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Preface

Clustering is a discipline devoted to �nding and describing cohesive or homo	
geneous chunks in data� the clusters�

Some exemplary clustering problems are�

	 Finding common surf patterns in the set of web users�

	 Automatically revealing meaningful parts in a digitalized image�

	 Partition of a set of documents in groups by similarity of their contents�

	 Visual display of the environmental similarity between regions on a country
map�

	 Monitoring socio	economic development of a system of settlements via a
small number of representative settlements�

	 Finding protein sequences in a database that are homologous to a query
protein sequence�

	 Finding anomalous patterns of gene expression data for diagnostic pur	
poses�

	 Producing a decision rule for separating potentially bad	debt credit appli	
cants�

	 Given a set of preferred vacation places� �nding out what features of the
places and vacationers attract each other�

	 Classifying households according to their furniture purchasing patterns
and �nding groups� key characteristics to optimize furniture marketing and
production�

Clustering is a key area in data mining and knowledge discovery� which
are activities oriented towards �nding non	trivial or hidden patterns in data
collected in databases�

Earlier developments of clustering techniques have been associated� primar	
ily� with three areas of research� factor analysis in psychology ����� numerical
taxonomy in biology ������ and unsupervised learning in pattern recognition
�����

Technically speaking� the idea behind clustering is rather simple� introduce
a measure of similarity between entities under consideration and combine sim	
ilar entities into the same clusters while keeping dissimilar entities in di�erent
clusters� However� implementing this idea is less than straightforward�

First� too many similarity measures and clustering techniques have been



invented with virtually no support to a non	specialist user in selecting among
them� The trouble with this is that di�erent similarity measures and�or clus	
tering techniques may� and frequently do� lead to di�erent results� Moreover�
the same technique may also lead to di�erent cluster solutions depending on
the choice of parameters such as the initial setting or the number of clusters
speci�ed� On the other hand� some common data types� such as questionnaires
with both quantitative and categorical features� have been left virtually without
any substantiated similarity measure�

Second� use and interpretation of cluster structures may become an issue�
especially when available data features are not straightforwardly related to the
phenomenon under consideration� For instance� certain data on customers avail	
able at a bank� such as age and gender� typically are not very helpful in deciding
whether to grant a customer a loan or not�

Specialists acknowledge peculiarities of the discipline of clustering� They
understand that the clusters to be found in data may very well depend not
on only the data but also on the user�s goals and degree of granulation� They
frequently consider clustering as art rather than science� Indeed� clustering has
been dominated by learning from examples rather than theory based instruc	
tions� This is especially visible in texts written for inexperienced readers� such
as ���� ���� and ������

The general opinion among specialists is that clustering is a tool to be ap	
plied at the very beginning of investigation into the nature of a phenomenon
under consideration� to view the data structure and then decide upon applying
better suited methodologies� Another opinion of specialists is that methods
for �nding clusters as such should constitute the core of the discipline� related
questions of data pre	processing� such as feature quantization and standard	
ization� de�nition and computation of similarity� and post	processing� such as
interpretation and association with other aspects of the phenomenon� should be
left beyond the scope of the discipline because they are motivated by external
considerations related to the substance of the phenomenon under investigation�
I share the former opinion and argue the latter because it is at odds with the
former� in the very �rst steps of knowledge discovery� substantive considera	
tions are quite shaky� and it is unrealistic to expect that they alone could lead
to properly solving the issues of pre	 and post	processing�

Such a dissimilar opinion has led me to believe that the discovered clusters
must be treated as an �ideal� representation of the data that could be used
for recovering the original data back from the ideal format� This is the idea of
the data recovery approach� not only use data for �nding clusters but also use
clusters for recovering the data� In a general situation� the data recovered from
aggregate clusters cannot �t the original data exactly� which can be used for
evaluation of the quality of clusters� the better the �t� the better the clusters�
This perspective would also lead to the addressing of issues in pre	 and post	



processing� which now becomes possible because parts of the data that are
explained by clusters can be separated from those that are not�

The data recovery approach is common in more traditional data mining
and statistics areas such as regression� analysis of variance and factor analysis�
where it works� to a great extent� due to the Pythagorean decomposition of the
data scatter into �explained� and �unexplained� parts� Why not try the same
approach in clustering�

In this book� two of the most popular clustering techniques� K	Means for
partitioning and Ward�s method for hierarchical clustering� are presented in the
framework of the data recovery approach� The selection is by no means random�
these two methods are well suited because they are based on statistical thinking
related to and inspired by the data recovery approach� they minimize the overall
within cluster variance of data� This seems to be the reason of the popularity of
these methods� However� the traditional focus of research on computational and
experimental aspects rather than theoretical ones has contributed to the lack
of understanding of clustering methods in general and these two in particular�
For instance� no �rm relation between these two methods has been established
so far� in spite of the fact that they share the same square error criterion�

I have found such a relation� in the format of a Pythagorean decomposition
of the data scatter into parts explained and unexplained by the found cluster
structure� It follows from the decomposition� quite unexpectedly� that it is the
divisive clustering format� rather than the traditional agglomerative format�
that better suits the Ward clustering criterion� The decomposition has led
to a number of other observations that amount to a theoretical framework
for the two methods� Moreover� the framework appears to be well suited for
extensions of the methods to di�erent data types such as mixed scale data
including continuous� nominal and binary features� In addition� a bunch of
both conventional and original interpretation aids have been derived for both
partitioning and hierarchical clustering based on contributions of features and
categories to clusters and splits� One more strain of clustering techniques� one	
by	one clustering which is becoming increasingly popular� naturally emerges
within the framework giving rise to intelligent versions of K	Means� mitigating
the need for user	de�ned setting of the number of clusters and their hypothetical
prototypes� Most importantly� the framework leads to a set of mathematically
proven properties relating classical clustering with other clustering techniques
such as conceptual clustering and graph theoretic clustering as well as with other
data mining concepts such as decision trees and association in contingency data
tables�

These are all presented in this book� which is oriented towards a reader
interested in the technical aspects of data mining� be they a theoretician or a
practitioner� The book is especially well suited for those who want to learn
WHAT clustering is by learning not only HOW the techniques are applied



but also WHY� In this way the reader receives knowledge which should allow
him not only to apply the methods but also adapt� extend and modify them
according to the reader�s own ends�

This material is organized in �ve chapters presenting a uni�ed theory along
with computational� interpretational and practical issues of real	world data min	
ing with clustering�
	 What is clustering �Chapter ���
	 What is data �Chapter ���
	 What is K	Means �Chapter ���
	 What is Ward clustering �Chapter ���
	 What is the data recovery approach �Chapter ���

But this is not the end of the story� Two more chapters follow� Chapter 

presents some other clustering goals and methods such as SOM �self	organizing
maps� and EM �expectation	maximization�� as well as those for conceptual
description of clusters� Chapter � takes on �big issues� of data mining� va	
lidity and reliability of clusters� missing data� options for data pre	processing
and standardization� etc� When convenient� we indicate solutions to the issues
following from the theory of the previous chapters� The Conclusion reviews
the main points brought up by the data recovery approach to clustering and
indicates potential for further developments�

This structure is intended� �rst� to introduce classical clustering methods
and their extensions to modern tasks� according to the data recovery approach�
without learning the theory �Chapters � through ��� then to describe the theory
leading to these and related methods �Chapter �� and� in addition� see a wider
picture in which the theory is but a small part �Chapters 
 and ���

In fact� my prime intention was to write a text on classical clustering� up	
dated to issues of current interest in data mining such as processing mixed
feature scales� incomplete clustering and conceptual interpretation� But then
I realized that no such text can appear before the theory is described� When
I started describing the theory� I found that there are holes in it� such as a
lack of understanding of the relation between K	Means and the Ward method
and in fact a lack of a theory for the Ward method at all� misconceptions in
quantization of qualitative categories� and a lack of model based interpretation
aids� This is how the current version has become a threefold creature oriented
toward�

�� Giving an account of the data recovery approach to encompass partition	
ing� hierarchical and one	by	one clustering methods�

�� Presenting a coherent theory in clustering that addresses such issues as
�a� relation between normalizing scales for categorical data and measuring
association between categories and clustering� �b� contributions of various
elements of cluster structures to data scatter and their use in interpreta	



tion� �c� relevant criteria and methods for clustering di�erently expressed
data� etc��

�� Providing a text in data mining for teaching and self	learning popular data
mining techniques� especially K	Means partitioning and Ward agglomera	
tive and divisive clustering� with emphases on mixed data pre	processing
and interpretation aids in practical applications�

At present� there are two types of literature on clustering� one leaning
towards providing general knowledge and the other giving more instruction�
Books of the former type are Gordon ���� targeting readers with a degree of
mathematical background and Everitt et al� ���� that does not require math	
ematical background� These include a great deal of methods and speci�c ex	
amples but leave rigorous data mining instruction beyond the prime contents�
Publications of the latter type are Kaufman and Rousseeuw �
�� and chapters in
data mining books such as Dunham ����� They contain selections of some tech	
niques reported in an ad hoc manner� without any concern on relations between
them� and provide detailed instruction on algorithms and their parameters�

This book combines features of both approaches� However� it does so in
a rather distinct way� The book does contain a number of algorithms with
detailed instructions and examples for their settings� But selection of methods
is based on their �tting to the data recovery theory rather than just popularity�
This leads to the covering of issues in pre	 and post	processing matters that
are usually left beyond instruction� The book does contain a general knowledge
review� but it concerns more of issues rather than speci�c methods� In doing so�
I had to clearly distinguish between four di�erent perspectives� �a� statistics�
�b� machine learning� �c� data mining� and �d� knowledge discovery� as those
leading to di�erent answers to the same questions� This text obviously pertains
to the data mining and knowledge discovery perspectives� though the other two
are also referred to� especially with regard to cluster validation�

The book assumes that the reader may have no mathematical background
beyond high school� all necessary concepts are de�ned within the text� How	
ever� it does contain some technical stu� needed for shaping and explaining a
technical theory� Thus it might be of help if the reader is acquainted with basic
notions of calculus� statistics� matrix algebra� graph theory and logics�

To help the reader� the book conventionally includes a list of denotations�
in the beginning� and a bibliography and index� in the end� Each individual
chapter is preceded by a boxed set of goals and a dictionary of base words� Sum	
marizing overviews are supplied to Chapters � through �� Described methods
are accompanied with numbered computational examples showing the work	
ing of the methods on relevant data sets from those presented in Chapter ��
there are �� examples altogether� Computations have been carried out with



self	made programs for MATLAB r�� the technical computing tool developed
by The MathWorks �see its Internet web site www�mathworks�com��

The material has been used in the teaching of data clustering and visual	
ization to MSc CS students in several colleges across Europe� Based on these
experiences� di�erent teaching options can be suggested depending on the course
objectives� time resources� and students� background�

If the main objective is teaching clustering methods and there are very few
hours available� then it would be advisable to �rst pick up the material on
generic K	Means in sections ����� and ������ and then review a couple of related
methods such as PAM in section 
����� iK	Means in ������ Ward agglomeration
in ��� and division in ������ single linkage in 
���� and SOM in 
���
� Given
a little more time� a review of cluster validation techniques from ��
 including
examples in ����� should follow the methods� In a more relaxed regime� issues
of interpretation should be brought forward as described in ���� ������ 
�� and
����

If the main objective is teaching data visualization� then the starting point
should be the system of categories described in ������ followed by material
related to these categories� bivariate analysis in section ���� regression in ������
principal component analysis �SVM decomposition� in ������ K	Means and iK	
Means in Chapter �� Self	organizing maps SOM in 
���
 and graph	theoretic
structures in 
���
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Introduction� Historical

Remarks

Clustering is a discipline aimed at revealing groups� or clusters� of similar en	
tities in data� The existence of clustering activities can be traced a hundred
years back� in di�erent disciplines in di�erent countries�

One of the �rst was the discipline of ecology� A question the scientists
were trying to address was of the territorial structure of the settlement of bird
species and its determinants� They did �eld sampling to count numbers of
various species at observation spots� similarity measures between spots were
de�ned� and a method of analysis of the structure of similarity dubbed Wrozlaw
taxonomy was developed in Poland between WWI and WWII �see publication
of a later time ������ This method survives� in an altered form� in diverse
computational schemes such as single	linkage clustering and minimum spanning
tree �see section 
������

Simultaneously� phenomenal activities in di�erential psychology initiated in
the United Kingdom by the thrust of F� Galton �����	����� and supported
by the mathematical genius of K� Pearson �����	���
� in trying to prove that
human talent is not a random gift but inherited� led to developing a body of
multivariate statistics including the discipline of factor analysis �primarily� for
measuring talent� and� as its o�shoot� cluster analysis� Take� for example� a list
of high school students and their marks at various disciplines such as maths�
English� history� etc� If one believes that the marks are exterior manifestations
of an inner quality� or factor� of talent� then one can assign a student i with
a hidden factor score of his talent� zi� Then marks xil of student i at di�er	
ent disciplines l can be modeled� up to an error� by the product clzi so that
xil � clzi where factor cl re�ects the impact of the discipline l over students�
The problem is to �nd the unknown zi and cl� given a set of students� marks
over a set of disciplines� This was the idea behind a method proposed by K�
Pearson in ��
� ��

� that became the ground for later developments in Princi	
pal Component Analysis �PCA�� see further explanation in section ������ To do
the job of measuring hidden factors� F� Galton hired C� Spearman who devel	



oped a rather distinct method for factor analysis based on the assumption that
no unique talent can explain various human abilities� but there are di�erent�
and independent� dimensions of talent such as linguistic or spatial ones� Each
of these hidden dimensions must be presented by a corresponding independent
factor so that the mark can be thought of as the total of factor scores weighted
by their loadings� This idea proved fruitful in developing various personality
theories and related psychological tests� However� methods for factor analysis
developed between WWI and WWII were computationally intensive since they
used the operation of inversion of a matrix of discipline	to	discipline similarity
coe�cients �covariances� to be exact�� The operation of matrix inversion still
can be a challenging task when the matrix size grows into thousands� and it
was a nightmare before the electronic computer era even with a matrix size
of a dozen� It was noted then that variables �in this case� disciplines� related
to the same factor are highly correlated among themselves� which led to the
idea of catching �clusters� of highly correlated variables as proxies for factors�
without computing the inverse matrix� an activity which was referred to once
as �factor analysis for the poor�� The very �rst book on cluster analysis� within
this framework� was published in ���� ������ see also �����

In the �
s and 

s of the �
th century� with computer powers made available
at universities� cluster analysis research grew fast in many disciplines simultane	
ously� Three of these seem especially important for the development of cluster
analysis as a scienti�c discipline�

First� machine learning of groups of entities �pattern recognition� sprang up
to involve both supervised and unsupervised learning� the latter being synony	
mous to cluster analysis �����

Second� the discipline of numerical taxonomy emerged in biology claiming
that a biological taxon� as a rule� could not be de�ned in the Aristotelian way�
with a conjunction of features� a taxon thus was supposed to be such a set of
organisms in which a majority shared a majority of attributes with each other
������ Hierarchical agglomerative and divisive clustering algorithms were sup	
posed to formalize this� They were being �polythetic� by the very mechanism
of their action in contrast to classical �monothetic� approaches in which ev	
ery divergence of taxa was to be explained by a single character� �It should
be noted that the appeal of numerical taxonomists left some biologists unim	
pressed� there even exists the so	called �cladistics� discipline that claims that a
single feature ought always to be responsible for any evolutionary divergence��

Third� in the social sciences� an opposite stance of building a divisive decision
tree at which every split is made over a single feature emerged in the work
of Sonquist and Morgan �see a later reference ������� This work led to the
development of decision tree techniques that became a highly popular part of
machine learning and data mining� Decision trees actually cover three methods�
conceptual clustering� classi�cation trees and regression trees� that are usually



considered di�erent because they employ di�erent criteria of homogeneity �����
In a conceptual clustering tree� split parts must be as homogeneous as possible
with regard to all participating features� In contrast� a classi�cation tree or
regression tree achieves homogeneity with regard to only one� so	called target�
feature� Still� we consider that all these techniques belong in cluster analysis
because they all produce split parts consisting of similar entities� however� this
does not prevent them also being part of other disciplines such as machine
learning or pattern recognition�

A number of books re�ecting these developments were published in the �
s
describing the great opportunities opened in many areas of human activity by
algorithms for �nding �coherent� clusters in a data �cloud� placed in geometri	
cal space �see� for example� Benz�ecri ����� Bock ����� Cli�ord and Stephenson
����� Duda and Hart ����� Duran and Odell ����� Everitt ����� Hartigan �����
Sneath and Sokal ����� Sonquist� Baker� and Morgan ����� Van Ryzin �����
Zagoruyko ������ In the next decade� some of these developments have been
further advanced and presented in such books as Breiman et al� ����� Jain and
Dubes ���� and McLachlan and Basford ����� Still the common view is that clus	
tering is an art rather than a science because determining clusters may depend
more on the user�s goals than on a theory� Accordingly� clustering is viewed as
a set of diverse and ad hoc procedures rather than a consistent theory�

The last decade saw the emergence of data mining� the discipline combining
issues of handling and maintaining data with approaches from statistics and
machine learning for discovering patterns in data� In contrast to the statistical
approach� which tries to �nd and �t objective regularities in data� data mining
is oriented towards the end user� That means that data mining considers the
problem of useful knowledge discovery in its entire range� starting from database
acquisition to data preprocessing to �nding patterns to drawing conclusions� In
particular� the concept of an interesting pattern as something which is unusual
or far from normal or anomalous has been introduced into data mining �����
Obviously� an anomalous cluster is one that is further away from the grand
mean or any other point of reference � an approach which is adapted in this
text�

A number of computer programs for carrying out data mining tasks� clus	
tering included� have been successfully exploited� both in science and industry�
a review of them can be found in ����� There are a number of general purpose
statistical packages which have made it through from earlier times� those with
some cluster analysis applications such as SAS ����� and SPSS���� or those en	
tirely devoted to clustering such as CLUSTAN ���
�� There are data mining
tools which include clustering� such as Clementine ����� Still� these programs
are far from su�cient in advising a user on what method to select� how to
pre	process data and� especially� what sense to make of the clusters�

Another feature of this more recent period is that a number of application



areas have emerged in which clustering is a key issue� In many application
areas that began much earlier � such as image analysis� machine vision or robot
planning � clustering is a rather small part of a very complex task such that
the quality of clustering does not much matter to the overall performance� as
any reasonable heuristic would do� these areas do not require the discipline of
clustering to theoretically develop and mature�

This is not so in Bio	informatics� the discipline which tries to make sense
of interrelation between structure� function and evolution of biomolecular ob	
jects� Its primary entities� DNA and protein sequences� are complex enough
to have their similarity modeled as homology� that is� inheritance from a com	
mon ancestor� More advanced structural data such as protein folds and their
contact maps are being constantly added to existing depositories� Gene ex	
pression technologies add to this an invaluable next step 	 a wealth of data on
biomolecular function� Clustering is one of the major tools in the analysis of
bioinformatics data� The very nature of the problem here makes researchers
see clustering as a tool not only for �nding cohesive groupings in data but also
for relating the aspects of structure� function and evolution to each other� In
this way� clustering is more and more becoming part of an emerging area of
computer classi�cation� It models the major functions of classi�cation in the
sciences� the structuring of a phenomenon and associating its di�erent aspects�
�Though� in data mining� the term  classi�cation� is almost exclusively used
in its partial meaning as merely a diagnostic tool�� Theoretical and practical
research in clustering is thriving in this area�

Another area of booming clustering research is information retrieval and text
document mining� With the growth of the Internet and the World Wide Web�
text has become one of the most important mediums of mass communication�
The terabytes of text that exist must be summarized e�ectively� which involves
a great deal of clustering in such key stages as natural language processing�
feature extraction� categorization� annotation and summarization� In author�s
view� clustering will become even more important as the systems for acquiring
and understanding knowledge from texts evolve� which is likely to occur soon�
There are already web sites providing web search results with clustering them
according to automatically found key phrases �see� for instance� �������

This book is mostly devoted to explaining and extending two clustering
techniques� K	Means for partitioning and Ward for hierarchical clustering� The
choice is far from random� First� they present the most popular clustering
formats� hierarchies and partitions� and can be extended to other interesting
formats such as single clusters� Second� many other clustering and statistical
techniques� such as conceptual clustering� self	organizing maps �SOM�� and
contingency association measures� appear to be closely related to these� Third�
both methods involve the same criterion� the minimum within cluster variance�
which can be treated within the same theoretical framework� Fourth� many data



mining issues of current interest� such as analysis of mixed data� incomplete
clustering� and conceptual description of clusters� can be treated with extended
versions of these methods� In fact� the book contents go far beyond these
methods� the two last chapters� accounting for one third of the material� are
devoted to the �big issues� in clustering and data mining that are not limited
to speci�c methods�

The present account of the methods is based on a speci�c approach to clus	
ter analysis� which can be referred to as the data recovery clustering� In this
approach� clusters are not only found in data but they also feed back into the
data� a cluster structure is used to generate data in the format of the data
table which has been analyzed with clustering� The data generated by a cluster
structure are� in a sense� �ideal� as they reproduce only the cluster structure
lying behind their generation� The observed data can then be considered a
noisy version of the ideal cluster	generated data� the extent of noise can be
measured by the di�erence between the ideal and observed data� The smaller
the di�erence the better the �t� This idea is not particularly new� it is� in fact�
the backbone of many quantitative methods of multivariate statistics� such as
regression and factor analysis� Moreover� it has been applied in clustering from
the very beginning� in particular� Ward ����� developed his method of agglom	
erative clustering with implicitly this view of data analysis� Some methods
were consciously constructed along the data recovery approach� see� for in	
stance� work of Hartigan ��
� at which the single linkage method was developed
to approximate the data with an ultrametric matrix� an ideal data type corre	
sponding to a cluster hierarchy� Even more appealing in this capacity is a later
work by Hartigan �����

However� this approach has never been applied in full� The sheer idea� fol	
lowing from models presented in this book� that classical clustering is but a
constrained analogue to the principal component model has not achieved any
popularity so far� though it has been around for quite a while ����� ��
�� The
unifying capability of the data recovery clustering is grounded on convenient
relations which exist between data approximation problems and geometrically
explicit classical clustering� Firm mathematical relations found between dif	
ferent parts of cluster solutions and data lead not only to explanation of the
classical algorithms but also to development of a number of other algorithms for
both �nding and describing clusters� Among the former� principal	component	
like algorithms for �nding anomalous clusters and divisive clustering should be
pointed out� Among the latter� a set of simple but e�cient interpretation tools�
that are absent from the multiple programs implementing classical clustering
methods� should be mentioned�



Chapter �

What Is Clustering

After reading this chapter the reader will have a general understanding of�

�� What clustering is and its basic elements�

�� Clustering goals�

�� Quantitative and categorical features�

�� Main cluster structures� partition� hierarchy� and single cluster�

�� Di
erent perspectives at clustering coming from statistics� machine
learning� data mining� and knowledge discovery�

A set of small but real	world clustering problems will be presented�

Base words

Association Finding interrelations between di
erent aspects of a phenomenon
by matching cluster descriptions in the feature spaces corresponding to
the aspects�

Classi�cation An actual or ideal arrangement of entities under consideration
in classes to shape and keep knowledge� capture the structure of phe	
nomena� and relate di
erent aspects of a phenomenon in question to each
other� This term is also used in a narrow sense referring to any activities
in assigning entities to prespeci
ed classes�

Cluster A set of similar data entities found by a clustering algorithm�
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Cluster representative An element of a cluster to represent its �typical�
properties� This is used for cluster description in domains knowledge of
which is poor�

Cluster structure A representation of an entity set I as a set of clusters that
form either a partition of I or hierarchy on I or an incomplete clustering
of I �

Cluster tendency A description of a cluster in terms of the average values of
relevant features�

Clustering An activity of 
nding and�or describing cluster structures in a
data set�

Clustering goal Types of problems of data analysis to which clustering can be
applied� associating� structuring� describing� generalizing and visualizing�

Clustering criterion A formal de
nition or scoring function that can be used
in computational algorithms for clustering�

Conceptual description A logical statement characterizing a cluster or clus	
ter structure in terms of relevant features�

Data A set of entities characterized by values of quantitative or categorical
features� Sometimes data may characterize relations between entities such
as similarity coe�cients or transaction �ows�

Data mining perspective In data mining� clustering is a tool for 
nding
patterns and regularities within the data�

Generalization Making general statements about data and� potentially� about
the phenomenon the data relate to�

Knowledge discovery perspective In knowledge discovery� clustering is a
tool for updating� correcting and extending the existing knowledge� In
this regard� clustering is but empirical classi
cation�

Machine learning perspective In machine learning� clustering is a tool for
prediction�

Statistics perspective In statistics� clustering is a method to 
t a prespeci	

ed probabilistic model of the data generating mechanism�

Structuring Representing data with a cluster structure�

Visualization Mapping data onto a known �ground� image such as the coor	
dinate plane or a genealogy tree � in such a way that properties of the
data are re�ected in the structure of the ground image�
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��� Exemplary problems

Clustering is a discipline devoted to revealing and describing homogeneous
groups of entities� that is� clusters� in data sets� Why would one need this�
Here is a list of potentially overlapping objectives for clustering�

�� Structuring� that is� representing data as a set of groups of similar ob	
jects�

�� Description of clusters in terms of features� not necessarily involved in

nding the clusters�

�� Association� that is� 
nding interrelations between di
erent aspects of a
phenomenon by matching cluster descriptions in spaces corresponding to
the aspects�

�� Generalization� that is� making general statements about data and�
potentially� the phenomena the data relate to�

�� Visualization� that is� representing cluster structures as visual images�

These categories are not mutually exclusive� nor do they cover the entire range of
clustering goals but rather re�ect the author�s opinion on the main applications
of clustering� In the remainder of this section we provide real	world examples of
data and the related clustering problems for each of these goals� For illustrative
purposes� small data sets are used in order to provide the reader with the
opportunity of directly observing further processing with the naked eye�

����� Structuring

Structuring is the main goal of many clustering applications� which is to 
nd
principal groups of entities in their speci
cs� The cluster structure of an entity
set can be looked at through di
erent glasses� One user may wish to aggregate
the set in a system of nonoverlapping classes� another user may prefer to develop
a taxonomy as a hierarchy of more and more abstract concepts� yet another user
may wish to focus on a cluster of �core� entities considering the rest as merely
a nuisance� These are conceptualized in di
erent types of cluster structures�
such as a partition� a hierarchy� or a single subset�

Market towns

Table ��� represents a small portion of a list of thirteen hundred English market
towns characterized by the population and services provided in each listed in
the following box�
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Market town features�

P Population resident in ���� Census

PS Primary Schools

Do Doctor Surgeries

Ho Hospitals

Ba Banks and Building Societies

SM National Chain Supermarkets

Pe Petrol Stations

DIY Do	It	Yourself Shops

SP Public Swimming Pools

PO Post O�ces

CA Citizen�s Advice Bureaux �cheap legal advice�

FM Farmers� Markets

For the purposes of social monitoring� the set of all market towns should be
partitioned into similarity clusters in such a way that a representative from each
of the clusters may be utilized as a unit of observation� Those characteristics
of the clusters that separate them from the others should be used to properly
select representative towns�

As further computations will show� the numbers of services on average fol	
low the town sizes� so that the found clusters can be described mainly in terms
of the population size� This set� as well as the complete set of almost thirteen
hundred English market towns� consists of seven clusters that can be described
as belonging to four tiers of population� large towns of about ��	������ inhabi	
tants� two clusters of medium sized towns ��	������ inhabitants�� three clusters
of small towns �about ����� inhabitants� and a cluster of very small settlements
with about ����� inhabitants� The di
erence between clusters in the same pop	
ulation tier is caused by the presence or absence of some service features� For
instance� each of the three small town clusters is characterized by the presence
of a facility� which is absent in two others� a Farm market� a Hospital and
a Swimming pool� respectively� The number of clusters is determined in the
process of computations �see sections ���� �������

This data set is analyzed on pp� ��� ��� ��� ��� ��� ��� ��� ���� ���� ����

Primates and Human origin

In Table ���� the data on genetic distances between Human and three genera of
great apes are presented� the Rhesus monkey is added as a distant relative to
certify the starting divergence event� It is well established that humans diverged
from a common ancestor with chimpanzees approximately � million years ago�
after a divergence from other great apes� Let us see how compatible with this
conclusion the results of cluster analysis are�
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Table ���� Market towns� Market towns in the West Country� England�
Town P PS Do Ho Ba SM Pe DIY SP PO CA FM
Ashburton ���� � � � � � � � � � � �
Bere Alston ���� � � � � � � � � � � �
Bodmin ����� � � � � � � � � � � �
Brixham ����� � � � � � � � � � � �
Buckfastleigh ���� � � � � � � � � � � �
Bugle�Stenalees ��	� � � � � � � � � � � �
Callington ���� � � � � � � � � � � �
Dartmouth ���� � � � 
 
 � � � � � �
Falmouth ���	� � 
 � �� � � � � 	 � �
Gunnislake ���� � � � � � � � � � � �
Hayle ���
 
 � � � � � � � � � �
Helston ���� � � � � � � � � � � �
Horrabridge�Yel ���	 � � � � � � � � � � �
Ipplepen ���� � � � � � � � � � � �
Ivybridge 	��	 � � � � � 
 � � � � �
Kingsbridge ���� � � � � � � � � � � �
Kingskerswell ���� � � � � � � � � � � �
Launceston �
�� 
 � � � 
 
 � � � � �
Liskeard ��

 � � � � � � � � � � �
Looe ���� � � � � � � � � � � �
Lostwithiel �
�� � � � � � � � � � � �
Mevagissey ���� � � � � � � � � � � �
Mullion ��
� � � � � � � � � � � �
Nanpean�Foxhole ���� � � � � � � � � � � �
Newquay ���	� 
 
 � �� � 
 � � � � �
Newton Abbot ����� �� 
 � �� 
 � � � � � �
Padstow �
�� � � � � � � � � � � �
Penryn ���� � � � � 
 � � � � � �
Penzance �	��	 �� 
 � �� � � � � � � �
Perranporth ���� � � � � � � � � � � �
Porthleven ���� � � � � � � � � � � �
Saltash �
��	 
 � � 
 � � � � � � �
South Brent ���� � � � � � � � � � � �
St Agnes ��		 � � � � � � � � � � �
St Austell ����� � 
 � �
 � 
 � � � � �
St Blazey�Par ���� � � � � � 
 � � 
 � �
St Columb Major ���	 � � � � � � � � � � �
St Columb Road �
�� � � � � � � � � � � �
St Ives ���	� 
 � � � � � � � 
 � �
St Just ��	� � � � � � � � � � � �
Tavistock ����� � � � � � � � � � � �
Torpoint ���� � � � � � � � � � � �
Totnes �	�	 � � � � � � � � 
 � �
Truro ��	�� 	 � � �	 
 � � � � � �
Wadebridge ��	� � � � � � � � � � � �

Table ���� Primates� Distances between four Primate species and Rhesus
monkey�

Genus Human Chimpanzee Gorilla Orangutan

Chimpanzee ����
Gorilla ���� ����
Orangutan ���� ���� ��	�
Rhesus monkey ���� ���� ���� ���	
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RhM Ora Chim Hum Gor

Figure ���� A tree representing pair	wise distances between the primate species
from Table ����

The data is a square matrix of the dissimilarity values between the species
from Table ��� as cited in ����� p� ��� �Only sub	diagonal distances are shown
since the table is symmetric�� An example of analysis of the structure of this
matrix is given on p� ����
The query� what species belongs to the same cluster as Humans� This

obviously can be treated as a single cluster problem� one needs only one cluster
to address the issue� The structure of the data is so simple that the cluster of
chimpanzee� gorilla and human can be separated without any theory� distances
within this subset are similar� all about the average ����� and by far less than
other distances�
In biology� this problem is traditionally addressed through evolutionary

trees� which are analogues to genealogy trees except that species play the role
of relatives� An evolutionary tree built from the data in Table ��� is shown in
Figure ���� The closest relationship between human and chimpanzee is obvious�
with gorilla branching o
 next� The subject of human evolution is treated in
depth with data mining methods in �����

Gene presence�absence pro�les

Evolutionary analysis is an important tool not only for understanding evolution
but also for analysis of gene functions in humans and other organisms including
medically and industrially important ones� The major assumption underlying
the analysis is that all species are descendants of the same ancestor species� so
that subsequent evolution can be depicted in terms of divergence only� as in the
evolutionary tree in Figure ����
The terminal nodes� so	called leaves� correspond to the species under con	

sideration� and the root denotes the common ancestor� The other interior nodes
represent other ancestral species� each being the last common ancestor to the
set of organisms in the leaves of the sub	tree rooted in the given node� Re	
cently� this line of research has been supplemented by data on the gene content
of multiple species as exempli
ed in Table ���� Here� the columns correspond
to �� simple� unicellular organisms� bacteria and archaea �collectively called
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Table ���� Gene pro�les� Presence	absence pro
les of �� COGs in a set of ��
genomes�

No COG Species
y a o m p k z q v d r b c e f g s j

� COG��	� � � � � � � � � � � � � � � � � � �
� COG��	� � � � � � � � � � � � � � � � � � �
� COG���� � � � � � � � � � � � � � � � � � �

 COG��	� � � � � � � � � � � � � � � � � � �
� COG���� � � � � � � � � � � � � � � � � � �
� COG��
� � � � � � � � � � � � � � � � � � �
� COG��
� � � � � � � � � � � � � � � � � � �
� COG��	� � � � � � � � � � � � � � � � � � �
	 COG���� � � � � � � � � � � � � � � � � � �
�� COG��
� � � � � � � � � � � � � � � � � � �
�� COG��		 � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�� COG��	� � � � � � � � � � � � � � � � � � �
�
 COG�
�� � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�� COG���	 � � � � � � � � � � � � � � � � � �
�� COG�
�� � � � � � � � � � � � � � � � � � �
�� COG���
 � � � � � � � � � � � � � � � � � �
�	 COG���� � � � � � � � � � � � � � � � � � �
�� COG�	�� � � � � � � � � � � � � � � � � � �
�� COG���
 � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�
 COG���� � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�� COG�
�
 � � � � � � � � � � � � � � � � � �
�� COG���	 � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �
�	 COG�
�	 � � � � � � � � � � � � � � � � � �
�� COG�	�� � � � � � � � � � � � � � � � � � �

Table ���� Species� List of eighteen species �one eukaryota� then six archaea
and then eleven bacteria� represented in Table ����

Species Code Species Code

Saccharomyces cerevisiae y Deinococcus radiodurans d
Archaeoglobus fulgidus a Mycobacterium tuberculosis r
Halobacterium sp�NRC�� o Bacillus subtilis b
Methanococcus jannaschii m Synechocystis c
Pyrococcus horikoshii k Escherichia coli e
Thermoplasma acidophilum p Pseudomonas aeruginosa f
Aeropyrum pernix z Vibrio cholera g
Aquifex aeolicus q Xylella fastidiosa s
Thermotoga maritima v Caulobacter crescentus j
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Table ���� COG names and functions�

Code Name
COG��	� Ribosomal protein L�
COG��	� Ribosomal protein L��
COG���� Archaeal Glu�tRNAGln
COG��	� Translation initiation factor IF�
COG���� Cysteinyl�tRNA synthetase
COG��
� Ribosomal protein L�	E
COG��
� tRNA nucleotidyltransferase �CCA�adding enzyme

COG��	� Translation initiation factor eIF�alpha
COG���� Predicted RNA methylase
COG��
� DNA polymerase III epsilon
COG��		 Replication factor A large subunit
COG���� DNA mismatch repair protein
COG��	� Predicted transposase
COG�
�� Predicted transcriptional regulator
COG���� Predicted transcriptional regulator with C�terminal CBS domains
COG���	 Predicted transcriptional regulators
COG�
�� Transcription initiation factor IIB
COG���
 Membrane protein involved
COG���� Surface lipoprotein
COG�	�� Membrane�bound lytic murein transglycosylase B
COG���
 Heme exporter protein D
COG���� Negative regulator of sigma E
COG���� Negative regulator of sigma E
COG���� Uncharacterized protein involved in chromosome partitioning
COG���� Cell division protein
COG�
�
 Aldehyde�ferredoxin oxidoreductase
COG���	 Fumarate reductase subunit C
COG���� Putative lipoprotein
COG�
�	 Uncharacterized BCR� stimulates glucose���P dehydrogenase activity
COG�	�� Predicted membrane protein

prokaryotes�� and a simple eukaryote� yeast Saccharomyces cerevisiae� The list
of species along with their one	letter codes is given in Table ����

The rows in Table ��� correspond to individual genes represented by the so	
called Clusters of Orthologous Groups �COGs� which are supposed to include
genes originating from the same ancestral gene in the common ancestor of the
respective species ����� COG names which re�ect the functions of the respective
genes in the cell are given in Table ���� These tables present but a small part
of the publicly available COG database currently including �� species and ����
COGs posted in the web site www�ncbi�nlm�nih�gov�COG�

The pattern of presence	absence of a COG in the analyzed species is shown
in Table ���� with zeros and ones standing for absence and presence� respectively�
This way� a COG can be considered a character �attribute� that is either present
or absent in a species� Two of the COGs� in the top two rows� are present at
each of the �� genomes� whereas the others cover only some of the species�

An evolutionary tree must be consistent with the presence	absence patterns�

www.ncbi.nlm.nih.gov/COG
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Speci
cally� if a COG is present in two species� then it should be present in their
last common ancestor and� thus� in all other descendants of the last common
ancestor� This would be in accord with the natural process of inheritance�
However� in most cases� the presence	absence pattern of a COG in extant species
is far from the �natural� one� many genes are dispersed over several subtrees�
According to comparative genomics� this may happen because of multiple loss
and horizontal transfer of genes ����� The hierarchy should be constructed in
such a way that the number of inconsistencies is minimized�

The so	called principle of Maximum Parsimony �MP� is a straightforward
formalization of this idea� Unfortunately� MP does not always lead to appro	
priate solutions because of intrinsic and computational problems� A number
of other approaches have been proposed including hierarchical cluster analysis
�see �������

Especially appealing in this regard is divisive cluster analysis� It begins by
splitting the entire data set into two parts� thus imitating the divergence of
the last universal common ancestor �LUCA� into two descendants� The same
process then applies to each of the split parts until a stop	criterion is reached to
halt the division process� In contrast to other methods for building evolution	
ary trees� divisive clustering imitates the process of evolutionary divergence�
Further approximation of the real evolutionary process can be achieved if the
characters on which divergence is based are discarded immediately after the
division of the respective cluster ����� Gene pro
les data are analyzed on p�
��� and p� ����

After an evolutionary tree is built� it can be utilized for reconstructing gene
histories by mapping events of emergence� inheritance� loss and horizontal trans	
fer of individual COGs on the tree according to the principle of Maximum
Parsimony �see p� ����� These histories of individual genes can be helpful in
advancing our understanding of biological functions and drug design�

����� Description

The problem of description is that of automatically deriving a conceptual de	
scription of clusters found by a clustering algorithm or supplied from a di
erent
source� The problem of cluster description belongs in cluster analysis because
this is part of the interpretation and understanding of clusters� A good concep	
tual description can be used for better understanding and�or better predicting�
The latter because we can check whether an object in question satis
es the
description or not� the more the object satis
es the description the better the
chances that it belongs to the cluster described� This is why conceptual de	
scription tools� such as decision trees ���� ���� have been conveniently used and
developed mostly for the purposes of prediction�
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Describing Iris genera

Table ��� presents probably the most popular data set in the machine learning
research community� ��� Iris specimens� each measured on four morphological
variables� sepal length �w��� sepal width �w��� petal length �w��� and petal
width �w��� as collected by botanist E� Anderson and published in a founding
paper of celebrated British statistician R� Fisher in ���� ���� It is said that
there are three species in the table� I Iris setosa �diploid�� II Iris versicolor
�tetraploid�� and III Iris virginica �hexaploid�� each represented by �� consecu	
tive entities in the corresponding column�

The classes are de
ned by the genome �genotype�� the features are of the
appearance �phenotype�� Can the classes be described in terms of the features
in Table ���� It is well known from previous studies that classes II and III are
not well separated in the variable space �for example� specimens ��� �� and ��
from class II are more similar to specimens ��� ��� and �� from class III than
to specimens of the same species� see Figure ���� on p� ���� This leads to the
problem of deriving new features from those that have been measured on spot
to provide for better descriptions of the classes� These new features could be
then utilized for the clustering of additional specimens�

Some non	linear machine learning techniques such as Neural Nets ���� and
Support Vector Machines ����� can tackle the problem and produce a decent de	
cision rule involving non	linear transformation of the features� Unfortunately�
rules that can be derived with currently available methods are not compre	
hensible to the human mind and� thus� cannot be used for interpretation and
description� The human mind needs somewhat less arti
cial logics that can re	
produce and extend such botanists� observations as that the petal area roughly
expressed by the product of w� and w� provides for much better resolution
than the original linear sizes� A method for building cluster descriptions of this
type� referred to as APPCOD� will be described in section ����

The Iris data set is analyzed on pp� ��� ���� ���� ����

Body mass

Table ��� presents data on the height and weight of �� males of which individuals
p��	p�� are considered overweight and p�	p�� normal� As Figure ��� clearly
shows� a line of best 
t separating these two sets should run along the elongated
cloud formed by entity points� The groups have been de
ned according to the
so	called body mass index� bmi� those individuals whose bmi is �� or over
are considered overweight� The body mass index is de
ned as the ratio of the
weight� in kilograms� to the squared height� in meters� The problem is to make
a computer automatically transform the current height	weight feature space
into such a format that would allow one to clearly distinguish between the
overweight and normally	built individuals�
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Table ���� Iris� Anderson	Fisher data on ��� Iris specimens�

Entity in Class I Class II Class III
a Class Iris setosa Iris versicolor Iris virginica

w� w� w� w
 w� w� w� w
 w� w� w� w
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Table ���� Body mass� Height and weight of twenty	two individuals�

Individual Height
 cm Weight
 kg

p� ��	 ��
p� ��	 ��
p� ��� ��
p� ��� ��
p� ��� ��
p� ��� ��
p� ��� �	
p� ��� �	
p� ��� ��
p�	 ��� ��
p�� ��	 ��
p�� ��� ��

p�� ��	 ��
p�� ��	 ��
p�� ��	 ��
p�� ��	 ��
p�� ��	 ��
p�� ��	 ��
p�� ��� ��
p�	 ��� ��
p�� ��� ��
p�� ��	 ��

The best thing would be if a computer could derive the bmi based deci	
sion rule itself� which may not be necessarily the case since the bmi is de
ned
universally whereas only a very limited data set is presented here� One would
obviously have to consider whether a linear description could be derived such
as the following existing rule of thumb� a man is overwheight if the di
erence
between his height in cm and weight in kg is greater than one hundred� A man
��� cm in height should normally weigh �� kg or less according to this rule�

Once again it should be pointed out that non	linear transformations supplied
by machine learning tools for better prediction may be not necessarily usable
for the purposes of description�

The Body mass data set is analyzed on pp� ���� ���� ����

����� Association

Revealing associations between di
erent aspects of phenomena is one of the
most important goals of classi
cation� Clustering as a classi
cation of empirical
data also can do the job� A relation between di
erent aspects of a phenomenon
in question can be established if the same clusters are well described twice�
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Figure ���� Twenty	two individuals at the height	weight plane�

each description related to one of the aspects� Di
erent descriptions of the
same cluster are then obviously linked as those referring to the same contents�
though possibly with di
erent errors�

Digits and patterns of confusion between them

1

2

5

3

6
7

4

Figure ���� Styled digits formed by segments of the rectangle�

The rectangle in the upper part of Figure ��� is used to draw numeral digits
around it in a styled manner of the kind used in digital electronic devices� Seven
binary presence�absence variables e�� e������ e� in Table ��� correspond to the
numbered segments on the rectangle in Figure ����

Although the digit character images may seem arbitrary� 
nding patterns of
similarity in them may be of interest in training operators dealing with digital
numbers�
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Table ���� Digits� Segmented numerals presented with seven binary variables
corresponding to presence�absence of the corresponding edge in Figure ����

Digit e� e� e� e�� e� e� e�
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Table ���� Confusion� Confusion between the segmented numeral digits�

Response
Stimulus � � � � � � � � � 	

� ��� � � �� � �� �	 	 � �
� �� ��� �� � �� �� �� �� � ��
� �� �� ��� � �� 	 �	 �� ��� ��
� ��� �� � ��� � �� �	 � �� 	
� �� �� �� �� ��� �� � � ��� ��
� �� �� � �� �� ��� � ��� �� ��
� ��� � �� �� � 	 ��� 	 � �
� �� �� �� �� �� �	 �� ��� �� ���
� �� �� ��� �� �� �� �� �� ��	 ��
	 �� � � �� � �� �� �� �� ���

Results of a psychological experiment on confusion between the segmented
numerals are in Table ���� A digit appeared on a screen for a very short time
�stimulus�� and an individual was asked to report what was the digit �response��
The response frequencies of digits versus shown stimuli stand in the rows of
Table ��� �����

The problem is to 
nd general patterns in confusion and to interpret them
in terms of the segment presence	absence variables in Digits data Table ���� If
the found interpretation can be put in a theoretical framework� the patterns
can be considered as empirical re�ections of theoretically substantiated classes�
Patterns of confusion would show the structure of the phenomenon� Interpre	
tation of the clusters in terms of the drawings� if successful� would allow us to
see what relation may exist between the patterns of drawing and confusion�
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Figure ���� Visual representation of four Digits confusion clusters� solid and
dotted lines over the rectangle show distinctive features that must be present
in or absent from all entities in the cluster�

Indeed� four major confusion clusters can be distinguished in the Digits data�
as will be found in section ����� and described in section ��� �see pp� ��� ���� ���
and ��� for computations on these data�� On Figure ��� these four clusters are
presented with distinctive features shown with segments de
ning the drawing
of digits� We can see that all relevant features are concentrated on the left and
down the rectangle� It remains to be seen if there is any physio	psychological
mechanism behind this and how it can be utilized�
Moreover� it appears the attributes in Table ��� are quite relevant on their

own� pinpointing the same patterns that have been identi
ed as those of con	
fusion� This can be clearly seen in Figure ���� which illustrates a classi
cation
tree for Digits found using an algorithm for conceptual clustering presented in
section ���� On this tree� clusters are the terminal boxes and interior nodes
are labeled by the features involved in classi
cation� The coincidence of the
drawing clusters with confusion patterns indicates that the confusion is caused
by the segment features participating in the tree� These appear to be the same
features in both Figure ��� and Figure ����

Literary masterpieces

The data in Table ���� re�ect the language and style features of eight novels
by three great writers of the nineteenth century� Two language features are�
�� LenSent 	 Average length of �number of words in� sentences�
�� LenDial 	 Average length of �number of sentences in� dialogues� �It is

assumed that longer dialogues are needed if the author uses dialogue as a device
to convey information or ideas to the reader��
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Figure ���� The conceptual tree of Digits�

Table ����� Masterpieces� Masterpieces of ��th century� the 
rst three by
Charles Dickens ������������ the next three by Mark Twain ������������ and
the last two by Leo Tolstoy ������������

Title LenSent LenDial NChar SCon Narrative

Oliver Twist ���	 ���� � No Objective
Dombey and Son ���� ���	 � No Objective
Great Expectations ���� ���	 � No Personal

Tom Sawyer ���� ���� � Yes Objective
Huckleberry Finn ���� ���� � Yes Personal
Yankee at King Arthur ���� ���� � Yes Personal

War and Peace ���� �	�� � Yes Direct
Anna Karenina ���� ���	 � Yes Direct

Features of style�

�� NChar 	 Number of principal characters �the larger the number the more
themes raised��

�� SCon 	 Yes or No depending on the usage of the stream of conscience
techniques�

�� Narrative 	 The narrative style is a qualitative feature categorized as� �a�
Personal �if the narrative comes from the mouth of a character such as Pip in
�Great Expectations� by Charles Dickens�� or �b� Objective �if the subject de	
velops mainly through the behavior of the characters and other indirect means��
or �c� Direct �if the author prefers to directly intervene with the comments and
explanations��

As we have seen already with the Digits data� features are not necessarily
quantitative� They also can be categorical� such as SCon� a binary variable� or
Narrative� a nominal variable�
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The data in Table ���� can be utilized to advance two of the clustering goals�

�� Structurization� To cluster the set of masterpieces and intensionally
describe clusters in terms of the features� We expect the clusters to accord to
the three authors and convey features of their style�

�� Association� To analyze interrelations between two aspects of prose
writing� �a� linguistic �presented by LenSent and LenD�� and �b� the author�s
narrative style �the other three variables�� For instance� we may 
nd clusters
in the linguistic features space and conceptually describe them in terms of
the narrative style features� The number of entities that do not satisfy the
description will score the extent of correlation� We expect� in this particular
case� to have a high correlation between these aspects� since both must depend
on the same cause �the author� which is absent from the feature list �see page
�����

This data set is used for illustration of many concepts and methods described
further on� see pp� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����
����

����� Generalization

Generalization� or overview� of data is a �set of� statement�s� about proper	
ties of the phenomenon re�ected in the data under consideration� To make a
generalization with clustering� one may need to do a multistage analysis� at

rst� structure the entity set� second� describe clusters� third� 
nd associations
between di
erent aspects�

Probably one of the most exciting applications of this type can be found
in the newly emerging area of text mining ������ With the abundance of text
information �ooding every Internet user� the discipline of text mining is �our	
ishing� A traditional paradigm in text mining is underpinned by the concept of
the key word� The key word is a string of symbols �typically corresponding to
a language word or phrase� that is considered important for the analysis of a
pre	speci
ed collection of texts� Thus� 
rst comes a collection of texts de
ned
by a meaningful query such as �recent mergers among insurance companies�
or �medieval Britain�� �Keywords can be produced by human experts in the
domain or from statistical analyses of the collection�� Then a virtual or real
text	to	keyword table can be created with keywords treated as features� Each
of the texts �entities� can be represented by the number of occurrences of each
of the keywords� Clustering of such a table may lead to 
nding subsets of texts
covering di
erent aspects of the subject�

This approach is being pursued by a number of research and industrial
groups� some of which have built clustering engines on top of Internet search
engines� given a query� such a clustering engine singles out several dozen of the
most relevant web pages� resulting from a search by a search engine such as
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Table ����� List of eleven features I	XI and their categories with respect to 
ve
aspects of a Bribery situation�

Actor Service Interaction Environment
I� O�ce III� Type of service V� Initiator IX� Condition

�� Enterprise �� Obstr� of justice �� Client �� Regular routine
�� City �� Favors �� O�cial �� Monitoring
�� Region �� Extortion �� Sloppy regulations

� Federal 
� Category change 
� Irregular

�� Cover�up

II� Client IV� Occurrence VI� Bribe level X� Branch

�� Individual �� Once �� ���K or less �� Government
�� Business �� Multiple �� Up to ����K �� Law enforcement

�� �����K �� Other

VII� Type XI� Punishment

�� Infringement �� None
�� Extortion �� Administrative

�� Arrest
VIII� Network 
� Arrest followed by release
�� None �� Arrest with imprisonment
�� Within o�ce
�� Between o�ces

� Clients

Google or Yahoo� 
nds keywords or phrases in the corresponding texts� clus	
ters web pages according to the keywords used as features� and then describes
clusters in terms of the most relevant keywords or phrases� Two top web sites
which have been found from searching for �clustering engines� with Google on
�� June ���� in London are Vivisimo at hhtp���vivisimo�com and iBoogie at
http���iboogie�tv� The former is built on top of ten popular search engines
and can be used for partitioning web pages from several di
erent sources such
as �Web� or �Top stories�� the latter maintains several dozen languages and
presents a hierarchical classi
cation of selected web pages� In response to the
query �clustering� Vivisimo produced ��� web pages in a �Web� category and
��� in a �Top news� category� Among top news the most populated clusters
were �Linux� ��� items�� �Stars� ����� and �Bombs� ����� Among general web
sites the most numerous were �Linux� ����� �Search� Engine� ����� �Comput	
ing� ����� etc� More or less random web sites devoted to individual papers or
scientists or scienti
c centers or commercial companies have been listed under
categories �Visualization� ����� �Methods� ���� �Clustering� ���� etc� Such cat	
egories as �White papers� contained pages devoted to both computing clusters
and cluster analysis� Similar results� though somewhat more favourable to	
wards clustering as data mining� have been produced with iBoogie� Its cluster
�Cluster� ���� was further divided into categories such as �computer� ���� and
�analysis� ���� Such categories as �software for clustering� and �data cluster	
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ing� have been presented too to refer to a random mix of �� and �� web sites
respectively�

The activity of generalization so far mainly relies on human experts who
supply understanding of a substantive area behind the text corpus� Human
experts develop a text	to	feature data table that can be further utilized for
generalization� Such is a collection of �� articles on Bribery cases from cen	
tral Russian newspapers ����	���� presented in Table ���� according to �����
The features re�ect the following 
vefold structure of bribery situations� two
interacting sides 	 the o�ce and the client� their interaction� the corrupt service
rendered� and the environment in which it all occurs�

These structural aspects can be characterized by eleven features that can
be recovered from the newspaper articles� they are presented in Table �����

To show how these features can be applied to a newspaper article� let us
quote an article that appeared in a newspaper called �Kommersant� on ��
March ���� �translated from Russian��

Mayor of a coal town under arrest
Thursday this week� Mr Evgeny Parshukov� Mayor of town Belovo near
Kemerovo� was arrested under a warrant issued by the region attorney� Mr�
Valentin Simuchenkov� The mayor is accused of receiving a bribe and abus	
ing his powers for wrongdoing� Before having been elected to the mayoral
post in June ����� he received a credit of ������ roubles from Belovo Divi	
sion of KUZBASS Transport Bank to support his election campaign� The
Bank then cleared up both the money and interest on it� allegedly because
after his election Mr� Parshukov ordered the Finance Department of the
town administration� as well as all municipal organisations in Belovo� to
move their accounts into the Transport Bank� Also� the attorney o�ce
claims that in ���� Mr� Parshukov misspent ������� roubles from the town
budget� The money came from the Ministry of Energy speci
cally aimed
at creating new jobs for mine workers made redundant because their mines
were getting closed� However� Mr� Parshukov ordered to lend the money
at a high interest rate to the Municipal Transport agency� Mr� Parshukov
doesn�t deny the facts� He claims however that his actions involve no crime�

A possible coding of the eleven features in this case constitutes the contents
of row �� in Table ����� The table presents �� cases that could be more or less
unambiguously coded �from the original �� cases ������

The prime problem here is similar to those in the Market towns and Digits
data� to see if there are any patterns at all� To generalize� one has to make
sense of patterns in terms of the features� In other words� we are interested in
getting a synoptic description of the data in terms of clusters which are to be
found and described�

On the 
rst glance� no structure exists in the data� Nor could the scientists
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Table ����� Bribery� data with features from Table �����

Case Of Cl Serv Occ Ini Br Typ Net Con Branch Pun
� � � � � � � � � � � �
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specializing in the research of corruption see any� However� after applying an
intelligent version of the algorithm K	Means as described later in example �����
section ���� a rather simple core structure could be found that is de
ned by just
two features and determines all other aspects� The results provide for a really
short generalization� �It is the branch of government that determines which of
the 
ve types of corrupt services are rendered� Local government � Favors or
Extortion� Law enforcement � Obstruction of Justice or Cover	Up� and Other
� Category Change�� A detailed discussion is given in examples on pp� ���
��� and ����

����� Visualization of data structure

Visualization is considered a rather vague area involving psychology� cogni	
tive sciences and other disciplines� which is rapidly developing� In the current
thinking� the subject of data visualization is de
ned as creation of mental im	
ages to gain insight and understanding ������ This� however� seems too wide
and includes too many non	operational images such as realistic and surrealis	
tic paintings� In our presentation� we take on a more operational view and
consider that data visualization is an activity related to mapping data onto a
known ground image such as a coordinate plane� geography map� or a genealogy
tree in such a way that properties of the data are re�ected in the structure of
the ground image�

Among ground images� the following are the most popular� geographical
maps� networks� �D displays of one	dimensional objects such as graphs or pie	
charts or histograms� �D displays of two	dimensional objects� and block struc	
tures� Sometimes� the very nature of the data suggests what ground image
should be used� All of these can be used with clustering� and we are going to
review most of them except for geographical maps�

One�dimensional data

One	dimensional data over pre	speci
ed groups or found clusters can be of two
types� �a� the distribution of entities over groups and �b� values of a feature
within clusters� Accordingly� there can be two types of visual support for these�

Consider� for instance� groups of the Market town data de
ned by the pop	
ulation� According to Table ��� the population ranges approximately between
���� and ����� habitants� Let us divide the range in 
ve equal intervals� bins�
that are de
ned thus to have size ������	������������ and bound points �����
������ ������ and ������

In Table ���� the data of the groups are displayed� their absolute and relative
sizes and also the average numbers of Banks and the standard deviations within
them� For the de
nitions of the average and standard deviation see section ������
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Figure ���� Histogram �a
 and pie�chart �b
 presenting the distribution of Population
over �ve equally sized bins in Market data�

Figure ��� shows two traditional displays for the distribution� a histogram
�part �a� on the left� in which bars are proportional to the group sizes and a
pie�chart in which a pie is partitioned into slices proportional to the cluster sizes
�part �b� on the right�� These two point to di
erent features of the distribution�
The histogram positions the categories along the horizontal axis� thus providing
for a possibility to see the distribution�s shape� which can be quite useful when
the categories have been created as interval bins of a quantitative feature� as
is this case� The pie	chart points to the fact that the group sizes sum up to
the total so that one can see what portions of the pie account for di
erent
categories�

One�dimensional data within groups

To visualize a quantitative feature within pre	speci
ed groups� box�plots and
stick�plots are utilized� They show within	cluster central values and their dis	

Table ����� Population groups� Data of the distribution of population groups
and numbers of banks within them�

Group Size Frequency
 � Banks Std Banks

I �� ���� ���	 ����
II �� ���� ���� ����
III � ��� ��		 ��		
IV � ��� ���		 ����
V � ��� ����	 ����

Total �� �		 ���� ����
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Figure ���� Box�plot �a
 and stick�plot �b
 presenting the feature Bank over the �ve
bins in Market data�
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Figure ���� Box�plot presenting the feature Bank over �ve bins in Market data along
with bin sizes�

persion� which can be done in di
erent ways� Figure ��� presents a box	plot
�a� and stick	plot �b� of feature Bank within the 
ve groups de
ned above as
Population bins� The box	plot on Figure ��� �a� represents each group as a box
bounded by its �� percentile values separating extreme �� cases both on the
top and bottom of the feature Bank range� The real within group ranges are
shown by �whiskers� that can be seen above and below the boxes of groups I
and II� the other groups have no whiskers because of too few entities in each of
them� A line within each box shows the within	group average� The stick	plot
on Figure ��� �b� represents the within	group averages by �sticks�� with their
�whiskers� proportional to the standard deviations�

Since the displays are in fact two	dimensional� both features and distribu	
tions can be shown on a box	plot simultaneously� Figure ��� presents a box	plot
of the feature Bank over the 
ve bins with the box widths made proportional
to the group sizes� This time� the grand mean is also shown by the horizontal
dashed line�
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Figure ���� Box�plot of three classes of Iris specimens from Table ��� over the sepal
length w�� the classes are presented by both the percentile boxes and within cluster
range whiskers� the choice of percentiles can be adjusted by the user�

A similar box	plot for the three genera in the Iris data is presented in Figure
���� This time the percentiles are taken at �� �

Two�dimensional display

A traditional two	dimensional display of this type is the so	called scatter�plot�
representing all the entity points in a plane generated by two of the variables
or linear combinations of the variables such as principal components �for a
de
nition of principal components see section ������� A scatter	plot at the
plane of two variables can be seen in Figure ��� for the Body mass data on page
��� A scatter	plot in the space of two 
rst principal components is presented
in Figure ����� the Iris specimens are labelled by the class number ��� �� or ���
centroids are gray circles� the most deviate entities ��� in class �� �� in class
�� and �� in class �� are shown in boxes� For an explanation of the principal
components see section ������ The scatter	plot illustrates that two of the classes
are somewhat interwoven�

Block�structure

A block	structure is a representation of the data table as organized in larger
blocks of a speci
c pattern with transpositions of rows and�or columns� In
principle one can imagine various block patterns ����� of which the most common
is a pattern formed by the largest entry values�
Figure ���� presents an illustrative example �described in ������� In part A�

results of seven treatments �denoted by letters from a to g� applied to each of ten
crops denoted by numerals are presented� gray represents a success and blank
space failure� The pattern of gray seems rather chaotic in table A� However�
it becomes very much orderly when appropriate rearrangements of rows and
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Figure ����� Scatter�plot of Iris specimens in the plane of the �rst two principal

components�
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Figure ����� Visibility of the matrix block structure with a rearrangement of rows
and columns�

columns are performed� Part B of the Figure clearly demonstrates a visible
block structure in the matrix� that can be interpreted as mapping speci
c sets
of treatments to di
erent sets of crops� which can be exploited� for instance� in
specifying adjacent locations for crops�

Visualization of block structures by reordering rows and�or columns is pop	
ular in the analysis of gene expression data ���� and ecology �����

A somewhat more realistic example is shown in Figure ���� �a� representing
a matrix of value transferred between nine industries during a year� the �i�j�	
th entry is gray if the transfer from industry i to industry j is greater than a
speci
ed threshold and blank otherwise� Figure ���� �b� shows a block structure
pattern that becomes visible when the order of industries from � to � changes
for the order �	�	�	�	�	�	�	�	�� which is achieved with the reordering of both
rows and columns of the matrix� The reordering is made simultaneously on both
rows and columns because both represent the same industries� both as sources
�rows� and targets �columns� of the value transfer� We can discern four blocks
of di
erent patterns ��	�	�� �� �	�	�� �	�� in Figure ���� �b�� The structure of



�� WHAT IS CLUSTERING

the transfers between the blocks can be captured in a graph presented in Figure
���� �c��
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(a)                                     (b)                                          (c) 
Figure ����� Value transfer matrix presented with only entries greater than a thresh�
old �a
� the same matrix
 with rows and columns simultaneously reordered
 is in �b
�
in �c

 the structure is represented as a graph�

Structure

A simple structure such as a chain or a tree or just a small graph� whose
vertices �nodes� correspond to clusters and edges to associations between them�
is a frequent tool in data visualization�

Two examples are presented in Figure ����� a tree structure over clusters
re�ecting common origin is shown in part �a� and a graph corresponding to the
block structure of Figure ���� �c� is shown in part �b� to re�ect links between
clusters of industries in the production process�

A similar tree structure is presented on Figure ��� on page �� illustrating
a classi
cation tree for Digits� Tree leaves� the terminal boxes� show clusters
as entity sets� the features are shown along corresponding branches� the en	
tire structure illustrates the relation between clusters in such a way that any
combination of the segments can be immediately identi
ed and placed into a
corresponding cluster or not identi
ed at all if it is not shown on the tree�

Visualization using an inherent topology

In many cases the entities come from an image themselves � such as in the cases
of analysis of satellite images or topographic objects� For example� consider the
Digit data set� all the integer symbols are associated with segments of the
generating rectangle on Figure ���� page ��� Clusters of such entities can be
visualized with the generating image�

Figure ��� visualizes clusters of digits along with their de
ning features
resulting from analyses conducted later in example ���� �page ���� as parts
of the generating rectangle� There are four major confusion clusters in the
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Figure ����� Visual representation of relations between clusters� �a
 the evolutionary
structure of the Primates genera according to distances in Table ���� �b
 interrelation
between clusters of industries according to Figure ���� �c
�

Digits data of Figure ��� that are presented with distinctive features shown
with segments de
ning the drawing of digits�

��� Bird�s�eye view

This section contains general remarks on clustering and can be skipped on the

rst reading�

����� De�nition� data and cluster structure

After looking through the series of exemplary problems in the previous section�
we can give a more formal de
nition of clustering than that in the Preface�
Clustering is a discipline devoted to revealing and describing cluster structures
in data sets�

To animate this de
nition� one needs to specify the four concepts involved�

�a� data�

�b� cluster structure�

�c� revealing a cluster structure�

�d� describing a cluster structure�

Data

The concept of data refers to any recorded and stored information such as
satellite images or time series of prices of certain stocks or survey questionnaires

lled in by respondents� Two types of information are associated with data�
the data entries themselves� e�g�� recorded prices or answers to questions� and
meta	data� that is� legends to rows and columns giving meaning to entries� The
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aspect of developing and maintaining databases of records� taking into account
the relations stored in metadata� is very important for data mining ���� ��� ����
In this text� for the sake of linearity of presentation� we concentrate on a

generic data format only� the so	called entity	to	variable table whose entries
represent values of pre	speci
ed variables at pre	speci
ed entities�
The variables are synonymously called attributes� features� characteristics�

characters and parameters� Such words as case� object� observation� instance�
record are in use as synonyms to the term� entity� accepted here�
The data table format of data often arises directly from experiments or

observations� from surveys� and from industrial or governmental statistics� This
also is a conventional form for presenting database records� Other data types
such as signals or images can be modelled in this format� too� via digitalized
representation� However� a digital representation� typically� involves much more
information than can be kept in a data table format� Especially important is
the spatial arrangement of pixels� which is not� typically� maintained in the
concept of data table� The contents of a data table are assumed to be invariant
under permutations of rows and columns and corresponding metadata�
Another data type traditionally considered in clustering is the similarity

or dissimilarity between entities �or features�� The concept of similarity is
most important in clustering� similar objects are to be put into the same clus	
ter and dissimilar into di
erent clusters� There have been invented dozens of
�dis�similarity indices� Some of them nicely 
t into theoretical frameworks and
will be considered further in the text�
One more data type considered in this text is co	occurrence or �ow tables

that represent the same substance distributed between di
erent categories such
as Confusion data in Table ��� in which the substance is the scores of individuals�
An important property of this type of data is that any part of the data table�
referred to a subset of rows and �or a subset of columns� can be meaningfully
aggregated by summing the part of the total �ow within the subset of rows
�and�or the subset of columns�� The sums represent the total �ow to� from�
and within the subset�s�� Thus� problems of clustering and aggregating are
naturally linked here� Until recently� this type of data appeared as a result of
data analysis rather than input to it� Currently it has become one of the major
data formats� Examples are� distributions of households purchasing various
commodities or services across postal districts or other regional units� counts
of telephone calls across areas� and counts of visits in various categories of
web	sites�

Cluster structure

The concept of cluster typically refers to a set of entities that is cohesive in
such a way that entities within are more similar to each other than to the outer
entities�
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Three major types of cluster structures are� �a� a single cluster considered
against the rest or whole of the data� �b� a partition of the entity set in a set
of clusters� and �c� a �nested� hierarchy of clusters�

Of these three� partition is the most conventional� probably because it is
relevant to both science and management� the major forces behind scienti
c
developments� A scientist� as well as a manager� wants unequivocal control
over the entire universe under consideration� This is why they may wish to
partition the entity set into a set of nonoverlapping clusters�

In some situations there is no need for total clustering� The user may be
quite satis
ed with getting just a single �or few� cluster�s� and leaving the rest
completely unclustered� Examples�

��� a bank manager wants to learn how to discern potential fraudsters from
other clients or

��� a marketing researcher separates a segment of customers prone to pur	
chase a particular product or

��� a bioinformatician seeks a set of proteins homologous to a query protein
sequence�

Incomplete clustering is a recently recognized addition to the body of clustering
approaches� very suitable not only at the situations above but also as a tool
for conventional partitioning via cluster	by	cluster procedures such as those
described in section ����

The hierarchy is the oldest and probably least understood of the cluster
structures� To see how important it is� it should su�ce to recall that the Aris	
totelian approach to classi
cation encapsulated in library classi
cations and
biological taxonomies is always based on hierarchies� Moreover� hierarchy un	
derlies most advanced data processing tools such as wavelets and quadtrees� It
is ironic then that as a cluster structure in its own right� the concept of hier	
archy rarely features in clustering� especially when clustering is con
ned to the
cohesive partitioning of geometric points�

����� Criteria for revealing a cluster structure

To reveal a cluster structure in a data table means to 
nd such clusters that
allow the individual characteristics of entities to be substituted by aggregate
characteristics of clusters� A cluster structure is revealed by a method accord	
ing to a criterion of how well the data are represented by clusters� Criteria
and methods are� to an extent� independent from each other so that the same
method such as agglomeration or splitting can be used with di
erent criteria�

Criteria usually are formulated in terms of �dis�similarity between entities�
This helps in formalizing the major idea that entities within clusters should be
similar to each other and those between clusters dissimilar� Dozens of similarity
based criteria developed so far can be categorized in three broad classes�
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��� De
nition	based�

��� Index	based� and

��� Computation	based�

The 
rst category comprises methods for 
nding clusters according to an
explicit de
nition of a cluster� An example� A cluster is a subset S of entities
such that for all i� j in S the similarity between i and j is greater than the
similarities between these and any k outside S� Such a property must hold for
all entities with no exceptions� which means that well isolated clusters are rather
rare in real world data� However� when the de
nition of cluster is relaxed to
include less isolated clusters� too many may then appear� This is why de
nition	
based methods are not popular in practical clustering�

A criterion in the next category involves an index� that is� a numerical
function that scores di
erent cluster structures and� in this way� may guide the
process of choosing the best� However� not all indices are suitable for obtaining
reasonable clusters� Those derived from certain model	based considerations
tend to be computationally hard to optimize� Optimizing methods are thus
bound to be local and� therefore� heavily reliant on the initial settings� which
involve� in the case of K	Means clustering� pre	specifying the number of clusters
and the location of their central points� Accordingly� the found cluster structure
may be rather far from the global optimum and� thus� must be validated� Cluster
validation may be done according to internal criteria such as that involved in
the optimization process or external criteria comparing the clusters found with
those known from external considerations or according to its stability with
respect to randomly resampling entities�features� These will be outlined in
section ��� and exempli
ed in section ������

The third category comprises computation methods involving various heuris	
tics for individual entities to be added to or removed from clusters� for merging
or splitting clusters� and so on� Since operations of this type are necessarily lo	
cal� they resemble local search optimization algorithms� though� typically� have
no unique guiding scoring index to follow� thus� can include various tricks mak	
ing them �exible� However� such �exibility is associated with an increase in the
number of ad hoc parameters such as various similarity thresholds and� in this
way� turning clustering from a reproducible activity into a kind of magic� Vali	
dation of a cluster structure found with a heuristic	based algorithm becomes a
necessity�

In this book� we adhere to an index	based principle� which scores a cluster
structure against the data from which it has been built� The cluster structure
here is used as a device for reconstructing the original data table� the closer
the reconstructed data are to the original ones� the better the structure� It
is this principle that is called the data recovery approach in this book� Many
index	based and computation	based clustering methods can be reinterpreted
according to the principle� which allows us to see interrelations between dif	
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ferent methods and concepts for revealing and analyzing clustering structures�
New methods can be derived from the principle too �see Chapter �� especially
sections ���	����� It should be noted� though� that we will use only the most
straightforward rules for reconstructing the data from cluster structures�

����� Three types of cluster description

Cluster descriptions help in understanding� explaining and predicting clus	
ters� These may come in di
erent formats of which the most popular are the
following three� �a� Representative� �b� Tendency� �c� Conceptual description�

A representative� or a prototype� is an object such as a literary character or
a sort of wine or mineral� representing the most typical features of a cluster�
This format is useful in giving a meaning to entities that are easily available
empirically but di�cult to conceptually describe� There is evidence that some
aggregate language constructs� such as �fruit�� are mentally maintained via
prototypes� such as �apple� ����� In clustering� the representative is usually the
most central entity in a cluster�

A tendency expresses a cluster�s most likely features such as its way of
behavior or pattern� It is usually related to the center of gravity of the cluster
and its di
erences from the average� In this respect� the tendency models the
concept of type in classi
cation studies�

A conceptual description may come in the form of a classi
cation tree built
for predicting a class or partition� Another form of conceptual description is an
association� or production� rule� stating that if an object belongs to a cluster
then it must have such and such features� Or� vice versa� if an object satis
es
the premise� then it belongs in the cluster� The simplest conceptual description
of a cluster is a statement of the form �the cluster is characterized by the feature
A being between values a� and a��� The existence of a feature A� which alone
is su�cient to distinctively describe a cluster is a rare occurrence of luck in data
mining� Typically� features in data are rather super
cial and do not express
essential properties of entities and thus cannot be the basis of straightforward
descriptions�

The subject of cluster description overlaps that of supervised machine learn	
ing and pattern recognition� Indeed� given a cluster� having its description may
allow one to predict� for new objects� whether they belong to the cluster or
not� depending on how much they satisfy the description� On the other hand�
a decision rule obtained with a machine learning procedure� especially� for ex	
ample� a classsi
cation tree� can be considered a cluster description usable for
the interpretation purposes� Still the goals are di
erent� interpretation in clus	
tering and prediction in machine learning� However� cluster description is as
important in clustering as cluster 
nding�
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����� Stages of a clustering application

Typically� clustering as a data mining activity involves the following 
ve stages�

A� Developing a data set�

B� Data pre	processing and standardizing�

C� Finding clusters in data�

D� Interpretation of clusters�

E� Drawing conclusions�

To develop a data set one needs to de
ne a substantive problem or issue�
however vague it may be� and then determine what data set related to the issue
can be collected from an existing database or set of experiments or survey� etc�
Data pre	processing is the stage of preparing data processing by a cluster	

ing algorithm� typically� it includes developing a uniform data set� frequently
called a ��at� 
le� from a database� checking for missing and unreliable entries�
rescaling and standardizing variables� deriving a uni
ed similarity measure� etc�

The cluster 
nding stage involves application of a clustering algorithm and
results in a �series of� cluster structure�s� to be presented� along with interpreta	
tion aids� to substantive specialists for an expert judgement and interpretation
in terms of features� both those utilized for clustering �internal features� and
those not utilized �external features�� At this stage� the expert may see no rele	
vance in the results and suggest a modi
cation of the data by adding�removing
features and�or entities� The modi
ed data is subject to the same processing
procedure� The 
nal stage is the drawing of conclusions� with respect to the
issue in question� from the interpretation of the results� The more focussed are
the regularities implied by the 
ndings� the better the quality of conclusions�

There is a commonly held opinion among specialists in data analysis that
the discipline of clustering concerns only the proper clustering stage C while
the other four are the concern of specialists in the substance of the particular
issue for which clustering is performed� Indeed� typically� clustering results can
not and are not supposed to solve the entire substantive problem� but rather
relate to an aspect of it�

On the other hand� clustering algorithms are supposedly most applicable
to situations and issues in which the user�s knowledge of the domain is more
super
cial than profound� What are the choices regarding data pre	processing�
initial settings in clustering and interpretation of results � facing the laymen
user who has an embryonic knowledge of the domain� More studies and exper	
iments� In most cases� this is not practical advice� Sometimes a more viable
strategy would be to better utilize properties of the clustering methods at hand�
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At this stage� no model	based recommendations can be made about the
initial and 
nal stages� A and E� However� the data recovery approach does
allow us to use the same formalisms for tackling not stage C only� but also B
and D� see sections ���� ��� and ��� for related prescriptions and discussions�

����� Clustering and other disciplines

The concepts involved make clustering a multidisciplinary activity on its own�
regardless of its many applications� In particular�

�� Data relates to database� data structure� measurement� similarity and
dissimilarity� statistics� matrix theory� metric and linear spaces� graphs�
data analysis� data mining� etc�

�� Cluster structure relates to discrete mathematics� abstract algebra�
cognitive science� graph theory� etc�

�� Revealing cluster structures relates to algorithms� matrix analysis� op	
timization� computational geometry� etc�

�� Describing clusters relates to machine learning� pattern recognition�
mathematical logic� knowledge discovery� etc�

����� Di	erent perspectives of clustering

Clustering is a discipline on the intersection of di
erent 
elds and can be viewed
from di
erent angles� which may be sometimes confusing because di
erent per	
spectives may contradict each other� A question such as� �How many clusters
are out there��� which is legitimate in one perspective� can be meaningless
in the other� Similarly� the issue of validation of clusters may have di
erent
solutions in di
erent frameworks� The author 
nds it useful to distinguish be	
tween the perspectives supplied by statistics� machine learning� data mining
and classi
cation�

Statistics perspective

Statistics tends to view any data table as a sample from a probability distribu	
tion whose properties or parameters are to be estimated with the data� In the
case of clustering� clusters are supposed to be associated with di
erent proba	
bilistic distributions which are intermixed in the data and should be recovered
from it�
Within this approach� such questions as �How many clusters are out there��

and �How to preprocess the data�� are well substantiated and can be dealt with
according to the assumptions of the underlying model�
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In many cases the statistical paradigm suits quite well and should be applied
as the one corresponding most to what is called the scienti
c method� make
a hypothesis of the phenomenon in question� then look for relevant data and
check how the hypothesis 
ts them�

A trouble with this approach is that in most cases clustering is applied
to phenomena of which almost nothing is known� not only of their underly	
ing mechanisms but of the very features measured or to be measured� Then
any modelling assumptions of the data generation would be necessarily rather
arbitrary and so too conclusions based on them�

Moreover in many cases the set of entities is rather unique and cannot be
considered a sample from a larger population� such as the set of European
countries or single malt whisky brands�

Sometimes the very concept of a cluster as a probabilistic distribution seems
to not 
t into a clustering goal� Look� for example� at a bell	shaped Gaussian
distribution which is considered a good approximation for such variables as the
height or weight of young male individuals of the same ethnicity so that they
form a cluster corresponding to the distribution� However� when confronted
with the practical issue of dividing people� for example� according to their

ghting capabilities �such as in military conscription or in the sport of boxing��
the set cannot be considered a homogeneous cluster anymore and must be
further partitioned into more homogeneous strata� Some say that there must
be a boundary between �natural� clusters and clusters to be drawn on purpose�
that a bell	shape distribution corresponds to a natural cluster and a boxing
weight category to an arti
cial one� However� it is not always easy to distinguish
which situation is which� There will always be situations when a cluster of
potentially weak 
ghters �or bad customers� or homologous proteins� must be
cut out from the rest�

Machine learning perspective

Machine learning tends to view the data as a device for learning how to predict
pre	speci
ed or newly created categories� The entities are considered as coming
one at a time so that the machine can learn adaptively in a supervised manner�
To theorize� the �ow of data must be assumed to come from a probabilistic
population� an assumption which has much in common with the statistics ap	
proach� However� it is prediction rather than model 
tting which is the central
issue in machine learning�

Such a shift in the perspective has led to the development of strategies for
predicting categories such as decision trees and support vector machines as well
as resampling methods such as the bootstrap and cross	validation for dealing
with limited data sets�
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Data mining perspective

Data mining is not much interested in re�ection on where the data have come
from nor how they have been collected� It is assumed that a data set or database
has been collected already and� however bad or well it re�ects the properties of
the phenomenon in question� the major concern is in 
nding patterns and reg	
ularities within the data as they are� Machine learning and statistics methods
are welcome here � for their capacity to do the job�

This view� started as early as in the sixties and seventies in many countries
including France� Russia and Japan in such subjects as analysis of question	
naires or of inter	industrial transfers� was becoming more and more visible�
but it did not make it into prominence until the nineties� By that time� big
warehouse databases became available� which led to the discovery of patterns
of transactions with the so	called association search methods� The patterns
proved themselves correct when superstores increased pro
ts by accommodat	
ing to them�

Data mining is a huge activity on the intersection of databases and data
analysis methods� Clustering is a recognized part of it� The data recovery
approach which is maintained in this book obviously 
ts within data mining
very well� because it is based only on the data available�

It should be added that the change of the paradigm from modeling of mech	
anisms of data generation to data mining has drastically changed requirements
to methods and programs� According to the statistics approach� the user must
know the models and methods he uses� if a method is applied wrongly� the
results can be wrong too� Thus� application of statistical methods is limited
within a small circle of experts� In data mining� it is the patterns not methods
that matter� This shifts the focus of computer programs from statistics to the
user�s substantive area and makes them user	friendly�

Similarly� the validation objectives seem to diverge here� in statistics and
machine learning the stress goes on the consistency of the algorithms� which is
not quite so important in data mining� in which it is the consistency of patterns�
not algorithms� which matters the most�

Classi�cation
knowledge�discovery perspective

The classi
cation perspective is rarely discussed indeed� In data mining the
term �classi
cation� is usually referred to in a very limited sense� as an activity
of assigning prespeci
ed categories �classes� to entities� in contrast to clustering
which assigns entities with newly created categories �clusters��

According to its genuine meaning� classi
cation is an actual or ideal arrange	
ment of entities under consideration in classes to�

��� shape and keep knowledge�
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��� capture the structure of phenomena� and

��� relate di
erent aspects of a phenomenon in question to each other�

These make the concept of classi
cation a speci
c mechanism for knowl	
edge discovery and maintenance� Consider� for instance� the Periodic Chart
of chemical elements� Its rows correspond to numbers of electron shells in the
atoms� and its columns to the numbers of electrons in the external shell thus
capturing the structure of the phenomenon� These also relate to most impor	
tant physical properties and chemical activities of the elements thus associating
di
erent aspects of the phenomenon� And this is a compact form of represent	
ing the knowledge� moreover� historically it is this form itself� developed rather
empirically� that made possible rather fast progress to the current theories of
the matter�
In spite of the fact that the notion of classi
cation as part of scienti
c

knowledge was introduced by the ancient Greeks �Aristotle and the like� the
very term �classi
cation� seems a missing item in the vocabulary of current
scienti
c discourse� This may have happened because in traditional sciences�
classi
cations are de
ned within well developed substantive theories according
to variables which are de
ned as such within the theories� Thus� there has been
no need in speci
c theories for classi
cation�
Clustering should be considered as classi
cation based on empirical data

in a situation when clear theoretical concepts and de
nitions are absent and
the regularities are unknown� Thus� the clustering goals should relate to the
classi
cation goals above� This brings one more aspect to clustering� Consider�
for example� how one can judge whether a clustering is good or bad� According
to the classi
cation�knowledge	discovery view� this is easy and has nothing
to do with statistics� just look at how well clusters 
t within the existing
knowledge� how well they allow updating� correcting and extending�
Somewhat simplistically� one might say that two of the points stressed in

this book� that of the data recovery approach and the need to not only 
nd�
but describe clusters� 
t well into the two perspectives� the former into data
mining and the latter into classi
cation as knowledge discovery�



Chapter �

What Is Data

After reading through this chapter� the reader will know of�

�� Three types of data tables� �a� feature	to	entity� �b� similar	
ity�dissimilarity and �c� contingency��ow tables� and ways to stan	
dardize them�

�� Quantitative� categorical and mixed data� and ways to pre	process
and standardize them�

�� Characteristics of feature spread and centrality�

�� Bi	variate distributions over mixed data� correlation and association�
and their characteristics�

�� Visualization of association in contingency tables with Quetelet coef	

cients�

�� Multidimensional concepts of distance and inner product�

�� The concept of data scatter�

Base words

Average The average value of a feature over a subset of entities� If the fea	
ture is binary and corresponds to a category� the average is the category
frequency in the subset� The average over the entire entity set is referred
to as a grand mean�

Contingency coe�cient A summary index of statistical association between

��
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two sets of categories in a contingency table� The greater it is� the closer
the association to a conceptual one�

Contingency table Given two sets of categories corresponding to rows and
columns� respectively� this table presents counts of entities co	occurring
at the intersection of each pair of categories from the two sets� When
categories within each of the sets are mutually disjoint� the contingency
table can be aggregated by summing up relevant entries�

Correlation The shape of a scatter	plot showing the extent to which two fea	
tures can be considered mutually related� The �product	moment� corre	
lation coe�cient captures the extent at which one of the features can be
expressed as a linear function of the other�

Data scatter The sum of squared entries of the data matrix� it is equal to
the sum of feature contributions or the summary distance from entities
to zero�

Data table Also referred to as �at �le �in databases� or vector space data
�in information retrieval�� this is a two	dimensional array whose rows
correspond to entities� columns to features� and entries to feature values
at entities�

Distance Given two vectors of the same size� the �Euclidean squared� distance
is the sum of squared di
erences of corresponding components� d�x� y� �P

i�xi � yi�
�� It is closely related to the inner product� d�x� y� � �x �

y� x� y��

Entity Also referred to as observation �in statistics� or case �in social sciences�
or instance �in arti
cial intelligence� or object� this is the main item of
clustering corresponding to a data table row�

Feature Also referred to as variable �in statistics� or character �in biology� or
attribute �in logic�� this is another major data item corresponding to a
data table column� It is assumed that feature values can be compared to
each other� at least� whether they coincide or not �categorical features��
or even averaged over any subset of entities �quantitative feature case��

Inner product Given two vectors of the same size� the inner product is the
sum of products of corresponding components� �x� y� �

P
i xiyi� It is

closely related to the distance� d�x� y� � �x� x� ! �y� y�� ��x� y��
Quetelet index In contingency tables� A value showing the change in fre	

quency of a row category when a column category becomes known� The
greater the value� the greater the association between the column and row
categories� It is a basic concept in contingency table analysis�
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Range The interval in which a feature takes its values� the di
erence between
the feature maximum and minimum over a data set�

Scatter plot A graph presenting entities as points on the plane formed by two
quantitative features�

Variance The average of squared deviations of feature values from the average�
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��� Feature characteristics

����� Feature scale types

The Masterpieces data in Table ���� will be used to illustrate data handling
concepts in this section� For the reader�s convenience� the table is reprinted
here as Table ����
A data table of this type represents a unity of the set of rows� always denoted

as I further on� the set of columns denoted by V and the table contents X � the
set of values xiv in rows i � I and columns v � V � The number of rows� or
cardinality of I � jI j� will be denoted by N � and the number of columns� the
cardinality of V � jV j� by M � Rows will always correspond to entities� columns
to features� Whatever metadata of entities may be known� are all to be put
as the features� except for names� that may be maintained as a list associated
with I � As to the features v � V � it is assumed that each has a measurement
scale assigned to it� and of course a name�
All within	column entries are supposed to have been measured in the same

scale and thus comparable within the scale� this is not so over rows in Y � Three
di
erent types of scales that are present in Table ��� and will be dealt with
in the remainder are quantitative �LenSent� LenDial� and NChar�� nominal
�Narrative� and binary �SCon�� Let us elaborate on these scale types�

Table ���� Masterpieces� Masterpieces of ��th century� the �rst three by Charles
Dickens ���������	

 the next three by Mark Twain ���������	

 and the last two by
Leo Tolstoy ���������	
�

Title LenSent LenDial NChar SCon Narrative

Oliver Twist ���	 ���� � No Objective
Dombey and Son ���� ���	 � No Objective
Great Expectations ���� ���	 � No Personal

Tom Sawyer ���� ���� � Yes Objective
Huckleberry Finn ���� ���� � Yes Personal
Yankee at King Arthur ���� ���� � Yes Personal

War and Peace ���� �	�� � Yes Direct
Anna Karenina ���� ���	 � Yes Direct

�� Quantitative� A feature is quantitative if the operation of taking its
average is meaningful�

It is quite meaningful to compare the average values of feature LenS or
LenD for di
erent authors in Table ���� Somewhat less convincing is the
case of NumC which must be an integer� some authors even consider such
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�counting� features a di
erent scale type� Still� we can safely say that
on average Tolstoy�s novels have larger numbers of principal characters
than those by Dickens or Twain� This is why counting features are also
considered quantitative in this text�

�� Nominal� A categorical feature is said to be nominal if its categories are
�i� disjoint� that is� no entity can fall in more than one of them� and �ii�
not ordered� that is� they only can be compared with respect to whether
they coincide or not� Narrative� in Table ���� is such a feature�

Categorical features maintaining �ii� but not �i� are referred to as multi	
choice variables� For instance� Masterpieces data might include a feature
that presents a list of social themes raised in a novel� which may contain
more than one element� That would produce a one	to	many mapping of
the entities to the categories� that is� social themes� There is no problem
in treating this type of data within the framework described here� For
instance� the Digit data table may be treated as that representing the only�
multi	choice� variable �Segment� which has the set of seven segments as
its categories�

Categorical features that maintain �i� but have their categories ordered
are called rank variables� Variable Bribe level in the Bribery data of
Tables ���� and ���� is rank� its three categories are obviously ordered
according to the bribe size� Traditionally� it is assumed for the rank
variables that only the order of categories matters and intervals between
them are irrelevant� That is� rank categories may accept any quantitative
coding which is compatible with their ordering� This makes rank features
di�cult to deal with in the context of mixed data tables� We maintain
a di
erent view� going back to C� Spearman� the ranks are treated as
numerical values and the rank variables are considered thus quantitative
and processed accordingly� In particular� seven of the eleven variables
in Bribery data �II� Client� IV� Occurrence� V� Initiator� VI� Bribe� VII�
Type� VIII� Network� and XI� Punishment� will be considered ranked with
ranks assigned in Table ���� and treated as quantitative values�

There are two approaches to the issue of involving qualitative features
into analysis� According to one� more traditional� approach� categorical
variables are considered non	treatable quantitatively� The only quantita	
tive operation admitted for categories is counting the number or frequency
of its occurrences at various subsets� To conduct cluster analysis� cate	
gorical data� according to this view� can only be utilized for deriving an
entity	to	entity �dis�similarity measure� Then this measure can be used
for 
nding clusters�

A di
erent approach is maintained and further developed here� a category
de
nes a quantitative zero	one variable on entities� with one corresponding
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to its presence and zero absence� which is treated then as such� We will
see later that this view� in fact� does not contradict the former one but
rather 
ts into it with geometrically and statistically sound speci
cations�

�� Binary� A qualitative feature is said to be binary if it has two categories
which can be thought of as Yes or No answer to a question such as fea	
ture SCon in Table ���� A two	category feature can be considered either
a nominal or binary one� depending on the context� For instance� feature
�Gender� of a human should be considered a nominal feature� whereas
the question �Are you female�� a binary feature� because the latter as	
sumes that it is the �female�� not �male�� category which is of interest�
Operationally� the di
erence between these two types will amount to how
many binary features should be introduced to represent the feature un	
der consideration in full� Feature �Gender� cannot be represented by one
column with Yes or No categories� two are needed� one for �Female� and
one for �Male��

����� Quantitative case

As mentioned� we consider that the meaningfulness of taking the average is a
de
ning property of a quantitative variable� Given a feature v � V whose values
yiv � i � I � constitute a column in the data table� its average over entity subset
S � I is de
ned by the formula

cv�S� � ���NS�
X
i�S

yiv �����

where NS is the number of entities in S�

The average cv � cv�I� of v � V over the entire set I is sometimes referred
to as grand mean� After grand mean cv of v � V has been subtracted from all
elements of the column	feature v � V � the grand mean of v becomes zero� Such
a variable is referred to as centered�

It should be mentioned that usually the quantitative scale is de
ned some	
what di
erently� not in terms of the average but the so	called admissible trans	
formations y � ��x�� The scale type is claimed to depend on the set of trans	
formations � which are considered admissible� that is� do not change the scale
contents� For the quantitative feature scales� those that are admissible are
transformations such as y � ax ! b converting all x values into y values by
changing the scale factor a times and shifting the scale origin at b� Transforma	
tions y � ��x� of this type� with ��x� � ax!b for some real a and b� are referred
to as a�ne transformations� For instance� the temperature Celsius scale x is
transformed into the temperature Fahrenheit scale with ��x� � ���x!��� Stan	
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dardizations of data with a�ne transformations are at the heart of our approach
to clustering�
Our de
nition is compatible with the one given above� Indeed� if a feature

x admits a�ne transformations� it is meaningful to compare its average values
over various entity sets� Let xJ and xK be the averages of sets fxj � j � Jg and
fxk � k � Kg respectively� and� say� xJ � xK � Does the same automatically
hold for the averages of y � ax! b over J and K� To answer this question� we
consider values yj � axj!b� j � J � and yk � axk!b� k � K and calculate their
averages� yJ and yK � It is easy to prove that yK � axK ! b and yJ � axJ ! b
so that any relation between xJ and xK remains the same for yJ and yK � up
to the obvious reversal when a is negative �which means that rescaling involves
change of the direction of the scale��
Other indices of �centrality� have been considered too� the most popular of

them are�

i Midrange� point in the middle of the range� that is� equi	distant from the
minimum and maximum values of the feature�

ii Median� the middle item in the series of elements of column v sorted in
ascending �or descending� order�

iii Mode� �the most likely� value� which is operationally de
ned by parti	
tioning the feature range in a number of bins �intervals of the same size�
and determining at which of the bins the number of observations is max	
imum� the center of this bin is the mode� up to the error related to the
bin size�

Each of these has its advantages and drawbacks as a centrality measure� The
median is the most stable with regard to change in the sample and� especially�
to the presence of outliers� Outliers can drastically change the average� and
they do not a
ect the median at all� However� the calculation of the median
requires sorting the entity set� which sometimes may be costly� Midrange is
insensitive to the shape of the distribution and is highly sensitive to outliers�
The mode is of interest when distribution of the feature is far from uniform�
These may give a hint with respect to what measure should be used in a

speci
c situation� For example� if the data to be analyzed have no speci
c
properties at all� the average should be utilized� When outliers or data errors
are expected� the median would be a better bet�
The average� median and midrange all 
t within the following approximation

model which is at the heart of the data recovery approach� Given a number of
reals� x�� x������ xN � 
nd a unique real a that can be used as their aggregate
substitute so that for each i� a approximates xi up to a residual �i� xi � a! �i�
i � I � The smaller the residuals the better the aggregate� To minimize the
residuals �i � xi � a� they should be combined into a scalar criterion such
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Table ���� Summary characteristics of the Market town data�

P PS Do Ho Ba Su Pe DIY SP PO CAB FM
Mean �����
 ��� ��
 ��
 
�� ��	 ��� ��� ��� ��� ��� ���
Std ��	��� ��� ��� ��� 
�
 ��� ��� ��� ��� ��� ��� ��

Range ������� ���� 
�� ��� �	�� ��� ��� ��� ��� ��� ��� ���

as L� �
P

i jxi � aj� L� � maxi jxi � aj� or L� �
P

i jxi � aj�� It appears�
L� is minimized by the median� L� by midrange and L� by the average� The
average 
ts best because it solves the least squares approximation problem� and
the least	square criterion is the basis of all further developments in Chapter ��
A number of characteristics have been de
ned to measure the features� dis	

persion or spread� Probably the simplest of them is the variable�s range� the
di
erence between its maximal and minimal values� that has been mentioned
above already� This measure should be used cautiously as it may be overly sen	
sitive to changes in the entity set� For instance� removal of Truro from the set
of entities in the Market town data immediately reduces the range of variable
Banks to �� from ��� Further removal of St Blazey�Par further reduces the
range to ��� Moreover� the range of variable DIY shrinks to � from �� with
these two towns removed� Obviously� no such drastic changes emerge when all
thirteen hundred of the English Market towns are present�
A somewhat more elaborate characteristic of dispersion is the so	called �em	

pirical� variance of v � V which is de
ned as

s�v �
X
i�I

�yiv � cv�
��N �����

where cv is the grand mean� That is� s
�
v is the average squared deviation L� of

yiv from cv�
The standard deviation of v � V is de
ned as just sv �

p
s�v which has also

a statistical meaning as the square	average deviation of the variable�s values
from its grand mean� The standard deviation is zero� s � �� if and only if the
variable is constant� that is� all the entries are equal to each other�
In some packages� especially statistical ones� denominator N � � is used in	

stead of N in de
nition ����� because of probabilistic consistency considerations
�see any text on mathematical statistics�� This shouldn�t much a
ect results
because N is assumed constant here and� moreover� ��N and ���N � �� do not
much di
er when N is large�
For the Market town data� with N � �� and n � ��� the summary charac	

teristics are in Table ����
The standard deviations in Table ��� are at least as twice as small as the

ranges� which is true for all data tables �see Statement ������
The values of the variance s�v and standard deviation sv obviously depend

on the variable�s spread measured by its range� Multiplying the column v � V
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by � � � obviously multiplies its range and standard deviation by �� and the
variance by ���
The quadratic index of spread� s�v � depends not only on the scale but also

on the character of the feature�s distribution within its range� Can we see how�
Let as consider all quantitative variables de
ned on N entities i � I and

ranged between � and � inclusive� and analyze at what distributions the variance
attains its maximum and minimum values�
It is not di�cult to see that any feature v that minimizes the variance s�v is

equal to � at one of the entities� � at another entity� and yiv � cv � ��� at all
other entities i � I � The minimum variance s�v is

�
�N then�

Among the distributions under consideration� the maximum value of s�v is
reached at a feature v which is binary� that is� has only boundary points� �
and �� as its values� Indeed� if v has any other value at an entity i� then the
variance will only increase if we rede
ne v in such a way that it becomes � or � at
i depending on whether yiv is smaller or greater than v�s average cv � For a binary
v� let us specify proportion p of values yiv at which the feature is larger than its
grand mean� yiv � cv� Then� obviously� the average cv � � 	 ��� p� ! � 	 p � p
and� thus� s�v � ��� p�� 	 ��� p� ! ��� p�� 	 p � p��� p��
The choice of the left and right bounds of the range� � and �� does have an

e
ect on the values attained by the extremal variable but not on the conclusion
of its binariness� That means that the following is proven�

Statement ���� With the range and proportion p of values smaller than the
average prespeci�ed� the distribution at which the variance reaches its maximum
is the distribution of a binary feature having p values at the left bound and ��p
values at the right bound of the range�

Among the binary features� the maximum variance is reached at p � ����
the maximum uncertainty� This implies one more property�

Statement ���� For any feature� its standard deviation is at least as twice as
small as its range�

Proof� Indeed� with the range being unity between � and �� the maximum
variance is p���p� � ��� at p � ��� leading to the maximum standard deviation
of just half of the unity range� q�e�d�
From the intuitive point of view� the range being the same� the greater the

variance the better the variable suits the task of clustering�

����� Categorical case

Let us 
rst consider binary features and then nominal ones�
To quantitatively recode a binary feature� its Yes category is converted into

� and No into �� The grand mean of the obtained zero�one variable will be
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pv� the proportion of entities falling in the category Yes� Its variance will be
s�v � p��� p��
In statistics� two types of probabilistic mechanisms for generating zero�one

binary variables are considered� Bernoulli�binomial and Poisson� Each relies on
having the proportion of ones� p� 
xed� However� the binomial distribution
assumes that every single entry has the same probability p of being unity�
whereas Poisson distribution does not care about individual entries� just that
the proportion p of entries randomly thrown into a column must be unity� This
subtle di
erence makes the variance of the Poisson distribution greater� the
variance of the binomial distribution is equal to s�v � p��� p� and the variance
of the Poisson distribution is equal to �v � p� Thus� the variance of a one	zero
feature considered as a quantitative feature corresponds to the statistical model
of binomial distribution�
Turning to the case of nominal variables� let us denote the set of categories of

a nominal variable l by Vl� Any category v � Vl is conventionally characterized
by its frequency� the number of entities� Nv� falling in it� The sum of frequencies
is equal to the total number of entities in I �

P
v�Vl

Nv � N � The relative
frequencies� pv � Nv�N � sum up to unity� The vector p � �pv�� v � Vl is referred
to as the distribution of l �over I�� A category with the largest frequency is
referred to as the distribution�s mode� The dispersion of a nominal variable l is
frequently measured by the so	called Gini coe�cient� or qualitative variance�

G �
X
v�Vl

pv��� pv� � ��
X
v�Vl

p�v �����

This is zero if all entities fall in one of the categories only� G is maximum
when the distribution is uniform� that is� when all category frequencies are the
same� pv � ��jVlj for all v � Vl�
A similar measure referred to as entropy and de
ned as

H � �
X
v�Vl

pv log pv �����

with the logarithm�s base � is also quite popular� This measure is related to
so	called information theory ����� Entropy reaches its minimum and maximum
values at the same distributions as the Gini coe�cient� Moreover� the Gini
coe�cient can be thought of as a linearized version of entropy since � � pv
linearly approximates log pv at pv close to �� In fact� both can be considered
averaged information measures� just that one uses � log pv and the other ��pv
to express the information contents�
There exists a general formula to express the diversity of a nominal variable

as Sq � �� �
P

v�Vl
pqv���q � ��� q � � ������ The entropy and Gini index are

special cases of Sq since S� � G and S� � H assuming S� to be the limit of Sq
when q tends to ��
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A nominal variable l can be converted into a quantitative format by assigning
a zero�one feature to each of its categories v � Vl coded by � or � depending
on whether an entity falls into the category or not� These binary features are
referred to sometimes as dummy variables�
Unlike a binary feature� a two	category nominal feature such as �Gender� is

converted into two columns� each corresponding to one of the categories� �Male�
and �Female� of �Gender�� This way of quantization is quite convenient within
the data recovery approach as will be seen further in section ��� and others�
However� it is also compatible with the traditional view of quantitative mea	
surement scales as expressed in terms of admissible transformations� Indeed�
for a nominal scale x� any one	to	one mapping y � ��x� is considered admissi	
ble� When there are only two categories� x� and x�� they can be recoded into
any y� and y� with an appropriate rescaling factor a and shift b so that the
transformation of x to y can be considered an a�ne one� y � ax! b� It is not
di�cult to prove that a � �y� � y����x� � x�� and b � �x�y� � x�y����x� � x��
will do the recoding� In other words� nominal features with two categories can
be considered quantitative� The binary features� in this context� are those with
category Yes coded by � and No by � for which transformation y � ax ! b is
meaningful only when a � ��
The vector of averages of the dummy category features� pv� v � Vl� is

nothing but the distribution of l� Moreover� the Gini coe�cient appears to
be but the summary Bernoullian variance of the dummy category features�
G �

P
v�Vl

pv�� � pv�� In the case when l has only two categories� this be	
comes just the variance of any of them doubled� Thus� the transformation of
a nominal variable into a bunch of zero	one dummies conveniently converts it
into a quantitative format which is compatible with the traditional treatment
of nominal features�

��� Bivariate analysis

Statistical science in the pre	computer era developed a number of tools for
the analysis of interrelations between variables� which will be useful in the
sequel� In the remainder of this section� a review is given of the three cases
emerging from the pair	wise considerations� with emphasis on the measurement
scales� �a� quantitative	to	quantitative� �b� categorical	to	quantitative� and �c�
categorical	to	categorical variables� The discussion of the latter case follows
that in �����

����� Two quantitative variables

Mutual interrelations between two quantitative features can be caught with
a scatter plot such as in Figure ����� page ��� Two indices for measuring
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Figure ���� Geometrical meaning of the inner product and correlation coe�cient�

association between quantitative variables have attracted considerable attention
in statistics and data mining� those of covariance and correlation�

The covariance coe�cient between the variables x and y considered as
columns in a data table� x � �xi� and y � �yi�� i � I � can be de
ned as

cov�x� y� � ���N�
X
i�I

�xi � "x��yi � "y� �����

where "x and "y are the average values of x and y� respectively�
Obviously� cov�x� x� � s��x�� the variance of x de
ned in section ������

The covariance coe�cient changes proportionally when the variable scales
are changed� A scale	invariant version of the coe�cient is the correlation coe�	
cient �sometimes referred to as the Pearson product	moment correlation coe�	
cient� which is the covariance coe�cient normalized by the standard deviations�

r�x� y� � cov�x� y���s�x�s�y�� �����

A somewhat simpler formula for the correlation coe�cient can be obtained
if the data are 
rst standardized by subtracting their average and dividing
the results by the standard deviation� r�x� y� � cov�x�� y�� � �x�� y���N where
x�i � �xi� "x��s�x�� y�i � �yi� "y��s�y�� i � I � Thus� the correlation coe�cient is
but the mean of the component	to	component� that is� inner� product of feature
vectors when both of the scales are standardized as above�
The coe�cient of correlation can be substantiated in di
erent theoretic

frameworks� These require some preliminary knowledge of mathematics and
can be omitted at 
rst reading� which is re�ected in using a smaller font for
explaining them�

�� Cosine� A geometric approach
 relying on concepts introduced later in sec�
tion �����
 o�ers the view that the covariance coe�cient as the inner product
of feature column�vectors is related to the angle between the vectors so that
�x� y
 � jjxjjjjyjj cos�x� y
� This can be illustrated with Fig� ���� norms jjxjj
and jjyjj are Euclidean lengths of intervals from 	 to x and y
 respectively�
The correlation coe�cient is the inner product of the corresponding normalized
variables
 that is
 the cosine of the angle between the vectors�
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�� Linear slope� The data recovery approach suggests that one of the features
is modeled as a linear function of the other
 say
 y as ax � b where a and b
are chosen to minimize the norm of the di�erence
 jjy � ax � bjj� It appears

the optimal slope a is proportional to r�x� y
 and
 moreover
 the square r�x� y
�

expresses that part of the variance of y that is taken into account by ax� b �see
details in section �����
�

�� Parameter in Gaussian distribution� The correlation coe�cient has a very
clear meaning in the framework of probabilistic bivariate distributions� Con�
sider
 for the sake of simplicity
 features x and y normalized so that the variance
of each is unity� Denote the matrix formed by the two features by z � �x� y
 and
assume a unimodal distribution over z
 controlled by the so�called Gaussian
 or
normal
 density function �see section �����
 which is proportional to the expo�

nent of �zT���z�� where � is a � � � matrix equal to � �

�
� r
r �

�
� The

parameter r determines the distance between the foci of the ellipse zT���z � ��
the greater r the greater the distance� At r � 	 the distance is zero so that the
ellipsis is a circle and at r tending to � or �� the distance tends to the in�nity
so that the ellipse degenerates into a straight line� It appears r�x� y
 is a sample
based estimate of this parameter�

These three frameworks capture di
erent pieces of the �elephant�� That
of cosine is the most universal framework� one may always take that measure
to see to what extent two features go in concert� that is� to what extent their
highs and lows co	occur� As any cosine� the correlation coe�cient is between ��
and �� the boundary values corresponding to the coincidence of the normalized
variables or to a linear relation between the original features� The correlation
coe�cient being zero corresponds to the right angle between the vectors� the
features are not correlated# Does that mean they must be independent in this
case� Not necessarily� The linear slope approach allows one to see how this
may happen� just the slope of the line best 
tting the scatter	plot must be
horizontal� According to this approach� the square of the correlation coe�cient
shows to what extent the relation between variables� as observed� is owed to
linearity� The Gaussian distribution view is the most demanding� it requires a
properly de
ned distribution function� a unimodal one� if not normal�
Three examples of scatter	plots on Figure ��� illustrate some potential cases

of correlation� �a� strong positive� �b� strong negative� and �c� zero correlation�
Yet be reminded� in contrast to what is claimed in popular web sites� the
the correlation coe�cient cannot gather up all the cases in which variables are
related� it does capture only those of linear relation and those close enough to
that�

����� Nominal and quantitative variables

How should one measure association between a nominal feature and a quantita	
tive feature� By looking at whether specifying a category can lead to a better
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(a) (b) (c)

Figure ���� Three cases of a scatter�plot� �a
 positive correlation
 �b
 negative cor�
relation
 �c
 no correlation� The shaded area is supposed to be randomly covered by
entity points�

prediction of the quantitative feature or not�
Let us denote the partition of the entity set I corresponding to categories

of the nominal variable by S � fS�� ���� Smg� subset Sk consists of Nk entities
falling in k	th category of the variable� The quantitative variable will be denoted
by y with its values yi for i � I � The box	plot such as in Figure ��� on page
�� is a visual representation of the relationship between the nominal variable
represented by the grouping and the quantitative variable represented by the
boxes and whiskers�
Let us introduce the framework for prediction of y values� Let the predicted

y value for any entity be the grand mean "y if no other information is supplied�
or "yk �

P
i�Sk

yi�Nk� the within	class average� if the entity is known to belong
to Sk� The average error of these predictions can be estimated in terms of
the variances� To do this� one should relate within	class variances of y to its
total variance s�� the greater the change� the lesser the error and the closer the
relation between S and y�
An index� referred to as the correlation ratio� measures the proportion of

total feature variance that falls within classes� Let us denote the within class
variance of variable y by

s�k �
X
i�Sk

�yi � "yk���Nk �����

where Nk is the number of entities in Sk and "yk the feature�s within cluster
average� Let us denote the proportion of Sk in I by pk so that pk � Nk�N �

Then the average variance within partition S � fS�� ���� Smg will be
PK

k�� pks
�
k�

This can be proven to never be greater than the total variance s��
However� the average within partition variance can be as small as zero �

when values yi all coincide with "yk within each category Sk� that is� when y is
piece	wise constant across S� In other words� all cluster boxes of a box	plot of y
over classes of S degenerate into straight lines in this case� In such a situation
partition S is said to perfectly match y� The smaller the di
erence between
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Table ���� Cross�classi�cation of � masterpieces according to the author and Narra�
tive in the format Count�Proportion�

Narrative
Author Objective Personal Direct Total

Dickens ��	���	 ��	���� 	�	 ��	����
Twain ��	���� ��	���	 	�	 ��	����
Tolstoy 	�	 	�	 ��	���	 ��	���	

Total ��	���� ��	���� ��	���� ����			

the average within	class variance and s�� the worse the match between S and
y� The relative value of the di
erence�

	� �
s� �PK

k�� pks
�
k

s�
�����

is referred to as the correlation ratio�
The correlation ratio is between � and �� the latter corresponding to the

perfect match case� The greater the within	category variances� the smaller the
correlation ratio� The minimum value� zero� is reached when all within class
variances coincide with the total variance�

����� Two nominal variables cross
classi�ed

Interrelation between two nominal variables is represented with the so	called
contingency table� A contingency� or cross	classi
cation� data table corresponds
to two sets of disjoint categories� such as authorship and narrative style in the
Masterpieces data� which respectively form rows and columns of Table ����
Entries of the contingency table are co	occurrences of row and column cat	

egories� that is� counts of numbers of entities that fall simultaneously in the
corresponding row and column categories such as in Table ����
In a general case� with the row categories denoted by t � T and column

categories by u � U � the co	occurrence counts are denoted by Ntu� The fre	
quencies of row and column categories usually are called marginals �since they
are presented on margins of contingency tables as in Table ���� and denoted
by Nt� and N�u since� when the categories within each of the two sets do not
overlap� they are sums of co	occurrence entries� Ntu� in rows� t� and columns� u�
respectively� The proportions� ptu � Ntu�N � pt� � Nt��N � and p�u � N�u�N
are also frequently used as contingency table entries� The general contingency
table is presented in Table ����
Contingency tables can be considered for quantitative features too� if they

are preliminarily categorized as demonstrated in the following example�
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Table ���� A contingency table or cross classi�cation of two sets of categories
 t � T
and u � U on the entity set I�

Category � � ��� jU j Total

� N�� N�� ��� N�jUj N��

� N�� N�� ��� N�jUj N��

��� ��� ��� ���� ��� ���
jT j NjT j� NjT j� ��� NjT jjUj NjT j�

Total N�� N�� ��� N�jUj N

Table ���� Cross classi�cation of the Bank related partition with FM feature at
Market towns�

Number of banks

FMarket �	� �� �� �� Total

Yes � � � � �
No � � �� �� ��

Total � �� �� �� ��

Table ���� Frequencies
 per cent
 in the bivariate distribution of the Bank related
partition and FM at Market towns�

Number of banks

FMarket �	� �� �� �� Total

Yes ���� ����� ���� ���� �	�		
No ���� ����� ����� ����� �	�		

Total ����� ����� ����� ����� �		�		

Example ���� A cross classi�cation of Market towns

Let us partition the Market town set in four classes according to the number of
Banks and Building Societies �feature Ba
� class T� to include towns with Ba equal
to �	 or more� T� with Ba equal to � or more
 but less than �	� T� with Ba equal to
� or �� and T� to consist of towns with one or no bank at all� Let us cross classify
partition T � fTvg with feature FM
 presence or absence of a Farmers� market in the
town� That means that we draw a table whose columns correspond to classes Tv
 rows
to presence or absence of Farmers� markets
 and entries to their overlaps �see Table
���
�

The matrix of frequencies
 or proportions
 ptu � Ntu�N for Table ��� can be found
by dividing all its entries by N � �� �see Table ���
� �

A contingency table gives a picture of interrelation between two categorical
features� or partitions corresponding to them� which is not quite clear� Let us
make the picture sharper by removing thirteen towns from the sample� those
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Table ���� Cross classi�cation of the Bank related partition with FM feature at a
�cleaned� subsample of Market towns�

Number of banks

FMarket �	� �� �� �� Total

Yes � � 	 	 �
No 	 	 �� �� ��

Total � � �� �� ��

falling in the less populated cells of Table ��� �see Table ����� Table ��� shows
a very clear association between two features on the �cleaned� subsample� the
Farmers� markets are present only in towns in which the number of banks is
� or greater� A somewhat subtler relation� the medium numbers of banks are
more closly associated with the presence of a Farmers� market than the higher
ones�
This clear picture is somewhat blurred in the original sample in Table ���

and� moreover� maybe does not hold at all�
Thus� the issue of relating two features to each other can be addressed by

looking at mismatches� For instance� Table ��� shows that Narrative style is
quite close to authorship� though they do not completely match� there are two
mismatching entities� one by Dickens and the other by Twain� Similarly� there
are �� mismatches in Table ��� removed in Table ���� The sheer numbers of
mismatching entities measure the di
erences between category sets rather well
when the distribution of entities within each category is rather uniform as it is
in Table ���� When the proportions of entities in di
erent categories drastically
di
er� as in Table ���� to measure association between category sets more prop	
erly� the numbers of mismatching entities should be weighted according to the
frequencies of corresponding categories� Can we discover the relation in Table
��� without removing entities�
To measure association between categories according to a contingency table�

a founding father of the science of statistics� A� Quetelet� proposed utilizing the
relative or absolute change of the conditional probability of a category� The
conditional probability p�u�t� � Ntu�Nt� � ptu�pt� measures the proportion
of category u in category t� Quetelet coe�cients measure the di
erence between
p�u�t� and the average rate p�u of u � U � The Quetelet absolute probability
change is de
ned as

gtu � p�u�t�� p�u � �ptu � pt�p�u��pt�� �����

and the Quetelet relative change

qtu � gtu�p�u � ptu��pt�p�u�� � � �ptu � pt�p�u���pt�p�u� ������
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If� for instance� t is an illness risk factor such as �exposure to certain al	
lergens� and u is an allergic reaction such as asthma� and ptu � ������ pt! �
����� p�u � ����� that means that ten per cent of those people who have been
exposed to the allergens� p�u�t� � ptu�pt� � ��������� � ���� contract the dis	
ease while only two per cent on average have the disease� Thus� the exposure to
the allergens multiplies risk of the disease 
vefold or increases the probability of
contracting it by ���  � This is exactly the value of qtu � �������������� � ��
The value of gtu expresses the absolute di
erence between p�u�t� � ��� and
p�u � ����� it is not that dramatic� just �����
The summary Quetelet coe�cients �weighted by the co	occurrence values�

can be considered as summary measures of association between two category
sets especially when distributions are far from uniform�

G� �
X
t�T

X
u�U

ptugtu �
X
t�T

X
u�U

p�tu
pt�

�
X
u�U

p��w ������

and

Q� �
X
t�T

X
u�U

ptuqtu �
X
t�T

X
u�U

p�tu
pt�p�u

� � ������

The right	hand � in ������ comes as
P

t�T

P
u�U ptu when the categories t

are mutually exclusive and cover the entire set I as well as categories u� In this
case Q� is equal to the well known Pearson chi	squared coe�cient X� de
ned
by a di
erent formula�

X� �
X
t�T

X
u�U

�ptu � pt�p�u�
�

pt�p�u
������

The fact that Q� � X� can be proven with simple algebraic manipulations�
Indeed� take the numerator in X�� �ptu�pt�p�u�� � p�tu��ptupt�p�u!p�t�p��u�
Divided by the denominator pt�p�u� this becomes p

�
tu�pt�p�u��ptu!pt�p�u�

Summing up the 
rst item over all u and t leads to Q� ! �� The second item
sums up to �� and the third item to �� which proves the statement�
This coe�cient is by far the most popular association coe�cient� There is

a probability	based theory describing what values of NX� can be explained by
�uctuations of the random sampling from the population�
The di
erence between equivalent expressions ������ and ������ for the rel	

ative Quetelet coe�cient Q� re�ects deep epistemological di
erences� In fact�
Pearson chi	squared coe�cient has been introduced in the format of NX� with
X� in ������ to measure the deviation of the bivariate distribution in an observed
contingency table from the model of statistical independence� Two partitions
�categorical variables� are referred to as statistically independent if any entry
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in their relative contingency table is equal to the product of corresponding
marginal proportions� that is� in our notation�

ptu � pt�p�u ������

for all t � T and u � U �
Expression ������ for X� shows that it is a quadratic measure of deviation of

the contingency table entries from the model of statistical independence� This
shows that ������ is good at testing the hypothesis of statistical independence
when I is an independent random sample� the statistical distribution of NX�

has been proven to converge� when N tends to in
nity� to the chi	squared
distribution with �jT j � ���jU j � �� degrees of freedom�
Statistics texts and manuals claim that� without relating the observed con	

tingency counts to the model of statistical independence� there is no point in
considering X�� This claim sets a very restrictive condition for using X� as
an association measure� In particular� it is quite cumbersome to substanti	
ate presence of zero entries �such as in Tables ��� and ���� in a contingency
table under this condition� However� expression ������ for Q� sets a very dif	
ferent framework that has nothing to do with the statistical independence� In
this framework� X� is Q�� the average relative change of the probability of a
category u when category t becomes known� There is no restriction on using
X� � Q� in this framework�

It is not di�cult to prove that the summary coe�cient Q� reaches its max	
imum value

maxX� � min�jU j� jT j�� � ������

in tables with the structure of Table ���� at which only one element is not zero
in every column �or row� if the number of rows is greater than the number
of columns������ Such a structure suggests a conceptual relation between cate	
gories of the two features� which means that the coe�cient is good in measuring
association indeed� For instance� according to Table ���� Farmers� markets are
present if and only if the number of banks or building societies is � or greater�
and Q� � � in this table�
The minimum value of Q� is reached in the case of statistical independence

between the features� which obviously follows from the �all squared� form of
the coe�cient in �������

Formula ������ suggests a way for visualization of dependencies in a
�blurred� contingency table by putting the constituent items ptuqtu as �t� u�
entries of a show	case table� The proportional but greater values Nptuqtu �
Ntuqtu can be used as well� since they sum up to NX� used in the probabilistic
framework�
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Table ���� Relative Quetelet coe�cients
 per cent
 for Table ����

Number of banks
FMarket �	� �� �� ��

Yes ����� ������ ������ ������
No ������ ����	� ����� �	���

Table ���� Items summed up in the chi�square contingency coe�cient �times N
 in
the Quetelet format �����
 for Table ����

Number of banks
FMarket �	� �� �� �� Total

Yes ���� 	�
� �	��� �	��� ����
No �	��� ����	 ���� ���	 ����

Total 	��� ���� ���� ���� ����

Example ���� Highlighting positive contributions to the total association

The table of the relative Quetelet coe�cients qtu for Table ��� is presented in
Table ��� and that of items Ntuqtu in Table ����

It is easy to see that the highlighted positive entries in both of the tables express
the same pattern as in Table ��� but without removing entities from the table�

Table ��� demonstrates one more property of the items ptuqtu summed up in the
chi�square coe�cient� their within�row or within�column sums are always positive� �

Highlighting the positive entries ptuqtu � � �or qtu � �� can be used for
visualization of the pattern of association between any categorical features �����

A similar to ������� though asymmetric� expression can be derived for G��

G� �
X
t�T

X
u�U

�ptu � pt�p�u�
�

pt�
������

Though it also can be considered a measure of deviation of the contingency
table from the model of statistical independence� G� has been always considered
in the literature as a measure of association� A corresponding de
nition involves
the Gini coe�cient de
ned in section ������ G�U� � � �Pu�U p

�
�u� Within a

category t� the variation is equal to G�U�t� � � �Pu�U �ptu�pt��
�� which

makes� on average� the qualitative variation that cannot be explained by T �
G�U�T � �

P
t�T pt�G�U�t� � ��

P
t�T

P
u�U p

�
tu�pt��

The di
erence G�U��G�U�T � represents that part ofG�U� that is explained
by T � and this is exactly G� in �������
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����� Relation between correlation and contingency

Let us elaborate on the interrelation between the correlation and contingency�
K� Pearson tackled the issue by proving that� given two quantitative features
whose ranges have been divided into a number of equal intervals� under some
standard mathematical assumptions� the value of

p
X���� !X�� converges to

the correlation coe�cient when the number of intervals tends to in
nity �����
To de
ne a framework for experimentally exploring the issue in the context

of a mixed scale pair of features� let us consider a quantitative feature A and a
nominal variable At obtained by partitioning the range of A into t qualitative
categories� with respect to a pre	speci
ed partition S � fSkg� The relation
between S and A can be captured by comparing the correlation ratio 	��S�A�
with corresponding values of contingency coe�cients G��S�At� and Q

��S�At��
The choice of the coe�cients is not random� As proven in section ������ 	��S�A�
is equal to the contribution of A and clustering S to the data scatter� In the
case of At� analogous roles are played by coe�cients G

� and X� � Q��
Relations between 	�� G� and X� can be quite complex depending on the

bivariate distribution of A and S� However� when the distribution is organized
in such a way that all the within	class variances of A are smaller than its overall
variance� the pattern of association expressed in G� and X� generally follows
that expressed in 	��
To illustrate this� let us set an experiment according to the data in Table

����� within each of four classes� S�� S�� S�� and S�� a prespeci
ed number of
observations is randomly generated with pre	speci
ed mean and variance� The
totality of ���� generated observations constitutes the quantitative feature A
for which the correlation ratio 	��S�A� is calculated� Then� the range of A is
divided in t � � equally	spaced intervals �i�e�� not necessarily intervals with an
equal number of data� constituting categories of the corresponding attribute
At� which is cross	classi
ed with S to calculate G

� and X�� This setting follows
that described in �����
The initial within	class means are not much di
erent with respect to the

corresponding variances� Multiplying each of the initial means by the same
factor value� f � �� �� ���� ��� the means are step by step diverged in such a way
that the within	class samples become more and more distinguishable from each
other� thus increasing the association between S and A� The 
nal means in
Table ���� correspond to f � ���
This is re�ected in Figure ��� where the horizontal axis corresponds to the

divergence factor� f � and the vertical axis represents values of the three coe�	
cients for the case when the within class distribution of A is uniform �on the
left� or Gaussian� or normal �on the right�� We can see that the patterns follow
each other rather closely in the case of a uniform distribution� There are small
diversions from this in the case of a normal distribution� The product	moment
correlation between G� and X� is always about ����	���� whereas they both
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Figure ���� Typical change of the correlation ratio �solid line

 G squared �dotted
line
 and chi�square �dashdotted line
 with increase of the class divergence factor in the
case of uniform �left
 and normal �right
 within class distribution of the quantitative
variable A�

Table ����� Setting of the experiment�

Class S� S� S� S�
Number of observations ��� ��� ���� ����
Variance ��� ��� ��� ���
Initial mean ��� ��� ��� ���
Final mean �� �� �� ��

correlate with 	� on the level of ����� The di
erence in values of G�� X� and
	� is caused by two factors� 
rst� by the coarse qualitative nature of At versus
the 
ne	grained quantitative character of A� and� second� by the di
erence in
their contributions to the data scatter� The second factor scales G� down and
X� up� to the maximum value � according to �������

����� Meaning of correlation

Correlation is a phenomenon which may be observed between two features co	
occurring in the same observations� the features are co	related in such a way
that change in one of them accords with a corresponding change in the other�
These are frequently asked questions� Given a high correlation or associ	

ation� is there any causal relation behind� Given a low correlation� are the
features involved independent� If there is a causal relation� should it translate
into a higher correlation�
The answer to each is� no� not necessarily�
To make our point less formal� let us refer to a typical statistics news nugget

brought to life by newspapers and BBC Ceefax �� June ����� �Children whose
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Table ����� Association between mother�s �sh eating �A
 and her baby�s language
skills �B
 and health �C
�

Feature B �B C �C Total

A ��	 ��	 ��	 ��	 �		
�A ��	 ��	 ��	 ��	 ��		

Total �			 �			 ��		 �		 �			

mothers eat 
sh regularly during pregnancy develop better language and com	
munication skills� The 
ndings are based on analysis of eating habits of ����
mothers ��� by the University of North Carolina� published in the journal Epi	
demiology��

At face value� the claim is simple� eat more 
sh while pregnant and your
baby will be better o
 in the contest of language and communication skills�
The real value behind it is a cross classi
cation of a mother�s eating habits
and her baby�s skills over the set of ���� mother	baby couples at which the
cell combining �regular 
sh eating� with �better language skills� has accounted
for a considerably greater number of observations than it would be expected
under statistical independence� that is� the corresponding Quetelet coe�cient
q is positive� So what� Could it be just because of the 
sh� Very possibly�
some say that the phosphorus which is abundant in 
sh is a building material
for the brain� Yet some say that the phosphorus diet has nothing to do with
brain development� They think that the correlation is just a manifestation
of a deeper relation between family income� not accounted for in the data�
and the two features� in richer families it is both the case that mothers eat
more expensive food� 
sh included� and babies have better language skills� The
conclusion� more research is needed to see which of these two explanations is
correct� And more research may bring further unaccounted for and unforeseen
factors and observations�

Example ���� False correlation and independence

To illustrate the emergence of �false� correlations and non�correlations
 let us dwell
on the mother�baby example above involving the following binary features� A � �more
�sh eating mother
� B � �baby�s better language skills
� and C � �healthier baby��
Table ���� presents arti�cial data on two thousand mother�baby couples relating A
with B and C�

According to Table ����
 the baby�s language skills �B
 are indeed positively related
to mother�s �sh eating �A
� ��	 observations at cell AB rather than �		 expected if
A and B were independent
 which is supported by a positive Quetelet coe�cient
q�B�A
 � �	�� In contrast
 no relation is observed between �sh eating �A
 and a
baby�s health �C
� all A�C cross classifying entries on the right of Table ���� are
proportional to the products of marginal frequencies� For instance
 with p�A
 � 	��
and p�C
 � 	�� their product p�A
p�C
 � 	��� accounts for ��� of �			 observations
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Table ����� Association between mother�s �sh eating �A
 and baby�s language skills
�B
 and health �C
 with income �D
 taken into account�

Feature D Feature A B �B C �C Total

D A ��	 ��	 ��	 �	 �		
�A ��	 �	 �		 �		 �		
Total �		 �		 ��	 ��	 �			

A �	 ��	 �	 ��	 �		
�D �A ��	 ��	 ��	 ��	 �		

Total �		 �		 ��	 ��	 �			

Total �			 �			 ��		 �		 �			

that is
 ��	
 which is exactly the entry at cell AC�
However
 if we take into account one more binary feature
 D
 which assigns Yes

to better o� families
 and break down the sample according to D
 the data may show
a di�erent picture �see Table ����
� All turned upside down in Table ����� what was
independent in Table ����
 A and C
 became associated within both D and not�D
categories
 and what was correlated in Table ����
 A and B
 became independent
within both D and not�D categories�

Speci�cally
 with these arti�cial data
 one can see that A accounts for �		 within
D category and �		 within not�D category� Similarly
 B accounts for �		 within D and
only �		 within not�D� Independence between A and B within either strata brings the
numbers of AB to ��	 in D and only �	 in not�D� This way
 the mutually independent
A and B within each stratum become correlated in the combined sample
 because
both A and B are concentrated mostly within D�

Similar though opposite e�ects are at play with association between A and C� they
are negatively related in not�D and positively related in D
 so that combining these
two strata brings the mutual dependence to zero� �

A high correlation�association is just a pointer to the user� researcher or
manager alike� to look at what is behind� The data on their own cannot prove
any causal relations� especially when no timing is involved� as is the case in
all our exemplary problems� A causal relation can be established only with a
mechanism explaining the process in question theoretically� to which the data
may or may not add credibility�

��� Feature space and data scatter

����� Data matrix

A quantitative data table is usually referred to as a data matrix� Its rows
correspond to entities and columns to variables� Moreover� in most clustering
computations� all metadata are left aside so that a feature and entity are repre	
sented by the corresponding column and row only� under the assumption that
the labels of entities and variables do not change�

A data table with mixed scales such as Table ��� will be transformed to
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a quantitative format� According to rules described in the next section� this
is achieved by pre	processing each of the categories into a dummy variable by
assigning � to an entity that falls in it and � otherwise�

Example ���� Pre
processing Masterpieces data

Let us convert the Masterpieces data in Table ��� to the quantitative format�
The binary feature SCon is converted by substituting Yes by � and No by zero� A
somewhat more complex transformation is performed at the three categories of feature
Narrative� each is assigned with a corresponding zero�one vector so that the original
column Narrative is converted into three �see Table ����
� �

Table ����� Quantitative representation of the Masterpieces data as an �� � entity�
to�attribute matrix�

Entity LenSent LenDial NumCh SCon Objective Personal Direct

� ���	 ���� � 	 � 	 	
� ���� ���	 � 	 � 	 	
� ���� ���	 � 	 	 � 	
� ���� ���� � � � 	 	
� ���� ���� � � 	 � 	
� ���� ���� � � 	 � 	
� ���� �	�� � � 	 	 �
� ���� ���	 � � 	 	 �

A data matrix row corresponding to an entity i � I constitutes what is
called an M�dimensional point or vector yi � �yi�� ���� yiM � whose components
are the row entries� For instance� Masterpieces data in Table ���� is a � 
 �
matrix� and the 
rst row in it constitutes vector y� � ������ ����� �� �� �� �� ��
each component of which corresponds to a speci
c feature and� thus� cannot
change its position without changing the feature�s position in the feature list�

Similarly� a data matrix column corresponds to a feature or category with its
elements corresponding to di
erent entities� This is an N 	dimensional vector�

Matrix and vector terminology is not just fancy language but part of a well
developed mathematical discipline of linear algebra� which is used throughout
all data mining disciplines� Some of it will be used in Chapter ��

����� Feature space� distance and inner product

Any M 	dimensional vector y � �y�� ���� yM � pertains to the corresponding com	
bination of feature values� Thus� the set of all M 	dimensional vectors y is re	
ferred to as the feature space� This space is provided with interrelated distance
and similarity measures�

The distance between two M 	dimensional vectors� x � �x�� x�� ���� xM � and

© 2005 by Taylor & Francis Group, LLC



�� WHAT IS DATA
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Figure ���� Interval between points x and y is the hypotenuse of the highlighted

triangle
 which explains the distance between x and y�

y � �y�� y�� ���� yM �� will be de
ned as the sum of the component	wise di
erences
squared�

d�x� y� � �x� � y��
� ! �x� � y��

� ! ���! �xM � yM �
� ������

This di
erence	based quadratic measure is what mathematicians call Euclidean
distance squared� It generalizes the basic property of plane geometry� the so	
called Pythagoras� theorem as presented in Figure ���� Indeed� distance d�x� y�
in it is c� and c is the Euclidean distance between x and y�

Example ���� Distance between entities
Let us consider three novels
 � and � by Dickens
 and one
 � by Tolstoy
 as row�

points of the matrix in Table ���� as presented in the upper half of Table ����� The
mutual distances between them are calculated in the lower half� The di�erences in
the �rst two variables
 LenS and LenD
 prede�ne the result however di�erent the
other features are
 because their scales prevail� This way we get a counter�intuitive
conclusion that a novel by Dickens is closer to that of Tolstoy than to the other by
Dickens because d��� �
 � ����� � d��� �
 � ������� Therefore
 feature scales must be
rescaled to give greater weights to the other variables�

�

The concept ofM 	dimensional feature space comprises not only allM 	series
of reals� y � �y�� ���� yM �� but also two mathematical operations with them� the
component	wise summation de
ned by the rule x!y � �x�!y�� ���� xn!yn� and
multiplication of a vector by a number de
ned as 
x � �
x�� ���� 
xn� for any
real 
� These operations naturally generalize the operations with real numbers
and have similar properties�
With such operations� variance s�v also can be expressed as the distance�

between column v � V and column vector cve� whose components are all equal
to the column�s average� cv� divided by N � s

�
v � d�xv � cve��N � Vector cve is the
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Table ����� Computation of distances between three masterpieces according to Table
����� Squared di�erences of values in the upper part are in the lower part of the
matrix
 column�wise� they are summed up in the column �Distance� on the right�

Item LenS LenD NumC SCon Obje Pers Dire Distance

� ���	 ���� � 	 � 	 	
� ���� ���	 � 	 � 	 	
� ���� �	�� � � 	 	 �

Distance Total

d��
�
 �	���� ����� � 	 	 	 	 ������
d��
�
 ���	� ������ � � � 	 � ������
d��
�
 �	��� ����� � � � 	 � �����

result of multiplication of vector e � ��� ���� �� whose components are all unities
by cv �

Another important operation is the so	called inner� or scalar� product� For
any two M 	dimensional vectors x� y their inner product is a number denoted
by �x� y� and de
ned as the sum of component	wise products� �x� y� � x�y� !
x�y� ! ���! xMyM �

The inner product and distance are closely related� It is not di�cult to see�
just from the de
nitions� that for any vectors�points x� y� d�x� �� � �x� x� �P

v�V x
�
v and d�y� �� � �y� y� and� moreover� d�x� y� � �x�y� x�y�� The symbol

� refers here to a vector with all components equal to zero� The distance d�y� ��
will be referred to as the scatter of y� The square root of the scatter d�y� ��
is referred to as the �Euclidean� norm of y and denoted by jjyjj � p�y� y� �qP

i�I y
�
i � It expresses the length of y�

In general� for any M 	dimensional x� y� the following equation holds�

d�x� y� � �x� y� x� y� � �x� x� ! �y� y�� ��x� y� � d��� x� ! d��� y�� ��x� y��
������

This equation becomes especially simple when �x� y� � �� In this case� vectors
x� y are referred to as mutually orthogonal� When x and y are mutually or	
thogonal� d��� x � y� � d��� x ! y� � d��� x� ! d��� y�� that is� the scatters of
x � y and x ! y are equal to each other and the sum of scatters of x and y�
This is a multidimensional analogue to the Pythagoras theorem and the base
for decompositions of the data scatter employed in many statistical theories
including the theory for clustering presented in Chapter ��

The inner product of two vectors has a simple geometric interpretation �see
Figure ��� on page ���� �x� y� � jjxjjjjyjj cos� where � is the �angle� between
x and y �at ��� This conforms to the concept of orthogonality above� vectors
are orthogonal when the angle between them is a right angle�
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����� Data scatter

The summary scatter of all row	vectors in data matrix Y is referred to as the
data scatter of Y and denoted by

T �Y � �
X
i�I

d��� yi� �
X
i�I

X
v�V

y�iv ������

Equation ������ means that T �Y � is the total of all Y entries squared�
An important characteristic of feature v � V is its contribution to the data

scatter de
ned as

Tv �
X
i�I

y�iv � ������

the distance of the N 	dimensional column from the zero column� Data scatter
is obviously the sum of contributions of all variables� T �Y � �

P
v�V Tv�

If feature v is centered� then its contribution to the data scatter is propor	
tional to its variance�

Tv � Ns�v ������

Indeed� cv � � since v is centered� Thus� s
�
v �

P
i�I �yiv � ����N � Tv�N �

The relative contribution Tv�T �Y � is a characteristic playing an important
role in data standardization issues as explained in the next section�

��� Pre�processing and standardizing mixed

data

The data pre	processing stage is to transform the raw entity	to	feature table
into a quantitative matrix for further analysis� To do this� one needs 
rst to
convert all categorical data to a numerical format� We will do this by using a
dummy zero	one variable for each category� Then variables are standardized by
shifting their origins and rescaling� This operation can be clearly substantiated
from a statistics perspective� typically� by assuming that entities have been
randomly sampled from an underlying Gaussian distribution� In data mining�
substantiation may come from the data geometry� By shifting all the origins to
feature means� entities become scattered around the center of gravity so that
clusters can be more easily �seen� from that point� With feature rescaling�
feature scales become balanced according to the principle of equal importance
of each feature brought into the data table�
To implement these general principles� we are going to rely on the following

three	stage procedure� The stages are� ��� enveloping qualitative categories�
��� standardization� and ��� rescaling� as follows�
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�� Quantitatively enveloping categories� This stage is to convert a
mixed scale data table into a quantitative matrix by treating every qual	
itative category as a separate dummy variable coded by � or � depending
on whether an entity falls into the category or not� Binary features are
coded similarly except that no additional columns are created� Quantita	
tive features are left as they are� The converted data table will be denoted
by X � �xiv�� i � I� v � V �

�� Standardization� This stage aims at transforming feature	columns of
the data matrix to make them comparable by shifting their origins to
av and rescaling them by bv� v � V � thus to create standardized matrix
Y � �yiv��

yiv �
xiv � av

bv
� i � I� v � V� ������

In this text� the shift coe�cient av always will be the grand mean� In
particular� the dummy variable corresponding to category v � Vl has its
mean cv � pv� the proportion of entities falling in the category�

The scale factor bv can be either the standard deviation or range or other
quantity re�ecting the variable�s spread� In particular� for a category
v � Vl� the standard deviation can be either

p
pv��� pv� �Bernoulli dis	

tribution� or
p
pv �Poisson distribution�� see page ��� The range of a

dummy variable is always ��

Using the standard deviation is popular in data mining probably because
it is used in classical statistics relying on the theory of Gaussian distri	
bution which is characterized by the mean and standard deviation� Thus
standardized� contributions of all features to data scatter become equal to
each other because of the proportionality of contributions and standard
deviations� On 
rst glance this seems an attractive property guaranteeing
equal contributions of all features to the results� an opinion to which the
current author once also subscribed ����� However� this is not so� Two
di
erent factors contribute to the value of standard deviation� the feature
scale and the shape of its distribution� As shown in section ������ within
the same range scale the standard deviation may greatly vary from the
minimum� at the peak unimodal distribution� to the maximum� at the
peak bimodal distribution� By standardizing with standard deviations�
we deliberately bias data in favor of unimodal distributions� although ob	
viously it is the bimodal distribution that should contribute to clustering
most� This is why the range� not the standard deviation� is used here as
the scaling factor bv� In the case when there can be outliers in data� which
may highly a
ect the range� another more stable range	like scaling factor
can be chosen� such as the di
erence between percentiles� that does not
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Table ����� Std standardized Masterpieces matrix� Mean is grand mean
 Std the
standard deviation and Cntr the relative contribution of a variable�

LS LD SC NC Ob Pe Di
� �	�� 	�� �	�� ���� ��� �	�� �	��
� ��� 	�� 	�	 ���� ��� �	�� �	��
� 	�� 	�� 	�	 ���� �	�� ��� �	��
� �	�� �	�� �	�� 	�� ��� �	�� �	��
� 	�� �	�� 	�	 	�� �	�� ��� �	��
� ���� ���� �	�� 	�� �	�� ��� �	��
� 	�� �	�� 	�� 	�� �	�� �	�� ���
� 	�� ��� ��� 	�� �	�� �	�� ���

Mean ���� ���� ��	 	�� 	�� 	�� 	��
Std ��� ���� ��� 	�� 	�� 	�� 	��
Cntr
 � ���� ���� ���� ���� ���� ���� ����

much depend on the distribution shape� The range based scaling option
has been supported experimentally in �����

�� Rescaling� This stage rescales column	features v� which come from the
same categorical variable l� back by further dividing yiv with supplemen	
tary rescaling coe�cients b�v to restore the original weighting of raw vari	
ables� The major assumption in clustering is that all raw variables are
supposed to be of equal weight� Having its categories enveloped� the
�weight� of a nominal variable l becomes equal to the summary contri	
bution Tl �

P
v�Vl

Tv to the data scatter where Vl is the set of categories
belonging to l� Therefore� to restore the original �equal weighting� of l�
the total contribution Tl must be related to jVlj� which is achieved by
taking b�v �

pjVlj for v � Vl�

For a quantitative v � V � b�v is� typically� unity�

Sometimes� there can be available an expert evaluation of the relative
weights of the original variables l� If such is the case� rescaling coe�cients
b�v should be rede
ned with the square roots of the expert supplied relative
weights� This option may be applied to both quantitative and qualitative
features�

Note that two of the three steps above refer to categorical features�

Example ���� E�ects of di�erent scaling options
Table ���� presents the Masterpieces data in Table ���� standardized according

to the most popular transformation of feature scales
 the so�called z�scoring
 when
the scales are shifted to their mean values and then normalized by the standard
deviations� Table ���� presents the same data matrix range standardized� All feature
contributions are di�erent in this table except for those of NC
 Ob and Pe which are
the same� Why the same� Because they have the same variance p���p
 corresponding
to p or � � p equal to ����
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Figure ���� Masterpieces on the plane of two �rst principal components at four
di�erent standardizations� no scaling �top left

 scaling with standard deviations �top
right

 range scaling �bottom left

 and range scaling with the follow�up rescaling
�bottom right
�

We can see how overrated the summary contribution of the qualitative variable
Narrative becomes� three dummy columns on the right in Table ���� take into account
����� of the data scatter and thus highly a�ect any further results� This is why
further rescaling of these three variables by the

p
� is needed to decrease their total

contribution � times� Table ���� presents results of this operation applied to data in
Table �����

Note that the total Narrative�s contribution per cent has not changed as much as
we would expect� about two times
 yet not three times�

Figure ��� shows how important the scaling can be for clustering results� It displays
mutual locations of the eight masterpieces on the plane of the �rst two principal
components of the data in Table ���� at di�erent scaling factors� �a
 left top� no
scaling at all� �b
 right top� scaling by the standard deviations
 see Table ����� �c

left bottom� scaling by ranges� �d
 right bottom� scaling by ranges with the follow�
up rescaling of the three dummy variables for categories of Narrative by taking into
account that they come from the same nominal feature� the scale shifting parameter
is always the variable�s mean�

The left top scatter�plot displays no relation to the novels� authorship� Probably no
clustering algorithm can properly identify the author classes with this standardization
of the data �Table ����
� On the contrary
 the authorship pattern is clearly displayed
on the bottom right �gure
 and it is likely that any reasonable clustering algorithm
will capture them with this standardization�

We can clearly see on Figure ��� that
 in spite of the unidimensional nature of
transformation �����

 its combination of shifts and scales can be quite powerful in
changing the geometry of the data� �
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�� WHAT IS DATA

Table ����� Range standardized Masterpieces matrix� Mean is grand mean
 Range
the range and Cntr the relative contribution of a variable�

LS LD SC NC Ob Pe Di
� �	�� 	�� �	�� �	�� 	�� �	�� �	��
� 	�� 	�	 	�	 �	�� 	�� �	�� �	��
� 	�� 	�� 	�	 �	�� �	�� 	�� �	��
� �	�� �	�� �	�� 	�� 	�� �	�� �	��
� 	�� �	�� 	�	 	�� �	�� 	�� �	��
� �	�� �	�� �	�� 	�� �	�� 	�� �	��
� 	�� �	�� 	�� 	�� �	�� �	�� 	��
� 	�� 	�� 	�� 	�� �	�� �	�� 	��

Mean ���� ���� ��	 	�� 	�� 	�� 	��
Range ���� ���� ��	 ��	 ��	 ��	 ��	
Cntr
 � ��� ��� ��� ���� ���� ���� ����

Table ����� Range standardized Masterpieces matrix with the additionally rescaled
nominal feature attributes� Mean is grand mean
 Range the range and Cntr the relative
contribution of a variable�

LS LD SC NC Ob Pe Di
� �	��	 	��� �	��� �	��� 	��� �	��� �	���
� 	��	 	�	� 	�		 �	��� 	��� �	��� �	���
� 	�	� 	�	� 	�		 �	��� �	��� 	��� �	���
� �	��� �	��� �	��� 	��� 	��� �	��� �	���
� 	��� �	��� 	�		 	��� �	��� 	��� �	���
� �	��	 �	��� �	��� 	��� �	��� 	��� �	���
� 	�	� �	��	 	��� 	��� �	��� �	��� 	���
� 	��� 	��� 	��� 	��� �	��� �	��� 	���

Mean ����� ����� ��		 	��� 	��� 	��� 	���
Range ����	 ����	 ��		 ��		 ���� ���� ����
Cntr
 � ����� ����� ����� ����� �	��� �	��� ����

Example ���� Relative feature weighting under standard deviations and
ranges may di�er

For the Market town data
 with N � �� and n � ��
 the summary feature
characteristics are shown in Table �����

As proven above
 the standard deviations in Table ���� are at least twice as small
as the ranges
 which is true for all data tables� However
 the ratio of the range over the
standard deviation may di�er for di�erent features reaching as much as ��	���� for
DIY� Therefore
 using standard deviations and ranges for scaling in �����
 may lead
to di�erences in relative scales between the variables and
 thus
 to di�erent clustering
results as well as in Masterpiece data� �

Are there any regularities in the e
ects of data standardization �and rescal	
ing� on the data scatter and feature contributions to it� Not many� But there
are items that should be mentioned�
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���� PRE�PROCESSING AND STANDARDIZING MIXED DATA ��

Table ����� Summary characteristics of the Market town data� Mean is grand mean

Std the standard deviation
 Range the range and Cntr the relative contribution of a
variable�

P PS Do Ho Ba Su Pe DIY SP PO CAB FM
Mean �����
 ��� ��
 ��
 
�� ��	 ��� ��� ��� ��� ��� ���
Std ��	��� ��� ��� ��� 
�
 ��� ��� ��� ��� ��� ��� ��

Range ������� ���� 
�� ��� �	�� ��� ��� ��� ��� ��� ��� ���
Cntr� � ��� ��
 ���� ��� ��� ��� ��� 
�� ���� ��� 	�� ����

E	ect of shifting to the average� With shifting to the averages� the feature
contributions and variances become proportional to each other� Tv � Ns�v�
for all v � V �

E	ects of scaling of categories� Let us take a look at the e
ect of scaling
and rescaling coe�cients on categories� The contribution of a binary
attribute v� standardized according to ������� becomes Tv � Npv�� �
pv���bv�

� where pv is the relative frequency of category v� This can be
either pv�� � pv� or � or � � pv depending on whether bv � � �range�
or bv �

p
pv��� pv� �Bernoulli standard deviation� or bv �

p
pv �Pois	

son standard deviation�� respectively� These can give some guidance in
rescaling of binary categories� the 
rst option should be taken when both
zeros and ones are equally important� the second when the distribution
does not matter and the third when it is only unities that matter�

Identity of binary and two�category features� An important issue faced
by the user is how to treat a categorical feature with two categories such as
gender �Male�Female� or voting �Democrat�Republican� or belongingness
to a group �Yes�No�� The three	step procedure of standardization makes
the issue irrelevant� there is no di
erence between a two	category feature
and either of its binary representations�

Indeed� let x be a two	category feature assigning each entity i � I with
a category �eks�� or �eks�� whose relative frequencies are p� and p� such
that p�!p� � �� Denote by y� a binary feature corresponding to category
�eks�� so that y�i � � if xi � eks� and y�i � � if xi � eks�� Analogously
de
ne a binary feature y� corresponding to category �eks��� Obviously�
y� and y� complement each other so that their sum makes an all unity
vector�

In the 
rst stage of the standardization procedure� the user decides
whether x is to be converted to a binary feature or left as a categorical
one� In the former case� x is converted to a dummy feature� say� column
y�� and in the latter case� x is converted into a two	column submatrix
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�� WHAT IS DATA

consisting of columns y� and y�� Since the averages of y� and y� are p�
and p�� respectively� after shifting column y��s entries become �� p�� for
�� and �p�� for �� Respective entries of y� are shifted to �p� and �� p��
which can be expressed through p� � ��p� as p��� and p�� That means
that y� � �y� after the shifting� the two columns become identical� up
to the sign� That implies that all their square contribution characteristics
become the same� including the total contributions to the data scatter so
that the total contribution of the two	column submatrix is twice greater
than the contribution of a single column y�� whichever scaling option is
accepted� However� further rescaling the two	column submatrix by the
recommended

p
� restores the balance of contributions� the two	column

submatrix contributes as much as a single column�

Total contributions of categorical features� The total contribution of
nominal variable l is

Tl � N
X
v�Vl

pv��� pv���bv�
�� ������

Depending on the choice of scaling coe�cients bv� this can be

�� Tl � N���Pv�Vl
p�v� if bv � � �range normalization��

�� Tl � N jVlj if bv �
p
pv��� pv� �Bernoulli normalization��

�� Tl � N�jVlj � �� if bv � ppv �Poisson normalization��
where jVlj is the number of categories of l� The quantity on the top is the
Gini coe�cient of the distribution of v ������

The square roots of these should be used for further rescaling qualitative
categories stemming from the same nominal variable l to adjust their total
impact on the data scatter�

��� Other table data types

����� Dissimilarity and similarity data

In many cases the entity	to	entity dissimilarity or similarity data is the preferred
format of data as derived from more complex data such as Primates in Table
��� or as directly resulting from observations as Confusion data in Table ����
Similarity scoring is especially important for treating the so	called �wide�

data tables in which the number of features is much greater than the number
of entities� Such is the case of unstructured textual documents for which the
presence or absence of a keyword is a feature� The number of meaningful key	
words may go into hundreds of thousands even when the entire text collection
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���� OTHER TABLE DATA TYPES ��

is in dozens or hundreds� In this case� bringing in a text	to	text similarity index
may convert the problem from a virtually untreatable one into a modest size
clustering exercise�
An entity	to	entity similarity index may appear as the only data for cluster	

ing� For example� similarity scores may come from experiments on subjective
judgements such as scoring individual�s evaluation of similarity between stimuli
or products� More frequently� though� similarities are used when entities to be
clustered are too complex to be put in the entity	to	feature table format� When
considering two biomolecular amino acid sequences �proteins� a similarity score
between them can be based on the probability of transformation of one of them
into the other with evolutionary meaningful operations of substitution� deletion
and insertion of amino acids �����
The terminology re�ects the di
erences between the two types of proxim	

ity scoring� the smaller the dissimilarity coe�cient the closer the entities are�
whereas the opposite holds for similarities� Also� the dissimilarity is convention	
ally considered as a kind of extended distance� thus satisfying some distance
properties� In particular� given a matrix D � �dij�� i� j � I � where I is the
entity set� the entries dij form a dissimilarity measure between entities i� j � I
if D satis
es the properties�
�a� Symmetry� dij � dji�
�b� Non	negativity� dij � ��
�c� Semi	de
niteness� dij � � if entities i and j coincide�
A dissimilarity measure is referred to as a distance if it additionally satis
es�
�d� De
niteness� dij � � if and only if entities i and j coincide�
�e� Triangle inequality� dij � dil ! dlj for any i� j� l � I �
A distance is referred to as an ultra	metric if it satis
es a stronger triangle

inequality�
�f� Ultra	triangle inequality� dij � max�dil� dlj� for any i� j� l � I �
In fact� the ultra	triangle inequality states that among any three distances

dij � dil and djl� two are equal to each other and the third cannot be greater
than that� Ultra	metrics emerge as distances between leaves of trees� in fact�
they are equivalent to some tree structures such as the heighted upper cluster
hierarchies considered in section ������
No such properties are assumed for similarity data except� sometimes� for

symmetry �a��

Standardization of similarity data

Given a similarity measure� all entity	to	entity similarities are measured in the
same scale so that its change will not change clustering results� This is why
there is no need to change the scale of similarity data� As to the shift in the
origin of the similarity measure� this can be of advantage by making within	 and
between	cluster similarities more contrasted� Figure ��� demonstrates the e
ect
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�� WHAT IS DATA

ij

a
ij

Figure ���� A pattern of similarity aij � sij � a values depending on a subtracted
threshold a�

of changing a positive similarity measure sij to aij � sij � a by subtracting a
threshold a � �� small similarities sij � a can be transformed into negative
similarities aij � This can be irrelevant as for example in such clustering methods
as single linkage or similarity	based K	Means� But there are methods such as
ADDI	S in section ����� which can be quite sensitive to the threshold a�
Shift of the origin can be a useful option in standardizing similarity data�

Standardization of dissimilarity data

Given a dissimilarity measure dij � i� j � I � it is frequently standardized by
transforming it into both a row	 and column	wise centered similarity measure
according to the formula�

sij � ��dij � di� � d�j � d����� ������

where the dot denotes the operation of averaging so that di� �
P

j�I dij�N �
d�j �

P
i�I dij�N � and d�� �

P
i�j�I dij��N 
N��

This formula can be applied to any dissimilarity measure� but it is especially
suitable in the situation in which dij is Euclidean distance squared� that is� when
dij � �xi � xj � xi � xj� for some multidimensional xi� xj � i� j � I � It can be
proven then that sij in ������ is the inner product sij � �xi� xj� for all i� j � I
if all xi are centered�

����� Contingency and �ow data

Table F � �fij�� i � I � j � J � is referred to as a �ow table if every entry
expresses a quantity of the same matter in such a way that all of the entries
can be meaningfully summed up to a number expressing the total amount of
the matter in the data� Examples of �ow data tables are� �a� contingency
tables counting numbers of co	occurred instances� �b� mobility tables counting
numbers of individual members of a group having changed their categories� �c�
trade tables showing the money transferred from i to j during a speci
ed period�
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���� OTHER TABLE DATA TYPES ��

This type of data is of particular interest in processing massive information
sources� The data itself can be untreatable within time	memory constraints�
but by counting co	occurrences of categories of interest in a sample it can be
pre	processed into the �ow data format and analyzed as such�

The nature of the data associates weights of row categories i � I � fi� �P
j�J fij � and column categories j � J � f�j �

P
i�I fij � the total �ow from

i and that to j� The total �ow volume is f�� �
P

i�I

P
j�J fij � which is the

summary weight� f�� �
P

j�J f�j �
P

i�I fi�� Extending concepts introduced
in section ����� for contingency tables to the general �ow data� we can extend
the de
nition of the relative Quetelet index as

qij �
fijf��
fi�f�j

� � ������

This index� in fact� compares the share of j in i�s transaction� p�j�i� � fij�fi��
with the share of j in the overall �ow� p�j� � f�j�f���

Indeed� it is easy to see that qij is the relative di
erence of the two� qij �
�p�j�i�� p�j���p�j�� Obviously� qij � � when there is no di
erence�

Transformation ������ is a standardization of �ow data which takes into
account the data�s nature� Standardization ������ is very close to the so	called
normalization of Rao and Sabovala widely used in marketing research and� also�
the �marginal� cross	product ratio utilized in the analysis of contingency data�
Both can be expressed as pij transformed into qij ! ��

Example ���� Quetelet coe�cients for Confusion data Coe�cients �����
 are
presented in Table ����� One can see from the table that the numerals overwhelmingly
respond to themselves� However
 there are also a few positive entries in the table
outside of the diagonal� For instance
 � is perceived as � with the frequency �����
greater than the average
 and � is perceived as �
 and vice versa
 with also higher
frequencies than the average� �

Table ����� Relative Quetelet coe�cients for Confusion data
 per cent�

Sti� Response
mulus � � � 
 � � � � 	 �
� ����� �	��� �	��� ����� �	��� ����� ����� ������ �	��	 � 	���
� �	��� ����	 ����� �	��� ����� �
��� ��
�� ��	�� �	��	 � �
��
� ��	�� ��	�� ����� �	��� ����	 ������ ��
�� ��	�� �
�� � ����

 
�� ����� �	��� ����	 �	��� ����� ����	 �	��� ����� � �����
� �	��� ����� ����� ��
�� ����� ����� �	��� �	��� ���� � ����
� ����� ����� �	��� ����� ��	 ����� �	��� ���	 ����� � ����
� ���	 �	��� ����� ����� �	��� ������ ����� ������ �	��	 � 	���
� �	��� ����
 ����� ��	�� ����	 ����� ����� ����� ����	 ����
	 ����� ��	�� ���� �
��� ����� ����� ����� ��
�� 
�	�� � ����
� ����
 �	��� �	��� ����� �	��� ��	�� ����� ����� ����� �����
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�� WHAT IS DATA

Taking into account that the �ow data entries can be meaningfully summed
up to the total �ow volume� the distance between row entities in a contingency
table is de
ned by weighting the columns by their �masses� p�l as follows�

��k� k�� �
X
j�J

p�j�qkj � qk�j�
�� ������

This is equal to the so	called chi	square distance de
ned between row con	
ditional pro
les in the Correspondence factor analysis �see section ������� The
formula ������ is similar to formula ������ for Euclidean distance squared except
for the weights� A similar chi	square distance can be de
ned for columns�
The concept of data scatter for contingency data is also introduced with

weighting�

X��P � �
X
I�I

X
j�J

pi�p�jq
�
ij ������

The notation re�ects the fact that this value is closely connected with the
Pearson chi	square contingency coe�cient� de
ned in ������ above �thus to Q�

������ as well�� Elementary algebraic manipulations show that X��P � � X��
Note that in this context the chi	squared coe�cient has nothing to do with the
statistical independence� it is just a weighted data scatter measure compatible
with the speci
c properties of �ow and contingency data� In particular� it is not
di�cult to prove an analogue to a property of the conventional data scatter�
X��P � is the sum of chi	square distances ��k� �� over all k�
Thus� Pearson�s chi	squared coe�cient here emerges as the data scatter

after the data have been standardized into Quetelet coe�cients� For Table ���
transformed here into Table ���� the coe�cient is equal to ���� which is �� 
of �� the maximum value of the coe�cient for ��
 �� tables�
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Chapter �

K�Means Clustering

After reading this chapter the reader will know about�

�� Straight and incremental K	Means�

�� The instability of K	Means with regard to initial centroids�

�� An anomalous cluster version of K	Means for incomplete clustering�

�� Three approaches to the initial setting in K	Means� random� maxmin
and anomalous pattern�

�� An intelligent version of K	Means mitigating issues of the initial set	
ting and interpretation�

�� Cross	validation of clustering results�

�� Conventional and contribution based interpretation aids for K	Means�

Base words

Anomalous pattern A method for separating a cluster which is most distant
from the so	called reference point� which may coincide with the grand
mean of the entity set� The method works as K	Means at K�� except for
the location of the reference point which is never changed�

Centroid Amultidimensional vector minimizing the summary distance to clus	
ter�s elements� If the distance is Euclidean squared� the centroid is equal
to the center of gravity of the cluster�

��
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�� K�MEANS CLUSTERING

Cluster representative An entity that is considered to represent its cluster
well� Conventionally such an entity is drawn as that nearest to the cluster
centroid in the Euclidean space� The theory used here suggests that the
nearest entity must be drawn according to the inner product rather than
distance� which extends the cluster tendencies over the grand mean�

Contributions to the data scatter Additive items representing parts of the
data scatter that are explained by certain elements of a cluster structure
such as feature	cluster pairs� The greater the contribution� the more
important the element� Summary contributions coincide with statistical
measures of correlation and association� which is a theoretical support to
the recommended data standardization rules�

Cross validation A procedure for testing consistency of a clustering algorithm
or its results by the comparison of cluster results found on subsamples
formed by a random partitioning of the entity set into a number of groups
of equal sizes�

iK�Means An intelligent version of K	Means� in which an initial set of cen	
troids �seeds� is found with an iterated version of the Anomalous pattern
algorithm�

Incremental K�Means A version of K	Means in which entities are dealt with
one	by	one�

Interpretation aids Computational tools for helping the user to interpret
clusters in terms of features� external or used in the process of clustering�
Conventional interpretation aids include cluster centroids and bivariate
distributions of cluster partitions and features� Contribution based in	
terpretation aids such as ScaD and QScaD tables are derived from the
decomposition of the data scatter into parts explained and unexplained
by the clustering�

K�Means A major clustering method producing a partition of the entity set
into non	overlapping clusters along with within	cluster centroids� It pro	
ceeds in iterations consisting of two steps each� one step updates clusters
according to the Minimum distance rule� the other step updates centroids
as the centers of gravity of clusters� The method implements the so	called
alternating minimization algorithm for the square error criterion� To ini	
tialize the computations� either a partition or a set of all K tentative
centroids must be speci
ed�

Minimum distance rule The rule which assigns each of the entities to its
nearest centroid�
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Reference point A vector in the variable space serving as the space origin�
The Anomalous pattern is sought starting from an entity which is the
farthest from the reference point� which thus models the norm from which
the Anomalous pattern deviates most�

ScaD and QScaD tables Interpretation aids helping to capture cluster	
speci
c features that are relevant to K	Means clustering results� ScaD is a
cluster	to	feature table whose entries are cluster	to	feature contributions
to the data scatter� QScaD is a table of the relative Quitelet coe�cients
of the ScaD entries to express how much they di
er from the average�

Square error criterion The sum of summary distances from cluster elements
to the cluster centroids� which is minimized by K	Means� The distance
used is the Euclidean distance squared� which is compatible with the
least	squares data recovery criterion�
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�� K�MEANS CLUSTERING

��� Conventional K�Means

����� Straight K
Means

K	Means is a major clustering technique that is present� in various forms� in
major statistical packages such as SPSS ���� and SAS ���� ���� and data mining
packages such as Clementine ����� iDA tool ����� and DBMiner �����
The algorithm is appealing in many aspects� Conceptually it may be con	

sidered a model for the human process of making a typology� Also� it has
nice mathematical properties� This method is computationally easy� fast and
memory	e�cient� However� there are some problems too� especially with re	
spect to the initial setting and stability of results� which will be dealt with in
section ����
The cluster structure in K	Means is a partition of the entity set in K non	

overlapping clusters represented by lists of entities and within cluster means of
the variables� The means are aggregate representations of clusters and as such
they are sometimes referred to as standard points or centroids or prototypes�
These terms are considered synonymous in the remainder of the text� More for	
mally� the cluster structure is represented by subsets Sk � I andM 	dimensional
centroids ck � �ckv�� k � �� ����K� Subsets Sk form partition S � fS�� ���� SKg
with a set of centroids c � fc�� ���� cKg�
Example ���� Centroids of author clusters in Masterpieces data

Let us consider the author�based clusters in the Masterpieces data� The cluster
structure is presented in Table ��� in such a way that the centroids are calculated
twice
 once for the raw data in Table ���� and the second time
 with the standardized
data in Table ���
 which is a copy of Table ���� of the previous chapter�

�

Given K M 	dimensional vectors ck as cluster centroids� the algorithm up	
dates cluster lists Sk according to the so	called Minimum distance rule�

Minimum distance rule assigns entities to their nearest centroids� Specif	

Table ���� Means of the variables in Table ��� within K�� author�based clusters
 real
�upper row
 and standardized �lower row
�

Mean
Cl� List LS �f�
 LD �f�
 NC �f�
 SC �f

 P �f�
 O �f�
 D �f�

� �� �� � �
�� �	�� ���� � ���� ���� �

���	� ����
 ������ ������ ����� �����
 ����


� 
� �� � ���� ���
 ���� � ���� ���� �

������ ������ ������ ����� �����
 ����� ����


� �� � ���� 

�� 
��� � ���� ���� �

����	 ���
� ����� ����� ������ ������ ��
��
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���� CONVENTIONAL K�MEANS ��

Table ���� Range standardized Masterpieces matrix with the additionally rescaled
nominal feature attributes copied from Table �����

LS LD NC SC Ob Pe Di
� �	��	 	��� �	��� �	��� 	��� �	��� �	���
� 	��	 	�	� 	�		 �	��� 	��� �	��� �	���
� 	�	� 	�	� 	�		 �	��� �	��� 	��� �	���
� �	��� �	��� �	��� 	��� 	��� �	��� �	���
� 	��� �	��� 	�		 	��� �	��� 	��� �	���
� �	��	 �	��� �	��� 	��� �	��� 	��� �	���
� 	�	� �	��	 	��� 	��� �	��� �	��� 	���
� 	��� 	��� 	��� 	��� �	��� �	��� 	���

ically� for each entity i � I � its distances to all centroids are calculated� and
the entity is assigned to the nearest centroid� When there are several nearest
centroids� the assignment is taken among them arbitrarily� In other words�
Sk is made of all such i � I that d�i� ck� is minimum over all centroids from
c � fc�� ���� cKg� The Minimum distance rule is popular in data analysis and can
be found under di
erent names such as Voronoi diagrams and vector learning
quatization�

In general� some centroids may be assigned no entity at all with this rule�

Having cluster lists updated with the Minimum distance rule� the algorithm
updates centroids as gravity centers of the cluster lists Sk� the gravity center
coordinates are de
ned as within cluster averages� that is� updated centroids are
de
ned as ck � c�Sk�� k � �� ����K� where c�S� is a vector whose components
are averages of features over S�

Then the process is reiterated until clusters do not change�

Recall that the distance referred to is Euclidean squared distance de
ned�
for any M 	dimensional x � �xv� and y � �yv� as d�x� y� � �x� � y��

� ! ��� !
�xM � yM �

��

Example ���
� Minimum distance rule at author cluster centroids in
Masterpieces data

Let us apply the Minimum distance rule to entities in Table ���
 given the stan�
dardized centroids in Table ���� The matrix of distances between the standardized
eight row points in Table ��� and three centroids in Table ��� is in Table ���� The
table shows that points �
�
� are nearest to centroid c�
 �
�
� to c�
 and �
 � to c�

which is boldfaced� This means that the rule does not change clusters� These clusters
will have the same centroids� Thus
 no further calculations can change the clusters�
the author�based partition is to be accepted as the result� �

Let us now explicitly formulate the algorithm� which will be referred to
as straight K	Means� Sometimes the same procedure is referred to as batch
K	Means or parallel K	Means�
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Table ���� Distances between the eight standardized Masterpiece entities and cen�
troids� within column minima are highlighted�

Entity� row point from Table ���
Centroid � � � 
 � � � �

� � � 
 � � � �
c� ���� ���� ���� ���� ��
	 ���� ���� ����
c� ���� ���
 ���� ���� ���� ���� ��	� ����
c� ���� ���� ��	� ���	 ���� ��
� ���� ����

Straight K�Means
�� Data pre�processing� Transform data into a quantitative ma	
trix Y � This can be done according to the three step procedure
described in section ����
�� Initial setting� Choose the number of clusters� K� and tenta	
tive centroids c�� c�� ���� cK � frequently referred to as seeds� Assume
initial cluster lists Sk empty�
�� Clusters update� Given K centroids� determine clusters S�k �k �
�� ����K� with the Minimum distance rule�
�� Stop�condition� Check whether S� � S� If yes� end with cluster	
ing S � Sk� c � �ck�� Otherwise� change S for S

��
�� Centroids update� Given clusters Sk� calculate within cluster
means ck �k � �� ����K� and go to Step ��

This algorithm usually converges fast� depending on the initial setting� Lo	
cation of the initial seeds may a
ect not only the speed of convergence but�
more importantly� the 
nal results as well� Let us give examples of how the
initial setting may a
ect results�

Example ����� Successful application of K
Means

Let us apply K�Means to the same Masterpiece data in Table ���
 this time starting
with entities �
 � and � as tentative centroids �Step �
� To perform Step �
 the
matrix of entity�to�centroid distances is computed �see Table ��� in which within
column minima are boldfaced
� The Minimum distance rule produces three cluster
lists
 S� � f�� �� �g� S� � f�� �� �g and S� � f�� �g� These coincide with the author�
based clusters and produce within�cluster means �Step �
 already calculated in Table
���� Since these di�er from the original tentative centroids �entities �
 �
 and �

 the
algorithm returns to Step � of assigning clusters around the updated centroids� We
do not do this here since the operation has been done already with distances in Table
���
 which produced the same author�based lists according to the Minimum distance
rule� The process thus stops� �

Example ����� Unsuccessful run of K
Means with di�erent initial seeds

Let us take entities �
 � and � as the initial centroids �assuming the same data in
Table ���
� The Minimum distance rule
 according to entity�to�centroid distances in
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Table ���� Distances between entities �
 �
 � as seeds and the standardized Master�
piece entities�

Row�point
Centroid � � � 
 � � � �

� ���� ���� ���� ���� ���� ��		 ��	� ��
�
� ���� ���� ���� ���� ���� ���� ���� ����
� ���� ��	� ���� ���� ���� ���� ���� ��	�

Table ���� Distances between the standardized Masterpiece entities and entities �
 �

� as seeds�

Row�point
Centroid � � � 
 � � � �

� ���� ���� ���� ���� ���� ���� ���� ����
� ���� ���� ���� ���� ���� ��		 ��	� ��
�
� ���� ���� ���� ��	
 ���	 ��
� ��
� ���


Table ���
 leads to cluster lists S� � f�� �g� S� � f�g and S� � f�� �� �� �� �g� With
the centroids updated at Step � as means of these clusters
 a new application of Step
� leads to slightly changed cluster lists S� � f�� �� �g� S� � f�g and S� � f�� �� �� �g�
Their means calculated
 it is not di�cult to see that the Minimum distance rule does
not change clusters anymore� Thus the lists represent the �nal outcome
 which di�ers
from the author�based solution�

�

The intuitive inappropriateness of the results in this example may be ex	
plained by the stupid choice of the initial centroids� all by the same author�
However� K	Means can lead to inconvenient results even if the initial setting is
selected according to clustering by authors�

Table ���� Distances between the standardized Masterpiece entities and entities �
 �

� as tentative centroids�

Row�point
Centroid � � � 
 � � � �

� ���� ���� ��

 ���� ���� ���� ���� ����

 ���� ���� ��	
 ���� ��	� ��
� ���� ��
�
� ���� ��	� ���� ���� ��
� ���� ���� ��	�

Example ����� Unsuccessful K
Means with author
based initial seeds

With the initial centroids at rows �
 �
 and �
 the entity�to�centroid matrix in
Table ��� leads to cluster lists S� � f�� �� �g� S� � f�� �g and S� � f�� �� �g that do
not change in the follow�up operations� These results put a piece by Mark Twain
among those by Leo Tolstoy� Not a good outcome� �
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����� Square error criterion

The instability of clustering results with respect to the initial settings leads to a
natural question whether there is anything objective in the method at all� Yes�
there is�
It appears� there is a scoring function� an index� that is minimized by K	

Means� To formulate the function� let us de
ne the within cluster error� For
a cluster Sk with centroid ck � �ckv�� v � V � its square error is de
ned as the
summary distance from its elements to ck�

W �Sk� ck� �
X
i�Sk

d�yi� ck� �
X
i�Sk

X
v�V

�yiv � ckv�
�� �����

The square error criterion is the sum of these values over all clusters�

W �S� c� �

KX
k��

W �Sk� ck� �����

Criterion W �S� c� ����� depends on two groups of arguments� cluster lists Sk
and centroids ck� Criteria of this type are frequently optimized with the so	
called alternating minimization algorithm� This algorithm consists of a series
of iterations� At each of the iterations� W �S� c� is� 
rst� minimized over S�
given c� and� second� minimized over c� given the resulting S� This way� at each
iteration a set c is transformed into a set c�� The calculations stop when c is
stabilized� that is� c� � c�

Statement ���� Straight K�Means is the alternating minimization algorithm
for the summary square�error criterion ����	 starting from seeds c � fc�� ���� cKg
speci�ed in step 
�

Proof� Equation

W �S� c� �

KX
k��

X
i�Sk

d�i� ck��

following from ������ implies that� given c � fc�� ���� cKg� the Minimum distance
rule minimizes W �S� c� over S� Let us now turn to the problem of minimizing
W �S� c� over c� given S� It is obvious� that minimizing W �S� c� over c can be
done by minimizingW �Sk� ck� ����� over ck independently for every k � �� ����K�
Criterion W �Sk� ck� is a quadratic function of ck and� thus� can be optimized
with just 
rst	order optimality conditions that the derivatives ofW �Sk� ck� over
ckv must be equal to zero for all v � V � These derivatives are equal to F �ckv� �
��Pi�Sk

�yiv � ckv�� k � �� ����K� v � V � The condition F �ckv� � � obviously
leads to ckv �

P
i�Sk

yiv�jSkj� which proves that the optimal centroids must be
within cluster gravity centers� This proves the statement�
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Square	error criterion ����� is the sum of distances from entities to their clus	
ter centroids� This can be reformulated as the sum of within cluster variances

�kv �

P
i�Sk

�yiv � ckv�
��Nk weighted by the cluster cardinalities�

W �S� c� �

KX
k��

X
i�Sk

X
v�V

�yiv � ckv�
� �

X
v�V

KX
k��

Nk

�
kv �����

Statement ���� implies� among other things� that K	Means converges in a

nite number of steps because the set of all partitions S over a 
nite I is 
nite
and W �S� c� is decreased at each change of c or S� Moreover� as experiments
show� K	Means typically does not move far away from the initial setting of c�
Considered from the perspective of minimization of criterion ������ this leads
to the conventional strategy of repeatedly applying the algorithm starting from
various randomly generated sets of prototypes to reach as deep a minimum of
����� as possible� This strategy may fail especially if the feature set is large
because in this case random settings cannot cover the space of solutions in a
reasonable time�
Yet� there is a di
erent perspective� of typology making� in which the cri	

terion is considered not as something that must be minimized at any cost but
rather a beacon for direction� In this perspective� the algorithm is a model for
developing a typology represented by the prototypes� The prototypes should
come from an external source such as the advice of experts� leaving to data
analysis only their adjustment to real data� In such a situation� the property
that the 
nal prototypes are not far away from the original ones� is more of
an advantage than not� What is important� though� is de
ning an appropriate�
rather than random� initial setting�
The data recovery framework is consistent with this perspective since the

model underlying K	Means is based on a somewhat simplistic claim that entities
can be represented by their cluster�s centroids� up to residuals� This model�
according to section ������ leads to an equation involving K	Means criterion
W �S� c� ����� and the data scatter T �Y ��

T �Y � � B�S� c� !W �S� c� �����

where

B�S� c� �

KX
k��

Nkc
�
kv �����

In this way� data scatter T �Y � is decomposed into two parts� that one explained
by the cluster structure �S� c�� that is� B�S� c�� and the other unexplained�
that is� W �S� c�� The larger the explained part the better the match between
clustering �S� c� and data�
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Criterion B�S� c� measures the part of the data scatter taken into account
by the cluster structure�

Example ����� Explained part of the data scatter

The explained part of the data scatter
 B�S� c

 is equal to ����� of the data
scatter T �Y 
 for partition ff�� �� �g� f�g� f�� �� �� �gg
 found with entities �
�
� as initial
centroids� The score is ����� for partition ff�� �� �g� f�� �g� f�� �� �gg
 found with
entities �
�
� as initial centroids� The score is ���	� for the author based partition
ff�� �� �g� f�� �� �g� f�� �gg
 which is thus superior� �

Advice for selecting the number of clusters and tentative centroids at Step
� will be given in sections ��� and ����

����� Incremental versions of K
Means

Incremental versions of K	Means are those at which Step �� with its Minimum
distance rule� is executed not for all of the entities but for one of them only�
There can be two principal reasons for doing so�

R� The user is not able to operate with the entire data set and takes entities
in one by one� because of either the nature of the data generation process
or the largeness of the data set sizes� The former cause is typical when
clustering is done in real time as� for instance� in an on	line application�
Under traditional assumptions of probabilistic sampling of the entities�
convergence of the algorithm was explored in paper ����� from which K	
Means became known publicly�

R� The user operates with the entire data set� but wants to smooth the
action of the algorithm so that no drastic changes in the cluster contents
may occur� To do this� the user may specify an order of the entities and
run entities one	by	one in this order for a number of times� �Each of
the runs through the data set is referred to as an �epoch� in the neural
network discipline�� The result of this may di
er from that of Straight
K	Means because of di
erent computations� This computation can be
especially e
ective if the order of entities is not constant but depends
on their contributions to the criterion optimized by the algorithm� In
particular� each entity i � I can be assigned value di� the minimum of
distances from i to centroids c������ cK � so that iminimizing di is considered

rst�

When an entity yi joins cluster St whose cardinality is Nt� the centroid ct
changes to c�t to follow the within cluster average values�

c�t �
Nt

Nt ! �
ct !

�

Nt ! �
yi�
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When yi moves out of cluster St� the formula remains valid if all pluses are
changed for minuses� By introducing the variable zi which is equal to !� when
yi joins the cluster and �� when it moves out of it� the formula becomes

c�t �
Nt

Nt ! zi
ct !

zi
Nt ! zi

yi �����

Accordingly� the distances from other entities change to d�yj � c
�
t��

Because of the incremental setting� the stopping rule of the straight version
�reaching a stationary state� may be not necessarily applicable here� In case R��
the natural stopping rule is to end when there are no new entities observed� In
case R�� the process of running through the entities one	by	one stops when all
entities remain in their clusters� Also� the process may stop when a pre	speci
ed
number of runs �epochs� is reached�
This gives rise to the following version of K	Means�

Incremental K�Means� one entity at a time�
�� Initial setting� Choose the number of clusters� K� and tentative
centroids� c�� c�� ���� cK �
�� Getting an entity� Observe an entity i � I coming either ran	
domly �setting R�� or according to a prespeci
ed or dynamically
changing order �setting R���
�� Cluster update� Apply Minimum distance rule to determine to
what cluster list St �t � �� ����K� entity i should be assigned�
�� Centroid update� Update within cluster centroid ct with formula
������ For the case in which yi leaves cluster t

� �in R� option�� ct�

is also updated with ������ Nothing is changed if yi remains in its
cluster� Then the stopping condition is checked as described above�
and the process moves to observing the next entity �Step �� or ends
�Step ���
�� Output� Output lists St and centroids ct with accompanying
interpretation aids �as advised in section �����

Example ����� Smoothing action of incremental K
Means
Let us apply version R� to the Masterpieces data with the entity order dynamically

updated and K � � starting with entities �
 � and � as centroids� Minimum distances
di to the centroids for the �ve remaining entities are presented in the �rst column of
Table ��� along with the corresponding centroid �iteration 	
� Since d� � 	��� is min�
imum among them
 entity � is put in cluster I whose centroid is changed accordingly�
The next column
 iteration �
 presents minimum distances to the updated centroids�

This time the minimum is at d� � 	���
 so entity � is put in its nearest cluster III
and its center is recomputed� In iteration �
 the distances are in column �� Among
remaining entities
 �
 �
 and �
 the minimum distance is d� � 	��	
 so � is added
to its closest cluster I� Thus updated the centroid of cluster I leads to the change in
minimum distances recorded at iteration �� This time d� � 	�	�� becomes minimum
for the remaining entities � and � so that � joins cluster II and
 in the next iteration
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Table ���� Minimum distances between standardized Masterpiece entities and dy�
namically changed centroids I
 II and III�

Iteration
Entity � � � � 
 �

� �����I �����I �����I ���	�I ���	�I ���	�I
� �����I �����I �����I ���� �I �����I �����I
� �����III �����III ��	��II ��	��II ��	��II �����II
� �����II �����II �����II �����II �����II �����II
� �����III �����III �����III �����III �����III �����III

� follows it� Then the partition stabilizes� each entity is closer to its cluster centroid
than to any other� The �nal partition of the set of masterpieces is the author based
one� We can see that this procedure smoothes the process indeed� starting from
the same centroids in Example ����
 straight K�Means leads to a di�erent and worse
partition� �

��� Initialization of K�Means

To initialize K	Means� one needs to specify�
��� the number of clusters� K� and
��� initial centroids� c�� c�� ���� cK �
Each of these can be of issue in practical computations� Both depend on the

user�s expectations related to the level of resolution and typological attitudes�
which remain beyond the scope of the theory of K	Means� This is why some
claim these considerations are beyond the clustering discipline� There have
been however a number of approaches suggested for specifying the number and
location of initial centroids� which will be brie�y described in section ������
Here we present� 
rst� the most popular existing approaches and� second� two
approaches based on preliminary analysis of the data set structure�

����� Traditional approaches to initial setting

Conventionally� either of two extremes is adhered to in initial setting� One
view assumes no knowledge of the data and domain and takes initial centroids
randomly� the other� on the contrary� relies on the user being an expert and
de
ning initial centroids as hypothetical prototypes�
The 
rst approach randomly selects K of the entities �or generates K n	

dimensional points within the feature ranges� as the initial seeds �centroids��
and apply K	Means �either straight or incremental�� After repeating this a pre	
speci
ed number of times �for instance� ��� or ������ the best solution according
to the square	error criterion ����� is taken� This approach can be handled by
any package containing K	Means� For instance� SPSS allows the taking of the

rst K entities in a data set as the initial seeds� This can be repeated as many
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times as needed� each time reformatting the data matrix by putting a random
K entity sample as its 
rst K rows�
Selection ofK can be done empirically by following this strategy for di
erent

values of K� say� in a range from � to ��� However� the optimal value of the
square	error criterion decreases when K grows and thus cannot be utilized�
as is� for the purpose� In the literature� a number of coe�cients and tricks
have been suggested based on the use of the square error �see later in section
������� Unfortunately� they all may fail even in the relatively simple situations
of controlled computation experiments�
Comparing clusterings found for di
erent K may lead to insights on the

cluster structure� In many real world computations� the following phenomenon
has been observed by the author and other researchers� When repeatedly pro	
ceeding from a largerK to K��� the found K�� clustering� typically� is rather
similar to that found by merging some of clusters in the K clustering� in spite of
the fact that the K	 and �K���	clusterings are found independently� However�
in the process of decreasing K this way� a critical value of K is reached such
that �K � ��	clustering doesn�t resemble K	clustering at all� If this is the case�
the value of K can be taken as that corresponding to the cluster structure�
This can be a viable strategy� There are two critical points though�

�� The K	Means algorithm� as is� doesn�t seek a global minimum of the
square	error criterion and� moreover� the local minima achieved with K	
Means are not very deep� Thus� with the number of entities in order
of hundreds or thousands and K within a dozen� or more� the number
of tries needed to reach a representative set of the initial centroids may
become too large and make it a computationally challenging problem�

To overcome this� some e
ective computational strategies have been sug	
gested as that of random jumps from a subset of centroids� Such random
track changing� typically� produces much deeper minima than the stan	
dard K	Means �����

�� Even if one succeeds in getting a deep or a global minimum of the square	
error criterion� it should not be taken for granted that the clusters found
re�ect the cluster structure� There are some intrinsic �aws in the crite	
rion that would not allow us to accept it as the only means for deciding
upon whether the clusters minimizing it are those we are looking for� The
square	error criterion needs to be supplemented with other tools for get	
ting better insights into the data structure� Setting of the initial centroids
can be utilized as such a tool�

The other approach relies on the opinion of an expert in the subject domain�

Example ����� K
Means at Iris data
Table ��� presents results of the straight K�Means applied to the Iris data on page

�� with K�� and specimens numbered �
 ��
 and �	� taken as the initial centroids and
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Table ���� Cross�classi�cation of ��	 Iris specimens according to K�Means clustering
and the genera� entries show Count�Proportion�

Iris genus
Cluster Setosa Versicolor Virginica Total

S� �	�	���� 	�	 	�	 �	�	����
S� 	�	 ���	���� ���	�	�� ���	��	�
S� 	�	 ��	�	�	 ���	���	 ���	���	

Total �	�	���� �	�	���� �	�	���� ��	���			

cross�classi�ed with the prior three class partition� The clustering does separate genus
Setosa but misplaces ������� specimens between two other genera� This corresponds
to the visual pattern in Figure ���	
 page ��� �

Similarly� an expert may propose to distinguish numeral digits by the pres	
ence of a closed drawing in them� so that this feature is present in � and absent
from �� and suggest these entities as the initial seeds� The expert may even
go further and suggest one more feature� presence of a semi	closed drawing
instantiated by �� to be taken into account�
This is a viable approach� too� It allows seeing how the conceptual types

relate to the data and to what extent the hypothetical seed combinations match
real data�
However� in a common situation in which the user cannot make much sense

of his data because they re�ect super
cial measurable features rather than those
of essence� which cannot be measured� the expert vision may fail to suggest a
reasonable degree of resolution� and the user should take a more data	driven
approach to tackle the problem� Two data	driven approaches are described in
the next two sections�

����� MaxMin for producing deviate centroids

This approach is based on the following intuition� If there are cohesive clusters
in the data� then entities within any cluster must be close to each other and
rather far away from entities in other clusters� The following method� based
on this intuition� has proved to work well in real and simulated experiments�

MaxMin
�� Take entities yi� and yi�� maximizing the distance d�yi� yj� over
all i� j � I as c� and c��
�� For each of the entities yi� that have not been selected to the
set c of initial seeds so far� calculate dc�yi�� the minimum of its
distances to ct � c�
�� Find i� maximizing dc�yi� and check Stop	condition �see below��
If it doesn�t hold� add yi� to c and go to Step �� Otherwise� end
and output c as the set of initial seeds�

© 2005 by Taylor & Francis Group, LLC



���� INITIALIZATION OF K�MEANS ��

As the Stop	condition in MaxMin either or all of the following pre	speci
ed
constraints can be utilized�

�� The number of seeds has reached a pre	speci
ed threshold�

�� Distance dc�yi�� is larger than a pre	speci
ed threshold such as d �
d�c�� c�����

�� There is a signi
cant drop� such as �� � in the value of dc�yi�� in com	
parison to that at the previous iteration�

Example ����� MaxMin for selecting intial seeds

The table of entity�to�entity distances for Masterpieces is displayed in Table ����
The maximum distance here is ����
 between AK and YA
 which makes the two of

Table ���� Distances between Masterpieces from Table ����

OT DS GE TS HF YA WP AK
OT ���� ���� ���� ���� ���� ���� ���� ����
DS ���� ���� ���� ���� ���� ��		 ��	� ��
�
GE ���� ���� ���� ��	
 ���� ���
 ���� ����
TS ���� ���� ��	
 ���� ��	� ���� ���� ��
�
HF ���� ���� ���� ��	� ���� ���� ���� ����
YA ���� ��		 ���
 ���� ���� ���� ���� ��
�
WP ���� ��	� ���� ���� ���� ���� ���� ����
AK ���� ��
� ���� ��
� ���� ��
� ���� ����

them initial centroids according to MaxMin� The distances from other entities to
these two are in Table ���	� those minimal at the two are boldfaced� The maximum
among them
 the next MaxMin distance
 is ���� between DS and AK� The decrease
here is less than �	� suggesting that this can represent a di�erent cluster� Thus
 we

Table ����� Distances from Masterpieces entities to YA and AK

OT DS GE TS HF WP
YA ���� ���� ��
� ��
� ���� ����
AK ���� ���� ���� ��
� ���� ��	�

add DS to the list of candidate centroids and then need to look at distances from
other entities to these three �see Table ����
� This time the MaxMin distance is 	���
between TS and YA� We might wish to stop the process at this stage since we expect
only three meaningful clusters in Masterpieces data and
 also
 there is a signi�cant
drop
 ��� of the previous MaxMin distance� It is useful to remember that such a
clear�cut situation may not necessarily occur in other examples� The three seeds
selected have been shown in previous examples to produce the author based clusters
with K�Means� �
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Table ����� Distances between DS
 YA
 and AK and other Masterpiece entities�

OT GE TS HF WP
DS ���� ���� ���� ���� ��	�
YA ���� ���
 ��
� ���� ����
AK ���� ���� ��
� ���� ��	�

The issues related to this approach are typical in data mining� First� it
involves ad hoc thresholds which are not substantiated in terms of data� Second�
it can be computationally intensive when the number of entities N is large
since 
nding the maximum distance at Step � involves computation of O�N��
distances�

����� Deviate centroids with Anomalous pattern

The method described in this section provides an alternative to MaxMin for
the initial setting� which is less intensive computationally and� also� reduces the
number of ad hoc parameters�

Reference point based clustering

To avoid the computationally intensive problems of analyzing pair	wise dis	
tances� one may employ the concept of a reference point which is chosen to
exemplify an average or norm of the features which de
ne the entities� For
example� the user might choose� as representing a �normal student�� a point
which indicates good marks in tests and serious work in projects� and then see
what patterns of observed behavior deviate from this� Or� a bank manager may
set as his reference point� a customer having speci
c assets and backgrounds�
not necessarily averaged� to see what types of customers deviate from this� In
engineering� a moving robotic device should be able to classify the elements of
the environment according to the robot�s location� with things that are closer
having more resolution� and things that are farther having less resolution� the
location is the reference point in this case� In many cases the gravity center of
the entire entity set can be the reference point of choice�
Availability of a reference point allows the comparison of entities with it�

not with each other� which drastically reduces computations� To 
nd a cluster
which is most distant from a reference point� a version of K	Means described
in ���� can be utilized� According to this procedure� the only ad hoc choice
is the cluster�s seed� There are two seeds here� the reference point which is
unvaried in the process and the cluster�s seed� which is taken to be the entity
which is farthest from the reference point� Only the anomalous cluster is built
here� de
ned as the set of points that are closer to the cluster seed than to the
reference point� Then the cluster seed is substituted by the cluster�s gravity
center� and the procedure is reiterated until it converges� An exact formulation
of this follows�
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Reference point

Farthest entity

1 / 2

Reference point

1 / 2

Anomalous cluster center

Figure ���� Extracting an  Anomalous pattern� cluster with the reference point in
the gravity center� the initial iteration is on the left and the �nal one on the right�

Anomalous pattern �AP�
�� Pre�processing� Specify a reference point a � �a�� ���� an� �this
can be the data grand mean� and standardize the original data
table with formula ������ at which shift parameters ak are the
reference point coordinates� �This way� the space origin is shifted
into a��
�� Initial setting� Put a tentative centroid� c� as an entity which is
the most distant from the origin� ��
�� Cluster update� Determine cluster list S around c against the
only other �centroid� � with the Minimum distance rule so that yi
is assigned to S if d�yi� c� � d�yi� ���
�� Centroid update� Calculate the within S mean c� and check
whether it di
ers from the previous centroid c� If c� and c do di
er�
update the centroid by assigning c � c� and return to Step ��
Otherwise� go to ��
�� Output� Output list S and centroid c with accompanying inter	
pretation aids �as advised in section ���� as the most anomalous
pattern�

The process is illustrated in Figure ���� Obviously� the Anomalous pattern
method is a version of K	Means in which�

�i� the number of clusters K is ��

�ii� centroid of one of the clusters is �� which is forcibly kept there through
all the iterations�

�iii� the initial centroid of the anomalous cluster is taken as an entity point
which is the most distant from ��

Property �iii� mitigates the issue of determining appropriate initial seeds�
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which allows using Anomalous pattern algorithm for 
nding an initial setting
for K	Means�
Like K	Means itself� the Anomalous pattern alternately minimizes a crite	

rion�

W �S� c� �
X
i�S

d�yi� c� !
X
i��S

d�yi� �� �����

which is a speci
c version of K	Means general criterion W �S� c� in ������ S is a
partition in the general criterion and a subset in AP� More technical detail of
the method can be found in section ����

Example ����� Anomalous pattern in Market towns
The Anomalous pattern method can be applied to the Market towns data in

Table ��� assuming the grand mean as the reference point and scaling by range� The
point farthest from 	
 the tentative centroid at step �
 appears to be entity �� �St
Austell
 whose distance from zero is ����
 the maximum� Step � adds three more
entities
 ��
 �� and �� �Newton Abbot
 Penzance and Truro

 to the cluster� They are
among the largest towns in the data
 though there are some large towns like Falmouth
that are out of the list
 thus being closer to 	 rather than to St Austell in the range
standardized feature space� After one more iteration
 the anomalous cluster stabilizes�

Table ����� Iterations in �nding an anomalous pattern in Market towns data�

Iteration List ! Distance Cntr Cntr
 �

� ��
 ��
 ��
 �� � ���� ����� ����
� �
 �
 ��
 ��
 ��
 ��
 ��
 �� � ���� ����� ����

The iterations are presented in Table ����� It should be noted that the scatter�s cluster
part �contribution
 increases along the iterations as follows from the theory in section
������ the decrease of the distance between centroid and zero is well compensated by
the in"ux of entities� The �nal cluster consists of � entities and takes into account
����� � of the data scatter� Its centroid is displayed in Table ����� As frequently
happens
 the anomalous cluster here consists of better o� entities � towns with all the
standardized centroid values larger than the grand mean by �	 to �	 per cent of the
feature ranges� This probably relates to the fact that they comprise eight out of eleven
towns which have a resident population greater than �	
			� The other three largest
towns have not made it into the cluster because of their de�ciencies in services such as
Hospitals and Farmers� markets� The fact that the scale of measurement of population
is by far the largest in the original table doesn�t much a�ect the computation here
as it runs with the range standardized scales at which the total contribution of this
feature is mediocre
 about ���� only �see Table ����
� It is rather a concerted action
of all features associated with greater population which makes up the cluster� As
follows from the last line in Table ����
 the most important for the cluster separation

Table ����� Centroid of the extracted pattern of Market towns�

Centroid P PS Do Ho Ba SM Pe DIY SP PO CAB FM
Real ��
�
 ��� ��� ��� ���� 
�� 
�� ��� ��
 ��
 ��� �

Stded ��� ��� ��� ��� ��� ��� ��� ��� �

 �
� ��� ���
Over GM� � ��� ��� ��� ��� ��� ��	 ��� ��� ��� �
� 	
 ��
Related Cntr� � �	� �
� ��� �� �

 ��� �
 �� ��
 �	� �� ��
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are the following features� Population
 Post o�ces
 and Doctors
 highlighted with the
boldface� This analysis suggests a simple decision rule separating the cluster entities
from the rest with these variables� �P is greater than �	
			 and Do is � or greater��
�

��� Intelligent K�Means

����� Iterated Anomalous pattern for iK
Means

When clusters in the feature space are well separated from each other or the
cluster structure can be thought of as a set of di
erently contributing clusters�
the clusters can be found with iterative application of Anomalous pattern that
mitigates the need for pre	setting the number of clusters and their initial cen	
troids� Moreover� this can be used as a procedure to meaningfully determine
the number of clusters and initial seeds for K	Means� In this way we come to an
algorithm that can be referred to as an intelligent K	Means� because it relieves
from the user the task of specifying the initial setting�
Some other potentially useful features of the method relate to its �exibility

with regard to dealing with outliers and the �swamp� of inexpressive� ordinary�
entities around the grand mean�

iK�Means
�� Setting� Put t � � and It the original entity set� Specify a
threshold of resolution to discard all AP clusters whose cardinalities
are less than the threshold�
�� Anomalous pattern� Apply AP to It to 
nd St and ct� There
can be either option taken� do Step � of AP �standardization of
the data� at each t or only at t � �� The latter is the recommended
option as it is compatible with the theory in section ����
�� Control� If Stop	condition �see below� does not hold� put It �
It � St and t� t! � and go to Step ��
�� Removal of small clusters� Remove all of the found clusters
that are smaller than a pre	speci
ed cluster discarding threshold
for the cluster size� �Entities comprising singleton clusters should
be checked for the errors in their data entries�� Denote the number
of remaining clusters by K and their centroids by c������ cK �
�� K�Means� Do Straight �or Incremental� K	Means with c������ cK
as initial seeds�

The Stop	condition in this method can be any or all of the following�

�� All clustered� St � It so that there are no unclustered entities left�

�� Large cumulative contribution� The total contribution of the 
rst t
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clusters to the data scatter has reached a pre	speci
ed threshold such as
��  �

�� Small cluster contribution� Contribution of t	th cluster is too small�
say� compared to the order of average contribution of a single entity� ��N �

�� Number of clusters reached� Number of clusters� t� has reached a
pre	speci
ed value K�

The 
rst condition is natural if there are �natural� clusters that indeed di
er in
their contributions to the data scatter� The second and third conditions can be
considered as imposing further degrees of resolution with which the user looks
at the data�
At step �� K	Means can be applied to either the entire dataset or to the

set from which the smaller clusters have been removed� This may depend on
the situation� in some problems� such as structuring of a set of settlements for
better planning or monitoring� no entity should be left out of the consideration�
whereas in other problems� such as developing synoptic descriptions for text
corpora� some deviant texts should be left out of the coverage�

Example ����� Iterated Anomalous patterns in Market towns
Applied to the Market towns data with Stop�condition �
 the iterated AP algo�

rithm has produced �� clusters of which � are singletons� Each of the singletons has
a strange pattern of town facilities with no similarity to any other town in the list�
For instance
 entity �� �Liskeard
 �	�� residents
 has an unusually large number of
Hospitals ��
 and CABs��

 which makes it a singleton cluster�

The seven non�singleton clusters are in Table ����
 in the order of their extraction
in the iterated AP� Centroids of the seven clusters are presented in Table ���	 in the
next section�

Table ����� Iterated AP Market towns clusters�

Cluster Size Elements Cntr
�

� � �
 �
 ��
 ��
 ��
 ��
 ��
 �� ����
� � �
 � 
 ��
 ��
 ��
 �� �	�	
� �� �
 �
 �
 �	
 ��
 ��
 ��
 ��
 ��
 ��
 ����

��
 �	
 ��
 ��
 ��
 ��
 ��
 �	
� � � 
 �� ���
� � �
�� ���
� � �� 
 �� ���
�� � �	 �� ���

The cluster structure doesn�t much change when
 according to the iK�Means algo�
rithm
 Straight K�Means is applied to the seven centroids �with the �ve singletons put
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Table ����� Clusters found by the iterated AP algorithm in Bribery data�

Cluster Size Elements Contribution
 �

� � �
��
��
��
��
��
�� ���
� � �� ���
� � ��
�� ���
� � �� ���
� � � ���
� � �� ���
� �� ��
��
�	
��
��
��
��
�� �	��

��
��
��
�	
��
� � �
�
�
�	
��
��
�	
��
�	 �	��
� � �
�
��
��
�� ���
�	 � �
�� ���
�� � �
��
�� ���
�� � ��
��
��
��
��
��
��
�� ���
�� � ��
�� ���

back into the data
� Moreover
 similar results have been observed with clustering of
the original list of about thirteen hundred Market towns described by an expanded list
of eighteen characteristics of their development� the number of non�singleton clusters
was the same
 with their descriptions �see page �	�
 very similar�

�

Example ���
� Intelligent K
Means on Bribery data

Let us apply iK�Means to the Bribery data in Table ���� on page �	� According
to the prescriptions above
 the data processing includes the following steps�

�� Data standardization� This is done by subtracting the feature averages �grand
means
 from all entries and then dividing them by the feature ranges� For a binary
feature corresponding to a qualitative category
 this reduces to subtraction of the
category proportion
 p
 from all the entries which in this way become either �� p
 for
�yes
� and �p
 for �no��

�� Repeatedly performing AP clustering� Applying AP to the pre�processed data
matrix with the reference point taken as the space origin 	 and never altered
 ��
clusters have been produced as shown in Table ����� They explain ��� of the data
variance�

�� Initial setting for K�Means� There are only � clusters that have more than
three elements according to Table ����� This de�nes the number of clusters as well as
the initial setting� the �rst elements of the �ve larger clusters
 indexed as �
 ��
 �
 �

and ��
 are taken as the initial centroids�

�� Performing K�Means� K�Means
 with the �ve centroids from the previous step

produces �ve clusters presented in Table ����� They explain ��� of the data scatter�
The reduction of the proportion of the explained data scatter is obviously caused by
the reduced number of clusters�

Conceptual description of the clusters is left to the next section �see page �	�

which is devoted to interpretation aids� �
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Table ����� Clusters found by K�Means in the entire Bribery data set from the largest
clusters in Table �����

Cluster � Elements Contribution� �
� � �����������������
��
� ����
� �	 �����������
��������
����������	�
��
��
��
���������� 	��
� �� 
���	�������������������
� ����

 � �����������	����
	 ���
� �� ���������	��
����

�
������
��� ���

����� Cross validation of iK
Means results

As described in section ������ the issue of validation of clusters may be subject
to di
erent perspectives� According to the classi
cation paradigm� validation
of clusters is provided by their interpretation� that is� by the convenience of
the clusters and their 
tting into and enhancing the existing knowledge� In
the statistics paradigm� a cluster structure is validated by its correspondence
to the underlying model� In the machine learning perspective� it is learning
algorithms that are to be validated� In data mining� one validates the cluster
structure found� In machine learning and data mining� validation is treated
as the testing of how stable the algorithm results are with respect to random
changes in the data� We refer the reader to section ��� for a general discussion
of validation criteria in clustering�

Here we concentrate on the most popular validation method� m	fold cross	
validation� According to this method� the entity set is randomly partitioned
into m equal parts and m pairs of training and testing sets are formed by taking
each one of the m parts as the testing set� with the rest considered the training
set�

This scheme is easy to use regarding the problems of learning of decision
rules� a decision rule is formed using a training set and then tested on the
corresponding testing set� Then testing results are averaged over all m train	
test experiments� How can this line of thought be applied to clustering�

In the literature� several methods for extending of the cross	validation tech	
niques to clustering have been described �see references in section ������� Some
of them fall in the machine learning perspective and some in the data mining
perspective� The common idea is that the set of m training sets supplied by
the cross validation approach constitute a convenient set of random samples
from the entity set� In the remainder of this section� we describe somewhat
simpli
ed experiments in each of the two frameworks�

In the machine learning framework� one tests the consistency of a clustering
algorithm� To do this� results of the algorithm run over each of the m training
sets are compared� But how can two clusterings be compared if they partition
di
erent sets� One way to do this is by extending each clustering from the
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training set to the full entity set by assigning appropriate cluster labels to the
test set elements� Another way would be to compare partitions pairwise over
the overlap of their training sets� The overlap is not necessarily small� If� for
instance� m � ��� then each of the training sets covers �� of entities and the
pairwise overlap is �� �
In data mining� it is the clustering results that are tested� In this framework�

the selected clustering method is applied to the entire data set before the set
is split into m equal	size parts� Then m training sets are formed as usual� by
removing one of the parts and combining the other parts� These training sets
are used to verify the clustering results found on the entire data set� To do this�
the clustering algorithm is applied to each of the m training sets and the found
clustering is compared with that obtained on the entire data set�
Let us consider� with examples� how these strategies can be implemented�

Example ����� Cross
validation of iK
Means clusters of the Market towns
data

Let us address the issue of consistency of clustering results
 a data mining ap�
proach� We already have found a set of clusters in the Market towns data
 see example
���� on page ��� This will be referred to as base clustering� To explore how stable
base clusters are
 let us do �	�fold cross�validation� First
 randomly partition the set
of �� towns in �	 classes of approximately the same size
 �ve classes with four towns
and �ve classes with �ve towns in each� Taking out each of the classes
 we get ten
�	� subsamples of the original data as the training sets and run iK�Means on each of
them� To see how much these clusterings di�er from the base clustering found using
the entire set
 we use three scoring functions
 as follows�

�� Average distance between centroids adc� Let ck �k � �� ���� �
 be base
centroids and c�l �l � �� ���� L
 centroids of the clustering found on a �	� sample�
For each ck �nd the nearest c�l over l � �� ���� L
 calculate d�ck� c

�
l
 and average the

distance over all k � �� ���� �� �The correspondence between ck and c�l can also
be established with the so�called best matching techniques #�$�
 This average
distance scores the di�erence between base clusters and sample clusters� The
smaller it is the more consistent is the base clustering�

�� Relative distance between partitions of samples M � Given a �	� train�
ing sample
 let us compare two partitions of it� �a
 the partition found on it with
the clustering algorithm and �b
 the base partition constrained to the sample�
Cross classifying these two partitions
 we get a contingency table P � �ptu
 of
frequencies ptu of sample entities belonging to the t�th class of one partition
and the u�th class of the other� The distance
 or mismatch coe�cient
 is

M �
X
t

p�t� �
X
u

p��u � �
X
t�u

p�tu

where pt� and p�u are summary frequencies over rows and columns of P 
 as
introduced later in formula �����
�

�� Relative chi
square contingency coe�cient T � This is computed in the
same way as distance M � the only di�erence is that now chi�squared coe�cient
�����

 �����


X� �
X
t�u

p�tu��pt�p�u
� �
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Table ����� Averaged results of �fteen cross�validations of Market towns clusters with
real and random data�

Method Real data Random data

adc 	�	�� �	�	��
 	���	 �	�	��

Ms 	�	�� �	�	��
 	�	�� �	�	��

T 	���� �	�	��
 	���� �	�	��


and its normalized version T � X��
p

�K � �
�L� �

 the Tchouprov coe��
cient
 are used� Tchouprov coe�cient cannot be greater than ��

Averaged results of �fteen independent �	�fold cross validation tests are presented
in the left column of Table ����� the standard deviations of the values are in paren�
theses�

We can see that distances adc and Ms are low and contingency coe�cient T is
high� But how low and how high are they� Can any cornerstones or benchmarks be
found�

One may wish to compare adc with the average distance between uniformly ran�
dom vectors� This is not di�cult
 because the average squared di�erence �x � y
�

between numbers x and y that are uniformly random in a unity interval is ���� This
implies that the average distance in ���dimensional space is � which is by far greater
than the observed 	�	���

This di�erence however
 shouldn�t impress anybody
 because the distance � refers
to an unclustered set� Let us generate thus a uniformly random ����� data table and
simulate the same computations as with the real data� Results of these computations
are in the column on the right of Table ����� We can see that distances adc and
Ms over random data are small too� however
 they are ��� times greater than those
on the real data� If one believes that the average distances at random and real data
may be considered as sampling averages of normal or chi�square distributions
 one may
consider a statistical test of di�erence such as that by Fisher #��
 �	$ to be appropriate
and lead to a statistically sound conclusion that the hypothesis that the clustering of
real data di�ers from that of random data can be accepted with a great con�dence
level� �

Example �����
Cross
validation of iK
Means algorithm on the Market towns data
In this example
 the cross�validation techniques are applied within the machine

learning context
 that is to say
 we are going to address the issue of the consistency
of the clustering algorithm rather than its results�

Thus
 the partitions found on the training samples will be compared not with the
base clustering but with each other� A �	�fold cross�validation is applied here as in
the previous example� Ten �	� cross�validation subsamples of the original data are
produced and iK�Means is applied to each of them� Two types of comparison between
the ten subsample partitions are used
 as follows�

�� Comparing partitions on common parts� Two �	� training samples�
overlap comprises �	� of the original entities
 which allows the building of
their contingency table over those common entities� Then both the distance M
and chi�squared T coe�cients can be used�

�� Comparing partitions by extending them to the entire entity set�
Given a �	� training sample
 let us �rst extend it to the entire entity set� To
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Table ����� Averaged comparison scores between iK�Means results at �	� real Mar�
ket towns and random data�

Method Real data Random data

Ms 	�	�� �	�	��
 	���� �	�	��

T 	���� �	�	��
 	��	� �	����


Table ����� Averaged comparison scores between iK�Means results extended to all
real Market towns and random data�

Method Real data Random data

Ms 	�	�� �	�	��
 	���� �	�	��

T 	���� �	�	��
 	���� �	����


do so
 each entity from the �	� testing set is assigned to the cluster whose
centroid is the nearest to the entity� Having all ten �	� partitions extended
this way to the entire data set
 their pair�wise contingency tables are built and
scoring functions
 the distance M and chi�squared T coe�cients
 are calculated�

Tables ���� and ���� present results of the pair�wise comparison between parti�
tions found by iK�Means applied to the Market towns data in both ways
 on �	�
overlaps and on the entire data set after extension
 averaged over �fteen ten�fold
cross�validation experiments� The cluster discarding threshold has been set to � as in
the previous examples� We can see that these are similar to �gures observed in the
previous example though the overall consistency of clustering results decreases here

especially when comparisons are conducted over extended partitions�

It should be noted that the issue of consistency of the algorithm is treated some�
what simplistically in this example
 with respect to the Market towns data only
 not to
a pool of data structures� Also
 the concept of algorithm�s consistency can be de�ned
di�erently
 for instance
 with regards to the criterion optimized by the algorithm�

�

Example ����� Higher dimensionality e�ects

It is interesting to mention that applying the same procedure to the original set
of �� features �not presented

 the following phenomenon has been observed� When
a matrix �� � �� is �lled in by a set of uniformly random numbers
 iK�Means with
the cluster discarding threshold �
 produces two clusters only� However
 at the �	�
training subsamples iK�Means fails most of the times to produce more than one non�
trivial cluster� This is an e�ect of the higher dimensionality of the feature space
relative to the number of entities in this example� Random points are situated too
far away from each other in this case and can not be con"ated by iK�Means into
clusters� One may safely claim that iK�Means di�ers from other clustering algorithms
in that respect that
 in contrast to the others
 it may fail to partition a data set if
it is random� This happens not always but only in the cases in which the number of
features is comparable to or greater than half of the number of entities� �
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��� Interpretation aids

As it was already pointed out� interpretation is an important part of clustering�
especially from the classi
cation perspective in which it is a validation tool
as well� Unfortunately� this subject is generally not treated within the same
framework as �proper� clustering� The data recovery view of clustering allows
us to 
ll in some gaps here as described in this section�

����� Conventional interpretation aids

Two conventional tools for interpreting K	Means clustering results �S� c� are�

��� analysis of cluster centroids ct and

��� analysis of bivariate distributions between cluster partition S � fStg
and various features�

In fact� under the zero	one coding system for categories� cross	classi
cation
frequencies are nothing but cluster centroids� which allows us to safely suggest
that analysis of cluster centroids at various feature spaces is the only conven	
tional interpretation aid�

Example ����� Conventional interpretation aids applied to Market towns
clusters�

Let us consider Table ���	 displaying centroids of the seven clusters of Market
towns data both in real and range standardized scales� These show some tendencies
rather clearly� For instance
 the �rst cluster appears to be a set of larger towns that
score �	 to �	 � higher than average on almost all �� features in the feature space�
Similarly
 cluster � obviously relates to smaller than average towns� However
 in other
cases
 it is not always clear what features caused the separation of some clusters�
For instance
 both clusters � and � seem too close to the average to have any real
di�erences at all� �

Table ����� Patterns of Market towns in the cluster structure found with iK�Means�
the �rst column displays cluster numbering �top
 and cardinalities �bottom
�

k�� Centr P PS Do Ho Ba Su Pe DIY SP PO CAB FM
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����� Contribution and relative contribution tables

Here two more interpretation aids are proposed�

�� Decomposition of the data scatter over clusters and features �table ScaD��

�� Quetelet coe�cients for the decomposition �table QScaD��

According to ����� and ������ clustering decomposes the data scatter T �Y � in
the explained and unexplained parts� B�S� c� and W �S� c�� respectively� The
explained part can be further presented as the sum of additive items Bkv �
Nkc

�
kv � which account for the contribution of every pair Sk �k � �� ����K� and

v � V � a cluster and a feature� The unexplained part can be further additively
decomposed in contributions Wv �

PK
k��

P
i�Sk

�yiv � ckv�
�� which can be

di
erently expressed as Wv � Tv � B�v where Tv and B�v are parts of T �Y �

and B�S� c� related to feature v � V � Tv �
P

i�I y
�
iv and B�v �

PK
k��Bkv �

This can be displayed as a decomposition of T �Y � in a table ScaD whose rows
correspond to clusters� columns to variables and entries to the contributions �see
Table ������

Table ����� ScaD� Decomposition of the data scatter over a K�Means cluster struc�
ture�

Feature f� f� fM
Cluster Total

S� B�� B�� B�M B��

S� B�� B�� B�M B��

SK BK� BK� BKM BK�

Expl B�� B�� B�M B�S� c

Unex W� W� WM W �S� c


Total T� T� TM T �Y 


Summary rows� Expl and Total� and column� Total� are added to the table�
they can be expressed as percentages of the data scatter T �Y �� The notation
follows the notation of �ow data� The row Unex accounts for the �unexplained�
di
erencesWv � Tv�B�v� The contributions highlight relative roles of features
both at individual clusters and in total�
These can be applied within clusters as well �see Table ���� further on as

an example��

Example ����� Contribution table ScaD for Market towns clusters
Table ���� presents the Market towns data scatter decomposed
 as in Table ����


over both clusters and features�
The table shows that
 among the variables
 the maximum contribution to the

data scatter is reached at FM� This can be attributed to the fact that FM is a binary
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Table ����� Table ScaD at Market towns� Decomposition of the data scatter over
clusters and features�

Cl�r P PS Do Ho Ba Su Pe DIY SP PO CAB FM Total Tot���
� ���	 ���� ���� ���� ���	 ���� ���� ���
 ���� ���� ���� ���
 �
��� �����
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���
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� ���
 ��
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 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 
���
� ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���
 ���� ���� ���� ���	
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��	� ����
� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ����

Expl ���� ���	 ��	� ��	
 ���� ���� ���	 ���	 ���� ���	 ���� ���� ����� �����
Unex ��
� ���	 ���� ���� ���� ���	 ���� ��	� ���� ���	 ���� ���� ����� �����
Total ���� ���� 
��� ���� ���
 ���� ��
� ���� 
��� ���� 
��� ���� 
���
 ������

variable� as shown in section �����
 contributions of binary variables are maximal when
they cover about half of the sample� The least contributing is DIY� The value of the
ratio of the explained part of DIY to the total contribution
 	���������	����
 amounts
to the correlation ratio between the partition and DIY
 as explained in sections �����
and ������

The entries in the table actually combine together cardinalities of clusters with
squared di�erences between the grand mean vector and within�cluster centroids� Some
show an exceptional value such as contribution ���� of FM to cluster �
 which covers
more than �	 � of the total contribution of FM and more than �	� of the total
contribution of the cluster� Still
 overall they do not give much guidance in judging
whose variables� contributions are most important in a cluster because of di�erences
between relative contributions of individual rows and columns� �

To measure the relative in�uence of contributions Bkv � let us utilize the
property that they sum up to the total data scatter and� thus� can be considered
an instance of the �ow data� The table of contributions can be analyzed in the
same way as a contingency table �see section ������� Let us de
ne� in particular�
the relative contribution of feature v to cluster Sk� B�k�v� � Bkv�Tv� to show
what part of the variable contribution goes to the cluster� The total explained
part of Tv� Bv � B�v�Tv �

PK
k�� B�k�v�� is equal to the correlation ratio

	��S� v� introduced in section ������

More sensitive measures can be introduced to compare the relative con	
tributions B�k�v� with the contribution of cluster Sk� Bk� �

P
v�V Bkv �

Nkd��� ck�� related to the total data scatter T �Y �� These are similar to
Quetelet coe�cients introduced for �ow data� the di
erence g�k�v� �
B�k�v��Bk��T �Y � and the relative di
erence q�k�v� � g�k�v���Bk��T �Y �� �
T �Y �Bkv

TvBk�
� �� The former compares the contribution of v with the average con	

tribution of variables to Sk� The latter relates this to the cluster�s contribution�
Index q�k�v� can also be expressed as the ratio of the relative contributions of
v� within Sk� Bkv�Bk�� and in the whole data� Tv�T �Y �� We refer to q�k�v�
as the Relative contribution index� RCI�k� v��
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For each cluster k� features v with the largest RCI�k� v� should be presented
to the user for interpretation�

Example ����� Table QScaD of the relative and Quetelet indexes

All three indexes of association
 B�k�v

 g�k�v
 and RCI q�k�v

 applied to the
Market towns data in Table ���� are presented in Table ���� below cluster centroids�

Table ����� Tendencies of the cluster structure of Market towns� At each cluster
 the
�rst and second lines show the cluster�s centroid in raw and standardized scales� the
other lines display the relative contribution B�k�v
 �Rcnt

 di�erence g�k�v
 �Dcnt


and RCI q�k� v

 respectively
 expressed as percentages� The last three lines show
these three indexes applied to the explained parts of feature contributions�

k C
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Now contributions have become visible indeed� One can see
 for instance
 that
variable Do highly contributes to cluster �� RCI is ������ Why� As the upper number
in the cell
 	
 shows
 this is a remarkable case indeed� no Doctor surgeries in the
cluster at all�

The di�erence between clusters � and �
 that was virtually impossible to spot
with other interpretation aids
 now can be explained by the high RCI values of SP
 in
excess of �		�
 reached at these clusters� A closer look at the data shows that there
is a swimming pool in each town in cluster � and none in cluster �� If the variable SP
is removed then clusters � and � will not di�er anymore and join together�

Overall
 the seven nontrivial clusters can be considered as re"ecting the following
four tiers of the settlement system� largest towns �Cluster �

 small towns �Cluster
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Table ����� ScaD for Masterpieces data in Table ����

Title LenS LenD NChar SCon Pers Obje Dire Total Total
�

Dickens 	�	� 	�	� 	�	� ���� 	�		 	�	� 	�	� ���� ���	�
Twain 	��� 	��� 	��� 	��� 	�	� 	�		 	�	� ���	 �����
Tolstoy 	�	� 	��� 	��	 	��� 	�	� 	�	� 	��� ���� �����

Expl 	��� 	��� 	��� ���� 	��� 	��� 	��	 ��	� ����	
Unex 	��� 	��� 	��	 	�		 	��� 	��� 	�		 ���� ����	

Total 	��� 	��� 	��� ���� 	��� 	��� 	��	 ���� �		�		

�

 large towns �Clusters � and �

 and small�to�average towns �Clusters �
� and �
�
In particular
 the largest town Cluster � consists of towns whose population is two to
three times larger than the average
 and they have respectively larger numbers of all
facilities
 of which even more represented are Post O�ces
 Doctors
 Primary Schools

and Banks� The small town Cluster � consists of the smallest towns with ��� thousand
residents on average� Respectively
 the other facilities are also smaller and some are
absent altogether �such as DIY shops and Farmers� markets
� Two large town clusters

Cluster � and Cluster �
 are formed by towns of nine to twelve thousand residents�
Although lack of such facilities as Farmers� market is common to them
 Cluster � is
by far the richer
 with service facilities that are absent in Cluster �
 which probably
is the cause of the separation of the latter within the tier� Three small�to�average
town clusters have towns of about �
			 residents and di�er from each other by the
presence of a few fancy objects that are absent from the small town cluster
 as well
as from the other two clusters of this tier� These objects are� a Farmers� market in
Cluster �
 a Hospital in Cluster �
 and a Swimming pool in Cluster �� �

Example ����� ScaD and QScaD for Masterpieces

Tables ���� and ���� present similar decompositions with respect to author�based
clustering of the Masterpieces data in Table ���� on page ��� This time
 only Quetelet
indexes of variables
 RCI�k� v
 are presented �in Table ����
�

Table ���� shows feature SCon as the one most contributing to the Dickens cluster

feature LenD to the Twain cluster
 and features NChar and Direct to the Tolstoy clus�
ter� Indeed
 these clusters can be distinctively described by the statements �SCon�	
�
�LenD � ��
� and �NChar � �� �or �Narrative is Direct�

 respectively� Curiously

the decisive role of LenD for the Twain cluster cannot be recognized from the absolute
contributions in Table ����� SCon prevails over the Twain cluster in that table� �

Table ����� Relative centroids� cluster centroids standardized and Relative contribu�
tion indexes of variables
 in cluster �rst and second lines
 respectively�

Title LenS LenD NChar SCon Pers Obje Dire

Dickens 	��	 	��� �	��� �	��� 	��� �	�	� �	���
����� ��	�� ����� �	��� ��	�� ��		�	 ��	��

Twain �	��� �	��� �	��� 	��� �	�	� 	��� �	���
��� ���� ���� �	�� ��		�	 ����� �����

Tolstoy 	��� 	��� 	��	 	��� �	��� �	��� 	���
����� ����	 ����	 ����� ����� ����� �����
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����� Cluster representatives

The user can be interested in a conceptual description of a cluster� but he
also can be interested in looking at the cluster via its representative� a �pro	
totype�� This is especially appealing when the representative is a well known
object� Such an object can give much better meaning to a cluster than a logi	
cal description in situations where entities are complex and the concepts used
in description are super
cial and do not penetrate deep into the phenomenon�
This is the case� for instance� in mineralogy where a class of minerals can be
represented by its stratotype� or in literary studies where a general concept can
be represented by a literary character�
To specify what entity should be taken as a representative of its cluster�

conventionally that entity is selected which is the nearest to its cluster�s cen	
troid� This strategy can be referred to as �the nearest in distance�� It can be
justi
ed in terms of the square error criterion W �S� c� �

PK
k��

P
h�Sk

d�yh� ck�
������ Indeed� the entity h � Sk which is the nearest to ck contributes the least
to W �S� c�� that is� to the unexplained part of the data scatter�
The contribution based approach supplements the conventional approach�

Decomposition of the data scatter ����� suggests a di
erent strategy by relating
to the explained rather than unexplained part of the data scatter� This strategy
suggests that the cluster�s representative must be the entity that maximally
contributes to the explained part� B�S� c� �

PK
k��

P
v c

�
kvNk�

How can one compute the contribution of an entity to that� There seems
nothing of entities in B�S� c�� To reveal contributions of individual entities� let
us recall that ckv �

P
i�Sk

yiv�Nk� Let us take c
�
kv in B�S� c� as the product

of ckv with itself� and change one of the factors for the de
nition� This way we
obtain equation c�kvNk �

P
i�Sk

yivckv � This leads to a formula for B�S� c� as
the summary inner product�

B�S� c� �

KX
k��

X
i�Sk

X
v�V

yivckv �

KX
k��

X
i�Sk

�yi� ck�� �����

which shows that the contribution of entity i � Sk is �yi� ck��
The most contributing entity is �the nearest in inner product� to the cluster

centroid� which may lead sometimes to di
erent choices� Intuitively� the choice
according to the inner product follows tendencies represented in ck towards
the whole of the data rather than ck itself� which is manifested in the choice
according to distance�

Example ����� Di�erent concepts of cluster representatives
The entity based elements of the data scatter decomposition for the Dickens cluster

from Table ���� are displayed in Table ����� Now some contributions are negative

which shows that a feature at an entity may be at odds with the cluster centroid�
According to this table
 the maximum contribution to the data scatter
 �����
 is
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Table ����� Decomposition of feature contributions to the Dickens cluster in Table
���� �in thousandth
� The right�hand column shows distances to the cluster�s centroid�

Title LenS LenD NChar SCon Pers Obje Dire Cntr Cntr
� Dist

OTwist ��� �� �� ��� �� � �� ��� ���� ���
DoSon �� � 	 ��� �� � �� ��� ���� ���
GExpect � �� 	 ��� ��� �� �� ��� ���� ��	

Dickens �� �� �� ���� �� � �� ���� ���	� 	

Table ����� Two Dickens� masterpieces along with features contributing to their
di�erences�

Item LenS LenD NChar

OTwist ���	 ���� �
DoSon ���� ���	 �

Cluster mean ���� ���� ����
Grand mean ���� ���� ��		

delivered by the novel Oliver Twist� Yet the minimum distance to the cluster�s centroid
is reached at a di�erent novel
 Dombey and Son�

To see why this may happen
 let us take a closer look at the two novels versus
within cluster and grand means �Table ����
�

Table ���� clearly shows that the cluster�s centroid is greater than the grand mean
on the �rst two components and smaller on the third one� These tendencies are
better expressed in Dombey and Son over the �rst component and in Oliver Twist
over the other two
 which accords with the contributions in Table ����� Thus
 Oliver
Twist wins over Dombey and Son as better representing the di�erences between the
cluster centroid and the overall gravity center
 expressed in the grand mean� With
the distance measure
 no overall type tendency can be taken into account� �

Example ����� Interpreting Bribery clusters

Let us apply similar considerations to the �ve clusters of the Bribery data listed in
Table ����� Since individual cases are not of interest here
 no cluster representatives
will be considered� However
 it is highly advisable to consult the original data and
their description on page ���

In cluster �
 the most contributing features are� Other branch �����

 Change
of category �����

 and Level of client �����
� Here and further in this example
the values in parentheses are relative contribution indexes RCI� By looking at the
cluster�s centroid
 one can �nd speci�cs of these features in the cluster� In particular

all its cases appear to fall in Other branch
 comprising such bodies as universities or
hospitals� In each of the cases the client�s issue was of a personal matter
 and most
times �six of the eight cases
 the service provided was based on re�categorization of the
client into a better category� The category Other branch �of feature Branch
 appears
to be distinctively describing the cluster� the eight cases in this category constitute
the cluster�

Cluster � consists of nineteen cases� Its most salient features are� Obstruction of
justice �����

 Law enforcement �����

 and Occasional event �����
� By looking
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at the centroid values of these features
 one can conclude� ��
 all corruption cases in
this cluster have occurred in the law enforcement system� ��
 they are mostly done via
obstruction of justice for occasional events� The fact ��
 is not su�cient for distinc�
tively describing the cluster since there are thirty�four cases
 not just nineteen
 that
have occurred in the law enforcement branch� Two more conditions have been found
by a cluster description algorithm
 APPCOD �see in section ���

 to be conjunctively
added to ��
 to make the description distinctive� ��
 the cases occurred at o�ce levels
higher than Organization
 and ��
 no cover�up was involved�

Cluster � contains ten cases for which the most salient categories are� Extortion in
variable III Type of service �����

 Organization �����

 and Government �����
 in
X Branch� Nine of the ten cases occurred in the Government branch
 overwhelmingly
at the level of organization �feature I
 and
 also overwhelmingly
 the o�ce workers
extorted money for rendering their supposedly free services �feature III
� The client
level here is always of an organization
 though this feature is not that salient as the
other three features�

Cluster � contains seven cases
 and its salient categories are� Favors in III �����


Government in X �����

 and Federal level of O�ce �����
� Indeed
 all its cases
occurred in the government legislative and executive branches� The service provided
was mostly Favors �six of seven cases
� Federal level of corrupt o�ce was not frequent

two cases only� Still
 this frequency was much higher than the average
 for the two
cases are just half of the total number
 four
 of the cases in which Federal level of
o�ce was involved�

Cluster � contains eleven cases and pertains to two salient features� Cover�up
��	��
 and Inspection �����
� All of the cases involve Cover�up as the service pro�
vided
 mostly in inspection and monitoring activities �nine cases of eleven
� A distinc�
tive description of this cluster can be de�ned to conjunct two statements� it is always
a cover�up but not at the level of Organization�

Overall
 the cluster structure leads to the following overview of the situation� Most
important
 it is Branch which is the feature de�ning Russian corruption when looked
at through the media glass� Di�erent branches tend to involve di�erent corruption
services� The government corruption involves either Extortion for rendering their
free services to organizations �Cluster �
 or Favors �Cluster �
� The law enforcement
corruption in higher o�ces is for either Obstruction of justice �Cluster �
 or Cover�up
�Cluster �
� Actually
 Cover�up does not exclusively belong in the law enforcement
branch� it relates to all o�ces that are to inspect and monitor business activities
�Cluster �
� Corruption cases in Other branch involve re�categorization of individual
cases into more suitable categories �Cluster �
� �

����� Measures of association from ScaD tables

Here we are going to see that summary contributions of clustering towards a
feature in ScaD tables are compatible with traditional statistical measures of
correlation considered in section ����

Quantitative feature case� Correlation ratio

As proven in section ������ the total contribution B�v �
P

k Bvk of a quan	
titative feature v to the cluster	explained part of the scatter� presented in the
ScaD tables� is proportional to the correlation ratio between v and cluster par	
tition S� introduced in section ������ In fact� the correlation ratios can be found
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by relating the row Expl to row Total in the general ScaD table �����

Example ���
� Correlation ratio from a ScaD table
The correlation ratio of the variable P �Population resident
 over the clustering in

Table ���� can be found by relating the corresponding entries in rows Expl and Total�
it is ����������	���� This relatively high value shows that the clustering closely �
though not entirely � follows this variable� In contrast
 the clustering has rather little
to do with variable DIY
 the correlation ratio of which is equal to 	���������	���� �

Categorical feature case� Chi�square and other contingency coef�
�cients
The summary contribution of a nominal feature l having Vl as the set of its

categories� to the clustering partition S has something to do with contingency
coe�cients introduced in section ������ It is proven in section ����� to be equal
to

B�S� l� �
N

jVlj
KX
k��

X
v�Vl

�pkv � pk�p�v�
�

pk�b�v
�����

where bv stands for the scaling coe�cient at the data standardization� Divisor
jVlj� the number of categories� comes from the rescaling stage introduced in
section ����
The coe�cient B�S� l� in ����� can be further speci
ed depending on the

scaling coe�cients bv� In particular� the items summed up in ����� are�

�� �pkv�pkpv�
�

pk
if bv � �� the range�

�� �pkv�pkpv�
�

pkpv���pv�
if bv �

p
pv��� pv�� the Bernoullian standard deviation�

�� �pkv�pkpv�
�

pkpv
if bu �

p
pu� the Poissonian standard deviation�

Items � and � above lead to B�S� l� being equal to the summary Quetelet
coe�cients introduced in section ������ The Quetelet coe�cients� thus� appear
to be related to the data standardization� Speci
cally� G� corresponds to bv � �
and Q� � X� to bv �

p
pv� Yet item �� the Bernoullian standardization� leads

to an association coe�cient which has not been considered in the literature�

Example ����� ScaD based association between a feature and clustering
Let us consider the contingency table between the author�based clustering of mas�

terpieces and the only nominal variable in the data
 Narrative �Table ����
� In this
example
 the dummy variables have been range normalized and then rescaled with
b�v �

p
�
 which is consistent with formula ����
 with bv � � and jVlj � � for the

calculation of the summary contribution B�S� l
� Table ���� presents the values of
�pkv�pkpv�

�

�pk�N
in each cell of the cross classi�cation� In fact
 these are entries of the full

ScaD table in Table ����
 page �	�
 related to the categories of Narrative �columns

and the author�based clusters �rows

 with row Total corresponding to row Expl in Ta�
ble ����� In particular
 the total contribution of the clustering and variable Narrative
is equal to 	����	����	��	�	���
 or about ����� of the data scatter� �
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Table ����� Cross�classi�cation of the author�based partition and Narrative at the
eight masterpieces �in thousandth
�

Class Personal Objective Direct Total

Dickens ��� ��	 	 ���
Twain ��	 ��� 	 ���
Tolstoy 	 	 ��	 ��	

Total ��� ��� ��	 �			

Table ����� Elements of calculation B�S� l
 according to formula ����
 �in ten�
thousandth
�

Class Personal Objective Direct Total

Dickens �� ��� ��� ����
Twain ��� �� ��� ����
Tolstoy ��� ��� ���	 ����

Total ��	� ��	� �			 ��	�

��� Overall assessment

K	Means advantages�

�� Models typology building activity�

�� Computationally e
ective both in memory and time�

�� Can be utilized incrementally� �on	line��

�� Straightforwardly associates feature salience weights with feature
scales�

�� Applicable to both quantitative and categorical data and mixed data
provided that care has been taken of the relative feature scaling�

�� Provides a number of interpretation aids including cluster prototypes
and features and entities most contributing to cluster speci
city�

K	Means issues�

�� Simple convex spherical shape of clusters�

�� Choosing the number of clusters and initial seeds�

�� Instability of results with respect to initial seeds�

The issues above are not necessarily shortcomings� To cope with issue �� the
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feature set should be chosen carefully according to the goals of the data analysis�
To cope with issue �� the initial seeds should be selected based on conceptual
understanding of the substantive domain or preliminary data analysis with the
AP clustering approach� There can be some advantages in the issues as well�
Issue � keeps solutions close to pre	speci
ed centroid settings� which is good
when centroids have been conceptually substantiated� Issue � of simplicity of
cluster shapes provides for a possibility of deriving simple conjunctive descrip	
tions of the clusters� which can be used as supplementary interpretation aids
�see section �����
A clustering algorithm should present the user with a comfortable set of op	

tions to do clustering� In our view� the intelligent version of K	Means described
above and its versions� implementing the possibility of removal of entities that
have been found either ��� �deviant� �contents of small Anomalous pattern
clusters�� or ��� �intermediate� �entities that are far away from their centroids�
or have small attraction index values�� or ��� �trivial� �entities that are close
to the grand mean�� give the user an opportunity to select a preferred option
without imposing on him technical issues�
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Chapter �

Ward Hierarchical

Clustering

After reading this chapter the reader will know about�

�� Agglomerative and divisive clustering�

�� The Ward algorithm for agglomerative clustering�

�� Divisive algorithms for Ward criterion�

�� Visualization of hierarchical clusters with heighted tree diagrams and
box charts�

�� Decomposition of the data scatter involving both Ward and K	Means
criteria�

�� Contributions of individual splits to� �i� the data scatter� �ii� feature
variances and covariances� and �iii� individual entries�

�� Extensions of Ward clustering to dissimilarity� similarity and contin	
gency data�

Base words

Agglomerative clustering Any method of hierarchical clustering that works
bottom up� by merging two nearest clusters at each step�

Aggregation Transformation of a contingency table into a smaller size table by

���
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aggregating its row and column categories with summing up correspond	
ing entries� Can be done with Ward clustering extended to contingency
tables�

Box chart A visual representation of an upper cluster hierarchy involving a
triple partition of a rectangular box corresponding to each split� The
middle part is proportional to the contribution of the split and the other
two to contributions of resulting clusters�

Conceptual clustering Any divisive clustering method that uses only a single
feature at each splitting step� The purity and category utility scoring
functions are closely related to Ward clustering criterion�

Contribution of a split Part of the data scatter that is explained by a split
and equal to the Ward distance between split parts� Features most con	
tributing to a split can be used in taxonomic analysis� Split contributions
to covariances between features and individual entities can also be con	
sidered�

Divisive clustering Any method of hierarchical clustering that works from
top to bottom� by splitting a cluster in two distant parts� starting from
the universal cluster containing all entities�

Heighted tree A visual representation of a cluster hierarchy by a tree diagram
in which nodes correspond to clusters and are positioned along a vertical
axis in such a way that the height of a parent node is always greater than
the heights of its child nodes�

Hierarchical clustering An approach to clustering based on representation
of data as a hierarchy of clusters nested over set	theoretic inclusion� In
most cases� hierarchical clustering is used as a tool for partitioning� though
there are some cases� such as that of the evolutionary tree� in which the
hierarchy re�ects the substance of a phenomenon�

Ward clustering A method of hierarchical clustering involving Ward distance
between clusters� Ward distance is maximized in Ward divisive clustering
and minimized in Ward agglomerative clustering� Ward clustering accords
with the data recovery approach�

Ward distance A measure of dissimilarity between clusters� equal to the
squared Euclidean distance between cluster centroids weighted by the
product of cluster sizes�
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��� Agglomeration� Ward algorithm

Hierarchical clustering is a discipline devoted to presenting data in the form of
a hierarchy over the entity set� Sometimes features are also put into the same
or separate hierarchy� There are two approaches to building a cluster hierarchy�

�a� agglomerative clustering that builds a hierarchy in the bottom	up fashion
by starting from smaller clusters and sequentially merging them into �parental�
nodes� and

�b� divisive clustering that builds a hierarchy top	to	bottom by splitting
greater clusters into smaller ones starting from the entire data set�

The agglomerative approach in clustering builds a cluster hierarchy by merg	
ing two clusters at a time� starting from singletons �one	entity clusters� or other
pre	drawn clusters� Thus� each non	singleton cluster in the hierarchy is the
union of two smaller clusters� which can be drawn like a genealogical tree� The
smaller clusters are called children of the united cluster which is referred to as
their parent� The singletons are referred to as terminal nodes or leaves� and
the universal combined cluster consisting of the entire entity set is referred to
as the root of the tree� All other clusters are referred to as nodes of the tree�

The singletons and their successive mergers at every intermediate step form
what is called a lower cluster hierarchy� until the root is reached� at which point
a full cluster hierarchy emerges�

Besides the tree topology� some metric information is usually also speci
ed�
each cluster	node is accompanied with a positive number referred to as its
height� A heighted tree is drawn in such a way that each cluster is represented
with a node whose height is re�ected in its position over the vertical axis� The
heights then should satisfy the natural monotonicity requirement� the parent�s
height is greater than its children�s heights�

At each step of an agglomerative clustering algorithm a set of already formed
clusters S is considered along with the matrix of distances between maximal
clusters� Then two nearest maximal clusters are merged and the newly formed
cluster is supplied with its height and distances to other clusters� The process
ends� typically� when all clusters have been merged into the universal cluster
consisting of the set I of all entities under consideration�

Agglomerative algorithms di
er depending on between	cluster distance mea	
sures used in them� Especially popular are the so	called single linkage� full
linkage and group average criteria� The distance between clusters is de
ned as
the minimum or maximum distance between cluster elements in the single link	
age and full linkage methods� respectively� The group average criterion takes
the distance between cluster centroids as the between	cluster distance� Quite a
broad set of agglomerative algorithms has been de
ned by Lance and Williams
in terms of a formula for dynamic recalculation of the distances between clusters
being merged and other clusters into the distances from the merged cluster �see�
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for instance� ���� ��� ����� Lance and Williams formula covers all interesting
algorithms proposed in the literature so far and much more�
Here we concentrate on a weighted group average criterion 
rst proposed by

Ward ������
Speci
cally� for clusters Sw� and Sw� whose cardinalities are Nw� and Nw�

and centroids cw� and cw�� respectively� Ward distance is de
ned as

dw�Sw�� Sw�� �
Nw�Nw�

Nw� !Nw�
d�cw�� cw�� �����

where d�cw�� cw�� is the squared Euclidean distance between cw� and cw��
To describe the intuition behind this criterion� let us consider a partition S

on I and two of its classes Sw� and Sw� and ask ourselves the following question�
how the square error of S�W �S� c�� would change if these two classes are merged
together�
To answer the question� let us consider the partition that di
ers from S only

in that respect that classes Sw� and Sw� are changed in it for the union Sw��Sw�
and denote it by S�w�� w��� Note that the combined cluster�s centroid can be
expressed through centroids of the original classes as cw��w� � �Nw�cw� !
Nw�cw����Nw� !Nw��� Then calculate the di
erence between the square error
criterion values at the two partitions�W �S�w�� w��� c�w�� w����W �S� c�� where
c�w�� w�� stands for the set of centroids in S�w�� w��� The di
erence is equal
to the Ward distance between Sw� and Sw��

dw�Sw�� Sw�� �W �S�w�� w��� c�w�� w��� �W �S� c� �����

Because of the additive nature of the square error criterion ������ all items
on the right of ����� are self subtracted except for those related to Sw� and Sw�
so that the following equation holds

dw�Sw�� Sw�� �W �Sw� � Sw�� cw��w���W �Sw�� cw���W �Sw�� cw�� �����

where� for any cluster Sk with centroid ck� W �Sk� ck� is the summary distance
����� from elements of Sk to ck �k � w�� w�� w� � w���
The latter equation can be rewritten as

W �Sw� � Sw�� cw��w�� �W �Sw�� cw�� !W �Sw�� cw�� ! dw�Sw�� Sw��� �����

which shows that the summary square error of the merged cluster is the sum
of square errors of the original clusters and Ward distance between them�
Since all expressions on the right side in ����� are positive� the square error

W �Sw��Sw�� cw��w�� of the merged cluster is always greater than that of either
of the constituent clusters� which allows using the cluster square error as the
height function in visualizing a cluster hierarchy�
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Equation ����� justi
es the use of Ward distance if one wants to keep the
within cluster variance as small as possible at each of the agglomerative steps�
The following presents the Ward agglomeration algorithm�

Ward algorithm�
�� Initial setting� The set of maximal clusters is all the single	
tons� their cardinalities being unity� heights zero� themselves being
centroids�
�� Cluster update� Two clusters� Sw� and Sw�� that are clos	
est to each other �being at the minimum Ward distance� among
the maximal clusters� are merged together forming their parent
cluster Sw��w� � Sw� � Sw�� The merged cluster�s cardinal	
ity is de
ned as Nw��w� � Nw� ! Nw�� centroid as cw��w� �
�Nw�cw� ! Nw�cw���Nw��w� and its height as h�w� � w�� �
h�w�� ! h�w�� ! dw�Sw�� Sw���
�� Distance update� Put Sw��w� into and remove Sw� and Sw�
from the set of maximal clusters� De
ne Ward distances between
the new cluster Sw��w� and other maximal clusters St�
�� Repeat� If the number of maximal clusters is larger than �� go
to step �� Otherwise� output the cluster merger tree along with
leaves labelled by the entities�

Ward agglomeration starts with singletons whose variance is zero and pro	
duces an increase in criterion ����� that is as small as possible� at each agglomer	
ation step� This justi
es the use of Ward agglomeration results by practitioners
to get a reasonable initial setting for K	Means� Two methods supplement each
other in that clusters are carefully built with Ward agglomeration� and K	Means
allows overcoming the in�exibility of the agglomeration process over individual
entities by reshu$ing them� There is an issue with this strategy though� Ward
agglomeration� unlike K	Means� is a computationally intensive method� not
applicable to large sets of entities�

The height of the new cluster is de
ned as its square error according to
equation ������ Since the heights of merged clusters include the sums of heights
of their children� the heights of the nodes grow fast� with an �exponential�
speed� This can be used to address the issue of determining what number of
clusters is �relevant� to the data by cutting the hierarchical tree at the layer
separating long edges from shorter ones if such a layer exists �see� for example�
Figure ��� whose three tight clusters can be seen as hanging on longer edges��
see ����� pp� ��	��� for heuristical rules on this matter�
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Table ���� Matrix of Ward distances between eight entities in Table ����

Entity � � � � � � � �

� 	�		 	��� 	��� 	��� ���	 ���� ���� ����
� 	��� 	�		 	��� 	��� 	��� ���	 	��� ����
� 	��� 	��� 	�		 	��� 	��� 	��� 	��� ����
� 	��� 	��� 	��� 	�		 	��� 	��� 	��� ����
� ���	 	��� 	��� 	��� 	�		 	��� 	��� 	���
� ���� ���	 	��� 	��� 	��� 	�		 	��� ����
� ���� 	��� 	��� 	��� 	��� 	��� 	�		 	��	
� ���� ���� ���� ���� 	��� ���� 	��	 	�		

Example ����� Agglomerative clustering of Masterpieces

Let as apply the Ward algorithm to the pre�processed and standardized Master�
pieces data in Table ���� presented in the right�bottom display of Figure ���� The
algorithm starts with the matrix of Ward distances between all singletons
 that is a
matrix of entity�to�entity Euclidean distances squared and divided by two
 as obvi�
ously follows from ����
� The Ward distance matrix is presented in Table ����

Minimum non�diagonal value in the matrix of Table ��� is dw��� �
 � 	��� with
dw��� �
 � 	��	 and d��� �
 � 	��� as the second and third runners�up
 respectively�
These are the starting agglomerations according to Ward algorithm� clusters f�� �g
f�� �g and f�� �g whose heights are 	���
 	��	 and 	���
 respectively
 shown on Figure
��� as percentages of the data scatter T �Y 
 �

P
i�v y

�
iv which is the height of the

maximum cluster comprising all the entities as proven in section ���� Further mergers
are also shown in Figure ��� with their heights� The author based classes hold on

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Figure ���� Cluster tree built with Ward clustering algorithm� the node heights are
scaled in per cent to the height of the entire entity set�

the tree for about ��� of its height
 then the Leo Tolstoy cluster merges with that
of Mark Twain as should be expected from the bottom�right display in Figure ����
The hierarchy drastically changes if a di�erent feature scaling system is applied� For
instance
 with the standard deviation based standardization
 Leo Tolstoy�s two novels
do not constitute a single cluster but are separately merged within the Dickens and
Twain clusters� This does not change even with the follow�up rescaling of categories
of Narrative by dividing them over

p
�� �
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��� Divisive clustering with Ward criterion

A divisive algorithm builds a cluster hierarchy from top to bottom� each time
by splitting a cluster in two� starting from the entire set� Such an algorithm will
be referred to as a Ward	like divisive clustering algorithm if the splitting steps
maximize Ward distance between split parts� Let us denote a cluster by Sw� its
split parts by Sw� and Sw�� so that Sw � Sw��Sw� and consider equation �����
which is applicable here� it decomposes the square error� that is� the summary
distance between elements and the centroid of Sw into the sum of the square
errors of the split parts and the Ward distance between them�

W �Sw� cw� �W �Sw�� cw�� !W �Sw�� cw�� ! dw�cw�� cw�� �����

where the indexed c refers to the centroid of the corresponding cluster�
In the process of divisions� a divisive clustering algorithm builds what is

referred to as an upper cluster hierarchy� which is a binary tree rooted at the
universal cluster I such that its leaves are not necessarily singletons� One
may think of an upper cluster hierarchy as a cluster hierarchy halfway through
construction from top to bottom� in contrast to lower cluster hierarchies that
are cluster hierarchies built halfway through� bottom up�
Thus� a Ward	like divisive clustering algorithm goes like this�

Ward�like divisive clustering
�� Start� Put Sw � I and draw the tree root as a node corre	
sponding to Sw at the height of W �Sw� cw��
�� Splitting� Split Sw in two parts� Sw� and Sw�� to maximize
Ward distance wd�Sw�� Sw���
�� Drawing attributes� In the drawing� add two children nodes
corresponding to Sw� and Sw� at the parent node corresponding to
Sw� their heights being their square errors�
�� Cluster set�s update� Set Sw � Sw� where Sw� is the node
of maximum height among the leaves of the current upper cluster
hierarchy�
�� Halt� Check the stopping condition �see below�� If it holds�
halt and output the hierarchy and interpretation aids described in
section ������ otherwise� go to ��

The following can be used as the stopping condition for the process of divi	
sions�

�� The number of �nal clusters� The number of terminal nodes �leaves�
has reached a pre	speci
ed threshold�
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�� Cluster height� The height W �Sw� cw� of Sw has decreased to a pre	
speci
ed threshold such as the average contribution of a single entity�
T �Y ��N � or a pre	speci
ed proportion� say � � of the data scatter�

�� Contribution to data scatter� The total contribution of the current
cluster hierarchy� that is� the sum of Ward distances between split parts in
it� has reached a pre	speci
ed threshold such as �� of the data scatter�

Each of these e
ectively speci
es the number of 
nal clusters� Other approaches
to choosing the number of clusters are reviewed in section ������
It should be noted that the drawn representation of an upper cluster hier	

archy may follow formats di
ering from that utilized for representing results
of an agglomerative method� In particular� we suggest that one can utilize the
property that all contributions are summed up to ��� of the data scatter
and present the process of divisions with a box chart such as in Figure ��� on
page ���� At such a box chart each splitting is presented with a partition of
a corresponding box in three parts of which that in the middle corresponds to
the split whereas those on the right and left correspond to split clusters� The
parts� areas are proportional to their contributions� to that of the split� Ward
distance itself� and those of clusters split� which are the summary distances of
the cluster�s entities to their centroids� W �Sw� cw� �

P
i�Sw

d�yi� cw�� for any
Sw � S� The box chart concept is similar to that of the pie chart except for
the fact that the pie chart slices are of the same type whereas there are two
types of slices in the box chart� those corresponding to splits and those to split
clusters�

����� �
Means splitting

Developing a good splitting algorithm at Step � of Ward	like divisive clustering
is an issue� To address it� let us take a closer look at the Ward distance as a
splitting criterion� One of the possibilities follows from the fact that maximizing
Ward distance is equivalent to minimizing the square	error criterion W �S� c� of
K	Means at K � � as proven in section ����� ����� Thus� �	Means can be used
in the Ward	like divisive clustering algorithm to specify it as follows�

��Means splitting in divisive clustering
�� Initial setting� Given Sw � I � specify initial seeds of split parts�
cw� � y� and cw� � y��
�� Straight ��Means� Apply �	Means algorithm to Sw with initial
seeds speci
ed at step � and the Euclidean distance squared �������
�� Output results� �a� split parts Sw� and Sw�� �b� their centroids
cw� and cw� along with their heights� h�S�� and h�S��� �c� contri	
bution of the split� that is� Ward distance between Sw� and Sw��
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In spite of the fact that Euclidean squared distance d� not Ward distance dw
is used in splitting� the algorithm in fact goes in line with Ward agglomeration�
To specify two initial seeds in �	Means splitting� either of the three options

indicated in section ��� can be applied�

�� random selection�

�� maximally distant entities�

�� centroids of two Anomalous pattern clusters derived at Sw�

Random selection must be repeated many times to get a reasonable solu	
tion for any sizeable data� The �	Means splitting algorithm has two major
drawbacks�

�� Step � is highly time consuming since it requires 
nding the maximum of
all pair	wise distances�

�� The result can be highly a
ected by the choice of the initial seeds as the
most distant entities� which can be at odds with the cluster structure
hidden in data�

In spite of these� divisive clustering with �	Means became rather popular af	
ter it had been experimentally approved in ������ where it was described as a
heuristical method under the name of �Bisecting K	Means� probably without
any knowledge of the work ���� in which it was proposed as an implementation
of divisive clustering with the Ward criterion�

����� Splitting by separating

To relax both of the issues above� one can employ a di
erent formulation of
Ward distance in ������

dw�Sw�� Sw�� �
NwNw�

Nw�
d�cw�� cw� �����

in which the center of Sw� is changed for the center of the parent cluster Sw
along with changing the numeric factor in the distance� Expression ����� ex	
presses Ward distance through one of the split parts only� The proof easily
follows from equation Nwcw � Nw�cw� ! Nw�cw� and the de
nition of the
squared Euclidean distance d�
To maximize ������ one needs to keep track of just one cluster Sw� because

cw and Nw are pre	speci
ed by Sw and do not depend on splitting�
We leave the task of reformulation of the Straight �	Means	like splitiing algo	

rithm with criterion ����� to the reader� Instead� we produce a version exploiting
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the incremental approach to building clusters described in section ������ Accord	
ing to this approach� cluster Sw� and its center cw� are updated incrementally
by considering one entity�s move at a time� Let us denote z � � if an entity was
added to Sw� and z � �� if that entity was removed� Then the new value of
Ward distance ����� after the move will be Nw�Nw� ! z�d�c�w�� cw���Nw� � z�
where c�w� is the updated centroid of Sw�� Relating this to dw ������ we can see
that the value of Ward distance increases if the ratio is greater than �� that is�
if

d�cw� cw��

d�cw� c�w��
�
Nw�Nw� ! zNw�

Nw�Nw� � zNw�
�����

and it decreases otherwise� This leads us to the following incremental splitting
algorithm�

Splitting by separating
�� Initial setting� Given Sw � I and its centroid cw� specify its
split part Sw� as consisting of entity y�� which is furthest from cw�
and put cw� � y�� Nw� � � and Nw� � Nw � ��
�� Next move� Take an entity yi� this can be that nearest to cw��
�� Stop�condition� Check inequality ����� with yi added to Sw� if
yi 
� Sw� or removed from Sw�� otherwise� If ����� holds� change the
state of yi with respect to Sw� accordingly� recalculate cw� � c�w��
Nw�� Nw� and go to step ��
�� Output results� split parts Sw� and Sw� � Sw � Sw�� their
centroids cw� and cw�� their heights� h� � W �Sw�� cw�� and
h� �W �Sw�� cw��� and the contribution of the split� that is� Ward
distance dw�Sw�� Sw���

To specify the seed at Step �� the entity which is the farthest from the
centroid is taken� However� di
erent strategies can be pursued too� �a� random
selection or �b� taking the centroid of the Anomalous pattern found with the
AP algorithm from section ������ These strategies are similar to those suggested
for the �	Means splitting algorithm� and so are their properties�

Example ����� Divisive clustering of Masterpieces with �
Means splitting

Let us apply the Ward�like divisive clustering method to the Masterpieces data
in Table ���� range standardized with the follow�up rescaling the dummy variables
corresponding to the three categories of Narrative� The method with ��Means splitting
may produce a rather poorly resolved picture if the most distant entities
 � and �
according to the distance matrix in Table ���
 are taken as the initial seeds� Then
step � would produce tentative classes f�� �� �� �� �g and f�� �� �g because � is closer to
� than to � as easily seen in Table ���� This partition breaks the authorship clusters�
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Figure ���� Cluster tree of masterpieces built with Splitting by separating� the node
heights are scaled as percentages to the pre�processed data scatter�

Unfortunately
 no further iterations can change it� This shows how vulnerable results
found with the rule for initial seed setting at the two farthest entities can be�

�

Example ����� Divisive clustering of Masterpieces with splitting by sep

arating and a box
chart

Splitting with separating by taking the �rst seed at the entity � which is the
farthest from the origin
 works more gently and produces the tree presented in Figure
���� This tree di�ers from the tree found with the agglomerative Ward method not
only in the order of author�based divisions �the Tolstoy cluster �rst goes here
 but
also in the node heights�

Let us illustrate the splitting process in the Ward�like divisive clustering with
a box chart� The �rst split separates Tolstoy�s two novels
 � and �
 from the rest�
Contributions are calculated according to the decomposition ����
� The split itself
contributes to the data scatter �����
 the Tolstoy cluster ���� and the rest �	���

which is re"ected in the areas occupied by the vertically split parts in Figure ����
The second split �horizontal lines across the right�hold part of the box
 produces the
Dickens cluster
 with entities �
 �
 and �
 contributing ����� to the data scatter

and the Twain cluster
 with entities �
 �
 and �
 contributing ������ the split itself
contributes ���� �� If we accept threshold ��������� of the data scatter
 which is the
average contribution of a single entity
 as the stopping criterion
 then the process halts
at this point� A box chart in Figure ��� illustrates the process� Slices corresponding
to clusters are shadowed and those corresponding to splits are left blank� The most
contributing features are put in split slices along with their contributions� The thinner
the area of a cluster
 the closer its elements to the centroid and thus to each other�

�

Example ����� Evolutionary tree for Gene pro�le data and mapping gene
histories

Applying agglomerative and divisive Ward clustering
 the latter with ��Means
splitting at every step
 to the Gene pro�les data in Table ��� for clustering genomes

which are columns of the table
 leads to almost identical trees shown in Figure ���

�a
 and �b

 respectively� the height of each split re"ects its contribution to the data
scatter as described in section ������ The rows here are features� It should be noted

© 2005 by Taylor & Francis Group, LLC



��� WARD HIERARCHICAL CLUSTERING

SCon (25.2%)

Twain (14.5%)

Tolstoy (5.1%)

Dickens (12.1%)

Split 2 (34.1%)

Split 1 (34.2%)

Direct (8.4%)
NChar (11.2%)

Figure ���� A box chart to illustrate clustering by separating� splitting was halted
when split contributions to the data scatter became less than the average contribution
of an individual entity�

that the �rst two lines in which all entries are unities do not a�ect the results of the
computation at all
 because their contributions to the data scatter are zero� Similarly

in the bacterial cluster appearing after the �rst split on the right
 the next nine COGs
�rows � to ��
 also become redundant because they have constant values throughout
this cluster�

The only di�erence between the two trees is the position of species b within the
bacterial cluster dcrbjqv� b belongs to the left split part in tree �a

 and to the right
split part in tree �b
� The �rst two splits after LUCA re"ect the divergence of bacteria
�the cluster on the right

 then eukaryota �the leaf y
 and archaea� All splits in these
trees are compatible with the available biological knowledge� this is due to a targeted
selection of COGs� of the original ��		 COGs considered in #��$
 more than one�
third did not conform to the major divisions between bacteria
 archaea and eukaryota
because of extensive loss and horizontal transfer events during evolution� Due to these
processes
 the results obtained with a variety of tree�building algorithms on the full
data are incompatible with the tree found with more robust data
 such as similarities
between their ribosomal proteins�

The COGs which contribute the most to the splits seem to be biologically relevant
in the sense that they tend to be involved in functional systems and processes that are
unique for the corresponding cluster� For instance
 COG�	��
 COG����
 COG��	�

COG���� make the maximum contribution
 of ��� each
 to the split of bacteria in
both trees� The respective proteins are unique to the bacterial cluster egfs and are
bacteria�speci�c cell wall components or expression regulators�

Curiously
 the divisive Ward�like algorithm with splitting by separating produces
a di�erent tree in which a subset of bacteria efgsj splits o� �rst� In contrast to the
Masterpieces set analyzed above
 the procedure incorrectly determines the starting
divergence here� �
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Figure ���� Evolutionary trees built with� �a
 agglomerative Ward algorithm and �b

divisive Ward�like algorithm involving ��Means splitting�

����� Interpretation aids for upper cluster hierarchies

Ward	like divisive clustering algorithms produce cluster trees rooted at the en	
tity set whose leaves are not necessarily singletons� what was referred to as
upper cluster hierarchies� The Ward divisive clustering model leads to a bunch
of interpretation aids speci
cally oriented at upper cluster hierarchies ����� No
speci
c interpretation aids have been utilized on results of Ward agglomerative
clustering� A likely reason is that agglomerative mergers have no clear classi	

cation meaning� whereas splits leading to an upper cluster hierarchy can be
naturally considered as imitating building of a conceptual taxonomy� Moreover�
Ward agglomerative steps contribute to the unexplained part of clustering� as
will be clearly seen in Chapter � �see decomposition �������� and thus cannot
be used in the manner in which contributions to the explained part are used�
In contrast� divisive steps do contribute to the explained part� Yet no inter	
pretation aids have been conventionally utilized for the hierarchical part of an
upper cluster hierarchy except for the cluster heights re�ected in tree drawing�
In fact� there can be three di
erent aspects of the contribution based inter	

pretation aids with regard to an upper cluster hierarchy S because each split
can be considered in terms of� �i� variables� �ii� covariances between variables�
and �iii� individual entities� Let us brie�y describe them in turn�
�i� Split�to�Variable� At this level� one can take a look at contributions

of cluster splits to the total contribution of a variable to the data scatter� As
stated� data scatter T �Y � �

P
v�V Tv where Tv � �yv� yv� �

P
i�I y

�
iv is the
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Table ���� ScaD extended� Decomposition of the data scatter over the author�based
hierarchy for Masterpieces data in Table ����

Aid Item LenS LenD NChar SCon Pers Obje Dire Total Total��
Dickens ���� ���� ���
 ���� ���	 ���� ���� ��
� �
���

Typ Twain ���
 ���� ���� ���� ���� ���	 ���� ���� �����
Tolstoy ���� ���� ���� ���� ���	 ���	 ���
 ���� �����
Expl ���� ��
� ���	 ���� ���� ���� ���� 
��� �����

Tax Split� ���	 ���� ��	� ���� ���� ���� ���� ���� �
���
Split� ���
 ���� ���� ���� ���� ���� � ���� �
��	
Expl ���� ��
� ���	 ���� ���� ���� ���� 
��� �����
Unex ���� ���� ���� ���� ��

 ��

 ���� ���� �����
Total ���
 ���	 ���	 ���� ���� ���� ���� ��	� ������

contribution of feature v � V � The denotation yv refers to column v of the
pre	processed data matrix� According to ������ at u � v one has

Tv � �yv� yv� �
X
w

Nw�Nw�

Nw
�cw��v � cw��v�

� ! �ev � ev� �����

where summation goes over all internal hierarchy clusters Sw split in parts Sw�
and Sw�� Each split contributes� thus�

Nw�Nw�

Nw
�cw��v � cw��v�

�� the larger a
contribution the greater the variable�s e
ect to the split�
The overall decomposition of the data scatter in �������

T �Y � �
X
w

Nw�Nw�

Nw
d�cw�� cw�� !W �S� c� �����

where S is the set of leaf clusters of an upper cluster hierarchy S� shows con	
tributions of both splits and leaf clusters�
Both parts of the decomposition can be used for interpretation�
� Ward distances Nw�Nw�

Nw
d�cw�� cw�� betwen split parts� to express di
er	

ences between them for taxonomic purposes� and
� decomposition of the square error criterionW �S� c� over leaf clusters� which

is nothing but that employed in the analysis of results of K	Means clustering in
the previous Chapter� these can be used for purposes of typology rather than
taxonomy�

Example ����� Split
to
variable aids on a box chart and in table ScaD
Interpretation split�to�variable aids are displayed at the box chart in Figure ����

The upper split contributes ���� � to the data scatter� Between cluster di�erences
�cw�v � cw�v
� contributing most are at variables NChar and Direct� The next split
contributes ����� and is almost totally due to SCon ����� out of ����
� A more
complete picture can be seen in Table ���
 which extends Table ���� ScaD by adding
one more aspect� split contributions� Maximum contributions are highlighted in bold�
face� The upper part of the table supplies aids for typological analysis
 treating
each cluster as is
 and the middle part for taxonomical analysis
 providing aids for
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interpretation of splits� Both parts take into account those contributions that relate
to the explained part of the leaf cluster partition� �

�ii� Split�to�Covariance� Feature	to	feature covariances are decom	
posed over splits according to cluster contributions equal to Nw�Nw�

Nw
�cw��v �

cw��v��cw��u � cw��u� according to ������� where u� v � V are two features� At
this level� not only the quantities remain important for the purposes of com	
parison� but also one more phenomenon may occur� A covariance coe�cient
entry may appear with a di
erent sign in a cluster� which indicates that in this
split the association between the variables concerned changes its direction from
positive to negative or vice versa� Such an observation may lead to insights into
the cluster�s substance�

Example ����� Decomposition of covariances over splits
Let us consider covariances between variables LenD
 NChar
 and SCon� Their

total values
 in thousandth
 are presented in the left�hand part of the matrix equation
below
 and corresponding items related to the �rst and second splits in Figure ����
Entries on the main diagonal relate to the data scatter as discussed above�

LenD Nch Scon S� S�
LenD �� �� ��� �	 �	 �	 �� � ���
NChar �� ��� �� � �	 �� �� � � � ��� ����
SCon ��� �� ��� �	 �� �� ��� ��� ���

Each entry decomposed may tell us a story� For instance
 the global positive
correlation between NChar and SCon ����
 becomes more expressed at the �rst split
����
 and negative at the second split ����
� Indeed
 these two are at their highest
in the Tolstoy cluster and are discordant between Dickens and Twain� �

�iii� Split�to�Entry� Any individual row	vector yi in the data matrix can
be decomposed according to an upper cluster hierarchy S into the sum of items
contributed by clusters Sw � S containing i� plus a residual� which is zero
when i itself constitutes a singleton cluster belonging to the hierarchy� This is
guaranteed by the model ������� Each cluster Sw� containing i contributes the
di
erence between its centroid and the centroid of its parent� cw� � cw� as de	
scribed on page ���� The larger the cluster the more aggregated its contribution
is�

Example ����� Decomposition of an individual entity over a hierarchy
The decomposition of an individual entity
 such as Great Expectations �entity � in

the Masterpieces data

 into items supplied by clusters from the hierarchy presented in
Figure ��� on page ���
 is illustrated in Table ���� The entity data constitute the �rst
line in this table� The other lines refer to contributions of the three largest clusters
in Figure ��� covering entity �� the root
 the not�Tolstoy cluster
 and the Dickens
cluster� These clusters are formed before the splitting
 after the �rst split
 and after
the second split
 respectively� The last line contains residuals
 due to the aggregate
nature of the Dickens cluster� One can see
 for instance
 that SCon�	 for the entity
is initially changed for the grand mean
 	���
 and then step by step degraded � the
most important being the second split separating Dickens from the rest� �
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Table ���� Single entity data decomposed over clusters containing it� the last line is
the residuals�

Item LenS LenD NChar SCon Pers Obje Dire

GExpectat ���� �� � 	 	 � 	

Grand Mean ����� ����� ��		 	��� 	��� 	��� 	���
� split ���	� ����� �	��	 �	��� 	��� 	��� �	���
� split ���� ���� 	��� �	��	 	��� �	��� 	�		

Residual �	��	 ����� 	��� 	�		 �	��� 	��� 	�		

This type of analysis� which emphasizes unusually high negative or positive
contributions� can be applied to a wide variety of hierarchical clustering results�
When an hierarchical tree obtained by clustering has substantive meaning� it
also can be used for interpretation of other types of data� To illustrate this� let
us consider the evolutionary trees built in the previous section and see how one
can employ them to reconstruct evolutionary histories of individual genes�

Example ����� Using an evolutionary tree to reconstruct the history of
a gene

After an evolutionary tree has been built �see Figure ���

 one may consider the
problem of �nding parsimonious scenarios of gene evolution leading to the observed
presence�absence patterns� An evolutionary scenario for a gene may include major
evolutionary events such as emergence of the gene
 its inheritance along the tree

loss
 and horizontal transfer between branches of the tree� To illustrate this line of
development
 let us consider three COGs in Table ���� one from the data in Table
��� and two not used for building the tree
 COG���� ����� RNA ligase and COG		��
Aspartyl�tRNA synthetase�

Table ���� Gene pro�les� Presence�absence pro�les of three COGs over �� genomes�

No COG Species
y a o m p k z q v d r b c e f g s j

�� COG���	 � � � � � � � � � � � � � � � � � �
�� COG���
 � � � � � � � � � � � � � � � � � �
�� COG���� � � � � � � � � � � � � � � � � � �

Given a gene presence�absence pro�le
 let us consider
 for the sake of simplicity

that each of the events of emergence
 loss
 and horizontal transfer of the gene is
assigned the same penalty weight while events of inheritance along the tree are not
penalized as conforming to the tree structure� Then
 COG��	� �the �rst line of
Table ���
 can be thought of as having emerged in the ancestor of all archaea �node
corresponding to cluster aompkz and then horizontally transferred to species f
 which
amounts to two penalized events� No other scenario for this COG has the same or
smaller number of events�

The reconstructed history of COG���� �the second line of Table ���
 is more
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complicated� Let us reconstruct it on the right�hand tree of Figure ���� Since this
COG is represented in all non�singleton clusters
 it might have emerged in the root of
the tree� Then
 to conform to its pro�le
 it must be lost at y� o� s� g� c and r
 which
amounts to � penalized events
 one emergence and six losses
 altogether� However

there exist better scenarios with six penalized events each� One such scenario assumes
that the gene emerged in the node of cluster archaea aompkz and then horizontally
transferred to cluster vqbj and singletons f� e� d
 thus leading to one emergence event

four horizontal transfers
 and one loss
 at o� Obviously
 the pro�le data by themselves
give no clue to the node of emergence� In principle
 the gene in question might have
emerged in cluster vqbj or even in one of the singletons� To resolve this uncertainty

one needs additional data on evolution of the given gene
 but this is beyond the scope
of this book� �

��� Conceptual clustering

This method of divisive clustering builds an upper cluster hierarchy by sequen	
tially splitting clusters� each time using a single attribute rather than all of them
as in the previous section� Such is the hierarchy of Digits in Figure ��� built
by splitting the entire set according to the presence or absence of the bottom
edge e� and then splitting Yes entities according to the presence or absence of
e� and e��
Originally� the method was developed for categorical features only� A

goodness	of	split criterion is utilized to decide what class S in a hierarchy to
split and by what variable� To de
ne such a criterion� various approaches can
be used� Let us consider two popular approaches that are compatible with the
data recovery framework�

�� Impurity� Denote a set of entities by J � I and a qualitative variable
on it by l� with pv denoting frequencies of its categories v � Vl in J �
Let us measure the dispersion of l on J with the Gini coe�cient� G�l� �
��Pv�Vl

p�v �
P

v�Vl
pv��� pv� de
ned in section ������ If J is divided

in clusters fSkg� this cross classi
es l so that any category v � Vl may co	
occur with any Sk� let us denote the frequency of the co	occurrence by pkv �
Then the Gini coe�cient for l over Sk will be G�l�k� � ��

P
v�Vl

p�v�k��

where p�v�k� � pkv�pk with pk denoting proportion of entities of J in Sk�
The average change of the Gini coe�cient after the split of J into Sk� k �
�� ����K� can be expressed as the di
erence� %�l� S� � G�l��Pk pkG�l�k��
It is this expression which is referred to as the impurity function in �����
It also equals the summary Quetelet index G� according to the analysis
on page ��� The greater the %�l� S� the better the split S�

�� Category utility� Consider a partition S � fSkg �k � �� ����K� on J and
a set of categorical features l � L with categories v � Vl� The category
utility function scores partition S against the set of variables according
to formula �����
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u�S� �
�

K

KX
k��

pk�
X
l

X
v�Vl

P �l � vjSk�� �
X
l

X
v�Vl

P �l � v��� ������

The term in square brackets is the increase in the expected number of
attribute values that can be predicted given a class� Sk� over the expected
number of attribute values that could be predicted without using the
class� The assumed prediction strategy follows a probability	matching
approach� According to this approach� category v is predicted with the
frequency re�ecting its probability� p�v�k� within Sk� and pk � Nk�N
when information of the class is not provided� Factors pk weigh classes
Sk according to their sizes� and the division by K takes into account the
di
erence in partition sizes� the smaller the better�

Either of these functions can be applied to a partition S to decide which of
its clusters is to be split and how� They are closely related to each other as well
as to contributions Bkv in section ������ which can be stated as follows�

Statement ���� The impurity function %�l� S� equals the summary contribu�

tion B�l� S� �
P

v�Vl

PK
k�� Bkv with scaling factors bv � � for all v � Vl� The

category utility function u�S� is the sum of impurity functions over all features
l � L related to the number of clusters K� u�S� �

P
l%�l� S��K�

Proof� Indeed� according to the de
nition of impurity function� %�l� S� � G�l��P
k pkG�l�k� � � � Pv�Vl

p�v �
P

k pk�� �
P

v�Vl
p�v�k��� �

P
k

P
v
pkv
pk

�P
v�Vl

p�v � B�l� S�� To prove the second part of the statement� let us note
that P �l � vjSk� � p�v�k� and P �l � v� � pv� This obviously implies that
u�S� �

P
l%�l� S��K� which proves the statement�

The summary impurity function� or the category utility function multiplied
by K� is exactly the summary contribution of variables l to the explained part
of the data scatter� B�S� c�� that is� the complement of the K	Means square
error clustering criterion to the data scatter� when the data pre	processing has
been done with all bv � � �v � Vl� ����� In brief� maximizing the category utility
function is equivalent to minimizing the K	Means square error criterion divided
by the number of clusters with the data standardized as described above�

This invites� 
rst� di
erent splitting criteria associated with B�S� c� at dif	
ferent rescaling factors bv and b

�
v� and� second� extending the splitting criterion

to the mixed scale feature case� which is taken into account in the following
formulation�
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Conceptual clustering with binary splits
�� Initial setting� Set S to consist of the only cluster� the entire
entity set I �
�� Evaluation� In the cycle over all clusters k and variables l�
consider the possibility of splitting Sk over l in two parts� If l is
quantitative� the split must correspond to a split of its range in
two intervals� if bl and br are the minimum and maximum values
of l at Sk� take a number T of locations for the splitting point�
pt � bl ! t�br � bl��T �t � �� ���� T �� and select that one of them
which maximizes the goodness	of	split function� If l is nominal and
has more than two categories� consider categories v � Vl as entities
weighted by their frequencies in Sk� p�v�k�� and apply a version
of the correspondingly modi
ed Serial splitting algorithm to divide
them in two parts�
�� Splitting� Select the pair �k� v� that received the highest score
and do the binary split�
�� Halt� Check stop	condition� If it is satis
ed� end� Otherwise go
to ��

Since the scoring function is the same as in the Ward	like divisive clustering
of the previous section� the stop	condition here can be borrowed from that on
page ���� One more stopping criterion comes from the category utility function�
which is the total contribution divided by the number of clustersK� calculations
should stop when this goes down� Unfortunately� this simple idea seems to not
always work� as will be seen in the following examples�

Example ���
� Conceptual clustering of Digits

The classi�cation tree of the Digit data in Figure ��� on page �� has been produced
with the process above
 assuming all the features are binary nominal� Let us take

for instance
 partition S � fS�� S�g of I according to attribute e� which is present
at S� comprising �
�
 �
 �
 �
 and 	
 and is absent at S� comprising �
�
�
 and ��
Cross�classi�cation of S and e� in Table ��� yields %�e�� S
 � 	�	���

Table ���� Cross�tabulation of S �or
 e�
 against e��

e� S� S� Total

e��� � � �
e��	 � � �
Total � � �	

To see what this has to do with the setting in which K�Means complementary
criterion applies
 let us pre�process the Digit data matrix by subtracting the averages
within each column �see Table ���
� note that the scaling coe�cients are all unity
here�

However
 the data in Table ��� is not exactly the data matrix Y considered the�
oretically because both Y and X must have �� columns after enveloping each of the
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Table ���� Data in Table ��� ��	 coded with the follow�up centering of the columns�

e� e� e� e� e� e� e�

��� ��� �� ��� ��� �� ���
�� ��� �� �� �� ��� ��
�� ��� �� �� ��� �� ��

��� �� �� �� ��� �� ���
�� �� ��� �� ��� �� ��
�� �� ��� �� �� �� ��
�� ��� �� ��� ��� �� ���
�� �� �� �� �� �� ��
�� �� �� �� ��� �� ��
�� �� �� ��� �� �� ��

�� categories re"ected in Table ���� Columns corresponding to the category �ei is
absent� in all features i��
�
���
� are not included in Table ���
 because they provide
no additional information�

The data scatter of this matrix is the summary column variance times N � �	

which is ����� However
 to get the data scatter in the lefthand side of �����

 this
must be doubled to ���� to re"ect the �missing half� of the virtual data matrix Y �

Let us now calculate within class averages ckv of each of the variables
 k � �� �

v�e�
���
e�
 and take contributions Nkc

�
kv summed up over clusters S� and S�� This

is done in Table ���
 the last line in which contains contributions of all features to the
explained part of the data scatter�

Table ���� Feature contributions to digit classes de�ned by e��

e� e� e� e� e� e� e� e�

e��� 	�		� 	���	 	��	� 	��	� 	�	�	 	�	�	 	��	�
e��	 	�	�	 ����	 	���	 	���	 	�	�	 	�	�	 	���	
Total 	�	�� ���		 	���� 	���� 	���	 	���	 	����

The last item
 	����
 is the contribution of e�� Has it anything to do with the
reported value of impurity function %�e�� S
 � 	�	��� Yes
 it does� There are two
factors that make these two quantities di�erent� First
 to get the contribution from
% it must be multiplied by N � �	 leading to �	%�e�� S
 � 	����� Second
 this is the
contribution to the data scatter of matrix Y obtained after enveloping all �� categories
which has not been done in Table ���
 thus
 not taken into account in the contribution
	����� After the contribution is properly doubled
 the quantities do coincide�

Similar calculations made for the other six attributes
 e�
 e�
 e�
���
 e�
 lead to the
total

P	
l
� %�el� S
 � 	��	� and
 thus
 to u�S
 � 	���� according to Statement ����

since M � �� The part of the data scatter taken into account by partition S is the
total of %�S� el
 over l � �� ���� � times N � �	
 according to �����

 that is
 ��	� or
����� of the scatter �����

The evaluations at the �rst splitting step of the total Digit set actually involve all
pairwise contingency coe�cients G��l� l�
 � %�l� l�
 �l� l� � �� ���� �
 displayed in Table
���� According to this data
 the maximum summary contribution is supplied by the
S made according to e�� it is equal to ���� which is ����� of the total data scatter�
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Table ���� Pairwise contingency coe�cients� In each column el values of % for all
variables are given under the assumption that partition S is made according to el
�l��
���
�
�

Target e� e� e� e� e� e� e�

e� 	���	 	�		� 	�	�	 	�	�� 	�	�� 	�		� 	����
e� 	�		� 	���	 	�	�	 	�	�� 	�	�	 	�	�	 	�	��
e� 	�	�	 	�	�� 	���	 	�	�� 	�		� 	�		� 	�	��
e� 	�	�	 	�	�� 	�	�� 	���	 	�		� 	�	�	 	����
e� 	�	�	 	�	�	 	�		� 	�		� 	���	 	�	�	 	����
e� 	�		� 	�	�	 	�		� 	�		� 	�	�	 	���	 	�		�
e� 	���� 	�	�� 	�	�� 	���� 	���	 	�	�	 	���	

Total 	���� 	��	� 	���	 	���� 	���	 	���� 	����

Thus
 the �rst split must be done according to e�� The second split
 accord�
ing to e�
 contributes ���	
 and the third split
 according to e�
 ����
 so that
the resulting four�class partition
 S � ff�� �� �g� f�� �� �g� f�� �� 	g� f�gg
 contributes
��������	����������� ������ to the total data scatter� The next partition step
would contribute less than �	� of the data scatter
 that is
 less than an average
entity
 which may be considered a signal to stop the splitting process�

One should note that the category utility function u�S
 after the �rst split is
equal to �����������
 and after the second split
 to ���������	
���������������� The
decrease means that calculations must be stopped after the very �rst split
 according
to the category utility function
 which is not an action of our preference� �

Example ����� Relation between conceptual and Ward clustering of Gene
pro�les

The divisive tree of species according to gene pro�les on Figure ��� �b
 can be used
for analysis of the conceptual clustering category utility score criterion ����	
 which
is equivalent to the ratio of the explained part of the data scatter over the number of
clusters� Indeed
 the �rst split contributes �	��� to the data scatter
 which makes the
category utility function u be equal to �	���� � ������ The next split
 of the bacterial
cluster
 adds �����
 making the total contribution �	�������������
 which decreases
the utility function to u � ������ � ������ This would force the division process to
stop at just two clusters
 which shows that the normalizing value K might be overly
stringent�

This consideration may be applied not only to the general divisive clustering results
in Figure ��� �b
 but to conceptual clustering results as well� Why� Because each
of the two splits
 although found with the multidimensional search
 also can be done
monothetically
 with one feature only� the �rst split at COG	��	 or COG��	� �lines
�
 �� in Table ���
 and the second one at COG�	�� or COG��	� �lines ��
 �� Table
���
� These splits must be optimal because they have been selected in the much less
restrictive multidimensional splitting process� �

Among other goodness	of	split criteria considered for categorical variables�
the chi	squared is utilized in CHAID ����� the entropy in C��� ������ and the
so	called twoing rule in CART �����
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��� Extensions of Ward clustering

����� Agglomerative clustering with dissimilarity data

Given a dissimilarity matrix D � �dij�� i� j � I � the Ward algorithm can be
reformulated as follows�

Ward dissimilarity agglomeration�
�� Initial setting� All the entities are considered as singleton clusters so
that the between	entity dissimilarities are between	cluster dissimilarity� All
singleton heights are set to be zero�
�� Agglomeration rule� Two candidate clusters� Sw� and Sw�� that are
nearest to each other �that is� being at the minimum distance� are merged
together forming their parent cluster Sw��w� � Sw� �Sw�� and the merged
cluster�s height is de
ned as the sum of the children�s heights plus the
distance between them�
�� Distance� If the newly formed cluster Sw��w� coincides with the entire
entity set� go to Step �� Otherwise� remove Sw� and Sw� from the set of
candidate clusters and de
ne distances between the new cluster Sw��w� and
other clusters Sk as follows�

dww��w��k �
Nw� !Nk

N�
dww��k !

Nw� !Nk

N�
dww��k � Nk

N�
dww��w� ������

where N� � Nw��w� ! Nk� The other distances remain unvaried� Then�
having the number of candidate clusters reduced by one� go to Step ��
�� Output� Output upper part of the cluster tree according to the height
function�

It can be proven that distance ������ is equal to Ward distance between
the merged cluster and other clusters when D is a matrix of Euclidean squared
distances� In fact� formula ������ allows the calculation and update of Ward
distances without calculation of cluster centroids�

Agglomeration step � remains computationally intensive� However� the
amount of calculations can be decreased because of properties of the Ward
distance ������

����� Hierarchical clustering for contingency and �ow
data

The contingency data format has been introduced in section ������ Due to the
fact that contingency data are not only measured in the same scale but also
measure di
erent parts of the data �ow and thus can be summed up to the
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Table ���� Confusion contingency data�

Feature
Entity � � � 
 � � � � 	 � Total
� ����� ����� ����� ����� ����� ����� ����� � ����� ����� �����
� ����� ����� ����� ����� ����
 ����� ����� ����� ����� ����� �����
� ����� ����� ����� ����� ����� ����� ����
 ����� ����� ����� �����

 ����� ����� ����� ����� ����� ����� ����� ����� ����
 � �����
� ����� ����� ����
 ����� ����� ����� ����� ����� ����� ����� �����
� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����
 �����
� ����� ����� ����� ����� ����� � ����� � ����� ����� �����
� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
	 ����� ����� ����� ����� ����� ����� ����� ����� ����� ����
 �����
� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
Total ���
� ���	� ���	� ����	 ���	
 ����� ����� ���	� ���	� ����� �����

total number of observations� they can be processed with a greater extent of
comparability than the ordinary entity	to	feature data�
To introduce the concepts needed� let us consider a contingency table P �

�ptu�� t � T � u � U � whose entries have been divided by the total �ow p���
which means that p�� � �� The marginals pt� and p�u� which are just within	
row and within	column totals� will be referred to as the weights of rows t � T
and columns u � U �
For any subset of rows S � T � the conditional probability of a column u can

be de
ned as p�u�S� � pSu�pS� where pSu is the sum of frequencies ptu over
all t � S and pS� the summary frequency of rows t � S�

Example ����� Aggregating Confusion data

For the Confusion data in Table ���
 the matrix of relative frequencies is in Table
���� For example
 for S � f�� �� �g and u � �
 pS� � 	�		� � 	�			 � 	�		� �
	�		� and pS� � 	��		 � 	��		 � 	��		 � 	��		 so that p���S
 � 	�		��	��		 �
	�	�	� Analogously
 for u � �
 pS� � 	�	�� � 	�	�� � 	�	�� � 	���	 and p���S
 �
	���	�	��		 � ���	� �

The row set S will be characterized by its pro
le� the vector of conditional
probabilities g�S� � �p�u�S��� u � U �
Then� the chi	squared distance between any two non	overlapping row sets�

S� and S�� is de
ned as

��g�S��� g�S��� �
X
u�U

�p�u�S��� p�u�S���
��p�u ������

Using this concept� Ward�s agglomeration algorithm applies to contingency data
exactly as it has been de
ned in section ��� except that the Ward distance
is modi
ed here to adapt to the situation when both rows and columns are
weighted�

w�Sh�� Sh�� �
pSh��pSh�
pSh��Sh�

��g�Sh��� g�Sh��� ������

© 2005 by Taylor & Francis Group, LLC



��� WARD HIERARCHICAL CLUSTERING

1 8 0 27 4 3 9 5 6

Figure ���� The hierarchy found with the modi�ed Ward algorithm for Confusion
data�

This de
nition di
ers from the standard de
nition in the following three aspects�

�� Pro
les are taken as cluster centroids�

�� Chi	squared distance is taken instead of the Euclidean squared�

�� Marginal frequencies are used instead of cardinalities�

These formulas are derived in section ����� from a data recovery model
relating Quetelet coe�cients in the original data table and that aggregated
according to the clustering� It appears� they express the decrement of the
Pearson chi	square contingency coe�cient under the aggregation�

Example ����� Clustering and aggregation of Confusion data

The drawing in Figure ��� shows the hierarchy of Digits row clusters found with
the agglomerative clustering algorithm which uses the chi�square distance �����
� Cu�
riously
 the same topology
 with slightly changed heights
 emerges when the data
table is aggregated over rows and columns simultaneously to minimize the decrement
of X��F� F 
 of the aggregated table�

The aggregate confusion rates and Quetelet coe�cient data corresponding to the
four�class partition
 S � ff�� �� �g� f�� �� �g� f�� �� 	g� f�gg
 are on the right in Table
���	� �

Table ����� Confusion� Four cluster aggregate Confusion data and corresponding
Quetelet coe�cients�

I ���� �� �� ��
II �� ��� �	 ��
III �	� �� ���� ��	
IV ��� �� ��� ����

I ���� �	��� �	��� �	���
II �	��	 ���� �	��� �	���
III �	��� �	��	 ���� �	���
IV �	��� �	��� �	��	 ����
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��� Overall assessment

Advantages of hierarchical clustering�

�� Visualizes the structure of similarities in a convenient form�

�� Models taxonomic classi
cations�

�� Provides a bunch of interpretation aids at the level of entities� vari	
ables and variable covariances�

Less attractive features of the approach�

�� Massive computations related to 
nding minimum distances at each
step� which is especially time consuming in agglomerative algorithms�

�� Rigidity� Having a splitting or merging step� no possibility to change
it afterwards�

Computations in agglomerative clustering can be drastically reduced if the
minima from previous computations are kept�
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Chapter �

Data Recovery Models

Main subjects covered�

�� What is the data recovery approach�

�� A data recovery model and method for Principal component analysis�

�� A data recovery model and data scatter decomposition for K	Means
and Anomalous cluster clustering�

�� A data recovery model and data scatter decompositions for cluster
hierarchies�

�� A uni
ed matrix equation model for all three above�

�� Mathematical properties of the models justifying methods presented
in previous chapters�

�� Extensions of the models� criteria and methods to similarity and con	
tingency data�

�� One	by	one data recovery clustering methods�

�� Data recovery interpretation of correlation and association coe�	
cients�

Base words

Alternating optimization A method in the theory of optimization� applica	
ble when a function to be optimized depends on two or more groups of

���
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variables� The method works iteratively by optimizing the function over a
group of variables having the other group speci
ed� K	Means is a method
of alternating minimization of the square error clustering criterion�

Anomalous cluster A cluster which is furthest from the reference point�
The iterated Anomalous clustering implements the one	by	one separat	
ing strategy of Principal Component Analysis in the data recovery model
for K	Means� and thus allows for extending K	Means to its intelligent
version� iK	Means� mitigating the need in de
ning an initial setting�

Attraction coe�cient A measure of attraction of an entity to a cluster�
which is equal to the entity�s average similarity to the cluster minus half
of the average within cluster similarity� In K	Means and Ward clustering�
attractions of entities to their clusters are greater than to other clusters�
Moreover� in K	Means� entities are always positively attracted to their
clusters and negatively to other clusters�

Contingency data A data table whose rows and columns correspond to two
sets of categories and entries are counts or proportions of observations
at the intersection of a row and column categories �co	occurrence val	
ues�� Because of their summability across the table� contingency data are
treated after having been transformed into relative Quetelet coe�cients�
The data scatter of the transformed data is measured by the chi	square
contingency coe�cient�

Correspondence factor analysis A PCA	like method for visualization of co	
occurrence values in a contingency table by displaying both row and col	
umn items as points in the same �D or �D space� Correspondence factor
analysis is a data recovery method in which the recovered entries are
Quetelet association coe�cients� The method heavily relies on the singu	
lar value decomposition of a related matrix�

Data recovery models in clustering A data recovery model includes a rule
which gives a value� according to a cluster structure� to every data entry�
This way� every datum is represented as the sum of a cluster	recovered
value and a residual� which provides for a built	in quality principle� the
smaller the residuals� the better the cluster structure�

Data scatter decomposition A decomposition of the data scatter in two
parts� that explained by the cluster structure and that remaining un	
explained� Such a decomposition provides for both an explicit cluster
criterion and interpretation aids� the former being the minimum of the
unexplained part and the latter various parts of the explained part� The
explained part in K	Means and Ward clustering is always the sum of
contributions of individual clusters or splits�
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Linear regression A method for analysis of interrelation between two quan	
titative features x and y in which y is approximated by an a�ne transfor	
mation ax! b of x� where a and b are referred to as slope and intercept�
respectively� This setting is the genuine ground on which the coe�cients
of correlation and determination are de
ned and substantiated�

One�by�one clustering A method in clustering in which clusters or splits are
taken one by one� In this text� all such methods exploit the additive
structure of clustering data recovery models� which is analogous to that
of the model of Principal Component Analysis� Cluster separations and
splits are to be made in the order of their contribution to the data scatter�
In this way� the additive structure of the data scatter decomposition is
maintained to provide for model	based interpretation aids�

Principal component analysis A method for approximation of a data ma	
trix with a small number of hidden factors� referred to as principal com	
ponents� such that data entries are expressed as linear combinations of
hidden factor scores� It appears that principal components can be deter	
mined with the singular value decomposition �SVD� of the data matrix�

Reference point A vector in the variable space serving as the space origin�
The Anomalous pattern is sought starting from an entity furthest from the
reference point� which thus models the norm from which the Anomalous
pattern deviates most�

Split versus separation Di
erence between two perspectives� cluster	versus	
the	rest and cluster	versus	the	whole� re�ected in di
erent coe�cients at	
tached to the distance between centroids of split parts� The former per	
spective is taken into account in the Ward	like divisive clustering methods�
the latter in the Anomalous pattern clustering�

Ward�like divisive clustering A divisive clustering method using Ward dis	
tance as the splitting criterion� The method can be considered an im	
plementation of the one	by	one PCA strategy within the data recovery
clustering�
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��� Statistics modeling as data recovery

The data recovery approach is the cornerstone of contemporary thinking in
statistics and data analysis� It is based on the assumption that the observed
data re�ect a regular structure in the phenomenon of which they inform� The
regular structure A� if known� would produce data F�A� that should coincide
with the observed data Y up to small residuals which are due to possible �aws
in any or all of the following three aspects� �a� sampling entities� �b� selecting
features and tools for their measurements� and �c� modeling the phenomenon in
question� Each of these can drastically a
ect results� However� so far only the
simplest of the aspects� �a�� has been addressed scienti
cally by introduction of
probabilities to study the signi
cance of statistical inference in data analysis�
In this treatise we are not concerned with these issues� We are concerned with
the underlying equation�

Observed data Y � Recovered data F�A� � Residuals E �	�
The quality of the model A is assessed according to the level of residuals

E� the smaller the residuals the better the model� Since quantitative models
involve unknown coe�cients and parameters� this naturally leads to the idea
of 
tting these parameters to data in such a way that the residuals become as
small as possible� To put this idea as a minimization problem� one needs to
combine the multiple residuals in an aggregate criterion� In particular� the so	
called principle of maximum likelihood has been developed in statistics� When
the data can be modelled as a random sample from a multivariate Gaussian dis	
tribution� this principle leads to the so	called least squares criterion� the sum of
squared residuals to be minimized� In the data mining framework� the data do
not necessarily come from a probabilistic population� Moreover� analysis of the
mechanism of data generation is not of primary concern� One needs only to see
if there are any patterns in the data as they are� In this case� the principle of
maximum likelihood may be not applicable� Still� the sum of squared residuals
criterion can be used in the context of data mining as a clear cut measure of the
largeness of the residuals� It provides for nice geometric properties and guar	
anties the production of provably reasonable cluster solutions� It admits useful
decompositions of the data scatter into the sum of explained and unexplained
parts� No assumptions of particular distributions for the residuals are exploited
in the further treatment� To show the working of model �	� along with the least	
squares principle� let us introduce four examples covering important methods
in data mining� �a� averaging� �b� linear regression� �c� principal component
analysis� and �d� correspondence analysis� These examples are also used to
introduce some useful concepts in data analysis that are used throughout this
text�
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����� Averaging

Let a series of real numbers� x�� ���� xN � have been assumed to represent the
same unknown value a� Equation �	� then becomes

xi � a! ei

with ei being the residual for i � �� ���� N � To minimize the sum of squares
L�a� �

P
i e

�
i �

P
i�xi � a�� as a function of a� one may utilize the 
rst	order

optimality condition� dL�da � �� that is� dL�da � ��Pi xI �Na � �� That
means that the least	squares solution is the average a � "x �

P
i xi�N � By

substituting this for a in L�a�� one obtains L�"x� �
P

i x
�
i � N "x�� The last

expression gives� in fact� the decomposition of the data scatter� the sum of
data entries squared T �x� �

P
i x

�
i � into the explained and unexplained parts�

T �x� � N "x!L�"x�� The averaged unexplained value L�"x��N is the well known
variance s�x�� of the series� and its square root� s�x� �

p
L�"x��N � the standard

deviation� It appears thus that the average minimizes the standard deviation
s�x� of observations from a�

����� Linear regression

Let a series of pairs of reals� �x�� y��� ���� �xN � yN � such as IQ score for xi and
math mark for yi at individual i �i � �� ���� N� have been collected� The linear
regression model assumes that y	values are e
ected by x	values according to a
linear equation y � ax ! b where a and b are constant coe�cients� referred to
as the slope and intercept� respectively� To 
t the values of a and b to data� the
traditional thinking considers that only y	values are to be explained by model
�	�� thus leading to equations

yi � axi ! b! ei�

The least squares criterion for minimizing the residuals in this case is a function
of two unknown coe�cients� L � L�a� b� �

P
i e

�
i �

P
i�yI�axi�b��� The 
rst	

order optimality conditions lead to a �
P

i�xi� "x��yi� "y��s��x� and b � "y�a"x�
The linear regression y � ax! b with a and b 
tted to the data can be used for
analysis and prediction of y� given x� if L is small�
A symmetric function of features x and y� the correlation coe�cient� has

been de
ned as � �
P

i�xi � "x��yi � "y���Ns�x�s�y��� The optimal a thus can
be expressed through � as a � �s�y��s�x�� By putting the optimal a and b into
L�a� b�� the minimum L can be expressed as L � Ns��y���� ����
According to the formulas above� the correlation coe�cient � in the data

recovery paradigm has the following properties�

�� Its square� the so	called determination coe�cient ��� expresses the de	
crease of the variance of y after its linear relation to x has been taken into
account�
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�� The values of � are restricted to the interval between �� and �� The
closer � is to either � or ��� the smaller are the residuals in equation
�	�� For instance� at � � ���� the unexplained variance of y constitutes
�� �� � �� of its original variance�

�� The slope a is proportional to � so that a is positive or negative depend	
ing on the sign of correlation coe�cient� When � � � the slope is �
too� the variables y and x are referred to as non	correlated� in this case�
which means that there is no linear relation between them� though an	
other functional relation� such as a quadratic one� may exist� The case
of � � � geometrically means that centered versions of feature vectors
x � �xi� and y � �yi� are mutually orthogonal�

�� With the data pre	processed as

x� �
x� "x
s�x�

and y� �
y � "y
s�y�

�����

the variances become unities� thus leading to simpler formulas� a� � � �
�x�� y���N � b� � �� L� � N��� ���� and N � N�� ! L� where N happens
to be equal to the scatter of y��

�� The value of � does not change under linear transformations of scales of
x and y�

����� Principal component analysis

Principal component analysis� is a major tool for approximating observed data
with model data formed by a few �hidden� factors� Observed data such as marks
of students i � I at subjects labelled by l � �� ����M constitute a data matrix
X � �xil�� Assume that each mark xil re�ects the student�s hidden ability zi
�i � I� with an impact coe�cient cl� due to subject l�s speci
cs� The principal
component analysis model suggests that the student i�s score over subject l
re�ects the product of the mutual impact of student and subject� zicl� Then
equation �	� can be formulated as

xil � clzi ! eil� �����

The least squares criterion is L �
P

i�I

P
l�L�xil � clzi�

� and the 
rst	order
optimality conditions lead to equations

P
l xilcl � zi

P
l c

�
l and

P
i xilzi �

cl
P

i z
�
i for all l � L and i � I � Sums

P
l c

�
l and

P
i z

�
i are squared norms

of vectors c and z with the norms being de
ned as jjcjj � pPl c
�
l and jjzjj �

�This section� as well as the next one� can be understood in full only if introductory
concepts of linear algebra are known� including the concepts of matrix and its rank�
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pP
i z

�
i � A vector whose norm is unity is referred to as a normed vector� to

make z � �zi� normed� z has to be divided by its norm� vector z
� � z�jjzjj

is the normed version of z� Let us denote by � the product � � jjzjjjjcjj
and by z� and c� the normed versions of the least	squares solution c� z� Then
the equations above can be rewritten as

P
l xilc

�
l � �z�i and

P
i xilz

�
i � �c�l �

or in matrix algebra notation� Xc� � �z� and XT z� � �c�� These are quite
remarkable equations expressing the fact that optimal vectors c and z are linear
combinations of� in respect� rows and columns of matrix X � These expressions
de
ne an inherent property of matrix X � its singular value and vectors� where
� is a singular value of matrix X and c� and z� are the normed singular vectors
corresponding to �� It is well known that the number of non	zero singular
values of a matrix is equal to its rank and� moreover� the singular vectors c�

corresponding to di
erent singular values are mutually orthogonal� as well as
the vectors z� ����� In our case however� � must be the maximum singular value
of X because of the decomposition of the data scatter T �X� �

P
i�l x

�
il�

T �X� � �� ! L� �����

that holds for the optimal c� and z�� Indeed� since the data scatter T �X� is
constant if the data do not change� the unexplained part L is minimum when
the explained part� ��� is maximum� To derive decomposition ������ one needs
to perform the squaring operation in the formula for L and take into account the
fact that

P
i�l xilzicl � jjcjj�jjzjj� for the optimal c� and z�� which can be proven

by multiplying each i	th equation
P

l xilcl � zi
P

l c
�
l by zi and summing up

the results over i � I � The talent score vector z� is referred to as the principal
component and the corresponding c� as the loading vector�
To keep up with the model ������ vectors z� and c� must be rescaled to

contain � in their product� which is usually done with formulas c �
p
�c� and

z �
p
�z��

Generalizing the one	factor model ������ one may assume a small number m
of di
erent hidden �talent� factors z������ zm forming an unknown N 
m score
matrix Zm with corresponding m loading vectors c������ cm forming rows of an
m
M loading matrix Cm so that equation ����� is extended to

xil � c�lzi� ! ���! cmlzim ! eil �����

for all i � I and l � �� ����M � or� in the matrix algebra notation�

X � ZmCm !E �����

We are interested in 
nding the least squares solution to equation ����� � ������
that is� matrices Zm and Cm minimizing the sum of squared elements of residual
matrix E� It is not di�cult to see that the solution is not unique� Indeed� any
solution Zm� Cm can be transformed to Z � ZmF

T and C � FCm with any
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m 
 m matrix F satisfying equation F T � F��� that is� being a �rotation�
matrix ���� ���� Obviously ZC � ZmCm� that is� the rotated solution Z� C
corresponds to the same residual matrix E and thus the same value of L� This
shows that the least	squares solution is de
ned only up to the linear subspace of
the space of N 	dimensional vectors� whose base is formed by columns of matrix
Zm�
The optimal linear subspace can be speci
ed in terms of the so	called singu	

lar value decomposition �SVD� of matrix X� Let us recall that SVD of N 
M
matrix X amounts to equation X � Z&C where Z is N 
 r matrix of mutually
orthogonal normed N 	dimensional column	vectors z�k � C is r
M matrix of mu	
tually orthogonal normedM 	dimensional row	vectors c�k� and & is diagonal r
r
matrix with positive singular values �k on the main diagonal such that z

�
k and

c�k are normed singular vectors of X corresponding to its singular value �k so
that Xc�k � �kz

�
k and X

T z�k � �kc
�
k� k � �� ���� r ����� The SVD decomposition

is proven to be unique when singular values �t are mutually di
erent� A least	
squares solution to model ����� can now be determined from matrices Z�

m and
C�
m of m singular vectors z

�
k and c

�
k corresponding to m greatest singular values

�k� k � �� ����m� �The indices re�ect the assumption that the singular values
have been placed in the order of descent� �� � �� � ��� � �r � ��� Let us de	
note the diagonal matrix of the 
rst m singular vestors by &m� Then a solution
to the problem is determined by rescaling the normed singular vectors with
formulas Zm � Z�

m

p
&m de
ning principal components� and Cm �

p
&mC

�
m

de
ning their loadings�
Since singular vectors z corresponding to di
erent singular values are mu	

tually orthogonal� the factors can be found one by one as solutions to the
one	factor model ����� above applied to the so	called residual data matrix� af	
ter a factor z and loadings c are found� X must be substituted by the matrix
of residuals� xil � xil � clzi� The principal component of the residual matrix
corresponds to the second largest singular value of the original matrix X � Re	
peating the process m times� one gets m 
rst principal components and loading
vectors�
It can be proven that� given m� the minimum value of L �

P
i�l e

�
il is equal

to the sum of r�m smallest singular values squared� L�Zm� Cm� �
Pr

k�m�� �
�
k�

whereas m greatest singular values and corresponding singular vectors de
ne
the factor space solving the least	squares 
tting problem for equation ������
Each k � th component additively contributes ��k to the data scatter T �X�
�k � �� ����m� so that equation ������ in the general case� becomes

T �X� � ��� ! ���! ��m ! L�Zm� Cm��

Computation of singular vectors can be performed not necessarily with ma	
trix X but with its derivative M 
M matrix XTX or N 
 N matrix XXT �
The former can be derived by putting expression z� � Xc��� instead of z� in
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the formula XT z� � �c� leading to XTXc� � ��c�� This equation means that
c� is a latent vector of the square matrix XTX corresponding to its latent value
��� Thus� for XTX � its latent value decomposition rather than SVD must be
sought� because singular vectors of X are latent vectors of XTX corresponding
to their latent values ��� Similarly� singular vectors z� of X are latent vectors
of XXT �
In should be noted that in many texts the method of principal components

is explained by using the square matrix XTX only� without any reference to
the basic equations ����� or ������ see for instance ���� ��� ���� The elements
of matrix XTX are proportional to covariances or correlations between the
variables� 
nding the maximum latent values and corresponding latent values
of XTX can be interpreted as 
nding such a linear combination of the original
variables that takes into account the maximum share of the data scatter� In
this� the fact that the principal components are linear combinations of variables
is an assumption of the method� not a corollary� which it is with models �����
and ������
The singular value decomposition is frequently used as a data visualization

tool on its own �see� for instance� ������ Especially interesting results can be seen
when entities are naturally mapped onto a visual image such as a geographic
map� Cavalli	Sforza has interpreted several principal components in this way
����� There are also popular data visualization techniques such as Correspon	
dence analysis ��� ���� Latent semantic analysis ����� and Eigenfaces ����� that
heavily rely on SVD� The former will be reviewed in the next section following
the presentation in �����

����� Correspondence factor analysis

Correspondence Analysis �CA� is a method for visually displaying both row
and column categories of a contingency table P � �pij� �i � I� j � J� in such
a way that distances between the presenting points re�ect the pattern of co	
occurrences in P � There have been several equivalent approaches developed for
introducing the method �see� for example� Benz�ecri ����� Here we introduce CA
in terms similar to those of PCA above�
To be speci
c� let us concentrate on the problem of 
nding just two �under	

lying� factors� u� � f�v��i��� �w��j��g and u� � f�v��i��� �w��j��g� with I �J as
their domain� such that each row i � I is displayed as point u�i� � �v��i�� v��i��
and each column j � J as point u�j� � �w��j�� w��j�� on the plane as shown in
Figure ���� The coordinate row	vectors� vl� and column	vectors� wl� constitut	
ing ul �l � �� �� are calculated to approximate the relative Quetelet coe�cients
qij � pij��pi�p�j�� � according to equations�

qij � ��v��i�w��j� ! ��v��i�w��j� ! eij �����
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where �� and �� are positive reals� by minimizing the weighted least	squares
criterion

E� �
X
i�I

X
j�J

pi�p�je
�
ij �����

with regard to �l� vl� wl� subject to conditions of weighted ortho	normality�

X
i�I

pi�vl�i�vl��i� �
X
j�J

p�jwl�j�wl� �j� �

�
�� l � l�

�� l 
� l�
�����

where l� l� � �� ��
The weighted criterion E� is equivalent to the unweighted least	squares

criterion L applied to the matrix with entries aij � qij
p
pi�p�j � �pij �

pi�p�j��
p
pi�p�j � This implies that the factors are determined by the singular	

value decomposition of matrix A � �aij�� More explicitly� the optimal values
�l and row	vectors fl � �vl�i�

p
pi�� and column	vectors gl � �wl�j�

p
p�j� are

the maximal singular values and corresponding singular vectors of matrix A�
de
ned by equations Agl � �lfl� flA � �lgl�
These equations� rewritten in terms of vl and wl� are considered to justify

the joint display� the row	points appear to be averaged column	points and� vice
versa� the column	points appear to be averaged versions of the row	points� The
mutual location of the row	points is considered as justi
ed by the fact that
between	row	point squared Euclidean distances d��u�i�� u�i��� approximate chi	
square distances between corresponding rows of the contingency table ���i� i�� �P

j�J p�j�qij � qi�j�
�� Here u�i� � �v��i�� v��i�� for v� and v� rescaled in such a

way that their norms are equal to �� and ��� respectively� To see it� one needs
to derive 
rst that the weighted averages

P
i�I pi�vi and

P
j�J p�jwj are equal

to zero� Then� it will easily follow that the singularity equations for f and g are
equivalent to equations

P
j�J p�j�i�wj � �vi and

P
i�I p�i�j�vi � �wj where

p�j�i� � pij�pi� and p�i�j� � pij�p�j are conditional probabilities de
ned by
the contingency table P � These latter equations de
ne elements of v as weighted
averages of elements of w� up to the factor �� and vice versa�
The values ��l are latent values of matrix A

TA� As is known� the sum of all
latent values of a matrix is equal to its trace� de
ned as the sum of diagonal
entries� that is� Tr�ATA� �

Pr
t�� �

�
t where r is the rank of A� On the other

hand� direct calculation shows that the sum of diagonal entries of ATA is

Tr�ATA� �
X
i�j

�pij � pi�p�j�
���pi�p�j� � X�� �����

Thus�

X� � ��� ! ��� !E� ������
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Table ���� Bribery� Cross	classi
cation of features Branch �X� and Type of
Service �III� from Table �����

Type of Service
Branch ObstrJus Favors Extort CategCh Cover�up Total

Government 	 � � 	 � ��
LawEnforc �� � � � � ��
Other � � 	 � � �

Total �� �	 �	 � �� ��

which can be seen as a decomposition of the contingency data scatter� measured
by X�� into contributions of the individual factors� ��l � and unexplained resid	
uals� E�� �Here� l � �� �� but� actually� the number of factors sought can be
raised up to the rank of matrix A�� In a common situation� the 
rst two latent
values account for a major part of X�� thus justifying the use of the plane of
the 
rst two factors for visualization of the interrelations between I and J �

Thus� CA is analogous to PCA� but di
ering from PCA in the following
aspects�

�i� CA applies to contingency data in such a way that relative Quetelet
coe�cients are modeled rather than original frequencies�

�ii� Rows and columns are assumed to have weights� the marginal frequen	
cies� that are used in both the least	squares criterion and orthogonality equa	
tions�

�iii� Both rows and columns are visualized on the same display so that
geometric distances between the representations re�ect chi	square distances be	
tween row and column conditional frequency pro
les�

�iv� The data scatter is measured by the Pearson chi	square association
coe�cient�

As shown in ��� �see also ������ CA better reproduces the visual shapes of
contingency data than the standard PCA�

Example ����� Contingency table for the synopsis of Bribery data and
its visualization

Let us build on results of the generalization of the Bribery data set obtained by
clustering in section ������ all features of the Bribery data in Table ���� are well
represented by the interrelation between the two variables� the branch at which the
corrupt service occurred and type of the service
 features X and III in table ����

respectively� Let us take a look at the cross�classi�cation of these features �Table ���

and visualize it with the method of Correspondence analysis�

On Figure ���
 one can see which columns are attracted to which rows� Change
of category to Other branch
 Favors and Extortion to Government
 and Cover�up and
Obstruction of justice to Law Enforcement� This is compatible with the conclusions
drawn in section ������ A unique feature of this display is that the branches constitute
a triangle covering the services�

�

© 2005 by Taylor & Francis Group, LLC



��� DATA RECOVERY MODELS

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

GOV

LAW

OTH

Obstr

Favor

Extor

Categ

Cover

Figure ���� CA display for the rows and columns of Table ��� represented by
circles and pentagrams� respectively�

��� Data recovery model for K�Means

����� Equation and data scatter decomposition

In K	Means� a clustering is represented by a partition S � fSkg of the entity
set I consisting of K cluster lists Sk that do not overlap and cover all entities�
that is� Sk � Sl 
� � if k 
� l and �Kk��Sk � I � The latter condition can be
relaxed as described in sections ����� and ���� The lists are frequently referred
to as cluster contents� The number of elements in Sk is frequently referred to
as the cluster�s size or cardinality and denoted by Nk� Centroids of clusters are
vectors ck � �ckv� representing cluster �prototypes� or �standard� points�
Given a partition S and set of centroids c � fckg resulting from K	Means�

the original data can be recovered in such a way that any data entry yiv �where
i � I denotes an entity and v � V a category or quantitative feature� is rep	
resented by the corresponding centroid value ckv such that i � Sk� up to a
residual� eiv � yiv�ckv � In this way� clustering �S� c� leads to the data recovery
model described by equations

yiv � ckv ! eiv � i � Sk� k � �� ����K� ������

It is this model� in all its over	simplicity� that stands behind K	Means� Let us
see how this may happen�
Multiplying equations ������ by themselves and summing up the results� it

is not di�cult to derive the following equation�

X
i�I

X
v�V

y�iv �
X
v�V

KX
k��

Nkc
�
kv !

X
i�I

X
v�V

e�iv ������

© 2005 by Taylor & Francis Group, LLC



���� DATA RECOVERY MODEL FOR K�MEANS ���

The derivation is based on the assumption that ckv is the average of within
cluster values yiv � i � Sk� so that

P
i�Sk

ckvyiv � Nkc
�
kv � Noting that the

right	hand term in �������
P

i�I

P
v�V e�iv �

PM
k��

P
i�Sk

P
v�V �yiv � ckv�

� �PM
k��

P
i�Sk

d�yi� ck�� is K	Means square error criterionW �S� c� ������ equation
������ can be rewritten as

T �Y � � B�S� c� !W �S� c� ������

where T �Y � �
P

i�v y
�
iv is the data scatter� W �S� c� �

PM
k��

P
i�Sk

d�yi� ck�
square	error clustering criterion and B�S� c� the middle term in decomposition
�������

B�S� c� �
X
v�V

KX
k��

c�kvNk ������

Equation ������� or its equivalent ������� is well	known in the analysis of vari	
ance� its parts B�S� c� and W �S� c� are conventionally referred to as between	
group and within	group variance in statistics� In the context of model ������
these� however� denote the explained and unexplained parts of the data scatter�
respectively� The square error criterion of K	Means� therefore� minimizes the
unexplained part of the data scatter� or� equivalently� maximizes the explained
part� B�S� c� ������� In other words� this criterion expresses the idea of ap	
proximation of data Y by the K	Means partitioning as expressed in equation
�������
Equation ������ can be rewritten in terms of distances d since

T�Y��
PN

i�� d�yi� �� and B�S� c� �
PK

k��Nkd�ck� �� according to the de
nition
of the Euclidean distance squared�

NX
i��

d�yi� �� �

KX
k��

Nkd�ck � �� !

KX
k��

NX
i��

d�yi� ck� ������

����� Contributions of clusters� features� and individual
entities

According to equations ������ and ������� each individual cluster k � �� ���K
additively contributes

B�Sk� ck� �
X
v�V

c�kvNk ������

to B�S� c�� In its turn� any individual cluster�s contribution is the sum of cluster	
speci
c feature contributions Bvk � c�kvNk� Following from the preliminary
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standardization of data by subtracting features� grand means� the contribution
Bvk is proportional to the squared di
erence between variable v�s grand mean
cv and its within cluster mean ckv � the larger the di
erence the greater the
contribution� This nicely 
ts into our intuition� the farther away is the cluster
from the grand mean on a feature range� the more useful should be the feature
in separating the cluster from the rest�
To evaluate contributions of individual entities to the explained part of

the data scatter� one needs yet another reformulation of ������� Let us refer
to the de
nition ckv �

P
i�Sk

yiv�Nk and put it into c
�
kvNk �halfway�� This

then becomes c�kvNk �
P

i�Sk
yivckv leading to B�Sk� ck� reformulated as the

summary inner product�

B�Sk� ck� �
X
v�V

X
i�Sk

yivckv �
X
i�Sk

�yi� ck�� ������

thus suggesting that the contribution of entity i � Sk to the explained part of
the data scatter is �yi� ck�� the inner product between the entity point and the
cluster�s centroid� as follows from ������ This may give further insights into the
scatter decomposition to highlight contributions of individual entities �see an
example in Table ������
These and related interpretation aids are suggested for use in section �����

as a non	conventional but informative instrument�

����� Correlation ratio as contribution

To measure statistical association between a quantitative feature v and partition
S � fS�� ���� SKg� the so	called correlation ratio 	� has been de
ned in statistics�

	��S� v� �

�v �

PK
k�� pk


�
kv


�v
������

where 
�v �
P

i�I �xiv � cv�
��N and 
�kv �

P
i�Sk

�xiv � ckv�
��Nk are the vari	

ance and within	cluster variance of variable v� respectively� before data pre	
processing and pk � Nk�N � Actually� the correlation ratio expresses the extent
to which the within	cluster averages can be used as predicted values of v and� in
this sense� is analogous to the determination coe�cient in the model of linear re	
gression� The correlation ratio ranges between � and �� and it is equal to � only
when all the within	class variances are zero� The greater the within	category
variances� the smaller the correlation ratio�
Assuming that the raw data xiv have been standardized to yiv � �xiv�cv��bv

by shifting the origins to cv and rescaling results by dividing them over bv� it
is not di�cult to prove that the total contribution B�S� v� �

PK
k�� Bvk �PK

k�� c
�
kvNk of a quantitative feature v to the cluster	explained part of the

data scatter in ������ equals to N	��S� v�
�v�b
�
v �����
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The cluster to variable contribution N	��S� v�
�v�b
�
v becomes plain

N	��S� v� when the variable has been normalized with bv being its standard
deviation� the option which hides the shape of the variable distribution� Oth	
erwise� with bv being the range rv � the contribution should be considered a
partition	to	feature association coe�cient on its own�

���S� v� � 	��S� v�
�v�r
�
v� ������

����� Partition contingency coe
cients

Consider now the case of a nominal variable l presented by its set of categories
Vl� The summary contribution B�S� l� �

P
v�Vl

P
k Bvk of nominal feature l

to partition S� according to decomposition ������� appears to have something
to do with association coe�cients in contingency tables considered in section
������
To analyze the case� let us initially derive frequency based reformulations of

centroids for binary variables v � Vl� Let us recall that a categorical variable
l and cluster	based partition S� when cross classi
ed� form contingency table
pkv � whose marginal frequencies are pk� and p�v� k � �� ����K� v � Vl�
For any three	stage pre	processed column v � Vl and cluster Sk in the

clustering �S� c�� its within	cluster average is equal to�

ckv � �
pkv
pk�

� cv ���bvb
�

v� ������

where b�v �
pjVlj� Indeed� within	cluster average in this case equals ckv � pkv

pk�
�

the proportion of v in cluster Sk� The mean cv of binary attribute v � Vl is the
proportion of ones in it� that is� the frequency of the corresponding category�
cv � p�v�
This implies that

B�S� l� � N

KX
k��

pk�
X
v�Vl

�pkv�pk� � p�v�
��jVljb�v ������

which can be transformed� with little arithmetic� into

B�S� l� �
N

jVlj
KX
k��

X
v�Vl

�pkv � pk�p�v�
�

pk�b�v
������

where bv and jVlj stand for the second stage� scaling� and the third stage�
rescaling� during data pre	processing� respectively� The items summarized in
������ can be further speci
ed depending on scaling coe�cients bv as

�� �pkv�pkpv�
�

pk
if bv � �� the range�
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�� �pkv�pkpv�
�

pkpv���pv�
if bv �

p
pv��� pv�� Bernoulli standard deviation�

�� �pkv�pkpv�
�

pkpv
if bu �

p
pu� Poisson standard deviation�

These lead to the following statement�

Statement ���� The contribution B�S� l� of a nominal variable l and partition
S to the explained part of the data scatter� depending on the standardizing co�
e�cients� is equal to contingency coe�cient G� ���

	 or Q� � X��N ���
�	
if scaling coe�cients bv are taken to be bv � � or bv �

p
p�v� respectively� and

rescaling coe�cients b�v � �� It is further divided by the number of categories
jVlj if rescaling coe�cients are b�v �

pjVlj for v � Vl�

Two well known normalizations of the Pearson chi	square contingency co	
e�cient are due to Tchouprov� T � X��

p
�K � ���jVlj � ��� and Cramer�

C � X��min�K � �� jVlj � ��� both symmetric over the numbers of categories
and clusters� The statement ���� implies one more� asymmetric� normalization
of X�� M � X��jVlj� as a meaningful part of the data scatter in the clustering
problem�
When the chi	square contingency coe�cient or related indexes are applied

in the traditional statistics context� the presence of zeros in a contingency table
becomes an issue because it contradicts the hypothesis of statistical indepen	
dence� In the context of data recovery clustering� zeros are treated as any other
numbers and create no problems at all because the coe�cients are measures of
contributions and bear no other statistical meaning in this context�

��� Data recovery models for Ward criterion

����� Data recovery models with cluster hierarchies

To formulate supporting models for agglomerative and divisive Ward clustering�
one needs to explicitly de
ne the concepts of cluster tree and hierarchy� A set
S of subsets Sw � I is called nested if for every two subsets Sw and Sw� from
S either one of them is part of the other or they do not overlap at all� Given a
nested set S� Sw � S is referred to as a child of Sw� � S if Sw � Sw� and no other
subset Sw�� � S exists such that Sw � Sw�� � Sw� � A subset Sw � S is referred
to as a terminal node or leaf if Sw has no children in S� A nested set S will be
referred to as a cluster hierarchy over I if any non	terminal subset Sw � S has
two children Sw� � Sw�� � S covering it entirely so that Sw� � Sw�� � Sw� The
subsets Sw � S will be referred to as clusters�
Two types of cluster hierarchy are of interest in modeling clustering al	

gorithms� those S containing singleton clusters fig for all i � I and those
containing set I itself as a cluster� The former will be referred to as the lower
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cluster hierarchy and the latter� the upper cluster hierarchy� A lower hierarchy
can be thought of as resulting from an agglomerative clustering algorithm and
an upper hierarchy from a divisive clustering algorithm� A complete result of
a clustering algorithm of either type can be represented by a cluster tree� that
is� a cluster hierarchy which is both lower and upper�
For an upper cluster hierarchy S� let us denote the set of its leaves by L�S��

it is obviously a partition of I � Similarly� for a lower cluster hierarchy S� let us
denote its set of maximal clusters by M�S�� this is also a partition of I �
Given an upper or lower cluster hierarchy S over set I and a pre	processed

data matrix Y � �yiv�� let us� for any feature v� denote the average value of yiv
within Sw � S by cwv�
Given an upper cluster hierarchy S� let us consider its leaf partition L�S��

For any data entry yiv and a leaf cluster Sw� � L�S� containing it� the model
underlying K	Means suggests that yiv is equal to cw�v up to the residual eiv �
yiv � cw�v� Obviously� eiv � � if Sw� is a singleton consisting of just one entity
i� To extend this to the hierarchy S� let us denote the set of all nonsingleton
clusters containing i by Si and add to and subtract from the equation the
averages of feature v within each Sw � Si� This leads us to the following
equation�

yiv �
X

Sw�Si

�cw��v � cwv� ! eiv ������

where Sw� is a child of Sw that runs through Si� Obviously� all eiv � � in ������
if S is a cluster tree�

����� Covariances� variances and data scatter decomposed

Model in ������ is not just a trivial extension of the K	Means model to the case
of upper cluster hierarchies� in spite of the fact that the only �real� item in the
sum in ������ is cw�v where Sw� is the leaf cluster containing i� Indeed� the
equation implies the following decomposition�

Statement ���� For every feature columns v� u � V in the pre�processed data
matrix Y � their inner product can be decomposed over the cluster hierarchy S
as follows�

�yv � yu� �
X
w

Nw�Nw�

Nw
�cw��v � cw��v��cw��u � cw��u� ! �ev� eu� ������

where w runs over all nonterminal clusters Sw � S with children Sw� and Sw�

Nw� Nw�� Nw� being their respective cardinalities�

Proof� The proof follows from equation Nwcw � Nw�cw� !Nw�cw� which re	
lates the centroid of a non	terminal cluster Sw with those of its children� By
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putting this into ������� one can arrive at ������ by multiplying the decomposi	
tion for yiv by that for yiu and summing up results over all i � I � q�e�d�
Another� more mathematically loaded analysis of model ������ can be based

on the introduction of a N 
m matrix ' where N is the number of entities
in I and m the number of nonterminal clusters in S� The columns �w of
' correspond to non	terminal clusters Sw � S and are de
ned by equations�
�iw � � if i 
� Sw� �iw � aw for i � Sw�� and �iw � �bw for i � Sw� where
aw and bw are positive reals speci
ed by the conditions that vector �w must be
centered and normed� These conditions imply that aw �

p
��Nw� � ��Nw �p

Nw��NwNw� and bw �
p
��Nw� � ��Nw �

p
Nw��NwNw� so that awbw �

��Nw� It is not di�cult to prove that thus de
ned vectors �w are mutually
orthogonal and� therefore� form an orthonormal base �see ������ By using matrix
'� equations ������ can be rewritten in matrix denotations as

Y � 'A!E ������

where A is a m
M matrix with entries awv �
p
Nw�Nw��Nw�cw��v � cw��v��

Multiplying ������ by Y T on the left� one arrives at matrix equation Y TY �
CTC !ETE� since 'T' is the identity matrix and 'TE the zero matrix� This
matrix equation is a matrix formulation for ������� This would give another
proof of Statement ����
Given a lower cluster hierarchy S� model ������ remains valid� with eiv

rede
ned as eiv � cw�i where Sw� � M�S� is the maximal cluster containing
i� The summation in ������ still runs over all Sw � S containing i� so that in
the end the equation may be reduced to the de
nition ehi � cw�i� Yet taken
as they are� the equations lead to the same formula for decomposition of inner
products between feature columns because of �������

Statement ���� Statement ���� is also true if S is a lower cluster hierarchy�
with residuals rede�ned accordingly�

These lead to a decomposition described in the following statement�

Statement ���� Given a lower or upper cluster hierarchy S� the data scatter
can be decomposed as follows�

X
i�I

X
v�V

y�iv �
X
w

Nw�Nw�

Nw

X
v�V

�cw��v � cw��v�
� !
X
i�I

X
v�V

e�iv ������

where w runs through all nonterminal clusters Sw � S�
Proof� To prove equation ������� set u � v in equations ������ and sum them
up over all feature columns v � V � This also produces� on the left	hand side�
the sum of all inner products �yv � yv�� which is obviously the data scatter� and
on the right side� exactly the right side of ������� q�e�d�
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Note that the central sum in ������ is nothing but the squared Euclidean
distance between centroids of clusters Sw� and Sw�� which leads to the following
reformulation�

T �Y � �
X
w

Nw�Nw�

Nw
d�cw�� cw�� !

