

Cluster Analysis for
Data Mining and

János Abonyi

Balázs Feil

Birkhäuser

Basel · Boston · Berlin

2000 Mathematical Subject Classification: Primary 62H30, 91C20; Secondary 62Pxx, 65C60

Library of Congress Control Number: 2007927685

Bibliographic information published by Die Deutsche Bibliothek:

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie; detailed

bibliographic data is available in the internet at <http://dnb.ddb.de>

ISBN 978-3-7643-7987-2 Birkhäuser Verlag AG, Basel · Boston · Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-

rial is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recita-

tion, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For

any kind of use permission of the copyright owner must be obtained.

© 2007 Birkhäuser Verlag AG

Basel · Boston · Berlin

P.O. Box 133, CH-4010 Basel, Switzerland

Part of Springer Science+Business Media

Printed on acid-free paper produced from chlorine-free pulp. TCF ∞

Cover design: Alexander Faust, Basel, Switzerland

Printed in Germany

ISBN 978-3-7643-7987-2 e-ISBN 978-3-7643-7988-9

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Authors:

János Abonyi Balázs Feil

University of Pannonia University of Pannonia

Department of Process Engineering Department of Process Engineering

PO Box 158 PO Box 158

8200 Veszprem 8200 Veszprem

Hungary Hungary

Contents

Preface . ix

1 Classical Fuzzy Cluster Analysis
1.1 Motivation . 1
1.2 Types of Data . 4
1.3 Similarity Measures . 5
1.4 Clustering Techniques . 8

1.4.1 Hierarchical Clustering Algorithms 9
1.4.2 Partitional Algorithms . 10

1.5 Fuzzy Clustering . 17
1.5.1 Fuzzy partition . 17
1.5.2 The Fuzzy c-Means Functional 18
1.5.3 Ways for Realizing Fuzzy Clustering 18
1.5.4 The Fuzzy c-Means Algorithm 19
1.5.5 Inner-Product Norms . 24
1.5.6 Gustafson–Kessel Algorithm 24
1.5.7 Gath–Geva Clustering Algorithm 28

1.6 Cluster Analysis of Correlated Data 32
1.7 Validity Measures . 40

2 Visualization of the Clustering Results
2.1 Introduction: Motivation and Methods 47

2.1.1 Principal Component Analysis 48
2.1.2 Sammon Mapping . 52
2.1.3 Kohonen Self-Organizing Maps 54

2.2 Fuzzy Sammon Mapping . 59
2.2.1 Modified Sammon Mapping 60
2.2.2 Application Examples . 61
2.2.3 Conclusions . 66

2.3 Fuzzy Self-Organizing Map . 67
2.3.1 Regularized Fuzzy c-Means Clustering 68
2.3.2 Case Study . 75
2.3.3 Conclusions . 79

vi Contents

3 Clustering for Fuzzy Model Identification – Regression
3.1 Introduction to Fuzzy Modelling 81
3.2 Takagi–Sugeno (TS) Fuzzy Models 86

3.2.1 Structure of Zero- and First-order TS Fuzzy Models 87
3.2.2 Related Modelling Paradigms 92

3.3 TS Fuzzy Models for Nonlinear Regression 96
3.3.1 Fuzzy Model Identification Based on

Gath–Geva Clustering . 98
3.3.2 Construction of Antecedent Membership Functions 100
3.3.3 Modified Gath–Geva Clustering 102
3.3.4 Selection of the Antecedent and Consequent Variables . . . 111
3.3.5 Conclusions . 115

3.4 Fuzzy Regression Tree . 115
3.4.1 Preliminaries . 120
3.4.2 Identification of Fuzzy Regression Trees based

on Clustering Algorithm . 122
3.4.3 Conclusions . 133

3.5 Clustering for Structure Selection 133
3.5.1 Introduction . 133
3.5.2 Input Selection for Discrete Data 134
3.5.3 Fuzzy Clustering Approach to Input Selection 136
3.5.4 Examples . 137
3.5.5 Conclusions . 139

4 Fuzzy Clustering for System Identification
4.1 Data-Driven Modelling of Dynamical Systems 142

4.1.1 TS Fuzzy Models of SISO and MIMO Systems 148
4.1.2 Clustering for the Identification of MIMO Processes 153
4.1.3 Conclusions . 161

4.2 Semi-Mechanistic Fuzzy Models . 162
4.2.1 Introduction to Semi-Mechanistic Modelling 162
4.2.2 Structure of the Semi-Mechanistic Fuzzy Model 164
4.2.3 Clustering-based Identification of the

Semi-Mechanistic Fuzzy Model 171
4.2.4 Conclusions . 182

4.3 Model Order Selection . 183
4.3.1 Introduction . 183
4.3.2 FNN Algorithm . 185
4.3.3 Fuzzy Clustering based FNN 187
4.3.4 Cluster Analysis based Direct Model Order Estimation . . . 189
4.3.5 Application Examples . 190
4.3.6 Conclusions . 198

4.4 State-Space Reconstruction . 198
4.4.1 Introduction . 198

Contents vii

4.4.2 Clustering-based Approach to
State-space Reconstruction 200

4.4.3 Application Examples and Discussion 208
4.4.4 Case Study . 216
4.4.5 Conclusions . 222

5 Fuzzy Model based Classifiers
5.1 Fuzzy Model Structures for Classification 227

5.1.1 Classical Bayes Classifier 227
5.1.2 Classical Fuzzy Classifier 228
5.1.3 Bayes Classifier based on Mixture of Density Models 229
5.1.4 Extended Fuzzy Classifier 229
5.1.5 Fuzzy Decision Tree for Classification 230

5.2 Iterative Learning of Fuzzy Classifiers 232
5.2.1 Ensuring Transparency and Accuracy 233
5.2.2 Conclusions . 237

5.3 Supervised Fuzzy Clustering . 237
5.3.1 Supervised Fuzzy Clustering – the Algorithm 239
5.3.2 Performance Evaluation . 240
5.3.3 Conclusions . 244

5.4 Fuzzy Classification Tree . 245
5.4.1 Fuzzy Decision Tree Induction 247
5.4.2 Transformation and Merging of the

Membership Functions . 248
5.4.3 Conclusions . 252

6 Segmentation of Multivariate Time-series
6.1 Mining Time-series Data . 253
6.2 Time-series Segmentation . 255
6.3 Fuzzy Cluster based Fuzzy Segmentation 261

6.3.1 PCA based Distance Measure 263
6.3.2 Modified Gath–Geva Clustering for

Time-series Segmentation 264
6.3.3 Automatic Determination of the Number of Segments . . . 266
6.3.4 Number of Principal Components 268
6.3.5 The Segmentation Algorithm 269
6.3.6 Case Studies . 270

6.4 Conclusions . 273

Appendix: Hermite Spline Interpolation . 275

Bibliography . 279

Index . 301

MATLAB� and Simulink� are registered trademarks of The MathWorks, Inc.

MATLAB� is a trademark of The MathWorks, Inc. and is used with permission. The
MathWorks does not warrant the accuracy of the text of exercises in this book. This
book’s use or discussion of MATLAB� software or related products does not constitute
endorsement or sponsorship by The MathWorks of a particular pedagogical approach or
particular use of the MATLAB� software.

For MATLAB� and Simulink� product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Preface

Data clustering is a common technique for statistical data analysis, which is used in
many fields, including machine learning, data mining, pattern recognition, image
analysis and bioinformatics. Clustering is the classification of similar objects into
different groups, or more precisely, the partitioning of a data set into subsets
(clusters), so that the data in each subset (ideally) share some common trait –
often proximity according to some defined distance measure.

The aim of this book is to illustrate that advanced fuzzy clustering algorithms
can be used not only for partitioning of the data, but it can be used for visualiza-
tion, regression, classification and time-series analysis, hence fuzzy cluster analysis
is a good approach to solve complex data mining and system identification prob-
lems.

Overview

In the last decade the amount of the stored data has rapidly increased related to
almost all areas of life. The most recent survey was given by Berkeley University
of California about the amount of data. According to that, data produced in 2002
and stored in pressed media, films and electronics devices only are about 5 ex-
abytes. For comparison, if all the 17 million volumes of Library of Congress of the
United States of America were digitalized, it would be about 136 terabytes. Hence,
5 exabytes is about 37,000 Library of Congress. If this data mass is projected into
6.3 billion inhabitants of the Earth, then it roughly means that each contempo-
rary generates 800 megabytes of data every year. It is interesting to compare this
amount with Shakespeare’s life-work, which can be stored even in 5 megabytes.
It is because the tools that make it possible have been developing in an impres-
sive way, consider, e.g., the development of measuring tools and data collectors in
production units, and their support information systems. This progress has been
induced by the fact that systems are often been used in engineering or financial-
business practice that we do not know in depth and we need more information
about them. This lack of knowledge should be compensated by the mass of the
stored data that is available nowadays. It can also be the case that the causality
is reversed: the available data have induced the need to process and use them,

x Preface

e.g., web mining. The data reflect the behavior of the analyzed system, therefore
there is at least the theoretical potential to obtain useful information and knowl-
edge from data. On the ground of that need and potential a distinct science field
grew up using many tools and results of other science fields: data mining or more
general, knowledge discovery in databases.

Historically the notion of finding useful patterns in data has been given a vari-
ety of names including data mining, knowledge extraction, information discovery,
and data pattern recognition. The term data mining has been mostly used by
statisticians, data analysts, and the management information systems commu-
nities. The term knowledge discovery in databases (KDD) refers to the overall
process of discovering knowledge from data, while data mining refers to a par-
ticular step of this process. Data mining is the application of specific algorithms
for extracting patterns from data. The additional steps in the KDD process, such
as data selection, data cleaning, incorporating appropriate prior knowledge, and
proper interpretation of the results are essential to ensure that useful knowledge
is derived form the data. Brachman and Anand give a practical view of the KDD
process emphasizing the interactive nature of the process [51]. Here we broadly
outline some of its basic steps depicted in Figure 1.

Figure 1: Steps of the knowledge discovery process.

1. Developing and understanding of the application domain and the relevant
prior knowledge, and identifying the goal of the KDD process. This initial
phase focuses on understanding the project objectives and requirements from
a business perspective, then converting this knowledge into a data mining
problem definition and a preliminary plan designed to achieve the objectives.
The first objective of the data analyst is to thoroughly understand, from a
business perspective, what the client really wants to accomplish. A business
goal states objectives in business terminology. A data mining goal states
project objectives in technical terms. For example, the business goal might
be “Increase catalog sales to existing customers”. A data mining goal might
be “Predict how many widgets a customer will buy, given their purchases over

Preface xi

the past three years, demographic information (age, salary, city, etc.) and the
price of the item.” Hence, the prediction performance and the understanding
of the hidden phenomenon are important as well. To understand a system, the
system model should be as transparent as possible. The model transparency
allows the user to effectively combine different types of information, namely
linguistic knowledge, first-principle knowledge and information from data.

2. Creating target data set. This phase starts with an initial data collection and
proceeds with activities in order to get familiar with the data, to identify
data quality problems, to discover first insights into the data or to detect
interesting subsets to form hypotheses for hidden information.

3. Data cleaning and preprocessing. The data preparation phase covers all ac-
tivities to construct the final dataset (data that will be fed into the modelling
tool(s)) from the initial raw data. Data preparation tasks are likely to be per-
formed multiple times and not in any prescribed order. Tasks include table,
record and attribute selection as well as transformation and cleaning of data
for modelling tools. Basic operations such as the removal of noise, handling
missing data fields.

4. Data reduction and projection. Finding useful features to represent the data
depending on the goal of the task. Using dimensionality reduction or trans-
formation methods to reduce the effective number of variables under consid-
eration or to find invariant representation of data. Neural networks, cluster
analysis, and neuro-fuzzy systems are often used for this purpose.

5. Matching the goals of the KDD process to a particular data mining method.
Although the boundaries between prediction and description are not sharp,
the distinction is useful for understanding the overall discovery goal. The
goals of data mining are achieved via the following data mining tasks:

• Clustering: Identification a finite set of categories or clusters to describe
the data. Closely related to clustering is the method of probability den-
sity estimation. Clustering quantizes the available input-output data to
get a set of prototypes and use the obtained prototypes (signatures,
templates, etc.) as model parameters.

• Summation: Finding a compact description for subset of data, e.g., the
derivation of summary for association of rules and the use of multivari-
ate visualization techniques.

• Dependency modelling: finding a model which describes significant de-
pendencies between variables (e.g., learning of belief networks).

• Regression: Learning a function which maps a data item to a real-valued
prediction variable based on the discovery of functional relationships
between variables.

xii Preface

• Classification: learning a function that maps (classifies) a data item into
one of several predefined classes (category variable).

• Change and Deviation Detection: Discovering the most significant
changes in the data from previously measured or normative values.

6. Choosing the data mining algorithm(s): Selecting algorithms for searching for
patterns in the data. This includes deciding which model and parameters may
be appropriate and matching a particular algorithm with the overall criteria
of the KDD process (e.g., the end-user may be more interested in under-
standing the model than its predictive capabilities.) One can identify three
primary components in any data mining algorithm: model representation,
model evaluation, and search.

• Model representation: The natural language is used to describe the dis-
coverable patterns. If the representation is too limited, then no amount
of training time or examples will produce an accurate model for the
data. Note that more flexible representation of models increases the
danger of overfitting the training data resulting in reduced prediction
accuracy on unseen data. It is important that a data analysts fully com-
prehend the representational assumptions which may be inherent in a
particular method.
For instance, rule-based expert systems are often applied to classifi-
cation problems in fault detection, biology, medicine etc. Among the
wide range of computational intelligence techniques, fuzzy logic im-
proves classification and decision support systems by allowing the use
of overlapping class definitions and improves the interpretability of the
results by providing more insight into the classifier structure and deci-
sion making process. Some of the computational intelligence models lend
themselves to transform into other model structure that allows informa-
tion transfer between different models (e.g., a decision tree mapped into
a feedforward neural network or radial basis functions are functionally
equivalent to fuzzy inference systems).

• Model evaluation criteria: Qualitative statements or fit functions of how
well a particular pattern (a model and its parameters) meet the goals of
the KDD process. For example, predictive models can often be judged
by the empirical prediction accuracy on some test set. Descriptive mod-
els can be evaluated along the dimensions of predictive accuracy, nov-
elty, utility, and understandability of the fitted model. Traditionally,
algorithms to obtain classifiers have focused either on accuracy or in-
terpretability. Recently some approaches to combining these properties
have been reported

• Search method: Consists of two components: parameter search and
model search. Once the model representation and the model evalua-
tion criteria are fixed, then the data mining problem has been reduced

Preface xiii

to purely an optimization task: find the parameters/models for the se-
lected family which optimize the evaluation criteria given observed data
and fixed model representation. Model search occurs as a loop over the
parameter search method.
The automatic determination of model structure from data has been ap-
proached by several different techniques: neuro-fuzzy methods, genetic-
algorithm and fuzzy clustering in combination with GA-optimization.

7. Data mining: Searching for patterns of interest in a particular representation
form or a set of such representations: classification rules, trees or figures.

8. Interpreting mined patterns: Based on the results possibly return to any of
steps 1–7 for further iteration. The data mining engineer interprets the mod-
els according to his domain knowledge, the data mining success criteria and
the desired test design. This task interferes with the subsequent evaluation
phase. Whereas the data mining engineer judges the success of the applica-
tion of modelling and discovery techniques more technically, he/she contacts
business analysts and domain experts later in order to discuss the data min-
ing results in the business context. Moreover, this task only considers models
whereas the evaluation phase also takes into account all other results that
were produced in the course of the project. This step can also involve the
visualization of the extracted patterns/models, or visualization of the data
given the extracted models. By many data mining applications it is the user
whose experience (e.g., in determining the parameters) is needed to obtain
useful results. Although it is hard (and almost impossible or senseless) to
develop totally automatical tools, our purpose in this book was to present
as data-driven methods as possible, and to emphasize the transparency and
interpretability of the results.

9. Consolidating and using discovered knowledge: At the evaluation stage in the
project you have built a model (or models) that appears to have high quality
from a data analysis perspective. Before proceeding to final deployment of the
model, it is important to more thoroughly evaluate the model and review the
steps executed to construct the model to be certain it properly achieves the
business objectives. A key objective is to determine if there is some important
business issue that has not been sufficiently considered. At the end of this
phase, a decision on the use of the data mining results should be reached.

Creation of the model is generally not the end of the project. Even if
the purpose of the model is to increase knowledge of the data, the knowledge
gained will need to be organized and presented in a way that the customer
can use it. It often involves applying “live” models within an organization’s
decision making processes, for example in real-time personalization of Web
pages or repeated scoring of marketing databases. However, depending on the
requirements, the deployment phase can be as simple as generating a report
or as complex as implementing a repeatable data mining process across the

xiv Preface

enterprise. In many cases it is the customer, not the data analyst, who carries
out the deployment steps. However, even if the analyst will not carry out the
deployment effort it is important for the customer to understand up front
what actions need to be carried out in order to actually make use of the
created models.

model inputs

start

model architecture

(dynamics representation)

(model order)

model structure

model parameters

model validation

OK: accept

not OK: revise

0 1

0 1
u
se

o
f

p
rio

r
k
n
o
w

led
g
e

u
se

o
f

ex
p
erim

en
ts

u
ser

in
teractio

n
o
r

au
to

m
atic

alg
o
rith

m

Figure 2: Steps of the knowledge discovery process.

Cross Industry Standard Process for Data Mining (www.crisp-dm.org) contains
(roughly) these steps of the KDD process. However, the problems to be solved and
their solution methods in KDD can be very similar to those occurred in system
identification. The definition of system identification is the process of modelling
from experimental data by Ljung [179]. The main steps of the system identification
process are summarized well by Petrick and Wigdorowitz [216]:

1. Design an experiment to obtain the physical process input/output experi-
mental data sets pertinent to the model application.

2. Examine the measured data. Remove trends and outliers. Apply filtering to
remove measurement and process noise.

3. Construct a set of candidate models based on information from the experi-
mental data sets. This step is the model structure identification.

4. Select a particular model from the set of candidate models in step 3 and
estimate the model parameter values using the experimental data sets.

Preface xv

5. Evaluate how good the model is, using an objective function. If the model is
not satisfactory then repeat step 4 until all the candidate models have been
evaluated.

6. If a satisfactory model is still not obtained in step 5 then repeat the procedure
either from step 1 or step 3, depending on the problem.

It can be seen also in Figure 2 from [204] that the system identification steps
above may roughly cover the KDD phases. (The parentheses indicate steps that are
necessary only when dealing with dynamic systems.) These steps may be complex
and several other problem have to be solved during one single phase. Consider,
e.g., the main aspects influencing the choice of a model structure:

• What type of model is needed, nonlinear or linear, static or dynamic, dis-
tributed or lamped?

• How large must the model set be? This question includes the issue of expected
model orders and types of nonlinearities.

• How must the model be parameterized? This involves selecting a criterion to
enable measuring the closeness of the model dynamic behavior to the physical
process dynamic behavior as model parameters are varied.

To be successful the entire modelling process should be given as much infor-
mation about the system as is practical. The utilization of prior knowledge and
physical insight about the system are very important, but in nonlinear black-box
situation no physical insight is available, we have ‘only’ observed inputs and out-
puts from the system.

When we attempt to solve real-world problems, like extracting knowledge from
large amount of data, we realize that there are typically ill-defined systems to
analyze, difficult to model and with large-scale solution spaces. In these cases,
precise models are impractical, too expensive, or non-existent. Furthermore, the
relevant available information is usually in the form of empirical prior knowledge
and input-output data representing instances of the system’s behavior. Therefore,
we need an approximate reasoning systems capable of handling such imperfect in-
formation. computational intelligence (CI) and soft computing (SC) are recently
coined terms describing the use of many emerging computing disciplines [2, 3, 13].
It has to be mentioned that KDD has evolved from the intersection of research
fields such as machine learning, pattern recognition, databases, statistics, artificial
intelligence, and more recently it gets new inspiration from computational intelli-
gence. According to Zadeh (1994): “. . . in contrast to traditional, hard computing,
soft computing is tolerant of imprecision, uncertainty, and partial truth.” In this
context Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural Networks (NNs),
and Genetic Algorithms (GAs) are considered as main components of CI. Each of
these technologies provide us with complementary reasoning and searching meth-
ods to solve complex, real-world problems. What is important to note is that soft

xvi Preface

computing is not a melange. Rather, it is a partnership in which each of the part-
ners contributes a distinct methodology for addressing problems in its domain. In
this perspective, the principal constituent methodologies in CI are complementary
rather than competitive.

Because of the different data sources and user needs the purpose of data mining
and computational intelligence methods, may be varied in a range field. The pur-
pose of this book is not to overview all of them, many useful and detailed works
have been written related to that. This book aims at presenting new methods
rather than existing classical ones, while proving the variety of data mining tools
and practical usefulness.

The aim of the book is to illustrate how effective data mining algorithms can
be generated with the incorporation of fuzzy logic into classical cluster analysis
models, and how these algorithms can be used not only for detecting useful knowl-
edge from data by building transparent and accurate regression and classification
models, but also for the identification of complex nonlinear dynamical systems.
According to that, the new results presented in this book cover a wide range of
topics, but they are similar in the applied method: fuzzy clustering algorithms
were used for all of them. Clustering within data mining is such a huge topic that
the whole overview exceeds the borders of this book as well. Instead of this, our
aim was to enable the reader to take a tour in the field of data mining, while
proving the flexibility and usefulness of (fuzzy) clustering methods. According to
that, students and unprofessionals interested in this topic can also use this book
mainly because of the Introduction and the overviews at the beginning of each
chapter. However, this book is mainly written for electrical, process and chemical
engineers who are interested in new results in clustering.

Organization

This book is organized as follows. The book is divided into six chapters. In Chapter
1, a deep introduction is given about clustering, emphasizing the methods and al-
gorithms that are used in the remainder of the book. For the sake of completeness,
a brief overview about other methods is also presented. This chapter gives a de-
tailed description about fuzzy clustering with examples to illustrate the difference
between them.

Chapter 2 is in direct connection with clustering: visualization of clustering re-
sults is dealt with. The presented methods enable the user to see the n-dimensional
clusters, therefore to validate the results. The remainder chapters are in connection
with different data mining fields, and the common is that the presented methods
utilize the results of clustering.

Chapter 3 deals with fuzzy model identification and presents methods to solve
them. Additional familiarity in regression and modelling is helpful but not required
because there will be an overview about the basics of fuzzy modelling in the
introduction.

Preface xvii

Chapter 4 deals with identification of dynamical systems. Methods are pre-
sented with their help multiple input – multiple output systems can be modeled,
a priori information can be built in the model to increase the flexibility and ro-
bustness, and the order of input-output models can be determined.

In Chapter 5, methods are presented that are able to use the label of data,
therefore the basically unsupervised clustering will be able to solve classification
problems. By the fuzzy models as well as classification methods transparency and
interpretability are important points of view.

In Chapter 6, a method related to time-series analysis is given. The presented
method is able to discover homogeneous segments in multivariate time-series,
where the bounds of the segments are given by the change in the relationship
between the variables.

Features

The book is abundantly illustrated by

• Figures (120);

• References (302) which give a good overview of the current state of fuzzy
clustering and data mining topics concerned in this book;

• Examples (39) which contain simple synthetic data sets and also real-life case
studies.

During writing this book, the authors developed a toolbox for MATLAB�

called Clustering and Data Analysis Toolbox that can be downloaded from the File
Exchange Web site of MathWorks. It can be used easily also by (post)graduate stu-
dents and for educational purposes as well. This toolbox does not contain all of the
programs used in this book, but most of them are available with the related pub-
lications (papers and transparencies) at the Web site: www.fmt.vein.hu/softcomp.

Acknowledgements

Many people have aided the production of this project and the authors are greatly
indebted to all. These are several individuals and organizations whose support
demands special mention and they are listed in the following.

The authors are grateful to the Process Engineering Department at the Uni-
versity of Veszprem, Hungary, where they have worked during the past years. In
particular, we are indebted to Prof. Ferenc Szeifert, the former Head of the De-
partment, for providing us the intellectual freedom and a stimulating and friendly
working environment.

Balazs Feil is extremely grateful to his parents, sister and brother for their
continuous financial, but most of all, mental and intellectual support. He is also

xviii Preface

indebted to all of his roommates during the past years he could (almost) always
share his problems with.

Parts of this book are based on papers co-authored by Dr. Peter Arva, Prof.
Robert Babuska, Sandor Migaly, Dr. Sandor Nemeth, Peter Ferenc Pach, Dr. Hans
Roubos, and Prof. Ferenc Szeifert. We would like to thank them for their help and
interesting discussions.

The financial support of the Hungarian Ministry of Culture and Education
(FKFP-0073/2001) and Hungarian Research Founds (T049534) and the Janos
Bolyai Research Fellowship of the Hungarian Academy of Sciences is gratefully
acknowledged.

Chapter 1

Classical Fuzzy Cluster Analysis

1.1 Motivation

The goal of clustering is to determine the intrinsic grouping in a set of unlabeled
data. Data can reveal clusters of different geometrical shapes, sizes and densities as
demonstrated in Figure 1.1. Clusters can be spherical (a), elongated or “linear” (b),
and also hollow (c) and (d). Their prototypes can be points (a), lines (b), spheres
(c) or ellipses (d) or their higher-dimensional analogs. Clusters (b) to (d) can be
characterized as linear and nonlinear subspaces of the data space (R2 in this case).
Algorithms that can detect subspaces of the data space are of particular interest
for identification. The performance of most clustering algorithms is influenced not
only by the geometrical shapes and densities of the individual clusters but also
by the spatial relations and distances among the clusters. Clusters can be well
separated, continuously connected to each other, or overlapping each other. The
separation of clusters is influenced by the scaling and normalization of the data
(see Example 1.1, Example 1.2 and Example 1.3).

The goal of this section is to survey the core concepts and techniques in the
large subset of cluster analysis, and to give detailed description about the fuzzy
clustering methods applied in the remainder sections of this book.

Typical pattern clustering activity involves the following steps [128]:

1. Pattern representation (optionally including feature extraction and/or se-
lection) (Section 1.2)

Pattern representation refers to the number of classes, the number of available
patterns, and the number, type, and scale of the features available to the
clustering algorithm. Some of this information may not be controllable by the
practitioner. Feature selection is the process of identifying the most effective
subset of the original features to use in clustering. Feature extraction is the
use of one or more transformations of the input features to produce new

2 Chapter 1. Classical Fuzzy Cluster Analysis

Figure 1.1: Clusters of different shapes in R
2.

salient features. Either or both of these techniques can be used to obtain an
appropriate set of features to use in clustering.

2. Definition of a pattern proximity measure appropriate to the data domain
(Section 1.3)

Dealing with clustering methods like in this book, ‘What are clusters?’ can be
the most important question. Various definitions of a cluster can be formu-
lated, depending on the objective of clustering. Generally, one may accept
the view that a cluster is a group of objects that are more similar to one
another than to members of other clusters. The term “similarity” should be
understood as mathematical similarity, measured in some well-defined sense.
In metric spaces, similarity is often defined by means of a distance norm. Dis-
tance can be measured among the data vectors themselves, or as a distance
from a data vector to some prototypical object of the cluster. The proto-
types are usually not known beforehand, and are sought by the clustering
algorithms simultaneously with the partitioning of the data. The prototypes
may be vectors of the same dimension as the data objects, but they can also
be defined as “higher-level” geometrical objects, such as linear or nonlinear
subspaces or functions. A variety of distance measures are in use in the various
communities [21, 70, 128]. A simple distance measure like Euclidean distance
can often be used to reflect dissimilarity between two patterns, whereas other
similarity measures can be used to characterize the conceptual similarity be-
tween patterns [192] (see Section 1.3 for more details).

3. Clustering or grouping (Section 1.4)

The grouping step can be performed in a number of ways. The output clus-
tering (or clusterings) can be hard (a partition of the data into groups) or
fuzzy (where each pattern has a variable degree of membership in each of

1.1. Motivation 3

the clusters). Hierarchical clustering algorithms produce a nested series of
partitions based on a criterion for merging or splitting clusters based on sim-
ilarity. Partitional clustering algorithms identify the partition that optimizes
(usually locally) a clustering criterion. Additional techniques for the group-
ing operation include probabilistic [52] and graph-theoretic [299] clustering
methods (see also Section 1.4).

4. Data abstraction (if needed)

Data abstraction is the process of extracting a simple and compact repre-
sentation of a data set. Here, simplicity is either from the perspective of
automatic analysis (so that a machine can perform further processing effi-
ciently) or it is human-oriented (so that the representation obtained is easy
to comprehend and intuitively appealing). In the clustering context, a typical
data abstraction is a compact description of each cluster, usually in terms
of cluster prototypes or representative patterns such as the centroid [70]. A
low-dimensional graphical representation of the clusters could also be very
informative, because one can cluster by eye and qualitatively validate con-
clusions drawn from clustering algorithms. For more details see Chapter 2.

5. Assessment of output (if needed) (Section 1.7)

How is the output of a clustering algorithm evaluated? What characterizes a
‘good’ clustering result and a ‘poor’ one? All clustering algorithms will, when
presented with data, produce clusters – regardless of whether the data contain
clusters or not. If the data does contain clusters, some clustering algorithms
may obtain ‘better’ clusters than others. The assessment of a clustering pro-
cedure’s output, then, has several facets. One is actually an assessment of
the data domain rather than the clustering algorithm itself – data which do
not contain clusters should not be processed by a clustering algorithm. The
study of cluster tendency, wherein the input data are examined to see if there
is any merit to a cluster analysis prior to one being performed, is a relatively
inactive research area. The interested reader is referred to [63] and [76] for
more information.

The goal of clustering is to determine the intrinsic grouping in a set
of unlabeled data. But how to decide what constitutes a good clustering?
It can be shown that there is no absolute ‘best’ criterion which would be
independent of the final aim of the clustering. Consequently, it is the user
which must supply this criterion, in such a way that the result of the cluster-
ing will suit their needs. In spite of that, a ‘good’ clustering algorithm must
give acceptable results in many kinds of problems besides other requirements.
In practice, the accuracy of a clustering algorithm is usually tested on well-
known labeled data sets. It means that classes are known in the analyzed data
set but certainly they are not used in the clustering. Hence, there is a bench-
mark to qualify the clustering method, and the accuracy can be represented
by numbers (e.g., percentage of misclassified data).

4 Chapter 1. Classical Fuzzy Cluster Analysis

Cluster validity analysis, by contrast, is the assessment of a clustering pro-
cedure’s output. Often this analysis uses a specific criterion of optimality;
however, these criteria are usually arrived at subjectively. Hence, little in the
way of ‘gold standards’ exist in clustering except in well-prescribed subdo-
mains. Validity assessments are objective [77] and are performed to deter-
mine whether the output is meaningful. A clustering structure is valid if it
cannot reasonably have occurred by chance or as an artifact of a clustering
algorithm. When statistical approaches to clustering are used, validation is
accomplished by carefully applying statistical methods and testing hypothe-
ses. There are three types of validation studies. An external assessment of
validity compares the recovered structure to an a priori structure. An inter-
nal examination of validity tries to determine if the structure is intrinsically
appropriate for the data. A relative test compares two structures and mea-
sures their relative merit. Indices used for this comparison are discussed in
detail in [77] and [128], and in Section 1.7.

1.2 Types of Data

The expression ‘data’ has been mentioned several times previously. Being loyal to
the traditional scientific conventionality, this expression needs to be explained.

Data can be ‘relative’ or ‘absolute’. ‘Relative data’ means that their values are
not, but their pairwise distance are known. These distances can be arranged as
a matrix called proximity matrix. It can also be viewed as a weighted graph. See
also Section 1.4.1 where hierarchical clustering is described that uses this proximity
matrix. In this book mainly ‘absolute data’ is considered, so we want to give some
more accurate expressions about this.

The types of absolute data can be arranged in four categories. Let x and x′ be
two values of the same attribute.

1. Nominal type. In this type of data, the only thing that can be said about two
data is, whether they are the same or not: x = x′ or x �= x′.

2. Ordinal type. The values can be arranged in a sequence. If x �= x′, then it is
also decidable that x > x′ or x < x′.

3. Interval scale. If the difference between two data items can be expressed as
a number besides the above-mentioned terms.

4. Ratio scale. This type of data is interval scale but zero value exists as well.
If c = x

x′ , then it can be said that x is c times bigger x′.

In this book, the clustering of ratio scale data is considered. The data are typi-
cally observations of some phenomena. In these cases, not only one but n variables
are measured simultaneously, therefore each observation consists of n measured
variables, grouped into an n-dimensional column vector xk =[x1,k,x2,k,...,xn,k]T ,
xk ∈ R

n. These variables are usually not independent from each other, therefore

1.3. Similarity Measures 5

multivariate data analysis is needed that is able to handle these observations. A
set of N observations is denoted by X = {xk|k = 1, 2, . . . , N}, and is represented
as an N × n matrix:

X =

⎡
⎢⎢⎢⎣

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xN,1 xN,2 · · · xN,n

⎤
⎥⎥⎥⎦ . (1.1)

In pattern recognition terminology, the rows of X are called patterns or objects,
the columns are called features or attributes, and X is called pattern matrix. In
this book, X is often referred to simply as the data matrix . The meaning of the
rows and columns of X with respect to reality depends on the context. In medical
diagnosis, for instance, the rows of X may represent patients, and the columns are
then symptoms, or laboratory measurements for the patients. When clustering
is applied to the modelling and identification of dynamic systems, the rows of
X contain samples of time signals, and the columns are, for instance, physical
variables observed in the system (position, velocity, temperature, etc.).

In system identification, the purpose of clustering is to find relationships be-
tween independent system variables, called the regressors, and future values of
dependent variables, called the regressands. One should, however, realize that the
relations revealed by clustering are just acausal associations among the data vec-
tors, and as such do not yet constitute a prediction model of the given system.
To obtain such a model, additional steps are needed which will be presented in
Section 4.3.

Data can be given in the form of a so-called dissimilarity matrix:

⎡
⎢⎢⎢⎣

0 d(1, 2) d(1, 3) · · · d(1, N)
0 d(2, 3) · · · d(2, N)

0
. . .

...
0

⎤
⎥⎥⎥⎦ (1.2)

where d(i, j) means the measure of dissimilarity (distance) between object xi and
xj . Because d(i, i) = 0, ∀i, zeros can be found in the main diagonal, and that
matrix is symmetric because d(i, j) = d(j, i). There are clustering algorithms that
use that form of data (e.g., hierarchical methods). If data are given in the form
of (1.1), the first step that has to be done is to transform data into dissimilarity
matrix form.

1.3 Similarity Measures

Since similarity is fundamental to the definition of a cluster, a measure of the
similarity between two patterns drawn from the same feature space is essential to

6 Chapter 1. Classical Fuzzy Cluster Analysis

most clustering procedures. Because of the variety of feature types and scales, the
distance measure (or measures) must be chosen carefully. It is most common to
calculate the dissimilarity between two patterns using a distance measure defined
on the feature space. We will focus on the well-known distance measures used for
patterns whose features are all continuous.

The most popular metric for continuous features is the Euclidean distance

d2(xi,xj) =

(
d∑

k=1

(xi,k − xj,k)2

)1/2

= ‖xi − xj‖2, (1.3)

which is a special case (p = 2) of the Minkowski metric

dp(xi,xj) =

(
d∑

k=1

|xi,k − xj,k|p
)1/p

= ‖xi − xj‖p. (1.4)

The Euclidean distance has an intuitive appeal as it is commonly used to evalu-
ate the proximity of objects in two or three-dimensional space. It works well when
a data set has “compact” or “isolated” clusters [186]. The drawback to direct use
of the Minkowski metrics is the tendency of the largest-scaled feature to domi-
nate the others. Solutions to this problem include normalization of the continuous
features (to a common range or variance) or other weighting schemes. Linear cor-
relation among features can also distort distance measures; this distortion can be
alleviated by applying a whitening transformation to the data or by using the
squared Mahalanobis distance

dM (xi,xj) = (xi − xj)F
−1(xi − xj)

T (1.5)

where the patterns xi and xj are assumed to be row vectors, and F is the sample
covariance matrix of the patterns or the known covariance matrix of the pattern
generation process; dM (·, ·) assigns different weights to different features based
on their variances and pairwise linear correlations. Here, it is implicitly assumed
that class conditional densities are unimodal and characterized by multidimen-
sional spread, i.e., that the densities are multivariate Gaussian. The regularized
Mahalanobis distance was used in [186] to extract hyperellipsoidal clusters. Re-
cently, several researchers [78, 123] have used the Hausdorff distance in a point set
matching context.

The norm metric influences the clustering criterion by changing the measure
of dissimilarity. The Euclidean norm induces hyperspherical clusters, i.e., clusters
whose surface of constant membership are hyperspheres. Both the diagonal and the
Mahalanobis norm generate hyperellipsoidal clusters, the difference is that with
the diagonal norm, the axes of the hyperellipsoids are parallel to the coordinate
axes while with the Mahalanobis norm the orientation of the hyperellipsoids is
arbitrary, as shown in Figure 1.2.

1.3. Similarity Measures 7

Figure 1.2: Different distance norms used in fuzzy clustering.

Some clustering algorithms work on a matrix of proximity values instead of
on the original pattern set. It is useful in such situations to precompute all the
N(N − 1)/2 pairwise distance values for the N patterns and store them in a
(symmetric) matrix (see Section 1.2).

Computation of distances between patterns with some or all features being non-
continuous is problematic, since the different types of features are not comparable
and (as an extreme example) the notion of proximity is effectively binary-valued
for nominal-scaled features. Nonetheless, practitioners (especially those in machine
learning, where mixed-type patterns are common) have developed proximity mea-
sures for heterogeneous type patterns. A recent example is [283], which proposes a
combination of a modified Minkowski metric for continuous features and a distance
based on counts (population) for nominal attributes. A variety of other metrics
have been reported in [70] and [124] for computing the similarity between patterns
represented using quantitative as well as qualitative features.

Patterns can also be represented using string or tree structures [155]. Strings
are used in syntactic clustering [90]. Several measures of similarity between strings
are described in [34]. A good summary of similarity measures between trees is given
by Zhang [301]. A comparison of syntactic and statistical approaches for pattern
recognition using several criteria was presented in [259] and the conclusion was
that syntactic methods are inferior in every aspect. Therefore, we do not consider
syntactic methods further.

There are some distance measures reported in the literature [100, 134] that take
into account the effect of surrounding or neighboring points. These surrounding
points are called context in [192]. The similarity between two points xi and xj ,
given this context, is given by

s(xi,xj) = f(xi,xj , E), (1.6)

where E is the context (the set of surrounding points). One metric defined us-
ing context is the mutual neighbor distance (MND), proposed in [100], which is
given by

MND(xi,xj) = NN(xi,xj) + NN(xj ,xi), (1.7)

where NN(xi,xj) is the neighbor number of xj with respect to xi. The MND
is not a metric (it does not satisfy the triangle inequality [301]). In spite of this,

8 Chapter 1. Classical Fuzzy Cluster Analysis

MND has been successfully applied in several clustering applications [99]. This
observation supports the viewpoint that the dissimilarity does not need to be a
metric. Watanabe’s theorem of the ugly duckling [282] states:

“Insofar as we use a finite set of predicates that are capable of distinguishing
any two objects considered, the number of predicates shared by any two such objects
is constant, independent of the choice of objects.”

This implies that it is possible to make any two arbitrary patterns equally
similar by encoding them with a sufficiently large number of features. As a conse-
quence, any two arbitrary patterns are equally similar, unless we use some addi-
tional domain information. For example, in the case of conceptual clustering [192],
the similarity between xi and xj is defined as

s(xi,xj) = f(xi,xj , C, E), (1.8)

where C is a set of pre-defined concepts.

So far, only continuous variables have been dealt with. There are a lot of
similarity measures for binary variables (see, e.g., in [110]), but only continuous
variables are considered in this book because continuous variables occur in system
identification.

1.4 Clustering Techniques

Different approaches to clustering data can be described with the help of the
hierarchy shown in Figure 1.3 (other taxonometric representations of clustering

Clustering

Hierarchical Partitional

Single link Complete link Square error
Graph

theoretic

Graph

theoretic

Mixture

resolving

Mixture

resolving

Mode

seeking

Mode

seeking

Figure 1.3: A taxonomy of clustering approaches.

methodology are possible; ours is based on the discussion in [128]). At the top level,
there is a distinction between hierarchical and partitional approaches (hierarchical
methods produce a nested series of partitions, while partitional methods produce
only one).

1.4. Clustering Techniques 9

1.4.1 Hierarchical Clustering Algorithms

A hierarchical algorithm yields a dendrogram representing the nested grouping of
patterns and similarity levels at which groupings change. The dendrogram can be
broken at different levels to yield different clusterings of the data. An example can
be seen in Figure 1.4. On the left side, the interpattern distances can be seen in

Figure 1.4: Dendrogram building [110].

a form of dissimilarity matrix (1.2). In this initial state every point forms a single
cluster. The first step is to find the most similar two clusters (the nearest two
data points). In this example, there are two pairs with the same distance, choose
one of them arbitrarily (B and E here). Write down the signs of the points, and
connect them according to the figure, where the length of the vertical line is equal
to the half of the distance. In the second step the dissimilarity matrix should be
refreshed because the connected points form a single cluster, and the distances
between this new cluster and the former ones should be computed. These steps
should be iterated until only one cluster remains or the predetermined number of
clusters is reached.

Most hierarchical clustering algorithms are variants of the single-link [250],
complete-link [153], and minimum-variance [141, 198] algorithms. Of these, the
single-link and complete-link algorithms are most popular.

A simple example can be seen in Figure 1.5. On the left side, the small dots
depict the original data. It can be seen that there are two well-separated clusters.
The results of the single-linkage algorithm can be found on the right side. It can

10 Chapter 1. Classical Fuzzy Cluster Analysis

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

11510132 9 31271851920614411168172131282225373827303924293235263436402333

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
e
v
e
l

Figure 1.5: Partitional and hierarchical clustering results.

be determined that distances between data in the right cluster are greater than in
the left one, but the two clusters can be separated well.

These two algorithms differ in the way they characterize the similarity between
a pair of clusters. In the single-link method, the distance between two clusters is
the minimum of the distances between all pairs of patterns drawn from the two
clusters (one pattern from the first cluster, the other from the second). In the
complete-link algorithm, the distance between two clusters is the maximum of
all pairwise distances between patterns in the two clusters. In either case, two
clusters are merged to form a larger cluster based on minimum distance criteria.
The complete-link algorithm produces tightly bound or compact clusters [34]. The
single-link algorithm, by contrast, suffers from a chaining effect [200]. It has a ten-
dency to produce clusters that are straggly or elongated. The clusters obtained by
the complete-link algorithm are more compact than those obtained by the single-
link algorithm. The single-link algorithm is more versatile than the complete-link
algorithm, otherwise. However, from a pragmatic viewpoint, it has been observed
that the complete-link algorithm produces more useful hierarchies in many appli-
cations than the single-link algorithm [128].

1.4.2 Partitional Algorithms

A partitional clustering algorithm obtains a single partition of the data instead of a
clustering structure, such as the dendrogram produced by a hierarchical technique.
The difference of the two mentioned methods can be seen in Figure 1.5. Partitional
methods have advantages in applications involving large data sets for which the
construction of a dendrogram is computationally prohibitive.

Squared Error Algorithms

The most intuitive and frequently used criterion function in partitional clustering
techniques is the squared error criterion, which tends to work well with isolated

1.4. Clustering Techniques 11

and compact clusters. The squared error for a clustering V = {vi|i = 1, . . . , c} of
a pattern set X (containing c clusters) is

J(X;V) =
c∑

i=1

∑

k∈i

‖x(i)
k − vi‖2, (1.9)

where x
(i)
k is the kth pattern belonging to the ith cluster and vi is the centroid of

the ith cluster (see Algorithm 1.4.1).

Algorithm 1.4.1 (Squared Error Clustering Method).

1. Select an initial partition of the patterns with a fixed number of clusters
and cluster centers.

2. Assign each pattern to its closest cluster center and compute the new
cluster centers as the centroids of the clusters. Repeat this step until con-
vergence is achieved, i.e., until the cluster membership is stable.

3. Merge and split clusters based on some heuristic information, optionally
repeating step 2.

The k-means is the simplest and most commonly used algorithm employing a
squared error criterion [190]. It starts with a random initial partition and keeps
reassigning the patterns to clusters based on the similarity between the pattern
and the cluster centers until a convergence criterion is met (e.g., there is no reas-
signment of any pattern from one cluster to another, or the squared error ceases to
decrease significantly after some number of iterations). The k-means algorithm is
popular because it is easy to implement, and its time complexity is O(N), where
N is the number of patterns. A major problem with this algorithm is that it is
sensitive to the selection of the initial partition and may converge to a local mini-
mum of the criterion function value if the initial partition is not properly chosen.
The whole procedure can be found in Algorithm 1.4.2.

Algorithm 1.4.2 (k-Means Clustering).

1. Choose k cluster centers to coincide with k randomly-chosen patterns or
k randomly defined points inside the hypervolume containing the pattern
set.

2. Assign each pattern to the closest cluster center.

3. Recompute the cluster centers using the current cluster memberships.

4. If a convergence criterion is not met, go to step 2. Typical convergence cri-
teria are: no (or minimal) reassignment of patterns to new cluster centers,
or minimal decrease in squared error.

12 Chapter 1. Classical Fuzzy Cluster Analysis

Several variants of the k-means algorithm have been reported in the literature
[21]. Some of them attempt to select a good initial partition so that the algorithm
is more likely to find the global minimum value.

A problem accompanying the use of a partitional algorithm is the choice of
the number of desired output clusters. A seminal paper [76] provides guidance on
this key design decision. The partitional techniques usually produce clusters by
optimizing a criterion function defined either locally (on a subset of the patterns)
or globally (defined over all of the patterns). Combinatorial search of the set of
possible labelings for an optimum value of a criterion is clearly computationally
prohibitive. In practice, therefore, the algorithm is typically run multiple times
with different starting states, and the best configuration obtained from all of the
runs is used as the output clustering.

Another variation is to permit splitting and merging of the resulting clusters.
Typically, a cluster is split when its variance is above a pre-specified threshold,
and two clusters are merged when the distance between their centroids is below
another pre-specified threshold. Using this variant, it is possible to obtain the
optimal partition starting from any arbitrary initial partition, provided proper
threshold values are specified. The well-known ISODATA algorithm employs this
technique of merging and splitting clusters [36].

Another variation of the k-means algorithm involves selecting a different cri-
terion function altogether. The dynamic clustering algorithm (which permits rep-
resentations other than the centroid for each cluster) was proposed in [70, 256]
and describes a dynamic clustering approach obtained by formulating the cluster-
ing problem in the framework of maximum-likelihood estimation. The regularized
Mahalanobis distance was used in [186] to obtain hyperellipsoidal clusters.

The taxonomy shown in Figure 1.3 must be supplemented by a discussion of
cross-cutting issues that may (in principle) affect all of the different approaches
regardless of their placement in the taxonomy.

• Hard vs. fuzzy. A hard clustering algorithm allocates each pattern to a single
cluster during its operation and in its output. A fuzzy clustering method
assigns degrees of membership in several clusters to each input pattern. A
fuzzy clustering can be converted to a hard clustering by assigning each
pattern to the cluster with the largest measure of membership.

• Agglomerative vs. divisive. This aspect relates to algorithmic structure and
operation (mostly in hierarchical clustering, see Section 1.4.1). An agglomer-
ative approach begins with each pattern in a distinct (singleton) cluster, and
successively merges clusters together until a stopping criterion is satisfied.
A divisive method begins with all patterns in a single cluster and performs
splitting until a stopping criterion is met.

• Monothetic vs. polythetic. This aspect relates to the sequential or simultane-
ous use of features in the clustering process. Most algorithms are polythetic;
that is, all features enter into the computation of distances between patterns,

1.4. Clustering Techniques 13

and decisions are based on those distances. A simple monothetic algorithm
reported in [21] considers features sequentially to divide the given collection
of patterns. The major problem with this algorithm is that it generates 2n
clusters where n is the dimensionality of the patterns. For large values of n
(n > 100 is typical in information retrieval applications [233]), the number
of clusters generated by this algorithm is so large that the data set is divided
into uninterestingly small and fragmented clusters.

• Deterministic vs. stochastic. This issue is most relevant to partitional ap-
proaches designed to optimize a squared error function. This optimization
can be accomplished using traditional techniques or through a random search
of the state-space consisting of all possible labelings.

• Incremental vs. non-incremental. This issue arises when the pattern set to be
clustered is large, and constraints on execution time or memory space affect
the architecture of the algorithm. The early history of clustering methodology
does not contain many examples of clustering algorithms designed to work
with large data sets, but the advent of data mining has fostered the devel-
opment of clustering algorithms that minimize the number of scans through
the pattern set, reduce the number of patterns examined during execution,
or reduce the size of data structures used in the algorithm’s operations.

A cogent observation in [128] is that the specification of an algorithm for clus-
tering usually leaves considerable flexibility in implementation. In the following,
we briefly discuss other clustering techniques as well, but a separate section (Sec-
tion 1.5) and deep description are devoted to fuzzy clustering methods which are
the most important in this book. Note that methods described in the next chapters
are based on mixture of models as it is described in the following as well.

Mixture-Resolving and Mode-Seeking Algorithms

The mixture resolving approach to cluster analysis has been addressed in a num-
ber of ways. The underlying assumption is that the patterns to be clustered are
drawn from one of several distributions, and the goal is to identify the parameters
of each and (perhaps) their number. Most of the work in this area has assumed
that the individual components of the mixture density are Gaussian, and in this
case the parameters of the individual Gaussians are to be estimated by the pro-
cedure. Traditional approaches to this problem involve obtaining (iteratively) a
maximum likelihood estimate of the parameter vectors of the component densities
[128]. More recently, the Expectation Maximization (EM) algorithm (a general
purpose maximum likelihood algorithm [69] for missing-data problems) has been
applied to the problem of parameter estimation. A recent book [194] provides an
accessible description of the technique. In the EM framework, the parameters of
the component densities are unknown, as are the mixing parameters, and these are
estimated from the patterns. The EM procedure begins with an initial estimate

14 Chapter 1. Classical Fuzzy Cluster Analysis

of the parameter vector and iteratively rescores the patterns against the mixture
density produced by the parameter vector. The rescored patterns are then used
to update the parameter estimates. In a clustering context, the scores of the pat-
terns (which essentially measure their likelihood of being drawn from particular
components of the mixture) can be viewed as hints at the class of the pattern.
Those patterns, placed (by their scores) in a particular component, would there-
fore be viewed as belonging to the same cluster. Nonparametric techniques for
density-based clustering have also been developed [128]. Inspired by the Parzen
window approach to nonparametric density estimation, the corresponding cluster-
ing procedure searches for bins with large counts in a multidimensional histogram
of the input pattern set. Other approaches include the application of another par-
titional or hierarchical clustering algorithm using a distance measure based on a
nonparametric density estimate.

Nearest Neighbor Clustering

Since proximity plays a key role in our intuitive notion of a cluster, nearest neigh-
bor distances can serve as the basis of clustering procedures. An iterative procedure
was proposed in [181]; it assigns each unlabeled pattern to the cluster of its nearest
labeled neighbor pattern, provided the distance to that labeled neighbor is below
a threshold. The process continues until all patterns are labeled or no additional
labelings occur. The mutual neighborhood value (described earlier in the context
of distance computation) can also be used to grow clusters from near neighbors.

Graph-Theoretic Clustering

The best-known graph-theoretic divisive clustering algorithm is based on construc-
tion of the minimal spanning tree (MST) of the data [299], and then deleting the
MST edges with the largest lengths to generate clusters.

The hierarchical approaches are also related to graph-theoretic clustering. Sin-
gle-link clusters are subgraphs of the minimum spanning tree of the data [101]
which are also the connected components [98]. Complete-link clusters are maxi-
mal complete subgraphs, and are related to the node colorability of graphs [33].
The maximal complete subgraph was considered the strictest definition of a clus-
ter in [25, 226]. A graph-oriented approach for non-hierarchical structures and
overlapping clusters is presented in [207]. The Delaunay graph (DG) is obtained
by connecting all the pairs of points that are Voronoi neighbors. The DG con-
tains all the neighborhood information contained in the MST and the relative
neighborhood graph (RNG) [266].

Figure 1.6 depicts the minimal spanning tree obtained from 75 two-dimensional
points distributed into three clusters. The objects belonging to different clusters
are marked with different dot notations. Clustering methods using a minimal span-
ning tree take advantages of the MST. For example building the minimal spanning
tree of a dataset does not need any a priori information about the underlying data.

1.4. Clustering Techniques 15

0 10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

55

60

65

70

Figure 1.6: Example of a minimal spanning tree.

Moreover, as the MST ignores many possible connections between the data pat-
terns, the cost of clustering can be decreased.

Using a minimal spanning tree for clustering was initially proposed by Zahn
[299]. A minimal spanning tree is a weighted connected graph, where the sum of
the weights is minimal. A graph G is a pair (V, E), where V is a finite set of the
elements (samples by clustering), called vertices, and E is a collection of unordered
pairs of V . An element of E, called edge, is ei,j = (vi, vj), where vi, vj ∈ V . In
a weighted graph a weight function w is defined, which function determines a
weight wi,j for each edge ei,j . The complete graph KN on a set of N vertices is

the graph that has all the

(
N
2

)
possible edges. Creating the minimal spanning

tree means that we are searching the G′ = (V, E′), the connected subgraph of G,
where E′ ⊂ E and the cost is minimum. The cost is computed in the following
way: ∑

e∈E′

w(e) (1.10)

where w(e) denotes the weight of the edge e ∈ E. In a graph G, where the number
of the vertices is N , MST has exactly N − 1 edges.

