctive normal form. Let ϕ( f ) ¼ {p1, . . ., pN} denote the set of all primitive

propositions from f, and |ϕ( f )| ¼ N.

Fig. 2.1 A general

description of GAs

(Reproduced from [71])
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An individualM consists of L pairs of the form (atom, probability) that describe

a probabilistic model. The first coordinate is given as a bit string of length N, where

1 at the position i denotes Øpi, while 0 denotes pi. Probabilities are represented by

floating point numbers.

For an individual M ¼ ((at1, μ(at1)), . . .,(atN, μ(atN))), the linear system

is equivalent to _ i ¼ 1
L (∑j ¼ 1

Lai,jμ(atj)ρici). Note that it is possible that some

ai,j ¼ 0 though [ai,j] matrix is usually not sparse. The individuals are evaluated

using function d(M), which measures a degree of unsatisfiability of an individualM.

Function d(M) is defined as the distance between the left- and right-hand side values

of the weight literals not satisfied in the model described by M:

d Mð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

M⊭tiρici

ai,1 �
X

at∈DNF αi,1ð Þ
μ atð Þ

0
B@

1
CAþ���þ ai,ni �

X
at∈DNF nið Þ

μ atð Þ
0
@

1
A�ci

0
B@

1
CA

2
vuuuut

If d(M ) ¼ 0, all the inequalities in the linear system are satisfied, hence the

individual M is a solution.

Some features of GA have been set for all tests:

• The population consists of ten individuals.

• One set of tests has been performed with a population of 20 individuals.

• Selection is performed using the rank-based roulette operator (with the rank

from 2.5 for the best individual to 1.6 for the worst individual – the step is 0.1).

• The crossover operator is one point, with the probability 0.85.

• The elitist strategy with one elite individual is used in the generation replace-

ment scheme.

• Multiple occurrences of an individual are removed from the population.

Two problem-specific (two-part) mutation operators were used. The first opera-

tor (TP1) features two different probabilities of mutation for the two parts (atoms,
probabilities) of an individual; after mutation, the real numbers in probabilities part
of an individual have to be scaled since their sum must be equal to 1. The second

operator (TP2) is a combination of ordinary mutation on atoms part and a special

mutation on probabilities part of an individual.

Instead of performing mutation on two bits in the representation of probabilities
part, two memberspi1 , pi2 of probabilities part are chosen randomly and then replaced

with the random p0i1 , p
0
i2
, such that pi1 þ pi2 ¼ p0i1 þ p0i2 and 0 � p0i1 , p

0
i2
� 1: The sum

of probabilities does not change and no scaling is needed.

We have experimented with the following choices in the local search procedure:

LS1 (LS denotes “local search”): For an individual M all the weight literals are

divided into two sets: the first set (B) contains all satisfied literals, while the second one
(W) contains all the remaining literals.The literal tBρBcB ∈ B (called the best one)with

the biggest difference |μ(tB) � cB| between the left and the right side and the literal
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tWρWcW ∈ W (the worst one) with the biggest difference |μ(tW) � cW| are found.

Two sets of atoms are determined: the first set BAt( f ) contains all the atoms from

M satisfying at least one classical formulaαi
B from tB ¼ aB1w αB1

� �þ � � � þ aBkBw αBkB

� �
,

while the second one WAt( f ) contains all the atoms from M satisfying at least one

classical formula αi
W from tW ¼ aW1 w αW1

� �þ � � � þ aWkWw αWkW

� �
: The probabilities

of a randomly selected atom from BAt( f ) ∖ WAt( f ) and a randomly selected atom

fromWAt( f ) ∖ BAt( f ) are changed so that tBρBcB remains satisfied, while the distance

|μ(tW) � cW| is decreased or tWρWcW is satisfied.

LS2: For an individual M, the worst weight literal tWρWcW from W (the set

of unsatisfied literals) with the biggest difference |μ(tW) � cW| is found. The literal

can be represented as ΣL
j¼1aWj

μ atj
� �

ρWcW . We try to change the vector of

probabilities [μ(atj)], so that the linear equation ΣL
j¼1aWj

μ atj
� � ¼ cW is satisfied.

The equationΣL
j¼1aWj

μ atj
� � ¼ cW represents a hyperplane inn while aWj

� �
denotes

a vector normal to the hyperplane. The projection of [μ(atj)] to the hyperplane that

satisfies the given equation is μ0 atj
� �� � ¼ μ atj

� �� �þ kW aWj

� �
. The calculation of

k and the projection vector is simple and straightforward and gives

k ¼
cw �

XL

j¼1
μ atj
� �

awjXL

j¼1
a2Wj

:

We set the new vector of probabilities to be

μ00 atj
� �� � ¼ max μ0 atkð Þ, 0ð Þ½ �XL

k¼1
max μ0 atkð Þ, 0ð Þ

:

Negative coordinates are replaced with 0, and the vector is scaled so that the sum

of its coordinates ΣL
j¼1μ

00
atj

equals 1.

LS3 is similar to LS2, with the difference being made when choosing the weight

literal tWρWcW from W (the set of unsatisfied literals). The chosen literal is the one

with the smallest difference |μ(tW) � cW|; it is the best bad literal.

LS4 is similar to LS2 and LS3. Instead of calculating the projection μ0 atj
� �� � ¼

μ atj
� �� �þ kW aWj

� �
for one chosen weight literal tWρWcW from W, we calculate kWi

aWij

� �
for each literal tWi

ρWi
cWi

from W (the set of unsatisfied literals) and calculate

the intermediate vector [μ0(atj)], by adding the linear combination to the original

vector: μ0 atj
� �� � ¼ μ atj

� �� �þ ΣWi
kWi

aWij

� �
: The new vector of probabilities

[μ00(atj)] is then calculated in same fashion as in LS2.

In our methodology, introduced in [64], the performance of the system is

evaluated on a set of PSAT-instances, i.e., on a set of randomly generated formulas
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in the wfc-form (with classical formulas in disjunctive normal form). The advan-

tage of this approach is that a formula can be randomly generated according to the

following parameters: N, the number of propositional letters; L, the number of

weight literals; S, the maximal number of summands in weight terms; and D,
the maximal number of disjuncts in DNFs of classical formulas. The considered

set of test problems contains 27 satisfiable formulas. Three PSAT-instances

were generated for each of nine pairs of (N,L ), where N ∈ {50,100,200}, and

L ∈ {N, 2N, 5N}. For every instance S ¼ D ¼ 5.

Having the above parameters, L atoms and their probabilities (with the constraint

that the sum of probabilities must be equal to 1) are chosen. Next, a formula

f containing L basic weight formulas is generated. It contains primitive propositions

from the set {p1, . . .,pN} only. Every weight literal contains at most S summands in

its weight term. Every classical formula is in disjunctive normal form with at most

D disjuncts, while every disjunct is a conjunction of at most N literals. For every

weight term t coefficients are chosen and the value of t is computed. Next, the

sum sp(t) of positive coefficients and the sum sn(t) of negative coefficients are

computed. Finally, the right-side value of the weight literals between sp(t) and sn(t)
and the relation sign are chosen such that f is satisfiable.

We prefer to test more problem instances of different sizes (even very large scale

instances) rather than making more trials on a smaller set of instances (of smaller or

average size). Since the tests are of large sizes, the necessity to perform them in a

reasonable time imposed to set the maximal number of generations to be 10,000 for

N ¼ 50, 7,000 for N ¼ 100 and 5,000 for N ¼ 200.

As an illustration of the corresponding results, we give Table 2.1 containing the

average running time of successful tests as measured on our test computer

(a Pentium P4 2.4 GHz, 512 MB-based Linux station). The table shows running

times only for selected tests. Columns 2 and 3 show times for tests without LSs,

with different population sizes (10 individuals vs. 20 individuals). Increased popu-

lation size does result in smaller number of iterations needed to find the solution,

but the computational cost for each iteration is increased and the overall computa-

tional cost is greater than with smaller population size. In columns 4–7 and 8–11,

we can compare the efficiency of various LSs. It is clear that LS2 and LS3 are more

efficient than LS1 and LS4 when used for large problem instances; however, it is

not clear which of them is the most efficient. The running times in columns 8–11

(LSs applied in each third generation) are on average smaller than times in columns

4–7 (LSs applied in each generation). However, this does not mean that the

principle of reducing application of LSs to each third generation is always more

efficient. Finally, columns 12–14 show execution times for tests using combination

of LSs. Combined usage of LSs is not justified in terms of time efficiency, but it is

justified in terms of increased success rate. Higher mutation rate in this setup leads

to better time efficiency and higher success rate, except for a few less complex

problem instances.
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2.2.5 Probabilistic Classification

A rather important and widely neglected feature of any probability on propositional

formulas is the fact that it can lead to effective methods for extending of any fuzzy

evaluation e : Var ! [0,1] of the set of propositional letters Var to the evaluation

e* : For ! [0,1], of the set of all propositional formulas.

Consequently, probability logic can be applied in problems that are traditionally

handled by fuzzy logic or possibilistic logic. A typical example of this kind is any

classification of the given objects O1, . . ., On according to certain criteria.

Due to finite additivity, any probability measure on propositional formulas is

uniquely determined by its values on finite conjunctions of pairwise distinct

propositional letters. As it was shown in [76], any fuzzy evaluation e : Var ! [0,1]

can be uniquely extended to measures eΠ and eG, where

eΠ p1 ^ � � � ^ pnð Þ¼def e p1ð Þ� � �e pnð Þ:
and

eG¼defmin e p1ð Þ, . . . , e pnð Þð Þ
( p1, . . ., pn are pairwise distinct).

Product measures eΠ correspond to one extreme situation: stochastic or proba-

bility independence of propositional letters. Gödel’s measures eG correspond to

another kind of extreme situation: logical dependence of propositional letters.

While stochastic independence is a measure-theoretic property and cannot be

forced by some nontrivial logical conditions (see [34]), logical dependence is

expressible in classical propositional calculus. For instance, logical condition

p ! q

clearly entails that e*( p ^ q) ¼ min((e( p), e(q))).
Linear convex combinations of finitely additive probability measures are finitely

additive probability measures as well, so using eG and eΠ we can construct an

infinite scale of probability measures e(s) ¼ seΠ þ (1 � s)eG.
From the uncertainty point of view, measures es correspond to various degrees

of dependence between propositional letters. From the fuzziness point of view,

measures e(s) provide countably many ways to extend the initial evaluation e of

propositional letters: a fact that enables probability evaluations of fuzzy quantities.

We will try to illustrate our intended meaning with the following simple example:

Example. Suppose that we have to classify compounds C1, C2, and C3 of the

substances p and q according to the criteria of minimal harmfulness of a compound.

It is known that both p and q are harmful, but they neutralize each other.

Concentrations of substances p and q in compounds C1, C2, and C3 are given in

the Table 2.2 below:
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Syntactically, we will consider both p and q as propositional letters. Since the

substances p and q neutralize each other, the minimal harmfulness criteria is

adequately represented by the formula p $ q. Moreover, for any [0,1]-evaluation

e is any of p and q we can easily calculate eΠ( p $ q), eG( p $ q) and say

e(0.25)( p $ q). For example, the calculation for eΠ goes as follows:

eΠ p $ qð Þ ¼ eΠ p ^ qð Þ _ Øp ^ Øqð Þð Þ ¼ eΠ p ^ qð Þ þ eΠ Øp ^ Øqð Þ
¼ e pð Þe qð Þ þ eΠ Øpð Þ � eΠ Øp ^ qð Þ
¼ e pð Þe qð Þ þ 1� e pð Þ � e qð Þ þ e pð Þe qð Þ
¼ 1� e pð Þ � e qð Þ þ 2e pð Þe qð Þ:

It is usual to interpret C1, C2 and C3 as [0,1]-evaluations of p and q. Evaluation
results are displayed in the Table 2.3 above:

All three columns eG( p $ q), eΠ( p $ q) and e(0.25)( p $ q) induce the obvi-

ously correct classification: the least harmful compound is C3, then follows the

compound C2, and the most harmful compound is C1.

In practice, we can apply measures e(s) in any classification problem where at

least one part of the computation of the criterion function f involves computation of

the truth value of certain formula α( p1, . . .,pn).
For example, suppose that we want to develop a fuzzy relational database for

automated trade of furniture, where database entries are evaluations of predefined

quality attributes. User’s queries should be stated in the form of propositional

formulas over the quality attributes. The resolution process will be illustrated on

the example of the query “find me a sturdy but light wooden chair that is not too

expensive”:

• Prompt the user to chose rational number s ∈ [0,1]. Here s represents the user’s
estimation of dependence between quality attributes in the query. 1 represents

stochastic independence, while 0 represents the logical dependence.

• Compute e(s)( p1 ^ p2 ^ p3 ^ Øp4) for all relevant database entries e. Here
p1 denotes sturdiness, p2 lightness, and so on.

• Return all relevant database entries e with maximal e(s)-values.

Table 2.2 Reproduced

from [76]
Compound Concentration of p Concentration of q

C1 0.95 0.05

C2 0.15 0.85

C3 0.65 0.35

Table 2.3 Reproduced from [76]

Evaluation e( p) e(q) eG( p $ q) eΠ( p $ q) e(0.25)( p $ q)

C1 0.95 0.05 0.1 0.095 0.099

C2 0.15 0.85 0.3 0.255 0.289

C3 0.65 0.35 0.7 0.455 0.639
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The intermediate measures e(s) are particularly useful in the cases where both

eG and eΠ do not classify observed objects. Namely, it is easy to construct an

example with the following measurement results (Table 2.4):

As a consequence, neither Gödel’s nor product measure provides classification

of objects A, B and C according to the classification criteria α, while their arithmetic

mean e(0.5) provides a classification – linear ordering A < B < C that is sound with

both partial orderings induced by eΠ and eG. Note that eΠ induces partial ordering

A < C and B < C (A and B are incomparable), while eG induces partial ordering

A < B and A < C (B and C are incomparable).

What we want to say is that, in cases where we disregard independence issues

and only evaluate formulas with both eΠ and eG, the intermediate measures e(s) can
offer an additional information that is sound with partial classifications given by

eΠ and eG, thus provide a finer classification.

Example. This is a well-known example of the classification problem unsolvable

by the standard aggregation via discrete Choquet integral proposed by Michel

Grabisch. As it is shown in [76], instead of using bicapacities in the process of

aggregation, we can obtain the obviously correct classification using the product

measure eΠ in the aggregation process.

Let us start with the formulation of the problem. Objects A, B, C and D are

described by quality attributes p1, p2 and p3, whose values are given in the following
Table 2.5:

Objects A, B, C and D should be classified according to the following criteria:

• ϕ1: The arithmetic mean of the values of quality attributes.

• ϕ2: If the analyzed object is good with respect to p1, then p3 is more important

than p2. Otherwise, p2 is more important than p3.

Clearly, given objects are ordered increasingly with respect to the given classifi-

cation criteria in the following way: D < C < A < B. As a first step towards the

automated decision mechanism, we need to formalize ϕ1 and ϕ2. Obviously, ϕ1

must be evaluated as the arithmetic mean of p1, p2 and p3. The formalization of the

second criterion is not so obvious. One of possible propositional representations of

ϕ2 is given by

Table 2.4 Reproduced

from [76]
Object eΠ(α) eG(α) e(0.25)

A 0.3 0.4 0.35

B 0.3 0.0 0.45

C 0.6 0.6 0.55

Table 2.5 Reproduced

from [76]
Object p1 p2 p3

A 1.75 0.9 0.3

B 0.75 0.8 0.4

C 0.3 0.65 0.1

D 0.3 0.55 0.2
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p1 ^ p3ð Þ _ Øp1 ^ p2ð Þ:
We will separately evaluate ϕ1 and ϕ2 and then aggregate obtained evaluations.

Since there is no information about significance of ϕ1 and ϕ2, we will assume that

they are equally important, so the aggregation coefficient would be equal to 0.5.

In other words, the final evaluation would be equal to the arithmetic mean of

evaluations of ϕ1 and ϕ2. The arithmetic means of values of p1, p2 and p3 for

objects A, B, C and D are displayed in the Table 2.6 above:

Finally, eΠ((p1 ^ p3) _ (Øp1 ^ p2))-values and the final aggregation are

displayed in the following two Tables 2.7 and 2.8:

As we can see, the last column gives us the obviously right classification

D < C < A < B.

2.3 Nonmonotonic Reasoning and Conditional

Probabilities

2.3.1 Nonmonotonic Reasoning

Nonmonotonic reasoning is a field of artificial intelligence that studies behavior of

the so-called common sense reasoning from available, but incomplete data. Often,

an expert posses incomplete knowledge and use it to infer further information in

order to make decisions and plan actions.

Table 2.6 Reproduced

from [76]
Object p1 p2 p3 Arithmetic mean

A 0.75 0.9 0.3 0.65

B 0.75 0.8 0.4 0.65

C 0.3 0.65 0.1 0.65

D 0.3 0.55 0.2 0.35

Table 2.7 Reproduced

from [76]
Object p1 p2 p3 eΠ(( p1 ^ p3)_(Øp1 ^ p2))

A 0.75 0.9 0.3 0.45

B 0.75 0.8 0.4 0.5

C 0.3 0.65 0.1 0.458

D 0.3 0.55 0.2 0.445

Table 2.8 Reproduced

from [76]
Object ϕ1 ϕ2 Aggregation

A 0.65 0.45 0.55

B 0.65 0.5 0.575

G 0.35 0.458 0.4175

D 0.35 0.445 0.3725
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Thus, nonmonotonic logics deal with principled reasoning about normal or

typical situations. Let us consider the following example, a variant of well-known

Penguin triangle.

Example. Carcinomas are malign tumors that usually produce metastasis. Basal

cell carcinoma is a malign tumor. However, basal cell carcinoma almost never

produces metastasis, so the monotonicity fails.

This example explains the term “nonmonotonic”: in classical logic, if a conclu-

sion is derived from a set of premises A, it can be derived from any larger set B 	 A.
On the other hand, in common sense reasoning the conclusion might be retracted

after new information has been added to A. The example also suggests the following

desirable property of nonmonotonic logic: consequences of more specific informa-

tion are more reliable then consequences of the more general information.

In this approach, knowledge base is always given abstractly, as a set of formulas

of propositional logic. Given formulas α and β the default rule α ~ β has a meaning:

if α, then normally β (or if α is true, then I plausibly (but not necessarily infallible)

jump to the conclusion that β is also true). Here we want to point out the difference

between the assertion “if α, then normally β,” and “normally, if α is true, then β
is true” (see [53]). The former assertion is represented by the formula α ~ β,
while the latter is represented by the formula T ~ α ~ β, and they may have very

different meanings.

In this notation, nonmonotonicity of the corresponding binary consequence

relation ~ on formulas means that from α ~ γ we cannot infer α ^ β ~ γ. In other

words, the rule

M :
α 
 γ α ^ β 
 γ

α ^ β 
 γ

called monotonicity does not hold for incomplete information. This means that

classical logic is not adequate for the formal capture and possible automatization of

the common sense reasoning, since we rarely have the complete knowledge

(description, exact model) about the underlying problem.

There are two more important properties of classical logic which are not

desirable: transitivity

TR :
α 
 β β 
 γ

α 
 γ

and contraposition

CP :
α 
 β

Øβ 
 Øγ

The following examples are designed in order to illustrate inadequacy of transi-

tivity and contraposition in nonmonotonic reasoning.
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Example [Transitivity]. Infective diseases are usually caused by microorganisms.

On the other hand, microorganisms are usually useful (e.g., planktons). However,

infective diseases are not useful, so transitivity fails.

Example [Contraposition]. Anaphylactic shock is not the usual manifestation of

allergic reaction. However, anaphylactic shock is a type of allergic reaction, so

contraposition fails.

In [94], Reiter gives several reasons for formal approach to nonmonotonic

reasoning. One reason is that the inferences the default rules sanction can be

complicated. He illustrates that two default assumptions can conflict in the follow-

ing example called the Nixon diamond.

Example [Nixon Diamond]. Quakers are normally pacifists. Republicans are

normally not pacifists. If Nixon is both a Quaker and a Republican, he inherits

contradictory default assumptions: he is simultaneously both pacifist and

non-pacifist.

In [25], Gabbay suggested that the study of nonmonotonic reasoning should

be focused on the corresponding consequence relations. Natural question is what

properties should a nonmonotonic consequence relation ~ satisfy? Soon after

Gabbay’s paper, Kraus, Lehmann, and Magidor proposed in [53] a set of properties,

named System P, that every nonmonotonic consequence relation should satisfy.

Those postulates are commonly regarded as the minimal core of the nonmonotonic

reasoning (see, e.g., [24]).

2.3.2 Preferential and Rational Relations

We assume that knowledge is represented by propositional formulasForP built over
an at most countable set of propositional letters P.

A preferential relation (see [53]) is a binary relation ~ on ForP that satisfies the

properties reflexivity (REF); left logical equivalence (LLE); right weakening (RW);

AND, OR; and cautious monotonicity (CM) that will be described below. As we

have said earlier, those properties are usually called System P, where P stands for

preferential.

Reflexivity is a common property for all consequence relations:

R : α 
 α:

Left logical equivalence states that classically equivalent formulas α and β have

the same nonmonotonic consequences:

LLE :
α , β α 
 γ

β 
 γ
:
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Right weakening postulates that defeasible consequences are closed under strict

(classical) logical consequences:

RW :
β ) γ α 
 β

α 
 γ
:

The rule

AND :
α 
 β α 
 γ

α 
 β ^ γ
,

the conjunction of two plausible consequences, is also a plausible consequence.

The OR rule that is given by

OR :
α 
 γ β 
 γ

α _ β 
 γ

is the only rule of System P that doesn’t belong to the weaker system C presented

in [53]. Thus, the status of OR can be seen as more problematic than the status of

other rules. The following example supports OR:

Example. The patient with obstipation will usually respond well to the laxative

medicament. The same conclusion will hold if the patient drinks the plum juice.

Hence, laxative medicament or plum juice (as a natural laxative) should improve

condition of the patient with obstipation.

Finally, the cautious monotonicity rule is a very restricted form of monotonicity,

allowing as adding the new information that are expected to be true (according to

previous knowledge), without retracting the previous conclusions:

CM :
α 
 β α 
 γ

α ^ β 
 γ
:

In [53], CM is supported by the following example:

Example. Let as assume that we expect it will be raining tonight. Also, the horse

named Fireball should win the race tomorrow. Then we can plausibly conclude that

if it rains tonight, Fireball should still win the race tomorrow.

An arbitrary preferential relation is non-monotonic, in the sense that it doesn’t

need to satisfy monotonicity rule M. It turns out that the system P takes into account

all the examples from the previous subsection and it takes care of the most specific

information, when inferring the conclusion from knowledge base. Also, the popu-

larity of the system P is, arguably, a consequence of existence of very natural,

preferential semantics. Roughly speaking, α ~ β holds if β is satisfied in all “most

normal” evaluations (with respect to a given preference or partial ordering of

evaluations) that satisfy α.
Note that all the properties of the system P are so-called Horn sentences: if such

and such pairs are in the relation, then such another pair is also in the relation.
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After the work of Kraus, Lehmann, and Magidor, many researchers studied the

subclasses of preferential relations obtained by adding a number of non-Horn rules

to the system P; see [8, 9, 22, 23, 100, 105]. The most popular non-Horn rule is the

so-called rational monotonicity.

A preferential relation ~ is called a rational relation if it additionally satisfies the

rational monotonicity rule

RM :
α 
 γ αØβ
α ^ β 
 γ

:

While some researchers object that RM is too strong [56, 100], Lehmann and

Magidor claim that any nonmonotonic relation should satisfy RM. In [54], they

present a restricted family of preferential models, called the ranked models, that is

shown to be a proper semantic for the rational relations. Additional evidence in

support of their claim is the nonstandard probabilistic semantics.

2.3.3 Probabilistic Semantics

In [3], Adams studied (followed by Pearl [74]) a nonstandard probabilistic approach

to nonmonotonic reasoning and the properties of the corresponding consequence

relation. The notion “nonstandard” refers to the fact that that probabilities may have

infinitesimally small values, where an infinitesimal may be zero, or any object

strictly lesser than every positive real number and strictly greater than every

negative real number. Furthermore, a � b means that a � b is an infinitesimal.

For details, see [101].

In Adams’ approach, default information α ~ β expresses that conditional

probability μ(β|α) is infinitely close to 1, i.e., there is an infinitesimal ε such that

μ(β|α) ¼ 1 � ε. It is easy to show that any nonstandard probability μ on ForP
defines the rational relation ~ μ as follows:

α
μβ iff μ β
		α� � � 1μ αð Þ ¼ 0:

Lehmann and Magidor have proved the converse in [54]: each rational relation is

generated by some neat probability measure, i.e., for each rational relation ~ there

is a finitely additive hyeprreal valued probability measure μ on ForP such

that ~ ¼ ~ μ.

On the other hand, if we consider standard probability measures and define α ~ β
as μ(β|α) ¼ 1 � ε for some positive real number ε, the obtained relation does not

satisfy the rules of the system P. For example, if we choose ε ¼ 1
n, for some positive
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integer n (we assume that n is large), and define α ~ nβ as μ β
		α� � ¼ 1� 1

n, then we

obtain (see [11]):

• REFn�iα
nα:

• LLEn :
α , β α
nγ

β
nγ
:

• RWn :
β ) γ α
nβ

α
nγ
:

• ANDn :
α
2nβ α
2nγ

α
nβ ^ γ
:

• ORn :
α
2nγ β
2nγ

α _ β
nγ
:

• CMn :
α
nβ α
nγ

α ^ β
n�1γ
:

In our opinion, this result supports the system P, since if the premises are

highly reliable, conclusion is reliable as well. On the other hand, it warns us that

when we increase length of the inference, we also decrease reliability of the

conclusion.

In [6], Benferhat, Dubois, and Prade proposed a standard semantics for the

system P, using a special subclass of the standard (real-valued) probability

measures, the so-called big-stepped probabilities. They assume that the set of

propositional letters P is finite, i.e., P ¼ p1; . . . ; pnf g . Big-stepped probabilities

are the neat probability measures that satisfy the following conditions:

1. μ atð Þ > Σat0∈AtP, μ at0ð Þ<μ at0ð Þμ at0ð Þ for all atoms at∈AtP.

2. μ(at) ¼ μ(at0) iff the atoms at and at0 coincide.

A literal is either a propositional letter or negated propositional letter. An atom

over P ¼ p1; . . . ; pnf g is any conjunction l1 ^ � � � ^ ln of literals such that each

propositional letter pk appears in exactly one literal lj. For example, if P ¼ p; qf g,
then the corresponding atoms are p ^ q, p ^ Øq, Øp ^ q and Øp ^ Øq.

Probabilistic semantics for the system P is given by the condition

α 
 β iff μ β
		α� �

> μ Øβ
		α� �

:

An important reformulation of the previous definition is given by

α 
 β iff μ βjαð Þ > 1

2
:

The same paper also offers possibilistic semantics for the system P.
This research motivated development of probabilistic logics, appropriate for

modeling nonmonotonic inference relation. Nonstandard approach is modeled

in [92], and logic with big-stepped probabilities is presented in [12].
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2.3.4 Some Non-Horn Rules and Nonstandard Probabilities

As it is the case with the rule of rational monotonicity, many other non-Horn rules

are considered as desirable and natural properties of nonmonotonic consequence

relations. We will compare the strength of those rules, always assuming presence of

the rules of the system P. In papers [22, 23] the rules named negation rationality and

disjunction rationality are introduced as follows:

• NR : α
βα^γ≁β
α^Øγ
β :

• DR : α_β
γα≁γ
β
γ :

The rule NR is strictly weaker than DR and that DR is strictly weaker than RM.

Another inference rule, the so-calledweak rationalmonotonicity, that is strictlyweaker

than RM and incomparable with both NR and DR, is introduced in [105] as follows:

WRM :
α 
 γα ^ β≁γα≁Øβ


 Øα
:

The determinacy preservation rule

DP :
α 
 βα ^ γ≁Øβ

α ^ γ 
 β
,

introduced byMakinson in [56], is the only restricted form of monotonicity stronger

than RM. On the other hand, rational contraposition

RC :
α 
 βØβ≁α

Øβ≁Øα

and weak determinacy

WD :

 Øαα≁β

α 
 Øβ

are incomparable with RM but weaker than DP [8, 9]. It is also known that RC

implies WD and that FD ¼ WD + RM.

Fragmented disjunction

FD :
α 
 β _ γα≁βα≁γ

Øβ 
 γ

and conditional excluding middle

CEM :
α≁β

α 
 Øβ

are strictly above DP; see [8]. Furthermore, CEM is strictly above FD. Those two

rules are not restricted form of monotonicity – they are incomparable with M.
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From now on, we will call a preferential relation which satisfies some of the

additional rules by that rule (e.g., a DP-relation is a preferential relation which

satisfies the rule determinacy preservation). The following diagram summarizes the

relationships between the mentioned rules explained above (Fig. 2.2).

The position of rules DP, FD, and CEM is below RM, which allowed a search for

a probabilistic representation of those rules. We say that a neat nonstandard

probability measure μ induces a rational relation ~ iff

α 
 β iff μ β
		α� � � 1orμ αð Þ ¼ 0:

The following classes of the hyperreal probability measures are proposed as their

semantics in [13]:

• A probability measure μ is a CEM-measure iff
μ αð Þ
μ βð Þ � 0 or

μ βð Þ
μ αð Þ � 0 for all α, β∈

ForP so that α ^ β is a contradiction and either μ(α) > 0 or μ(β) > 0.

• μ is a DP-measure iff
μ αð Þ
μ βð Þ � 0 or

μ βð Þ
μ αð Þ � 0 for all α, β ∈ ForP so that α ^ β is a

contradiction (we also say that α and β are disjoint), either μ(α) > 0 or μ(β) > 0,

and μ(α) � 0 and μ(β) � 0.

• μ is an FD-measure iff μ is a DP-measure such that for any pairwise disjoint

formulas α, β and γ we have that at least one of μ(α), μ(β) and μ(γ) is an

infinitesimal.

It is proved in [13] that a preferential relation ~ satisfies CEM (DP, FD) if and

only if there is a CEM (DP, FD)-measure μ that induces ~.

CEM

FD

DP

DR

NR WDWRM

RCRM

MFig. 2.2 The relationship

between nonmonotonic

consequence relations

(Reproduced from [13])
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2.4 Probabilistic Approach to Measuring Inconsistency

2.4.1 Measures of Inconsistency

Although it is the overruling opinion that conflicting knowledge bases are undesirable,

they easily appear in practice when experts share their knowledge in order to build

knowledge of the group. Hunter and Konieczny [39] give the example of a group of

clinicians advising on a patient.Although every set of formulasTiwhich represents the
opinion of i-th clinician is consistent, it is possible that their union[ Ti is inconsistent.

As inconsistent information is often the only available information, we have to

deal with it. Many logical formalisms are proposed for reasoning under inconsis-

tency, like paraconsistent logics, default reasoning, possibility theory, belief revi-

sion and formal argumentation [5–7, 19, 26, 27, 38, 40, 41, 53, 54, 56, 81, 95,

97–99]. Unlike classical logic, they enable drawing nontrivial conclusions from

inconsistent knowledge bases, where two different inconsistent sets can lead to

different sets of conclusions.

Development of those techniques points out to the need for analyzing and

comparing inconsistent sets [39]. It is definitely not true that all inconsistent sets

are equally bad. For example, in the previously mentioned example, it makes the

difference whether each two clinicians are in conflict or only several of them taken

together are in conflict. Similarly, some inconsistent information are less significant

than the other (two conflicting data about weight of a patient in a database are often

irrelevant for making a diagnosis from the other information from database).

There are various applications of measures of conflicts. If we have to choose

between several inconsistent databases, measures of inconsistency may be used for

answering the question which one is the most tolerable. Similarly, in diagnosis, if

assumptions are in conflict with observed symptoms, a measure of contradiction

may be useful for detecting the wrong assumption. All that indicates that

approaches to measure the degree of inconsistency need to be context sensitive

(and different approaches lead to measures incompatible with one another [33]).

In one approach, the measure of inconsistency depends on the proportion of the

language that is affected by the inconsistency in a theory [31, 51]. The second

approach considers the number of formulas needed to produce a contradiction. This

idea implies that the set of formulas ϕ1, . . ., ϕn is not equivalent to the singleton

{ϕ1 ^ � � � ^ ϕn} (this property is valid in the so-called non-adjunctive logics [52]).

The idea to consider the distribution of contradiction among the formulas approach

turns to be closely related to probabilistic measure on formulas. In [11, 50], this idea

was compared with semantic notion of existence of a probability measure which

assigns a high probability to each formula of the theory.

Besides existence of probability-based measures of inconsistency of proposi-

tional theories, some researchers investigate degrees of inconsistency of sets of

probabilistic formulas. In [79, 102], the level of inconsistency of a set of probabilis-

tic formulas is proportional to distance from the function on formulas (given by the

conditions of theory) to the closest probabilistic measure on formulas. This approach

has a potential in analyzing CADIAG-2 expert systemwith applications inmedicine.
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2.4.2 Probabilistic Approach for Measuring
Propositional Theories

According to Sorensen, the significance of any inconsistency is correlated to

the minimal number of formulas that are needed for its derivation. The first

formalization of this idea was presented in [50] by Knight. He proposed a real

number η ∈ [0,1] as a degree of consistency of a given set of formulas T, based
on the existence of the appropriate probability measure on formulas, and called it

η-consistency:

• A knowledge base T is η-consistent iff there exists a probability measure μ on

formulas such that μ(ϕ) � η for all ϕ ∈ T.
• An η-consistent knowledge base T is maximally η-consistent iff it is not

ζ-consistent for all ζ < η.

In particular, consistency degree of any consistent theory (knowledge base) is

equal to 1. On the other hand, the worst theories (0-consistent) are those containing

a contradictory formula. It is proved in [50] that every theory T is maximally

η-consistent for some rational number η.

Example. For a patient with a sniffle, we may consider the following two

hypotheses as possible causes:

• A: The patient has a flu.
• B: The patient is allergic to pollen.

In addition, let us assume that A and B have not occurred simultaneously in our

patient. Denote the last assumption by C. Now our knowledge base T ¼ {A,B,C}

is inconsistent, since C is equivalent to ØA _ ØB. It can be shown that T is 2
3
-

consistent. T is also minimally inconsistent in the sense that any proper subset of

T is consistent.

Knight proved the following characterization of minimally inconsistent knowl-

edge bases:

• If T is a minimally inconsistent set of formulas, then T is also maximally 1� 1
Tj j-

consistent.

For arbitrary inconsistent sets, the following generalization holds:

• If T0 is the smallest minimally inconsistent subset of T, then T is
T0j j�1

Tj j -consistent.

Note that maximality of η is not stated in the previous result. Precise relationship
between syntactic notion of cardinality of the smallest minimal inconsistent subset

of a knowledge base and semantic approach based on probability measures is

studied in [11]. For that purpose, the following notion is introduced:

• A theory T is n-consistent iff each subset T0 of T with n elements is consistent.
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The notion of n-consistency is a syntactical notion and it is not comparable

with the Knight’s η-consistency. The corresponding semantical notion is the notion

of n-probability:

• A theory T is n-probable if there exists a probability measure μ such that

μ ϕð Þ > 1� 1
n for all ϕ ∈ T.

The notion ofn-probability is similar to a special case ofKnight’s η-consistency, for
η ¼ 1� 1

n. It turns out that the n-consistency is a weaker property than the n-probabil-

ity, i.e., every n-probable theory is n-consistent, but there is an n-consistent theory that
is not n-probable (for arbitrary n). The semantical notion that turns out to be the

probabilistic analogue of n-consistency is local variant of the n-consistency is given by

• T is locally n-probable if each subset of T with n + 1 elements is n-probable.

A theory T is locally n-probable if and only if it is n-consistent.
In [11] we also analyze inconsistent knowledge split into two parts: one part

consists of consistent set of the “facts” {ϕ1, . . .,ϕk}, representing the knowledge of

k experts, and the second part consisting of some statements believed to be probable

by at least one expert, on the basis of his knowledge.

Conditional probabilities are used to introduce the notion of n-probability modulo

“facts.” The additional condition is that the expert’s beliefs are highly compatible.

A theory T is said to be n-probable modulo {ϕ1, . . .,ϕk}, if there exists a

probability measure μ with the following properties:

1. μ ϕ1 ^ � � � ^ ϕkð Þ > 0:

2. μ ϕi

		ϕj

� �
> 1� 1

n
for all i, j ∈ 1; . . . ; kf g:

3. For all ψ ∈ T, there exists i ∈ {1, . . .,k} such that μ ψ
		ϕi

� �
> 1� 1

n.

Then the following result holds:

• If theory T is n-probable modulo {ϕ1, . . .,ϕk}, then T is (n � k + 1)-probable,

hence (n � k + 1)-consistent.

A syntactic notion of n-consistency modulo a set of formulas is also introduced:

T is n-consistent modulo S iff for any ψ1, . . ., ψn ∈ T, the theory {ψ1, . . .,ψn} [ S
is consistent. For the finite S, the following result is proved:

• If T is n-probable modulo {ϕ1, . . .,ϕk}, then T is (n � k + 1)-consistent modulo

{ϕ1, . . .,ϕk}.

2.4.3 Measuring Inconsistency in Probabilistic
Knowledge Bases

In [79, 102], an approach to measuring degree of inconsistency of probabilistic

knowledge bases is developed. Probabilistic knowledge base is any finite set

of conditional statements, with probability values attached. The measures of
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inconsistency are based on distance from the knowledge base to the set of

probability measures.

In [102], a probabilistic knowledge base is a set of probabilistic constraints of the

form (ϕ|ψ)[d], where the pair of formulas (ϕ|ψ) is a conditional statement and

d ∈ [0,1]. A knowledge base is said to be satisfiable, if there is a probability

measure \mu on formulas, such that μ(ϕ|ψ) ¼ d for every element (ϕ|ψ)[d] of the
base. In order to avoid case differentiation when μ(ψ) ¼ 0, it is assumed that

μ(ϕ|ψ) ¼ d iff μ(ϕ ^ ψ) ¼ dμ(ψ).
Then, the distance from knowledge base T ¼ {(ϕi|ψ i)[di]|i ¼ 1, . . ., n} to a

measure μ is defined as Xn
i¼1

cij j,

where μ(ϕ|ψ) ¼ di, for all i ¼ 1, . . ., n. Measure of inconsistency of T, denoted by

Inc*(T ), is obtained by minimization of the above sum, when μ ranges the set of

probability measures. The following properties of Inc* are shown in [102]:

• Consistency: If T is consistent, then Inc*(T ) ¼ 0.

• Inconsistency: If T is inconsistent, then Inc*(T ) > 0.

• Monotonicity: Inc*(T ) � Inc*(T [ {(ϕ|ψ)[d]}).
• Super-additivity: If T \ T0 ¼ ∅, then Inc*(T [ T0) � Inc*(T) + Inc*(T0).
• Weak Independence: If no propositional letter from ϕ, ψ appears in T, then Inc*

(T ) ¼ Inc*(T [ {(ϕ|ψ)[d]}).
• Independence: If (ϕ|ψ)[d] does not appear in any minimal inconsistent subset of

T, then Inc*(T ) ¼ Inc*(T [ {(ϕ|ψ)[d]}).
• Penalty: If (ϕ|ψ)[d] does appear in some minimal inconsistent subset of T, then

Inc*(T ) < Inc*(T [ {(ϕ|ψ)[d]}).
• Continuity: The function Inc*({(ϕi|ψ i)[xi]|i ¼ 1, . . ., n}) is continuous in all

variables xi.

All of the above properties also hold for the normalization Inc0
* of Inc*, defined

by Inc�0 Tð Þ ¼ Inc� Tð Þ
Tj j .

In [79], approach from [102] is extended in several ways:

• Interval-valued probabilistic constraints of the form ϕ
		ψ� �

l; u½ � (where

0 � l � u � 1 ) are allowed, with the standard probabilistic interpretation (if

l ¼ u, we write ϕ
		ψ� �

l½ � as above).
• Inc* is generalized to the family of measures DCp (called “p-distances to consis-

tency”), for p ∈ [1, + 1] (actually,DCpΓ is defined, where Γ represents correctly

evaluated conditional statements, which should not be considered when

assigning the p-distance of a theory), defined by the so-called p-norm. For the

finite p the corresponding p-norm is defined by x1; . . . ; xnk kp ¼ Σn
1 xij jp� �1

p ,

while for p ¼ + 1 the corresponding p-norm is defined by kx1, . . .,xnk1 ¼
max(|x1|, . . .,|xn|).
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• The extended definition of conditional probability from [102], which allowed

null probability for the conditioning event, is replaced by standard definition.

• Inconsistency values range over the set t, tþ ε, 1=ε : t ∈ f g, where ε > 0 is an

infinitesimal.

Here, operations of nonstandard field of real numbers are not considered, and ε is
only used to distinguish knowledge bases that are “closer to consistency” from

the rest.

For T ¼ ϕi

		ψ i

� �
li; ui½ �		i ¼ 1, . . . , n


 �
and x

!¼ x1; . . . ; x2nð Þ such that xi � 0

and 0 � li � xi � ui þ xi � 1, let T x
! ¼ ϕi

		ψ i

� �
li � xi, ui þ xi½ � : i ¼ 1, . . . , n


 �
.

If Fp(T ) denotes the set x
!���
���
p
: T x

!
is satisfiable

 �
, then p distance to consistency

DCp is defined as follows:

DCp Tð Þ ¼
min Fp Tð Þ, min Fp Tð Þexists

εþ inf Fp Tð Þ, otherwise, provided Fp Tð Þ 6¼ ∅
1

ε
,Fp Tð Þ ¼ ∅

:

8>><
>>:

Note that 1-norm is used in the definition of Inc*. Let us try to clarify the

definition of DCp on the following CADIAG-2 example taken from [79]:

Example. Consider the unsatisfiable set of CADIAG-2 rules:

T ¼ D36
		S157� �

0:3½ �, D81
		S157� �

0:15½ �, D81
		D36� �

1½ �
 �
:

Let μn be the sequence of probability measures on the set of formulas generated

by D36, D81 and S157, such that:

• μn S157ð Þ ¼ 1
n :

• μn D36ð Þ ¼ 0:3
n þ 1� 1

n :

• μn D81ð Þ ¼ 0:15
n þ 1� 1

n :

• μn S157 ^ D36ð Þ ¼ 0:3
n :

• μn S157 ^ D81ð Þ ¼ 0:15
n :

• μn D36 ^ D81ð Þ ¼ 0:15
n þ 1� 1

n :

Then the following equalities also hold:

• μn D36
		S157� � ¼ 0:3:

• μn D81
		S157� � ¼ 0:15:

• μn D81
		S157� � ¼ n�0:85

n�0:7 , and lim n ! 1μn(D81|S157) ¼ 1.

Hence, DCp(T ) ¼ ε for all p.
The following properties of the measures DCp are presented in [79]:

• DCp Tð Þ � DCp T [ T0ð Þ:
• DCp(T ) ¼ 0 iff T is satisfiable.

2 Applications of Probabilistic and Related Logics to Decision Support in Medicine 63



• If p < q, then DCp(T ) � DCq(T ).

• If p 6¼ q, then DCp and DC
q

induce distinct orderings, i.e., we can construct

T and T0 such that DCp(T) > DCp(T0) and DCq(T) < DCq(T0).

It is also shown that DCp Tð Þ � Tj j1p, which enabled normalization DC
p
of DCp

(see [79] for details), with the property.

• If p < q, then DC
p
Tð Þ � DC

q
Tð Þ, contrary to DCp.

The same author presented similar approach for measuring inconsistency in

fuzzy knowledge bases in [80]. Measures presented in this section are also used

to develop strategies for repairing inconsistent knowledge bases.

2.5 Evidence and PST Logics

2.5.1 Reasoning About Evidence

In many cases, some probabilistic knowledge should be revised in the presence of

new information. Evidence can be seen as that new information that proves or

disproves certain beliefs – hypotheses. In the formalization of reasoning about

evidence, we are particularly interested in the measuring of evidence.

Example. Suppose that the doctor suspects that a patient has hypertension. After

five blood pressure readings, what can we say about the likelihood of the hypothesis

that the patient has hypertension? If high blood pressure is detected in all cases, than

we can say that this observation favors the hypothesis. In this particular case, the

amount of evidence increases with the increment of the number of readings.

In many cases, knowing the prior probabilities is sufficient for the computation

of the probability of hypotheses after observation. However, the prior probabilities

are usually unknown, so we cannot compute posterior probabilities. Still,

observations do provide some evidence in favor of one or several possible

hypotheses. Intuitively, the probability of a hypothesis depends on:

• The prior probabilities of the hypothesis (previous belief of the doctor)

• To what extent the observations support the hypothesis

The second item is formalized by the weight of evidence – the function that

assigns a number from the unit interval [0,1] to every observation and hypothesis.

It should have value 0, if the observation fully disconfirms hypothesis, and value

1 if the observation fully confirms hypothesis.

In [37], Halpern and Pucella introduced a sound, complete and decidable logic

for reasoning about evidence. This logic extends a logic from [21]. They defined an

evidence space as a tuple E ¼ (H, O, μ1, . . ., μ _ m), where:
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• H ¼ {h1, . . .,hm} is the set of mutually exclusive and exhaustive hypotheses.

• O ¼ {o1, . . .,on} is the set of possible observations.

• For a hypothesis hi, μi : O ! [0,1] is a likelihood function on O, i.e.,

μi(o1) + � � � + μi(on) ¼ 1, such that for every o ∈ O there is i ∈ {1, . . .,m}
such that μi(o) > 0.

For an evidence space E, the weight function wE : O � H ! [0,1] is defined as

wE oi; hj
� � ¼ μj oið Þ

μ1 oið Þ þ � � � þ μm oið Þ :

Intuitively, wE(o,h) is the likelihood that the hypothesis h holds, if the observa-

tion o is observed. If we also know the prior probability μ on hypotheses, we can

calculate the probability of hypotheses after observation using Dempster’s rule of

combination (see [37]).

The formulas of the logic can express the relationship between prior

probabilities, evidence, and posterior probabilities. Formally, operators P0 and P1

are introduced to reason about the prior and posterior probability of hypotheses, and

w syntactically represents weight of evidence. Then, polynomial term is a linear

combination of expressions of the form P0(α), P1(α) and w(o,h), with rational

coefficients (for technical reason, in [37] variables ranging over the set of real

numbers are also included, and they are eliminated in [73]).

Formulas are built as Boolean combinations of observations, hypotheses, and

formulas of the form f � g, where f and g are polynomial terms.

Example. Following the previous example, let has hypertension be a hypothesis h,
and five readings of high blood pleasure an observation o. Then

P0 hð Þ ¼ 0:5 ^ o ^ w o; hð Þ � 0:8ð Þ ! P1 hð Þ � 0:7

has the meaning: “If doctor believed that patient has a hypertension with probability

0.5, and if five readings of high blood pleasure are observed, and if that observation

supports diagnosis of hypertension with degree at least 0.8, then doctor should

change his degree of belief to at least 0.7.”

2.5.2 PST Logics

Nowadays, it is possible to locate a small object in the body (e.g., thrombus) and

even to track their moving. Representing such information may involve not only

space and time but also probability as there may be some uncertainty about the

identity of an object, its exact location, or time value.
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The PST (probabilistic spatiotemporal) framework is developed to provide

a formalism for representing, querying, and updating such information using a

simple syntax and an intuitive semantics, and the revision of a PST database is

investigated in [32].

The basic PST framework of data concerning objects located in space and time is

extended in [15], where the data is given with a probability interval to logics with

propositional connectives as well as to the first-order logic. The axiomatization of a

number of different logics, depending primarily on the allowed probability values as

well as combinations of atomic formulas, is presented in [15]; soundness and com-

pleteness are proved and decidability is discussed. The logics depend on three sets:

• ID is a finite set of objects.

• S is a finite set of points in space.

• T ¼ {1, . . .,N} is a finite set of time instances.

Semantics consists of finite sets of worlds and probability distributions over

worlds, where each world describes one possible scenario for the location of each

object for each time value.

Syntax consists of ST (spatiotemporal) formulas and PST formulas. An ST-atom

is a formula of the form loc(id,r,t) where id ∈ ID, t ∈ T, and r  S.
An ST formula is any Boolean combination of ST-atoms. The intended meaning

of loc(id,r,t) is that the object id is located in the region r in the time instant t.

Example. The ST formula

loc thrombus, left� leg, 1ð Þ ^ Øloc thrombus; lungs; 5ð Þ
can be read as “a thrombus is detected in patient’s left leg on the first day, but it is

not detected in his lungs on the fifth day.”

Probability intervals are added to ST formulas, so a PST formula is any Boolean

combination of formulas of the form α l; u½ �, where l and u are rational probabilistic

boundaries from the unit interval.

Example. The PST formula

loc thrombus, left� leg, 1ð Þ ^ Øloc thrombus; lungs; 5ð Þð Þ 0:8; 1½ �
formally expresses that the probability that thrombus will be located in the patient’s

left leg on the first day, but will be not located in his lungs on the fifth day is at least

0.8, while the formula

loc thrombus, left� leg, 1ð Þ 0:9; 0:9½ � ^ loc thrombus; lungs; 5ð Þ 0; 0:1½ �
formally expresses that thrombus will be detected in patient’s left leg on the first

day with probability 0.9, and the probability that it will be detected in his lungs on

the fifth day is at most 0.1.”
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2.6 MYCIN

MYCIN (see [96]) was the first medical expert system designed to handle inexact

reasoning. Its development has been carried out throughout the 70s and early 80s as

a part of the Stanford heuristic programming project. What distinct MYCIN from

the other medical systems based on Bayesian analysis is its at the time novel (and

rather revolutionary) inference engine. In order to handle imprecise and incomplete

data, Edward Shortliffe has developed a rule-based inference system with the core

containing around 200 (later that number has been increased to around 600)

so-called if-then derivation rules. Though relatively narrow in the scope (MYCIN

was designed to perform diagnostics and therapy recommendation for certain

bacterial infections), the test has shown that MYCIN performed at the level of an

average physician (around 69 % of correct diagnoses). This success has initiated

significant interest in the AI community. MYCIN’s architecture has become a

theoretical foundation for the development of decision support systems for impre-

cise, incomplete, or even questionable data.

On Fig. 2.3 below is displayed the basic architecture of MYCIN. The static

database contains if-then rules of the form

IF evidence list THEN conclusion.

We shall list two examples of MYCIN rules:

IF:

1. The stain of the organism is gram positive.

2. The morphology of the organism is coccus.

3. The growth conformation is chains.

THEN: There is suggestive evidence 0.7 that the identity of the organism is

streptococcus.

Fig. 2.3 Architecture of MYCIN
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IF:

1. The site of the culture is blood.

2. The gram stain of the organism is gram negative.

3. The morphology of the organism is rod.

4. The portal of entry of the organism is urine.

5. The patient has not had a genitourinary manipulative procedure.

6. Cystitis is not a problem for which the patient has been treated.

THEN: There is suggestive evidence 0.6 that the identity of the organism is

E. coli.

Each rule is completely modular; all relevant contexts are contained within the

rule with explicitly stated premises. Conclusions are classified into nine categories

called certainty factors. They are displayed in the following table:

�1 to �0.8 Definitely not

�0.8 to �0.6 Almost certainly not

�0.6 to �0.4 Probably not

�0.4 to �0.2 Possibly not

�0.2 to 0.2 Ignore

0.2 to 0.4 Possibly

0.4 to 0.6 Probably

0.6 to 0.8 Almost certainly

0.8 to 1 Definitely

Certainty factor is defined as a difference between the so-called measures of

increased belief and disbelief in the following way:

CF α; βð Þ ¼ MB α; βð Þ �MD α; βð Þ:
The measure MB(α,β) is a numerical representation of expert’s belief in the

hypothesis α given the evidence β. In terms of probability measure μ (μ reflect a

priori medical knowledge), it is defined by

MB α; βð Þ ¼
1, μ αð Þ ¼ 1

max μ α
		β� �

, μ αð Þ� �� μ αð Þ
1� μ αð Þ , μ αð Þ < 1 :

8><
>:

Similarly, the measureMB(α,β) represents expert’s disbelief in the hypothesis α
given the evidence β; it is defined by

MD α; βð Þ ¼
0, μ αð Þ ¼ 0

μ αð Þ �min μ α
		β� �

, μ αð Þ� �
μ αð Þ , μ αð Þ > 0 :

8><
>:

MYCIN uses a modification of the method of reasoning called backward

chaining to search its knowledge base. The diagnostic run starts with the interactive
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consultation, where the user is prompted to answer a series of approximately

60 questions in order to narrow down the search for the possible cause of the

observed bacterial infection. A sample of the typical MYCIN consultation is given

below:

1. Patient’s name: (first – last) FRED BRAUN

2. Sex: M

3. Age: 55

4. Are there any cultures for Fred Braun which may be related to the present

illness, and from which organisms have been grown successfully in the

microbiology laboratory? Y

CULTURE-1

5. From what site was the specimen for CULTURE-1 taken? BLOOD

6. Please give the date and time when CULTURE-1 was obtained. JUN

20, 1977

The first organism isolated from the blood culture of 20-JUN-77 (CULTURE-

1) will be referred to as ORGANISM-1

7. Enter the laboratory-reported identity of ORGANISM-1: UNKNOWN

8. The strain (gram or Ziehl-Neelsen acid-fast) of ORGANISM-1: NEG

9. Is ORGANISM-1 rod or coccus (etc.)? ROD

10. What is the form of the individual organisms (e.g., lancet shaped for

cocci, fusiform for rods)? FUSIFORM

. . .
23. What is the suspected portal of entry of the gram negative rod from the

blood culture of 20-JUN-77 (ORGANISM-1) into this sterile site? GI (6)

24. Is Fred Braun a burn patient? N

25. Is Fred Braun a compromised host (e.g., alcoholic, sickle-cell disease,

immunosuppressed)? N

26. Is Fred Braun febrile? Y

MYCIN selects antibiotics only on the basis of the identity of offending

organisms. Thus, the program’s first task is to decide, for each current organism

deemed to be significant, which hypotheses regarding the organism’s identity are

sufficiently likely that they must be considered in choosing therapy. MYCIN uses

the certainty factors of the various hypotheses in order to select the most likely

identities. Each identity is then given as item number and the process is repeated for

each significant current organism. The set of indications for therapy is then printed

out, e.g.,

IF: the identity of the organism is pseudomonas,

THEN: I recommend therapy chosen from among the following drugs:

1. Colistin (0.98)

2. Polymyxin (0.96)
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3. Gentamicin (0.96)

4. Carbenicillin (0.65)

5. Sulfisoxazole (0.64)

MYCIN was never used in clinical practice primarily due to objective technical

difficulties. For example, in the 70s one MYCIN session lasted for 30 or more

minutes, which is quite an unrealistic time commitment for any clinician. MYCIN’s

greatest influence was its demonstration of the power of its representation and

reasoning approach. Rule-based systems in many nonmedical domains were devel-

oped in the years that followed MYCIN’s introduction of the approach. In the

1980s, expert system “shells” were introduced, including one based on MYCIN,

known as E-MYCIN, and supported the development of expert systems in a wide

variety of application areas.

2.7 CADIAG-2

Another important example of the clinical decision support system that can handle

imprecise, incomplete, and even false data is the expert system CADIAG-2,

developed primarily by K.-P. Adlassing at the University of Vienna Medical School

from the early 80s. Nowadays, the CADIAG project is the central research subject

at the Institute for medical expert and knowledge-based systems and the Medical

University of Vienna; see [2, 103]. The aim and the scope of CADIAG-2 is to

provide support to clinicians in the interpretation of symptoms, signs, laboratory

test results, clinical findings, and generation of complete clinical differential

diagnosis.

The first version of the system has used three-valued logic, where the truth status

of a particular medical entity (e.g., symptom, diagnosis) could be true, false, and

undetermined. The corresponding inference engine resembled classical proposi-

tional logic.

It turns out that the usability of such a system is limited, mostly due to the fact

that a symptom can be a very vague property. The typical example of this kind is

“having a strong chest pain,” where any numerical confirmation is questionable or

even impossible.

Though this kind of situations may not interfere with the diagnostic performance

of the expert physician, they pose a significant problem to the automatization of

diagnostics. Namely, if not treated cautiously, borderline cases (cases where the

presence or the absence of certain symptom is questionable) have a severe impact

on the performance of the system. In mathematical terms, the problem lies in the

discontinuity (small change of the input produces significant changes in the output)

of the numerical representation of certain medical entity. For example, body

temperature t � 39∘C indicates high fever and (mandatory) application of

antipyretics. However, physician will sometimes apply antipyretics for lower

body temperatures, say 37.5∘C. In the crisp (yes-no) case, the fever severity can

be modeled as in Fig. 2.4.
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In particular, any clinical diagnostic system that handles high fever as shown in

Fig. 2.4 will treat the body temperature 39.5∘C in the same way as 36.5∘C, which is
obviously wrong.

A quite natural way to overcome this problem is to represent vague and impre-

cise notions by fuzzy sets. In the case of fever severity, a so-called “left shoulder”

fuzzy set anchored in 37∘C and 39∘C would be the adequate representation of fever

severity. It is shown in Fig. 2.5.

Fuzzy set FS (fever severity) displayed in Fig. 2.5 has the following mathemati-

cal representation:

FS tð Þ ¼
0, t < 37

1

2
t� 18:5, 37 � t < 39

1, t � 39

:

8>><
>>:

Fig. 2.4 A crisp (yes-no) representation of the fever severity. Green values (t � 39∘C) indicate
the absence of a high fever (the trigger indicator vale is 0), while the red values initiate severe fever

Fig. 2.5 A fuzzy set representing fever severity
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For example, body temperature 38.5∘C produces fever severity degree FS(38.5) ¼
0.75, which combined with other methods can lead to much better performance of the

system in borderline cases.

In fuzzy logic terms, CADIAG-2 handles expressions of the form (α,t), where
α is a medical entity (say symptom) and t ∈ [0,1] represents its truth degree

(emulates expert’s confirmation of α). An adaptation of modus ponens

(so-called generalized modus ponens) for graded formulas (pairs of the form

(α,t)) is given by

GMP :
α; tð Þ α ! β, sð Þ

β, t � sð Þ :

In principle, * can be any continuous t-norm, but it is best to think of * as either

Lukasiewicz t-norm x * y ¼ max(0, x + y � 1), Gödel t-norm x * y ¼ min(x,y) or
product t-norm x * y ¼ xy.

Derivation rules of CADIAG-2 are based on fuzzy sets and they are divided in

three categories. The first category consists of the so-called confirming degree

rules. An example of this kind is the following rule:

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

With the confirmation degree 0.55.

The next type of CADIAG-2 rules is the so-called mutually exclusion rules. An

example of this kind is the following one:

IF positive rheumatoid factor

Then NOT seronegative rheumatoid arthritis

The last type of rules is so-called universal (always occurring) rules. An example

of such a rule is given below:

IF NOT (rheumatoid arthritis AND splenomegaly AND leukopenia� 4000/μl)
THEN NOT Felty’s syndrome.

In contrast to MYCIN, CADIAG-2 has a large number of inference rules and

definitions in its core. The core contains 1761 symptom, 341 disease, 720 symptom-

symptom rules (both premises and conclusion are symptoms), 218 disease-disease

rules, and 17,573 symptom-disease rules (premises are symptoms, conclusions are

diseases). This huge architecture has imposed question of global consistency of the

inference engine. The number of papers has been published on this subject,
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suggesting various formalisms for representation of CADIAG-2 inference engine.

All of them were based on fuzzy logics, mostly due to the fact that CADIAG-2 is

actually based on principles very close to the basic principles known from t-norm-

based logics. But there remain differences on a basic level that cannot be easily

overcome.
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International Journal of Approximate Reasoning 51: 832–845, 2010.

12. D. Doder. A logic with big-stepped probabilities that can model nonmonotonic reasoning of

system P. Publications de l’Institut Mathématique, ns. 90(104): 13–22, 2011.
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83. M. Rašković. Completeness theorem for singular biprobability models. Proc. of Amer. Math.

Soc. 102: 389–392, 1988.
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89. M. Rašković, Z. Ognjanović. A first order probability logic LPQ. Publications de L’Institute

Matematique, ns. 65(79): 1–7, 1999.
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probabilities that can model default reasoning. International Journal of Approximate

Reasoning 49(1):52–66, 2008.

93. K. P. S. Bhaskara Rao, M. Bhaskara Rao. Theory of charges. Academic press 1983.

94. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence 32: 57–95, 1987.

95. N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision

1 (1970), pp. 179–219.

96. E. Shortliffe, B. Buchanan. A model of inexact reasoning in medicine. Mathematical

Biosciences 23: 351–379, 1975.

97. A. Sistla and E. Clarke. The complexity of propositional linear temporal logic. Journal of the

ACM, 32(3): 733–749, 1985.

98. R. Sorensen. Blindspots. Claredon Press, Oxford, 1988.

99. R. C. Stalnaker. A theory of conditionals. In: Studies in Logical Theory (ed. N. Rescher),

American Philosophical Quarterly Monograph Series, Vol. 2, Blackwell, Oxford, 1968.

100. R. C. Stalnaker. Nonmonotonic consequence relations. Fundamenta Informaticae (21): 7–21,

1994.

101. K. D. Stroyan, W. A. J. Luxemburg. Introduction to the theory of infinitesimals. Academic

Press 1976.

102. M. Thimm. Measuring inconsistency in probabilistic knowledge bases. Twenty-fifth Confer-

ence on Uncertainty in Artificial Intelligence, AUAI Press (2009), pp. 530–537.

103. T. Vetterlein, K.-P. Adlassing. The medical expert system CADIAG-2, and the limits of

reformulation by means of formal logics. In: Tagungsband der eHealth2009 und eHealth

Benchmarking 2009: 123–128, 2009.

104. W. van der Hoeck. Some consideration on the logics PFD. Journal of Applied Non-Classical

Logics 7(3): 287–307, 1997.

105. Z. Zhu, D. Zhang, S. Chen, W. Zhu. Some contributions to nonmonotonic consequence.

Journal of Computer Science and Technology, 16(4): 297–314, 2001.

2 Applications of Probabilistic and Related Logics to Decision Support in Medicine 77



Chapter 3

Transforming Electronic Medical Books to

Diagnostic Decision Support Systems Using

Relational Database Management Systems

Milan Stosovic, Miodrag Raskovic, Zoran Ognjanovic,

and Zoran Markovic

At present clinical decision support systems (CDSS) are not widely used (unlike

Internet or information systems) in spite of their great capability to support decision

making [1, 2]. There are many problems in realisation of these systems including

difficulties with domain selection, knowledge base construction and maintenance,

and problems with diagnostic algorithms and user interface [2–5]. Basic doctors

fear of missing some diagnosis, and therapy data is not always in the focus of

CDSS. It is necessary to involve best medical researchers from a narrow field of

science to support constant changes of knowledge. Programmers are needed to

maintain and update CDSS. Finally, potential users are not eager to use them

because they are more familiar with some well-known sources of knowledge such

as electronic books, medical citation databases and medical articles. Since the

doctors are responsible for their patient’s lives, they are reluctant to rely on some

‘mechanism’ they do not completely understand and which, to many of them,

seems like a ‘black box’. Aiming to resolve some of these problems, we consider

possible linking of a part of CDSS, diagnostic decision support systems (DDSS),

to well-known medical books. The books became electronic in the past but could

they evolve further to DDSS?

Different methods of reasoning were considered in selecting adequate model for

DDSS [6] including associations, probabilities, causality, functional relationships,

temporal constrains, locality, similarity and clinical practice. These relationships

provide organising principles which influence knowledge base and the inference

mechanism. The association between diseases and findings was one of the first

principles used in DDSS. For each disease there is a list of findings, so when we

know findings, we can find the disease. This procedure is better if we know

strengths of the associations which are usually frequency of appearance of some
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finding in particular disease (they are used as prior probability). For example,

QMR [7] uses three properties for diagnostic reasoning: frequency of finding with

disease, frequency of disease with finding and the importance of the finding.

Association reasoning provided large knowledge base that is simply and easily

understood even by doctors who are not experienced in medical informatics.

Another similar reasoning uses criteria tables to associate diseases with cluster of

findings (e.g. CASNET [7]) and can better distinguish between similar findings than

simple associations. Although association as organising principle is well known and

defined many years ago, it seems suitable for this DDSS but has to be adapted. We

also considered production rules (e.g. Mycin [7]) as another organising principle

that can be used in this form of DDSS. Other organising principles such as Bayesian

networks are not suitable because there are no prior probabilities defined in the

books and they have a lot of information that can be a problem for this type of

network. Diagnostic reasoning based on causality has very complex knowledge

representation system (e.g. CASNET). Functional relationships are very effective

for reasoning but only when they are available. Because of that neither causality nor

functional relationships are considered since they are not suitable for planning

DDSS. The same holds for location and similarity and case-based reasoning.

Nowadays, temporal relationships are intensively explored for use in CDSS and

include dynamic decision networks and multiagent systems [8]. However, temporal

relationships are not so important in most books and the amount of information can

be a problem. So we decided to use classic association reasoning but with many

adaptations and modifications.

Nowadays, data-intensive systems are more dominant than knowledge-intensive

systems which were used in the past [9], and data mining, statistical analysis

and self-learning systems tend to be used instead of expert knowledge. Graphical

visualisation is used rather than tables and lists. Automation is another tendency

including acquiring of the knowledge [10, 11]. There is a requirement that CDSS

has to be a part of a normal doctor’s workflow [12]. But could this new approach

provide ‘evidence-based medicine’ that is now obligatory and satisfy many best

practice guidelines that modern medicine is required?

What do doctors really need when using DDSS? Do they need complex know-

ledge base and inference engine or it could be only information-retrieving system?

Some researchers believe that it could be a weighted information-retrieval approach

to provide a context-dependent ranking of likely diseases through matching the

patient’s symptom information to typical disease symptomatology [13].