X
i�I

X
v�V

e�iv ������

Further reformulations easily follow from the de
nitions of eiv in upper or
lower cluster hierarchies�
In particular� if S is a lower cluster hierarchy then the residual partP
i

P
v e

�
iv of the data scatter decomposition in ������ is equal to the com	

plementary K	Means criterion B�S� c� where S � M�S� is the set of maximal
clusters in S and c the set of their centroids� That means that for any lower
cluster hierarchy S with S �M�S��

T �Y � �
X
w

Nw�Nw�

Nw
d�cw�� cw�� !B�S� c� ������

Similarly� if S is an upper cluster hierarchy� the residual part is equal to the
original K	Means square error criterion W �S� c� where S � L�S� is the set of
leaf clusters in S with c being their centroids� That means that for any upper
cluster hierarchy S with S � L�S��

T �Y � �
X
w

Nw�Nw�

Nw
d�cw�� cw�� !W �S� c� ������

These decompositions explain what is going on in Ward clustering in terms
of the underlying data recovery model� Every merging step in agglomerative
clustering or every splitting step in divisive clustering adds the Ward distance


w � dw�Sw�� Sw�� �
Nw�Nw�

Nw
d�cw�� cw�� ������

to the central sum in ������ by reducing the other part� B�S� c� or W �S� c�� re	
spectively� The central part appears to be that explained by the upper hierarchy
in divisive clustering and that unexplained by the lower hierarchy in agglomer	
ative clustering� Thus� the Ward distance ������ must be as large as possible
in divisive clustering and as small as possible in agglomerative clustering�
The data recovery model for the K	Means partitioning leads to decompo	

sition ������ of the data scatter and that for an upper cluster hierarchy �the
divisive Ward	like clustering� to decomposition ������� By comparing these two
equations� one can conclude that split contributions 
w sum up to B�S� c�� that
is� they give an alternative way of explaining clusters in S� by splits leading to
S as the leaf set L�S� of a cluster hierarchy rather than by clusters in S them	
selves� Obviously� decomposition ������ holds for any upper hierarchy leading
to S� not necessarily that resulting from Ward	like clustering�
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����� Direct proof of the equivalence between �
Means
and Ward criteria

On the 
rst glance� the Ward criterion for dividing an entity set in two clusters
has nothing to do with that of K	Means� Given Sw � I � the former is to
maximize 
w in ������ over all splits of Sw in two parts� while the K	Means
criterion� with K��� in the corresponding denotations is�

W �Sw�� Sw�� cw�� cw�� �
X
i�Sw�

d�yi� cw�� !
X
i�Sw�

d�yi� cw�� ������

Criterion ������ is supposed to be minimized over all possible partitions of
Sw in two clusters� Sw� and Sw�� According to equation ������� this can be
equivalently reformulated as the problem of maximization of�

B�Sw�� Sw�� cw�� cw�� � Nw�d�cw�� �� !Nw�d�cw�� �� ������

over all partitions Sw�� Sw� of Sw�
Now we are ready to prove that criteria ������ and ������ are equivalent�

Statement ���� Maximizing Ward criterion �����	 is equivalent to minimizing
��Means criterion ����
	�

Proof� To see if there is any relation between ������ and ������� let us
consider an equation relating the two centroids with the total gravity center�
cw� in the entity set Sw under consideration�

Nw�cw� !Nw�cw� � �Nw� !Nw��cw ������

The equation holds because the same summary entity point stands on both
sides of it�
Let us assume cw � �� This shouldn�t cause any trouble because the split

criterion ������ depends only on the di
erence between cw� and cw�� which does
not depend on cw� Indeed� if cw 
� �� then we can shift all entity points in Sw
by subtracting cw from each of them� thus de
ning y

�

iv � yiv � cwv� With

the shifted data� the averages are obviously� c
�

w � �� c
�

w� � cw� � cw� and
c
�

w� � cw� � cw� which does not change the di
erence between centroids�
With cw � �� equation ������ implies cw� � ��Nw��Nw��cw� and

cw� � ��Nw��Nw��cw�� Based on these� the inner product �cw�� cw�� can
be presented as either �cw�� cw�� � ��Nw��Nw���cw�� cw�� or �cw�� cw�� �
��Nw��Nw���cw�� cw��� By substituting these instead of �cw�� cw�� in decom	
position d�cw�� cw�� � ��cw�� cw��� �cw�� cw��� ! ��cw�� cw��� �cw�� cw��� we can
see that 
w ������ becomes�


w �
Nw�Nw�

Nw
�Nw�cw�� cw���Nw�� ! �Nw�cw�� cw���Nw���
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2 3 1

Figure ���� Three clusters with respect to Ward clustering� which is the 
rst
to go� S� or S��

By removing redundant items� this leads to equation�


w � B�Sw�� Sw�� cw�� cw���

which completes the proof�

����� Gower�s controversy

J� Gower ���� provided an example demonstrating a peculiarity of Ward distance
as a clustering criterion to re�ect the fact that factor Nw�Nw���Nw� ! Nw��
in ����� or ������ favors the equal distribution of entities between split parts
of a cluster and� thus� the criterion may fail to immediately separate singleton
outliers�
To be more speci
c� let us refer to the following example �see Figure �����
Let c�� c�� and c� be centroids of groups containing N�� N�� and N� entities

respectively and all three located on a straight line so that c� lies between c�
and c�� The di
erence in distances would imply that� in a cluster hierarchy� c�
and c� should be merged 
rst with c� joining next� or� with splitting� c� would
diverge 
rst� However� this is not necessarily so with Ward distances�
Indeed� let the third group be quite small and consist� for instance� just

of one entity� Let us further assume that the Euclidean squared distance d
between c� and c� is �� times as great as between c� and c�� This means that
N� � � and d�c�� c���d�c�� c�� � ��� Then the ratio of Ward distances q �
dw�c�� c���dw�c�� c�� will be equal to q � ���N�!N����N�N�!��� Depending
on the value of q either of the mergers can be of favor according to the Ward
criterion� If q � � then dw�c�� c�� � d�c�� c�� and the intuitively obvious merger
of S� and S� should go 
rst� If� however� q � � then dw�c�� c�� is smaller and
S�� S� are to be joined 
rst� Obviously� q can be less than �� for example� when
N� � N� � ��� thus leading to 
rst merging the more distant clusters with
centroids c� and c��
Similarly� in Ward	like divisive clustering with this setting� the 
rst split

must be done to separate S�� not the distant cluster S�� from the rest�
This argumentation perhaps has contributed to the practice of using the

unweighted distance between centroids d�cw�� cw�� as an ad hoc criterion in
hierarchical clustering� the so	called UPGMA method ����� ���� In our view�
such a conclusion however would probably be an overstretching application of
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a mathematical property� In fact� with local search algorithms� which are the
only ones currently available� the property may not work at all�
Let us consider� for instance� Ward	like divisive clustering with �	Means

splitting� It appears� the controversy does not show up in it� Indeed� one starts
with the entities farthest from each other� c� and c�� as initial seeds� Then�
with the Minimum distance rule� all points in S� are put in the closest cluster
S� and never removed� as the centroid of the merged cluster S� � S� is always
closer to c� than c�� This way� �	Means will produce the intuitively correct
separation of the farthest singleton from the rest�
Similarly� in Splitting by separating� c� is selected as the initial seed of the

cluster to be separated� Then adding an element from the middle cluster will
produce d�d� larger than the right	hand side expression in ������ thereby halting
the splitting process� For instance� with N� � N� � �� in the example above�
d�d� � ���� while �N�N� ! N����N�N� � N�� � ����� Actually� the latter
becomes larger than the former only after more than half of the entities from
the middle cluster have been added to the distant singleton� which is impossible
with local search heuristics�
This is an example of the situation in which the square error criterion would

have led to a wrong partition if this was not prevented by constraints associated
with the local search nature of �	Means and Splitting by separating procedures�

��� Extensions to other data types

����� Similarity and attraction measures compatible with
K
Means and Ward criteria

The number of di
erent pair	wise similarity measures over multidimensional
entities can be virtually in
nite� The number of possible extensions of pair	
wise similarity measures to cluster	by	cluster similarities can be quite large� too�
The way of addressing these two issues is crucial for any clustering algorithm
working with similarity data� We are going to use de
nitions that are� 
rst�
intuitively appealing� and� second� compatible with those implicitly involved in
K	Means and Ward clustering�
The 
rst issue to be addressed is of how to measure similarity aij between

entities i� j � I provided that the raw data is in the format of an entity	to	
feature table such as Table ����� When the data pre	processing is done as
described in section ���� by shifting to grand means with follow	up scaling and
rescaling� it is only natural to pick up the row	to	row inner product aij �
�yi� yj� �

P
v�V yivyjv �note� the inner product� not the correlation coe�cient�

as a good similarity measure� Indeed� each feature v contributes product yivyjv
to the total similarity� which points to the mutual locations of entities i and j
on the axis v with respect to grand mean cv because the data standardization
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translates cv to the scale�s origin� �� The product is positive when both entities
are either larger than cv � � or smaller than cv � �� It is negative when i and j
are on di
erent sides from cv � �� These correspond to our intuition� Moreover�
the closer yiv and yjv to �� the smaller is the product� the further away is either
of them from �� the larger is the product� This property can be interpreted as
supporting a major data mining idea that the less ordinary a phenomenon� the
more interesting it is� �the ordinary� in this case is just the average�

The next issue to be addressed is measuring the quality of a cluster� Given
a similarity matrix A � �aij�� i� j � I � let us introduce the following measure
of the quality of any S � I �

A�S� �
X
i�j�S

aij�NS � NSa�S� ������

where NS is the number of entities in S and a�S� its average internal similarity�
a�S� �

P
i�j�S aij�N

�
S� The greater A�S�� the better is subset S as a cluster�

Why is this so� Conventionally� a cluster should be cohesive internally and
separate externally� This is the leading thought in de
ning what is a good
cluster in the literature� Criterion ������ does involve a measure of cohesion�
the average similarity a�S�� but it seems to have nothing to do with measur	
ing the separation of clusters from the rest� However� this is not exactly so�
The right	hand expression in ������ shows that it is a compromise between two
goals� maximizing the within cluster similarity a�S� and maximizing the clus	
ter�s cardinality� NS � The goals are at odds� the larger the cluster� the smaller
its within cluster similarity� The factor NS appears to be a proxy for the goal
of making S separate from the rest� I � S� Let us formulate a property of the
criterion supporting this claim�

For any entity i � I � let us de
ne its attraction to subset S � S as the
di
erence�

��i� S� � a�i� S�� a�S��� ������

where� �a� a�i� S� is the average similarity of i and S de
ned as a�i� S� �P
j�S aij�NS � �b� a�S� is the average within S similarity� The fact� that a�S�

is equal to the average a�i� S� over all i � S� leads us to expect that normally
a�i� S� � a�S��� for the majority of elements i � S� that is� normally ��i� S� � �
for i � S � entities should be positively attracted to their clusters� It appears�
a cluster S maximizing the quality criterion A�S� is much more than that�
S is cohesive internally and separate externally because all its members are
positively attracted to S whereas non	members are negatively attracted to S�

Statement ���
� If S maximizes A�S� �����	 and NS � � then ��i� S� is not
negative for all i � S and not positive for all i 
� S�
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Proof� Indeed� if i � S and ��i� S� � �� then A�S � i� � A�S� which con	
tradicts the assumption that S maximizes ������� To prove the inequality�
let us consider A�S�NS �

P
i�j�S aij � the sum of within cluster similarities�

Obviously� A�S�NS � A�S � i��NS � �� ! �a�i� S�NS � aii� This leads to
�A�S � i� � A�S���NS � �� � aii ! A�S� � �a�i� S�NS � aii � ���i� S�NS � �
since aii must be non	negative� which proves the inequality� The other part�
that i 
� S contradicts ��i� S� � �� can be proven similarly� q�e�d�
Having thus discussed the intuition behind the similarity and cluster quality

measures thus de
ned� it is nice to see that they have something to do with
K	Means and Ward criteria�

Statement ����� If the similarity measure aij is de�ned as the inner product
�yi� yj�� then� for any partition S � fS�� ���� SKg with the set of centroids c �
fc�� ���� cKg� the relative within�cluster similarity measure A�Sk� is equal to the
contribution Nk

P
v�V c

�
kv of Sk to the complementary cluster criterion B�S� c�

in decomposition ���
�	�

A�Sk� �
X
i�j�Sk

aij�Nk � Nk

X
v�V

c�kv ������

Proof� Indeed� according to de
nition� ckv �
P

i�Sk
yiv�Nk� which implies that

c�kv �
P

i�j�Sk
yivyjv�N

�
k � Summing these up by v � V � we get ������� q�e�d�

This statement leads to the following�

Statement ����� Criteria maximized by K�Means partitioning and the divisive
Ward�like method can be expressed in terms of between entity inner products
aij � �yi� yj� as

B�S� c� �

KX
k��

A�Sk� �

KX
k��

X
i�j�Sk

aij�Nk ������

and


w � A�Sw�� !A�Sw���A�Sw� ������

where items on the right are de�ned in �����	�

Expression ������ actually follows from the property of Ward distance ����� and
decomposition ������� Since the right	hand part in it does not depend on the
split to be made in Sw and thus can be omitted� the remaining part is nothing
but partition criterion ������ adjusted to the case of bi	class partitioning�
Obviously� criteria ������ and ������ can be applied to any similarity measure

aij � not necessarily the inner product�
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A method for building clusters individually� one at a time� according to
criterion ������� will be described in section ������ In this section we present
only a method for divisive clustering using similarity data with criterion �������
The sum

P
i�j�Sw

aij in the parent class Sw is equal to the sum of within chil	
dren summary similarities plus the between children similarity doubled� Thus�
by subtracting the former from their counterparts in criterion ������� the crite	
rion can be transformed into�


w �
Nw�Nw�

Nw
�A�� !A�� � �A��� ������

where

Aij �

P
i�Swi

P
j�Swj

aij

NwiNwj
�

the average similarity between Swi and Swj or within Swi if i � j �i� j � �� ���
Note that criterion ������ is but the Ward distance translated in terms of

entity	to	entity inner products treated as similarities� Moving an entity i from
Sw� to Sw� leads to the change in 
w equal to

��i� � A��
Nw�

Nw� � � �A��
Nw�

Nw� ! �
! ��A��i� w���A��i� w��� ! �Aii ������

where A��i� w�� �
P

j�Sw�
aij��Nw� ! ��� A��i� w�� �

P
j�Sw�

aij��Nw� � ��
and � � N���Nw� !���Nw� � ���� This can be derived from expression �������
A similar value for the change in 
w when i � Sw� is moved into Sw� can be
obtained from this by interchanging symbols � and � in the indices�
Let us describe a local search algorithm for maximizing criterion 
w in

������ by splitting Sw in two parts� At 
rst� a tentative split of Sw is carried
out according to the dissimilarities 
�i� j� � �aii!ajj��aij��� that are de
ned
according to the criterion ������ applied to individual entities� Then the split
parts are updated by exchanging entities between them until the increment �
in ������ becomes negative�

Splitting by similarity
�� Initial seeds� Find a pair of entities i�� j� maximizing 
�i� j� �
�aii ! ajj � �aij��� over i� j � Sw�
�� Initial clusters� Create initial Sw� and Sw� by putting i

� into
the former and j� into the latter and by distributing each i � Sw
either to Sw� or Sw�� according to the sign of an analogue to �������
��i� � ��aii� � aij��� �ai�i� � aj�j���
�� Candidacy marking� For any i � Sw calculate ��i� and take i

�

maximizing ��i��
�� Exchange� If ��i�� � �� move i� to the other split part and go
to step �� Otherwise� halt the process and output current clusters
Sw� and Sw� along with corresponding 
w�
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Table ���� Attractions of Masterpieces to hierarchical clusters�

Masterpieces
Cluster � � � � � � � �

�
�
�
�
�
� 	��� 	�	� 	�	� 	�	� �	�	� 	�	� �	��� �	���
�
� �	��� �	��� �	��� �	��� �	��� �	��� ���� ��	�

�
�
� ���� ���� ���	 �	��� �	��� �	��� �	��� �	���
�
�
� �	��� �	��� �	��� ���� ���� ���� �	��	 �	���

In this method� step � is the most challenging computationally� it requires
the 
nding of a maximum ��i� over i � I � To scale the method to large data
sizes� one can use not the optimal i but rather any i at which ��i� � �� this
would be analogous to shifting from the method of steepest descent to the
method of possible directions in the optimization of a function�
In spite of its simplicity� the Splitting by similarity produces rather tight

clusters� which can be expressed in terms of the measure of attraction ��i� S� �
a�i� S�� a�S��� �������
If an entity i � Sw is moved from split part Sw� to Sw�� the change in the

numbers of elements of individual parts can be characterized by the number

n�� �
Nw��Nw����
Nw��Nw����

or by the similar number n�� if an entity is moved in the

opposite direction� Obviously� for large Nw� and Nw�� n�� tends to unity� It
appears that elements of a split part are more attracted to it than to the other
part� up to this quantity�

Statement ����� For any i � Sw��

n����i� Sw�� � ��i� Sw�� ������

and a symmetric inequality holds for any i � Sw��

Proof� Indeed� ��i� � � for all i � Sw� in ������ after the Splitting by similar	
ity algorithm has been applied to Sw� This implies that

Nw�

Nw���
��i� Sw�� ! � �

Nw�

Nw���
��i� Sw��� The inequality remains true even if � is removed from it be	

cause � � �� Dividing the result by Nw�

Nw���
leads to ������� q�e�d�

A divisive clustering algorithm can be formulated exactly as in section ���
except that this time Splitting by similarity is to be used for splitting clusters�

Example ����� Attractions of entities to Masterpieces clusters

Table ��� displays the attractions of entities in the Masterpieces data to clusters
occurring at the splitting process� In the end
 not only Statement ����� holds but all
entities become positively attracted to their clusters and negatively to the rest�

�
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���� EXTENSIONS TO OTHER DATA TYPES ���

����� Application to binary data

The case at which all variables are binary is of considerable interest because
it emerges in many application areas such as document clustering in which
features characterize presence�absence of keywords� When keywords are created
automatically from collections of documents� the size of the feature space may
become much larger than the size of the entity set so that it can be of advantage
to shift from the entity	to	feature data format to a less demanding search space
such as similarities between entities or just word counts� The K	Means and
Ward criteria can be adjusted for use in these situations�

Inner product expressed through frequencies

As stated in the previous section� the inner product of rows in the pre	
standardized data matrix is a similarity measure which is compatible with
K	Means and Ward criteria� With binary features� specifying cv � pv� the
proportion of entities at which feature v is present� and bv � �� the range� the
inner product can be expressed as�

aij �
X
v�V

yivyjv � jVi � Vj j � jVij � jVj j! t�i� ! t�j� ! � ������

where t�i� �or t�j�� is the total frequency weight of features that are present at i
�or� at j�� The frequency weight of a feature v is de
ned here as ��pv� the more
frequent is the feature the less its frequency weight� The value of � �

P
v p

�
v

here is simply an averaging constant related to the Gini coe�cient� The right	
hand expression for aij follows from the fact that each of pre	processed yiv and
yjv can only be either �� pv or �pv�
Similarity index ������ is further discussed in section ������ Here we note

that it involves evaluations of the information contents of all binary features
that are present at entities i or j�

Binary case criteria

With binary features� K	Means and Ward clustering criteria can be reformu	
lated in terms of feature counts that can lead to scalable heuristics for their
optimization�
Indeed� given a partition S � fSkg along with cluster centroids ck � �ckv��

and standardizing coe�cients av � pv and bv� the within cluster average values
of binary features can be expressed as ckv � ����pv�pkv�pk�pv���pkv�pk���bv
where pkv is the proportion of entities simultaneously falling in feature v and
cluster Sk� and pk is the proportion of Sk in I � This leads to

ckv � �pkv�pk � pv��bv� ������
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Putting equation ������ into the formulas for K	Means criterion and Ward
distance proves the following statement�

Statement ����� In the situation of binary data pre�processed with av � pv�
the complementary criterion B�S� c� of K�Means is equal to

B�S� c� � N

KX
k��

X
v�V

�pkv � pkpv�
�

pkb�v
������

and Ward distance to


w �
Nw�Nw�

Nw

X
v�V

�
pw��v
pw�

� pw��v
pw�

���b�v ������

It should be noted that� when bv � �� measure 
w ������ closely resembles
the so	called �twoing rule�� a heuristic criterion used in CART techniques for
scoring splits in decision trees ���� and B�S� c� ������ is the sum of NG� over all
nominal features involved� where G� is Quetelet coe�cient ������ �and �������
introduced in section ������

����� Agglomeration and aggregation of contingency data

Speci
cs of contingency and �ow data have been pointed out in sections ������
����� and ������ Basically� they amount to the highest uniformity of all data
entries so that they can be meaningfully summed up and naturally pre	processed
into Quetelet association indexes� These speci
cs are dwelt on in this section�

Agglomeration

Let P �T� U� � �ptu� be a contingency matrix with rows and columns represent	
ing categories t � T and u � U � respectively� and F � fF�� ���� Fmg a partition of
row set T in non	overlapping nonempty classes F�� ����Fm� Since entries ptu can
be meaningfully summed up all over the table� a partition F can be used not
only for clustering but also for aggregating matrix P �T� U� into P �F�U� � �pfu�
�f � �� ����m� where pfu �

P
t�Ff

ptu is the proportion of entities co	occurring
in class Ff and category u for any f � �� ����m and u � U �
The row	to	column associations in P �T� U� and P �F�U� can be repre	

sented with relative Quetelet coe�cients qtu � ptu��pt�p�u� � � and qfu �
pfu��pf�p�u� � � de
ned in section ������ The match between the aggregate
indexes qfu and the individual entry indexes qtu� t � Ff � can be scored with an
aggregate weighted square error index� L�F�U� �

P
t�T

P
u�U pt�p�ue

�
tu� the

smaller L� the better P �F�U� aggregates P �T� U��
To support the choice of L�F�U� as an aggregation criterion� the following

equation can be derived with elementary algebraic manipulations� L�F�U� �
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X��T� U� � X��F�U� where X� is the Pearson contingency coe�cient in the
format of equation ������ applied to P �T� U� and P �F�U�� respectively� This
equation can be put as�

X��T� U� � X��F�U� ! L�F�U�� ������

and interpreted as a Pythagorean decomposition of the data scatter� X��T� U�
is the original data scatter� X��F�U� is its part taken into account by partition
F � and L�F�U� is the unexplained part� Obviously� minimizing L�F�U� over
partition F is equivalent to maximizing X��F�U��
Let F �k� l� be the partition obtained from F by merging its classes Fk and

Fl into united class Fk�l � Fk�Fl� To score the quality of the merging� we need
to analyze the di
erence D � X��F�U� �X��F �k� l�� U�� according to �������
Obviously� D depends only on items related to k and l�

D �
X
u�U

�pkuqku ! pluqlu � �pku ! plu�qk�l�u� �

X
u�U

���p�u��p
�
ku�pk� ! p�lu�pl� � �pku ! plu�

���pk� ! pl����

By using equation �x� y�� � x� ! y� � �xy� one can transform the expression
on the right to obtain�

D �
X
u�U

���p�u�
p�kup

�
l� ! p�lup

�
k� � �pkuplupk�pl�

pk�pl��pk� ! pl��
�

which leads to�

D �
pk�pl�

pk� ! pl�

X
u�U

���p�u��pku�pk� � plu�pl��
��

This is exactly the chi	square distance ��Fk � Fl� considered in sections ����� and
������
Thus� it is proven that the chi	square distance represents the increase in

criterion L�F�U� when two clusters of F are merged� In this aspect� it parallels
the conventional Ward distance manifested in the criterion 
w �������
In fact� all the clustering theory in sections ��� and ��� can be extended to

the contingency data case via equation ������� Aggregation of columns can be
included into the analysis as well� as described in ����� pp� ���	����
Similar considerations can be applied to the case of an interaction table�

that is� a �ow data table in which the row and column sets coincide� T � U
as� for instance� in the Digit confusion data� The agglomeration procedure
remains the same as in the case when only rows are aggregated� However� since
aggregation of rows here will also involve columns� the change of the Pearson
chi	square coe�cient cannot be expressed with chi	square distances between
rows or columns� which makes computations much more complicated�
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����� Extension to multiple data

The power of the data recovery approach can be further demonstrated in prob	
lems involving data on the same entities coming from di
erent sources in dif	
ferent formats� For instance� two data tables on numeral digits� Digits Table
��� of their drawing features and Confusion Table ���� are given in section ����
We have analyzed these data by 
nding patterns in one of them and using the
other one for interpretation of the patterns� However� in some applications one
may need to look for patterns that are present in both data sets� Obviously� to
do this� data sets must have a common entity set� which is so in the example of
Digits� Problems of this type are of interest in such applications as data fusion�
Although generally many di
erent data sets involving the same entities can

be available� we will concentrate here on the data formats that are given for
Digits� Thus� the case is analyzed in which an entity set I is provided with two
data sets� a pre	processed standardized entity	to	feature data matrix Y and a
�ow table P �I� I� � P � �pij�� i� j � I � These two data sets can be of di
erent
importance in description of the phenomenon under consideration� To take this
into account� a relative weight � � � can be assigned to Y with P �I� I� assumed
to have weight ��
Let us consider a partition S � fS�� ���� SKg of I with classes Sk correspond	

ing to the data patterns that are being searched for� Let us denote the binary
membership vector for Sk by zk � �zik� so that zik � � if i � Sk and zik � �
if i 
� Sk� According to the data recovery approach� this partition can be used
to recover the feature data with an analogue to the K	Means clustering model
������ which indeed can be presented as an extension of the Principal compo	
nent analysis model ����� �this is discussed in a greater detail later in section
������ see ��������

yiv � c�vzi� ! c�vzi� ! ���! cKvziK ! eiv � ������

for all i � I and v � V � and the �ow data with a similar equation� though
taking into account that the row and column entities are the same�

qij �

KX
k��

KX
l��


klzikzjl ! �ij � ������

for all i� j � I � where ckv and 
kl are unknown reals�
The partition S and reals ckv and 
kl are sought to minimize the least

squares criterion�

L � �
X
i�I

X
v�V

e�iv !
X
i�j�I

pi�p�j�
�
ij ������

in which coe�cient � re�ects the prior importance of Y relative to that of P �
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To develop a K	Means	like method of alternating minimization of L� let us
consider S 
xed� Then the optimal ckv is obviously the average of yiv over
i � Sk� and the optimal 
kl is the Quetelet coe�cient qkl calculated over the
aggregate interaction matrix P �S� S�� entries of which are de
ned as pkl �P

i�Sk

P
j�Sl

pij � k� l � �� ����K�

Then� given cluster centroids ck � �ckv� and 
kl � qkl� criterion L ������
can be rewritten as

L �

KX
k��

X
i�Sk

��d�yi� ck� ! pi���qi� q�S��� ������

where d and � are the squared Euclidean and chi	square distances� respectively�
For i � Sk� ��qi� q�S�� �

PK
l��

P
j�Sl

p�j�qij � qkl�
�� so that the expression in

square brackets�

D�i� k� � �d�yi� ck� ! pi���qi� q�S��� ������

expresses the contribution of i � Sk to L� Obviously� to minimize ������ with
regard to all possible assignments of entities to classes Sk� an extension of the
Minimum distance rule should be utilized at which D�i� k� plays the role of
distance d�yi� ck� in K	Means� each i � I should be assigned to such Sk which
minimizes D�i� k� over k � �� ����K� The role of the weight � is clearly seen
in ������� the greater the � the greater the contribution of distance d�yi� ck�
relative to the other item coming in D�i� k� from P �
Now one can formulate a method replicating K	Means for the situation of

two data sets�

Straight Fusion K�Means
�� Initial setting� Choose a candidate partition S of I �
�� Parameter update� Given S� calculate centroids ck of Sk and
aggregate confusion table P �S� S� with aggregate Quetelet coe�	
cients qkl�
�� Partition update� Given centroids and aggregate Quetelet coef	

cients� calculate D�i� k� ������ for all i � I and k � �� ����K� and
assign each i to that Sk at which D�i� k� is minimum�
�� Stop condition� Check whether the new partition coincides with
the previous one� If yes� halt� otherwise� go to Step ��

The process eventually stabilizes because the number of partitions is 
nite
and criterion L ������ decreases at each stage�
To formalize the issue of choosing the prior importance coe�cient �� one

needs to de
ne a more general clustering criterion� an example of which can be
found in ������
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��� One�by�one clustering

����� PCA and data recovery clustering

As described in section ������ the Principal component analysis �PCA� is a
method for extracting orthogonal factors from data one by one� This strategy
is well supported by the existence of the singular	value decomposition SVD of
matrices�
Recently� some e
orts have been made to apply PCA to both partitioning

���� and divisive clustering ����� The e
orts are based on consecutively executing
a two	step procedure at which a principal component is found at the 
rst step�
and it is used for clustering at the second step� Data recovery models described
above lead to di
erent extensions of PCA to clustering� We do not apply PCA
to clustering but rather modify PCA by using the same data recovery model
adjusted to the case of clustering by specifying certain constraints� the factor
score vectors are required to be binary in partitioning� or ternary in hierarchical
clustering� This strategy can be followed because of striking similarities between
the data recovery models for PCA and clustering�
As explained in section ������ the PCA model assumes a small number m

of hidden factors� the principal components� z�� z�� ���� zm� to underlie the
observed matrix Y so that Y � ZA ! E where Z is an N 
m matrix whose
columns are the principal components� A is a m
M matrix of so	called factor
loadings and E is a matrix of residuals that are to be least	square minimized
with respect to the sought Z and A� Each optimal component zt additively
contributes ��t to the explained part of the data scatter T �Y � �t � �� ����m��
Here �t is a singular value of Y or� equivalently� ��t is a latent value of both
feature	to	feature covariance matrix Y TY and entity	to	entity similarity matrix
Y Y T � The principal components can be found one by one in such a way that
the PCA model with m � � is iteratively applied to the residual data matrix Y
from which principal components found at previous steps have been subtracted�
The 
rst iteration yields the component corresponding to the maximum singular
value� the second yields the next largest singular value� etc�
The data recovery models in ������� for partitioning� and ������� for hierar	

chical clustering� also have the format of equation Y � ZA!E with residuals
E to be least	square minimized over unknown Z and A� In the hierarchical
clustering problem Z is a matrix ' of ternary vectors �w corresponding to
non	terminal clusters Sw of a lower or upper cluster hierarchy to be built� as
explained on page ���� see equation ������� In the partitioning problem� Z is
a matrix of the cluster membership vectors zk de
ned by clusters Sk so that
zik � � for i � Sk and zik � � for i 
� Sk� Thus de
ned� vectors zk are mutually
orthogonal� because clusters Sk do not overlap�
The model for partition clustering with criterion ����� is equivalent to the

PCA model with m � K and the constraint that Z must be a binary matrix of
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the cluster membership vectors� Similarly� the model for hierarchical clustering
is equivalent to the PCA model with the restriction that Z must be a matrix of
m ternary split membership vectors� The PCA strategy of extracting columns
of Z one by one� explained in section ������ thus can be applied in each of these
situations� We begin by describing an adaptation of this strategy to the case of
hierarchical clustering and then to the case of partitioning� Extensions to the
similarity and contingency data are brie�y described next �for more detail� see
������

����� Divisive Ward
like clustering

Given an upper cluster hierarchy S � fSwg� each item cw� � cw in equation
������ with cw� being the centroid of Sw� � S and cw the centroid of the parent
Sw� contributes 
w � wd�Sw�� Sw�� �

Nw�Nw�

Nw
d�cw�� cw�� ������ to data scatter

T �Y � according to equation ������� This implies that� to build S � fSwg
from scratch� that is� by starting from the universal cluster Sw � I � one can
employ the PCA one	by	one strategy by adding to S one split at a time� each
time maximizing contribution 
w of the split to the explained part of the data
scatter so that 
w plays the role of the squared singular value �

�
t of Y � The

analogy is not super
cial� Both �t and
p

w express the scaling coe�cient

when projecting the data onto a corresponding axis which follows the principal
component zt� for the former� and the ternary split vector �w� for the latter�
In the sequel to this section� we are going to demonstrate that the divisive

Ward	like algorithm described in section ��� is an implementation of the PCA
one	by	one extracting strategy� The strategy involves two types of iterations�
One� major iteration� builds a series of splits of clusters Sw into split parts Sw�
and Sw� to greedily maximize the summary contribution

P
Sw�S


w to the data
scatter T �Y �� The other� minor iteration� is utilized when maximizing individ	
ual 
w by splitting Sw using a speci
c splitting method� Two such methods
described in section ��� 
t into the strategy because they do maximize 
w�
though locally� They are� a straight method� with �	Means� and an incremen	
tal method� Splitting by separation� based on a di
erent expression� ������ for

w�
The use of �	Means with Euclidean squared distance d� not Ward distance

dw� for splitting is justi
ed with the following statement�

Statement ����� The ��Means algorithm for splitting Sw maximizes �locally	
the Ward distance between split parts�

Proof� According to equation ������� the criterion minimized in splitting of
partition L�S� for an upper cluster hierarchy S by maximizing the Ward dis	
tance ������ is W �L�S�� c�L�S���� the K	Means criterion� q�e�d�
Another proof of this statement is given in section ������
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Each splitting step is equivalent to 
nding a ternary splitting vector maxi	
mizing Ward distance between its parts or� equivalently� minimizing the sum	
mary squared residuals in ������ with regard to all possible tertiary column
vectors �w � ��iw� and any row	vectors aw � �awv� in model ������� According
to the 
rst	order optimality conditions� the optimal vector aw in ������ relates
to the �w as the weighted vector of di
erences� awv �

p
Nw�Nw��Nw�cw��v �

cw��v�� which concurs with the data recovery model ������ for hierarchical clus	
tering�

����� Iterated Anomalous pattern

In this section we are going to demonstrate that the PCA one	by	one strategy
applied when the membership vectors are constrained to be binary� is but the
iterated Anomalous pattern analysis�
Consider a set of subsets Sk � I � each speci
ed by a binary N 	dimensional

vector zk � �zik� where zik � � if i � Sk and zik � � if i 
� Sk� �Vector zk is
interpreted as the membership vector for subset Sk � I �� The data recovery
model ������ for K	Means can be rewritten with zk in the following way�

yiv � c�vzi� ! c�vzi� ! ���! cKvziK ! eiv � ������

which follows the PCA model ����� with m � K factors and the additional
requirement that scoring vectors zk must be binary�
The one	by	one extracting strategy here would require the building of clus	

ters Sk one by one� each time minimizing criterion�

l �
X
i�I

X
v�V

�yiv � cvzi�
� ������

over unknown cv and binary zi� index k being omitted� The membership vector
z is characterized by subset S � fi � zi � �g� Criterion ������ can be rewritten
in terms of S� as follows�

W �S� c� �
X
i�S

d�yi� c� !
X
i��S

d�yi� �� ������

This is the square error criterion ����� for a partition consisting of two
clusters� S and its complement "S � I � S� with regard to their respective
centroids� c and �� However� in contrast to the K	Means method� the centroid
� here is not the center of gravity of the complementary set I � S� but is kept
constant and does not change when S and I � S change�
Given S� the optimal c in ������ is obviously the center of gravity of S

because the 
rst sum is constant there� Given c� a subset S to minimize ������
must include every i � I such that d�yi� c� � d�yi� ��� Obviously� these are
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exactly the rules in Steps � and � of the Anomalous pattern clustering algorithm
in section ������
Thus� the following is proven�

Statement ����� The Anomalous pattern algorithm iteratively minimizes
�����	 according to the alternating optimization rule� given c� �nd optimal S�
and given S� �nd optimal c� The initial choice of c in the Anomalous cluster
minimizes �����	 over all singleton clusters�

Thus� the AP method is a set of minor iterations of alternatingly optimizing
criterion ������ for selecting the best cluster�
After one cluster has been found� the next one can be sought in the remain	

der of the set I � to obtain a cluster partition � this amounts to the iterated
application of Anomalous pattern in Intelligent K	Means �section ����� An	
other version of the one	by	one Anomalous clustering� with the residual data
matrix and not necessarily non	overlapping clusters� is described in ����� section
����

����� Anomalous pattern versus Splitting

A question related to the Anomalous pattern method is whether any relation
exists between its criterion ������ and Ward criterion 
w� in its form ����� used
in the Splitting by separating algorithm� Both methods separate a cluster from
a body of entities with a square	error criterion�
To analyze the situation at any of the major iterations� let us denote the

entity set under consideration by J � the separated cluster by S� with its centroid
c�� Consider also a pre	speci
ed point c in J � which is the centroid of J in Ward
clustering and a reference point in the Anomalous pattern clustering� The other
subset� J � S�� will be denoted by S�� In these denotations� the Anomalous
pattern criterion can be expressed as�

W �
X
i�S�

d�yi� c�� !
X
i�S�

d�yi� c�

and the Ward splitting criterion as�


w �
NJN�

N�
d�c�� c�

where NJ � N� and N� are the sizes �cardinalities� of J � S� and S�� respectively�
To analyze the relationship between these criteria� let us add to and sub	

tract from W the complementary part
P

i�S�
d�yi� c�� Then W � T �Y� c� !P

i�S�
d�yi� c�� �

P
i�S�

d�yi� c� where T �Y� c� denotes the sum of squared Eu	
clidean distances from all points in J to c� that is� the scatter of the data
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around c� an item which is constant with respect to the cluster S� being sep	
arated� By noting that d�yi� c� � �yi� yi� ! �c� c� � ��yi� c� and d�yi� c�� �
�yi� yi�! �c�� c��� ��yi� c��� the last expression can be equivalently rewritten as
W � T �Y� c��N�d�c�� c�� The following is proven�

Statement ����� Both separating methods� Anomalous pattern and Splitting
by separation� maximize the weighted distance �d�c�� c� between centroid c� of
the cluster being separated and a pre�speci�ed point c� The di�erence between
the methods is that�

�
	 the weight is � � N� in the Anomalous pattern and � � N��N� in the
Splitting by separation� and

��	 c is the user�speci�ed reference point in the former and the unvaried
centroid of set J being split in the latter�

The di
erence ��� disappears if the reference point has been set at the
centroid of J � The di
erence ��� is fundamental� as proven in section ������
both sets� S� and S�� are tight clusters in Splitting� whereas only one of them�
S�� is to be tight as the Anomalous pattern� the rest� J � S�� may be a set of
rather disconnected entities� This shows once again the e
ect of size coe�cients
in cluster criteria�

����� One
by
one clusters for similarity data

Let A � �aij�� i� j � I � be a given similarity matrix and 
z��
zizj� a weighted
binary matrix de
ned by a binary membership vector z � �zi� of a subset
S � fi � I � zi � �g along with its numeric intensity weight 
� When A can be
considered as noisy information on a set of weighted �additive clusters� 
kzkz

T
k �

k � �� ���K� the following model can be assumed ������� ������

aij � 
�zi�zj� ! ���! 
mziKzjK ! eij ������

where eij are residuals to be minimized� According to model ������� similarities
aij are de
ned by the intensity weights of clusters containing both i and j�
Equations ������ must hold� generally� for each pair �i� j�� With no loss of
generality� we accept in this section that aij are symmetric and not de
ned at
i � j so that only i � j are considered�
In matrix terms� the model is A � Z&ZT !E where Z is an N 
K matrix

of cluster membership vectors� & is a K 
 K diagonal matrix with 
������ 
K
on its main diagonal� all other entries being zero� and E � �eij� the residual
matrix� In fact� this matrix equation is analogous to the so	called spectral� or
latent value� decomposition of a symmetric matrix A �����
The one	by	one PCA strategy suggests that� provided that A has been pre	

liminarily centered� minimizing L�E� �
P

i�j e
�
ij over unknown Sk and 
k�

k � �� ����K� can be done by 
nding one cluster S at a time to minimize
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L �
P

i�j�I �aij�
zizj�� with respect to all possible 
 and binary z � �zi�� Ob	
viously� given S � I � 
 minimizing criterion L is the average similarity within
cluster S� that is� 
 � a�S� where a�S� �

P
i�j�S�i�j aij��jSj�jSj � ������ In

matrix terms� a�S� � zTAz�zTz�
After a cluster S and corresponding 
 � a�S� are found� similarities are

changed for residual similarities aij �
zizj � and the process of 
nding a cluster
S and its intensity a�S� is reiterated using the updated similarity matrix� In
the case of non	overlapping clusters� there is no need to calculate the residual
similarity� the process needs only be applied to only those entities that have
remained as yet unclustered�
When the clusters are assumed to be mutually nonoverlapping �that is� the

membership vectors zt are mutually orthogonal� or when 
tting of the model is
done using the one	by	one PCA strategy� the data scatter decomposition holds
as follows �����

T �A� �

KX
k��

�zTk Akzk�z
T
k zk�

� ! L�E� ������

in which the least	squares optimal 
k�s are taken as the within cluster averages
of the �residual� similarities� The matrix Ak in ������ is either A unchanged�
if clusters are not overlapping� or a residual similarity matrix at iteration k�
Ak � A�Pk��

t�� 
kzkz
T
k �

Equation ������ shows that 
nding least	squares optimal clusters requires
maximizing the intermediate term in ������� which is the sum of squared crite	
ria ������ or ������ discussed in section ������ When applying the one	by	one
extraction strategy so that one cluster is sought at a time� the constituent one
cluster criterion is the squared criterion ������� To 
nd a cluster optimizing
it� one may exploit its square root� criterion ������ itself� which will be brie�y
discussed next�
In ���� ��� a number of incremental procedures to maximize A�S� ������ or

its square are described to involve the average similarity of an entity i � I to a
subset S�

a�i� S� �
X
j�S

aij�jSj ������

A very straightforward procedure for extracting a cluster� given a similarity
matrix A � �aij�� i� j � I is referred to as ADDI	S in ����� The computation
starts at S consisting of just two entities� i� and j�� such that ai�j� is the max	
imum similarity in A� Given a current S� the procedure proceeds in calculating
a�i� S� for all i � I � both belonging to S and not� This can be done incremen	
tally� Then a threshold � � a�S��� is calculated to select those i�s that satisfy
a�i� S� � �� this� basically� checks the signs of the attractions of entities to S�
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Recall that the attraction of i to S is de
ned as ��i� S� � a�i� S� � a�S����
Statement ����� states that if subset S maximizes criterion ������ then entities
with ��i� S� � � belong in S and those with ��i� S� � � do not� This line of
action can be wrapped up in the following algorithm�

ADDI�S or Additive similarity cluster
�� Initialization� Find maximum aij in A and set S to consist
of the row and column indexes i� j involved� de
ne a�S� as the
maximum aij � Calculate a�i� S� for all i � I �
�� Direction of the steepest ascent� Find i� � I that maximizes
%i� � si���i

�� S� � si��a�i
�� S�� a�S���� where si� � �� if i � S

and si� � �� otherwise� If %i� � �� stop the process at current S�
otherwise� proceed�
�� Steepest ascent� Update S by adding i� to S if it does not
belong to S or by removing it from S if it does� Recalculate a�S�
and a�i� S� for all i � I and return to Step ��

What is nice in this algorithm is that it involves no ad hoc parameters�
Obviously� at the resulting cluster� attractions ��i� S� � a�i� S� � a�S��� are
positive for within	cluster elements i and negative for out	of	cluster elements
i� Actually� the procedure is a local search algorithm for maximizing criterion
A�S� ������� This method works well in application to real world data� similar
procedures have been successfully applied in ������

��	 Overall assessment

An outline of a theory for data visualization and clustering techniques is pre	
sented� The theory embraces such seemingly unrelated methods as Principal
component analysis� K	Means clustering� hierarchical clustering� conceptual
clustering� etc� All these appear to be methods for 
tting the same bilinear
model of data with di
erent speci
cations and local search strategies�

The clustering model involves independent representation of the data entries
via cluster centroids with residuals� each of which should be made as small as
possible� This multi	criterion goal is then reduced to a one	criterion formula	
tion by combining the residuals into the least squares criterion for the follow	up
minimization� It is this criterion which determines described rules for data
pre	processing� cluster 
nding and interpretation� The choice of the scalar	
ized criterion is somewhat substantiated by the properties of solutions� which
include� averaging quantitative features and taking proportions of categorical
features in centroids� using the squared Euclidean distance as the dissimilar	
ity and inner product as the similarity� producing contributions of features to
partitions equal to the correlation ratio or Pearson chi	square coe�cient� etc�
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The theory supports�

�� A uni
ed framework for K	Means and Ward clustering that not only jus	
ti
es conventional partitioning and agglomerative methods but extends
them to mixed scale and multiple table data�

�� Modi
ed versions of the algorithms such as scalable divisive clustering as
well as intelligent versions of K	Means mitigating the need in user	driven
ad hoc parameters�

�� Compatible measures and criteria for similarity data to produce provably
tight clusters with the tightness measured by the attraction coe�cient
derived in the data recovery framework�

�� E
ective measures and clustering criteria for analyzing binary data tables�

�� One	by	one clustering procedures that allow for more �exible clustering
structures including single clusters� overlapping clusters� and incomplete
clustering�

�� Interpretation aids based on decompositions of the data scatter over ele	
ments of cluster structures to judge elements� relative contributions�

�� Conventional and modi
ed measures of statistical association� such as
the correlation ratio and Pearson chi	square contingency coe�cient� as
summary contributions of cluster structures to the data scatter�

�� A related framework for cluster analysis of contingency and �ow data in
which the data scatter and contributions are measured in terms of the
Pearson chi	square contingency coe�cient�
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Chapter �

Di�erent Clustering

Approaches

After reading through this chapter the reader will know about the most
popular other clustering approaches including�

�� Partitioning around medoids �PAM�

�� Gaussian mixtures and the Expectation	Maximization �EM� method

�� Kohonen�s Self	organizing map �SOM�

�� Fuzzy clustering

�� Regression	wise K	Means

�� Single linkage clustering and Minimum Spanning Tree �MST�

�� Core and shelled core clusters

�� Conceptual description of clusters

Base words

Association rule A production rule A � B for a set of� for example� ware	
house transactions in which A and B are nonoverlapping sets of goods�
It is characterized by its support �proportion of transactions containing
A in the set of all transactions� and precision �proportion of transactions
containing B among all those containing A�� the greater the support and

���
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precision� the better the quality of the association rule�

Comprehensive description A conjunctive predicate A describing a subset
S � I in such a way that A holds for an entity if and only if it belongs
to S� It may have errors of two types� the false positives� the entities
satisfying A but not belonging to S� and the false negatives� the entities
from S that do not satisfy A�

Conceptual description Description of clusters with feature based logical
predicates�

Connected component Part of a graph or network comprising a maximal
subset of vertices that can be reached from each other by using the graph�s
edges only�

Decision tree A highly popular concept in machine learning and data mining�
A decision tree is a conceptual description of a subset S � I or a partition
on I in a tree	like manner� the root of the tree corresponding to all entities
in I � with each node divided according to values of a feature so that tree
leaves correspond to individual classes�

Expectation and maximization EM An algorithm of alternating maxi	
mization applied to the likelihood function for a mixture of distributions
model� At each iteration� EM is performed according to the following
steps� ��� Expectation� Given parameters of the mixture pk and individ	
ual density functions ak� 
nd posterior probabilities for observations to
belong to individual clusters� gik �i � I� k � �� ����K�� ��� Maximization�
given posterior probabilities gik� 
nd parameters pk� ak maximizing the
likelihood function�

Fuzzy clustering A clustering model at which entities i � I are assumed to
belong to di
erent clusters k with a degree of membership zik so that ���

zik � � and
PK

k�� zik � � for all i � I and k � �� ����K� Conventional
�crisp� clusters can be considered a special case of fuzzy clusters in which
zik may only be � or ��

Gaussian distribution A popular probabilistic cluster model characterized
by the modal point of the cluster mean vector and the feature	to	feature
covariance matrix� The surfaces of equal density for a Gaussian distribu	
tion are ellipses�

Graph A formalization of the concept of network involving two sets� a set of
nodes� or vertices� and a set of edges or arcs connecting pairs of nodes�
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Medoid An entity in a cluster with the minimal summary distance to the other
within cluster elements� It is used as a formalization of the concept of
prototype in the PAM clustering method�

Minimum spanning tree A tree structure within a graph such that its sum	
mary edge weights are minimal� This concept is the backbone of the
method of single link clustering�

Mixture of distributions A probabilistic clustering model according to
which each cluster can be represented by a unimodal probabilistic density
function so that the population density is a probabilistic mixture of the
individual cluster functions� This concept integrates a number of simpler
models and algorithms for 
tting them� including the K	Means clustering
algorithm� The assumptions leading to K	Means can be overly restrictive�
such as the compulsory z	score data standardization�

Production rule A predicate A � B which is true for those and only those
entities that either satisfy B whenever they satisfy A� A conceptual de	
scription of a cluster S can be a production rule A � B in which B
expresses belongingness of an entity to S�

Regression�wise clustering A clustering model in which a cluster is sought
as a set of observations satisfying a regression function� Such a model can
be 
tted with an extension of K	Means in which prototypes are presented
as regression functions�

Self�organizing map A model for data visualization in the form of a grid on
plane in which entities are represented by grid nodes re�ecting both their
similarity and the grid topology�

Shelled core A clustering model according to which the data are organized as
a dense core surrounded by shells of a lesser density�

Single link clustering A method in clustering in which the between	cluster
distance is de
ned by the nearest entities� The method is related to the
minimum spanning trees and connected components in the corresponding
graphs�

Weakest link partitioning A method for sequentially removing �weakest
link� entities from the data set� Thus found series is utilized for 
nd	
ing the shelled core�
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	�� Extensions of K�Means clustering

����� Clustering criteria and implementation

Traditionally� a cluster is understood as a subset of entities which are similar
to each other and dissimilar from the rest� However� in real	world situations
additional properties may be required which may complement and sometimes
even contradict this view� Consider� for instance� a set of young men with
only one variable� their height� measured� Depending on our perspective� we
may be interested in the deviate clusters of those who are too short or too
tall to carry out regular sailor duties� or rather in the central core cluster of
those who normally 
t them� The issue of de
nition of what is a central core
cluster becomes less trivial when encountered in the setting of a web	based or
other network� De
ning what is a deviate cluster can be of issue in speci
c
settings such as dealing with banking customers� Extending the men�s height
example to a mixed sex group� one might be interested in de
ning clusters
of male and female individuals in terms of probabilistic normal distributions
with di
ering means and variances� which is a traditional abstraction for height
measure on humans� A di
erent clustering goal invites a di
erent formalization
and di
erent methods for clustering�
In Chapter �� a number of user	de
ned goals for clustering were described�

These goals typically cannot be explicitly formalized and� thus� are implicit in
clustering methods� The explicit goals are much more technical and down to
earth� In particular� criteria optimized by K	Means and Ward methods are
such that the found clusters�

�� consist of entities that are the most similar to each other and their cen	
troids�

�� are the most associated with features involved in the data�

�� are the most anomalous and thus interesting�

These claims can be supported with materials in sections ������ ����� and ����
respectively� A review of related clustering methods emerging in the context of
data compression is given in ������
The goals above obviously could be pursued with di
erently de
ned con	

cepts of distance �dissimilarity�� centroid and correlation� Even within the data
recovery approach� di
erent approximation criteria would lead to di
erently
de
ned distances and centroids within the goal ��� of the list above� If� for ex	
ample� the quality of the data recovery is scored with the sum of moduli� rather
than squares� of di
erences between the original and recovered data� then the
corresponding distance between entities x � �x�� ���� xm� and y � �y�� ���� yM �
is measured by the sum of moduli� d �

P
v jxv � yvj� not the sum of squares�
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This distance is frequently used in data analysis and referred to as Manhat	
tan distance or city	block metric� Within the data recovery approach with the
least	moduli criterion the concept of centroid would slightly change too� it is
the medians� not the averages that would populate them# Both Manhattan
distance and median	based centroids bring more stability to cluster solutions�
especially with respect to outliers� However� the very same stability properties
can make least	moduli based data	recovery clustering less versatile with respect
to the presence of mixed scale data �����
One may use di
erent distance and centroid concepts with computational

schemes of K	Means and hierarchical clustering without any strictly de
ned
model framework as� for instance� proposed in ����� A popular method from
that book� PAM �Partitioning around medoids�� will be described in the next
subsection�
There can be other clustering goals as well� In particular� the following are

rather popular�

I Cluster membership of an entity may not necessarily be con
ned to one
cluster only but shared among several clusters �Fuzzy clustering��

II Geometrically� cluster shapes may be not necessarily spherical as in the
classic K	Means but may have shapes elongated along regression lines
�Regression	wise clustering��

III Data may come from a probabilistic distribution which is a mixture of
unimodal distributions that are to be separated to represent di
erent
clusters �Expectation�Maximization method EM��

IV A visual representation of clusters on a two	dimensional screen can be
explicitly embedded in clustering �Self	Organizing Map method SOM��

Further on in this section we present extensions of K	Means clustering tech	
niques that are oriented towards these goals�

����� Partitioning around medoids PAM

K	Means centroids are average points rather than individual entities� which
may be considered too arti
cial in some clustering problems in which the user
may wish to involve nothing arti
cial but only genuinely occurring entities� To
implement this idea� let us change the concept of a cluster�s centroid for that
of a cluster�s medoid� An entity of a cluster S� i� � S� will be referred to as
its medoid if it minimizes the sum of distances to other elements of S� that is�P

j�S d�i
�� j� � mini�S

P
j�S d�i� j�� The symbol d�i� j� is used here to denote

a dissimilarity function� not necessarily squared Euclidean distance� between
entities i� j � I �
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Having this concept in mind� the method of partitioning around medoids
PAM from ���� can be formulated analogously to that of Straight K	Means� Our
formulation slightly di
ers from the formulation in ����� though it is equivalent
to the original� to make its resemblance to K	Means more visible�

Partitioning around medoids PAM
�� Initial setting� Choose the number of clusters� K� and select K
entities c�� c�� ���� cK � I with a special algorithm Build� Assume
initial cluster lists Sk are empty�
�� Clusters update� Given K medoids ck � I � determine clusters
S�k �k � �� ����K� with the Minimum distance rule applied to dis	
similarity d�i� j�� i� j � I �
�� Stop�condition� Check whether S� � S� If yes� end with cluster	
ing S � fSkg� c � �ck�� Otherwise� change S for S��
�� Medoids update� Given clusters Sk� determine their medoids ck
�k � �� ����K� and go to Step ��

The Build algorithm ���� for selecting initial seeds proceeds in a manner
resembling that of the iterated Anomalous pattern� It starts with choosing an
analogue to the grand mean� that is� the medoid of set I � and takes it as the

rst medoid c�� Let us describe how cm�� is selected when a set Cm of m initial
medoids� Cm � fc�� ���� cmg� have been selected already � � � m � K�� For each
i � I�Cm� a cluster Si is de
ned to consist of entities j that are closer to i than
to Cm� The distance from j to Cm is taken as D�j� Cm� � min

m
k�� d�j� ck�� and

Si is de
ned as the set of all j � I�Cm for which Eji � D�j� Cm��d�i� j� � ��
The summary value Ei �

P
j�Si

Eji is used as a decisive characteristic of
remoteness of i from Cm� The next seed cm�� is de
ned as the most remote
from Cm� that is� an entity i for which Ei is maximum over i � I � Cm�
There is a certain similarity between selecting initial centroids in iK	Means

and initial medoids with Build� But there are certain di
erences as well�

�� K must be pre	speci
ed in Build and not necessarily in iterated Anoma	
lous clusters in iK	Means�

�� The central point of the entire set I is taken as an initial seed in Build
and is not in iK	Means�

�� Adding a seed is based on di
erent criteria in the two methods�

Example ����� Partitioning around medoids for Masterpieces

Let us apply PAM to the matrix of entity�to�entity distances for Masterpieces
displayed in Table ���
 which is replicated from Table ���� We start with building
three initial medoids� First
 we determine that HF is the medoid of the entire set I

because its total distance to the others
 ���	
 is the minimum of total distances in the
bottom line of Table ���� Thus
 HF is the �rst initial seed�
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Table ���� Distances between Masterpieces data from Table ����
OT DS GE TS HF YA WP AK

OT ���� ���� ���� ���� ���� ���� ���� ����
DS ���� ���� ���� ���� ���� ��		 ��	� ��
�
GE ���� ���� ���� ��	
 ���� ���
 ���� ����
TS ���� ���� ��	
 ���� ��	� ���� ���� ��
�
HF ���� ���� ���� ��	� ���� ���� ���� ����
YA ���� ��		 ���
 ���� ���� ���� ���� ��
�
WP ���� ��	� ���� ���� ���� ���� ���� ����
AK ���� ��
� ���� ��
� ���� ��
� ���� ����
Total ����� ���	� ����� ����� 	��� ����� ����� �����

Then we build clusters Si around all other entities i � I� To build SOT 
 we
take the distance between OT and HF
 ���	
 and see that entities DS
 GE
 and TS
have their distances to OT smaller than that
 which makes them OT�s cluster with
EOT � ��	�� Similarly
 SDS is set to consist of the same entities
 but its summary
remoteness EDS � ���� is smaller� Cluster SGE consists of OT and DS with even
smaller EGE � 	���� Cluster SY A is empty and those of WP and AK contain just
another Tolstoy�s novel each contributing less than EOT � This makes OT the next
selected seed�

After the set of seeds has been updated by OT
 we start building clusters Si
again
 on the remaining six entities� Of them
 clusters SDS and SY A are empty
and the others are singletons of which SAK consisting of WP is the most remote

EAK � ���� � 	��� � ����� This completes the set of initial seeds� HF
 OT
 and AK�
Note
 these are novels by di�erent authors�

With the selected seeds
 the Minimum distance rule produces the author�based
clusters �Step �
� The Stop�condition sends us to Step �
 because these clusters di�er
from the initial
 empty
 clusters� At Step �
 clusters� medoids are selected� they are
obviously DS in the Dickens cluster
 YA in the Mark Twain cluster and either AK or
WP in the Tolstoy cluster� With the set of medoids changed to DS
 YA and AK
 we
proceed to Step �
 and again apply the Minimum distance rule
 which again leads us
to the author�based clusters� This time the Stop�condition at Step � halts the process�
�

����� Fuzzy clustering

A fuzzy cluster is represented by its membership function z � �zi�� i � I� in
which zi �� � zi � �� is interpreted as the degree of membership of entity i to
the cluster� This extends the concept of a usual� hard �crisp� cluster� which can
be considered a special case of the fuzzy cluster corresponding to membership zi
restricted to only � or � values� A set of fuzzy clusters zk � �zik�� k � �� ����K�
forms a fuzzy partition if the total degree of membership for any entity i � I
is ��

P
k zik � �� This requirement follows the concept of a crisp partition in

which any entity belongs to one and only one cluster so that for every i zik � �
for all k but one� In a fuzzy partition� the full degree of membership of an entity
is also �� but it may be distributed among di
erent clusters� This concept is
especially easy to grasp if membership zik is considered as the probability of
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cm150 170 190
short normal tall

1

130

Figure ���� Fuzzy sets� Membership functions for the concepts of short
 normal and
tall in men�s height�

belongingness� However� in many cases fuzzy partitions have nothing to do with
probabilities� For instance� dividing all people by their height may involve fuzzy
categories �short�� �average� and �tall� with fuzzy meanings such as shown in
Figure ���� Fuzzy clustering can be of interest in applications related with
natural fuzziness of the cluster borders such as image analysis� robot planning�
geography� etc�
The following fuzzy version of Straight K	Means became popular� It in	

volves a fuzzy K	class partition and cluster centroids� The fuzzy partition is
represented with an N 
K membership matrix �zik� �i � I� k � �� ���K� where
zik is the degree of membership of entity i in cluster k satisfying conditions�
� � zik � � and

PK
k�� zik � � for every i � I � With these conditions� one

may think of the total membership of item i as a unity that can be di
erently
distributed among centroids�
The criterion of quality of fuzzy clustering is a modi
ed version of the square	

error criterion ������

WF �z� c� �

KX
k��

X
i�I

z�ikd�yi� ck� �����

where � � � is a parameter a
ecting the shape of the membership function and
d distance ������ �Euclidean distance squared�� as usual� yi is an entity point
and ck a centroid� In computations� typically� the value of � is put at ��
By analogy with Straight K	Means� which is an alternating optimization

technique� Fuzzy K	Means can be de
ned as the alternating minimization tech	
nique for function ������ The centroids are actually weighted averages of the
entity points� while memberships are related to the distances between entities
and centroids� More precisely� given centroids� ct � �ctv�� the optimal member	
ship values are determined as

zit � ��

KX
t���

�d�yi� ct��d�yi� c
�
t��

�
��� �����

© 2005 by Taylor & Francis Group, LLC
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Figure ���� Regression�wise clusters� solid lines as centroids�

Given membership values� centroids are determined as convex combinations of
the entity points�

ct �
X
i�I


ityi �����

where 
it is a convex combination coe�cient de
ned as 
it � z�it�
P

i��I z
�
i�t�

These formulas follow from the 
rst	degree optimality conditions for criterion
������
Thus� starting from a set of initial centroids and repeatedly applying for	

mulas ����� and ������ a computational algorithm has been proven to converge
to a local optimum of criterion ������
Further improvements of the approach are reported in ���� and ����� Cri	

terion ����� as it stands cannot be associated with a data recovery model� An
attempt to build a criterion 
tting into the data recovery approach is made in
������

����� Regression
wise clustering

In general� centroids ck can be de
ned in a space which is di
erent from that of
the entity points yi� Such is the case of regression	wise clustering� Let us recall
that a regression function xn � f�x�� ���� xn��� may relate a target feature�
xn� to �some of the� other features x�� ���� xn�� as� for instance� the price of a
product to its consumer value and production cost attributes� In regression	
wise clustering� entities are grouped together according to the degree of their
correspondence to a regression function rather than according to their closeness
to the gravity center� That means that regression functions play the role of
centroids in regression	wise clustering�
Let us consider a version of Straight K	Means for regression	wise clustering

to involve linear regression functions relating standardized yn to other vari	
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ables� y�� ���� yn��� in each cluster� Such a function is de
ned by the equation
yn � a�y� ! a�y� ! ��� ! an��yn�� ! a	 for some coe�cients a	� a�� ���� an���
These coe�cients form a vector� a � �a	� a�� ���� an���� which can be re	
ferred to as the regression	wise centroid� When a regression	wise centroid is
given� its distance to an entity point yi � �yi�� ���� yin� is de
ned as r�i� a� �
�yin � a�yi� � a�yi� � ��� � an��yi�n�� � a	�

�� the squared di
erence between
the observed value of yn and that calculated from the regression equation� To
determine the regression	wise centroid a�S�� given a cluster list S � I � the stan	
dard technique of multivariate linear regression analysis is applied� which is but
minimizing the within cluster summary residual

P
i�S r�i� a� over all possible

a�

Then Straight K	Means can be applied with the only changes being that�
��� centroids must be regression	wise centroids and ��� the entity	to	centroid
distance must be r�i� a��

����� Mixture of distributions and EM algorithm

Data of 
nancial transactions or astronomic observations can be considered as
a random sample from a �potentially� in
nite population� In such cases� the
data structure can be analyzed with probabilistic approaches of which arguably
the most radical is the mixture of distributions approach�

According to this approach� each of the yet unknown clusters k is modeled by
a density function f�x� ak� which represents a family of density functions over x
de
ned up to a parameter vector ak� A one	dimensional density function f�x��
for any small dx � �� assigns probability f�x�dx to the interval between x and
x! dx� multidimensional density functions have similar interpretation�

Usually� the density f�x� ak� is considered unimodal �the mode correspond	
ing to a cluster standard point�� such as the normal� or Gaussian� density func	
tion de
ned by its mean vector �k and covariance matrix (k�

f�x� ak� � ��
p�pj(kj����� expf��x� �k�

T(��k �x� �k���g �����

The shape of Gaussian clusters is ellipsoidal because any surface at which
f�x� ak� ����� is constant satis
es equation �x��k�T(��k �x��k� � const de
ning
an ellipsoid� The mean vector �k speci
es the k	th cluster�s location�

The mixture of distributions clustering model can be set as follows� The
row points y�� ���� yN are considered a random sample of jV j	dimensional ob	
servations from a population with density function f�x� which is a mix	
ture of individual cluster density functions f�x� ak� �k � �� ����K� so that

f�x� �
PK

k�� pkf�x� ak� where pk � � are the mixture probabilities�
P

k pk � ��
For f�x� ak� being the normal density� ak � ��k�(k� where �k is the mean and
(k the covariance matrix�
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To estimate the individual cluster parameters� the main approach of math	
ematical statistics� the maximum likelihood� is applied� The approach is based
on the postulate that really occurred events are those that are most likely�
In its simplest version� the approach requires the 
nding of the parameters
pk� ak� k � �� ����K� by maximizing the logarithm of the likelihood of the ob	
served data under the assumption that the data come from a mixture of distri	
butions�

L � logf
NY
i��

KX
k��

pkf�yi� ak�g�

To computationally handle the maximization problem� this criterion can be
reformulated as

L �

NX
i��

KX
k��

gik log pk !