A minimal spanning tree can be efficiently computed in O(N2) time using
either Prim’s [221] or Kruskal’s [162] algorithm. Prim’s algorithm starts with an
arbitrary vertex as the root of a partial tree. In each step of the algorithm the
partial tree grows by iteratively adding an unconnected vertex to it using the lowest
cost edge, until no unconnected vertex remains. Kruskal’s algorithm begins with

16 Chapter 1. Classical Fuzzy Cluster Analysis

the connection of the two nearest objects. In each step the nearest objects placed
in different trees are connected. So the Kruskal’s algorithm iteratively merges two
trees (or a tree with a single object) in the current forest into a new tree. The
algorithm continues until a single tree remains only, connecting all points.

However the use of minimal spanning trees in clustering algorithms also raises
some interesting questions. How can we determine the edges at which the best
cluster separations might be made? For finding the best clusters, when should we
stop our algorithm? These questions cannot be answered in a trivial way. There
are well-known criteria for that purpose but there are new results in this field,
see, e.g., [273] where a synergistic combination of graph-theoretic and partitional
algorithms was presented to avoid some drawbacks of these algorithms.

Criterion-1: The simplest way to delete edges from the minimal spanning tree
is based on the distance between the vertices. By deleting the longest edge in
each iteration step we get a nested sequence of subgraphs. As other hierarchical
methods, this approach also requires a terminating condition. Several ways are
known to stop the algorithms, for example the user can define the number of
clusters, or we can give a threshold value on the length as well.

Similarly to Zahn [299] we suggest a global threshold value δ, which considers
the distribution of the data in the feature space. In [299] this threshold (δ) is based
on the average weight (distances) of the MST:

δ = λ
1

N − 1

∑

e∈E′

w(e) (1.11)

where λ is a user defined parameter.
Criterion-2: Zahn [299] proposed also an idea to detect the hidden separations

in the data. Zahn’s suggestion is based on the distance of the separated subtrees.
He suggested, that an edge is inconsistent if its length is at least f times as long
as the average of the length of nearby edges. The input parameter f must be
adjusted by the user. To determine which edges are ‘nearby’ is another question.
It can be determined by the user, or we can say, that point xi is nearby point
of xj if point xi is connected to the point xj by a path in a minimal spanning
tree containing k or fewer edges. This method has the advantage of determining
clusters which have different distances separating one another. Another use of the
MST based clustering based on this criterion is to find dense clusters embedded
in a sparse set of points. All that has to be done is to remove all edges longer
than some predetermined length in order to extract clusters which are closer than
the specified length to each other. If the length is chosen accordingly, the dense
clusters are extracted from a sparse set of points easily. The drawback of this
method is that the influence of the user is significant at the selection of the f and
k parameters.

Several clustering methods based on linkage approach suffer from some dis-
crepancies. In these cases the clusters are provided by merging or splitting of the
objects or clusters using a distance defined between them. Occurrence of a data

1.5. Fuzzy Clustering 17

chain between two clusters can cause that these methods can not separate these
clusters. This also happens with the basic MST clustering algorithm. To solve
the chaining problem we suggest a new complementary condition for cutting the
minimal spanning tree.

1.5 Fuzzy Clustering

Since clusters can formally be seen as subsets of the data set, one possible classi-
fication of clustering methods can be according to whether the subsets are fuzzy
or crisp (hard). Hard clustering methods are based on classical set theory, and
require that an object either does or does not belong to a cluster. Hard clustering
in a data set X means partitioning the data into a specified number of mutually
exclusive subsets of X. The number of subsets (clusters) is denoted by c. Fuzzy
clustering methods allow objects to belong to several clusters simultaneously, with
different degrees of membership. The data set X is thus partitioned into c fuzzy
subsets. In many real situations, fuzzy clustering is more natural than hard clus-
tering, as objects on the boundaries between several classes are not forced to fully
belong to one of the classes, but rather are assigned membership degrees between
0 and 1 indicating their partial memberships. The discrete nature of hard parti-
tioning also causes analytical and algorithmic intractability of algorithms based
on analytic functionals, since these functionals are not differentiable.

The remainder of this book focuses on fuzzy clustering with objective func-
tion and its applications. First let us define more precisely the concept of fuzzy
partitions.

1.5.1 Fuzzy partition

The objective of clustering is to partition the data set X into c clusters. For the
time being, assume that c is known, based on prior knowledge, for instance (for
more details see Section 1.7). Fuzzy and possibilistic partitions can be seen as a
generalization of hard partition.

A fuzzy partition of the data set X can be represented by a c × N matrix
U = [µi,k], where µi,k denotes the degree of membership that the kth observation
belongs to the cth cluster (1 ≤ k ≤ N , 1 ≤ i ≤ c). Therefore, the ith row of
U contains values of the membership function of the ith fuzzy subset of X. The
matrix U is called the fuzzy partition matrix. Conditions for a fuzzy partition
matrix are given by:

µi,k ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (1.12)
c∑

i=1

µi,k = 1, 1 ≤ k ≤ N, (1.13)

0 <
N∑

k=1

µi,k < N, 1 ≤ i ≤ c. (1.14)

18 Chapter 1. Classical Fuzzy Cluster Analysis

Fuzzy partitioning space Let X = [x1,x2, . . . ,xN] be a finite set and let 2 ≤ c < N
be an integer. The fuzzy partitioning space for X is the set

Mfc =

{
U ∈ R

c×N |µi,k ∈ [0, 1], ∀i, k;

c∑

i=1

µi,k = 1, ∀k; 0 <

N∑

k=1

µi,k < N, ∀i

}
.

(1.15)
(1.13) constrains the sum of each column to 1, and thus the total membership

of each xk in X equals one. The distribution of memberships among the c fuzzy
subsets is not constrained.

1.5.2 The Fuzzy c-Means Functional

A large family of fuzzy clustering algorithms is based on minimization of the fuzzy
c-means objective function formulated as:

J(X; U, V) =
c∑

i=1

N∑

k=1

(µi,k)m‖xk − vi‖2
A (1.16)

where
U = [µi,k] (1.17)

is a fuzzy partition matrix of X,

V = [v1,v2, . . . ,vc], vi ∈ R
n (1.18)

is a matrix of cluster prototypes (centers), which have to be determined,

D2
i,kA = ‖xk − vi‖2

A = (xk − vi)
T A(xk − vi) (1.19)

is a squared inner-product distance norm where A is the distance measure (see
Section 1.3), and

m ∈ 〈1,∞) (1.20)

is a weighting exponent which determines the fuzziness of the resulting clusters.
The measure of dissimilarity in (1.16) is the squared distance between each data
point xk and the cluster prototype vi. This distance is weighted by the power
of the membership degree of that point (µi,k)m. The value of the cost function
(1.16) is a measure of the total weighted within-group squared error incurred by
the representation of the c clusters defined by their prototypes vi. Statistically,
(1.16) can be seen as a measure of the total variance of xk from vi.

1.5.3 Ways for Realizing Fuzzy Clustering

Having constructed the criterion function for clustering, this subsection will study
how to optimize the objective function [286]. The existing ways were mainly classi-
fied into three classes: Neural Networks (NN), Evolutionary Computing (EC) and
Alternative Optimization (AO). We briefly discuss the first two methods in this
subsection, and the last one in the next subsections with more details.

1.5. Fuzzy Clustering 19

• Realization based on NN. The application of neural networks in cluster anal-
ysis stems from the Kohonen’s learning vector quantization (LVQ) [156], Self
Organizing Mapping (SOM) [157] and Grossberg’s adaptive resonance theory
(ART) [59, 105, 106].

Since NNs are of capability in parallel processing, people hope to imple-
ment clustering at high speed with network structure. However, the classical
clustering NN can only implement spherical hard cluster analysis. So, people
made much effort in the integrative research of fuzzy logic and NNs, which
falls into two categories as follows. The first type of studies bases on the fuzzy
competitive learning algorithm, in which the methods proposed by Pal et al
[209], Xu [287] and Zhang [300] respectively are representatives of this type
of clustering NN. These novel fuzzy clustering NNs have several advantages
over the traditional ones. The second type of studies mainly focuses on the
fuzzy logic operations, such as the fuzzy ART and fuzzy Min-Max NN.

• Realization based on EC. EC is a stochastic search strategy with the mecha-
nism of natural selection and group inheritance, which is constructed on the
basis of biological evolution. For its performance of parallel search, it can
obtain the global optima with a high probability. In addition, EC has some
advantages such as it is simple, universal and robust. To achieve clustering
results quickly and correctly, evolutionary computing was introduced to fuzzy
clustering with a series of novel clustering algorithms based on EC (see the
review of Xinbo et al in [286]).

This series of algorithms falls into three groups. The first group is sim-
ulated annealing based approach. Some of them can solve the fuzzy partition
matrix by annealing, the others optimize the clustering prototype gradu-
ally. However, only when the temperature decreases slowly enough can the
simulated annealing converge to the global optima. Hereby, the great CPU
time limits its applications. The second group is the approach based on ge-
netic algorithm and evolutionary strategy, whose studies are focused on such
aspects as solution encoding, construction of fitness function, designing of
genetic operators and choice of operation parameters. The third group, i.e.,
the approach based on Tabu search is only explored and tried by AL-Sultan,
which is very initial and requires further research.

• Realization based on Alternative Optimization. The most popular technique
is Alternative Optimization even today, maybe because of its simplicity [39,
79]. This technique will be presented in the following sections.

1.5.4 The Fuzzy c-Means Algorithm

The minimization of the c-means functional (1.16) represents a nonlinear opti-
mization problem that can be solved by using a variety of available methods,

20 Chapter 1. Classical Fuzzy Cluster Analysis

ranging from grouped coordinate minimization, over simulated annealing to ge-
netic algorithms. The most popular method, however, is a simple Picard iteration
through the first-order conditions for stationary points of (1.16), known as the
fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (1.16) can be found by adjoining
the constraint (1.13) to J by means of Lagrange multipliers:

J(X; U, V, λ) =

c∑

i=1

N∑

k=1

(µi,k)mD2
i,kA +

N∑

k=1

λk

(
c∑

i=1

µi,k − 1

)
, (1.21)

and by setting the gradients of J with respect to U, V and λ to zero. If D2
i,kA >

0, ∀i, k and m > 1, then (U, V) ∈ Mfc × R
n×c may minimize (1.16) only if

µi,k =
1

∑c
j=1 (Di,kA/Dj,kA)

2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (1.22)

and

vi =

N∑
k=1

µm
i,kxk

N∑
k=1

µm
i,k

, 1 ≤ i ≤ c. (1.23)

This solution also satisfies the remaining constraints (1.12) and (1.14). Note that
equation (1.23) gives vi as the weighted mean of the data items that belong to a
cluster, where the weights are the membership degrees. That is why the algorithm
is called “c-means”. One can see that the FCM algorithm is a simple iteration
through (1.22) and (1.23) (see Algorithm 1.5.1).

Example 1.1 (Demonstration for fuzzy c-means). Consider a synthetic and a real
data set in R

2 (see Figure 1.7, Figure 1.8, Figure 1.9 and Figure 1.10). The dots
represent the data points, the ‘o’ markers are the cluster centers. On the left side
the membership values are also shown, on the right side the curves represent values
that are inversely proportional to the distances. The figures shown in the further
examples (Example 1.2 and Example 1.3) have the same structure.

The synthetic data set in Figure 1.7 consist of three well-separated clusters of
different shapes and size. The first cluster has ellipsoidal shape, the another two are
round, but these are different in size. One can see that the FCM algorithm strictly
imposes a circular shape, even though the clusters are rather elongated. Compare
Figure 1.7 with Figure 1.8 it can be seen that in this case the normalization does
not change the results because it has only a little effect on the distribution of data.

In Figure 1.9 a motorcycle data set can be seen: head acceleration of a human
“post mortem test object” was plotted in time [295]. (This data set – among others
– can be found on the webpage of this book www.fmt.vein.hu/softcomp/cluster.)

1.5. Fuzzy Clustering 21

Algorithm 1.5.1 (Fuzzy c-Means).

Given the data set X, choose the number of clusters 1 < c < N , the weighting
exponent m > 1, the termination tolerance ǫ > 0 and the norm-inducing matrix
A. Initialize the partition matrix randomly, such that U(0) ∈ Mfc.

Repeat for l = 1, 2, . . .

Step 1 Compute the cluster prototypes (means):

v
(l)
i =

N∑
k=1

(µ
(l−1)
i,k)mxk

N∑
k=1

(µ
(l−1)
i,k)m

, 1 ≤ i ≤ c. (1.24)

Step 2 Compute the distances:

D2
i,kA = (xk − vi)

T A(xk − vi), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (1.25)

Step 3 Update the partition matrix:

µ
(l)
i,k =

1
∑c

j=1 (Di,kA/Dj,kA)
2/(m−1)

. (1.26)

until ||U(l) − U(l−1)|| < ǫ.

If the data are normalized (i.e., all the features have zero mean and unit
variance), the clustering results will change as it can be seen in Figure 1.10. The
clusters have naturally circular shape but the cluster centers are different: these
are rather located above each other by the original data (also with different ini-
tial states). Consequently the fuzzy c-means algorithm is sensitive to the scaling
(normalization) of data.

�

22 Chapter 1. Classical Fuzzy Cluster Analysis

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

x1

x
2

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

Figure 1.7: The results of the fuzzy c-means algorithm by the synthetic data set.

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.8: The results of the fuzzy c-means algorithm by the synthetic data set
with normalization.

1.5. Fuzzy Clustering 23

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

Time (ms)

A
c
c
e
le

ra
ti
o
n
 (

g
)

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

Figure 1.9: The results of the fuzzy c-means algorithm by the motorcycle data set.

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.10: The results of the fuzzy c-means algorithm by the motorcycle data
set with normalization.

24 Chapter 1. Classical Fuzzy Cluster Analysis

1.5.5 Inner-Product Norms

The shape of the clusters is determined by the choice of the particular A in the
distance measure (1.19). A common choice is A = I, which induces the standard
Euclidean norm:

D2
i,kA = (xk − vi)

T (xk − vi). (1.27)

The norm metric influences the clustering criterion by changing the measure
of dissimilarity. The Euclidean norm induces hyperspherical clusters, i.e., clusters
whose surface of constant membership are hyperspheres. Both the diagonal and the
Mahalanobis norm generate hyperellipsoidal clusters, the difference is that with
the diagonal norm, the axes of the hyperellipsoids are parallel to the coordinate
axes while with the Mahalanobis norm the orientation of the hyperellipsoids is
arbitrary, see also in Figure 1.2.

A can be chosen as an n×n diagonal matrix that accounts for different variances
in the directions of the coordinate axes of X:

AD =

⎡
⎢⎢⎢⎣

(1/σ1)
2 0 . . . 0

0 (1/σ2)
2 . . . 0

...
...

. . .
...

0 0 . . . (1/σn)2

⎤
⎥⎥⎥⎦ . (1.28)

This matrix induces a diagonal norm on R
n. Finally, A can be defined as the

inverse of the n × n sample covariance matrix of X : A = F−1, with

F =
1

N − 1

N∑

k=1

(xk − x)(xk − x)T . (1.29)

Here x denotes the sample mean of the data. In this case, A induces the Maha-
lanobis norm on R

n.
A common limitation of clustering algorithms based on a fixed distance norm

is that such a norm induces a fixed topological structure on R
n and forces the

objective function to prefer clusters of that shape even if they are not present.
Generally, different matrices Ai are required for the different clusters, but there
is no guideline as to how to choose them a priori. The norm-inducing matrix A
can be adapted by using estimates of the data covariance, and can be used to
estimate the statistical dependence of the data in each cluster. The Gustafson–
Kessel algorithm (GK) and the fuzzy maximum likelihood estimation algorithm
(Gath–Geva algorithm (GG)) are based on an adaptive distance measure.

1.5.6 Gustafson–Kessel Algorithm

Gustafson and Kessel extended the standard fuzzy c-means algorithm by employ-
ing an adaptive distance norm, in order to detect clusters of different geometrical

1.5. Fuzzy Clustering 25

shapes in one data set [108]. Each cluster has its own norm-inducing matrix Ai,
which yields the following inner-product norm:

D2
i,kA = (xk − vi)

T Ai(xk − vi), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (1.30)

The matrices Ai are used as optimization variables in the c-means functional,
thus allowing each cluster to adapt the distance norm to the local topological
structure of the data. Let A denote a c-tuple of the norm-inducing matrices:
A = (A1,A2, . . . ,Ac). The objective functional of the GK algorithm is defined by:

J(X;U,V,A) =

c∑

i=1

N∑

k=1

(µi,k)mD2
i,kAi

. (1.31)

For a fixed A, conditions (1.12), (1.13) and (1.14) can be directly applied. However,
the objective function (1.31) cannot be directly minimized with respect to Ai,
since it is linear in Ai. This means that J can be made as small as desired by
simply making Ai less positive definite. To obtain a feasible solution, Ai must
be constrained in some way. The usual way of accomplishing this is to constrain
the determinant of Ai. Allowing the matrix Ai to vary with its determinant fixed
corresponds to optimizing the cluster’s shape while its volume remains constant:

det(Ai) = ρi, ρ > 0, (1.32)

where ρi is fixed for each cluster. Using the Lagrange multiplier method, the
following expression for Ai is obtained:

Ai = [ρi det(Fi)]
1/nF−1

i , (1.33)

where Fi is the fuzzy covariance matrix of the ith cluster defined by:

Fi =

N∑
k=1

(µi,k)m(xk − vi)(xk − vi)
T

N∑
k=1

(µi,k)m

. (1.34)

Note that the substitution of (1.33) and (1.34) into (1.30) gives a generalized
squared Mahalanobis distance norm between xk and the cluster mean vi, where
the covariance is weighted by the membership degrees in U. The formal description
of GK clustering can be found in Algorithm 1.5.2.

Example 1.2 (Demonstration for Gustafson–Kessel algorithm). The GK algorithm
is applied to the data set from Example 1.1. Figure 1.11 shows the clustering results
by the synthetic data set. From these results it can be seen that GK algorithm
cannot reflect the different size of the clusters, however in Figure 1.11 the three

26 Chapter 1. Classical Fuzzy Cluster Analysis

Algorithm 1.5.2 (Gustafson–Kessel Algorithm).

Given the data set X, choose the number of clusters 1 < c < N , the weighting
exponent m > 1, the termination tolerance ǫ > 0 and the norm-inducing matrix
A. Initialize the partition matrix randomly, such that U(0) ∈ Mfc.

Repeat for l = 1, 2, . . .

Step 1 Calculate the cluster centers.

v
(l)
i =

N∑
k=1

(µ
(l−1)
i,k)mxk

N∑
k=1

(µ
(l−1)
i,k)m

, 1 ≤ i ≤ c. (1.35)

Step 2 Compute the cluster covariance matrices.

F
(l)
i =

N∑
k=1

(µ
(l−1)
i,k)m

(
xk − v

(l)
i

)(
xk − v

(l)
i

)T

N∑
k=1

(µ
(l−1)
i,k)m

, 1 ≤ i ≤ c. (1.36)

Step 3 Compute the distances.

D2
i,kAi

(xk,vi) =
(
xk − v

(l)
i

)T [
(ρi det(Fi))

1/nF−1
i

] (
xk − v

(l)
i

)
. (1.37)

Step 4 Update the partition matrix

µ
(l)
i,k =

1
∑c

j=1

(
Di,kAi (xk,vi)/Dj,kAj (xk,vj)

)2/(m−1)
,

1 ≤ i ≤ c, 1 ≤ k ≤ N . (1.38)

until ||U(l) − U(l−1)|| < ǫ.

clusters by the synthetic data set are very different in size. (The normalization has
a little effect as mentioned in Example 1.1, so these results are not presented.)

Figure 1.12 shows that the GK algorithm can adapt the distance norm to the
underlying distribution of the data. The shape of the clusters can be determined
from the eigenstructure of the resulting covariance matrices Fi. The GK algorithm
is not so sensitive to the scaling (normalization) of data as the FCM algorithm,
but the results can be significantly changed by different initial state.

1.5. Fuzzy Clustering 27

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

x1

x
2

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

Figure 1.11: The results of the Gustafson–Kessel algorithm by the synthetic data
set.

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

Figure 1.12: The results of the Gustafson–Kessel algorithm by the motorcycle data
set.

The first two diagrams of Figure 1.12 show the membership values and the
inverse of the distances, respectively obtained by a randomly initialized partition
matrix. This randomly initialized clustering does not give only this result, from
another randomly selected initialization, we can obtain clusters that can be seen
on the second two diagrams of Figure 1.12. If GK algorithm is initialized by the

28 Chapter 1. Classical Fuzzy Cluster Analysis

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.13: The results of the Gustafson–Kessel algorithm by the motorcycle data
set with normalization.

results of FCM with normalized data set, then the results are always consistent
and identical to the results plotted on the second two diagrams of Figure 1.12. The
objective function (1.31) is smaller in this second case.

�

1.5.7 Gath–Geva Clustering Algorithm

The fuzzy maximum likelihood estimates clustering algorithm employs a distance
norm based on the fuzzy maximum likelihood estimates, proposed by Bezdek and
Dunn [40]:

Di,k(xk,vi) =
(2π)(

n
2)
√

det(Fi)

αi
exp

(
1

2
(xk − vi)

T
F−1

i (xk − vi)

)
. (1.39)

Note that, contrary to the GK algorithm, this distance norm involves an expo-
nential term and thus decreases faster than the inner-product norm. Fi denotes
the fuzzy covariance matrix of the ith cluster, similarly to GK algorithm, given
by (1.34). The αi is the prior probability of selecting cluster i, given by:

αi =
1

N

N∑

k=1

µi,k. (1.40)

The membership degrees µi,k are interpreted as the posterior probabilities of se-
lecting the ith cluster given the data point xk. Gath and Geva reported that the
fuzzy maximum likelihood estimates clustering algorithm is able to detect clus-
ters of varying shapes, sizes and densities. This is because the cluster covariance
matrix is used in conjunction with an “exponential” distance, and the clusters
are not constrained in volume. However, this algorithm is less robust in the sense

1.5. Fuzzy Clustering 29

that it needs a good initialization, since due to the exponential distance norm,
it converges to a near local optimum. The minimum of (1.16) is sought by the
alternating optimization (AO) method (Gath–Geva clustering algorithm) given in
Algorithm 1.5.3:

Algorithm 1.5.3 (Gath–Geva Algorithm).

Given a set of data X specify c, choose a weighting exponent m > 1 and a
termination tolerance ǫ > 0. Initialize the partition matrix such that (1.12),
(1.13) and (1.14) holds.

Repeat for l = 1, 2, . . .

Step 1 Calculate the cluster centers: v
(l)
i =

N∑
k=1

(µ
(l−1)
i,k)mxk

N∑
k=1

(µ
(l−1)
i,k)m

, 1 ≤ i ≤ c.

Step 2 Compute the distance measure D2
i,k.

The distance to the prototype is calculated based on the fuzzy covari-
ance matrices of the cluster

F
(l)
i =

N∑
k=1

(µ
(l−1)
i,k)m

(
xk − v

(l)
i

)(
xk − v

(l)
i

)T

N∑
k=1

(µ
(l−1)
i,k)m

, 1 ≤ i ≤ c. (1.41)

The distance function is chosen as

D2
i,k(xk,vi) =

(2π)(
n
2)√det(Fi)

αi
exp

(
1

2

(
xk − v

(l)
i

)T

F−1
i

(
xk − v

(l)
i

))

(1.42)

with the a priori probability αi = 1
N

∑N
k=1 µi,k.

Step 3 Update the partition matrix

µ
(l)
i,k =

1
∑c

j=1 (Di,k(xk,vi)/Dj,k(xk,vj))
2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N .

(1.43)
until ||U(l) − U(l−1)|| < ǫ.

Example 1.3 (Demonstration for Gath–Geva algorithm). The GG algorithm is
applied to the data set from Example 1.1. In Figure 1.14 the effect of the different
cluster size can be seen. Since GK algorithm cannot detect the different cluster
size (see Figure 1.11), GG algorithm can cluster the data perfectly.

30 Chapter 1. Classical Fuzzy Cluster Analysis

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

x1

x
2

0 2 4 6 8

0

1

2

3

4

5

6

7

8

9

Figure 1.14: The results of the Gath–Geva algorithm by the synthetic data set.

Similarly to Example 1.2, the results obtained by two different initializations
are compared. On the left part of Figure 1.15 the membership values and the dis-
tances obtained by random initialization are shown, while on the remaining two
subplots the results of the clustering initialized by fuzzy c-means are shown (i.e.,
the structure of Figure 1.15 is the same as in Figure 1.12). As the difference be-
tween these two plots shows, the GG algorithm is very sensitive to initialization,
and it can adapt the distance norm to the underlying distribution of the data which
is reflected in the different sizes of the clusters.

The motorcycle data set can be considered a function with additional noise.
Therefore the human analyzer finds better the results shown on the second two
diagrams of Figure 1.15. However, the value of the fuzzy objective function (1.16)
is bigger in the second case than in the first case.

�

1.5. Fuzzy Clustering 31

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

10 20 30 40 50

−120

−100

−80

−60

−40

−20

0

20

40

60

Figure 1.15: The results of the Gath–Geva algorithm by the motorcycle data set.

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.16: The results of the Gath–Geva algorithm by the motorcycle data set
with normalization.

32 Chapter 1. Classical Fuzzy Cluster Analysis

1.6 Cluster Analysis of Correlated Data

In practical situations, there is often functional relationship among variables.
Therefore, there are independent (input) and dependent (output) variables. A
sample or observation vector zk contains independent and dependent variables as
well: zk = [xT

k yk]T in case of n input and one output variables. The set of the
available input-output data do not fill the space but they are close to a surface
defined by the relationship among them called regression surface. (Data may con-
tain noise, that is why they do not form an ideal surface.) When the available
input-output data set is clustered and the appropriate number of regressors are
used, the clusters will be ‘flat’ and locally approximate the regression surface as it
is depicted in Figure 1.17 in case of one input and one output variable. In this case
the clusters can be approximately regarded as local linearizations of the modeled
system, i.e., local (linear) models of the relationship within a particular region.

Figure 1.17: Example for clusters approximating the regression surface.

In other words, the clusters can be approximately regarded as local linear
subspaces. This phenomenon is reflected by the smallest eigenvalues λi,n+1 of the
cluster covariance matrices Fi that are typically in orders of magnitude smaller
than the remaining eigenvalues [26] (see Figure 1.18).

u
1

u
2

Figure 1.18: Eigenvalues of clusters obtained by GG clustering.

1.6. Cluster Analysis of Correlated Data 33

Based on the assumption that the clusters somehow represent the local linear
approximation of the system, two methods can be presented for the estimation of
the parameters of the local linear models.

1. Ordinary least-squares estimation

The ordinary weighted least-squares method can be applied to estimate the
parameters of the local linear models θi separately by minimizing the follow-
ing criteria:

min
θi

(y − Xeθi)
T

Φi (y − Xeθi) (1.44)

where Xe = [X1] is the regressor matrix extended by a unitary column and
Φi is a matrix having the membership degrees on its main diagonal:

Φi =

⎡
⎢⎢⎢⎣

µi,1 0 · · · 0
0 µi,2 · · · 0
...

...
. . .

...
0 0 · · · µi,N

⎤
⎥⎥⎥⎦ . (1.45)

The weighted least-squares estimate of the consequent parameters is given
by

θi =
(
XT

e ΦiXe

)−1
XT

e Φiy. (1.46)

Consider the case when there is one output variable. Similarly to the
observation vector zk = [xT

k yk]T , the prototype vector is partitioned as vi =[
(vx

i)
T

vy
i

]
into a vector vx

i corresponding to the regressor x, and a scalar

vy
i corresponding to the output y. In this case, the output can be written in

the following form:
y = aT

i x + bi (1.47)

where the parameters of the ith local linear model are θi = [aT
i bi]. When µi,k

is obtained by the Gath–Geva clustering algorithm, the covariance matrix can
directly be used to obtain the estimate instead of (1.46):

ai = (Fxx)
−1

Fxy (1.48)

bi = vy
i − aT

i vx
i ,

where Fxx
i is obtained by partitioning the covariance matrix Fi as follows

Fi =

[
Fxx

i F
xy
i

F
yx
i F

yy
i

]
(1.49)

where

• Fxx
i is the n × n submatrix containing the first n rows and columns

of Fi,

34 Chapter 1. Classical Fuzzy Cluster Analysis

• F
xy
i is an n × 1 column vector containing the first n elements of last

column of Fi,

• F
yx
i is an 1 × n row vector containing the first n elements of the last

row of Fi, and

• F
yy
i is the last element in the last row of Fi.

This follows directly from the properties of least-squares estimation [74].
This method can easily be extended to more than one output variables.

2. Total least-squares estimation

The eigenvector corresponding to the smallest eigenvalue, ui
n+1, determines

the normal vector to the hyperplane spanned by the remaining eigenvectors
of that cluster (see Figure 1.18)

(ui
n+1)

T (zk − vi) = 0. (1.50)

The smallest eigenvector is partitioned in the same way as the observation

and prototype vectors, ui
n+1 =

[(
u

i,x
n+1

)T

ui,y
n+1

]T

. By using this partitioned

vectors (1.50) can be written as

[(
u

i,x
n+1

)T

ui,y
n+1

](
[xT

k yk]T −
[
(vx

i)T vy
i

]T
)

= 0 (1.51)

from which the parameters of the hyperplane defined by the cluster can be
obtained:

yk =
−1

ui,y
n+1

(
u

i,x
n+1

)T

︸ ︷︷ ︸
aT

i

xk +
1

ui,y
n+1

(
ui

n+1

)T
vi

︸ ︷︷ ︸
bi

. (1.52)

Comparing to ordinary least-squares estimation, the TLS algorithm can
be powerful when there are errors in the input variables. However, the TLS
algorithm does not minimize the mean-square prediction error of the model.
Furthermore, if the input variables of the model are locally greatly correlated
the smallest eigenvector then does not define a hyperplane related to the
regression problem, but it reflects the dependency of the input variables.

This section showed that hyperellipsoidal clusters can be effectively used to
represent correlated data, and local linear models can be easily extracted from the
parameters of these clusters. Of course, different cluster shapes can be obtained
with different norms as suggested in the GK or GG algorithm, or with different
kinds of prototypes, e.g., linear varieties (FCV), where the clusters are linear
subspaces of the feature space. An r-dimensional linear variety is defined by the

1.6. Cluster Analysis of Correlated Data 35

vector vi and the directions si,j , j = 1, . . . , r. In this case, the distance between
the data xk and the ith cluster is:

D2
i,k = ‖xk − vi‖2 −

r∑

j=1

(
(xk − vi)

T si,j

)2
. (1.53)

In Chapter 6 a similar distance norm based on Principal Component Analysis will
be introduced and applied for the segmentation of multivariate time-series. In the
following, a fuzzy clustering technique is introduced that is able to identify local
models directly during the partitioning of the data.

Fuzzy c-Regression Models

Fuzzy c-regression models yield simultaneous estimates of parameters of c regres-
sion models together with a fuzzy c-partitioning of the data. The regression models
take the following general form

yk = fi(xk, θi) (1.54)

where xk = [xk,1, . . . , xk,n] denotes the kth data sample and the functions fi are
parameterized by θi ∈ R

pi . The membership degree µi,k ∈ U is interpreted as a
weight representing the extent to which the value predicted by the model fi(xk, θi)
matches yk. This prediction error is defined by:

Ei,k =
(
yk − fi(xk; θi)

)2
, (1.55)

but other measures can be applied as well, provided they fulfill the minimizer
property stated by Hathaway and Bezdek [113]. The family of objective functions
for fuzzy c-regression models is defined by

Em(U, {θi}) =

c∑

i=1

N∑

k=1

(µi,k)mEi,k(θi) , (1.56)

where m ∈ 〈1,∞) denotes a weighting exponent which determines the fuzziness
of the resulting clusters. One possible approach to the minimization of the objec-
tive function (1.56) is the group coordinate minimization method that results in
algorithm 1.6.1.

A specific situation arises when the regression functions fi are linear in the
parameters θi, fi(xk; θi) = xT

i,kθi, where xi,k is a known arbitrary function of
xk. In this case, the parameters can be obtained as a solution of a set of weighted
least-squares problem where the membership degrees of the fuzzy partition matrix
U serve as the weights.

36 Chapter 1. Classical Fuzzy Cluster Analysis

Algorithm 1.6.1 (Fuzzy c-Regression Models).

• Initialization Given a set of data Z = {(x1, y1), . . . , (xN , yN)} specify c,
the structure of the regression models (1.55) and the error measure (1.56).
Choose a weighting exponent m > 1 and a termination tolerance ǫ > 0.
Initialize the partition matrix randomly.

• Repeat for l = 1, 2, . . .

Step 1 Calculate values for the model parameters θi that minimize the
cost function Em(U, {θi}).

Step 2 Update the partition matrix

µ
(l)
i,k =

1∑c
j=1(Ei,k/Ej,k)2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (1.57)

until ||U(l) − U(l−1)|| < ǫ.

The N data pairs and the membership degrees are arranged in the following
matrices.

Xi =

⎡
⎢⎢⎢⎣

xT
i,1

xT
i,2
...

xT
i,N

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1

y2

...
yN

⎤
⎥⎥⎥⎦ , Φi =

⎡
⎢⎢⎢⎣

µi,1 0 · · · 0
0 µi,2 · · · 0
...

...
. . .

...
0 0 · · · µi,N

⎤
⎥⎥⎥⎦ . (1.58)

The optimal parameters θi are then computed by:

θi = [XT ΦiX]−1XT Φiy . (1.59)

In the original paper that has introduced the fuzzy c-regression models [113], six
issues were discussed for possible future research. Two of them were the following:

• Determining the number of clusters (the number of regression models).

• Avoiding local trap states.

The next section gives solutions to these problems by incorporating prior knowl-
edge into the clustering procedure presented in this section.

Constrained Prototype based FCRM

This section deals with prototypes linear in the parameters (see also [1, 7]). There-
fore, as it was shown, the parameters can be estimated by linear least-squares tech-
niques. When linear equality and inequality constraints are defined on these pro-
totypes, quadratic programming (QP) has to be used instead of the least-squares

1.6. Cluster Analysis of Correlated Data 37

method. This optimization problem still can be solved effectively compared to
other constrained nonlinear optimization algorithms.

The parameter constraints can be grouped into three categories:

• Local constrains are valid only for the parameters of a regression model,
Λiθi ≤ ωi.

• Global constrains are related to all of the regression models, Λglθi ≤ ωgl,
i = 1, . . . , c.

• Relative constrains define the relative magnitude of the parameters of two
or more regression models,

Λrel,i,j

[
θi

θj

]
≤ ωrel,i,j .

An example for these types of constrains are illustrated in Figure 1.19.

θ i,2

Global constraints

Local constraints

[θ4,1 ,θ4,2]

θ i,1

[θ1,1 ,θ1,2]

[θ2,1 ,θ2,2]

[θ3,1 ,θ3,2]

θ1,2 < θ4,2

Relative
constraints

Figure 1.19: Example for local, global and relative constraints.

In order to handle relative constraints, the set of weighted optimization prob-
lems has to be solved simultaneously. Hence, the constrained optimization problem
is formulated as follows:

min
θ

{
1

2
θT Hθ + cT θ

}
(1.60)

38 Chapter 1. Classical Fuzzy Cluster Analysis

with H = 2XT ΦX, c = −2XT Φy′, where

y′ =

⎡
⎢⎢⎢⎣

y

y
...
y

⎤
⎥⎥⎥⎦ , θ =

⎡
⎢⎢⎢⎣

θ1

θ2

...
θc

⎤
⎥⎥⎥⎦ , (1.61)

X =

⎡
⎢⎢⎢⎣

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xc

⎤
⎥⎥⎥⎦ , Φ =

⎡
⎢⎢⎢⎣

Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...
0 0 · · · Φc

⎤
⎥⎥⎥⎦ . (1.62)

and the constraints on θ:
Λθ ≤ ω (1.63)

with

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λc

Λgl 0 · · · 0
0 Λgl · · · 0
...

...
. . .

...
0 0 · · · Λgl

{Λrel}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

ω2

...
ωc

ωgl

ωgl

...
ωgl

{ωrel}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.64)

Example 1.4 (Identification of a Hammerstein system using constrained prototype
based fuzzy c-regression model). In this example, the presented method is used
to approximate a Hammerstein system that consists of a series connection of a
memoryless nonlinearity, f , and linear dynamics, G, as shown in Figure 1.20,
where v represents the transformed input variable. For more details about dynamic
systems and their modelling techniques, see Chapter 3, about Hammerstein and
Wiener models, see Section 4.1.

Figure 1.20: A series combination of a static nonlinearity and a linear dynamic
system.

For transparent presentation, the Hammerstein system to be identified consists
of a first-order linear part, y(k + 1) = 0.9y(k) + 0.1v(k), and a static nonlinearity

1.6. Cluster Analysis of Correlated Data 39

represented by a polynomial, v(k) = u(k)2. The identification data consists of 500
input-output data. A FCRM with three regression models were identified, c = 3.
The method has been included in the Fuzzy modelling and Identification Toolbox
for MATLAB� and can be downloaded from the website of the book.

As can be seen from Figure 1.21, the fuzzy clusters obtained by standard FCRM
do not result in convex membership functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(k)

v
s
 a

n
d
 µ

i

(a) Unconstrained (standard) case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u(k)

v
s
 a

n
d
 µ

i

(b) FCRM with constrained prototypes.

Figure 1.21: Projected membership degrees to the u(k) domain obtained by fuzzy
c-regression.

Two types of prior knowledge were used to define constraints on the cluster
prototypes. Both of them resulted in relative constraints.

The first type of prior knowledge is that the process to be identified is a Ham-
merstein type. This means that the parameter at y(k), corresponding to the time
constant of the system, is constant in all the rules. In the considered fuzzy model
structure, each rule consists of a model. The output of a particular model is a lin-
ear combination of previous output(s) and input(s), and the output of the system
is the weighted sum of the model outputs. The weight of the previous output and
input with one sample time in the ith model is ai,1 and bi,1, respectively, and the
bias is ci (for more information see Section 3.2). With this notation, the state-
ment above can be written as ai,1 = aj,1 , ∀i, j = 1, . . . , c [30]. In the unconstrained
FCRM case, these poles of the local dynamic models are almost identical to each
other and to the pole of the original system (see, Table 1.1), so this constraint has
only little contribution to the resulted model. It can be seen in Table 1.1, that two
of the regression models (1 and 3) have almost the same parameters. Even, the
steady-state behavior of the resulted local LTI models do not relate to the quadratic
nonlinearity of the system (see, Figure 1.21). This is because the clustering algo-
rithm found a local minimum. To avoid these local minima, the second type of
prior knowledge is that the regression models have to be different. As these models

40 Chapter 1. Classical Fuzzy Cluster Analysis

are forced to be different, the operating regions of these models will be also differ-
ent, hence the fuzzy partition of the operating space will be more distinguishable.
By using constraints, the resulted models have the same ai,1 parameters that are
identical to the parameters of the original system that generated the data, 0.9,
(see, Table 1.1). Moreover, because of the gains of the local models are forced to
be different from each other, the operating regions of the LTI models are clearly
separated, Figure 1.21.

Table 1.1: Parameters of the local models obtained by different identification
method.

Unconstrained method
1 2 3

ai,1 0.9005 0.9020 0.9043
bi,1 0.0962 0.1117 0.0864
ci -0.0213 -0.0177 -0.0068

Constrained method
1 2 3

ai,1 0.9000 0.9000 0.9000
bi,1 0.0268 0.0816 0.1632
ci -0.0011 -0.0156 -0.0652

�

1.7 Validity Measures

Cluster validity refers to the problem whether a given fuzzy partition fits to the
data at all. The clustering algorithm always tries to find the best fit for a fixed
number of clusters and the parameterized cluster shapes. However this does not
mean that even the best fit is meaningful at all. Either the number of clusters
might be wrong or the cluster shapes might not correspond to the groups in the
data, if the data can be grouped in a meaningful way at all. Two main approaches
to determining the appropriate number of clusters in data can be distinguished:

• Starting with a sufficiently large number of clusters, and successively reducing
this number by merging clusters that are similar (compatible) with respect to
some predefined criteria. This approach is called compatible cluster merging.

• Clustering data for different values of c, and using validity measures to assess
the goodness of the obtained partitions. This can be done in two ways:

– The first approach is to define a validity function which evaluates a
complete partition. An upper bound for the number of clusters must
be estimated (cmax), and the algorithms have to be run with each

1.7. Validity Measures 41

c ∈ {2, 3, . . . , cmax}. For each partition, the validity function provides a
value such that the results of the analysis can be compared indirectly.

– The second approach consists of the definition of a validity function that
evaluates individual clusters of a cluster partition. Again, cmax has to
be estimated and the cluster analysis has to be carried out for cmax. The
resulting clusters are compared to each other on the basis of the validity
function. Similar clusters are collected in one cluster, very bad clusters
are eliminated, so the number of clusters is reduced. The procedure can
be repeated until there are bad clusters.

Different scalar validity measures have been proposed in the literature, none of
them is perfect by itself, therefore it is advisable to use several indices simultane-
ously. The most important ones are described below:

1. Partition Coefficient (PC): measures the amount of “overlapping” between
clusters. It is defined by Bezdek [39] as follows:

PC(c) =
1

N

c∑

i=1

N∑

k=1

(µi,k)2 (1.65)

where µi,k is the membership of data point k in cluster i. The disadvantage
of PC is lack of direct connection to some property of the data themselves.
The optimal number of clusters is at the maximum value.

2. Classification Entropy (CE): it measures the fuzzyness of the cluster partition
only, which is similar to the Partition Coefficient.

CE(c) = − 1

N

c∑

i=1

N∑

k=1

µi,k ln(µi,k) . (1.66)

3. Partition Index (SC): is the ratio of the sum of compactness and separation
of the clusters. It is a sum of individual cluster validity measures normalized
through division by the fuzzy cardinality of each cluster [38].

SC(c) =
c∑

i=1

∑N
k=1(µi,k)m||xk − vi||2∑N

k=1 µi,k

∑c
j=1 ||vj − vi||2

. (1.67)

SC is useful when comparing different partitions having equal number of
clusters. A lower value of SC indicates a better partition.

4. Separation Index (S): on the contrary of partition index (SC), the separation
index uses a minimum-distance separation for partition validity [38].

S(c) =

∑c
i=1

∑N
k=1(µi,k)2||xk − vi||2

N mini,j ||vj − vi||2
. (1.68)

42 Chapter 1. Classical Fuzzy Cluster Analysis

5. Xie and Beni’s Index (XB): indirect indices like the partition coefficient suffer
from three drawbacks. First, they are at best indirectly related to any real
clusters in X; second, they ignore additional parameters (such as V); and
third, they do not use X itself. Xie and Beni defined an index of fuzzy cluster
validity that overcomes the second and third problems. It aims to quantify the
ratio of the total variation within clusters and the separation of clusters [285].

XB(c) =

∑c
i=1

∑N
k=1(µi,k)m||xk − vi||2

N mini,k ||xk − vi||2
. (1.69)

The optimal number of clusters should minimize the value of the index.

6. Dunn’s Index (DI): this index is originally proposed to use at the identifica-
tion of “compact and well-separated clusters”. So the result of the clustering
has to be recalculated as it was a hard partition algorithm.

DI(c) = min
i∈c

{
min

j∈c,i�=j

{
minx∈Ci,y∈Cj d(x,y)

maxk∈c{maxx,y∈C d(x,y)}

}}
. (1.70)

The main drawback of Dunn’s index is the computational demand since cal-
culating becomes computationally very expansive as c and N increase.

7. Alternative Dunn Index (ADI): the aim of modifying the original Dunn’s
index was that the calculation becomes more simple, when the dissimilarity
function between two clusters (minx∈Ci,y∈Cj d(x,y)) is rated in value from
beneath by the triangle-nonequality:

d(x,y) ≥ |d(y,vj) − d(x,vj)| (1.71)

where vj is the cluster center of the jth cluster.

ADI(c) = min
i∈c

{
min

j∈c,i�=j

minxi∈Ci,xj∈Cj |d(y,vj) − d(xi,vj)|
maxk∈c{maxx,y∈C d(x,y)}

}
. (1.72)

8. The fuzzy hyper volume: this index is also widely applied and represents the
volume of the clusters.

V =
c∑

i=1

det(Fi). (1.73)

Note, that the only difference of SC, S and XB is the approach of the separation of
clusters. In the case of overlapped clusters the values of DI and ADI are not really
reliable because of re-partitioning the results with the hard partition method.

1.7. Validity Measures 43

Example 1.5 (Optimal number of clusters – validity indices). In the course of
every partitioning problem the number of clusters must be given by the user before
the calculation, but it is rarely known a priori, in this case it must be searched also
with using validity measures. In the following only a simple example is presented:
the motorcycle data set is used to find out the optimal number of clusters. Validity
measures mentioned above were used with Gustafson–Kessel algorithm to validate
the partitioning of the motorcycle data with the current number of clusters.

During the optimization parameters were fixed to the following values: m = 2
(1.31), ρ = 1 (1.33), ǫ = 0.001 (1.38) for each cluster, c ∈ [2, . . . , 14]. The values
of the validity measures depending from the number of cluster are plotted and
embraced in Table 1.2.

Table 1.2: The numerical values of validity measures
c 2 3 4 5 6 7

PC 0.8569 0.7743 0.7550 0.7422 0.7291 0.7139
CE 0.2531 0.4168 0.4588 0.5110 0.5679 0.6055
SC 1.6465 1.4591 1.0646 0.6593 0.6055 0.5126
S 0.0124 0.0160 0.0133 0.0067 0.0057 0.0069

XB 28.5271 4.8294 3.3545 4.4216 6.0929 5.1619
DI 0.1154 0.0317 0.0192 0.0230 0.0270 0.0183

ADI 0.0023 0.0017 0.0008 0.0003 0.0005 0.0004

c 8 9 10 11 12 13

PC 0.7075 0.6833 0.6957 0.6554 0.6682 0.6464
CE 0.6246 0.6882 0.6820 0.7590 0.7404 0.7689
SC 0.5181 0.5565 0.4868 0.5032 0.4354 0.4427
S 0.0064 0.0072 0.0062 0.0065 0.0055 0.0057

XB 5.1688 5.2679 3.4507 2.3316 5.0879 2.8510
DI 0.0203 0.0276 0.0196 0.0160 0.0144 0.0120

ADI 0.0000 0.0001 0.0003 0.0001 0.0001 0.0001

It should be mentioned again that no validation index is reliable only by itself,
that is why all the programmed indexes are shown, and the optimum can be only
detected with the comparison of all the results. We consider that partitions with
less clusters are better when the differences between the values of a validation index
are minor.

The main drawback of PC is the monotonic decreasing with c and the lack of
direct connection to the data. CE has the same problems: monotonic increasing
with c and hardly detectable connection to the data structure. On the score of
Figure 1.22, the number of clusters can be only rated to 3.

In Figure 1.23 more informative diagrams are shown: SC and S hardly decreases
at the c = 5 point. The XB index reaches this local minimum at c = 4. Considering
that SC and S are more useful, when comparing different clustering methods with
the same c, we chose the optimal number of clusters to 4, which is confirmed by

44 Chapter 1. Classical Fuzzy Cluster Analysis

2 4 6 8 10 12 14
0.6

0.7

0.8

0.9

c

Partition coefficient (PC)

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

c

Classification Entropy (CE)

Figure 1.22: Values of Partition Coefficient and Classification Entropy.

2 4 6 8 10 12 14
0

0.5

1

1.5

2
Partition index (SC)

2 4 6 8 10 12 14
0.005

0.01

0.015

0.02
Separation index (S)

2 4 6 8 10 12 14
0

10

20

30
Xie and Beni index (XB)

c

Figure 1.23: Values of Partition Index and Separation Index and Xie and Beni’s
Index.

1.7. Validity Measures 45

2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12
Dunn index (DI)

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
x 10

−3 Alternative Dunn index (ADI)

Figure 1.24: Values of Dunn’s Index and the Alternative Dunn Index.

the Dunn’s index too in Figure 1.24. (The Alternative Dunn Index is not tested
enough to know how reliable its results are.)

�

Chapter 2

Visualization of the
Clustering Results

Since in practical data mining problems high-dimensional data are clustered, the
resulting clusters are high-dimensional geometrical objects which are difficult to
analyze and interpret. Clustering always fits the clusters to the data, even if the
cluster structure is not adequate for the problem. To analyze the adequateness of
the cluster prototypes and the number of the clusters, cluster validity measures
are used (see Section 1.7). However since validity measures reduce the overall
evaluation to a single number, they cannot avoid a certain loss of information. A
low-dimensional graphical representation of the clusters could be much more infor-
mative than such a single value of the cluster validity because one can cluster by
eye and qualitatively validate conclusions drawn from clustering algorithms. This
chapter introduces the reader to the visualization of high-dimensional data in gen-
eral, and presents two new methods for the visualization of fuzzy clustering results.

2.1 Introduction: Motivation and Methods

The reduction of dimensionality of the feature space is also important because of
the curse of dimensionality. In a nutshell, same number of examples fill more of
the available space when the dimensionality is low, and its consequence is that
exponential growth with dimensionality in the number of examples is required to
accurately estimate a function.

Two general approaches for dimensionality reduction are:

(i) feature extraction: transforming the existing features into a lower-dimension-
al space, and

(ii) feature selection: selecting a subset of the existing features without a trans-
formation.

48 Chapter 2. Visualization of the Clustering Results

Dimensionality Reduction Methods

Linear methods Nonlinear methods

PCA,

Factor Analysis
Discriminant Analysis Signal

preserving

(M-PCA)

Distance

preserving

(Sammon)

Topology

preserving

(SOM)

Koontz &

Fukunaga

Figure 2.1: Taxonomy of dimensionality reduction methods.

Feature extraction means creating a subset of new features by combination
of existing features. These methods can be grouped based on linearity (see Fig-
ure 2.1). A linear feature extraction or projection expresses the new features as
linear combination of the original variables. The type of linear projection used in
practice is influenced by the availability of category information about the patterns
in the form of labels on the patterns. If no category information is available, the
eigenvector projection (also called Principal Component Analysis (PCA)) is com-
monly used. Discriminant Analysis is a popular linear mapping technique when
category labels are available. In many cases, linear projection cannot preserve the
data structure because of its complexity. In these cases nonlinear projection meth-
ods should be used. Some of them will be described deeply later in this chapter
(see Section 2.1.2 and Section 2.1.3).

2.1.1 Principal Component Analysis

PCA takes a data set X = [x1, . . . ,xN]T where xk = [x1,k, . . . , xn,k]T is the
kth sample or data point in a given orthonormal basis in Rn and finds a new
orthonormal basis, U = [u1, . . . ,un],ui = [u1,i, . . . , un,i]

T , with its axes ordered.
This new basis is rotated in such a way that the first axis is oriented along the
direction in which the data has its highest variance. The second axis is oriented
along the direction of maximal variance in the data, orthogonal to the first axis.
Similarly, subsequent axes are oriented so as to account for as much as possible of
the variance in the data, subject to the constraint that they must be orthogonal
to preceding axes. Consequently, these axes have associated decreasing ‘indices’,
λi, i = 1, . . . , n, corresponding to the variance of the data set when projected on
the axes. The principal components are the new basis vectors, ordered by their
corresponding variances. The vector with the largest variance corresponds to the
first principal component.

By projecting the original data set on the q first principal components, with
q < n, a new data set with lower dimensionality (mainly 2 or 3 for visualization
purposes) can be obtained. If the principal components are first scaled by the
corresponding inverse variances, the variables of the new data set will all have
unit variance – a procedure known as whitening or sphering.

2.1. Introduction: Motivation and Methods 49

x2

u
2

x3

u1x1

u
2

u
1

Figure 2.2: Illustration for PCA.

The traditional way of computing the principal components is to compute the
sample covariance matrix of the data set,

F =
1

N − 1

N∑

k=1

(xk − x)(xk − x)T , x =
1

N

N∑

k=1

xk (2.1)

and then find its eigenstructure

FU = UΛ. (2.2)

U is an n×n matrix which has the unit lengths eigenvectors in its columns and Λ is
diagonal matrix with the corresponding eigenvalues λi, . . . , λn along the diagonal.
The variance of the data set is equal to

σ2 =

n∑

i=1

λi, (2.3)

hence, if only the first few (mostly 2) greatest eigenvalues are used to visualize
the original multidimensional data, the sum of the remainder eigenvalues is lost.
The eigenvectors are the principal components and the eigenvalues are the cor-
responding variances. In this case, yk = UT xk is the representation of the kth
sample in the new basis (with q vectors), and its approximation in the original
space x̂k = UUT xk.

An important property of the principal components is that they constitute the
unique set of vectors that minimizes the reconstruction error,

Q =

N∑

k=1

(xk − x̂k)T (xk − x̂k) =

N∑

k=1

||xk −UUT xk||2 =

N∑

k=1

xT
k (I−UUT)xk. (2.4)

50 Chapter 2. Visualization of the Clustering Results

Q is the sum of the squared distances between the data points and their projections
on the q principal components, summed over the data set. Thus, it is a decreasing
function of q, equal to zero when q = n. Under this formulation, PCA is known as
the Karhunen-Loeve transform, and it suggests an alternative way of finding the
principal components, by minimizing (2.4). This approach has formed the basis
for non-linear extensions.