For transforming books to DDSS, the most applicable is well-known association

reasoning that uses classic knowledge base, and instead of special inference mecha-

nism, it may use only information-retrieving system. That mechanism can be

easily understood by doctors so they can trust the results. Why should we use

some complicated concept that was unsuccessful in this domain when simpler

is real and applicable? But new elements should be included. So sequence of

actions that we have done begins with an analysis of the main problems in

functioning of modern DDSS [1–13]; some recommendations and new solution

are proposed. Logical aspect is also analysed trying to mimic natural doctor’s
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thinking by DDSS [1]. Further, analysing text in medical books, basic structural

forms were determined. Finally, knowledge-based DDSS was proposed trying to

meet the following criteria: (a) knowledge base should correspond to the structure

of the data in textbooks; (b) inference mechanism should follow the logic of the

books and evidential human thinking; (c) every DDSS screen and output results

should fulfil expectations of the reader when they consult the books; (d) knowledge

acquisition tools should enable easy creation of knowledge base and (e) consulting

DDSS should be achieved through a doctor-friendly user interface.

Probabilities are presented using sensitivity, specificity and predictive value [14].

Sensitivity %ð Þ ¼ True Positives TPð Þ
TPþ False Negatives FNð Þ � 100

Specificity %ð Þ ¼ TrueNegatives TNð Þ
TNþ False Positives FPð Þ � 100

Predictivevalue %ð Þ ¼ TPþ TN

Number of predictions
� 100

3.1 Conceptual Accents

Because medical books are a set of knowledge data, they could be transformed to

knowledge-based DDSS. It is necessary to convert unstructured text into structured

database. That is the way to put data in more active and useful form.

However, new approach is needed. Authors of the books have to define diseases,

findings and relations among findings and diseases when writing books. At present,

experts are engaged to create a knowledge base. They are expensive and duplicate

the process when creating a knowledge base.

Another problem is permanently changing knowledge, even from day to day.

Using experts to maintain and update knowledge base is quite expensive and

requires frequent updates. So, why duplicate the same process? Better idea is to

use authors to update knowledge base when they write books. In addition, best

books have their editions, so they do not need to be updated monthly or on daily

basis. It would be necessary to have DDSS editor to unify different styles and

approaches of the authors.

Particular books have a large number of editions (for example, Harrison’s

principles of internal medicine had 18 editions, [15]). Students and physicians

believe them. They have a practice to consult these books. So, why somebody

should not use DDSS based on these books for diagnosis support? Why not consult

the book in form of DDSS for a particular case?

DDSS application has to be made by programmers in a form of empty

knowledge database that could be used with different medical books. Empty

knowledge databases were introduced long ago (eMycin) [7].
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Should those databases be object oriented or relational? There is an enormous

number of facts in the books so relational databases may be more suitable.

Publishers of the books could become more interested in financing DDSS as a

part of their books edition like they finance electronic books together with paper

edition.

3.2 Basic Logic Outline

First we will consider doctor’s ‘natural’ decision making and reasoning. This

process is complex and is not fully understood. However, it is clear that some

forms of shortcuts are commonly in use [1]. Also, we are talking here about

reasoning under uncertainty [2]. However, doctors learn to reduce uncertainty to

a great extent. They know how to make evidence from uncertainty. First of all, they

look for the facts such as subjective feelings, objective examination and various

tests and scans that all could be designated as ‘disease manifestations’ or ‘findings’.

Findings are clues for diagnosis of disease. Doctors record every finding in memory

together with their properties and their importance in form of sensitivity and

specificity for some disease [14]. For example, when a man with oedema (finding)

comes to a nephrologist, doctor will determine pretibial pitting oedema (properties).

He knows from experience that this type of oedema is almost always present

in nephrotic syndrome (high sensitivity) but it can also be found in heart, liver or

other diseases (low specificity). This is a very simple process and requires only

‘recording’ of facts to memory and ‘retrieving’ them back. At this point, a doctor

has clues for diagnosis (nephrotic syndrome) and differential diagnosis (heart and

liver diseases). Now he will ask himself which findings are related with nephrotic

syndrome. That is protein in urine (finding) more than 3.5 g/24 h (properties). It is

found in almost all nephrotic syndromes (high sensitivity) but can be found in some

other disease (low specificity). Another finding is serum albumin less than 35 g/l

(properties) and is found in almost all nephrotic syndromes (high sensitivity) but

can be found in some other disease (low specificity). However, he also knows from

experience that taken together, oedema, protein in urine more than 3.5 g/24 h and

serum albumin less than 35 g/24 h are found almost only in nephrotic syndrome

(high sensitivity and high specificity). So he makes a diagnosis of nephrotic

syndrome without much reasoning but just using ‘retrieving from his database’ in

his mind. He transformed uncertainty to certainty (evidence) using simple ‘shortcut

reasoning processes’, sensitivity and specificity, that could be easily mimicked by

DDSS using only database retrieval. At least two tables are needed for recording

these processes: ‘Findings’ (see Table 3.1) and Relations (see Table 3.2). So we

can retrieve both tables for some finding (oedema), and from ‘Relation’ table,

we can ‘offer’ user to enter other findings (amount of protein in urine and serum

albumin level), and because of high sensitivity and specificity, we can make a

diagnosis (nephrotic syndrome). This is ‘evidence level’ of making diagnosis where
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uncertainty is diminished. It also represents answer to the question that doctor asks

himself – which disease is it?

But if doctor could not find evidence for some disease because sensitivity and/or

specificity of the findings remain low, he will ask himself – which disease could it

be? He will add sensitivity of all findings for one disease and for another, etc.

However, he knows that there is no logical process to find out cumulative evidence

of a number of findings for some disease because it is not predictable and can

change over time. For example, disease can change clinical manifestation from time

to time or from one population to another. The only way to find cumulative

evidence is to measure sensitivity and specificity of some combination of findings

in a given place and given time interval. Without experience or such measuring of

the sensitivity and specificity of the relation of a set of findings for some disease,

diagnosis remains hypothetical and uncertain. In such situations, course of disease

or therapy gives evidence for diagnosis after disease is cured and a doctor does not

expect from CDSS to make a diagnosis. He expects from CDSS only to offer

possibilities.

What facts will doctor analyse and how in such situations? He will use

advanced reasoning. Which type of relation exists among findings? If it is etiologic,

pathogenic or causal relation, the sensitivity or specificity could be high. On the

other hand, he may look for some experiments with animals to find out the type

of relations. The facts used in this case frequently are not findings because it

cannot be determined in patients. However, they represent clues for diagnosis.

The basic doctor’s fear is to miss some facts and some possible diagnosis. That

leads to a wrong direction in diagnostic process and because of that he needs a

book or a DDSS to find all possibilities. Every technique and logical approach

in analysis will be appreciated by the doctor, but DDSS should list not only

possibilities and facts but also methods of analysis.

3.3 Structure of the Data

Further analysis will be directed to the text forms and contents, i.e. structure of the

data in the books. For example, Harrison’s textbook of internal medicine has a

number of chapters dedicated to systems of organs, and they are divided to groups

of diseases. Some disease can be standalone but can also be a part of other disease.

Some diseases never appear alone but are a part of a few diseases and are designated

as syndromes. So, we need another table in knowledge database for disease

classification, Table 3.3. It seems best to classify diseases in form of a tree. For

example, if ‘kidney disease’ is a point in the tree, one branch leads from it to

‘glomerular diseases’ and from there one branch leads to ‘glomerulonephritis’.

Disease classification is always presented in contents of the book.

Analysis of the text that depicts diseases reveals many parts such as symptoms

and signs, clinical course, epidemiology, aetiology, pathogenesis of disease and a

number of tests (laboratory, films, histology, functional, etc.) where findings can be
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found. All these ‘findings’ have some properties. For example, oedema could be

pitting or elastic. So the simplest form to describe findings is to relate them to their

‘properties’. All facts could be extracted from the book in form of diseases, findings

and properties related to findings. But, for example, there are many types of pain

and different localisations and duration. Ischemic heart pain typically is chest pain

spreading in left arm, itching or burning and is localised behind the sternum and

could have short or long duration. Intensity of the pain may be different. Laboratory

analyses always have numeric value and normal ranges. Should we separate these

facts in special properties? Should we separate part of the body, time of emerging,

duration, etc.? Some properties are so important that they can be defined together

with findings, for example, chest pain, left arm pain, abdominal pain, pretibial

oedema and sacral oedema. So localisation of the finding can be put together with

findings. On the other hand, some properties always appear together so there is no

need to separate them as we can see for properties of ischemic heart pain. Because

of that it should be made possible that the editor of DDSS may define separate new

‘special properties’.

Textbooks are rich in tables that offer lists of many possibilities. Doctors need

them to be sure that they are not missing some diagnosis. They have to be also sure

that DDSS lists all possibilities for that question and situation. Using DDSS should

be easier and faster than using tables in books.

Textbooks are also rich in algorithms. They depict exact roadmap for diagnosis

and frequently are based on guidelines. It is hard to believe that all medical

knowledge could be one day transformed into a set of algorithms, but they would

be very useful for entering data into knowledge base.

The basic feature of the doctor’s thinking is ‘importance’ of some findings for

the diagnosis of some disease. When analysing text in the books, we can see that

they rarely have sensitivity and specificity, so doctors have to acquire them through

experience. During acquisition of data to knowledge base, authors of the text should

express their experience and define sensitivity and specificity in a few categories

such as very high ( p < 0.01), high ( p < 0.05), medium ( p < 0.15) and low

( p > 0.15). Development of DDSS would lead to regular measuring of sensitivity

and specificity for every combination of findings and that could be easy if it is

extracted from an information system.

Textbooks are rich in synonyms. Vocabulary thesaurus is a basic feature of

DDSS and could be an enormous problem [4]. But there are also many prefixes and

suffixes such as hyper-tension, hypo-tension, leukocyt-osis and leuko-penia.
Because of that, another table of synonyms is required (Table 3.4). For example,

leukocytosis could be defined as leukocytes count greater than 10 � 109/l etc.

Table 3.3 Simplified example of database table ‘Disease’

IDdis Disease Classification Frequency Syndrome Text link

1001 Nephrotic syndrome Kidney diseases/

glomerular diseases

Frequent Yes

IDdis identification number of Disease table
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3.4 Structure of Relations Among Sets of Findings

and Diseases

Now we have diseases together with findings, their properties and their importance

in form of sensitivity and specificity, but findings are rarely independent and texts

in books are full of ‘relations among sets of findings’ that determine diseases. For

example, damage of the glomerular basement membrane in the kidney causes loss

of albumin in the urine. That is the cause of increased protein in the urine (finding)

and decreased protein in the serum (finding). Decreased albumin in serum may

cause oedema (finding). So, findings of some disease are not only a set of finding

but a set of related findings. As discussed earlier, low level of serum albumin and

protein in urine more than 3.5 g/24 h are different findings with high sensitivity but

low specificity. However, taken together they have high sensitivity and specificity

for the diagnosis of nephrotic syndrome.

Instead of two, there could be, for example, eleven important findings for some

disease [16] but any four findings among them are sufficient for diagnosis, so not

only sensitivity and specificity for the diagnosis should be noted but also a number

of findings sufficient for diagnosis.

However, previous examples are simple relations, and there are examples for

complex relation – ‘relation of the relations’; major and minor findings for diagno-

sis of rheumatic fever could be an example [17]. In this case, first two simple

relations (two subsets of related findings) should be made for major and for minor

findings, and then a complex relation between these two simple relations with new

sensitivity and specificity for the disease should be added.

As it was discussed earlier, it is necessary to record a type of relations among the

findings and facts (causal, pathophysiologic, guidelines recommended, etc.).

3.5 Multiple References Relations to Other Publications

Some books, such as ‘Harrison’s principles of the internal medicine’, have no

references within the text and most often only the dominant opinion is presented.

However, books such as ‘Oxford textbook of nephrology’ [18], for example,

frequently cite a number of references for the same finding with different values.

How to handle this problem? The solution could be to input all of these references

Table 3.4 Simplified example of database table ‘Thesaurus’

IDthes Medical term Synonymous

1000001 Leukocyt-osis Leukocytes > 10 � 109/l

1000002 Hyper-tension Systolic tension > 140 mmHg and diastolic tension >90 mmHg

IDthes identification number of Thesaurus table
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for the same finding and form relation among them that may be designated as

‘multiple references’. During processing, median opinion could be used, and all of

the opinions may be presented in the output explanation.

3.6 Structure of the Knowledge Base

This is a simple description of relational knowledge base but the actual solution

may be much more complicated. At least four tables are necessary (Tables 3.1, 3.2,

3.3 and 3.4). The first table is ‘Disease’ with fields IDdis, disease, classification

three, frequency, text link and syndrome (Table 3.3). Field ‘syndrome’ is useful to

know could some disease be a syndrome in some other disease. Field ‘text link’

contains links to the text in the electronic book. The second table is ‘Findings’ with

fields IDfind, disease, data type, finding, property, value, low value, high value,

sensitivity, specificity, predictive value and text link (Table 3.1). Intensity or

frequency could be added but it is better to allow the editor to add some fields

with special property. This table could have a field ‘relation type’ that describes

type of relation of findings and disease (etiologic, pathophysiologic, causal, etc.).

The third table is ‘Relations’ with fields IDrel, disease, relation, relation type,

number of findings, sensitivity, specificity, predictive value and text link

(Table 3.2). The field relation contains names or IDs of the related findings.

Relation type could be (1) simple, (2) reference difference, (3) text table, (4) algo-

rithm, (5) guidelines, (6) causal, (7) pathophysiologic, etc. Finding number contains

number of findings from the maximal number of findings that are necessary for

diagnosis. Table ‘Thesaurus’ is added to this simple knowledge base and fields

could be IDthes, medical term and synonymous (Table 3.4).

3.7 Input

There are two modes of operation. The first of them enables creation of knowledge

base (knowledge acquisition) (Figs. 3.1, 3.2 and 3.3). This input means conversion

of text from the book to data base. This process theoretically could not be fully

automated because some facts simply do not exist and have to be added by authors

(e.g. sensitivity and specificity). Authors create only 10–20 pages in a textbook;

frequently they analyse only one disease and the part dedicated to diagnosis is about

1–2 pages, so creation of the input to knowledge base resembles creation of abstract

or key words from article. However, it is possible to make a semi automat input,

i.e. search titles for nouns and the corresponding adjectives and present to authors

as a disease possibilities. Similarly, searching of the text could present nouns as

candidates for findings. In any way, authors of the book should look into their

electronic texts from their title page. First input will be disease and classifications

(under constant monitoring of spelling and synonyms). Reading the text, authors

will locate facts and transform them into ‘findings’ and ‘relations’ until the end of

their text. For example, when defining heart pain five findings will be input: chest
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pain with properties of ischemic heart pain short duration, chest pain with

properties of ischemic heart pain long duration, chest pain with properties

non-specific, left arm pain with properties non-specific and abdominal pain with

properties epigastric non-specific. Should heart pain be defined as syndrome –

stenocardia? So the editor of DDSS has to prepare a plan for definingsymptoms

and signs before data acquisition begin, keeping in mind future retrieving and

needs of users. A pilot phase can be done on a part of text before the beginning

of acquisition of data. Tables in the text could also be transforming into findings

and relations.

Fig. 3.1 Simplified example of data acquisition screen – introducing new diseases and findings

Fig. 3.2 Simplified example of data acquisition screen – definition of the finding

3 Transforming Electronic Medical Books to Diagnostic Decision. . . 89



The second mode of operation is ‘consultation’ of DDSS by doctors or students

(Fig. 3.4). It can be done using two styles. The first of them is input of disease, when

they are interested in what findings are needed for some disease. They could enter

Fig. 3.3 Simplified example of data acquisition screen – definition of the relation

Fig. 3.4 Simplified example of data query screen
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the name of disease (under constant monitoring of spelling and synonyms) or

through disease classification. The second style is to input findings, when they are

interested in what diseases could result from their findings. They could enter a

finding (under constant monitoring of spelling and synonyms) and during typing a

letter popup would offer names of whole findings in a style of Google search. For

example, when user types word ‘pain’, the system should offer chest pain, left arm

pain, abdominal pain, etc. from the list of findings. When this finding is entered,

other findings will be suggested through relations with diseases for previous finding

in a form of popup. However, one could continue to input new findings without

selecting any of the offered options. At the moment when the user does not have

another finding, he would demand output.

3.8 Output

Output should be classic – which means a list of diseases ranked by sensitivity

and specificity selected by user (Fig. 3.5). Part of the output should be the records

from the knowledge base, which were the basis for selection. However, graphs can

be also generated to list diseases according to sensitivity and specificity parameters.

It is possible to generate graphs in the form of trees. For example, when somebody

selects finding oedema, all diseases with oedema formation will be selected.

When he selects significant proteinuria in another step, then previous diseases can

be displayed as a tree graph according to whether they have or not significant

proteinuria, etc. Links to text in the book should also be available for the selected

diseases.

Fig. 3.5 Simplified example of data output screen
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3.9 User-Friendly Interface

Developing a user-friendly interface is crucial. This interface should enable authors

of the books and articles to define diseases and findings and relations among them

in a simple way. So, the main task of this project is developing a simple interface

that can mark and copy some ‘words’ in the electronic text of the book and after

that transfer them to the input screen of DDSS. Examples of simple interface are

presented in Figs. 3.1 3.2, 3.3, 3.4 and 3.5.

3.10 Inference Mechanisms

Two levels of inference are proposed in this model of DDSS: evidence and

nonevidence levels. The evidence level uses SQL, so there is no special inference

mechanism. As it was discussed earlier using example of oedema, safe evidence

level could be achieved using only retrieval from database that simulates human

reasoning. Confidence of this process depends only on the quality of the knowledge

base. Because this model uses only existing or ‘positive’ facts, if there are no

findings, relations and diseases in the selected domain, then the diagnosis will be

uncertain. That is the same as the natural thinking: if a doctor does not know some

fact, he will establish wrong diagnosis.

The second, advanced, level could use any method which derives possible

diagnosis and could be adapted to work with this knowledge base [19–24]. For a

survey of such methods, see Chap. 2. As discussed earlier, doctors are reluctant to

use such methods, whose functioning is not transparent to them, as the primary

system for deriving diagnosis. However, when the evidence level inference fails,

they may be tempted to try the second level inference, at least as a source of

inspiration.

3.11 Linkage with the Text

Presented DDSS represent only converted text from the book with extracted

diseases, facts and their relationships. This type of DDSS could be used indepen-

dently of book and instead of authors a team of experts could make knowledge

database in a classic way. However, if some DDSS is created from the book, linkage

with the text in the book would be very useful for additional explanations.
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3.12 Linkage with Information System

Although this DDSS in basic form might not contain patients’ information, it is

crucial to connect it with local database. Such an information system then becomes

a source of experience for exact calculation of sensitivity, specificity and overall

predictive value. In that way, this model becomes ‘active decision support system’

and gives new piece of evidence for every combination of findings. However,

extensions of information system may be necessary to make this connection

functional.

3.13 Discussion

Presented model of diagnostic decision support system could enable the conversion

of a book to a knowledge base, i.e. conversion of text to database. The electronic

books could be transformed to decision support systems that would be published

together with paper and electronic editions and even could be linked to local

information system. Authors of the book should be the creators of this decision

support system, guided by the editor. In the centre of this diagnostic decision

support system is knowledge database which would enable manipulating data

using SQL language and probability assessment through sensitivity, specificity

and predictive value as basic processes.

To our knowledge diagnostic decision support system with those characteristics

does not exist now. There are no ‘active’ books that could be ‘asked’ to give some

advice on professional level although some relationship between DDSS and text-

book has been suggested [25, 26]. Elements of presented DDSS are not new but

they are used in a new concept which fulfills the aim of this study to suggest the

most safe and reliable model, which is easy to understand by the authors who are

not information technology professionals. Fagan and his team evaluated automated

acquisition, i.e. conversion of text to knowledge base, but they did not evaluate the

whole concept of creating CDSS system including structure of knowledge base,

relative probability information and output of the results [10, 11]. In addition,

automated acquisition would not persuade doctors to use CDSS and specially

DDSS that is the most rarely used among CDSS. Knowledge base and design of

different CDSS can be specific, and because of that, we evaluate here only DDSS.

Textbooks are a platform to precisely define domain and scope of facts that doctors

need and to persuade them to believe and, most importantly, to accept DDSS.

Using of sensitivity and specificity for probability measure of the findings and

group of findings is crucial for acceptance of DDSS by doctors because it is well

proven in medical practice and represents a way of doctors thinking in establishing

diagnosis. If sensitivity and specificity is high for some combination of findings

(that can be extracted from local database), then the diagnosis is made on evidence

base level and decision is certain. If sensitivity and specificity is not high, then clear
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evidence for certain disease does not exist and other techniques should be used.

To our knowledge, there are no DDSS that use these parameters for relative

probability information. The cornerstone of the confidence and wide usage of DDSS

is reliability in helping to make diagnosis and the best way is to use the same tools that

doctors use in their practice – that is, sensitivity and specificity and the principle of

evidence-based medicine. In addition, the proposed structure of the knowledge base is

flexible enough to allow different forms of knowledge to be entered.

The possibility that authors could create knowledge base was mentioned earlier,

but the concept was not clear [7, 27]. It is necessary to motivate authors of the

textbook to create structured knowledge applicable for knowledge bases when they

create their texts. Automated acquisition could help them but that is not crucial. If

they accept to create key words and abstracts, why should they not also accept to

create excerpts in a form of structured text? So, the problem, as we see it is to

produce structured knowledge together with text creation. Then we can easily

convert structured knowledge to text. As we learn to read and write and to use

computers and Internet, we have to learn to think database way.

At present it is recommended that clinical decision systems should be integrated

within underlying electronic health records, computerised physician order entry

system or e-prescribing system and provide decision support automatically as a part

of clinical workflow [28–30]. However, books still exist and represent very impor-

tant source of consultation, so better structured knowledge from the books could be

very useful for the users, clinicians and students.

Described model of diagnostic decision support system is intended to be supple-

mental to electronic editions of major books. Authors of the books could use this

model to transform their texts into a knowledge base. The main motive to do that

would be the fact that decision support systems could enable much faster and better

searching of the books and can help in making decisions.
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Appendix

Example 1

Text from the book

Establishing the Diagnosis of Chronic Kidney Disease (CKD)

The most important initial diagnostic step in the evaluation of a patient
is elevated serum creatinine that can help to distinguish newly diagnosed
CKD from acute or subacute renal failure. “Previous measurements of
plasma creatinine concentration are particularly helpful. . .” Normal values

(continued)
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(continued)

from recent months suggest that the current renal dysfunction could be
more acute, and hence reversible. “In contrast, elevated plasma creatinine
concentration in the past suggests that the renal disease represents the
progression of a chronic process. Even if there is evidence of chronicity,
there is the possibility of a superimposed acute process. . .” If the history
suggests multiple systemic manifestations of recent onset (e.g., fever,
polyarthritis, and rash) renal insufficiency can be acute process.

Some of the laboratory tests and imaging studies can be helpful. “Evidence
of metabolic bone disease with hyperphosphatemia, hypocalcemia, and
elevated PTH and bone alkaline phosphatase levels suggests chronicity.
Normochromic, normocytic anemia suggests that the process has been
ongoing for some time. The finding of bilaterally reduced kidney size
(<8.5 cm in all but the smallest adults) favors CKD.” However, once the
CKD is advanced the kidneys are small and scarred.

The above text is extracted from Chap. 280 Chronic Kidney Disease (15, page

2318) that deals with establishing diagnosis. However, some data from previous parts

of this chapter may be important for diagnosis (e.g. imaging studies). As we can see

there are no probabilities in this text. Because of that some expert has to add it, and

the best solution is that the author transforms this text to knowledge base. There is

only one disease in this text: chronic kidney disease that is a part of disorders of the
kidney and urinary tract.However,metabolic bone disease (part of disorders of bone
and mineral metabolism) and normochromic and normocytic anaemia (part of

haematology) can be defined as syndromes in this text. There are many findings

such as serum creatinine, imaging studies, small and scarred kidneys, hyper-
phosphatemia, hypocalcaemia, PTH, bone alkaline phosphatase and kidney size.

Now we can acquire previous data in the knowledge base. Diseases and

syndromes are acquired in table ‘Disease’ (Table 3.5). Metabolic bone diseases

Table 3.5 Table ‘Disease’ for the first example

IDdis Disease Classification Frequency Syndrome

Text

link

1002 Chronic kidney

disease

Disease of kidney

and

urinary tract

Frequent No

1003 Metabolic bone

disease

Disorders of bone

and

mineral

metabolism

Frequent Chronic kidney

disease

1004 Normochromic,

normocytic

anaemia

Haematology Frequent Chronic kidney

disease

IDdis, identification number of Disease table
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and normochromic and normocytic anaemia are diseases, but here in chronic
kidney disease they appear as syndromes. Findings are showed in Table 3.6.

Findings are entered without prefix (hyper or hypo) but properties contains these

meaning (elevated or decreased). Kidney size are used two times with properties

small and normal and enlarged. It is also possible to use small kidney size and

normal or enlarged kidney size as different findings.
This differentiation is necessary because kidney size has different meaning for

the diagnosis of chronic kidney failure and as we can see sensitivity, specificity and

predictive values are different. Solving this dilemma in style is on editor. Different

meanings have to be explained in Thesaurus table (Table 3.7) where hyperpho-

sphatemia is explained as elevated S-phosphate.

As we can see from Findings table, diagnosis of chronic kidney disease could be

established certainly in two cases: if the kidneys are small and scarred or if

S-creatinine is elevated more than 6 months. However, is there some combination

of findings that can establish diagnosis certainly? Yes, for example, if we found

small kidneys and elevated creatinine for less than 6 months in a person who is not

small, then the diagnosis of chronic kidney disease is certain (Table 3.8). Another

combination that can raise importance is elevated serum creatinine less than

6 months together with metabolic bone disease and normochromic and normocytic
anaemia. If DDSS is connected to information system, sensitivity, specificity and

predictive value can be measured.

Consider now retrieval of knowledge base. If somebody wants to know about

findings for the chronic kidney disease, then that is very simple. He will find

chronic kidney disease in disease of kidney and urinary tract. Popup with findings

will list findings in chronic kidney disease according to sensitivity, specificity

and predictive value so it will be similar to table Findings and will include

fields finding + property together with syndromes in chronic kidney disease.

Table 3.7 Table ‘Thesaurus’ for the first example

IDthes MedicalTerm Synonymous

1000003 Hyperphosphatemia Elevated S-phosphate; S-phosphate > 1.7 mmol/l

1000004 Hypocalcaemia Decrease S-calcium; S-calcium < 2.1 mmol/l

IDthes identification number of Thesaurus table

Table 3.8 Table ‘Relations’ for the first example

IDrel Disease Relation

Type-

Relation NumbFind Sensit Specif Predict

Text

Link

10003 Chronic

kidney

disease

100011 and

100012

Causal 2 High High High

10004 Chronic

kidney

disease

100011 and

1003

and

1004

Causal 3 High Medium Medium

IDrel identification number of Relation table; TypeRelation type of relation; NumberFind number

of findings; Sensit sensitivity; Specif specificity; Predict predictive value; Column ‘Relations’

shows IDfind from Table 3.5 – Findings or IDdis from Table 3.6 – Diseases
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If query is raised typing the word creatinine, it will list all creatinine findings in all

diseases together with properties. If somebody selects elevated creatinine for

more than 6 months, diagnosis of chronic kidney disease will appear. If somebody

selects elevated creatinine less than 6 months, then findings and properties for

chronic kidney disease will appear. However, if somebody selects elevated

phosphorus, then some endocrine disease findings will appear in popup. Finding

for chronic kidney disease will be at the end of popup. Typing another finding

that is specific for kidney diseases will now show another list of findings where

kidney disease findings appear first.

Example 2

Text from the book

Confirming the Diagnosis of Acute Rheumatic Fever (ARF)

“Because there is no definitive test, the diagnosis of ARF relies on the
presence of a combination of typical clinical features together with evidence
of the precipitating group A streptococcal infection. . .” Experts of the World
Health Organization clarified the use of the Jones criteria in ARF. These
criteria include a preceding streptococcal type A infection as well as some
combination of major and minor manifestations.

Table 215 Criteria for diagnosis ARF (simplified)

Diagnostic Categories Criteria

Primary episode of Rheumatic fever Two major or one major and two minor
manifestations plus evidence of preceding
group A streptococcal infection

Rheumatic chorea Other evidence not required

Insidious onset of rheumatic
carditis

Other evidence not required

Chronic valve lesions of
rheumatic heart disease

Other evidence not required

Major manifestations Carditis

Polyarthritis

Chorea

Erythema marginatum

Subcutaneous nodules

Minor manifestations Clinical: fever, polyarthralgia

Laboratory: elevated erythrocyte sedimentation
rate or leukocyte count

Electrocardiogram: prolonged P-R interval

Evidence of a preceding
streptococcal infection
within the last 45 days

Elevated or rising anti-streptolysin O or other
streptococcal antibody, or A positive throat
culture, or rapid antigen test for group A
streptococcus, or recent scarlet fever
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The above text is extracted fromChap. 322AcuteRheumatic Fever (15, page 2755)

that deals with establishing diagnosis. However, some data from previous parts of this

chapter may be important for diagnosis. As we can see this is special case were

diagnostic criteria are clear and could be easily transformed without expert.

There is only one disease – acute rheumatic fever – but several other diseases are
used as syndromes: rheumatic chorea, rheumatic carditis, rheumatic heart disease,
carditis, polyarthritis, chorea, erythema marginatum, subcutaneous nodules and
scarlet fever. There are next findings: fever, polyarthralgia, erythrocyte sedimenta-
tion rate (ESR), leukocyte, P-R interval, anti-streptolysin O (ASTO) and throat
culture.

Now we can acquire previous data in the knowledge base. Diseases and

syndromes are acquired in table Disease (Table 3.9) and findings in table Findings

(Table 3.10).

Synonymous are acquired in Thesaurus table (Table 3.11)

Complex relationship among the findings is showed in table Relations

(Table 3.12). Here syndromes are acquired and then relations among findings.

Table 3.9 Table ‘Diseases’ for the second example

IDdis Disease Classification Frequency Syndrome

Text

link

1005 Acute rheumatic

fever

Disorders of

connective tissue

and joints

No No

1006 Rheumatic
chorea

Neurological

disorders

No Disorders of

connective tissue

and joints

1007 Rheumatic
carditis

Disorders of cardio-

vascular disease

No Disorders of

connective tissue

and joints

1008 Rheumatic heart
disease

Disorders of cardio-

vascular disease

No Disorders of

connective tissue

and joints

1009 Carditis Disorders of cardio-

vascular disease

No Disorders of

connective tissue

and joints

1010 Polyarthritis Disorders of

connective tissue

and joints

No Yes

1011 Chorea Neurological

disorders

No Disorders of

connective tissue

and joints

1012 Erythema
marginatum

Dermatologic

disorders

No Disorders of

connective tissue

and joints

1013 Subcutaneous
nodules

Dermatologic

disorders

No Disorders of

connective tissue

and joints

IDdis identification number of Disease table
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Table 3.11 Table ‘Thesaurus’ for the second example

IDthes Medical term Synonymous

1000005 ESR Erythrocyte sedimentation rate

1000006 ASTO Anti-streptolysin O

IDthes identification number of Thesaurus table

Table 3.12 Table ‘Relations’ for the second example

IDrel Disease Relation TypeRelation NumbFind Sensit Specif Predict

Text

link

10005 Acute

rheumatic

fever

1006 Causal 0 High High High

10006 Acute

rheumatic

fever

1007 Causal 0 High High High

10007 Acute

rheumatic

fever

1008 Causal 0 High High High

10008 Acute

rheumatic

fever

1009 or 1010

or

1011 or 1012

or 1013

Causal 1 High Medium Medium

10009 Acute

rheumatic

fever

100018 or

100019 or

100020 or

100021 or

100022

2 High Medium Medium

10010 Acute

rheumatic

fever

100023 or

100024

1 High Medium Medium

10011 Acute

rheumatic

fever

10008 and

10009 and

10010

High High High

10012 Acute

rheumatic

fever

1009 or 1010

or 1011 or

1012 or

1013

Causal 2 High Medium Medium

10013 Acute

rheumatic

fever

10010 and

10012

High High High

IDrel identification number of Relation table; TypeRelation type of relation; NumberFind number

of findings; Sensit sensitivity; Specif specificity; Predict predictive value; Column ‘Relations’

shows IDdis from Table 3.9 – ‘Disease’, IDfind form Table 3.10 – ‘Findings’ or IDrel from this

table
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There are two levels of relations: primary and secondary that is formed from primary.

Because of that, these secondary relations are ‘relations of the relations’ and they

have the same format of IDrel in field relations. For example, 10011 is complex and

is derived from relations 10008 (necessary one findings-syndrome), 10009 (neces-

sary two findings) and 10010 (necessary one findings). Complex relation 10013 is

derived from 10012 which is the same as 10008 but necessary are two findings-

syndromes and 10010 (necessary one findings) as can be seen from the text that was

transformed.

Retrieval from this knowledge base is the same as it was discussed in

previous example. However, in this case there are more syndromes than in the

first example and Relation table is complex. In addition, there are no separate

knowledge base tables for some disease. They are unique for all disease as can

be seen from ID numbers in the tables but they are showed separately in order

to simplify presentation.
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Chapter 4

Text Mining in Medicine

Slavko Žitnik and Marko Bajec

4.1 Introduction

Text (data) mining defines various techniques to derive high-quality structured

information from unstructured textual sources. Research estimates that 90 % of all

data is in unstructured format, such as emails, voice or video records, data streams,

and Word documents. In the last decade, the estimated growth of unstructured data

is about 62 %, whereas the amount of structured data has grown only by 22 %.

Researchers in the field of medicine, biologists, etc., spend a lot of time

searching for the available information about a specific research area or already

conducted experiments. For example, if one was trying to develop a new drug, he

might be interested in finding all gene products that are involved in a specific

bacterial process and have specific sequences or structures. The information

researchers in the field of medicine often need is mainly written in unstructured

format in some scientific articles, which means it cannot be directly processed by

computers. Therefore, natural language processing techniques are becoming signif-

icantly important to uncover structured data from biomedical literature.

Natural language processing is a research field that combines techniques to

automatically analyze, understand, or generate human-readable texts. Due to increa-

sing number of genomes, sequences, proteins, individual gene studies, etc., it is

difficult and time consuming to manually collect and interpret large-scale experi-

mental results. Therefore, methods should automatically enable efficient data

retrieval, processing, and integration. Typical text mining tasks therefore include text

categorization, text clustering, information extraction, taxonomy/ontology generation,

sentiment analysis, and document summarization.

In this chapter, we cover basic introduction and review of accompanying

methods for the following main text mining fields:
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Information retrieval deals with indexing, searching, and retrieval of relevant

documents given an input query.

Information extraction tries to automatically extract structured data from unstruc-

tured sources with the main tasks of named entity recognition, relationship

extraction, and coreference resolution.

Data integration solves the problem of merging and redundancy elimination

in data.

There are a lot of examples where text mining techniques directly helped in

medicine-related research. Some recent examples are improving prediction of protein

functional sites [58], leveraging computational predictions to improve literature-

based Gene Ontology [59], or linking ontologies and protein-protein interactions

to literature [60].

The rest of the chapter is organized as follows. In Sect. 4.2, we introduce

examples of medicine linguistic resources. Some of them are direct result of text

mining algorithms and others serve as collections of unstructured sources yet to be

processed. All the resources we introduce are further categorized as a raw database

or an ontology. Section 4.3 presents publicly available platforms, tools, and

libraries that can be used for text mining over the medical data. First, we introduce

general frameworks that provide additional plug-ins to work with medical domain

and then we present some domain-specific tools that were initially built to work

with medical domain. In the following section, we give an overview of information

retrieval task and present a model, which is most commonly used to search

over biomedical data. Next, we review information extraction techniques, present

data transformations, and explain standard evaluation metrics. We also give an

overview of commonly used machine-learning methods and more thoroughly

explain Conditional Random Fields algorithm. In Sect. 4.6, we focus on data

integration, where we present data transformation and explain general network-

based merging and redundancy elimination techniques. Lastly, in Sect. 4.7, we

summarize the chapter.

4.2 Medicine Linguistic Resources

Linguistic resources in the field of text mining for biomedicine are very important.

They contain useful information regarding conducted experiments and results. By

integration of these results, new findings can be uncovered, and more importantly,

the research is not repeated and therefore a lot of time is saved. For example, if

you were trying to develop a new drug, you might want to find all gene products that

are responsible for bacterial protein synthesis in selected genome (e.g., human).

These findings are most commonly written in scientific papers and therefore we

present some linguistic sources that contain such extracted data.

We further categorize language resources into databases and ontologies
(see definition in Sect. 4.2.2). Sometimes it is hard to differ between the two,
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so therefore we classify resource as an ontology if it is encoded into a standard

ontology description format (e.g., RDF/XML, OWL), follows a structure of taxon-

omy, or contains relationships or associations between concepts. We do not

explicitly review datasets, created specifically for shared tasks or challenges, but

they play an important role in developing and evaluating new text mining

algorithms. Some examples of such shared tasks are KDD Cup 2002, TREC

Genomics Tracks 2003–2007, and still active BioNLP and BioCreative shared

tasks.

4.2.1 Scientific Literature Databases

MEDLINE [17] is one of the largest medical databases that indexes academic

journal papers from the broad fields of medicine, health, life sciences, behavioral

sciences, chemical sciences, and bioengineering. It contains more than 20 million

documents from more than 5,000 worldwide journals, and each day, a few

thousand of new references are added. In order to access this large database,

PubMed information retrieval system was developed. The system is still actively

supported and provides Boolean-style search (Sect. 4.4) with combination of field

names from MeSH ontology (see Sect. 4.2.2).

Online Mendelian Inheritance in Man (OMIM) [18] is also a public

bibliography database that contains a comprehensive extraction of human genes,

genetic phenotypes, and all known Mendelian disorders from bibliographic data.

The database was constituted in 1960s and is still daily updated. In contrast to other

databases, which are extensively generated using automatic extraction algorithms,

it is curated manually. Researchers use OMIM data to research the causalities

between phenotypes and genotypes.

4.2.2 Ontologies

Ontology was primarily defined as a specification of conceptualization [19].

Ontologies are used in various fields, but maybe they are mostly known to support

the idea of Semantic Web [20]. An ontology represents knowledge about a domain

which is generally represented as a set of concepts (e.g., protein, gene, genome)

and relationships (e.g., is expressed, inhibits, regulates) among them. An instance

(e.g., BRCA1) in a semantic database (i.e., a database that uses an ontology as a

domain) therefore represents a data item of a specific concept type. Furthermore,

ontology specification also provides a definition of rules and axioms, which enables

the use of inference mechanisms to uncover unseen data. Lastly, one of the most

important things that ontologies provide is a seamless interconnection of multiple

data sources. Therefore, a direct connection (e.g., owl:sameAs, rdfs:seeAlso, owl:
equvivalentClass relationship types) to concepts in other semantic databases can
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be added to enrich a single ontology-based data without explicit copying. A special

case of an ontology is taxonomy, which only defines hierarchical structure of the

concepts (i.e., categorization).

GENIA [21] is a corpus of 2,000 MEDLINE abstracts that are linguistically

annotated with part-of-speech tags, syntactic dependencies, and most importantly

semantic annotations. The ontology contains concepts of biological entities like

proteins or genes that were manually tagged during the phase of term annotation.

GENIA is therefore a taxonomy of 47 biological nominal categories (e.g., biological

source, substance, or organism type).

BioInfer [22] is, similarly as GENIA, an information extraction corpus that

additionally contains relationships between entities. The data was extracted from

1,100 biomedical research abstracts. Additionally, two separate taxonomies were

built, one containing entity concepts and the second relationships. Lastly, both

were integrated into a single ontology.

Medical Subject Headings (MeSH) [23] is a manually curated hierarchical

thesaurus. It consists of naming descriptors, from general (e.g., anatomy, healthcare)

to specific (e.g., colloid cysts). Each descriptor contains a unique identifier, short

description, and one or more tree numbers that identify locations within the tree

structure. MeSH is therefore mainly used for indexing articles within MEDLINE

database (see Sect. 4.2.1).

Systematic Nomenclature Of Medicine Clinical Terms (SNOMED CT) [24] is

one of the most comprehensive multilingual clinical healthcare terminology sources.

It consists of more than 300,000 taxonomic objects which are linked with more than

1,300,000 relationships (e.g., is-a, is-synonym). The whole ontology also enables

uncovering specific patterns using simple descriptive logic (e.g., transitivity).

Similarly to MeSH, it offers structured collection of medical terms and therefore

focuses to be used to index, retrieve or store clinical data, record clinical details

of individuals, and support decision making using descriptive logic inference

techniques.

Gene Ontology (GO) [25] is an ontology that describes how gene products

interact in a cellular context and covers the domains of cellular component,

molecular function (i.e., activity of a gene product), and biological process

(i.e., operations or events with defined beginning and end). Furthermore, it also

includes association links to other ontologies (e.g., FlyBase or geneDB) and

offers querying across them (e.g., a user can query for all the gene products in the

human genome that are involved in a specific molecular process).

MicroRNA-cancer association database (miRCancer) [26] is regularly updated

database using text mining algorithms against PubMed. Human cancers are

correlated to microRNAs, so the database could be used for cancer indicators

identification and treatment purposes. The text mining algorithms are based on

manual constructed rules, based on typical microRNA expressions in literature.

Lastly, all miRNA-cancer associations are confirmed manually, so therefore

miRCancer is one of few databases that stores exact empirical results.

Lastly, we need to mention the type of ontologies that focus just on integrating

different databases or ontologies by providing mutual associations (sometimes

108 S. Žitnik and M. Bajec



also called metathesaurus). They are very useful in natural language processing as

systems can use just one interface to query multiple contexts. Some examples of

such ontologies are Unified Medical Language System (UMLS), Open Biological

and Biomedical Ontologies (OBO), and Disease Ontology. They combine hundreds

of public datasets and also the ones we have mentioned earlier.

4.3 Text Mining Platforms and Tools

During the text mining research on biomedical data, a number of techniques have

been developed. Some research work has further evolved into publicly available

services, libraries, or larger projects. In this section, we present some general text

mining tools that have been successfully used on biomedicine domain or were

already initially developed to solve a biomedicine problem.

It is common that the researchers from the field of general text mining often

relearn their approaches on different domain and evaluate them without having

deeper knowledge about data [1]. Some of the general tools, successfully applied

to a biomedicine domain, are listed in Sect. 4.3.1. Presented frameworks therefore

also include special biomedical plug-ins to handle specific data formats and

visualizations.

In Sect. 4.3.2, we present text mining tools that were initially developed to work

with biomedical data. In contrast to general approaches, most of them include large

corpuses of processed data and data manipulation tools.

4.3.1 General Tools

General Architecture for Text Engineering (GATE) [2] is an open-source platform

containing a number of text analysis tools. It has been actively developed for

more than 20 years by academic and industry contributors. The community is still

constantly including new state-of-the-art techniques and technologies. Recently,

they also provided a cloud-based service for large-scale text processing.

The family of products offers a variety of tools to work with. GATE Developer

(Fig. 4.1) is a special integrated development environment for end users. It provides

a graphical user interface, which enables the user to read new data, construct a

pipeline of text processing modules, and visualize and analyze the input data. Each

component also offers customizations of special parameters or an ability to define

custom extraction rules. Next, the GATE Teamware provides a web collaboration

framework to annotate and curate new text corpora. Having a large number of

tagged corpora is essential to improve or build new text mining techniques, and

therefore it is very useful to use the same semiautomatic tagging technique for a

group of manual annotators. Lastly, GATE Embedded provides an open-source

library that can be directly used by software developers when building new text
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analysis supported systems. Moreover, using the library, new custom plug-ins for

GATE Developer tool can be implemented.

In the field of biomedicine, GATE tool was used to detect a head and neck

cancer mutation association, medical records analysis, richer drug-related searching,

protein-protein interactions, etc. [3]. There are also a lot of biomedical-specific plug-

ins already developed. Furthermore, it allows to structure extracted data using an

ontology language, or it allows using an ontology to guide the extraction process.

Unstructured Information Management Architecture (UIMA) [4] is a similar

framework to GATE, but not so focused into providing a nice graphical user

interface (Fig. 4.2). By itself it is an empty framework for the analysis of unstruc-

tured data like video, audio, and text data. It provides a general framework for data

acquisition, representation, processing, and storing. The UIMA main goal was

to develop a lot of reusable components, for example, annotators or external

resources that can be easily plugged into the system. Next to general components,

also specialized biological annotators or medical knowledge extraction have been

developed. The framework became better known after IBM’s system Watson,

which was built on top of UIMA, and had won the 2011 Jeopardy challenge.

In contrast to GATE and UIMA frameworks, a number of natural language

processing libraries exist. Their main focus is to solve a specific task and to

Fig. 4.1 GATE Developer. On the left side, selected applications are shown with a number of

processing resources that can process language resources. On the right side, a number of known

annotation sets are listed. In the center, a processed document is visualized and user is given a

possibility to refine the results
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be used in third-party applications. Stanford Core NLP [5] is one of the most

comprehensive set of tools that next to the text preprocessing techniques provides

named entity recognizer, simple relationship extractor, and coreference resolution

system. By functionality, similar library is Breeze [6], and other more general are

also OpenNLP [7], NLTK [8], DepPattern [9], or FreeLing [10]. One of the key

differences among them is also the programming language a specific library is

available in.

4.3.2 Medicine-Specialized Tools

Turku Event Extraction System (TEES) is one of the best performing systems

at biological shared tasks [11]. It uses a classification-based machine-learning

approach to detect events from which it further identifies relationships. The

whole TEES text mining process was designed to uncover biomedical interactions

(i.e., relationships between proteins/genes and corresponding processes) in research

articles. Additionally, the system includes standard text preprocessing tools and

is adaptable to various tasks, like speculation and negation detection (i.e., similar

to general sentiment analysis), protein/gene coreference resolution, or synonym

detection.

Extraction of Classified Entities and Relations from Biomedical Texts
(EXCERBT) [12] system is a result of a Ph.D. thesis in the field of bioinformatics.

Its main goal is to use a simple machine-learning algorithm with shallow semantic

role labeling in contrast to slow full-text parsing. Next to EXCERBT, the authors

also perform large-scale network analysis for extracted relationship ranking

using neighboring documents similarities. Lastly, they use big data database

Fig. 4.2 UIMA example annotation results. On the left side, the source document is annotated

with selected tags, and on the right side, annotation details are shown
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technologies to efficiently store, index, and retrieve data from few ten million

PubMed documents. In Fig. 4.3, we show a graphical user interface built on top

of EXCERBT with a simple information retrieval example.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is an

integration and information retrieval tool along with a database of known and

predicted protein interactions [13]. The tool offers a successful confidence scoring

function and merely focuses on an interactive user interface. The STRING database

covers more than thousand types of organisms, ranging from bacteria to humans,

which are represented by fully sequenced genomes. In Fig. 4.4, we show a sample

STRING result when searching for RAD51 protein in context of a human genome.

The integration methods underneath the graphical user interface use standard

approaches with some minor domain modifications.

Multiple Association Network Integration Algorithm (GeneMANIA) [14] is a

real-time network integration algorithm for gene function prediction. The first

part of the algorithm creates a single-gene functional association network using

other genomic data sources. In the second part, a technique of label propagation

(i.e., an approach that uses node values and their connections to achieve converged

network) is used to identify gene functions from previous step. On the top of

proposed algorithm, a network-based web interface has been developed that

enables the user to find association data for a set of input genes. The association

data includes protein/gene interactions, protein domain similarity, pathways,

co-expressions, and co-localizations.

Genie [15] is a tool that evaluates biomedical literature and identifies genes

within the texts from a number of databases. Its goal is to provide a ranked set of

genes given target genome and a biomedical topic. Moreover, it supports natural

language query input and provides high precision results. The researchers can

further use that information to more thoroughly focus on higher ranked genes.

Fig. 4.3 EXCERBT search engine user interface. On the left side, we select the source entity type,
followed by relationship and target entity type. On the right side, documents with short text

snippets, from which the whole relationship was extracted, are presented
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GENIA Tagger [16] is an example of information extraction tool that provides

text preprocessing taggers (i.e., part-of-speech tagger, parser) with named entity

recognizer. From general tools, it differs by being trained on biomedical data with

accordingly tuned features.

4.4 Information Retrieval

Information retrieval [27] is a task of obtaining relevant information resources to a

query from a document database. Documents can be represented in different

formats, for example, web pages, videos, and images. A query on the other hand

can also be of arbitrary type, entered by a user or prepared by a program.

In 1945, Vannevar Bush designed a concept of a system calledmemex that would
be able to store and retrieve data [29]. The proposed system was naive comparing to

modern information retrieval systems, but his idea was revolutionary in those days.

He also designed a Wikipedia-like retrieval system and focused especially on book

retrieval. The earliest information retrieval systems were then really implemented

in libraries.

In 1960s, Professor Gerard Salton with a research group at Cornell University

developed SMART (System for the Mechanical Analysis and Retrieval of Text).

Fig. 4.4 STRING interactive web interface. The tool provides search interface and a selection of

target organism. Results are shown as a network of interactions, which a user can deeply analyze

and investigate
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This is identified as one of the first information retrieval systems. Nevertheless, it

used TF-IDF vector-based index and a simple algorithm for query transformation.

As Professor Salton contributed a lot to the research field, every 3 years, the Gerard
Salton Award is given to an individual who makes significant contribution to

information retrieval.

The last revolution to information extraction happened in 1990s with the

development of the Internet. Before the Internet, most people were trying to get

information from other people than from information retrieval system. However,

in the last decade, most of the traditional information retrieval systems transformed

into search engines over the World Wide Web. Newer studies therefore found

that more than 90 % of Internet users use search engines to get everyday

information [30].

The efficiency of an information retrieval system depends not only on the system

but also on a user. A user needs to correctly define a relevant search query for his

information need. According to the need, we identify the following information

retrieval system types [32]: (1) navigational (user needs to directly access the

target document or web page), (2) informational (user wants to get information

that is contained in an unstructured document), and (3) transactional (user needs
to access a specific resource in order to make a transaction) (e.g., shopping,

document upload, watching a video).

In Fig. 4.5, we show a general information retrieval system (i.e., search engine)

architecture. It’s main parts consist of user interface, crawler, and index. User
interface must provide an intuitive way for the user to express his information need

and appropriate design to show relevant results. At this step, modern search engines

additionally preprocess the query using query reformulation or expansion

techniques to provide best results (e.g., expansion of a query using synonyms).

Search engine

Crawler

Search

TARGET
DOCUMENTS

SEARCH ENGINE

USER

Index

Fig. 4.5 General information retrieval system schema
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Crawler is the essential part of a search engine that retrieves new data from the web

or other information pool that a search engine focuses on. Generally, it is built as a

set of independent agents that automatically look for new documents or identify

their changes. Lastly, the most important part is the index. It contains crawled

documents that are stored in a specialized format for quick retrieval. In contrast,

some search engines – metasearch engines – do not have their own infrastructure,

but just use a number of other information retrieval systems and then show the user

combined and re-ranked results.

4.4.1 Data Representation

Typical procedure for adding a new document into a search engine is (1) document

retrieval, then (2) document processing, and lastly (3) adding a document into a

local index structure. The part of document processing is especially important as it

cleans the document and selects the most relevant parts that represent the document,

which are further used at indexing. The preprocessing methods include stemming

(i.e., removing common endings: ants/ant), lemmatization (i.e., semantic trans-

formation of inflected words into a basic form: better/good), stop words removal

(i.e., removing of highly frequent and therefore unimportant words: in, an, the, a),
or case folding (i.e., representing words in lower case: Slovenia/slovenia).

For example, in Table 4.1, we show a collection of five raw documents. Before

storing the documents into information retrieval system index, we perform

preprocessing on the documents. After preprocessing, we get cleaned documents

with words in basic forms (Table 4.2). These documents representations are now

appropriate to be indexed by specific indexing model.

In the following sections, we review some of the models that are mostly used for

indexing biomedical data resources (see Sect. 4.3).

Table 4.1 A collection of five raw documents

Doc ID Content

1 BRCA1 encodes a nuclear phosphoprotein and maintains genomic stability

2 BRCA1 acts as a tumor suppressor

3 The encoded protein combines with other tumor suppressors

4 Mutations in BRCA1 are responsible for approximately 40 % of breast cancers

5 A related pseudogene, which is also located on chromosome 17, has been identified

Table 4.2 Example of preprocessed documents

Doc ID Content

1 brca1 encode nuclear phosphoprotein maintain genome stability

2 brca1 act tumor suppressor

3 encode protein combine tumor suppressor

4 mutations brca1 responsible approximate 40 % breast cancer

5 related pseudogene locate chromosome 17 identify

4 Text Mining in Medicine 115



4.4.2 Models

Information retrieval model defines how documents D are represented

(i.e., indexed) within the information retrieval system.

Most of the models index documents by the containing words. For example,

bag-of-words approach represents each document as an unordered collection

of words. Let V ¼ {t1,t2, . . .,t|V|} be a collection of all known words. For every

word ti in a document dj ∈ D, we define wij � 0 as a weight of word within

the document. Therefore, we can model each document as a vector:

dj ¼ w1j;w2j; . . . ;w Vj jj
� �

:

When the user enters a query, it is transformed using the same principles as

documents and then compared to all document vectors within the index. Further,

ranking is performed to select best matching documents and then a limited set

is returned as a result.

Boolean model is one of the oldest and simplest document retrieval techniques.

The weights in documents have only binary values and therefore the results ranking

is not possible for this model type:

wij ¼ 1, ti ∈ dj
0, otherwisej

�

The query is formulated by words that can be combined using logical operators

AND, OR, or NOT. The system then returns all the documents that comply to

the query. For example, a result for query “BRCA1 AND tumor” (logical operators

are usually implicitly added by the system) would return the document 2.

If we had a large number of documents to index, it would be very time

consuming to compare the query to every internal document. Therefore, we

should build inverted indexes or posting lists. An example of posting list is

presented in Table 4.3. For every word in vocabulary V, it contains a list of

all documents where a specific word occurs. Using this technique, we quickly

retrieve the lists for every word of the query and calculate the intersection. All

documents in the intersection are then returned as a result. For previous query,

Table 4.3 Example of index

using posting lists
Word Posting list

brca1 1, 2, 4

tumor 2, 3

suppressor 2, 3

cancer 4

. . . . . .
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we would take the intersection of lists for “brca1” and “tumor” and therefore

return document 2 as the result.

Nevertheless, the Boolean indexing model is one of the most naive ones, but still

a lot of biomedicine resources (e.g., PubMed) depend on it. That is why generally

researchers are interested into all documents containing specific words (e.g., protein

names) with some constraints (e.g., does not contain BRCA1 gene), so thus there is

no need to use sophisticated models in this case.

Vector space model is a more sophisticated but still simple indexing model.

It indexes each document as a vector of weights wij for each word. In comparison

to Boolean model, it can return a ranked list of documents ranked by similarity

to a user query.

The weight values are most commonly calculated using TF-IDF (Term

Frequency–Inverse Document Frequency) scheme. The intuition of TF-IDF is

that a word is more important if it occurs in few documents, rather to a number

of documents. Let fij be a number of occurrences of the word ti in dj and

term frequency tfij it’s accompanying normalized value. Let n be a number

of documents within the system. The dfi is a number of documents, which

contain the word ti. By computing inverse document frequency idfi, we identify

how common or rare is a term across all documents. The final TF-IDF weight wij

is therefore a product of both frequency values:

tf ij ¼
f ij

max f 1j; f 2j; . . . ; f Vj jj
n o ,

idf i ¼ log
n

df i
,

wij ¼ TF‐IDFij ¼ tf ij � idf i:

The final document similarities are then calculated using cosine similarity,

which is a normalized scalar product of two documents (e.g., query q and

document dj) vectors:

cosine sim q
!
; dj
!� �

¼ q
! � dj

!

q
!���
��� dj
!���

���

For example, let us take the previous query “BRCA1 tumor” and preprocessed

documents from Table 4.2. Document 2, which matches the most, should have the

highest similarity value. From the theory or intuition, we know that words which

occur many times are not so important. So therefore, the second-ranking document

should be document 3 because “tumor” is less frequent than “BRCA1.” Full ranking

for the query is shown in Table 4.4.
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4.5 Information Extraction

Machine understanding of textual documents has been challenging since early

computer era. Information extraction [28] therefore attempts to analyze text and

extract its structured semantic contents. The extracted results therefore enable new

ways to query, organize, analyze, or visualize data. Firstly, information extraction

techniques were used to work only on general domain data, like person and

company names. There were also a lot of systems developed that ease web

searching by the use of structured data, automatically extract opinions, structurally

compare products from unstructured reviews, etc. Recently, the same techniques

were adopted in bioinformatics field to extract biological objects (e.g., proteins,

genes), their interactions, and experiment results from the vast biomedical

databases. Since biological names are very different from classical ones, this

task is also responsible for conducting new research in the information extraction

field.

The most important information extraction tasks consist of named entity recog-

nition (e.g., extraction of person names, locations, organizations), relationship

extraction (i.e., identification of relationships among entities), and coreference

resolution (i.e., clustering of mentions to an entity). Thus, information extraction

techniques have roots in the natural language processing community, as text was

one of the first and still is highly important unstructured information source.

Nevertheless, the term information extraction is used also to extract structured

data from arbitrary source types like videos, images, and sound.

The early information extraction research was strongly driven by Message

Understanding Conference (MUC) competitions from 1987 (MUC-1) to 1997

(MUC-7) [44]. Initial competitions focused merely into named entity recognition.

Later, newer important competitions, supporting more tasks, and containing larger

data corpuses emerged, like Automatic Content Extraction (ACE) [45], Semantic

Evaluation (SemEval) [46], and Conference on Natural Language Learning

(CoNLL) Shared Tasks [47].

With the advent of Semantic Web, ontologies gained importance, and researchers

try to represent all knowledge using an ontology (see Sect. 4.3.2). As ontology is a

highly adaptable schema that defines entities, their attributes, and connections among

them, it is an ideal model to represent extracted data. Therefore, a special subfield,

ontology-based information extraction emerged, where ontologies are used for

Table 4.4 Vector space

model ranking according to

TF-IDF cosine similarity

Doc ID TF-IDF cosine similarity

2 0.49

3 0.29

1 0.07

4 0.06

5 0.0
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guiding the whole information extraction process, represent data schema, or are

themselves a result of the process.

We categorize the methods for information extraction into two main dimensions,

as presented in Fig. 4.6. These are pattern-based and machine-learning-based

approaches. Pattern-based methods extract data using some template that can be

automatically extracted from seed examples (e.g., a set of document containing

identified phone numbers is given as input. Then, the algorithm learns some simple

rules on how phone numbers occur in text – e.g., text before and after the number)

or rules that are created by the user (e.g., a user creates a rule that if a set of

numbers appear directly after the word “tel:”, it is a phone number). On the

other hand, machine-learning-based approaches are typically given a tagged

data corpus, a set of features, and then a training algorithm learns the specific

information extraction model. These two approaches further divide into induction

and probabilistic methods. The induction methods generally build models on

linguistic or structural data. Recently, the probabilistic methods have become

successful and therefore researchers use all types of data mining methods to learn

the information extraction models.

4.5.1 Data Representation

It is essential for information extraction tasks to transform the unstructured data into

representation that our model can understand and therefore infer appropriate

results.

Table 4.5 shows an example of unstructured source and accompanying tagged

data for named entity recognition, relationship extraction, and coreference resolu-

tion. We can observe that named entities are typically noun phrases of one or more

tokens (i.e., protein names within PRO tags). Relationships are similarly associated

Fig. 4.6 Information extraction methods classification
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with verb phrases (i.e., words within REL tags). Usually after identifying relation-

ship verb phrase, it needs to be classified into a particular relationship type because

in the text it can be stated using multiple ways. Lastly, coreferences tag each entity

mention with a number. Mentions that have the same number therefore represent

the same underlying entity. Mentions are all references to an entity and can be of

named (e.g., John Doe), nominal (e.g., the guy with the glasses), or pronominal

(e.g., he) type.
Most often, the text document is represented as a set of sequences, where each

sequence represents one sentence. Furthermore, each sequence consists of a list of

observable tokens, which are words or symbols that form the sentence. Therefore,

additional modifiers or target classes (e.g., named entities) can be stored as

attributes for each token. The most widespread sequence training data representa-

tion is BIO (i.e., begin/inside/outside) notation. There, each token is labeled with

one of the following: (1) B, when it is the first word in a phrase (e.g., B-PRO);
(2) I, when it is second or later word within a phrase (e.g., I-PRO); and (3) O,
when it is unclassified word or token. For example, a part of previous example

“Activin binds directly ActR-IIB” would be tagged as “B-PRO B-REL O B-PRO O.”
Additional attributes are usually added to the dataset in the phase of text

preprocessing. In this phase, researchers would like to enrich the dataset in

order to use richer feature functions during the information extraction algorithm

execution. Some examples of such attributes are part-of-speech tags, lemmas,

parse trees, and synonyms. Part-of-speech tags mark a role of a word, based on

its definition or context [57]. They are only an extension of a simplified form of

identification of words as nouns, verbs, adjectives, adverbs, etc., that are taught

in elementary school. Parse trees are another commonly used type of attributes,

which represent the syntactic structure and dependencies between parts of the

sentence. In Fig. 4.7, we show an example parse tree of the first example sentence

Table 4.5 Example of information extraction dataset from BioNLP 2013 gene regulation ontol-

ogy shared task

Activin binds directly ActR-IIB, and this complex associates with ActR-IB. In the resulting

complex, ActR-IB becomes hyperphosphorylated, and this requires the kinase activity of

ActR-IIB

The unstructured source

<PRO> Activin</PRO> binds directly <PRO> ActR-IIB</PRO>, and this complex associates

with <PRO> ActR-IB</PRO>. In the resulting complex,<PRO> ActR-IB</PRO> becomes

hyperphosphorylated, and this requires the kinase activity of <PRO> ActR-IIB</PRO>

Annotated entities

Activin <REL> binds</REL> directly ActR-IIB, and this complex <REL> associates</REL>
with ActR-IB. In the resulting complex, ActR-IB <REL> becomes hyperphosphorylated

</REL>, and this <REL> requires the kinase activity</REL> of ActR-IIB

Annotated relationships

<1> Activin</1> binds directly <2> ActR-IIB</2>, and <3> this complex</3> associates

with<4> ActR-IB</4>. In<3> the resulting complex</3>,<4> ActR-IB</4> becomes

hyperphosphorylated, and this requires the kinase activity of <2> ActR-IIB</2>

Annotated coreferences
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from Table 4.5. From the figure, we can see the sentence structure with some

dependencies. Each node within a tree defines a constituent, which is a word

or a group of words that function as a single unit within a hierarchical structure.

For example, the node QP defines a constituent “directly ActR-IIB.”

Formally, we represent the sequence of observable tokens as x ki ¼
xki1 ; x

ki
2 ; . . . ; x

ki
n

� 	
. Index ki stands for token type that can be a word or additional

attribute such as part-of-speech tag, lemma, parse tree, and constituent. Each

observable sequence is associated with corresponding target labeling sequence y li ,

where li ∈ {EE,REL,COR} identifies entity extraction, relationship extraction,

and coreference resolution label types. An example dataset containing two sentences

is shown in Table 4.5. Sequences x k1
1 and x k1

2 represent input words from both

sentences. Respectively, sequences y EE,REL,COR
1 and y EE,REL,COR

2 can therefore

represent target BIO notation labels for all three tasks. When we additionally

introduce lemmatized text “Activin bind direct ActR-IIB, and this complex associate
with ActR-IB. In the result complex, ActR-IB become hyperphosphorylate, and
this require the kinase activity of ActR-IIB,” we store it into accompanying sequences

x k2
1 and x k2

2 which are used to enrich data to improve prediction capabilities.

4.5.2 Methods for Extraction

Rule-based methods are one of the oldest and easiest to implement, but mostly

do not achieve best performances (some tools and frameworks support their

own ways to design user-defined patterns – Sect. 4.4). Therefore, in this section,

we focus on machine-learning methods for information extraction, especially on

sequence classifier methods.

Fig. 4.7 Dependency parse tree for the first sentence in Table 4.5
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Traditionally, standard classifiers, like multinomial naive Bayes, SVM, decision

trees, random forest, and neural networks [31], were used to extract information.

Therefore, the data is needed to be transformed for direct classification. For example,

a named entity classifier decided for each word or phrase if it represents an entity or

not. Similarly, for relationships, a classifier was trained to decide if there is a

relationship between the two mentions within a sentence. Lastly, coreference reso-

lution problem was transformed into a pairwise decision problem and classifier

decided for every pair of mentions when the two are coreferent or not [40–42].

However, typically in information extraction, tokens are rarely independent of

each other. This observation therefore led to a number of models that enable

capturing dependencies between the labels. One of the first popular algorithms

were hiddenMarkov models [54], and later maximum entropy Markov models [55],

conditional Markov models [56], and the state-of-the-art methods for sequence

classification Conditional Random Fields [39] were developed. In contrast to

previous direct methods, these try to predict the most probable labeling sequence

for the whole sequence and not only for one token. Next, we elaborate Conditional

Random Fields.

Conditional Random Fields (CRF) [39] is a discriminative model that

estimates the joint distribution p y x ,wj Þð over the target sequence y conditioned

on the observed sequence x . For example, i th sentence xi is represented as a

sequence of words x i with additional corresponding sequences that represent

attribute values such as part-of-speech tags x k2
i , lemmas x k3

i , relationships x
k4
i , or

other observable features x
kj
i . These observable values and attributes are used by

feature functions fl that are weighted during CRF training in order to model target

sequence y i . Target sequence contains labels that we would like to automatically

label. For example, at information extraction tasks, these are named entity tags

(e.g., PRO, GEN), relationships tags (e.g., INTERACTS-WITH, INHIBITS), or

coreference entity numbers.

Training a CRF is therefore finding a weight vector w that predicts most probable

sequence y
∧

given x . Hence,

y
∧ ¼ argmaxy p y x ,wj Þ,ð

where the conditional distribution equals

p y jx ,wð Þ ¼
exp

Xm

l¼1wl

Xlen xð Þ
i¼1 f l y; x; ið Þ

h i

C x;wð Þ :

Here, m is the number of feature functions and C x;wð Þ is a normalization

constant computed over all possible sequences y .
An example of feature function is as follows:
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f l y; x; ið Þ ¼ if y i ¼¼ PRO∨x i�1 ¼¼ proteinð Þ then
return True

else

return False

The structure of a CRF defines how dependencies with target labels are modeled.