NX
i��

KX
k��

gik log f�yi� ak��
NX
i��

KX
k��

gik log gik �����

where gik is the posterior density of class k� de
ned as

gik �
pkf�yi� ak�P
k pkf�yi� ak�

�

In this way� criterion L can be considered a function of two groups of vari	
ables� ��� pk and ak� and ��� gik� so that the method of alternating optimization
can be applied� The alternating optimization algorithm for this criterion is re	
ferred to as the EM	algorithm since computations are performed as a sequence
of the so	called estimation �E� and maximization �M� steps�

EM�algorithm
Start� With any initial values of the parameters�
E�step� Given pk� ak� estimate gik�
M�step� Given gik� 
nd pk� ak maximizing the log	likelihood func	
tion ������
Halt� When the current parameter values approximately coincide
with the previous ones�

If f is the Gaussian density function� then the optimal values of parameters�
in M	step� can be found with the following formulas�

�k �

NX
i��

gikyi�gk� (k �

NX
i��

gik�yi � �k��yi � �k�
K�gk

where gk �
PN

i�� gik�
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If the user needs an assignment of the observations to the classes� the poste	
rior probabilities gik can be utilized� i is assigned to that k for which gik is the
maximum� Also� ratios gik�gk can be considered as fuzzy membership values�
The situation� in which all covariance matrices (k are diagonal and have the

same variance value 
� on the diagonal� corresponds to the assumption that all
clusters have uniformly spherical distributions� This situation is of particular
interest because the maximum likelihood criterion is here equivalent to W �S� c�
criterion of K	Means and� moreover� there is a certain homology between the
EM and Straight K	Means algorithms�
Indeed� under the assumption that feature vectors corresponding to entities

x�� ���� xN are randomly and independently sampled from the population� with
unknown assignment of the entities to clusters Sk� the likelihood function in
this case has the following formula�

L�f�k� 
�� Skg� � A

KY
k��

Y
i�Sk


�M expf��xi � �k�
T
���xi � �k���g �����

so that to maximize its logarithm� the following function is to be minimized�

l�f�k� 
�� Skg� �
KX
k��

X
i�Sk

�xi � �k�
T �xi � �k��


� �����

This function is but a theoretic counterpart to K	Means criterion W �S� �� �PK
k��

P
i�Sk

d�yi� �k� applied to vectors yi obtained from xi with z	scoring stan	
dardization �shifting scales to grand means and normalizing them by standard
deviations��
Thus the mixture model can be considered a probabilistic model behind the

conventional K	Means method� Moreover� it can handle overlapping clusters
of not necessarily spherical shapes �see Figure ����� Note however that the K	
Means data recoverymodel assumes no restricting hypotheses on the mechanism
of data generation� We also have seen how restricting is the requirement of data
standardization by z	scoring� associated with the model� Moreover� there are
numerous computational issues related to the need in estimating much larger
numbers of parameters in the mixture model�
One of the latest and most successful attempts in application of this ap	

proach is described in ������ The authors note that there is a tradeo
 between
the complexity of the probabilistic model and the number of clusters� a more
complex model may 
t to a smaller number of clusters� To select the better
model one can choose that one which gives the higher value of the likelihood
criterion which can be approximately evaluated by the so called Bayesian In	
formation Criterion �BIC� equal� in this case� to

BIC � � log p�X�pk� ak�� �k logN �����
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Figure ���� A system of ellipsoids corresponding to a mixture of three normal distri�
butions with di�erent means and covariance matrices�

where X is the observed data matrix� �k� the number of parameters to be 
tted�
and N the number of observations� that is� the rows in X � The BIC analysis
has been demonstrated to be useful in accessing the number of clusters�
To guarantee normality� the authors applied three popular transformations

of the data� logarithm� square root� and z	score standardization of rows �genes��
not columns� Typically� with logarithms the data better accord to the Gaussian
distribution� The authors note that using complex models cannot be always fea	
sible� the number of parameters estimated per cluster at the space dimension ��
becomes ��! ��)��������� which can be greater than the cluster�s cardinality�
Overall the results are inconclusive ������
Further advances in mixture of distributions clustering are described in ���

�����

����� Kohonen self
organizing maps SOM

The Kohonen Self	Organizing Map is an approach to visualize a data cluster
structure by mapping it onto a plane grid ����� Typically� the grid is rectangular
and its size is determined by the user	speci
ed numbers of its rows and columns�
r and c� respectively� so that there are r 
 c nodes on the grid� Each of the
grid nodes� et �t � �� ���� rc�� is one	to	one associated with the so	called model�
or reference� vector mt which is of the same dimension as the entity points yi�
i � I � Initially� vectors mt are to be set in the data space either randomly
or according to an assumption of the data structure such as� for instance� K	
Means centroids� Given vectors mt� entity points yi are partitioned according
to a version of the Minimum distance rule into sets It� For each t

�� It� consists
of those yi whose distance to mt� is minimum over all t � �� ���� rc�
Besides� a neighborhood structure is assigned to the grid� In a typical case�

the neighborhood of node et is set Et of all nodes on the grid whose path
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distance from et on the grid is smaller than a pre	selected threshold value�
Historically� all SOM algorithms worked in an incremental manner as neu	

ron networks� but later on� after some theoretical investigation� straight versions
appeared� such as the following�

Straight SOM
�� Initial setting� Select r and c for the grid and initialize model
vectors mt �t � �� ���� rc� in the entity space�
�� Neighborhood update� For each grid node et� de
ne its grid
neighborhood Et and collect the list Iu of entities most resembling
the model mu for each eu � Et�
�� Seeds update� For each node et� de
ne new mt as the average of
all entities yi with i � Iu for some eu � Et�
�� Stop�condition� Halt if new mts are close to the previous ones
�or after a pre	speci
ed number of iterations�� Otherwise go to ��

As one can see� the process much resembles that of Straight K	Means� with
the model vectors similar to centroids� except for two items�

�� The number of model vectors is large and has nothing to do with the num	
ber of clusters� which are determined visually in the end as grid clusters�

�� The averaging goes along the grid� not entity space� neighborhood�

These features provide for less restricted visual mapping of the data struc	
tures to the grid� On the other hand� the interpretation of results here remains
more of an intuition rather than instruction� A framework relating SOM and
EM approaches is proposed in ����

	�� Graph�theoretic approaches

In this section we present some approaches that are relevant to networks and
other structural data �see� for instance� ����� As the bottom line� they rely on
graph	theoretic properties of data�

����� Single linkage� minimum spanning tree and
connected components

The single linkage� or nearest neighbor� method is based on entity	to	entity
dissimilarities like those presented in the Primates data �Table ���� or in the
distance matrix calculated in section ����� when computing initial seeds for the
Masterpieces data �Table �����
It should be pointed out that the dissimilarities can be computed from

the original data table at each step so that there is no need to maintain the
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dissimilarity matrix as a separate data 
le� This may save quite a lot of memory�
especially when the number of entities is large� For instance� if the size of
the original data table is ���� 
 ��� it takes only ������ numbers to store�
whereas the entity	to	entity distances may take up to half a million numbers�
There is always a trade	o
 between memory and computation in distance based
approaches that may require some e
orts to balance�
The single linkage approach is based on the principle that the dissimilarity

between two clusters is de
ned as the minimum dissimilarity �or� maximum
similarity� between entities of one and the other cluster ����� This can be
implemented into the agglomerative distance based algorithm described in sec	
tion ����� by leaving it without any change except for the formula ������ that
calculates distances between the merged cluster and the others and must be
substituted by the following�

dw��w��w � min�dw��w� dw��w� �����

Formula ����� follows the principle of minimum distance� which explains the
method�s name�
In general� agglomerative processes are rather computationally intensive be	

cause the minimum of inter	cluster distances must be found at each merging
step� However� for single linkage clustering� there exists a much more e
ective
implementation involving the concept of the minimum spanning tree �MST� of
a weighted graph�
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c

Gor

Ora

1.51

1.45

2.94

7.10

RhM

Chim
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Hum
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a

Figure ���� Weighted graph �a

 minimum spanning tree �b
 and single�linkage hier�
archy for Primates data �c
�

A weighted graph� in our context� is a representation of a dissimilarity or
distance matrix D � �dij� with nodes corresponding to entities i � I and edges
connecting any i and j from I with weight dij � Such a graph for the Primates
data is in Figure ��� �a�� only edges whose weights are smaller than � are shown�
A spanning tree of a weighted graph is a subgraph T without cycles such

that it covers all its nodes �as in Figure ��� �b��� The length of T is de
ned
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as the sum of all weights dij over edges fi� jg belonging to T � A minimum
spanning tree �MST� T must have minimum length� The concept of MST is of
prime importance in many applications in the Computer Sciences� Let us take
a look at how it works in clustering�

First of all� let us consider the so	called Prim algorithm for 
nding an MST�
The algorithm processes nodes �entities�� one at a time� starting with T � �
and updating T at each step by adding to T an element i �and edge fi� jg�
minimizing dij over all i � I � T and j � T � An exact formulation is this�

Prim algorithm
�� Initialization� Start with set T � I consisting of an arbitary
i � I with no edges�
�� Tree update� Find j � I � T minimizing d�i� j� over all i � T
and j � I � T � Add j and �i� j� with the minimal d�i� j� to T �
�� Stop�condition� If I�T � �� halt and output tree T � Otherwise
go to ��

To build a computationally e
ective procedure for the algorithm may be
a cumbersome issue� depending on how d�i� j� and their minima are handled�
to which a lot of work has been devoted� A simple pre	processing step can be
quite useful� in the beginning� 
nd a nearest neighbor for each of the entities�
only they may go to MST�

Example ����� Building MST for Primate data

Let us apply Prim algorithm to the Primates distance matrix in Table ���
 p� ��
Let us start
 for instance
 with T� fHumang� Among remaining entities Chim�

panzee is the closest to Human �distance ����

 which adds Chimpanzee corresponding
edge to T as shown in Figure ��� �b
� Among the three other entities
 Gorilla is the
closest to one of the elements of T �Human
 distance ����
� This adds Gorilla to T
and the corresponding edge in MST in Figure ��� �b
� Then comes Orangutan as
the closest to Chimpanzee in T � The only remaining entity
 Monkey
 is nearest to
Orangutan
 as shown on the drawing� �

Curiously� in spite of its quantitative de
nition� MST depends only on the
order of dissimilarities� not their quantitative values�

To see the relation between an MST and single linkage clustering� let us
build an MST based distance between nodes �entities�� This distance� T �i� j��
is de
ned as the maximum weight of an edge on the only path joining i and j in
the tree T � �If another path existed� the two paths would create a cycle through
these two nodes� which is impossible because T is a tree�� The de
nition implies
that dij � T �i� j� for all i� j � I because� otherwise� the tree T can be made
shorter by adding the shorter �i� j� and removing the edge at which T �i� j� is
reached� Moreover� T �i� j� can be proven to be an ultra	metric �as de
ned in
section ������� The metric T �i� j� coincides with that implied by the single
linkage method�
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Figure ���� Minimum spanning tree for Materpieces �a
 and a result of cutting it �b
�

An MST T allows 
nding the single linkage hierarchy by a divisive method�
sequentially cutting edges in MST beginning from the largest and continuing
in descending order� The result of each cut creates two connected components
that are children of the cluster in which the cut occurred �see� for instance�
Figure ��� �c���

A peculiarity of the single linkage method is that it involves just N � �
dissimilarity entries occurring in an MST rather than all N�N � ���� of them�
This results in a threefold e
ect� ��� a nice mathematical theory� ��� fast com	
putations� and ��� poor application capability�

Example ����� MST and single linkage clusters in the Masterpieces data

To illustrate point ��
 above let us consider an MST built on the distances between
Masterpieces in Table ��� �see Figure ��� �a

� Cutting the tree at the longest two
edges
 we obtain clusters presented in part �b
 of the Figure� Obviously these clusters
do not re"ect the data structure properly
 in spite of the fact that the structure of �a

corresponds to authors�

�

One more graph	theoretical interpretation of single	linkage clusters is in
terms of a prime cluster concept in graph theory� the connected component�
Let us consider a dissimilarity matrix D � �dij�� i� j � I � Then� given any
real u� the so	called u	threshold graph Gu is de
ned on the set of vertices I as
follows� i � I and j � I are connected with edge �i� j� if and only if dij � u�
Obviously� the edges in this graph are not directed since dij � dji� A subset S
is referred to as connected in a graph if for any di
erent i� j � S there exists a
path between i and j within S� A connected component is a maximal connected
S � I � it is connected and either coincides with I or loses this property if any
vertex i � I � S is added to S�

When a minimum spanning tree T is split over its greatest link leading to a
partition of I in two clusters� S� and S�� each of them is obviously a connected
component of the threshold graph Gu with u equal to the weight of the link
removed from T � For the sake of simplicity� we consider that no other edge
weight in T is equal to u� Then any i and j in S� can be joined by a path
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belonging to the relevant part of T � thus Gu� because all the weights along
T are smaller than u by de
nition� On the other hand� for any k � S�� the
dissimilarity dik � u so that edge �i� k� is absent from Gu thus making S� a
connected component� The fact that S� is a connected component of Gu can be
proven similarly� When the maximum weight u on the tree T is not unique� T
must be split along all maximum weight edges to make the split parts connected
components� Then one could prove that the connected components of threshold
graphs Gu �for u being the weight of an edge from a minimum spanning tree�
are single linkage clusters�

����� Finding a core

Here we consider the problem of 
nding a dense core� rather than a deviate
pattern� in a given set of interrelated objects� This problem attracted attention
not only in data mining but in other disciplines such as Operations Research
�knapsack and location problems��
We follow the way to formalize the problem in terms of a� possibly edge	

weighted� graph proposed in ����� and further extended in ����� Such is the
graph of feature	to	feature similarities in Figure ���� For a subset of vertices
H � I and a vertex i � H � let us de
ne linkage ��i�H� as the sum of the
weights of all edges connecting i with j � H �
Obviously� the thus de
ned linkage function ��i�H� is monotone over H �

adding more vertices to H may only increase the linkage� that is� ��i�H� �
��i�H � G� for any vertex subset G � I � All contents of this section are
applicable to any monotone linkage function� A monotone linkage function such
as ��i�H� can be used to estimate the overall density of a subset H � I by
�integrating� its values ��i�H� over i � H � In particular� an integral function
de
ned by the weakest link in H �

F��H� � min
i�H

��i�H�� ������

will be referred to as the tightness function�

Table ���� Matrix of column�to�column squared inner products from Table ����

multiplied by �		�

LS LD NC SC Pe Ob Di

LS ����� ����� �	��� ���� 	�	� ���� ����
LD ����� ���	� ����	 ����	 	��� ����� ����
NC �	��� ����	 ���	� ����� ����� ���	 �����
SC ���� ����	 ����� ������ ����� 	��� �����
Pe 	�	� 	��� ����� ����� ���	� ���	� ����
Ob ���� ����� ���	 	��� ���	� ���	� ����
Di ���� ���� ����� ����� ���� ���� ���		
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Example ����� Linkage function on Masterpieces data features
For the pre�processed Masterpieces data in Table ���� or ���
 let us consider the

matrix of squared feature�to�feature inner products in Table ����
This matrix can be used for analysis of interrelations between features of Mas�

terpieces� In particular
 let us draw a weighted similarity graph whose vertices are
features and whose edges correspond to those similarities which are
 in the rounded
form
 �� or greater
 see Figure ���� In this graph
 at set H � fLS� LD�NC� SCg

��LS�H
 � ��
 ��LD�H
 � �� � �� � ��
 ��NC�H
 � �� � �� � �� and
��SC�H
 � ��� The value of tightness function at this set H is the minimum of
these four
 F��H
 � ��
 thus making it the core�
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Figure ���� Weighted graph generating the summary linkage function � �a
� connected
components after cutting two weakest edges in its Maximum spanning tree �b
� and
the core of the tightness function over � �c
�

�

A property of the tightness function �easily following from the monotonicity
of �� is that it satis
es the so	called quasi	convexity condition� for anyH�G � I �

F �H �G� � min�F �H�� F �G��� ������

Actually� inequality ������ is a characteristic of the class of tightness functions
�����
We de
ne the maximum density core of the graph as H maximizing the

tightness function over all H � I � It appears the problem of 
nding such a set
can be solved rather e�ciently in a greedy	wise manner� Moreover� not only
the maximally dense core of I can be found but� in the same run� also a nested
chain of its �shells� with monotonely decreasing densities as well� This �shelled
core� can be considered an implementation of the idea of a multi	resolution
view at the structure of a system of interrelated elements�
Let us de
ne an F 	pattern as a subset S � I which is strongly separated

from the rest so that its F score decreases if any supplementary elements are
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added� even if some of its elements are removed� that is� F �S� � F �H� for any
H � I such that H � �I � S� 
� ��
Thus de
ned� F 	patterns must be chain	nested�

Statement ����� The set of all F �patterns� P � is nonempty and chain�nested�
that is� S� � S� or S� � S� for any S�� S� � P �

Proof� If S�� S� are F 	patterns and S� is not part of S�� then F �S�� � F �F���
If� moreover� S� is not part of S�� then F �S�� � F �S��� The contradiction
proves that P must be chain	nested� Besides� S � I makes the de
nition of
F 	pattern true because of the false premise� which proves that I is always an
F 	pattern and completes the proof� q�e�d�
In general� more dense subparts may occur within the smallest F 	pattern S�

nothing prevents one or more H � S with F �H� � F �S� to exist� When this is
not the case� that is� when the smallest F 	pattern is a global maximizer of the
function F � the set of F 	patterns will be referred to as a layered cluster� which
is uniquely de
ned and thus can be considered as an aggregate representation
of the F density structure in I �

Statement ����� If F �S� is a tightness function� then its minimum pattern is
the largest global maximizer of F �S� in the set of all S � I�

Proof� Let S be the minimum F 	pattern in the chain nested set of F 	patterns�
If S is not a global maximizer of F � then F �H� � F �S� for some H � I � In
fact� all such H must fall within S� because of the de
nition of F 	patterns� Let
us take a maximal subset H � S in the set of all H such that F �H� � F �S�
and prove that H is a pattern as well� Indeed� let us take any S� � S such that
S� � �I �H� 
� �� the existence of such S� follows from the fact that H does not
coincide with S� Then F �H� � F �H � S�� because of the assumed maximality
of H within S� But F �H � S�� � min�F �S��� F �H�� according to ������� that
is� F �H� � F �S��� Let us consider now an S� which is not contained in S and
still satis
es the condition S� � �I �H� 
� �� �This may only happen when S is
not equal to I �� By the de
nition of S�� F �S� � F �S�� because S is a pattern�
Therefore� F �H� � F �S��� This implies that H is a pattern� which contradicts
the assumption of minimality of S� Thus� no H � S exists with F �H� � F �S�
and S is the maximum global maximizer of F �H�� q�e�d�
Let us denote by m�H� the �weakest link�� that is� the set of elements i � H

at which the value of F �H� is reached�

m�H� � fi � ��i�H� � min
j�H

��j�H�g�

Obviously� m�H� is not empty if H is not empty� Iteratively applying the
operation m to I � I �m�I�� etc�� one can build a series of weakest links that
will be referred to as the weakest link partition of I �
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Weakest Link Partitioning�
Input� Monotone linkage function ��i�H� de
ned for all pairs i�H
such that i � H � I �
Output� Weakest link partition M � �M	�M�� ����Mn� of I along
with class values F �M� � fF	� F�� ���� Fng de
ned as follows�
Step �� Initial setting� Put t � � and de
ne I	 � I �
Step �� Partitioning� Find class Mt � m�It� and de
ne It�� �
It �Mt� De
ne class value Ft � F��It� � ��i� It� for i �Mt�
Step �� Stop�condition� If It�� � �� halt� Otherwise� add � to t
and go to Step ��

The layered cluster of F 	patterns can be easily extracted from the weakest
link partition M thus produced�
From the sequence F � pick up the smallest index t� among those maximizing

Ft� t � �� �� ���� n� Then apply the same selection rule to the starting part
of the sequence F � F t� � �F	� ���� Ft���� obtained by removing Ft� and all
the consequent elements� Reiterating this pick	and	removal process until all
elements of F are removed� we obtain set T � of all the picked up indices�
Sets It� � t

� � T �� form the layered cluster of F�� which is proven in �����

Example ���
� Building shelled core over features
Let us apply the Weakest link partitioning algorithm to the graph in Figure ���

with linkage function ��i� S
 �
P

j�S aij with aij being the weight� Obviously
 m�I
 �

fObg because ��Ob� I
 � �� is the minimum of ��i� I
 over all i � I� With the
weakest link Ob removed from I
 the minimum of ��i� I � fObg
 is reached at LS
with ��LS� I � fObg
 � ��
 which is the next weakest link to be removed� The next
entity to be removed is LD
 with ��LD� I � fOb� LSg
 � ��� In the remaining set
I� � fNC�Di� SC� Peg
 the weakest link is Pe with ��Pe� fNC�Di� SC� Peg
 � ���
This yields I� � fNC�Di� SCg with the minimum link
 ��
 reached at m�I�
 � fSCg�
Two remaining entities
 NC and Di
 are linked by ��� The results can be represented
as a labeled sequence�

�Ob
���LS
���LD
���Pe
���SC
���Di�NC
���

where the parentheses contain sets Mt � m�It
 removed at each step of the algorithm

their order re"ecting the order of removals� The labels correspond to the values of
the linkage function F��It
 for t � 	� �� �� �� �� �� The maxima are ��
 ��
 ��
 ���
the corresponding patterns being H� � fNC�Di� SC� Peg �part �c
 on Figure ���


H� � H� � fLDg
 H� � H� � fLSg
 and H� � I
 to form the layered cluster�

It should be noted that this drastically di�ers from any partition along the maxi�
mum spanning tree presented in part �b
 of Figure ���� �

	�� Conceptual description of clusters

Interpretation of clusters can be done at the following three levels� ��� cluster
representative� ��� statistical description� and ��� conceptual description� Of
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these� we considered ��� and ��� in the previous chapters� Here we concentrate
on the conceptual description of clusters�

����� False positives and negatives

A conceptual description of a cluster is a logic predicate over features de
ned
on entities� that is� in general� true on entities belonging to the cluster and
false on entities out of it� For instance� the cluster of Dickens masterpieces�
according to Masterpieces data in Table ���� can be described conceptually
with predicate �SCon��� or predicate ��� � LSent � �� * � � NChar � ���
These descriptions can be tested for any entity from the table� Obviously� the
former predicate distinctively describes the cluster with no errors at all� while
the latter admits one false positive error� the entity HuckFinn satis
es the
description but belongs to a di
erent cluster� False positive errors are entities
that do not belong to the cluster but satisfy its description� in contrast� an
entity from the cluster that does not satisfy its description is referred to as
a false negative� Thus� the problem of the conceptual description of clusters
can be formalized as that of 
nding as brief and clear descriptions of them
as possible while keeping the false positive and false negative errors as low as
possible�

Traditionally� the issue of the interpretation of clusters is considered as art
rather than science� The problem of 
nding a cluster description is supposed
to have little interest on its own and be of interest only as an intermediate tool
in cluster prediction� a cluster description sets a decision rule which is then
applied to predict� given an observation� which class it belongs to� This equally
applies to both supervised and unsupervised learning� that is� when clusters
are pre	speci
ed or found from data� In data mining� the prediction problem is
frequently referred to as that of classi
cation so that a decision rule� which is
not necessarily based on a conceptual description� is referred to as a classi
er
�see� for instance� ������ In clustering� the problem of cluster description is
part of the interpretation problem� Some authors even suggest that conceptual
descriptions be a form of representing clusters �����

����� Conceptually describing a partition

In the literature� the problem of conceptual description of a partition has re	
ceived by far much more attention than the problem of description of a single
cluster� probably because it better 
ts into the concept of a decision� or classi	

cation� tree which is being used as the main device for conceptual description�
Once again it should be pointed out that the primary goal for building a deci	
sion tree is typically prediction of the partition under consideration rather than
its description�
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The concept of a classi
cation decision tree �see ������ ����� is very similar
to that of the conceptual clustering tree discussed in section ��� except for the
splitting criterion� In conceptual clustering� the criterion is to get clusters as
homogeneous as possible with regard to all variables� In decision trees� the cri	
terion is homogeneity with regard to a pre	speci
ed quantitative or categorical
feature 	 that one which is to be predicted or interpreted�
The homogeneity is scored with the same types of criteria as in conceptual

clustering� e�g�� impurity function in CART ����� Pearson chi	squared contin	
gency coe�cient in CHAID ����� and entropy in C��� ����� �see also ������ These
criteria can be considered di
erently weighted aggregations of correct and erro	
neous decisions in the typical situation of a multi	class partition under consid	
eration� To be more precise� let us denote by psk the proportion of entities that
fall in class s of a conceptual description while belonging in fact to class k of the
original partition� This decision can be assigned a di
erent weighting coe�cient
such as gsk � p�k�s�� p�k�� qsk � p�k�s��p�k�� � and lsk � log�p�k�s��p�k���
It is not di�cult to prove� in the light of results reported in section ����� that it
is exactly these weights averaged according to proportions psk that correspond
to the scoring functions applied in the three decision tree building programs
above� CART� CHAID and C���� respectively�
A decision tree resulting from learning a pre	speci
ed partition S �

fS�� ���� Sk� ���� SKg is de
ned in such a way that �a� each of its internal nodes
is labeled by a feature� �b� each of its edges is labeled by a predicate pertain	
ing to the feature associated with the parent� and �c� each leaf node is labeled
with an assigned class Sk� In this way� each leaf node gets a conceptual de	
scription� which is a conjunction of predicates assigned to edges on the path
leading from the root to the leaf� Each Sk is conceptually described by descrip	
tions of Sk	labeled leaves combined with the logical operation OR �disjunction�
�k � �� ����K��
Decision trees are built from top to bottom �the root representing all of

the entity set I being considered� in a divisive manner� each time splitting an
entity subset� represented by a tree node� according to a feature and its derived
predicates� For a categorical feature f � the predicates can express just simple
tests such as f � v for each of its categories v� thus dividing the node subset
according to categories v� Any algorithm for building a decision tree includes
answers to the following questions�

�� Whether any node should be split at all �testing a stopping condition��

�� Which node of the tree and by which variable to split�

�� What class of a cluster partition S is to be assigned to a terminal node�

An answer to question � is provided by testing the splitting criterion at each
of the nodes with each of the features� still unused at the branch� and selecting
the best�
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An answer to question �� on the 
rst glance� can be provided by using
the modal �most frequent� cluster� However� this can be sometimes too rough a
decision� Assume� for example� a set of individuals whose features are not highly
related to each other� such as risk factors with regard to some category S� that
can be a medical condition such as asthma or a deviant behavior such as theft�
In a sample re�ecting the population� the proportion of individuals in category
S� will be extremely low� say� one per cent� Then� in any sizeable subset de
ned
by combining values of di
erent features� the proportion of normal individuals
will be always higher than those of category S�� which would imply that to get
a decision tree leaf assigned to S�� it would have to be a small subset indeed�
Most importantly� the S� assigned leaves typically will cover an insigni
cant
proportion of category S� in the sample� This is why a di
erential index such
as the Quetelet coe�cient q�w � �p���w��p�����p��� can be of greater interest
in assigning classes of S to leaves w than just the conditional probability p���w��
the assignment still will be based on the absolute proportion p���w� of S� in
w � in its relation to the average rate p��� � jS�j�N � �We use � rather than
S� here for the sake of convenience�� The di
erential assignment index can be
selected to match that one used� in the averaged format� for scoring splits of
tree clusters at the tree building process�

The question �� above is the most di�cult and it usually gets an ad hoc
answer� the splitting process stops when the tree becomes too big and�or leaf
classes too small� Then the tree is pruned back by removing splits which lead
to the most ambiguous assignments or result in clusters which are considered
too small�

The classi
cation tree divides the entity set I in a tree	like manner� each
division done by dividing a feature�s range into two or more categories� For
instance� Figure ��� presents a decision tree found by initially partitioning the
vertical axis �feature y� in two intervals over point A� and then by partitioning
the upper part with b and the lower with c along the horizontal axis �feature
x�� These divisions are presented in part �a� of the Figure as occurring in the
feature space� and in part �b� in a drawn tree� The regions of the space get
simple conceptual descriptions so that the description of S de
ned by this tree�
after pruning� is� black circles are in the part �less than A of y�� and white
circles are in other regions �see part �c� of the Figure�� This would lead to four
false positives for S and two false negatives for �not S� decisions�

Decision trees are convenient because they provide for easily understandable
descriptions� They are also convenient computationally because they rely on
statistical characteristics of features� and thus are scalable to large data sizes�
When the data size is massive indeed� decision trees still can be built on data
subsamples�

There are some shortcomings too� These techniques are �monothetic� so
that each split goes along only one feature� and not directly applicable to clus	
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A

b c x

y

y < A y > A

x < c x > c

x < b x > b

(a)

(b)

y < A y > A

(c)

Figure ���� Classi�cation tree in the feature space �a
� the same
 as a decision tree
�b
� the tree after pruning �c
�

ters whose de
nitions involve combinations of features� Within traditional ap	
proaches� handling both continuous	valued and categorical features can be an
issue because of incomparability between statistical indexes used for di
erent
feature types� The data recovery framework seems a good vehicle for overcom	
ing this hurdle� since di
erent types of features get uni
ed contribution based
indexes of association� such as in sections ��� and ������

One more aspect of decision trees that can be addressed with the data re	
covery approach is of developing splitting criteria explicitly oriented towards
description of a single cluster or a category rather than a partition� The con	
ventional decision tree techniques do not pay much attention to the cases in
which the user is interested in getting a description for a cluster S only� though
in many applications I � S can be highly non	homogeneous so that its concep	
tual description may have no meaning at all�

A scoring function of a split of tree cluster Sw in two parts S� and S�� with
respect to their relevance to S can have the following formula

f�S� S�� S�� � p�p�S�S��
� ! p�p�S�S��

� ������

where p� and p� are proportions of S� and S� in Sw� and p�S�S�� and p�S�S��
are proportions of the target category S in split parts S� and S�� respectively�
This formula follows from expressions ������ and ������ in section ����� at jVlj �
� and bv � � with category v being an attribute de
ning the target cluster
S� Indeed� the value of the contribution ������� in the current denotations� is
p��p�S�S���p�S���!p��p�S�S���p�S��� � p�p�S�S��

��p�S��!p�p�S�S����
p�S�� which coincides with f�S� S�� S�� up to the constant ��p�S��
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����� Describing a cluster with production rules

Branches of a decision tree leading to terminal nodes labeled by class Sk of the
partition which is described by the tree� can be considered production rules of
the format �if A then Sk� where A is the conjunctive predicate corresponding
to an individual branch� Such a production rule states that if A is true for
i � I � than i must belong in S� However� if A is not true for i� this does not
necessarily imply that i does not belong to S�

The problem of producing such production rules for a single cluster Sk�
without any relevance to other clusters� has attracted considerable attention
from researchers� The problem 
ts well into the context of describing single
clusters rather than partitions�

A production rule technique produces a set of statements �if Ap then S�
�p � P � at which Ap is a conceptual� typically conjunctive� description of a
subset in the feature space� that is� a predicate� A more precise formulation of
a production rule would be �for all x in the feature space� Ap�x� � x � S��
Rectangles surrounding black circles on Figure ��� correspond to such produc	
tion rules� A production rule is characterized by two numbers� �a� the support�
that is the number of entities in the set I satisfying Ap� �b� the precision� the
proportion of entities from S among those entities of I that satisfy Ap� In some
methods� descriptions Ap may overlap ����� ������ in others they don�t ����� ����
As noted above� branches of a decision tree labeled by S can be considered
conjunctive production rules as well� however techniques generating production
rules directly are more speci
c� as they are focused only on S� the group of
interest� Thus� there can be no false negatives from a production rule� only
false positives�

Production rules may have rather small supports� Moreover� di
erent pro	
duction rules may cover di
erent parts of S and leave some parts not covered
as shown on Figure ����

Production rule techniques conventionally have been developed for predic	
tion rather than for description� A speci
c task of prediction of warehouse
transactions has led to a set of the so	called association rule techniques compris	
ing a di
erent section of data mining ����� ����� ������ A transaction database�s
entities� transactions� are described by a set of goods purchased by a customer
so that each of the transactions is a set of items purchased in one go� An associ	
ation rule is a production rule �if A then B� where A and B are nonoverlapping
sets of goods� Presence�absence of an individual commodity is a binary feature�
Thus� an association rule can be considered a production rule for binary data
so that association rule techniques can be applied to the problem of a single
cluster description by considering belongingness to S as B� A number of tech	
niques have been developed for producing association rules �see a review in �����
p����	�����
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A
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c d x

y

Figure ���� Rectangles in the feature space corresponding to production rules�

����� Comprehensive conjunctive description of a cluster

Methods for deriving what can be called a comprehensive description is a rel	
atively recent addition to the machine learning literature� A comprehensive
description of a subset S � I is a statement �x � S if and only if A�x�� where
A�x� is a predicate de
ned for every entity in the feature space� Thus� a com	
prehensive description A is a unity of two production rules� �if A�i� then i � S�
and �if i � S then A�i���
Producing a comprehensive description is of interest in the situations in

which S has been compiled in a process involving intuition and informal consid	
erations� such as in the case of groups of protein folding or other microbiological
taxonomy classes�
Correctness of a comprehensive description is characterized by the numbers

of false positives and false negatives� A false positive for a description A of
subset S is an element i � I � S satisfying A�i�� and a false negative is an
element i from S� at which A�i� is false� These errors correspond to the errors
of the 
rst and second kinds in the theory of statistical hypotheses if A�x� is
considered as a hypothesis about S�
A comprehensive description of S in the example of black and blank circles

on Figure ��� is obtained by enclosing the subset S in a rectangle representing
predicate �a � x � b�*�c � y � d��
Obviously� the problem of 
nding a uni
ed comprehensive description of a

group of entities can be solved by 
nding production rules predicting it and
combining them disjunctively� However� when the number of disjunctive terms
is constrained from above� in the extreme case just by �� the problem becomes
much more challenging especially if S is not �compact� geometrically but spread
over the data set I in the feature space� Methods for 
nding a comprehensive
description of a cluster� based on forward and backward search strategies have
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Q

Figure ���� Rectangular description de�ning the numbers of false positives �blank
circles within the box
 and false negatives �black dots outside of the rectangle
�

been considered in ���� and ������ In ����� the di�culty of the problem was
partly avoided by applying the techniques to cohesive clusters only and in ����
transformation of the space by arithmetically combining features was used as a
device to reduce the spread of S over I �

An algorithm outlined in ���� has the following input� set I of entities de	
scribed by continuously	valued features v � V and a group S � I to be de	
scribed� The algorithm operates with interval feature predicates Pf �a� b� de
ned
for each feature f and real interval �a� b�� of values a � x � b� Pf �a� b��x� � � if
the value of feature f at x falls between a and b� and Pf �a� b��x� � � otherwise�
The output is a conjunctive description of S with the interval feature predicates
along with its false positive and false negative errors�

The algorithm involves two building steps�

�� Finding a conjunctive description in a given feature space V�
To do this� all features are initially normalized by their ranges or other
coe�cients� Then all features are ordered according to their contribution
weights which are proportional to the squared di
erences between their
within	group S � I averages and grand means� as described in section
������ A conjunctive description of S is then found by consecutively adding
feature interval predicates fv�a� b� according to the sorted order� with
�a� b� being the range of feature v within group S �v � V �� An interval
predicate fv�a� b� is added to a current description A only if it decreases
the error�� This forward feature selection process stops after the last
element of V is checked� Then a backward feature search strategy is
applied to decrease the number of conjunctive items in the description� if
needed�

�In this way� correlated features are eliminated without much fuss about it�
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�� Expanding the feature space V� This operation is applied if there are
too many errors in the description A found on the 
rst step� It produces
a new feature space by arithmetically combining original features v � V
with those occurring in the found description A�

These two steps can be reiterated up to a pre	speci
ed number of feature
combining operations� Step � transforms and arithmetically combines the fea	
tures to extend the set of potentially useful variables� Then Step � is applied
to the feature space thus enhanced� The combined variables appearing in the
derived decision rule are then used in the next iteration� for combining with the
original variables again and again� until a pre	speci
ed number of combining
operations� t� is reached� For example� one iteration may produce a feature
v�	v�� the second may add to this another feature� leading to v�	v�! v�� and
the third iteration may further divide this by v�� thus producing the combined
feature f � �v� 	 v� ! v���v� with three combining operations�

This iterative combination process will be referred to as APPCOD �APProx	
imate COmprehensive Description�� An APPCOD iteration can be considered
a speci
cation of the recombination step in genetic algorithms ����� The di
er	
ence is that the diversity of the original space here is maintained by using the
original variables at each recombination step� rather than by the presence of
�bad� solutions in conventional genetic algorithms�

In this way� given a feature set V � entity set I � and class S � I � APPCOD
produces a new feature set F �V �� a conjunction of the interval feature predicates
based on F �V �� A� and its errors� the numbers of false positives FP and false
negatives FN� Since the algorithm uses within	S ranges of variables� it 
ts into
the situation in which all features are quantitative� However� the algorithm can
also be applied to categorical features presented with dummy zero	one variables�
just intervals �a� b� here should satisfy the condition a � b� that is� correspond
to either of values� � or ��

It should be mentioned that a more conventional approach to 
nding a good
description A with mixed scale variables involves building logical predicates over
combinations of features ���� and �����

Example ����� Combined features to describe Body mass groups

Let us apply APPCOD to the Body mass data in Table ���
 with the restriction
of no more than one feature combining operation� Depending on which of the groups

overweight or normal�weight
 is to be described
 the algorithm �rst selects either
Weight or Height� This gives a lousy description of the group with too many false
positives� Then APPCOD combines the feature with the other one and produces the
di�erence Height � Weight and the ratio Height�Weight for both the overweight and
the normal�weight groups� The overweight group is described with these combined
features with no errors
 whereas the normal group cannot be described distinctively
with them� This means that the former group is somewhat more compact in the
combined feature space� The overweight group�s comprehensive description is� ���� �
H�W � ���� & �� � H �W � ��
 with no errors�
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The second inequality can be reinterpreted as stating that the di�erence Height
� Weight for the other
 normal group
 is about �		
 which �ts well into the known
common sense rule� �Normally
 the di�erence between Height �cm
 and Weight �kg

ought to be about �		��

When the number of permitted feature combining operations increases to � and the
number of conjunctive items is limited by �
 the method produces the only variable

H �H�W 
 which distinctively describes either group and
 in fact
 is the inverse body
mass index used to de�ne the groups� �

	�� Overall assessment

There is a great number of clustering methods that have been and are being
developed� In section ���� a number of di
erent clustering methods that can be
treated as extensions of K	Means clustering have been presented� These meth	
ods are selected because of their great popularity� There are rather straightfor	
ward extensions of K	Means among them� such as Partitioning around medoids�
in which the concept of centroid is speci
ed to be necessarily an observed entity�
and Fuzzy K	Means� in which entity memberships can be spread over several
clusters� Less straightforward extensions are represented by the regression	wise
clustering� in which centroids are regression functions� and self	organizing maps
SOM that combine the Minimum distance rule with visualization of the cluster
structure over a grid� The probabilistic mixture of distributions is a far reach	
ing extension� falling within the statistics paradigm with a set of rather rigid
requirements such as that all features are continuous	valued and must be stan	
dardized with the z	score transformation� none of which needs to be assumed
within the data recovery approach�
Two graph	theoretic clustering methods are presented in section ���� One is

the quite popular single linkage method related to connected components and
minimum spanning trees� The other is a rather new method oriented towards

nding a central dense core cluster� the method works well when such a dense
core is unique�
Conceptual description of clusters is covered in the last section� Three di
er	

ent types of conceptual description are highlighted� ��� decision tree� the most
popular means for conceptual classi
cation in machine learning� ��� production
rule� a device for picking up conditions leading to belongingness to a cluster�
and ��� comprehensive description� which is oriented towards formulation of
necessary and su�cient conditions of belongingness to a cluster� The problem
of conceptual description of clusters has not yet found any general satisfactory
solution�
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Chapter �

General Issues

After reading through this chapter you will get a general understanding of
existing approaches to�

�� Data pre	processing and standardization�

�� Imputation of missing data�

�� Feature selection and extraction�

�� Various approaches to determining number of clusters�

�� Validation of clusters with indexes and resampling�

and contributions of the data recovery approach to these issues�

Base words

Bootstrapping A resampling technique in which a copy of the data set is
created by randomly selecting either rows or columns� with replacement�
as many times as there are respective number of rows or columns in the
data�

Cluster validation A procedure for validating a cluster structure or clustering
algorithm� This can be based on an internal index� or external index
or resampling� An internal index scores the degree of correspondence
between the data and the cluster structure� An external index compares
the cluster structure with a structure given externally� A resampling is
used to see whether the cluster structure is stable with respect to data
change�

���
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Cross�validation A resampling technique that provides for a full coverage of
the data set� The data set is randomly divided in a number Q of equally	
sized parts and Q copies of the data in the �training�testing� format are
generated by taking each of the parts as the test part in a corresponding
copy�

Dis
similarity between partitions A partition	to	partition measure based
on the contingency table� All measures reviewed in this chapter can be
expressed as the weighted averages of subset	to	subset measures�

Dis
similarity between sets A subset	to	subset measure relying on the sub	
sets� overlap size� A popular Jaccard coe�cient relates the overlap size to
that of the union and has both advantages and shortcomings� Somewhat
better measures should involve the ratios of the overlap size to each of the
subsets or Quetelet coe�cients�

Feature extraction A procedure for creating such �synthetic� data features
that maintains the most important information of a pattern in question�

Feature selection A procedure for 
nding such a subspace of data features
that retains the most important information of a pattern in question�

Index based validation Validation of a cluster structure involving either an
internal index� measuring degree of correspondence between the data and
the clusters� or an external index� measuring the correspondence between
the cluster structure and an externally speci
ed partition or other external
data�

Number of clusters An important characteristic of a cluster structure� which
depends both on the data and the user�s objectives� There have been de	
veloped a number of criteria for determining a �right� number of clusters�
both index	based and resampling based� so far none has come up as ap	
plicable across diverse data ranges�

Resampling An approach to creating an empirical distribution of a data min	
ing pattern or criterion by creating a number of random copies of the data
table and independently applying to them the method for computing the
pattern or criterion of interest� The distribution is used for assessing
validity of the algorithm or pattern�criterion�
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�� Feature selection and extraction

����� A review

The problem of reducing the number of features may arise in a technical context
to make a huge data set treatable computationally� In some contexts the driving
force can be interpretation� in which the number of features involved seems a
good index of clarity� the better a problem or phenomenon is understood the
fewer the number of features needed to describe it� Issues of reducing the size
of the feature space in clustering problems attract considerable interest from
researchers ���� ����
There are several dividing lines apparent in these e
orts� One is to distin	

guish between methods for feature selection and methods for feature extraction�
The former are aimed at choosing a smaller subset from the entire set of fea	
tures and the latter at producing a few �synthetic� variables from the given
ones� Another divide is between situations in which clusters are pre	speci
ed
and those in which they are not� that is� between supervised and unsupervised
learning problems�
One more division arises from the way selected features are assessed� In par	

ticular� under supervised learning� when a partition is pre	speci
ed� two types
of methods of feature selection or extraction are distinguished ����� wrapper and
�lter� When a method for class prediction� a classi
er� has been selected� its
results on di
erent feature spaces can be compared with the pre	speci
ed par	
tition and� in this way� used for selection of the best feature space� Comparison
of the classi
er results with the partition can be done according to di
erent
scoring functions� The simplest is just counting the number of errors made by
the classi
er on a selected feature set� the fewer errors the better� More complex
measures use various weightings of errors�correct predictions depending on the
partition class sizes� a review of some comparison measures can be found in
������ Since the interrelation between the prespeci
ed partition and wrapper
results amount to a confusion matrix� which is a contingency table� contingency
association coe�cients discussed in sections ����� and ����� can be utilized� as
well as the external validation indexes in section ������ The classi
er serves as a
wrapper of di
erent feature spaces� which explains the name given to this type
of evaluation methods� Wrapper methods can be used for both feature selection
and feature extraction� Results of a wrapper method are straightforward and
easy to use� however� they may depend highly on the wrapper utilized�
To apply wrapper methods for feature selection in clustering� even for a

situation in which a �true� partition has been pre	speci
ed� a clustering� rather
than prediction� method should be used as a wrapper� Such a wrapper cluster	
ing method can be referred to as a cluster maker� The closer clustering results
are to the true partition� the better the cluster maker� Obviously� the same
strategy can be applied when the quality of a feature space is to be judged by
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the relation of results not necessarily to a pre	speci
ed partition but some other
feature�s��

Another class of methods constitute so	called 
lter methods� A 
lter method
selects or builds features based on a scoring function f�W � de
ned for every
feature set W � V �

Probably the simplest within this class is the case of additive f�W � in which
f�W � can be represented as the sum of feature weights� f�W � �

P
v�W fv�

where fv is feature v�s weight� Under supervised learning� when a pre	speci
ed
partition is known� feature weights can be de
ned according to their association
with the partition or its classes� In particular� for a quantitative feature� its
cluster	speci
c weight is typically de
ned by the di
erence between the feature�s
grand mean and within cluster mean� in general� the greater the di
erence the
further away is the cluster from the data center� thus the better the feature for
separating the cluster from the rest ����� For a categorical feature� its salience
depends on its association to the partition� This means that contribution coef	

cients derived in section ��� are appropriate for the task� Sometimes� feature
weights are de
ned within a classi
er computed with respect to the pre	speci
ed
partition� as� for example� standardized coe�cients of variables in a linear dis	
criminant function or logistic regression�

In the unsupervised situation feature saliencies can be de
ned according to
feature variance measured by contribution to the scatter� or entropy� or dissim	
ilarity from other features� For example� according to a traditional approach�
the feature set is 
rst partitioned into groups of similar features� and then a
�central� feature is selected from each of the groups� Such a method will pro	
duce feature subset fNC�SC� Peg based on the partition of the Masterpieces�
feature set presented in Figure ��� �b��

Sometimes a scoring function can be de
ned according to substantive con	
siderations� For instance� in text mining features are key words or phrases� the
number of occurrences of a keyword appears to be a good indicator� the most
relevant keywords are those whose occurrence numbers are somewhere between
the minimum �occasional terms� and maximum �common words�� More on
weighting of variables can be found in �����

If the scoring function f�W � is not additive� which is the case in wrap	
per methods� its optimization can be computationally challenging� To simplify
calculations� greedy methods are frequently employed� Among them the most
popular are so	called Forward Search Selection �FSS� and Backward Search Se	
lection �BSS� approaches� An FSS method starts with emptyW and iteratively
updates W by adding just one� the best possible� feature at each iteration until
a stopping criterion is met� A stopping criterion may involve reaching a pre	
speci
ed number of features in W or a threshold to the value of f�W �� A BSS
method starts fromW � V � the set of all features� and at each iteration removes
one feature v from it� that one at which f�W � v� is optimal over v � W �
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����� Comprehensive description as a feature selector

Let us concentrate on the task of learning a subset S � I � A 
lter method can
be employed for selecting the most salient features� The salience of feature v
with respect to S should be measured based on the ability of v to separate S
from the rest� To this end� the di
erence between v�s grand mean and within	
S mean can be utilized� In particular� its squared value c�Sv can be used as
pertaining to the contribution of feature v at S to the data scatter �see section
������� With the data preliminarily pre	processed by shifting them to the grand
mean av and normalizing by bv� c

�
Sv � �av�aSv���b�v where aSv is the within	S

mean of feature v� Note that both av and aSv are calculated at the original
variable xv � When xv is a zero	one binary feature corresponding to a category�
c�Sv � �pv�p�v�S����b�v where pv and p�v�S� are unconditional and conditional
frequencies of v� Denoting the proportion of S in I by pS and proportion of
the overlap of v and S by pSv � this can be further reformulated as c

�
Sv �

�pSv � pvpS�
��p�S or c

�
Sv � �pSv � pvpS�

���pvpS� at bv � � or bv �
p
pv�

respectively�

Selecting features with largest c�Sv is computationally e
ective and simple�
However� features picked this way can be highly correlated� thus reducing their
usefulness� Using methods of cluster description described in section ��� to post	
process salient features can mitigate the issue� In particular� the APPCOD
method from section ����� can be used as a feature selecting device� the set
of selected features W is formed by those features that are involved in the
comprehensive description of S found with APPCOD�

Example ����� APPCOD based feature selection applied to Iris classes

In the Iris data set
 prede�ned classes can be described by the following concepts
found with the algorithm APPCOD� � � w� � ��� �class �
 FP�	

 ��	 � w� �
��� & ��	 � w� � ��� �class �
 FP��

 and ��� � w� � ��� & ��� � w� � ���
�class �
 FP���
� Since the method APPCOD uses within�class ranges of features
for producing interval predicates
 numbers of false negatives FN
 in this version
 are
all zero� Numbers of false positives FP at conjunctions describing classes II and III
are rather high
 but they cannot be reduced by adding other variables� ranges� High
errors for two of the Iris classes support the conclusion that they are dispersed in the
variable space �see Figure ���	
 page ��
�

Still
 only two variables occur in the descriptions obtained for the Iris classes
 w�
and w�� This e�ectively selects these two variables as those that matter� �

Obviously� a conceptual description of a cluster even when it is precise is
not necessarily meaningful from the substantive point of view� measured fea	
tures may be not quite essential to the process underlying di
erences between
clusters� There is no cure	all remedy to this e
ect within data mining� If� for
instance� some patients su
er from age	related ailments� it is highly unlikely
that a transformation of location and income related variables can possibly be
a good substitute for a direct age characteristic�
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����� Comprehensive description as a feature extractor

In the early days of the development of multivariate data analysis methods�
feature extraction was con
ned to extracting �hidden� factors being linear com	
binations of the original variables� This is still a niche for Principal component
analysis �PCA� and related methods described in sections ����� and ������ which
have been recently grossly enhanced by the advent of kernel based methods
���� ����� In this context� kernel based methods provide for non	linear trans	
formations of the original features to e
ectively linearize the task of supervised
learning� An issue with all these methods is of an arti
cial character of the
�synthetic� features emerging� which is rather disappointing in the context of
clustering because new features are needed mainly for better understanding�
More recently� a number of methods emerged� especially in supervised learn	

ing� that combine original features to produce meaningful descriptions of classes
���� ����� APPCOD method���� described in section ����� seems rather conve	
nient in this regard as it uses arithmetic combinations of original features� which
nicely 
ts into the long	standing tradition of sciences� According to this tra	
dition� derivative measures such as area or electric current can be expressed
as arithmetic products or ratios of other features such as length and width or
voltage and resistance�

Example ����� APPCOD based feature extraction applied to Iris classes
Let us try APPCOD as a feature�extracting device on the Iris data set� Assume

that features w� and w�
 selected with APPCOD in the previous section
 constitute
set A which will be arithmetically combined with the four original Iris variables in
set V � We denote by F �A�V 
 the set of features produced by applying each of �ve
operations �x�y� x�y� x�y� x�y� y�x
 to each x � A and y � V � APPCOD applied to
F �A�V 
 for description of Iris classes II and III �class I has been distinctively separated
by w� alone and thus excluded from further analysis

 produces conjunctions ���� �
w��w� � ���	 & ���	 � w� � w� � ���� �class II
 FP��
 and ���	 � w� � w� � �����
& ���	 � w� � w� � ���	 �class III
 FP��
 with the number of conjunctive terms
restricted to being not greater than �� The errors have become smaller
 but still they
may be considered too high� Can the numbers of false positives be reduced to just
one per class�

Putting the compound variables involved in the descriptions above
 w��w�
 w� �
w�
 and w� � w�
 as A and leaving V as is
 an update F �A� V 
 can be computed to
give rise to the following APPCOD produced conjunctions� ���� � w��w��w� � ����
& ���	 � w� � w�� � ����� �class II
 FP��
 and ���� � �w� � w�
 � w� � ���� &
���� � w� � w�� w� � ���	 �class III
 FP��
�

The errors of the two�term conjunctions have not changed� However
 one could
see that the new feature space leads to a better four�term conjunctive description of
class III �with FP decreased to �
� With set A consisting of the four new variables

w� � w��w�
 w� � w��
 �w� � w�
 � w�
 and w� � w� � w�
 and V unchanged
 the
algorithm APPCOD applied to F �A�V 
 leads to the following conjunctions� 	��� �
w� � �w� � w�
 � w� � ���� & 	��� � w���w� � w��
 � 	��� �class II
 FP��
 and
���� � w� � w�� � w� � ����	 & ����� � �w� � w�
 � w� � w� � ���� �class III

FP��
� It should be added that class I can be distinctively separated with one of
these variables
 w� � �w�� w�
 � w� � ���	� �class �
 FP�	
�
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Table ���� Confusion matrix for iK�Means clusters
 in the original feature space
 and
prede�ned classes of the Iris data�

Classes iK�Means clusters
 option � iK�Means clusters
 option �
in Iris data � � � � � � � � � � � Total

� 	 �� � 	 	 	 	 �	 	 	 	 �	
� 	 	 �� �	 � �� 	 	 �� �� �� �	
� �� 	 � �� �� 	 �� 	 � �� 	 �	

Total �� �� �� �� �� �� �� �	 �� �� �� ��	

Having achieved the goal of not more than one error per class
 the process of
combining variables is stopped at this point to underscore a trade�o� between the
exactness and complexity of cluster descriptions
 which parallels similar trade�o�s in
other description techniques such as regression analysis� The �nal features do not
make much sense� However
 an intermediate feature emerged and conserved
 w� �w�

referring to the petal area
 is considered by many as a key feature to substantively
discriminate between Iris genera II and III� �

Example �����
Extracting Body mass features with APPCOD

Example ���� of using APPCOD for separating two classes of Body mass data
can be considered in the feature extracting context
 too� Depending on what group
is considered as S
 those of overweight or normal weight
 the method leads to either
Height � Weight or Height�Weight�
 as an extracted combined feature� Both of
these features are known to be quite meaningful in the problem of separation of the
overweight from the normal� �

As explained above� criteria for evaluation of the quality of extracted fea	
tures can be based on the performance of a classi
er or cluster maker in the
new feature space� In the clustering context the latter seems preferable�

Example �����
Quality of feature spaces according to iK
Means

Let us explore the quality of di�erent feature spaces produced in the previous
examples to tackle the issue of supervised feature selection and extraction on the Iris
data set� Let us utilize the intelligent version of K�Means
 iK�Means described in
section ���
 as a cluster maker�

First
 let us consider results of iK�Means applied to the original data set with
two standardizing options� ��
 features z�score standardized� ��
 features range stan�
dardized
 that are presented in the left and right contingency tables in Table ���

respectively� The cluster discarding threshold in iK�Means was set to be equal to ��

Table ��� shows that the level of confusion is less in the case of the range stan�
dardized data �option �
� This is caused by the fact that with this standardization

contributions of features to the data scatter are shifted towards those petal related

w� and w�
 which better correlate with the genera
 as was shown in the example �����
the vector of contributions of features w��w� under option ��
 is ���� ��� ��� ��

 per
cent
 whereas all contributions are equal to ��� for the z�score standardization�

The levels of confusion are lessened even more if we impose the restriction that
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Table ���� Confusion matrix at iK�Means clusters set to � �in all three options
 and
prede�ned classes of the Iris data�

Classes Clusters
 op� � Clusters
 op� � Clusters
 op� �
in Iris data � � � � � � � � � Total

� 	 �� � 	 �	 	 	 �	 	 �	
� �� 	 �� �	 	 �	 � 	 �� �	
� �� 	 � �� 	 � �� 	 � �	

Total �� �� �� �� �	 �� �� �	 �� ��	

Table ���� Confusion matrix of iK�Means clusters
 in the extracted feature space

and prede�ned classes of the Iris data�

Classes Clusters
 � Clusters
 �
in Iris data � � � � � � � Total

� �	 	 	 	 �	 	 	 �	
� 	 � �� � 	 � �� �	
� 	 �� � 	 	 �� � �	

Total �	 �	 �� � �	 �	 �	 ��	

the number of clusters in iK�Means must be the same as the number of genera
 that
is
 �
 as clearly seen in Table ���� One more option
 �
 is added here
 with the feature
set con�ned to only two features
 w� and w�
 that have been selected by APPCOD
in example ����� This last option leads to a solution with only � displaced entities

which supports the principle of feature selection�

Let us take a look now at clustering results with extracted features� Table ���
presents results of iK�Means applied to the APPCOD enhanced features w��w�

w�'w� and w��w� from the previous example� The method leads to a four clus�
ter solution presented in the left part �option �
� the right part presents the solution
found by iK�Means restricted to having � clusters only �option �
� The range stan�
dardized features contribute almost equally to the data scatter in this case
 which
implies that results would not di�er under the z�score based data standardization�

All the confusion in the extracted feature space is created by four specimens
 ��
and �� of class II
 and �� and �� of class III
 since they are still closer to the other
class centroid than to that of the class they belong to� It is worth adding that the
separation of cluster � is mostly due to the contribution of the �area� feature w�'w�

while cluster � is overwhelmingly supported by the ratio of sepal length to petal length
w��w��

Results in Table ��� are the best we could obtain with APPCOD�extracted fea�
tures of the previous example� Contrary to expectations
 further combining features
does not improve the quality of clustering
 probably because more complex features
relate to �ner details of di�erences between entities
 which do not help in separat�
ing the genera but rather break them up according to the �ner granulation� Let us
take a look
 for example
 at iK�Means clustering found at the �nal feature set ob�
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Table ���� Confusion matrix for iK�Means clusters
 in a complex feature space
 and
prede�ned classes of the Iris data�

Classes iK�Means clusters
in Iris data � � � � � � � Total

� 	 � �� 	 	 	 	 �	
� 	 	 	 	 �� � �� �	
� �� 	 	 �� 	 �	 	 �	

Total �� � �� �� �� �� �� ��	

tained using three combining operations in the previous example
 w�'�w��w�
'w�

w���w�'w�'w�

 w�'w�'w��w�
 and �w��w�
'w��w� �Table ���
�

Five entities of the �rst genus are extracted as cluster � here because they have
by far the greatest values of feature w���w�'w�'w�

 which is also responsible for the
emergence of a partial cluster �� This delicate feature
 along with �w��w�
'w��w�

leads to the production of the mixed cluster � as well� �


�� Data pre�processing and standardization

����� Dis�similarity between entities

Clustering algorithms are de
ned over sets of entities at which a dis�similarity
measure has been or can be de
ned� We use here term dis�similarity to express
both types of between entity proximity measures� dissimilarities and similarities�
Dissimilarities� typically� are non	negative reals� the closer are entities to each
other the smaller dissimilarities are� decreasing to � to express the identity case�
In contrast� similarities can be negative and they are increased to express closer
ties between entities�
A �weighted� graph can be considered a similarity matrix on the set of

its vertices� with similarity sij equal to the weight assigned to the edge joining
vertex i with vertex j� in the ordinary graphs� sij is � or � depending on whether
the arc from i to j exists�
In the collection presented in section ���� Confusion represents similarity

data and Primates dissimilarity data� Euclidean squared distance and inner
product are important examples of dissimilarity and similarity measures derived
from feature	based data�
An inversely monotone transformation such as f�s� � A�s or f�s� � e��s