The analysis of the distribution of the projected data is also informative. The
Hotelling T 2 measure is often used to calculate the distance of the mapped data
from the center of the linear subspace

T 2 =

N∑

k=1

yT
k yk. (2.5)

Figure 2.3 illustrates these measures in case of two variables and one principal
component.

Figure 2.3: Distance measures based on the PCA model.

These T 2 and Q measures are often used for monitoring of multivariate systems
and for exploration of the errors and the causes of the errors [203].

Example 2.1 (Visualization of Wine data based on Principal Component Analy-
sis). The Wine data, which is available from the University of California, Irvine,
via anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases, contains the
chemical analysis of 178 wines grown in the same region in Italy but derived from
three different cultivars. The problem is to distinguish the three different types
based on 13 continuous attributes derived from chemical analysis: Alcohol, Malic
acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoids
phenols, Proanthocyaninsm, Color intensity, Hue, OD280/OD315 of dilluted wines
and Proline (Figure 2.4).

2.1. Introduction: Motivation and Methods 51

0 178
1

2

3
Class

0 178
10

12

14

16
Alcohol

0 178
0

2

4

6
Malic acid

0 178
1

2

3

4
Ash

0 178
10

20

30
Alcalinity ash

0 178
50

100

150

200
Magnesium

0 178
0

2

4
Tot. Phenols

0 178
0

2

4

6
Flavonoids

0 178
0

0.5

1
Non−flav.Phen.

0 178
0

2

4
Proanthoc.

0 178
0

5

10

15
Color intensity

0 178
0

1

2
Hue

0 178
1

2

3

4
OD280/OD315

0 178
0

1000

2000
Proline

Figure 2.4: Wine data: 3 classes and 13 attributes.

PCA analysis can be used for visualization of the samples in two dimensions.
The results can be seen in Figure 2.5. The three different wine types locate in

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

PC
1

P
C

2

Figure 2.5: PCA analysis of wine data.

three well-separated regions of the space spanned by the first two PCs. However,
it should be mentioned that the first two eigenvalues contain only the 55% of the
total variance, so PCA can result in false values in case of classification problem.

52 Chapter 2. Visualization of the Clustering Results

2 4 6 8 10 12
0

200

400

600

800

1000
Eigenvalues

2 4 6 8 10 12
0.2

0.4

0.6

0.8

1
Cumulative sum of eigenvalues

Figure 2.6: Screeplot of wine data.

The eigenvalues and their cumulative sum can be seen in Figure 2.6. The top
figure is the so-called screeplot that plots the ordered eigenvalues according to their
contribution to the variance of data.

�

2.1.2 Sammon Mapping

While PCA attempts to preserve the variance of the data during the mapping,
Sammon’s mapping tries to preserve the interpattern distances [187, 210]. For
this purpose, Sammon defined the mean-square-error between the distances in the
high-dimensional space and the distances in the projected low-dimensional space.
This square-error formula is similar to the “stress” criterion from multidimensional
scaling.

The Sammon mapping is a well-known procedure for mapping data from a
high n-dimensional space onto a lower q-dimensional space by finding N points in
the q-dimensional data space, such that the interpoint distances d∗i,j = d∗(yi,yj)
in the q-dimensional space approximate the corresponding interpoint distances
di,j = d(xi,xj) in the n-dimensional space. See Figure 2.7.
This is achieved by minimizing an error criterion, called the Sammon’s stress, E:

E =
1

λ

N−1∑

i=1

N∑

j=i+1

(
di,j − d∗i,j

)2

di,j
(2.6)

where λ =
N−1∑
i=1

N∑
j=i+1

di,j .

2.1. Introduction: Motivation and Methods 53

y1

x2

x1

y2

x3

Figure 2.7: Illustration for Sammon mapping.

The minimization of E is an optimization problem in Nq variables yi,l,
i = 1, 2, . . . , N , l = 1, . . . , q, as yi = [yi,1, . . . , yi,q]

T . Sammon applied the method
of steepest decent to minimizing this function. Introduce the estimate of yi,l at
the tth iteration

yi,l(t + 1) = yi,l(t) − α

⎡
⎣

∂E(t)
∂yi,l(t)

∂2E(t)
∂2yi,l(t)

⎤
⎦ (2.7)

where α is a nonnegative scalar constant (recommended α ≃ 0.3 − 0.4), i.e., the
step size for gradient search in the direction of

∂E(t)

∂yi,l(t)
= − 2

λ

N∑

k=1,k �=i

[
dk,i − d∗k,i

dk,id∗k,i

]
(yi,l − yk,l)

∂2E(t)

∂2yi,l(t)
= − 2

λ

N∑

k=1,k �=i

1

dk,id∗k,i

[
(dk,i − d∗k,i)

−
(

(yi,l − yk,l)
2

d∗k,i

)(
1 +

dk,i − d∗k,i

dk,i

)]
(2.8)

It is not necessary to maintain λ for a successful solution of the optimization

problem, since the minimization of
N−1∑
i=1

N∑
j=i+1

(
di,j − d∗i,j

)2
/di,j gives the same re-

sult.
When the gradient-descent method is applied to search for the minimum of

Sammon’s stress, a local minimum in the error surface can be reached. Therefore
a significant number of runs with different random initializations may be necessary.
Nevertheless, the initialization of y can be based on information which is obtained

54 Chapter 2. Visualization of the Clustering Results

from the data, such as the first and second norms of the feature vectors or the
principal axes of the covariance matrix of the data [187].

Example 2.2 (Visualization of Wine data based on Sammon mapping). In Fig-
ure 2.8 the results given by the classical Sammon mapping can be seen. Compared
to the result by PCA (Figure 2.5), it can be determined that the classes are not as
distinct as shown by PCA. For more details about the comparison see Example 2.4,
Example 2.5 and Example 2.6.

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

y
1

y
2

Figure 2.8: Wine data visualized by Sammon mapping.

�

2.1.3 Kohonen Self-Organizing Maps

The Self-Organizing Map (SOM) is a new, effective tool for the visualization of
high-dimensional data. It implements an orderly mapping of a high-dimensional
distribution onto a regular low-dimensional grid. Thereby it is able to convert
complex, nonlinear statistical relationships between high-dimensional data items
into simple geometric relationships on a low-dimensional display. As it compresses
information while preserving the most important topological and metric relation-
ships of the primary data items on the display, it may also be thought to produce
some kind of abstractions. These two aspects, visualization and abstraction, can
be utilized in a number of ways in complex tasks such as process analysis, machine
perception, control, and communication [158].

SOM performs a topology preserving mapping from high-dimensional space
onto map units so that relative distances between data points are preserved [157].

2.1. Introduction: Motivation and Methods 55

The map units, or neurons, form usually a two-dimensional regular lattice. Each
neuron i of the SOM is represented by an n-dimensional weight, or model vector
vi = [vi,n, . . . , vi,n]T . These weight vectors of the SOM form a codebook. The
neurons of the map are connected to adjacent neurons by a neighborhood relation,
which dictates the topology of the map. The number of the neurons determines
the granularity of the mapping, which affects the accuracy and the generalization
capability of the SOM.

SOM is a vector quantizer, where the weights play the role of the codebook
vectors. This means, each weight vector represents a local neighborhood of the
space, also called Voronoi cell. The response of a SOM to an input x is determined
by the reference vector (weight) v0

i which produces the best match of the input

i0 = arg min
i

‖vi − x‖ (2.9)

where i0 represents the index of the Best Matching Unit (BMU).
During the iterative training, the SOM forms an elastic net that folds onto

“cloud” formed by the data. The net tends for approximate the probability density
of the data: the codebook vectors tend to drift there where the data are dense,
while there are only a few codebook vectors where the data are sparse. The training
of SOM can be accomplished generally with a competitive learning rule as

v
(k+1)
i = v

(k)
i + ηΛi0,i(x − v

(k)
i) (2.10)

where Λi0,i is a spatial neighborhood function and η is the learning rate. Usually,
the neighborhood function is

Λi0,i = exp

(‖ri − r0
i ‖2

2σ2(k)

)
(2.11)

where ‖ri−r0
i ‖ represents the Euclidean distance in the output space between the

ith vector and the winner.
The whole procedure wants to be illustrated by Figure 2.9 and Figure 2.10.

Figure 2.9: Illustration of the topology preserving property of SOM.

56 Chapter 2. Visualization of the Clustering Results

x
1

x
2

x
3

x
4

x
5

m
c

v
c1

v
c2

v
c3

v
c4

v
c5

Figure 2.10: Illustration of the BMU computation.

Usually, with the use of this tool the cluster centers (the codebook of the
SOM) are mapped into a two-dimensional space [274]. Recently, several related
approaches have been proposed to increase the performance of SOM by the in-
corporation of fuzzy logic. In [275], a modified SOM algorithm was introduced.
Neurons are replace by fuzzy rules which allows an efficient modelling of contin-
uous valued functions. In [19] fuzzy clustering combined with SOM is used to
project the data to lower dimensions. In [267], some aspects of the fuzzy c-means
model are integrated into the classical Kohonen-type hard clustering framework.
Another approach has been presented in [211], where a fuzzy self-organizing map
is developed based on the modifications of the fuzzy c-means functional. Fuzzy
c-means cluster analysis has also been combined with similar mappings and suc-
cessfully applied to map the distribution of pollutants and to trace their sources
to access potential environmental hazard on a soil database from Austria [111].

Example 2.3 (Visualization of Wine data based on Self-Organizing Map). The
SOM has been utilized to visualize the Wine data. SOM can be effectively used for
correlation hunting, which procedure is useful for detecting the redundant features.
It is interesting to note that rules can be given by the map of the variables given
in Figure 2.11.

For example, if Alcohol is high and Flavonoids are high and Color intensity is
medium, then the wine is in class 1. It is visible also in the data. This knowledge
can be easily validated by analyzing the SOM of the data given in Figure 2.11.

�

2.1. Introduction: Motivation and Methods 57

Figure 2.11: Self-Organizing Map of the Wine data.

There are several other methods beyond the ones described above.

• Projection Pursuit. Projection Pursuit (PP) is an unsupervised technique
that searches interesting low-dimensional linear projections of a high-dimen-
sional data by optimizing a certain objective function called Projection Index
(PI). The projection index defines the intent of PP procedure. The notation
of interesting obviously varies with the application. The goal of data mining
(i.e., revealing data clustering tendency, an edge or jump of data density)
should be translated into a numerical index, being a functional of the pro-
jected data distribution. This function should change continuously with the
parameters defining the projection and have a large value when the projected
distribution is defined to be interesting and small otherwise. Most projection
indices are developed from the standpoint that normality represents the no-
tion of “uninterestingness”. They differ in the assumptions about the nature
of deviation from normality and in their computational efficiency. Generally,
they can be divided into two groups: parametric projection indices and the
nonparametric ones. Parametric projection indices are designed to capture
any departure of data distribution from a specified distribution, whereas non-
parametric indices are more general and they are not focused on a particular
distribution. There is a huge collection of proposed projection indices, e.g.,
Shannon entropy [244] and Yenyukov index [296].

58 Chapter 2. Visualization of the Clustering Results

• Generative Topographic Maps. Generative Topographic Mapping (GTM),
introduced by Bishop et al. [45, 46], can be considered as a probabilistic
reformulation of the self-organizing map (SOM) approach. The aim of the
GTM procedure is to model the distribution of data in a high-dimensional
space in terms of a smaller number of latent variables.

• Auto-associative feed-forward networks. Feed-forward network is usually
used in supervised settings. Nevertheless, it can be applied as a nonlinear
projection method. In this case the net is trained to map a vector to itself
through a “bottleneck” layer, i.e., the layer with a smaller number of nodes
than input (and output) layer [161]. The bottleneck layer of the network
performs the dimension reduction, because the number of neurons in this
layer is smaller than that in the input and output layers, so that the network
is forced to develop compact representation of the input data. Figure 2.12
shows a schematic picture of an auto-associative network.

x1

x2

xn

x1

x2

xn

Input
layer

Target
layer

Bottleneck
layer

Figure 2.12: Auto-associative nonlinear PCA network.

If all the units in this network are taken to be linear, in which case
any intermediary layers between inputs and targets and the bottleneck layer
can be removed, and the network is trained using the sum-of-squares error
function, this training corresponds to the minimization of the reconstruction
error in (2.4). This will result in the network performing standard PCA. In
fact, it can be shown that this will also be the case for a network with a
single bottleneck layer of non-linear units.

• Discriminant Analysis. The discriminant analysis projection maximizes the
between-group scatter while holding the within-group scatter constant [62].
This projection requires that all patterns have pattern class or category la-
bels. Even when no extrinsic category labels are available, the patterns can
be clustered and cluster labels be used as category information for projection
purposes. See Figure 2.13.

2.2. Fuzzy Sammon Mapping 59

x2

x1

u1

u2

u2

Figure 2.13: Scheme of Discriminant Analysis.

Multidimensional scaling is a generic name for a body of procedures and al-
gorithms that start with an ordinal proximity matrix and generate configurations
of points in one, two or three dimensions. Multidimensional scaling translates an
ordinal scale to a set of ratio scales and is an example of ordination. MDSCAL
developed by Kruskal [163, 164, 165] is one of the most popular techniques in
this field. Since the objective of a multidimensional scaling method is to create
a set of scales or dimensions that represent the data, natural links exist between
multidimensional scaling, intrinsic dimensionality and nonlinear projection.

The techniques mentioned so far in this chapter are general visualization meth-
ods, which do not have a direct connection with clustering (except SOM). In the
next two sections new methods will be presented for visualization of clustering
results. The first method is based on the results of classical fuzzy clustering algo-
rithms and an iterative projection method is applied to preserve the data structure
in two dimensions in the sense that the distances between the data points and the
cluster centers should be similar in the original high and in the projected two
dimensions as well. The second approach is a modified fuzzy clustering method
and the purpose of the modification is to increase the applicability of the classical
fuzzy c-means algorithm by ordering the cluster centers (prototypes) in an easily
visualizable low-dimensional space.

2.2 Visualization of Fuzzy Clustering Results by
Modified Sammon Mapping

This section focuses on the application of Sammon mapping for the visualization
of the results of clustering, as the mapping of the distances is much closer to the
task of clustering than preserving the variances. This section is mainly based on
a previous work of the authors, for more details see [160]. There are two main
problems encountered in the application of Sammon mapping to the visualization
of fuzzy clustering results:

60 Chapter 2. Visualization of the Clustering Results

• The prototypes of clustering algorithms may be vectors (centers) of the same
dimension as the data objects, but they can also be defined as “higher-
level” geometrical objects, such as linear or non-linear subspaces or functions.
Hence, classical projection methods based on the variance of the data (PCA)
or based on the preservation of the Euclidian interpoint distance of the data
(Sammon mapping) are not applicable when the clustering algorithms do not
use the Euclidian distance norm.

• As Sammon mapping attempts to preserve the structure of high n-dimension-
al data by finding N points in a much lower q-dimensional data space, where
the interpoint distances measured in the q-dimensional space approximate the
corresponding interpoint distances in the n-dimensional space, the algorithm
involves a large number of computations as in every iteration step it requires
the computation of N(N −1)/2 distances. Hence, the application of Sammon
mapping becomes impractical for large N [68, 210].

By using the basic properties of fuzzy clustering algorithms a useful and easily
applicable idea is to map the cluster centers and the data such that the distances
between the clusters and the data-points will be preserved (see Figure 2.14). Dur-
ing the iterative mapping process, the algorithm uses the membership values of the
data and minimizes an objective function that is similar to the objective function
of the original clustering algorithm.

y1
x1

x3

x2

y2

y1
x1

x3

x2

y2

x2

y2

Figure 2.14: Illustration for fuzzy Sammon method.

2.2.1 Modified Sammon Mapping

To avoid the problem mentioned above, in the following we introduce some modifi-
cations in order to tailor Sammon mapping for the visualization of fuzzy clustering
results. By using the basic properties of fuzzy clustering algorithms where only
the distance between the data points and the cluster centers are considered to be
important, the modified algorithm takes into account only N × c distances, where

2.2. Fuzzy Sammon Mapping 61

c represents the number of clusters, weighted by the membership values:

Efuzz =

c∑

i=1

N∑

k=1

(µi,k)m (d(xk, ηi) − d∗(yk, zi))
2

(2.12)

where d(xk, ηi) represents the distance between the xk datapoint and the ηi cluster
center measured in the original n-dimensional space, while d∗(yk, zi) represents the
Euclidian distance between the projected cluster center zi and the projected data
yk. This means that in the projected space, every cluster is represented by a single
point, regardless of the form of the original cluster prototype, ηi. The application of
the simple Euclidian distance measure increases the interpretability of the resulted
plots (typically in two dimensions, although three-dimensional plots can be used
as well). If the type of cluster prototypes is properly selected, the projected data
will fall close to the projected cluster center represented by a point resulting in an
approximately spherically shaped cluster.

The resulting algorithm is similar to the original Sammon mapping, but in
this case in every iteration after the adaptation of the projected data points, the
projected cluster centers are recalculated based on the weighted mean formula of
the fuzzy clustering algorithms (see Algorithm 2.2.1).

The resulted two-dimensional plot of the projected data and the cluster centers
are easily interpretable since it is based on normal Euclidian distance measures
between the cluster centers and the data points. Based on these mapped distances,
the membership values of the projected data can be also plotted based on the
classical formula of the calculation of the membership values:

µ∗
i,k = 1/

c∑

j=1

(
d∗(xk, ηi)

d∗(xk, ηj)

) 2
m−1

. (2.13)

Of course, the resulting 2D plot will only approximate the original high-dimension-
al clustering problem. The quality of the approximation can easily be evaluated
based on the mean square error of the original and the recalculated membership
values.

P = ‖U − U∗‖ (2.14)

where U∗ = [µ∗
i,k] represents the matrix of the recalculated memberships.

Of course there are other tools to get information about the quality of the map-
ping of the clusters. For example, the comparison of the cluster validity measures
calculated based on the original and mapped membership values can also be used
for this purpose.

2.2.2 Application Examples

In this section several numerical experiments will be given to demonstrate the
applicability of the presented visualization tool. For the sake of comparison, the

62 Chapter 2. Visualization of the Clustering Results

Algorithm 2.2.1 (Modified Sammon Mapping).

• [Input] : Desired dimension of the projection, usually q = 2, the orig-
inal data set, X; and the results of fuzzy clustering: cluster proto-
types, ηi, membership values, U = [µi,k], and the distances D =
[dk,i = d(xk, ηi)]N×c.

• [Initialize] the yk projected data points by PCA based projection of xk,
and compute the projected cluster centers by

zi =

∑N
k=1(µi,k)myk∑N

k=1(µi,k)m
(2.15)

and compute the distances with the use of these projected points D∗ =[
d∗k,i = d(yk, zi)

]
N×c

. Random initialization can also be used but PCA

based projection is a better choice in many cases because it may reduce the
number of iteration in the next phase.

• [While] (Efuzz > ε) and (t ≤ maxstep)
{for (i = 1 : i ≤ c : i + +

{for (j = 1 : j ≤ N : j + +

{Compute ∂E(t)
∂yi,l(t)

, ∂2E(t)
∂2yi,l(t)

,

∆yi,l = ∆yi,l +

[
∂E(t)

∂yi,l(t)

∂2E(t)

∂2yi,l(t)

]
}

}
yi,l = yi,l + ∆yi,l, ∀i = 1, . . . , N, l = 1, . . . , q

Compute zi =
∑N

k=1(µi,k)myk/
∑N

k=1(µi,k)m

D∗ =
[
d∗k,i = d(yk, zi)

]
N×c

}
Compute Efuzz by (2.12).

where the derivatives are

∂E(t)

∂yi,l(t)
= − 2

λ

N∑

k=1,k �=i

[
dk,i − d∗k,i

d∗k,i

(µi,k)m

]
(yi,l − yk,l)

∂2E(t)

∂2yi,l(t)
= − 2

λ

N∑

k=1,k �=i

(µi,k)m

d∗k,i

[
(dk,i − d∗k,i)

− (yi,l − yk,l)
2

d∗k,i

(
1 + (dk,i − d∗k,i)(µi,k)m

)
]

(2.16)

2.2. Fuzzy Sammon Mapping 63

data and the cluster centers are also projected by Principal Component Analysis
(PCA) and the standard Sammon projection. Beside the visual inspection of the
results the mean square error of the recalculated membership values, P , see (2.14),
the difference between the original F and the recalculated F ∗ partition coefficient
(1.65) (one of the cluster validity measures described in Section 1.7), and the
Sammon stress coefficient (2.6) will be analyzed.

Example 2.4 (Synthetic data to illustrate the distance mapping of the cluster
prototypes using three visualization methods). The aim of the first example is
to demonstrate how the resulted plots of the projection should be interpreted and
how the distance measure of the cluster prototype is “transformed” into Euclidian
distance in the projected two-dimensional space.

Table 2.1: Comparison of the performance of the mappings (Example 2.4).
Method P F F ∗ E
GK-PCA 0.1217 0.8544 0.7263 0.0000
GK-SAMMON 0.1217 0.8544 0.7263 0.0000
GK-FUZZSAM 0.0204 0.8495 0.8284 0.1177
FCM-FUZZSAM 0.0000 0.7468 0.7468 0.0000

This means that in the projected two-dimensional space, each cluster is repre-
sented by a single point, regardless of the form of the original cluster prototype,
ηi. In this example the result of Gustafson–Kessel algorithm is visualized, hence
the distance norms defined by the inverse of the fuzzy covariance matrices are
transferred to Euclidian distances with the presented FUZZSAM mapping. The
application of the simple Euclidian distance measure increases the interpretability
of the resulted plots. As Figure 2.15 shows in case of a properly selected cluster pro-
totype the projected data will fall close to the projected cluster center represented
by a point resulting in an approximately spherically distributed cluster (compare
Figure 2.15c and Figure 2.15d). The numerical results summarized in Table 2.1
show that the presented FUZZSAM tool outperforms the linear method and the
classical Sammon projection tools. The P errors of the membership values in be-
tween are much smaller, and the F and F ∗ cluster validity measures are similar
when the projection is based on the presented FUZZSAM mapping.

�

Benchmark Examples
The previous example showed that it is possible to obtain a good data structure by
the presented mapping algorithm. However, the real advantage of the FUZZSAM
algorithm, the visualization of higher-dimensional spaces was not shown. This will
be done by the following real clustering problems. The first example is the visual-
ization of the results of the clustering of the well-known Iris data, while the second

64 Chapter 2. Visualization of the Clustering Results

−3 −2 −1 0 1 2 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(b)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(c)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(d)

Figure 2.15: (a) Synthetic data in 2D, (b) PCA mapping of the data and the
recalculated membership contours, (c) FUZZSAM projection of the results of GK
clustering, (d) FUZZSAM projection of the results of FCM clustering.

one deals with the analysis of the Wisconsin Breast Cancer data, both coming from
the UCI Repository of Machine Learning Databases (http://www.ics.uci.edu).

Example 2.5 (Iris data visualization). The Iris data set contains measurements
on three classes of Iris flower. The data set was made by measurements of sepal
length and width and petal length and width for a collection of 150 irises. The
problem is to distinguish the three different types (Iris setosa, Iris versicolor and
Iris virginica). These data have been analyzed many times to illustrate various
methods. To test the presented method the results of the clustering of the iris
data were visualized by principal component analysis (PCA), the original Sammon
mapping, and the modified method. The initial conditions in the applied Gustafson–
Kessel fuzzy clustering algorithm were the following: c = 3, m = 2, and α = 0.4 in
the Sammon and FUZZSAM mapping algorithms. The results of the projections
are shown on Figure 2.16, where the different markers correspond to different types
of iris, and the level curves represent the recalculated membership degrees.

2.2. Fuzzy Sammon Mapping 65

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(a)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(b)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(c)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(d)

Figure 2.16: (a) PCA projection of the IRIS data and the recalculated membership
contours, (b) SAMMON projection of the IRIS data and the recalculated mem-
bership contours., (c) FUZZSAM projection of the results of GK clustering of the
IRIS data m = 2, (d) FUZZSAM projection of the results of FCM clustering of
the IRIS data m = 1.4.

As Figure 2.16c nicely illustrates, the data can be properly clustered by the GK
algorithm. One of the clusters is well separated from the other two clusters. To
illustrate how the fuzziness of the clustering can be evaluated from the resulted
plot, Figure 2.16d shows the result of the clustering when m = 1.4. As can be seen
in this plot the data points lie much closer to the center of the cluster and there
are many more points in the first iso-membership curves. These observations are
confirmed by the numerical data given in Table 2.2.

�

Example 2.6 (Visualization of Wisconsin Breast Cancer data set). The aim of the
Wisconsin Breast Cancer classification problem is to distinguish between benign
and malignant cancers based on the available nine features. This example is used
to illustrate how the FUZZSAM algorithm can be used to visualize the clustering of
nine-dimensional data, and how this visualization can be used to detect the number

66 Chapter 2. Visualization of the Clustering Results

Table 2.2: Comparison of the performance of the mappings (Example 2.5).

Method P F F ∗ E

GK-PCA 0.1139 0.7262 0.6945 0.0100
GK-SAMMON 0.1153 0.7262 0.6825 0.0064
GK-FUZZSAM 0.0175 0.7262 0.7388 0.1481
GK-PCA-m=1.4 0.1057 0.9440 0.9044 0.0100
GK-SAMMON-m=1.4 0.1044 0.9440 0.8974 0.0064
GK-FUZZSAM-m=1.4 0.0011 0.9440 0.9425 0.0981

of clusters (Figure 2.17 and Table 2.3). It can be seen from the values of partition
coefficient F that two clusters fit much better to the data than four. It can also
be observed in Figure 2.17a and d: three clusters out of four are overlapping and
there are many points that belong to these three clusters with similar membership
values (see the iso-membership curves). It can be seen in Figure 2.17d that more
points lie closer to the cluster center in case of two than four clusters. In case of
two clusters the performance of all methods is better than by four clusters (e.g.,
the values of P decrease), but the best is FUZZSAMM also in this case.

Table 2.3: Comparison of the performance of the mappings (Example 2.6).

Method P F F ∗ E

FMC-PCA 0.0465 0.7696 0.8707 0.0678
FMC-SAMMON 0.0303 0.7696 0.8217 0.0262
FMC-FUZZSAM 0.0089 0.7696 0.7713 0.0826
FMC-PCA-c=2 0.0247 0.9191 0.9586 0.0678
FMC-SAMMON-c=2 0.0164 0.9191 0.9372 0.0262
FMC-FUZZSAM-c=2 0.0008 0.9191 0.9189 0.0517

�

2.2.3 Conclusions

This section has presented a tool that gives the user feedback about the result of
fuzzy clustering. The FUZZSAM method generates two-dimensional informative
plots about the quality of the cluster prototypes and the required number of
clusters. This tool uses the basic properties of fuzzy clustering algorithms to map
the cluster centers and the data such that the distances between the clusters and
the data-points are preserved. The numerical results show superior performance
over Principal Component Analysis and the classical Sammon projection tools.

2.3. Fuzzy Self-Organizing Map 67

−8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(a)

−5 −4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

y
1

y
2

(b)

−8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(c)

−8 −6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

y
1

y
2

(d)

Figure 2.17: (a) PCA projection of the results of a FCM clustering of the WIS-
CONSIN data c = 4, (b) FUZZSAM projection of the results of a FCM clustering
of the WISCONSIN data c = 4., (c) PCA projection of the results of a FCM
clustering of the WISCONSIN data c = 2, (d) FUZZSAM projection of the results
of a FCM clustering of the WISCONSIN data c = 2.

2.3 Fuzzy Self-Organizing Map based on
Regularized Fuzzy c-Means Clustering

Since usually high-dimensional data are clustered, the resulted clusters are high-
dimensional geometrical objects that are difficult to interpret. In this section a
method is described whose aim is to increase the applicability of the classical
fuzzy c-means algorithm by ordering the cluster centers (prototypes) in an easily
visualizable low-dimensional space. In this approach, similarly to SOM, the cluster
centers are distributed on a regular low-dimensional grid, and a regularization term
is added to guarantee a smooth distribution for the values of the code vectors on
the grid. The idea of the ordering of the clusters in a smaller dimensional space
can be also found in [291], where the fuzzy c-means functional has been modified
to detect smooth lines.

68 Chapter 2. Visualization of the Clustering Results

The key idea of this section is to give more insight to the result of clustering
than what traditionally is given by the numerical values of the cluster centers and
membership degrees, which are often difficult to analyze and interpret in the case
of high-dimensional data and a large number of clusters. An extension of the fuzzy
c-means algorithm is realized by adding a regularization term to the cost function.
The algorithm can be used for simultaneously clustering and visualizing high-
dimensional data. In addition, it is shown that special choices of the regularization
term lead to clustering algorithms that can detect smooth lines or generate smooth
and ordered feature maps which can easily be used in exploratory data analysis.

In the case of the generation of smooth feature maps, the cluster centers are
arranged on a two-dimensional grid and the regularization is based on the measure
of map smoothness expressed by the sum of the second-order partial derivatives
of the cluster centers.

2.3.1 Regularized Fuzzy c-Means Clustering

Regularized Fuzzy c-Means Clustering Algorithm

The presented algorithm performs a topology preserving mapping from the high,
n-dimensional space of the cluster centers onto a smaller, q ≪ n-dimensional map
[193]. The cluster centers of this q-dimensional map are connected to the adjacent
cluster centers by a neighborhood relation, which dictates the topology of the
map. For instance, Figure 2.18 shows a regular square grid, corresponding to c = 9

z
1

z
2

v
1

v
2 v

3

v
6

v
5

v
4

v
7 v

8 v
9

Figure 2.18: Example of cluster centers arranged in a two-dimensional space.

cluster centers. In this section, c is assumed to be known, based on prior knowledge,
for instance. For methods to estimate or optimize c refer to [26]. This kind of
arrangement of the clusters makes the result of the clustering interpretable only if
the smoothness of the distribution of the cluster centers on this q-dimensional map

2.3. Fuzzy Self-Organizing Map 69

is guaranteed (some illustrative examples will clarify this idea, see, e.g., Figure 2.19
and Figure 2.20). The neighborhood preserving arrangements of the cluster centers
means the smoothness of the distribution of the cluster centers on this map. The
aim of the visualization of the cluster centers is to provide easily interpretable maps
of the variables, where every map is colored according to the numerical values of
the cluster centers. In case of distance preserving arrangement it is expected that
the resulted maps will be smooth, since clusters that are near to each other in
the high-dimensional space of the original data have similar numerical values on
each variable. Hence, the idea behind the presented algorithm is to cluster the
data and simultaneously provide the smoothness of the resulted maps, of which
the regularization indirectly ensures the neighborhood preserving properties of the
arrangement.

The smoothness of the grid of the cluster centers can be measured by

S =

∫ ∥∥∥∥
∂2v

∂2z

∥∥∥∥ dz . (2.17)

This formula can be approximated by the summation of second-order differences,
expressed in the following matrix multiplication form:

S ≈ tr(VGT GVT) = tr(VLVT) , (2.18)

where G = [GT
1 , · · · GT

q]T , where Gi denotes the second-order partial difference
operator in the i = 1, . . . , qth direction of the map. On the boarders, the operator
is not defined. In case of the model depicted in Figure 2.18, these matrices are the
following:

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 −2 0 0 1 0 0
0 1 0 0 −2 0 0 1 0
0 0 1 0 0 −2 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.19)

70 Chapter 2. Visualization of the Clustering Results

To obtain ordered cluster centers, this smoothness measure can be added to
the original cost function of the clustering algorithm (1.16)

J(X,U,V) =
c∑

i=1

N∑

j=1

µm
i,kd2(xk,vi) + ςtr(VLVT). (2.20)

Taking into account constraints (1.12), (1.13) and (1.14), the minimum of (2.20)
can be solved by a variety of methods. The most popular one is the alternating
optimization algorithm [39] (see also Section 1.5.4). For fixed membership values,
U, the minimum of the cost function with respect to the cluster centers, V, can
be found by solving the following system of linear equations that can be followed
from the Lagrange multiplier method:

vi

N∑

k=1

µm
i,k + ς

c∑

j=1

Li,jvj =

N∑

k=1

µi,kxk, i = 1, . . . , c (2.21)

where Li,j denotes the i, jth element of the L = GT G matrix.
Based on the previous equation, the regularized FCM-AO algorithm is in Al-

gorithm 2.3.1.

Relation to the Fuzzy Curve-Tracing Algorithm

The fuzzy curve-tracing algorithm [291] developed for the extraction of smooth
curves from unordered noisy data can be considered as a special case of the previ-
ously presented algorithm. The neighboring cluster centers are linked to produce
a graph according to the average membership values. After the loops in the graph
have been removed, the data are then re-clustered using the fuzzy c-means algo-
rithm, with the constraint that the curve must be smooth. In this approach, the
measure of smoothness is also the sum of second-order partial derivatives for the
cluster centers:

J(X,U,V) =

c∑

i=1

N∑

k=1

µm
i,kd2(xk,vi) + ς

c∑

i=1

∥∥∥∥
∂2vi

∂2z

∥∥∥∥
2

. (2.25)

As this cost-function shows, the fuzzy curve-tracing applies a clustering algorithm
that can be considered as a special one-dimensional case of the presented regular-
ized clustering algorithm (2.20), where G1 is the second-order difference operator.
If c = 5 and the clusters are arranged as can be seen, e.g., in Figure 2.18, then G1

and L are:

G1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

hopL =

⎡
⎢⎢⎢⎢⎣

1 2 −1 0 0
2 5 4 −1 0

−1 4 6 4 −1
0 −1 4 5 2
0 0 −1 2 1

⎤
⎥⎥⎥⎥⎦

(2.26)

2.3. Fuzzy Self-Organizing Map 71

Algorithm 2.3.1 (Regularized Fuzzy c-Means).

• Initialization

Given a set of data X specify c, choose a weighting exponent m > 1 and
a termination tolerance ǫ > 0. Initialize the partition matrix such that
(1.12), (1.13) and (1.14) holds.

• Repeat for l = 1, 2, . . .

• Step 1: Calculate the cluster centers.

v
(l)
i =

N∑
k=1

(
µ

(l−1)
i,k

)m

xk − ς
c∑

j=1,j �=i

Li,jvj

N∑
k=1

(
µ

(l−1)
i,k

)m

+ ςLi,j

, 1 ≤ i ≤ c. (2.22)

• Step 2 Compute the distances.

d2(xk,vi) =
(
xk − v

(l)
i

)T

A
(
xk − v

(l)
i

)
1 ≤ i ≤ c, 1 ≤ k ≤ N. (2.23)

• Step 3: Update the partition matrix.

µ
(l)
i,k =

1
∑c

j=1 (d(xk,vi)/d(xk,vj))
2/(m−1)

, (2.24)

1 ≤ i ≤ c, 1 ≤ k ≤ N

until ||U(l) − U(l−1)|| < ǫ.

Note that the elements of L are identical to the regularization coefficients derived
“manually” in [291]. As the presented approach gives compact and generalized
approach to the fuzzy curve-tracing algorithm, we can call our algorithm as Fuzzy
Surface-Tracing (FST) method.

Relation to the Smoothly Distributed FCM Algorithm

The aim of this section is to illustrate that the smoothness of the grid can be
defined on several ways. One possible implementation of smoothness (as used, for
example, in spline theory) is achieved by demanding in an overall fashion that the
value of a code vector must be close to the average value of its nearest neighbors
on the grid. This interpretation has been used in [211]. Referring to Figure 2.18,

72 Chapter 2. Visualization of the Clustering Results

this means that Gi becomes a first-order gradient operator [211]:

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.27)

This type of penalizing is not always advantageous, since the cluster centers get
attracted to each other and thereby to the center of the data, where the magnitude
of this contraction is determined by the regulation parameter ς.

In the following the presented algorithm is used to trace a spiral in three-
dimensional space and to show how the wine data can be visualized.

Example 2.7 (Tracing a Spiral in 3D based on regularized Fuzzy c-Means algo-
rithm). The aim of the first example is to illustrate how increasing the smoothness
of the of the grid of the cluster centers can generate topology preserving arrange-
ment of the clusters. The illustrative problem that the regularized fuzzy clustering
algorithm has to handle is to trace a part of a spiral in 3D. For this purpose 300
datapoints around a 3D curvature have been clustered, where the datapoints were
superposed by noise with 0 mean and variance 0.2. Both FCM and its regular-
ized version are used to generate seven clusters that can be lined up to detect the
curvature type structure of the data.

As can be seen from the comparison of Figure 2.19 and Figure 2.20, with the
help of the presented regularized clustering algorithm the detected cluster centers
are arranged in a proper order.

In this example it was easy to qualify the result of the clustering, since the
clusters and the data can be easily visualized in 3D. This allows the easy tune of
the only one parameter of the algorithm, ς, since with the increase of this param-
eter it is straightforward to validate the ordering of the resulted clusters (as it is

2.3. Fuzzy Self-Organizing Map 73

x1
x2

x
3

Figure 2.19: Detected clusters and the obtained ordering when the standard FCM
algorithm is used.

x2x1

x
3

Figure 2.20: Detected clusters and the obtained ordering when the regularized
FCM algorithm is used.

depicted in Figure 2.20). This result shows that with the use of a properly weighted
smoothing ς = 2, it is possible to obtain proper arrangement of the cluster centers.
The aim of the next example is to illustrate how this kind of arrangement of the
cluster centers can be obtained and used for the analysis of high-dimensional data.

�

74 Chapter 2. Visualization of the Clustering Results

Example 2.8 (Clustering and Visualization of the Wine data based on regular-
ized Fuzzy c-Means clustering). For the illustration of the results of the smoothed
clustering, the MATLAB� implementation of the algorithm – which can be down-
loaded from the website: www.fmt.vein.hu/softcomp – generates independent plots
for each variables. On these plots the numerical values of the cluster centers are
color coded, see Figure 2.21.

Alcohol Maleic acid Ash Alc. ash Mg

Tot. Phenols Flavanoids Non−flav.Phen. Proan. Color int.

Hue OD280/OD315 Proline Label

3

3

3

2

2

3

0

2

2

2

3

2

2

2

2

0

1

1

1

1

1

1

1

1

1

Figure 2.21: Results of regularized clustering.

For the illustration how these plots can be interpreted the clustering and the
visualization of the well-known wine data is considered.

From Figure 2.4 in Example 2.1 the different wines cannot be distinguished,
and the relations between the variables and the origin of the wine are hard to get.

With the use of regularized fuzzy clustering three different regions corresponding
to the tree different types of wine can be obtained, see Figure 2.21. The three
regions can be seen on the maps of alcohol, color intensity, flavanoids, and ash.
This means, these variables have distinguishable value, hence a classifier system
should be based on these variables.

For comparison, the maps obtained with the Kohonen’s SOM can be seen in
Figure 2.11 in Example 2.3. The FCM based algorithms found the same clusters

2.3. Fuzzy Self-Organizing Map 75

as Kohonen’s SOM and the same relations reveal. The SOM and the presented
clustering algorithm can be effectively used for “correlation hunting”, that is, in-
specting the possible correlations between vector components in the data. These
procedures can also be useful for detecting the redundant features.

�

2.3.2 Case Study

To illustrate the practical benefits of the presented approach, the monitoring of
a medium and high-density polyethylene (MDPE, HDPE) plant is considered.
HDPE is versatile plastic used for household goods, packaging, car parts and pipe.
The plant is operated by TVK Ltd., which is the largest polymer production
company (www.tvk.hu) in Hungary. A brief explanation of the Phillips license
based low-pressure catalytic process is provided in the following section.

Process Description

Figure 2.22 represents the Phillips Petroleum Co. suspension ethylene polymer-
ization process.

Figure 2.22: Scheme of the Phillips loop reactor process.

The polymer particles are suspended in an inert hydrocarbon. The melting
point of high-density polyethylene is approximately 135◦ Celsius. Therefore, slurry
polymerization takes place at a temperature below 135◦ Celsius; the polymer
formed is in the solid state. The Phillips process takes place at a temperature
between 85–110◦ Celsius. The catalyst and the inert solvent are introduced into
the loop reactor where ethylene and an α-olefin (hexene) are circulating. The inert

76 Chapter 2. Visualization of the Clustering Results

solvent (isobuthane) is used to dissipate heat as the reaction is highly exothermic.
A cooling jacket is also used to dissipate heat. The reactor consists of a folded loop
containing four long runs of pipe 1 m in diameter, connected by short horizontal
lengths of 5 m. The slurry of HDPE and catalyst particles circulates through the
loop at a velocity between 5–12 m/s. The reason for the high velocity is because at
lower velocities the slurry will deposit on the walls of the reactor causing fouling.
The concentration of polymer products in the slurry is 25–40% by weight. Ethy-
lene, α-olefin comonomer (if used), an inert solvent, and catalyst components are
continuously charged into the reactor at a total pressure of 450 psig. The polymer
is concentrated in settling legs to about 60–70% by weight slurry and continu-
ously removed. The solvent is recovered by hot flashing. The polymer is dried and
pelletized. The conversion of ethylene to polyethylene is very high (95%–98%),
eliminating ethylene recovery. The molecular weight of high-density polyethylene
is controlled by the temperature of catalyst preparation. The main properties of
polymer products (Melt Index (MI) and density) are controlled by the reactor
temperature, monomer, comonomer and chain-transfer agent concentration.

Problem Description

The process has to produce about ten different product grades according to the
market demand. Hence, there is a clear need to minimize the time of changeover be-
cause off-specification products may be produced during transition. The difficulty
comes from the fact that there are more than ten process variables to consider.
Measurements are available in every 15 seconds on process variables xk, which are
the xk,1 reactor temperature (T), xk,2 ethylene concentration in the loop reactor
(C2), xk,3 hexene concentration (C6), xk,4 the ratio of the hexene and ethylene
inlet flowrate (C6/C2in), xk,5 the flowrate of the isobutane solvent (C4), xk,6 the
hydrogen concentration (H2), xk,7 the density of the slurry in the reactor (roz),
xk,8 polymer production intensity (PE), and xk,9 the flowrate of the catalyzator
(KAT). The product quality yk is only determined later, in another process.

The interval between the product samples is between half an hour and five
hours. The yk,1 melt index (MI) and the yk,2 density of the polymer (ro) are
monitored by off-line laboratory analysis after drying the polymer that causes
one hour time-delay. Since it would be useful to know if the product is good
before testing it, the monitoring of the process would help in the early detection
of poor-quality product. There are other reasons why monitoring the process is
advantageous. Only a few properties of the product are measured and sometimes
these are not sufficient to define entirely the product quality. For example, if only
rheological properties of polymers are measured (melt index), any variation in end-
use application that arises due to variation of the chemical structure (branching,
composition, etc.) will not be captured by following only these product properties.
In these cases the process data may contain more information about events with
special causes that may effect the product quality.

2.3. Fuzzy Self-Organizing Map 77

Application to Process Monitoring

The SOM of the process has been applied to predict polymer properties from mea-
sured process variables and to interpret the behavior of the process. The process
data analyzed in this book have been collected over three months of operation.
The database contains the production of nine product grades with the distribution
given in Table 2.4.

Table 2.4: Sample distribution of the products
Number of samples Product grades
2 1
76 2
5 3
1 4
65 5
94 6
103 7
11 8
52 9

First we applied the classical FCM algorithm with 7 × 7 = 49 clusters. (The
cause of this choice is to ease the visualization in a regular grid.) Then the cluster
centers can be arranged in a grid along each dimension. These grids can also be
called maps. The maps of the coordinates of the clusters are given in Figure 2.23.

From these maps the following relations can be seen:

• The hydrogen concentration and temperature are highly correlated with the
melt index (MFI). Since the first two are state variables and they can be
controlled, it can also be said that the hydrogen concentration and the reactor
temperature determine the melt index.

• The hydrogen, C6-C2 concentrations, C6/C2 ratio, temperature have an ef-
fect on the density of polymer

• Production intensity is influenced by the flowrate of C4 and katalysator.

Unfortunately, it is hard to get more information from these images because
there are many scattered regions with different colors so we cannot be sure that
all available information has been detected.

The regularized FCM algorithm with random initialization shows better re-
sults (Figure 2.24). Here we can see the additional information that the C2, C6
concentration influence the melt index. The relations of the images are easier to
interpret, because there are only a few regions with different colors.

Last we initialized the code vectors based on the first two principal component
of the data and applied the regularized FCM algorithm. The resulting images

78 Chapter 2. Visualization of the Clustering Results

MFI ro T

C2 C6 C6/C2in C4

H2 roz PE KAT

Label

6

9

6

6

6

2

2

9

9

6

6

6

9

2

2

0

2

9

2

8

2

2

7

7

2

7

7

7

7

7

7

9

7

7

7

5

7

7

5

5

5

5

7

5

5

5

5

5

5

Figure 2.23: Map obtained by the FCM algorithm.

(Figure 2.25) are easier interpretable as before, but additional information was
not revealed.

Based on this map the typical operating regions related to different product
grades could be determined. With the regularized FCM algorithm it is possible to
detect the typical operating regions related to the frequently produced products: 5,
7, 6, 9. Furthermore, the presented clustering algorithm is a good tool for hunting
for correlation among the operating variables. For example, it can be easily seen
that the melt index of the polymer (MFI) is highly correlated to the reactor
temperature (T). Such extracted knowledge has been proven to be extremely useful
for the support of the operators, as the extracted information can be used in the
supervision of the process.

For comparison, the maps obtained by Kohonen’s SOM algorithm are also pre-
sented. On the map (Figure 2.26) the color codes are the inverse of ours. The
border of different regions are sharper on the SOM map because we used inter-
polated shading for the representation of the fuzziness of our map. The results
show that both SOM and the presented regularized clustering algorithm results in
similar component maps.

2.3. Fuzzy Self-Organizing Map 79

MFI ro T

C2 C6 C6/C2in C4

H2 roz PE KAT

Label

6

6

6

6

6

9

2

2

6

6

6

9

2

8

2

2

9

9

9

2

2

0

2

2

0

7

7

7

7

7

7

5

7

7

7

7

7

0

5

5

0

7

7

5

5

5

5

5

5

Figure 2.24: Map of code vectors obtained by randomly initialized regularized
FCM.

2.3.3 Conclusions

Clustering is a useful tool to detect the structure of the data. If there are many
clusters, it is hard to evaluate the results of the clustering. To avoid this problem,
it is useful to arrange the clusters on a low-dimensional grid and visualize them.
The aim was to develop an algorithm for this visualization task. With the intro-
duction of a new regularization term into the standard fuzzy clustering algorithm
it is possible to arrange the cluster prototypes on a grid. This type of arrangement
of the code vectors helps greatly in the visualization of the results, as the regular-
ization orders the similar cluster centers closer to each other. The color-coding of
the numerical values of the clusters results in regions on the map that shows the
relations among the variables. Hence, the presented algorithm can be used as an
alternative of SOM.

80 Chapter 2. Visualization of the Clustering Results

MFI ro T

C2 C6 C6/C2in C4

H2 roz PE KAT

Label

6

6

6

6

6

2

2

9

6

6

6

9

2

8

2

9

9

2

9

2

2

2

0

0

0

7

7

7

7

7

7

5

7

7

7

7

7

0

5

5

0

7

7

0

5

5

5

5

5

Figure 2.25: Map of cluster prototypes obtained by regularized FCM with initial-
ization.

Figure 2.26: SOM map of the process data.

Chapter 3

Clustering for Fuzzy Model
Identification – Regression

3.1 Introduction to Fuzzy Modelling

For many real world applications a great deal of information is provided by human
experts, who do not reason in terms of mathematics but instead describe the
system verbally through vague or imprecise statements like,

If The Temperature is Big then The Pressure is High. (3.1)

Because so much human knowledge and expertise is given in terms of verbal rules,
one of the sound engineering approaches is to try to integrate such linguistic infor-
mation into the modelling process. A convenient and common approach of doing
this is to use fuzzy logic concepts to cast the verbal knowledge into a conven-
tional mathematics representation (model structure), which subsequently can be
fine-tuned using input-output data.

Fuzzy logic – first proposed by Lotfi Zadeh in 1965 [298] – is primarily concerned
with the representation of the sort of imprecise knowledge which is common in
natural systems. It facilitates the representation in digital computers of this kind
of knowledge through the use of fuzzy sets. From this basis, fuzzy logic uses logical
operators to collate and integrate this knowledge in order to approximate the kind
of reasoning common in natural intelligence.

A fuzzy model is a computation framework based on the concepts of fuzzy
sets, fuzzy if-then rules, and fuzzy reasoning. This section will present detailed
information about particular fuzzy models which are used in this book. It will not
attempt to provide a broad survey of the field. For such a survey the reader is
referred to “An Introduction to Fuzzy Control” by Driankov, Hellendoorn, and
Reinfrank [75] or “Fuzzy Control“ by K.M. Passino and S. Yurkovic [212], or “A
course in Fuzzy Systems and Control“ by L.X. Wang [280].

82 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Conventional set theory is based on the premise that an element either belongs
to or does not belong to a given set. Fuzzy set theory takes a less rigid view
and allows elements to have degrees of membership of a particular set such that
elements are not restricted to either being in or out of a set but are allowed to
be “somewhat” in. In many cases this is a more natural approach. For example,
consider the case of a person describing the atmospheric temperature as being
“hot”. If one was to express this concept in conventional set theory one would be
forced to designate a distinct range of temperatures, such as 25◦C and over, as
belonging to the set hot. That is:

hot = [25,∞)◦C.

This seems contrived because any temperature which falls just slightly outside this
range would not be a member of the set, even though a human being may not be
able to distinguish between it and one which is just inside the set.

In fuzzy set theory, a precise representation of imprecise knowledge is not en-
forced since strict limits of a set are not required to be defined, instead a member-
ship function is defined. A membership function describes the relationship between
a variable and the degree of membership of the fuzzy set that correspond to par-
ticular values of that variable. This degree of membership is usually defined in
terms of a number between 0 and 1, inclusive, where 0 implies total absence of
membership, 1 implies complete membership, and any value in between implies
partial membership of the fuzzy set. This may be written as follows:

A(x) ∈ [0, 1] for x ∈ U

where A(·) is the membership function and U is the universe of discourse which
defines the total range of interest over which the variable x should be defined.

For example, to define membership of the fuzzy set, hot, a function which rises
from 0 to 1 over the range 15◦C to 25◦C may be used, i.e.,

A(x) =

⎧
⎨
⎩

0 x < 15◦C
x−15

10 15 ≥ x ≥ 25◦C
1 x > 25◦C.

This implies that 15◦C is not hot; 20◦C is a bit hot; 23◦C is quite hot; and 30◦C
is truly hot. Specific measurable values, such as 15, and 20 are often referred to as
crisp values or fuzzy singletons, to distinguish them from fuzzy values, such as hot,
which are defined by a fuzzy set. Fuzzy values are sometimes also called linguistic
values.

As Figure 3.1 illustrates, this definition is more reflective of human or linguistic
interpretations of temperatures and hence better approximates such concepts.

While seeming imprecise to a human being, fuzzy sets are mathematically pre-
cise in that they can be fully represented by exact numbers. They can therefore
be seen as a method of tying together human and machine knowledge representa-
tions. Given that such a natural method of representing information in a computer

3.1. Introduction to Fuzzy Modelling 83

Figure 3.1: Representation of the high temperature.

exists, information processing methods can be applied to it by the use of fuzzy
models.

The basic configuration of a fuzzy model is shown in Figure 3.2. As it is depicted

Figure 3.2: Structure of a fuzzy system.

in this figure, the fuzzy model involves the following components [288]:

• Data preprocessing. The physical values of the input of the fuzzy system may
differ significantly in magnitude. By mapping these to proper normalized
(but interpretable) domains via scaling, one can instead work with signals
roughly of the same magnitude, which is desirable from an estimation point
of view.

• Fuzzification. Fuzzification maps the crisp values of the preprocessed input of
the model into suitable fuzzy sets represented by membership functions (MF).
As the antecedent and consequent fuzzy sets take on linguistic meanings such
as “high temperature” they are called linguistic labels of the sets of linguistic

84 Chapter 3. Clustering for Fuzzy Model Identification – Regression

variables. For instance, if the linguistic variable is “temperature”, several
fuzzy sets can be defined for this variable, e.g., “low”, “medium”, “high”,
etc; see Figure 3.1. The degree of membership of a single crisp variable to a
single fuzzy set could be evaluated using a membership function. A fuzzifier
calculates the degree of membership of multiple crisp variables to multiple
fuzzy sets in a one-to-many fashion. There are n ≥ 1 crisp input variables
and each crisp variables can belong to Mi > 1 : i = 1 . . . n fuzzy sets.

For example, an air conditioning system might have two crisp input vari-
ables, temperature and humidity, i.e., n = 2. These might be transformed to
two fuzzy variables consisting of the fuzzy sets {cold, cool, tepid, warm, hot}
and {dry, normal, hot}, respectively. This means that M1 = 5 and M2 = 3.

Systems of only one input variable are feasible, but it is quite apparent
that if only one fuzzy set is defined for one particular input variable then
no distinctions can be made in the rules on this variable and its inclusion in
the fuzzy model is redundant. Therefore two or more fuzzy sets will usually
be defined for each input variable. It has already been mentioned that the
degree of membership of a crisp variable to a fuzzy set is defined by a mem-
bership function. In this work, triangular membership functions will be used
exclusively. The triangular membership function and some other commonly
used membership function shapes are shown in Figure 3.3.

1

0

1

0

triangular trapezoidal

1

0

Gaussian

Figure 3.3: Three common membership function shapes.

• Rule base. The rule base is the cornerstone of the fuzzy model. The expert
knowledge, which is assumed to be given as a number of if-then rules, is
stored in a fuzzy rule base.