General graphical model can depend on many labels, and therefore it is not

tractable to train it or inference using it without using complex approximation

algorithms. On the other hand, linear-chain CRF is a simple bigram CRF model

and therefore easier and faster to train and label. In Fig. 4.8, a simple comparison

between the two is presented.

The selection of informative feature functions is the main source of increase

of precision and recall (see Sect. 4.5.3) when training machine-learning classifiers.

CRF feature functions are usually implemented as templates and then final features

are generated by scanning the entire training data. In natural language processing

tasks, it is common to have few thousands or more features. Furthermore, with

the development of well-designed feature functions also a rather simple pairwise

algorithm can achieve state-of-the-art results. Some researchers like to categorize

feature functions, so therefore we briefly introduce some main categories and give

few feature function examples per category:

Preprocessing. These feature functions use standard preprocessing labelings.

Generally, before employing any further text analysis, we first detect sentences,

tokens, enrich data with lemmas, part-of-speech (POS) tags, chunks, parse trees,

etc. These additional labelings are then used within feature functions, for

example, do POS tags match, distribution of POS tags, length between mentions
in a parse tree, depth of mention within a parse tree, parse tree parent value
match, and is pronoun of demonstrative/definitive type.

Location. Sometimes it is important to know where does a specific word or phrase

reside. Location feature functions deal with a phrase location compared to the

whole document, sentence, or other phrases. Some examples of feature functions

are sentence/mention/token distance between the two, is first/last mention, and
are within the same sentence.

x1 x2 x3 xn x1 x2 x3 xn

... ...

Fig. 4.8 Linear-chain CRF model on the left and an example of arbitrary structured CRF model on

the right
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String Shape. Input data is represented as word phrases and thus we are interested

if they share some property. These feature functions depend on raw input text,

like, for example, starts with upper case, do both start with upper case, prefix/
postfix/whole of left/right on distance x match, do exactly match, is appositive of
another, is prefix/suffix, edit distance similarity, do comply to Hearst rules, is in
quoted string, contains substring, contains head/extend words, and length
difference.

Semantic. This class of feature functions captures semantic relationships. Mostly,

additional semantic sources like WordNet [43], specialized lexicons, semantic

gazetteer lists, or ontologies are used. For example, some of the feature functions

are do named entity types match, are relationships tags between mentions
connected, do both mentions represent an animate object, do mentions agree
on gender/number, do both mentions speak (taking context words into account),

heuristic if a mention is an alias of another, mention word sense, do mentions
share same WordNet synset, is one hypernym/hyponym/synonym of another,
pronoun types within a mention, and mention type.

There is no silver bullet model that would outperform all others on a specific task.

Therefore, current state-of-the-art approaches use a hybrid approach combining

rule-based techniques with an ensemble of machine-learning models. The biggest

advantage of using rules seems to capture first the most confident extractions

before others.

4.5.3 Evaluation Metrics

Most commonly, the performance of named entity recognition and relationship

extraction is evaluated with the standard precision, recall, and F-score values.

Precision measures the ratio of correctly identified objects and those that were

extracted. Recall on the other side is the ratio of correctly identified objects and all

correct objects in a dataset.

Precision ¼ number of correctly extracted objects

number of extracted object

Recall ¼ number of correctly extracted objects

number of correct objects in a dataset

We can always achieve 100 % recall by extracting every possible object

from the dataset, but in contrast, precision value will be low. The function of

recall is therefore monotonically increasing with the number of extracted objects.

On the other hand, the more objects we extract, the more possible it is to make an

error and thus precision value may be lower. To take both measures into account,

the measure F-score was proposed:
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Fβ ¼ 1þ β2
� � Precision� Recall

β2 � Precisionþ Recall
:

In general, F1 score is used to evaluate the systems, which is a harmonic of

precision and recall. The final F1 score is therefore closer to the lower value

between precision and recall.

Coreference resolution is a slightly different approach to object extraction.

The goal is to achieve best mention clustering and therefore appropriate measures

must be proposed. In the early 1990s, a graph-based scoring algorithm was used

that produced very unintuitive results (these old measures were similar to entity

resolution evaluation techniques – see Sect. 4.6) [48, 49]. Later some more metrics

were proposed, but there is still no general agreement which one to use for full

evaluation. Therefore, at newer shared tasks, an arithmetic mean of some standard

measures is calculated to compare the systems. The most commonly used are

the following:

MUC [50]. The key idea to developing a new MUC measure was to give an

intuitive explanation of results for coreference resolution systems. The measure

was developed for evaluating competing systems at shared task in the sixth

Message Understanding Conference (MUC-6). It is a link-based metric (focuses

on pairs of mentions) and most widely used. MUC precision counts precision

errors by computing the minimum number of links that need to be added in order

to connect all the mentions referring to an entity. Recall, on the other hand,

measures how many of the links must be removed that no two mentions referring

to different entities are connected in the graph. Thus, MUC metric prefers

systems having more mentions per entity (e.g., a system that creates a single

entity over all mentions will receive 100 % recall along with high precision).

Yet another MUC downside is that it ignores entities with only one mention

(singleton entities).

BCubed [51]. The BCubed metric tries to solve MUC shortcomings by focusing

on mentions and measures the overlap between predicted and true clusters.

It computes recall and precision values for each mention. If k is the key

entity and r response entity containing mention m, the recall for mention m is

calculated as jk \ rj/jkj and precision for the same mention as jk \ rj/jrj.
This score has the advantage to measure the impact of singleton entities and

gives more weight to the splitting or merging of larger entities. It also gives

equal weight to all types of entities and mentions.

CEAF [52]. CEAF metric tries to solve both MUC and BCubed shortcomings.

Furthermore, another goal was to achieve better interpretability. The result

therefore reflects the percentage of correctly recognized entities. It is an entity-
based (a mention-based version also exists) metric that tries to match response

entity with at most one key entity. This is maximum bipartite matching

problem that can be solved by Kuhn-Munkres algorithm. Here, recall is the

(total similarity)/jkj, and precision is the (total similarity)/jrj.
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BLANC [53]. The most recently proposed BiLateral Assessment of Noun Phrase

Coreference (BLANC) uses a method of Rand index to evaluate coreference

problem. Bilateral comes from the idea that measure takes into account coreferent

and also non-coreferent links. Previous metrics reward links to entities equally

no matter what is its size, but in principle, assigning it to a large one is making a

larger number of equally important pairwise decisions. BLANC should model

coreference resolution better since it assigns equal importance to every decision of

coreferentiality. To calculate the final score, we first compute precision and recall

separately for coreferent and non-coreferent links (some boundary cases that may

contain only singletons or a single set are defined separately). Then, BLANC score

is an average of both F-scores.

4.6 Data Integration

Heterogeneous data matching and merging is due to increasing amount of linked

and open (online) data sources rapidly becoming a common need in various fields.

Different scenarios demand for analyzing heterogeneous datasets collectively,

enriching data with some online data source or reducing redundancy among

datasets by merging them into one. Literature provides several state-of-the-art

approaches for matching and merging, although there is a lack of general solutions

combining different dimensions arising during the matching and merging execution.

Data sources commonly include not only network data (e.g., entities and

connections between them) but also data with semantics (e.g., entities are classified

as genes, proteins). Thus, a state-of-the-art solution should employ semantically

elevated algorithms (i.e., algorithms that can process data with semantics according

to an ontology) to fully exploit the data at hand. In particular, the architecture

should support all types and formats of data and provide appropriate data for each

algorithm. As algorithms favor different representations and levels of semantics

behind the data, architecture should be structured appropriately.

Due to different origin of (heterogeneous) data sources, the trustworthiness

(or accuracy) of their data can often be questionable. Especially, when many such

datasets are merged, the results are likely to be inexact. A common approach for

dealing with data sources that provide untrustworthy or conflicting statements is the

use of trust management systems and techniques. Thus, matching and merging

should be advanced to a trust-aware level to jointly optimize trustworthiness

of data and accuracy of matching or merging. Such collective optimization can

significantly improve over other approaches.

4.6.1 Data Representation

Most natural representation of any related data are networks [33]. They are based

upon mathematical objects called graphs. Informally speaking, graph consists of a
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collection of points, called vertices, and links between these points, called edges.
An example of network representation is shown in Fig. 4.9. Let VN, EN be a set of

vertices, edges for some graph N, respectively. We define graph N as N ¼ (VN, EN)

where

VN ¼ v1; v2; . . . ; vnf g,
EN � vi; vj

� 	j vi, vj∈VN∧i < j
� 	

:

Edges are sets of vertices; hence, they are not directed (undirected graph).
In the case of directed graphs, the edge equation reformulates into

EN � vi; vj
� �j vi, vj∈VN∧i 6¼ j

� 	
,

where (vi,vj) is an edge from vi to vj. The definition can be further generalized by

allowing multiple edges between two vertices and loops (edges that connect vertices
with themselves). Such graphs are called multigraphs (e.g., graph (b) in Fig. 4.9).

In practical biomedicine applications, we commonly strive to store some

additional information along with the vertices and edges, similarly to additional

attributes at information extraction (see Sect. 4.5). Therefore, we formally define

labels or weights for each node and edge in the graph – they represent a set of

properties that can also be described using two attribute functions:

AVN
: VN ! ΣVN

1 � ΣVN

2 � . . . ,

AEN
: EN ! ΣEN

1 � ΣEN

2 � . . . ,

AN ¼ AVN
;AEN

ð Þ, where ΣVN

i , ΣEN

i are sets of all possible vertex, edge attribute

values, respectively.

Fig. 4.9 Integration data representation as a network: (a) directed graph, (b) labeled undirected

multigraph, and (c) network representing a group of related proteins and genes
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Generally, most useful attributes are semantic data and trust values. Semantic

data defines connection to ontology-based features. Nodes that represent entities

are connected to concepts and edges can be of object or data property types.

Using ontology attributes, we can form an overlay network and therefore use

more sophisticated similarity measures for merging execution. Trust values are

especially important at redundancy elimination step because the system needs

to select the most appropriate representative value from all the values within

merged data.

Trust is a complex psychological-sociological phenomenon. Despite of, people

use term trust in everyday life widely and with very different meanings [34]. In the

context of computer networks, trust is modeled as a related data between entities.

Formally, we define a trust between related data as

ωE : E� E! ΣE

where E is a set of entities and ΣE a set of all possible numerical or descriptive

trust values. ωE thus represents one entity’s attitude towards another and is used

to model trust(worthiness) of all entities in E. To this end, different trust modeling

methodologies and systems can be employed, from qualitative to quantitative

[34–36].

4.6.2 General Data Integration Framework

In Fig. 4.10, we show a general end-to-end integration framework [37]. At first,

the data needs to be preprocessed and transformed into network-based format

as described in Sect. 4.6.1. Then, attribute resolution is performed, followed

by entity resolution (i.e., merging). Entity resolution module takes a network

with duplicated nodes as input and returns merged network, where new nodes

(i.e., clusters) consist of a set of old duplicated nodes. The attribute resolution

technique uses the same approach as entity resolution but works on attributes

from different data sources and identifies which attributes represent the same

data. Lastly, redundancy elimination step selects one representative value from

each cluster and returns cleaned network. Post-processing step transforms the result

network into selected format (e.g., attribute-value pairs, ontology-based) and returns

it as a final result of integration execution.

Entity Resolution. A naive approach for entity resolution is simple pairwise

comparison of attribute values among different entities. Although such approach

could be already sufficient for flat data, this is not the case for network data,

as the approach completely discards related data between the entities. For instance,

when two entities are related to similar entities, they are more likely to represent

the same entity. However, only the attributes of the related entities resolve to the

same entities when their related entities resolve to not only similar but the same
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entities. An approach that uses information, and thus resolves entities altogether,

is denoted collective entity resolution algorithm.

As an example, we show a state-of-the-art collective data clustering algorithm,

proposed by Bhattacharya and Getoor [38]. The algorithm (Table 4.6) is actually a

greedy agglomerative clustering. Entities are represented as a group of clusters C,
where each cluster represents a set of entities that resolve to the same entity.

Contexts (User, Data, Trust)

Trust management

Post-
processing

Attribute
resolution

Entity 
resolution

Matching

Redundancy 
elimination

Merging

Pre-
processing

:Restaurant
:Address

:isLocated

:city#los angeles

:name#spago

:Restaurant
:Address

:Phone

:hasPhone

:isLocated

:city#hollywood
:number#310-652-4025

:name#Spago L.A.

:type#californian

:city#8795 sunset blvd.

Fig. 4.10 General end-to-end integration framework

Table 4.6 Collective entity

resolution algorithm
Collective entity resolution algorithm

1 Initialize clusters as C ¼ {{k}|k ∈ K}

2 Initialize priority queue Q ¼ ∅
3 for ci, cj ∈ C and sim(ci, cj) � θS do
4 Q. insert(sim(ci, cj), ci, cj)

5 end for

6 while Q 6¼ ∅ do

7 (sim(ci, cj), ci, cj)  Q. pop()

8 if sim(ci, cj) < θS then
9 return C

10 end if

11 C  C � {ci, cj} [ {ci [ cj}

12 for (sim(cx, ck), cx, ck) ∈ Q and x ∈ {i,j} do

13 Q.remove (sim(cx, ck), cx, ck)

14 end for

15 for ck ∈ C and sim(ci [ cj, ck) � θS do
16 Q.insert (sim(ci [ cj, ck), ci [ cj, ck)

17 end for

18 for cn ∈ nbr(ci [ cj) do

19 for ck ∈ C and sim(cn, ck) � θS do
20 Q.insert(sim(cn, ck), cn, ck)

21 end for

22 end for

23 end while

24 return C
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At the beginning, each entity resides in a separate cluster. Then at each step,

the algorithm merges two clusters in C that are most likely to represent the

same entity. During the algorithm, similarity of clusters is computed using a joint

similarity measure, combining attribute, and related data similarity. First is a

basic pairwise comparison of attribute values, while second introduces related

information into the computation of similarity (i.e., data accessible using cluster

neighbors in a network).

The algorithm (Table 4.6) first initializes clusters C and priority queue of

similarities Q, considering the current set of clusters (lines 1–5). Each cluster

represents at most one entity as it is composed out of a single knowledge chunk.

Algorithm then, at each iteration, retrieves currently the most similar clusters and

merges them (i.e., matching of resolved entities), when their similarity is greater

than threshold θS (lines 7–11), which represents minimum similarity for two

clusters that are considered to represent the same entities. In line 11, clusters are

simply concatenated. Next, lines 12–17 update similarities in the priority queue Q,
and lines 18–22 insert (or update) also neighbors’ similarities (required due to

related similarity measure). When the algorithm terminates, clusters C represent

a sets of data resolved to the same entity. These clusters are then used to merge

data at the redundancy elimination step.

After the entities have been resolved by entity resolution, the next step

is to eliminate the redundancy and merge the data. Let c ∈ C be a cluster

representing some entity, k1, k2, . . ., kn ∈ c be its merged references, and kc ∈ KC

be the merged data within cluster. Furthermore, for some attribute a ∈ A,
we have precalculated values per data source. The algorithm (Table 4.7) first

initializes merged network KC. Then for each attribute kc. a, it finds the most

probable value among all given references ki within cluster c (line 3). When the

algorithm unfolds, KC represents a merged dataset with resolved entities and

eliminated redundancy.

In Fig. 4.11, we show example of data integration execution. First part represents

input data in form of networks from three different data sources. Secondly, the

result of entity resolution contains merged network in which some nodes contain

more values (from each data source). Lastly, after redundancy elimination step,

the final result contains a cleaned network and the most appropriate value for each

node.

Table 4.7 Redundancy elimination algorithm

Redundancy elimination algorithm

1 Initialize merged cluster nodes KC

2 for c ∈ C and a ∈ A do

3 kc:a ¼ argmax
v

Y
k∈c∧k:a¼v

T k:að Þ
Y

k∈c∧k:a6¼v
1� T k:að Þð Þ

4 end for

5 return KC
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4.7 Summary

Many medical applications and current ongoing medical research depend on text

mining techniques. A lot of research work has already been done, and therefore in

this chapter, we have overviewed some methods that enable researchers to auto-

matically retrieve, extract, and integrate unstructured medical data. Due to increas-

ing number of unstructured documents, the automatic text mining methods ease

access to relevant data, already conducted research along with its results, and save

money by trying to eliminate repeated research experiments.

data

Person
Person

Person

Mike

John

Doe

J.

D.

Baker Baker street

London LN

1987

7.6.1987 July
1955
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John male
Bakerstr.

London
UK

gender

name

surnamecity

Entity
resolution

Person
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Doe,
D.John

Baker,
street,

str.

LN,
London,

UK

7.6.1987,
1987

1955

male

elimination

name

birthdate
name

name

gender addressaddress

surnamesurname

son

city city

Result

Person
Person

Mike

Doe

street

London7.6.1987

1955

male

birthdate

birthdate
name

name
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surnamesurname

son

city city
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birthdate

city

birthdate

nameaddress

Input data

name
birthdate

son

address

city

surname

birthdate

Fig. 4.11 Example of data integration execution on person domain
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In the last decade, the text mining field has been generally fast evolving, and

still, there is a lot of research to be done. In information retrieval, biomedical

language resources typically use simple query models, which seem sufficient

when enough of relevant data is extracted. Information extraction is currently

receiving a lot of attention because researchers are trying to adapt techniques

from other domains to work on biomedical data. Further, these techniques

are essentials for automatic research texts processing and extraction of findings

from research literature. Lastly, also very important topic of data integration still

needs to improve models to merge data and select representative values. The

latter is especially important as a reference to the same entity can be represented

using many different forms.
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37. Žitnik S, Šubelj L, Lavbič D et al (2013) General Context-Aware Data Matching and Merging

Framework. Informatica 24:1–34

38. Bhattacharya I, Getoor L (2007) Collective entity resolution in relational data. ACM

Transactions on Knowledge Discovery from Data 1:5–40.

39. Lafferty JD, McCallum A and Pereira FCN. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data, Proceedings of the Eighteenth International

Conference on Machine Learning, San Francisco: Morgan Kaufmann, 2001, pp. 282–289.

40. Soon WM, Ng HT and Lim DCY. A machine learning approach to coreference resolution of

noun phrases, Computational linguistics, 2001, 27: 521–544.

4 Text Mining in Medicine 133

http://www.pewinternet.org/Reports/2004/The-Internet-and-Daily-Life.aspx
http://www.pewinternet.org/Reports/2004/The-Internet-and-Daily-Life.aspx


41. Ng V, Cardie C (2002) Improving machine learning approaches to coreference resolution.

Proceedings of the 40th Annual Meeting on Association for Computational Linguistics

104–111

42. Bengtson E, Roth D (2008) Understanding the value of features for coreference resolution.

Proceedings of the Conference on Empirical Methods in Natural Language Processing

294–303

43. Miller GA (1995) WordNet: A Lexical Database for English. Communications of the ACM

38:39–41

44. Grishman R, Sundheim B (1996) Message understanding conference-6: A brief history.

Proceedings of the 16th Conference on Computational Linguistics. Morristown, USA 466–471

45. NIST (1998-present) Automatic Content Extraction (ACE) Program

46. Recasens M, Marquez L, Sapena E et al (2010) Semeval-2010 task 1: Coreference resolution in

multiple languages. Proceedings of the 5th International Workshop on Semantic Evaluation.

Uppsala, Sweden 1–8

47. Pradhan S, Moschitti A, Xue N, Uryupina O, Zhang Y (2012) CoNLL-2012 Shared Task:

Modeling Multilingual Unrestricted Coreference in OntoNotes. Proceedings CoNLL ’12 Joint

Conference on EMNLP and CoNLL - Shared Task. Pennsylvania, USA 129–135

48. Chincor N (1991) MUC-3 Evaluation metrics. Proceedings of the 3rd conference on Message

understanding. Pennsylvania, USA 17–24

49. Chincor N, Sundeheim B (1993) MUC-5 Evaluation metrics. Proceedings of the 5th conference

on Message understanding. Pennsylvania, USA 69–78

50. Vilain M, Burger J, Aberdeen J, Connolly D, Hirschman L (1995) A model-theoretic

coreference scoring scheme. Proceedings of the sixth conference on Message understanding.

Pennsylvania, USA 45–52

51. Bagga A, Baldwin B (1998) Algorithms for scoring coreference chains. The first international

conference on language resources and evaluation workshop on linguistics coreference.

Pennsylvania, USA 563–566

52. Luo X (2005) On coreference resolution performance metrics. Proceedings of the conference

on Human Language Technology and Empirical Methods in Natural Language Processing.

Vancouver, Canada 25–32

53. Recasens M, Hovy E (2011) BLANC: Implementing the Rand index for coreference evalua-

tion. Natural Language Engineering 17:485–510

54. Rabiner L (1989) A tutorial on Hidden Markov Models and selected applications in speech

recognition. Proceedings of the IEEE 77:257–286

55. McCallum A, Freitag D, Pereira F (2000) Maximum entropy markov models for information

extraction and segmentation. Proceedings of the International Conference on Machine

Learning. Palo Alto, USA 591–598

56. Klein D, Manning CD (2002) Conditional structure versus conditional estimation in NLP

models. Workshop on Empirical Methods in Natural Language Processing. Philadelphia, USA

1–8

57. DeRose SJ (1988) Grammatical category disambiguation by statistical optimization. Compu-

tational Linguistics 14:31–39

58. Verspoor KM, Cohn JD, Ravikumar KE, Wall ME (2012) Text Mining Improves Prediction of

Protein Functional Sites. PLoS ONE 7:e32171.

59. Park J, Costanzo MC, Balakrishnan R et al (2012) CvManGO, a method for leveraging

computational predictions to improve literature-based Gene Ontology annotations. Database,

doi:10.1093/database/bas001

60. Krallinger M, Leitner F, Vazquez M et al (2012) How to link ontologies and protein–protein

interactions to literature: text-mining approaches and the BioCreative experience. Database,

doi:10.1093/database/bas017
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Chapter 5

A Primer on Information Theory

with Applications to Neuroscience

Felix Effenberger

5.1 Introduction

Neural systems process information. This processing is of fundamental biological

importance for all animals and humans alike as its main (if not sole) biological

purpose is to ensure the survival of an individual (in the short run) and its species

(in the long run) in a given environment by means of perception, cognition, action,

and adaption.

Information enters a neural system in form of sensory input representing some

aspect of the outside world, perceivable by the sensory modalities present in the

system. After processing this information or parts of it, the system may then adjust

its state and act according to a perceived change in the environment.

This general model is applicable to very basic acts of cognition as well as to ones

requiring higher degrees of cognitive processing. Yet, the underlying principle is

the same. Thus measuring, modeling, and (in the long run) understanding informa-

tion processing in neural systems is of prime importance for the goal of gaining

insight to the functioning of neural systems on a theoretical level.

Note that this question is of theoretical and abstract nature so that we take an

abstract view on information in what follows. We use Shannon’s theory of infor-

mation [97] as a tool that provides us with a rigid mathematical theory and

quantitative measures of information. Using information theory, we will have a

conceptual look at information in neural systems. In this context, information

theory can provide both explorative and normative views on the processing of
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information in a neural system as we will see in Sect. 5.6. In some cases, it is even

possible to gain insights on the nature of the “neural code,” i.e., the way neurons

transmit information via their spiking activity.

Information theory was originally used to analyze and optimize man-made

communication systems, for which the functioning principles are known. Nonethe-

less, it was soon realized that the theory could also be used in a broader setting,

namely, to gain insight into the functioning of systems for which the underlying

principles are far from fully understood, such as neural systems. This was the

beginning of the success story of information-theoretic methods in many fields of

science such as economics, psychology, biology, chemistry, and physics.

The idea of using information theory to quantitatively assess information

processing in neural systems has been around since the 1950s; see the works of

Attneave [6], Barlow [9], and Eckhorn and Pöpel [32, 33]. Yet, as information-

theoretic analyses are data intensive, these methods were rather heavily restricted

by (a) the limited resources of computer memory and computational power avail-

able and (b) the limited accuracy and amount of measured data that could be

obtained from neural systems (on the single cell as well as at the systems level)

at that time. However, given the constant rise in available computing power and the

evolution and invention of data acquisition techniques that can be used to obtain

data from neural systems (such as magnetoencephalography (MEG), functional

magnetic resonance imaging (fMRI), or calcium imaging), information-theoretic

analyses of all kinds of biological and neural systems became more and more

feasible and could be carried out with greater accuracy and for larger and larger

(sub)systems.

Over the last decades such analyses became possible using an average worksta-

tion computer, a situation that could only be dreamed of in the 1970s. Additionally,

the emergence of new noninvasive data collection methods such as fMRI and MEG

that outperform more traditional methods like electroencephalography (EEG) in

terms of spatial resolution (fMRI, MEG) or noise levels (MEG) made it possible to

even obtain and analyze system-scale data of the human brain in vivo.

The goal of this chapter is to give a short introduction to the fundamentals

of information theory and its application to data analysis problems in the

neurosciences. And although information-theoretic analyses of neural systems

were not often used in order to gain insight on or characterize neural dysfunction

so far, this could prove to be a helpful tool in the future.

The chapter is organized as follows. We first talk a bit about the process of

modeling in Sect. 5.2 that is fundamental for all what follows as it connects reality

with theory. As information theory is fundamentally based on probability theory,

following this we give an introduction to the mathematical notions of probabilities,

probability distributions, and random variables in Sect. 5.3. If you are familiar with

probability theory, you may well skim or skip this section. Section 5.4 deals with

the main ideas of information theory. We first take a view on what we mean by

information and introduce the core concept of information theory, namely, entropy.
Starting from the concept of entropy, we will then continue to look at more complex

notions such as conditional entropy and mutual information in Sect. 4.3. We will
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then consider a variant of conditional mutual information called transfer entropy in
Sect. 4.5. We conclude the theoretical part by discussing methods used for the

estimation of information-theoretic quantities from sampled data in Sect. 5.5.

What follows will deal with the application of the theoretical measures to neural

data. We then give a short overview of applications of the discussed theoretical

methods in the neurosciences in Sect. 5.6, and last (but not least), Sect. 5.7 constrains

a list of software packages that can be used to estimate information-theoretic

quantities for some given data set.

5.2 Modeling

In order to analyze the dynamics and gain a theoretical understanding of a given

complex system, one usually defines a model first, i.e., a simplified theoretical

version of the system to be investigated. The rest of the analysis is then based on

this model and can only capture aspects of the system that are also contained in the

model. Thus, care has to be taken when creating the model as the following analysis

crucially depends on the quality of the model.

When building a model based on measured data, there is an important thing we

have to pay attention to, namely, that any data obtained by measurement of physical

quantities is only accurate up to a certain degree and corrupted by noise. This

naturally also holds for neural data (e.g., electrophysiological single- or multi-cell

measurements, EEG, fMRI, or MEG data). Therefore, when observing the state of

some system by measuring it, one can only deduce the true state of the system up to

a certain error determined by the noise in the measurement (which may depend both

on the measurement method and the system itself). In order to model this uncer-

tainty in a mathematical way, one uses probabilistic models for the states of the

measured quantities of a system. This makes probability theory a key ingredient to

many mathematical models in the natural sciences.

5.3 Probabilities and Random Variables

The roots of the mathematical theory of probability lie in the works of Cardano,

Fermat, Pascal, Bernoulli, and de Moivre in the sixteenth and seventeenth

centuries, in which the authors attempted to analyze games of chance. Pascal and

Bernoulli were the first to treat the subject as a branch of mathematics; see [106]

for a historical overview. Mathematically speaking, probability theory is concerned

with the analysis of random phenomena. Over the last centuries, it has become a

well-established mathematical subject. For a more in-depth treatment of the subject

see [47, 52, 98].
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5.3.1 A First Approach to Probabilities via Relative
Frequencies

Let us consider an experiment that can produce a certain fixed number of outcomes

(say a coin toss, where the possible outcomes are heads or tails or the throw of a die

where the die will show one of the numbers 1 to 6). The set of all possible outcomes

is called the sample space of the experiment.

One possible result of an experimen t is called outcome, and a set of outcomes

is called an event (for the mathematically adept: an event is a subset of the power set

of all outcomes). Take, for example, the throw of a regular, six-sided die as an

experiment. The set of results in this case would be the set of natural numbers

{1, . . .,6}, and examples of events are {1,3,5} or {2,4,6} corresponding to the

events “an odd number was thrown” and “an even number was thrown,”

respectively.

The classical definition of the probability of an event is due to Laplace: “The

probability of an event to occur is the number of cases favorable for the event

divided by the number of total outcomes possible” [106].

We thus assign each possible outcome a probability, a real number between

0 and 1 that is thought of as to describe how “likely” it is that the given event will

occur, where 0 means “the event does not ever occur” and 1 means “the event

always occurs.” The sum of all the assigned numbers is restricted to be 1 as

we assume that one of our considered events always occurs. For the coin toss, the

possible outcomes heads and tails thus each have probability 1
2
(considering that the

number of favorable outcomes is one and the number of possible outcomes is two),

and for the throw of a die this number is 1
6
for each digit. This assumes that we have a

so-called fair coin or die, i.e., one that does not favor any particular outcome over

the others.

The probability of a given event to occur is then just the sum of the probabilities

of the outcomes the event is composed of, e.g., when considering the throw of a die,

the probability of the event “an odd number is thrown” is 1
6
þ 1

6
þ 1

6
¼ 1

2
:

Such types of experiments in which all possible outcomes have the same

probability (they are called equiprobable) are called Laplacian experiments. The
simplest case of an experiment not having equiprobable outcomes is the so-called

Bernoulli experiment. Here, two possible outcomes “success” and “failure” with

probabilities p ∈ [0,1] and 1 � p are considered. Let us now consider probabilities

in the general setting.

5.3.2 An Axiomatic Description of Probabilities

The foundations of modern probability theory were laid by Kolmogorov [54] in the

1930s. He was the first to give an axiomatic description of probability theory based

on measure theory, putting the field on a mathematically sound basis. We will state
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his axiomatic description of probabilities in the following. This rather technical

approach might seem a little complicated and cumbersome at first, and we will try

to give well-understandable explanations of the concepts and notions used as they

are of general importance.

Kolmogorov’s definition is based on what is known as measure theory, a field of

mathematics that is concerned with measuring the (geometric) size of subsets of a

given space. Measure theory gives an axiomatic description of a measure (as a

function μ assigning a nonnegative number to each subset) that fulfills the usual

properties of a geometric measure of length (in one-dimensional space), area

(in two-dimensional space), volume (in three-dimensional space), and so on. For

example, if we take the measure of two disjoint (i.e., non-overlapping) sets, we

expect the measure of their union to be the sum of the measures of the two sets and

so on.

One prior remark on the definition: When looking at sample spaces (remember,

these are the sets of possible outcomes of a random experiment), we have to make a

fundamental distinction between discrete sample spaces (i.e., ones in which the

outcomes can be separated and counted, like in a pile of sand, where we think of

each little sand particle representing one possible outcome) and continuous sample
spaces (where the outcomes form a continuum and cannot be separated and

counted, think of this sample space as some kind of dough in which the outcomes

cannot be separated). Although in most cases the continuous setting can be treated

as a straightforward generalization of the discrete case and we just have to replace

sums by integrals in the formulas, some technical subtleties exist, that makes a

distinction between the two cases necessary. This is why we separate the two cases

in all of what follows.

Definition 3.1 Measure Space and Probability Space. A measure space is a
triple (Ω,F,μ). Here

• The base space Ω denotes an arbitrary nonempty set.

• F denotes the set of measurable sets in Ω which has to be a so-called σ-algebra
over Ω, i.e., it has to fulfill:

– ∅ ∈ F

– F is closed under complements: if E ∈ F, then (Ω\E) ∈ F.

– F is closed under countable unions: if Ei ∈ F for i ¼ 1, 2, . . ., then

([iEi) ∈ F.

• μ is the so-called measure: It is a function μ : F ! R [ {1} with the following

properties

– μ(∅) ¼ 0 and μ � 0 (non-negativity).

– μ is countably additive: if Ei ∈ F, i ¼ 1, 2, . . . is a collection of pairwise

disjoint (i.e., non-overlapping) sets, then μ([iEi) ¼ ∑iμ(Ei).

Why this complicated definition of measurable sets, measures, etc.? Well, this

is mathematically the probably (no pun intended) most simple way to formalize
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the notion of a “measure” (in terms of geometric volume) as we know it over the

real numbers.

When defining a measure, we first have to fix the whole space in which we want

to measure. This is the base space Ω.Ω can be any arbitrary set: the sample space of

a random experiment, e.g., Ω ¼ {heads, tails} when we look at a coin toss

or Ω ¼ {1, . . .,6} when we look at the throw of a die (these are two examples

of discrete sets), the set of real numbers R, the real plane R2 (these are two examples

of continuous sets), or whatever you choose it to be. When modeling the spiking

activity of a neuron, the two states could be “neuron spiked” or “neuron did

not spike.”

In a second step we choose a collection of subsets of Ω that we name F, the

collection of subsets of Ω that we want to be measurable. Note that the measurable

subsets of Ω are not given a priori, but that we determine those by choosing F. So,

you may ask, why this complicated setup with F, why not make every possible

subset of Ω measurable, i.e., make F the power set of Ω (the power set is the set of

all subsets of Ω)? This is totally reasonable and can easily been done when the

number of elements ofΩ is finite. But as with many things inmathematics, things get

complicated when we deal with the continuum: In many natural settings, e.g., when

Ω is a continuous set, this is just not possible or desirable for technical reasons. That

is why we choose only a subset of the power set (you might refer to its elements as

the “privileged” subsets) and make only the contained subsets measurable. We want

to choose this subset in a way that the usual constructions that we know from

geometric measures still work in the usual way, though. This motivates the

properties that we impose on F: We expect to be able to measure the complements

of measurable sets, as well as the union and intersection of a finite number of

measurable sets to again be measurable. These properties are motivated by the

corresponding properties of geometric measures (i.e., the union, intersection and

complement of intervals of certain lengths has a length and so on). So to sum up, the

set F is a subset of the power set of Ω, and sets that are not in F are not measurable.

In a last step, we choose a function μ that assigns a measure (think of it as a

generalized geometric volume) to each measurable set (i.e., each element of F),

where the measure has to fulfill some basic properties that we know from geometric

measures: The measure is nonnegative, the empty set (that is contained in every set)

should have measure 0, and the measure is additive.

All together, this makes the triple (Ω,F,μ) a space in which we can measure

events and use constructions that we know from basic geometry. Our definition

makes sure that the measure μ behaves in the way we expect it to (mathematicians

call this a natural construction). Take some time to think about it: Definition 3.1

above generalizes the notion of the geometric measure in terms of the length

l(I) ¼ b � a of intervals I ¼ [a,b] over the real numbers.

In fact, when choosing the set Ω ¼ R, we can construct the so-called Borel

σ-algebra B that contains all closed intervals I ¼ [a,b], a < b, and a measure

μB that assigns each interval I ¼ [a,b] ∈ B its length μB(I ) ¼ b � a. The measure

μB is called Borel measure. It is the standard measure of length that we know from

geometry and makes (R,B,μB) a measure space. This construction can easily be
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extended to arbitrary dimensions (using closed sets) resulting in the measure space

Rn;Bn; μBnð Þ that fulfills the properties of a n-dimensional geometric measure of

volume.

Let us look at some examples of measure spaces now:

1. Let Ω ¼ {0,1}, F ¼ {∅,{0},{1},Ω}, and P with P(0) ¼ P(1) ¼ 0.5. This

makes (Ω,F,P) a measure space for our coin toss experiment. Note that in this

simple case, F equals the full power set of Ω.
2. Let Ω ¼ {a,b,c,d} and let F ¼ {∅,{a,b},{c,d},Ω} with P({a,b}) ¼ p and

P({c,d}) ¼ 1 � p, where p denotes an arbitrary number between 0 and 1. This

makes (Ω,F,P) a measure space.

Having understood the general case of a measure space, defining a probability

space and a probability distribution is easy.

Definition 3.2 Probability Space, Probability Distribution. A probability space
is a measure space (Ω,F,μ) for which the measure μ is normed, i.e., μ : Ω ! [0,1]

with μ(Ω) ¼ 1. The measure μ is called probability distribution and is often also
denoted by P (for probability). Ω is called the sample space, elements of Ω are
called outcomes and F is the set of events.

Note that again, we make the distinction between discrete and continuous

sample spaces here. In the course of history, a probability distribution on a discrete

sample space came to be called probability mass function (or pmf), and a probability
distribution defined on a continuous sample space came to be called probability
density function (or pdf).

Let us look at a few examples, where the probability spaces in the following are

given by the triple (Ω,F,P):

1. Let Ω ¼ {heads,tails} and let F ¼ {∅,{head},{tails},Ω}. This is a probability

space for our coin toss experiment, where ∅ relates to the event “neither heads

nor tails” and Ω to the event “either heads or tails.” Note that in this simple case,

F equals the full power set of Ω.
2. Let Ω ¼ {1, . . .,6} and let F be the full power set of Ω (i.e., the set of all subsets

of Ω, there are 62 ¼ 36, can you enumerate them all?). This is a probability for

our experiment of dice throws, where we can distinguish all possible events.

5.3.3 Theory and Reality

It is important to stress that probabilities themselves are a mathematical and purely

theoretical construct to help in understanding and analyzing random experiments,

and per se they do not have to do anything with reality. They can be understood as

an “underlying law” that generates the outcomes of a random experiment and can
never be directly observed; see Fig. 5.1. But with some restrictions they can be

estimated for a certain given experiment by looking at the outcomes of many

repetitions of that experiment.

5 A Primer on Information Theory with Applications to Neuroscience 141



Let us consider the following example. Assume that our experiment is the roll of

a six-sided die. When repeating the experiment for ten times (also called trials), we
will obtain frequencies for each of the numbers as given in Fig. 5.1. Repeating the

experiment for 100 times, we will get frequencies that look similar to the ones given

in Fig. 5.1. If we look at the relative frequencies (i.e., the frequency divided by the

total number of trials), we see that these converge to the theoretically predicted

value of 1
6
as our number of trials grows larger.

This fundamental finding is also called the “Borel’s law of large numbers.”

Theorem 3.3 Borel’s Law of Large Numbers. Let Ω be a sample space of some
experiment and let P be a probability mass function on Ω. Furthermore, let Nn(E)
be the number of occurrences of the event E � Ω when the experiment is repeated
n times. Then the following holds:

Nn Eð Þ
n

! P Eð Þ as n ! 1:

Borel’s law of large numbers states that if an experiment is repeated many times

(where the trials have to be independent and done under identical conditions), then

the relative frequency of the outcomes converge to their probability as assigned by

the probability mass function. The theorem thus establishes the notion of probabil-

ity as the long run relative frequency of an event occurrence and thereby connects

Fig. 5.1 Theoretical quantities and measurable quantities: The only things observable and

accessible usually are data (measured or generated), all theoretical quantities are not directly

accessible. They have to be estimated using statistical methods
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the theoretical side to the experimental side. Keep in mind though that we can never

directly measure probabilities, and although relative frequencies will converge to

the probability values, they will usually not be exactly equal (Fig. 5.2).

5.3.4 Independence of Events and Conditional Probabilities

A fundamental notion in probability theory is the idea of independence of events.

Intuitively, we call two events independent if the occurrence of one does not affect

the probability of occurrence of the other. Consider, for example, the events that it

rains and the event that the current day of the week is Monday. These two are

clearly independent, unless we lived in a world where there would be a correlation

between the two, i.e., where the probability of rain would be different on Mondays

compared to the other days of the week which is clearly not the case.

Similarly, we establish the notion of independence of two events in the sense of

probability theory as follows.

Definition 3.4 Independent Events. Let A and B be two events of some probability
space (Ω,Σ,P). Then A and B are called independent if and only if

P A \ Bð Þ ¼ P Að ÞP Bð Þ: (5.1)

The term P(A \ B) is referred to joint probability of A and B; see Fig. 5.3.
Another important concept is the notion of conditional probability, i.e., the

probability of one event A occurring, given the fact that another event B occurred.

Definition 3.5 Conditional Probability. Given two events A and B of some
probability space (Ω,F,P) with P(B) > 0 we call

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ

the conditional probability of A given B.

Fig. 5.2 Relative frequencies of tossed digits using a fair die: after 10 tosses (left) and after 1,000
tosses (right)
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Note that for independent events A and B, we have P(A \ B) ¼ P(A)P(B) and
thus P(A|B) ¼ P(A) and P(B|A) ¼ P(B). We can thus write

P A \ Bð Þ ¼ P Að ÞP�B�,
, P Að Þ ¼ P A \ Bð Þ

P Bð Þ ¼ P AjBð Þ,

, P Bð Þ ¼ P A \ Bð Þ
P Að Þ ¼ P B Aj Þ,ð

and this means that the occurrence of A does not affect the conditional probability

of B given A (and vice versa). This exactly reflects the intuitive definition of

independence that we gave in the first paragraph of this section. Note that we

could have also used the conditional probabilities to define independence in the first

place. Nonetheless the definition of Eq. 5.1 is preferred, as it is shorter, symmetrical

in A and B and more general as the conditional probabilities above are not defined in

the case where P(A) ¼ 0 or P(B) ¼ 0.

5.3.5 Random Variables

In many cases the sample spaces of random experiments are a lot more complicated

than the ones of the toy examples we looked at so far. Think, for example, of

measurements of membrane potentials of certain neurons that we want to model

mathematically, or the state of some complicated system, e.g., a network of neurons

receiving some stimulus.

Thus mathematicians came up with a way to tame the sample spaces by looking

at the events indirectly, namely, by first mapping the events to some better under-

stood space, like the set of real numbers (or some higher dimensional real vector

space), and then look at outcomes of the random experiment in the simplified space

Fig. 5.3 Two events

A and B, their union A [ B,
their intersection A \ B
(i.e., common occurrence in

terms of probability) and

their exclusive occurrences

A \ BC (A and not

B occurs), B \ AC (B occurs

and not A), where � C

denotes the complement in

A [ B
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rather than in the complicated original space. Looking at spaces of numbers has

many advantages: order relations exist (smaller, equal, larger), we can form

averages, and much more. This leads to the concept of random variables.

A (real) random variable is a function that maps each outcome of a random

experiment to some (real) number. Thus, a random variable can be thought of as a

variable whose value is subject to variations due to chance. But keep in mind that a

random variable is a mapping and not a variable in the usual sense.

Mathematically, a random variable is defined using what is called a measurable
function. A measurable function is nothing more than a map from one measurable

space to another for which the pre-image of each measurable set is again measur-

able (with respect to the two different measures in the two measure spaces

involved). So a measurable map is nothing more than a “nice” map respecting the

structures of the spaces involved (take as an example for such maps the continuous

functions over R).

Definition 3.6 Random Variable. Let (Ω,Σ,P) be a probability space and (Ω0,Σ0)
a measure space. A (Σ,Σ0)-measurable function X : Ω ! Ω0 is called Ω0-valued
random variable (or just Ω0-random variable) on Ω.

Commonly, a distinction between continuous random variables and discrete
random variables is made, the former taking values on some continuum (in most

cases R) and the latter on a discrete set (in most cases Z).

A type of random variable that plays an important role in modeling is the

so-called Bernoulli random variable that only takes two distinct values 0 with

probability p and 1 with probability 1 � p (i.e., it has a Bernoulli distribution as

its underlying probability distribution). Spiking behavior of a neuron is often

modeled that way, where 1 stands for “neuron spiked” and 0 for “neuron did not

spike” (in some interval of time).

A real- or integer-valued random variable X thus assigns a number X(E) to every
event E ∈ Σ. A value X(E) corresponds to the occurrence of the event E and is

called a realization of X. Thus, random variables allow for the change of space in

which outcomes of probabilistic processes are considered. Instead of considering an

outcome directly in some complicated space, we first project it to a simpler space

using our mapping (the random variable X) and interpret its outcome in that

simpler space.

In terms of measure theory, a random variable X : (Ω,Σ,P) ! (Ω0,Σ0) (again,
considered as a measurable mapping here) induces a probability measure PX on the

measure space (Ω0,Σ0) via

PX S
0

� �
:¼ P X�1 S

0
� �� �

,

where again X� 1(S0) denotes the pre-image of S0 ∈ Σ0. This also justifies the

restriction of X to be measurable: If it were not, such a construction would not be

possible, but this is a technical detail. As a result, this makes (Ω0,Σ0,PX) a probabil-

ity space and we can think of the measure PX as the “projection” of the measure

P from Ω onto Ω0 (via the measurable mapping X).
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The measures P and PX are probability densities for the probability distributions

over Ω and Ω0: They measure the likelihood of occurrence for each event (P) or
value (PX).

As a simple example of a random variable, consider again the example of the

coin toss. Here, we have Ω ¼ {heads,tails}, F ¼ {∅,{heads},{tails},Ω}, and

P that assigns to both heads and tails the probability 1
2
forming the probability

space. Consider as a random variable X : Ω ! Ω0 with Ω0 ¼ {0,1} that maps Ω to

S such that X(heads) ¼ 0 and X(tails) ¼ 1. If we choose F0 ¼ {∅,{0},{1},{0,1}}

as a σ-algebra for Ω0, this makes M ¼ (Ω0,F0) a measurable space and X induces a

measure P0 ¼ PX on M with P
0

0f gð Þ ¼ P
0

1f gð Þ ¼ 1
2
. That makes (Ω0,F0,P0) a

measure space, and since P0 is normed, it is a probability space.

5.3.5.1 Cumulative Distribution Function

Using random variables that take on values of whole or the real numbers, the natural

total ordering of elements in these spaces enables us to define the so-called

cumulative distribution function (or cdf) for a random variable.

Definition 3.7 Cumulative Distribution Function. Let X be a R-valued or
Z-valued random variable on some probability space (Ω,Σ,P). Then the function

F xð Þ :¼ P X � xð Þ

is called the cumulative distribution function of X.
The expression P(X � x) evaluates to

P X � xð Þ ¼
ð

τ�x

P X ¼ τð Þ dτ,

in the continuous case and to

P X � xð Þ ¼
X
k�x

P X ¼ kð Þ

in the discrete case.

In that sense, the measure PX can be understood as the derivative of the

cumulative distribution function F

P x1 � X � x2ð Þ ¼ F x2ð Þ � F x1ð Þ,

and we also write F(x) ¼Ð
τ � xPX(τ) dτ in the continuous case.
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5.3.5.2 Independence of Random Variables

The definition of independent events directly transfers to random variables:

Two random variables X, Y are called independent if the conditional probability

distribution of X(Y ) given an observed value of Y(X) does not differ from the

probability distribution of X(Y ) alone.

Definition 3.8 Independent Random Variables. Let X, Y be two random
variables. Then X and Y are called independent, if the following holds for any
observed values x of X and y of Y:

P X Y ¼ yj Þ ¼ P Xð Þ and P Y X ¼ xj Þ ¼ P Yð Þ:ðð
This notion can be generalized to the case of three or more random variables

naturally.

5.3.5.3 Expectation and Variance

Two very important concepts of random variables are the so-called expectation
value (or just expectation) and the variance. The expectation of a random variable

X is the mean value of the random variable, where the weighting of the values

corresponds to the probability density distribution. It thus tells us what value of

X we should expect “on average.”

Definition 3.9 Expectation Value. Let X be a R- or Z-valued random variable.
Then its expectation value (sometimes also denoted by μ) is given by

E X½ � :¼
ð

R

xPX xð Þ dx ¼
ð

R

x dPX,

for a real-valued random variable X and by

E X½ � :¼
X
x∈Z

xPX xð Þ

if X is Z-valued.

Note that if confusion can be made as to which probability distribution the

expectation value is taken, we will include the probability distribution to which

the expectation value is taken in the index. Consider, for example, two random

variables X and Y defined on the same base space but with different underlying

probability distributions. In this case, we denote by EX[Y] the expectation value of

Y taken with respect to the probability distribution of X.
Let us now look at an example. If we consider the throw of a fair die with

P ið Þ ¼ 1
6
for each digit i ¼ 1, . . ., 6 and take X as the random variable that just

assigns each digit its integer value X(i) ¼ i, we get E X½ � ¼ 1
6
1þ . . .þ 6ð Þ ¼ 3:5:
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Another important concept is the so-called variance of a random variable. The

variance is a measure for how far the values of the random variable are spread

around its expected value. It is defined as follows.

Definition 3.10 Variance. Let X be a R- or Z-valued random variable. Then its
variance is given as

var X½ � :¼ E
�
E X½ � � X

�2h i
¼ E X2

� �� �
E X½ ��2

sometimes also denoted as σ2.
The variance is thus the expected squared distance of the values of the random

variable to its expected value. Another commonly used measure is the so-called

standard deviation σ Xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xð Þp

, a measure for the average deviation of

realizations of X from the mean value.

Often one also talks about the expectation value as “first-order moment” of the

random variable, the variance as a “second-order moment.” Higher-order moments

can be constructed by iteration, but will not be of interest to us in the following.

Note again that the concepts of expectation and variance live on the theoretical

side of the world, i.e., we cannot measure these quantities directly. The only thing

that we can do is try to estimate them from a set of measurements (i.e., realizations

of the involved random variables); see Fig. 5.1. The statistical discipline of estima-

tion theory deals with question regarding the estimation of theoretical quantities

from real data. We will talk about estimation in more detail in Sect. 5.5 and just give

two examples here.

For estimating the expected value we can use what is called the sample mean.

Definition 3.11 Sample Mean. Let X be a R- or Z-valued random variable with n
realizations x1, . . ., xn. Then the sample mean μ̂ of the realizations is given as

μ̂ x1; . . . ; xnð Þ :¼ 1

n

Xn
i¼1

xi

As we will see below, this sample mean provides a good estimation of the

expected value if the number n of samples is large enough. Similarly, we can

estimate the variance as follows.

Definition 3.12 Sample Variance. Let X be a R- or Z-valued random variable
with n realizations x1, . . ., xn. Then the population variance σ̂ of the realizations is
given as

σ̂ 2 x1; . . . ; xnð Þ :¼ 1

n

Xn
i¼1

xi � μ̂ x1; . . . ; xnð Þð Þ2,

where μ̂ denotes the sample mean.
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Before going on let us calculate some examples of expectations and variances

of random variables. Take the coin toss example from above. Here, the expected

value of X is E X½ � ¼ 1
2
� 0þ 1

2
� 1 ¼ 1

2
, the variance var Xð Þ ¼ E

�
E X½ � � X

�2h i
¼ 1

2
�

0� 1
2

� �2 þ 1
2
� 1� 1

2

� �2 ¼ 1
4
. For the example of the dice roll (where the random

variable X takes the value of the number thrown) we get E X½ � ¼ 1þ2þ3þ4þ5þ6
6

¼ 7
2

¼ 3:5 and var Xð Þ ¼ E X2
� �� �

E X½ ��2 ¼ 91
6
� 49

4
¼ 35

12
� 2:92:

5.3.6 Laws of Large Numbers

The laws of large numbers (there exist two versions as we will see below) state that

the sample average of a set of realizations of a random variable “almost certainly”

converges the random variable’s expected value when the number of realizations

grows to infinity.

Theorem 3.13 Law of Large Numbers. Let X1, X2, . . . be an infinite sequence
of independent, identically distributed random variables with expected values

E(X1) ¼ E(X2) ¼ . . . ¼ μ. Let X n ¼ 1
n X1 þ � � � þ Xnð Þ be the sample average.

a. Weak law of large numbers. The sample average converges in probability

towards the expected value, i.e., for any ε > 0

lim
n!1

P X n � μ
		 		 > ε

� � ¼ 0:

This is sometimes also expressed as

X n !P μ when n ! 1:

b. Strong law of large numbers. The sample average converges almost surely

towards the expected value, i.e.,

P lim
n!1X n ¼ μ

� �
¼ 1:

This is sometimes also expressed as

X n !a:s: μ when n ! 1:

The weak version of the law states that the sample average X n is likely to be

close to μ for some large value of n. But this does not exclude the possibility of

X n � μ
		 		 > ε occurring an infinite number of times.

The strong law says that this “almost surely” will not be the case: With

probability 1, the inequality X n � μ
		 		 < εholds for all ε > 0 and all large enough n.
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5.3.7 Some Parametrized Probability Distributions

Certain probability distributions often occur naturally when looking at typical

random experiments. In the course of history, these were thus put (mathematicians

like doing such things) into families or classes, and the members of one class are

distinguished by a set of parameters (a parameter is just a number than can be chosen

freely in some specified range). To specify a certain probability distribution we

simply have to specify in which class it lies and which parameter values it exhibits,

which is more convenient than specifying the probability distribution explicitly

every time. This also allows proving (and reusing) results for whole classes of

probability distributions and facilitates communication with other scientists.

Note that we will only give a concise version of the most important distributions

relevant in neuroscientific applications here and point the reader to [47, 52, 98] for a

more in-depth treatment of the subject.

The normal distribution N(μ,σ2) is a family of continuous probability

distributions parametrized by two real-valued parameters μ ∈ R and σ2 ∈ R+,

called mean and variance. Its probability density function is given as

f x; μ; σð Þ : R ! Rþ
0

x ↦
1

σ
ffiffiffiffiffi
2π

p e
�1

2
ðx�μ

σ Þ2
:

The family is closed under linear combinations, i.e., linear combinations of

normally distributed random variables are again normally distributed. It is the

most important and often used probability distribution in probability theory and

statistics as many other probability distributions can be approximated by a normal

distribution when the sample size is large enough (this fact is called the central limit
theorem). See Fig. 5.4 for examples of the pdf and cdf for normally distributed

random variables.

The Bernoulli probability distribution Ber( p) describes the two possible

outcomes of a Bernoulli experiment with the probability of success and failure

being p and 1 � p, respectively. It is thus a discrete probability distribution on two

elements and it is parametrized by one parameter p ∈ [0,1] � R. Its probability

mass function is given by the two values P(success) ¼ p and P(failure) ¼ 1 � p.
The binomial probability distribution B(n,p) is a discrete probability distribution

parametrized by two parameters n ∈ N and p ∈ [0,1] � R. Its probability mass

function is

f k; n; pð Þ ¼ n
k


 �
pk 1� pð Þn�k

, (5.2)

and it can be thought of as a model for the probability of k successful outcomes in a

trial with n independent Bernoulli experiments, each having success probability p,
see Fig. 5.5.

The Poisson distribution Poiss(λ) is a family of discrete probability distributions

parametrized by one real parameter λ ∈ R+. Its probability mass function is given by
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f k; λð Þ : N ! Rþ
0

k ↦
λke�λ

k!
:

The Poisson distribution plays an important role in the modeling of neuroscience

data. This is the case because the firing statistics of cortical neurons (and also other

kinds of neurons) can often be well fit by a Poisson process, where λ is considered
the mean firing rate of a given neuron; see [24, 74, 101].

This fact comes at no surprise if we invest some thought. The Poisson distribution

can be seen as a special case of the binomial distribution. A theorem known as

Poisson limit theorem (sometimes also called “law of rare events”) now tells us that

in the limit p ! 0 and n ! 1 the binomial distribution converges to the Poisson

distribution with λ ¼ np. Consider, for example, the spiking activity of our neuron

that we could model via a Binomial distribution. We discretize time and consider

time bins of say 2 ms and assume a mean firing rate of the neuron denoted by

λ (measured in Hertz). Clearly, in most time bins the neuron does not spike

(corresponding to a small value of p), and the number of bins is large (corresponding

Fig. 5.4 Normal distribution: probability density function (left) and cumulative density function

(right) for selected parameter values of μ and σ. Solid line: μ ¼ 0, σ ¼ 1; dashed line: μ ¼ 1,

σ2 ¼ 0.2; dotted line: μ ¼ � 1, σ2 ¼ 0.5

Fig. 5.5 Binomial distribution: probability mass function (left) and cumulative density function

(right) for selected parameter values of p and n. Circle: p ¼ 0.2, n ¼ 20; triangle: p ¼ 0.5,

n ¼ 20; square: p ¼ 0.7, n ¼ 40
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to a large n). The Poisson limit theorem tells us that in this case the probability

distribution concerning spike emission is well matched by a Poisson distribution.

See Fig. 5.6 for examples of the pmf and cdf for Poisson-distributed random

variables for a selection of parameters λ.
The so-called exponential distribution Exp(λ) is a continuous probability distri-

bution parametrized by one real parameter λ ∈ R+. Its probability density function

is given by

f x; λð Þ : R ! Rþ
0

x ↦ λe�λx for x > 0

0 for x � 0
:

�

The exponential distribution with parameter λ can be interpreted as the proba-

bility distribution describing the time between two events in a Poisson process with

parameter λ; see the next section.
See Fig. 5.7 for examples of the pdf and cdf for exponentially distributed random

variables for a selection of parameters λ.
We want to conclude our view on families on probability distributions at this

point and point the interested reader to [47, 52, 98] regarding further examples and

details of families of probability distributions.

5.3.8 Stochastic Processes

A stochastic process (sometimes also called random process) is a collection of

random variables indexed by a totally ordered set, which is usually taken as time.

Stochastic processes are commonly used to model the evolution of some random

variable over time. We will only look at discrete-time processes in the following,

Fig. 5.6 Poisson distribution: probability mass function (left) and cumulative density function

(right) for selected parameter values of λ
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i.e., stochastic processes that are indexed by a discrete set. The extension to the

continuous case is straightforward; see [18] for an introduction to the subject.

Mathematically, a stochastic process is defined as follows.

Definition 3.14. Let (Ω,F,P) be a probability space and let (S,S) be a measure
space. Let furthermore Xt : F ! S be a set of random variables, where t ∈ T. Then
an S-valued stochastic process P is given by

P :¼ Xt : t ∈ Tf g,
where T is some totally ordered set, commonly interpreted as time. The space S is

referred to as the sample space of the process P.
If the distribution underlying the random variables Xt does not vary over time,

the process is called homogeneous, in the case where the probability distributions

PXt
depend on the time t, it is called inhomogeneous.
A special kind and well-studied type of stochastic process is the so-called

Markov process. A discrete Markov process of order k ∈ N is a inhomogeneous

stochastic process subject to the restriction that for any time t ¼ 0, 1, . . ., the
probability distribution underlying Xt only depends on the preceding k probability
distributions of Xt � 1, . . ., Xt � k, i.e., that for any t and any set of realizations xi of
Xi (0 � i � t), we have

P Xt ¼ xt Xt�1 ¼ xt�1, . . . ,Xt�k ¼ xt�kj Þ ¼ P Xt ¼ xt Xt�1 ¼ xt�1, . . . ,X0 ¼ x0j Þ:ðð
Another process often considered in neuroscientific applications is the Poisson

process. It is a discrete-time stochastic process P for which the random variables are

Poisson distributed with some parameter λ(t) (in the inhomogeneous case, for the

homogeneous case, we have λ(t) ¼ λ ¼ constant). As can be shown, the time delay

between each pair of consecutive events of a Poisson process is exponentially

distributed. See Fig. 5.8 for examples of the number of instantaneous (occurring

during one time slice) and the number of cumulated events (over all preceding time

slices) of Poisson processes for a selection of parameters λ.

Fig. 5.7 Exponential distribution: probability density function (left) and cumulative density

function (right) for selected parameter values of λ
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Poisson processes have proven to be a good model for many natural as well as

man-made processes such as radioactive decay, telephone calls and queues, and

also for modeling neural data. An influential paper in the neurosciences was [23],

showing the random nature of the closing and opening of single ion channels in

certain neurons. Using as a model a Poisson process with the right parameter

provides a good fit to the measured data here Fig. 5.9.

Another prominent example of neuroscientific models employing a Poisson

process is the commonly used model for the sparse and highly irregular firing

patterns of cortical neurons in vivo [24, 74, 101]. The firing patterns of such cells

are usually modeled using inhomogeneous Poisson processes (with λ(t) modeling

the average firing rate of a cell).

5.4 Information Theory

Information theory was introduced by Shannon [97] as a mathematically rigid

theory to describe the process of transmission of information over some channel

of communication. His goal was to quantitatively measure the “information

content” of a “message” sent over some “channel”; see Fig. 5.10. In what follows

we will not go into detail regarding all aspects of Shannon’s theory, but we will

mainly focus on his idea of measuring “information content” of a message. For a

more in-depth treatment of the subject, the interested reader is pointed to the

excellent book [26].

Fig. 5.8 Examples of the number of events in one time window of size Δt ¼ 1 (left) and the

number of accumulated events since t ¼ 0 (right) for Poisson processes with certain rates λ ¼ 1

(circle), λ ¼ 5 (triangle) and λ ¼ 10 (square)

Fig. 5.9 Random opening and closing of ion channels (Modified from [23], Fig. 12)
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The central elements of Shannon’s theory are depicted in Fig. 5.10. In the

standard setting considered in information theory, an information source produces
messages that are subsequently encoded using symbols from an alphabet and sent

over a noisy channel to be received by a receiver that decodes the message and

attempts to reconstruct the original message.

A communication channel (or just channel) in Shannon’s model transmits the

encoded message from the sender to the receiver. Due to noise present in the

channel, the receiver does not receive the original message dispatched by the sender

but rather some noisy version of it.

The whole theory is set in the field of probability theory (hence our introduction

to the concepts in the last section) and in this context, the messages emitted by

the source are modeled as a random variable X with some underlying probability

distribution PX. For each message x (a realization of X), the receiver sees a

corrupted version y of x and this fact is modeled by interpreting the received

messages as realizations of a random variable Y with some probability distribution

PY (that depends both on PX and the channel properties). The transmission

characteristics of the channel itself are characterized by the stochastic correspon-

dence of the signals transmitted by the sender to the ones received by the receiver,

i.e., by modeling the channel as a conditional probability distribution PY|X.

Being based upon probability theory, keep in mind that all the information-

theoretic quantities that we will look at in the following such as “entropy” or

“mutual information” are just properties of the random variables involved,

i.e., properties of the probability distributions underlying these random variables.

Information-theoretic analyses have proven to be a valuable tool in many areas

of science such as physics, biology, chemistry, finance, and linguistics and gener-

ally in the study of complex systems [62, 88]. We will have a look at applications in

the neurosciences in Sect. 5.6.

Note that a vast number of works was published in the field of information theory

and its applications since its first presentation in the 1950s. We will focus on the

core concepts in the following and point the reader to [26] for a more in-depth

treatment of the subject.

In the following we will start by looking at a notion of information and using this

proceed to define entropy (sometimes also called Shannon entropy), a core concept

Fig. 5.10 The setting of Shannon’s information theory: information is transferred from a source to

a destination via a message that is first encoded and then subsequently sent over a noisy channel

to be decoded by the receiver
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in information theory. As all further information-theoretic concepts are based on the

idea of entropy, it is of vital importance to understand this concept well.Wewill then

look at mutual information, the information shared by two or more random

variables. Furthermore, we will look at a measure of distance for probability

distributions called Kullback–Leibler divergence and give an interpretation of

mutual information in terms of Kullback–Leibler divergence. After a quick look at

themultivariate case ofmutual information betweenmore than two variables and the

relation between mutual information and channel capacity, we will then proceed to

an information-theoretic measure called transfer entropy. Transfer entropy is based

on mutual information but in contrast to mutual information is of directed nature.

5.4.1 A Notion of Information

Before defining entropy, let us try to give an axiomatic definition of the concept of

“information”, see [115]. The entropy of a random variable will then be nothing

more than the expected (i.e., average) amount of information contained in a

realization of that random variable.

We want to consider a probabilistic model in what follows, i.e., we have a set of

events, each occurring with a given probability. The goal is to assess how informa-

tive the occurrence of a given event is. What would we intuitively expect from a

measure of information h that maps the set of the events to the set of nonnegative

real number, i.e., when we restrict h to be a non-negative real number?

First of all, it should certainly be additive for independent events and

sub-additive for non-independent events. This is easily justified: If you read two

newspaper articles about totally unrelated subjects, the total amount of information

you obtain consists of both the information in the first and the second article. When

you read articles about related subjects on the other hand, they often have some

common information.

Furthermore, events that occur regularly and unsurprisingly are not considered

informative and the more seldom or surprising an event occurs, the more informa-

tive it is. Think about an article about your favorite sports team winning a match

that usually wins all matches. You will consider this not very informative. But when

the local newspaper reports about an earthquake with its epicenter being in the part

of town where you live, this will certainly be informative to you (unless you were at

home during the time the earthquake happened), assuming that earthquakes do not

occur on a regular basis where you live.

We thus have the following axioms for the information content h of an event,

where we look at the information content of events contained in some probability

space (Ω,Σ,P):

1. h is nonnegative: h : Σ ! R+.

2. h is sub-additive: For any two messages ω1, ω2 ∈ Σ, we have h(ω1 \ ω2) � h
(ω1) + h(ω2), where equality holds if and only if ω1 and ω2 are independent.
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3. h is continuous and monotonic with respect to the probability measure P.
4. Eventswith probability 1 are not informative: h(ω) ¼ 0 forω ∈ Σ withP(ω) ¼ 1.

Now calculus tells us (this is not hard to show – you paid attention in the

mathematics class at school, did you not?) that these four requirements leave only

one possible function that fulfills all these requirements: the logarithm (Fig. 5.11).

This leads us to the following natural definition.

Definition 4.1 Information. Let (Ω,Σ,P) be a probability space. Then the infor-
mation h of an event σ ∈ Σ is defined as

h σð Þ :¼ h P σð Þð Þ ¼ �logb P σð Þð Þ,
where b denotes the basis of the logarithm.

For the basis of the logarithm, usually b ¼ 2 or b ¼ e is chosen, fixing the unit

of h as “bit” or “nat,” respectively. We resort to using b ¼ 2 for the rest of this

chapter and write log for the logarithm to the basis of two. The natural logarithm

will be denoted by ln.
Note that the information content in our definition only depends on the proba-

bility of the occurrence of the event and not the event itself. It is thus a property of

the probability distribution P.
Let us give some examples in order to illustrate this idea of information content.

Consider a toss of a fair coin, where the possible outcomes are heads

(H) or tails (T), each occurring with probability 1
2
. What is the information

contained in a coin toss? As the information solely depends on the probability,

we have h(H ) ¼ h(T ), which comes at no surprise. Furthermore we have

h Hð Þ ¼ h Tð Þ ¼ �log 1
2
¼ � log 1ð Þ � log2 2ð Þð Þ ¼ log2 ¼ 1 bit, when we apply

the fundamental logarithmic identity log(a � b) ¼ log(a) + log(b). Thus one toss

of a fair coin gives us one bit of information. This fact also lets us explain the

unit attached to h. If measured in bit (i.e., with b ¼ 2), this is the amount of bits

needed to store that information. For the toss of a coin we need one bit, assigning

each outcome to either 0 or 1.