�

or f�s� � �
��s� transforms a similarity measure s into a dissimilarity measure

f�s� and vice versa�
Some may claim that the dis�similarity format is indeed the only one to

formulate clustering concepts and algorithms because any cluster� in the end�
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is determined in terms of dis�similarities between entities� In fact� features can
be useful as well because�

�� Clustering methods such as K	Means may employ the speci
city of the
vector space format to explicitly formulate the concept of cluster�s proto	
type or centroid as a feature based entity�

�� Features are involved in cluster interpretation�

�� The vector space format can be by far more e
ective computationally
when the number of features is relatively small� Think of the di
erence
between NM input numbers in the vector space and N� or N��� input
numbers in the dis�similarity format when N is large andM small� If� for
instance� there are ������ entities and ��� features� there will be about one
million numbers in the former case and about a hundred million numbers
in the latter case� the di
erence which can be crucial with contemporary
personal computers�

The idea of conversion of dis�similarity based data into the feature space
format motivated a lot of research in the so	called multidimensional scaling� the
discipline oriented towards embedding given dis�similarity data into a vector
space in such a way that the between	entity distances in the space would ap	
proximate the prespeci
ed dis�similarities� An issue with this approach is that
the found space has no intrinsic interpretational support� In our view� this can
be overcome with another idea gaining more and more popularity that� given
a dis�similarity data table� a number of entities should be pre	selected as ref	
erence points serving as coordinate axes so that each entity can be represented
by the vector of its distances to the reference points�

Complex data such as chemical compound formulas� time	series of stock
prices� biomolecular sequences� images� etc� can be used for automatically
discovering patterns such as motives in sequences or edges in images that can be
used then for feature generation� This implies that the pre	processing issues are
not necessarily purely computational ones but can involve speci
c data mining
techniques including clustering� These topics remain beyond the scope of this
text� Relevant materials can be found in ���� �sequences and temporal data��
����� �images�� ���� �data bases and warehouses�� ���� �spatial data��

����� Pre
processing feature based data

The only pre	processing issue raised in this book concerns categorical and mixed
scale features�

Traditionally� mixed scale feature data are treated by transforming them
into a dissimilarity matrix D � �dij�� where i� j � I are entities� according to
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the formula�

dpij �
X
f�F

wf jxif � yjf jp !
X
v�V

wv jxiv � yjv jp �����

where p is the so	called Minkowsky�s power� typically� taken as p � � or p � ��
F � V are respectively sets of quantitative features and qualitative categories�
wf and wv are user	de
ned weight coe�cients for features f � F and categories
v � V � and xiv are ��� values �� at entities i falling in the category v and � at
the rest�� Similarity measures are de
ned analogously by summing up weighted
similarities between i and j at individual features and categories�

Some may say that formula ����� does not much di
er� at p � �� from the
Euclidean distance squared used in this text� and in fact� is even more general
because it involves weights wf and wv � Yes� indeed� It is exactly the extent of
generality which is fought o
 with the help of the data recovery approach� The
common opinion is that the weight coe�cients are to come from the user� �The
choice of measure will be guided largely by the type of variables being used and
the intuition of the investigator� ������ p� ���� The current author argues this
because in most cases the user has no clue regarding to the weights in formula
������ According to this book�s approach the weights are supposed to come
from data� not the user� This is provided by the recommended pre	processing
and standardization technique described in section ���� With data xiv and xif
standardized into yiv and yif the weights in distance ����� become wv � ��b

p
v�

v � F � V � with bv being scaling coe�cients derived from the data�
To substantiate this recipe� let us bring forward the following�

�� Introducing dummy variables for categories extends the concept of quanti	
tative scale as that admitting the operation of averaging to qualitative cat	
egories� averaging dummies leads to conditional and unconditional prob	
abilities �frequencies�� which is exactly the machinery utilized in methods
speci
cally oriented for analysis of categorical data�

�� Rescaling of categories is an e
ective instrument to maintain appropriate
contributions of categories to the data scatter and� in this way� provide
consistency to the process of simultaneously analyzing quantitative and
qualitative data�

�� Summary contributions of dummy variables to the explained part of the
data scatter appear to be in line with intuitive criteria proposed within
the qualitative data framework such as the category utility function and
Pearson chi	square contingency coe�cient applied in conceptual cluster	
ing and decision tree building� This property brings a rather di
erent
light to the contingency coe�cients for cross classi
cations� It appears�
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they must be considered on par with the correlation ratio for quantita	
tive variables and� moreover� get unexpectedly transformed� one into the
other� depending on the data normalization option accepted�

�� The data recovery framework helps in addressing one of the major issues of
data analysis� warranting that data pre	processed into the dis�similarity
format get no additional structures imposed by the pre	processing� State	
ments proven in sections ��� and ��� allow us to claim that there are cri	
teria and methods that should lead to compatible results in both feature	
based and dis�similarity data� More explicitly� if a dissimilarity measure
is equal �or similar� to the squared Euclidean distance squared between
rows of a vector space matrix� or a similarity measure is the row	to	row
inner product� then compatible criteria and local search heuristics are
those detailed in section ������

����� Data standardization

Data standardization is performed feature	wise and�or entity	wise to make fea	
tures and�or entities comparable� The issue of comparability of features can be
illustrated with the Market towns data set in Table ���� obviously the scale of
feature Population is a thousand times greater than of any other feature in the
table� thus di
erences in this feature will dominate the dis�similarities between
entities� This contradicts the principle of equal importance of features� which
underlies cluster analysis as well as many other methods of multivariate data
analysis� The principle states that in the situation when no explicit weights can
be assigned to features they should equally contribute to the result� This prin	
ciple is underlined by the assumption that the user controls the process of data
analysis by structuring the phenomenon under consideration into meaningful
aspects and then assigning features to the aspects� The relative importance of
an aspect is re�ected by the number of features assigned to it� In this way� the
equivalence of features is translated into the relative importance of the aspects�
The practical implementation of the equivalence principle is usually done

via� 
rst� standardization of the variables and� second� balancing contributions
of standardized features into entity	to	entity distances ����� ���� A similar ap	
proach has been advised in this text� The only di
erence is that the distances� in
our context� are not a primary but derivative tool� it is the data recovery mod	
els and criteria which are primary� The distances are generated by the square
error criteria of these models� the balance of contributions can be maintained
in the criteria as well� and data scatter decompositions provide a feedback to
compare contributions�
Shifting the origin and changing the scale with formula yiv � �xiv � av��bv

������ is the main device for feature standardization� More radical proposals
include further data transformation along lines that are akin to the singular
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value decomposition of the data matrix and� thus� should be considered part
of data analysis rather than data pre	processing� It should be pointed out that
there are cases in which the scale may be left unchanged� that is� bv taken to
be unity� such is the case of binary features or� more generally� the situations
in which every feature presents a ranking within the same rank scale� say from
� to ��

However� proposals for setting values of av and bv may highly di
er� In par	
ticular� the value of the shift coe�cient av has been suggested in the literature
to be equal to any of the following�

�a�� ��

�a�� minimum� mini�I xiv �

�a�� maximum� maxi�I xiv �

�a�� midrange� �maxi�I xiv !mini�I xiv����

�a�� grand mean� the average of xiv over all i � I �

�a�� median�

Similarly� it has been suggested that the value of the scale coe�cient bv be
taken as any of the following�

�b�� range rv or half	range rv�� with rv � maxi�I xiv �mini�I xiv �
�b�� standard deviation sv �

pP
i�I �xiv � "xv���N� where N� is either N

or N � �� the latter value due to probabilistic considerations of mathematical
statistics�

�b�� grand mean "xv � the average of xiv over all i � I �

Among scaling coe�cients� the most popular option is the standard devia	
tion� probably because it is inherited from methods of mathematical statistics
assuming the normal distribution of data at which the joint action of options
�a�� and �b��� referred to as z	scoring� is the natural choice� I also subscribed to
this option� in the context of non	probabilistic data analysis� as an explication
of the principle of equal importance of features� with bv � sv � contributions of
all features to the data scatter are equal to each other ����� However� this rec	
ommendation is overly simplistic� The value of standard deviation depends on
two factors� the feature scale size and the shape of its distribution� Obviously�
the distribution shape is important in clustering� a multi	modal distribution
may be evidence of the multi	cluster structure� However� normalizing features
with the standard deviation forces bi	 and more	modal features to shrink to a
smaller weight than they should �see also section ������� The other two options�
normalizing by the range or average� catch the size factor only� while leaving
the distribution aside and� thus� should be preferred in clustering� A popular
option rescales data in such a way that all values fall within interval ���� ���
which is achieved with av being mid	range �a�� and bv range �b��� Another
option pulls all data into the interval ������ by using �a�� and �b��� to be able�
formally� to apply operations and interpretations referring to proportions and
frequencies�
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In ���� a set of computational experiments have been performed with a num	
ber of distance	based clustering methods and various standardization options�
The methods included a range of agglomerative procedures from the single link	
age to Ward agorithms� The data generated consisted of a small number� ��� of
points of small� � to �� dimensions� concentrated in a number of well separated
clusters� supplemented with errors being either �i� normally distributed noise
added to data entries� or �ii� two additional� randomly generated� features� or
�iii� �� outlier points added to the set� Overall� the normalization by range
appeared to unanimously provide for the best recovery of the underlying cluster
structure among other normalization options� �the traditional z	score formula
was not especially e
ective�� ������ p� ����� This concurs with the advice
following from the analysis of feature contributions to the Pythagorean decom	
position in section ����
Subtracted shift values av play no role in the distance ������ but they do

work when using the inner product as a similarity measure and� more impor	
tantly� in cluster centroids� In this regard� the recommended option �a�� for av
being the grand mean has obvious advantages� With this� the cluster centroids
express the di
erences between the feature within	cluster averages and grand
means � these di
erences accentuate each cluster�s speci
cs� The di
erences are
indispensable in interpreting clusters and� moreover� they are behind the entire
system of cluster	feature contributions to the data scatter� The appropriateness
of using grand means as the shift coe�cients is underscored by the properties of
these contributions relating them to classical ideas of statistics� the correlation
ratio� Quetelet indexes� and the Pearson chi	square association coe�cient� The
working of the Anomalous pattern method and iK	Means clustering is based
on that� too�


�� Similarity on subsets and partitions

Subsets and partitions play an important role in clustering on both sides of the
data pipeline� the input and output�
On the input side� a binary category can be equivalently represented� up

to the corresponding meta	data� by the subset of entities falling under the
category� Thus� binary data tables can be considered sets of subsets� Binary
features constitute a most important speci
c data format to which many other
data formats can be pre	processed� Examples include�

�� Sets of keywords� expert	driven or found automatically� for documents�

�� Sets of neighboring representatives�

�� Genome contents�

�� Network neighborhoods�
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In some applications� binary data are pre	processed to take into account their
row and column frequencies� In particular� in information retrieval� the so	
called tf	idf ��term frequency� inverse	document frequency�� weighting scheme
is widely accepted� This scheme assigns every unity in a document	to	keyword
data table the product of the keyword frequency within the document and the
logarithm of the proportion of total documents to the number of documents
in which the term appears ������ Another pre	processing option would be to
treat a binary data table as a contingency table and code every entry by the
corresponding Quetelet index de
ned in section ������ These transformations
make the data not binary anymore and are not considered further on�

Partitions correspond to nominal features and� thus� also constitute an im	
portant class of input data�

On the output side� subsets and�or partitions are results of many clustering
algorithms� To compare results of di
erent classi
cation schemes or clustering
algorithms� one needs to measure similarity between them�

There have been a number of di
erent approaches and measures of
dis�similarity between subsets or partitions developed in the literature of which
some will be reviewed here �see ���� and ���� for more��

����� Dis�similarity between binary entities or subsets

Set theoretic similarity measures

When all features are binary� every entity i � I can be considered as just a
set �bag� of features Vi that are present at i� Then traditional set	theoretic
operations can be used to express such concepts as �set of features that are
absent from i� � "Vi�� �set of features that are present at i but not at j� �Vi�Vj��
�set of features that are common to i and j� �Vi � Vj�� etc�
The so	called four	fold table presented in Table ��� is a traditional instru	

ment for comparing subsets Vi and Vj in I � It is a contingency table cross
classifying Vi and its complement "Vi � I � Vi with Vj and its complement
"Vj � I � Vj � Its interior entries are cardinalities of intersections of correspond	
ing sets and its marginal entries are cardinalities of the sets themselves�

Table ���� Four	fold table�

Set Vj "Vj Total
Vi a b a!b
"Vi c d c!d

Total a!c b!d a! b! c! d � N
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Probably the simplest similarity measure is the size of the overlap�

ij � jVi � Vj j � a� �����

However� this measure fails to relate the size of the overlap to the set sizes
and thus does not allow us to judge whether the overlap comprises the bulk or
just tip of the sets� The distance between sets de
ned as�

h�i� j� � jVi � Vj j � jVi � Vj j � jVij! jVj j � �jVi � Vj j � b! c� �����

is somewhat better� It is � when Vi � Vj � but its maximum� jVi � Vj j� still
depends on the set sizes� Returning to binary rows xi and xj of the data table
corresponding to entities i and j� it is easy to see that distance h�i� j� indeed
equals the squared Euclidean� and indeed city	block� distance between xi and
xj �

h�i� j� �
X
v�V

�xiv � xjv�
� �

X
v�V

jxiv � xjv j�

The latter equation follows from the fact that �x�x��� � jx�x�j for any binary
x and x�� Measure h�i� j� ����� is referred to as Hamming distance between the
binary vectors�
The relative distance h�i� j��N is known as the mismatch coe�cient between

sets�

m�i� j� � h�i� j��N � �b! c��N �����

Its complement to unity� the so	called match coe�cient�

s�i� j� � �N � h�i� j���N � �a! d��N� �����

is popular as well�
Index s�i� j� is always between � and �� It is � when Vi � Vj and it is �

when Vi and Vj are complementary parts of I �
An issue with s�i� j� as a similarity measure is that it depends on the size

N of I which may be irrelevant� especially in comparing two �little things in
the big world� such as two text documents among thousands of others�
The so	called Jaccard coe�cient �����

J�i� j� �
jVi � Vj j
jVi � Vj j �

a

a! b! c
� �����

does not depend on N � �It is sometimes referred to as the Tanimoto coe�cient��
This measure takes into account only features that are present at either i or j
or both and handles them in such a way that the value of J does not depend
on the total feature set� It ranges between � and �� and it is � when Vi � Vj
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and � when Vi and Vj are disjoint� It is good mathematically� too� because its
complement to unity� the dissimilarity dJ � ��J � satis
es the so	called triangle
inequality� dJ�i� j� � dJ�i� l� ! dJ�j� l� for any i� j� l � I �for a proof see ����� p�
����� A popular algorithm for clustering categorical data� ROCK ����� uses the
Jaccard coe�cient�
However� there appears to be an intrinsic �aw in the Jaccard coe�cient in

that it systematically underestimates the similarity� To demonstrate this� let
us consider two typical situations �����

�� Undervalued overlap� When the sizes of sets Vi and Vj are about the
same and their overlap is about half of the elements in each of them� the
Jaccard coe�cient is about ���� while one would expect the similarity
score to be� in this case� about ���� To make the coe�cient equal to ����
the overlap must contain about ��� of the elements from each of the sets�
which intuitively should correspond to a score of ����

�� Undervalued part� When Vi is part of Vj being smaller than Vj in size�
then J is just equal to the proportion of Vi in Vj � If� for instance� the
size of Vi is ��� of the size of Vj � then the value of J also will be ����
Such a small value contradicts our intuition on the relationship between
entities i and j because the fact that Vi � Vj may intuitively mean that
they may be highly related� semantically in the case of text documents or
evolutionarily in the case of genomes�

Is there any remedy that can be suggested� Yes� One can note that in
the former example� each of the ratios jVi � Vj j�jVij and jVi � Vj j�jVj j is equal
to one half� In the latter example� one of them is still ��� but the other is �#
Thus� an appropriate similarity index should combine these two ratios� Practi	
tioners usually take the maximum or minimum of them by relating jVi � Vj j to
min�jVij� jVj j� or max�jVij� jVj j�� respectively� Also� the geometric mean�

g�i� j� �
jVi � Vj jpjVijjVj j �

ap
�a! b��a! c�

� �����

or arithmetic mean�

f�i� j� � �
jVi � Vj j
jVij !

jVi � Vj j
jVj j ��� � a

�a! b! c

�a! b��a! c�
� �����

can be utilized� These two indexes have all the advantages of the Jaccard
coe�cient and� in fact� are co	monotone with it� but they evaluate similarity in
the two special cases above in a way that is closer to our intuition� In the case
of two equal size sets overlapping by half� each g and f is one half too� In the
case when one set is a �� subset of the other� g � ���� and f � �����
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Distance and inner product

As mentioned above� the distance dij between rows xi and xj representing
i� j � I in the original binary data table is precisely the Hamming distance
h�i� j� ������ The inner product of the two binary rows is the overlap ������ To
get more subtle measures one needs to employ subtler tools� In particular� the
normalized product� �xi� xj��

p
�xi� xi��xj � xj� yields the geometric mean g�i� j�

������
When the feature means have been subtracted according to recommenda	

tions of the data recovery approach� the inner product of rows in the pre	
standardized data matrix leads to an interesting similarity index ����� With
av � pv� the proportion of entities in which feature v is present� and bv � �� the
range� the scalar product of the standardized rows has been derived in ������
on page ��� as�

aij �
X
v�V

yivyjv � jVi � Vj j � jVij � jVj j! t�i� ! t�j� ! �� �����

where � is a constant and t�i� �or t�j�� is the total frequency weight of features
that are present at i �or� at j�� �The more frequent is the feature� the less its
frequency weight��
Similarity index ����� is a linear analogue to the arithmetic mean coe�cient

t ����� and� thus� has properties similar to those of t� However� it is further
adjusted according to the information content of features in h and g� which is
evaluated over all entities by counting their frequencies� Also� it can be either
positive or negative� thus introducing the expression power of the sign into
similarity measurement� and should be further explored�

����� Dis�similarity between partitions

Similarity between partitions is measured based on their cross classi
cation�
that is� the contingency table presented in Table ���� Rows k � �� ����K cor	
respond to clusters in partition S � fS�� ���� SKg and columns l � �� ���� L to
clusters in partition T � fT�� ���� TLg� and the �k� l�	th entry� to the number
of co	occurrences of Sk and Tl� denoted by Nkl� That means Nkl � Rk � Sl�
Summary frequencies of row and column categories� Nk� and N�l respectively�
are presented in Table ��� on the margins titled �Total��
In clustering� comparing partitions is traditionally done via representing

them by clique graphs or� almost equivalently� by binary relation matrices�
Given a partition S � fS�� ���� SKg on I � its clique graph +S has I as its vertice
set� edges connect any two entities that are in the same cluster i� j � Sk for
some k � �� ����K� The matrix rS is de
ned so that rij � � for any i� j belonging
to the same class Sk for some k � �� ����K� otherwise� rij � �� To correspond
to graph +S exactly� the matrix must be modi
ed by removing the diagonal

© 2005 by Taylor & Francis Group, LLC




��� SIMILARITY ON SUBSETS AND PARTITIONS ���

Table ���� A contingency table or cross classi
cation of two partitions� S �
fS�� ���� SKg and T � fT�� ���� TLg on the entity set I �

Cluster � � ��� L Total

� N�� N�� ��� N�L N��

� N�� N�� ��� N�L N��

��� ��� ��� ���� ��� ���
K NK� NK� ��� NKL NK�

Total N�� N�� ��� N�L N

and one of the halves separated by the diagonal� either that under or above the
diagonal� because of their symmetry�
Let us consider graph +S as the set of its edges� Then� obviously� the

cardinality of +S is j+S j �
PK

k��

�
Nk�

�

�
where

�
Nk�

�

�
� Nk��Nk� � ���� is the

number of edges in the clique of +S corresponding to cluster Sk� In terms of
the corresponding binary matrices� this would be the number of rij � � for

i� j � Sk� that is� N
�
k standing for

�
Nk�

�

�
here� With a little arithmetic� this can

be transformed to�

j+S j � �
KX
k��

N�
k� �N��� ������

To compare graphs +S and +T as edge sets one can invoke the four	fold table
utilized in section ����� for comparing sets �see Table ����� Table ��� presents
it in the current context ����

Table ���� Four�fold table for partition graphs�

Graph (T �(T Total

(S a b j(S j
�(S c d c�d

Total j(T j b�d a � b � c � d �
�
N
�

�

The elements of Table ��� are the cardinalities of the edge sets and their
intersections� The only cardinalities of interest in what follows are j+S j� j+T j
and a� The 
rst is presented in ������ and a similar formula holds for the

second� j+T j � �
PL

l��N
�
�l � N���� The third� a� is similar too because it is

the cardinality of the intersection of graphs +S and +T � which is itself a clique
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graph corresponding to the intersection of partitions S and T � Thus�

a � �

KX
k��

LX
l��

N�
kl �N��� ������

which is a partition analogue to the overlap set similarity measure ������ It is
of interest because it is proportional �up to the subtracted N which is due to
the speci
cs of graphs� to the inner product of matrices rS and rT � which is
frequently used as a measure of similarity between partitions on its own�
Among other popular measures of proximity between partitions are partition

graph analogues to the mismatch and match coe�cients m and s� ����� and
������ Jaccard coe�cient J ����� and geometric mean g ������ These analogues
are referred to as distance �mismatch�� Rand� Jaccard and Fowlkes	Mallows
coe�cients� respectively� and can be presented with the following formulas�

M � �j+S j! j+T j � �a��
�
N

�

�
������

Rand � �� �j+S j! j+T j � �a��
�
N

�

�
� ��M ������

J �
a

j+S j! j+T j � a
������

and

FM �
apj+S jj+T j � ������

�It should be noted that in the original formulation of FM by Fowlkes and
Mallow ���� no N is subtracted from the sum of squares in j+S j and j+T j� The
Rand coe�cient ����� is frequently used in the standardized form proposed in
������ Also� FM was observed to work better than the other two in experiments
conducted in ����� This should be of no wonder because its subset	to	subset
counterpart� the geometric mean ������ is an obvious improvement over the
others� subset	to	subset counterparts� ����� and ������
It should be noted also that those partition	to	partition coe�cients that

are linear with respect to elements of the four	fold table are equal� up to the
constant N � to the corresponding between	set measures averaged according to
the bivariate distribution of the cross classi
cation of S and T � This is true for
the intersection a ������� distance M ������ and Rand �������
In particular� intersection a ������ averages the values Nkl themselves�

Distance M ������ and Rand ������ average values Nk� ! N�l � �Nkl and
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Table ���� Model confusion data�

Attribute T �T Total

S �� � �
n �n n
�S �n �� � �
n n

Total n n �n

N � Nk� � N�l ! �Nkl respectively� as related to the set	theoretic di
erence
between Sk and Tl� This suggests a potential extension of the partition sim	
ilarity indexes by averaging other� nonlinear� measures of set similarity such
as the means ����� and ����� or even the Quetelet coe�cients� The averaged
Quetelet coe�cients� G� and Q�� are akin to traditional contingency measures�
which are traditionally labeled as deliberately attached to the case of statistical
independence� However� the material of sections ����� and ����� demonstrates
that the measures can be utilized just as summary association measures in their
own right with no relation to the statistical independence framework�

Example ����� Distance and chi
squared according to a model confusion
data

Consider the following contingency table �Table ���
 that expresses the idea that
binary features S and T signi�cantly overlap and di�er by only a small proportion �
of the total contents of their classes� If
 for instance
 � � 	��
 then the overlap is �	��
the smaller the � the greater the overlap�

Let us analyze how this translates in values of the contingency coe�cients de�
scribed above
 in particular
 the distance and chi�squared� The distance
 or mismatch
coe�cient
 is de�ned by formulas �����

 �����
 and ���	
 so that it equals the sum of
the marginal frequencies squared minus the doubled sum of squares of the contingency
elements� To normalize
 for the sake of convenience
 we divide all items by the total
�n�
 which is �n squared
 rather than by the binomial coe�cient

�
�n
�

�
� This leads to

M � ��n� � ����� � �
� � ���
n�
���n�
 � ���� � �
�

To the calculate chi�squared
 we use formula �����
 from section ������ According
to this formula
 X� is the total of contingency entries squared and related to both
column and row marginal frequencies minus one�

X� � ���� �
� � ��� � � � � � ����� �
�

These formulas imply that for these model data
 X� � �� �M �

For example
 at � � 	�	� and � � 	��
 M � 	�	�� and M � 	��� respectively� The
respective values of X� are 	��� and 	����

�
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Matching�based similarity versus Quetelet association

We can distinguish between two types of subset	to	subset and respective
partition	to	partition association measures�

M� matching between subsets�partitions measured by their overlap a in ������
������ and ������� and

C� conditional probability and Quetelet indexes such as ������ and ������ and
�������

Considered as they are� in terms of co	occurrences� these two types are
so di
erent that� to the author�s knowledge� they have never been considered
simultaneously� There is an opinion that� in the subset	to	subset setting� the
former type applies to measuring similarity between entities whereas the latter
type to measuring association between features�

However� there exists a framework� that of data recovery models for entity	
to	entity similarity matrices� in which these two types represent the same mea	
sure of correlation applied in two slightly di
erent settings� In this framework�
each partition S � fS�� ���� SKg of the entity set I � or a nominal variable whose
categories correspond to classes Sk �k � �� ����K�� can be represented by a sim	
ilarity matrix s � �sij� between i� j � I where sij � � for i and j from di
erent
classes and a positive real when i and j are from the same class� Consider two
de
nitions�

M� sij � � if i� j � Sk for some k � �� ����K�

C� sij � ��Nk if i� j � Sk for some k � �� ����K where Nk is the number of
entities in Sk�

The assumption is that all similarities within S are the same� in the case M� or
inversely proportional to the class size so that the larger the class the smaller
the similarity� in the case C� The latter re�ects the convention that the more
frequent is a phenomenon the less information value in it�

Matrix s � �sij� corresponding to a partition S has dimension N 
N � Its
average "s is "s � G�S� � ��Pk p

�
k� Gini index� in the case M� or "s � ��N � in

the case C�

Let now S and T be two partitions on I � Corresponding similarity matrices
s � �sij� and t � �tij�� as well as their centered versions s� "s and t� "t� can be
considered N 
N vectors� Then the inner product of these vectors� in the case
M� is equal to

PK
k��

PL
l��N

�
kl featured in equation ������ whereas the inner

product of their centered versions in the case C is the Pearson chi	squared�
This shows that the two types of partition	to	partition measures can be related
to the two types of entity	to	entity similarities� in the data recovery framework�
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Dissimilarity of a set of partitions

In some situations� especially when the same clustering algorithm has been
applied many times at di
erent initial settings or subsamples� there can be
many partitions to compare�
A good many	to	many dis�similarity measure can be produced by averaging

a pair	wise dis�similarity between partitions� Let us denote given partitions on
I by S�� S������ Sm where m � �� Then the average distance M�fStg� will be
de
ned by formula�

M�fStg� � �

m�

mX
u�w��

M�Su� Sw� ������

where M�Su� Sw� is de
ned by formula �������
An interesting measure was suggested in ����� based on the average partition

matrix which is an entity	to	entity similarity matrix de
ned by

��i� j� �

Pm
t�� s

t
ij

m��i� j�
������

where st is the binary relation matrix corresponding to St with s
t
ij � � when

i and j belong to the same class of St and stij � �� otherwise� with m��i� j�
denoting the number of partitions St at which both i and j are present� The
latter denotation concerns the case when �some of� partitions St have been
found not necessarily at the entire entity set I but at its sampled parts�
In the situation in which all m partitions coincide� all values ��i� j� are

binary being either � or � depending on whether i and j belong to the same
class or not� which means that the distribution of values ��i� j� is bimodal
in this case� The further away partitions from the coincidence� the further
away the distribution of ��i� j� from the bimodal� Thus� the authors of �����
suggest watching for the distribution of ��i� j�� its shape and the area under
the empirical cumulative distribution�

A�fStg� �
LX
l��

��l � �l���F ��l� ������

where ��� ��� ���� �L is the sorted set of di
erent entries ��i� j� in the average
matrix and F ��� is the proportion of entries ��i� j� that are smaller than ��
In fact� the average distance ������ also characterizes the average partition

matrix ��i� j�� To see that� let us assume� for the sake of simplicity� that all
partitions St are de
ned on the entire set I and denote the average value in the
matrix by "� and the variance by 
���

Statement ���
� The average distance M�fStg� ���
�	 is proportional to
"���� "��� 
���
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Proof� According to de
nition� M�fStg� � Pm
u�w��

P
i�j�I �s

u
ij � swij�

��m��

This can be rewritten as M�fStg� � Pi�j�I

Pm
u�w���s

u
ij ! swij � �suijswij��m��

Applying the operations to individual items we obtain M�fStg� �P
i�j�I �

Pm
w�� ��i� j��m!

Pm
u�� ��i� j��m� ���i� j���i� j�� � �Pi�j�I ���i� j��

��i� j���� The proof of the statement follows then from the de
nition of the
variance of the matrix� q�e�d�
As proven in statement ����� given a probability of smaller than the average

values� the variance of a variable reaches its maximum when the variable is
binary� The value "� in this case can be assigned the meaning of being such
a probability� Then the formula in statement ����� shows that the average
distanceM� in fact� measures the di
erence between the maximum and observed
values of the variance of the average partition matrix� Either this di
erence or
the variance itself can be used as an index of similarity between the observed
distribution of values ��i� j� and the ideal case at which all of them coincide�


�� Dealing with missing data

����� Imputation as part of pre
processing

Some data entries can be missing because of various reasons such as di�culties
in obtaining data� or because of inaccuracy in data collecting or maintaining�
or because of de
ciencies in data producing devices� There are two approaches
to dealing with missing data�
���Within a method� missing data are treated within a specially modi
ed

method for data analysis� This approach is popular with such techniques as
regression analysis� but not with clustering�
���Before a method� imputation of missing entries is conducted as part of

data pre	processing before any more speci
c analyses� Researchers do recognize
that patterns of missings may relate to the data contents� in gene expression
analyses� weak gene expression is more likely to go unnoticed� and in income
surveys� respondents are likely to leave sensitive questions unanswered� Still�
most research is being done under the assumption that missings emerge at
random entries� In the remainder of this section� we refer to this approach only�
Among the methods of imputation of incomplete data� one can distinguish

the following three approaches�

�� Conditional mean� in which every missing entry is substituted by a pre	
dicted value such as the variable�s mean or the value predicted by a re	
gression function or decision tree ���� ��� �����

�� Maximum likelihood based methods� in which missings are imputed ac	
cording to an estimated data density function ���� ����
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��� DEALING WITH MISSING DATA ���

�� Least	squares approximation� in which the data are approximated with a
low	rank data matrix ���� ��� ����

Let us brie�y discuss them in turn�

����� Conditional mean

Arguably the most popular method of imputation� at least among practitioners�
is the substitution of a missing entry by the corresponding variable�s mean�
which will be referred to as the Mean algorithm� More subtle approaches use
regression based imputation in which a regression	predicted value is imputed
���� ���� Decision trees are used for handling missing categorical data in ������
The Mean algorithm has been combined with nearest	neighbor based techniques
in ������
Two common features of the conditional mean approaches are� ��� miss	

ing entries are dealt with sequentially� one	by	one� and ��� most of them rely
on a limited number of variables� The other approaches handle all missings
simultaneously by taking advantage of using all the available data entries�

����� Maximum likelihood

The maximum likelihood approach relies on a parametric model of data gen	
eration� typically� the multivariate Gaussian mixture model� The maximum
likelihood method is applied for both 
tting the model and imputation of the
missing data� The most popular is the so	called expectation	maximization �EM�
algorithm ����� which exploits the popular idea of alternating optimization to
maximize the maximum likelihood criterion as described in section ������ The
popularity of the maximum likelihood approach is based on the fact that it is
grounded on a precise statistical model� However� methods within this approach
may involve unsubstantiated hypotheses and be computationally intensive�

����� Least
squares approximation

This is a nonparametric approach based on approximation of the available data
with a low	rank bilinear factorial model akin to the principal component anal	
ysis model ������
Methods within this approach� typically� work sequentially by producing

one factor at a time to minimize the sum of squared di
erences between the
available data entries and those reconstructed via the low	rank model� Two
ways to implement this approach can be distinguished�

�� Iterative least squares �ILS�� Fit a low	rank approximate data model
����� by using nonmissing entries only and then interpolate the missing
values with values found according to the model ���� ����
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�� Iterative majorized least squares �IMLS�� Start by 
lling in all miss	
ing entries with some value such as zero� then iteratively approximate thus
completed data by updating the imputed values with those implied by a
low	rank SVD based approximation �����

These can be combined with nearest	neigbor based techniques as follows�
take a row that contains a missing entry as the target entity xi� 
nd its K
nearest neighbors in X � and form a matrix Xi consisting of the target entity
and its neighbors� Then apply an imputation algorithm to the matrix Xi�
imputing missing entries at the target entity only� Repeat this until all missing
entries are 
lled in� Then output the thus completed data matrix�
A global	local approach proposed in ����� involves two stages� First stage�

Use a global imputation technique to 
ll in all missings in the original matrix
X so that entity	to	entity distances can be calculated with no concessions to
the presence of missing values� Let us denote the resulting matrix X�� Second
stage� Apply a nearest	neighbor based technique to 
ll in the missings in X
again� but� this time� based on distances computed with the completed data
matrix X�� This global	local approach involving IMLS on both of the stages� in
the beginning with m � � and in the end with m � �� is referred to as algorithm
INI in ������ In experiments reported in ������ nearest	neighbor based least
squares imputation algorithms give similar results outperforming other least	
squares algorithms including the Mean and nearest	neighbor	Mean imputation�
When the proportion of random missings grows to �� and� moreover� �� �
INI becomes the only winner ������
Overall� the subject is in early stages of development� Potential mechanisms

of missings are not well de
ned yet�


�� Validity and reliability

����� Index based validation

After applying a clustering algorithm� the user would like to know whether the
results indeed re�ect an innate property of the data or they are just an artifact
generated by the algorithm� In other words� the user wants to know whether
the cluster structure found is valid or not� It is not a di�cult question when
there is a probabilistic mechanism for data generation� which is known to the
user� Unfortunately� this is not the typical case in cluster analysis� Typically�
the data come from a source that cannot be modelled this way if it can be at
all� There is one more cause of uncertainty here� the user�s wish to have an
aggregate representation of the data� at a level of resolution� which cannot be
straightforwardly formalized and� moreover� depends on the task at hand�
There are two types of indexes used to quantify the validity� internal and

external�
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Internal indexes

An internal validity index in clustering is a measure of correspondence between
a cluster structure and the data from which it has been generated� The better
the index value� the more reliable the cluster structure� We give just a few
formulations�

�� Measures of cluster cohesion versus isolation
���� Silhouette width�
The silhouette width of an entity j � I ���� is a popular measure de
ned as�

sil�j� � �b�j�� a�j���max�a�j�� b�j��

where a�j� is the average dissimilarity of j with its cluster and b�j� the smallest
average dissimilarity of j from the other clusters� Values a�j� and b�j� measure
cohesion and isolation� respectively� Entities with large silhouette width are
well clustered while those with small width can be considered intermediate�
The greater the average silhouette width� the better the clustering� The

measure has shown good results in some experiments ������
���� Point�biserial correlation�
The point	biserial correlation between a partition and distances is a global

measure that has shown very good results in experiments described in ����� As
any other correlation coe�cient� it can be introduced in the context of the data
recovery approach similar to that of the linear regression in section ������ We
follow the presentation in �����
Let us denote the matrix of between	entity distances by D � �dij�� This

can be just an input dissimilarity matrix� but in our context� D is a matrix
of squared Euclidean distances� For a partition S � fS�� ���� SKg on I let us
consider the corresponding �ideal� dissimilarity matrix s � �sij� where sij � �
if i and j belong to the same cluster Sk for some k � �� ����K� and sij � �
if i and j belong to di
erent clusters� Both matrices are considered here at
unordered pairs of di
erent i and j� the number of these pairs is obviously
N� � N�N � ����� Consider the coe�cient of correlation ����� between these
matrices as N�	dimensional vectors� With elementary transformations� it can
be proven that the coe�cient can be expressed as follows�

r�D� s� �
�db � dw�

p
NbNw

N�
D
������

where db is the average between cluster dissimilarity� dw the average within
cluster dissimilarity� Nb the number of unordered pairs of entities from di
erent
clusters� and Nw the total number of unordered pairs of entities taken from the
same cluster� 
D is the standard deviation of distances from their grand mean�
This coe�cient perhaps should be referred to as the uniform correlation

coe�cient because it is the coe�cient of correlation in the problem of uniform
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partitioning ����� that is� 
nding a partition in which all within cluster distances
are equal to the same number � and all between cluster distances are equal
to the same number �� so that its distance matrix is equal to 
s ! � where
� � �� 
 � � � � and s � �sij� is the dissimilarity matrix of partition S
de
ned above� In the framework of the data recovery approach� the problem
of uniform partitioning is the problem of approximating matrix D with an
unknown matrix 
s ! �� This is the problem of regression analysis of D over
s with the added stance that s is also unknown� Obviously� the least squares
solution to the uniform partitioning problem is that one that maximizes the
correlation coe�cient r�D� s� �������

It appears� the problem indirectly involves the requirement that the cluster
sizes should be balanced� which works well when the underlying clusters are of
more or less similar sizes ����� The criterion may fail� however� when the under	
lying clusters drastically di
er in sizes� Good results shown by criterion ������
and its versions in experiments conducted by G� Milligan ���� may have been
implied by the fact that cardinalities of clusters generated in these experiments
were much similar to each other�

�� Indexes derived using the data recovery approach�

���� Attraction�

This is a data	recovery based analogue to the concept of silhouette width
above� described in section ������ The attraction of entity j � I to its cluster
is de
ned as ��j� � a�j� � a�� where a�j� is the average similarity of j to
entities in its cluster and a the average within cluster similarity� If the data are
given in feature	based format� the similarity is measured by the inner product
of corresponding row vectors� Otherwise� it is taken from data as described in
section ������

Attraction indexes are positive in almost all clusterings obtained with the
K	Means and Ward	like algorithms� still� the greater they are� the better the
clustering� The average attraction coe�cient can be used as a measure of cluster
tightness�

���� Contribution of the cluster structure to the data scatter�

A foremost index of validity of a cluster structure in the data recovery
approach is the measure of similarity between the observed data and that arising
from a clustering model� Criterion B�S� c�� the cluster structure�s contribution
to the data scatter according to decomposition ������ in section ���� measures
exactly this type of similarity� the greater it is� the better the partition 
ts into
the data�

It should be pointed out that the data recovery based criteria are formulated
in such a way that they seem to score cluster cohesion only� However� they
implicitly do take into account cluster isolation as well� as proven in Chapter ��

�� Indexes derived from probabilistic clustering models�
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A number of indexes have been suggested based on probabilistic models of
cluster structure� for a review� see ��� ���� Results of using these indexes highly
depend on the accepted model which� typically� the user has no possibility of
verifying�

Use of internal indexes to estimate the number of clusters

The issue of how to determine the number of clusters in K	Means and other
partitional algorithms has attracted a great deal of attention in the literature�
As explained in section ������ this issue is not always meaningful� However� this
does not mean that a review of the many attempts should be glossed over�
On the 
rst glance� any validity measure� such as the average silhouette

width and uniform correlation explained above� can be used for selecting the
number of clusters� just do clustering for a range of values of K and select
that one which makes the measure maximum �or minimum if the better 
t
corresponds to its decrease��
This idea was explored by many authors with respect to the within	cluster

variance�WK � the value of W �S� c� at the found K	cluster partition� The index
as is obviously cannot be used because it monotonely decreases when K grows�
the greater is the number of clusters� the better 
t� But its change� the 
rst
�or even second� di
erence

�WK �WK����T�

where T is the data scatter� can be considered a good signal� the number of
clusters should stop rising when this di
erence becomes small� Hartigan ���� is
credited with formally shaping a similar idea� take the index�

hK � �WK�WK�� � ���N �K � ���
and one by one increase K starting from �� stop calculations when hK becomes
less than ��� An index by Calinski and Harabasz�

cK � ��T �WK���K � �����WK��N �K���

associated with Fisher distribution in statistics� showed a good performance in
some experiments �����
There are measures that compare WK with its expected value under a uni	

form distribution� In particular� Krzanowski and Lai ���� showed that the
expected value of WK is proportional to K

���M where M is the dimension of
the space� They used ratio�

K��MWK �

and its di
erences to derive the best number of clusters� Similar indexes have
been proposed in the so	called Gap	statistic ����� and Jump	statistic ������
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The latter seems especially suitable� calculate the average �distortion� of an
axis associated with 
tting K centroids to data with the K	Means algorithm�
wK �WK�M whereM is the number of features andWK the value of K	Means
square error criterion at a partition found with K	Means� and calculate �jumps�

jK � w
�M��
K � w

�M��
K�� � With w	 � � and w� � T�M where T is the data

scatter� jumps can be de
ned for all reasonable values of K � �� �� ���� The
maximum jump corresponds to the right number of clusters� This is supported
with a mathematical derivation stating that if the data can be considered a
standard sample from a mixture of Gaussian distributions and distances be	
tween centroids are great enough� then the maximum jump would indeed occur
at K equal to the number of Gaussian components in the mixture ������
Reviews of these and other indexes of the best number of clusters can be

found in ����� ������ ������
Experiments conducted by authors of ����� and others show that none of

them can be considered a universal criterion�
In fact� the straightforward option does not necessarily work even for the av	

erage silhouette width and the uniform correlation� In particular� ����� reports
that somewhat better results could be obtained by using the average silhouette
width indirectly� for determining that no further splits of clusters are needed�
the smaller the average silhouette width within a split cluster� the more likely
it should not be split at all�
There is no universal criterion because� apart from obvious cases such as

clearly seen di
erences between rock and water� light and dark� horse and birch
tree� clusters are not only in the data but also in the mind of the user� The
granularity of the user�s vision and between	cluster boundaries� when no natural
boundaries can be seen� should be left to the user� This can be formalized by
introduction of relevant �external� criteria�

External indexes

The so	called external indexes compare a clustering found in data with another
clustering either given by an expert or following from a knowledge domain
or found by another clustering algorithm� Typically clusterings are sets or
partitions of the entity set I � Thus� the external indexes are those described in
sections ����� and ����

����� Resampling for validation and selection

Resampling is a procedure oriented at testing and improving reliability of data
based estimators and rules with respect to changes in data� Basically� it pro	
duces an empirical distribution of clustering results and related indexes to see
the extent of dispersion of these with regard to data changes� This type of
analysis has become feasible with the development of computer hardware and
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is in its infancy as a discipline� After having read through a number of recent
publications involving resampling and done some computational experiments�
the author can propose the following systematic of resampling in clustering�
Resampling involves the following steps�

A� Generation of a number of data sets� copies� related to the data under
consideration�

B� Running an accepted algorithm �such as regression� classi
cation tree� or
clustering� independently at each of the copies�

C� Evaluating results�

D� Aggregating�

Let us describe these steps in greater detail bearing in mind that the data
set under analysis has the standard entity	to	feature format�

A Generation of copies can be done by either subsampling or splitting or
perturbing the data set�

A� Subsampling� a proportion �� � � � � � � is speci
ed and �N
entities are selected randomly without replacement in a subsample�
the copy data is constituted by the rows corresponding to selected
entities�

A� Splitting� set I is randomly split in two parts of pre	speci
ed sizes�
the training and testing parts� This can be done as is� by generating
a copy with a train�testing split� or via the so	called cross�validation
at which the entity set is randomly split in a prespeci
ed number
of parts Q of approximately equal size� and Q copies are created
simultaneously� A copy is created by considering one of the Q parts
as the testing set� and its complement as the training set� Typically�
Q is taken as either �� � or ��� However� the case when Q is equal to
the number of entities is also popular� it is called leave�one�out cross
validation �����

A� Perturbing� the size of a copy here is the same as in the original data
set but the entries are perturbed by�

A��� Bootstrapping� In this process� the data set is considered as that
consisting of N rows� Uniform random sampling with replace	
ment is applied N times to randomly pick up N row indexes�
which are not necessarily di
erent because of the replacements�
A copy set is created then by combining the N selected rows
into a data table� Obviously� some rows may be left out of the
created data table since some rows may occur there two or more
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times� It is not di�cult to estimate the probability of a row not
being selected� At each action of picking out a row� the proba	
bility of a row not being selected is �� ��N � which implies that
the approximate proportion of rows never selected in the sam	
pling process is ��� ��N�N � ��e � ���� of the total number
of entities� That means that any bootstrap copy on average in	
cludes only about ���� of the entities� some of them several
times� A similar process can be applied to columns of the data
matrix �����

A��� Adding noise� In this process� a random real number is added to
each entry� The added number is typically generated from the
normal distribution with zero mean and a relatively small vari	
ance� In ���� a combination of bootstrapping and adding noise
is described� For a K	Means found cluster structure �S� c�� let
us calculate the residuals eik in the data recovery model �������
A bootstrapping experiment is then de
ned by randomly sam	
pling with replacement among the residuals eiv and putting the
sampled values in equations ������ to calculate the bootstrapped
data�

B Running an algorithm on a copy is done the same way as on the original
data set except for that if the copy is obtained by splitting� the algorithm
is run over its training part only�

C Evaluating results depends on the copy type� If copies are obtained
by subsampling or perturbing� the results on copies are compared to the
results found with the original data set� If copies are obtained by splitting�
the training part based results are evaluated on the test part� Let us
describe this in more detail for each of the copy types�

C� Subsample case� The cluster structure found from a subsample is
compared with the cluster structure on the same subsample resulting
from the application of the algorithm to the original data set� The
comparison can be done with any index such as Rand �discussed
in section ������ or chi	square contingency coe�cients �discussed in
section ������� For instance� in ���� the evaluation is done accord	
ing to the averaged overlap index ������� in ����� relative distance
between �sample� and �real� centroids is computed� This concerns
situations in which subsample results do not depend on the subsam	
ple size� which is not so sometimes� For instance� if the 
tted model
involves a feature interval �like in APPCOD based descriptions�� the
interval�s length on an �N subsample will be� on average� � times
the interval�s length on the original data� Then the interval must be
stretched out in the proportion ��� �����
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C� Split case� The evaluation of a model 
tted to the training data is
rather easy when the model is that of prediction or description as in
the case of the regression or classi
cation tree� In these� the training
part 
tted model is applied as is to the testing part and the error
score of the prediction�description in the testing part is calculated�
When the 
tted model is a cluster structure such as produced by K	
Means� its evaluation in the testing part is not straightforward and
can be done di
erently� For instance� in ���� the following method�
Clest� is proposed� First� apply K	Means to the testing parts anew�
Then build a prediction model� such as a classi
cation tree� on the
training part and apply it to the testing part to predict� for each
testing part entity� what cluster it should belong to� This also can be
done by using the minimum distance rule applied to the testing parts
at the training part based centroids ����� In this way� two partitions
are found on the testing part� that predicted from the training part
and that found anew� The evaluation then is done by comparing
these two partitions� the closer the better �see examples in section
������� An original use of the leave	one	out model for measuring
similarity between entities is described in ����� the authors use the
minimum rather than average correlation over pair	wise correlations
with one column removed� this also cleans the outlier e
ects�

C� Perturbation case� The evaluation is especially simple when the
data have been perturbed by adding noise� because the entities re	
main the same� Thus� the evaluation can be done by comparing the
cluster structure found with the original data and cluster structure
found at the perturbed data� In the case of partitions� any of the in	
dexes of section ����� would 
t� In ���� evaluation is done by testing
the perturbed data partition against the original centroids� the error
is proportional to the number of cases in which the minimum distance
rule assigns an entity to a di
erent cluster� In the case of bootstrap�
evaluation can be done by comparing those parts of the two cluster
structures� which relate to that aspect of data that was not changed
by the sampling� In particular� Felsenstein ���� suggested bootstrap	
ping columns �features� rather than entities in building hierarchical
clusters and more generally phylogenetic trees� Evaluation of results
is performed by comparing entity clusters found on the perturbed
data with those found on the original data� the greater the number
of common clusters� the better�

D Aggregating results� This can be done in various ways such as the
following�

D� Combining evaluations� Typically� this is just averaging the eval	
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uations for each individual copy� The averaged score can be consid	
ered as a test result for the algorithm� In this way� one can select
the best performing algorithm among those tested� This can also be
applied to selection of parameters� such as the number of clusters�
with the same algorithm ����� ����� The results on perturbed copies
can be used to score con
dence in various elements of the cluster
structure found at the original data set� For instance� in ����� each
of the hierarchic clusters is accompanied by the proportion of copies
on which the same algorithm produced the same cluster� the greater
the proportion� the greater the con
dence�

D� Averaging models� Models found with di
erent copies can be
averaged if they are of the same format� The averaging is not nec	
essarily done by merely averaging numerical values� For instance� a
set of hierarchical clustering structures can be averaged in a struc	
ture that holds only those clusters that are found in a majority of
the set structures ����� In ����� centroids found at subsamples are
considered a data set which is clustered on its own to produce the
averaged centroids�

D� Combining models� When models have di
erent formats� as in
the case of decision trees that may have di
erent splits over di
erent
features at di
erent copies� the models can be combined to form a
�committee� in such a way that it is their predictions rather than
themselves that are averaged� Such is the procedure referred to as
bagging in �����

����� Model selection with resampling

Since a quality score such as the number of misclassi
ed entities or the contri	
bution to the data scatter may be di
erent over di
erent samples� resampling
can be used not only for testing� but for learning� too� Of a set of algorithms
one is selected at which an accepted quality score coe�cient is optimized� This
is called model selection� Examples of model selection can be found in Efron
and Tibshirani ���� p� ���	��� �selection of decision tree sizes�� Salzberg ������
p� ���	��� �averaging probabilities obtained with split	sample	based decision
trees� and the following subsections�

Determining the number of clusters with K�Means

This subject has been treated in a number of publications ���� ��� ���� ����� Let
us describe a method proposed in ������ This method exploits the properties of
the average partition matrix ��i� j� �i� j � I� and the empirical distribution of
its entries described above on page ����
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Let us specify a number K� perform K	Means on many random subsamples
from the entity set I � de
ne the average partition matrix ��i� j� based on par	
titions found and the area under its cumulative distribution� A�K�� as de
ned
by formula ������� After having done this for K � �� �� ���Kmax� B�K

�

� is de	

ned as the maximum of A�K�� K � �� ����K

�

� Then the relative area increase
is expressed as %�K� � �A�K ! �� � B�K���B�K�� K � �� �� ���� At K � ��
%�K� is de
ned as %��� � A���� Based on a number of simulation studies� the
authors of ����� claim that the maximum of this index is indicative of the true
number of clusters�

Model selection for cluster description

To learn a comprehensive description of a subset S � I � we apply a resampling
process that can be considered a model of generalization in a learning device�
According to this model� the learning process is organized in two stages� At
the 
rst stage� the learning device is presented with di
erent samples of the
data� in which S	entities are indicated� Based on these� the learning device
develops a set of combined features that are most e
ective for separating S
from the rest� At the second stage� the device is again presented with random
supervised data samples� Now samples are used not for feature generation but
rather for building an aggregate conjunctive description in terms of features
generated at the 
rst stage�
These stages can be characterized in brief as follows �����

�� Extracting features� At this stage� a number of random samples from
the pair �I� S� is generated� and the APPCOD algorithm of comprehensive
description is applied to each of them� The best of these descriptions is
selected to proceed� The quality of a description is evaluated by its error
on the entire data set�

To extend an � sample based description to the whole data set� each
feature interval predicate is extended by stretching its interval out by the
reverse coe�cient ���� This generally breaks the property of APPCOD
produced predicates to cover the entire within	S ranges of the features
and thus restores the ability to have both false positive and false negative
errors�

To measure the error� one may use either the conventional total number
of errors FP ! FN or the more subtle criterion E � �FP�jI � Sj !
��� ��FN�jSj of the weighted summary proportion of errors� Changing
weight coe�cient � allows one to take into account the relative impor	
tance of false positives versus false negatives� If S is a cancer type� false
negatives should be avoided �� is to be close to ��� false positives are of
an issue when S are loyal customers �� is to be close to ��� Otherwise�
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keep � � ���� Relative� not absolute� values of the errors appear in E to
address the situations in which S is signi
cantly smaller than I � S�

The features occurring in the best comprehensive description are consid	
ered e
ective for learning set S in I and added to the feature set�

�� Selecting descriptions� At this stage� a number of independent sam	
ples from �I� S� is generated again and an APPCOD produced description
is found at each of them� However� this time the APPCOD is used as a
feature selector� not extractor� Only features present after the 
rst stage�
not their combinations� are used in producing feature interval predicates�
Then sample descriptions are aggregated according to a version of the
majority rule� only features occurring at the majority of sample descrip	
tions are selected� Their intervals are determined by averaging the left
and right boundaries of intervals involved in the sample feature interval
predicates�

The algorithm can be tuned up with two principal parameters� the maxi	
mum number of items permitted in a conjunctive description� l� and the number
of arithmetic operations admitted in a combined feature� f � This proceeds in a
loop over f and l� starting with a value of � for each and doing the loop over l
within the loop over f � Based on our experimentation� these were set f�� and
the limits of l set from l � ��f � �� ! � to l � �f by default� For any given
pair� l and f � the generalization process applies a number of times �three� by
default� and the best result is picked up and stored �����

Example ����� Generalization with resampling at Body mass data�
Applied to the Body mass data in Table ���
 this method produces either the body

mass index Weight��Height'Height
 or the less expressive variables Weight�Height
and Height � Weight depending on numbers of random samples at each step of the
generalization process described above� When both numbers are small
 the less ex�
pressive variables tend to appear� When the number of samples at the Aggregating
step increases
 the method produces the body mass index� This tendency is much
less expressed when the number of samplings increases at the Generalization step�
Curiously
 these tendencies practically do not depend on the sample size� �

Example ����� Binary data� Republicans and democrats at the US con

gressional voting

Let us describe results of applying the APPCOD based model selection method
on the data set of ���� United States Congressional Voting Records from #���$ which
contains records of sixteen yes�no votings by ��� democrats and ��� republicans�
It appears the set of republicans can be described by just one predicate p��esa��
admitting �� FP and 	 FN
 ����� of total error� Here p� and esa are abbreviations
of issues �physician�fee�freeze� and �export�administration�act�south�africa
� and �
codes  yes� and 	  no��

This means that all republicans
 and only �� democrats
 voted consistently on
both issues
 either both yes or both no
 which cannot be described that short without
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the operation of division� Another issue� the method describes each individual class
asymmetrically
 which allows us to check which of the classes
 republican or democrat

is more coherent� Because of the asymmetry in APPCOD
 one can safely claim that
the class whose description has the minimum error is more coherent� Descriptions
of democrats found at various subsamples always had ��� times more errors than
descriptions of republicans
 which �ts very well into the popular images of these
parties #��$� �


�	 Overall assessment

The chapter reviews a number of issues of current interest in clustering as part
of data mining�
First� the issue of 
nding a relevant feature space is considered� There are

two approaches here� feature selection and feature transformation �extraction��
Automatic transformation of the feature space is a major problem in data min	
ing which is yet to be properly addressed� Arithmetically combining features
within the context of a decision rule maker� speci
cally� the comprehensive
description algorithm� can be of value in attacking the problem�
Second� issues and approaches in data pre	processing and standardization�

including dealing with missing data� are discussed � advantages of the data
recovery approach are pointed out�
Third� issues of cluster validity including those of determining the �right�

number of clusters� are addressed in terms of� �a� internal and external indexes
and �b� data resampling�
Internal indexes show the correspondence between data and clusters derived

from them� Obviously� the best source of such indexes are the data recovery
criteria and related coe�cients� Unfortunately� none of the indexes proposed so
far can be considered a universal tool because of both the diversity of data and
cluster structures and the di
erent levels of granulation required in di
erent
problems�
External indexes show correspondence between data	driven clusters and

those known from external considerations� We provide a description of such
indexes in section ��� in such a way that correspondences between set	to	set
and partition	to	partition indexes are established� as well as relations between
structural and association indexes�
Data resampling as a tool for model testing and selection is a relatively new

addition� A systematic review of the approaches is given based on the most re	
cent publications� A data resampling based model for learning a comprehensive
description of a cluster is discussed�
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Conclusion� Data Recovery

Approach in Clustering

Traditionally clusters are built based on similarity� A found cluster of similar
entities may be used as a whole to generalize and predict� This order of action
is reversed in the data recovery approach� A property of similarity clusters�
the possibility to aggregate data of individual entities into data of clusters� is
taken here as the de
ning attribute� According to the data recovery approach�
entities are brought together not because they are similar but because they can
be used to better recover the data they have been built from� Is it not just a
new name for old wine� Indeed� the closer the entities to each other the more
each of them resembles the cluster�s pro
le�

Yet the shift of the focus brings forward an important di
erence� In the
data recovery approach� the concept of similarity loses its foundation status
and becomes a derivative of the criterion of recovery� In conventional clustering�
the emphasis is on presenting the user with a number of options for measuring
similarity� the greater the choice the better� There is nothing wrong with this
idea when the substantive area is well understood� But everything is wrong with
this when the knowledge of the substantive area is poor� No user is capable
of reasonably choosing a similarity measure in such a situation� A similarity
measure should come from the data mining side� This is the case in which a
data recovery approach can provide sound recommendations for the similarity
measurement and� moreover� for the data pre	processing needed to balance
items constituting the data recovery criterion�

The heart of the data recovery clustering framework is Pythagorean decom	
position of the data scatter into two items� that explained by the cluster struc	
ture and that unexplained� the square error� The items are further decomposed
in the contributions of individual entity�feature pairs or larger substructures�
Some developments that follow from this�

�� Pre�processing�

�a� The data scatter expresses the scattering of entities around the origin
of the feature space� which thus must be put into a central� or normal�

���
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position among the entity points �this position is taken to be the
grand mean��

�b� The data scatter is the sum of feature contributions that are propor	
tional to their variances thus re�ecting the distribution shapes� this
allows for tuning feature normalization options by separating scale
and shape related parts�

�c� The strategy of binary coding of the qualitative categories in order
to simultaneously process them together with quantitative features�
which cannot be justi
ed in conventional frameworks� is supported
in this framework with the following�

i� Binary features appear to be the ultimate form of quantitative
features� those maximally contributing to the data scatter�

ii� The explained parts of category contributions sum up to asso	
ciation contingency coe�cients that already have been heavily
involved in data analysis and statistics� though from a very dif	
ferent perspective�

iii� The association coe�cients are related to the data normaliza	
tion options� which can be utilized to facilitate the user�s choice
among the latter� this can be done now from either end� the
process� input or output� or both�

iv� The equivalent entity	to	entity similarity measure which has
emerged in the data recovery context is akin to best heuristic
similarity measures but goes even further by taking into account
the information weights of categories�

�� Clustering�

�a� Data recovery models for both K	Means and Ward clustering ex	
tend the Principal Component Analysis �PCA� model to the cases
in which scoring vectors are to be compulsory binary or tertiary�
respectively� This analogy should not be missed because the PCA
itself is conventionally considered but a heuristic method for extract	
ing the maximum variance from the data� which is not quite correct�
In fact� the PCA can be justi
ed by using a data recovery model� as
shown in section ������ and then extended to clustering�

�b� K	Means is the method of alternating minimization applied to the
square error criterion�

�c� Agglomerative and divisiveWard clustering involve somewhat �dual�
decompositions of the data scatter� That for divisive clustering is a
natural one� treating the scatter�s unexplained part as a whole and
further decomposing the explained part into items related to the
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contributions of individual clusters and features� In contrast� the
decomposition for agglomerative clustering hides the structure of the
explained part� which probably can explain why no speci
c tools for
the interpretation of cluster hierarchies have been proposed before�

�d� By exploiting the additive structure of the data recovery models in
the manner following that of the PCA method� one	by	one clustering
methods are proposed to allow for e
ective computational schemes
as well as greater �exibility in a controlled environment� In partic	
ular� the intelligent version of K	Means� iK	Means� can be used for
incomplete clustering with removal of devious or� in contrast� overly
normal items� if needed�

�e� Local search algorithms presented lead to provably tight clusters
� the fact expressed with the attraction coe�cient� a theory	based
analogue to popular criteria such as the silhouette width coe�cient�

�f� The approach is extended to contingency and �ow data by taking
into account the property that each entry is a part of the whole�
The entries are naturally standardized into the Quetelet coe�cients�
the corresponding data scatter appears to be equal to the chi	squared
contingency coe�cient�

�g� The inner product can be used as an equivalent device in the corre	
spondingly changed criteria� thus leading to similarity measures and
clustering criteria � some of those are quite popular and some are
new� still being similar to those in use�

�� Interpretation aids�

�a� The models provide for using the traditional cluster centroids as
indicators of cluster tendencies� Also� more emphasis is put on the
standardized� not original� values thus relating them to the overall
norms �averages��

�b� Inner products of individual entities and centroids� not distances be	
tween them that are used conventionally� express entity contributions
to clusters� This relates to the choice of a cluster representative as
well� not by the distance but by the inner product�

�c� The decomposition of the data scatter over clusters and features in
table ScaD provides for comparative analysis of the relative contribu	
tions of all elements of the cluster structure� especially with Quetelet
coe�cients �table QScaD�� to reveal the greatest of them�

�d� APPCOD� a method for conceptual description of individual clusters
based on the table ScaD� can serve as a supplementary or complemen	
tary tool to classical decision trees as interpretation and description
aids�
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�e� In hierarchical classi
cation� the conventional decomposition of the
data scatter over splits and clusters has been supplemented with
similar decompositions of feature variances� covariances and individ	
ual entries� these may be used as aids in the interpretation of the
tendencies of hierarchical clusters�

�f� The decomposition of the data scatter over an upper cluster hierarchy
can now be visualized with the concept of the box	chart� extending
the conventional pie	charts�

Much room remains for further developments and extensions of the data
recovery approach�
First� data speci
cs� such as those that we considered here only for the cases

of mixed and contingency data tables� should be taken into account� Con	
sider� for instance� digitized image data� Here entities are pixels organized in
a grid� Conventionally� image data are compressed and processed with tech	
niques exploiting their spatial character with such constructions as quadtrees
and wavelets� which are unrelated in the current thinking� The data recovery
model with upper cluster hierarchies� used here for developing divisive Ward	
like clustering� in fact can be considered as an extension of both quadtrees and
wavelets� This may potentially lead to methods of image processing while si	
multaneously compressing them� Another promising area is applying the data
recovery approach to analysis of temporal or spatio	temporal data� An advan	
tage of modeling data with a cluster model is that the temporal trajectory of a
cluster centroid can be modeled as a speci
c� say exponential� function of time�
Gene expression data contain measurements of several properties made over the
same gene array spots� they should be considered another promising direction�
Second� the models themselves can be much improved beyond the simplest

formats employed in the book� These models� in fact� require any data en	
try to be equal to a corresponding entry in a centroid or a combination of
centroids� This can be extended to include �gray� memberships� transformed
feature spaces� and logically described clusters� The least squares criterion can
be changed for criteria that are less sensitive to data variation� The least moduli
criterion is a most obvious alternative� Possibilities of probabilistic modelling
should not be discarded either� In the current setting� the Pythagorean de	
compositions much resemble those used for the analysis of variance of a single
variable over various groupings� Related probabilistic models� included in most
statistics texts� seem� however� overly rigid and restrictive� Hopefully� cluster
analysis may provide a ground for seeking more relevant probabilistic frame	
works�
Third� clustering methods can be extended from the purely local search

techniques presented in the book� One of the directions is building better
versions with provable approximation estimates� Another direction is applying
the evolutionary and multi	agent approaches of computational intelligence�
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