In rule-based fuzzy systems, the relationship between variables are rep-
resented by means of If-Then rules of the following general form:

If antecedent proposition then consequent proposition (3.2)

According to the consequent proposition and to the structure of the rule
base, there are three distinct classes of fuzzy models:

– Fuzzy linguistic models (Mamdani models) [184, 185] where both the
antecedent and consequent are fuzzy propositions. Hence, a general rule

3.1. Introduction to Fuzzy Modelling 85

of a linguistic or Mamdani fuzzy model is given by

Rj : If x1 is A1,j and . . . and xn is An,j then y is Bj (3.3)

where Rj denotes the jth rule, j = 1, . . . , Nr, and Nr is the number
of the rules. The antecedent variables represent the input of the fuzzy
system x. Ai,j and Bj are fuzzy sets described by membership functions
µAi,j (xi) :→ [0, 1] and µBi(y) :→ [0, 1].

– Fuzzy relational models are based on fuzzy relations and relational equa-
tions [297]. These models can be considered as a generalization of the
linguistic model, allowing one particular antecedent proposition to be
associated with several different consequent propositions via a fuzzy
relation.

– Takagi–Sugeno (TS) fuzzy models where the consequent is a crisp func-
tion of the input variables, fj(x), rather than a fuzzy proposition [257].

Rj : If x1 is A1,j and . . . and xn is An,j then y = fj(x). (3.4)

This book deals with this type of fuzzy models.

• Inference engine. The inference mechanism or inference engine is the com-
putational method which calculates the degree to which each rule fires for a
given fuzzified input pattern by considering the rule and label sets. A rule
is said to fire when the conditions upon which it depends occur. Since these
conditions are defined by fuzzy sets which have degrees of membership, a
rule will have a degree of firing or firing strength, βj . The firing strength is
determined by the mechanism which is used to implement the and in the
expression (3.4); in this book the product of the degrees of membership will
be used, that is:

βj =
n∏

i=1

Ai,j (3.5)

where Ai,j defines the membership function on input i is used in rule j. Again,
there are different methods for implementing each of the logical operators and
the reader is referred to [75] for details on these.

• Defuzzification. A defuzzifier compiles the information provided by each of
the rules and makes a decision from this basis. In linguistic fuzzy models the
defuzzification converts the resulted fuzzy sets defined by the inference engine
to the output of the model to a standard crisp signal. The method which is
used in this book is the method commonly called the centre-of-gravity or
centroid method. In case of TS fuzzy models it is described by the following
equation:

y =

∑Nr

j=1 βjfj(x)
∑Nr

j=1 βj

. (3.6)

86 Chapter 3. Clustering for Fuzzy Model Identification – Regression

It can be seen that the centroid method of defuzzification takes a weighted
sum of the designated consequences of the rules according to the firing
strengths of the rules. There are numerous other types of defuzzifiers such as
centre-of-sums, first-of-maxima, and middle-of-maxima [75].

• Postprocessing. The preprocessing step gives the output of the fuzzy system
based on the crisp signal obtained after defuzzification. This often means the
scaling of the output.

In their paper, “Fuzzy Basis Functions, Universal Approximation, and Orthog-
onal Least-Squares Learning” [279], Wang and Mendel define fuzzy basis func-
tions as:

βj(x) =

n∏
i=1

Ai,j(xi)

Nr∑
j=1

n∏
i=1

Ai,j(xi)

, y =

Nr∑

j=1

βj(x)θj

where βj(x) is the normalized firing strength of rule j, Ai,j(xj) represents a mem-
bership function, xi is the ith input, and θj is the crisp rule consequent, fj(x) = θj .
Wang and Mendel prove that, given enough rules, this system can approximate
any real continuous function to any given accuracy; this is stated as follows:

Theorem 3.1.1. Given any continuous function f(·) on the compact set U ⊂ Rn

and an arbitrary constant ǫ > 0, there exists a function f̂(·), defined on the set of
all fuzzy basis function expansions, such that:

min (x1, . . . , xn) ∈ U |f̂(x1, . . . , xn) − f(x1, . . . , xn)| < ǫ

where f̂(x1, . . . , xn) is the function implemented by the fuzzy basis function.

Although this is an interesting result, it should be noted that it is usually
undesirable to have to define a separate set of membership functions for each rule.
In addition, the theorem does not define the number of basis functions or rules
required to achieve the desired accuracy (given by ǫ) – this number could be very
large in some cases. Given that one of the most important features of fuzzy rules
is that humans should be able to interpret them, a large number of rules could
work against this purpose.

3.2 Takagi–Sugeno (TS) Fuzzy Models

This book mainly deals with a Takagi–Sugeno (TS) fuzzy model proposed by Tak-
agi, Sugeno, and Kang [257, 254] to develop a systematic approach for generating
fuzzy rules from a given input-output data set. In this section the structure of this
model and the related modelling paradigms will be presented.

3.2. Takagi–Sugeno (TS) Fuzzy Models 87

3.2.1 Structure of Zero- and First-order TS Fuzzy Models

The TS model is a combination of a logical and a mathematical model. This model
is also formed by logical rules; it consists of a fuzzy antecedent and a mathematical
function as consequent part. The antecedents of fuzzy rules partition the input
space into a number of fuzzy regions, while the consequent functions describe the
system behavior within a given region:

Rj : If z1 is A1,j and . . . and zn is An,j then
y = fj (q1, . . . , qm) (3.7)

where z = [z1, . . . , zn]
T

is the n-dimensional vector of the antecedent variables,

z ∈ x, q = [q1, . . . , qm]
T

is the m-dimensional vector of the consequent variables
q ∈ x, where x denotes the set of all inputs of the y = f (x) model. Ai,j(zi)
denotes the antecedent fuzzy set for the ith input. The antecedents of fuzzy rules
partition the input space into a number of fuzzy regions, while the fj(q) consequent
functions describe the system behavior within a given region.

The spirit of fuzzy inference systems resembles that of a ‘divide and conquer’
concept – the antecedent of fuzzy rules partition the input-space into a number
of local fuzzy regions, while the consequents describe the behavior within a given
region via various constituents [131].

With respect to the antecedent membership functions and the structure of
the rules three typical ways of partitioning of the input space can be obtained.
Figure 3.4 illustrates these partitions in a two-dimensional input space.

Figure 3.4: Various methods for partitioning the input space.

• Grid partition The conjunctive antecedent divides the antecedent space into
a lattice of axis-orthogonal hyperboxes. In this case the number of rules
needed to cover the entire domain is an exponential function of the input
space dimension and of the fuzzy sets used in each variable. This partition
method is often chosen in designing a fuzzy system which usually involves
a few input variables. This partition strategy needs only a small number of
membership functions for each input. However, it encounters problems when
we have moderately large number of inputs. For instance, a fuzzy model
with ten inputs and two membership functions on each input would result in
210 = 1024 fuzzy if-then rules. This problem, usually referred to as the curse

88 Chapter 3. Clustering for Fuzzy Model Identification – Regression

of dimensionality, can be alleviated by other partition strategies introduced
below.

• Tree partition This partition relieves the problem of the exponential increase
of the number of rules. However, more membership functions for each input
are needed to define these fuzzy regions and these membership functions are
not interpretable as they do not bear clear linguistic meaning such as “small”.

• Scatter partition By covering a subset of the whole input space that char-
acterizes a region of possible occurrence of the input vectors, the scatter
partition can be obtained that can also limit the number of rules to a rea-
sonable amount. In this case the use of multivariate membership functions
is the most general one, as there is no restriction on the shape of fuzzy sets.
The boundaries between the fuzzy sets can be arbitrarily curved and opaque
to the axes. This multidimensional membership function based fuzzy model
is described in [1].

Usually, the fj consequent function is a polynomial in the input variables, but
it can be any arbitrary chosen function that can appropriately describe the output
of the system within the region specified by the antecedent of the rule. When fj(q)
is a first-order polynomial,

fj(q) = θ0
j + θ1

j q1 + · · · + θm
j qm =

m∑
l=0

θl
jql , where q0 = 1 (3.8)

the resulting fuzzy inference system is called first-order Takagi–Sugeno or simply
Takagi–Sugeno fuzzy model. If fj(q) is a constant (fuzzy singleton) fj = θ0

j we
have a zero-order Takagi–Sugeno or Singleton fuzzy model, which is a special case
of the linguistic fuzzy inference systems [104] and the TS fuzzy model (m = 0).

Using fuzzy inference based upon product-sum-gravity at a given input [288],
the final output of the fuzzy model, y, is inferred by taking the weighted average
of the consequent functions as it is depicted in Figure 3.5:

y =

Nr∑
j=1

βj(z)fj(q)

Nr∑
j=1

βj(z)

(3.9)

where the weight, 0 ≤ βj(z) ≤ 1, represents the overall truth value (degree of
fulfillment) of the ith rule calculated based on the degrees of membership

βj(z) =

n∏

i=1

Ai,j (zi). (3.10)

Figure 3.5 shows the fuzzy reasoning procedure for a TS fuzzy model.

3.2. Takagi–Sugeno (TS) Fuzzy Models 89

Figure 3.5: Inference method of the Takagi–Sugeno fuzzy model.

Example 3.1 (SISO TS fuzzy model). This example presents a simple Takagi–
Sugeno fuzzy model that has one input variable. The y = f(x) model consists of
three rules with local linear models on the consequent parts

Rj : If z1 is A1,j then y = θ0
j + θ1

j q1

where x1 = x, z1 = x1, q1 = x1, j = 1, . . . , 3.
As Figure 3.6 shows, when the operating regimes of these local models are de-

fined by fuzzy sets instead of crisp ones, the resulted model behaves as a smooth
nonlinear function.

�

As Figure 3.7 shows, the membership functions are arranged by Ruspini-type
partition keeping the sum of the membership degrees equal to one

il=Ml∑

il=1

Al,il
(zl) = 1 l = 1, . . . , n (3.11)

where Ml represents the number of the fuzzy sets on the lth input domain. Hence,
the triangular membership functions are defined by:

Al,il
(zl) =

zl − al,ij−1

al,il
− al,il−1

, al,il−1 ≤ zl < al,il

Al,il
(zl) =

al,il+1 − zl

al,il+1 − al,il

, al,il
≤ zl < al,il+1

(3.12)

90 Chapter 3. Clustering for Fuzzy Model Identification – Regression

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

z
1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

small medium large

(a) Antecedent MFs for Crisp Rules

−10 −5 0 5 10
0

2

4

6

8

x

y

(b) Overall I/O Curve for Crisp Rules

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

z
1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

small medium large

(c) Antecedent MFs for Fuzzy Rules

−10 −5 0 5 10
0

2

4

6

8

x

y

(d) Overall I/O Curve for Fuzzy Rules

Figure 3.6: Example of a TS fuzzy model.

Figure 3.7: Ruspini parameterization of triangular membership functions.

3.2. Takagi–Sugeno (TS) Fuzzy Models 91

where al,il
cores of the adjacent fuzzy sets determine the support (supl,il

= al,il+1−
al,il−1) of a set.

al,il
= core(Al,il

(zl)) = {zl|Al,il
(zl) = 1} . (3.13)

Example 3.2 (Ruspini partition of two-dimensional input space). In multivariable
case, the presented model obtains grid-type axes-parallel partition of the input space
that helps to obtain an easily interpretable rule base. Figure 3.8 illustrates such
partitioning of a two-dimensional input space when n = 2, M1 = 5, and M2 = 5.

Figure 3.8: Partition of the input domain (when n = 2, M1 = 5, M2 = 5).

�

In the following, the mathematical formalism of TS fuzzy models for nonlinear
regression is described. Consider the identification of an unknown nonlinear system

y = f(x) (3.14)

based on some available input-output data xk = [x1,k, . . . , xn,k]T and yk, respec-
tively. The index k = 1, . . . , N denotes the individual data samples.

While it may be difficult to find a model to describe the unknown system glob-
ally, it is often possible to construct local linear models around selected operating
points. The modelling framework that is based on combining local models valid

92 Chapter 3. Clustering for Fuzzy Model Identification – Regression

in predefined operating regions is called operating regime-based modelling [197]. In
this framework, the model is generally given by:

ŷ =

c∑

i=1

φi(x)
(
aT

i x + bi

)
(3.15)

where φi(x) is the validity function for the ith operating regime and θi = [aT
i bi]

T

is the parameter vector of the corresponding local linear model. The operating
regimes can also be represented by fuzzy sets in which case the Takagi–Sugeno
fuzzy model is obtained [257]:

Ri : If x is Ai(x) then ŷ = aT
i x + bi, [wi] i = 1, . . . , c . (3.16)

Here, Ai(x) is a multivariable membership function, ai and bi are parameters of
the local linear model, and wi ∈ [0, 1] is the weight of the rule. The value of wi is
usually chosen by the designer of the fuzzy system to represent the belief in the
accuracy of the ith rule. When such knowledge is not available wi = 1, ∀ i is used.

The antecedent proposition “x is Ai(x)” can be expressed as a logical combi-
nation of propositions with univariate fuzzy sets defined for the individual com-
ponents of x, usually in the following conjunctive form:

Ri : If x1 is Ai,1(x1) and . . . and xn is Ai,n(xn) then ŷ = aT
i x + bi, [wi] .

(3.17)
The degree of fulfillment of the rule is then calculated as the product of the indi-
vidual membership degrees and the rule’s weight:

βi(x) = wiAi(x) = wi

n∏

j=1

Ai,j(xj) . (3.18)

The rules are aggregated by using the fuzzy-mean formula

ŷ =

c∑
i=1

βi(x)
(
aT

i x + bi

)

c∑
i=1

βi(x)
. (3.19)

3.2.2 Related Modelling Paradigms

There are many well-known or developing modelling strategies that can be seen
as special case of the previously presented fuzzy model. The remaining part of
this section presents the connections with these methods to show the possible
interpretations of the TS fuzzy models.

• Operating Regime Based Modelling

As the combination of fuzzy sets partition the input space into a number of
fuzzy regions and the consequent functions (local models) describe the system

3.2. Takagi–Sugeno (TS) Fuzzy Models 93

behavior within a given region, the TS fuzzy model can be seen as multiple
model network [197]. The soft transition between the operating regimes is
handled by the fuzzy system in elegant fashion [31]. This representation is
appealing, since many systems change its behavior smoothly as a function of
the operating point.

From (3.15) and (3.19) one can see that the TS fuzzy model is equivalent
to the operating regime-based model when the validity function is chosen to
be the normalized rule degree of fulfillment:

φi(x) =
βi(x)

c∑
i=1

βi(x)
. (3.20)

In this chapter, Gaussian membership functions are used to represent the
fuzzy sets Ai,j(xj):

Ai,j(xj) = exp

(
−1

2

(xj − vi,j)
2

σ2
i,j

)
(3.21)

with vi,j being the center and σ2
i,j the variance of the Gaussian curve. This

choice leads to the following compact formula for (3.18):

βi(x) = wiAi(x) = wi exp

(
−1

2

(
x − vx

j

)T
(Fxx

i)−1
(
x − vx

j

))
. (3.22)

The center vector is denoted by vx
j = [v1,j , . . . , vn,j] and (Fxx

i)−1 is the
inverse of the matrix containing the variances on its diagonal:

Fxx
i =

⎡
⎢⎢⎢⎣

σ2
1,i 0 · · · 0
0 σ2

2,i · · · 0
...

...
. . .

...
0 0 · · · σ2

n,i

⎤
⎥⎥⎥⎦ . (3.23)

• Piece-wise Models

When the antecedent of a first-order TS fuzzy model consists of crisp sets
or the fuzzy sets are defined by piece-wise linear membership functions, the
resulted fuzzy model has piece-wise (linear or quadratic) behavior. Mod-
elling techniques based on piece-wise linear models are widely applied for
control relevant modelling [127]. Skeppstedt describes the use of local models
for modelling and control purposes with hard transfer from one model to
the next [248]. Pottman describes a multi model approach where the local
models overlap [219]. These models can be effectively used in model based
control [94].

94 Chapter 3. Clustering for Fuzzy Model Identification – Regression

When the rule consequent is a crisp number (Singleton) and the rule an-
tecedent contains piece-wise linear membership functions, the resulted fuzzy
model has piece-wise linear input-output behavior. Piece-wise linear multi-
dimensional fuzzy sets can be obtained by Delaunay triangulation of charac-
teristic points defined on the input space of the fuzzy model. This technique
has already been suggested in the context of complexity reduction of fuzzy
systems [242]. Moreover, Delaunay-based multivariable spline approximation
from scattered samples of an unknown function has proven to be an effective
tool for classification [67]. Recently, Delaunay Networks were introduced to
represent interpolating models and controllers [270] and the integration of
expert knowledge in these models has been also studied [269]. Fuzzy models
based on this concept are pursued in [1].

• B-spline Networks

The presented grid-type fuzzy model makes piece-wise polynomial approx-
imation of the nonlinear system to be modeled. Piecewise polynomials are
closely related to spline modelling and have been successfully applied to many
real-life problems, e.g., in experimental pH control and for the prediction of
the viscosity for an industrial polymerization reactor [175]. B-spline basis
functions can be regarded as piece-wise polynomials, where B-spline basis
functions are defined by a set of knots that represent piecewise polynomial
intervals. The order of these local polynomials is defined by the order of the
B-splines, denoted by k. A knot vector of a set of kth order basis functions
is defined by

ai = [ai,1, ai,2, . . . , ai,Mi+k−1]
T (3.24)

where Mi is the number of the basis functions defined on the ith variable,
and ai,j is the jth knot. The univariate basis functions are calculated using
the following recurrence relationship [50]:

Ak
i,j (zi) =

(
zi − ai,j−k

ai,j−1 − ai,j−k

)
Ak−1

i,j−1 (zi) +

(
ai,j − zi

ai,j − ai,j−k+1

)
Ak−1

i,j (zi)

(3.25)

A1
i,j (zi) =

{
1, if zi ∈ [ai,j−1, ai,j]

0, otherwise
(3.26)

where Ak
i,j (zi) is the jth univariate basis function of order k. Triangular mem-

bership functions are identical to second-order B-spline basis functions (3.12).

Multi-dimensionality of the model is achieved by the means of the ten-
sor product of the univariate B-splines. Given a set of B-splines defined over
the input variables the multivariate B-spline can be defined as

βk
j (z) =

n∏

i=1

Ak
i,j (zi). (3.27)

This multivariate B-spline is identical to the weight of the jth rule.

3.2. Takagi–Sugeno (TS) Fuzzy Models 95

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

z
2z

1

β
l

Figure 3.9: Example of multi(bi)variate B-spline (membership) functions.

Figure 3.9 shows an example of bivariate B-splines that are identical
to the rule weights of nine rules in a fuzzy system with three membership
functions defined on its two input domains.

• Radial Basis Function Networks

Basis function networks have been used for function approximation and mod-
elling in various forms for many years. The original radial basis function
methods come from interpolation theory [220], where a basis function is as-
sociated with each data point. Basis function nets have also received attention
from neural network and the control community [182].

Radial Basis Functions Networks (RBFNs), as proposed in 1989 by
Moody and Darken [195], are often considered to be a type of neural net-
work in which each unit has only a local effect instead of a global effect as
in multi-layer percetron based neural networks (MLPs). In a similar way to
MLPs, RBFNs perform function approximation by superimposing a set of
Nr Radial Basis Functions (RBFs) as follows:

βj = exp

(
−

n∑

i=1

(
xi − ai,j

σi,j

)2
)

(3.28)

y =

∑Nr

j=1 βjθj
∑Nr

j=1 βj

(3.29)

96 Chapter 3. Clustering for Fuzzy Model Identification – Regression

where βj : j = 1, . . . , Nr is the firing strength of unit j, Nr is the number
of RBFs, xi : i = 1, . . . , n are the inputs, y is the output, and ai,j : i =
1, . . . , n; j = 1, . . . , Nr, σi,j : i = 1, . . . , n; j = 1, . . . , Nr, and θj : j =
1, . . . , Nr are free parameters which respectively determine the position,
width, and height of the humps.

RBFNs can be trained in the same way as MLPs, i.e., they are initialized
randomly and then minimized by gradient-descent. Alternatively, the position
of the centres of the RBFs and their widths can be determined by a clustering
algorithm and then the heights can be set by a least-squares type of algorithm
[195]. Like MLPs, they have been proven to be universal approximators [112].

Jang has pointed out, under certain constraints, the radial basis func-
tion network (RBFN) is functionally equivalent to zero-order TS fuzzy model
[22, 129] as

βj = exp

(
−

n∑

i=1

(
xi − ai,j

σi,j

)2
)

(3.30)

=

n∏

i=1

exp

(
−
(

xi − ai,j

σi,j

)2
)

︸ ︷︷ ︸
Ai,j(xi)

.

Hunt has developed a generalized radial basis function network (GBFN) that
is similar to the first-order TS fuzzy model [121]. These models are identical
to TS fuzzy models under the following conditions.

– The number of the basis function units is equal to the number of the
fuzzy if-then rules.

– Both the basis function network and the fuzzy inference system use the
same method to calculate their overall outputs.

Thus, the model presented in Section 3.2.1 can be seen as RBFN if q = {0}
and GBFN if q �= {0}, with piecewise linear basis functions.

The realization that fuzzy models are very similar to RBFN function
approximators also means that methods which have been developed in fuzzy
control, such as those analyzed in this work, can be applied to neural control.

3.3 TS Fuzzy Models for Nonlinear Regression

Fuzzy identification is an effective tool for the approximation of uncertain non-
linear systems on the basis of measured data [115]. Among the different fuzzy
modelling techniques, the Takagi–Sugeno (TS) model [257] has attracted most

3.3. TS Fuzzy Models for Nonlinear Regression 97

attention. This model consists of if–then rules with fuzzy antecedents and math-
ematical functions in the consequent part. The antecedents fuzzy sets partition
the input space into a number of fuzzy regions, while the consequent functions
describe the system’s behavior in these regions [254].

The construction of a TS model is usually done in two steps. In the first step, the
fuzzy sets (membership functions) in the rule antecedents are determined. This
can be done manually, using knowledge of the process, or by some data-driven
techniques. In the second step, the parameters of the consequent functions are
estimated. As these functions are usually chosen to be linear in their parameters,
standard linear least-squares methods can be applied.

The bottleneck of the construction procedure is the identification of the an-
tecedent membership functions, which is a nonlinear optimization problem. Typi-
cally, gradient-decent neuro-fuzzy optimization techniques are used [131], with all
the inherent drawbacks of gradient-descent methods: (1) the optimization is sensi-
tive to the choice of initial parameters and hence can easily get stuck in local min-
ima; (2) the obtained model usually has poor generalization properties; (3) during
the optimization process, fuzzy rules may loose their initial meaning (i.e., validity
as local linear models of the system under study). This hampers the a posteriori
interpretation of the optimized TS model. An alternative solution are gradient-free
nonlinear optimization algorithms. Genetic algorithms proved to be useful for the
construction of fuzzy systems [136, 230]. Unfortunately, the severe computational
requirements limit their applicability as a rapid model-development tool.

Fuzzy clustering in the Cartesian product-space of the inputs and outputs
is another tool that has been quite extensively used to obtain the antecedent
membership functions [255, 29, 26]. Attractive features of this approach are the
simultaneous identification of the antecedent membership functions along with the
consequent local linear models and the implicit regularization [139].

By clustering in the product-space, multidimensional fuzzy sets are initially
obtained, which are either used in the model directly or after projection onto the
individual antecedent variables. As it is generally difficult to interpret multidi-
mensional fuzzy sets, projected one-dimensional fuzzy sets are usually preferred.
However, the projection and the approximation of the point-wise defined member-
ship functions by parametric ones may deteriorate the performance of the model.
This is due to two types of errors: the decomposition error and the approximation
error. The decomposition error can be reduced by using eigenvector projection
[26, 151] and/or by fine-tuning the parameterized membership functions. This
fine-tuning, however, can result in overfitting and thus poor generalization of the
identified model.

In this chapter, we propose to use the Gath–Geva (GG) clustering algorithm
[93] instead of the widely used Gustafson–Kessel method [108], because with the
GG method, the parameters of the univariate membership functions can directly
be derived from the parameters of the clusters. Through a linear transformation
of the input variables, the antecedent partition can be accurately captured and no
decomposition error occurs. Unfortunately, the resulting model is not transparent

98 Chapter 3. Clustering for Fuzzy Model Identification – Regression

as it is hard to interpret the linguistic terms defined on the linear combination
of the input variables. To form an easily interpretable model that does not rely
on transformed input variables, a new clustering algorithm is presented based on
the Expectation Maximization (EM) identification of Gaussian mixture of models.
Mixtures are used as models of data originating from several mixed populations.
The EM algorithm has been widely used to estimate the parameters of the compo-
nents in the mixture [44]. The clusters obtained by GG clustering are multivariate
Gaussian functions. The alternating optimization of these clusters is identical to
the EM identification of the mixture of these Gaussian models when the fuzzy
weighting exponent m = 2 [40].

In this chapter, a new cluster prototype is introduced, that can easily be rep-
resented by an interpretable Takagi–Sugeno (TS) fuzzy model. Similarly to other
fuzzy clustering algorithms, the alternating optimization method is employed in
the search for the clusters. This new technique is demonstrated on the MPG
(miles per gallon) prediction problem and another nonlinear benchmark process.
The obtained results are compared with results from the literature. It is shown
that with the presented modified Gath–Geva algorithm not only good prediction
performance is obtained, but also the interpretability of the model improves.

3.3.1 Fuzzy Model Identification Based on Gath–Geva Clustering

The available data samples are collected in matrix Z formed by concatenating the
regression data matrix X and the output vector y:

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
N

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣

y1

y2

...
yN

⎤
⎥⎥⎥⎦ , ZT = [Xy] . (3.31)

Each observation thus is an n + 1-dimensional column vector

zk = [x1,k, . . . , xn,k, yk]T = [xT
k yk]T .

Through clustering, the data set Z is partitioned into c clusters (see also Fig-
ure 1.17 in Section 1.6). The c is assumed to be known, based on prior knowledge,
for instance (refer to [26] for methods to estimate or optimize c in the context
of system identification). The result is a fuzzy partition matrix U = [µi,k]c×N ,
whose element µi,k represents the degree of membership of the observation zk in
cluster i.

Clusters of different shapes can be obtained by using an appropriate definition
of cluster prototypes (e.g., linear varieties) or by using different distance measures.
The Gustafson–Kessel (GK) clustering algorithm has often been applied to iden-
tify TS models. The main drawbacks of this algorithm are that only clusters with
approximately equal volumes can be properly identified and that the resulted clus-
ters cannot be directly described by univariate parametric membership functions.

3.3. TS Fuzzy Models for Nonlinear Regression 99

To circumvent these problems, Gath–Geva algorithm [93] is applied. Since the
cluster volumes are not restricted in this algorithm, lower approximation errors and
more relevant consequent parameters can be obtained than with Gustafson–Kessel
(GK) clustering. An example can be found in [26], p. 91. The clusters obtained by
GG clustering can be transformed into exponential membership functions defined
on the linearly transformed space of the input variables.

Probabilistic Interpretation of Gath–Geva Clustering

The Gath–Geva clustering algorithm can be interpreted in the probabilistic frame-
work. Denote p(ηi) the unconditional cluster probability (normalized such that∑c

i=1 p(ηi) = 1), given by the fraction of the data that it explains; p(z|ηi) is the
domain of influence of the cluster, and will be taken to be multivariate Gaussian
N(vi,Fi) in terms of a mean vi and covariance matrix Fi. The Gath–Geva algo-
rithm is equivalent to the identification of a mixture of Gaussians that model the
p(z|η) probability density function expanded into a sum over the c clusters

p(z|η) =

c∑

i=1

p(z, ηi) =

c∑

i=1

p(z|ηi)p(ηi) (3.32)

where the p(z|ηi) distribution generated by the ith cluster is represented by the
Gaussian function

p(z|ηi) =
1

(2π)
n+1

2

√
|Fi|

exp

(
−1

2
(z − vi)

T (Fi)
−1(z − vi)

)
. (3.33)

Through GG clustering, the p(z) = p(x, y) joint density of the response variable y
and the regressors x is modeled as a mixture of c multivariate n + 1-dimensional
Gaussian functions.

The conditional density p(y|x) is also a mixture of Gaussian models. Therefore,
the regression problem (3.14) can be formulated on the basis of this probability as

y = f(x) = E[y|x] =

=

∫
yp(y|x)dy =

∫
yp(y,x)dy

p(x)
=

=

c∑

i=1

[
[xT 1]θi

]
p(x|ηi)p(ηi)

p(x)
=

c∑

i=1

p(ηi|x)
[
[xT 1]θi

]
. (3.34)

Here, θi is the parameter vector of the local models to be obtained later on (Sec-
tion 3.3.2) and p(ηi|x) is the probability that the ith Gaussian component is
generated by the regression vector x:

p(ηi|x) =

p(ηi)

(2π)n/2
√

|Fxx
i |

exp
(
− 1

2 (x − vx
i)T (Fxx

i)−1(x − vx
i)
)

c∑
i=1

p(ηi)

(2π)n/2
√

|(F)xx
i |

exp
(
− 1

2 (x − vx
i)T (Fxx

i)−1(x − vx
i)
) (3.35)

100 Chapter 3. Clustering for Fuzzy Model Identification – Regression

where Fxx is obtained by partitioning the covariance matrix F as follows

Fi =

[
Fxx

i F
xy
i

F
yx
i F

yy
i

]
(3.36)

where

• Fxx
i is the n × n submatrix containing the first n rows and columns of Fi,

• F
xy
i is an n× 1 column vector containing the first n elements of last column

of Fi,

• F
yx
i is an 1 × n row vector containing the first n elements of the last row of

Fi, and

• F
yy
i is the last element in the last row of Fi.

3.3.2 Construction of Antecedent Membership Functions

The ‘Gaussian Mixture of Regressors’ model [144] defined by (3.34) and (3.35) is
in fact a kind of operating regime-based model (3.15) where the validity function
is chosen as φi(x) = p(ηi|x). Furthermore, this model is also equivalent to the TS
fuzzy model where the rule weights in (3.16) are given by:

wi =
p(ηi)

(2π)n/2
√
|Fxx

i |
(3.37)

and the membership functions are the Gaussians defined by (3.22). However, in
this case, Fxx

i is not necessarily in the diagonal form (3.23) and the decomposition
of Ai(x) to the univariate fuzzy sets Ai,j(xj) given by (3.21) is not possible.

If univariate membership functions are required (for interpretation purposes),
such a decomposition is necessary. Two different approaches can be followed.

The first one is an approximation, based on the axis-orthogonal projection
of Ai(x). This approximation will typically introduce some decomposition error,
which can, to a certain degree, be compensated by using global least-squares re-
estimation of the consequent parameters. In this way, however, the interpretation
of the local linear models may be lost, as the rule consequents are no longer local
linearizations of the nonlinear system [6, 140].

The second approach is an exact one, based on eigenvector projection [26],
also called the transformed input-domain approach [151]. Denote λi,j and ti,j ,
j = 1, . . . , n, the eigenvalues and the unitary eigenvectors of Fxx

i , respectively.
Through the eigenvector projection, the following fuzzy model is obtained in the
transformed input domain:

Ri : If x̃i,1 is Ai,1(x̃i,1) and . . . and x̃i,n is Ai,n(x̃i,n) then ŷ = aT
i x + bi (3.38)

3.3. TS Fuzzy Models for Nonlinear Regression 101

where x̃i,j = tT
i,jx are the transformed input variables. The Gaussian membership

functions are given by

Ai,j(x̃i,j) = exp

(
−1

2

(x̃i,j − ṽi,j)
2

σ̃2
i,j

)
(3.39)

with the cluster centers ṽi,j = tT
i,jv

x
i and and variances σ̃2

i,j = λ2
i,j .

Estimation of Consequent Parameters

Two least-squares methods for the estimation of the parameters in the local lin-
ear consequent models are presented: weighted total least squares and weighted
ordinary least squares (see also Section 1.6).

• Ordinary Least-Squares Estimation

The ordinary weighted least-squares method can be applied to estimate the
consequent parameters in each rule separately, by minimizing the following
criterion:

min
θi

1

N
(y − Xeθi)

T
Φi (y − Xeθi) (3.40)

where Xe = [X 1] is the regressor matrix extended by a unitary column and
Φi is a matrix having the membership degrees on its main diagonal:

Φi =

⎡
⎢⎢⎢⎣

µi,1 0 · · · 0
0 µi,2 · · · 0
...

...
. . .

...
0 0 · · · µi,N

⎤
⎥⎥⎥⎦ . (3.41)

The weighted least-squares estimate of the consequent parameters is given
by

θi =
(
XT

e ΦiXe

)−1
XT

e Φiy . (3.42)

When µi,k is obtained by the Gath–Geva clustering algorithm, the covariance
matrix can directly be used to obtain the estimate instead of (3.42):

ai = (Fxx)
−1

Fxy ,

bi = vy
i − aT

i vx
i . (3.43)

This follows directly from the properties of least-squares estimation [74].

• Total Least-Squares Estimation

As the clusters locally approximate the regression surface, they are n-dim-
ensional linear subspaces of the (n+1)-dimensional regression space. Con-
sequently, the smallest eigenvalue of the ith cluster covariance matrix Fi is

102 Chapter 3. Clustering for Fuzzy Model Identification – Regression

typically in orders of magnitude smaller than the remaining eigenvalues [26].
The corresponding eigenvector ui is then the normal vector to the hyperplane
spanned by the remaining eigenvectors of that cluster:

uT
i (z − vi) = 0 . (3.44)

Similarly to the observation vector z = [xT y]T , the prototype vector and is

partitioned as vi =
[
(vx

i)
T

vy
i

]
, i.e., into a vector vx corresponding to the

regressor x, and a scalar vy
i corresponding to the output y. The eigenvector

is partitioned in the same way, ui =
[
(ux

i)
T

uy
i

]T

. By using these partitioned

vectors, (3.44) can be written as

[
(ux

i)T uy
i

] (
[xT y] −

[
(vx

i)T vy
i

])T

= 0 (3.45)

from which the parameters of the hyperplane defined by the cluster can be
obtained:

y =
−1

uy
i

(ux
i)T

︸ ︷︷ ︸
aT

i

x +
1

uy
i

(ui)
T

vi

︸ ︷︷ ︸
bi

. (3.46)

Although the parameters have been derived from the geometrical interpre-
tation of the clusters, it can be shown [26] that (3.46) is equivalent to the
weighted total least-squares estimation of the consequent parameters, where
each data point is weighted by the corresponding membership degree.

The TLS algorithm should be used when there are errors in the input vari-
ables. Note, however, that the TLS algorithm does not minimize the mean-square
prediction error of the model, as opposed to the ordinary least-squares algorithm.
Furthermore, if the input variables of the model locally are strongly correlated, the
smallest eigenvector then does not define a hyperplane related to the regression
problem; it may rather reflect the dependency of the input variables.

3.3.3 Modified Gath–Geva Clustering

As discussed in Section 3.3.2, the main drawback of the construction of inter-
pretable Takagi–Sugeno fuzzy models via clustering is that clusters are generally
axes-oblique rather than axes-parallel (the fuzzy covariance matrix Fxx has non-
zero off-diagonal elements) and consequently a decomposition error is made in
their projection. To circumvent this problem, we propose a new fuzzy clustering
method in this section.

3.3. TS Fuzzy Models for Nonlinear Regression 103

Expectation Maximization based Fuzzy Clustering for Regression

Each cluster is described by an input distribution, a local model and an output
distribution:

p(x, y) =

c∑

i=1

p(x, y, ηi) =

c∑

i=1

p(x, y|ηi)p(ηi)

=

c∑

i=1

p(y|x, ηi)p(x|ηi)p(ηi) . (3.47)

The input distribution, parameterized as an unconditional Gaussian [95], defines
the domain of influence of the cluster similarly to the multivariate membership
functions (3.22)

p(x|ηi) =
1

(2π)
n
2

√
|Fxx

i |
exp

(
−1

2
(x − vx

i)T (Fxx
i)−1(x − vx

i)

)
. (3.48)

The output distribution is

p(y|x, ηi) =
1√
2πσ2

i

exp

(
− (y − xT θi)

T (y − xT θi)

2σ2
i

)
. (3.49)

When the transparency and interpretability of the model is important, the cluster
covariance matrix Fxx can be reduced to its diagonal elements similarly to the
simplified axis-parallel version of the Gath–Geva clustering algorithm [119]:

p(xk|ηi) =

n∏

j=1

1√
2πσ2

i,j

exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)
. (3.50)

The identification of the model means the determination of the cluster parameters:
p(ηi),v

x
i ,Fxx

i , θi, σi. Below, the expectation maximization (EM) identification of
the model is presented, followed by a re-formulation of the algorithm in the form
of fuzzy clustering.

The basics of EM are the following. Suppose we know some observed values
of a random variable z and we wish to model the density of z by using a model
parameterized by η. The EM algorithm obtains an estimate η̂ that maximizes the
likelihood L(η) = p(z|η) by iterating over the following two steps:

• E-step. In this step, the current cluster parameters ηi are assumed to be cor-
rect, and based on them the posterior probabilities p(ηi|x, y) are computed.
These posterior probabilities can be interpreted as the probability that a par-
ticular piece of data was generated by the particular cluster’s distribution.
By using the Bayes theorem, the conditional probabilities are:

p(ηi|x, y) =
p(x, y|ηi)p(ηi)

p(x, y)
=

p(x, y|ηi)p(ηi)∑c
i=1 p(x, y|ηi)p(ηi)

. (3.51)

104 Chapter 3. Clustering for Fuzzy Model Identification – Regression

• M-step. In this step, the current data distribution is assumed to be correct
and the parameters of the clusters that maximize the likelihood of the data
are sought. The new unconditional probabilities are:

p(ηi) =
1

N

N∑

k=1

p(ηi|x, y) . (3.52)

The means and the weighted covariance matrices are computed by:

vx
i =

N∑
k=1

xkp(ηi|xk, yk)

N∑
k=1

p(ηi|xk, yk)

, (3.53)

Fxx
i =

N∑
k=1

(xk − vx
i) (xk − vx

i)T p(ηi|xk, yk)

N∑
k=1

p(ηi|xk, yk)

. (3.54)

In order to find the maximizing parameters of the local linear models, the
derivative of the log-likelihood is set equal to zero:

0 =
∂

∂θi
ln

N∏

k=1

p(xk, yk) =

N∑

k=1

∂

∂θi
ln p(xk, yk)

=
1

Np(ηi)

N∑

k=1

p(ηi|x, y) (yk − fi(xk, θi))
∂fi(xk, θi)

∂θi
. (3.55)

Here, fi(xk, θi) represents the local consequent models, fi(xk, θi) = aT
i xk+bi.

The above equation results in weighted least-squares identification of the local
linear models (3.42) with the weighting matrix

Φj =

⎡
⎢⎢⎢⎣

p(ηi|x1, y1) 0 · · · 0
0 p(ηi|x2, y2) · · · 0
...

...
. . .

...
0 0 · · · p(ηi|xN , yN)

⎤
⎥⎥⎥⎦ . (3.56)

Finally, the standard deviations σi are calculated. These standard deviations
are parameters of the p(y|x, ηi) distribution functions defined by (3.49).

σ2
i =

N∑
k=1

(yk − fi(xk, θi))
T (yk − fi(xk, θi))p(ηi|xk, yk)

Np(ηi)
. (3.57)

3.3. TS Fuzzy Models for Nonlinear Regression 105

Modified Gath–Geva Fuzzy Clustering for the Identification of TS Models

In this section, the EM algorithm is re-formulated to provide an easily imple-
mentable algorithm, similar to Gath–Geva clustering, for the identification of TS
fuzzy models that do not use transformed input domains. See Algorithm 3.3.1.

Note that the distance measure (3.62) consists of two terms. The first one is
the distance between the cluster centers and x, while the second one quantifies
the performance of the local linear models.

Example 3.3 (Automobile MPG prediction – a comparative study among cluster-
ing based techniques). The example under consideration is the Automobile MPG
(miles per gallon) prediction benchmark. The following methods were used and
compared:

1. GG-TLS: Gath–Geva clustering with total least-squares estimation of the con-
sequent parameters.

2. GG-LS: Gath–Geva clustering with weighted ordinary least-squares estima-
tion of the consequent parameters.

3. EM-TI: The presented method with transformed input variables.

4. EM-NI: The presented method with the original input variables.

As some clustering methods are sensitive to differences in the numerical ranges of
the different features, the data can be normalized to zero mean and unit variance:

z̃j,k =
zj,k − z̄j

σj
(3.64)

where z̄j and σj are the mean and the variance of the given variable, respectively.

The goal is to predict the fuel consumption of an automobile on the basis of sev-
eral given characteristics, such as the weight, model year, etc. The data set was ob-
tained from the UCI Repository of Machine Learning Databases and Domain The-
ories (FTP address: ftp://ics.uci.edu/pub/machine-learning-databases/auto-mpg).
After removing samples with missing values, the data set was reduced to 392 en-
tries. This data set was divided into a training set and a test set, each containing
196 samples.

The performance of the models is measured by the root mean squared prediction
error (RMSE):

RMSE =

√√√√ 1

N

N∑

k=1

(yk − ŷk)2 .

The approximation power of the identified models is then compared with fuzzy mod-
els with the same number of rules obtained by the Fuzzy Toolbox for MATLAB�

106 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Algorithm 3.3.1 (Gath–Geva Clustering for Takagi–Sugeno Models).

Initialization
Given the data set Z, specify c, choose the weighting exponent m = 2 and the ter-

mination tolerance ǫ > 0. Initialize the partition matrix such that (1.12), (1.13) and

(1.14) holds.

Repeat for l = 1, 2, . . . (l is the iteration counter)

Step 1. Calculate the parameters of the clusters:

• Centers of the membership functions:

v
x (l)
i =

N∑

k=1

µ
(l−1)
i,k xk/

N∑

k=1

µ
(l−1)
i,k . (3.58)

• Standard deviations of the Gaussian membership functions:

σ
2 (l)
i,j =

N∑

k=1

µ
(l−1)
i,k (xj,k − vj,k)2/

N∑

k=1

µ
(l−1)
i,k . (3.59)

• Parameters of the local models:

θi =
(
X

T
e ΦiXe

)−1

X
T
e Φiy , (3.60)

where the weights are collected in the Φi matrix given by (3.41).

• A priori probabilities of the clusters: αi = 1
N

∑N
k=1 µi,k .

• Weights of the rules:

wi =
n∏

j=1

αi√
2πσ2

i,j

. (3.61)

Step 2. Compute the distance measure D2
i,k:

1

D2
i,k

=
n∏

j=1

αi√
2πσ2

i,j

exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)
· (3.62)

1√
2πσ2

i

exp

(
− (yk − fi(xk, θi))

T (yk − fi(xk, θi))

2σ2
i

)
.

Step 3. Update the partition matrix

µ
(l)
i,k =

1
∑c

j=1 (Di,k(zk, ηi)/Dj,k(zk, ηj))
2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (3.63)

until ||U(l) − U(l−1)|| < ǫ.

3.3. TS Fuzzy Models for Nonlinear Regression 107

(the ANFIS model [130]) and the Fuzzy Model Identification (FMID) Toolbox based
on Gustafson–Kessel clustering [26].

The inputs to the TS fuzzy model are: x1: Displacement, x2: Horsepower, x3:
Weight, x4: Acceleration and x5: Model year. Originally, there were six features
available. The first one, the number of cylinders, is neglected here because the
clustering algorithms run into numerical problems on features with only a small
number of discrete values.

Fuzzy models with two, three and four rules were identified with the presented
method. With the two rule-model, the presented clustering method achieved RMSE
values of 2.72 and 2.85 for the training and test data, respectively, which is nearly
the same performance as with the three and four-rule models.

The FMID Toolbox gives very similar results: RMSE values of 2.67 and 2.95
for the training and test data. Considerably worse results where obtained with the
ANFIS algorithm, which gave an overtrained model with the RMSE of 1.97 on the
training data but 91.35 on the test data. These results indicate that the presented
clustering method has very good generalization properties.

For a further comparison we also give the results of a linear regression model
given in [130]. This linear model has seven parameters and six input variables (the
previously given five variables and the number of cylinders). The training and test
RMSE of this model are 3.45 and 3.44, respectively.

Fuzzy models with only two input variables were also identified, where the se-
lected features were taken from [130], where the following model structure was
proposed:

MPG = f (Weight, Year) . (3.65)

As the Gath–Geva and EM-TI models capture correlations among the input vari-
ables, the TS fuzzy model extracted from the clusters should use multivariable an-
tecedent membership functions:

Ri : If x is Ai then ŷ = aT
i x + bi

or transformed input variables:

Ri : If tT
i,1x is Ai,1 and tT

i,2x is Ai,2 then ŷ = aT
i x + bi

where i = 1, . . . , c, ŷ is the estimated MPG and xT = [Weight, Year]. These
models cannot be easily analyzed, interpreted and validated by human experts, be-
cause the fuzzy sets (linguistic terms) are defined in a multidimensional or linearly
transformed space. However, the presented EM-NI method (Modified Gath–Geva
clustering) results in the standard rules with the original antecedent variables in
the conjunctive form:

Ri : If Weight is Ai,1 and Year is Ai,2 then ŷ = ai,1Weight+ ai,2Year+ bi [wi] .
(3.66)

Table 3.1 compares the prediction performance of the obtained models.

108 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Among the four presented approaches, only the total-least-squares identification is
sensitive to the normalization of the data. Hence, in Table 3.1 GG-TLS-N denotes
the results obtained by making the identification with the use of normalized data.

Table 3.1: Comparison of the performance of the identified TS models with two
input variables.

Method 2 rules (train) 2 rules (test) 4 rules (train) 4 rules (test)

GG-TLS 3.34 3.43 5.58 5.71
GG-TLS-N 3.25 3.57 3.43 4.00
GG-LS 2.97 2.97 2.77 2.95
EM-TI 2.97 2.95 2.62 2.93
EM-NI 2.97 2.95 2.90 2.95

ANFIS 2.67 2.95 2.37 3.05
FMID 2.96 2.98 2.84 2.94

Normally, the model performance on the training data improves with the in-
creasing number of clusters, while the performance on the evaluation data improves
until the effect of over-fitting appears and then it starts degrading (bias-variance
tradeoff). However, when the total-least squares (TLS) method is applied, the train-
ing error became larger with the increase of the model complexity. This is because
the input variables of the model are strongly correlated and the smallest eigenvector
does not define a hyperplane related to the regression problem, but it reflects the
dependency of the input variables. Already for two clusters, the difference between
the two small eigenvalues is very small (the eigenvalues are [10.92, 2.08, 3.4 · 105]
for the first cluster and [1.37 · 105, 37.69, 4.93] for the second one).

The presented fuzzy clustering method showed a slightly better performance than
the Gath–Geva algorithm. As these methods identify fuzzy models with transformed
input variables, they have good performance because of the effective axes-oblique
partition of the input domain, which can be seen in Figure 3.10.

The EM-NI algorithm presented in Section 3.3.3 yields clusters that are not
rotated in the input space (see Figure 3.11). These clusters can be projected and
decomposed to easily interpretable membership functions defined on the individual
features as shown in Figure 3.12 for the two-rule model and in Figure 3.13 for
the four-rule model. This constraint, however, reduces the flexibility of the model,
which can result in worse prediction performance. We use EMR-TI to demon-
strate how much performance one has to sacrifice for the interpretability. For this
example, the difference in performances turns out to be negligible (see Table 3.1).

The Fuzzy Toolbox of MATLAB� (ANFIS, neuro-fuzzy model) [132] and the
Fuzzy Model Identification (FMID) Toolbox [26] were also used to identify fuzzy
models for the MPG prediction problem. As can be seen from Table 3.1, the pre-
sented method obtains fuzzy models that have good performance compared to these
alternative techniques.

3.3. TS Fuzzy Models for Nonlinear Regression 109

1500 2000 2500 3000 3500 4000 4500 5000
70

72

74

76

78

80

82

weight

y
ea

r

Figure 3.10: Clusters detected by GG clustering algorithm.

1500 2000 2500 3000 3500 4000 4500 5000
70

72

74

76

78

80

82

weight

y
ea

r

Figure 3.11: Clusters detected by the modified algorithm.

110 Chapter 3. Clustering for Fuzzy Model Identification – Regression

1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

weight

m
em

b
er

sh
ip

70 72 74 76 78 80 82
0

0.2

0.4

0.6

0.8

1

year

m
em

b
er

sh
ip

Figure 3.12: Membership functions obtained.

50 100 150 200 250 300 350 400 450 500
0

0.5

1

40 60 80 100 120 140 160 180 200 220 240
0

0.5

1

1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

8 10 12 14 16 18 20 22 24 26
0

0.5

1

70 72 74 76 78 80 82
0

0.5

1

Displacement

Horsepower

Weight

Acceleration

Model year

Figure 3.13: Membership functions of the TS model for MPG prediction based on
five inputs.

3.3. TS Fuzzy Models for Nonlinear Regression 111

1500
2000

2500
3000

3500
4000

4500
5000

70

72

74

76

78

80

82

0

10

20

30

40

50

year

weight

M
P

G

Figure 3.14: Prediction surface of the model.

The resulted model is also good at extrapolation. The prediction surface of the
model with two inputs is shown in Figure 3.14. If this surface is compared to the
prediction surface of the ANFIS generated model (see [130]), one can see that the
ANFIS model spuriously estimates higher MPG for heavy cars because of lack of
data due to the tendency of manufacturers to begin building small compact cars
during the mid 70s. As can be seen in Figure 3.14, the obtained EM-NI model does
not suffer from this problem.

�

3.3.4 Selection of the Antecedent and Consequent Variables

Using too many antecedent and consequent variables results in difficulties in the
prediction and interpretability capabilities of the fuzzy model due to redundancy,
non-informative features and noise. To avoid these problems in this section two
methods are presented.

Selection of the Consequent Variables by Orthogonal Least Squares Method

As the fuzzy model is linear in the parameters θi, (3.14) is solved by least squares
method (see (3.42)) that can be also formulated as:

θi = B+y
√

βi (3.67)

where B+ denotes the Moore-Penrose pseudo inverse of Φe

√
βi.

112 Chapter 3. Clustering for Fuzzy Model Identification – Regression

The OLS method transforms the columns of B into a set of orthogonal basis
vectors in order to inspect the individual contribution of each rule. To do this
Gram-Schmidt orthogonalization of B = WA is used, where W is an orthogonal
matrix WT W = I and A is an upper triangular matrix with unity diagonal
elements. If wi denotes the ith column of W and gi is the corresponding element
of the OLS solution vector g = Aθi, the output variance (y

√
βi)

T (y
√

βi)/N can
be explained by the regressors

∑nr

i=1 giw
T
i wi/N . Thus, the error reduction ratio,

̺, due to an individual rule i can be expressed as

̺i =
g2

i w
T
i wi

(y
√

βi)
T (y

√
βi)

. (3.68)

This ratio offers a simple mean for ordering the consequent variables, and can be
easily used to select a subset of the inputs in a forward-regression manner.

Selection of the Scheduling Variables based on Interclass Separability

Feature selection is usually necessary. For this purpose, we modify the Fisher
interclass separability method which is based on statistical properties of the data
and has been applied for feature selection of labeled data [231]. The interclass
separability criterion is based on the FB between-class and the FW within-class
covariance matrices that sum up to the total covariance of the training data FT ,
where:

FW =

c∑

i=1

p(ηi)Fi, FB =

c∑

i=1

p(ηi) (vi − v0)
T

(vi − v0)

v0 =

c∑

i=1

p(ηi)vi. (3.69)

The feature interclass separability selection criterion is a trade-off between FW

and FB:

J =
detFB

detFW
. (3.70)

The importance of a feature is measured by leaving out the feature and calculating
J for the reduced covariance matrices. The feature selection is made iteratively by
leaving out the least needed feature.

Example 3.4. Automobile MPG prediction based on Orthogonal Least Squares
and Interclass Separability methods

The presented fuzzy modelling approach is applied to a common benchmark
problem, the Automobile MPG (miles per gallon) prediction case study [130] (see
Example 3.3 for more information).

3.3. TS Fuzzy Models for Nonlinear Regression 113

A TS-fuzzy model, that utilizes all the five information profile data about the
automobiles, has been identified by the presented clustering algorithm. The inputs
are: u1: Displacement, u2: Horsepower, u3: Weight, u4: Acceleration and u5: Model
year. Originally, there are six features available. The first, the number of cylinders,
was neglected because the clustering algorithm cannot handle discrete features with
only four values [1, 2, 3, 4].

Fuzzy models with two, three or four rules were identified with the presented
method. The two rule-model gave almost the same performance on training and
test data as a three and four rule-model and is therefore applied in the sequel.
When xk = φk = uk, the presented clustering method gave RMSE values of 2.72
and 2.85 training and test data.

The FMID Toolbox gives very similar results; RMSE values of 2.67 and 2.95
for train and test data. Bad results where obtained by the ANFIS algorithm when a
neuro-fuzzy model with the same complexity was identified. The application of the
ANFIS algorithm resulted in an overtrained model that had a RMSE performance
of 1.97 on the training data but 91.35 on the test data. These results indicate
that the presented clustering method has good generalization properties. For fur-
ther comparison we also give the results of linear regression given by [130]. The
linear model was based on seven parameters and six input variables (the previously
presented five variables and the number of cylinders). The training and test RMS
errors of this model were 3.45 and 3.44, respectively.