Repeating the same game for the roll of a fair die where each digit has

probability 1
6
, we again have the same amount of information for each digit

E ∈ {1, . . .,6}, namely, h(E) ¼ log(6) � 2.58 bit. This means that in this case

we need three bits to store the information associated to each outcome, namely, the

number shown.

Fig. 5.11 The logarithm to

the basis of 2
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Looking at the two examples above, we can give another (hopefully intuitive)

characterization of the term information content: It is the minimal number of yes-no

questions that we have to ask until we know which event occurred, assuming that

we have a knowledge of the underlying probability distribution. Consider the

example of the coin toss above. We have to ask exactly one question and we

know the outcome (“Was it heads?” “Was it tails?”).

Things get more interesting when we look at the case of the die throw. Here,

several question asking strategies are possible and you can freely choose your

favorite – we will give one example below.

Say a digit dwas thrown. The first question could be, “Was the digit less or equal

to 3?” (other strategies, “Was the digit greater than 3?” “Was the digit even?” “Was

the digit odd?”). We then go on depending on the answer and cut off at least half of

the remaining probability mass in each step, leaving us with a single possibility

after at most 3 steps. From the information content, we know that on average we

have to ask 2.58 times on average.

The two examples above were both cases with uniform probability distributions

but in principle the same applies to arbitrary probability distributions.

5.4.2 Entropy as Expected Information Content

The term entropy is at the heart of Shannon’s information theory [97]. Using the

notion of the information as discussed in Sect. 4.1, we can readily define the entropy

of a discrete random variable as its expected information.

Definition 4.2 Entropy. Let X be a random variable on some probability space
(Ω,Σ,P) with values in the integer or the real numbers. Then its entropy1 (sometimes
also called Shannon entropy or self-information) H(X) is defined as the expected
amount of information of X,

H Xð Þ :¼ E h Xð Þ½ �: (5.3)

If X is a random variable that takes integer values (i.e., a discrete random

variable), Eq. 5.3 evaluates to

H Xð Þ ¼
X
x∈Z

P X ¼ xð Þh P X ¼ xð Þð Þ ¼ �
X
x∈Z

P X ¼ xð Þlog P X ¼ xð Þð Þ,

in the case of a real-valued, continuous random variable, we get

1 Shannon chose the letter H for denoting entropy after Boltzmann’s H-theorem in classical

statistical mechanics.
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H Xð Þ ¼
ð

R

P X ¼ xð Þh P X ¼ xð Þð Þ dx

and the resulting quantities is called differential entropy [26].
As the information content is a function solely dependent on the probability of

the events one also speaks of the entropy of a probability distribution.

Looking at the definition in Eq. 5.3, we see that entropy is a measure for

the average amount of information that we expect to obtain when looking at

realizations of a given random variable X. An equivalent characterization would

be to interpret it as the average information one is missing when one would not

know the value of the random variable (i.e., its realization), and a third one would

be to interpret it as the average reduction of uncertainty about the possible values of

a random variable having observed one or more realizations.

Akin to the information content h, entropy H is a dimensionless number and

usually measured in bits (i.e., the expected number of binary digits needed to store

the information), taking a logarithm to the base of 2.

Shannon entropy has many applications as we will see in the following and

constitutes the core of all things labeled “information theory.” Let us thus look a bit

closer at this quantity.

Lemma 4.3. Let X be some discrete random variable. Then its entropy H(X)
satisfies the two inequalities

0 � H Xð Þ � log nð Þ:
Note that the first inequality is a direct consequence of the properties of the

information content, and the second follows from Gibbs’ inequality [26].

With regard to entropy, probability distributions having maximal entropy are

often of interest in applications as they can be seen as the least restricted ones

(i.e., having the least a priori assumptions), given the model parameters. The

principle of maximum entropy states that when choosing among a set of probability

distributions with certain fixed properties, the preference should be given to

distributions that have the maximal entropy among all considered distributions.

This choice is justified as the one making the fewest assumptions on the shape of the

distribution apart from the prescribed properties.

For discrete probability distributions, the uniform distribution is the one with the

highest entropy among all other distributions on the same base set. This can be well

seen in the example in Fig. 5.12: The entropy of a Bernoulli distribution takes its

maximum at p ¼ 1/2, the parameter value for which it corresponds to the

uniform probability distribution on the two elements 0 and 1, each occurring with

probability 1/2.

For continuous, real-valued random variables with a given finite mean μ and

variance σ2, the normal distribution with mean μ and variance σ2 has highest

entropy. Demanding non-negativity and a non-vanishing probability on the positive

real numbers (i.e., an infinite support) with positive given mean μ yields the

exponential distribution with parameter λ ¼ 1/μ as a maximum entropy distribution.
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Examples

Before continuing, let us now compute some more entropies in order to get a

feeling for this quantity.

For a uniform probability distribution P on n events Ω ¼ {ω1, . . .,ωn} each

event has probability P(ωi) ¼ 1/n and we obtain

H Pð Þ ¼ �
Xn
i¼1

1

n
log

1

n
¼ logn,

as the maximal entropy for all discrete probability distributions on the set Ω.
Let us now compute the entropy of a Bernoulli random variable X, i.e., a binary

random variable X taking values 0 and 1 with probability p and 1 � p, respectively.
For the entropy of X we get

H Xð Þ ¼ � p log pþ 1� pð Þ log 1� pð Þð Þ:
See Fig. 5.12 for a plot of the entropy seen as a function of the success

probability p. As expected, the maximum is attained at p ¼ 1/2, corresponding to

the case of the uniform distribution.

Computing the differential entropy of a normal distribution N(μ,σ2) with mean μ
and variance σ2 yields

H N
�
μ, σ2

� �� � ¼ 1

2
log 2πeσ2

� �
,

and we see that the entropy does not depend on the mean value of the distribution

but just its variance. This is not surprising, as the shape of the probability distribu-

tion is only changed by σ2 and not μ.
For an example of how to compute the entropy of spike trains, see Sect. 5.6.

5.4.2.1 Joint Entropy

Generalizing the notion of entropy to two or more variables, we can define the

so-called joint entropy to quantify the expected uncertainty (or expected informa-

tion) in a joint distribution of random variables.

Fig. 5.12 Entropy H(X) of
a Bernoulli random variable

X as a function of success

probability p ¼ P(X ¼ 1).

The maximum is attained at

p ¼ 1/2
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Definition 4.4 Joint Entropy. Let X and Y be discrete random variables on some
probability spaces. Then the joint entropy of X and Y is given by

H X; Yð Þ ¼ �EX, Y log P x; yð Þ½ � ¼ �
X
x, y

P x; yð Þ logP x; yð Þ, (5.4)

where PX,Y denotes the joint probability distribution of X and Y and the sum runs

over all possible values x and y of X and Y, respectively.
This definition allows a straightforward extension to the case of more than two

random variables.

The conditional entropy H(X|Y ) of two random variables X and Y quantifies the

expected uncertainty (respectively expected information) remaining in a random

variable X under the condition that a second variable Y was observed or equiva-

lently as the reduction of the expected uncertainty in X upon the knowledge of Y.

Definition 4.5 Conditional Entropy. Let X and Y be discrete random variables on
some probability spaces. Then the conditional entropy of X given Y is given by

H XjYð Þ ¼ �EX, Y log P xjyð Þ½ � ¼ �
X
x, y

P x; yð Þ logP xjyð Þ,

where PX,Y denotes the joint probability distribution of X and Y.

5.4.3 Mutual Information

In this section we will introduce the notion of mutual information, an entropy-based

measure for the information shared between two (or more) random variables.

Mutual information can be thought of as a measure for the mutual dependence of

random variables, i.e., as a measure for how far they are from being independent.

We will give two different approaches to this concept in the following: a direct

one based on the point-wise mutual information i and one using the idea of

conditional entropy. Note that in essence, these are just different approaches to

defining the same object. We give the two approaches in the following, hoping that

they help in understanding the concept better. In Sect. 4.4 we will see yet another

characterization in terms of the Kullback–Leibler divergence.

5.4.3.1 Point-Wise Mutual Information

In terms of information content, the case of considering two events that are

independent is straightforward: One of the axioms tells us that the information

content of the two events occurring together is the sum of the information contents

of the single events. But what about the case where the events are non-independent?

In this case we certainly have to consider the conditional probabilities of the two
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events occurring: If one event often occurs given that the other one occurs (think of

the two events “It is snowing” and “It is winter”), the information overlap is higher

than when the occurrence of one given the other is rare (think of “It is snowing” and

“It is summer”).

Using the notion of information from Sect. 4.1, let us express this in a mathe-

matical way by defining themutual information (i.e., shared information content) of

two events. We call this the point-wise mutual information or pmi.

Definition 4.6 Point-Wise Mutual Information. Let x and y be two events of a
probability space (Ω,Σ,P). Then their point-wise mutual information (pmi) is given as

i x; yð Þ : ¼ �log
P x; yð Þ
P xð ÞP yð Þ

¼ �log
P xjyð Þ
P xð Þ

¼ �log
P yjxð Þ
P yð Þ :

(5.5)

Note that we used joint probability distribution of x and y is for the definition of

i(x;y) to avoid the ambiguities introduced by the conditional distributions. Yet, the

latter are probably the easier way to gain a first understanding of this quantity.

Let us note that this measure of shared information is symmetric (i(x;y) ¼ i(y;x))
and that it can take any real value, particularly also negative values. Such negative

values of point-wise mutual information are commonly referred to as misinforma-
tion [64]. Point-wise mutual information is zero if the two events x and y are

independent and it is bounded above by the information content of x and y. More

generally, the following inequality holds:

�1 � i x; yð Þ � min �log P xð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼h xð Þ

;�log P yð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼h yð Þ

8><
>:

9>=
>;
:

Defining the information content of the co-occurrence of x and y as

i x; yð Þ :¼ �log P x; yð Þ,
another way of writing the point-wise mutual information is

i x; yð Þ ¼ i xð Þ þ i
�
y
�� iðx, y�,

¼ i xð Þ � iðxjyÞ,
¼ i yð Þ � i

�
yjxÞ,

(5.6)

where the first identity above is readily obtained from Eq. 5.5 by just expanding the

logarithmic term, and in the second and third line the formula for the conditional

probability was used.
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Before considering mutual information of random variables as a straightforward

generalization of the above, let us look at an example.

Say we have two probability spaces (Ωa,Σa,Pa) and (Ωb,Σb,Pb), with Ωa ¼
{a1,a2} and Ωb ¼ {b1,b2}. We want to compute the point-wise mutual information

of two events ωa ∈ Ωa and ωb ∈ Ωb subject to the joint probability distributions of

ωa and ωb as given in Table 5.1. Note that the joint probability distribution can also

be written as matrix

P ωa;ωbð Þ ¼ 0:2 0:5
0:25 0:05


 �
,

if we label rows by possible outcomes of ωa and columns by possible outcomes of

ωb. The marginal distributions P(ωa) and P(ωb) are now obtained as row, respec-

tively, column sums as P(ωa ¼ a1) ¼ 0.7, P(ωa ¼ a2) ¼ 0.3, P(ωb ¼ b1) ¼ 0.45,

and P(ωb ¼ b2) ¼ 0.55.

We can now calculate the point-wise mutual information of, for example,

i a2; b2ð Þ ¼ �log
0:05

0:3 � 0:55 � 1:7 bits,

and

i a1; b1ð Þ ¼ �log
0:2

0:7 � 0:45 � �0:65 bits:

Note again that in contrast to mutual information (that we will discuss in the next

section), point-wise mutual information can take negative values called; see [64].

5.4.3.2 Mutual Information as Expected Point-Wise Mutual

Information

Using point-wise mutual information, the definition of mutual information of two

random variables is straightforward: Mutual information of two random variables is

the expected value of the point-wise mutual information of all realizations.

Definition 4.7 Mutual Information. Let X and Y be two discrete random
variables. Then the mutual information I(X;Y ) is given as the expected point-wise
mutual information:

Table 5.1 Table of joint

probabilities P(ωa,ωb) of two

events ωa and ωb

ωa ωb P(x,y)

a1 b1 0.2

a1 b2 0.5

a2 b1 0.25

a2 b2 0.05
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I X; Yð Þ : ¼ EX, Y i x; yð Þ½ �
¼

X
y

X
x

P x; yð Þi x; yð Þ

¼ �
X
y

X
x

P x; yð Þlog P x; yð Þ
P xð ÞP yð Þ

0
@

1
A,

(5.7)

where the sums are taken over all possible values x of X and y of Y.
Remember again that the joint probability P(x,y) is just a two-dimensional

matrix where the rows are indexed by X-values and the columns by Y-values and
that each row (column) tells us how likely each possible value of Y(X) is, given the

value x of X (y of Y) determined by the row (column) index. The rows (columns)

sum to the marginal probability distributions P(x) (P(y)), that can be written

as vectors.

If X and Y are continuous random variables we just replace the sums by integrals

and obtain what is known as differential mutual information:

I X; Yð Þ :¼
ð

R

ð

R

P x; yð Þlog P x; yð Þ
P xð ÞP yð Þ


 �
dxdy: (5.8)

Here P(x,y) denotes the joint probability distribution function of X and Y, and
P(x) and P(y) the marginal probability distribution functions of X and Y,
respectively.

As we can see, mutual information can be interpreted as the information

(i.e., entropy) shared by the two variables, hence its name. Like point-wise mutual

information, it is a symmetric quantity I(X;Y ) ¼ I(Y;X) and in contrast to point-

wise mutual information it is nonnegative, I(X;Y ) � 0. Note though that it is not a

metric, as in the general case it does not satisfy the triangle inequality. Furthermore,

we have I(X;X) ¼ H(X), and this identity is the reason why entropy is sometimes

also called self-information.
Taking the expected value of Eq. 5.5 and using the notion of conditional entropy,

we can define mutual information between two random variables as follows:

I X; Yð Þ : ¼ H Xð Þ þ H
�
Y
�� H

�
X,Y

�
,

¼ H Xð Þ � HðXjYÞ,
¼ H Yð Þ � H

�
YjX�,

(5.9)

where in the last two steps the identityH(X,Y ) ¼ H(X) + H(Y|X) ¼ H(Y ) + H(X|Y)
was used. Note that Eq. 5.9 is the generalization of Eq. 5.6 to the case of random

variables. See Fig. 5.13 for an illustration of the relation between the different

entropies and mutual information.

A possible interpretation of mutual information of two random variables

X and Y is to consider it as a measure for the shared entropy between the two

variables.
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5.4.3.3 Mutual Information and Channel Capacities

Wewill look at channels in Shannon’s sense of communication in the following and

relate mutual information to channel capacity. But rather than looking at the subject

in its full generality, we restrict ourselves to discrete, memoryless channels. The

interested reader is pointed to [26] for a more thorough treatment of the subject.

Let us take as usual X and Y for the signal transmitted by some sender and

received by some receiver, respectively. In terms of information transmission, we

can interpret mutual information I(X;Y ) as the average amount of information the

received signal constrains about the transmitted signal, where the averaging is done

over the probability distribution of the source signal PX. This makes mutual

information a function of PX and PY|X and as we know, it is a symmetric quantity.

Shannon defines the capacity C of some channel as the maximum amount of

information that a signal Y received by the receiver can contain about the signal

X transmitted through the channel by the source.

In terms of mutual information I(X;Y ) we can define the channel capacity as

the maximum mutual information I(X;Y ) among all realizations of the signal X.
Channel capacity is thus not dependent on the distribution of PX of X but rather a

property of the channel itself, i.e., a property of the conditional distribution PY|X and

as such asymmetric and causal [85, 112].

Note that channel capacity is bound from below by 0 and from above by the

entropy H(X) of X, with the maximal capacity being attained by a noise-free

channel. In the presence of noise the capacity is lower.

We will have a look at channels again when dealing with applications of the

theory in Section 6.

5.4.3.4 Normalized Measures of Mutual Information

In many applications one is often interested in making values of mutual information

comparable by employing a suitable normalization. Consequently, there exists a

Fig. 5.13 Venn diagram

showing the relation

between the entropies H(X)
and H(Y ), the joint entropy
H(X,Y ), the conditional
entropies H(X|Y ) and
H(Y|X), and mutual

information I(X;Y )
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variety of proposed normalized measures of mutual information, most based on the

simple idea of normalizing by one of the entropies that appear in the upper bounds

of the mutual information. Using the entropy of one variable as a normalization

factor, there are two possible choices and both were proposed: The so-called

coefficient of constraint C(X|Y) [25]

C XjYð Þ :¼ I X; Yð Þ
H Yð Þ

and the uncertainty coefficient U(X|Y ) [105]

U XjYð Þ :¼ I X; Yð Þ
H Xð Þ :

These two quantities are obviously nonsymmetric but can easily be

symmetrized, for example, by setting

U I; Jð Þ :¼ H Ið ÞU IjJð Þ þ H Jð ÞU JjIð Þ
H Ið Þ þ H Jð Þ :

Another symmetric normalized measure for mutual information, usually referred

to as redundancy measure, is obtained when normalizing using the sum of the

entropy of the variables

R ¼ I X; Yð Þ
H Xð Þ þ H Yð Þ :

Note that R takes its minimum of 0 when the two variables are independent and

its maximum when one variable is completely redundant knowing the other.

Note that the list of normalized variants of mutual information given here is far

from complete. But as said earlier, the principle behind most normalizations is to

use one or a combination of the entropies of the involved random variables as a

normalizing factor.

5.4.3.5 Multivariate Case

What if we want to calculate the mutual information between not only two random

variables but rather three or more? A natural generalization of mutual information

to this so-called multivariate case is given by the following definition using

conditional entropies and is also called multi-information or integration [107].

The mutual information of three random variables X1, . . ., X3 is given by

I X1;X2;X3ð Þ :¼ I X1;X2ð Þ � I X1;X2 X3j Þ,ð
where the last term is defined as
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I X1;X2 X3j Þ :¼ EX3
I X1;X2ð Þ X3j �,½ð

the latter being called the conditional mutual information of X1 and X2 given X3. The

conditional mutual information I(X1; X2|X3) can also be interpreted as the average

common information shared by X1 and X2 that is not already contained in X3.

Inductively, the generalization to the case of n random variables X1, . . ., Xn is

straightforward:

I X1; . . . ;Xnð Þ :¼ I X1; . . . ;Xn�1ð Þ � I X1; . . . ;Xn�1 Xnj Þ,ð
where the last term is again the conditional mutual information

I X1; . . . ;Xn�1 Xnj Þ :¼ EXn
I X1; . . . ;Xn�1ð Þ Xnj �:½ð

Beware that while the interpretations of mutual information directly generalize

from the bivariate case I(X;Y ) to the multivariate case I(X1; . . .;Xn), there is an

important difference between the bivariate and the multivariate measure. Whereas

mutual information I(X;Y ) is a nonnegative quantity, multivariate mutual informa-

tion (MMI for short) behaves a bit differently than the usual mutual information in

the aspect that it can also take negative values which makes this information-

theoretic quantity sometimes difficult to interpret.

Let us first look at an example of three variables with positive MMI. To make

things a bit more hands on, let us look at three binary random variables, one telling

us whether it is cloudy, the other whether it is raining, and the third one whether it is

sunny. We want to compute I(rain; no sun; cloud). In our model, clouds can cause

rain and can block the sun, and so we have

I rain; no sun cloudj Þ � I rain; no sunð Þ,ð
as it is more likely that it is raining and there is no sun visible when it is cloudy than

when there are no clouds visible. This results in positive MMI for I(rain; no sun;
cloud), a typical situation for a common-cause structure in the variables: here, the

fact that the sun is not shining can partly be due to the fact that it is raining and

partly due to the fact that there are clouds visible.

In a sense the inverse is the situation where we have two causes with a common

effect: This situation can lead to negative values for the MMI; see [67]. In this

situation, observing a common effect induces a dependency between the causes that

did not exist before. This fact is called “explaining away” in the context of Bayesian

networks; see [84]. Pearl [84] also gives a car-related example where the three

(binary) variables are “engine fails to start” (X), “battery dead” (Y ), and “fuel pump

broken” (y). Clearly, both Y and Z can cause X and are uncorrelated if we have no

knowledge of the value of X. But fixing the common effect X, namely, observing

that the engine did not start, induces a dependency between Y and Z that can lead to

negative values of the MMI.

Another problem with the n-variate case to keep in mind is the combinatorial

explosion of the degrees of freedom regarding their interactions. As a priori every

nonempty subset of the variables could interact in an information-theoretic sense,

this yields 2n � 1 degrees of freedom.

5 A Primer on Information Theory with Applications to Neuroscience 167



5.4.4 A Distance Measure for Probability Distributions:
The Kullback–Leibler Divergence

The Kullback–Leibler divergence [57] (or KL divergence for short) is a kind of

“distance measure” on the space of probability distributions: Given two probability

distributions on the same base space Ω interpreted as two points in the space of all

probability distributions over the base set Ω, it tells us how far they are “apart.”

We again use the usual expectation-value construction as used for the entropy

before.

Definition 4.8 Kullback–Leibler Divergence. Let P and Q be two discrete prob-
ability distributions over the same base space Ω. Then the Kullback–Leibler
divergence of P and Q is given by

DKL PjjQð Þ :¼
X
ω∈Ω

P ωð Þlog P ωð Þ
Q ωð Þ : (5.10)

The Kullback–Leibler divergence is nonnegativeDKL(P||Q) � 0 (and it is zero if

P equalsQ almost everywhere), but it is not a metric in the mathematical sense as in

general it is nonsymmetric DKL(P||Q) 6¼ DKL(Q||P), and it does not fulfill the

triangle inequality. Note that in their original work, Kullback and Leibler [57]

defined the divergence via the sum

DKL PjjQð Þ þ DKL QjjPð Þ,
making it a symmetric measure.DKL(P||Q) is additive for independent distributions,
namely,

DKL PjjQð Þ ¼ DKL P1jjQ1ð Þ þ DKL P2jjQ2ð Þ,
where the two pairs P1, P2 and Q1, Q2 are independent probability distributions

with the joint distributions P ¼ P1P2 and Q ¼ Q1Q2, respectively.

Note that the expression in Eq. 5.10 is nothing else than the expected value

EP[logP � logQ] with the expectation value taken with respect to P, which in term
can be interpreted as “expected distance of P and Q,” measured in terms of the

information content. Another interpretation can be given in the language of codes:

DKL(P||Q) is the average number of extra bits needed to code samples from P using

a code book based on Q.
Analogous to previous examples, the KL divergence can also be defined for

continuous random variables in a straightforward way via

DKL PjjQð Þ ¼
ð

R

p xð Þlog p xð Þ
q xð Þ


 �
dx,
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where P1, P2 and Q1, Q2 denote the pdf of two continuous probability distributions

P ¼ P1P2 and Q ¼ Q1Q2.

Expanding the logarithm in Eq. 5.10 we can write the Kullback–Leibler diver-

gence between two probability distributions P and Q in terms of entropies as

DKL PjjQð Þ ¼ �EP log q xð Þð Þ þ EP log p xð Þð Þ ¼ Hcross P;Qð Þ � H Pð Þ,
where p and q denote the pdf or pmf of the distributions P and Q and H(P,Q)cross is
the so-called cross-entropy of P and Q given by

Hcross P;Qð Þ :¼ �EP log Qð Þ:
This relation lets us easily compute a closed form of the KL divergence for many

common families of probability distributions. Let us, for example, look at the

value of the KL divergence between two normal distributions P : N(μ1,σ1
2) and

Q : N(μ2,σ2
2); see Fig. 5.14. This can be calculated as

DKL PjjQð Þ ¼ μ1 � μ2ð Þ2
2σ22

þ 1

2

σ21
σ22

� log
σ21
σ22

� 1


 �
:

Another example: The KL divergence between two exponential distributions

P : Exp(λ1) and Q : Exp(λ2) is

DKL PjjQð Þ ¼ log λ1ð Þ � log λ2ð Þ þ λ2
λ1

� 1:

Using the Kullback–Leibler divergence, we can give yet another characteriza-

tion of mutual information: It is a measure of how far two measured variables are

from being independent, this time in terms of the Kullback–Leibler divergence.

Fig. 5.14 The probability densities of two Gaussian probability distributions (left) and the

quantity P(x)logP(x)/Q(x) that yields the KL divergence when integrated (right)
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I X; Yð Þ ¼ H Xð Þ � HðXjYÞ
¼ �

X
x

P xð Þlog P xð Þð Þ
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¼ DKLðP x; yð Þ jP�x�P�y��		

(5.11)

Thus, mutual information of two random variables can be seen as the KL

divergence of their underlying joint probability distribution from the products of

their marginal probability distributions, i.e., as a measure for how far the two

variables are from being independent.

5.4.5 Transfer Entropy: Conditional Mutual Information

In the past, mutual information was often used as a measure of information transfer

between units (modeled as random variables) in some system. This approach faces

the problem that mutual information is a symmetric measure and does not have an

inherent directionality. In some applications this symmetry is not desired though,

namely, whenever we want to explicitly obtain information about the “direction of

flow” of information, for example, to measure causality in an information-theoretic

setting; see Sect. 6.5.

In order to make mutual information a directed measure, a variant called time-
lagged mutual information was proposed, calculating mutual information for two

variables including a previous state of the source variable and a next state of the

destination variable (where discrete time is assumed).

Yet, as Schreiber [94] points out, while time-lagged mutual information provides

a directed measure of information transfer, it does not allow for a time-dynamic

aspect as it measures the statically shared information between the two elements.

With a suitable conditioning on the part of the variables, the introduction of a time-

dynamic aspect is possible though. The resulting quantity is commonly referred to

as transfer entropy [94]. Its common definition is the following.

Definition 4.9 Transfer Entropy. Let X and Y be discrete random variables
given on a discrete-time scale, and let k, l � 1 be two natural numbers. Then the
transfer entropy from Y to X with k memory steps in X and l memory steps in Y is
defined as
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TEY!X :
X

xnþ1, xkn, yln

P xnþ1; x
k
n; y

l
n

� �
log

P xnþ1jxkn, yln
� �

P xnþ1 xkn
		 �

,
�

where we denoted by xn, yn the value of X and Y at time n and by y the past

k values of X, counted from time n on xn
k :¼ (xn,xn � 1, . . .,xn � k + 1) and analo-

gously yn
l :¼ (yn,yn � 1, . . .,yn � l + 1), Fig. 5.15.

Although this definition might look complicated at first, the idea behind it is

quite simple. It is merely the Kullback–Leibler divergence between the two condi-

tional probability distributions P(xn + 1|xn
k) and P(xn + 1|xn

k, yn
l),

TEY!X ¼ DKL P xnþ1 xkn
		 �jjP xnþ1 xkn, y

l
n

		 �� �
,

��

i.e., a measure of how far the two distributions are from fulfilling the generalized

Markov property (see Sect. 3.8)

P xnþ1 xkn
		 � ¼ P xnþ1 xkn, y

l
n

		 �
:

��
(5.12)

Note that for small values of transfer entropy, we can say that Y has little

influence on X at time t, whereas we can say that information is transferred from

Y to X at time t when the value is large. Yet, keep in mind that transfer entropy is

just a measure of statistical correlation; see Sect. 6.5.

Another interpretation of transfer entropy is seeing it as a conditional mutual

information I(Y(l ); X0|X(k)), measuring the average information the source

Y constrains about the next state X0 of the destination X that was not contained in

the destination’s past X(k) (see [62]) or alternatively as the average information

provided by the source about the state transition in the destination; see [51, 62].

As so often before, the concept can be generalized to the continuous case

[51], although the continuous setting introduces some subtleties that have to be

addressed.

Concerning the memory parameters k and l of the source and the destination,

although arbitrary choices are possible, the values chosen fundamentally influence

the nature of the questions asked. In order to get correct measures for systems being

far from Markovian (i.e., systems which states are not influenced by more than a

certain fixed number of preceding system states), high values of k have to be used,

and for non-Markovian systems, the case k ! 1 has to be considered. On the other

hand, commonly just one previous state of the source variable is considered in

Fig. 5.15 Computing transfer entropy TEY ! X from source Y to target X at time t as a measure of

the average information present in yt about the future state xt + 1. The memory vectors xn
k and yn

k

are shown in gray
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applications, setting l ¼ 1 [62], this being also due to the growing data intensity in

k and l and the usually high computational cost of the method.

Note that akin to the case of mutual information, there exist point-wise versions

of transfer entropy (also called local transfer entropy), as well as extensions to the

multivariate case; see [62].

5.5 Estimation of Information-Theoretic Quantities

As we have seen in the preceding sections, one needs to know the full sample spaces

and probability distributions of the random variables involved in order to precisely

calculate information-theoretic quantities such as the entropy, mutual information,

or transfer entropy. But obtaining this data is in most cases impossible in reality, as

the spaces are usually high dimensional and sparsely sampled, rendering the direct

methods for the calculation of such quantities impossible to carry out. A way

around this problem is to come up with estimation techniques that estimate

entropies and derived quantities such as mutual information from the data. Over

the last decades a large body of research was published concerning the estimation of

entropies and related quantities, leading to a whole zoo of estimation techniques,

each class having its own advantages and drawbacks. So rather than a full overview,

we will give a sketch of some central ideas here and give references to further

literature. The reader is also pointed to the review articles [10, 79].

Before looking at estimation techniques for neural (and other) data, let us first

give a swift and painless review of some important theoretical concepts regarding

statistical estimation.

5.5.1 A Bit of Theory Regarding Estimations

From a statistical point of view, the process of estimation in its most general form

can be regarded in the following setting: We have some data (say measurements or

data obtained via simulations) that is believed to be generated by some stochastic

process with an underlying non-autonomous, i.e., time dependent or autonomous

probability distribution. We then want to estimate either the value of some function

defined on that probability distribution (e.g., the entropy) or the shape of this

probability distribution as a whole (from which we can then obtain an estimate of

a derived quantity). This process is called estimation and a function mapping the

data to an estimated quantities estimator. In this section we will first look at

estimators and their desired properties and then look at what is called maximum

likelihood estimation, the most commonly used method for the estimation of

parameters in the field of statistics.
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5.5.1.1 Estimators

Let x ¼ (x1, . . .,xn) be a set of realizations of the random variable X that is believed

to have a probability distribution that comes from a family of probability

distributions Pθ parametrized by a parameter θ and assume that the underlying

probability distribution of X is Pθtrue .

Let T : x↦θ̂ true be an estimator for the parameter θ with the true value θtrue.

For the value of the estimated parameter, we usually write θ̂ true :¼ T xð Þ. The bias of
T(x) is the expected difference between θ̂ true and θtrue:

bias Tð Þ :¼ EX θ̂ true � θtrue
� �

,

and an estimator with vanishing bias is called unbiased.
One usually strives to obtain unbiased estimators that are also consistent, i.e., for

which the estimated value θ̂ true converges to the value of the true parameter θtrue
in probability as the sample x increases in size, i.e., as n ! 1:

lim
n!1P T Xð Þ � θtruej j > εð Þ ¼ 0:

Another important property of an estimator is its variance var(T ), and an

unbiased estimator having the minimal variance among all unbiased estimators of

the same parameter is called efficient.
Yet another measure often used when assessing the quality of an estimator T is

its mean squared error

MSE Tð Þ ¼ bias Tð Þð Þ2 þ var Tð Þ,
and as we can see, any unbiased estimator with minimal variance minimizes the

mean squared error.

Without further going into detail here, it is noted that there exists a theoretical

lower bound to the minimal variance obtainable by an unbiased estimator, the

Cramér-Rao bound. The Cramér-Rao bound sets the variance of the estimator in

relation to the so-called Fisher information (that can be set into relation with mutual

information, see [17, 113]). The interested reader is pointed to [2, 58].

5.5.1.2 Estimating Parameters: The Maximum Likelihood Estimator

Maximum likelihood estimation is the most widely used estimation technique in

statistics and, as we will see in the next few paragraphs, a straightforward proce-

dure that in essence tells us what the most likely parameter value in an assumed

family of probability distributions is, given a set of realizations of a random

variable that is believed to have an underlying probability distribution from the

family considered.
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In statistical applications one often faces the following situation: We have a

finite set of realizations {xi}i of a random variable X. We assume X to have a

probability distribution f(x,θtrue) in a certain parametrized class of probability

distributions {f(x,θ)}θ, where the true parameter θtrue is unknown. The goal is to

get an estimate θ̂ true of θtrue using the realizations {xi}i, i.e., to do statistical

inference of the parameter θ. Let us consider the so-called likelihood function

L θ xj Þ ¼ Pθ X ¼ xð Þ ¼ f x θj Þðð
as a function of θ. It is a measure of how likely it is that the parameter of the

probability distribution has the value θ, given the observed realization x of X. In
maximum likelihood estimation, we look for the parameter that maximizes the

likelihood function. This is θ̂ true:

θ̂ true ¼ argmaxθL θ xj Þ:ð

Choosing a value of θ ¼ θ̂ true minimizes the KL divergence between Pθ andPθtrue

for all possible values of θ. The value θ̂ true , often written as θ̂ MLE , is called the

maximum likelihood estimate (MLE for short) of θtrue.
In this setting, one often not uses the likelihood function directly, but works with

the log of the likelihood function (this is referred to as log-likelihood). Why? The

likelihood functions are often very complicated and situated in high dimensions,

making it impossible to find a maximum of the function analytically. Thus, numer-

ical methods (such as Newton’s method and variants or the simplex method) have

to be employed in order to find a solution. These numerical methods work best (and

can be shown to converge to a unique solution) if the function they operate on is

concave (bowl-shaped, where the closed end is on the top). The log function has the

property to make the likelihood function concave in many cases, that being the

reason why one considers the log-likelihood function, rather than the likelihood

function directly; see also [80].

5.5.2 Regularization

Having looked at some core theoretical concepts regarding the estimation of

quantities depending on probability distributions, let us now come back to dealing

with real data.

As in real-world data, the involved probability distributions are often continuous

and infinite-dimensional, the resulting estimation problem is very difficult (if not

impossible) to solve in its original setting. As a remedy, the problem is often

regularized, i.e., mapped to a discrete, more easily solvable problem. This of course

introduces errors and often makes a direct estimation of the information-theoretic

quantities impossible, but even in that simplified model we can estimate lower

bounds of the quantities that we are interested in.
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By using Shannon’s information-processing inequality [26]

I X; Yð Þ � I S Xð Þ;T Yð Þð Þ,
where X and Y are (discrete) random variables and S and T are measurable maps

and choosing the mappings S and T as our regularization mappings (you might also

regard them as parameters) we can change the coarseness of the regularization. The

regularization can be chosen arbitrarily coarse, i.e., choosing S and T as constant

functions, but this of course comes with a price. For example, in the latter case of

constant S and T, the mutual information I(S(X); S(Y)) would be equal to 0, clearly

not a very useful estimate. This means that a trade-off between complexity

reduction and the quality of the estimation has to be made. In general, there exists

no all-purpose recipe for this, each problem requiring an appropriate

regularization.

As this discretization technique has become the standard method in many fields,

we will solely consider the regularized, discrete case in the following and point the

reader to the review article [10] concerning the continuous case.

In the neurosciences, such a regularization technique was also proposed and is

known as the “direct method” [19, 104]. Here, spike trains of recorded neurons are

discretized into time bins of a given fixed width, and the neuronal spiking activity is

interpreted as a series of symbols from an alphabet defined via the observed spiking

pattern in the time bins.

5.5.3 Nonparametric Estimation Techniques

Commonly, two different classes of estimation techniques regarding the shape of

probability distributions are distinguished. Parametric estimation techniques

assume that the probability distribution is contained in some family of probability

distributions having some prescribed shape (see Sect. 3.7). Here, one estimates

the value of the parameter from the data observed, whereas nonparametric estima-

tion techniques make no assumptions about the shape of the underlying distribu-

tion. We will solely look at nonparametric estimation techniques in the following

as in many cases one tries to not assume prior information about the shape of

the distribution.

Histogram-based estimation is the most popular and most widely used estima-

tion technique. As the name implies, this method uses a histogram obtained from

the data to estimate the probability distribution of the underlying random generation

mechanism.

For the following, assume that we obtained a finite set of N samples x ¼ {xi}i of
some real random variable X defined over some probability space (Ω,Σ,P). We then

divide the domain of X into m ∈ N equally sized bins {bi}i and subsequently count
the number of realizations xi in our data set contained in each bin. Here, the number

m of bins can be freely chosen. It controls the coarseness of our discretization,
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where the limit m ! 1 is the continuous case. This allows us to define relative

frequencies of occurrences for X with respect to each bin that we interpret as

estimations p̂ m
i (note that we make the dependence on the number of bins

m explicit in the notation) of the probability of X taking a value in bin bi which
we denote by pi

m ¼ P(X ∈ bi). The law of large numbers then tells us that our

estimated probability values converge to the real probabilities as N ! 1.

Note that although histogram-based estimations are usually called nonparamet-

ric as they do not assume a certain shape of the underlying probability distribution,

they do have parameters, namely, one parameter for each bin and the estimated

probability value p̂ m
i . These estimates p̂ m

i can also be interpreted as maximum

likelihood estimates of pi
m.

The following defines an estimator of the entropy based on the histogram. It is

often called “plug-in” estimator:

Ĥ MLE xð Þ :¼ �
Xm
i¼1

p̂m
i log pmi : (5.13)

The are some problems with this estimator Ĥ MLE Xð Þ, though. Its convergence to
the true value H(X) can be slow and it is negatively biased, i.e., its value is almost

always below the true value H(X); see [4, 79, 82, 83]. This shift can be quite

significant even for large N; see Fig. 5.16 and [79]. More specifically, one can show

that the expected value of the estimated entropy is always smaller than the true

value of the entropy

EX Ĥ MLE xð Þ� � � H Xð Þ,
where the expectation value is taken with respect to the true probability

distribution P.
Bias generally is a problem for history-based estimation techniques [14, 82, 95],

and although we can correct for the bias, this may not always be a feasible

Fig. 5.16 Estimation bias

for a non-bias-corrected

histogram-based maximum

likelihood estimator Hest of

the entropy of a given

distribution with true

entropy H ¼ 8 bits.

Estimated values are shown

for three different sample

sizes N (Adapted from [79],

Fig. 1)
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solution [4]. Nonetheless we will have a look at a bias-corrected version of the

estimator given in Eq. 5.13 below.

As a remedy to the bias problem,Miller andMadow [71] calculated the bias of the

estimator of Eq. 5.13 and came up with a bias-corrected version of the maximum

likelihood estimator for the entropy, referred to asMiller-Madow estimator:

Ĥ MM xð Þ :¼ Ĥ MLE xð Þ þ m̂ � 1

2N
,

where m̂ is an estimate of the number of bins with nonzero probability. We will not

go into the detail of the method here; the interested reader is referred to [71].

Another way of bias-correction Ĥ MLE Xð Þ is the so-called “jack-knifed” version

of the maximum likelihood estimator by Efron and Stein [34]:

Ĥ JK xð Þ :¼ N � Ĥ MLE xð Þ þ N � 1

N

XN
j¼1

Ĥ MLE x∖ xif gð Þ,

Yet another bias-corrected variant of the MLE estimator based on polynomial

approximation is presented in [79], for which also bounds on the maximal estima-

tion error were derived.

In an effort to overcome the problems faced by histogram-based estimation,

many new and more powerful estimation techniques have emerged over the last

years, both for entropy and other information-theoretic quantities. As our focus here

is to give an introduction to the field, we will not review all of those methods here but

rather point the interested reader to the literature where a variety of approaches are

discussed. There exist methods based on the idea of adaptive partitioning of sample

space [21], ones using entropy production rates and allowing for confidence intervals

[99], ones using Bayesian methods [75, 90, 99], and ones based on density estima-

tion using nearest neighbors [55], along with many more. See [46] for an overview

concerning several estimation techniques for entropy and mutual information. We

note here that in contrast to estimations of entropy, estimators of mutual information

are usually positively biased, i.e., tend to overestimate mutual information.

5.6 Information-Theoretic Analyses of Neural Systems

Some time after its discovery by Shannon, neuroscientists started to recognize

information theory as a valuable mathematical tool to assess information processing

in neural systems. Using information theory, several questions regarding information

processing and the neural code can be addressed in a quantitative way, among those:

• How much information single cells or populations carry about a stimulus and

how this information is coded.

• What aspects of a stimulus are encoded in the neural system.
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• How “effective connectivity” [40] in neural systems can be defined via causal

relationships between units in the system.

See Fig. 5.17 for an illustration of how Shannon’s theory can be used in a

neural setting.

Attneave [6] and Barlow [9] were the first to consider information processing in

neural systems from an information-theoretic point of view. Subsequently, Eckhorn

and Pöpel [32, 33] applied information-theoretic methods to electrophysiologically

recorded data of neurons in a cat. But being data intensive in nature, these methods

faced some quite strong restrictions during that time, namely, the limited amount of

computing power (and computer memory) and the limited amount (and often low

quality) of data obtainable via measurements at that time.

But over the last decades, available computing became more and more available,

and classical measurement techniques were improved, along with new ones

emerging such as fMRI, MEG, and calcium imaging. This made information-

theoretic analyses of neural systems more and more feasible, and through the

invention of recording techniques such as MEG and fMRI, it is nowadays even

possible to perform such analyses on a system scale for the human brain in vivo.

Yet, even with the newly available recording techniques today, there are some

conceptual difficulties with information-theoretic analyses as it is often a challenge

to obtain enough data in order to get good estimates of information-theoretic

quantities. Special attention has to be paid to using the data efficiently, and the

validity of such analyses has to be assessed to their statistical significance.

In the following we will discuss some conceptual questions relevant when

regarding information-theoretic analyses of neural systems. More detailed reviews

can be found in [15, 35, 93, 111].

5.6.1 The Question of Coding

Marr described “three levels at which any machine carrying out an information-

processing task must be understood” [68] [Chap. 1.2]. They are:

1. Computational theory: What is the goal of the computation, why is it appropri-

ate, and what is the logic of the strategy by which it can be carried out?

Fig. 5.17 An information-theoretic view on neural systems. Neurons can either act as channels in

the information-theoretic sense, relaying information about some stimulus or as senders and

receivers with channels being synapses
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2. Representation and algorithm: How can this computational theory be

implemented? In particular, what is the representation for the input and output,

and what is the algorithm for the transformation?

3. Hardware implementation: How can the representation and algorithm be

realized physically?

When performing an information-theoretic analysis of a system, one naturally

faces the fundamental problem related to the coding of the information: In order to

calculate (i.e., estimate) information-theoretic quantities, one has to define a family

of probability distributions over the state space of the system, each member of that

family describing one system state that is to be considered. As we know, all

information-theoretic quantities such as entropy and mutual information (between

the system state and the state of some external quantity) are determined by the

probability distributions involved. The big question now is how to define the system

state in the first point, a question which is especially difficult to answer in the case

of neural systems on all scales.

One possible way to construct such a probabilistic model for a sensory neuro-

physiological experiment involving just one neuron is the following. Typically, the

experiment consists of many trials, where per trial i ¼ 1, . . ., n in some defined

time window a stimulus Si is presented eliciting a neural response R(Si) consisting
of a sequence of action potentials. Presenting the same stimulus S many times

allows for the definition of a probability distribution of responses R(S) of the neuron
to a stimulus S. This is modeled as a conditional probability distribution PR|S. As

noted earlier, we usually have no direct access to PR|S but rather have to find an

estimate P̂ R Sj from the available data. Note that in practice, usually the joint

probability distribution P(R,S) is estimated and estimates of conditional probability

distributions are subsequently obtained from the estimate of the joint distribution.

Let us now assume that the stimuli are drawn from the set of stimuli S ¼ {S1,
. . .,Sk} according to some probability distribution PS (that can be freely chosen by

the experimenter). We can then compute the mutual information between the

stimulus ensemble S and its elicited response R(S)

I S;R Sð Þð Þ :¼ H R Sð Þ Sj Þ � H Sð Þ ¼ H S R Sð Þj Þ � H R Sð Þð Þðð

using the probability distributions PS and P̂ R Sj ; see Sect. 4.3.
As usual, by mutual information we assess the expected shared information

between the stimulus and its elicited response averaged over all stimuli and

responses. In order to break this down to the level of single stimuli, we can either

consider the point-wise mutual information or employ one of the proposed

decompositions of mutual information such as stimulus-specific information or

stimulus-specific surprise; see [20] for a review.
Having sketched the general setting, let us come back to the question of coding

of information by the neurons involved. This is important as we have to adjust our

model of the neural responses accordingly, the goal being to capture all relevant

features of the neural response in the model.
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Regarding neural coding, there are two main hypotheses of how single neurons

might code information: Neurons could use a rate code, i.e., encode the information

via their mean firing rates, neglecting the timing patterns of spikes, or they could

employ a temporal code, i.e., a code where the precise timing of single spikes plays

an important role. Yet another hypothesis would be that neurons code information

in bursts of spikes, i.e., groups of spikes emitted in a small time window, which is a

variant of the time code. For questions regarding coding in populations, see the

review [89].

Note that the question of neural coding is a highly debated one in the

neurosciences as of today (see [42, 96]), and we do not want to favor one view

point over the other in the following. As with many things in nature, there does not

seem to be a clear black and white picture regarding neuronal coding. Rather it

seems that a gradient of different coding schemes is employed depending on

which sensory system is considered and at which stage of neuronal processing;

see [19, 22, 42, 81, 93].

5.6.2 Computing Entropies of Spike Trains

Let us now compute the entropy of spike trains and subsequently single spikes,

assuming that the neurons we model employ either a rate or a time code. We are

especially interested in the maximal entropy attainable by our model spike trains as

these can give us upper bounds for the amount of information such trains and even

single spikes can carry in theory. The following examples here are adapted from

[108]. Concerning the topics of spike trains and their analysis, the interested reader

is also pointed to [92].

First, we define a model for the spike train emitted by a neuron measured for

some fixed time interval of length T. We can consider two different models for the

spike train, a continuous and a discrete one. In the continuous case, we model each

spike by a Dirac delta function and the whole spike train as a combination of such

functions. The discrete model is obtained from the continuous one by introducing

small time bins of size Δt in a way that one bin can at most contain one spike, say

Δt ¼ 2 ms. We then assign to each bin in which no spike occurred a value of 0 and

ones in which a spike occurred a value of 1; see Fig. 5.18.

Let us use this discrete model for the spike train of a neuron, representing a spike

train as a binary string S in the following. Fixing the time span to be T and the bin

Fig. 5.18 Model of a spike train. The binary string is obtained through a binning of time
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width to be Δt, each spike train S has length N ¼ T/Δt. We want to calculate the

maximal entropy among all such spike trains n, subject to the condition that the

number of spikes in S is a fixed number r � N which we call the spike rate of S.
Let us now calculate the entropy in the firing pattern of a neuron of which we

assume that spike timing carries important information, i.e., a neuron employing a

time code. In order to keep the model simple, let us further assume that the spiking

behavior is not restricted in any way, i.e., that all possible binary strings S are

equiprobable. Then we can calculate the entropy of this uniform probability distri-

bution P as

H Pð Þ ¼ log
N
r


 �
, (5.14)

where
N
r


 �
denotes the binomial coefficient

N
r


 �
¼ N! N�rð Þ!

r! , the number of all

distinct binary strings of length N having exactly r nonzero entries. The entropy in

Eq. 5.14 can be approximated by

H Pð Þ � � N

ln2

N

r
ln
N

r
þ 1� N

r


 �
ln 1� N

r


 �
 �
, (5.15)

where ln denotes the natural logarithm to the base e. The expression in Eq. 5.15 is

obtained by using the approximation formula

log
n
k


 �
� n

k

n
log

k

n


 �
� 1� k

n


 �
log 1� k

n


 �
 �

which is valid for large n and k and in turn based on Stirling’s approximation

formula for ln n!.
See Fig. 5.19a for the maximum entropy attainable by the time code as a function

of bin size Δt for different firing rates r.

Fig. 5.19 Maximum entropy per spike for spike trains. (a) Time code with different rates r as a
function of the size Δt of the time bins. (b) Rate code using Poisson and exponential spiking

statistics (Figure adapted from [108] Fig. D.4)
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On the other hand, modeling a neuron that reacts to different stimuli with a

graded response in its firing rate is usually done using a rate code. Assuming a rate

code where the timing of spikes does not play any role yields different results, as we

will see in the following; see Fig. 5.19b. In the rate code only the number of spikes

N occurring in a given time interval of length Tmatters, i.e., we consider probability

distributions PN,T parametrized by N and T describing how likely the occurrence of

N spikes in a time window of length T is. Being well-backed with experimental data

[24, 74, 101], a popular choice of PN,T is taking a Poisson distribution with some

fixed mean N ¼ r � T, where r is thought of as the mean firing rate of the neuron.

The probability PN,T(n) of observing n spikes in an interval of length T now is

given by the pmf of the Poisson distribution

PN, T nð Þ ¼ Nne�N

n!

and the entropy of PN,T computes as

H PN,T
� � ¼ �

X
n

PN, T nð ÞlogPN, T nð Þ:

Again using Stirling’s formula this can be written as

H PN, T
� � � 1

2
logN � log2πð Þ: (5.16)

Dividing the entropy H(PN,T) by the number of spikes that occurred yields the

entropy per spike. See Fig. 5.19b for a plot of the entropy per spike as a function of

the number of observed spikes.

An interesting question is to ask for the maximal information (i.e., entropy) that

spike trains can carry, assuming a rate code. Assuming continuous time and

prescribing mean and variance of the firing rate, this leaves the exponential

distribution Pexp as the one with the maximal entropy. The entropy of an exponen-

tially distributed spike train with mean rate r ¼ 1/T(eλ � 1) is

H Pexp

� � � log 1þ Nð Þ þ Nlog 1þ 1

N


 �
,

see also Fig. 5.19b.

Note that while it was possible to compute the exact entropies in the preceding as

we assumed full knowledge of the underlying probability distributions. This is of

course not the case for data obtained by recordings. Here the estimation of entropies

faces the bias-related problems of sparsely sampled probability distributions as

discussed earlier. Concerning entropy estimation in spike trains, the reader is also

pointed to [82].
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5.6.3 Efficient Coding?

The principle of efficient coding [6, 9, 100] (also called Infomax principle) was first
proposed by Attneave and Barlow. It views the early sensory pathway as a channel

in Shannon’s sense and postulates that early sensory systems try to maximize

information transmission under the constraint of an efficient code, i.e., that neurons

maximize mutual information between a stimulus and their output spike train, using

as few spikes as possible. This minimization of spikes for a given stimulus results in

a maximal compression of the stimulus data, minimizing redundancies between

different neurons on a population level. One key prediction of this optimality

principle is that neurons involved in the processing of stimulus data (and ultimately

the whole brain) is adapted to natural stimuli, i.e., some form of natural (and

structured) sensory input such as sounds or images rather than noise. For some

sensory systems it could be shown that there is strong evidence that early stages of

processing indeed perform an optimal coding; see, e.g., [77]. While first mainly the

visual system was studied and it was shown that the Infomax principle holds here

[9], other sensory modalities were also considered in the following years [13,

59–61, 109, 114].

But whereas the Infomax principle could explain certain experimental findings

in the early sensory processing stages, the picture becomes less clear the more

upstream the information processing in neural networks is considered. Here, other

principles were also argued for; see, for example, [43].

On the system level, Friston et al. [36, 38] proposed an information-theoretic

measure of free energy in the brain that can be understood as generalization of the

concept of efficient coding. Also arguing for optimal information transfer, Norwich

[76] gave a theory of perception based on information-theoretic principles. He

argues that the information present in some stimulus is relayed to the brain by the

sensory system with negligible loss. Many empirical equations of psychophysics

can be derived from this model.

5.6.4 Scales

There are many scales at which information-theoretic analyses of neural systems

can be performed. From the level of a single synapse [30, 65] over the level of

single neurons [29, 93] over the population level [27, 35, 50, 87, 89] up to the

system level [78, 110]. In the former cases the analyses are usually carried out on

electrophysiologically recorded data of single cells, whereas on the system level

data is usually obtained by EEG, fMRI, or MEG measurements.

Notice that most of the information-theoretic analyses of neural systems were

done for early stages of sensory systems, focusing on the assessment of the

amount of mutual information between some stimulus and its neural response.

Here different questions can be answered about the nature and efficiency of the
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neural code and the information conveyed by neural representations of stimuli; see

[12, 15, 91, 93]. This stimulus–response-based approach has already provided a

lot of insight into the processing of information in early sensory systems, but

things get more and more complicated the more downstream an analysis is

performed [22, 93].

On the systems level, the abilities of neural systems to process and store

information are due to interactions of neurons, populations of neurons, and

sub-networks. As these interactions are highly nonlinear and in contrast to the

early sensory systems neural activity is mainly driven by the internal network

dynamics (see [5, 110]), stimulus–response-type models often are not very useful

here. Here, transfer entropy has proven to be a valuable tool, making analyses of

information transfer in the human brain in vivo possible [78, 110]. Transfer

entropy can also be used as a measure for causality, as we will discuss in the

next section.

5.6.5 Causality in the Neurosciences

The idea of causality, namely, the question of what are the causes resulting in the

observable state and dynamics of complex systems of physical, biological, or social

nature is a deep, philosophical question that has been driving scientists in all fields

ever since. In a sense this question lies at the heart of science itself and as such is

often notoriously difficult to answer.

In the neurosciences, this principle is related to one of the core questions of

neural coding and subsequently neural information processing: What stimuli make

neurons spike (or change their membrane potential for non-spiking neurons)? For

many years now, neuroscientists have investigated neurophysiological correlates of

information presented to a sensory system in form of stimuli.

While considerable progress has been made regarding the answer to this

question in the early stages of sensory processing (see the preceding sections),

where often a clear correlation between a stimulus and the resulting neuronal

activity could be found, things get less and less clear the further downstream this

question is addressed. In the latter case, neuronal activity is subject to higher and

higher degrees of internal dynamics and a clear stimulus–response relation is

often lacking.

Considering early sensory systems, even though merely a correlation between a

stimulus and neural activity can be measured, it is justified to speak of causality

here, as it is possible to actively influence the stimulus and observe the change in

neural activity. Note that the idea of intervention is crucial here; see [7, 85].

Looking at more downstream systems or at the cognitive level, an active

intervention albeit possible (but often not as directly as for sensory systems) may

not have the same easy to detect effects on system dynamics. Here, often just

statistical correlations can be observed, and in most cases, it is very hard if not

impossible to show that the principle of causality in its purest form holds. Yet, one
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can still make some statements regarding what one might call “statistical causality”

in this case, as we will see.

In an attempt to give a statistical characterization of the notion of causality, the

mathematician Wiener [112] came up with the following probabilistic framing of

this concept that came to be known as Wiener causality: Consider two stochastic

processes X ¼ (Xt)t ∈ N and Y ¼ (Yt)t ∈ N. Then Y is said to Wiener-cause X if the

knowledge of past values of Y diminishes uncertainty about the future values of X.
Note that Wiener causality is a measure of predictive information transfer and not

one of causality, and thus the naming is a bit unfortunate; see [63].

The economist Granger employed Wiener’s principle of causality and devel-

oped the notion of what is nowadays called Wiener-Granger causality [16, 44].

Subsequently, the linear Wiener-Granger causality and its generalizaticons were

often employed as measure of statistical causality in the neurosciences; see [16,

46]. Another model for causality in the neurosciences is dynamic causal
modeling [37, 41, 102].

In contrast to dynamic causal modeling, causality measures based on

information-theoretic concepts are usually purely data-driven and thus inherently

model-free [46, 110]. This fact can be of advantage in some cases but we do not

want to make a judgment here, calling one method better per se, as each has its

advantages and drawbacks [39].

The directional and time-dynamic nature of transfer entropy allows using it as a

measure of Wiener causality, as was proposed in the field of neurosciences recently

[110]. As such, transfer entropy can be seen as a nonlinear extension of the concept

of Wiener-Granger causality; see [66] for a comparison of transfer entropy to other

measures.

Note again that transfer entropy still essentially is a measure of conditional

correlation rather than one of direct effect (i.e., causality) and that correlation is not

causation. Thus it is a philosophical question to which extent transfer entropy can

be used to infer some form of causality, a question that we will not further pursue

here, rather pointing the reader to [7, 46, 66, 85].

In any case the statistical significance of the inferred causality (remember that

transfer entropy just measures conditional correlation) has to be verified. For trial-

based data sets as often found in the neurosciences, this testing is usually done

against the null hypothesis H0 of average transfer entropy obtained by random

shuffling of the data.

5.6.6 Information-Theoretic Aspects of Neural Dysfunction

Given the fact that information-theoretic analyses can provide insights about the

functioning of neural systems, the next logical step is to ask how these might help in

better understanding neural dysfunction and neural diseases.

The field one might call “computational neuroscience of disease” is an

emerging field of research within the neurosciences; see the special issue of
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Neural Networks [28]. The discipline faces some hard questions as in many cases

dysfunction is observed on the cognitive (i.e., systems) level but has causes on

many scales of neural function (subcellular, cellular, population, system).

Over the last years, different theoretical models regarding neural dysfunction

and disease were proposed, among them computational models applicable to

the field of psychiatry [48, 72], models for brain lesions [1], models of epilepsy

[3], models for deep brain stimulation [70, 86], and models for aspects of

Parkinson’s [45, 73] and Alzheimer’s [11, 56] disease, of abnormal auditory

processing [31, 56], and for congenital prosopagnosia (a deficit in face

identification) [103].

Some of these models employ information-theoretic ideas in order to assess

differences between the healthy and dysfunctional states [8, 103]. For example,

information-theoretic analyses of cognitive and systems-level processes in the

prefrontal cortex were carried out recently [8, 53], and differences in information

processing could be assessed between the healthy and dysfunctional system by

means of information theory [8].

Yet, computational neuroscience of disease is a very young field of research, and

it remains to be elucidated if and in what way analyses of neural systems employing

information-theoretic principles could be of help in medicine on a broader scale.

5.7 Software

There exist several open source software packages that can be used to estimate

information-theoretic quantities of neural data. The list below is by no means

complete, but should give a good overview of things; see also [49]:

• Entropy: Entropy and mutual information estimation

– URL: http://cran.r-project.org/web/packages/entropy.

– Authors: Jean Hausser and Korbinian Strimmer.

– Type: R package.

– From the website: This package implements various estimators of entropy,

such as the shrinkage estimator by Hausser and Strimmer, the maximum

likelihood and the Millow-Madow estimator, various Bayesian estimators,

and the Chao-Shen estimator. It also offers an R interface to the NSB

estimator. Furthermore, it provides functions for estimating mutual

information.

• Information-dynamics tool kit

– URL: http://code.google.com/p/information-dynamics-toolkit.

– Author: Joseph Lizier.

– Type: standalone Java software.

– From the website: Provides a Java implementation of information-theoretic

measures of distributed computation in complex systems: i.e., information
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storage, transfer, and modification. Includes implementations for both dis-

crete and continuous-valued variables for entropy, entropy rate, mutual

information, conditional mutual information, transfer entropy, conditional/

complete transfer entropy, active information storage, excess entropy/predic-

tive information, and separable information.

• ITE (information-theoretical estimators)

– URL: https://bitbucket.org/szzoli/ite/.

– Author: Zoltan Szabo.

– Type: Matlab/Octave plug-in.

– From the website: ITE is capable of estimating many different variants of

entropy, mutual information, and divergence measures. Thanks to its highly

modular design, ITE supports additionally the combinations of the estimation

techniques, the easy construction and embedding of novel information-

theoretical estimators, and their immediate application in information-

theoretical optimization problems. ITE can estimate Shannon and Rényi

entropy; generalized variance, kernel canonical correlation analysis, kernel

generalized variance, Hilbert-Schmidt independence criterion, mutual infor-

mation (Shannon, L2, Rényi, Tsallis), copula-based kernel dependency, and

multivariate version of Hoeffding’s Phi; complex variants of entropy and

mutual information; and divergence (L2, Rényi, Tsallis), maximum mean

discrepancy, and J-distance. ITE offers solution methods for Independent

Subspace Analysis (ISA) and its extensions to different linear-, controlled-,

post nonlinear-, complex-valued, partially observed systems, as well as to

systems with nonparametric source dynamics.

• PyEntropy

– URL: http://code.google.com/p/pyentropy.

– Authors: Robin Ince, Rasmus Petersen, Daniel Swan, and Stefano Panzeri.

– Type: Python module.

– From the website: PyEntropy is a Python module for estimating entropy and

information-theoretic quantities using a range of bias-correction methods.

• Spike train analysis tool kit

– URL: http://neuroanalysis.org/toolkit.

– Authors: Michael Repucci, David Goldberg, Jonathan Victor, and Daniel

Gardner.

– Type: Matlab/Octave plug-in.

– From the website: Information-theoretic methods are now widely used for the

analysis of spike train data. However, developing robust implementations of

these methods can be tedious and time-consuming. In order to facilitate

further adoption of these methods, we have developed the Spike Train

Analysis Toolkit, a software package which implements several

information-theoretic spike train analysis techniques.
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• TRENTOOL

– URL: http://trentool.de.

– Authors: Michael Lindner, Raul Vicente, Michael Wibral, Nicu Pampu, and

Patricia Wollstadt.

– Type: Matlab plug-in.

– From the website: TRENTOOL uses the data format of the open source

MATLAB toolbox Fieldtrip that is popular for electrophysiology data

(EEG/MEG/LFP). Parameters for delay embedding are automatically

obtained from the data. TE values are estimated by the Kraskov-Stögbauer-

Grassberger estimator and subjected to a statistical test against suitable

surrogate data. Experimental effects can then be tested on a second level.

Results can be plotted using Fieldtrip layout formats.
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Chapter 6

Machine Learning-Based Imputation

of Missing SNP Genotypes in SNP Genotype

Arrays

Aleksandar R. Mihajlovic

6.1 Introduction

As organisms age, health is increasingly threatened. Health problems are the most

common cause of death in humans. Poor health is attributed to disease, a structural or

functional disorder(s) of any organ(s) in the living body. One of mankind’s constant

endeavors is to eradicate diseases, engaging tens of thousands of scientists, engineers,

economists, politicians, and business people worldwide. The medical discoveries of

the nineteenth century gave birth to a new science that would change the way we

think and view diseases: genetics. With the help of new gene research procedures,

many diseases were shown to be genetic in nature. Since the first discovery of

heritable diseases, along with the observation that genes may influence certain

diseases, genetics found its way into the heart of almost all medical disciplines.

With the explosive growth in use and development of computer-based information

systems, high-throughput technology has aggressively penetrated the field of

medicine. The discoveries of new genes and their phenotypes, made with the aid

of advanced state-of-the-art computing technology, painted a completely new

research domain for doctors and researchers. This new research domain, the

science of genes and how they influence bodily functions, was coined genomics.
One of the most important genomic discoveries was the existence of tight

associations between alleles or editions of genes and disease [1].
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6.2 The Missing Genotype Problem

By comparing the genetic sequences of large groups of healthy and diseased

individuals, researchers are able to create a rough map of the faulty genes causing

the disease [2]. Such a data-mining procedure is known as a Genome Wide
Association Study or GWAS for short. Relative gene locations, i.e., which chromo-

some the gene is located on and which part of the chromosome, gives researchers

a starting point to localize genes, understand, and cure diseases. However,

researchers are presented with a problem. Due to the volatility and relative chemical

sensitivity of genetic material and the accuracy of genetic data-reading equipment,

the encoding or translation process responsible for digitizing the sampled genetic

data to discrete alphanumeric encoded data is frequently compromised, resulting in

missing values of genetic reads. This is an instance of the age-old problem of

frequent occurrence in massive data sets, the missing value problem. In order to

cost-effectively solve this problem, various machine learning-based algorithms

relying on probabilistic imputation are used to estimate the missing genetic data

[3, 4]. Massaging the data set using machine learning algorithms prior to the GWAS

data-mining-based analysis is critical. In GWAS, imputation usually refers to the

substitution of missing single-nucleotide polymorphism or SNP values with one of

two possible SNP values. Missing SNP data is fairly common in association studies,

sometimes with rates as high as 5–10 % [4]. In association studies, missing values

can lead to very poor analysis results. SNP genotype imputation methods are used

to improve data set quality and to complete the data set, which is necessary for

accurate data analysis results.

6.3 The Biological Problem Domain

In GWAS, SNPs are collected from disease-relevant cohorts and healthy cohorts

or patient groups. The SNPs correspond to physical locations of particular bases

on the DNA chain of the chromosomes of the cohorts. The SNP is of a dual nature.

The first nature of the SNP corresponds to the location of the base along the DNA

chain. SNP locations are fixed locations for all human beings. Their exact positions

along the chromosome are uniform for all humans. Since their nature is so static, in

research they serve and are referred to asmarkers, milestones along the DNA chain.

The second nature of the SNP corresponds to the value of the particular base on the

DNA chain, at the marker position. Marker value data, for statistical measurements,

is organized into a tabular data set. Typical analysis of this data is the comparison

of sequences of markers between the two cohorts. This is made possible by

the mentioned tabular organization, where all the markers belonging to a specific

patient are located on a single row of the table. The columns represent the values

present at the particular marker location, i.e., each column is a specific marker

location within the genome. Given that 99 % of the genome will have the same
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marker values, especially in healthy individuals, specific and differing marker

sequences belonging to the diseased patient group stand out and are easily located.

When the differing SNP sequences are localized, the physical locations of these

differences would be recorded. This location is where the suspected gene, causing

the disease, is most probably located. Due to the analytical sensitivity of GWAS,

such studies are not possible without high quality, i.e., complete data sets [5]. Unfor-

tunately, SNP genotyping technology is still too sensitive and causes missing values

during the digitization process, resulting in instances of the missing SNP genotype
problem. Bad quality data, with missing SNP values, have a negative impact on

the quality of the final data analysis results. The need for data completeness
and correctness is of utmost importance for reliable results. Eliminating missing

SNP values by accurate substitution, i.e., imputation in a cost-effective manner,

is of essential importance. An in-depth view of GWAS and a detailed description

of the missing value problem are provided in Sects. 6.4 and 6.5. In order to better

understand the problem, first a short introduction to the genetic concepts behind

GWAS is provided in following subsections of Sect. 6.3.