The above presented model reduction techniques, OLS and FIS, are now applied
to remove redundancy and simplify the model. First, based on the obtained fuzzy
clusters, the OLS method is used for ordering of the input variables. The fuzzy
model with two rules is applied. It turned out that for both clusters (local models)
the “model year” and the “weight” become the most relevant input variables. With-
out re-estimation (re-clustering) of the model and additional removal of the other
variables from the consequent part of the model, the modelling performance drops
only to 3.75 and 3.55 RMSE for the training and the test data, respectively. It
is worth noting, that the same features turned out to be the most important in
[130], where a cross-validation based method has been used for input selection of
neuro-fuzzy models.

Based on the above considerations, the clustering has been applied again to
identify a model based on the two selected attributes “weight” and “model year”.
This results in RMSE values of 2.97 and 2.95 for training and test data, respec-
tively. In addition, the Fisher Interclass separability method is applied and the
second attribute “model year” could be removed from the antecedent of both rules.
The final result is a model with RMSE values of 2.97 and 2.98 for training and
test data, respectively. The other methods are now applied with the same attributes
and their performances are summarized in Table 3.2.

Because the obtained clusters are axis-parallel, they can be analytically pro-
jected and decomposed to easily interpretable membership functions defined on the
individual features. The obtained fuzzy sets are shown in Figure 3.15.

114 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Table 3.2: Performance of the identified TS models with two rules and only two
input variables. HYBRID: Clustering + OLS + FIS, GG: Gath–Geva clustering,
ANFIS: neuro-fuzzy model, FMID: Fuzzy Model Identification Toolbox

Method train RMSE test RMSE

HYBRID 2.97 2.95
GG 2.97 2.97
ANFIS 2.67 2.95
FMID 2.94 3.01

1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

weight

m
e

m
b

e
rs

h
ip

70 72 74 76 78 80 82
0

0.2

0.4

0.6

0.8

1

Model year

m
e

m
b

e
rs

h
ip

A
1,1

A
1,2

A
2,2

A
2,1

Figure 3.15: Membership functions obtained by the projection of the clusters.

The clusters are much more separated on the input “weight”. Hence, the ap-
plication of Fisher Interclass separability shows that it is enough to use only this
input on the antecedent part of the model:

R1 : If Weight is Ai,1 then MPG =
[−0.0107 1.0036]T [Weight, Y ear]T − 23.1652, [0.57] (3.71)

R2 : If Weight is Ai,2 then MPG =
[−0.0038 0.4361]T [Weight, Y ear]T − 1.4383, [0.43]

Concluding, the obtained model has good approximation capabilities, similar to
some other advanced methods, but is also very compact. Furthermore, the method
seems to have good generalization properties because results on learning data are
similar to those on training data. If the prediction surface of the obtained model is
compared to the prediction surface of the ANFIS model (see [130]), one can see that

3.4. Fuzzy Regression Tree 115

the ANFIS approach spuriously estimates higher MPG for heavy cars because of
lack of data due to the tendency of manufacturers to begin building small compact
cars during the mid 70’s, while the presented approach does not suffer from this
problem.

�

3.3.5 Conclusions

We discussed the structure identification of Takagi–Sugeno fuzzy models and fo-
cused on methods to obtain compact but still accurate models. A new clustering
method is presented to identify the local models and the antecedent part of the
TS-fuzzy model. In addition two methods for the selection of the antecedent and
consequent attributes have been presented. Those methods allow for the deriva-
tion of very compact models through subsequent ordering and removal of redun-
dant and non-informative antecedent and consequent attributes. The approach is
demonstrated by means of the identification of the MPG benchmark problem. The
results show that the presented approach is able to identify compact and accu-
rate models in a straightforward way. This method is attractive in comparison
with other iterative schemes, like the one proposed in [230] that involves extensive
intermediate optimization.

3.4 Fuzzy Regression Tree

The problems how to automatically partition the input space, how many fuzzy
rules are really needed for properly approximating an unknown nonlinear system,
and how to construct a fuzzy system from data examples automatically, mentioned
above in this chapter, can be partially solved by the recent developments of hier-
archical fuzzy systems. As a way to overcome the curse-of-dimensionality, it was
suggested in [50] to arrange several low-dimensional rule base in a hierarchical
structure, i.e., a tree, causing the number of possible rules to grow in a linear way
with the number of inputs. But no method was given on how the rules could be
determined automatically. In [228] the author described a new algorithm which
derives the rules for hierarchical fuzzy associative memories that were structured
as a binary tree. The basic idea is to use the benefits of the compact knowledge
representation of decision trees to handle the structure selection problems. This
proposal is motivated by the high performance and computational efficiency of
the existing decision tree induction methods that are effective in the selection
of the relevant features. The application of decision trees for the initialization
of fuzzy and neural models has been already investigated by some researchers
[16, 126, 167, 236, 238].

Decision trees are widely used in pattern recognition, machine learning and
data mining applications thanks to the interpretable representation of the detected
information [224]. Decision trees are hierarchical models consisting of nodes and

116 Chapter 3. Clustering for Fuzzy Model Identification – Regression

branches. A decision tree is a directed acyclic graph in which the internal nodes
represent tests on the attributes (input variables of the model), and the branches
correspond to the outcomes of these tests. The leaf (terminal) nodes represent
class labels or class distributions in the case of classification trees, or simple re-
gression models (usually constants or linear models) in case of regression trees.
The resulting knowledge, in the form of decision trees has been praised for com-
prehensibility. This appeals to a wide range of users who are interested in domain
understanding, classification and/or regression capabilities, or the symbolic rules
that may be extracted from the tree and subsequently used in a rule-based decision
system.

Decision trees were popularized by Quinlan [224]. Before the last decade, only
categorical information has been considered as input variables of decision trees.
With the immanent need to handle numerical information too, various methods to
create discrete partitions (and according predicates) for numerical attributes have
been invented. The problem that arises when this discretization is done by means
of partitions into crisp sets (intervals) is that small variations (e.g., noise) on the
input side can cause large changes on the output. This is because in crisp decision
trees, the test is based on Boolean logic and, as a result, only one branch can be
followed after a test. In other words, only one branch will be valid according to
the value of the attribute and the result of the test. Hence, one branch will be
weighted by one, the other ones by zeros. An example can be seen in Figure 3.16.
In the first node it has to be determined whether the value of the variable x2 is

Model 1

x
2

x
1

<20 �20

<80

Model 2 Model 3

� 08

Figure 3.16: Crisp decision tree.

greater than 20 or not. If it is less than 20, Model 1 will be valid. If it is equal to
or greater than 20, another test has to be executed, the other attribute, x1 has
to be analyzed. If it is less than 80, Model 2, in the other case Model 3 has to be
used to estimate the output of the analyzed system. As this example illustrates,
the disadvantage of classical crisp decision trees is their brittleness, i.e., a wrong
path taken down the tree can lead to widely erroneous results. Furthermore, the

3.4. Fuzzy Regression Tree 117

crisp approach falls short also when the system under study does not exhibit crisp
transitions. This entails the demand for admitting vagueness in the assignment of
samples to predicates.

Using not only crisp but also fuzzy predicates, decision trees can be used to
model vague decisions. The basic idea of fuzzy decision trees is to combine exam-
ple based learning in decision trees with approximative reasoning of fuzzy logic
[107, 133]. In fuzzy decision trees several branches originating from the same node
can be simultaneously valid to a certain degree, according to the result of the fuzzy
test (Figure 3.17). The path from the root node to a particular leaf model hence

Model 1

z =x
0 2

z =x
2 1

Model 2

x2
20

A
.1

x2
20

A
.2

x1
80

A
21

x1
80

A
22

Model 3

Figure 3.17: Fuzzy decision tree.

defines a fuzzy operating range of that particular model. The output of the tree
is obtained by interpolating the outputs of the leaf models that are simultane-
ously active. This hybridization integrates the advantages of both methodologies
compact knowledge representation of decision trees with the ability of fuzzy sys-
tems to process uncertain and imprecise information. Viewing fuzzy decision trees
as a compressed representation of a (fuzzy) rule set, enables us to use decision
trees not only for classification (classification tree), but also for approximation of
continuous output functions (regression tree). Hence, classification and regression
problems can be effectively solved with decision tree induction algorithms that
are able to generate accurate and transparent models. Determination of the final
structure and size of the tree is a challenging problem. A tree with many internal
and terminal nodes causes difficulty in transparency and interpretability, demands
more computing power and can also contain many branches without much benefit
for the accuracy. The standard approach is the pruning of the tree. It can mean
either an exhaustive search within the building of the tree to find the best variable
and splitting value to minimize the classification/modelling error in the next step
or it follows the building of the tree to find subtrees with relative small benefit. It
is computationally demanding so it is worth eliminating it. This can be done by
some heuristic.

118 Chapter 3. Clustering for Fuzzy Model Identification – Regression

In order to build a decision tree from data, one has to determine: (i) the struc-
ture of the tree and related to this, (ii) what tests should be evaluated in the
nodes (e.g., which input variable have to be tested), and (iii) how the premise
and (iv) consequent parameters should be identified. The data-driven determina-
tion of these structural parameters represents a complex mixed integer-continuous
optimization problem.

Such problems can be solved by some computationally demanding stochastic
optimization algorithms or by using some heuristic. The following strategies are
commonly used for determination of these parameters:

• heuristic construction algorithms [204],

• nonlinear local optimization [53] and

• product space clustering [215].

Because the described type of models are linear in the parameter set of the lo-
cal models they can be efficiently estimated from data. The three most common
approaches are

• global least squares [26],

• local weighted least squares [26] and

• product space clustering [12].

There are good surveys in this topic, see, e.g., [118].
The locally linear model tree (LOLIMOT) algorithm combines a heuristic strat-

egy for input space decomposition with a local linear least squares optimization
[204]. In LOLIMOT radial basis functions are fitted to a rectangular partitioning
of the input space performed by a decision tree with axis-orthogonal splits at the
internal nodes. For each rectangle, the corresponding basis function has a standard
deviation in each dimension that is equal to the width of the rectangle in that di-
mension multiplied by a constant (step (iii)). Locally weighted learning is used to
train each local linear model (LLM) (step (iv)). The difficult part is deciding when
to grow or prune the tree. In LOLIMOT, the greedy approach has been applied.
It means that the worst performing model, hence with most modelling error has
to be found and its operating regime has to be divided into parts with additional
local models. The local loss function can be computed by weighting the squared
model errors with the degree of validity of the corresponding local model. In the
following steps all the identified local models have to be evaluated and compared.
This approach is called greedy because it proceeds towards the worst performing
model. These steps have to be carried out until reaching a predetermined mod-
elling error or maximum size of the tree. The selection of which partition has to
be splitted on which variable (step (ii)) is based on the local sum of squared errors
loss function and not their mean is utilized for the comparison between the LLMs.
Consequently, LOLIMOT preferably splits LLMs which contain more data sam-
ples. Thus, the local model quality depends on the training data distribution. This
consequence is desired because more data allows to estimate more parameters.

3.4. Fuzzy Regression Tree 119

The idea of LOLIMOT has the same background as the algorithm presented
by Kubat [167] for the decision tree based identification of Radial Basis Function
Networks since the corresponding basis function has a standard deviation in each
dimension that is equal to the width of the rectangles of the partition. The in-
cremental building of the tree makes splits, which always halve the rectangular
partitioning and which are sensitive to the distribution of the data.

The aim is to present a slightly more sophisticated, but still heuristic algorithm
that can make more effective partitioning than the recursive halving of the input
variables. The main idea is to use fuzzy clustering for the effective partitioning of
the input domains of decision trees. In [215] it has been shown that the results of
the clustering coming in the form of a series of prototypes can be directly used
to complete a quantization of the continuous attributes, and this quantization
can be effectively used for the induction of a decision tree. In contrast with most
discretization of continuous variables that deal with a single variable only, this
approach concerns all the variables discussed at the same time. The discretization
mechanism is straightforward: project the cluster prototypes on the respective
variables (coordinate axes) and construct the discretization intervals. However,
the projection of the clusters into the input variables and the approximation of
the point-wise defined projected membership functions by parametric ones may
significantly deteriorate the performance of the model.

Our approach differs from the previously presented methods in the following
main issues:

Model-based clustering: In [12] we proposed a new supervised clustering algo-
rithm that can be directly used for the identification of interpretable fuzzy models
based on the Expectation Maximization (EM) identification of Gaussian mixture
of models. The resulted clusters do not only represent the distribution of the data,
but also the type of nonlinearity of the modeled system.

Incremental clustering: The clustering based quantization of the input variables of
decision trees is independent from the decision tree induction algorithms, since the
clustering is considered as a pre-processing step of the induction of the decision tree
[215]. Contrary, in our approach the clustering is embedded into the incremental
building of the tree according to the Algorithm 3.4.1.

In this section binary fuzzy regression trees are used. It means that only two
branches belong to each internal node, and in every clustering step only two clus-
ters were assumed. However, the presented algorithm is able to build trees with
arbitrary number of branches per nodes. We used a binary tree since its compact-
ness because the main goal of the research was to design an algorithm that is able
to generate compact yet accurate models.

120 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Algorithm 3.4.1 (Incremental Clustering for Fuzzy Regression Trees).

• Step 1 Cluster the data according to the scheduling variables into two
clusters.

• Step 2 Select the splitting variable based on the analysis of the separability
of the clusters. This step enables to select a “scheduling” variable that is
most representative to handle the nonlinearity of the system.

• Step 3 Re-cluster the data according to the selected splitting variable ex-
clusively. The result: two local linear models whose operating regime are
represented by Gaussian membership functions. The parameters of these
membership functions are given by the clustering algorithm.

• Step 4 Greedy step Select the worst model based on the mean squared error
of the local models. Remove this model, weight the data according to the
weights (memberships) of this local model and jump to Step 1.

3.4.1 Preliminaries

The aim of this section is to present the structure of the presented fuzzy regression
tree and the notation followed in the section.

In rule-based fuzzy systems, the relationships between the input and output
variables are represented by means of If-Then rules. In case of a fuzzy regression
tree the rule antecedents are represented by the membership functions on the
paths of the tree leading to the terminal nodes of the tree. These rule member-
ship functions define the operating region of the rule in the n-dimensional feature
space of the input variables. The consequences of the fuzzy rules are the terminal
nodes of the tree. In case of regression trees these terminal nodes are local linear
models describing the local linear behavior of the modeled nonlinear system in the
operating region defined by the ascendents of the rules.

The terminal nodes (in Figure 3.18 denoted by rectangles) are numbered se-
quentially from left to right. Each terminal node corresponds to one fuzzy rule.
The consequent of the ith rule is the function fi, which may be either a constant
(singleton or zero-order TS fuzzy model) or a (linear) function of the input vari-
ables (first- or higher-order TS fuzzy model). The antecedent of the rule is defined
as the conjunction of the fuzzy assertions along the path leading from the root to
that terminal node. The antecedent variables and fuzzy sets are labeled by index
vectors pj, denoting the path from the root to the particular node at level j.

The vectors are constructed recursively as follows:

p0 = ∅ empty vector, denotes the root node

pj = [pj−1 bj]

3.4. Fuzzy Regression Tree 121

A1

z0

z1

y = f6

level 2y = f1 z21

z2

y = f2 z22

y = f5y = f4y = f3

A2

A2 1 2

A2 1 A2 2

level 3

level 1

Figure 3.18: A fuzzy decision tree (to keep the figure simple, only some of the
fuzzy sets are shown).

where bj is the number of the respective branch from node pj−1 (numbered from
left to right). Subscript pi

j denotes the (sub)path from the root to a node at level j,
which belongs to the rule (terminal node) i. The rules are then written as follows:

Ri : If zpi
0

is Api
1

and zpi
1

is Api
2

and . . . and zpi
Li−1

is Api
Li

then y = fi

or in a more compact form:

Ri : If

Li∧

j=1

(
zpi

j−1
is Api

j

)
then y = fi

Here, Li is the level of the ith terminal node. The antecedent variables z are
instances of the model inputs x, selected by the tree construction algorithm.

The degree of fulfilment (weight of the rule) is computed by using the product
conjunction operator:

wi =

Li∏

j=1

µA
pi

j

(zpi
j−1

)

and the interpolated output of the tree model is the weighted mean of the terminal
node contributions:

y =

K∑

i=1

wifi =

K∑

i=1

wi

[
xT

k 1
]
θT

i . (3.72)

122 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Example 3.5 (Fuzzy rule extraction from Fuzzy Decision Tree). As an example,
consider rule R4 in Figure 3.18 (see the bold path):

R4 : If z0 is A2 and z2 is A21 and z21 is A212 then y = f4

whose degree of fulfillment is

w4 = µA2
(z0) · µA21

(z2) · µA212
(z21).

�

The shape of the fuzzy set has to be decided before the building of the tree.
In this section Gaussian fuzzy set has been applied. Consider the pi

j−1th terminal
node, its child’s membership function that belongs to the ith (sub)path, Api

j
is

Api
j

=
exp

(
−(zpi

j−1
− vpi

j
)2/2σ2

pi
j

)

∑
i exp

(
−(zpi

j−1
− vpi

j
)2/2σ2

pi
j

) . (3.73)

Note that the model output is linear in the model parameters, θi, but is non-
linear in the centers, vpi

Li

and standard deviations, σpi
Li

.

In the next section the building of such type of trees will be described in detail.

3.4.2 Identification of Fuzzy Regression Trees based
on Clustering Algorithm

The aim of the identification of a fuzzy regression tree is the data-driven ap-
proximation of an unknown general nonlinear function yk = f(xk) based on
k = 1, . . . , N data sample, where yk = [y1,k, y2,k, . . . , yq,k]T is the output and
xk = [x1,k, x2,k, . . . , xn,k]T is the input of the system.

Expectation-Maximization based Fuzzy Clustering for Regression Trees

The basic concept of this method is that the original data distribution, p(xk,yk),
k = 1, . . . , N , should be described by hierarchical mixture of distributions ac-
cording to the operating regimes of the local models. The operating regimes can
be determined in several ways, this section proposes a method based on decision
tree partitioning because of its advantages, e.g., compactness, interpretability and
transparency.

The hierarchical structure of the model can be described in two steps. On the
one hand, simple mixture of the presented Gaussian density models should be
described (the first level of the regression tree) because its not evident how it can
be done based on the whole dataset, on the other hand, it should be represented
how the following levels can be formed known its parent’s level parameters.

3.4. Fuzzy Regression Tree 123

Simple Mixture of Gaussians

The corresponding model takes the form

p(xk,yk) =

K∑

i=1

p(xk,yk, ηpi
1
) =

K∑

i=1

p(ηpi
1
)p(xk,yk|ηpi

1
) (3.74)

where the indexes of the terminal nodes, i, are related to the path leading to
them, pi

1 means that the node belongs to the first level of the model, and K is
the number of local models which is equal to the number of clusters, c in this
level. The p(ηpi

1
) probabilities are the mixing coefficients, or prior probabilities,

corresponding to the mixture components p(xk,yk|ηpi
1
) which can be divided into

two parts: p(xk,yk|ηpi
1
) = p(yk|xk, ηpi

1
)p(xk|ηpi

1
), input and output distribution.

Each component is an independent local linear model whose parameters should be
determined. It can be done by the Expectation-Maximization algorithm similar to
Hierarchical Latent Variable Models proposed by Tipping and Bishop in [47].

The prior expectations are given by the p(ηpi
1
) and the corresponding posterior

probabilities, or responsibilities, are evaluated in the E-step using Bayes theorem
in the form

p(ηpi
1
|xk,yk) =

p(ηpi
1
)p(xk,yk|ηpi

1
)

∑K
i=1 p(ηpi

1
)p(xk,yk|ηpi

1
)
. (3.75)

In the M-step, these posterior probabilities are used to obtain the ‘new’ values
of the model parameters, using the following re-estimation formulas.

The probability of the pi
1th mixture component or local model is

p(ηpi
1
) =

1

N

N∑

k=1

p(ηpi
1
|xk,yk). (3.76)

The input distribution, parameterized as an unconditional Gaussian, can be
formed in a way similar to the multivariate membership functions

p(xk|ηpi
1
) =

1

(2π)
n
2

√
det(Fpi

1
)

exp

(
−1

2
(xk − vpi

1
)T

(
Fpi

1

)−1

(xk − vpi
1
)

)
,

(3.77)
where the mean, vpi

1
, and the weighted covariance matrix, Fpi

1
, are computed by

vpi
1

=

∑N
k=1 p(ηpi

1
|xk,yk)xk

∑N
k=1 p(ηpi

1
|xk,yk)

, (3.78)

Fpi
1

=

∑N
k=1 p(ηpi

1
|xk,yk)(xk − vpi

1
)(xk − vpi

1
)T

∑N
k=1 p(ηpi

1
|xk,yk)

. (3.79)

124 Chapter 3. Clustering for Fuzzy Model Identification – Regression

When the transparency and interpretability of the model is important, the
cluster covariance matrix, Fpi

1
can be reduced to its diagonal elements, similar to

the simplified axis-parallel version of the GG clustering algorithm

p(xk|ηpi
1
) =

n∑

l=1

1√
2πσ2

pi
1,l

exp

(
−1

2

(xl,k − v2
pi
1,l

)

σ2
pi
1,l

)
. (3.80)

The output distribution is

p(yk|xk, ηpi
1
) =

1

(2π)
q
2

√
det(Ppi

1
)

exp

(
−1

2
(yk − fi)

T
(
Ppi

1

)−1

(yk − fi)

)
.

(3.81)
In order to obtain that, fi has to be computed. It can be done by (3.72) if

parameters of the local models are given. They can be computed by (3.85) where
the Bpi

1
matrix contains the weighting values.

Y = [y1,y2, . . . ,yN]
T

(3.82)

X = [x1,x2, . . . ,xN]T (3.83)

Bpi
1

=

⎡
⎢⎢⎢⎣

p(ηpi
1
|x1,y1) 0 · · · 0

0 p(ηpi
1
|x2,y2) · · · 0

...
...

. . .
...

0 0 · · · p(ηpi
1
|xN ,yN)

⎤
⎥⎥⎥⎦ (3.84)

θpi
1

=
[
XTBpi

1
X
]−1

XTBpi
1
Y. (3.85)

It corresponds to the local weighted least squares method (see also Section 1.6).
When θpi

1
parameters are given, covariance of the modelling errors of the local

models can be computed:

Ppi
1

=

N∑
k=1

(yk − fi)(yk − fi)
T p(ηpi

1
|xk,yk)

N∑
k=1

p(ηpi
1
|xk,yk)

. (3.86)

Hierarchical Mixture of Gaussians

According to the greedy approach, the worst performing model has to be found
and its operating regime has to be divided further into c parts. The corresponding
probability density can be written in the form

p(xk,yk, ηpi
j−1

) = p(ηpi
j−1

)p(xk,yk|ηpi
j−1

) = p(ηpi
j−1

)

c∑

i=1

p(ηpi
j |p

i
j−1

)p(xk,yk|ηpi
j
),

(3.87)

3.4. Fuzzy Regression Tree 125

where p(ηpi
j |p

i
j−1

) denotes the conditional probability p(ηpi
j
|ηpi

j−1
). In this expres-

sion, p(xk,yk|ηpi
j
) again represents independent local linear models, and p(ηpi

j |p
i
j−1

)

corresponds to sets of mixing coefficients, one for each pi
j−1, which satisfy∑i+c−1

i′=i p(ηpi′
j |pi

j−1
) = 1. Thus, each level of the hierarchy corresponds to a gen-

erative model, with lower levels giving more refined and detailed representations.
According to it, (3.74) can be expressed in the form

p(xk,yk) =
K∑

i=1

p(ηpi
j−1

)
i+c−1∑

i′=i

p(ηpi′
j |pi

j−1
)p(xk,yk|ηpi

j
). (3.88)

The parameters of the local models can be determined by Expectation-Maxim-
ization method. This has the same form as the EM algorithm for a simple mixture
(see above in this section), except that in the E-step, the posterior probability
that model (pi

j) generated data point (xk,yk) is given by

p(ηpi
j
|xk,yk) = p(ηpi

j−1
|xk,yk)p(ηpi

j |p
i
j−1

,xk,yk) (3.89)

in which

p(ηpi
j |p

i
j−1

|xk,yk) =
p(ηpi

j |p
i
j−1

)p(xk,yk|ηpi
j
)

∑c
i′=1 p(ηpi′

j |pi
j−1

)p(xk,yk|ηpi′
j
)
, (3.90)

and

p(ηpi
j |p

i
j−1

) =

∑N
k=1 p(ηpi

j
|xk,yk)

∑N
k=1 p(ηpi

j−1
|xk,yk)

. (3.91)

Every other equation from (3.77) to (3.86) is almost the same, just ηpi
j−1

is

replaced by ηpi
j
.

The applied greedy method means local identification of the model by least
squares method. However, the above description of the model enables us to iden-
tify (or after the structure determination refine) the global model to obtain better
results. Although it is computationally demanding because of nonlinear optimiza-
tion, it can be worth executing it if the local models do not give acceptable results.

Note that the model has a hierarchical structure, therefore the probability of
the (pi

j)th local linear model, p(ηpi
j
) can be expressed in the following way:

p(ηpi
j
) = p(ηiηpi

j−1
) = p(ηi|ηpi

j−1
)p(ηpi

j−1
). (3.92)

Consider the pi
j−1th node, its parameters are given, so is p(ηpi

j−1
), then its chil-

dren’s parameters, p(ηi|ηpi
j−1

) among them, can be computed by the presented

algorithm. Hence, p(ηpi
j
) is given in a recursive form (p(1) is equal to 1).

The probability above, p(xk,yk, ηpi
j
), means the probability that the kth data

point, (xk,yk), has been generated by the ith cluster in case of the (pi
j)th node,

126 Chapter 3. Clustering for Fuzzy Model Identification – Regression

and this probability and the distance between the point and the cluster are in
inverse proportion

p(xk,yk, ηpi
j
) =

1

D2
pi

j ,k

. (3.93)

The identification of the model means the determination of the cluster param-
eters. It can be done an algorithm reformulated in the form of fuzzy clustering.

Modified Gath–Geva Clustering Algorithm for Identification of
Fuzzy Regression Trees

Obtaining the parameters of the clusters: centers and standard deviations, and the
parameters of the local models, the following cost function has to be minimized:

J(Y,U, η) =
K∑

i=1

N∑

k=1

(
µpi

j ,k

)m

D2
pi

j ,k. (3.94)

The used distance function enables us to identify the local linear models because
it contains a term based on the model error:

1

D2
pi

j ,k

= p(ηpi
j
)p(xk|ηpi

j
)p(yk|xk, ηpi

j
)

= p(ηpi
j
)

1

(2π)
n
2

√
det(Fpi

j
)

exp

(
−1

2
(xk − vpi

j
)T

(
Fpi

j

)−1

(xk − vpi
j
)

)

︸ ︷︷ ︸
p(xk|ηpi

j
)

1

(2π)
q
2

√
det(Ppi

j
)

exp

(
−1

2
(yk − y

(pi
j)

k)T
(
Ppi

j

)−1

(yk − y
(pi

j)

k)

)

︸ ︷︷ ︸
p(yk|xk,η

pi
j
)

. (3.95)

In case of this type of regression trees, the clusters are axis parallel:

p(xk|ηpi
j
) =

n∑

l=1

1√
2πσ2

pi
j ,l

exp

(
−1

2

(xl,k − v2
pi

j ,l
)

σ2
pi

j ,l

)
. (3.96)

The clustering algorithm described in the following can be applied to minimize
the cost function based on the Gath–Geva fuzzy clustering algorithm [93]. Let us
assume that the pi

j−1th node is the following.

3.4. Fuzzy Regression Tree 127

Algorithm 3.4.2 (Gath–Geva Clustering for Fuzzy Regression Tree Induction).

Initialization
Given a set of data Y = [yk]q×N ,X = [xk]n×N , the number of clusters, c, choose a

weighting exponent (usually m = 2) and a termination tolerance ǫ > 0. Initialize the

partition matrix (randomly), U = [µ
pi′

j ,k
]c×N .

Repeat for iter = 1, 2, . . .

Calculate the parameters of the clusters
• Centers of the membership functions

v
pi′

j
=

N∑

k=1

µpi
j ,k xk/

N∑

k=1

µpi
j ,k, i′ = i, . . . , i + c − 1. (3.97)

• Standard deviations of the Gaussian membership functions:

σ2

pi′
j ,l

=

N∑

k=1

µ
pi′

j ,k

(
xl,k − v

pi′
j ,l

)2

/

N∑

k=1

µ
pi′

j ,k
. (3.98)

• Parameters of the local models can be computed by (3.85) where the elements of

the B
pi′

j
matrix are equal to the membership values: p(η

pi′
j
|xk,yk) = µ

pi′
j ,k

.

• Covariance of the modelling errors of the local models:

P
pi′

j
=

N∑
k=1

(yk − fi′)(yk − fi′)
T µ

pi′
j ,k

N∑
k=1

µ
pi′

j ,k

. (3.99)

• A priori probability of the cluster can be computed in the following way: p(η
pi′

j
) ≡

p(η
pi′

j
, ηpi

j−1
) = p(η

pi′
j
|ηpi

j−1
)p(ηpi

j−1
), and it can be expressed by (3.76) and

(3.91): p(η
pi′

j
) = 1

N

∑N
k=1 p(η

pi′
j
|xk,yk), so

p(η
pi′

j
) =

1

N

N∑

k=1

µ
pi′

j ,k
. (3.100)

Compute the distance D2

pi′
j ,k

by (3.95)

Update the partition matrix by (3.89) and (3.90)

µ
pi′

j ,k
=

∏j−1
j′=1 µA

pi
j′

(zpi
j′−1

)

∑i+c−1
d=i

(
D

pi′
j

,k
/Dpd

j ,k

)2/(m−1)
, (3.101)

i′ = i, . . . , i + c − 1; 1 ≤ k ≤ N .

until ||U(iter) − U(iter−1)|| < ǫ.

128 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Selection of the Splitting Variable

There are input variables, xk, k = 1, . . . , N . According to the applied modelling
technique, the regression tree, in case of the pi

j−1th node one input variable has to
be selected based on which it can be detected which operating regime the input
data point is located in and which local model has to be used. We cluster the data
based on all the input variables and we select the splitting variable from the input
ones according to which the two clusters are the most separate. This variable is
denoted by zi

j−1. The splitting variable can be selected based on the cluster centers
and standard deviations.

The result of the clustering algorithm in case of the pi
j−1th node is the set

vpi′
j
, σ2

pi′
j ,l

. These parameters are in connection with the modelling error because

one term of the cost function is based on the modelling error (see (3.95)).
Choose the splitting variable based on the following heuristic criterium:

S(pi
j−1, l) =

1

1 + (vpi
j ,l − vpi+1

j ,l)
2 + (σpi

j ,l − σpi+1
j ,l)

2
. (3.102)

The value of S(pi
j−1, l) is in the range of 0 and 1. The more separate the clusters

are according to the lth variable the smaller the value of S(pi
j−1, l) is. The pi

j−1th

splitting variable is chosen to be the variable that possesses the smallest S(pi
j−1, ·)

value.

Fine Tuning

In the previous step the pi
j−1th splitting variable, zpi

j−1
can be chosen. In this

step the parameters of the (pi′

j)th local linear models and their operating regime,
Api′

j
, i′ = i, . . . , i + c − 1, have to be identified. (The parameters identified in the

previous step are good choices for initial values in this step. This step can be
regarded as fine tuning of the parameters.) It can be done by using the modified
Gath–Geva algorithm presented in the previous section. The only difference is that
the clustering procedure is applied only to the splitting variable and not all the
input variables. The results of this step are θpi′

j
parameter sets, vpi′

j
and σ2

pi′
j

for

the operating regimes (see (3.73)).

Example 3.6 (Comparative study to demonstrate the effectiveness of GG cluster-
ing based Fuzzy Regression Tree induction). The accuracy and transparency of the
presented algorithm are shown based on five datasets, three real life and two syn-
thetic ones. All datasets have been used before, most of them are originated from
well-known data repositories. The result of the presented Fuzzy Regression Tree
(FRT) algorithm has been compared with other decision tree or fuzzy model iden-
tification methods, like CART algorithm [53]; Fuzzy Model Identification (FMID)

3.4. Fuzzy Regression Tree 129

Algorithm 3.4.3 (The Whole Greedy Algorithm for FRT Induction).

1. Modelling steps

Step 1 Cluster the data according to the scheduling variables into two clus-
ters.

Step 2 Choose the splitting variable.

Step 3 Re-cluster the data according to the splitting variable exclusively. The
result: two (local linear) models and weights for the operating regime.

2. Greedy steps Choose the worst model based on the following criterium: the
mean squared error of the (i, pi

j−1)th local model is

mse(i, pi
j−1) =

∑N
k=1 βi,pi

j−1

(
yk − [xT

k 1]θT
i,pi

j−1

)2

N︸ ︷︷ ︸
accuracy

∑N
k=1 βi,pi

j−1

N︸ ︷︷ ︸
ratio in the dataset

.

(3.103)
Find the maximum of the mse values, remove this model, and jump to
Step 1.

Toolbox based on Gustafson–Kessel clustering [26]; GUIDE (linear regression tree)
[180]; and Scalable Linear Regression Tree Algorithm (SECRET) and its modified
version with oblique splits (SECRET(O)) [71]. The last three methods can use con-
stant regressors (special, zero-order linear regressor) or linear ones. This section
compares the result of the presented method, which is based on linear regressors,
with the results of the last three methods listed above based on linear regressors as
well (the methods based on constant regressors give worse results). It is important
also in comparability point of view. 10 fold cross validation method was used to
avoid uncertain error based on sampling. The presented technique does not include
pruning method but the other ones need pruning to avoid overfitting. In these cases
the training set was used to fit and to prune the tree.

Real life datasets:

• Abalone Dataset from UCI machine learning repository used to predict the
age of abalone from physical measurements. Contains 4177 cases with 8 at-
tributes (1 nominal and 7 continuous).

• MPG See Example 3.3.

• Kin8nm Data containing information on the forward kinematics of an 8 link
robot arm from the DVELVE repository. Contains 8192 cases with 8 contin-
uous attributes.

130 Chapter 3. Clustering for Fuzzy Model Identification – Regression

Synthetic datasets:

• Fried Artificial dataset used by Friedman [88] containing 10 continuous at-
tributes with independent values uniformly distributed in the interval [0, 1].
The value of the output variable is obtained with the equation:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1). (3.104)

• 3DSin Artificial dataset containing 2 continuous predictor attributes uni-
formly distributed in interval [−3, 3], with the output defined as

y = 3 sin(x1) sin(x2). (3.105)

3000 data points were generated using these equations.

As some clustering methods are sensitive to differences in the numerical ranges
of the different features, the data can be normalized to zero mean and unit variance

z̃j,k =
zj,k − z̄j

σj
(3.106)

where z̄j and σj are the mean and the variance of the given variable, respectively.
The performance of the models is measured by the root mean squared prediction
error (RMSE)

RMSE =

√√√√ 1

N

N∑

k=1

(yk − ŷk)2. (3.107)

Note that the algorithm deals with normalized data but the RMSE values have been
computed by using denormalized data. Note that two initialization techniques were
tried by the presented FRT method: random and using of the result of the more ro-
bust Gustafson–Kessel (GK) fuzzy clustering method [108]. The experience is that
the RMSE values by GK initialization were always worse than by random initial-
ization. Its cause is that the GK algorithm takes account only of the distribution
of the data, not the modelling error, and it forces the FRT algorithm to the wrong
way. Another important remark is that the minimum number of datapoints in a
node is to be considered for splitting to 5% of the size of the dataset. It can be
important for the clustering because there should be enough data to compute the
covariance matrices accurately.

The results are shown in Table 3.3. It can be seen that FRT gives always better
results than CART or FMID methods. It gives by far the best results by MPG and
Fried datasets. In case of the other datasets the FRT method gives slightly worse
results than the current best algorithm. The aim of the presented method is not
only to give accurate but also interpretable models. According to that, the number

3.4. Fuzzy Regression Tree 131

Table 3.3: Comparison of the prediction performance of different algorithms.
(Where two values are given, the first is the training, the second is the test error.
Numbers in brackets are the number of models.)

Dataset FRT CART FMID GUIDE SECRET SECRET(O)

Abalone 2.18 / 2.19 (4) 1.19 / 2.87 (664.8) 2.20 (4) 2.19 (12) 2.15 2.16 2.18
MPG 2.85 / 2.91 (2) 1.69 / 3.04 (51.7) 3.07 (4) 3.03 (12) 5.91 3.99 4.09
Kin8nm 0.15 / 0.15 (20) 0.09 / 0.23 (453.9) 0.20 (4) 0.20 (12) 0.15 0.15 0.13
3DSin 0.18 / 0.18 (12) 0.09 / 0.17 (323.1) 0.50 (4) 0.31 (12) 0.21 0.20 0.15
Fried 0.69 / 0.70 (15) 0.84 / 2.12 (495.6) 2.41 (4) 2.41 (12) 1.10 1.12 1.23

of leaves was forced into the range 2 and 22. The proper number of the leaves is
chosen from the value by which the test error begins to increase or, if it decreases
monotone in the analyzed range, reaches an acceptable small value.

GUIDE, SECRET and SECRET(O) generated trees with around 75 nodes [71],
trees generated by CART algorithm can be even much larger (see the numbers in
brackets in Table 3.3), but the presented FRT algorithm has good generalization
capability and can give accurate results within the limits of perspicuity. E.g., in
case of the MPG problem a lot less leaves (2) are enough to give excellent result. It
is also a considerable result compared with methods proposed in [12], EM-TI, EM-
NI, ANFIS [130] or FMID [26], and contains less membership functions because
the antecedent part of the fuzzy rules does not test all of the attributes, only those
that can be found in the nodes.

One generated FRT tree can be seen in Figure 3.19 with 12 leaves (not depicted
in the figure, only nodes that test an attribute). The label of axis x is the number of
the tested attribute, the label of axis y means the order of generation of the nodes.
In this problem, there are two predictor variables (see (3.105)). It can be seen how
the algorithm divides the input space, e.g., the node 4, 10 and 11 test the same
attribute, x2. Node 10 divides the ‘right side’, node 11 the ‘left side’ of the input
space. It is possible to develop the algorithm in this point of view: if it is the case,
the algorithm will get back to the parent node (here node 4) and will increase the
number of clusters (in this case up to 4). In this way the depth of the tree can be
reduced, and more compact trees can be generated.

Another generated FRT tree can be seen in Figure 3.20 with 15 leaves. The
presented method generated a well-arranged tree, despite, e.g., the CART algorithm
(approximately 495 leaves after pruning). The presented method is able to clearly
determine the attributes on which the output variable depends (3.104), the tree
does not contain nodes that tests any of the x6, . . . , x10 attributes (they do not
have an effect on the dependent variable). Their parameters in the linear models
are two-three orders of magnitude smaller than the ones of x1, . . . , x5.

�

132 Chapter 3. Clustering for Fuzzy Model Identification – Regression

−1 0 1

1

1

−1 0 1

1

2

−1 0 1

2

3

−1 0 1

2

5

−1 0 1

2

4

−1 0 1

2

6

−1 0 1

2

7

−1 0 1

2

1
0

−1 0 1

2

1
1

−1 0 1

1

9

−1 0 1

1

8
Figure 3.19: Result of FRT algorithm in 3DSin prediction.

−1 0 1

3

1

−1 0 1

2

2

−1 0 1

1

3

−1 0 1

1

4

−1 0 1

1

6

−1 0 1

2

7

−1 0 1

2

5

−1 0 1

3

8

−1 0 1

2

1
0

−1 0 1

3

9

−1 0 1

2

1
1

−1 0 1

1

1
3

−1 0 1

2

1
2

−1 0 1

1

1
4

Figure 3.20: Result of FRT algorithm with 15 leaves in case of dataset by Friedman.

3.5. Clustering for Structure Selection 133

3.4.3 Conclusions

A novel representation of hierarchical Takagi–Sugeno fuzzy models has been pre-
sented in this section. The hierarchical structure is represented by a binary fuzzy
tree. The model tree is identified by a supervised clustering algorithm embedded
to a greedy incremental model building algorithm. The analysis of the clusters can
be used for the selection of the relevant scheduling variables that are needed to
handle the nonlinearity of the system. The presented fuzzy regression tree induc-
tion method is evaluated in some well-known synthetic (Fried, 3DSin) and real
life (Abalone, MPG, Kin8nm) benchmark applications. Simulation results show
that the identified hierarchical TS-FS models are effective for the identification
of linear/nonlinear systems. When compared to other fuzzy model identification
(FMID, ANFIS, EM) and regression tree building (CART, GUIDE, SECRET, SE-
CRET(0)) algorithms, the hierarchical TS fuzzy model exhibits competing results
with a high accuracy and smaller size of architecture. The preliminary results are
encouraging.

3.5 Clustering for Structure Selection

3.5.1 Introduction

Real-world data analysis, data mining and modelling problems typically involve a
large number of potential inputs. The set of inputs actually used by a model should
be reduced to the necessary minimum, especially when the model is nonlinear and
contains many parameters. Therefore, effective methods for input selection (also
called structure selection) are very important for any modelling exercise [109].
For dynamic systems, the input-selection problem also includes the choice of the
model’s order (number of lagged inputs and outputs used as regressors) and the
number of pure time delays (see Section 4.3 for more details).

A large array of structure-selection methods, like the analysis of correlations or
principal component analysis, have been introduced for linear models. However,
they usually fail to discover the significant inputs in real-world data, which are
almost always characterized by nonlinear dependencies. Relatively few methods are
available for structure selection in nonlinear models. These methods can generally
be divided into two main groups:

• Model-free methods, which do not need to develop models in order to find
significant inputs. They use the available data only and are based on statis-
tical tests or properties of functions. An example is the method of Lipschitz
coefficients [114] which exploits the continuity property of nonlinear func-
tions.

• Model-based methods, using a particular model structure in order to find
the significant inputs. The Akaike’s information criterion (AIC, [179]) is of-
ten used for linear models. Models with different sets of input variables are

134 Chapter 3. Clustering for Fuzzy Model Identification – Regression

compared and the model that minimizes the AIC is selected. Input selec-
tion for nonlinear fuzzy systems is often based on various heuristic criteria
[64, 130, 178, 232]. A common drawback of these methods is the need to de-
velop fuzzy models in order to compare them and select the relevant inputs.
Such an approach is very time consuming and the result may be biased by
the choice of the fuzzy model type and structure.

The only model-based methods that provide the (theoretic) possibility to han-
dle mixed continuous and discrete (categorical) inputs in an effective way are
classification and regression trees [53]. However, due to their greedy nature (vari-
ables are selected and split sequentially, based on a local measure of performance
or information gain) they do not always perform as expected. (Examples provided
below in this section illustrate this point.)

A model-free method is presented here that should overcome some of the de-
ficiencies of regression trees [97]. No specific model structure is assumed and the
relevant inputs are found directly from the input-output data by using exhaustive
search in the space of all possible model input combinations. For each input com-
bination, the total variance of the output variable is computed over all subsets of
discrete value combinations. For continuous variables, the data samples are first
partitioned into fuzzy subsets by means of clustering and the variance is replaced
by ‘fuzzy variance’. Finally, models with the lowest variance are selected as candi-
dates for further (model-based) analysis. In this way, the potential sets of inputs
are ordered according to their relative power in explaining the output. The final
interpretation of the result and the definitive selection of the model structure can
be done by the user.

3.5.2 Input Selection for Discrete Data

Let us start with introducing the approach for discrete-valued data. Given is a set
of multivariate input data stored in an N ×n matrix X where N is the number of
data samples and n the number of variables. The corresponding output data are
contained in an N × 1 vector y.

We decompose this data set into disjoint subsets, such that the variance of
the predicted variable within the individual subsets is minimal. The underlying
assumption is that such a structure will allow us to construct a prediction model
that minimizes the prediction error.

For the purpose of this decomposition, suppose that each independent variable
xi, i = 1, . . . , n takes on values (attributes) from a finite set Ai = {a1

i , . . . , a
ci

i }.
For the complete set of variables, define the index set W = {1, 2, . . . , n}. Consider
a partitioning W into two disjoint index subsets U and V , such that U

⋃
V = W

and U
⋂

V = ∅. The complete data set (X, y) can now be decomposed into subsets,
such that in each of these subsets, the variables xi are constant: xi = aj

i , i ∈ U, j ∈
{1, 2, . . . , ci}. We call such a subset a data segment and denote it by XaU (aU is

3.5. Clustering for Structure Selection 135

the set of constant values taken on by xi, for all i):

XaU = {(xkV , yk)|aU , k ∈ {1, 2, . . . , N}}. (3.108)

We can now search for such a partitioning of W into U and V , such that the
variance of yk within the individual segments is minimal. Each segment is then
represented by the mean value of the corresponding yk values. Note that a part
of the variance in y will typically be caused by the dependence of y on xV , which
are not taken into account in the decomposition. Therefore, it is meaningful to
look for decompositions with minimal variance, in which no important inputs are
missing.

The complete set of possible values aU is the Cartesian product A = ×i∈UAi.
The number of segments, ns, in the given partition

ns = |A| =
∏

j∈U

cj (3.109)

is thus growing exponentially with the cardinality of U . To keep the computational
load limited, only partitions up to a certain pre-defined cardinality of U can be
considered. As |U | + |V | = |W | = const, more variables in U will generally result
in smaller data segments. Note that some of the segments XaU may be empty,
simply because the corresponding values of xU are not present in the data set.

Illustrative example: Consider a data set with three independent variables: f, g
and h. The complete set of variables, xW = {f, g, h}, can thus be partitioned in
the following six pairs of subsets:

xU1 = { f } xV1 = { g, h }
xU3 = { h } xV3 = { f, g }
xU5 = { g, h } xV5 = { f }
xU2 = { g } xV2 = { f, h }
xU4 = { f, g } xV4 = { h }
xU6 = { f, h } xV6 = { g }

Suppose that variables f , g and h can take on values from the following sets:

Af = {0.5, 0.8, 1.1},
Ag = {0, 1, 2, 3, 4},
Ah = {1.5, 2.0, 2.5}.

We can now segment the data for each of the above partitions. Partition (U2, V2),
for instance, will result into five data segments corresponding to g = 0, 1, 2, 3, 4.
Each of these segments will contain some independent data xkV2 from the set
Af × Ah and the corresponding outputs yk. Partition (U4, V4), will result into
15(= 3× 5) data segments, each containing some independent data xkV4 from the
set Ah and the corresponding outputs yk. Note that these segments will be smaller
than the segments obtained with (U2, V2).

136 Chapter 3. Clustering for Fuzzy Model Identification – Regression

The obvious drawback of this approach is that it cannot be directly applied to
continuous-valued data. Instead, the data first have to be quantized in some way.
To avoid this step, which may introduce unwanted bias by an unsuitable choice of
the quantization levels and boundaries, we propose to fuzzify the decomposition
process and use fuzzy clustering to partition the continuous data into subsets.

3.5.3 Fuzzy Clustering Approach to Input Selection

Instead of quantizing the input data into hard subsets, fuzzy c-means (FCM)
clustering [42] is used to partition all the candidate regressors into fuzzy subsets.
To determine the proper number of clusters cj for variable j, the Xie-Beni index
[285] is employed. The cluster centers are randomly initialized. As a result, for each
input xj , the cluster centers vj ∈ R

1×cj and the partition matrix Uj = [0, 1]cj×N

are obtained.
The fuzzy counterparts of the discrete segments (1) are fuzzy subsets obtained

by the Cartesian product-space conjunction of the cluster membership degrees:

βi,k =

ni∏

j=1

µj
Ijik

, i = 1, 2, . . . , ns, k = 1, 2, . . . , N, (3.110)

where ni is the number of inputs in the considered structure, I = ×j∈U (1, . . . , cj)
is the set of all possible ordered n-tuples of cluster indices, whose total number is:

ns = |I| =

ni∏

j=1

cj . (3.111)

We normalize βi,k such that the sum over all the segments equals to one:

γi,k =
βi,k∑ns

i,=1 βi,k
. (3.112)

To assess the relative power of the inputs to explain the output, the weighted
mean of each segment is computed

bi =

ns∑

k=1

γi,kyk (3.113)

and the total fuzzy variance σt is obtained by

σt =

N∑

k=1

(
uk −

ns∑

i=1

γi,kbi

)
. (3.114)

Often, σt will have comparable values for several model structures, some of them
containing more inputs than others. In order to distinguish among such structures,

3.5. Clustering for Structure Selection 137

the variance can be modified to account for the number of inputs. There are
many ways to realize this modification. In our experiments, the following variance-
complexity trade-off (V CT) measure proved useful and it is therefore used as a
ranking criterion:

V CT = σtni. (3.115)

The interpretation of this measure is discussed in the next section by the examples.

Remarks:

1. Each data segment can be interpreted as a fuzzy if-then rule and the set of
all segments as a fuzzy rule base of the same form as the singleton fuzzy
model [26]. The total fuzzy variance is equivalent to the sum of squared pre-
diction errors over the data. Searching for the optimal partition corresponds
to selecting the optimal rule base among all possible ones.

2. To reduce the computational complexity, the successive computation of the
product in (3.110) can be truncated whenever the current value of βi,k be-
comes zero or lower than a certain threshold.

3. The final selection of the model structure should be done by the user, who
will typically try to find a tradeoff between the performance and complexity
of the model. Usually, it is feasible to select a small set of ‘good’ model
structures and compare their performance in modelling. We illustrate this
point in the last example of the next section.

3.5.4 Examples

In this section we present two examples to demonstrate the effectiveness of the
presented approach and we compare it with the regression-tree method [53] im-
plemented in the Statistics Toolbox of MATLAB�.

Example 3.7 (Input selection by a nonlinear regression problem based on Fuzzy
c-Means clustering). We first consider the well-known example taken from [88]
where it was included to illustrate the performance of the multivariate adaptive
regression splines technique. Later, it was used in other publications as well [145].
Consider the following nonlinear function of five variables x1 through x5:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (3.116)

A set of 1000 samples are randomly generated for x1 to x5 according to the uniform
distribution U [0, 1] and the corresponding output y is computed. In addition, five
dummy inputs x6 to x10 are added to the set of candidate inputs (these data are
also generated randomly according to U [0, 1]).

Applying the regression-tree method to this data typically results in the correct
variables x1 through x5 being selected as model inputs, but in addition one or two

138 Chapter 3. Clustering for Fuzzy Model Identification – Regression

dummy variables are selected as well. This is clearly undesirable, as it can lead to
over-fitting and it can also have a negative influence on the decision-making or
control based on such a model.

With the presented method, the 10 candidate inputs are first clustered one by
one. The number of clusters can be determined by using the Xie-Beni index or set
to a predefined value. The later option is preferred in this particular case, as it is
easy to see that the data are uniformly distributed (check a histogram) and hence
no natural cluster structure is present.

Based on the obtained partition matrices, the total fuzzy variance is computed
for each possible subset of inputs. The numbers obtained are sorted in ascending
order and the corresponding model structures are sorted accordingly. Figure 3.21
shows the variance-complexity tradeoff criterion for the first 70 structures, num-
bered sequentially in the order of increasing σt. The total number of structures that
were compared is 847.

10 20 30 40 50 60 70
20

25

30

35

40

45

50

Structure number

V
ar

ia
n

ce
−

co
m

p
le

x
it

y
 t

ra
d

eo
ff

Figure 3.21: The variance-complexity tradeoff criterion for function (3.116)

Table 3.4 shows the numerical results for several selected structures, including
also the total variance σt. The first local (and global) minimum of V CT (structure
number 6) refers to the model with the correct inputs x1 through x5. Another local
minimum is found for structure number 32 in which variable x3 is dropped, which
can be expected since x3 has the least relative contribution in (3.116). A similar
observation can be made for structure 64.

It is important to realize that the absolute values of the local minima on the
V CT curve (Figure 3.21) should not be compared one to another. For small values
of σt, the number of inputs ni will dominate the formula (3.115), which to a certain
degree also happens in this example. Note, that the V CT index for structure 64 is
only marginally larger than for structure 6, while the corresponding σt values differ
considerably. Therefore, we use V CT only to compare structures with similar σt

values (such as structures 1 through 6 in Table 3.4).

�

3.5. Clustering for Structure Selection 139

structure selected inputs σt VCT

1 x1, x2, x3, x4, x5, x8 3.82 22.90
2 x1, x2, x3, x4, x5, x10 3.84 23.05
5 x1, x2, x3, x4, x5, x9 3.91 23.46
6 x1, x2, x3, x4, x5 4.27 21.34
7 x1, x2, x4, x5, x6, x8 4.64 27.86
32 x1, x2, x4, x5 5.50 21.98
64 x1, x2, x4 7.36 22.09

Table 3.4: Summary of the results for function (3.116)

Example 3.8 (Input selection by continuous and discrete variables based on FCM).
This example demonstrates how the presented algorithm can handle data sets con-
taining both continuous and discrete inputs. Consider the following function

y =

{
x2

1 + ǫ for x2 = 1,
x2

4 + x3 + ǫ for x2 = 0,
(3.117)

in which the output switches between two nonlinear functions depending on the
value of the random discrete regressor x2 ∈ {0, 1}. The remaining variables are
randomly generated according to the uniform distribution U [0, 1]. Two additional
random dummy inputs x5 and x6 are included in the set of candidate inputs. The
noise term ǫ is a normally distributed random variable: ǫ ∼ N(0, 0.1).

Similarly to the previous example, the regression-tree method selects the correct
variables x1 through x4, but in addition one of the dummy variables is selected in
about 20% of runs (recall that the input data are random).

With the presented algorithm, the number of clusters in the continuous variables
is set to 3, while the discrete variable clearly has two distinct values. Figure 3.22
shows the variance-complexity tradeoff criterion for the first 30 structures, num-
bered sequentially in the order of increasing σt. The total number of structures
compared was 62.

Table 3.5 shows the numerical results for several selected structures. The first
local (and global) minimum of V CT (structure number 3) refers to the model with
the correct inputs x1 through x4.

�

3.5.5 Conclusions

A model-free method for structure selection has been presented in data containing
both continuous and categorical variables. The relevant inputs are found by an
exhaustive search in the space of all possible input combination after partitioning
the continuous variables into fuzzy subsets. Models are ranked according to the

140 Chapter 3. Clustering for Fuzzy Model Identification – Regression

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Structure number

V
ar

ia
n

ce
−

co
m

p
le

x
it

y
 t

ra
d

eo
ff

Figure 3.22: The variance-complexity tradeoff criterion for function (3.117)

structure # selected inputs σt VCT

1 x1, x2, x3, x4, x6 0.021 0.107
2 x1, x2, x3, x4, x5 0.022 0.109
3 x1, x2, x3, x4 0.023 0.090
4 x2, x3, x4, x5, x6 0.056 0.282
5 x1, x2, x4, x5, x6 0.057 0.285

Table 3.5: Summary of the results for function (3.117)

resulting (fuzzy) variance of the output variable. A ranked list of candidate model
structures is obtained and the final selection of the structure is left to the user.
Two examples were presented to show that the method is able to find the cor-
rect model structures for simulated benchmarks. The presented method performs
better than regression trees which in many cases overfit the data by selecting a
larger set of inputs (despite pruning with the help of cross-validation). A clear
limitation of our method is that it can only handle models with a limited number
of potential inputs. Due to the exhaustive search, it will take too long to evaluate
model structures with more than 15 candidate inputs. The method is fully auto-
matic (no user interaction is needed) if the Xie-Beni index is used to determine the
number of clusters for each variable. In some cases it might be preferable to set the
number of clusters manually; this can be done after analyzing the data by means
of histograms, for instance. The algorithm can be modified in several ways, for
instance by using product-space clustering rather than clustering the individual
input variables. While clusters in the product space of the inputs can better ac-
count for dependencies among the variables, computationally, this approach would
be much more involved, as for each candidate structure, the clustering would have
to be run again.

Chapter 4

Fuzzy Clustering for
System Identification

In this chapter we deal with fuzzy model identification, especially by dynamical
systems. In practice, there is a need for model-based engineering tools, and they
require the availability of suitable dynamical models. Consequently, the develop-
ment of a suitable nonlinear model is of paramount importance. Fuzzy systems
have been effectively used to identify complex nonlinear dynamical systems. In
this chapter we would like to show how effectively clustering algorithms can be
used to identify a compact Takagi–Sugeno fuzzy model to represent single-input
single-output and also multiple-input multiple-output dynamical systems.

The algorithm mentioned above uses only data from the modeled system, but if
there is a priori information about the analyzed system and there are less defined
parts as well, it is worth using both information sources, i.e., a white box struc-
ture based on mechanistic relationships and black-box substructures to model less
defined parts based on measured data. These hybrid model structures are called
semi-mechanistic models. It is shown that certain types of white-box models can
be efficiently incorporated into a Takagi–Sugeno fuzzy rule structure. Next, the
presented models are identified from learning data and special attention is paid to
transparency and accuracy aspects. For the identification of the semi-mechanistic
fuzzy model, a new fuzzy clustering method is presented. Subsequently, model
reduction is applied to make the TS models as compact as possible.

Until this point, the order of the input-output model is assumed to be known.
However, it is often not known beforehand and has to be determined somehow.
Selecting the order of an input-output model of a dynamical system can be the
key step toward the goal of system identification. The false nearest neighbors
algorithm (FNN) is a useful tool for the estimation of the order of linear and
nonlinear systems. Advanced FNN uses nonlinear input-output data based models.
To increase the efficiency of this method, we present a clustering-based algorithm.

142 Chapter 4. Fuzzy Clustering for System Identification

Clustering is applied to the product space of the input and output variables. The
model structure is then estimated on the basis of the cluster covariance matrix
eigenvalues. The main advantage of the proposed solution is that it is model-
free. This means that no particular model needs to be constructed in order to
select the order of the model, while most other techniques are ‘wrapped’ around
a particular model construction method. This saves the computational effort and
avoids a possible bias due to the particular construction method used.

The approach mentioned above can be used not only for input-output systems
but autonomous systems as well. It is a challenging problem by chaotic systems
and it can be the key step toward the analysis and prediction of nonlinear and
chaotic time-series generated by these systems. The embedding dimension can
be selected by the presented clustering based algorithm. The intrinsic dimension
of the reconstructed space can then be estimated based on the analysis of the
eigenvalues of the fuzzy cluster covariance matrices (the ‘flatness’ of the clusters),
while the correct embedding dimension is inferred from the prediction performance
of the local models of the clusters. The main advantage of the proposed solution
is that three tasks are simultaneously solved during clustering: selection of the
embedding dimension, estimation of the intrinsic dimension, and identification of
a model that can be used for prediction.

4.1 Data-Driven Modelling of Dynamical Systems

In this section, before the introduction of fuzzy models of dynamical systems, the
widely used dynamical model structures will be reviewed.

When the information necessary to build a fundamental model of dynamical
processes is lacking or renders a model that is too complex for an on-line use,
empirical modelling is a viable alternative. Empirical modelling and identification
is a process of transforming available input-output data into a functional relation
that can be used to predict future trends. While fundamental physical process
models are mostly developed in continuous time, computer-based process control
systems operate in discrete time: measurements are made and control actions are
taken at discrete time instants. In addition, the available input-output data used
for model identification are only available in discrete time instants. Hence, the
identification of a discrete input-output dynamical model is based on the observed
inputs {u(k)}k and outputs {y(k)}k [247],

{u(k)}k = [u (1) , u (2) , . . . , u (k)] , (4.1)

{y(k)}k = [y (1) , y (2) , . . . , y (k)] . (4.2)

Our aim is to find a relationship between past observations and future output

ŷ(k) = g({y(k − 1)}k, {u(k − 1)}k, θ) + e(k) (4.3)

where θ is a finite-dimensional parameter vector and the additive term e(k) ac-
counts for the fact that the next output y(k) will not be an exact function of the

4.1. Data-Driven Modelling of Dynamical Systems 143

past data. However, the goal is that e(k) remains small. Instead of using the whole
previous input-output sequence, {u(k− 1)}k and {y(k− 1)}k, a finite-dimensional
regression vector has to be used. This can be done if (4.3) is written as a concen-
tration of two mappings: one that takes the increasing number of past inputs and
outputs and maps them into a finite-dimensional vector φ(k) of a fixed dimension,

φ(k) = ϕ({y(k − 1)}k, {u(k − 1)}k, η) (4.4)

where φ(k) input vector of the model is a subset of the previous input and output
variables, generated by the ϕ(.) model: where η denotes the parameter vector of
the ϕ function that generates the regressors of the f(.) model

ŷ(k) = f(φ(k), θ) . (4.5)

Following this scheme, the nonlinear system identification of dynamical systems
involves the following tasks [179]:

• Structure selection How to choose the nonlinear mapping f (·) and the re-
gression vector φ(k)?

• Input sequence design Determination of the input sequence u(k) which is
injected into the plant to generate the output sequence y(k) that can be
used for identification (see [172] for more details).

• Noise modelling Determination of the dynamic model which generates the
noise e(k).

• Parameter estimation Estimation of the model parameters from the dynamic
plant data u(k) and y(k) and the noise e(k).

• Model validation Comparison of the output of the plant and the model based
on data not used in model development.

As the structure selection task has the largest effect on the performance of the
model, a small review about regressor selection for dynamic systems is provided
in the following subsection.

As the nomenclature of nonlinear dynamical models is based on the terminology
used to categorize linear input-output models, in the following the linear empirical
model structures are discussed that can be summarized by the general family
[179, 247]

A (q) y (k) =
B (q)

F (q)
u (k) +

C (q)

D (q)
e (k) (4.6)

where q denotes the shift operator. For instance, A(q) is a polynomial in q−1. This
model can be given in a “pseudo-linear” regression form

ŷ (k) = θT φ(k) (4.7)

where the regressors, i.e., the components of φ(k), can be given by

144 Chapter 4. Fuzzy Clustering for System Identification

• u(k − i), i = 1, . . . , nb, control signals (associated with the B polynomial)

• y(k − i), i = 1, . . . , na, measured process outputs (associated with the A
polynomial),

• ŷu(k − i) simulated outputs from past u(k) (associated with the F polyno-
mial),

• e(k − i) = y(k − i) − ŷ(k − i) prediction errors (associated with the C poly-
nomial),

• eu(k − i) = y(k − i) − ŷu (k − i) simulation errors (associated with the D
polynomial).

Based on these regressors, different types of model structures can be con-
structed. For instance, the simplest linear dynamical model is the finite impulse
response (FIR) model

ŷ(k) = B(q)u(k) + e(k) = b1u(k − 1) + · · · + bnu(k − nb) + e(k) . (4.8)

In this equation, the corresponding predictor ŷ(k) = B(q)u(k) is thus based on
the φ(k) = [u(k − 1), . . . , u(k − nb)] regression vector.

Other special cases of (4.6) are known as the Box–Jenkins (BJ) model (A = 1),
the ARMAXmodel (F = D = 1), the output-error (OE) model (A = C = D = 1)
and the ARX model (F = C = D = 1).

Following this nomenclature of linear models, it is natural to construct similar
nonlinear model structures:

• NFIR, Nonlinear Finite Impulse Response models, in this case the regressor
vector is composed as

φ(k) = [u (k − 1) , . . . , u (k − nb)] .

• NARX, Nonlinear AutoRegressive with eXogenous input models, which use
regressors

φ(k) = [y(k − 1), . . . , y(k − na), u (k − 1) , . . . , u (k − nb)].

• NOE, Nonlinear Output Error Models, which use

φ(k) = [ŷ(k − 1), . . . , ŷ(k − nb), u (k − 1) , . . . , u (k − nb)].

• NBJ, Nonlinear Box–Jenkins models, where the regressors are past inputs,
past estimated outputs, estimation errors using past outputs, and the esti-
mation errors using past estimated outputs

φ(k) = [ŷ(k − 1), . . . , ŷ(k − na), u(k − 1), . . . , u(k − nb),
εu(k − 1), . . . , εu(k − nu), ε(k − 1), . . . , ε(k − ne)].

4.1. Data-Driven Modelling of Dynamical Systems 145

In the soft-computing community, the NARX model is called a series-parallel
model, while the NOE is referred to as a parallel model [201]. The NOE, and
NBJ models are recurrent models, because they use the estimated output that
constitutes a feedback. This makes the identification of these models difficult.
Because the NARX model structure is non-recursive, its parameters are easy to
estimate. Therefore, the NARX model is frequently used for identification. The
identified NARX or series-parallel model is often used and tested as an NOE or
parallel model, when the past outputs of the nonlinear model are used instead of
the real plant outputs. By using this approach a multi-step-ahead prediction can
be made, using the former predictions of the system. This procedure is often called
‘free run’ simulation. This ‘free run’ is a very rigorous test of the predictive power
of the model, because in this way small errors can accumulate to major ones.

Many general empirical model structures, especially those employing a linear
parameterization, lead to a large number of parameters to be estimated. An exces-
sive number of unknown coefficients leads to an ill-conditioned estimation problem
causing numerical difficulties and high sensitivity to noise and other identification
errors. In the following some special model structure will be presented to avoid
this dimensionality problem:

Lowering of the regressor dimension through input projection: The ϕ(.) model
(4.4) is used to transform the original input-space of the dynamical model into a
lower-dimensional space. This transformation is parameterized by an η parameter
vector and can be designed based on a priori knowledge about the dynamics of the
system. The projection can also be determined on the basis of certain statistics
computed using the data. Proposed methods are mostly extensions of the principal
component analysis [72] and partial least squares. For instance, in the PLS neural
network proposed by Qin and McAvoy, one-dimensional linear projections are
decided one at a time based on the residuals resulting after fitting a neural network
to the projected data [223]. Methods to obtain nonlinear projections have also been
published, but the computational complexities associated with these extensions
have made it very difficult to apply them to realistic problems [72]. However,
based on prior knowledge, semi-physical regressors can also be defined [276, 277].

ANOVA decomposition: The other option to reduce the search-space of the
identification problem is to decompose the general structure into a collection of
simpler sub-structures. For instance, consider the Gabor–Kolmogorov or ANalysis
Of VAriance (ANOVA) decomposition of a general nonlinear function

f(φ) = f0 +
n∑

i=1

fi(φi) +
n∑

i=1

n∑

j=i+1

fi,j(φi, φj) + · · · + f1,2,...,n(φ1, . . . , φn) (4.9)

where the f(φ) function is simply an additive decomposition of simpler subfunc-
tions; in which f0 is a bias term and fi(φi), fi,j(φi, φj), . . . represent univariate,
bivariate, . . . components. Any function and hence any reasonable dynamical sys-
tem can be represented by this decomposition. In most of the systems certain

146 Chapter 4. Fuzzy Clustering for System Identification

input interactions will be redundant and hence components in the ANOVA de-
composition can be ignored resulting in a more parsimonious representation.

By using this approach, the following well-known model classes can be con-
structed.

• NAARX Nonlinear Additive AutoRegressive models with eXogenous input
models are defined as [214]

ŷ(k) =

na∑

i=1

fi(y(k − i)) +

nb∑

j=1

gj(u(k − j)) + e(k) (4.10)

where the functions fi and gi are scalar nonlinearities. As can be seen, this
model does not permit “cross terms” involving products of input and output
values at different times.

• Volterra models are defined as multiple convolution sums

ŷ(k) = y0 +

nb∑

i=1

biu(k − i)

+

nb∑

i=1

nb∑

j=1

bi,ju(k − i)u(k − j) + · · · + e(k) .

(4.11)

• Polynomial ARMA models are superior to Volterra series models in the sense
that the number of parameters needed to approximate a system is generally
much less with polynomial models [116] because of the use of previous output
values.

ŷ(k) = y0 +

na∑

i=1

a1,iy(k − i) +

nb∑

i=1

b1,iu(k − i)

+

na∑

i=1

i∑

j=1

a1,ijy(k − i)y(k − j)

+

nb∑

i=1

i∑

j=1

b2,iju(k − i)u(k − j) + . . . + e(k) .

(4.12)

Block-oriented modelling: Nonlinear effects encountered in some industrial pro-
cesses, such as distillation columns, pH-neutralization processes, heat-exchangers,
or electro-mechanical systems, can be effectively modeled as a combination of a
nonlinear static element and a linear dynamic part [83, 218]. Because of the static
nature of the nonlinearities, the problem of the nonlinear behavior of the system
can be effectively removed from the control problem, allowing the use of simple lin-
ear algorithms instead of computationally intensive nonlinear programming ones
[89, 205, 206].

According to the order of the static and dynamic blocks, three main block-
oriented model structures can be defined.

4.1. Data-Driven Modelling of Dynamical Systems 147

Figure 4.1: Hammerstein model structure.

Figure 4.2: Wiener model structure.

• Hammerstein models

A special case of the NAARX model is the Hammerstein model, where the
same static nonlinearity f is defined for all of the delayed control inputs
[80, 83]:

ŷ(k) =

na∑

i=1

aiy(k − i) +

nb∑

j=1

bjf(u(k − j)) + e(k) . (4.13)

As it is depicted in Figure 4.1 this model can be obtained as a series
combination of a memoryless nonlinearity and linear dynamics.

• Wiener models

When the nonlinear element follows the linear block (see Figure 4.2), the
resulting model is called the Wiener model [81, 302] that can be formulated
as

ŷ(k) = f

⎛
⎝

na∑

i=1

aiy(k − i) +

nb∑

j=1

bju(k − j)

⎞
⎠+ e(k) . (4.14)

• Feedback block-oriented models

The basic feedback block-oriented model structure as defined by the diagram
shown in Figure 4.3 consists of a linear dynamic model in the forward path
with a static nonlinearity in the feedback path [218].

This model is also a member of the NAARX model family:

ŷ(k) =

na∑

i=1

ai(y(k − i)) +

nb∑

j=1

bju(k − j) +

nb∑

j=1

f(y(k − j)) + e(k) . (4.15)

148 Chapter 4. Fuzzy Clustering for System Identification

Figure 4.3: Feedback-block-oriented model structure.

The previously presented empirical model structures are frequently applied in
the soft-computing community. Artificial neural networks are the most popular
framework for nonlinear empirical model development [122, 201]. Usually, these
models are applied in the NARX structure, although techniques based on Ham-
merstein [81, 89, 253] and Wiener models [81] and polynomial ARMAX models
also have been presented [37, 116].

4.1.1 TS Fuzzy Models of SISO and MIMO Systems

Fuzzy models of dynamical single input-single output (SISO) and multiple input-
multiple output (MIMO) systems are usually based on Nonlinear AutoRegressive
with eXogenous input (NARX) model structure . These models can be represented
by the following nonlinear vector function:

y(k + 1) = f (y(k), . . . ,y(k − na + 1),u(k − nd), . . . ,u(k − nb − nd + 1)) (4.16)

where, f represents the nonlinear model, y =
[
y1, . . . , yny

]T
is an ny-dimensional

output vector, u = [u1, . . . , unu]
T

is an nu-dimensional input vector, na and nb

are maximum lags considered for the outputs and inputs, respectively, and nd is
the minimum discrete dead time.

While it may not be possible to find a model that is universally applicable to
describe the unknown f(.) system, it would certainly be worthwhile to build local
linear models for specific operating points of the process. The modelling framework
that is based on combining a number of local models, where each local model has
a predefined operating region in which the local model is valid is called operating
regime based model [197]. In case of MIMO NARX models, the operating regime
is formulated as:

y(k + 1) =
c∑

i=1

βi(z(k))

⎛
⎝

na∑

j=1

Ai
jy(k − j + 1) +

nb∑

j=1

Bi
ju(k − j − nd + 1) + ci

⎞
⎠

(4.17)

4.1. Data-Driven Modelling of Dynamical Systems 149

where the βi(z(k)) function describes the operating regime of the i = 1, . . . , cth

local linear ARX model, where z = [z1, . . . , znz]
T

is a “scheduling” vector, which
is usually a subset of the previous process inputs and outputs,

z(k) =
{
y1(k), . . . , yny(k − na + 1), u1(k − nd), . . . , unu(k − nb − nd + 1)

}
.

The local models are defined by the θi = {Ai
j ,Bj , ci} parameter set. As na

and nb denote the maximum lags considered for the previous outputs and inputs,
and nd is the minimum discrete dead time, the lags considered for the separate
input-output channels can be handled by zeroing the appropriate elements of the
Ai

j and Bi
j matrices. If there is no a priori knowledge about the order of the

nonlinear system, the model orders and the time delays can be directly estimated
from input-output data. The next chapter of this book will deal with this problem
and give a detailed overview.

The main advantage of this framework is its transparency, because the βi(z(k))
operating regimes of the local models can be represented by fuzzy sets [31]. This
representation is appealing, since many systems change behaviors smoothly as
a function of the operating point, and the soft transition between the regimes
introduced by the fuzzy set representation captures this feature in an elegant
fashion. Hence, the entire global model can be conveniently represented by Takagi–
Sugeno fuzzy rules [257]:

Ri : If z1 is Ai,1 and . . . and znz is Ai,n then (4.18)

yi(k + 1) =

na∑

j=1

Ai
jy(k − j + 1) +

nb∑

j=1

Bi
ju(k − j − nd + 1) + ci, [wi]

where Ai,j(zj) is the ith antecedent fuzzy set for the jth input and wi = [0, 1] is
the weight of the rule that represents the desired impact of the rule. The value of
wi is often chosen by the designer of the fuzzy system based on his or her belief in
the goodness and accuracy of the ith rule. When such knowledge is not available
wi is set as wi = 1, ∀ i.

The one-step-ahead prediction of the MIMO fuzzy model, y(k + 1), is inferred
by computing the weighted average of the output of the consequent multivariable
models,

y(k + 1) =
c∑

i=1

βi(z(k))yi(k + 1) (4.19)

where c is the number of the rules, and βi is the weight of the ith rule,

βi(z(k)) =
wi

∏n
j=1 Ai,j(zj)∑c

i wi

∏n
j=1 Ai,j(zj)

. (4.20)

150 Chapter 4. Fuzzy Clustering for System Identification

To represent the Ai,j(zj) fuzzy set, in this chapter Gaussian membership function
is used as in the previous chapters

Ai,j(zj) = exp

(
−1

2

(zj − vi,j)
2

σ2
i,j

)
(4.21)

where vi,j represents the center and σ2
i,j the variance of the Gaussian function.

The presented fuzzy model can be seen as a multivariable linear parameter
varying system model (LPV), where at the z operating point, the fuzzy model
represents the following LTI model

y(k+1) =

na∑

j=1

Aj(z(k))y(k−j+1)+

nb∑

j=1

Bj(z(k))u(k−j−nd+1)+c(z(k)) (4.22)

with

Aj(z(k)) =

c∑

i=1

βi(z(k))Ai
j , Bj(z(k)) =

c∑

i=1

βi(z(k))Bi
j ,

c(z(k)) =

c∑

i=1

βi(z(k))ci. (4.23)

Example 4.1 (Identification of a TS fuzzy model for a SISO Nonlinear System).
The system under study is a second-order nonlinear system

y(k) = f(y(k − 1), y(k − 2)) + u(k) (4.24)

where

f(y(k − 1), y(k − 2)) =
y(k − 1)y(k − 2) [y(k − 1) − 0.5]

1 + y2(k − 1) + y2 (k − 2)
. (4.25)

We approximate the nonlinear component f of the plant with a fuzzy model. Fol-
lowing the approach in [293], 400 simulated data points were generated from the
plant model: 200 samples of the identification data were obtained with a random
input signal u(k) uniformly distributed in [−1.5, 1.5], followed by 200 samples of
evaluation data obtained using a sinusoidal input signal u(k) = sin(2πk/25), k =
1001, . . . , 1200. The simulated data are shown in Figure 4.4. The input of the model
is zk = [y(k − 1), y(k − 2)].

Table 4.1 compares the performance (mean squared error) of the models identi-
fied with these techniques. The nomenclature can be found in Example 3.3
(Section 3.3.3).

From the prediction surface and the operating regimes of the local linear models
of the fuzzy model (Figure 4.5 and Figure 4.6), one can see that the presented
EM-NI method results in almost optimal antecedent and consequent parameters.

4.1. Data-Driven Modelling of Dynamical Systems 151

0 50 100 150 200 250 300 350 400
−2

−1

0

1

2

k

y
(k

)

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5

k

u
(k

)

Figure 4.4: Simulated output of the plant and the corresponding input signal.

Table 4.1: Fuzzy models of the nonlinear dynamic plant.

4 rules 12 rules

Method Training set Test set Training set Test set

GG-TLS 4.6 10−3 2.1 10−3 3.7 10−4 2.9 10−4

GG-LS 4.6 10−3 2.0 10−3 3.7 10−4 2.9 10−4

EM-TI 4.6 10−3 2.0 10−3 2.4 10−4 4.1 10−4

EM-NI 4.4 10−3 3.5 10−3 3.4 10−4 2.3 10−4

We compare our results with those obtained by the optimal rule selection ap-
proach proposed by Yen and Wang [293]. Their method uses various information
criteria to successively select rules from an initial set of 36 rules in order to obtain
a compact and accurate model. The initial rule base was obtained by partitioning
each of the two inputs into six equally distributed fuzzy sets. The rules were selected
in an order determined by an orthogonal transform. When linear rule consequents
were used, the optimal fuzzy model with 24 rules achieved the mean squared error
of 2.0 10−6 on the training data and 6.4 10−4 on the evaluation data.

Based on this comparison, we can conclude that the presented modelling ap-
proach is capable of obtaining good accuracy, while using fewer rules than other
approaches presented in the literature.

�

152 Chapter 4. Fuzzy Clustering for System Identification

−2

−1

0

1

2
−2 −1.5

−1 −0.5 0
0.5 1

1.5 2

−1.5

−1

−0.5

0

0.5

1

y(k−1)
y(k−2)

f(
y

(k
−

1
),

y
(k

−
2

))

Figure 4.5: Surface plot of the TS model. Available data samples are shown as
black dots.

−2

−1

0

1

2 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

y(k−2)

y(k−1)

φ
i((

y
(k

−
1

),
y

(k
−

2
))

Figure 4.6: Operating regimes obtained.

4.1. Data-Driven Modelling of Dynamical Systems 153

4.1.2 Clustering for the Identification of MIMO Processes

Identification of the Local MIMO ARX Models

The fuzzy model can be formulated in the following compact form:

y(k + 1)T =
c∑

i=1

βi(z(k))
[
φ(k) I1×ny

]
θT

i + e(k), (4.26)

where φ(k) is the regressor vector,

φ(k) = [y(k)T , . . . ,y(k − ny + 1)T ,u(k − nd)
T , . . . ,u(k − nu − nd + 1)T], (4.27)

θi is the parameter matrix of the ith local model (rule),

θi = [Ai
1, . . . ,A

i
ny

,Bi
1, . . . ,B

i
nu

, ci]

and e(k) is a zero mean white noise sequence.
The output of this model is linear in the elements of the Ai

j , Bi
j consequent

matrices and the ci offset vector. Therefore, these parameters can be estimated
from input-output process data by linear least-squares techniques. The N iden-
tification data pairs and the truth values of the fuzzy rules are arranged in the
following matrices.

φ =
[
φT (1)|φT (2)| · · · |φN (N)

]T

(4.28)

Y = [y(2)|y(3)| · · · |y(N + 1)]
T

(4.29)

Bi =

⎡
⎢⎢⎢⎣

βi(1) 0 · · · 0
0 βi(2) · · · 0
...

...
. . .

...
0 0 · · · βi(N)

⎤
⎥⎥⎥⎦ . (4.30)

By using this notation, the weighted least squares solution of θi is:

θi =
[
φTBiφ

]−1

φTBiY . (4.31)

As this method forces the local linear models to fit the data locally, it does not
give an optimal fuzzy model in terms of a minimal global prediction error, but
it ensures that the fuzzy model is interpretable as a Linear Parameter Varying
(LPV) system [6].

In the following, the extension of the method presented in Section 3.3 (Algo-
rithm 3.3.1) is considered for MIMO model identification. Another main difference
compared to Algorithm 3.3.1 is that so-called scheduling variables are also taken
into account. Scheduling variables are most representative to handle the nonlin-
earity of the system. See also Section 3.3.4 and Section 3.4.2.

154 Chapter 4. Fuzzy Clustering for System Identification

Problem Formulation

The available identification data, R = [φ, Y] is arranged to form a regression
data matrix φ and a regression vector Y. This means, each observation con-
sists of (ny × na + nu × nb) + ny measured variables, grouped into a row vector
rk = [φ(k)y(k +1)T], where the k subscript denotes the kth row of the R matrix.
For sake of simplicity and space, in the following the rk = [φk yk] notation is used
according to the partition of rk to regressors and regressand. Furthermore, the
transpose of the z(k) vector containing the scheduling variables (that is the subset
of φk) will be denoted by zk.

To form an easily interpretable model that does not use the transformed input
variables, a new clustering algorithm has been presented based on the Expectation
Maximization (EM) identification of Gaussian mixture models [18]. The aim of this
section is to show how this EM based identification technique can be extended to
the identification of MIMO fuzzy models.

The basic idea of the presented algorithm is to define the cluster prototype
which contains three terms:

p(y, φ, z) =

c∑

i=1

p(y|φ, ηi)p(z|ηi)p(ηi) (4.32)

where φ and z may be identical, overlapping in some dimensions or completely
distinct.

The p(y|φ, ηi) distribution of the output variables is taken to be

p(y|φ, ηi) =
exp

(
−(y − φ∗θT

i)T (Fyy
i)−1(y − φ∗θT

i)
)

(2π)
ny
2

√
det(Fyy

i)
(4.33)

where φ∗ = [φ, I1×ny] represents the extended regression vector, θi the parameters
of the ith local linear model, and the F

yy
i the weighted covariance matrix of the

modelling error of this local model.

The p(z|ηi) distribution of the scheduling variables is parameterized as Gaus-
sian distributions [95], and defines the domain of influence of a cluster

p(z|ηi) =
exp

(
− 1

2 (z − vz
i)T (Fzz

i)−1(z − vz
i)
)

(2π)
nz
2

√
det(Fxx

i)
, (4.34)

where the Fzz
i represent the covariance matrix and vz

i the center of the ith cluster.

When the simplicity and the interpretability of the model is important, the
Fzz cluster weighted covariance matrix is reduced to its diagonal elements, σ2

i,j ,
which resembles to the simplified axis-parallel version of the Gath–Geva clustering

4.1. Data-Driven Modelling of Dynamical Systems 155

algorithm [119]

p(z|ηi) =

nz∏

j=1

1√
2πσ2

i,j

exp

(
−1

2

(zj − vi,j)
2

σ2
i,j

)
(4.35)

< y | z > =

∫
y | zdy =

∫
y

p(y, φ, z)

p(z)
dy. (4.36)

The identification of the model means the determination of the ηi = {p(ηi),v
z
i ,

Fzz
i , θi,F

yy
i } parameters of the clusters. Below, the EM identification of the model

is presented that is re-formulated in the form of Gath–Geva fuzzy clustering.

Estimation of the Model Parameters

The basics of EM are the followings. Suppose we know some observed values of
a random variable r and we wish to model the density of r by using a model
parameterized by η. The EM algorithm obtains an estimate η̂ that maximizes the
likelihood L(η) = p(r|η).

E-step In the E-step the current cluster parameters ηi are assumed to be correct
and the posterior probabilities that relate each data point in the conditional
probability p(ηi|z, y) are evaluated. These posterior probabilities can be in-
terpreted as the probability that a particular piece of data was generated by
a particular cluster. By using the Bayes theorem,

p(ηi|z, y) =
p(z, y|ηi)p(ηi)

p(z, y)
=

p(z, y|ηi)p(ηi)∑c
i=1 p(z, y|ηi)p(ηi)

. (4.37)

M-step In the M-step the current data distribution is assumed to be correct and
the parameters of the clusters that maximize the likelihood of the data are
found. According to this, the new unconditional probabilities

p(ηi) =
1

N

N∑

k=1

p(ηi|z, y) (4.38)

and the mean and the covariance of the weighted covariance matrices can be
calculated:

vz
i =

N∑
k=1

zkp(ηi|zk, yk)

N∑
k=1

p(ηi|zk, yk)

(4.39)

Fzz
i =

N∑
k=1

(zk − vz
i) (zk − vz

i)T p(ηi|zk, yk)

N∑
k=1

p(ηi|zk, yk)

. (4.40)

156 Chapter 4. Fuzzy Clustering for System Identification

In order to calculate the maximizing parameters of the local linear models,
the derivative of the log-likelihood is calculated and set equal to zero:

0 =
∂

∂θi
ln

N∏

k=1

p(zk, yk) =

N∑

k=1

∂

∂θi
ln p(zk, yk) (4.41)

=
1

Np(ηi)

N∑

k=1

p(ηi|z, y) (yk − fi(φk, θi))
∂fi(φk, θi)

∂θi
.

Here, fi(φk, θi) represents the local consequent models, fi(φk,θi)=aT
i φk+bi.

The above equation results in weighted least-squares identification of
the local linear models with the weighting matrix

Φj =

⎡
⎢⎢⎢⎣

p(ηi|z1, y1) 0 · · · 0
0 p(ηi|z2, y2) · · · 0
...

...
. . .

...
0 0 · · · p(ηi|zN , yN)

⎤
⎥⎥⎥⎦ . (4.42)

Finally, the standard deviations σi are calculated as

σ2
i =

N∑
k=1

(yk − fi(φk, θi))
T (yk − fi(φk, θi))p(ηi|zk, yk)

Np(ηi)
. (4.43)

The parameters of the above presented model can be derived by taking the
derivative of the log-likelihood of the data with respect to the ηi parameters.

Clustering Algorithm

The clustering is based on the minimization of the sum of weighted squared dis-
tances between the data points, rk and the cluster prototypes, ηi.

J(R,U, η) =

c∑

i=1

N∑

k=1

(µi,k)
m

d2(rk, ηi) (4.44)

where the distance measure consists of two terms and inversely proportional to
the probability of the data. The first term is based on the vz

i geometrical distance
between the cluster center and the z scheduling vector, while the second distance
term is based on the performance of the local linear models:

1

d2(rk, ηi)
= p(ηi)p(z|ηi)p(y|φ, ηi) (4.45)

= wi

n∏

j=1

exp

(
−1

2

(zj,k − vi,j)
2

σ2
i,j

)
·
exp

(
−(y − φ∗

kθT
i)T (Fyy

i)−1(y − φ∗
kθT

i)
)

(2π)
ny
2

√
det(Fyy

i)

4.1. Data-Driven Modelling of Dynamical Systems 157

Algorithm 4.1.1 (Clustering for MIMO Model Identification).

Initialization Given a set of data R specify the number of clusters, c, choose a weight-

ing exponent (usually m = 2) and a termination tolerance ǫ > 0. Initialize the

partition matrix (randomly), U = [µi,k]c×N .

Repeat for l = 1, 2, . . .

Step 1 Calculate the parameters of the clusters

• Centers of the membership functions:

v
z (l)
i =

N∑
k=1

µ
(l−1)
i,k zk

N∑
k=1

µ
(l−1)
i,k

, 1 ≤ i ≤ c. (4.46)

• Standard deviation of the Gaussian membership function:

σ
2 (l)
i,j =

N∑
k=1

µ
(l−1)
i,k (zj,k − vi,j)

2

N∑
k=1

µ
(l−1)
i,k

, 1 ≤ i ≤ c. (4.47)

• Parameters of the local models (see (4.31), where the weights in the Bi

matrix are βi(k) = µ
(l−1)
i,k).

• Covariance of the modelling errors of the local models (4.85).

• A priori probability of the cluster

p(ηi) =
1

N

N∑

k=1

µi,k. (4.48)

• Weight (impact) of the rules:

wi = p(ηi)

nz∏

j=1

1√
2πσ2

i,j

. (4.49)

Step 2 Compute the distance measure d2(rk, ηi) by (4.45).

Step 3 Update the partition matrix

µ
(l)
i,k =

1
∑c

j=1 (d(rk, ηi)/d(rk, ηj))
2/(m−1)

,

1 ≤ i ≤ c, 1 ≤ k ≤ N . (4.50)

until ||U(l) −U(l−1)|| < ǫ.

158 Chapter 4. Fuzzy Clustering for System Identification

and the µi,k = p(ηi|φ) weight denotes the membership that the rk input-output
data is generated by the ith cluster

p(ηi|φ) =

c∑

i=1

p(φ|ηi)p(ηi)

p(φ)
. (4.51)

As can be seen in the previous chapters, the alternating optimization method
can be used to solve this minimization problem with respect to the conditions of
the fuzzy partitioning space (1.12), (1.13) and (1.14).

The remainder of this section is concerned with the theoretical convergence
properties of the presented algorithm. Since this algorithm is a member of the
family of algorithms discussed in [113], the following discussion is based on the
results of Hathaway and Bezdek [113]. Using Lagrange multiplier theory, it is easily
shown that for d(rk, ηi) ≥ 0, (4.50) defines U(l+1) to be a global minimizer of the
restricted cost function (4.44). From this it follows that the presented iterative
algorithm is a special case of grouped coordinate minimization, and the general
convergence theory from [41] can be applied for reasonable choices of d(rk, ηi)
to show that any limit point of an iteration sequence will be a minimizer, or at
worst a saddle point of the cost function J . The local convergence result in [41]
states that if the distance measures d(rk, ηi) are sufficiently smooth and a standard
convexity holds at a minimizer (U∗, η∗) of J , then any iteration sequence started
with U(0) sufficiently close to U∗ will converge to (U∗, η∗). Furthermore, the rate
of convergence of the sequence will be w-linear. This means that there is a norm
‖ ∗ ‖and constants 0 < γ < 1 and l0 > 0, such that for all l ≥ l0, the sequence of
errors {el} = {‖(Ul, ηl) − (U∗, η∗)‖} satisfies the inequality el+1 < γel.

Example 4.2 (Identification of a distillation column). The examined process is
a first-principle model of a binary distillation column (see Figure 4.7). The col-
umn has 39 trays, a reboyler and a condenser. The modelling assumptions are
equilibrium on all trays, total condenser, constant molar flows, no vapor holdup,
linearised liquid dynamic. The simulated system covers the most important effects
for the dynamic of a real distillation column. The studied column operates in LV
configuration [249] with two manipulated variables (reflux and boilup rate, u1 and
u2) and two controlled variables (top and bottom impurities, y1 y2). Further details
of the simulation model are described in [249].

A closed-loop identification experiment has been performed by two simple PI
controllers. The sampling time is 2 minutes and 10000 samples are collected for the
experiment. The identification data is divided into four sections of 2500 samples
such that each section corresponds to data gathered around one operating point
(see Figure 4.8). The first 2000 samples of each section are used to form a model
estimation while the last 500 samples are used for validation. The order of the
local models is chosen to be na = nb = 2. The process was identified without time
delay, nd = 0.

4.1. Data-Driven Modelling of Dynamical Systems 159

Figure 4.7: Schematic diagram of the distillation column.

Four different models were identified:

(1) Linear: MIMO ARX model,
(2) FMID: combination of two MISO TS models obtained by Fuzzy Model Iden-

tification Toolbox [26] (two times four rules),
(3) FIX: grid-type MIMO TS model with fixed Gaussian membership functions

(four rules),
(4) Proposed: MIMO fuzzy model where the Gaussian membership functions and

the local models are identified by the presented method (four rules).

As the process gain varies in direct proportion to the concentrations, the fuzzy
sets – the operating regions of the local models – are defined on the domain of the
product impurities z(k) = [y1(k), y2(k)]. This results in the following MIMO TS
fuzzy model structure:

Ri : If y1(k) is Ai,1 and y2(k) is Ai,2 then

yi(k + 1) =
2∑

j=1

Ai
jy(k − j + 1) +

2∑

j=1

Bi
ju(k − j + 1) + ci (4.52)

Figure 4.8 shows the simulated output of the presented MIMO fuzzy model, whose
membership functions are depicted in Figure 4.9. The results are obtained by the
free run simulation of the model where the predicted outputs are fed back to the
model as inputs. This free run simulation is a very rigorous test of the predictive
power of the model, because in this way small errors can accumulate to major ones.
Hence, the presented results are quite promising and indicate the usability of the
model in model-based control.

Table 4.2 compares the performance of this model to other models. As this table
shows, the presented model gives superior performance. Only the performance of

160 Chapter 4. Fuzzy Clustering for System Identification

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

T
o

p
 i
m

p
u

ri
ty

Time [min]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−5

0

5

10

15

20
x 10

−3

Time [min]

B
o

tt
o

m
 i
m

p
u

ri
ty

Figure 4.8: Measured (–) and predicted (- -) process outputs.

the model obtained by the FMID toolbox is comparable. However, this model is built
up from two MISO fuzzy models, hence this model has two times four rules and
2 × 4 × 4 membership functions, which suggests that this model is unnecessarily
more complex than the presented MIMO TS model.

Table 4.2: Prediction errors obtained by different models (sum of square error
(SSE)).

Model SSEy1 SSEy2

Linear 11.4e−3 9.5e−3

FMID 6.3e−3 1.7e−3

Fixed 10.3e−3 9.1e−3

Proposed 3.9e−3 3.3e−3

The high-purity binary distillation column is a nonlinear process, because as
the demanded product purities increase, the gains of the process are decreasing.
As the arrangement of the membership functions depicted in Fig. 3 shows, this
phenomenon is correctly detected by the clustering algorithm.

In this example, the number of rules was determined manually. However, the
identification of the number of the clusters (rules) is an important task that is our
current research, along with the selection of relevant input variables [11]. Similarly

4.1. Data-Driven Modelling of Dynamical Systems 161

0 0.005 0.01 0.015 0.02 0.025
0

0.2

0.4

0.6

0.8

1

Top impurity

m
e

m
b

e
rs

h
ip

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.2

0.4

0.6

0.8

1

Bottom impurity

m
e

m
b

e
rs

h
ip

Figure 4.9: Operating regimes (fuzzy sets) obtained by the presented fuzzy clus-
tering.

to the algorithm proposed by Gath and Geva [93] and Bezdek [38], the application
of cluster validity measures like fuzzy hypervolume and density, or cluster flatness
[146] can be applied for this purpose.

�

4.1.3 Conclusions

In this section the identification of nonlinear multiple-input, multiple-output sys-
tems is discussed. A fuzzy model structure has been presented, where the mul-
tivariable process is represented by a MIMO fuzzy model that consists of local
linear MIMO ARX models. The local models and the antecedent part of the fuzzy
model are identified by a new clustering algorithm, which clustering algorithm
is an effective approximation of a nonlinear optimization problem related to the
identification of fuzzy systems. The approach is demonstrated by means of the
identification of a high-purity distillation column. The results show that the pre-
sented clustering based identification obtains compact and accurate models for
MIMO processes.

162 Chapter 4. Fuzzy Clustering for System Identification

4.2 Interpretable Semi-Mechanistic Fuzzy Models by
Clustering, OLS and FIS Model Reduction

4.2.1 Introduction to Semi-Mechanistic Modelling

Fuzzy modelling and identification from process data proved to be effective for
approximation of uncertain nonlinear processes [115], as can be seen from the
previous examples. Different approaches have been proposed to obtain the most
frequently applied Takagi–Sugeno models from data – one effective method can be
found in the previous section. Most approaches, however, utilize only the function
approximation capabilities of fuzzy systems, and little attention is paid to the
qualitative aspects. This makes them less suited for applications in which empha-
sis is not only on accuracy, but also on interpretability, computational complexity
and maintainability [241]. Furthermore, completely data-driven black-box iden-
tification techniques often yield unrealistic and non-interpretable models. This
is typically due to an insufficient information content of the identification data
and due to overparameterization of the models. Another disadvantage in process
modelling is the non-scalability of black box models, i.e., one has to collect new
training-data when the process is modified.

Due to the given drawbacks, combinations of a priori knowledge with black-box
modelling techniques is gaining considerable interest. Two different approaches
can be distinguished: grey-box modelling and semi-mechanistic modelling. In a
grey-box model, a priori knowledge or information enters the black-box model
as, e.g., constraints on the model parameters or variables, the smoothness of the
system behavior, or the open-loop stability [48, 177, 268]. For example, Lindskog
and Ljung [177] applied combinations or (nonlinear) transformations of the input
signals corresponding to physical variables and used the resulting signals in a
black-box model. A major drawback of this approach is that it may suffer from
the same drawbacks as the black-box model, i.e., no extrapolation is possible and
time-varying processes remain a problem.

On the other hand, transparency properties of fuzzy systems proved to be use-
ful in the context of grey-box modelling, because it allows to effectively combine
different types of information, namely linguistic knowledge, first-principle knowl-
edge and information from data. For instance, if the model developer has a priori
knowledge about steady-state or gain-independent dynamic behavior of the pro-
cess, a Hybrid Fuzzy Convolution Model [14] can be used as a combination of
a fuzzy model and a priori knowledge based impulse response model of the sys-
tem [8]. For the incorporation of prior knowledge into data-driven identification of
dynamic fuzzy models of the Takagi–Sugeno type, a constrained identification al-
gorithm has been developed [5]. This approach is based on a transformation of the
a priori knowledge about stability, bounds on the stationary gains, and the settling
time of the process into linear inequalities on the parameter set of the fuzzy model,
similar to [264, 268]. This constrained identification is useful, because the TS fuzzy

4.2. Semi-Mechanistic Fuzzy Models 163

Figure 4.10: Serial and parallel combinations of white and black box models.

model is often over-parameterized, hence explicit regularization, like penalties on
non-smooth behavior of the model and application of prior knowledge based pa-
rameter constraints can dramatically improve the robustness of the identification
algorithm, eventually leading to more accurate parameter estimates [138].

One may also start by deriving a model based on first-principles and then in-
clude black-box elements as parts of the white-box model frame [137, 222, 245,
260, 263]. This modelling approach is usually denoted as hybrid-modelling or semi-
mechanistic modelling. The latter term is used in the sequel because the first one
is rather confusing with other methods. Johansen [137] describes various tech-
niques to incorporate knowledge into black-box models. They use a local model
structure and formulate the global identification as a nonlinear optimization prob-
lem. Thompson and Kramer [263] use the so-called parallel approach of semi-
mechanistic modelling (Figure 4.10). Here, the error between the data and the
white-box model is represented by a neural network. They also describe the serial
approach where a neural network is used to model unknown parameters (Fig-
ure 4.10).

Several authors applied hybrid models for the modelling of biotechnological
systems [222, 245, 262, 271]. Fuzzy models can also be incorporated into semi-
physical models as linguistically interpretable black box elements [32]. A more
complex semi-physical model was designed as a combination of a first-principles
model, an artificial neural network and a fuzzy expert system for modelling a
fed-batch cultivation [235]. The application of the fuzzy system was motivated by
the fact that bioprocesses are often divided up into different phases (operating
regimes) in which different mechanisms dominate. In many practical cases, the
phase boundaries are not clear-cut boarders that can be described by crisp time
instants. Hence, it is straightforward to use fuzzy techniques to determine in which
phase the process is at a given time.

In this section, which is mainly based on [15], we also focus on semi-mechanistic
models where a fuzzy model is used to represent, in a mechanistic sense, difficult-

164 Chapter 4. Fuzzy Clustering for System Identification

to-model parts of our system. It will be show that fuzzy models can be efficiently
incorporated into the semi-mechanistic modelling environment and we show also
that this approach provides interpretable and accurate submodels. The presented
method is an extension of the method presented in the previous section. In this
section we present a more advanced clustering method that pursues a further step
in accomplishing the total parameter and structure identification of TS models.
The clusters are represented by fuzzy sets and local semi-mechanistic models. The
unknown parameters of the model are identified by expectation maximization
(EM) [44] similarly to our new clustering algorithm: the modified Gath–Geva
clustering [18].

Next, the obtained model is reduced by reducing the amount of antecedent
variables and also the amount of consequent variables. Using too many antecedent
variables may result in difficulties in the prediction and interpretability capabilities
of the model due to redundancy, non-informative features and noise. Hence, selec-
tion of the scheduling variables is usually necessary. For this purpose, we modify
our method that is based on the Fisher interclass separability method and have
been developed a feature selection of fuzzy classifiers [231]. Others have focused on
reducing the antecedent by similarity analysis of the fuzzy sets [230, 241], however
this method is not very suitable for feature selection. Reduction of the consequent
space is approached by an Orthogonal Least Squares (OLS) method. The applica-
tion of orthogonal transforms for the reduction of the number of rules has received
much attention in recent literature [230, 294]. These methods evaluate the out-
put contribution of the rules to obtain an importance ordering. In 1999 Yen and
Wang investigated various techniques such as orthogonal least-squares, eigenvalue
decomposition, SVD-QR with column pivoting method, total least square method
and direct SVD method [294]. SVD based fuzzy approximation technique was ini-
tiated by Yam in 1997 [289], which directly finds the minimal number of rules from
sampled values. Shortly after, this technique was introduced as SVD reduction of
the rules and structure decomposition in [289]. For modelling purposes, the OLS
is the most appropriate tool [294]. In this section, OLS is applied for a different
purpose; the selection of the most relevant input and consequent variables based
on the OLS analysis of the local models of the clusters.

4.2.2 Structure of the Semi-Mechanistic Fuzzy Model

Semi-Mechanistic Modelling Approach

Generally, white box models of process systems are formulated by macroscopic
balance equations, for instance, mass or energy balances. These balances are based
on conservation principle that leads to differential equations written as

[
accumulation

of xi

]
=

[
inflow
of xi

]
−
[
outflow
of xi

]
+

[
amount of

xigenerated

]
+

[
amount of

xiconsumed

]
(4.53)

where xi is a certain quantity, for example mass or energy.

4.2. Semi-Mechanistic Fuzzy Models 165

Equation (4.53) can be simply formulated as commonly used state-space model
of process systems given by

ẋ = f(x,u)
y = g(x) (4.54)

where x = [x1, . . . , xn]T represents the state, and y = [y1, . . . , yny]T represents the
output of the system, and f and g are nonlinear functions defined by the balance
equations.

Besides the prediction properties of white box models, they also have the ca-
pability to explain the underlying mechanistic relationships of the process. These
models are in general to a certain extent applicable independently of the process
scale. Furthermore, these models are easy to modify or extend by changing parts
of the model. White-box modelling is generally supported by experiments to get
some of the parameters. In that case, even after scaling, new experiments are nec-
essary because some of the parameters are difficult to express in a simple way
as functions of process characteristics. In a practical situation, the construction
of white-box models can be difficult because the underlying mechanisms may be
not completely clear, experimental results obtained in the laboratory do not carry
over to practice, or parts of the white-box models are in fact not known.

In general, not all of the terms in (4.53) are exactly or even partially known.
Hence, when we do not have detailed first principles knowledge about the pro-
cess, the control law should be determined using approximations of functions of f
and g. In semi-mechanistic modelling black-box models, like neural networks are
used to represent the otherwise difficult-to-obtain parts of the model. The semi-
mechanistic modelling strategy is be combined quite naturally with the general
structure of white-box models in process systems, since this structure is usually
based on macroscopic balances (e.g., mass, energy or momentum). These balances
specify the dynamics of the relevant state variables and contain different rate
terms. Some of these terms are directly associated with manipulated or measured
variables (e.g., in- and out-going flows) and do not have to be modeled any further.
In contrast, some rate terms (e.g., reaction rate) have a static mathematical rela-
tion with one or more state variables which should be modeled in order to obtain
a fully specified model. These terms are then considered as inaccurately known
terms. They can be modeled in a white-box way if a static mathematical relation
for the rate terms can be based on easy obtainable first principles. If this is not
possible, they can be modeled in a black-box way with a nonlinear modelling tech-
nique. In the latter case, one obtains the semi-mechanistic model configuration.
One of the advantages of the semi-mechanistic modelling strategy is that it seems
to be more promising with respect to extrapolation properties [271]. The resulting
semi-mechanistic, also called hybrid model can be formulated similarly to (4.54)

ẋ = fFP (x,u, θ, fBB(x,u, θ))
y = g(x) (4.55)

166 Chapter 4. Fuzzy Clustering for System Identification

where fFP represents the first-principle part of the model and fBB the black-box
part parameterized by the θ parameter vector.

Usually, the reaction rates (the amount of generated and consumed materials
in chemical reactions) and the thermal effects (e.g., reaction heat) are especially
difficult to model, but the first two transport terms (inlet and outlet flows) in
(4.53) can be obtained easily and accurately. Hence, in the modelling phase it
turns out which parts of the first principles model are easier and which are more
laborious to obtain and often we can get the following hybrid model structure

ẋ = fFP1(x,u) + fFP2(x) ⊙ fBB(x, θ) (4.56)

where fFP2(x)⊙fBB(x, θ) represents the reaction and thermal effects of the system
that can be modelled as a function of the measured state variables, where ⊙
denotes element-wise product.

Example 4.3 (Semi-mechanistic modelling of a biochemical process). In this sec-
tion, we use an example process from the biochemical industry. Here, most pro-
cesses are carried out in a batch or fed-batch reactor, e.g., production of beer, peni-
cillin and bakers yeast. These types of processes are characterized by their time-
varying nature and their recipe-based processing. Furthermore, the measurement of
all relevant state-variables is either impossible or very expensive. The on-line con-
trol of these processes is therefore usually limited to the setpoint-based control of
several process-parameters like temperature, pH, and gasflows. The global process
behavior is controlled by process operators that apply standard recipes, stating what
to do at a certain time instant. These recipes are usually based on the available
process experience and in some cases these are fine-tuned by neural-networks. This
method highly depends on the gained expertise and large amounts of data. On the
other hand, when accurate process models can be developed based on small amounts
of data, one may use these to calculate model-based recipes or control strategies.
Besides, one can apply these models to predict process behavior at different scales
or optimize the process lay-out, e.g., bioreactor geometry, batch scheduling, etc.

Modelling of batch and fed-batch processes is difficult due to the in general non-
linear characteristics and time-varying dynamics. Moreover, often reaction mech-
anisms and orders are unknown and have to be postulated and experimentally veri-
fied. Fortunately, however, these processes can be partly described by mass-balances
that are easily obtained from general process knowledge. These mass balances de-
scribe the mass flows and dilution effects. The unknown parts, are the reaction
kinetics, which are the conversion rates in the process. Based on this structure, we
develop a hybrid model structure for a simulated fed-batch bioprocess. We use a
simple model for biomass growth on a single substrate:

dx1

dt
=

u

x3
(x1,in − x1) − σ(x)x2,

dx2

dt
= − u

x3
(x2) + µ(x)x2,

dx3

dt
= u (4.57)

4.2. Semi-Mechanistic Fuzzy Models 167

where x1 is the concentration of substrate and x2 is the biomass concentration of
substrate, x3 the volume of the liquid phase, x1,in is the substrate concentration the
volumetric feed rate u, σ(x) the specific substrate consumption rate and µ(x) the
overall specific growth rate. Generally, the kinetic submodels σ(x) and µ(x), are
unknown, and therefore the following hybrid model of the process can be obtained:

ẋ =

⎡
⎣

u
x3

(x1,in − x1)

− u
x3

(x2)

u

⎤
⎦

︸ ︷︷ ︸
fF P1(x,u)

+

⎡
⎣

−x2

x2

0

⎤
⎦

︸ ︷︷ ︸
fF P2(x)

⊙

⎡
⎣

σ(x)
µ(x)

0

⎤
⎦

︸ ︷︷ ︸
fBB(x)

. (4.58)

�

Operating Regime Based Semi-Mechanistic Model

In the given example, difficulties in modelling σ(x) and µ(x) are due to lack of
knowledge and understanding of relations between kinetic behavior and process
states. To handle such uncertainties one can develop nonlinear data-based models.
One specific class of nonlinear models with several special characteristics will be
applied here, namely the operating regime based model [197]. Here, the global
model is decomposed in several simple local models that are valid for predefined
operating regions. For this, one should examine what are the important states that
can be applied for specification of operating points of the submodels and what are
the most relevant effectors. This type of local understanding, in fact, is a key to
identification of reliable local models based on a limited amount of data.