6.3.1 Chromosomes

Chromosomes are long linear chains of bundled DNA present in all cell nuclei.

Each chromosome is essentially a single long strand of DNA. The DNA of a

chromosome contains heritable trait segments of DNA known as genes. Most of

the DNA in chromosomes serves no purpose and is eminently useless. The ~28,000

segments of DNA, the genes, on the chromosomes, however are essential for human

life. Genes in a DNA context are the scribed instructions for assembling proteins

from available amino acids within the cytoplasm of a cell. Thus, the main purpose

of genes is to instruct the creation of proteins which account for almost all of our

body’s dry weight, i.e., weight exclusive of water. Within a nondividing human

somatic cell nucleus, 23 pairs of unbundled chromosomes also referred to as

chromatin are found. Chromatin assumes the shaft- or bar-like shape only upon

cell division (see Fig. 6.1). The chromosome pairs are labeled 1–22, with the

23rd pair, the sex chromosomes, labeled as XX or XY. The two chromatids of a
chromosome pair are homologous in nature. One chromatid is inherited form one

parent while the other from the other parent. The locations of the genes, their

positions along the chromosomes, are the same. The homologous set of genes

located on homologous chromosomes work together in expressing a trait. Each

homologous gene-pair alleles make a tuple. This tuple is referred to as the genotype.
Each homologous gene can have its own version, or allele. When two of the

same alleles are present in a homologous pair, the genotype is termed homozygous,
and when two different alleles are present in a homologous pair, the genotype

is termed heterozygous. The traits that the genotypes control are classified as

being either dominant, recessive, or codominant. In the first case, one of the homo-

logous gene alleles is exclusively expressed, while the other homolog is silenced.
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This usually requires at least one allele to be dominant. In the second case, a trait

is recessive if both of the homologous gene alleles are recessive. In the third case,

both alleles are dominant and codominate the expression of the trait.

6.3.2 DNA

Deoxyribonucleic acid or DNA is one of two nucleic acids. It has a helical

ladderlike molecular three-dimensional structure where each rail of the ladder is

made of a chain of nucleotides. Nucleotides are the fundamental building blocks of

DNA. Two nucleotides joined by a hydrogen bond at complementary nitrogenous

bases form a base pair unit of DNA. The two bases can be viewed as the rungs of the

ladder. The nucleotide in order to reinforce the hydrogen bond between the two

nitrogenous bases has a pentose sugar and phosphate group chained together,

forming the rails of the ladder.

Fig. 6.1 Human female karyotype with the Y-chromosome missing and each pair of homologous

chromosomes labeled with 1–22, X and Y. Between the two homologous chromosomes of

chromosome pairs, recombination events take place [6]
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Four of DNA nitrogenous bases are adenine, guanine, thymine, and cytosine.
The character of the four bases is complementary in nature, meaning only one of

two possible base pair combinations can be present at each rung of the ladder

(see Fig. 6.2). Hydrogen bonds hold adenine and thymine together and cytosine

and guanine together. Adenine with cytosine or guanine cannot bond together,

nor can thymine with guanine or cytosine. The bonds themselves between the

bases are initiated in a zipper-like fashion, bonding the two complementary bases

together and forming the rungs of the ladder of Fig. 6.2. Given their complementary

nature, knowledge of one linear sequence of bases along one rail of the DNA chain

is enough to describe the DNA chain as a whole. A gene is a specific linear

sequence of these bases on a DNA chain. The sequence is read by climbing the

raillike structure.

6.3.3 SNPs and Point Mutations

Benign mutations of gene coding regions are the culprits of hereditary variation.

These benign mutations correspond to the 0.01 % difference between all humans.

One study on genetic variations between different species of Drosophila suggests

that if a mutation changes a protein produced by a gene, the result is likely to be

Fig. 6.2 DNA chain with clearly indicated nitrogenous base relationships
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harmful, with an estimated 70 % of amino acid polymorphisms having damaging

effects, and the remainder being either neutral or weakly beneficial [7]. The most

common type of mutations are point mutations. Point mutations are single-

nucleotide differences, i.e., single-base differences between humans referred to as

SNPs. They are in fact the culprits of variation both in a phenotype, i.e., physical

sense, and thus in a genotype or gene sense, i.e., in terms of alleles. The minor

differences in gene coding sequences, gene base sequences, resulting from point

mutations, give rise to many different editions of genes, i.e., gene alleles. When any

two human genomes are compared side by side, they are 99.9 % identical [8]. How-

ever, with a 3.2 � 109 base pair genome, each person harbors roughly 3.2 � 106

differences (see Fig. 6.3).

These differences are attributed to SNPs. While the majority of the SNPs are of

no significant biological consequence, since they cover irrelevant regions of the

DNA, a fraction of the substitutions have functional importance and are the basis

for the diversity such as one found among humans [9]. SNPs usually occur in

noncoding regions more frequently than in coding regions, i.e., regions coded for

protein synthesis or transcription. SNPs are biallelic, base pairs have only two

possible combinations, and thus they are easily assayed [10].

Given the complementary nature of bases, we have only two possible alleles or

base bonds for any single-base change, A-T and C-G, where A-T is the same as T-A

and C-G is the same as G-C. SNPs, which make up about 90 % of all human genetic

variation, occur every 100–300 bases along the 3 � 109 base human genome, the
set of all 46 DNA chains within a cell nucleus. Two of every three SNPs involve the

replacement of cytosine (C) with thymine (T) [12]. SNPs are also evolutionary

stable, i.e., are not changing much, from generation to generation, making them

easier to follow in population studies [12].

Fig. 6.3 An example of a point mutation, i.e., an SNP. Both DNA sequences are exactly the same

except for one location, pointed out by the red double-headed arrow (Adapted from [11])
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6.3.4 SNP Haplotypes and Haplogroups

A haplotype in genetics is a combination of SNP alleles within the genome that are

inherited together from generation to generation. Recombination events during

cellular meiosis in sex cells rarely can separate these inheritable allelic chunks.

Association in this case refers to strong linkage between the SNPs under allelic

conditions, which means under a particular configuration of SNP marker values,

the markers and their values are inherited together regardless of any recombination

events where homologous chromosomes are spliced and mixed up for sex cell gamete

variation. In molecular evolution, a haplogroup is a group of similar haplotypes that

share a common ancestor having the same SNP mutation in both haplotypes [13].

Since haplogroups contain similar haplotypes, it is possible to predict a haplogroup

from haplotypes. An SNP test confirms a haplogroup with 100 % accuracy, but the

haplogroup can be estimated statistically with average certainty. The haplogroup is

best determined through SNP gene-chip testing. Haplogroups are assigned code

names in a form of an alphanumeric character string, e.g., R1b1. Y-chromosome

and mitochondrial DNA haplogroups have different haplogroup designations.

Haplogroups pertain to deep ancestral origins that may date back thousands of

years [13].

6.3.5 GWAS in Detail

Genome-wide association studies are used to identify common genetic factors

that influence health and disease [14]. It is an examination of many common

genetic/SNP variants in different individuals to see if any variant is associated

with a trait. GWAS typically focus on associations between SNPs and traits,

especially those expressed by major diseases. These studies normally compare

the SNPs on homologous DNA chains of two groups of participants or cohorts.

Cohort commonly refers here to a group of people with the disease and similar

people without it. The two test groups are carefully selected. The selection process

for the diseased cohorts involves setting a standard anamnesis test. Both subgroups
or groups of cohorts, the healthy and the diseased groups, must belong to the same

anamnesis group; the only thing setting their anamnesis apart is the disease. This

eliminates the role any environmental factors might play on disease onset or

even development of disease. All individuals in each group are genotyped for

the majority of common known SNPs. The exact number of SNPs depends on

the study, but typically around a million. The SNP genotype information from

these two groups is analyzed and if one type of SNP allele or group of alleles,

i.e., haplotype is more frequent in people with the disease than in those without

the disease, the SNP or haplotype is said to be “associated” with the disease. The

associated SNPs are then considered to mark or span a region or regions of

the human genome which influences the expression of the disease.
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In contrast to methods which specifically test one or a few genetic regions, the

GWA studies investigate the entire genome. The approach is therefore said to be

noncandidate driven in contrast to gene-specific candidate-driven studies, where

the chromosomal location of the disease-associated gene culprit is roughly known.

GWA studies identify SNPs and other variants in DNA which are associated with a

disease but cannot on their own specify which genes are causal, rather they do

specify the active location(s) on the chromosome(s) that are expressive in diseased

individuals [16–18]. After necessary measures such as odds ratios and P-values

have been calculated for all SNPs, aManhattan plot is created. A Manhattan plot is

a type of scatter plot. It is used to display data with a large number of data points. In

GWAS Manhattan plots, genomic coordinates are displayed along the X-axis, with

the negative logarithm of the association P-value for each SNP displayed on the

Y-axis [19].

Because the strongest associations have the smallest P-values, such as Y values

10–15, their negative logarithms will be the greatest (see Fig. 6.4). Each point in the

plot is an SNP laid out across the human chromosomes from left to right, and the

heights correspond to the strength of the association to the particular disease being

studied by the GWAS. The strongest associations form neat peaks where nearby

correlated SNPs all show the same signal (see Fig. 6.4) [20]. Any Manhattan plot

with points all over the place should be viewed as highly suspicious.

6.3.6 Missing SNP Genotypes

Genotyping is one of the primary procedures in beginning a GWAS. It is the process

of determining the allelic composition of homologous genetic data for an individual

or a data set of individuals. Genotypes exist for SNPs. SNP genotypes are of

primary concern in such studies. Genotyped SNPs are presented in tabular form

for data mining, i.e., analysis. Each row of the table represents one patient and each

Fig. 6.4 Image of Manhattan plot [15]
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column represents a specific marker. At each element of the table, we see the

genotypes of the homologous SNPs at the specific marker locations for each patient.

In Table 6.1, a genotyped table is presented with missing values represented

by the “?” character. In this table the syntax for two homologous SNP alleles,

i.e., the SNP genotype, is presented in “A/B” form, where A represents the allele

of the SNP for that particular marker (column) inherited from one parent and B

the allele inherited from the other parent of the patient. Genotyping errors,

i.e., missing genotypes, occur when the observed genotype does not correspond

to the true underlying genetic information, as a result of a mistake in data entry [21].

Genotyping errors result from diverse, complex, and sometimes cryptic origins;

thus grouping errors into discrete categories according to their causes is challenging

because different causes sometimes interact to generate an error. Errors such as

missing data from “No Calls” can be caused by low-quality DNA samples, poorly

performing SNP assays, and/or errors in sample preparation. For clarity, Pompanon

and associates [22] have proposed categories for these “pre-calling” errors. They

have grouped errors into four categories:

• Errors that are linked to the DNA sequence itself

• Errors that are due to the low quality or quantity of the DNA

• Biochemical artifacts

• Human factors

In the few studies designed to analyze the precise causes of genotyping error, the

main cause was related to human factors. Many times missing data is unavoidable,

even when measures are taken to correct them prior to SNP calling. Nonetheless,

these errors must be corrected. Missing data create imbalanced and complicated

calculations required for statistical analyses [4]. Erroneous genotypes such as

Table 6.1 Sample of a large genome-wide, SNP genotype map. Once the SNPs have been called,

they are typed into a genotype matrix shown here. The “?” resembles the typing of a “No Call”

value, i.e., a missing SNP genotype. The column titles of the matrix shown represent the names of

the SNPs typed

Selectin FASPII FGB_1 FGB_2 FGB_3 Factor_VII GplB HL ICAM

A/A G/G C/C G/G C/C C/C C/C C/T A/A

C/A A/G C/C G/G C/C C/T C/C C/C A/G

A/A ? ? ? C/C C/C ? ? A/G

A/A A/G C/C G/G C/C C/C C/C C/T A/G

A/A A/G C/C G/G C/T C/C C/C ? A/G

A/A G/G C/C G/G C/C C/C C/T ? A/A

A/A A/G C/T A/G C/T C/C C/C ? A/G

A/A A/G C/C G/G C/C T/T C/T ? A/G

A/A A/A C/T A/G C/T C/C C/C ? A/G

A/A G/G C/T A/G C/T C/C C/C C/C A/A

A/A A/G C/C G/G C/C C/C C/C ? G/G

C/A A/G C/C G/G C/C C/C C/C ? G/G

A/A A/G C/T A/G C/T C/C C/T ? G/G
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missing values can drastically affect linkage and association studies (data-mining

procedures for measuring the differences between common and uncommon SNP

genotypes in data sets), the main studies involved in GWAS, by masking the true

segregation of alleles. For example, in linkage studies genotyping errors can affect

haplotype frequencies [23]. Error rates as low as 3 % can have serious effects on

linkage disequilibrium analysis [24, 25], i.e., analysis where associated SNPs are

distinguished from unassociated ones, and a 1 % error rate can generate a loss of

53–58 % of the linkage information for a trait locus [26]. Errors, therefore, decrease

the power for detecting associations. Missing SNP data are fairly common in these

association studies, sometimes with a rate of 5–10 %.

The importance of resolving missing data is evident. Re-genotyping the missing

genotypes is the optimal solution for correcting errors such as missing values;

however, it is often not practical due to its high cost [4]. Even though the cost of

SNP genotyping per SNP for GWAS decreased from $1.00 in 2001 to 0.1¢ in 2007,

considering that the average number of SNPs genotyped is between 500,000 and

10,000,000 per individual and the standard number of individuals taken into

account is 2,000, i.e., the cost is still in the millions, it is still too expensive

[17, 27]. Older solutions included exclusion of rows with missing values from

data sets. This approach also isn’t effective since it can decrease the data set size

drastically. Imputation algorithms are therefore more commonly used than any

other alternative method [4, 28]. Genotype imputation is a machine learning

approach that infers missing genotypes. It is a cost-effective and statistically

accurate enough solution for solving the missing value problem concerning SNP

genotypes. The most accurate imputation algorithms used today rely on proba-

bilistic modeling of data sets and efficient estimation of inferred genotype values.

6.4 The Mathematical Problem Domain

From the mathematical perspective, missing values in data sets such as those of

GWAS set are imputed or inferred probabilistically. Imputation is an algorithmic

substitution of blanks, open, unknownmissing values within a given set of data with

an estimated value based on a probabilistic model of the data set. Substitution of

one data point is referred to as “unit imputation,” whereas substituting a component

of a data point is known as “item imputation.” Upon imputation, association

analysis of the data set can be performed; the necessary data analysis steps of

GWAS can be resumed. The data analysis must take into account that there exists a

degree of uncertainty due to imputation than if the imputed values had actually been

observed; the values were not missing in the first place. It is the goal of modern

imputation methods to eliminate this uncertainty as best as possible. For genotype

data, numerous imputation techniques are available.

Prior to the invention of the personal computer and high, user-friendly comput-

ing technology, the punch-card and punch-tape systems were used. An earlier

method of imputation used on the punch-card system was hot-deck imputation
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where a missing value was imputed from a randomly selected similar record

from within the same data set, i.e., the same punch card. The term hot was coined

in order to emphasize the local nature of utilizing a single data set. Hence, if

similar data records exist within a data set, then they resemble hot cards from a

deck in a poker game [29]. The opposite of hot-deck imputation is cold-deck
imputation where, by contrast, randomly selected similar records are provided by

another data set, data sets that are not currently being processed. According to

later discussed classifications of imputation algorithms, the early cold-deck impu-

tation method has become the fundamental building block of the knowledge-based

imputation algorithms. Since computing power has advanced rapidly and punch

cards are no longer in use, more sophisticated methods of imputation have generally

superseded the original random and sorted hot-deck imputation techniques,

such as the nearest neighbor hot-deck imputation or the approximate Bayesian
bootstrap [29]. High-throughput, sophisticated imputation algorithms which rely on

more sophisticated probabilistic models such as probabilistic graphic models of

data sets are used more frequently today.

6.4.1 Probabilistic Graphic Models

Probabilistic models are fair representations of real-world phenomena and systems

which involve uncertainties. Algorithms as step-by-step descriptions of how to go

about solving a given problem are based on the underlined problem model which

includes the relevant observed as well as hidden or missing data type models. As the

number of random variables of the model and observed value samples increase, the

semantics can easily become very complex and hard to comprehend. Fortunately,

complex probabilistic models can be graphically represented by translation of

mathematical expressions into the language of visual objects of graphs [30].

6.4.2 Single Random Variable Graphical Modeling

One particular sort of graphical representation of interdependencies, known simply

as a graph, is of particular interest here.

Definition. In mathematics, a graph is a graphical expression of some complex

mathematical statement using a combination of two elementary visual objects:

• A labeled node or vertex

• An edge, also known as an arc, line, or link, beginning and ending at one or

beginning at one and ending at another node

Nodes are typically depicted as circles containing some label in it (see Fig. 6.5).

The edges may be directed (asymmetric appearing as an arrow) or undirected
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(symmetric appearing as a simple curve segment without any arrows). In addition,

an edge may have a label or be unlabeled when its sole existence implies a value

(e.g., relationship exists).

Definition. Formally, a graph G is a pair of sets (V, E), where V is the set of

vertices and E is the set of edges.

Tables or matrices easily may be represented by graphs. The engineering commu-

nity may refer to graphs as state machines or state transition diagrams. The term

“graph” commonly used to represent a plot of some function against some base line

variable is improperly applied. The mathematical discipline known as graph theory

refers to graphs as defined above and not to the so-called plots of functions. The term

“graph” was first used in this sense by Sylvester in 1878 [31, 32].

A graph as a diagram may represent a set of possible system activities by

depicting the so-called state transitions, where each node represents one state or a

value from the set of possible values. For instance, Fig. 6.5 illustrates one binary

random variable model, where transition between two variable values S1 and S2
may take place with some conditional probability. For example,

P X ¼ S2 X ¼ S1j Þ ¼ p1, 2 ¼ 0:1:
�

(6.1)

As the dimensionality of the model increases, the growth of the set of

possible values escalates the underlined complexity. For example, the graph

modeling a two-dimensional variable (X1,X2) with binary coordinate X1 and ternary

coordinate X2 represents 2 � 3 state transition matrix as n ¼ 6 node graph having

n(n � 1)/2 links. The complexity of the model exponentially grows with the

complexity of observations.

We may use graphs to represent a set of conditional probabilities and large set of

variable interdependencies. The graph may help analysts capture probability

distributions over spaces with a large number of factors or associations.

6.4.3 Markov Models

Markov models are probabilistic models that follow the Markov property. The

Markov property assumes that the distribution for the current variable depends only

on the distribution of the previous variable. The two essential Markov models are

theMarkov chain and the hidden Markov model or HMM [33]. An extension of the

Fig. 6.5 Graph of a single

binary random variable X

(with two possible values or

states, S1 and S2), showing
the transitions between the

two states depicted by the

labeled edges
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Markov chain models to practical situations with incomplete observed data, known

as a hidden Markov model or HMM, is drawing the attention of researchers that are

trying to model sequences of data. The underlying mathematical domain of the

missing value problem in the context of SNP genotype data deals with the problem

of modeling spatial sequence of DNA data. The sequential nature of SNP genotypes

and the missing data imputation problem qualifies the HMM approach as one that is

applicable.

6.4.3.1 Markov Chains

A Markov chain is an experiment that undergoes transitions from one state to

another, between a countable number of possible, i.e., discrete states. A Markov

chain is a random process that may be characterized as memoryless, where the next

state depends only on the current state and not on the sequence of past states. This is

known as the Markov property of the first order. A Markov chain is a sequence of

random variables X1, X2, X3, . . .with theMarkov property, namely, that, given the

present state, the future and past states are independent:

P Xnþ1 ¼ x X1 ¼ x1,X2 ¼ x2, . . . ,Xn ¼ xnj Þ ¼ P Xnþ1 ¼ x Xn ¼ xnj Þ:ðð (6.2)

The possible values of Xi are drawn from a countable se0074 S called the state

space of the chain. Markov chains are graphically described by a directed graph,

where the edges are labeled as the probabilities of going from one state to the other

states. A graphical example of a Markov chain shown in Fig. 6.5 illustrates a simple

Markov chain with two states S1 and S2. The transitions between the two states are

depicted by the edges labeled by the respective transition probabilities. Missing

SNP genotype value imputation may be approximated by a Markov chain, if we

would make an assumption that the probability of the next marker value k, i.e., the
next missing SNP genotype, depends only on the value observed at the previous

location k � 1 in the chain, or inversely, in case of traversing the genotype

sequence backwards, from the value observed at k + 1 location. Only one of the

two alternative traversal directions may be applied at one time, in one chain.

The forward-backward algorithm, presented in Sect. 6.4.4, for HMMs performs

exactly this traversal in both directions in order to maximize the estimate for a

missing value.

6.4.3.2 Hidden Markov Models

A hidden Markov model or HMM is used to model sequence or spatial data. HMMs

are most similar to a mixture model. Mixture models are probabilistic models

representing the presence of subpopulations within a grander population. Given

that a super set population is comprised of sets of data, i.e., observable data and

hidden data, the key correspondent feature of HMMs and mixture models is that

probabilistic mixture model does not require that the observed data identify the
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subpopulation to which an observation belongs [34], hence resulting in the subpop-

ulation being hidden. This population is later referred to as a hidden population or a

hidden data set. Similarly in HMMs, the subpopulation is considered to be a hidden

state, while the observed data set refers to the observed state. In HMMs as in

mixture models, the observed states are generated by the hidden states, i.e., the

observed state is one of sometimes numerous values that belong to the hidden state.

Since HMMs model sequential or spatial data, the underlying states follow a

Markov chain behavior mentioned in the previous section, with the state-based

transitional scheme, where the probabilities of a transition from one state to another

are modeled graphically by edges. The probabilistic weights of all edges leaving an

individual state node in the graph must sum to 1. Suppose that we have given set u of
observed sequential data (e.g., a sequence of bits) v ¼ (v1, v2, v3, . . . vt, . . ., vT).
Every vt, t ¼ 1, . . ., T, is generated by a hidden state, st. In this respect each hidden
state can be viewed as a random variable and each observed state can be viewed as

a value that the hidden variable, i.e., random variable s, can take on. The transition

from state to state occurs between the hidden states. The observed states are the

results of the hidden states and their transitions. The hidden states follow Markov

chain behavior and Markov rule that “the future state only depends on the present

state,” or

P stþ1 st, st�1, . . . :, s0j Þ ¼ P stþ1 stj Þ:ðð (6.3)

Since HMMs deal with sequences, the probabilities of these sequences occurring

within a data set of many sequences correspond to the probability of transition from

one value of a state to another value of a state. For instance, with a random bit

sequence, what is the probability that the next value in the sequence will be a “1”

given that the present value in the sequence is “0”? The transition probabilities are

modeled as

ak:l ¼ P stþ1 ¼ l st ¼ kj Þ:ð (6.4)

In this case ak,l is graphically represented by an edge from the current state

st ¼ k to the next probable state st + 1 ¼ l, (see Fig. 6.6).
In this graphical model, the state st takes on the value k, st ¼ k, and the state st + 1

takes on the value l, st + 1 ¼ l.Here k, l ¼ 1, 2, . . ., M, whereM is the total number

of possible state values from which any present state of value k, can transition to

future state of value l. Each edge from k to any other possible next state l must

collectively sum up to 1 (i.e., Markov process must take some value of a state). This

means that there the next state st + 1 with probability of 1 must take some value.

Fig. 6.6 Two-state

sequence with transition

probability ak. l
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This also holds for the initial state probability πk which will be clarified in a bit

sequence model example to come:

XM

l
ak, l ¼ 1for anyk,

XM

l
πk ¼ 1: (6.5)

With the initial state transition probability and the rest of the transition

probabilities, the hidden state sequence may be modeled as

P s1; s2; . . . ; sTð Þ ¼ P s1ð ÞP s2 s1j ÞP s3 s2j Þ . . . :P sT sT�1j Þ ¼ πkas1, s2as2, s3 . . . asT�1,ST :
���

(6.6)

Given the state st, the observation vt is independent of other observations and
states [35]. To better understand the HMM concept, an example will be considered.

In Fig. 6.7, a random bit stream, of bit-length ¼ 3, is modeled as eight possible 3 bit

sequences, v ¼ (v1,v2,v3).
Given our set v ¼ (v1, . . .,vT), the hidden state set is defined as s ¼ (s1, . . .,st)

where 1 � t � 3 with maximum value of T ¼ 3. Any st can take up only two

values 1 or 0: the initial probability of starting with a 1, πk ¼ 1 ¼ P(s0 ¼ 1|v) ¼ 0.5,

and the initial probability of starting with a 0, πk ¼ 1 ¼ P(s0 ¼ 0|v) ¼ 0.5. This

initial relationship is depicted in Fig. 6.8.
Let us say that we want to probabilistically model the sequence v ¼ (v1 ¼ 1,

v2 ¼ 1, v3 ¼ 0) so for v1 ¼ 1 we condition on S1 ¼ 1 by P (s1 ¼ 1) so that P(s2) ¼
P(s2|s1) can be calculated using data shown in Fig. 6.9.

Using Fig. 6.9, from this conditional distribution, we can extract the transition

probability ak,l which states that

P s2 s1 ¼ 1j Þ ¼ 1ð (6.7)

where after using tables in Fig. 6.9, we have

P s2 ¼ 1 s1 ¼ 1j Þ ¼ 0:5andP s2 ¼ 0 s1 ¼ 1j Þ ¼ 0:5:ðð (6.8)

Graphically this can be represented as shown in Fig. 6.10.

0 1 1
1 0 0
1 0 1
0 1 0
1 1 0
0 1 1
0 0 1
1 1 0

Fig. 6.7 Given observed values
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So far we have modeled

P s1; s2ð Þ ¼ P s1ð ÞP s2 s1j Þ:ð (6.9)

Upon value substitution we have

P s1 ¼ 1, s2 ¼ 1ð Þ ¼ P s1 ¼ 1ð ÞP s2 ¼ 1 s1 ¼ 1j Þ ¼ 0:5ð Þ 0:5ð Þ ¼ 0:25:ð (6.10)

Finally what is left to model is the probability of s3 ¼ 0 that is the event

P(s3 ¼ 0|v). The tabular distribution of this event, or sequence, finally looks as

shown in Fig. 6.11.
Using Fig. 6.11, from this conditional distribution, we can extract the transition

probability ak,l which states that

P s3 s2 ¼ 1j Þ ¼ 1 where P s3 ¼ 0 s2 ¼ 1j Þ ¼ 1 and P s3 ¼ 1 s2 ¼ 1j Þ ¼ 0:ððð
(6.11)

The finalized graph of state evolution is shown in Fig. 6.12.

Fig. 6.8 Initial state of a hidden Markov chain

10

v1 v2

v2 v2

P(s1 = 1)

s1 s110

10

0

0
0

P

0.5

0.51
0

1

1
0

01

1

11

1

1

01

11

11

Fig. 6.9 Summary of observed values
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So far modeling of the joint state sequence probability,

P s1; s2; s3ð Þ ¼ P s1ð ÞP s2 s1j ÞP s3 s2j Þ:ðð (6.12)

With substituted values, we obtain

P s1 ¼ 1, s2 ¼ 1, s3 ¼ 0ð Þ ¼ P s1 ¼ 1ð ÞP s2 ¼ 1 s1 ¼ 1j ÞP s3 ¼ 0 s2 ¼ 1j Þðð
¼ 0:5ð Þ 0:5ð Þ 1ð Þ ¼ 0:25: (6.13)

To prove this, we take a glimpse into the joint probability of the data set v shown
in Fig. 6.13.

In an HMM, we do not know the state sequence that the model passes through,

but we can know some probabilistic function of it. HMMs are most similar to a

distribution mixture model. Mixture models are probabilistic models representing

the presence of one or more minor subpopulations within a grander population. The

key feature of HMMs and mixture models is that a probabilistic mixture model does

not require the observed data set to directly identify the subpopulation to which an

observation belongs [34]. In HMMs, the subpopulation is considered a hidden, not

Fig. 6.10 Example of a Markov chain transition from s1 to s2

1 10
0 01

0 11

1 00

1 10

0 10

v1 v2 v3

v3 v3

P(s2 = 1)
s2 s2 P

1
1
0

0

1 0

1 0 1
1 1 0

1 1 0

Fig. 6.11 Summary of observed values
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observed state, while the observed data set should enable one to infer the state

sequence from a sequence of observed data using the probability model. This fairly

simple model has been found to be very useful in a variety of sequential modeling

problems, most notably in speech recognition [36, 37] and computational biology

[38]. A key practical feature of the model is the fact that inference of the hidden

state sequence given observed data can be performed in linear fashion along the

length of the sequence. Furthermore, this lays the foundation for efficient estima-

tion algorithms that can determine the parameters of the HMM from training data.

Scheet and Stephens [39] present a statistical model for patterns of genetic

variation in samples of unrelated individuals from natural populations. Their

model is based on the idea that, over short regions, haplotypes in a population

tend to cluster into groups of similar haplotypes. To capture the fact that clustering

tends to be local in nature, their model allows cluster memberships to change

continuously along the chromosome according to a hidden Markov model.

6.4.4 Forward-Backward Algorithm

The forward-backward algorithm or FB algorithm is a dynamic programming

algorithm similar to the Viterbi algorithm, used for decoding, i.e., evaluating

HMMs. The evaluation is performed by computing the posterior and anterior

Fig. 6.12 Example of a Markov chain transition from s1 via s2 to s3

Fig. 6.13 Example of a Markov chain transition probability from s1 via s2 to s3
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probabilities, i.e., posterior marginal probabilities of all hidden state variables given

a sequence of observations, i.e., a sequence of observed states. Concisely, given a

sequence of observations v1 : t :¼ v1, . . ., vt, the FB algorithm computes for all

hidden state variables sk ∈ {s1, . . .,st} the distribution P(sk|v1 : t).

The algorithm itself involves three steps:

1. Determining forward probabilities

2. Determining backward probabilities

3. Smoothing the determined values, i.e., evaluation

Definition. Forward probabilities are partial probabilities from the initial state to a

current or desired state within the HMM. These probabilities are usually denoted by

the letter α where αt( j) ¼ P(vt|st ¼ j) P(all paths to state j at time t).
These probabilities are also known as partial probabilities and are calculated

using a forward algorithm represented by α. In brevity the forward probability is the
sum of all possible paths from the initial state through an HMM to a given state at a

given time and hence is the probability of observing a particular sequence given an

HMM. The number of paths needed to calculate α increases exponentially as the

length of the observed sequence increases. However, αs at time t � 1 give the

probability of reaching a particular observed state at time t in terms of the paths

leading to time t � 1, i.e., the probability of the previously observed state at time

t � 1 can be used to determine the probability of the observed state at current

time t. By recursively calculating the probabilities of the sequence from t � 1 to t to
t + 1 for a sequence of observations, the probability of a single complete or partial

sequence can be determined without necessarily first determining the probabilities

of all of the sequences individually, i.e., counting similar sequence repetitions. This

method is much faster and much more tractable.

Definition. Backward probabilities or anterior probabilities are similar to the

forward probabilities. The only difference is that the backward probabilities use

the end or stop node as a start node used to calculate the future probabilities where

the start node is a node, i.e., state being evaluated within the HMM.

Assume that we have some sequence of observations V of length t, V ¼ v1, . . ., vt,
and some set of possible states, i.e., hidden states S. Each event or observation vj ∈ V
is a result of some state sj ∈ S. For any state sequence s1, . . ., st where sj ∈ S,
a potential function is defined as such:

ψ s1; . . . ; stð Þ ¼
Yt

j¼1
ψ sj�1; sj; j
� �

: (6.14)

The potential function ψ(sj � 1,sj,j) or ψ(s0,s,j) returns the probability of transi-

tion from state sj � 1 to sj at position j. The potential function ψ(s0,s,j) might be

defined as

ψ s0; s; jð Þ ¼ p1 s s0j Þp2 vj sj Þ;
��

(6.15)
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then

ψ s1; . . . ; stð Þ ¼
Yt

j¼1
ψ sj�1; sj; j
� �

¼
Yt
j¼1

p1 s sj�1

�� �
p2 xj sj

�� � ¼ p v1 . . . vt, s1 . . . stð Þ�� (6.16)

where p(v1 . . . vt, s1 . . . st) is the probability mass function under HMM. The FB

algorithm given sequence inputs of some length m, a set of states S, and the

potential function ψ(sj � 1,sj,j) for sj � 1, sj ∈ S, and j ∈ {1,..,t}, the following is

computed:

1. Forward probabilities

1.1 Initialization step

For all states s ∈ S,

α 1; sð Þ ¼ ψ �; s; 1ð Þ: (6.17)

1.2 Recursion step

For all j ∈ {2 . . . t}, s ∈ S,

α j; sð Þ ¼
X

s0∈S
α j� 1, ; s0ð Þ � ψ s0; s; jð Þ: (6.18)

2. Backward probabilities

2.1 Initialization step

For all s ∈ S,

β t; sð Þ ¼ 1: (6.19)

2.2 Recursion step

β j; sð Þ ¼
X

s0∈S
β jþ 1, ; s0ð Þ � ψ s, s0, jþ 1ð Þ: (6.20)

3. Smoothing

Z ¼
X

s1...st
ψ s1 . . . stð Þ

¼
X
s∈S

α t; sð Þ: (6.21)

For all j ∈ {1 . . . t}, a ∈ S,

μ j; að Þ ¼
X

s1...:st:sj¼a
ψ s1; . . . ; stð Þ ¼ α j; að Þ � β j; að Þ: (6.22)

For all j ∈ {1 . . . (t � 1)}, a, b ∈ S,

μ j; a; bð Þ ¼
X

s1...:st:sj¼a, sjþ1¼b
ψ s1; . . . ; stð Þ

¼ α j; að Þ � ψ a, b, J þ 1ð Þ � β jþ 1, bð Þ:
(6.23)
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In Eq. 6.17 since every HMM has a start point, or a starting initial state s0, we
label s0 as *, which is a special case since * does not depend on any previous state.

Functions 6.22 and 6.23 are pivotal to understanding the FB algorithm. In Eq. 6.22,

the forward calculated probabilities are multiplied with the backward calculated

probabilities. This probability includes the forward probabilities which cover all

observations up to time j as well as the backward probabilities which include all of

the future observations from time j + 1 to time t. The value delivered by the

multiplication of the forward and backward probabilities is known as a smooth
value, because these probabilities are combined to compute a final probability of

being at position or time j and observing a particular observation v. Thus Eq. 6.22
delivers the probability of being in state a at time j and Eq. 6.23 delivers the

transitional probability of being in present state a at time j and moving to state

b at time j + 1, based on the sequences of observations.

In brevity, the FB algorithm is used to summarize the HMM and to utilize its

structure fully. Using the FB algorithm, probabilities of events and states along a

sequence can be easily determined.

6.5 Applied Imputation Algorithms

Two very popular imputation algorithms in use today are the fastPHASE algorithm

and KNNimpute algorithm. The algorithms differ mostly in their approach to

solving the missing value problem and their overall processing time. KNNimpute

uses a K nearest neighbor approach which models a current row being worked on

based on other rows within the data set with similar marker values. The fastPHASE

algorithm first builds a probabilistic model of the data in the form of an HMM and

then based on the HMM infers what is the best value to replace the blanks within the

data set with.

6.5.1 The KNNimpute algorithm

KNNimpute is a popular iterative classification method for genotype imputation. It

uses a nonparametric distribution free model, without any assumptions of drawn

data probability distribution. Being based on the nonparametric statistical model,

KNN inference is using nonparametric statistical tests [40]. All genotype imputa-

tion algorithms used previously described matrix setup of data elements for statis-

tical analysis. An example of these matrices is shown in Fig. 6.14. Genotypes, the
elements of the matrix, are encoded into three possible values based on their allelic

definitions: 0, 1, or 2. Each numeric value corresponds to one of three unique

genotypes of an SNP marker. For instance, 0 would encode the homozygous

genotype XaXa, 1 would encode the heterozygous genotype XaXb or XbXa, and

2 would encode the homozygous genotype XbXb. There are four parameters
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followed by the algorithm. These parameters are Y, x, i, k. The letter Y corresponds

to the SNP genotype being iteratively updated or inspected. This is usually the

missing SNP genotype. The letter x resembles the set of flanking SNP markers of

the SNP marker Y. The flanking markers correspond to most adjacent markers left

and right of SNP marker Y. The letter i is the index of the ith individual in the matrix

and k the number of nearest individuals to observe, both above and below of Y’s
row. The logic behind the algorithm is if the flanking SNP genotype markers of

Y can predict Y accurately, then we can assume that the flanking markers and Y are

in linkage disequilibrium, i.e., are inherited together. Subjects with similar flanking

markers should have similar Y values. Therefore, patients with similar flanking

markers can be used to predict the missing values of a marker, Y, under scrutiny (see
Fig. 6.14). Y0 is used to signify Y as an estimate or the prediction of Y. The original
model for this algorithm is mathematically described as follows:

Y
0
xð Þ ¼ 1

k

X
xi∈Nk xð ÞYi: (6.24)

Here, Nk(x) corresponds to the set of nearest neighbors of the missing SNP

location. In this case rows of the data set represent individuals and “k” signifies how
large this set is; k is the number of nearest neighbors to consider, specified by the

given set of flanking markers x, based on Euclidean distance Eq. 6.24. The set of

flanking markers of individual i whose marker Yi is under scrutiny is represented by
xi. Hence, the statement xi ∈ Nk(x) simply is a condition that the flanking markers

of the genotype Yi belong to the nearest neighbor set Nk(x). Euclidean distance in

this case is a simple measure of distance in terms of matching flanking markers. The

Euclidean distance between x as xi increases with the number of mismatched

flanking markers between them. The Eq. 6.24 simply indicates that given the set

Fig. 6.14 An example of a map of genotypes of 18 individuals and 13 SNP markers. The question
mark indicates a missing SNP genotype value. Its flanking markers and their matching flanking

markers in other rows are highlighted. With the highlighted flanking markers in row 14, the value

AA can be used to impute the missing genotype
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of matching flanking markers, sum of the column-encoded genotype values for all

patients whose flanking markers are the same as that of the missing SNP genotype

is divided by k. Division by k resembles an averaging, where the relevant

column values, corresponding to the genotypes of nearest neighbors at position

of column Y, are averaged by the size of the nearest neighbor set, k. The column

used in averaging the encoded values is the same column that the missing value

Y being estimated belongs to.

The xi flanking markers and corresponding x flanking markers tend to have the

same number of matching flanking genotypes.

The Yi values of the corresponding members of the nearest neighbor set, defined

by xi, as mentioned are taken into account and the most frequent value of Yi,
determined by average, represents an estimate for the missing value.

KNN algorithm may be improved by weighing the contribution of Yi to Y0. An
improved version of the KNN impute algorithm known as the “Weighted KNN” or

WKNN is defined by expression (6.24):

Y
0
xð Þ ¼

X
xi∈Nk xð Þe

� xi�xj jj jYiX
xi∈Nk xð Þe

� xi�xj jj j , (6.25)

where ||xi � x|| represents the Euclidean distance between points xi and x. This
determines the number of mismatching SNP genotype markers between the

flanking markers in x and those in xi. If x and xi have the exact matching flanking

markers, then this difference is equal to 0 and the exponential value is equal to 1,
signifying a perfect match of flanking markers. This value is methodically the

weight given to the Yi value of xi. In addition to the number of markers on each

side (chosen to be 2, 3, 5, or 10), the number of nearest neighbors k is a tuning

parameter. Previous studies [41] have considered k ¼ 3, 5, 10, or 15. Number of

flanking markers chosen on each side of Y were 2, 3, 5, or 10. All of these tuning

parameters are considered in the average presented by the Weighted KNN

approach.

6.5.1.1 Limitations

The KNN-based algorithms use the nearest neighbor rule to evaluate the best

estimate value. This approach is designed to work on large data samples. Like

with all approaches, it too has its advantages and disadvantages [42, 43]. The

advantages of the KNN approach are:

1. Since KNNimpute essentially does not train at all, “the speed of training” is

very fast.

2. The approach is simple and easy to learn.

3. By not assuming the underlined probability densities, and by avoiding any bias

in favor of the chosen distribution, it is very robust to noise and irrelevant data
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presence. Furthermore, when the data is log transformed, the Euclidean distance

measure loses its sensitivity to drastic outliers that could bias the decision. The

log-transformed data reduces the effect of outliers during genotype similarity

determination.

The disadvantages of the KNN approach are the precision of the missing value

estimation and certain hardware limitations [42]. Some important disadvantages of

KNN are:

1. KNNs accuracy is limited by the parameter k, which is partly resolved by

WKNN approach. KNN with strictly k neighbors tends to deliver sometimes

biased results.

2. Large-size memory is required. As the data set grows, the algorithm encounters

memory limitation problems and performance degradation with virtual memory

management in the background using the hard disk more frequently.

3. The computational complexity of this approach is of the order O (n d) where n is
the number if flanking markers considered and d is the number of training

samples used in forming the nearest neighbor set. If n is increased, O (n d)
implies that processing time will increase too [44]. With very large data sets, the

computational complexity results in long execution times. In the other hand, the

WKNN improved approach results in increased computational complexity yield-

ing even longer execution times.

4. In addition to the limitations due to computational complexity, very slow

learning algorithm adds to the run time algorithm performance, by further

slowing it down.

When implementing the WKNN approach, weights are assigned to neighbors as

per calculated Euclidean distance. WKNN overcomes some of the limitations of

KNN by assessing equal weight to k neighbors, taking into account the k neighbors
with more precisely matching flanking markers. To further improve the precision,

WKNN also considers the entire training sample, that is, all of the flanking markers

that match within their respective columns instead of just k instances of matching

columns. This is the reason why with very large data sets, WKNN may perform

poorly.

6.5.2 The fastPHASE Algorithm

The fastPHASE algorithm is a probabilistic model-based algorithm for finding the

haplotype phase, which means determining haplotypes from genotypes, i.e., resolv-

ing the haplotype phase. The basic algorithm assumption is if the parental

genotypes are known, the haplotype phase of the offspring can usually be deter-

mined. The task being given two parental haplotypes determine the possible child

haplotype, a.k.a. “the phase.” Determining the phase of the offspring can contribute

to imputing with high probability the value that might be missing in offspring
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genotypes. Without a strict experimental setting where the parents and the offspring

are defined, phase determination, for the sake of imputation, is facilitated by

assuming the Hardy-Weinberg Equilibrium (HWE). The HWE states that when

all agents of evolution1 are turned off, the proportions of alleles of genes and of

markers, i.e., SNP markers, alike will remain constant from generation to genera-

tion. The HWE is assumed in GWAS data sets since such a data set is a fixed,

unchanging snapshot of SNP genotype sequences recorded from several

individuals, not involving or monitoring any changes in the SNP data. The data

set can be treated as a population in HWE. The benefit of assuming HWE is that in

the presence of constant allelic proportions, constant haplotype proportions are

present as well. This facilitates the predictability of a haplotype occurring within a

data set and thus the occurrence of specific SNP genotypes within them.

6.5.2.1 Preliminary Assumptions

To begin the discussion, let us assume that we are given a data matrix of SNP

sequences of many individuals, considering that we are not changing the data set.

Adding new individuals or modifying nonempty SNPs is not allowed. In other

words we can assume that if the present data set was a model of the last generation,

then the last generation would have had the same allelic proportions as this

generation; hence the data set is in equilibrium or stationary state. This also

assumes that the future generation would maintain the same proportions as the

previous generations. Hence, given this closed set, HWE can be assumed. For

fastPHASE, HWE is helpful in understanding SNP marker inheritance rates.

Since we know the allelic proportions, we also know the haplotype proportions;

we know that they are constant and unchanging. No new haplotypes will arise from

the combination of any of the parents in the population, assuming that they are

products of a HWE parent generation. Since we know the haplotype proportions,

we know their frequencies and the probability estimates of them occurring within a

population with relative certainty. Given individual haplotype probabilities, we can

better guess or infer a whole or partially missing haplotype by finding the probabil-

ity of the known sequence within the partially missing haplotype, of occurring in

any of the known haplotypes.

6.5.2.2 Haplotype Clusters

The statistical model for patterns of genetic variation is based on the idea that over

short regions of DNA, haplotypes in a population tend to cluster into groups of

similar haplotypes; the shorter the haplotypes are, the more common they might be

1 The agents of evolutionary change are mutation, genetic drift, sexual selection, natural selection,

and gene flow.
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in a population. Many subjects share some short-sequence haplotypes. Scheet and

Stephens in [39] observed that similar observable short haplotypes seem to cluster.

The statistical model is thus motivated by the observation that, over short regions of

let us say a few kilobases, haplotypes tend to cluster into groups.

As a result of recombination, those haplotypes that are closely related to one

another and similar will vary as one moves along the chromosome, i.e., this

clustering tends to be local in nature. The cluster’s characteristics follow haplotype

probabilities. Each cluster can be thought of as (locally) representing a common

haplotype, or combination of SNP alleles, and the HMM assumption for cluster

membership results in each observed haplotype being modeled as mosaic of a

limited number of common haplotypes [39] (see Fig. 6.15).

Statistical models such as these are used to capture the complex patterns of

correlation such as LD that exists among dense markers in samples from natural

populations. The flexibility of changing cluster membership along a chromosome

allows for both blocklike patterns of LD and gradual decline in LD with distance

(the further markers are from each other, the less likely they are to be co-inherited).

LD patterns are frequencies of several marker SNP alleles occurring together within

a set of human subjects examined, with statistically close ties between SNP alleles.

The purpose of the statistical models is to capture complex patterns of correlation

between dense markers in samples. Such models employing markers correlation are

tested on the genotype data to see if the pattern of variation has been accurately

Fig. 6.15 Matrix data model allowing cluster membership to change continuously along a

chromosome. Each column represents an SNP marker, with the two possible alleles indicated by

crossed squares and non-crossed or whole squares. Successive pairs of rows represent the

estimated pair of haplotypes for successive individuals. Colors represent the estimated cluster

membership of each allele, which varies as the pointer would move along each haplotype. Locally,

each cluster represents a common combination of alleles at tightly linked SNPs [39]
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captured. It is tested against matrix genotype data with missing genotype values.

The model is presented and its ability to accurately capture patterns of variation is

assessed by applying the model to estimate missing genotypes and to infer haplo-

type phase from unphased genotype data. Since it is a phasing method, it looks at

the SNP alleles present within the two haplotypes of a homologous chromosomal

pair, i.e., it models the genotype of each individual SNP allele pair. There are many

haplotypes on a chromosome. This sequence of haplotypes transcends to a sequence

of clusters that may be modeled by an HMM. Each cluster represents a summarized

haplotype for the group of similar haplotypes found within the whole data set (see

Fig. 6.16.). Each cluster is viewed as a model haplotype, a summary of the similar

haplotypes it contains.

When viewing haplotypes along a chromosome, each haplotype is a member of

some defined haplotype cluster. The HMM assumption for haplotype marker

sequences in a cluster of observed haplotypes results in each observed haplotype

originating from a limited number of other similar observed haplotype sequences

(cluster haplotype sequences). This model is modified to allow cluster membership

to change along each haplotype and so to capture the fact that, although sampled

haplotypes exhibit cluster-like patterns, they tend to be local in nature. The entire

sequences of SNPs do not form haplotypes. Given the cluster of origin of each

haplotype, the alleles at each marker of the observed haplotype are assumed to be

independent draws based on the corresponding origin cluster’s marker allele

frequencies, depicted by θ as we shall see. The number of unique haplotypes is

Fig. 6.16 (a) Similar haplotypes based on common SNP alleles shaded gray. (b) A summary of

similar haplotypes, within the frames of a cluster. The cluster defined by the longest observed

sequences of matching genotypes (e.g., the unique haplotype is GGGGGAA)
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considerably smaller than the number of observed haplotypes in all of the rows

of the data. Therefore, the observable haplotypes can have some probability of

occurrence within the data. This probability is associated with the probability

of their respective origin cluster.

6.5.2.3 Necessary fastPHASE Notation and Concepts

Within fastPHASE, h represents the set of all observed haplotypes within the data

matrix, h ¼ (h1, . . ..., hn), with n being the number of observed haplotypes present.

Observed haplotypes are all of the haplotypes within the data set. If an observed

haplotype appears more than once within the data set, the specific haplotype SNP

allele sequence is said to be a unique haplotype and any appearance of this sequence

within the data set is said to be an observed haplotype or an instance. Unique

haplotypes may have more than one appearance or instance. Each haplotype is

a sequence of SNP values at M marker locations (1, . . .,M ) where him denotes

the SNP allele value in the ith observed haplotype at SNP marker m, and

hi ¼ (hi1, . . ..., him) is a haplotype consisting of m markers, i.e., SNP alleles.

Clusters of haplotypes are defined by a unique haplotype. Each unique haplotype

is the label of an individual cluster (see Fig. 6.16b – first row). Each cluster contains

instances of the label of the cluster, i.e., labels correspond to the unique haplotype.

This way we can pull out a probability measure of specific observable haplotype

membership within a cluster, i.e., a haplotype frequency. In this case, the frequency

of some unique or observable haplotype is equal to the number of members that its

origin cluster contains divided by the total number of all observable haplotype

members present in all clusters: all haplotypes. The markers found at locations him
are “biallelic,” meaning that they can take up one of two encoded values: 0 or 1.
Each sampled observable haplotype originates from one of K possible clusters. In

the beginning of imputation, no information is available on clusters or on

haplotypes. Clusters are defined on the fly using expectation maximization for

parameter estimation. During the fastPHASE run, the unphased haplotypes that

could not be assigned cluster membership determined their origin clusters by means

of an HMM. The fastPHASE algorithm uses an SNP allele data set as opposed to a

genotype data set, where each two consecutive rows of the data set resemble the

homologous SNP allele sequences of a single individual, that is, each pair of

vertically aligned alleles, one from each row, comprises of an SNP genotype (see

Fig. 6.15). Each allele is treated independently, i.e., two alleles of a genotype are

allowed to belong to two different haplotypes, thus may have different clusters of

origin. In [39] zi is a variable that denotes the cluster of origin for haplotype hi. The
set α ¼ (α1,.., αk.., αK) is the set of cluster frequencies:

αk ¼ kj jX
i∈K

ij j : (6.26)

The relative frequency of cluster k is denoted by αk in Eq. 6.26. It is the number

of observed haplotypes in the cluster among all of the observed haplotypes in the
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entire data set. The probability that a cluster of origin is k corresponds to the size of
the cluster (the number of observed haplotype members within it p(zi ¼ k|α) ¼ αk,
where α ¼ (α1, . . .., αK). Considering that the SNPs of the haplotypes in

fastPHASE are of a biallelic nature, a similar encoding scheme to KNNimpute is

implemented, with a slight difference in semantics. Instead of coding genotypes,

alleles are encoded, i.e., 0 is used for (C-G) and 1 for (A-T) or vice versa, as long as
consistency is maintained. A whole table θ exists charting the frequencies of allele

1 at all the marker positions and for all of the clusters. Hence, the frequency of allele

1 in cluster k at marker position m is denoted by θkm. For any given haplotype

cluster, these frequencies are either very close to 0.01 or to 0.99. This allows us to
summarize or view the cluster as a haplotype; a unique haplotype as mentioned

before is said to label the cluster. The label is a haplotype, denoting the cluster,

denoting all of its members. Haplotype is a linear allelic definition. Given the

cluster of origin of each haplotype, alleles observed at each marker are independent
draws from cluster-specific allele frequencies, delivered by θ:

p hijzi ¼ k, θð Þ ¼
YM

m¼1
θhimkm 1� θkmð Þ1�him : (6.27)

This conditional probabilistic distribution in Eq. 6.27 shows the probability of

selecting hi, given that we have cluster k as our origin cluster and θk from θ for our

allelic frequencies. For any given hi, inequality 0.01 � θkm � 0.99 holds. This

distribution is independent; therefore, the product of individual marker probabilities

according to the cluster of origin zi and θ is facilitated. It has no dependencies, but it
is able to show associations between alleles at neighboring marker positions where

him : {0,1} and θhimkm : 1; θkmf g. If him ¼ 1, then θkm(1) ¼ θkm, and if him ¼ 0, then

(1)(1 � θkm) ¼ (1 � θkm). Abbreviated, when him assumes the allelic value 0, the
frequency of the value 0 at marker position m for origin cluster zi ¼ k is equal to

1 � θkm, where θkm represents as previously defined the frequency of allelic value

1 at the marker position m for cluster k. With regard to expression (6.27), one

problem exists. Namely, the origin cluster zi for hi is not known. Therefore, it must

be determined. The only way we can determine whether zi is truly the origin cluster
of hi is to test all possible clusters. Since the origin cluster of the haplotype is not

known, we assume Eq. 6.28

p hijα, θð Þ ¼
XK
j¼1

p zi ¼ jjαð Þp�hi jzi ¼ j, θ
� ¼

XK
j¼1

αj
YM
m¼1

θhimjm 1� θjm
� �1�him : (6.28)

The haplotype frequency is tested in all clusters. We know then that the origin

cluster zi for some haplotype hi is k when the product rule delivers an end result of

one, given cluster k.
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6.5.2.4 HMM for fastPHASE

The fastPHASE algorithm uses HMM to model [45] the fact that alleles at nearby

markers are either likely to arise from the same cluster or not. The HMM is based on

the classical Markov chain. Within this chain, the origin clusters zi are hidden states,
while the observed marker value is the observed state. Each allele at each marker

may have its own origin cluster; therefore it is thus assumed that zi ¼ (zi1, . . .,ziM)
forms aMarkov chain on {1, . . .,K} clusters. From the table in Table 6.2, we can see

that for every marker, there is a cluster of origin which corresponds to one of

the K possible clusters. Finding the origin cluster for M markers and K clusters has

computation cost of the order of O(nMK), where n is the number of observed

haplotypes within the data set, M is the number of markers per haplotype, and K is

the total number of clusters.

Specifically, if zim denotes the cluster of origin for marker him, we assume that

zi ¼ (zi1, . . .,ziM) forms a Markov chain on {1, . . ., K} with initial state

probabilities

p zi1 ¼ kð Þ ¼ αk1 (6.29)

which is the probability of starting with allele hi1 in cluster k with transition

probabilities

pm(k ! k0) given by

pm k ! k
0� �
:¼ p zim ¼ k0 zi m�1ð Þ ¼ k, α, r

�� ��

:¼ e�rmdm þ 1� e�rmdm
� �

αk0m, k0 ¼ k
1� e�rmdm
� �

αk0m, k0 6¼ k
:

�
(6.30)

The initial state probability corresponds to the cluster frequency. The probability

that some cluster k is the origin cluster of allele at marker position one, individual i,
is the probability of cluster k which in turn is equal to the frequency of cluster

k (6.29). The transition probabilities Eq. 6.30 follow the Markov rule. The origin

clusters of each succeeding allele depend on the origin cluster of the present allele.

If the origin cluster of the succeeding allele is not the same as that of the present

allele, then the bottom probability measure is taken: 1� e�rmdm
� �

α
k
0
m
, Eq. 6.30.

Table 6.2 Table of clusters of origin resembling theMarkov chain. In the first row, zim, 1 � m � M,

represents the origin cluster of allele m of haplotype i, i.e., zim represents the origin cluster of marker

him. For each zim in the chain, there are K possible clusters to choose

Zi1 * * Zim * * ZiM

1 1 1 1 1 1 1

* * * * * * *

* * * * * * *

K K K K K K K
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If the origin cluster of the succeeding allele is the same as that of the present allele,

then the top probability measure is taken: e�rmdm þ 1� e�rmdm
� �

αk0m , Eq. 6.30.
Variable dm that specifies the physical distance between markers m�1 and m on the

chromosome is assumed to be known, and r ¼ (r1, . . .,rM) and αkm are parameters

to be estimated. The Markov chain proposed is a discretized version of a continuous

Markov jump process [135, 162], with jump rate rm per base pair between markers

m�1 and m with transition probabilities

P zim ¼ k0 z im�1ð Þ ¼ k, jump occurs
�� � ¼ αk0m:

�
(6.31)

The rm simply is an average rate at which m and m + 1 are not associated. It is

informally thought of as being the recombination rate between m and m + 1.

Nonetheless, the rm values can be set to be all equal, constant, and if the distances

betweenm andm + 1 are not known, parameter dm can also be eliminated. So is the

case in [39]. The transition in Fig. 6.17 is a graphical model of the HMM used in

order to model allelic origin cluster changes during state transitions, performed

during the move to the next observable marker. It corresponds to the tabular model

presented in Table 6.2, but with specific relationships between the states and state

values, expressed via the edges of the graph.

Figure 6.17 illustrates the probabilistic flow, as states change, from allele to

allele within a haplotype. State changes can lead to cluster changes where the origin

cluster of the current state k is not the origin cluster of the allele at the next state k0,
k 6¼ k0 modeled by the probability k ¼ 1� e�rmdm

� �
α
k
0
m
, Eq. 6.30. Some state

changes do not yield new origin clusters when we have k ¼ k0. These probabilities
are modeled by e�rmdm þ 1� e�rmdm

� �
α
k
0
m
, Eq. 6.30. Figure 6.17 depicts a cluster

membership model for alleles. However, considering that we are dealing with

Fig. 6.17 The HMM model analogous to the Markov chain of Table 6.2. The probability of a

change in origin cluster is represented by the edge-defined relationships between the nodes
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genotypes and genotypes are tuples of alleles, this HMMmust be expanded in order

to accept two origin clusters for a genotype. In the following example, the

genotypes will be modeled. This means that clusters of origin for two alleles

from homologous DNA strands will be determined.

6.5.2.5 HMM for Two Alleles: The Genotype

Additional fastPHASE notation must be covered in order to understand how

genotype cluster memberships are determined. First, g ¼ (g1, . . ..., gn) denotes

the set of genotype data on n diploid individuals where gi ¼ (gi1, . . .,giM) and gim
corresponds to the genotype at marker m for individual i. The values for any gim can

be 0, 1, or 2. Since genotypes are a tuple of alleles that don’t necessarily originate

from the same cluster, origin clusters for both SNP marker alleles of a genotype

must be determined. The two origin clusters for a genotype are represented by a

tuple: _z ¼ k1; k2ð Þwhich is an unordered pair of clusters from which gim originates.

We can conclude from the table above that the running time for determining the

origin clusters of haplotypes for SNP genotypes is of the order O(K2M ). For

genotype data g ¼ (g1, . . ..., gn), _z is the set of origin cluster tuples for every

genotype at markers 1 through M for individual i. Thus _z ¼ _zi1, . . . , _ziM
�
forms

Markov chain with initial state probabilities

p _zi1 ¼ k1; k2f g� � ¼ αk11ð Þ2, k1 ¼ k2
2αk11αk21, k1 6¼ k2

�
(6.32)

and transition probabilities

pm k1;k2f g! k01;k
0
2

� �� �¼
pm k1!k01

� �
pm k2!k02

� �þpm k1!k02
� �

pm k2!k01
� �

,

k1 6¼ k2 and k01 6¼ k02
pm k1!k01

� �
pm k2!k02

� �
, otherwise:

8<
:

(6.33)

In the initial state probability Eq. 6.32, since each of the two alleles of a genotype

is independent draw from a cluster of origin, we treat the probabilities of the two

drawing events as the product of the probabilities of drawing the two alleles.

The probability of drawing one allele from an origin cluster, k, corresponds to
the origin cluster’s frequency αk, Eqs. 6.26 and 6.32. The probability of drawing

two alleles of a genotype from the same cluster is equal to the squared product of

the origin cluster’s frequency αk11ð Þ2, where k1 is one origin cluster Eq. 6.33. The

probability of drawing two alleles from two separate clusters is equal to the product

of the two cluster frequencies 2αk11αk21 , Eq. 6.33. In terms of transition

probabilities, we have also two options. If the origin clusters initially are not the

same and the transition clusters are also not the same, then refer to probability

pm(k1 ! k01)pm(k2 ! k02) + pm(k1 ! k02)pm(k2 ! k01). For all other cases, refer to
probability pm(k1 ! k01)pm(k2 ! k02), Eq. 6.33.
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Figure 6.18 shows an HMM and how allele tuple, i.e., genotype origin cluster

memberships, traverses the probabilistic Markov model as we observe each allele

tuple of each successive genotype along the chromosome. As the tree is traversed

and a path is sketched, any straight horizontal path between two or more nodes,

representing the states, means that the origin clusters of the successive genotypes

are the same. The presence of zigzag paths between any two or more nodes means

that the origin clusters for the genotypes are different. These models are of immense

aid in resolving missing haplotype phase or determining the hereditary properties

such as linkage and association between the SNP alleles comprising the individual

haplotypes and the association and relationship between the homologous

haplotypes themselves.

The missing genotype value problem poses great difficulties for haplotype

reconstruction mechanisms such as these. Along the traversal, missing genotypes

may be encountered. When missing values are encountered, the probabilistic model

set forth for haplotype reconstruction must be modified. This modification is too

time consuming, and taking into account the prevalence of missing data within such

data sets, reducing data set sizes only decreases phasing accuracy of the model.

Imputation of the missing genotype is the best solution. It is performed using a

maximization step shown below, where the probability of a genotype gim ¼ x given
the set of genotypes g and parameters v ¼ (θ,α,r) is equal to the conditional

probability Eq. 6.34 of gim given the origin cluster(s) _zim of the genotype gim. To
recapitulate, here θ is the table of frequencies of the selected minor allele “1” for

each recognized haplotype of SNPs, i.e., allele that appears least often at each

marker. The α parameter is the set of cluster frequencies for each cluster, i.e., the

Fig. 6.18 The HMM that models genotype allele origin clusters. At each state there is a tuple

{k1,k2} defining the origin clusters for the two alleles of a genotype at each state zi
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number of haplotype instances each cluster has divided by the total number of

haplotype instances for all of the clusters, and r is the jump rate of marker alleles;

this parameter is usually silenced in fastPHASE. The mentioned set of parameters

v is estimated from the given data using an expectation maximization or EM

algorithm.

However, since the origin clusters of missing genotypes cannot be explicitly

determined, all possible clusters are taken into account. The cluster that yields a

probability p(gim ¼ x) ¼ 1 is the cluster of origin which will later be used for

maximizing the value of x:

p gim ¼ xjg, vð Þ ¼
XK
k1¼1

XK
k2¼k1

p gim ¼ xj _zim ¼ k1; k2f g, v� �

� p _zim ¼ k1; k2f gjgi, v
� �

: (6.34)

Note that we are given a genotype sequence gi. Given this fact, then by means of

the HMM, we can determine whether for gi, at position gim, _zim origin clusters have

changed or not from those of the genotype at gim � 1, given that gim � 1 is observed.

This speculation is made possible by the HMM imposed on the data set. Using the

known origin clusters of genotypes in the sequence gi, we can assume that the origin

clusters are most likely the same for gim � 1 and gim. This assumption is put to the

test by testing all possible clusters, for _zim . Once the cluster has been found, an

estimate of the genotype value for gim is determined. Genotypes as we remember

are encoded by the values {0, 1 or 2}. The variable x in p(gim ¼ x|g, v) can assume

any one of these three values Eq. 6.35. Each of these values is individually

introduced into the probabilistic function above Eq. 6.34. The x value that yields

the largest or maximal probability is then selected. This process is repeated T times,

where in [39], T was made constant at the value of T ¼ 20. At each T, a different set
of parameter estimates v is provided. By averaging T ¼ 20 runs of this maximiza-

tion procedure Eq. 6.35, a better estimate was achieved for gim, the missing

genotype:

ĝ im ¼ argmaxx∈ 0;1;2f g
1

T

XT

t¼1
p gim ¼ x g, v̂ tj Þ,ð (6.35)

best estimate of genotype by maximization across T possible v parameter sets.

T runs of an expectation maximization algorithm are used to estimate parameters,

while Eq. 6.35 is used to maximize the expected value of missing genotype gim.

6.5.2.6 Limitations

The fastPHASE algorithm doesn’t have many functional limitations. Its major

drawback concerns the amount of time it uses in order to process entire data sets.

The clustering of similar SNP allelic sequences, which are necessary for estimating
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the cluster-relevant parameters prior to genotype imputation and phase determina-

tion of allele sequences, is resource demanding. The use of HMM and the T runs of

the expectation maximization algorithm, used for estimating the “v” parameters,

increase the processing time of fastPHASE as the data set size increases. The

feasibility of applying the fastPHASE model to very large data sets was tested in

[39]. A data set containing 3,150 individuals typed at 290,630 SNPs was created,

amounting to 915.484.500 data elements within the entire data set. The fastPHASE

software package required a total of 97 h (on a single 3-GHz Xeon processor with

8GB of RAM) to fit the model to the data. According to Scheet [39], fastPHASE,

GERBIL, and HaploBlock are three very popular haplotype reconstruction methods

using probabilistic models. The fastPHASE algorithm is among several imputation

solutions widely used on SNP allele and genotype data sets today.

6.5.3 Comparison of fastPHASE and KNNimpute

In order to test genotype imputation algorithms, complete data sets with all known

values are used for the creation of data sets with synthetically missing values. The

original complete data set is known as the reference data set. The reference data set

is used to create a new data set with missing values. The original data set can be put

into a two-dimensional matrix, and using a random number generator, elements of

the matrix can be selected at random and their values deleted, corresponding to

missing values. This new set can be used to test the accuracy of the underlying

imputation algorithms, by comparing the imputation results of these algorithms to

the reference data set.

Many metrics for measuring the genotype imputation error rates exist. In order to

measure error rates, reference values, i.e., real genotype values, must be known for

synthetically missing genotypes in order to determine the accuracy of the imputed

values. Two common metrics for quantifying imputation errors are known as the

error rate per locus and the error rate per allele [22]. These measures measure the

susceptibility of a particular marker, i.e., locus to imputation error. Such errors are

not analyzed within this study. The main focus is on overall imputation accuracy,

performed by testing fastPHASE and KNNimpute on independent missing value

data sets with varying numbers of missing values. The overall error rate of the

imputation algorithms will be taken into account, e ¼ x/m � 10, where the ratio “e”
of falsely imputed values “x” to all imputed values “m” is taken and multiplied by

100 to give us an error percentage.

The error rates on seven data sets with independent distribution of missing

values have been evaluated in Fig. 6.19. The size of the experimental data set

contains 4.536 elements where 5 % of missing values amount to 266 elements and

10 % of missing values amount to 453 elements. It is apparent that the accuracy of

the fastPHASE algorithm is better than the KNNimpute algorithm, especially as the

number of missing values increases.
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In terms of speed, however, the average processing time of a data set of size

4.536 using fastPHASE amounts to a rough 3 min, while the KNNimpute on the

same data set size completes imputation in roughly a second. One can imagine for

data sets of extreme size, fastPHASE might even take days to complete. The main

reason for such slow processing time is the preprocessing step the algorithm

performs while creating the probabilistic model, i.e., HMM for the data set. This

step is computationally and spatially intensive. When it comes to accuracy, the

fastPHASE algorithm is preferred. However, when speed is the most crucial part of

the analysis, then the KNNimpute algorithm is preferred as an alternative. The

experiment itself was performed on a Intel Celeron 1,8 GHz processor platform

using 2GB of RAM memory.

6.6 Summary

The missing value problem is a problem where data elements of a data set appear as

missing. This leads to incomplete data sets and makes data analysis for the

researcher/analyst increasingly difficult. The larger the data set size is, the greater

the effect missing values may have on analysis. When dealing with genetic data

sets, in particular SNP genotype data sets, where millions of SNP genotypes are

present for thousands of patients, missing genotype values are something that must

be efficiently resolved and with the greatest accuracy possible. The most effective

way to infer missing genotypes with 100 % accuracy is to repeat the genotype
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calling or typing process. However, this process is very expensive, especially when

thousands of patients are involved in a study, i.e., data set. The optimal solution is to

impute or infer missing genotype values using a class of machine learning

algorithms known as imputation algorithms. The most accurate imputation

algorithms available today rely on probabilistically modeling data sets and base

their missing value inferences, i.e., substitutions on value estimates, from probabi-

listic information provided by the probabilistic model. Two such algorithms are the

KNNimpute algorithm and the fastPHASE algorithm. KNNimpute is a nonpara-

metric approach to inferring missing values which relies on the k nearest neighbor
algorithm. The fastPHASE algorithm uses a parametric approach with three key

parameters, modeling the data set according to an HMM. The accuracy of both

algorithms varies with the number of missing values present. In genotype data sets,

it has been noticed that anywhere between 5 % and 10 % of genotype data may be

missing. For smaller percentages of missing data (around 5 %), the KNNimpute

algorithm has shown to be very fast and accurate. However, as the percentage of

missing data increases towards 10 %, the fastPHASE algorithm, a slower algorithm

than KNNimpute, shows to be much more accurate.

Even though it will most likely never be possible to infer missing values with

100 % accuracy, the goal of imputation algorithms is to infer values as fast as

possible and as accurately as possible, reaching towards the 100 % accuracy mark.

In continuous research in genotype imputation and improvement of computing

technology, we can expect the realization of such goals.
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Chapter 7

Computer Modeling of Atherosclerosis

Nenad Filipovic, Milos Radovic, Velibor Isailovic, Zarko Milosevic,

Dalibor Nikolic, Igor Saveljic, Tijana Djukic, Exarchos Themis,

Dimitris Fotiadis, and Oberdan Parodi

7.1 Introduction

Atherosclerosis is a disease of the large arteries characterized by the blood vessel

endothelial dysfunction and lipid, cholesterol, calcium, and cell elements

accumulations inside blood vessel wall [1]. It is commonly referred as plaque

formation, vascular remodeling, acute and chronic obstruction of blood vessel

lumen, blood flow disorder, and lower oxygenation of relevant tissues. Many

studies confirmed different risk factors which contribute development and spread-

ing of the atherosclerosis; the most common are hyperlipidemia, higher blood

pressure and sugar values, cigarette consumption, age, and sex. Great contribution

to atherosclerosis development gives mechanical quantities such as low shear stress

areas which causes endothelium dysfunctions and atherogenesis [2]. The main

objective of this study is to examine influence of low shear stress and arterial

mass transport by modeling the blood flow and solution transport processes in

arterial lumen and the wall. Transport processes of the atherogenic species such

as low-density lipoprotein (LDL) from the bulk blood flow to and across arterial

wall contributes to lipid accumulation in the wall [2].

Several mathematical models have recently been set up for the transport of

macromolecules, such as low-density lipoproteins, from the arterial lumen to the
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arterial wall and inside the wall [3–5]. These models are usually classified in three

categories according to the level of description of the arterial wall. The simplest

model is called the wall-free model, since in this model the arterial wall is simply

described by means of an appropriate boundary condition. Kaazempur-Mofrad and

Ethier [6] simulated the mass transport in a realistic human right coronary artery

and Wada et al. [7] used a wall-free model to study the concentration polarization

phenomenon. The wall-free model does not provide any information on the

transmural flow and solute dynamics in the arterial wall. The fluid-wall models

that can be either single layer or multilayer account for the solute dynamics not only

in the lumen but also in the arterial wall. Stangeby and Ethier [8] analyzed the wall

as single-layer porous medium and solved the coupled luminal blood flow and

transmural fluid flow using Brinkman’s equations. Sun et al. [9] used single and Al

and Vafai [10] used multilayer models which represent intima and media sepa-

rately. Olgac et al. [11] used a three-pore model for LDL transport.

It is nowwell known that the early stage of the inflammatory disease is the result of

interaction between plasma low-density lipoproteins that filtrate through endothelium

into the intima, cellular components (monocytes/macrophages, endothelial cells, and

smooth muscle cells), and the extracellular matrix of the arterial wall [1, 12].

In this chapter, we performed computational study for plaque composition

and initial progression. The aim is to connect LDL transport with macrophages

and oxidized LDL distribution as well as initial plaque grow model inside the

intimal area. We firstly described mass transport of LDL through the wall and the

simplified inflammatory process. The Navier–Stokes equations govern the blood

motion in the lumen, the Darcy law is used for model blood filtration, and Kedem-

Katchalsky equations [13, 14] are used for the solute and flux exchanges between

the lumen and the intima. Then we described the system of three additional

reaction–diffusion equations that models the inflammatory process and lesion

growth model in the intima. This model relies on a matter incompressibility

assumption. The next sections are devoted to numerical simulation examples in

two- and three-dimensional domain and comparison with experimental results from

literature and our own experimental data from animal and human. Computational

results and comparison with animal experiments are presented. Finally, the main

conclusions of the work performed are given, with connecting between modeling

and experimental work.

7.2 Numerical Model of Plaque Formation and Growing

in 3D Space

In this section, we present a continuum-based approach for plaque formation and

development in three dimensions. The governing equations and numerical

procedures are given. The blood flow is simulated by the three-dimensional

Navier–Stokes equations, together with the continuity equation
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�μ∇2ul þ ρ ul �∇ð Þul þ∇pl ¼ 0 (7.1)

∇ul ¼ 0 (7.2)

where ul is blood velocity in the lumen, pl is the pressure, μ is the dynamic viscosity

of the blood, and ρ is the density of the blood.

Mass transfer in the blood lumen is coupled with the blood flow and modeled by

the convection-diffusion equation as follows:

∇ � �Dl∇cl þ clulð Þ ¼ 0 (7.3)

in the fluid domain, where cl is the solute concentration in the blood lumen, and

Dl is the solute diffusivity in the lumen.

Mass transfer in the arterial wall is coupled with the transmural flow and

modeled by the convection-diffusion–reaction equation as follows:

∇ � �Dw∇cw þ kcwuwð Þ ¼ rwcw (7.4)

in the wall domain, where cw is the solute concentration in the arterial wall, Dw is

the solute diffusivity in the arterial wall, K is the solute lag coefficient, and rw is the

consumption rate constant.

LDL transport in lumen of the vessel is coupled with Kedem-Katchalsky

equations:

Jv ¼ Lp Δp� σdΔπð Þ (7.5)

Js ¼ PΔcþ 1� σf
� �

Jvc (7.6)

where Lp is the hydraulic conductivity of the endothelium, Δc is the solute

concentration difference across the endothelium, Δp is the pressure drop across

the endothelium, Δπ is the oncotic pressure difference across the endothelium, σd is
the osmotic reflection coefficient, σf is the solvent reflection coefficient, P is the

solute endothelial permeability, and c is the mean endothelial concentration.

The inflammatory process was solved using three additional reaction–diffusion

partial differential equations:

∂tOx ¼ d2ΔOx� k1Ox �M
∂tM þ div vwMð Þ ¼ d1ΔM � k1Ox �M þ S=

�
1� S

�
∂tS ¼ d3ΔS� λSþ k1Ox �M þ γ Ox� Oxthr

� � (7.7)

where Ox is the oxidized LDL or cw – the solute concentration in the wall from

(7.4); M and S are concentrations in the intima of macrophages and cytokines,

respectively; d1,d2,d3 are the corresponding diffusion coefficients; λ and γ are

degradation and LDL oxidized detection coefficients; and vw is the inflammatory

velocity of plaque growth, which satisfies Darcy’s law and continuity equation [13]
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vw �∇ � pwð Þ ¼ 0 (7.8)

∇vw ¼ 0 (7.9)

in the wall domain. Here, pw is the pressure in the arterial wall.

The Basic Relations for Mass Transport in the Artery. The metabolism of

the artery wall is critically dependent upon its nutrient supply governed by transport

processes within the blood. Two differentmass transport processes in large arteries are

addressed. One of them is the oxygen transport and the other is LDL transport. Blood

flow through the arteries is usually described asmotion of a fluid-type continuum,with

the wall surfaces treated as impermeable (hard) boundaries. However, transport of

gases (e.g., O2, CO2) or macromolecules (albumin, globumin, LDL) represents a

convection-diffusion physical process with permeable boundaries through which the

diffusion occurs. In the analysis presented further, the assumption is that the concen-

tration of the transportedmatter does not affect the blood flow (i.e., a dilutedmixture is

considered). Themass transport process is governed by convection-diffusion equation

∂c
∂t

þ vx
∂c
∂x

þ vy
∂c
∂y

þ vz
∂c
∂z

¼ D
∂2c

∂x2
þ ∂2c

∂y2
þ ∂2c

∂z2

� �
(7.10)

where c denotes the macromolecule or gas concentration; vx, vy, and vz are the blood
velocity components in the coordinate system x,y,z; and D is the diffusion coeffi-

cient, assumed constant, of the transported material.

Boundary Conditions for Transport of the LDL. A macromolecule directly

responsible for the process of atherosclerosis is LDL which is well known as

atherogenic molecule. It is also known that LDL can go through the endothelium

at least by three different mechanisms, namely, receptor-mediated endocytosis,

pinocytotic vesicular transport, and phagocytosis [14]. The permeability coefficient

of an intact arterial wall to LDL has been reported to be of the order of 10�8 [cm/s]
[15]. The conversion of the mass among the LDL passing through a semipermeable

wall, moving toward the vessel wall by a filtration flow and diffusing back to the

mainstream at the vessel wall, is described by the relation

cwvw � D
∂c
∂n

¼ Kcw (7.11)

where cw is the surface concentration of LDL, vw is the filtration velocity of LDL

transport through the wall, n is coordinate normal to the wall, D is the diffusivity

of LDL, and K is the overall mass transfer coefficient of LDL at the vessel wall.

A uniform constant concentration C0 of LDL is assumed at the artery tree inlet as

classical inlet boundary condition for Eq. 7.14.

Finite Element Modeling of Diffusion-Transport Equations. In the case of blood

flow with mass transport, we have domination of the convection terms due to the

low diffusion coefficient [16]. Then it is necessary to employ special stabilizing

techniques in order to obtain a stable numerical solution. The streamline upwind/
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Petrov-Galerkin stabilizing technique (SUPG) [17] is implemented within a stan-

dard numerical integration scheme. The incremental-iterative form of finite element

equations of balance are obtained by including the diffusion equations and

transforming them into an incremental form. The final equations are

1

Δt
Mvþnþ1K i�1ð Þ

vv þnþ1K i�1ð Þ
μv þnþ1J i�1ð Þ

vv
nþ1K i�1ð Þ

vp 0

KT
vp 0 0

nþ1K i�1ð Þ
cv 0

1

Δt
Mcþnþ1K i�1ð Þ

cc þnþ1J i�1ð Þ
cc

2
66666664

3
77777775

�
ΔV ið Þ

ΔP ið Þ

ΔC ið Þ

8><
>:

9>=
>;
¼

nþ1F i�1ð Þ
v

nþ1F i�1ð Þ
p

nþ1F i�1ð Þ
c

8>><
>>:

9>>=
>>;

(7.12)

where the matrices are

Mvð ÞjjKJ ¼
ð

V

ρNKNJdV, Mcð ÞjjKJ ¼
ð

V

NKNJdV

nþ1Kcc
i�1ð Þ� �

jjKJ
¼
ð

V

DNK, jNJ, jdV
nþ1Kμv

i�1ð Þ� �
jjKJ

¼
ð

V

μNK, jNJ, jdV

nþ1K i�1ð Þ
cv

� �
jjKJ

¼
ð

V

NK
nþ1c

i�1ð Þ
, j NJdV

nþ1K i�1ð Þ
vv

� �
jjKJ

¼
ð

V

ρNK
nþ1v

i�1ð Þ
j NJ, jdV

nþ1J i�1ð Þ
cc

� �
jjKJ

¼
ð

V

ρNK
nþ1v

i�1ð Þ
j NJ, jdV

nþ1K i�1ð Þ
vp

� �
jjKJ

¼
ð

V

ρNK, j N̂ JdV

nþ1J i�1ð Þ
vv

� �
jkKJ

¼
ð

V

ρNK
nþ1vj, kj;kNJdV

(7.13)

and the vectors are

nþ1Fc
i�1ð Þ ¼ nþ1 Fq þ nþ1Fsc

i�1ð Þ � 1

Δt
Mc

nþ1C i�1ð Þ � nC
n o

� nþ1Kcv
i�1ð Þ nþ1V i�1ð Þ
n o

� nþ1Kcc
i�1ð Þ nþ1C i�1ð Þ
n o

nþ1Fq

� �
K

¼
ð

V

NKq
BdV nþ1Fsc

i�1ð Þ ¼
ð

S

DNK∇nþ1c i�1ð Þ � ndS (7.14)
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Note that N̂ J are the interpolation functions for pressure (which are taken to

be for one order of magnitude lower than interpolation functions NI for velocities).

The matrices Mcc and Kcc are the “mass” and convection matrices; Kcv and Jcc
correspond to the convection terms of Eq. 7.10; and Fc is the force vector which

follows from the convection-diffusion equation in (7.10) and linearization of the

governing equations.

7.2.1 Mesh-Moving Algorithm

In this section, we described Arbitrary Lagrangian-Euler (ALE) formulation which

is used for blood flow simulation and mesh-moving algorithm. In order to make

plaque formation and development algorithm and to connect blood flow simulation

with bioprocess modeling, the 3D mesh-moving algorithm and ALE formulation

for fluid dynamics are applied [18]. The governing equations, which include

the Navier–Stokes equations of balance of linear momentum and the continuity

equation, can be written in the ALE formulation as [18]

ρ v�i þ vj � vmj

� �
vi, j

h i
¼ �p, i þ μvi, jj þ f B

i (7.15)

vi, i ¼ 0 (7.16)

where vi and vi
m are the velocity components of a generic fluid particle and of

the point on the moving mesh occupied by the fluid particle, respectively; ρ is fluid

density, p is fluid pressure, μ is dynamic viscosity, and fi
B are the body force

components. The symbol “∗” denotes the mesh-referential time derivative,

i.e., the time derivative at a considered point on the mesh,

ðÞ� ¼ ∂ð Þ
∂t ξi¼const

�� (7.17)

and the symbol “,i” denotes partial derivative, i.e.,

ð Þ, i ¼
∂ð Þ
∂xi

(7.18)

We use xi and ξi as Cartesian coordinates of a generic particle in space and of

the corresponding point on the mesh, respectively. The repeated index means

summation, from 1 to 3, i.e., j ¼ 1, 2, 3 in Eq. 7.19 and i ¼ 1, 2, 3 in Eq. 7.16.

In deriving Eq. 7.11, we used the following expression for the material derivative

(corresponding to a fixed material point) D(ρvi) /Dt:
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D ρvið Þ
Dt

¼ ∂ ρvið Þ
∂t

jξ þ vj � vmj

� �∂ ρvj
� �
∂xi

(7.19)

The derivatives on the right-hand side correspond to a generic point on the mesh,

with the mesh-referential derivative and the convection term.

We now apply the conventional Galerkin procedure for space discretization of

the fluid domain. The finite element equations for a 3D domain that follow from

Eqs. 7.15 and 7.16 are

ρ

ð

V

hαv
�
i dV þ ρ

ð

V

hα vj � vmj

� �
vi, jdV ¼ �

ð

V

hαp, idV þ
ð

V

μhαvi, jjdV

þ
ð

V

hαf
B
i dV (7.20)

ð

V

h βvi, idV ¼ 0 (7.21)

where hα(r,s,t) and h β r; s; tð Þ are the interpolation functions for the velocities and

pressure, respectively, as polynomials of the isoparametric coordinates r,s,t [16]. The

number of interpolation functions is governed by the number of nodes of the selected

finite element. In general, number of interpolation functions hα and h β are different.

The integration is performed over the volume V of a finite element. We will further

use Eq. 7.20 transformed by applying the Gauss theorem

ρ

ð

V

hαv
�
i dV þ ρ

ð

V

hα vj � vmj

� �
vi, jdV �

ð

V

hα, ipdV þ
ð

V

μhα, jvi, jdV

¼
ð

S

hα �pni þ μvi, jnj
	 


dS (7.22)

We integrate incrementally the system of Eq. 7.22 over time period using a time

step Δt, which can be constant or it can vary in the time period. Hence we need an

incremental form of equations corresponding to time step. The system of equations

(1.22) is nonlinear with respect to the velocities, and the element volume changes,

thus we perform a linearization with respect to time, using the known values at a

given time t. Since the computational algorithm we want to establish is implicit, we

seek to satisfy the system of Eq. 7.26 at the end of time step Δt, i.e., at time t + Δt,
where t is time at start of the current time step. For a generic quantity F defined at a

mesh point, we can write the following approximation [16]:

tþΔtF tξ ¼ tF tξ þ F�Δt
���

��� (7.23)
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By applying this relation to the left- (LHS) and right-hand side (RHS) of

Eq. 7.22, we obtain

t LHSð Þ þ LHSð Þ�Δt ¼ tþΔt RHSð Þ (7.24)

In calculating the mesh-referential time derivatives we use the following

relations:

∂F
∂xi

� ��
¼ ∂F�

∂xi
� ∂vmk

∂xi

� �
∂F
∂xk

(7.25)

dVð Þ� ¼ ∂vmk
∂xk

dV (7.26)

Also, we express the fluid velocities and pressure in the incremental form

tþΔtvi ¼ tvi þ Δvi (7.27)

tþΔtp ¼ tp þ Δp (7.28)

where Δvi and Δp are the velocity and pressure increments in time step. Of course

we adopt interpolations for the velocities and pressure and have

Δvi ¼ hαΔVα
i (7.29)

Δp ¼ h αΔPα (7.30)

where ΔVi
α and ΔPα are the increments of nodal values, and summation over index

α is implied.

Using the linearization (7.24) and the expressions (7.23) and Eqs. 7.25–7.30, we

obtain from (7.21) and (7.22) the system of ordinary differential equations in the

form

tM 1ð ÞV� þ tK 1ð ÞvvΔVþ tKvpΔP ¼ tþΔtF 1ð Þ � tF 1ð Þ (7.31)

and

tM 2ð ÞV� þ tK 2ð ÞvvΔV ¼ tþΔtF 2ð Þ � tF 2ð Þ (7.32)

The matrices and vectors follow from the volume and surface integrals given in

Appendix. The integrals are evaluated over the known volumes and surfaces at start

of time step. The element matrices are evaluated at time t, and the right-hand side

vectors consist of the terms which correspond to start and end of time step. The

vectors tþΔtF kð Þ, k ¼ 1, 2 contain terms with the prescribed values at the end of the

time step, as given pressures on the boundary, or velocities of the mesh. On the
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other hand, the vectors tF(k), k ¼ 1, 2 are evaluated with all values at start of time

step. Further we use

V� ¼ ΔV=Δt (7.33)

and

P� ¼ ΔP=Δt (7.34)

so that the systems of Eqs. 7.31 and 7.32 have the unknown increments ΔV and ΔP
only. The solutions of Eqs. 7.31 and 7.32 give the first approximation, and we form

an iterative scheme of the form [16, 18]

tþΔtK̂
i�1ð Þ

ΔU ið Þ ¼ tþΔtF i�1ð Þ (7.35)

where tþΔtK̂
i�1ð Þ

is the system matrix, t þ ΔtF(i � 1) is the unbalanced force vector,

and ΔUi) is the vector of nodal variables for the equilibrium iteration “i”:

ΔU ið Þ
n o

¼ ΔV ið Þ

ΔP ið Þ

� �
(7.36)

with

ΔU ¼ ΔU 1ð Þ þ ΔU 2ð Þ þ � � � � (7.37)

The iteration stops when a convergence criteria are satisfied, e.g., when kΔUi)k
� εD, where εD is a selected numerical tolerance.

We further use the penalty formulation and express the pressure in terms of the

velocity components

p ¼ �λvi, i (7.38)

where λ is a large (penalty) number. We use this expression for pressure in Eq. 7.15

which then contains the velocities only, Eq. 7.16 is eliminated, and the

corresponding terms in the finite element equations change accordingly.

7.2.2 2D Axisymmetric Model

In this section, we analyzed typical benchmark examples of mass transport as well

as plaque formation and development. The first example is albumin transport in a

large artery. The second example is LDL transport through a straight artery with the

filtration through the wall, and third example is 2D axisymmetric plaque formation

and development.
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Example: Modeling Albumin Transport in a Large Artery The stenosed artery is

shown in Fig. 7.1. Due to axial symmetry, only a half is modeled and the blood

is considered to be a Newtonian fluid. Two-dimensional axisymmetric 2D elements

are used. Data for blood density ρ, dynamic viscosity μ, diffusion coefficient for

albumin transport D, the inflow mean velocity V0, and geometry are given in the

Fig. 7.1. It is assumed that the flow is steady.

Since the distance between the entrance and the stenosis position is large, it can

be considered that the entering velocity profile is parabolic:

v rð Þ ¼ 2V0 1� 2r

L0

� �2
 !

(7.39)

where r is the radial coordinate. At the wall, velocities are equal to zero, while at the
axis of symmetry, only the radial velocity is equal to zero. At the outflow the zero

traction stress is applied:

�pþ μ
∂vz
∂z

¼ 0 (7.40)

The boundary conditions for the concentration are (a) at the inlet, c ¼ c0 ¼ 2.58 �
10�3[mL/cm3]; and (b) ∂ c/∂ r ¼ 0 and ∂ c/∂ z ¼ 0 at the axis of symmetry.

Note that to mean velocity V0 ¼ 10.52 [cm] corresponds the Reynolds number

Re ¼ 448, and Pecklet number Pe is 934000 (defined as Pe ¼ L0V0/D).

Fig. 7.1 Geometrical and

material data for artery with

stenosis
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Velocity field is shown in Fig. 7.2a, where the field of disturbed flow is

noticeable after the stenosis. Albumin concentration at the wall cw normalized

with respect to the inlet concentration c0 is given in Fig. 7.2b. A significant

concentration increase in the domain of stenosis can be seen, with the peak at the

distal region.

Example: Modeling the LDL Transport Through a Straight Artery with the Filtra-
tion Through the Wall The LDL transport through a straight artery is modeled in

this example. The tube, representing the artery, has the diameter d0 ¼ 0.6 [cm]
(Fig. 7.3a). The filtration velocity through the vessel wall is vw ¼ 4 � 10�6 [cm/s]
and the overall mass transfer coefficient of lipoproteins at the arterial wall,

K ¼ 2 � 10�8 [cm/s]. Blood was modeled as a Newtonian fluid with density

ρ ¼ 1.0 [g/cm3] and viscosity μ ¼ 0.0334 [P]. The steady-state conditions for

fluid flow and mass transport are assumed. The entering blood velocity is defined

by the Reynolds number Re (calculated using the mean blood velocity and the

artery diameter).

The 2D axisymmetric elements are used. The boundary conditions include

prescribed parabolic velocity profile (7.39) and concentration c0 at the inlet, zero

stress at the outlet (7.40), and filtration at the walls according to mass transfer

equation.

The analytical solution for the axial and radial velocities, as well as for the

concentration, is given in [19].

Figure 7.3b shows distribution of the surface concentration of LDL along the

axis of the artery for three Reynolds numbers. It can be seen that the concentration

of LDL at the wall boundary layer is increased with the axial distance from the

Fig. 7.2 Albumin transport in stenosed artery, the stenotic artery part: (a) velocity field;

(b) normalized concentration at the wall cw/c0
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entrance of the artery due the decrease of the velocity according to the expression

shown in Fig. 7.3a, where β ¼ 2VWz/V0r0.

Example: 2D Axisymmetric Plaque Formation and Development This is bench-

mark example for testing 2D axisymmetric plaque formation and development.

The plaque formation and development is modeled through an initial straight artery

with mild constriction of 30 %. The inlet artery diameter d0 ¼ 0.4 [cm]. Blood
was modeled as a Newtonian fluid with density ρ ¼1.0 [g/cm3] and viscosity

μ ¼0.0334 [P]. The steady-state conditions for fluid flow and mass transport are

assumed. The entering blood velocity is defined by the Reynolds number Re

(calculated using the mean blood velocity and the artery diameter). Velocity

distribution for an initial mild stenosis 30 % constriction by area and for end

stenosis process after 107 s is presented in Fig. 7.4. Similarly, pressure, shear stress,

and LDL distribution inside the lumen domain for these two time stage of virtual

stenosis are presented in the Figs. 7.5, 7.6, and 7.7, respectively. Also inside wall

domain for oxidized LDL, intima wall pressure, macrophages, and cytokines

distribution have been shown in Figs. 7.8, 7.9, 7.10, and 7.11 respectively.

Fig. 7.3 Transport of the LDL through straight artery with semipermeable wall. (a) Schematic

representation of velocity profiles (note that the profile changes in the flow direction since the wall

is permeable); (b) normalized surface concentration of LDL, cw/co, in terms of the normalized

distance from the entrance z/d0 (analytical and FE solutions)
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Fig. 7.4 (a) Velocity distribution for an initial mild stenosis 30 % constriction by area.

(b) Velocity distribution for end stenosis process after 107 s [units m/s]

Fig. 7.5 (a) Pressure distribution for an initial mild stenosis 30 % constriction by area.

(b) Pressure distribution for end stenosis process after 107 s [units Pa]



Fig. 7.6 (a) Shear stress distribution for an initial mild stenosis 30 % constriction by area.

(b) Shear stress distribution for end stenosis process after 107 s [units dyn/cm2]

Fig. 7.7 (a) Lumen LDL distribution for an initial mild stenosis 30 % constriction by area.

(b) Lumen LDL distribution for end stenosis process after 107 s [units mg/mL]



Fig. 7.8 (a) Oxidized LDL distribution in the intima for an initial mild stenosis 30% constriction by

area. (b) Oxidized LDL distribution in the intima for end stenosis process after 107 s [units mg/mL]

Fig. 7.9 (a) Intima wall pressure distribution for an initial mild stenosis 30 % constriction by area.

(b) Intima wall pressure distribution for end stenosis process after 107 s [units Pa]



Fig. 7.10 (a)Macrophages distribution in the intima for an initialmild stenosis 30%constriction by

area. (b) Macrophages distribution in the intima for end stenosis process after 107 s [units mg/mL]

Fig. 7.11 (a) Cytokines distribution in the intima for an initial mild stenosis 30 % constriction by

area. (b) Cytokines distribution in the intima for end stenosis process after 107 s [units mg/mL]



7.2.3 Three-Dimensional Tube Constriction Benchmark
Model

In order to generate benchmark example for three-dimensional simulation, we

tested simple middle stenosis with initial 30 % constriction for time period of

t ¼ 107 s (approximately 7 years) and compare results with the 2D axisymmetric

model. The results for velocity distribution for initial and end stage of simulations

are presented in Fig. 7.12a, b. The pressure and shear stress distributions for start

and end time are given in Figs. 7.13 and 7.14. Concentration distribution of

LDL inside the lumen domain and oxidized LDL inside the intima are presented

in Figs. 7.15 and 7.16. The transmural wall pressure is presented in Fig. 7.17.

a 8.85e-01
8.30e-01
7.74e-01
7.19e-01
7.64e-01
6.08e-01
5.53e-01
4.98e-01
4.43e-01
3.87e-01
3.32e-01
2.77e-01
2.21e-01

2.91e+00
2.72e+00
2.54e+00
2.36e+00
2.18e+00
2.00e+00
1.82e+00
1.63e+00
1.45e+00
1.27e+00
1.09e+00
9.08e-01
7.26e-01
5.45e-01
3.63e-01
1.82e-01
0.00e+00

1.66e-01
1.11e-01
5.53e-02
0.00e+00

b

Fig. 7.12 (a) Velocity distribution for an initial mild stenosis 30 % constriction by area.

(b) Velocity distribution for end stenosis process after 107 s [units m/s]
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Macrophages and cytokines distributions are shown in Figs. 7.18 and 7.19. The

diagram of three-dimensional plaque volume growing during time is given in

Fig. 7.20. It can be seen that time period for developing of stenosis corresponds

to data available in the literature [20].

From the above figures, it can be observed that during time period of the plaque

progression, all variables as velocity distribution, shear stress, macrophages, and

cytokines are increasing.

a 9.37e+03
8.78e+03
8.20e+03
7.61e+03
7.03e+03
6.44e+03
5.85e+03
5.27e+03
4.68e+03
4.10e+03
3.51e+03
2.93e+03
2.34e+03
1.76e+03
1.17e+03
5.85e+02

9.44e+03
8.85e+03
8.26e+03
7.67e+03
7.08e+03
6.49e+03
5.90e+03
5.31e+03
4.72e+03
4.13e+03
3.54e+03
2.95e+03
2.36e+03
1.77e+03
1.18e+03
5.90e+02
0.00e+00

0.00e+00

b

Fig. 7.13 (a) Pressure distribution for an initial mild stenosis 30 % constriction by area.

(b) Pressure distribution for end stenosis process after 107 s [units Pa]
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7.3 Computational Modeling of Experiments

7.3.1 Cheng et al. 2006 Experiment in 3D

A validation of our ARTreat model of the inflammatory process is performed

by comparing our solutions with the Cheng et al. 2006 experiment [21].

This experiment that was run on mice confirms that lesions occur in preferred

locations such as bends and bifurcations and that biochemical composition of

lesions depends on their location. In these experiments, the arterial geometry has

a 5.36e+00
5.03e+00
4.69e+00
4.36e+00
4.02e+00
3.69e+00
3.35e+00
3.02e+00
2.68e+00
2.35e+00
2.01e+00
1.68e+00
1.34e+00
1.01e+00
6.70e+00
3.35e+00
0.00e+00

2.47e+01

2.32e+01

2.16e+01

2.01e+01

1.85e+01

1.70e+01

1.54e+01

1.39e+01

1.24e+01

1.08e+01

9.27e+00

7.72e+00
6.18e+00

4.63e+00

3.09e+00

1.54e+00

0.00e+00

b

Fig. 7.14 (a) Shear stress distribution for an initial mild stenosis 30 % constriction by area.

(b) Shear stress distribution for end stenosis process after 107 s [units dyn/cm2]
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been modified by a perivascular cast that induces regions of lowered, increased, and

lowered/oscillatory (i.e., with vortices) shear stresses (depicted in Fig. 7.21). Mice

are fed by a rich cholesterol diet in order to assess plaque formation and composi-

tion. Our aim was to obtain numerical results that fit with the experiments. We here

give the atherosclerotic plaque composition obtained by our numerical simulations.

A fully developed parabolic steady velocity profile was assumed at the lumen

inlet boundary

u rð Þ ¼ 2U0 1� 2r=Dð Þ2
� �

(7.41)

where u(r) is the velocity in the axial direction at radial position r, andU0 ¼ 0.24m/s is

the mean inlet velocity. The inlet artery diameter is d0 ¼ 0.004m. Blood was modeled

a 1.00e+00
9.38e-01
8.75e-01
8.13e-01
7.50e-01
6.88e-01
6.25e-01
5.63e-01
5.00e-01
4.38e-01
3.75e-01
3.13e-01
2.50e-01
1.88e-01
1.25e-01

1.00e+00
9.38e-01
8.75e-01
8.13e-01
7.50e-01
6.88e-01
6.25e-01
5.63e-01
5.00e-01
4.38e-01
3.75e-01
3.13e-01
2.50e-01
1.88e-01
1.25e-01
6.25e-02
0.00e+00

6.25e-02
0.00e+00

b

Fig. 7.15 (a) Lumen LDL distribution for an initial mild stenosis 30 % constriction by area.

(b) Lumen LDL distribution for end stenosis process after 107 s [units mg/mL]
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as a Newtonian fluid with density ρ ¼1,050 kg/m3 and viscosity μ ¼0.0334P. The
entering blood velocity is defined by the Reynolds number Re (calculated using the

mean coronary blood velocity and the artery diameter). Basic values for this computer

model are given in Table 7.1. It was taken that the permeability of the wall depends on

residence time of solutes in the neighborhood of vascular endothelium and oscillatory

shear index OSI [3, 22].

The results for oxidized LDL distribution are shown in Fig. 7.22. The concen-

tration is presented in a dimensionless form, relative to the input concentration

Co ¼ 2.86 � 10�12 kg/m3. It can be seen that for steady-state condition low wall

a
5.00e-03

4.69e-03

4.38e-03

4.06e-03

3.75e-03

3.44e-03

3.13e-03

2.81e-03

2.50e-03

2.19e-03

1.87e-03

1.56e-03

1.25e-03

9.37e-04

6.25e-04

3.13e-04

0.00e+00

5.00e-03
4.69e-03
4.38e-03
4.06e-03
3.75e-03
3.44e-03
3.13e-03
2.81e-03
2.50e-03
2.19e-03
1.87e-03
1.56e-03
1.25e-03
9.37e-04
6.25e-04
3.13e-04
0.00e+00

b

Fig. 7.16 (a) Oxidized LDL distribution in the intima for an initial mild stenosis 30 % constriction

by area. (b) Oxidized LDL distribution in the intima for end stenosis process after 107 s

[units mg/mL]
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shear stress (WSS) appears after the cast which induces more LDL deposition in the

recirculation zone. For unsteady calculation, we used residence time, and using our

three-dimensional model, we found oxidized LDL distributions in both zones of

low WSS and in the recirculation WSS. Increased oxidized LDL concentration was

found in the zone of higher residence time, which corresponds to the plaque

composition found in the Cheng measurement (Fig. 7.21).

The model of LDL transport includes convection-diffusion process within the

blood lumen, followed by transport through tissue of the arterial where a mass

consumption is also included. Further, a model of plaque initiation is presented

which mathematically describes the LDL oxidation, coupled with formation of

macrophages and foam cells that leads to plaque development and growth. The

model parameters are used from literature as well as from our own investigation

within the ARTreat consortium. These initial findings are in agreement with

a 3.00e+03
2.81e+03
2.63e+03
2.44e+03
2.25e+03
2.06e+03
1.88e+03
1.69e+03
1.50e+03
1.31e+03
1.13e+03

3.00e+03
2.81e+03
2.63e+03
2.44e+03
2.25e+03
2.06e+03
1.88e+03
1.69e+03
1.50e+03
1.31e+03
1.13e+03
9.38e+02
7.50e+02
5.63e+02
3.75e+02
1.88e+02
0.00e+00

9.38e+02
7.50e+02
5.63e+02
3.75e+02
1.88e+02
0.00e+00

b

Fig. 7.17 (a) Intima wall pressure distribution for an initial mild stenosis 30 % constriction by

area. (b) Intima wall pressure distribution for end stenosis process after 107 s [units Pa]
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experimental observations, suggesting that mathematical models of very complex

biochemical and biomechanical processes occurring in the plaque formation and

growth could be of help in prevention and treatment of atherosclerosis.

7.3.2 Experimental and Computational LDL Transport
Model from the University of Kragujevac

In this study, experimental model of LDL transport on the isolated blood vessel

from rabbit on high-fat diet after 8 weeks is simulated numerically by using a

specific model and histological data. The 3D blood flow is governed by the

a 8.24e-02
7.72e-02
7.21e-02
6.69e-02
6.18e-02
5.66e-02
5.15e-02
4.64e-02
4.12e-02
3.60e-02
3.09e-02
2.58e-02

2.89e-01
2.71e-01
2.53e-01
2.35e-01
2.17e-01
1.99e-01
1.81e-01
1.63e-01
1.44e-01
1.26e-01
1.08e-01
9.03e-02
7.22e-02
5.42e-02
3.61e-02
1.81e-02
0.00e+00

2.06e-02
1.55e-02
1.03e-02
5.15e-03
0.00e+00

b

Fig. 7.18 (a) Macrophages distribution in the intima for an initial mild stenosis 30 % constriction

by area. (b) Macrophages distribution in the intima for end stenosis process after 107 s

[units mg/mL]
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Navier–Stokes equations, together with the continuity equation. Mass transfer

within the blood lumen and through the arterial wall is coupled with the blood

flow by the convection-diffusion equation. LDL transport in lumen of the vessel is

described by Kedem-Katchalsky equations. The inflammatory process is solved

using three additional reaction–diffusion partial differential equations.

Matching of histological rabbit data is performed using 3D histological image

reconstruction and 3D deformation of elastic body. Computed concentrations of

labeled LDL of 15.7 % are in good agreement with experimental results. The

understanding and the prediction of LDL transport through the arterial wall and

evolution of atherosclerotic plaques are very important for the medical

community.

a 1.61e-03
1.51e-03
1.41e-03
1.31e-03
1.21e-03
1.11e-03
1.01e-03
9.06e-04
8.05e-04
7.04e-04
6.04e-04
5.03e-04
4.03e-04
3.02e-04

3.77e-03
3.53e-03
3.30e-03
3.06e-03
2.83e-03
2.59e-03
2.36e-03
2.12e-03
1.89e-03
1.65e-03
1.41e-03
1.18e-03
9.42e-04
7.07e-04
4.71e-04
2.36e-04
0.00e+00

2.01e-04
1.01e-04
0.00e+00

b

Fig. 7.19 (a) Cytokines distribution in the intima for an initial mild stenosis 30 % constriction by

area. (b) Cytokines distribution in the intima for end stenosis process after 107 s [units mg/mL]
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Fig. 7.20 Plaque progression during time (computer simulation)

Fig. 7.21 Oxidized LDL concentration within a mouse blood vessel [21]. A mouse carotid vessel

is partially obstructed with a cast. This modifies the blood flow and particularly the WSS patterns.

The growth of atheromatous plaques is correlated with the reduction of WSS (right before and

after the cast). Moreover, the composition of the plaques turn out to depend upon the WSS pattern:

plaques associated with low WSS contain more oxidized LDL, whereas plaques located in zone of

recirculating flow (after the cast) contain less oxidized LDL (According to [21])
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7.3.2.1 Introduction

The position of the endothelium at the interface between blood and vessel wall with

main role as a barrier to the transvascular convection and diffusion of blood-borne

macromolecules is well known. The endothelial cells lining the blood vessels are

flattened and elongated with nuclei that protrude into the lumen. They form a layer

that prevents blood cell interaction with the vessel wall with a critical role in

mechanics of blood flow, regulation of coagulation, leukocyte adhesion, and vas-

cular smooth muscle cell growth. Damaged endothelium induces physiological and

pathological changes [23, 24] such that decreased integrity of the endothelial

barrier permits easier macromolecular transport into the intima [25].

Inflammatory process starts with penetration of low-density lipoproteins (LDL)

in the intima. This penetration, if too high, is followed by leucocyte recruitment in

the intima. This process may participate in formation of the fatty streak, the initial

lesion of atherosclerosis, and then in formation of a plaque.

There are three major categories of LDL transport models. The simplest models

are wall-free models, in which the arterial wall is substituted by a simplified

boundary condition. Rappitsch [26] and Wada [27] applied these models for the

analysis of the macromolecular transport in the arterial wall. A more realistic

approach is lumen-wall models, where there is coupling of the transport within

the lumen and the wall, [8, 28, 29]. Also there are multilayer models, which break

the arterial wall down into several layers and model the transport within the wall,

either at the microscopic or macroscopic levels. There are no so many numerical

studies which rely on real experimental data for LDL transport.

In this study, we firstly described experimental setup for the LDL transport into

the blood vessel wall in the isolated rabbit carotid artery under physiologically

relevant constant pressure and perfusion flow on rabbit with 6 weeks high-fat diet.

Mass transport of LDL through the wall and the simplified inflammatory process is

Fig. 7.22 Computed oxidized LDL distribution obtained by a 3D model of the Cheng experiment
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coupled with the Navier–Stokes equations, the Darcy equation for model blood

filtration, and Kedem-Katchalsky equations [30, 31] for the solute and flux

exchanges between the lumen and the intima. The next section presents numerical

simulation and comparison with some initial experimental animal results of LDL

transport and histological analysis.

7.3.2.2 Experimental Setup

Ex vivo blood vessels experiments of LDL transport were performed on the isolated

rabbit a. carotis comm. All experiments were performed according to the Animals

Scientific Procedures Act 1986 (UK) and local ethical guidelines. New Zealand

White rabbits of both sex weighing 3.5–4 kg were anesthetized using Ketamine

(Laboratorio Sanderson, Santiago, Chile), 4–6 mg per kg of body weight. Blood

vessel was excised and placed in the water bath. Cannulas with equally matched tip

diameters (2 mm) were mounted at proximal (cardial) and distal (cranial) ends of

the blood vessel. The lumen was perfused with Krebs-Ringer physiological solution

(KRS), using the peristaltic pump at 1 ml/min. The perfusate was continuously

bubbled with a 95 % O2 and 5 % CO2 with the pH adjusted to 7.4 at 37 �C.
The distal cannula was connected to the resistance changing device. Perfusion

pressure was measured with perfusion transducer (Fig. 7.23).

Fig. 7.23 Setting for ex vivo blood vessels experiments: 1. Pressure and temperature A/D

converter, 2. peristaltic pump, 3. heater thermostat, 4. rapid infusion pump (RIP), 5. automatic

sampler, 6. resistance changing device (RCD), 7. control unit for RIP, 8. control unit for RCD,
9. syringe infusion pump, 10. water bath, 11. heating stabilizer, 12. PC, 13. digital camera
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The blood vessel was stretched to its approximate in vivo length. The outer

diameter of the blood vessel was measured using digital camera and originally

developed software. The blood vessel wall thickness was measured at the end

of each experiment using light microscope and microscopically graduated plate

(see Fig. 7.24).

The blood vessel was considered to be viable if it contracted when 25 mMKCl

was added to the bath, as well as if the presence of functional endothelium was

verified by dilation with Ach (1 μM) at the end of experiment.

The isolated blood vessel was placed into the water bath with physiological

buffer. After the equilibration period (20–30 min) at constant perfusion flow

of 1 ml/min, 100 μl bolus was injected into the perfusion system containing
99mTc-Nanocis as an intravascular marker (referent tracer) or 125I-LDL as a test

molecule. The first 15 samples (three drops in each sample) and nine cumulative

3 min samples of perfusion effluent were sequentially collected. All samples were

prepared for measurement of 125I-LDL-specific activity by addition of physiologi-

cal buffer until final volume of 3 ml/sample. Measurements of perfusion effluent

samples containing 99mTc-Nanocis or 125I-LDL were performed by means of the

gamma counter (Wallac Wizard 1400).

The 125I-LDL uptake is derived from the difference between the 99mTc-Nanocis

value and that of 125I-LDL recovery in each sample.

7.3.2.3 Histological Methods

Immunocytochemical staining was performed on 5 μm sections from

formaldehyde-fixed paraffin-embedded blocks using a labeled streptavidin-biotin

method with Thermo Scientific Detection System Anti-Mouse HRP (TM-060-HL).

Sections were deparafinized and rehydrated. After microwave treatment of 21 min

in citrate buffer pH 6.0, endogenous peroxidase activity was blocked with 3 %

H2O2 for 15 min. The sections were first incubated with the primary antibody for

60 min (AbCam Mouse monoclonal (3G5) to LDL (MDA oxidized); ab63976;

Fig. 7.24 Schematic presentation of the isolated blood vessel segment in the water bath
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dilution 1:50), then with biotinylated goat anti-mouse antibody (Thermo Scientific

TM-060-BN) for 30 min at room temperature, after that with streptavidin peroxi-

dase (Thermo Scientific TS-060-HR|) for 30 min at room temperature, and finally

with chromogen 3-amino-9-ethylcarbazole (AEC) (Thermo Scientific TA-060-SA)

for 10 min. Slides were counterstained with hematoxylin, washed in water, and

mounted.

7.3.2.4 Results

The aim of our experiment was to determine distribution of accumulated 125I-LDL

radioactivity in the different segments of the isolated blood vessel. Specific soft-

ware for 3D reconstruction of lumen domain and carotid wall artery was developed.

Computer model of the artery is considered as a simple straight tube. The diameter

of artery was D ¼ 0.0029 m, the mean velocity U0 ¼ 0.24 m/s, dynamics viscosity

μ ¼ 0.0035 Pa s, and density ρ ¼ 1,050 kg/m3. The transmural pressure under

normal physiological condition was taken as 100 mmHg.

Histological images are shown in Fig. 7.25. The labeled LDL is localized in

the white zones inside media which is probably due to destroyed radioactive LDL

of tissue. Polylines around media are segmentation lines produces by in-house

image processing software. Matching of histological data and computational simu-

lation is presented in Fig. 7.26. The process of matching histological images was

Fig. 7.25 Histological data (numbers on photos indicate distances from entry carotid artery in

millimeters). White zones inside media denote labeled LDL localization. Polylines around media

are segmentation lines produces by image processing software
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done by 2D deformation of each histological cross-section in order to keep the

internal lumen approximately cylindrical shape. The maximum LDL was found at

distal part of the carotid artery segment at 3.5 mm from entry segment. A full three-

dimensional finite element analysis was performed using our in-house finite

element code in order wall shear stress and function of permeability for the wall.

Oxidized LDL, macrophages, and cytokines distribution is presented in Fig. 7.27.

Diagrams of wall LDL, oxidized LDL, macrophages, and cytokines inside wall are

shown in Fig. 7.28. Experimental LDL transport of 15.7 % was fitted with specific

nonlinear least square analysis [32] in order to get numerical parameters. The fitted

numerical parameters are given in Table 7.2.

Our results have shown a denudation of endothelial layer and a prominent

accumulation of LDL in intima, especially in the layer right below basement

membrane. In media we can notice a small quantity of LDL. In addition to

extracellular lipid deposits, we also observed an immunoreactivity of certain

VSMCs (Fig. 7.29). Using the TEM method, we can concur that these cells are in

apoptosis (Fig. 7.30). A denudation of endothelial layer is confirmed with the

method of transmission electron microscopy (Fig. 7.31).

Fig. 7.26 Labeled LDL

located in histology cross-

section on each 0.5 mm for

straight segment. Histology

segments were obtained as

deformable elastic rings

opened from the current

squeezed position to circle

original tube. Black holes in
these cross-sections show

location of the labeled LDL.

Percentages show labeled

LDL area inside media and

intima wall thickness
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7.3.2.5 Fluid–Solid Interaction Analysis

We used fluid–structure interaction analysis in order to match experimental results

for UK experiments with rabbit artery. The aim of computational analysis was to

determine material property of the wall in order to simulate maximal artery wall

deformation. We assumed in the first approach linear elastic material wall property.

The maximal displacements distribution for fluid pressure of 140 mmHg is

presented in Fig. 7.32. Velocity vector distribution for input flow of 1.1 ml/min

which included together perfusion flow and LDL flux has been shown in Fig. 7.33.

Effective stress distribution for maximal artery deformation of 50 % which

corresponding to the artery diameter of 3 mm is presented in Fig. 7.34. From fitting

analysis, we got for the assumed linear elastic wall material Young’s elasticity

module E ¼ 150 kPa. Further analysis from experimental data which suggested

that during high-fat diet rabbits wall property are changed in order to make higher

shear stress for the same input flow parameters. It can be concluded that increasing
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Fig. 7.27 (a) Oxidized LDL distribution 12.7 %; (b) macrophages distribution 9.2 % from media;

(c) cytokines distribution 3.9 %; (d) three-dimensional representation of the model
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of the shear stress leads directly to the smaller deformation and more rigid wall

property, and we got that corresponding Young’s elasticity modules is around

200 kPa for the rabbits with high-fat diet at week 12.

7.3.2.6 Discussion

In this chapter, we matched our experimental results of LDL transport through the

rabbit carotid artery together with histological analysis and computer model. A full

three-dimensional model of LDL transport as well as plaque initiation is coupled

with the Navier–Stokes equations and continuity equation. We used Darcy law for

model blood filtration and Kedem-Katchalsky equations for the solute and flux

transfer. The arterial wall permeability was fitted with our experimental results of

LDL transport. All parameters for computer model were fitted with nonlinear least

square procedure. Matching of the labeled LDL location between experimental and

computer model shows a potential benefit for future prediction of this complex

process using computer modeling.

a 0.010 8e-8

6e-8

4e-8

1e-6 8e-8

6e-8

4e-8

2e-8

0

8e-7

6e-7

4e-7

2e-7

0

2e-8

0

0.008

0.006

0.004

C
/C

o

0x
LD

L

0.002

0.000

0.48 0.50 0.52 0.54
r

0.56

Wall LDL

Macrophages

M
ac

ro
ph

ag
es

oxLDL

Cytokines

C
yt

ok
in

es

0.58

0.48 0.50 0.52 0.54
r

0.56 0.58 0.48 0.50 0.52 0.54
r

0.56 0.58

0.48 0.50 0.52 0.54
r

0.56 0.58

b

c d

Fig. 7.28 (a) Dimensionless wall LDL concentration profile in the media; (b) oxidized LDL

concentration profile in the media; (c) macrophages profile in the media; (d) cytokines profile in

the media
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Fig. 7.29 Left common carotid artery of the rabbit after transport of 125I-LDL. We can notice a

denudation of endothelial layer and a prominent accumulation of LDL in intima, especially in the

layer right below basement membrane. In media we can notice a small quantity of LDL. In

addition to extracellular lipid deposits, we can also observe immunoreactivity of certain VSMCs of

media. The immunoreactivity of wall structure decreases in the direction of intima adventitia

(immunohistochemical staining of LDL, �100)

Fig. 7.30 Smooth muscle cell in media of left common carotid artery of the rabbit after transport

of125I-LDL. We can notice intact plasma membrane and blebbing on the surface of the cell. Parts

of the plasma membrane, i.e., blebs, are separated from the cell, taking a portion of cytoplasm with

them, to become apoptotic bodies. In nucleus, we can notice a nuclear fragmentation and

chromatin condensation (TEM)
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Fig. 7.31 Damage of the endothelial cell (TEM)

Fig. 7.32 Maximal displacements distribution for fluid pressure of 140 mmHg
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7.4 Animal Experiments on the Pigs

In this chapter, a model of plaque formation on the pig left anterior descending

coronary artery (LAD) is simulated numerically using a specific animal data

obtained from IVUS and histological recordings. The 3D blood flow is described

by the Navier–Stokes equations, together with the continuity equation.

Fig. 7.33 Velocity vector distribution for input flow of 1.1 ml/min

Fig. 7.34 Effective stress distribution for Young module E ¼ 150 kPa in order to mach maximal

artery diameter deformation of 50 % or 3 mm
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Mass transfer within the blood lumen and through the arterial wall is coupled with

the blood flow and is modeled by a convection-diffusion equation. The LDL

transports in lumen of the vessel and through the vessel tissue (which has a mass

consumption term) are coupled by Kedem-Katchalsky equations [30, 31]. The

inflammatory process is modeled using three additional reaction–diffusion partial

differential equations. A full three-dimensional model was created which includes

blood flow and LDL concentration, as well as plaque formation. Matching of IVUS

and histological animal data is performed using a 3D histological image reconstruc-

tion and 3D deformation of elastic body. Computed concentration of macrophages

indicates that there is a newly formed matter in the intima, especially in the LAD

15 mm region from bifurcation.

We used experimental data from pigs submitted to a high-cholesterol diet for

2 months. Specific software for 3D reconstruction of lumen domain and wall

artery (coronary artery) was developed. Matching of histological data and IVUS

slices is shown in Fig. 7.35. A 3D reconstruction was performed from standard

IVUS and angiography images. After that, a full three-dimensional finite element

analysis was performed using our in-house finite element code (www.artreat.kg.

ac.rs) in order to find low and oscillatory WSS zones. The LAD was selected for

this analysis. The process of matching with IVUS images was achieved by 2D

modeling of tissue deformation for a number of cross-sections recorded by

Fig. 7.35 Matching IVUS

and histological cross-

sectional geometry. Shear

stress distribution is shown

along the internal

arterial wall
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histological analysis (four cross-sections are shown in Fig. 7.35); those cross-

sections are deformed until the internal lumen circumferential lengths in IVUS

images are reached. Macrophages distribution shown in Fig. 7.36 corresponds to

the low WSS zone at 15 mm below LAD bifurcation from left circumflex artery,

where the largest plaque formation was found. Volume of the plaque obtained

from histological analysis (after 2 months of high-fat diet for plaque formation)

was fitted by employing a nonlinear least square analysis [32], in order to

determine material parameters in equations of Sect. 7.2. The fitted numerical

parameters are given in Table 7.3.

We examined experimental data obtained for the LAD artery of a pig after

2 months high-fat diet, in order to determine material parameters of the computer

model. Matching computed plaque location and progression in time with experi-

mental observations demonstrates a potential benefit for future prediction of this

vascular disease by using computer simulation.

The results for shear stress distribution for pigs # 2, 3, 4, 5, 9 are shown in

Fig. 7.37. It can be observed that there are low wall shear stress zones <5 dyn/cm2

which are indicated in Fig. 7.37e in the proximal zones of the coronary arteries

which is in good agreement with histological measurement from CNR (Table 7.4).

For a specific pig HF9, we tried to fit lesion area function with WSS obtained

from simulation. The function has four parameters (a, b, c, d)

Lesion area ¼ a � log bþ c

wssþ d

� �
(7.42)

The fitted values for a, b, c, d are 100.95, 1.0, 0.00773, and �0.8849, respec-

tively (Fig. 7.38).
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Fig. 7.36 Computer reconstruction of a cross-section of LAD at 15 mm after bifurcation

(left panel), with computed concentration of macrophages [mg/ml] (middle panel); histological
analysis (right panel) after 2 months of the high-fat diet
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Fig. 7.37 Shear stress distribution for pigs # 2, 3, 4, 5, 9
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Fig. 7.37 (continued)
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Comparison of numerical and experimental data for pig HF9 is presented in

Figs. 7.39, 7.40, and 7.41. CXCR4 is considered to be initiator and plaque formation

together with WSS distribution. The system of reaction–diffusion Eq. 7.7 is now

∂tCXCR4 ¼ d1ΔCXCR4� k1CXCR4 �M
∂tFCþ div vwFCð Þ ¼ d2ΔFC� k1CXCR4 � FC
∂tMIF ¼ d3ΔMIF� λMIFþ k1CXCR4 � FCþ γ CXCR4� CXCR4thr

� � (7.43)

Boundary conditions for first equation are WSS function from Fig. 7.38 and MIF

signal function for the second equation. For fluid domain, we used around 100,000

8-node finite elements. Wall domain was modeled with around 80,000 8-node finite

elements. Boundary conditions as well as fitted parameters are given in Table 7.5.

ALE formulation was applied for the moving mesh domains. Time domain of

2 months was achieved for each pig.

Numerical and experimental results for FC lipids percentage inside lesion area

are presented in Fig. 7.39. It can be observed that good accuracy was achieved for

lesion area, FC lipids as well as CXCR4.

Comparison of these experimental and numerical data is given in Table 7.6.

For pig HF11, comparison of numerical and experimental results for lesion area,

FC lipids, as well as CXCR4 is presented in Figs. 7.42, 7.43, and 7.44. Boundary

conditions and fitted model parameters have been shown in Table 7.7. Comparison

of these data is given in Table 7.8.
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Fig. 7.37 (continued)
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Fig. 7.38 Fitted data for WSS function from lesion area Lesion area ¼ a � log bþ c
wssþd

� �
. Four

parameters a, b, c, d were fitted

Fig. 7.39 Numerical results for HP9. FC foam cells lipids percentage area inside lesion area

26.2 %. Histological data per some characteristics cross-sections and comparison with numerical

data. Numerical cross-sections dimension
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Fig. 7.40 Comparison between experimental and numerical data for pigHF9. Baseline and model

with plaque. Cross-section presentation of histological and numerical data

HF9
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Fig. 7.41 Numerical results for pig HF9. Percentage of the FC lipids inside lesion area. Percent-

age of CXCR4 inside area. Shear stress distribution [Pa]
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Fig. 7.42 Numerical results for HP11. FC lipids percentage area inside the lesion area. Histologi-

cal data per some characteristics cross-sections and comparison with numerical data. Numerical

cross-sections dimension

Fig. 7.43 Comparison between experimental and numerical data for pig HF11. Baseline and

model with plaque. Cross-section presentation of histological and numerical data



7.5 Results on the Coronary Patients

In this chapter, we tested our model in a set of patients who underwent coronary

computed tomography angiography (CTA) for anginal symptoms [33]. The

inflammatory process is modeled using three additional reaction–diffusion partial

differential equations. The proof of concept of the model effectiveness was assessed

by repetition of CTA, 6 months after the baseline evaluation. Beside the low values

of local shear stress, plaque characteristics, risk profile, pattern of circulating

adhesion molecules, and reduced coronary flow reserve at baseline appeared to

affect plaque progression towards flow-limiting lesions at follow-up evaluation.

In the present study, a group of patients from CNR Pisa with coronary artery

disease (CAD) and intermediate lesions was evaluated by CTA; clinical and

imaging data of these patients have been described in detail in D4.4.1. An innova-

tive approach to simulate the WSS-related low-density lipoprotein (LDL) transport

across the endothelium and to identify LDL accumulation sites was used. The

novelty of this work lies in the acquisition of systemic factors related to atheroscle-

rosis evolution (risk profile, inflammation, circulating markers of endothelial

activation), measurements of coronary microcirculatory vasodilating capability,

and the systematic verification of prediction of plaque progression by repeated

CTA, 6 months after the baseline evaluation.

For plaque volume progression, we need at least two different points in time

from medical images. We use the following equations:

Ftn kþ1ð Þ i; jð Þ ¼ p0 jð Þ þ p1 jð Þ � Ftn kð Þ i; jð Þ

þ p2 jð Þ�dFtn kð Þ i; jð Þ
dt

����
tn

� Δtþ p3 jð Þ � dτ
wss

tn kð Þ i; jð Þ
dt

����
tn

� Δt (7.44)
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Fig. 7.44 Numerical results for pig HF11. Percentage of the FC lipids inside lesion area.

Percentage of CXCR4 inside area. Shear stress distribution [Pa]
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where Ftn kþ1ð Þ i; jð Þ is function of the coordinate or wall thickness I for cross-section

j at time tn; k is iteration, k ¼ 0, 1, 2, 3. . .; n is the time point for image data; p(0),
p(1),. . .are coefficients; τwss is the wall shear stress; and Δt is time step. A simple

linear regression analysis with least square method is used for the estimation of the

coefficient p(0), p(1). . . for each specific patient.

7.5.1 Clinical Validation by CTA Follow-up

CTA scans were acquired at follow-up paying attention to carefully reply the baseline

acquisition procedure and similar patient’s heart rate. The 3D artery reconstruction

and plaque characterization were accomplished by using the baseline reconstructed

images as mask, in order to obtain superimposable vessel pathway (Figs. 7.45 and

7.46). Quantitative image analysis and plaque characterization were undertaken by

two independent expert cardio-radiologists, unaware of the clinical features.

Discrepancies in measurements were solved by a third observer. IVUS analysis and

multiple views coronary angiography were utilized as gold standard for plaque

characterization and diameter lumen measurements, respectively.

Plaques were defined as noncalcified, calcified, or mixed. A lesion progression at

6 months follow-up was defined when the lumen diameter decreased of at least

30 % from baseline.

Fig. 7.45 Coronary CTA angiography at baseline and at 6 months (upper, left, and right panels,
respectively), 2D coronary angiography (lower panel, left), IVUS study at the level of distal

circumflex artery lesion (lower panel, middle), pressure and Doppler flow velocity of the same

circumflex artery segments (lower panel, right) in patient 3 of D4.4.1. CTA detects a

nonobstructive (35 % lumen diameter reduction) mixed plaque that progressed at 6 months

(48 % lumen diameter reduction). CFR was markedly reduced at baseline evaluation (1.7),

indicating an impaired microcirculatory vasodilating capability
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7.5.2 Patient Characteristics

Patient demographic and clinical characteristics, including risk factors and

Framingham score, in the ten enrolled patients are reported in Table 7.9. Most of

the patients had high Framingham risk score, but not significant coronary lesions at

coronary angiography. Therefore, the target population was characterized by patients

with risk factors and nonobstructive coronary plaques in CTA and IVUS studies.

7.5.3 Plaque Characterization and Detection of Lesion
Progression

Four of the ten enrolled patients completed the 6 months follow-up by CTA,

following the baseline evaluation (patients 1, 3, 4, 5). CTA allowed a complete

evaluation of the three main coronary arteries, with high-quality visualization of

vessel geometry and pathway, and definition of plaque characteristics. At baseline,

IVUS and 2D coronary angiography permitted to confirm the presence of target

lesions in all patients, with further details on plaque composition. Two of the four

Fig. 7.46 Coronary CTA angiography at baseline and at 6 months (upper, left and right panels,
respectively), 2D coronary angiography (lower panel, left), IVUS study at the level of distal

circumflex artery lesion (lower panel, middle), pressure and Doppler flow velocity of the same

circumflex artery segments (lower panel, right) in patient 5 of D4.4.1. CTA detects a

nonobstructive (33 % lumen diameter reduction) soft plaque that progressed to an almost critical

stenosis at 6 months (67 % lumen diameter reduction). CFR was almost normal, while FFR was

reduced at baseline evaluation (0.84), indicating a slight hydraulic impact of the two adjacent

lesions on the coronary flow
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patients (patients 3 and 5) showed an obvious reduction of lumen diameter, indica-

tive of plaque progression, both in the distal portion of the circumflex artery. Plaque

was defined mixed in one patient and noncalcific in the other, according to CTA and

IVUS (virtual histology) criteria. Plaque progression occurred in a bend region of

the vessel and in its inner part in both patients. CFR was within the normal range

(>3) in all investigated segments but one (CFR 1.7), corresponding to the circum-

flex artery with plaque progression (patient 3). FFR was within the normal values

(>0.92) in all investigated segments but one (FFR 0.84), located in the circumflex

artery with the most obvious plaque progression (patient 5). Thus, the two segments

with plaque growth at 6 months follow-up in patients 3 and 5 were characterized by

impaired CFR or reduced FFR, respectively. Angiographic and hemodynamic

features at baseline and at 6 months in the four patients are depicted in Table 7.10.

Plaque composition in the six segments evaluated by IVUS and virtual histology is

reported in Table 7.11. Imaging and Doppler flow velocity data in the two patients

with plaque progression are shown in Figs. 7.45 and 7.46.

7.5.4 Wall Shear Stress and Mass Transport Computation

Plaque progression for patient 3 at distal circumflex artery region was detected

using CTA image analysis at baseline and after 6 months. Volume progression from

35 % to 48 % was observed with segmentation and registration of CT images.

Downstream the bifurcation level with the second marginal branch predominantly

low WSS values occur at baseline (Fig. 7.47a, arrow). A similar situation with a

more obvious demonstration of the influence of WSS was observed on patient 5 in

the distal portion of the circumflex artery (Fig. 7.48) that showed a marked

progression of the baseline stenosis. Location of the lowest WSS (Fig. 7.48a) in

the distal portion of the vessel corresponded to the site of plaque growth after

6 months (Fig. 7.48b). WSS distributions on the proximal left anterior descending

artery at baseline and follow-up for patient 3 are shown in Fig. 7.49. It can be seen

that intra-plaque WSS values were not reduced, as compared with the surrounding

segments, and no significant change was observed with time, according to no

change in plaque volume progression.

CFD data were used as input for a fitting procedure of volume plaque progres-

sion. Oxidized LDL distribution at baseline and follow-up study after 6 months in

patient 5 is shown in Fig. 7.49. It can be observed that after 6 months, there is a

significant increase in LDL distribution distal from the most narrowed part of the

lumen domain. Due to complex lumen and wall domain, only LDL distribution for

the joint boundaries is presented in Fig. 7.50. WSS in our model is used for plaque

initiation and position at the wall for higher LDL penetration. There is a complex

process of the macrophages transformation into the foam cells. Also foam cells

directly created the intima volume increase. Fitting of the plaque volume increasing

of 34 % from baseline to 6 months follow-up observed from medical image analysis

was done with Eq. 7.44. The parameters for the numerical models of patient 5 are

given in Table 7.12.
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7.5.5 Features Affecting Plaque Progression

The findings from ARTreat study point the attention on specific features that may

affect plaque progression in a short midterm (6 months). Plaque progression

occurred in the two patients with the highest Framingham risk score (25 and 23)

of the enrolled population; both plaques developed at the inner side of curved

Table 7.11 Plaque

composition in the six

segments evaluated by virtual

histology (IVUS)

Case NC DC FI FF

Patient 01

RCA middle 25.9 11.0 57.1 6.0

Patient 03

LAD proximal 28.1 13.0 54.5 4.5

CX distal 16.6 6.1 53.5 23.8

Patient 04

LAD middle 22.6 9.8 50.3 17.3

Patient 05

CX proximal 9.4 1.2 56.2 33.2

CX distal 2.5 0.6 44.9 51.9

NC necrotic core, DC dense calcium, FI fibrotic, FF fibro fatty

1.10e+01

1.03e+01

9.63e+00

8.94e+00

8.25e+00

7.56e+00

6.88e+00
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Fig. 7.47 Local shear stress distribution at baseline (a) and after 6 months follow-up (b) in patient

3. Area with plaque progression at follow-up showed at baseline the lowest shear stress value

(arrow). Wall shear stress values are expressed in [Pa] units
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Fig. 7.48 Local shear stress distribution at baseline (a) and after 6 months follow-up (b) in patient

5. Area with plaque progression at follow-up towards critical stenosis (distal circumflex artery)

showed at baseline the lowest shear stress value (arrow). Wall shear stress values are expressed in

[Pa] units
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Fig. 7.49 Local shear stress distribution at baseline (a) and after 6 months follow-up (b) in a

stable plaque of the left anterior descending artery in patient 3. The shear stress values in the

stenotic region are higher than those in adjacent segments (arrow)
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(myocardial side) distal circumflex artery segments. Interestingly, only these

territories showed an impaired CFR or reduced FFR, indicative of an impaired

coronary vasodilating capability. The greatest plaque growth occurred in a

noncalcified, eccentric plaque (patient 5). At virtual histology (IVUS study), the

fibro-fatty component was the prevalent content of this plaque, markedly higher

than that observed in the other patients. Conversely, necrotic core was the scarce

component. Patient 5 showed the highest increase in E-selectin plasma

concentrations, at 6-month evaluation, largely above the normal range, among the

four patients that completed the study, while only patient 4 showed an obvious

increase in VCAM-1. No changes were observed in ICAM-1 levels in the four

patients. Baseline WSS values in the progressive lesions (patients 3 and 5) were

3.36 dyn/cm2 and 1.85 dyn/cm2, respectively. These values were lower than those

calculated immediately before and after the lesions. Conversely, WSS values in the

four stable plaques averaged 4.2 � 0.4 dyn/cm2 and were not lower than values

calculated in segments immediately adjacent to the stenoses.