In the operating regime based modelling approach, fBB(x) is defined by local
linear models:

Aix + bi, (4.59)

where the Ai-matrix and bi-vector define the parameters of the ith local linear
model; i = 1, . . . , c. The global black-box model fBB is then given by:

fBB(x) =

c∑

i=1

βi(z) (Aix + bi) , (4.60)

where the βi(z)-function describes the ith operating region defined by the “schedul-
ing” vector z = [z1, . . . , znz] ∈ x, that is usually a subset of the state variables;
an example is given in Figure 4.11 where overlapping operating regions of four lo-
cal models are defined by two state variables. Integration of the operating regime
based model into hybrid a model (4.56) results in the following formulation:

ẋ =

c∑

i=1

βi(z) (fFP1(x,u) + (Aix + bi) ⊙ fFP2(x)) . (4.61)

168 Chapter 4. Fuzzy Clustering for System Identification

Figure 4.11: Example of an operating regime based model decomposed into four
regimes.

Example 4.4 (Cont’d of Example 4.3). We consider the process introduced in the
previous section. The growth rate µ(x) and substrate consumption rate σ(x) are
probably defined by the biomass and substrate concentrations, however the relation-
ship is unknown. Therefore, we can choose the scheduling vector as z = [x1, x2]

T .
This results in the semi-mechanistic:

ẋ =

c∑

i=1

βi(z)

⎛
⎜⎜⎝

⎡
⎣

u
x3

(x1,in − x1)

− u
x3

(x2)

u

⎤
⎦

+

⎛
⎝
⎡
⎣

a1,1
i a1,2

i 0

a2,1
i a2,2

i 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ai

⎡
⎣

x1

x2

x3

⎤
⎦+

⎡
⎣

b1
i

b2
i

1

⎤
⎦

︸ ︷︷ ︸
bi

⎞
⎠⊙

⎡
⎣

−x2

x2

0

⎤
⎦

⎞
⎟⎟⎠(4.62)

�

Semi-Mechanistic Model Representation by Fuzzy Rules

The operating regime based modelling framework provides a method to accurately
model nonlinear systems by an efficient interpolation of local linear models defined
by operating regimes. In addition, it provides a transparent structure that can be
represented by fuzzy rules, because the operating regimes can be given by fuzzy
sets [31].

Such a fuzzy representation is appealing, since many systems show smooth
changes in their dynamics as a function of the operating point, and the soft tran-
sition between the regimes introduced by the fuzzy set representation captures this
feature in an elegant fashion. Hence, the entire global model can be conveniently

4.2. Semi-Mechanistic Fuzzy Models 169

represented by Takagi–Sugeno fuzzy rules [257]. Our previous hybrid model (4.61)
can thus be given by MIMO Takagi–Sugeno fuzzy model rules:

Ri : If z1 is Ai,1 and . . . and znz is Ai,nz then
ẋi = fFP1(x,u) + (Aix + bi) ⊙ fFP2(x), [wi], (4.63)

where Ai,j(zj) is the ith antecedent fuzzy set for the jth input and wi = [0, 1] is
the rule-weight that represents the desired impact of the ith rule. The value of wi

is often chosen by the designer of the fuzzy system based on his or her belief in
the goodness and accuracy of the ith rule. When such knowledge is not available
wi is set as wi = 1, ∀ i.

Gaussian membership function are used in this chapter as well to represent the
Ai,j(zj) fuzzy sets:

Ai,j(zj) = exp

(
−1

2

(zj − vi,j)
2

σ2
i,j

)
, (4.64)

where vi,j represents the center and σ2
i,j the variance of the Gaussian function. The

overall output of the MIMO TS-fuzzy model is inferred by computing a weighted
average of the outputs of the consequent multivariable models:

ẋ =

c∑

i=1

βi(z)ẋi, (4.65)

where c is the number of rules, and βi the degree of fulfilment of the ith rule,
calculated by:

βi(z) =
wi

∏nz

j=1 Ai,j(zj)∑c
i=1 wi

∏nz

j=1 Ai,j(zj)
. (4.66)

The fuzzy model can be formulated in the compact regression form:

ẋ(k)T = fFP1(x(k),u(k))T +
c∑

i=1

βi(z(k))φ(k)θT
i , (4.67)

where k denotes the index of the kth data-pair, φ(k) the regressor matrix:

φ(k) = [x(k) ⊙ fFP2(x(k)) fFP2(x(k))] ,

and θi the parameter matrix of the ith local model:

θi = [Ai,bi].

From (4.67) it is clear that the developed semi-mechanistic fuzzy model is linear
in the consequent parameters of the fuzzy model. This allows for an effective
identification of these parameters. It is interesting to see that the resulting model
is a TS-fuzzy model with semi-physical regressors.

170 Chapter 4. Fuzzy Clustering for System Identification

Next, we rewrite the MIMO fuzzy model as a set of MISO fuzzy models with
same antecedents. This representation helps in the model analysis and interpreta-
tion because the input-output channels can be separately analyzed.

Ri,j : If z1 is Ai,1 and . . . and znz is Ai,nz then
ẋi,j(k) = fHyb,j(x(k),u(k)), [wi], (4.68)

where j = 1, . . . , n denotes the index of the state variable whose predicted value
is calculated and fHyb,j represents the corresponding rule consequent function of
the presented hybrid fuzzy model.

Note that this hybrid fuzzy model is much more parsimonious than the ordinary
Takagi–Sugeno model of the process that is formulated as:

Ri : If x1 is Ai,1 and . . . and xn is Ai,n then

ẋi = Âix + B̂iu + ĉi, [wi]. (4.69)

The latter model has much more antacedent and consequent parameters because
the sizes of Âi, B̂i, and ĉi are bigger than those of Ai and bi. Furthermore, the
fuzzy model can be independently interpreted and analyzed from the first-principle
part of the model since the output of the fuzzy model has physical meaning!

Example 4.5 (Cont’d of Example 4.4). The operating regime based model of our
bioreactor (4.62) can now be formulated by fuzzy rules of the form:

Ri : If x1 is Ai,1 and x2 is Ai,2 then ẋ =

⎡
⎣

u
x3

(x1,in − x1)

− u
x3

(x2)

u

⎤
⎦

+

⎛
⎜⎜⎝

⎡
⎣

a1,1
i a1,2

i 0

a2,1
i a2,2

i 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ai

⎡
⎣

x1

x2

x3

⎤
⎦+

⎡
⎣

b1
i

b2
i

1

⎤
⎦

︸ ︷︷ ︸
bi

⎞
⎟⎟⎠⊙

⎡
⎣

−x2

x2

0

⎤
⎦ , [wi]. (4.70)

Now, the input-output channels can be separately analyzed, e.g., the fuzzy rule that
describes the change of the first state of the system (substrate concentration), can
be represented by a fuzzy model with rules:

Ri : If x1 is Ai,1 and x2 is Ai,2 then ẋi,1(k) = fHyb,j(x(k), u(k)) =

u(k)

x3(k)
(x1,in − x1(k)) +

(
a1,1

i x1(k) + a2,1
i x2(k) + b1

i

)
(−x2(k)) . (4.71)

4.2. Semi-Mechanistic Fuzzy Models 171

The fuzzy models can now be independently interpreted and analyzed from the
first-principle part of the model. For instance, the first output channel of the fuzzy
bioprocess model can be written as:

Ri : If x1 is Ai,1 and x2 is Ai,2 then

σ(x)i = a1,1
i x1 + a1,2

i x2 + b1
i , [wi]. (4.72)

�

4.2.3 Clustering-based Identification of the
Semi-Mechanistic Fuzzy Model

The remaining part of this chapter deals with the identification of the presented
hybrid structures. For this purpose we developed a clustering based identification
method, with subsequent reduction of antecendent and consequent variables.

Problem Formulation

In general, measured input-output data are used in data-driven model identifica-
tion. In many industrial cases it may be difficult to obtain large datasets. Moreover,
the measurements may contain a high noise level and often is asynchronous, which
often is the case for bioprocesses. In this case, ẋ(k) cannot be calculated by using
the simple forward Euler discretization:

ẋ(k) =
(x(k) − x(k − 1))

∆T
. (4.73)

Generation of synchronous data by an interpolation is often a good solution to
deal with this problem. We applied Hermite interpolation to interpolate between
the measured data and estimate the corresponding derivatives. This method is
described in Appendix 6.4.

After application of this spline-smoothing, and with the use of the first principle
model parts, N semi-physical identification data pairs are obtained that can be
arranged into the following matrices based on (4.67):

φ = [φ(1)|φ(2)| · · · |φ(N)]
T

, (4.74)

fFP1 = [fFP1(1)|fFP1(2)| · · · |fFP1(N)]T , (4.75)

Ẋ = [ẋ(1)|ẋ(2)| · · · |ẋ(N)]
T

. (4.76)

Identification of the Consequent Parameters

The output of the presented semi-mechanistic model is linear in the elements of
the Ai-consequent matrices and the bi-offset vector. Therefore, if the member-
ship functions are given, these parameters can be estimated from input-output

172 Chapter 4. Fuzzy Clustering for System Identification

process data by a linear least-squares technique based on the calculated degree of
fulfillments:

Bi =

⎡
⎢⎢⎢⎣

βi(1) 0 · · · 0
0 βi(2) · · · 0
...

...
. . .

...
0 0 · · · βi(N)

⎤
⎥⎥⎥⎦ , (4.77)

similarly to (4.30). The local (weighted least squares for each rule) identification
of the rule consequent parameters forces the local linear models to fit the systems
separately and locally, i.e., resulting rule consequences are local linearizations of
the nonlinear system [26]. Hence, in this chapter the parameters of the rule conse-
quences are estimated separately by dividing the identification task into c weighted
least-squares problems (the description of ordinary and total least squares tech-
niques can be found in Section 1.6, and of the orthogonal least squares method in
Section 3.3.4). By using this notation, the weighted least squares solution of θi is:

θi =
[
φTBiφ

]−1

φTBi

(
Ẋ − fFP1

)
. (4.78)

Using too many consequent variables results in difficulties in the prediction and
interpretability capabilities of the fuzzy model due to redundancy, non-informative
features and noise. To avoid these problems in the following the application of
orthogonal least squares based model reduction is proposed.

Reduction of the Number of Consequent Parameters

The least squares identification of θi, (4.78) can also be formulated as:

θi = B+
(
Ẋ− fFP1

)√
Bi (4.79)

where B+ denotes the Moore-Penrose pseudo inverse of φT√Bi.
The OLS method transforms the columns of B into a set of orthogonal basis

vectors in order to inspect the individual contribution of each variable. To do this
Gram-Schmidt orthogonalization of B = WA is used, where W is an orthogonal
matrix WT W = I and A is an upper triangular matrix with unity diagonal
elements. If wi denotes the ith column of W and gi is the corresponding element
of the OLS solution vector g = Aθi, the output variance

(
(Ẋ − fFP1)

√
Bi

)T (
(Ẋ− fFP1)

√
Bi

)
/N

can be explained by the regressors
∑nr

i=1 giw
T
i wi/N . Thus, the error reduction

ratio, ̺, due to an individual rule i can be expressed as

̺i =
g2

i w
T
i wi(

(Ẋ − fFP1)
√Bi

)T (
(Ẋ − fFP1)

√Bi

) . (4.80)

4.2. Semi-Mechanistic Fuzzy Models 173

This ratio offers a simple mean for ordering the consequent variables, and can be
easily used to select a subset of the inputs in a forward-regression manner.

Semi-Mechanistic Model-based Clustering

In the previous section, we showed that the unknown consequent parameters of
the semi-mechanistic fuzzy model are linear in the output. Therefore, a (weighted)
least squares method can be applied for the identification of these parameters
when the antecedent membership functions (rule-weights) are given. Determina-
tion of the antecedent part of the fuzzy model, however, is more difficult because
it requires nonlinear optimization. Hence, often heuristic approaches, like fuzzy
clustering are applied for this purpose.

In this chapter Gath–Geva algorithm is applied for this purpose. The main
advantages have been mentioned in the previous sections. A main disadvantage of
clustering tools for the identification of interpretable Takagi–Sugeno fuzzy mod-
els is that the fuzzy covariance matrix is defined among all of the model inputs
and the correlation among all the input variables. This causes difficulties for the
extraction of membership functions from the clusters. This can be done by mem-
bership projection methods [29] or a transformed input approach [151]. Generally,
however, this decreases the interpretability and accuracy of the initial fuzzy model
based on the multivariable cluster representation. Furthermore, the decomposed
univariate membership functions are defined on the domains of all input variables
of the model x instead of only the domain of the scheduling variables, z. This
makes the model unnecessarily complex due to a large number of fuzzy sets which
decreases the model transparency.

To avoid these problems, we propose a new clustering algorithm that gener-
ates hybrid fuzzy models in a direct approach. This algorithm obtains a set of
clusters, that all contain an input distribution (the distribution of the schedul-
ing variables), p(z(k)|ηi), a local hybrid model ẋ(k) = fHyb,i(x(k),u(k)), and an
output distribution, p(ẋ(k)|x(k),u(k), ηi), where

p(x(k),u(k), ẋ(k)) =

c∑

i=1

p(x(k),u(k), ẋ(k), ηi), (4.81)

=

c∑

i=1

p(x(k),u(k), ẋ(k)|ηi)p(ηi),

=

c∑

i=1

p(ẋ(k)|x(k),u(k), ηi)p(z(k)|ηi)p(ηi).

The input distribution is parameterized as an unconditioned Gaussian [95] and
defines the domain of influence of a cluster:

p(z(k)|ηi) =
exp

(
− 1

2 (z(k) − vi)
T (Fzz

i)−1(z(k) − vi)
)

(2π)
nz
2

√
det(Fzz

i)
, (4.82)

174 Chapter 4. Fuzzy Clustering for System Identification

while the output distribution is taken to be:

p(ẋ(k)|x(k),u(k), ηi) (4.83)

=
exp

(
−(ẋ(k) − fHyb,i(x(k),u(k)))T (Fxx

i)−1(ẋ(k) − fHyb,i(x(k),u(k)))
)

(2π)
n
2

√
det(Fxx

i)
,

where Fzz
i and Fxx

i are covariance matrices calculated as:

Fzz
i =

N∑
k=1

(z(k) − vi) (z(k) − vi)
T p(ηi|x(k),u(k), ẋ(k))

N∑
k=1

p(ηi|x(k),u(k), ẋ(k))

, (4.84)

Fxx
i =

N∑
k=1

(ẋ(k) − fHyb,i(x(k),u(k)))

N∑
k=1

p(ηi|x(k),u(k), ẋ(k))

· (ẋ(k) − fHyb,i(x(k),u(k)))
T

p(ηi|x(k),u(k), ẋ(k))
N∑

k=1

p(ηi|x(k),u(k), ẋ(k))

, (4.85)

in which p(ηi|x(k),u(k), ẋ(k)) are posterior probabilities that can be interpreted
as the probability that a particular piece of data has been generated by a particular
cluster. By using Bayes Theorem,

p(ηi|x(k),u(k), ẋ(k)) =
p(x(k),u(k), ẋ(k)|ηi)p(ηi)

p(x(k),u(k), ẋ(k))
(4.86)

=
p(x(k),u(k), ẋ(k)|ηi)p(ηi)∑c

i=1 p(ẋ(k)|x(k),u(k), ηi)p(z(k)|ηi)p(ηi)
.

When simplicity and interpretability of the model are important, then the Fxx
i -

cluster weighted covariance matrix is reduced to its diagonal elements, resulting
in the following density function:

p(z(k)|ηi) =

n∏

j=1

1√
2πσ2

i,j

exp

(
−1

2

(zj(k) − vi,j)
2

σ2
i,j

)
. (4.87)

Identification of the model thus means determination of the

ηi = {p(ηi),vi,F
zz
i , θi,F

xx
i }-parameters of the clusters,

where θi represents the unknown parameters of the hybrid local models. In the
following the Expectation Maximization identification of the model, which was
re-formulated in the form of fuzzy clustering, is presented.

4.2. Semi-Mechanistic Fuzzy Models 175

Clustering Algorithm for Hybrid Modelling

Clustering is based on minimization of the sum of weighted squared distances
between the data pairs, x(k),u(k), ẋ(k) and the cluster prototypes, ηi. Here, the
square of the d2(x(k),u(k), ẋ(k), ηi) distances are weighted with the membership
values µi,k. Thus the objective function to be minimized by the clustering algo-
rithm is formulated as:

J(Z,U, η) =

c∑

i=1

N∑

j=1

(µi,k) d2(x(k),u(k), ẋ(k), ηi), (4.88)

where Z denotes the available training data, U the matrix of membership values,
and η the set of cluster parameters to be identified. The EM based algorithm with
respect to the constrains of fuzzy partitioning (1.12), (1.13) and (1.14), can be
formulated as shown in Algorithm 4.2.1.

Note that µi,k = p(ηi|x(k),u(k), ẋ(k)) denotes the membership (posterior
probability) that the x(k),u(k), ẋ(k) input-output data is generated by the ith
cluster. It can also be seen that the distance measure (4.95) consists of two terms.
The first term is based on the geometrical distance between the cluster centers
and the scheduling variable, z, while the second is based on the performance of
the local hybrid models.

Note that the application of (4.87) results in the direct determination of the
parameters of the membership functions, as (4.87) is identical to (4.64), because
the weight of the rule are determined as

wi =
p(ηi)

(2π)n/2
√

det(Fxx
i)

(4.89)

or equivalently,

wi =
p(ηi)√
2πσ2

i,j

. (4.90)

Reduction of the Number of Fuzzy Sets

In general, application of too many features and fuzzy sets decreases the models’
interpretability. Hence, feature selection is usually necessary. For this purpose, we
modified Fisher’s interclass separability method, as we described in Section 3.3.4
(see also in Example 3.4). As it was mentioned there, the method makes an impor-
tance ranking based on the interclass separability criterion which is obtained from
statistical properties of the data. This criterion is based on the FB between-class
and the FW within-class covariance matrices that sum up to the total covariance

176 Chapter 4. Fuzzy Clustering for System Identification

Algorithm 4.2.1 (Clustering for Hybrid Modelling).

Initialization
Given a set of data Z specify c, m and ǫ. Initialize the partition matrix, U = [µi,k]c×N .

Repeat for l = 1, 2, . . .

Step 1 Calculate cluster parameters:

• Calculate centers of membership functions:

v
(l)
i =

N∑

k=1

µ
(l−1)
i,k z(k)/

N∑

k=1

µ
(l−1)
i,k , 1 ≤ i ≤ c. (4.91)

• Calculate standard deviation of the Gaussian membership functions:

σ
2 (l)
i,j =

N∑

k=1

µ
(l−1)
i,k (zj(k) − vi,j)

2/
N∑

k=1

µ
(l−1)
i,k , 1 ≤ i ≤ c. (4.92)

• Calculate the unknown parameters of the local models by a weighted least

squares algorithm, where the weights of the data pairs are: µ
(l−1)
i,k .

• Calculate covariance of the modelling errors of the local models (4.85).

• Calculate a priori probability of the cluster:

p(ηi) =
1

N

N∑

k=1

µi,k. (4.93)

• Calculate rule weights:

wi = p(ηi)

n∏

j=1

1√
2πσ2

i,j

. (4.94)

Step 2 Compute the distance measure d2(x(k),u(k), ẋ(k), ηi).

1/d2(x(k),u(k), ẋ(k), ηi) (4.95)

= wi

∏nz
j=1 exp

(
− 1

2

(zj,k−vi,j)
2

σ2
i,j

)
·

exp(−(ẋ(k)−fHyb,i(x(k),u(k)))T (Fxx
i)−1(ẋ(k)−fHyb,i(x(k),u(k))))

(2π)
n
2
√

det(Fxx
i)

.

Step 3 Update the partition matrix:

µ
(l)
i,k =

1
∑c

j=1 (d(x(k),u(k), ẋ(k), ηi)/d(x(k),u(k), ẋ(k), ηj))
2/(m−1)

,

1 ≤ i ≤ c, 1 ≤ k ≤ N . (4.96)

until ||U(l) − U(l−1)|| < ǫ.

4.2. Semi-Mechanistic Fuzzy Models 177

of the training data FT , with:

FW =
c∑

i=1

p(ηi)Fi,

FB =

c∑

i=1

p(ηi) (vi − v0)
T

(vi − v0) ,

v0 =

c∑

i=1

p(ηi)vi. (4.97)

The feature interclass separability selection criterion is then given as a trade-off
between FW and FB:

J =
detFB

detFW
. (4.98)

The importance of each feature is measured by leaving the feature out and cal-
culating J for the reduced covariance matrices. Subsequent feature selection is
done in an iterative way by leaving out the least needed feature in each iteration.
Note that this method, in case of axis-parallel clusters (the fuzzy sets are directly
obtained from such clusters), shows some similarities to similarity-based model
reduction techniques [241].

Example 4.6 (Semi-mechanistic model identification of a bio-reactor based on GG
clustering). Process Description. We will demonstrate the presented approach for
identification of the previously presented bio-reactor example. Here, we assume that
the true nonlinear kinetics are given by a previously published nonlinear process
model. In this model, the two specific rates σ(x) and µ(x) are inter-related by the
following law:

σ(x) =
1

Yx2/x1

µ(x) + m, (4.99)

where Yx2/x1
the biomass on substrate yield coefficient and m the specific mainte-

nance demand, and the µ(x) specific growth rate was described by non-monotonic
Haldane kinetics:

µ(x) = µm
x1

Kp + x1 +
x2
1

Ki

, (4.100)

where the Kp parameter relates the substrate level to the specific growth rate µ,
together with the Ki inhibition parameter, which adds a negative substrate level
effect. Nominal values of the model parameters are given in Table 4.3.

The identification data has been gained from normal operation of the process
and five batches have been simulated to obtain process data. Note that these types of
laboratory experiments are in reality expensive and time-consuming, which makes
such a low number of experiments very realistic. Others, however, have used sim-
ulation studies with more than hundred simulated batches [86]. Each batch exper-
iment was run for max. 16 h, and all states were each measured for 30 min. For

178 Chapter 4. Fuzzy Clustering for System Identification

Table 4.3: Kinetic and operating parameter values

µm 2.1 h−1

Kp 10 g/l

Ki 0.1 g/l

Yx2/x1
0.47 g DW/g

m 0.29 g DW/g h

x1,in 500 g/l

x3(0) 7 l

every batch, a simple constant feeding strategy has been applied. In the five exper-
iments we varied initial conditions (x1(0), x2(0)) and the feeding rate u. To make
the simulation experiments more realistic, gaussian white noise on the measure-
ments of the substrate concentration x1 and on the biomass concentration x2 was
considered; variances of the measurement errors are given by σ2

x1
= 10−2g2/l2 and

σ2
x2

= 6.25−4g2/l2, respectively.

In the next step, our spline-smoothing algorithm (see the Appendix) has been
used to generate smoothed training data. Four knots were used to generate the
splines; one at time zero and the others placed at 60%, 80% and 100% of the time
till substrate concentration became zero, x1 = 0. These knots were determined such
that they provide a good fit at small substrate concentrations realized at the end of
the batches where the effect of the process nonlinearity is the biggest. From every
batch, 100 data pairs were sampled from the spline-interpolation and the change of
the state variables was estimated from the analytic derivatives of the splines. This
procedure resulted in 500 data points from the five batches.

Semi-Mechanistic Model of the Process. Based on the collected identification data,
we first identified a standard MIMO TS model with eight rules. The previously
presented fuzzy clustering algorithm has been applied without prior knowledge. To
illustrate the complexity of the obtained fuzzy model, we show the first rule:

R1 : If x1 is A1,1 and x2 is A1,2 then

ẋ1 =

⎡
⎣

−0.0875 −0.4927 0.0569
0.0381 0.0937 −0.0013
0.0000 0.0000 0.0000

⎤
⎦

︸ ︷︷ ︸
Â1

⎡
⎣

x1

x2

x3

⎤
⎦

+

⎡
⎣

76.9633
0.9222
1.0000

⎤
⎦

︸ ︷︷ ︸
b̂1

u +

⎡
⎣

−0.3093
−0.0419

0

⎤
⎦

︸ ︷︷ ︸
ĉ1

. (4.101)

4.2. Semi-Mechanistic Fuzzy Models 179

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

x
1
 [g/l]

A
i,

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x
2
 [g/l]

A
i,

2

Figure 4.12: Membership functions obtained by standard TS fuzzy modelling ap-
proach.

The fuzzy sets A1,i (Figure 4.12) were obtained from the clusters, i.e., the clusters
could be analytically projected and decomposed to membership functions defined
on the individual features, because the presented clustering method obtains axis-
parallel clusters.

It is clear that the fuzzy sets are more separated on the input x1 than on x2.
Application of Fisher Interclass separability therefore also showed that application
of only the first input on antecedent part of the model was enough. This reflects our
prior knowledge, since we know that the main source of the nonlinearity is given
by the nonlinear relation between growth rate and substrate concentration x1.

Second, we identified a eight rule semi-mechanistic model based on the presented
theory. The obtained rules are similar to (4.70) and the membership functions are
given by Figure 4.13.

The main difference between the semi-mechanistic and the standard TS models
is that the semi-mechanistic model is better interpretable, i.e., its outputs are not
the derivatives of the state variables but the unknown growth rates. For example,
the specific growth rate has physical meaning that can be interpreted by the bio-
engineers and is given by Figure 4.14.

Moreover, the application of the presented clustering and model reduction tools
resulted in a model where the growth rates are only the function of the substrate
concentration, x1 even in case that additional prior knowledge was considered to

180 Chapter 4. Fuzzy Clustering for System Identification

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

x
1
 [g/l]

A
i,

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x
2
 [g/l]

A
i,

2

Figure 4.13: Membership functions obtained by semi-mechanistic fuzzy modelling
approach.

0
1

2
3

4

0
1

2
3
0

0.05

0.1

x
1
 [g/l]x

2
 [g/l]

µ

0
1

2
3

4

0
1

2
3
0

0.05

0.1

x
1
 [g/l]x

2
 [g/l]

µ

Figure 4.14: Estimated (top) and “real” (bottom) growth rate µ(x).

4.2. Semi-Mechanistic Fuzzy Models 181

be unknown:

Ri : If x1 is Ai,1 then

ẋi =

⎡
⎣

u
x3

(x1,in − x1)

− u
x3

(x2)

u

⎤
⎦

+

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎣

a1,1
i 0 0

a2,1
i 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
Ai

⎡
⎣

x1

x2

x3

⎤
⎦+

⎡
⎣

b1
i

b2
i

1

⎤
⎦

︸ ︷︷ ︸
bi

⎞
⎟⎟⎟⎟⎟⎠

⊙

⎡
⎣

−x2

x2

0

⎤
⎦ . (4.102)

The fuzzy part of the obtained semi-mechanistic fuzzy model can be inspected sep-
arately, e.g.,

Ri : If x1 is Ai,1 then σ(x)i = a1,1
i x1 + b1

i . (4.103)

The predicted growth rates obtained by this simple model are shown in Figure 4.15.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

x
1
 [g/l]

µ

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

x
1
 [g/l]

σ

0 0.5 1 1.5 2 2.5 3
0

0.5

1

x
1
 [g/l]

A
i(x

1
)

Figure 4.15: True and estimated kinetic model and the operating regions of the
local models.

Finally, the obtained models have been validated on a number of additional
batches that were not used for identification. A typical ballistic prediction is shown

182 Chapter 4. Fuzzy Clustering for System Identification

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Time [hour]

x
1
 [

g
/l

],
 x

2
 [

g
/l

]

Figure 4.16: Simulation (ballistic prediction) from correct initial states for a typical
batch and the “true” measured variables, marked with circles o.

in Figure 4.16, and indicates that the prediction accuracy of the presented model
is excellent. It is observed that the performance of the presented semi-mechanistic
model is better than that of the complex TS fuzzy model which gives a worse pre-
diction at low substrate concentrations where the effect of the nonlinearity is the
biggest.

Concluding this example, we have shown that interpretable TS-fuzzy and semi-
mechanistic fuzzy models can be generated by using fuzzy clustering and rule-base
reduction methods. Moreover, in case of structured semi-mechanistic fuzzy models,
one can extract simple and interpretable fuzzy submodels that describe the unknown
physical effects of the modeled system.

�

4.2.4 Conclusions

We have presented a semi-mechanistic modelling strategy to obtain compact and
transparent models of process systems based on small datasets. The semi-mechan-
istic fuzzy identification method is based on white-box modelling combined with
fuzzy model parts. This method is suitable to model systems where a priori knowl-
edge is available and experimental data is insufficient to make a conventional fuzzy
model. First, for identification of the semi-mechanistic fuzzy model a new fuzzy
clustering method is presented. Here, clustering is achieved by the simultaneous

4.3. Model Order Selection 183

identification of fuzzy sets defined on some of the scheduling variables and identi-
fication of the parameters of the local semi-mechanistic submodels. Second, appli-
cation of orthogonal least squares and Fisher’s interclass separability are presented
to keep the models as compact as possible. Next, the overall modelling procedure is
described by the development of a model for a biochemical process and we showed
that the presented modelling approach was able to effectively identify compact
and transparent models. The obtained semi-mechanistic fuzzy models are com-
pared with classic TS fuzzy models and appeared to be more accurate and better
interpretable.

4.3 Model Order Selection of Nonlinear

Input-Output Models

4.3.1 Introduction

Most data-driven identification algorithms assume that the model structure is a
priori known or that it is selected by a higher-level ‘wrapper’ structure-selection
algorithm. Several information-theoretic criteria have been proposed for structure
selection in linear dynamic input–output models. Examples of the classical cri-
teria are the Final Prediction-Error (FPE) and the Akaike Information Criterion
(AIC) [20]. Later, the Minimum Description Length (MDL) criterion developed by
Schwartz and Rissanen was proven to produce consistent estimates of the struc-
ture of linear dynamic models [173]. With these tools, determining the structure
of linear systems is a rather straightforward task.

However, relatively little research has been done into the structure selection
for nonlinear models. In the paper of Aguirre and Billings [169], the concepts of
term clusters and cluster coefficients are defined and used in the context of system
identification. It is argued that if a certain type of term in a nonlinear model is
spurious, the respective cluster coefficient is small compared with the coefficients
of the other clusters represented in the model. In [168], this approach is used to
the structure selection of polynomial models. In [82] an alternative solution to the
model structure selection problem is introduced by conducting a forward search
through the many possible candidate model terms initially and then performing an
exhaustive all subset model selection on the resulting model. A backward search
approach based on orthogonal parameter-estimation is also applied [1, 183].

As can be seen, these techniques are ‘wrapped’ around a particular model
construction method. Hence, the result of the estimate can be biased due to the
particular construction method used. To avoid this problem a ‘model free’ ap-
proach is followed where no particular model needs to be constructed in order to
select the order of the model. The advantage of this approach is that this estimate
is based on geometrical/embedding procedures and does not depend on the model
representation that will be used a posteriori, i.e., the results would have a rather
general character.

184 Chapter 4. Fuzzy Clustering for System Identification

This is an important advantage, as the construction of a NARX model consists
of the selection of many structural parameters which have significant effect on the
performance of the designed model: e.g., the model order, type of the nonlinear-
ity (Hammerstein or Wiener type system) [213], scheduling variables, number of
neurons in a neural network, etc. The simultaneous selection of these structural
parameters is a problematic task. The primary objective of this section is to de-
compose this complex problem by providing some useful guidance in selecting a
tentative model order.

However, it should be borne in mind that there is no escape of performing a
model-driven structure selection, once a certain model representation is chosen.
For instance, suppose a model-free model order selection algorithm is used to
determine the correct model order. If a neural network is used to model the process,
the designer still needs to decide on the activation function, the number of nodes
etc. Therefore, the model order selection method that will be presented definitely
doesn’t spare the user of having to go through some sort of structure selection.
Indeed, if the orders of the nonlinear input-output model are well chosen, then
structure selection will be significantly facilitated.

Deterministic suitability measures [49] and false nearest neighbor (FNN) al-
gorithms [229] have already been proposed for data-based selection of the model
order. These methods build upon similar methods developed for the analysis of
chaotic time series [148]. The idea behind the FNN algorithm is geometric in na-
ture. If there is enough information in the regression vector to predict the future
output, then for any two regression vectors which are close in the regression space,
the corresponding future outputs are also close in the output space. The structure
is then selected by computing the percentage of false neighbors, i.e., vectors that
violate the above assumption. A suitable threshold parameter must be specified by
the user. For this purpose, heuristic rules have been proposed [49]. Unfortunately,
for nonlinear systems the choice of this parameter will depend on the particular
system under study [229]. The computational effort of this method also rapidly
increases with the number of data samples and the dimension of the model.

To increase the efficiency of this algorithm, we present two clustering-based al-
gorithms, which can be found in one of our previous works [85] as well. The main
idea of these algorithms is the following. When the available input-output data
set is clustered in the product space of the regressors and the model output, the
obtained clusters will approximate the regression surface of the model. Although a
clustering algorithm is utilized, the method does not assume that the data exhibit
a cluster substructure. Clustering is used to detect clusters that are local linear
approximations of the regression surface. In the first algorithm the threshold con-
stant that is used to compute the percentage of the false neighbors is estimated
from the shape of the obtained clusters. Departing from the theory behind the
MDL algorithm, a new direct model structure selection algorithm is also devel-
oped. If the right input variables are used, because of the functional relationship
between the regressors and the model output, the data are locally highly correlated
and the obtained clusters are flat. In this way, the problem of determining the ap-

4.3. Model Order Selection 185

propriate regressors is transformed into the problem of checking the flatness of the
clusters, similarly to [26, 28]. The main advantage of the presented solution is that
it is model-free. This means that no particular model needs to be constructed in
order to select the model structure. There is also no need for finding the nearest
neighbors for each data point, which is a computationally expensive task.

4.3.2 FNN Algorithm

Many non-linear static and dynamic processes can be represented by the following
regression model

yk = f(φk) (4.104)

where f(.) is a nonlinear function and φk represents its input vector and k =
1, . . . , N represents the index of the kth available input-output data.

Among this class of models, the identification of discrete-time, Non-linear Auto-
Regressive models with eXogenous inputs (NARX) is considered (see also Sec-
tion 4.1). In the NARX model, the model regressors are past values of the process
outputs yk and the process inputs uk.

φk = [yk−1, . . . , yk−na , uk−1, . . . , uk−nb
]
T

(4.105)

while the output of the model is the one-step ahead prediction of the process, yk.
The number of past outputs used to calculate yk is na, and the number of past
inputs is nb. The values na and nb are often referred to as model orders. The above
SISO system representation can be assumed without a loss of generality since the
extension to MISO and MIMO systems is straightforward.

The method of false nearest neighbors (FNN) was developed by Kennel [148]
specifically for determining the minimum embedding dimension, the number of
time-delayed observations necessary to model the dynamic behavior of chaotic sys-
tems. For determining the proper regression for input-output dynamic processes,
the only change to the original FNN algorithm involves the regression vector itself
[229].

The main idea of the FNN algorithm stems from the basic property of a func-
tion. If there is enough information in the regression vector to predict the future
output, then any of two regression vectors which are close in the regression space
will also have future outputs which are close in some sense. For all regression vec-
tors embedded in the proper dimensions, for two regression vectors that are close in
the regression space, their corresponding outputs are related in the following way:

yk − yj = df (φna,nb

k)
[
φ

na,nb

k − φ
na,nb

j

]
+ o

([
φ

na,nb

k − φ
na,nb

j

])2
(4.106)

where df (φna,nb

k) is the Jacobian of the function f(.) at φ
na,nb

k .

186 Chapter 4. Fuzzy Clustering for System Identification

Ignoring higher-order terms, and using the Cauchy-Schwarz inequality the fol-
lowing inequality can be obtained:

|yk − yj | ≤ ‖df (φna,nb

k)‖
2

∥∥φna,nb

k − φ
na,nb

j

∥∥
2

(4.107)

|yk − yj |∥∥φna,nb

k − φ
na,nb

j

∥∥
2

≤ ‖df (φna,nb

k)‖2 . (4.108)

If the above expression is true, then the neighbors are recorded as true neighbors.
Otherwise, the neighbors are false neighbors.

Based on this theoretical background, the outline of the FNN algorithm is the
following.

1. Identify the nearest neighbor to a given point in the regressor space. For a
given regressor:

φ
na,nb

k = [yk−1, . . . , yk−na , uk−1, . . . , uk−nb
]T

find the nearest neighbor φ
na,nb

j such that the distance d is minimized:

d = ||φna,nb

k − φ
na,nb

j ||2.

2. Determine if the following expression is true or false

|yk − yj|
||φna,nb

k − φ
na,nb

j ||2
≤ R

where R is a previously chosen threshold value. If the above expression is true,
then the neighbors are recorded as true neighbors. Otherwise, the neighbors
are false neighbors.

3. Continue the algorithm for all times k in the data set.

4. Calculate the percentage of points in the data that have false nearest neigh-
bors J(na, nb).

5. Continue the algorithm for increasing na and nb using the percentage of false
nearest neighbors dropping to some acceptably small number.

The FNN algorithm is sensitive to the choice of the R threshold. In [49] the
threshold value was selected by trial and error method based on empirical rules of
thumb, 10 ≤ R ≤ 50. However, choosing a single threshold that will work well for
all data sets is an impossible task. In this case, it is advantageous to estimate R
based on (4.108) using the maximum of the Jacobian, R = maxk ‖df (φna,nb

k)‖, as
it was suggested by Rhodes and Morari [229].

Since this method uses the Jacobian of the identified models, the performance
and the flexibility of these models can deteriorate the estimate of the model order.
When the Jacobian is overestimated, the algorithm underestimates the order of

4.3. Model Order Selection 187

the system. Contrary, if the model estimates smaller Jacobian than the real Ja-
cobian of the system, the model order selection algorithm overestimates the order
of the model. Hence, the modeler should be careful at the construction of the
model used to estimate the Jacobian of the system (e.g., the model can be over or
under parameterized, etc.). To increase the efficiency of the FNN based structure
selection, a clustering-based algorithm will be introduced in the following section.

4.3.3 Fuzzy Clustering based FNN

The main idea of this section is the following. When the available input-output
data set is clustered in the product space of the regressors and the model out-
put and when the appropriate regressors are used, the collection of the obtained
clusters will approximate the regression surface of the model as it was described
in Section 1.6, see in Figure 1.17. In this case the clusters can be approximately
regarded as local linearizations of the system and can be used to estimate R.

Clusters of different shapes can be obtained by different clustering algorithms
by using an appropriate definition of cluster prototypes (e.g., points vs. linear vari-
eties) or by using different distance measures (see also Section 1.5 and Section 1.6
for more details). The Gustafson–Kessel clustering algorithm (Section 1.5.6) [108]
has been often applied to identify Takagi–Sugeno fuzzy systems that are based on
local linear models [26]. The main drawback of this algorithm is that only clus-
ters with approximately equal volumes can be properly identified which constrain
makes the application of this algorithm problematic for the task of this section.
To circumvent this problem, in this section Gath–Geva algorithm (Section 1.5.7)
is applied [18, 93].

The clustering algorithm has only one parameter: c, the number of the clusters.
In general, the increase of c increases the accuracy of the model. However, to avoid
overfitting and the excessive computational costs, it is recommended to determine
the number of the clusters automatically. For this purpose various methods can
be applied [26, 93] (see Section 1.7 for more details).

The applied validity measure is based on the hyper-volume index:

Vfc =

c∑

i=1

det(Fi) . (4.109)

This index represents the volume of the clusters. When the nonlinear hyper-surface
of the identification data is correctly approximated by the clusters, this volume
should be small.

We scale this index by the volume of covariance matrix of the data

I =
Vfc

det(cov(X))
. (4.110)

188 Chapter 4. Fuzzy Clustering for System Identification

Estimation of the R Threshold Coefficient

The collection of c clusters approximates the regression surface as it is illustrated
in Figure 1.17. Hence, the clusters can be approximately regarded as local linear
subspaces described by the cluster ellipsoids as shown in Figure 1.18 (Section 1.6).
The smallest eigenvalues λi,nb+na+1 of the cluster covariance matrices Fi are typ-
ically in orders of magnitude smaller than the remaining eigenvalues [18, 26].

The eigenvector corresponding to this smallest eigenvalue, ti
nb+na+1, deter-

mines the normal vector to the hyperplane spanned by the remaining eigenvectors
of that cluster

(ti
nb+na+1)

T (xk − vi) = 0. (4.111)

Similarly to the observation vector xk = [φT
k yk]T , the prototype vector is

partitioned as vi =

[(
v

φ
i

)T

vy
i

]
into a vector vφ corresponding to the regressor

φk, and a scalar vy
i corresponding to the output yk. The smallest eigenvector is

partitioned in the same way, ti
na+nb+1 =

[(
t
i,φ
na+nb+1

)T

ti,yna+nb+1

]T

. By using this

partitioned vectors (4.111) can be written as

[(
t
i,φ
na+nb+1

)T

ti,yna+nb+1

]T (
[φT

k yk]T −
[(

v
φ
i

)T

vy
i

])
= 0 (4.112)

from which the parameters of the hyperplane defined by the cluster can be ob-
tained:

yk =
−1

ti,yna+nb+1

(
t
i,φ
na+nb+1

)T

︸ ︷︷ ︸
aT

i

φk +
1

ti,yna+nb+1

(
ti
na+nb+1

)T
vi

︸ ︷︷ ︸
bi

= aT
i φk + bi. (4.113)

Although the parameters have been derived from the geometrical interpretation
of the clusters, it can be shown [26] that (4.113) is equivalent to the weighted total
least-squares estimation of the consequent parameters, where each data point is
weighted by the corresponding

√
µi,k.

The main contribution of this section is that it suggests the application of an
adaptive threshold function to FNN, which takes into account the nonlinearity
of the system. This means, based on the result of the fuzzy clustering, for all
input-output data pairs different Rk values are calculated. Therefore, the optimal
value of Rk is Rk = ‖df (φna,nb

k)‖ and the df (φna,nb

k) partial derivatives can be
estimated based on the shape of the clusters from (4.113)

df (φna,nb

k) ≈
c∑

i=1

µi,k
−1

ti,yna+nb+1

(
t
i,φ
na+nb+1

)T

(4.114)

4.3. Model Order Selection 189

the threshold can be calculated as

Rk =

∥∥∥∥∥

c∑

i=1

µi,k
−1

ti,yna+nb+1

(
t
i,φ
na+nb+1

)T
∥∥∥∥∥

2

. (4.115)

4.3.4 Cluster Analysis based Direct Model Order Estimation

In the previous section a new cluster analysis based approach to the adaptive
choice of the R threshold value of the FNN algorithm has been presented. Based on
the geometric idea behind this algorithm, in this section an alternative structure
selection algorithm will be presented that does not require the time-consuming
calculation of the nearest neighbors in the identification data.

The idea of this second algorithm is based on the well-known fact that in the
absence of the observation noise, the covariance matrix of the identification data
generated by a linear system has a zero eigenvalue with multiplicity s given by

s = 1 + min(na − na,l, nb − nb,l) (4.116)

when the selected model orders nb and na are greater than or equal to the true
orders of the linear system, i.e., nb ≥ nb,l and na ≥ na,l [56]. This relationship
between the parameters na, nb and the eigenvalues of the covariance matrix can
be used to select the model order.

In [173] it has been shown that the widely applied Minimum Description Length
(MDL) model order selection criterion can be expressed based on the smallest
eigenvalue of the data covariance matrix:

Jna,nb

MDL =
N

2
log(λmin) +

1

2
(na + nb) log N. (4.117)

Multiplying both sides by 2/N and combining the terms results in

2

N
Jna,nb

MDL = log

(
λmin

(
N1/N

)na+nb
)

. (4.118)

As log(.) is monotonically increasing, in [173] a criterion containing exactly the
same information as MDL has been proposed:

Jna,nb = λmin

(
N1/N

)na+nb

. (4.119)

Since N1/N ≈ 1 for large N , one can see that the MDL criterion asymptotically
provides the same information as the minimum eigenvalue of the covariance matrix.
The advantage of the above formulation is that it can also be applied to noise-free
data, in which λmin is zero and where the logarithm in (4.117) thus cannot be
calculated.

The utilized fuzzy clustering obtains local linear approximation of the nonlinear
system, (4.119) can be easily modified for cluster-based model order estimation by

190 Chapter 4. Fuzzy Clustering for System Identification

weighting the values of this simplified cost functions calculated from the cluster
covariance matrices with the a priori probability of the clusters:

Jna,nb =
c∑

i=1

αiλi,min. (4.120)

Because the model order is determined by finding the number of past outputs
na and past inputs nb, the J(na, nb) indices form a table in these two dimensions.
It is possible to find a ‘global’ solution (or solutions) for the model orders by
computing the index over all values of na and nb in a certain range and search for
a rapid decrease of J(na, nb). The indices that have the smallest J(na, nb) relative
to J(na−1, nb) and J(na, nb−1) represents the ‘best’ estimate of the model order.
Hence, each row of the table is divided by the previous row to form a row ratio
table, and each column is divided by the previous column to create a column ratio
table. With the use of these ratios the model order can be determined:

[na, nb] = arg min
na,nb

{
max

(
J(na, nb)

J(na−1, nb)
,

J(na, nb)

J(na, nb−1)

)}
. (4.121)

4.3.5 Application Examples

The presented cluster analysis based model order selection algorithms will be
illustrated using three examples taken from the relevant literature [49] and [229].
In the first example the order of a linear system is estimated. This example shows
that the utilized excitation signal has a big impact on the quality of the results. In
the second example the order of a polymerization reactor model is estimated and
the usage of a ratio table based on (4.121) is illustrated. The process considered in
the third example is a third-order exothermic van der Vusse reaction in a cooled
Continuously Stirred Tank Reactor (CSTR). This process is strongly nonlinear,
so the difference between results highlights the necessity of the application of the
presented methods. In this example neural networks with different model orders
are also identified, and the performances of the models show good correlation with
the cluster based indices of the model structures.

Example 4.7 (Direct model order selection based on GG clustering in case of a
linear system). The first system is a difference equation, where na = 3 and nb = 2.

yk = 1.5yk−1 − 0.75yk−2 + 0.125yk−3 + uk−1 + uk−2. (4.122)

For this example algorithms based on Lipschitz numbers and false nearest neighbors
provided different solutions in [49], and the model orders were chosen incorrectly.
Based on our theoretical and experimental study related to the properties of the
FNN algorithm, we have realized that this erroneous result is caused by the Pseudo
Random Binary Signal (PRBS) used for the excitation of the system. As PRBS

4.3. Model Order Selection 191

generates small amount of identification data with diverse control signal sequences,
uk−1, . . . , uk−nb

, the ratio of the nearest neighbors will be less sensitive to the
examined input order, nb, of the model. Hence, as PRBS is unsuitable to generate
identification data for nearest neighbors approaches, in this study the process has
been excited by a signal that is random also in its amplitude.

Table 4.4: FNN results for linear system data when R is obtained by fuzzy clus-
tering

Input Delays (nb) Output Delays (na)
% FNN 0 1 2 3 4

0 100.00 98.37 77.85 22.96 1.62
1 96.74 87.80 31.50 2.64 0.00
2 75.00 40.24 1.42 0.00 0.00
3 43.29 7.52 0.00 0.00 0.00
4 49.18 1.02 0.00 0.00 0.00

As Table 4.4 shows, the presented method gives correct estimate of the model
order in the noise-free case. To obtain a more realistic identification problem,
normally distributed noise with zero mean and different levels of standard deviation
was added to the output of the process; and SNR defined to be the ratio of signal to
noise variance. In this case, J(na, nb) will not be zero if na and nb are chosen as
na ≥ n̂a and nb ≥ n̂b, but it will tend to remain relatively small and flat. In this
point of view the presented approach also estimated the correct order of the model.

�

Example 4.8 (Direct model order selection based on GG clustering in case of a
continuous polymerization reactor). In the second example, taken from [229], we
use data generated by a simulation model of a continuous polymerization reactor.
This model describes the free-radical polymerization of methyl methacrylate with
azobisisobutyronitrile as an initiator and toluene as a solvent. The reaction takes
place in a jacketed CSTR. Under some simplifying assumption, the first-principle
model is given by:

ẋ1 = 10(6 − x1) − 2.4568x1
√

x2

ẋ2 = 80u − 10.1022x2

ẋ3 = 0.024121x1
√

x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√

x2 − 10x4

y =
x4

x3

192 Chapter 4. Fuzzy Clustering for System Identification

The dimensionless state variable x1 is the monomer concentration, and x4/x3

is the number-average molecular weight (the output y). The process input u is the
dimensionless volumetric flow rate of the initiator. For further information on
this model and its derivation, see [73]. According to [229], we apply a uniformly
distributed random input over the range 0.007 to 0.015 with the sampling time
of 0.2 s.

With four states, a sufficient condition for representing the dynamics is a re-
gression vector that includes four delayed inputs and outputs. In this case, however,
the system has two states that are weakly observable. This can be observed by lin-
earizing the system and performing balanced realization, which shows that two of
the Hankel singular values are larger than the remaining singular values. This week
by observation leads to the system and can be approximated by a smaller input-
output description [55]. Obviously, the results may change depending on where the
system is linearized. Although in this case such effects have not occurred, the local
linear behavior of a nonlinear system can significantly vary, even if the system
is analyzed around off-equilibrium operating points [1, 196]. The main advantage
of the presented clustering based approach is that the clusters are the local linear
approximations of the nonlinear system, so they can be directly used to estimate
the operating regions and the orders of the local linear models [18].

The presented clustering-based algorithm was applied to 960 data points. The
indices J(na, nb) obtained by using the direct model order estimation (see (4.120))
are given in Table 4.5.

Table 4.5: Polymerization data: J(na, nb) values obtained based on the eigenvalues
of 3 clusters.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 5.55 4.84 4.80 4.81
1 4.28 1.28 0.54 0.43 0.42
2 1.23 0.30 0.44 0.41 0.37
3 0.37 0.34 0.31 0.33 0.34
4 0.29 0.35 0.30 0.32 0.32

With the use of (4.121), the ratios of the J(na, nb) values were computed and
tabulated in Table 4.6. One can see that the structure with na = 1 and nb = 2 is
clearly indicated. This result is in agreement with the analysis of Rhodes [229] who
showed that a nonlinear model with these orders is appropriate.

The clustering based false nearest neighbor (FNN) algorithm is also applied to
the data, and the results are given in Table 4.7. The model structure with na = 1
and nb = 2 is indicated, which confirms the above results. The main drawback
of the FNN algorithm, however, is that it requires demanding calculations of the
nearest neighbors for each data point.

4.3. Model Order Selection 193

Table 4.6: Polymerization data: Ratios obtained from Table 4.5.

Input lags (nb) Output lags (na)
1 2 3 4

1 0.30 0.42 0.80 0.98
2 0.24 1.47 0.95 0.90
3 1.13 0.91 1.06 1.03
4 1.21 0.97 1.07 1.00

Table 4.7: Polymerization data: results obtained with the FNN method.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 100.00 99.59 92.32 53.64 0.40
1 99.46 69.54 10.24 0.94 0.27
2 73.18 3.10 2.69 0.40 0.00
3 8.76 0.81 0.13 0.00 0.00
4 0.54 0.00 0.00 0.00 0.00

Table 4.8 shows results obtained for the linear ARX model structure. Note that
for this particular process, the linear method also works satisfactorily, although the
decrease is less sharp.

Table 4.8: Polymerization data: results obtained with a linear model (smallest
eigenvalue of the covariance matrix of the data).

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 19.65 16.62 14.98 14.04
1 10.02 3.33 2.14 2.00 1.99
2 2.91 1.94 1.93 1.91 1.87
3 1.93 1.91 1.82 1.81 1.80
4 1.88 1.82 1.81 1.75 1.75

We can allocate that this linear model-based method does not give conspicuously
incorrect results, as it behaves similarly to the method presented in [229]. The only
difference is that the linear model-based approach applies the “average” gain of
the system, while the method of Rhodes and Morari utilizes the maximal gain
of the nonlinear system [229]. For highly nonlinear systems both approaches can
induce large model order estimation error, as the linear model-based approach can
over-, while the maximum gain-based approach can under-estimate the order of the
system.

194 Chapter 4. Fuzzy Clustering for System Identification

In the following example the order of a strongly nonlinear system will be es-
timated, so the difference between results obtained by linear and clustering based
approaches will highlight the necessity of the application of the presented methods.

�

Example 4.9 (Direct model order selection based on GG clustering in case of the
Van der Vusse Reactor). The process considered in this section is a third-order
exothermic van der Vusse reaction in a cooled Continuously Stirred Tank Reactor
(CSTR). It is a strongly nonlinear process with a non-minimum-phase behavior
and input multiplicity. The model of the system is given by

ẋ1 = −x1k1e
−

E1
x3 − x2

1k3e
−

E3
x3 + (x10 − x1)u1

ẋ2 = x1k1e
−

E1
x3 − x2k2e

−
E2
x3 − x2u1

ẋ3 = − 1

̺cp

[
∆H1x1k1e

−
E1
x3 + ∆H2x2k2e

−
E2
x3

+ ∆H3x
2
1k3e

−
E3
x3

]
+ (x30 − x3)u1 +

u2

̺cpV
y = x2

where x1, x10 and x2 are concentration of the components involved in the reaction,
x3 is the temperature in the reactor, u1 is the dilution rate of the reactor, u2 is the
heat exchanged between the CSTR and the environment, and x30 is the temperature
of the inlet stream. The parameters are given in Table 4.9.