7.5.6 Discussion

A multiscale model for the biological process of plaque formation and progression

has been applied to CTA imaging in patients with nonobstructive coronary plaques.

The model includes the 3D reconstructed arterial model, the blood flow, the WSS

distribution, the molecular/cell model of the arterial wall/blood composition, and

Fig. 7.50 LDL distribution at baseline and in the follow-up study in the distal circumflex artery

with obvious lumen diameter reduction (patient 5). Angiography slices are depicted as background

of the computer simulation results. Units for LDL concentration [mg/ml]
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the biological mechanism involved in the generation and growth of atherosclerotic

plaque. Our model starts with passive penetration of LDL in particular areas of the

intima. We assume that once in the intima, LDL is immediately oxidized. When the

oxidized LDL exceeds a threshold, there is recruitment of monocytes. The incom-

ing monocytes immediately differentiate into macrophages. Transformation of

macrophages into foam cells contribute to the recruitment of new monocytes.

This yields the secretion of a pro-inflammatory signal (cytokines), self-support

inflammatory reaction. Newly formed foam cells are responsible for the local

volume increase. Under a local incompressibility assumption, when foam cells

are created, the intima volume is locally increasing. Volume change of the wall

affects the fluid lumen domain which means that fully coupling is achieved. The

specific numerical procedures using ALE were developed for this purpose. The

regression analysis was employed for plaque volume development at two different

measurement times for baseline and 6 months follow-up study. Nonlinear least

square fitting procedure was used for a plaque composition.

The two time points obtained in our study population allowed to characterize

the native shear stress in the two vessel site of plaque progression with time. In

fact, the baseline sub-significant lesions in distal circumflex artery (lumen diame-

ter reduction of 35 % and 33 %) subtended to low WSS values that markedly

changed in patient (case 5) with plaque progression towards an almost critical

stenosis. Most of the fitting parameters were obtained from patient-specific

measurements at the time of catheterization procedure (usually 1–2 weeks follow-

ing CTA evaluation), namely, intracoronary flow velocity and pressures. Further-

more, plaque composition was assessed by virtual histology in each patient,

providing a degree of accuracy much higher than CTA that will allow better

definition of models for plaque progression. This approach is also improving the

reliability of WSS computation and inter-patient comparison. Further support to

reliability of CTA image reconstruction and shear stress measurement will derive

from investigations under way on comparison of WSS measurements by 3D

segment reconstruction from IVUS and angiography. Information gained by

measurement of CFR, as pointed out previously, would more properly address

the issue on correlation between local WSS and plaque formation. The heteroge-

neous course of each plaque in the same patient underscores the role of vessel

geometry and local hemodynamic forces in determining the natural history of

plaque remodeling. Patient-specific local and systemic features, as assessed in this

study, can provide insights on the nature of arterial remodeling and, potentially,

on plaque vulnerability.

Determination of plaque location and composition and computer simulation of

progression in time for a specific patient shows a potential benefit for prediction of

disease progression. The proof of validity of 3D reconstructed coronary CTA

scans in the evaluation of atherosclerotic plaque burden may shift the clinical

information of coronary CTA from morphological assessment towards a func-

tional tool [33].
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7.6 Results on the Carotid Artery Patients

In this chapter, we choose two specific patients from MRI study with significant

plaque progression. Plaque volume progression using three time points for baseline,

3, and 12months follow-up is fitted. Our results for plaque localization correspond to

low shear stress zone, and we fitted parameters from our model using nonlinear least

square method. Determination of plaque location and composition and computer

simulation of progression in time for a specific patient shows a potential benefit for

prediction of disease progression. The proof of validity of three-dimensional com-

puter modeling in the evaluation of atherosclerotic plaque burden may shift the

clinical information of MRI from morphological assessment towards a functional

tool. Understanding and prediction of the evolution of atherosclerotic plaques either

into vulnerable or stable plaques are major tasks for the medical community.

Our working hypotheses are that the local arterial wall volume increases as the

result of newly formed foam cells. Monocytes evolve in macrophages which

phagocyte oxidized LDL and evolve in foam cells by massive ingestion of oxidized

LDL. Transformation of macrophages into foam cells contribute to the recruitment

of new monocytes. It yields the secretion of a pro-inflammatory signal (cytokines).

It is self-support inflammatory reaction. Newly formed foam cells are responsible

for the local volume increase. Under a local incompressibility assumption, when

foam cells are created, the intima volume is locally increasing. We further assume

that arterial wall permeability increases in the zone of low wall shear stress and

elastic property of the arterial wall for fluid–structure interaction problem.

7.6.1 Patients’ Data

Fifty patients with carotid atherosclerotic disease underwent high-resolution MRI

of their carotid arteries in a 1.5 T MRI system (Signa HDx GE Healthcare,

Waukesha, WI) with a four-channel phased array neck coil (PACC, Machnet BV,

Elde, The Netherlands) [34]. The study protocol was reviewed and approved by the

regional research ethics committee, and all patients gave written informed consent.

After an initial coronal localizer sequence, axial 2D time-of-flight (TOF) MR

angiography was performed to identify the location of the carotid bifurcation and

the region of maximum stenosis. The following sequences were used to depict the

various contents within the plaque structure: T1 weighted (repetition time/echo

time: 1 � RR/7.8 ms) with fat saturation; T2 weighted (repetition time/echo time:

2 � RR/100 ms) with fat saturation; proton density (PD) weighted (repetition time/

echo time: 2*RR/7.8 ms) with fat saturation; and short tau inversion recovery

(STIR) (repetition time/echo time/inversion time: 2 � RR/46/150 ms). The field

of view was 10 cm � 10 cm and matrix size 256 � 256. The in-plane spatial

resolution achieved was of the order of 0.39 mm � 0.39 mm � 3 mm. Plaque

components, i.e., lipid and fibrous tissue were manually delineated by two
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experienced MR readers using CMR Tools (London, UK) with previously

published criteria [34]. Two specific patients with high plaque progression were

chosen. We did manual segmentation of plaque components, such as fibrous cap

and chronic hemorrhage tissue, calcium, and PH, using carotid MR images.

7.6.2 Fitting Procedure for Plaque Volume Growing
Function

For plaque volume growing a fitting procedure for growth function which takes into

account change of the coordinates, shear stress as well as effective wall stress data

from fluid–structure interaction calculation is developed.

In this methodology, we used three known times T1, T2, and T3 [35] for

estimation of plaque volume growth.

Starting from the plaque geometry at T1, we used three different growth

functions to simulate plaque progression and tried to reach best agreement with

plaque geometry obtained from image reconstruction at T2 and T3:

• GF1 – Growth function which uses nodal coordinates data only

• GF2 – Growth function which uses nodal coordinates and shear stress data

• GF3 – Growth function which uses nodal coordinates, shear stress, and solid

stress data

These growth functions as well as the fitting procedure are described in detail in

the appendix section.

Overlapping contour plots of the target and simulated results for time steps

T2 and T3 are presented in Fig. 7.51.

Fig. 7.51 Simulated contour plots compared with target contours at time steps T2 (3 months) and

T3 (12 months). Green: simulated contours; Red: target contours
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7.6.3 Growth Functions and the Fitting Procedure

For simulation of the plaque growth, the following procedure was used:

Step 1: Start from the original in geometry at T1.

Step 2: Set

f t10 i; jð Þ ¼ f T1 i; jð Þ

f t11 i; jð Þ ¼ f T1 i; jð Þ þ f T2 i; jð Þ � f T1 i; jð Þð Þ=m
τt10 i; jð Þ ¼ τT1 i; jð Þ

τt11 i; jð Þ ¼ τT1 i; jð Þ þ τT2 i; jð Þ � τT1 i; jð Þð Þ=m
σt10 i; jð Þ ¼ σT1 i; jð Þ

σt11 i; jð Þ ¼ σT1 i; jð Þ þ σT2 i; jð Þ � σT1 i; jð Þð Þ=m
Step 3: We use m time steps to go from T1 to T2 and n time steps to go from

T2 to T3. This means that we use total n + m time steps to go from T1 to T3.

For k ¼ 1, . . . n + m do the following:

• GF1:

f t1 kþ1ð Þ i; jð Þ ¼ a0 jð Þ þ a1 jð Þ � w jð Þ � f t1k i; jð Þ þ 1� w jð Þð Þ � f t10 i; jð Þ� �

þ a2 jð Þ � df
dt

����
T1k

i; jð Þ � Δtk (7.45)

• GF2:

f t1 kþ1ð Þ i; jð Þ ¼ a0 jð Þ þ a1 jð Þ � w jð Þ � f t1k i; jð Þ þ 1� w jð Þð Þ � f t10 i; jð Þ� �

þ a2 jð Þ � df
dt

������
T1k

i; jð Þ � Δtk þ a3 jð Þ � τt1k i; jð Þ þ a4 jð Þ � dτ
dt

������
T1k

i; jð Þ � Δtk

(7.46)

• GF3:

f t1 kþ1ð Þ i; jð Þ ¼ a0 jð Þ þ a1 jð Þ � w jð Þ � f t1k i; jð Þ þ 1� w jð Þð Þ � f t10 i; jð Þ� �

þ a2 jð Þ � df
dt

������
T1k

i; jð Þ � Δtk þ a3 jð Þ � τt1k i; jð Þ þ a4 jð Þ � dτ
dt

������
T1k

i; jð Þ � Δtk

þ a5 jð Þ � σt1
k
i; jð Þ þ a6 jð Þ � dσ

dt

������
T1k

i; jð Þ � Δtk

(7.47)
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where df
dt

��
T1k

i; jð Þ ¼ f t1k i;jð Þ�f t1 k�1ð Þ i;jð Þ
tk�tk�1

, dτ
dt

��
T1k

i; jð Þ ¼ τt1k i;jð Þ�τt1 k�1ð Þ i;jð Þ
tk�tk�1

, and dσ
dt

��
T1k

i; jð Þ ¼
σt1k i;jð Þ�σt1 k�1ð Þ i;jð Þ

tk�tk�1
are derivatives of displacement, shear stress, and solid stress,

respectively; Δtk ¼ tkþ1 � tk ¼ T3�T1
mþn is a time step; f are x and y coordinates;

τ are wall shear stress values; σ are solid stress values of nodal points; j ¼ 1, 2,...24

is the slice number; and i is the index for the points on each slice. a0( j), a1( j),
a2( j), a3( j), a4( j), a5( j), a6( j) and w( j) are coefficients of growth functions GF1,
GF2, and GF3 to be determined in such a way to obtain the best match of calculated

geometries and experimental geometries at times T2 and T3. Since we use m time

steps to go from T1 to T2 and n time steps to go from T2 to T3, we compared ft1 _ m

with experimental geometry at time T2 and ft1 _(m + n) with experimental geometry

at time T3. The previous formulas of growth functions are very similar with

formulas that Yang used in his paper [35].

Coefficients of the plaque volume growth functions (GF1, GF2, and GF3)

a0( j), a1( j), a2( j), a3( j), a4( j), a5( j), a6( j) and w are calculated, independently,

for all 24 slices by using simplex optimization method, method which does not

involve derivative calculations, developed by John Nelder and Roger Mead

[36]. We minimized sum of the squared errors between calculated and real geome-

try at times T2 and T3 for each of 24 slices.

ESS jð Þ ¼
XNj

i¼1

xT2, i jð Þ � x T2, i jð Þ
� �2 þ yT2, i jð Þ � y T2, i jð Þ

� �2� �

þ
XNj

i¼1

xT3, i jð Þ � x T3, i jð Þ
� �2 þ yT3, i jð Þ � y T3, i jð Þ

� �2� � (7.48)

where Nj is the number of nodes for slice; xT2,i( j), yT2,i( j), xT3,i( j), and yT3,i( j) are
real x and y coordinates at time steps T2 and T3 for slice j; and x T2, i jð Þ, y T2, i jð Þ,
x T3, i jð Þ, and y T3, i jð Þ are calculated x and y coordinates at time steps T2 and T3 for

slice j.
The best results were obtained by using growth function GF3 which takes into

account both wall shear and solid stress. Total squared error is calculated as:

ESS ¼
X24
j¼1

ESS jð Þ (7.49)

Total squared errors for all growth functions are GF1 ¼ 36.02, GF2 ¼ 29.98,

and GF3 ¼ 26.31.

Total squared error does not give a picture of how our model is really accurate; it

only serves to compare results obtained with different growth function. Because of

that we calculated mean relative percent error:

RE jð Þ ¼ 1

2Nj

XNj

i¼1

ΔPT2, i jð Þ
rT2, i jð Þ þ

XNj

i¼1

ΔPT3, i jð Þ
rT3, i jð Þ

 !
� 100 (7.50)
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RE ¼ 1

24

X24
j¼1

RE jð Þ (7.51)

where ΔPT2,i( j) and ΔPT3,i( j) are distances between real and predicted position of

i-th point of j-th slice at times T2 and T3. rT2,i( j) and rT3,i( j) are distances between
real position of i-th point and center of gravity for j-th slice at times T2 and T3.

Mean relative percent errors for all growth functions are GF1 ¼ 2.7 %,

GF2 ¼ 2.62 %, and GF3 ¼ 2.51 %. It can be observed that model which uses

growth function GF3 is the most accurate. Mean relative percent errors for GF3 is

2.51 %, which means that distance between predicted position of point and real

position of point is in average only 2.51 % of distance between real position of point

and slice center of gravity. This seems to be very good result.

7.6.4 Results

We compared changes in the cross-section areas for different patients with carotid

artery progression. From 50 patients, we choose two with significant evidence of

MR plaque progression in order to estimate parameter for our model of plaque

formation and development. From MR slices, we segmented the inner and outer

wall at nine cross-sections for baseline, 3, and 12 months. Segmented data for

patient #1 are presented in Fig. 7.52. Trends for increasing or decreasing cross-

section areas versus time for patient #1 have been shown in Fig. 7.53. It can be seen

that almost all cross-section areas are increasing during follow-up time. For the

same patient, the correlation with wall shear stress zones is shown in Fig. 7.54. We

used three categories as colors for the light: red color denotes large decreasing in

the cross-section area changes and middle wall shear stress, yellow color denotes

small decreasing in the cross-section area changes and middle wall shear stress,

while increasing in the cross-section area changes and low wall shear stress is

denoted by green color. Obviously from Fig. 7.54, it can be concluded that there is a

significant correlation with large increasing of the cross-section areas and low wall

shear stress for patient #1. Similar analysis was done with patient #2. Cross-section

areas vs. time (0, 3, and 12 months) for patient #2 has been shown in Fig. 7.55.

Green color light which denotes large increasing in the cross-section area changes

and low wall shear stress also is mostly dominant for patient #2 (see Fig. 7.56).

The different material properties for patient #1 have been shown in Figs. 7.57

and 7.58. There are three different parts in the carotid arterial wall and Young’s

elasticity modules: artery tissue E ¼ 3.0e6 Pa, fibrous cap E ¼ 6.0e6 Pa, and

subacute hemorrage E ¼ 4.5e6 Pa.

Effective wall stress for three diferent times (0, 3, and 12 months) at maximum

peak systole is presented in Fig. 7.59.

Volume of the plaque progression obtained from MRI system was fitted

by employing a nonlinear least square analysis [32], in order to determine
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Fig. 7.52 Cross-section areas changes for patient #1 (area between the inner and the outer wall)
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material parameters in equations of Sect. 8.2. The fitted numerical parameters are

given in Table 7.13.

Fifty patients with carotid atherosclerotic disease are analyzed with MRI.

Plaque components, i.e., lipid and fibrous tissue were manually delineated by two

experienced MR readers.
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Fig. 7.53 Cross-section areas versus time (0, 3 and 12 months) for patient #1

Fig. 7.54 Correlation of cross-sections changes with wall shear stress for patient #1

Fig. 7.55 Cross-section areas versus time (0, 3 and 12 months) for patient #2
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Elastic material property of the wall for property was assumed. Mass transfer

equations for wall are considered to be stationary due very slow process of plaque

formation and development. We implemented a fitting procedure for plaque volume

growing which takes into account change of the coordinates, shear stress, as well as

effective wall stress data from fluid–structure interaction calculation. It looks that

low shear stress is not only factor for local plaque development. Wall stress analysis

as well as inflammation model with cell level transformation and progression

should be taken into account.

We examined patient data at three time points for the carotid artery, zero

(baseline), 3 and 12 months in order to make fitting of the parameter model for

Fig. 7.56 Correlation of cross-section areas changes with wall shear stress for patient #2

Fig. 7.57 Different material properties for a specific patient #1 for follow-up study
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specific patient. Three-dimensional reconstruction was performed from high reso-

lution MRI system. Boundary conditions for the inlet velocity waveforms are

measured from MR. Shear stress distribution mostly corresponds to the localization

of the plaque volume progression. Fluid–structure interaction was implemented to

analyze effective wall stress distribution. We fitted patient data for plaque volume

progression with growth functions which depend from fluid shear stress and arterial

wall effective stress.

Also we analyzed UCAM patient #8 and #9 for baseline and follow-up of

12 months. The WSS distribution results for these two patients are presented in

Figs. 7.60 and 7.61.

Fig. 7.58 3D presentation of plaque composition and different material properties for patient #1

Fig. 7.59 Effective wall stress calculation for follow-up time baseline, 3, and 6 months for patient

#1 (units 1 ¼ 1e5 Pa)
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Fig. 7.60 UCAM patient #8, base line (left) and follow-up 12 months (right)

Fig. 7.61 UCAM patient #9, base line (left) and follow-up 12 months (right)



7.7 Discussion and Conclusions

Using partial differential equations, we provide a realistic three-dimensional model

of the plaque initiation process. We perform numerical simulations in a two- and

three-dimensional setting. Using in-house FE software from the University of

Kragujevac a full three-dimensional model was developed. The mathematical

model can be separated in three parts as following: a model for LDL transfer and

oxidation (this model needs a careful computation of both the arterial tree geometry

and the blood flow not only in the lumen but also in the arterial wall), a model for

the inflammatory process that takes place in the intima and a model for lesion

growth.

A full three-dimensional model was created for plaque formation and develop-

ment, coupled with blood flow and LDL concentration in blood. Determination of

plaque location and progression in time for a specific patient shows a potential

benefit for future prediction of this vascular decease using computer simulation.

In this delivery a few continuum models based are described. Summarizing the

results of the study, we have concluded that:

• A fluid-wall model for the transport of LDL from the arterial lumen to the

arterial wall and inside the wall is developed. In this stage of the project

we developed a single layer model while multilayered model is still developing.

The convection terms are not neglected and the incremental-iterative procedure

is applied.

• The models for plaque initiation and plaque progression are developed. These

two models are based on partial differential equations with space and times

variables and they describe the biomolecular process that takes place in the

intima during the initiation and the progression of the plaque.

• The model for plaque formation and plaque progression despite some difficulties

concerning the different time scales that are involved and the different blood

velocities in the lumen and in the intima, its numerical treatment is developed by

using decomposition techniques together with finite elements methods and by

splitting the numerical scheme into three independent parts: blood flow and LDL

transfer, inflammatory process and atheromatous plaque evolution. Using such a

model, the initiation plaque modeling procedure, first comprehends the simula-

tion of the plaque initiation procedure by performing a virtual and numerical

computation of plaque initiation within a selected animal-specific artery. The

main limitation of these models is that they have many parameters that are not

easy to estimate.

• Nonlocal model for plaque progression is developed in order to build a macro-

scopic model that does not describe the inflammatory process in details but that

focus on the evolution of the lumen’s geometry. In this model, the nonlocal

effects appear through a term that, in some sense, represents the membrane

permeability. However, the very interesting features of this model, since the

limitations are too important we will not use this model anymore.
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• We proposed a model to describe the motion of mixtures of cell populations in a

saturated medium with a constraint of the local density. We provided an adapted

theoretical framework, based on a reformulation of the model as a gradient flow

in a product space of densities, and proposed a discretization strategy which

enjoys reasonable stability and accuracy properties.

References

1. P. Libby, Inflammation in atherosclerosis. Nature, 2002, 868–874.
2. J. Loscalzo& A.I. Schafer, Thrombosis and Hemorrhage (Third edition. Lippincott Williams

& Wilkins, Philadelphia, 2003).

3. J.M. Tarbell, Mass transport in arteries and the localization of atherosclerosis, Annual Review
of Biomedical Engineering, 5, 2003, 79–118.

4. P. Zunino, Mathematical and numerical modeling of mass transfer in the vascular system.
(PhD thesis, Lausanne, Switzerland: EPFL, 2002).

5. A. Quarteroni, A. Veneziani, P. Zunino, Mathematical and numerical modeling of the solute

dynamics in blood flow and arterial walls, SIAM Journal of Numerical Analysis, 39, 2002,
1488–1511.

6. M.R. Kaazempur-Mofrad, C.R. Ethier, Mass transport in an anatomically realistic human right

coronary artery, Ann Biomed Eng 29, 2001, 121–127.
7. S. Wada, M. Koujiya, T. Karino, Theoretical study of the effect of local flow disturbances on

the concentration of low-density lipoproteins at the luminal surface of end-to-end anastomosed

vessels, Med BiolEngComput 40, 2002, 576–587.
8. D. K. Stangeby, C.R. Ethier, Computational analysis of coupled blood-wall arterial LDL

transport, J BiomechEng-T ASME 124, 2002, 1–8.
9. N. Sun, N.B. Wood, A.D. Hughes, S.A.M. Thom, X.Y. Xu, Fluid-wall modelling of mass

transfer in an axisymmetric stenosis: effects of shear dependent transport properties,

Ann Biomed Eng 34, 2006, 1119–1128.
10. L. Ai, K. Vafai, A coupling model for macromolecule transport in a stenosed arterial wall,

Int J. Heat Mass Tran 49, 2006, 1568–1591.
11. U. Olgac, V. Kurtcuoglu, V. Poulikakos, Computational modeling of coupled blood-wall mass

transport of LDL: effects of local wall shear stress, Am J. Physiol Heart CircPhysiol 294, 2008,
909–919.

12. R. Ross, Atherosclerosis: a defense mechanism gone awry, Am J Pathol., 143, 1993,

987–1002.

13. N. Filipovic, N. Meunier, and M. Kojic, PAK-Athero, Specialized three-dimensional PDE
software for simulation of plaque formation and development inside the arteries, University of
Kragujevac, 34000 Kragujevac, Serbia, 2010.

14. Goldstein J., Anderson R., Brown M., “Coated pits, coated vesicles, and receptor-mediated

endocytosis.”Nature, 1979, Vol. 279, pp. 679–684.
15. Bratzler R. L., Chisolm G.M., Colton C. K., Smith K. A., Lees R. S., “The distribution of

labeled low-density lipoproteins across the rabbit thoracic aorta in vivo.” Atherosclerosis,
1977, Vol. 28, pp. 289–307.

16. Kojic, M., Filipovic, N., Stojanovic B., Kojic N., (2008) Computer modeling in bioengineer-

ing: Theoretical Background, Examples and Software, John Wiley and Sons, Chichester,

England.

17. Brooks A.N., Hughes T.J.R., “Streamline upwind/Petrov-Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier–Stokes

equations.”Comput. Meths. Appl. Mech. Engrg., 1982, Vol. 32, pp. 199–259.

7 Computer Modeling of Atherosclerosis 307



18. Filipovic N., Mijailovic S., Tsuda A., Kojic M. “An Implicit Algorithm Within The Arbitrary

Lagrangian–Eulerian Formulation for Solving Incompressible Fluid Flow With Large Bound-

ary Motions.” Comp. Meth. Appl. Mech. Eng., 2006, Vol. 195, pp. 6347–6361.
19. Yuan S.W., Finkelstein A.B.., “Laminar pipe flow with injection and suction through a porous

wall.” Transaction of ASME, 1956, Vol. 78, pp. 719–724.

20. Goh V. K., Lau C. P., Mohlenkamp S., Rumberger J. A., Achenbach A., Budoff M. J.,

Cardiovascular Ultrasound, 2010, 8:5.

21. Cheng C., Tempel D., Haperen V. R., Baan A. V. D., Grosveld F., Daemen Mat J.A.P., Krams

R., Crom D.R., Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of

Fluid Shear Stress, Circulation Vol. 113, 2006, pp. 2744–2753

22. Himburg, H., Grzybowski, D., Hazel, A., LaMack, J. Li X. and Friedman M., Spatial

comparison between wall shear stress measures and porcine arterial endothelial permeability.

Am J Physiol Hear Circ Pysiol 286, 1916–1922, 2004.

23. Birukova A.A. , K. G. Birukov, K. Smurova, D. Adyshev, K. Kaibuchi, I. Alieva, J. G. Garcia

and A. D. Verin. Novel role of microtubules in thrombin-induced endothelial barrier dysfunc-

tion. Faseb J. Dec 2004;18(15):1879–1890.
24. Tai S. C., G. B. Robb and P. A. Marsden. Endothelial nitric oxide synthase: a new paradigm for

gene regulation in the injured blood vessel. ArteriosclerThrombVasc Biol. Mar 2004;24

(3):405–412.

25. Vargas C. B., F. F. Vargas, J. G. Pribyl and P. L. Blackshear. Hydraulic conductivity of the

endothelial and outer layers of the rabbit aorta. Am J Physiol. Jan 1979;236(1):H53–60.

26. Rappitsch G., K. Perktold, Pulsatile albumin transport in large arteries: a numerical simulation

study, J. Biomech. Eng. 118 (1996) 511–519.

27. Wada, S., Karino, T., (2000) Computational study on LDL transfer from flowing blood to

arterial walls. In: Yamaguchi, T. (Ed.), Clinical Application of Computational Mechanics to

the Cardiovascular System. Springer, Berlin, 157–173.

28. Moore J.A., C.R. Ethier, Oxygen mass transfer calculations in large arteries, J. Biomech. Eng.

119 (1997) 469–475.

29. Stangeby D.K., C.R. Ethier, Coupled computational analysis of arterial LDL transport—

effects of hypertension, Comput. Meth. Biomech. Biomed. Eng. 5 (2002) 233–241.

30. Kedem O., Katchalsky A. (1958): Thermodynamic analysis of the permeability of biological

membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246

31. Kedem O., Katchalsky A. (1961): A physical interpretation of the phenomenological

coefficients of membrane permeability. J. Gen. Physiol. 45, 143–179

32. Chavent G., (2010) Nonlinear Least Squares for Inverse Problems, Nonlinear Least Squares

for Inverse Problems Theoretical Foundations and Step-by-Step Guide for Applications,

Springer, second print, New York.

33. Oberdan Parodi, Themis Exarchos, Paolo Marraccini, Federico Vozzi, Zarko Milosevic,

Dalibor Nikolic, Antonis Sakellarios, Panagiotis Siogkas, Dimitris I. Fotiadis, Nenad

Filipovic, 2012, Patient-specific prediction of coronary plaque growth from CTA angiography:

a multiscale model for plaque formation and progression, IEEE Trans Inf Technol Biomed. 16

(5):952–65.

34. Sadat U, Teng Z, Young VE, Zhu C, Tang TY, Graves MJ, Gillard JH (2010) Impact of plaque

haemorrhage and its age on structural stresses in atherosclerotic plaques of patients with

carotid artery disease: an MR imaging-based finite element simulation study. Int J Cardiovasc

Imaging DOI 10.1007/s10554-010-9679-z.

35. Yang C, Tang D and Atluri S (2010) Three-Dimensional Carotid Plaque Progression Simula-

tion Using Meshless Generalized Finite Difference Method Based on Multi-Year MRI Patient-

Tracking Data, CMES 57: 51–76

36. Nelder J. and Mead R 1965. “A simplex method for function minimization”, Computer Journal

7 (4): 308–313.

308 N. Filipovic et al.



Chapter 8

Particle Dynamics and Design of Nano-drug

Delivery Systems

Tijana Djukic

8.1 Introduction

Particles have been increasingly investigated in recent years as “smart” delivery

systems, which can be applied in biomedical imaging, but also as therapeutical

agents in cardiovascular and oncological treatments [1–3]. Such drug delivery

systems consist of nanoparticles that can be loaded with contrast agents or drug

molecules (monoclonal antibodies (mAbs) or small-molecule agents). Particles are

sufficiently small to be injected at the systemic level and transported through the

circulatory system to various organs and body districts. The size of particles ranges

from few tens of nanometers to hundreds of nanometers [4, 5] to few microns

[6]. Also, they can have various shapes, including spherical, spheroidal [7], or other

more complex shapes [8]. The majority are made by polymeric or lipid materials,

but can also be made of silica, gold, or iron oxide.

There are two strategies currently considered in the field of delivery of

nanoparticles to solid tumors. The strategy that has been traditionally considered

is the passive strategy, based on the enhanced permeability and retention effect

(EPR) [9] – nanoparticles that extravasate through fenestrations found in the tumor

vasculature are entrapped in the extracellular matrix and transported from the

vascular compartment to the inner region of the tumor mass. As an alternative to

the passive strategy, an active delivery strategy, which is gaining more and more

interest recently, is based on the targeting of the tumor vasculature through ligand-

receptor specific interactions. In this case particles are designed to be able to sense

the difference between normal and tumor endothelium and “search” for biological

and biophysical specificities such as overexpression of disease-specific receptor

molecules [10] or the appearance of abnormally large inter- or intra-endothelial

gaps [11]. In vascular targeting, nanoparticles should be able to attach to a specific

T. Djukic (*)

Faculty of Engineering, R&D Center for Bioengineering, Kragujevac, Serbia

e-mail: tijana@kg.ac.rs

G. Rakocevic et al. (eds.), Computational Medicine in Data Mining and Modeling,
DOI 10.1007/978-1-4614-8785-2_8, © Springer Science+Business Media New York 2013

309

mailto:tijana@kg.ac.rs


part of a blood vessel and release their payload, i.e., drug molecules or smaller

particulate formulations specifically designed for further transport through the

tumor mass.

In this type of drug delivery systems, it is very important to achieve particle

margination, i.e., the capability to move towards the endothelium and sense the

mentioned biological and biophysical diversities. An effective way to stimulate

particle margination could be the control of their size, shape, and density [12].

In microcirculation, in proximity to the walls of small vessels, the flow is mainly

governed by viscous forces. If there is no effect of gravitational or magnetic forces,

light spherical particles tend to move parallel to the walls without crossing the

streamlines [13, 14]. On the other hand, heavy particles, made of silica, gold, or iron

oxide, would drift laterally under the influence of gravity [15]. However, nonspher-

ical particles have a more complicated behavior. Hence, the conclusion was made

that both wall proximity and particle inertia have a dramatic influence on particle

dynamics [16, 17].

Numerical modeling of particle motion is important since it can facilitate the

analysis of influence of various parameters relevant in design of nanoparticles, such

as size, shape, and surface characteristics. Finite element method enables the

development of adequate particle tracking models. But this method requires very

fine meshes and very small time step to obtain precise simulation results. On the

other hand, discrete particle methods are suitable since they can provide a more

detailed analysis of particle trajectories and interaction forces between fluid and

particles, as well as among the particles themselves. One of these discrete methods

is the lattice Boltzmann method, which is considered in this chapter.

This chapter is organized as follows: in Sect. 8.2 the basics of lattice Boltzmann

method are explained, including theoretical background and implementation

details, such as discretization procedure and definition of boundary conditions.

Section 8.3 explains the model that was used for simulations of solid–fluid interac-

tion. Examples and results of simulations are the subject of Sect. 8.4. Section 8.5

concludes the chapter.

8.2 Lattice Boltzmann Method

Lattice Boltzmannmethod belongs to the class of problems named Cellular Automata

(CA). Thismeans that the physical system can be observed in an idealizedway, so that

space and time are discretized, and the whole domain is made up of a large number of

identical cells [18]. Special form of CA, the so-called lattice gas automata (LGA)

[19], describes the dynamics of particles that move and collide in discrete time-space

domain. The advantages of this method are simple implementation, the stability of the

solution, easy assignment of boundary conditions, and natural parallelization. How-

ever, this method has many drawbacks, like statistical error, special averaging

procedures necessary to obtain macroscopic quantities, and others. In order to remove

the aforementioned disadvantages of LGA, the new improved method was developed

that can simplify the simulations of fluid flow. This method is lattice Boltzmann
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(LB) method. The main goal during the development of the new LB method was to

create a new improved model that can simplify the simulations of fluid flow. Using

LB method, with certain limitations, it is possible to obtain the solution of

Navier–Stokes equation, which means that it can be used to simulate fluid flow.

Special propagation function is defined, so that it depends on the state of neighboring

cells and it has an identical form for all cells. The state of all cells is updated

synchronously, through a series of iterations, in discrete time steps. This way a greater

numerical accuracy and efficiency is obtained in LB method.

8.2.1 Theoretical Background

The Boltzmann equation is a partial differential equation that describes the behavior

and movement of particles in space and is valid for continuum. The basic quantity

in Boltzmann equation is single distribution function f. The distribution function is

defined in such a way that f(x,v,t) represents the probability for particles to be

located within a space element dx dv around position (x,v), at time t, where x and v
are the spatial position vector and the particle velocity vector, respectively.

In the presence of an external force field g, distribution function balance

equation – Boltzmann equation – has the following form:

∂f
∂t

þ v
∂f
∂x

þ g

m
� ∂f
∂v

¼ Ω (8.1)

where Ω is the collision integral or the collision operator, and it represents the

changes in the distribution function due to the interparticle collisions.

The collision operatorΩ is quadratic in f and is represented using a very complex

expression. Hence, a simplified model is introduced, initially proposed by

Bhatnagar, Gross, and Krook [20]. An assumption is made that the effect of the

collision between particles is to drive the fluid towards a local equilibrium state.

This model is known as the single relaxation time approximation or the Bhatnagar-

Gross-Krook (BGK) model. Operator Ω is defined as follows:

Ω ¼ � 1

τ
f � f 0ð Þ
� �

(8.2)

where τ is the relaxation time (the average time period between two collisions) and

f (0) is the equilibrium distribution function, the so-called Maxwell-Boltzmann

distribution function, which is given by:

f 0ð Þ x; v; tð Þ ¼ ρ x; tð Þ
2πθ x; tð Þð ÞD=2

exp � u x; tð Þ � vð Þ2
2θ x; tð Þ

 !
(8.3)

In this expression D is the number of physical dimensions (D ¼ 3 for three-

dimensional domain); θ ¼ kBT/m; kB ¼ 1, 38 � 10�23 J
K is the Boltzmann constant;
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T is the absolute temperature, expressed in Kelvins (K); m is the particle mass

(in the sequel, it is assumed that the mass of a single particle is m ¼ 1).

Finally, BGK model of the continuous Boltzmann equation is given by:

∂f
∂t

þ v
∂f
∂x

þ g
∂f
∂v

¼ � 1

τ
f � f 0ð Þ
� �

(8.4)

If Eq. (8.4) is transformed according to the procedure described in [21, 22], the

familiar Navier–Stokes equation for the incompressible fluid is obtained:

∂ρ
∂t

þ ∂
∂x

ρuð Þ ¼ 0 (8.5)

ρ
du

dt
þ ∂
∂x

pI� 2μSSð Þ ¼ ρg (8.6)

where S is the strain rate tensor and pressure p in LB method is introduced into the

system of equations through the ideal gas law:

p ¼ ρθ ¼ ρ
kBT

m
(8.7)

In LB simulations there are two important approximations that need to be taken

into account. First some new quantities have to be introduced. The characteristic

length of the observed domain is denoted with L, and cs denotes the characteristic
speed of particles, which is also often called speed of sound in lattice units. This

characteristic speed can be expressed as:

cs �
ffiffiffiffiffiffiffiffiffi
kB

T

m

r
¼

ffiffiffi
θ

p
(8.8)

Mean free path (the average path of a particle between two collisions) is denoted

with l ¼ csτ. Knudsen number is defined as the ratio between mean free path and

characteristic lengthscale of the considered system:

Kn ¼ l

L
(8.9)

The entire approach and BGK model are valid only in the limit of small Knudsen

number.

The Mach number is defined as the ratio between the characteristic fluid velocity

and the “speed of sound” cs:

Ma ¼ uj j
cs

(8.10)

During the derivation procedure higher order members in some expressions are

neglected, due to the introduction of an approximation that LB simulations are
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performed in the limit of small Mach number. This needs to be taken into account

when defining the characteristic fluid velocity in simulations.

8.2.2 Discretization Procedure and Implementation Details

The original BGK Boltzmann equation is continuous in space domain and is related

to continuous velocity field. This form is not suitable for numerical implementation.

In order to develop a program that numerically solves this equation on a computer,

it has to be previously discretized. But, the discretization needs to be conducted

carefully, ensuring that the Navier–Stokes equations can still be derived from the

newly obtained equations, in order to preserve the possibility to apply this method

on fluid flow simulations.

The discretization procedure is conducted in two steps. First, the velocity field is

discretized by applying the Gauss-Hermite quadrature rule [23, 24], and all integrals

are transformed to weighted sums. Then the obtained equations are discretized in

time and space domain by evaluating the integrals using the trapezoidal rule.

For a function r(v), Gaussian quadrature seeks to obtain the best estimate of the

integral
Ð
ω(v)r(v)dv, by choosing the optimal set of abscissae ξi, i ¼ 1, 2, . . .,

q � 1, such that:

ð
ω vð Þr vð Þdv ffi

Xn
i¼1

ωir ξið Þ (8.11)

where ωi, i ¼ 1, 2, . . ., n is a set of constant weight coefficients.

It is an interesting fact that the discretization with a relatively small number of

abscissae – 9 for two-dimensional domain (denoted by D2Q9) and 27 for three-

dimensional domain (denoted by D3Q27) – is enough to correctly describe dynam-

ics of isothermal incompressible fluid flow. The value of defined constant cs
depends on the discrete velocity set. For models D2Q9 and D3Q27, it is taken

that cs
2 ¼ 1/3.

Figure 8.1 illustrates the layout of velocity abscissae for two mentioned cases.

These directions are in the same time the directions of the distribution function.

Coordinates of unit vectors of velocity abscissae and appropriate weight

coefficients are listed in Table 8.1 (for D2Q9 case) and Table 8.2 (for D3Q27 case).

Finally, the equation that represents the LB numerical scheme and that is used in

all the solvers based on LB method is given by:

f i xþ ξi, tþ 1ð Þ � f i x; tð Þ ¼ � 1

τ
f i x; tð Þ � f eqi x; tð Þ� �þ 1� 1

2τ

� �
Fi (8.12)

where τ is the modified relaxation time (given by τ ¼ τ þ 1
2
) that was introduced to

provide better numerical stability of the solution and to enable explicit time steps
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and thus a more appropriate time discretization. In numerical simulations, the

whole calculation process is conducted using the modified relaxation time. In the

Eq. (8.12) Fi represents the discretized force term, expressed as:

Fi ¼ ωiρ
ξi � u

c2s
� ξi � uð Þ � ξi

c4s

� �
� g (8.13)

When LB method is implemented on a computer, Eq. (8.12) is solved in two

steps – collision and propagation step. Two values of the distribution function can

be defined, fi
in and fi

out, that represent the values of the discretized distribution

function before and after the collision, respectively. The mentioned steps are

expressed as follows:

Fig. 8.1 Layout of velocity abscissae for two-dimensional D2Q9 lattice mesh (left) and three-

dimensional D3Q27 lattice mesh (right)

Table 8.1 Velocity abscissae and weight coefficients for D2Q9 lattice mesh

Direction index Weight coefficient Unit vector

i ¼ 0 ωi ¼ 4/9 ξi ¼ (0,0)

i ¼ 1, 2, 3, 4 ωi ¼ 1/9 ξi ¼ (�1, 0); ξi ¼ (0, � 1)

i ¼ 5, 6, 7, 8 ωi ¼ 1/36 ξi ¼ (�1, � 1)

Table 8.2 Velocity abscissae and weight coefficients for D3Q27 lattice mesh

Direction index Weight coefficient Unit vector

i ¼ 0 ωi ¼ 8/27 ξi ¼ (0,0,0)

i ¼ 1, . . ., 6 ωi ¼ 2/27 ξi ¼ (� 1, 0, 0); ξi ¼ (0, � 1, 0); ξi ¼ (0, 0, � 1)

i ¼ 7, . . ., 14 ωi ¼ 1/216 ξi ¼ (� 1, � 1, � 1)

i ¼ 15, . . ., 26 ωi ¼ 1/54 ξi ¼ (� 1, � 1, 0); ξi ¼ (0, � 1, � 1); ξi ¼ (�1, 0, � 1)
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Collision step:

f outi x; tð Þ ¼ f ini x; tð Þ � 1

τ
f ini x; tð Þ � f

0ð Þ
i ρ; uð Þ

� �
þ 1� 1

2τ

� �
Fi (8.14)

Propagation step:

f ini xþ ξi, tþ 1ð Þ ¼ f outi x; tð Þ (8.15)

Each one of these steps must be applied to the whole system (to all particles)

before the next one starts. The step that considers collisions is a completely local

operation, and therefore, the equilibrium distribution function is calculated in every

lattice cell individually, in every time step, and in terms of density ρ and macro-

scopic velocity u. The step that considers propagation communicates with only few

closest neighbors.

The program for the simulation of fluid flow, based on LB method is written in

programming language C++. The algorithm of the program is schematically shown

in Fig. 8.2.

Fig. 8.2 Algorithm of

execution of the program

based on LB method
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It is important to emphasize that there must exist a loop of iterations, since

the problem is solved in a large number of time steps, until the steady state is

reached. Within this loop two steps defined with Eqs. (8.14) and (8.15) are

carried out.

8.2.3 Definition of Macroscopic Quantities

LB method describes the fluid on a molecular level, and the characteristics of the

fluid from the continuum aspect are implicitly contained in the model. The basic

quantity determined in LB simulation (the distribution function) is used to calculate

the macroscopic quantities that describe the fluid flow. Density and velocity can be

evaluated by calculating the following integrals:

ρ x; tð Þ ¼
ð

v

f x; v; tð Þdv (8.16)

u x; tð Þ ¼ 1

ρ x; tð Þ
ð

v

f x; v; tð Þvdv (8.17)

The integration is carried out on the whole velocity space.

After discretization, fluid density and velocity can be calculated as weighted

sums over a finite number of discrete abscissae that were used to discretize the

space domain:

ρ ¼
Xq�1

i¼0

f i (8.18)

u ¼ 1

ρ

Xq¼1

i¼0

ξif i ¼
1

ρ
ρu� ρg=2ð Þ (8.19)

From this equation it can be seen that the velocity that is calculated in terms of

distribution function in LB simulations does not represent the “physical velocity.”

In order to evaluate the physical velocity (which is one of the most important

characteristics of the flow observed on the macroscopic level), it is necessary to use

the following expression:

u ¼ u þ g

2
(8.20)

This should be taken into consideration when analyzing the simulation results

and when developing solvers based on LB method.
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Dynamic viscosity in LB simulations (called “lattice viscosity”) is calculated as

follows:

μs ¼ c2sρ τ � 1

2

� �
(8.21)

The equation that defines the relation between fluid pressure and fluid density is

given by:

p ¼ c2sρθ ¼ c2sρ
kBT

m
(8.22)

Stress tensor can be calculated using expression:

P ¼ c2sρI�
τ � 1

2

� �
c4s

S (8.23)

8.2.4 Boundary Conditions

All previous derivations did not take into account the boundary conditions (BC).

Still, in order to obtain valid results and to correctly simulate fluid flow, it is

necessary to define the boundary conditions appropriately. Typical types of bound-

ary conditions (periodical, bounce-back, and predefined pressure and velocity

Dirichlet BC) that are used to set up simulations in examples section will be briefly

explained in the sequel of this chapter.

8.2.4.1 Periodical Boundary Condition

This is the simplest type of boundary condition. Practically, one can observe the

boundary as if the inlet and the outlet are joined together. In the practical imple-

mentation, this BC is implemented within the propagation step. For all the nodes

that are on the boundary of the domain, the components of the distribution function

that should propagate outside of the domain boundary are being “redirected” such

that these values are transferred to the nodes that are located on the other (opposite)

boundary of the domain.

8.2.4.2 Bounce-Back Boundary Condition

This boundary condition is very simple for implementation and that is one of the

reasons for its wide popularity. It is most commonly applied when solving problems

with complex boundaries, such as the flow through a porous media [25]. If a certain

node of the mesh is marked as a solid node, i.e., as an obstacle, the components of

the distribution function in this node are copied from the components with opposite

abscissae unit vectors.
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However, bounce-back boundary condition has its drawbacks that are discussed

in literature [26, 27]. The main drawback is that in case of a wrong implementation,

some instabilities and the misbalance in the continuity equation may occur.

A detailed analysis showed that applying this BC the second-order accuracy is

achieved but only when the boundary between solid and fluid domain is located

between the nodes of the mesh [28]. If the solid–fluid boundary is made of straight

lines, then it is desirable to use this approach. But if complex geometries with

curved boundaries are considered or when solid is placed inside fluid domain and

solid–fluid interaction is simulated, it is more efficient to use a different approach,

such as immersed boundary method, which will be discussed in the next chapter.

8.2.4.3 Pressure and Velocity Boundary Conditions

When the boundary conditions are observed in general, after the propagation step,

those nodes that are on the domain boundary will contain certain information about

the distribution function that are incoming from the wall, i.e., that are nonphysical.

The main objective of the propagation is to transfer the information from one node

to its closest neighboring nodes. Therefore it is evident that this information for

boundary nodes should be obtained from a node inside the wall. Since the nodes

inside the wall are not simulated, missing distribution function components must be

recomputed using a different approach. Also it is necessary to keep in mind that the

entire concept of derivation of Navier–Stokes equations must be valid in the whole

system, i.e., in all nodes, including boundary nodes. The discussion about conserv-

ing the continuity equation can be found in literature [29].

When the simulations of fluid flow are performed, it is most common to define the

value of velocity and pressure (that is the so-called Dirichlet boundary condition) or

to define the derivatives of these quantities, i.e., the fluxes of certain quantities (that

is the so-called Neumann boundary condition). It should be noted that in LBmethod

the density is defined, instead of pressure, since these two quantities are related with

the equation of state (8.22). Using these macroscopic values, it is possible to

calculate the missing components of the distribution function coming from the wall.

There are several types of velocity and pressure BCs that were proposed in

literature – the boundary condition proposed by Inamuro et al. [27], the Zou/He

approach [30], the regularized method [31], and the finite difference method, based

on an idea of Skordos [32]. In this implementation of LB method, the regularized

boundary condition was used. It is assumed that the pressure or velocity is directly

prescribed, i.e., the Dirichlet boundary condition is considered. Of course, since

only one macroscopic quantity is predefined, the relation between two quantities –

velocity and pressure – is also determined according to literature [22, 30]. The

recalculation of the distribution function is performed, and afterwards both the

collision and propagation steps are performed on all lattice nodes, including

boundary nodes. It was only necessary to correct the unknown components that

were incoming from the nodes inside the wall. Obviously the implementation of

this boundary condition accurately recovers not only the velocity and density but

also the stress tensor.
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8.3 Modeling Solid–Fluid Interaction

There are certain types of problems that require the simulation of two or more

physical systems that are in interaction. One of them is in the field of fluid flow

simulation, and it is analyzed in this chapter – particles (regarded as solid bodies)

moving through a fluid domain. In this case an external force exerted from the fluid

is acting on the solid, causing solid movement or deformations and vice versa –

solid is having certain influence on the fluid flow. That practically means that solid

and fluid are forming a coupled mechanical system. In order to simulate a system

like this, it is necessary to simulate both domains simultaneously, i.e., to model

solid–fluid interaction. There are two approaches in modeling solid–fluid interac-

tion: loose and strong coupling. In loose coupling approach the solid and fluid

domains are solved separately, and all the necessary parameters obtained in one

solver are passed to the solver for the other domain. In strong coupling both

domains are simulated in the same time, like it were a single mechanical system.

For certain problems it is easier to use loose coupling, due to easier implementation.

However there are some drawbacks of this approach, like the problem of time

integration. Since the physical characteristics of solid and fluid are different, it is

not always possible to use the same time step for numerical solving. On the other

hand, strong coupling is more applicable when it is necessary to accurately and

precisely predict the movement of solid body inside fluid domain. But this approach

also has its drawbacks. The solver that simultaneously solves both domains is much

more complex and slower, which was expected considering the increased number

of equations in the system. Examples in this chapter were simulated using strong

coupling approach, and therefore, in the sequel of this section, theoretical basics of

this approach will be discussed.

The basic idea of full interaction approach is to solve the complete domain (both

fluid flow and particle motion) in every time step. This will provide that all

quantities (both for particles and fluid) are changing simultaneously. The approach

that was successfully applied for problems of particle movement through fluid

domain [33] is used here to simulate motion of nanoparticles together with fluid.

This method is called immersed boundary method (abbreviated IBM), and it was

first developed and presented by Peskin [34]. This method uses a fixed Cartesian

mesh to represent the fluid domain, so that the fluid mesh is composed of Eulerian

points. This description is in accordance with LB representation of fluid domain, so

it is evident that this approach can be easily applied if fluid flow is simulated using

LB method. As far as particles (solid bodies in general definition of IBM) are

concerned, IBM represents solid body as an isolated part of fluid, with a boundary

represented by a set of Lagrangian points. The basic idea is to treat the physical

boundary between two domains as deformable with high stiffness [35]. Fluid is

acting on the solid, i.e., on the boundary surface, through a force that tends to

deform the boundary. However, in the bounding area this deformation yields to a
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force that tends to restore the boundary to its original shape. These two forces have

to be in equilibrium. Practically, using the law of action and reaction (Newton’s

third law), the force exerted from the fluid and acting on the solid is acting on the

fluid near the boundary too and is distributed through a discrete delta function.

The entire solid–fluid domain is solved using Navier–Stokes equations, with exter-

nal force term. There are several ways to determine this force representing the

interaction between solid and fluid. Some of them are direct forcing term [36],

enhanced version of direct forcing scheme [37], penalty formulation [33], momen-

tum exchange method [38], and calculation based on velocity correction [39]. The

latter is used in this study to simulate the full interaction between fluid and

nanoparticles.

The following quantities are defined: XB
l (s,t) represent the coordinates of

Lagrangian boundary points; l ¼ 1, 2,.., m, where m is the number of boundary

points; F(s,t) is the boundary force density, exerted from the fluid, acting on the

immersed object; g(x,t) is the fluid external force density; and δ(x � XB
l (s,t)) is a

Dirac delta function.

All quantities that are required to simulate solid–fluid interaction are calculated

using interpolation from the boundary points. Since different discretization of solid

and fluid domain is possible, the problem of interpolation with diverse

discretization has to be considered. This is solved such that for each boundary

point belonging to the solid, the influence of a greater number of points from the

fixed Cartesian mesh from fluid domain is considered, like it is shown in Fig. 8.3.

For the interpolation of quantities, the Dirac delta function is used. This function is

approximated using the following expression:

δ x� XB s; tð Þð Þ ¼ Dij xij � Xl
B

� � ¼ δ xij � Xl
B

� �
δ yij � Yl

B

� �
(8.24)

Fig. 8.3 The mutual influence of points from solid and fluid domain
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The function δ(r) is defined in literature [34] as:

δ rð Þ ¼
1

4h
1þ cos

π r

2

0
@

1
A

0
@

1
A, rj j � 2

0, rj j > 2

8>><
>>:

(8.25)

where h is the mesh spacing between two nodes (points) of Eulerian fixed mesh

(in this study, since LB method is used, h ¼ 1).

The velocity in Lagrangian points is interpolated from the surrounding Eulerian

points in fluid, and this can be expressed as:

∂XB s; tð Þ
∂t

¼ u XB s; tð Þ, tð Þ ¼
ð

Ω

u x; tð Þδ x� XB s; tð Þð Þdx (8.26)

In IBM in every time step, the fluid and solid velocities have to be adjusted so

that the nonslip condition is satisfied on the boundary. The approach used in this

study ensures the equality of velocities by introducing a fluid velocity correction in

boundary points, like it was proposed in literature [39]. The velocity correction can

be expressed as:

δu ¼ 1

2ρ
g x; tð Þ (8.27)

The fluid velocity correction is set as unknown quantity that is determined based

on the solid velocity correction at boundary points:

δu x; tð Þ ¼
ð

Γ

δuB XB; tð Þδ x� XB s; tð Þð Þds (8.28)

In this equation δuB(XB,t) represents the solid velocity correction at boundary

points.

If two-dimensional problem is considered, using Eq. (8.24), the fluid velocity

correction can be written as:

δu xij; t
� � ¼

X
l

δulB Xl
B; t

� �
Dij xij � Xl

B

� �
Δsl (8.29)

where Δsl is the arc length of the boundary element (between two boundary points).

In order to satisfy the nonslip boundary condition, the fluid velocity at every

boundary point must be equal to the velocity of the immersed body in that boundary

point.

If the following changes of variables are introduced (to simplify the expressions):

δBij ¼ Dij xij � Xl
B

� �
Δsl (8.30)

δij ¼ Dij xij � Xl
B

� �
ΔxΔy (8.31)
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then velocity corrections can be calculated solving the following equation written in

matrix form:

A � X ¼ B (8.32)

where the matrices are given by:

X ¼ δu1B, δu
2
B, . . . , δu

m
B

	 
T
(8.33)

A ¼
δ11 δ12 � � � δ1n
δ21 δ22 � � � δ2n

⋮ ⋮ . .
.

⋮
δm1 δm2 � � � δmn

2
6664

3
7775 �

δB11 δB12 � � � δB1m
δB21 δB22 � � � δB2m

⋮ ⋮ . .
.

⋮
δBn1 δBn2 � � � δBnm

2
6664

3
7775 (8.34)

B ¼
u1B
u2B
⋮
umB

0
BB@

1
CCA�

δ11 δ12 � � � δ1n
δ21 δ22 � � � δ2n

⋮ ⋮ . .
.

⋮
δm1 δm2 � � � δmn

2
6664

3
7775

u 1

u 2

⋮
u n

0
BB@

1
CCA (8.35)

In these expressions u is the fluid velocity calculated from LB simulation

(u ¼ 1
ρ

X
i

ξi f i), m is the number of Lagrangian (boundary) points, аnd n is the

number of surrounding Eulerian points that are used in the Dirac delta interpola-

tion function.

Solving the system of Eq. (8.32), the unknown solid velocity corrections in

boundary points δuB
l are calculated. Using these values, it is straightforward to

calculate the fluid velocity corrections, applying Eq. (8.29) and then to calculate the

total fluid velocity.

Using velocity corrections, it is also easy to evaluate the forces exerted from the

fluid, acting on the immersed body (using Eq. (8.27) and the third Newton law). The

force exerted from the fluid that is acting on the immersed body in one boundary

Lagrangian point is given by:

F Xl
B

� � ¼ 2ρδulB (8.36)

The overall influence of the fluid on the immersed body is expressed through a

force and torque that are given by:

FR ¼ �
X
l

F Xl
B

� �
Δsl (8.37)

MR ¼ �
X
l

Xl
B � XR

� �� F Xl
B

� �
Δsl (8.38)

where XR is the vector of coordinates of the center of mass of the observed

immersed object. The minus sign in both equations is the consequence of the

Newton’s third law (the law of action and reaction).
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If it is necessary to consider the influence of gravity force on the solid object,

another term is added in the expression for total force:

FR ¼ 1� ρf
ρp

 !
mG�

X
l

F Xl
B

� �
Δsl (8.39)

Here m is the mass of solid object (particle), G is the gravity force acceleration,

and ρf and ρp are the fluid and particle density, respectively.

When force and torque acting on the particle are known, the equations of motion

can be written for the immersed body:

m
dvC
dt

¼ FR (8.40)

I0
dω
dt

¼ MR (8.41)

where m and I0 are the particle mass and moment of inertia, respectively, and vC
and ω are the velocity and angular velocity of the particle, respectively.

Integrating these equations the position and orientation of particle are obtained.

Using this data the position of particle inside fluid domain is updated, and the entire

procedure is repeated until particle collides with one of the boundaries of the

domain. Figure 8.4 shows a schematic diagram of the strong coupling approach

in modeling nanoparticles motion using immersed boundary method.

8.4 Numerical Results

Specialized and in-house developed software that numerically simulates fluid flow

using the principles of LB method is used to simulate several problems of particle

movement through fluid domain. Obtained results were compared with the analyti-

cal solutions or with results obtained using other methods that were found in

literature.

All examples are related to two-dimensional (plane) problems and that is why

the lattice denoted by D2Q9 was used for the simulations. For every example

several characteristic quantities need to be defined. First, it is necessary to define

resolution N that represents the number of nodes along one direction (most com-

monly it is the y axis direction). The domain is defined using characteristic lengths

lx and ly, while “physical” lengths, denoted by Lx and Ly, are calculated as:

Lx ¼ lx � N (8.42)

Ly ¼ ly � N (8.43)

Figure 8.5 shows one domain, and the coordinate axes and mentioned lengths are

labeled.
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In LB method a special calculation principle is used, such that all macroscopic

quantities that are important for fluid flow simulation are defined in a so-called

system of lattice units. Therefore it is first necessary to evaluate the values of these

quantities in a dimensionless form and then to transform the dimensionless

quantities to the real physical quantities for a specific example.

When defining characteristic quantities, it is important to define also the charac-

teristic velocity (in lattice units), denoted by ulb. The appropriate selection of this

value ensures the satisfaction of condition to keep the LB simulations in the limit of

Fig. 8.4 Algorithm of strong coupling approach
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small Mach number, i.e., the fluid is retained weakly compressible. This practically

means that the value of ulb must satisfy the following inequation:

ulb <
1

cs
(8.44)

The relation between kinematic fluid viscosity and Reynolds number is given by:

Re ¼ uj jL
ν

(8.45)

Most commonly in LB simulations, the Reynolds number is prescribed, and then

using Eq. (8.45), the fluid viscosity in system of lattice units is evaluated, in order to

obtain the relaxation time.

Besides standard parameters that should be defined in LB simulations, when the

strong coupling approach is used, it is necessary to define the number of Lagrangian

boundary points, denoted by NL.

8.4.1 Drag Force on a Circular Particle

A circular particle is fixed inside fluid domain. The initial and boundary conditions

are defined like in the previous example. The position of the particle is defined with

coordinates of the center of mass (xc,yc). The geometrical data is shown in Fig. 8.6.

The boundary condition is the prescribed velocity on the bottom and top wall equal

to zero (the velocity is prescribed using the regularized BC). As initial condition the

velocity profile and the outflow condition on the outlet is prescribed. The main goal

is to calculate the drag force over the particle, exerted from the fluid.

Fig. 8.5 Lattice mesh – two-dimensional domain
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Drag force over the circular particle, in a laminar flow has been calculated

analytically [40] and is given by:

F ¼ 6πμRV 1þ 3

8
Re

� �
(8.46)

where R is the radius of the particle.

Data defined in LB solver is shown in Table 8.3.

Figure 8.7 shows the fluid velocity field obtained using numerical simulation.

Results obtained using LB solver are compared to the mentioned analytical

solution, as well as with results obtained using DPD method (abbreviated from

Dissipative Particle Dynamics) [41, 42]. The comparison of results is shown in

Fig. 8.8.

It should be noted that the dependent variable on this diagram is given by:

Ω ¼ F=6πμV 1þ 3

8
Re

� �
(8.47)

As it can be seen from Eq. (8.46), this ratio is equal to the particle radius R.
Good agreement of results with the analytical solution is obtained, for different

values of the particle radius.

Fig. 8.6 Example 1 – geometrical data

Table 8.3 Data necessary for LB solver;

Example 1
Quantity Value

N 50

lx 3

ly 1

ulb 0.02

Re 10

xc 25

yc 25

NL 50
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8.4.2 Pure Rotation of Elliptical Particle

Elliptical particle is immersed in the fluid domain. As initial condition in the fluid

domain, the velocity profile is prescribed on the inlet. The boundary condition is set

such that the velocity of the lower wall (for y ¼ 0) is equal to zero, while the velocity

of the upper wall (for y ¼ Ly) is equal to ulb – forming the so-called shear flow.

Position of the particle is defined with coordinates of the center of mass (xc,yc), and
since here elliptical particle is considered, the major and minor semi-lengths

a and b are also defined. The particle is fixed (it cannot move freely through the

fluid domain) but is free to rotate. Since in this example it is necessary to solve the

equations of motion for the particle, it is necessary to define the particle density

when defining simulation parameters. Using particle density, the mass and moment

of inertia of the particle are straightforwardly calculated. Geometrical data for this

example is shown in Fig. 8.9.

Fig. 8.7 Example 1 – fluid velocity field

Fig. 8.8 Example 1 – comparison of results for drag force
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Ratio of particle semi-lengths is given by:

γ ¼ b

a
¼ 0:5 (8.48)

The initial angle between the major semiaxis and vertical axis is equal to π
2
.

Data defined in LB solver is shown in Table 8.4.

Figure 8.10 shows the obtained fluid velocity field.

The analytical solution for this problem was determined by Jeffery [43]. Angular

velocity ω, expressed in terms of the angle of rotation θ, is given by:

ω ¼ 1

2
1þ 1� γ2

1þ γ2
cos 2θð Þ

� �
(8.49)

The angle of rotation can be expressed as:

θ ¼ arctan
1

γ
tan

γ t

1þ γ2

� �� �
(8.50)

Fig. 8.9 Example 2 – geometrical data

Table 8.4 Data necessary for LB solver;

Example 2
Quantity Value

N 50

lx 5

ly 1

ulb 0.01

Re 10

ρp 1.25 ρ
xc 25

yc 25

a 10

NL 50
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The variation of angle of rotation θ with time is shown in Fig. 8.11. The

analytical solution is compared with the results of numerical simulation, obtained

using LB solver. Good agreement of results is achieved.

Figure 8.12 shows the variation of angular velocity with time. The analytical

solution is compared with the results obtained using LB solver and results obtained

using DPD method (presented in literature [41, 42]).

8.4.3 Simulation of Movement of Elliptical Particle

In this example the movement of elliptical particle in fluid domain is considered. All

parameters are identical to the ones in example 2. The boundary and initial conditions

are also identical. Figure 8.13 shows the geometrical data for this example. It is

important to emphasize that the initial angle between the major semiaxis of the

elliptical particle and the vertical axis is θ0 ¼ π
2
and the initial position of the particle

along y axis is y0 ¼ 1.32a, where a is the major semi-length of the elliptical particle.

Fig. 8.10 Example 2 – fluid velocity field

Fig. 8.11 Example 2 – comparison of results for angle of rotation
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The Stokes number has a great influence on the particle trajectory. Stokes

number is defined by:

St ¼ ρpb
2S

μ
(8.51)

where ρp is the particle density.
The relation between Stokes and Reynolds number is given by:

St ¼ ρp
ρ
Re (8.52)

Fig. 8.12 Example 2 – comparison of results for angular velocity

Fig. 8.13 Example 3 – geometrical data
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When Stokes number is equal to 1.25, the movement of inertialess elliptical

particle is oscillatory, with a zero lateral drift, like it is shown in Fig. 8.14. This drift

velocity grows with the Stokes number. If Reynolds number and fluid density are

kept constant and particle density is varied, particle inertia will break the symmetry

of motion and particle will begin to drift laterally, with an oscillatory translational

and rotational motion. Figure 8.15 shows the particle trajectories for diverse Stokes

number.

Fig. 8.14 Example 3 – elliptical particle trajectory for St ¼ 1.25

Fig. 8.15 Example 3 – elliptical particle trajectory for diverse values of the Stokes number
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In the design of nano-drug delivery systems, these observations should be

considered. Both spherical and nonspherical particles with appropriate mass and

geometrical inertia will drift on their way through blood vessels and hence will be

able to sense abnormalities in vessel walls.

8.4.4 Simulation of Movement of a Circular Particle in
Linear Shear Flow

A circular particle is immersed in fluid domain and is free to move. As boundary

condition the velocity of upper and lower wall is prescribed to be equal to ulb, and the
walls are moving in opposite directions. As initial condition the velocity profile on the

inlet is defined, the so-called double shear flow. The geometrical data is shown in

Fig. 8.16. In this example it is considered that solid and fluid densities are equal. The

initial position of the particle is defined with coordinates of the center of mass (xc,yc),
and the particle radius r is also defined. It should be noted that the initial position

of the particle is defined such that the particle is located at L
4
above the bottom wall.

Data defined in LB solver is shown in Table 8.5.

Fig. 8.16 Example 4 – geometrical data

Table 8.5 Data necessary for LB solver;

Example 4
Quantity Value

N 80

lx 10

ly 1

ulb 0.0375

Re 40

xc 50

yc 20

r 10

NL 50
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This problem was first investigated by Feng et al. [44] (and simulated using finite

element method), and they concluded that no matter how the particle is initially

positioned, it always tends to migrate to the centerline of the channel. Later this

same problem has been studied by others and simulated using other methods,

including LB method and diverse approaches for solid–fluid interaction. Here the

obtained results were compared to the results presented in literature [33, 35, 38].

Figure 8.17 shows the fluid velocity field during particle movement.

Figures 8.18, 8.19, and 8.20 show comparison of results obtained using the

developed LB solver with results found in literature, for movement of particle in

y axis direction and the components of translational velocities in x and y axis

direction. On all three diagrams, the dimensionless values obtained in simulations

are shown on both axes.

Fig. 8.17 Example 4 – fluid velocity field

Fig. 8.18 Example 4 – comparison of results for particle position in y axis direction
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8.4.5 Particle Sedimentation in Viscous Fluid

This example illustrates the movement of particle due to gravity force. At the

beginning of the simulation, the circular particle and fluid are in static state (the

initial velocity of the particle as well as fluid velocity in all lattice nodes are equal to

zero). Particle is located at the middle of fluid domain along horizontal axis and at 2
3

Fig. 8.19 Example 4 – comparison of results for x component of particle velocity

Fig. 8.20 Example 4 – comparison of results for y component of particle velocity
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of height along vertical axis (as shown in Fig. 8.21). Due to gravity force, the

particle is falling down, i.e., moving through the fluid.

This problem has also been extensively discussed in literature, so all parameters

necessary for LB simulation are set in such a way to enable easy comparison of the

obtained results with results found in literature. Data defined in LB solver is shown

in Table 8.6.

Figure 8.22 shows the fluid velocity field during the simulation (while the

particle is sedimenting in viscous fluid).

Fig. 8.21 Example 5 – geometrical data

Table 8.6 Data necessary for LB solver;

Example 5
Quantity Value

N 100

lx 3

ly 1

ulb 0

Re 40

ρp 1.25 ρ
xc 50

yc 200

r 6.25

NL 50
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Results obtained using LB solver are compared with results presented by

Wu et al. [35] (the simulation was performed using LB method), as well as with

results presented by Wan and Turek [45] (the simulation was performed using finite

element method). The variations of four quantities are observed – the position of

particle in y axis direction, y component of particle velocity, Reynolds number, and

translational kinetic energy. Reynolds number in a specified moment in time can be

evaluated using the following expression:

Re ¼
ρpr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Cx þ v2Cy

q

μ
(8.53)

The expression for the translational kinetic energy in a specific moment in time

is given by:

Et ¼ 1

2
m v2Cx þ v2Cy

� �
(8.54)

As it can be seen from Figs. 8.23, 8.24, 8.25, and 8.26, the obtained results

compare very well with results found in literature.

Fig. 8.22 Example 5 –

fluid velocity field
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8.4.6 Simulation of Movement of Circular Particle
Through a Stenotic Artery

The efficiency of the strong coupling approach in simulations of solid–fluid inter-

action becomes obvious when the fluid domain has complex boundaries. One such

example is the simulation of movement of particle through a stenotic artery (artery

Fig. 8.23 Example 5 – comparison of results for particle position in y axis direction

Fig. 8.24 Example 5 – comparison of results for y component of particle velocity
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with constriction). Li et al. [46] have analyzed the pulsatile flow in a mildly or

severely stenotic artery, and Wu and Shu simulated the motion of particles through

stenotic artery in one of their papers [35]. Therefore here the results found in

literature will be compared with results obtained using LB solver.

Fig. 8.25 Example 5 – comparison of results for Reynolds number

Fig. 8.26 Example 5 – comparison of results for translational kinetic energy
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All the necessary geometrical parameters are shown in Fig. 8.27, and the data

defined in LB solver is shown in Table 8.7. In the fluid domain as initial condition,

the pressure difference on the inlet and outlet is prescribed, and the boundary

condition is set such that the velocity of the upper and lower wall is equal to

zero. The stenosis (and generally the complex boundary) can be implemented in

two ways – applying the bounce-back or using immersed boundary method (it is

implemented similarly to the solid–fluid interaction when particles are immersed in

fluid domain). Here the first approach is used, which leads to a certain loss of

accuracy but is numerically more efficient, due to a smaller number of calculations

that are required.

Fluid velocity field for the specific moment in time when particle is passing

through the stenotic artery is shown in Figs. 8.28 and 8.29 represents a schematic

diagram of particle trajectory (in several steps) from the initial position to the final

position symmetrically on the other side of the stenosis.

The comparative diagrams for x and y components of particle velocity for this

example are shown in Figs. 8.30 and 8.31 (results obtained using LB solver and

results obtained by Wu and Shu [35] are plotted).

Fig. 8.27 Example 6 – geometrical data

Table 8.7 Data necessary for LB solver;

Example 6
Quantity Value

N 64

lx 4

ly 1

ulb 0.01

Re 40

ρp 1.25 ρ
xc 24

yc 48

r 4

NL 50
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8.4.7 Simulation of Movement of Two Circular Particles
Through a Stenotic Artery

This example has exactly the same boundary and initial conditions like example

6 and was simulated based on a similar example presented in literature [35]. The

only difference between this example and example 6 is that instead of one particle,

the movement of two particles is simulated. Also, it is necessary to implement the

interaction force between two particles. In this case, the force acting on particle

j exerted from particle i is given by:

Fcol ¼
0 , Xi, j

R > ri þ rj þ ζ

2:4ε � 2
ri þ rj

Xi, j
R

0
@

1
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5 � X

i
R � X

j
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8>>><
>>>:

(8.55)

where ζ is the threshold and is set to the distance between two lattice nodes (in this
case it is considered that ζ ¼ 1), ri and rj are the radii of particles, XR

i and XR
j are

the position vectors of centers of mass of particles, аnd ε and XR
i,j are defined using

following equations:

Fig. 8.28 Example 6 – fluid velocity field

Fig. 8.29 Example 6 – trajectory of the particle through a stenotic artery

340 T. Djukic



Fig. 8.30 Example 6 – comparison of results for x component of particle velocity

Fig. 8.31 Example 6 – comparison of results for y component of particle velocity
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ε ¼ 2rirj
ri þ rj

� �2

(8.56)

Xi, j
R ¼ Xi

R � X
j
R

���
��� (8.57)

When the interaction force is calculated, it is added in the expression for total

force acting on every particle individually (Eq. (8.39)) and then the equations of

motion are solved. The total force is now given by:

FR ¼ 1� ρf
ρp

 !
mGþ Fcol �

X
l

F Xl
B

� �
Δsl (8.58)

Considering that the free space in the artery (the gap between two protuberances)

is less than 2d (as it is shown in Fig. 8.27), it is obvious that both particles cannot

pass the throat side by side. If both particles are initially placed symmetrically to the

centerline of the artery, they will start moving towards the throat but will stay stuck

at the entrance and block the throat. Figure 8.32 shows the fluid velocity field, and

Fig. 8.33 shows the schematic diagram of particles’ trajectories for this case.

Fig. 8.32 Example 7.1 – fluid velocity field

Fig. 8.33 Example 7.1 – trajectories of particles
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If one of the particles is initially moved for a very small distance towards the

centerline (e.g., for only 1 lattice unit), the particles will be able to pass the throat

and move on through the artery. This is shown schematically in Fig. 8.34, while

Fig. 8.35 shows the fluid velocity field in the moment of passing through the throat.

8.4.8 Simulation of Movement of a Circular Particle
Through an Artery with Bifurcation

This is another example of the simulation of movement of particle through a fluid

domain with complex boundary. In this case it is an artery with bifurcation.

Geometrical data and all necessary geometrical parameters are shown in Fig. 8.36.

As boundary condition the velocities on all walls are prescribed to be equal to

zero. Since the domain boundaries are not regular, it is possible to use two

approaches to model the walls – bounce-back BC or immersed boundary method.

In this simulation the first approach was used (like in examples 6 and 7), due to

better efficiency, and the lower numerical accuracy does not have a strong effect on

the final result. As initial condition the prescribed Poiseuille velocity profile is used,

together with outflow condition on the outlet branches. Data defined in LB solver is

shown in Table 8.8.

Fig. 8.34 Example 7.2 – trajectories of particles

Fig. 8.35 Example 7.2 – fluid velocity field
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When the particle starts moving, it comes across the bifurcation. Strong repul-

sive force is acting on the particle so that it rebounds from the wall and continues to

move through the upper branch, until the end of the domain. Figure 8.37 shows the

fluid velocity field during the motion of particle through the main branch of the

artery, and Fig. 8.38 shows schematically the trajectory of the particle.

Table 8.8 Data necessary for LB solver;

Example 8
Quantity Value

N 60

lx 3

ly 1

ulb 0.01

Re 40

ρp 1.25 ρ
xc 60

yc 30

r 3

NL 20

Fig. 8.36 Example 8 – geometrical data

Fig. 8.37 Example 8 – fluid velocity field
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8.5 Conclusion

Drug delivery system should be designed such that nanoparticles are able to drift

across the streamlines of blood flow in vessels and to interact with the vessel walls.

In order to analyze the dynamics of arbitrarily shaped particles in fluid flow, it is

necessary to use numerical simulations. By choosing an appropriate balance

between size, shape, geometrical inertia, and density, the rate of particles that are

interacting with walls can be customized. This will enable the formation of an

efficient drug delivery system, with particles capable of sensing biological and

biophysical abnormalities in endothelial cells.

In this chapter lattice Boltzmann method was used to simulate motion of

particles through fluid domain, and a specific type of particle-fluid interaction

was modeled. Movement of both spherical and nonspherical particles was analyzed

in diverse complex geometrical fluid domains. Agreement between the LB method

and analytical, FEM, and other solutions found in literature demonstrates that this

method and the developed software can be successfully used to model complex

problems of fluid flow and fluid-particle interaction in microcirculation, especially

in the fields of particle transport and margination to the vessel walls, bio-imaging,

and drug delivery.
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Chapter 9

Computational Modeling of Ultrasound

Wave Propagation in Bone

Vassiliki T. Potsika, Maria G. Vavva, Vasilios C. Protopappas,

Demosthenes Polyzos, and Dimitrios I. Fotiadis

9.1 Introduction

Computational modeling is considered as a significant tool used in engineering

applications as well as for the virtual investigation of various problems that may be

encountered in clinical settings. In the field of bone characterization, several

clinical and preclinical studies have demonstrated the diagnostic capabilities of

ultrasound since its characteristics are related to long bone’s mechanical and

geometrical properties. However, the recent introduction of computer simulations

has extended our understanding of the underlying wave propagation phenomena

opening thus new horizons in the quantitative evaluation of bone pathologies such

as fracture healing and osteoporosis.

Computational simulations offer significant advantages as compared to in vitro

and in vivo experiments since (a) the effect of parameters related to bone material

and geometrical properties on wave propagation can be independently determined,

(b) it is easier to discriminate the different types of propagating waves, and

(c) experimental artifacts and problems regarding the properties of the examined

bone specimens can be avoided.

The development of powerful computers and simulation tools has reduced the

computational time and cost, rendering computational techniques more and more

attractive. In addition, the significant availability of high-resolution two-dimensional

(2D) and three-dimensional (3D) images of bone structure derived using
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microcomputed tomography (μCT) and scanning acoustic microscopy (SAM) has

paved the way for the development of more realistic computational models.

The scope of this chapter is to review the relevant computational studies on

ultrasound wave propagation in bone reported in the literature and present the

current status of knowledge in the field. The chapter is organized as follows: In

the next section some introductory points regarding the bone physiology and its

pathologies are presented. Section 9.3 is devoted to the ultrasonic methods that have

been proposed in the literature for examining long bones. Thereafter we present the

computational studies of wave propagation in intact and osteoporotic bones by

classifying into two broad categories, i.e., ultrasound simulations in (a) cortical and

(b) trabecular bone models. Finally, an overview of the computational studies for

the simulation of ultrasound propagation in models of healing bones is presented.

9.2 Bone Physiology and Pathologies

9.2.1 Bone Structure

Bone is a heterogeneous, porous, and anisotropic material with a complex structure.

In order to fully evaluate bone’s mechanical properties, it is important to give

insight into the mechanical properties of its component phases and the structural

relationship between them at the various levels of hierarchical structural

organization.

From a macrostructural point of view, bone is consisted of the periosteum, bone

tissue, bone marrow, blood vessels, and nerves. Bone tissue is composed of the

cortical or compact bone and the cancellous or trabecular bone. The main differen-

tiation between these two types of bone is their degree of porosity or density.

Trabecular bone is found in the inner parts of bones and has a significantly

porous structure. The porosity in trabecular bone ranges between 50 % and 95 %,

usually found in cuboidal bones, flat bones, and at the ends of long bones [1]. In the

microstructure level, trabecular bone is consisted of three-dimensional cylindrical

structures, called trabeculae, with a thickness of about 100 μm and a variable

arrangement form [2]. This porous network of trabecular bone includes pores filled

with marrow which produces the basic blood cells and is consisted of blood vessels,

nerves, and various types of cells.

Cortical bone composes the external surface of all bones and has a porosity of

about 5–10 %. From a microscopic point of view, it is consisted of cylindrical

structures called osteons or Haversian systems with a diameter of about 10–500 μm
[2] formed by cylindrical lamellae surrounding the Haversian canal (size of

3–7 μm) [3]. The boundary between the osteon and the surrounding bone is called

the cement line. The most significant type of porosity, known as vascular porosity,

is formed by the Haversian canals (aligned with the long axis of the bone) and the

Volkmann canals (transverse canals connecting Haversian canals) with capillaries
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and nerves [1]. Experimental studies have shown that the shear modulus of wet

single femoral osteons is higher than that of the whole bone which suggests that

microstructural effects are significant [4, 5].

In the nanostructure level, the basic components are collagen and hydroxyapatite

which are made of collagen molecules organized in fibrils [2]. Inorganic

components (hydroxyapatite crystals) are mainly responsible for the compression

strength and stiffness, while organic components (collagen fibers, proteoglycans,

osteocalcin) are responsible for tension properties [1]. The hydroxyapatite crystals

are located in the interfibrillar spaces. Mineralized fibers are aligned to form bone

lamellae of typical thickness of a few micrometers. The orientation of the fibers

depends on the lamellae and may change within lamellar sublayers [2, 3].

It is evident that bone’s material and structural properties differ according to the

examined hierarchical level. Thus, development of realistic models necessitates

consideration of bone’s microstructural effects as well as porosity and anisotropy

properties. Computational simulation of ultrasound wave propagation in such bone

models can provide valuable information about the complicated wave guidance and

scattering phenomena that occur in deeper cortical layers due to the complex

structure of bone and is difficult to be investigated experimentally.

9.2.2 Bone Pathologies: Osteoporosis and Fracture Healing

9.2.2.1 Osteoporosis

Osteoporosis is a skeletal disease in which the density and quality of bone are

reduced, leading to weakness of the skeleton and increased risk of fracture, partic-

ularly of the spine, wrist, hip, pelvis, and arm [6]. The main cause of osteoporosis is

hormonal deficiency, and thus the most frequent disease is postmenopausal osteo-

porosis [6]. At least 40 % of postmenopausal women over the age of 50 and

15–30 % of men will sustain one or more fragility fractures [6]. The bone resorption

starts from the endosteal (inner) surface, leading to thinning of the cortex and

trabecularization of the inner cortical layer [7]. It has been shown that the cortical

thickness is related to decreasing total bone strength and increasing fracture risk

[8]. The diagnosis of osteoporosis has been mostly based on bone mineral density

measurements using dual-energy X-ray absorptiometry (DEXA) scan, which how-

ever is an inconvenient and expensive method.

Quantitative ultrasound (QUS) has been used for decades for the assessment of

the skeletal status and the monitoring of osteoporosis [7, 9]. The effectiveness of

QUS techniques has been evaluated in a large number of studies [6]. The relative

low cost and portability make QUS a challenging noninvasive and non-radiating

technique which can enhance the prediction of the risk of fractures. Nevertheless,

further numerical and experimental research is needed as QUS technologies are not

yet widely accepted due to technical immaturity and to the lack of standardization

between different technical approaches and among various manufacturers [6].

9 Computational Modeling of Ultrasound Wave Propagation in Bone 351



9.2.2.2 Bone Fracture Healing

Bone fracture healing is a complex and dynamic regenerative process, which

involves a series of cellular and molecular events that result in a combination of

intramembranous and endochondral bone formation. The healing process advances

in stages of callus formation and consolidation and is eventually completed within

some months. Worldwide, millions of fractures occur annually due to a common

injury or as a result of osteoporosis, and the human suffering is immense, while the

financial costs for the monitoring and the treatment are staggering. There are two

types of bone healing with significant differences in the evolution of the healing

process, i.e., primary and secondary healing. Secondary healing is a complex

regenerative process which involves the progressive formation, differentiation,

and ossification of the fracture callus tissue in order to restore the original material

properties and structural integrity of intact bone. This is the most common healing

type. In primary healing rigid stabilization is required with or without compression

of the bone ends, and lamellar bone is directly formed without the formation of

callus tissue.

Although the vast majority of fractures are treated successfully, complications

such as delayed union and nonunion are frequently encountered [10]. Both types of

complications require further conventional or surgical procedures extending thus

the already prolonged treatment period. In clinical practice, the assessment of

fracture healing is performed by serial clinical and radiographic examinations.

However, both techniques strongly depend on the orthopedic surgeon’s experience

and clinical judgment, which renders the development of more objective and

quantitative means of the evaluation of bone fracture healing more than necessary.

Several noninvasive biomechanical methods for monitoring fracture healing have

been reported in the literature. The most popular biomechanical methods include

the attachment of strain gauges to external fixation devices for measuring the axial

or bending deformation, the use of vibrational testing, and the acoustic emission

technique [11–16].

QUS has been used for the assessment and monitoring of the fracture healing

process for over five decades. Ultrasonic techniques evaluate the alterations that

occur within the callus tissue from the early inflammation stage, the endochondral

and intramembranous ossification stages, up to the bone remodeling stage. As the

waves propagate across the fracture site, the callus properties gradually evolve

during bone healing which is reflected in the ultrasound velocity. Animal and

clinical studies have shown that ultrasound velocity changes as the healing

progresses which suggests that QUS can be used for monitoring purposes as well

as for the early detection of complications and the accurate estimations of the callus

tissue [17–25].
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9.3 Ultrasound Configurations and Measuring Parameters

The most common ultrasound techniques that have been used for bone characteri-

zation are the through and the axial transmission. The through-transmission

technique is more suitable for the assessment of trabecular bone. Typically two

transducers a transmitter and a receiver are placed on opposite sides of the skeletal

site to be measured. This technique has been mainly applied to the measurement of

different skeletal sites such as finger phalanxes and heel and more recently at the

forearm or the proximal femur at the hip [6].

Axial transmission is the most suitable method for the assessment of cortical

bone and has been mainly applied for obtaining measurements from long bones

such as tibia and radius [26, 27]. A set of transmitter(s) and receiver(s) are placed

along the bone axis at a constant or variable distance either in contact with the skin

(percutaneous application) [26] or through implantation directly onto the bone

surface (transosseous application) [28]. As opposed to through-transmission

techniques, the transducer setup is much easier and can therefore be applied to a

greater number of skeletal sites. In particular, the axial-transmission technique is

preferable in the case of fracture healing as this setup can be positioned more easily

on each side of the injured region.

The most common measuring parameters are the velocity and the attenuation

of the first arriving signal (FAS). In the case of fracture healing, the average

propagation velocity is the component of the propagation velocities in intact

bone and callus. Thus, the value of the velocity depends on the distance between

the transducers for a specific fracture gap, whereas in the case of osteoporosis

the velocity is practically independent of the transducers’ distance. In addition,

several studies have indicated that ultrasound wave attenuation can be used as an

effective means of monitoring bone healing. The numerical evaluation of the

ultrasound attenuation in bone is mainly based on the measurement of the first

half cycle of the FAS. Different criteria have been proposed to detect the FAS at

the receiver including extrema, zero crossings, or threshold-based time criteria.

However, the FAS propagates as a lateral wave for wavelengths comparable to

or smaller than the cortical thickness reflecting thus only the periosteal region of

the bone.

To this end, the study of the propagation of guided waves in bone has drawn the

interest of several researchers. Guided waves are sensitive to material and geomet-

rical changes and can provide valuable information for the ultrasound propagation

features occurring at deeper layers. Different numerical approaches have been

presented for the study of guided waves based on the Lamb wave theory. According

to one technique, ultrasound signals are recorded at various transmitter–receiver

distances to produce grayscale plots of amplitude as a function of time and distance.

From the (r, t) diagrams propagating waves were visualized, and, by fitting a line to

the peaks within a wave packet, velocities were measured. Other authors have used

the wavenumber–frequency diagrams ((k, f) diagrams) obtained from the simulated

(r, t) diagrams by applying the 2D fast Fourier transform (2D FFT). Analytically

9 Computational Modeling of Ultrasound Wave Propagation in Bone 353



derived Lamb dispersion curves are superimposed on the (k, f) diagram in order to

detect the dominant modes. Another technique, which is mainly used in fracture

healing, is based on time–frequency (t, f) analysis by using the reassigned smoothed

pseudo Wigner–Ville (RSPWV) distribution function. Frequency–group velocity

(f, cg) dispersion curves are computed for the plate model based on the Lamb wave

theory. At each healing stage the (f, cg) dispersion curves are superimposed to the

(t, f) representations in order to estimate the evolution of the dispersion modes

during healing. The (t, f) analysis provides an effective means of representing

guided waves in bones and has several advantages over the analysis of an (r, t)

diagram. The derivation of an (r, t) diagram usually requires a manual procedure for

the collection of multiple waveforms, while (t, f) analysis can represent multiple

guided modes using only a broadband excitation [17]. Therefore, the acquisition of

an (r, t) diagram increases the measuring time and impedes the applicability of the

method in cases where the accessibility to the skeletal site of interest is limited (e.g.,

when the transducers are rigidly attached or implanted).

More recent numerical studies have used multiple scattering theories in order to

estimate the frequency-dependent wave dispersion and attenuation coefficient in

media with porous nature such as trabecular bone and callus. Nevertheless, the

investigation of the scattering and absorption mechanisms induced by the interac-

tion of ultrasound with the complex bone microstructure is a new and promising

research field.

9.4 Computational Modeling of Wave Propagation

in Intact and Osteoporotic Bones

The development of computational bone models has played a key role in bone

characterization in general, but especially for the diagnosis and evaluation of

osteoporosis, it has facilitated the investigation of new configurations and measur-

ing indices. Numerical simulations provide a significant supplementary for the

investigation of the underlying mechanisms of ultrasound propagation in bone

that cannot be interrogated by clinical and animal experiments.

9.4.1 Computational Methods

The different computational algorithms that have been mainly presented so far in

the literature for simulating wave propagation in bones are as follows: (a) the finite

element method (FEM), (b) the finite-difference method (FDM), and (c) the bound-

ary element method (BEM). The Elastodynamic Finite Integration Technique

(EFIT) has been also used in a more recent study [29].
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The FEM is a numerical technique which divides a structure into many elements,

called finite elements, to approximate a solution over the domain of interest.

Specifically, a complex system of points (nodes) forms a grid, called mesh. The

mesh contains the material and geometrical properties which determine the defor-

mation of a structure under certain loading conditions. Approximate solutions of

partial differential equations as well as of integral equations are derived. The FDM

is also a numerical method that solves differential equations using finite-difference

equations to approximate derivatives. The FDM is the most popular method due to

the ease of implementation and efficiency and has been particularly popular in

osteoporosis studies. According to the BEM the dimensionality of the solution is

reduced by one as only the boundaries of a structure have to be discretized. Thus,

less time and memory requirements are needed. Finally, the EFIT has been used to

simulate both linear and nonlinear interaction between a propagated wave and the

boundaries of the structure.

Accurate computational models and efficient simulation of elastic wave propa-

gation necessitate (a) careful assignment of material properties to the model,

(b) selection of parameters related to the ultrasound configurations with cautious-

ness, as well as (c) detailed discretization of the spatial and temporal domains.

9.4.2 2D Studies on Cortical Bone

The first computational studies of ultrasound wave propagation aiming at cortical

bone assessment were based on two-dimensional models. The initial objective of

the first studies on the field was to perform FAS velocity measurements so as to

investigate the potential of FAS to (a) reflect structural changes in cortical thick-

ness, (b) offer quantitative criteria for the diagnosis of osteoporosis, and

(c) interpret the findings from previous animal and clinical studies. More recently,

several authors have studied the propagation of guided modes in order to interpret

ultrasound propagation phenomena occurring at deeper bone layers.

The first two studies on ultrasound wave propagation on 2D bone-mimicking

plates are published in 2002 [30, 31] aiming at the evaluation of osteoporosis. The

bone was simply modeled as a linear elastic 2D acrylic plate. Since osteoporosis is

characterized by reduced cortical thickness, ultrasound simulations were performed

for varying plate thicknesses. In another subsequent 2D study [32], the bone models

were enhanced by assuming realistic geometry derived from X-ray computed

tomography reconstructions of human radius. Solution to the 2D ultrasound wave

propagation problem was given using the FDM. Velocity measurements were also

performed for various transmitter–receiver distances. It was found that when the

plate thickness, d, is larger than the wavelength in bone, λbone, the FAS wave

corresponds to a lateral wave which propagates at the bulk longitudinal velocity

of bone. When d/λbone � 1, the velocity of the FAS wave decreases with decreasing

plate thickness. For very thin plates, d/λbone � 0.4, the FAS wave propagates as the

lowest-order symmetric plate mode [10]. When 0.4 < d/λbone < 1, the nature of
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the FAS has not been understood yet, but it may be interpreted as an interference

between the lateral wave and some plate modes [31].

In two recent 2D studies reported in the literature [33, 34], bone models were

enhanced by considering porosity and anisotropy issues. Numerical simulations were

performed by using either a hybrid spectral/FE method [33] or the finite-difference

time-domain (FDTD) method [34]. In [34] the bone models’ geometrical and mate-

rial properties were derived from scanning acoustic microscopy images of human

femoral neck. Cortical bone was assumed to be transversely isotropic with elastic

properties derived from scans of cross sections and transverse sections as shown in

Fig. 9.1. Seven 2Dmodels were created which account for the presence or absence of

trabecular bone, cortical porosity, and homogeneous or heterogeneous matrix elas-

ticity [34]. The authors concluded that the porosity plays a significant role in the FAS

wave propagation with the relative change of the propagation time to be highly

correlated to the relative change of porosity and tissue elasticity c33. In addition, it

was reported in [33] that the FAS velocity decreases with increasing porosity.

However, as it was previously mentioned for wavelengths smaller than the

cortical thickness, the FAS wave behaves as a lateral wave which propagates in

the subsurface of bone, reflecting thus only the periosteal region. Therefore FAS

velocity measurements cannot capture the material and structural alterations that

occur in deeper cortical layers. To this end, 2D computational studies have been

also performed to investigate the propagation of guided waves in bone which are

sensitive on both the material and the geometrical properties [30–32]. This

measurement method is based on the assumption that the propagation of Lamb

modes in a plate is in consistency with the type of waves propagating in the cortical

layer. Ultrasound signals were recorded at various transmitter–receiver distances to

produce grayscale plots of amplitude as a function of time and distance. From the

distance–time diagrams (r, t), the observation of at least two distinct wave modes

was enabled: (a) the fast first arriving mode which corresponds to the first

Fig. 9.1 Sample preparation scheme of the femoral neck disks. The disks were extracted between

greater trochanter and femoral neck (1). c33 and c11 were obtained from scan of cross sections (c)
and transverse sections (t) [34]
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symmetric Lamb mode (S0) and (b) a slower guided wave contribution

corresponding to the propagation of the first antisymmetric mode (A0). Neverthe-

less, bones are surrounded by marrow and soft tissues which provide a leakage path

for the ultrasonic energy and give rise to additional guided modes. In order to

identify the propagation of these modes, computational simulations on immersed

plates have also been performed [35]. It was shown that the A0 mode remained the

dominant mode being unaffected by the presence of the soft tissues.

Two more recent computational bone studies [36, 37] investigated guided and

Rayleigh wave propagation in 2D bone models with microstructural effects.

Microstructural effects were accounted by using the Mindlin Form II theory of

gradient elasticity which introduces intrinsic parameters that correlate microstruc-

ture with macrostructure. In [36] by exploiting the simplest form of this theory

(which incorporates two coefficients), it was shown that bone’s microstructure has a

significant effect on the dispersion of the propagating guided waves. In [37] the

effect of bone’s microstructure on Rayleigh wave propagation was investigated by

adopting both the simple and the general Mindlin Form II gradient elastic theory

(in which four constants are involved denoted as l1, l2 and h1, h2). Since the

determination of the microstructural constants introduced in the stress analysis is

an open issue when applying enhanced elastic theories to real problems, the

constants were first assigned with values from closed form relations derived from

a realistic model proposed by [38]. This model associates the internal length-scale

values with the periodicity of geometrical and elastic properties of the osteons. BEM

simulations were also performed for different combinations of the microstructural

constants whose values were at the order of the osteon’s size. Figure 9.2 presents the

time–frequency diagrams of the generated surface wave for the different examined

cases annotated by superimposing the theoretical dispersion curve of the first-order

antisymmetric mode derived from the dipolar elastic theory. It can be seen that

Rayleigh wave is dispersive only when microstructural effects are represented by

different shear stiffness and inertia internal length-scale parameters. These studies

demonstrated that bone’s microstructure plays an important role in the propagation

of guided modes and should be thus taken into consideration.

9.4.3 2D Studies on Trabecular Bone

Luo et al. [39] presented the first computational study aiming at the investigation of

ultrasound wave propagation in trabecular bone. Micro-CT was used to scan a

sample of calcaneal trabecular bone to obtain 15 3D data sets. 2D specimens

derived from each one of the 3D data sets were then examined to evaluate their

respective architectures and densities. Trabecular bone was modeled as a nonho-

mogeneous medium consisted of trabecular rods and blood. Simulations of ultra-

sound propagation were performed using the FDM. It was shown that both the

density and architecture of trabecular bone have a significant effect on ultrasound

propagation.
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Another research group [40–43] used different 2D computational methods to

simulate wave propagation in trabecular bones. Specifically, in [40] computational

simulations of wave propagation were performed by using both the elastic and

Biot’s FDTD methods. Trabecular bone was modeled as a nonhomogeneous and

anisotropic material composed of numerous randomly distributed trabecular rods

and bone marrow. The porosity was also taken into account by changing the

dimensions of the trabecular rods. Through-transmission measurements were

performed by keeping a constant distance between the transducers. It was shown

that by using the elastic FDTD model, neither the fast nor the slow wave could be

analyzed due to (a) the insufficient trabecular frame and (b) the non-considering of

the viscous loss caused by the pore fluid motion [40]. On the other hand, when the

Biot’s FDTD method was applied, both waves could be clearly observed. More-

over, it was found that the change in the amplitude ratio of the fast and slow waves

is correlated with the porosity variation. In [42], the same research group extended

its study to numerically investigate ultrasound propagation in trabecular bone in the

directions parallel and perpendicular to the trabecular alignment. Both the popular
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Fig. 9.2 (Color online) Time–frequency diagram of a Rayleigh waves evaluated for (a) l1 ¼
h1 ¼ 1.04 � 10�4 m, l2 ¼ h2 ¼ 0.74 � 10�4 m, (b) h1 ¼ 1.04 � 10�4 m, l1 ¼ l2 ¼ h2 ¼
0.74 � 10�4 m, (c) l1 ¼ 1.04 � 10�4 m, l2 ¼ h1 ¼ h2 ¼ 0.74 � 10�4 m, (d) l2 ¼ 1.04 �
10�4 m, l1 ¼ l2 ¼ h2 ¼ 0.74 � 10�4 m. The solid line corresponds to first antisymmetric

mode evaluated theoretically for g ¼ 1.04 � 10�4 m and h ¼ 0.74 � 10�4 m, whereas the

dotted line to the classical elastic theory [37]
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viscoelastic FDTD method and the Biot’s FDTD method for a fluid-saturated

porous medium were used to simulate wave propagation. In that study two models

were developed with different orientations of the trabecular rods. It was found that

the propagation of the Biot’s fast and slow longitudinal waves in the direction

parallel to the trabecular alignment could be analyzed using Biot’s FDTD method

rather than the viscoelastic FDTD method, whereas the single wave propagation in

the perpendicular direction could be more clearly analyzed using the viscoelastic

FDTD method [40, 42]. These studies made clear that the porosity variation and the

orientation of trabecular structure strongly affect the ultrasound propagation

mechanisms in trabecular bone.

The relation between the ultrasound propagation direction and the trabecular

alignment was also investigated in a more recent 2D study [44] by using an FE

method for anisotropic porous media (Biot’s model) coupled with two acoustic

fluids. This method takes into account nonhomogeneous physical characteristics

(e.g., porosity, rigidity, permeability) or irregularities of the medium [44].

Trabecular bone was assumed as a fluid-saturated orthotropic poroelastic medium

immersed in an acoustic fluid. Through-transmission measurements were

performed to investigate the propagation of the transmitted and reflected waves

for different angles of incidence. It was shown that the characteristics of the

transmitted and reflected waves depend strongly on the anisotropy of trabecular

bone. In particular, it was found that when an ultrasound pulse propagates in

the direction parallel to the main trabecular alignment, the numerical results

include two separate transmitted and reflected waves. On the other hand, when

the wave propagates approximately perpendicularly to the main trabecular direc-

tion, both the transmitted and reflected waves do not depend perceptibly on the

propagation angle.

In a more recent study [29], phase velocity calculations in trabecular bone-

mimicking phantoms were performed by using analytical multiple scattering and

time-domain numerical approaches. Numerical calculations were derived using the

Elastodynamic Finite Integration Technique (EFIT) in which linear elastodynamic

equations in heterogeneous media are solved, while the analytical predictions were

based on the approximation of Waterman and Truell’s (WT2D) corrected model.

Through-transmission measurements were performed for different frequencies

by using trabecular bone models with different volume fraction or diameters of the

trabecular rods (called scatterers). The numerical and analytical results were in

excellent agreement with the experimental findings of Wear [45]. However, the

phase velocities computed theoretically were closer to the experimental data,

although the numerical EFIT computations correspond to a closer experimental

setup, while WT2D is based on a random distribution of scatterers [29].

Analytical studies in trabecular bone models have been also presented by Haiat

et al. [46, 48]. In [46] a multiple scattering model was developed aiming at the

estimation of the frequency dependence of the phase velocity and at the investiga-

tion of the physical mechanisms that lead to a negative velocity dispersion in

trabecular bone. The 2D homogenization model derived from [47] was extended

to account for viscoelastic absorption effects. Trabecular bone was modeled as a
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two-phase medium consisted of a viscoelastic matrix including randomly

distributed viscoelastic infinite cylinders. It was shown that analytical phase veloc-

ity predictions were in agreement with the experimental findings in [45]. Also, it

was suggested that scattering effects are responsible for the reported negative

dispersion in trabecular bone, whereas the dependence of the absorption coefficient

on frequency in the trabeculae and bone marrow leads to a dispersion increase. The

same research group in [48] presented a new analytical model of trabecular bone

that takes into consideration viscoelastic absorption effects in combination with

independent scattering. There are two main differences between this model and the

model developed in [46]: (a) the first one refers to the assumption of independent

versus multiple scattering and (b) the second one is related to the modeling of the

attenuation coefficient in the matrix and in the scatterers [48]. Specifically, in [48] a

squared frequency dependence was assumed for the attenuation coefficient, while a

linear dependence was reported in [46]. The results were compared with the

experimental findings of [45] and the analytical results of [46]. It was found that

for low frequencies the independent scattering model better approaches the experi-

mentally measured phase velocities. On the other hand, for high values of scatterer

diameter and volume fraction, the results predicted from the multiple scattering

model were in better agreement with the experimental results. This was attributed to

the significant effect of the multiple scattering phenomena.

9.4.4 3D Models of Cortical Bone

Although 2D computational bone models have played key role in the interpretation

of real bone measurements, the incorporation of the 3D bone realistic geometry has

provided new supplementary knowledge about the ultrasound wave propagation

mechanisms.

The first 3D computational study was published in 2004 aiming to investigate

the effect of bone’s tubular geometry on FAS wave propagation [49]. Ultrasound

measurements were first performed on 3D homogeneous isotropic hollow cylinders

with properties equal to those of bone. Anisotropy issues were then taken into

account. The influence of the cortical thickness was also examined by changing the

inner radius of the model. Numerical simulations were performed for ultrasonic

frequencies ranging from 500 kHz to 2 MHz using the FDM. The FAS wave was

found not to be affected by the 3D geometry and curvature since its velocity values

measured on tubular cortical shells were identical to those measured on bone plates

of equal thickness. However anisotropy had a significant influence on the FAS

velocity as a function of cortical thickness. It was also made clear that the lateral

wave only reflects material and structural changes that occur at a thin periosteal

layer with cortical depth approximately from 1 to 1.5 mm for 500 kHz to 2 MHz

ultrasound waves.

To this end, two subsequent 3D studies aiming at the assessment of osteoporosis

have investigated the propagation of the lowest-order antisymmetric mode
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[50, 51]. In the first study [50], the real 3D geometry of bone diaphysis was modeled

based on X-ray computed tomography reconstructions of human radius. Axial-

transmission measurements were performed using an FDTD algorithm for different

transmitter–receiver distances for frequencies from 300 to 500 kHz. Due to the

strong circumferential curvature of the human radius, the first antisymmetric plate

mode (A0) was replaced by a tubular fundamental flexural mode (F11) in order to

enhance the accuracy of the thickness prediction. In order to account for the effect

of the soft tissues on guided wave propagation, the authors further extended their

model by assuming bone to be a 3D bilayer tube system surrounded of a solid empty

inner cavity and an outer radius of a fluid shell [51]. It was shown that the intensity

of F11 decreases rapidly with increasing the thickness of the fluid shell, showing a

corresponding decrease in the normal displacement associated with F11. Thus, F11
could only be distinguished from other modes and noise when the thickness of the

fluid shell was below 3 mm, indicating that thickness evaluation based on F11 is not

possible for typical soft tissues surrounding human radius. On the other hand, it was

observed that as the thickness of the fluid shell was increasing higher-order modes

were dominant. This finding could potentially provide additional valuable informa-

tion for cortical bone assessment.

The effect of the overlying soft tissues was also investigated in a more recent

study [52] modeling the propagation of elastic waves in coupled media mimicking

the bone. Bone’s hard and soft phases were modeled using 3D elastic, homoge-

neous, and isotropic elements. The FEM was used for the simulation of the wave

propagation problem. The estimation of the stress field showed a clear leakage of

wave energy from the hard to the soft phase which could be identified by both the

FAS and the second arriving signal (SAS). It was also found that the coupled media

affect in a different manner the FAS and the SAS and the most significant changes

occur when the soft tissues are initially introduced.

9.4.5 3D Models of Trabecular Bone

Most of the 3D computational models that have been reported in the literature in the

context of trabecular bone assessment have been based on high-resolution

computed tomography (CT) reconstructions of real bones. Bossy et al. [53] devel-

oped computational models of trabecular bone with geometrical and material

properties derived from high-resolution synchrotron radiation microcomputed

tomography (SR-μCT) of 31 human femur samples (Figs. 9.3, 9.4 and 9.5).

Through-transmission ultrasound attenuation and velocity measurements were

performed using the FDTDmethod. It was found that the attenuation varied linearly

for frequencies up to 1.2 MHz and the velocity increased with increasing bone

volume concentration. In the majority of the examined specimens, the velocity

exhibited negative dispersion. It was also shown that two types of waves could be

observed (a fast wave and a slow wave travelling slower than waves in water) when
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the ultrasonic wave propagates parallel to the main orientation of the trabeculae

(Fig. 9.3) [53].

The same research group in [54] extended its work to evaluate wave attenuation

in trabecular bone models based on SR-μCT of human femur. Numerical

simulations were performed using the FDTD method, and the results were

compared to experimental findings. Scattering was accounted in the numerical

simulations, while absorption was neglected. It was found that numerical

simulations can provide normalized broadband ultrasound attenuation (nBUA)

values which approach the experimental ones, especially for specimens with low

bone volume fraction. Also, it was reported that scattering is the factor that mainly

affects nBUA for bone specimens with low bone volume fraction, whereas in

Fig. 9.3 3D snapshot

obtained from FDTD

calculations, illustrating the

propagation of a

quasi-plane wave through

trabecular bone. The

trabecular bone geometry

was derived from high-

resolution synchrotron

computed micro-

tomography [53]

Fig. 9.4 Typical two-dimensional SR-μCT grayscale reconstruction. The pixel size on the images

corresponds to the original 10 μm resolution. The grayscale bars indicate the bone tissue minerali-

zation (g cm�3 of hydroxyapatite crystals) [53]
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denser specimens the role of other mechanisms such as absorption is significant and

should be taken into account.

Wave attenuation in trabecular bone was also examined in [55, 56] by using the

FDTD to simulate ultrasound propagation. In [55], three-dimensional X-ray CT

data of actual bone samples were used to develop realistic trabecular bone models.

Through-transmission measurements were performed using a plane emitter and

receiver in order to investigate the generation mechanism and propagation behavior

of the fast wave. The attenuation of the fast wave was found to be always more

significant in the early state of propagation, while it gradually decreased along

the wave propagation path. This phenomenon was attributed to the complicated

mechanisms of fast wave propagation in trabecular bone. Also, Hosokawa

et al. [56] investigated the effect of porosity on the propagation attenuation and

velocity. The complicated pore structure of trabecular bone was examined using a

3D X-ray μCT image. A 3D trabecular bone model was developed consisting of

spherical pores in a solid bone. Using a viscoelastic FDTD algorithm, ultrasound

propagation through trabecular bone was simulated, and two different directions of

propagation (parallel and perpendicular to the main trabecular orientation) were

investigated. The porosity was shown to be correlated to wave attenuation and

propagation velocity.

The effect of trabecular porosity was also investigated in [57] by examining

the ultrasonic propagation of the fast wave in trabecular bone. FDTD numerical

simulations were performed for computational models of trabecular bone developed

using 34 μCT human femoral specimens. Nonviscous water was used to model the

marrow, and bone was assumed to be isotropic, nonabsorbing, and homogeneous.

The main trabecular alignment (MTA) and the degree of anisotropy (DA) were

examined. DA values were found to range between 1.02 and 1.9, and the bone

volume fraction (BV/TV) was varying from 5 % to 25 %. The influence of the

BV/TV on the propagation of both the fast and the slow wave was examined, and a

Fig. 9.5 Three-dimensional view of synchrotron micro-tomographic reconstruction of typical

dense (a) and porous (b) trabecular samples [53]
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heuristic method was used to detect when the two wave modes are time separated.

It was shown that both waves overlap in time when the propagation direction is

perpendicular to the MTA, whereas when these directions are parallel, both waves

are separated in time for samples with high DA and BV/TV values [57]. It was also

shown that higher values of the DA correspond to lower values of the BV/TV.

The same research group in [58] investigated numerically the relationship

between ultrasonic parameters and trabecular bone elastic modulus. The 3D

FDTD numerical computations of wave propagation, the micro-finite element

analysis, and the fabric tensor analysis were coupled to 3D segmented digital

models of trabecular structure based on the human femoral specimens derived

from [57]. Numerical simulations were performed in the three perpendicular

directions for each sample and each direction [58]. Bone tissue was assumed to

be isotropic, nonabsorbing, and homogeneous. This model neglected the absorption

or viscous phenomena that occur during ultrasound propagation. It was shown that

when the direction of ultrasound propagation is parallel to the main trabecular

orientation, the predictive power of QUS parameters decreases and the fabric tensor

analysis provides better results [58]. This decrease was attributed to the presence of

two longitudinal wave modes. In addition, in all cases, the combination of BV/TV

and fabric tensor was shown to be a more effective indicator than the QUS

parameters. Specifically, the fabric tensor analysis was found to be significantly

better than QUS parameters in the assessment of the Young’s modulus when the

direction of testing was parallel to the MTA.

9.5 Ultrasound Wave Propagation in Healing Bones

Ultrasound wave propagation has been also used for the monitoring of the fracture

healing process but to a lesser extent than in osteoporosis. Computational modeling

in this field has allowed for the examination of ultrasound interaction with a

discontinuity in bone that is subsequently filled in by a dynamically changing

material, and this has played a major role in following this repairing process and

with the aim to devise quantitative criteria that describe its outcome. The most

significant findings in this research area are presented herein by focusing on the

modeling of the callus geometrical and material properties which evolve during the

healing process.

The first computational study examining ultrasound wave propagation in healing

bones was presented in [17]. Bone was modeled as a 2D isotropic plate, and the

healing process was assumed as a 7-stage process with the callus material properties

to vary according to the examined healing stage. Computational simulations were

performed using the axial-transmission technique by placing the transducers direct

onto the plate’s upper surface. The receiver was progressively shifted by 0.5 mm

steps with the center-to-center distance from the transmitter to increase from 20 to

35 mm. Numerical solution to the elastic problem was performed using the FD

method. The callus was initially modeled by simply filling the fracture gap without
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considering its geometry. Thereafter simulations were performed by describing the

callus geometry with two regions outside the plate borders corresponding to the

periosteal and endosteal formation of callus. The axial transmission of ultrasound

was simulated by two transducers (transmitter and receiver) placed in direct contact

with the plate’s upper surface [17]. The excitation frequencies of 500 kHz and

1 MHz were investigated. The results indicated that the FAS velocity decreases

during the first and the second healing stages. However an increase was observed

at later healing stages gradually approaching the values of intact bone. In addition,

the FAS velocity at each stage was not influenced by the excitation frequency or the

callus geometry. Although the FASmeasurements could provide information for the

monitoring of healing, it was made clear that it could not reflect the changes that

occurred within the endosteal callus tissue during the healing stages. This limitation

was addressed in this study by also investigating the propagation of guided waves as

a different means of bone healing evaluation. Signal analysis was performed in the

(t, f) domain. The RSPWV distributions of the signals obtained from different

healing stages are shown in Fig. 9.6. Mode identification was performed by using

the velocity dispersion curves derived from the Lamb wave theory. As shown in

Fig. 9.6, the callus geometrical and material properties had a significant effect on the

dispersion of the theoretical Lamb modes, with the S2 and A3 modes to dominate.

In a subsequent study [28], the same group further extended their work by

addressing more realistic conditions which account for the effect of the soft tissues

on guided wave propagation. Three different cases were examined which
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Fig. 9.6 The RSPWV distribution of the signals obtained from (a) first, (b) second, (c) third, and

(d) fifth stage of healing [17]
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corresponded to different fluid-loading boundary conditions applied on the 2D

models of bone. The obtained signals were analyzed in both time and (t, f) domain.

In the first case, the bone was assumed to be immersed in blood which occupied the

semi-infinite spaces of the upper and lower surfaces of the plate. In the second case,

the bone model was assumed to have the upper surface loaded by a 2-mm thick

layer of blood and the lower surface loaded by a semi-infinite fluid with properties

close to those of bone marrow. The third case, involved a three-layer model in

which the upper surface of the plate was loaded by a layer of blood, whereas the

lower surface was loaded by a 2-mm layer of a fluid which simulated bone marrow.

The callus tissue was modeled as a nonhomogeneous material, and fracture healing

was simulated as a three-stage process. Axial-transmission measurements were

carried out by placing a set of transducers in contact to the plate’s upper surface,

equidistant from the fracture callus. The FAS velocity was found to be practically

not affected by the different fluid-loading boundary conditions since it exhibited a

similar behavior for all the examined cases. More specifically it was found to

decrease at the first healing stage and gradually increase during the second and

the third healing stages. On the other hand, guided wave analysis clearly indicated

that the application of realistic boundary conditions has a significant effect on the

dispersion of guided waves and should be thus taken into account for the interpre-

tation of real measurements.

The same research group in [59] also performed a feasibility study of an

alternative ultrasonic configuration in which two of the pins of an already applied

external fixation device are used as a means of ultrasound transmission and

reception. In particular, the pins of an already applied external fixation device

were used as a means of ultrasound transmission and reception. The effectiveness

of the proposed technique in the monitoring of the fracture healing process was

evaluated by performing velocity measurements on 2D models of intact and healing

bones. Bone was modeled as a three-layer isotropic and homogeneous medium, and

the FDM was used to simulate wave propagation. The fracture callus tissue was

modeled as a nonhomogeneous material consisting of six distinct ossification

regions. Two stainless steel pins of an external fixation were modeled and

incorporated in the bone model. The pins were inserted into the first three layers

of the bone model, and their center-to-center distance was 40 mm. In the case of the

healing bone models, the pins were placed equidistant from the fracture callus, and

the transmitter and receiver were attached to the extracorporeal tip of the first and

the second pin, respectively. Different pin inclination angles were examined.

Furthermore, axial-transmission measurements were also performed by using the

percutaneous and the transosseous configurations. It was shown that the presence of

the pins leads to higher velocity measurements since the waves also travel along the

metal medium whose bulk velocity is higher than that of bone. In addition, in all the

examined cases, the velocity was found to increase during healing, and this

behavior was not influenced by any pin inclination angle.

The next series of computational studies in healing bones investigate the poten-

tial of amplitude and attenuation of the FAS to monitor the healing course. In the

first study [60], the healing bone was modeled as a 2D isotropic plate with the size
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of the fracture gap to vary from 1 to 10 mm. Simulations of wave propagation were

performed using the FDM that was used to simulate wave propagation in models.

Axial-transmission measurements were performed for different distances between

the transducers (40–80 mm). The attenuation data were estimated as a sound

pressure level (SPL) according to the transducers’ distance. The difference in

sound pressure levels, denoted as a Fracture Transmission Loss (FTL), at a specific

measurement position x was calculated as the difference between the SPL(x) of an

intact bone and a fractured specimen. SPL was found to decrease as the distance

between the transducers increases.

In the next two subsequent studies of the same group, the effects of different

fracture geometries on ultrasound signal loss [61, 62] were investigated. Different

healing stages were represented by incorporating different fracture geometries to the

plate model. Initially, a simple transverse and oblique fracture filled with water was

introduced to simulate the inflammatory stage. Then, a symmetric external callus

surrounding a transverse fracture was modeled to represent an advanced stage of

healing. Axial-transmission measurements were performed by using the FDM to

simulate wave propagation. Human cortical bone was assumed to be an isotropic flat

plate, and the transducers were positioned at a constant distance of 5 mm over the

bone surface. The results made clear that as opposed to the intact plate model, a large

net loss in the signal amplitude was produced for both the simple transverse and

oblique geometries. Moreover, the introduction of the geometry of an external callus

in the numerical simulations caused a remarkable reduction of the net loss of

the signal amplitude. It was also found that the arrival time and the signal amplitude

displayed a different variation depending on the receiver position and the fracture

geometry for a constant gap width. In the case of the oblique fracture, a decrease in

the extra time delay was observed and also an increase in the signal loss of the

propagating wave as compared with the transverse fracture. The authors concluded

that the FAS amplitude measurements could capture alterations in the callus geo-

metrical and mechanical properties during fracture healing. However, the inhomo-

geneity of the callus tissue was not considered in this study.

In a more recent similar computational study, this was addressed by assuming

callus as a nonhomogeneous medium consisted of six different tissue types with

material properties evolving during healing [27]. Cortical bone was assumed to

be a homogeneous and isotropic plate with a thickness of 3 mm. The model of

the healing bone is shown in Fig. 9.7. Axial-transmission measurements were

performed by using the FDM. FAS velocity and SPL measurements were

performed for four cases corresponding to daily-changing models of callus as

proposed in [62]. A 1-MHz point-source transducer was placed at 20 mm from

the center of the fracture gap and a point-receiver transducer at 40 mm from the

source. To simulate more realistic conditions, the transducers were placed at a

distance of 4.5 mm above the surface of the bone plate. The FAS propagation time

was found to decrease during healing, while the callus composition could not well

explain the changes in energy attenuation. In all the examined cases, a loss in SPL

was reported in the first days after fracture, while a different SPL trend was

observed at later stages of healing depending on the model. Moreover, the
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propagation time was found to be sensitive only to superficial changes in

the propagation path.

This study was further extended by also accounting for the influence of cortical

bone mineralization on ultrasound axial-transmission measurements [19]. The

authors first presented an experimental study in a cortical bovine femur sample

with a 3-mm fracture gap. A cortical bone slice, which was extracted from another

location in the bone sample, was submitted to a progressive demineralization process

with ethylenediaminetetraacetic acid (EDTA) for 12 days. Axial-transmission

measurements were performed with the demineralized slice placed into the fracture

gap to mimic different stages of mineralization during the healing process. The

calcium loss of the slice due to the demineralization process was recorded, and

SAM was used to assess the mineralization degree of the bone slice. Thereafter, the

experimental conditions were incorporated in computational simulations with the aim

to develop a bone model of the time evolution of the callus mechanical properties.

The FDM was used to perform axial-transmission measurements by placing the

transducers at a distance of 28 mm, positioned 0.5 mm above the plate surface.

Both the simulations and the experiments showed a significant and progressive

increase in the propagation time during the first 4 days of the demineralization

process. Although the simulated measurements were slightly larger than the experi-

mental ones, they both exhibited a similar time-dependence trend. Furthermore, it

was suggested that the ultrasound propagation time is affected by changes in local

mineralization and could be used as an indicator of bone healing.

Nevertheless in all the aforementioned bone healing studies, the effect of callus

porosity was not investigated. To this end, the last two computational studies in the

field [63, 64] examine the propagation of ultrasound in healing bones by taking into

account the porous nature of callus through the use of SAM images (Fig. 9.8). In

particular, in [63] an FD code was used to carry out 2D numerical simulations of

wave propagation in realistic computational models of healing long bones devel-

oped based on SAM images. Acoustic impedance images were used representing

embedded longitudinal sections of 3-mm osteotomies in the right tibia of female

Merino sheep [65]. Each SAM image corresponded to a representative healing

Fig. 9.7 Dimensions and callus tissue composition for the sixth day of bone healing [27]
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stage after 2, 3, 6, and 9 weeks of consolidation. From these maps, the geometry and

material properties of cortical and mineralized callus tissues were directly trans-

ferred into the simulation model. The histogram was calculated for each one of the

calibrated maps of the acoustic impedance. Subsequently, the equipartition of the

pixels was performed into 14 material groups. The material properties for each

group were defined using empirical relations. Axial-transmission measurements

were conducted by placing one transmitter and one receiver on each side of the

osteotomy directly onto the cortical bone surface. The center-to-center distance

between the transducers was set to 20 mm. Additionally, the transducers were

placed on segments of intact cortex in order to measure the velocity of intact

bone. Two sets of measurements were performed in order to examine both the

upper and the lower surface of the cortex. By plotting the FAS velocity against the

excitation frequency, an increase in velocity values was observed in the range of

0.1–0.5 MHz, while for higher frequencies the measurements showed a tendency to

reach plateau values. This indicated the dispersive nature of the FAS wave as well

as that it changes mode of propagation throughout this frequency range. Guided

wave analysis was also performed, and the material and geometrical changes in the

callus tissue during healing were found to affect the features of the dominant

dispersion modes. The same SAM images were used in [64], to estimate wave

dispersion and attenuation in the callus tissue by using an iterative effective

medium approximation (IEMA) [66] which is significantly accurate for highly

concentrated elastic mixtures. The callus tissue was assumed to be a composite

medium consisting of a matrix with spherical inclusions. In week 3, blood was

considered as the matrix of the medium and osseous tissue as the material of the

spherical inclusions, while the opposite assumption was made in weeks 6 and 9 as at

later healing stages the presence of blood is more limited. Group velocity and

attenuation estimations were carried out in the frequency range 24–1,200 kHz for

different inclusions’ diameters and volume concentrations depending on the

healing stage. A negative dispersion was observed in all the examined cases,

while the attenuation coefficient was found to increase with increasing frequency.

It was shown that the role of scattering, material dispersion, and absorption

phenomena is more significant during the early healing stages enhancing wave

dispersion and attenuation estimations.

Fig. 9.8 SAM images representing the (a) third, (b) sixth, and (c) ninth postoperative week [63]
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Despite the intensive work that has been performed in the previous 2D bone

healing studies, only one model has been presented so far in the literature to account

for the 3D irregular geometry of cortical bone (Fig. 9.9) [67]. The cortical bone was

modeled as a linear elastic and homogeneous material. In a first series of

simulations, it was considered isotropic, whereas in a second series it was consid-

ered transversely isotropic in order to achieve more realistic conditions. The model

of the callus was similar to that presented in previous 2D computational studies of

the same research group [28]. Bone healing was simulated as a three-stage process.

Wave propagation in the intact bone model was first studied, and comparisons were

made with a simplified geometry using analytical dispersion curves of the tube

modes. Then, the influence of callus consolidation on the guided wave propagation

was investigated during the healing process. The transmitter and receiver were

placed equidistant from the fracture gap, and their center-to-center distance was

36 mm. Concerning the intact bone models, it was shown that the propagation

features of the dominant modes were significantly influenced by the irregularity and

anisotropy of bone. On the other hand, the FAS wave corresponded to a lateral

wave, and the propagation velocity was not influenced by the different material

symmetry assumptions. For the healing bone models, guided waves were found to

be sensitive to material and geometrical changes that take place during the healing

process. It was also demonstrated that the FAS velocity cannot reflect the changes

that occur in the whole structure of the callus tissue [67].

9.6 Conclusions

The use of quantitative ultrasound for bone characterization has attracted the

interest of many research groups worldwide as it can play significant role in the

noninvasive and radiation-free evaluation of metabolic disorders such as osteopo-

rosis as well as in the monitoring of the fracture healing process.

Fig. 9.9 The model of the

diaphyseal segment of

cortical bone incorporating

the fracture callus (sagittal

section). The

transmitter–receiver

configuration is also

illustrated [67]
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Computational modeling of ultrasonic wave propagation in bone has paved the

way for the interpretation of experimental and in vivo findings and has given insight

into the mechanisms of interaction of ultrasound with bone. In recent years, the

availability of powerful numerical tools in combination with high-resolution 2D

and 3D images (SAM, μCT) of the bone structure has facilitated the development of

more realistic computational bone models.

While a 2D simulation can often be a starting point when addressing a new

problem, the findings, when possible, should be verified with 3D simulations,

especially in studies examining significantly nonhomogeneous and anisotropic

media such as trabecular bone and fractured bones. Numerical modeling can be

performed at several scales, as bone properties and geometrical features differ from

the nanostructure to the macrostructure level, and a new trend is multi-scale

modeling, i.e., models that extend across different scales. A computational study

also depends on multiple parameters which should be carefully chosen to approxi-

mate similar conditions to the corresponding in vivo experiment. The ultrasound

configuration, the excitation signal, the material properties, the geometric represen-

tation, the simulation algorithm, the creation of the mesh, and the size of the

element are only a few of the parameters that have to be carefully determined.

The majority of the numerical studies dealing with ultrasound propagation in

bone have been based on the FDM, whereas the FEM and the BEM, although

popular in other engineering fields, have been applied to a more limited extent. The

FDM method is such popular as it has been proved to be a simple and efficient

method. Both the FDM and the FE methods depend on space discretization of a

specific structure over some mesh. The main advantage of the BEM compared to

the FEM and FDM is the reduction in the dimensionality of the problem by one, by

discretizing only the boundaries surrounding the examined geometry. Concerning

the EFIT, it is considered as a reliable tool to numerically simulate wave propaga-

tion in nonhomogeneous media. This method can provide different material

scenarios for multiphase media to carry out ultrasonic scanning procedures similar

to the experimental setup [29].

In the context of intact and osteoporotic bones, the FAS velocity and the

propagation of guided waves have been used as the main indicators for bone

assessment. The first studies used simple 2D, isotropic, and homogeneous

geometries to model bone [30, 31, 37, 39–42], while tubular geometries were

later developed [49–51, 53–58]. It has been shown that the relation between the

wavelength and the thickness of the plate or tube plays a key role as the FAS wave

under certain conditions propagates as a lateral wave and cannot reflect bone

material and structural properties at deeper layers [10, 30, 49]. In addition, the

porosity plays a significant role in the FAS wave propagation with the relative

change of the propagation time to be highly correlated to the relative change of

porosity and tissue elasticity [33, 34]. Anisotropy was also found to have a signifi-

cant influence on the FAS velocity as a function of cortical thickness. Analysis of

the propagation of guided waves has shown the dominance of two main modes:

(a) a fast first arriving mode which corresponds to the first symmetric Lamb mode

S0 and (b) a slower guided wave contribution corresponding to the propagation of
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the first antisymmetric mode A0. Computational simulations on immersed plates

have also shown that the A0 mode remained the dominant mode being unaffected

by the presence of the soft tissues [35]. More recent studies have indicated that

bone’s microstructure plays an important role in the propagation of guided modes

[36, 37]. It should be also noticed that several authors investigating the interaction

of ultrasound with the complex trabecular bone geometry have reported that the

porosity variation and the orientation of trabecular structure strongly affect the

ultrasound propagation mechanisms [40–42, 49, 57]. Ultrasonic attenuation as well

as scattering and absorption effects have been estimated numerically and analyti-

cally by using realistic geometries based on μCT images [32]. It was suggested that

scattering effects are responsible for the observed negative dispersion in trabecular

bone, whereas the frequency dependence of the absorption coefficient in bone

marrow and in trabecular rods can lead to a dispersion increase [32].

A series of computational studies have been also presented to investigate wave

propagation during the fracture healing process. The FAS velocity and attenuation

and guided wave analysis have been investigated as significant monitoring means of

the healing progress. 2D and 3D computational studies have indicated a FAS

velocity decrease at the first healing stages followed by a constant increase as

healing progresses [17, 28, 63]. However, when the FAS wave corresponds to a

lateral wave, its velocity is sensitive only to the properties of a small superficial

region and cannot reflect the gradual restoration of the callus geometrical and

material properties occurring at deeper layers of the callus tissue [10]. Other studies

estimated the attenuation data by investigating the variation of the sound pressure

level during the healing process [51, 60]. It was found that the SPL decreases as the

distance between the transducers increases [60]. A loss in SPL was reported in the

first days after fracture, while a different SPL variation was observed at later stages

of healing depending on the examined bone model [27]. On the other hand, guided

waves are sensitive to geometrical and material changes in the callus tissue during

the healing process. However, several parameters should be examined carefully as

the characteristics of the guided waves are significantly affected by the irregular

geometry and anisotropy of the cortical bone and callus as well as by the presence of

the soft tissues surrounding cortical bone [28, 67]. More recent studies investigated

the evolution of the scattering effects at different healing stages induced by the

porous nature of callus. More realistic conditions were applied by using realistic

bone models based on SAM images. A negative dispersion was observed for all the

examined healing stages, while the attenuation coefficient was found to increase

exponentially with increasing frequency. It was shown that the role of scattering,

material dispersion, and absorption phenomena is more significant during the early

healing stages enhancing wave dispersion and attenuation estimations [63, 64].

In conclusion, the use of QUS for bone assessment is a promising application

field as ultrasound systems are low cost, safe, easy to operate, and in some cases

portable and wearable. The development of numerical bone models for the assess-

ment of bone pathologies can provide supplementary information to experimental

observations and give insight to phenomena that have not been explained yet.

Nevertheless, several issues need to be further addressed, such as assignment of
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realistic mechanical properties and geometries, incorporation of modern imaging

modalities that carry information at different scales, and use of advanced constitu-

tive theories depending on the type of bone or the scale at which is examined. Thus,

the results derived from numerical studies should always be interpreted with

caution preferably in combination with experimental and clinical findings.
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1. M. Doblaré, J. M. Garciá, and M. J. Gómez, “Modelling bone tissue fracture and healing:

a review,” Engineering Fracture Mechanics 71, 1809–1840 (2004).

2. P. Laugier and G. Haı̈at, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg

London New York: Science+Business Media B.V., 4–5 (2011).

3. J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical

structure of bone,” Medical Engineering & Physics 20, 92–102 (1998).

4. A. Ascenzi, P. Baschieri, and A. Benvenuti, “The torsional properties of single selected

osteons,” Journal of Biomechanics 27(7), 875–884 (1994).

5. R. S. Lakes and J. F. C.Yang, “Micropolar elasticity in bone: rotation modulus,” 18th Midwest

Mechanics Conference, Developments in Mechanics (1983).

6. P. Laugier and G. Haı̈at, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg

London New York: Science+Business Media B.V. (2011).

7. P. Molero, P. H. F. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Assessment of the

cortical bone thickness using ultrasonic guided waves: modeling and in vitro study,” 33(2),

254–62 (2007).

8. P. J. Meunier, C. Roux, S. Ortolani, M. Diaz-Curiel, J. Compston, P. Marquis, C. Cormier,

G. Isaia, J. Badurski, J. D. Wark, J. Collette, and J. Y. Reginster, “Effects of long-term

strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteo-

porosis,” Osteoporosis International 20(10), 1663–1673 (2009).

9. A. Tatarinov, N. Sarvazyan, and A. Sarvazyan, “Use of multiple acoustic wave modes for

assessment of long bones: Model study,” Ultrasonics 43(8), 672–680 (2005).

10. V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, “Ultrasonic monitoring of

bone fracture healing,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency

Control 55, 1243–1255 (2008).

11. J. L. Cunningham, J. Kenwright, and C. J. Kershaw, “Biomechanical measurement of fracture

healing,” J. Med. Eng. Technol. 14(3), 92–101 (1990).

12. Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “Assessment of fracture healing in the tibia

using the impulse response method,” J. Orthop. Trauma 10(1), 50–62 (1996).

13. G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, “Monitoring of fracture

healing by lateral and axial vibration analysis,” Journal of Biomechanics 23(4), pp. 323–330

(1990).

14. Y. Hirasawa, S. Takai, W. C. Kim, N. Takenaka, N. Yoshino, and Y. Watanabe, “Biomechan-

ical monitoring of healing bone based on acoustic emission technology,” Clin. Orthop. Relat.

Res. 402, 236–244 (2002).

15. Y. Watanabe, S. Takai, Y. Arai, N. Yoshino, and Y. Hirasawa, “Prediction of mechanical

properties of healing fractures using acoustic emission,” J. Orthop. Res. 19(4), 548–553 (2001).

16. L. Claes, R. Grass, T. Schmickal, B. Kisse, C. Eggers, H. Gerngross, W. Mutschler, M. Arand,

T. Wintermeyer, and A. Wentzensen, “Monitoring and healing analysis of 100 tibial shaft

fractures,” Langenbecks Arch. Surg. 387(3–4), 146–152 (2002).

17. V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in

intact and healing long bones,” Ultrasound in Medicine and Biology 32, 693–708 (2006).

9 Computational Modeling of Ultrasound Wave Propagation in Bone 373



18. G. Barbieri, C. H. Barbieri, N. Mazzer, and C. A. Pelá, “Ultrasound Propagation Velocity and
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