Table 4.9: Parameter values for the Van der Vusse reactor.

V = 0.01 l ρ = 0.9342kg l−1

k1 = 1.287·1012 s−1 ∆H1 = 4.2 J mol−1 s−1

k2 = 1.287·1012 s−1 ∆H2 = -11.0 J mol−1 s−1

k3 = 9.043·109 s−1 ∆H3 = -41.85 Jmol−1 s−1

E1 = 9758.3K x10 = 5.10mol l−1

E2 = 9758.3K x30 = 378.05K
E3 = 8560.0K cp = 8560.0K

The input flow rate u1 is chosen as the system’s input while u2 is kept constant
at u2 = −1.1258 J/s [261]. To estimate the model orders, 960 data points were
used (see Figure 4.17).

The eigenvalue based results obtained for a linear model structure are given in
Table 4.10. No sharp decrease of the tabulated values J(na, nb) can be observed,
which makes it difficult to choose the model order.

4.3. Model Order Selection 195

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y
(k

)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Time [sec]

u
(k

)

Figure 4.17: Input-output data of the van der Vusse reactor.

Table 4.10: Van der Vusse reactor: results obtained for the analysis of the smallest
eigenvalue of the covariance matrix of the data (linear model).

Input lags (nb) Output lags (na)
0 1 2 3 4

0 – 4.19 1.79 0.98 0.58
1 5.85 2.80 1.53 0.97 0.56
2 4.94 1.88 0.60 0.54 0.43
3 2.75 1.45 0.53 0.25 0.22
4 1.61 1.28 0.43 0.25 0.12

The fuzzy clustering-based method, however, results in a sharp decrease of the
cost function for the structure given by nb = 2 and na = 2 (see Table 4.11). A
similar model structure was used in earlier papers on model based control of this
process [261].

This result is in a good agreement with the result of the FNN method (see
Table 4.12). The computational load of the FNN method, however, is much larger
(three times in the case of this relatively small data set). As the computational
complexity of the FNN method increases exponentially with the number of data
samples, for larger data sets, this difference will become more pronounced.

196 Chapter 4. Fuzzy Clustering for System Identification

Table 4.11: Van der Vusse reactor: results obtained for the analysis of the smallest
eigenvalues of 3 clusters.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 – 1.36 0.56 0.26 0.14
1 1.43 0.52 0.35 0.22 0.13
2 0.98 0.41 0.07 0.07 0.07
3 0.66 0.30 0.06 0.04 0.03
4 0.42 0.19 0.07 0.04 0.02

Table 4.12: Van der Vusse reactor: results obtained with the false nearest neighbor
method, where R has been determined based on cluster analysis.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 1.00 0.99 0.67 0.18 0.006
1 0.99 0.54 0.18 0.025 0
2 0.70 0.23 0.00 0 0
3 0.33 0.08 0 0 0
4 0.05 0.01 0 0 0

In all of the examples the algorithm estimated the model order based on the
shape of three clusters. In these cases the quality of the clustering was measured
by the proposed hyper volume performance index (4.110). When the number of
clusters was increased, the I(na, nb) values did not decrease significantly. This
shows that three clusters are enough to approximate the nonlinearity of the data.
The fact that the same results were obtained when more clusters are used confirms
the validity of this assumption.

In order to verify the results of the presented algorithms, a three-layered neural
network with six hidden neurons was identified and two types of error analysis
were performed. The first determines the one-step ahead prediction error, where
the actual past outputs and inputs are used to predict the next output of the system.
The second analysis involves a simulated model that utilizes the inputs and only
the initial conditions of the experimental time series.

In examining these results, it appears that large J(na, nb) values correspond to
larger prediction errors for both one-step predication and simulation (see Table 4.13
and Table 4.14). For the one-step-ahead prediction, the model error should always
decrease when more terms are used. However, for the simulation results the error
is not guaranteed to decrease as the model errors can highly accumulate during the
simulation.

4.3. Model Order Selection 197

Table 4.13: Van der Vusse reactor: mean square one-step ahead prediction errors
obtained with neural networks.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 0.0362 0.0141 0.0066 0.0051
1 0.0589 0.0079 0.0037 0.0025 0.0012
2 0.0366 0.0035 0.0001 0.0001 0.0001
3 0.0308 0.0018 0.0001 0.0001 0.0001
4 0.0272 0.0006 0.0001 0.0000 0.0001

Table 4.14: Van der Vusse reactor: mean square simulation prediction errors ob-
tained with neural networks.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 0.0362 0.0141 0.0066 0.0051
1 0.0589 0.0766 0.0359 0.0799 0.0335
2 0.0366 0.1033 0.0029 0.0214 12.9797
3 0.0308 0.0601 0.0124 0.0071 0.0047
4 0.0272 0.0073 0.0022 0.0007 0.0074

Without the presented methods it would be necessary to build many models with
different model orders. After these models were built, the results would have to be
analyzed. By utilizing the presented algorithms, time can be saved when perform-
ing the entire nonlinear identification process, and the results of the model order
selection are not biased by the other structural parameters of the applied nonlinear
model and the utilized parameter identification algorithm.

Although in this experiment a relatively small number of data (960 data points)
have been analyzed, there was a significant difference among the computational
time of the identification of the neural networks, the FNN based and the direct
cluster analysis based methods. The identification of the neural networks took ap-
proximately 600 seconds compared to the 20 seconds of the presented clustering
based direct model order selection algorithm. Contrary, when the nearest neighbors
were also calculated, the computational time increased to 60 seconds. As the com-
putational complexity of FNN increases exponentially with the number of data (for
2500 data points the FNN took five times more time than the presented method
(500 seconds), this difference is significant and shows the benefit of the presented
cluster analysis based approach.

�

198 Chapter 4. Fuzzy Clustering for System Identification

4.3.6 Conclusions

A new approach for selecting the model order for nonlinear ARX models has been
presented. Cluster analysis is first applied to the product space input-output data.
The model orders are then estimated on the basis of the cluster covariance matrix
eigenvalues. In the first approach the clusters are used to calculate the threshold
parameter of the false nearest neighbors algorithm (FNN). The second approach
directly estimates the order of the model based on the eigenvalues of the covariance
matrices of the clusters. The presented eigenvalue based algorithm is several times
faster than the false nearest neighbor method, as it does not require the time-
consuming calculation of the nearest neighbors in the identification data set.

The main advantage of the presented approaches is that there is no need to
extensively apply nonlinear model construction tools for the selection of the proper
model order. However, it should be borne in mind that there is no escape of
performing a model-driven structure selection, once a certain model representation
is chosen. Indeed, if the orders of the nonlinear input-output model are well chosen,
then structure selection will be facilitated a lot. Hence, the presented model order
selection approach decreases the computational effort of model identification.

Numerical examples were given to illustrate the performance of the new tech-
nique and to compare it to other methods from the literature. These examples
showed that for nonlinear systems linear model-based approaches can overesti-
mate the order of the system, or that the result is not so clear as with the use of
the presented cluster analysis based approach.

4.4 State-Space Reconstruction and Prediction

of Chaotic Time Series

4.4.1 Introduction

Most of the developments in the field of nonlinear dynamics over the past cen-
tury assume that one has a complete description of the dynamic system under
consideration. The practical application of these results in principle requires the
simultaneous measurement of all the state variables. Unfortunately, in many real
applications one only has rough information about what these variables are, and
there is certainly no hope of observing them all. Instead, one typically has a time
series of one or more observables of the system, whose relationship to the state
variables is at best uncertain. Fortunately, the remarkable result due to Takens
[258] shows that the dynamics of an unknown deterministic finite-dimensional
system can be reconstructed from a scalar time series generated by that system.

The state-space of the dynamic system is assumed to be a finite-dimensional
compact manifold M. It is assumed that the state of the system at time k, denoted
xk ∈ M, evolves according to xk+1 = f(xk). The system is observed using a smooth
measurement function g : M → R giving a scalar time series yk = g(xk). The aim

4.4. State-Space Reconstruction 199

-5

0

5

-3-2-10123

-3

-2

-1

0

1

2

3

y(k)

Observation Delay Reconstruction

M
xk

xk+1

yk

yk+1

f

fr

Figure 4.18: Scheme of delay embedding for deterministic systems.

of the so-called method of delays [258] is to reconstruct the state-space M and the
dynamics f from the time series yk. In Figure 4.18 the reconstructed version of
the original system f is denoted by fr. Because M is high-dimensional and each
component of yk is only one-dimensional, it is clear that in order to obtain a
suitable state-space, one has to group different elements of the time series. The
most natural (but not the only) way of doing this is to put several successive values
of yk in a vector:

yk = [yk, yk−τ , . . . , yk−τ(de−1)]
T (4.123)

where τ correspond to the interval on the time series that creates the reconstructed
state-space (the lag time).

The number of components de is usually referred to as the embedding dimen-
sion. Although, the data samples are embedded in a de-dimensional space, they
do not necessarily fill that space. The system defines a nonlinear hyper-surface in
which the state variables reside. The dimension of this hyper-surface is referred
to as intrinsic, topological or local dimension, dl. The embedding and the local
dimensions are not independent of each other. Takens proved that for an infinite
number of data samples without noise the inequality de ≥ 2dl + 1 holds [258].
According to Sauer et al. [234], in practical cases de ≥ dl + 1 can be enough to
reconstruct the original state-space.

The selection of the de embedding, and dl local dimensions is a key step toward
the analysis and prediction of nonlinear and chaotic time series. For the estimation
of the embedding dimension Ataei et al. proposed a method based on a general
polynomial autoregressive model [24]. Cao improved the False Neighbor method

200 Chapter 4. Fuzzy Clustering for System Identification

for this purpose [58]. Walker extended the so-called Wayland method to determine
the minimum embedding dimension and compared the results with the Cao algo-
rithm [278]. Ashkenazy proposed a method to measure local (fractal) dimension
called generalized information dimension and applied it to chaotic time series [23].
Leok studied the effect of the noise level on the estimation of the local dimension
in case of equatorial weather systems [54]. Camastra gave a survey of data dimen-
sionality estimation methods in [57]. Jiang et al. [135] proposed a clustering-based
approach to determining the embedding dimension. In their work a fuzzy c-means
algorithm was used for clustering in the reconstruction space. The correct em-
bedding dimension is estimated by comparing the number of iterations that are
needed to achieve the termination tolerance of the clustering algorithm used to
cluster the data in the reconstructed space of different dimensions. This method
is based on a heuristic assumption, which assumes that the convergence curve of
the clustering algorithm indicates the optimum embedding dimension when the
number of clusters is identical to the discrete lag time.

A new clustering-based algorithm is introduced for the estimation of the di-
mensions of chaotic systems in this section, which is mainly based on [9]. The
insights obtained by clustering can be well exploited in this case, namely the local
dimension can be estimated based on cluster shape analysis. At the same time, the
presented general Multiple Input-Multiple Output (MIMO) fuzzy modelling ap-
proach gives a model. The main advantage of the presented solution is that three
tasks are simultaneously solved during clustering: selection of the embedding di-
mension, estimation of the intrinsic dimension, and identification of a model that
can be used for prediction.

4.4.2 Clustering-based Approach to State-space Reconstruction

Overview of the Proposed Method

The idea of the presented method is illustrated in Figure 4.19. Clustering is applied
in the reconstructed space defined by the lagged measured variables yk. First, the
lag time τ is chosen by using the average mutual information (Step 1).

-5

0

5

-3-2-10123

-3

-2

-1

0

1

2

3

y(k)

Observation

?
0 50 100 150 200 250 300 350

-10

-5

0

5

10

15

Step 1:

Lag Time

Step 2:

Clustering

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

8
x 10

-3

Step 3:

Performance

Analysis

Increase d dimensione

t1

t2

1�

2�

Step 4:

Cluster Analysis In
fo

rm
a

tio
n

a
b

o
u

t

th
e

o
rig

in
a

l
sy

ste
m

Figure 4.19: A scheme of the presented method.

The key step of the approach is the clustering of the data (Step 2). A model-
based clustering algorithm has been developed for the identification of operating

4.4. State-Space Reconstruction 201

regimes and parameters of Gaussian mixture models using the Expectation Max-
imization (EM) method. The local models of the clusters are linear multi-input
multi-output (MIMO) or multi-input single-output (MISO) models and the cor-
responding operating regions are represented by multivariate Gaussian functions.
The embedding dimension is inferred from the one-step ahead prediction perfor-
mance of the local models (Step 3). The intrinsic dimension of the reconstructed
space is estimated by analyzing the eigenvalues of the fuzzy cluster covariance
matrices (Step 4).

Selection of the Lag Time

The mutual information between two measurements is used to measure the gen-
erally nonlinear dependence of two variables. The mutual information for two
measurements yn and yn+τ from the same time series is expressed by

In(τ) = log2

[
P (yn, yn+τ)

P (yn)P (yn+τ)

]
(4.124)

where the individual probability densities, P (yn) and P (yn+τ), are equal to the
frequency with which the data points yn and yn+τ appear in the time series, re-
spectively. The frequency can be obtained directly through tracing the data points
in the entire time series. The joint probability density, P (yn, yn+τ), is obtained
by counting the number of times the values of the pair are observed in the se-
ries. Average mutual information is computed for all data points in the following
manner:

I(τ) =

N−τ∑

n=1

P (yn, yn+τ) log2

[
P (yn, yn+τ)

P (yn)P (yn+τ)

]
. (4.125)

When P (yn, yn+τ) = P (yn)P (yn+τ) such that I(τ) approaches zero, the data
points yn and yn+τ are completely independent. In practice the first minimum of
the average mutual information function is chosen as the lag time [135].

Estimation of the Embedding Dimension based on Local Modelling

If the embedding dimension is properly chosen, the behavior of the time series in
the reconstruction space can be described by a smooth nonlinear function, fr:

yk+1 = fr(yk). (4.126)

If this mapping is similar to the original dynamic system f , it is required that
yk+1 = yp+1 whenever yk = yp. It means that the trajectories must not cross
each other. These systems are deterministic, therefore the state-space would not
be uniquely determined if the trajectories crossed each other. In terms of the time
series this condition amounts to yn+de = yp+de whenever yk = yp, . . . ,yk+de =
yp+de and is thus equivalent to the time series being predictable. The embedding

202 Chapter 4. Fuzzy Clustering for System Identification

dimension is determined by increasing the number of lagged outputs, de, and the
analysis of the one-step ahead prediction error of the identified model.

The basic idea of the method can be described as follows: when the input
vector of the model, the so-called regressor vector (4.123) contains enough in-
formation, i.e., it has the right dimension, the output of the model can be pre-
dicted with acceptably small error, i.e., the function fr can be approximated ac-
curately (4.126). The question is what the terms ‘acceptably small error’ and
‘being approximated accurately’ mean. They mean that the model error is due to
the noise/measurement error present in the dataset and the imperfection of the
modelling method rather than the lack of enough information. To satisfy this con-
dition, the measurements should be accurate and an adequate modelling method
should be chosen. If the dimension of the regressor vector is less than necessary,
the output can be predicted with large error, but the model error is reduced with
the increase of the information content/dimension of the regressor vector. When
the reconstructed space with the proper embedding dimension is analyzed, the
model error is reduced to an acceptable small value, and it will not be decreased
significantly even with the increase of the dimension of the regressor vector, since
extra terms in (4.123) do not increase the information content of the regressor.
Consequently, a model should be identified by each dimension, and their accuracy
should be stored and the changes should be analyzed. The accuracy of a model can
be measured by the one-step ahead prediction error by chaotic systems because
more than one step ahead prediction is not possible according to the nature of
that kind of systems. The dimension showing a ‘knee’ in the model error, i.e., a
drastic decrease, with no significant decrease by bigger dimensions, is the proper
embedding dimension de. As can be seen, the model identification stands in the
center of the method.

To identify a model that can be used for prediction of a time series global,
local and semi-local methods can be used [176]. One of the main disadvantages
of global methods is that a new sample pair may change the approximation func-
tion everywhere. Local interpolation overcomes this drawback by utilizing only a
limited number of neighboring samples. There are two major classes of local meth-
ods, those applying neighbor samples directly in the prediction, and those fitting
a function locally to the neighbors. The latter method fits a set of surfaces to the
measurement points. These local surfaces can be hyperplanes but polynomials of
higher degrees may also be used. For chaotic time series, this local approach was
first used in [84]. Other works applying local methods are, e.g., [60] and [142]. The
modelling framework that is based on combining a number of local models, where
each local model has a predefined operating region in which it is valid, is called op-
erating regime based model [197]. This approach is advantageous in the modelling
of complex nonlinear systems, since it may not be possible to find a model that
is universally applicable to describe the unknown MIMO system fr(.), while with
the application of the divide and conquer paradigm it is possible to decompose
the complex problem into a set of smaller identification problems where standard
linear models give satisfactory performance.

4.4. State-Space Reconstruction 203

This operating-regime based model is formulated as follows:

yk+1 =
c∑

i=1

βi(yk) (Aiyk + bi)︸ ︷︷ ︸
fi

=
c∑

i=1

βi(yk)
[
yT

k 1
]
θT

i =
c∑

i=1

βi(yk)fi(yk, θi)

(4.127)

where the function βi(yk) describes the operating region, and θi = [Ai bi] is the
parameter matrix of the ith local model (rule). The output of the ith local model
is denoted by yi

k+1 = fi(yk, θi). In this section, it is assumed that βi is known, in
Section 4.4.2 this function will be computed through fuzzy clustering.

The main advantage of this framework is its transparency. The operating re-
gions of the local models can be represented by fuzzy sets [31]. This representation
is appealing, since many systems change their behavior smoothly as a function of
the operating point, and the soft transition between the regimes introduced by the
fuzzy set representation captures this feature in a natural way.

The output of this MIMO model is the vector yk+1 = [yk+1, yk−τ+1, . . . ,
yk−τ(de−1)+1]

T . As only the first element yk+1 is unknown, another possible
method for the state-space reconstruction problem is the Multiple Input-Single
Output (MISO) modelling approach. In this case, only yk+1 is estimated. Both
methods are used in the examples in Section 4.4.3 because MIMO approach gives
not only a prediction error value but also takes into account the error covariance
matrices of each local model, and therefore gives an insight into the reconstructed
space.

The output of the MIMO and MISO model is linear in the parameters. There-
fore, these parameters can be estimated from the data by linear least-squares
techniques (see also Section 1.6). The N identification data pairs are arranged in
the following regressor φ and regressand Y matrices where they contain the same
terms, yk, just shifted by one sample time.

φ = [y1,y2, . . . ,yN]
T

(4.128)

Y = [y2,y3, . . . ,yN+1]
T (4.129)

Bi =

⎡
⎢⎢⎢⎣

βi(y1) 0 · · · 0
0 βi(y2) · · · 0
...

...
. . .

...
0 0 · · · βi(yN)

⎤
⎥⎥⎥⎦ . (4.130)

By using this notation, the weighted least squares solution of θi is:

θi =
[
φTBiφ

]−1

φTBiY. (4.131)

As this method forces the local linear models to fit the data locally, it does not give
an optimal model in terms of a minimal global prediction error, but it ensures that
the fuzzy model is interpretable as a Linear Parameter Varying (LPV) system [6].

204 Chapter 4. Fuzzy Clustering for System Identification

Cluster Analysis in the Reconstructed Space

The bottleneck of the data-driven identification of operating regime based models
is the identification of the functions that can represent the operating regimes of the
models (membership functions in the terminology of fuzzy models), which requires
nonlinear optimization. In this section Gaussian functions are used to represent
the operating regimes of the linear models:

βi(yk) =
exp

(
− 1

2 (yk − vi)
T F−1

i (yk − vi)
)

∑c
j=1 exp

(
− 1

2 (yk − vj)T F−1
j (yk − vj)

) (4.132)

where vi is the center and Fi is the covariance matrix of the multivariate Gaussian
function.

A new clustering-based technique for the identification of these parameters is
presented. The objective is to partition the identification data Y = [y1, . . . ,yN]T

into c clusters to reveal the underlying structure of the data. The patterns belong
to clusters with degrees that are in inverse proportion to the distance from the
respective cluster prototypes. The basic idea of the presented algorithm is to define
the cluster prototype such that it locally approximates the MIMO function yk+1 =
fr(yk). In this way, the algorithm simultaneously partitions the data (i.e., identifies
the operating regimes of the local models) and determines the cluster prototypes
(i.e., identifies the local model parameters). The fuzzy partition is represented
by the U = [µi,k]c×N matrix, where the element µi,k represents the membership
degree of yk in cluster i.

The clustering is based on minimizing the following cost function:

J(Y,U, η) =

c∑

i=1

N∑

k=1

(µi,k)
m

d2(yk+1,yk, ηi). (4.133)

where the squared distance d2(yk+1,yk, ηi) is given by the probability that the
data belong to a given cluster:

1
d2(yk+1,yk,ηi)

= p(ηi)p(yk|ηi)p(yk+1|yk, ηi) (4.134)

= p(ηi)
1

(2π)
de
2

√
det(Fi)

exp

(
−1

2
(yk − vi)

T F−1
i (yk − vi)

)

︸ ︷︷ ︸
p(yk|ηi)

1

(2π)
de
2

√
det(Pi)

exp

(
−1

2
(yk+1 − yi

k+1)
T P−1

i (yk+1 − yi
k+1)

)

︸ ︷︷ ︸
p(yk+1|yk,ηi)

.

The term p(ηi) represents the a priori probability of the ith cluster defined by
the ηi set of parameters (see equation (4.139) below). The Gaussian distribution
p(yk|ηi) defines the domain of influence of a cluster (see (4.132)). The third term

4.4. State-Space Reconstruction 205

is based on the performance of the local linear models where Pi is the weighted
covariance matrix of the modelling error of the ith local model.

The above distance function can be seen as the geometric mean of the distance
measure of Gath–Geva [93] (the first two terms) and the Fuzzy c-Regression (FCR)
[113] (the last term) algorithms. Gath–Geva algorithm takes into account the
distribution of the data, it is able to reveal clusters with arbitrary ellipsoidal
shape and size, but it is not able to fit models to data. That is why the third
term is introduced. However, the FCR distance measure is not sufficient in itself,
either, because the same linear model (the same hyperspace in an n-dimensional
space) happens to be suited for different regions of the input domain, therefore
the local linear model would not be ‘compact’ and its operating regime could not
be described as a (Gaussian) function. To avoid this, the Gath–Geva distance
measure should also be taken into account as can be seen above.

The minimization of the functional (4.133) represents a non-linear optimization
problem which is subject to the constrains (1.12), (1.13) and (1.14). It can be
solved by using a variety of methods. The most popular one is the alternating
optimization (AO), which is formulated as shown in Algorithm 4.4.1.

The main advantage of the presented clustering-based approach is that the
local dimension can be estimated by the analysis of the shape of the clusters, as
presented in the following section.

Estimation of the Local Dimension

Local (or topological) dimension of the reconstructed state-space is the basis di-
mension of the local linear approximation of the hypersurface on which the data
resides, i.e., the tangent space [57]. The most popular algorithms to estimate the
local dimension are Fukunaga-Olsen’s algorithm [91], Near-Neighbor algorithms
[217], Topological Representing Networks [189], different projection techniques,
and fractal-based methods. A method is presented that exploits the shape of the
clusters, and our results will be compared with the so-called Correlation dimen-
sion [102].

In the literature on nonlinear dynamics, many definitions of fractal dimensions
have been proposed. Box-Counting (dBC) and Correlation dimensions (dC) are
the most popular ones. The dBC of a set Y is defined as follows. If ν(r) is the
number of the boxes of size r to cover Y, then dBC is

dBC = lim
r→0

ln(ν(r))

ln(1/r)
. (4.135)

The Box-Counting dimension can only be computed for low-dimensional spaces
because the algorithmic complexity grows exponentially with the set dimension-
ality. A good alternative to the Box-Counting dimension is the Correlation di-
mension. Due to its computational simplicity, the Correlation dimension has been
successfully used to estimate the dimension of attractors of dynamical systems.

206 Chapter 4. Fuzzy Clustering for System Identification

Algorithm 4.4.1 (Modified Gath–Geva Clustering for MIMO Modelling).

Initialization
Given a set of data Y specify the number of clusters, c, choose a weighting exponent

1 < m < ∞ (usually m = 2) and a termination tolerance ǫ > 0. Initialize the

partition matrix U = [µi,k]c×N randomly in such a way that the constrains hold or

use the partition matrix given by another clustering method such as fuzzy c-means or

Gustafson–Kessel algorithm.

Repeat for l = 1, 2, . . .

Calculate the parameters of the clusters

• Centers of the membership functions

v
(l)
i =

N∑
k=1

(
µ

(l−1)
i,k

)m

yk

N∑
k=1

(
µ

(l−1)
i,k

)m
, 1 ≤ i ≤ c (4.136)

• Fuzzy covariance matrices of the Gaussian membership functions:

Fi =

N∑
k=1

(
µ

(l−1)
i,k

)m

(yk − vi)(yk − vi)
T

N∑
k=1

(
µ

(l−1)
i,k

)m

1 ≤ i ≤ c. (4.137)

• Parameters of the local models are computed by (4.131) where the elements

of the Bi matrix are equal to the membership: βi(yk) = µi,k.

• Covariance of the modelling errors of the local models:

Pi =

N∑
k=1

(yk+1 − fi(yk, θi))(yk+1 − fi(yk, θi))
T
(
µ

(l−1)
i,k

)m

N∑
k=1

(
µ

(l−1)
i,k

)m
. (4.138)

• A priori probability of the cluster

p(ηi) =
1

N

N∑

k=1

µ
(l−1)
i,k . (4.139)

Compute the distance d2(yk+1,yk, ηi) by (4.134) and update the partition matrix

µ
(l)
i,k =

1
∑c

j=1 (d(yk+1,yk, ηi)/d(yk+1,yk, ηj))
2/(m−1)

,

1 ≤ i ≤ c, 1 ≤ k ≤ N . (4.140)

until ||U(l) − U(l−1)|| < ǫ.

4.4. State-Space Reconstruction 207

The Correlation dimension is defined as follows. Let Y = [y1,y2, . . . ,yN]
T

be a
set of points of cardinality N . Define the correlation integral Cm(r) as

Cm(r) = lim
N→∞

2

N(N − 1)

N∑

i=1

N∑

j=i+1

I(‖xj − xi‖ ≤ r) (4.141)

where I(·) is the indicator function (I(·) is 1 if condition (·) holds, 0 otherwise).
The Correlation dimension dC is

dC = lim
r→0

ln(Cm(r))

ln(r)
. (4.142)

It can be proven that both dimensions are special cases of the generalized Renyi
dimension [57].

The method presented in this section is able to determine simultaneously the
embedding and the local dimension based on the result of the clustering. The
local dimension can be estimated based on the shape of the clusters because the
collection of c clusters approximate the tangent space. Hence, the clusters can be
approximately regarded as local linear subspaces described by the cluster ellipsoids
(covariance matrices).

To detect linear subspaces Principal Component Analysis (PCA), i.e., eigen-
analysis, of the fuzzy covariance matrices has been used. The eigenvector associ-
ated with the largest eigenvalue has the same direction as the first principal com-
ponent. The eigenvector associated with the second largest eigenvalue determines
the direction of the second principal component. The first principal component ac-
counts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability as possible. Hence,
the first few biggest eigenvalues are much bigger than the remaining ones, and
they cover the greatest part of the variance of the data set (see also Section 1.6
and Section 2.1.1). In general, the smallest eigenvalues of the cluster covariance
matrices, Fi, are typically in orders of magnitude smaller than the remaining ones
[18, 26].

The local dimension is estimated based on the sum of the eigenvalues weighted
by the a priori probability of the clusters:

Jde,j =

c∑

i=1

p(ηi)λi,j (4.143)

where λi,j is the jth biggest eigenvalue of the ith covariance matrix. The local
dimension is determined by computing the index over all values of j, j = 1, . . . , de

in case of the proper embedding dimension chosen beforehand based on the one-
step-ahead prediction errors. The local dimension is selected as a cutoff point on
a sharp change in the slope of the graph or such a way that

∑k
j=1 Jde,j

∑de

j=1 Jde,j
> threshold. (4.144)

208 Chapter 4. Fuzzy Clustering for System Identification

This method is often referred to as screeplot analysis, which is commonly used
to estimate the proper dimension of Principal Component Analysis models in the
literature, e.g., in [251]. Srinivasan et al. used 0.93 as the threshold, but it can be
replaced by another number, based on domain knowledge and the expected noise
levels.

4.4.3 Application Examples and Discussion

The presented approach has been tested on several higher-dimensional chaotic
time series and gave convincing results. In each example, the states of the original
system were reconstructed from 15000 samples of the first state variable, y = x1.

According to our experience, the presented approach is quite robust with re-
spect to the choice of the clustering algorithm parameters. In all examples, the
number of clusters is c = 20, the termination tolerance ǫ = 10−4 and the weighting
exponent m = 2. The applied threshold is equal to 0.93 according to [251] (see
(4.144)).

Example 4.10 (State-space reconstruction of the Rössler attractor). The following
three differential equations define this system:

ẋ1 = −(x2 + x3) (4.145)

ẋ2 = x1 + ax2 (4.146)

ẋ3 = b + x3(x1 − c). (4.147)

The initial conditions are x1(0) = 0, x2(0) = 0 and x3(0) = 0 and the parameters
used are a = 0.38, b = 0.3 and c = 4.5, according to [135]. Under these conditions,
the trajectories are depicted as in Figure 4.20. The variable y = x1 is shown in
the time domain in Figure 4.21. The lag time was 20τ in this case where τ is the
sampling time τ = 0.05. The lag time was chosen as the first minimum of the
average mutual information function [87, 135].

Figure 4.22 shows that the proposed index based on the one-step-ahead predic-
tion error correctly reflects the embedding dimension of the original three-dimen-
sional system, for both the MIMO and MISO method. After the embedding dimen-
sion has been chosen, in this case it is de = 3, the local dimension, dl, can be
estimated based on the screeplot (see Section 4.4.2). In Figure 4.22 the subfigures
(c) and (d) show that the local dimension is equal to 2 because the first two eigen-
values weighted by the a priori probability of the clusters contain 99.8% of the total
variance. The Correlation dimension of the analyzed 15000 data is dC = 1.9838
based on the result of the TSTOOL Toolbox, which is a software package for signal
processing with emphasis on nonlinear time-series analysis [191]. Since the corre-
lation dimension is a global measure of the local dimension (the calculation of the
correlation dimension does not use the local approximation of the reconstruction

4.4. State-Space Reconstruction 209

−10
−5

0
5

10
15

−20

−10

0

10
0

10

20

30

40

50

60

x
1

x
2

x
3

Figure 4.20: Trajectories in the original state-space in case of the Rössler system.

0 50 100 150 200 250 300 350
−10

−5

0

5

10

15

t

x
1

Figure 4.21: The variable y = x1 in time in case of the Rössler system.

space), the agreement of the results of the two approaches with the visual inspec-
tion of phase space (see Figure 4.23) indicate that the presented method gives good
results in terms of the estimation of the dimensionality of the system.

Furthermore, the identified MIMO and MISO models give excellent prediction
performance (see Figure 4.23), the original and the predicted data take the same
subspace. The predicted data were generated by a free run simulation of 5000 sam-
ples based on the identified MIMO model. It can be seen that although the system
is chaotic, the trajectories are similar, so the approximation is very good.

�

210 Chapter 4. Fuzzy Clustering for System Identification

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
x 10

−3

M
S

E

d
e

(a) Estimation of the embedding dimension
de based on MIMO approach.

1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

−3

M
S

E

d
e

(b) Estimation of the embedding dimension
de based on MISO approach.

1 2 3
0

0.5

1

W
e
ig

h
te

d
 e

ig
e
n
v
a
lu

e
s

1 2 3
0.85

0.9

0.95

1

S
u
m

 o
f
e
ig

e
n
v
a
lu

e
s

Eigenvalues

(c) Estimation of the local dimension dl

based on MIMO approach for de = 3.

1 2 3
0

0.5

1

W
e
ig

h
te

d
 e

ig
e
n
v
a
lu

e
s

1 2 3
0.8

0.85

0.9

0.95

1

S
u

m
 o

f
e

ig
e

n
v
a

lu
e

s

Eigenvalues

(d) Estimation of the local dimension dl

based on MISO approach for de = 3.

Figure 4.22: Estimation of de and dl of the reconstruction space for the Rössler
system.

4.4. State-Space Reconstruction 211

−5

0

5

−3−2−10123

−3

−2

−1

0

1

2

3

y(k)

y(k−τ)

y
(k

−
2

τ)

Figure 4.23: Prediction performance for the Rössler system. Cluster centers are
denoted by diamonds.

Example 4.11 (State-space reconstruction of the Lorenz system). The Lorenz sys-
tem, describing the thermal driving of convection in the lower atmosphere, is de-
fined by the following three differential equations:

ẋ1 = σ(x2 − x1) (4.148)

ẋ2 = x1(r − x3) − x2 (4.149)

ẋ3 = x1x2 − bx3 (4.150)

where the variables x1, x2 and x3 are proportional to the intensity of the convection
rolls, the horizontal temperature variation, and the vertical temperature variation,
respectively, and the parameters σ, b and r are constants representing the properties
of the system. The initial conditions are x1(0) = 0, x2(0) = 1 and x3(0) = 1 and
the parameter values used are r = 28, b = 8

3 and σ = 10, following [278].
As shown in Figure 4.24, the results are as good as in the case of the Rössler

system, and the same statements can be given. The Correlation dimension of the
data set is dC = 2.0001.

�

212 Chapter 4. Fuzzy Clustering for System Identification

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3
x 10

−3

M
S

E

d
e

(a) Estimation of the embedding dimension
de based on MIMO approach.

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3
x 10

−3

M
S

E

d
e

(b) Estimation of the embedding dimension
de based on MISO approach.

1 2 3
0

0.5

1

W
e
ig

h
te

d
 e

ig
e
n
v
a
lu

e
s

1 2 3
0.8

0.85

0.9

0.95

1

S
u
m

 o
f
e
ig

e
n
v
a
lu

e
s

Eigenvalues

(c) Estimation of the local dimension dl

based on MIMO approach for de = 3.

1 2 3
0

0.2

0.4

0.6

0.8

W
e
ig

h
te

d
 e

ig
e
n
v
a
lu

e
s

1 2 3
0.7

0.8

0.9

1

S
u
m

 o
f
e
ig

e
n
v
a
lu

e
s

Eigenvalues

(d) Estimation of the local dimension dl

based on MISO approach for de = 3.

Figure 4.24: Estimation of de and dl dimensions of the reconstruction space for
the Lorenz system.

4.4. State-Space Reconstruction 213

Example 4.12 (State-space reconstruction of a four-dimensional system). In this
example let us consider the four-dimensional system published by Yao [292]. The
system equations are

ẋ1 = x3 (4.151)

ẋ2 = x4 (4.152)

ẋ3 = −(α + x2
2)x1 + x2 (4.153)

ẋ4 = −(β + x2
1)x2 + x1. (4.154)

With α = 0.1, β = 0.101 and the initial condition x1(0) = 0.1, x2(0) = −0.1,
x3(0) = 0.1, x4(0) = −0.1, this system is highly chaotic [292]. The sampling rate
was 0.05, and the lag time is τ = 50 estimated by the average mutual information
function [135].

In Figure 4.25 one can see that the estimated embedding dimension is four. The
correct embedding dimension can be found by comparing the ratio of the neigh-
boring MSE values. While MSE(de = 3)/MSE(de = 4) = 2.031, MSE(de =
4)/MSE(de = 5) = 1.2329 in subfigure (a) of Figure 4.25 (MIMO approach). The
values in case of MISO method are similar. The screeplots for de = 4 can be seen
in Figure 4.25. The local dimension is equal to 2 according to the applied threshold
value, 0.93. The Correlation dimension of the data set is dC = 2.0445.

In Figure 4.26 (a) the first three dimensions, in Figure 4.26 (b) the second
three dimensions of the original (solid line) and the predicted (dashed line) four-
dimensional data can be seen given by a free run simulation of 5000 data. The
prediction performance is as good as in the previous examples.

�

214 Chapter 4. Fuzzy Clustering for System Identification

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
S

E

d
e

(a) Estimation of the embedding dimension
de based on MIMO approach

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
S

E

d
e

(b) Estimation of the embedding dimension
de based on MISO approach

1 2 3 4
0

0.2

0.4

0.6

0.8

W
e
ig

h
te

d
 e

ig
e
n
v
a
lu

e
s

1 2 3 4
0.7

0.8

0.9

1

S
u
m

 o
f
e
ig

e
n
v
a
lu

e
s

Eigenvalues

(c) Estimation of the local dimension dl

based on MIMO approach for de = 4.

1 2 3 4
0

0.2

0.4

0.6

0.8

W
e

ig
h

te
d

 e
ig

e
n

v
a

lu
e

s

1 2 3 4
0.7

0.8

0.9

1

S
u

m
 o

f
e

ig
e

n
v
a

lu
e

s

Number of eigenvalues

(d) Estimation of the local dimension dl

based on MISO approach for de = 4.

Figure 4.25: Estimation of the de and dl dimensions of the reconstruction space
for the four-dimensional system.

4.4. State-Space Reconstruction 215

−4−3−2−101234

−5

0

5

−3

−2

−1

0

1

2

3

y(k)

y(k−τ)

y
(k

−
2

τ)

(a)

−4
−2

0
2

4

−5

0

5
−3

−2

−1

0

1

2

3

4

y(k−τ)

y
(k

−
3

τ)

y(k−2τ)

(b)

Figure 4.26: Prediction performance for the four-dimensional chaotic system.

216 Chapter 4. Fuzzy Clustering for System Identification

4.4.4 Case Study

In Chapter 2 it can be seen how effective and useful the fuzzy Sammon mapping
method can be to visualize the results of (fuzzy) clustering and based on this
it enables the human inspector to validate the clustering procedure, e.g., cluster
prototypes, number of clusters etc.

The advantages of the visualization are exploited in this example: the phase
space trajectories of chaotic crystallizers are analyzed by clustering algorithms and
the results are visualized.

Model of the Crystallizers

Most of the developments in the field of nonlinear dynamics assume that one has
a complete description of the dynamic system under consideration. The practical
application of these results, in principle, requires the simultaneous measurement of
all state variables. In the case of crystallizers, however, in-line measurement of crys-
tal size distribution, that is one of the most important properties of crystallization
processes, is a difficult task so that application of the finite-dimensional moment
equation model, computed from the crystal size distribution, often appears to be
troublesome. Instead, observing a time series of one or more observables of the
system the dynamics of the unknown deterministic finite-dimensional system can
be reconstructed from this scalar time series as it was shown by Takens [258] and
Sauer [234]. A number of algorithms have been proposed to handle this problem
numerically [23], [24], [58], [135], but the method presented above based on fuzzy
clustering of chaotic time series [9], allows solving three tasks simultaneously: se-
lection of the embedding dimension, estimation of the intrinsic dimension, and
identification of a model that can be used for prediction of chaotic time series.

Consider two continuous isothermal MSMPR crystallizers connected in cascade
series where the first crystallizer is forced by sinusoidally varied solute input,
while the second crystallizer is forced with the output solute signal of the first
one. Let the crystallizers be identical in the sense that all kinetic and process
parameters are of the same value. Further, let us assume that the working volumes
are constant during the course of the operation, all new crystals are formed at a
nominal size Ln ≈ 0, crystal breakage and agglomeration are negligible, no growth
rate fluctuations occur, the overall linear growth rate of crystals is size-independent
and has the form of the power law expression of supersaturation, and the nucleation
rate is described by Volmer’s model.

The population balance model is an adequate mathematical description of crys-
tallization processes. This model consists of a mixed set of ordinary and partial
integral-differential equations even in the simplest case of MSMPR (mixed sus-
pension, mixed product removal) crystallizers, and the state-space of a crystallizer
is given by the Descartes product R

k × N, where k is a positive natural number,
of some vector space R

k of concentrations and temperatures, and the function
space N of population density functions. Consideration of dynamical problems of

4.4. State-Space Reconstruction 217

crystallizers in this product space, however, seems to be quite complex, so that we
usually concentrate on a reduced case, approximating the distributed parameter
system by a finite-dimensional state-space model based on the moments of crystal
size. Taking into account only the first four leading moments, the resulted space
even in the simplest case of isothermal MSMPR crystallizers becomes 6-D. It is
suitable for studying the dynamic phenomena of crystallizers [12], but it often ap-
pears to be too complex to apply for their model based control [12]. Consequently,
it is reasonable to generate an appropriate reduced dimensional model, e.g., for
control purposes. Then, the moment equation model of this system of crystallizers
is a closed set of 6 ordinary differential equations by each crystallizer, and their
connection can be described by algebraic equations. There are ranges of parame-
ters in which the system behavior is chaotic and it can also be observed by real
crystallization processes.

In the next section it is presented how the fuzzy clustering-based algorithm
can be applied for reduction of the moment equation model of continuous isother-
mal crystallizers using the chaotic time series generated under some operation
conditions, and how the visualization can be used in this case.

Results and Discussion

In this analysis, the zero-order moment of the second crystallizer is used to predict
the embedding and local dimension of the system with simultaneous identification
of a model that can be used for prediction. Using only this single time-series,
the embedding and local dimension are to be estimated by the method described
above. By the simulation, the sampling time was equal to 0.01 times of the dimen-
sionless time unit ξ. By the state-space reconstruction, the sampling time was 10
times greater, so as to reduce the time and memory demand. The other parameters
of the method: number of points: 1500; number of clusters: c = 10; termination
tolerance: ǫ = 10−4 and the weighting exponent: m = 2. According to our expe-
rience, the presented approach is quite robust with respect to the choice of the
clustering algorithm parameters.

The lag time was chosen as the first minimum of the average mutual informa-
tion, and in this case it is equal to 0.6ξ (ξ is the dimensionless time unit). The
embedding dimension was run from 1 to 10, and by each value the model identifi-
cation was evaluated to get the one-step-ahead prediction error. These values can
be seen on the left part of Figure 4.27. As can be seen, there is a ‘knot’ by de = 4,
and mean square error reduction rate here also is greater. After the correct em-
bedding dimension is chosen, it is possible to estimate the local dimension by the
analysis of the rate of the cumulative and the total sum of eigenvalues weighted
by the a priori possibility of the clusters. These values are depicted on the right
part of Figure 4.27. It can be determined that a 2-dimensional subspace of the
reconstructed 4-dimensional state-space contains the trajectories with high, 95%
possibility. The disadvantage of this method is that it is only able to estimate
integer local dimensions. To avoid this, fractal dimension of the trajectories can

218 Chapter 4. Fuzzy Clustering for System Identification

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−6

M
S

E

d
e

(a)

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

m
 o

f
e
ig

e
n

v
a
lu

e
s

Eigenvalues

(b)

Figure 4.27: Estimation of the embedding dimension and of the local dimension
by de = 4.

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
0.005

0.01

0.015

0.02

0.025

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

1

10

2

y(k)

5

6

9

4

8

3

7

y(k−6)

y
(k

−
2
*6

)

(a)

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

0.005

0.01

0.015

0.02

0.025

0.005

0.01

0.015

0.02

0.025

2

1

y(k−6)

6

9

4

10

7

5

3

8

y(k−2*6)

y
(k

−
3

*6
)

(b)

Figure 4.28: Free run simulation in the state-space.

also be computed. In this case the so-called Correlation Dimension [103] is equal
to 2.0009 which confirms the result of the clustering based method.

In Figure 4.28, the measured data are depicted with solid lines embedded in
the 4-dimensional reconstructed state-space. To validate the model in some sense,
a free-run simulation was evaluated whose results can also be seen on Figure 4.28
plotted with dotted lines. On the left side of Figure 4.28 the first, on the right
the second three dimensions are depicted. (To visualize all four dimensions a scat-
terplot matrix can be used, which is a 4 × 4 matrix in this case.) It can be seen
that although the system is chaotic, the trajectories are similar and take the same

4.4. State-Space Reconstruction 219

0 200 400 600 800 1000 1200
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time [dt]

y

Figure 4.29: Free run simulation.

subspace, so the approximation is very good. The predicted one-dimensional data
are depicted in Figure 4.29. It can be seen that there are ranges in the space that
cannot be modeled as well as other ranges, it causes that the predicted trajectories
draw away from the measured ones.

It is possible to depict the ‘relationship’ and ‘order’ of clusters in the 4-dim-
ensional space in some sense. In the analyzed case there is a dynamic system
so it can be computed how the data points are ‘wandering’ in the state-space
from one cluster to another. This enables us to order clusters. The procedure is
the following: the points with high probability {k: µi,k > 0.99 by the current
cluster i} should be found and determined by which cluster the membership value
µj,k+m, j �= i will be first high again ‘in the future’, m > 0. In this way it can be
computed which percentage of the points in the current cluster wanders to which
clusters. In Figure 4.30 (a) this ‘path’ can be seen. In this figure only the paths
with ratio greater than 40% are depicted because of transparency (the width of
arrows is proportional to the ratio). It has to be mentioned that the size of the
clusters is also very important from the viewpoint of the path because relatively
small clusters have the same effect as large ones. However, in this case this effect
is negligible because the size of the clusters (the a priori probability p(ηi)) are
nearly the same as it can be seen in Table 4.15. This kind of figure can be useful to
analyze the relationship of clusters in the original multidimensional space but it
cannot be used to visualize the clustering results because it does not contain any
information about that. For this purpose visualization techniques have to be used.
At first, consider the result of PCA that is depicted in Figure 4.30 (b). It can be
determined that the order of the cluster is completely the same as in Figure 4.30
(a) and the ‘torsion’ of the trajectories (see in Figure 4.28) can also be observed.

220 Chapter 4. Fuzzy Clustering for System Identification

Table 4.15: The a priori probability of clusters.

Cluster Probability (%)

1 12.87
2 10.40
3 11.14
4 12.54
5 10.32
6 6.95
7 11.91
8 8.30
9 7.08
10 8.45

Path of data from cluster to cluster

1

2

69

4

7

3

8 10

5

(a)

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

1

2

3

4

5

6

7

8

9

10

(b)

Figure 4.30: Projection by PCA.

PCA is a linear method. It means that it finds the 2-dimensional linear sub-
space of this 4-dimensional space that fits the data best. If the data do not lie
close to a linear 2-dimensional subspace, the mapping gives bad results. In this
case, it is advisable to apply nonlinear techniques. Results given by Sammon map-
ping can be seen in Figure 4.31: on the left initialized by PCA and on the right
with random initialization. It can be determined that these results are nearly the
same and they are very similar to PCA results, only the data points and clusters
have turned round in some directions or have been mirrored. It is caused by the

4.4. State-Space Reconstruction 221

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

1

2

3

4

5

6

7

8

9

10

(a) Initialized by PCA

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

1
2

3
4

5

6

7

8

9

10

(b) Random initialization

Figure 4.31: Projection based on Sammon mapping.

222 Chapter 4. Fuzzy Clustering for System Identification

procedure of Sammon mapping itself because it tries to preserve the distance
between each data pair, so there is no ‘fix point’ in the projected space. Because
of the similarity of results from linear PCA and nonlinear Sammon mapping, it
can be determined that not only the local dimension of the trajectories is equal
to 2, but also this subspace is nearly a linear one. It can also be represented by
index-numbers (Table 4.16) in a way similar to the one presented in Section 2.2
(see, e.g., Example 2.4). It shows that PCA and Sammon mapping give nearly the
same result regarding the visualization of clustering results.

Table 4.16: Comparison of the performance of the mappings (line of FUZZSAM
(rand)) contains the average of results by 20 random initialization.

Method P F F ∗ E

PCA 0.0859 0.9911 0.5920 0.0035
SAMMON 0.0813 0.9911 0.5717 0.0018
FUZZSAM (PCA) 0.0625 0.9911 0.7004 2.6737
FUZZSAM (rand) 0.0408 0.9911 0.7727 10.1837

The presented fuzzy Sammon mapping gives completely different results as it
can be seen in Figure 4.32. As it was the case in Figure 4.31, the result on the
left is initialized by PCA and the ones on the right given by random initialization.
Figure 4.32 (a) shows similar structure of clusters to PCA results (Figure 4.30).
The order of clusters is similar as well (see, e.g., 1-2-6-9-4-7), but in the latter
figure it can be seen which clusters are less compact, so less accurate: mainly
cluster 8, but there are data points far from cluster 3, 5 and 7 as well. It has to
be mentioned that also Figure 4.30 (a) shows cluster 8 as a ‘critical point’. Fuzzy
Sammon mapping with random initialization gives similar results but no such
structure of clusters as in the previous examples. It can be seen that there are data
points scattered in the range of cluster 3, 7 and 8, since the other clusters are very
compact with similar a priori probability (Table 4.15). The presented FUZZSAM
tool outperforms the linear method and the classical Sammon projection tools.
It is interesting that FUZZSAMM with random initialization gives better results
than with PCA initialization, because in the latter case PCA ‘forces’ FUZZSAMM
algorithms to preserve the original structure of clusters in some sense.

4.4.5 Conclusions

An operating regime based model can be effectively used to approximate MIMO
dynamic systems. For the identification of this model, fuzzy clustering is applied
in the reconstruction space defined by the lagged output variables. The main ad-
vantage of the presented solution is that three tasks are simultaneously solved
during clustering: selection of the embedding dimension, estimation of the intrin-
sic (local) dimension, and identification of a model that can be used for predic-

4.4. State-Space Reconstruction 223

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1

2

3

4

5

6

7

8

9

10

(a) Initialized by PCA

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

1

2

3

4

5

6

7

8

9

10

(b) Random initialization

Figure 4.32: Projection based on fuzzy Sammon mapping.

224 Chapter 4. Fuzzy Clustering for System Identification

tion. In case of the analyzed three and four-dimensional systems the algorithm
gave good estimations of the local and embedding dimensions and the model
extracted from the clusters gave satisfactory prediction performance. The pro-
grams and data sets used to generate the results are available from the web page
http://www.fmt.vein.hu/softcomp/timeseries.

Chapter 5

Fuzzy Model based Classifiers

Two forms of the data-driven modelling are regression and classification. Based
on some measured variables, both of them predict the value of one or more vari-
ables we are interested in. In case of regression there are continuous or ordered
variables, in case of classification there are discrete or nominal variables needed to
be predicted. Classification is also called supervised learning because the labels of
the samples are known beforehand. This is the main difference between classifica-
tion and clustering. The later is unsupervised learning since clusters want to be
determined and the labels of the data points are not known.

An example to training data can be found in Table 5.1 [110]. Data in each row
represent a sample, and also a label belongs to each one, in this case it means
whether a potential customer buys a computer or not.

Table 5.1: Data for classification (from [110]).

Age Income Student CreditRating Class: BuysComputer

≤ 30 high no fair no
≤ 30 high no excellent no
31 . . . 40 high no fair yes
> 40 medium no fair yes
> 40 low yes fair yes
> 40 low yes excellent no
31 . . . 40 low yes excellent yes
≤ 30 medium no fair no
≤ 30 low yes fair yes
> 40 medium yes fair yes
≤ 30 medium yes excellent yes
31 . . . 40 medium no excellent yes
31 . . . 40 high yes fair yes
> 40 medium no excellent no

226 Chapter 5. Fuzzy Model based Classifiers

Based on known training data a classifier model can be identified, and it can be
predicted using that model whether a client would buy a computer, and the cost of
advertisement can be reduced in this way. The structure of classifiers can be vari-
ous, but a well-comprehensible and interpretable way is to generate (classification)
rules:

If Age is ≤ 30 and Student is “no” then BuysComputer is “no”
If Age is ≤ 30 and Student is “yes” then BuysComputer is “yes”
If Age is 31 . . . 40 and CreditRating is “excellent” then BuysComputer is “yes”
If Age is > 40 and CreditRating is “excellent” then BuysComputer is “yes”
If Age is > 40 and CreditRating is “fair” then BuysComputer is “no”

These rules speak for themselves, it is unnecessary to explain them. The part of
a rule after If is called antecedent, and after then is called consequent part.
In the antecedent part one or more tests are defined on the measured variables,
since the consequent part contains the class label. It can be seen as well that each
potential customer can fulfil the antecedent part of exactly one rule, hence, the
rules divide the “space of possible cases” into disjunct subspaces.

However, in practice there are numerous cases where the transitions are not as
sharp as the classifier predicts. E.g., if someone has his or her 31st birthday soon, is
not a student and his or her credit rating is excellent, it is not likely that this person
will change his or her decision from day to day. These kinds of transitions cannot
be handled by classifiers on the basis of “crisp” rules. Therefore it is advisable
to use “fuzzy” classifiers, i.e., rules without sharp boundaries. In case of classical
fuzzy classifiers each sample can fulfil more than one rule simultaneously, but
with different weights. The consequent part contains “crisp” class labels, and the
estimated (predicted) label can be computed from the weighted labels.

In order to get to know which classifier is better than others, these classifiers
have to be compared. The following criteria can or have to be considered [110]:

• Predictive accuracy. The ability of the model to correctly predict the class
label of previously unseen data.

• Interpretability. The level of understanding and insight that is provided by
the model.

• Speed. The computation demand to generate and use the model.

• Robustness. The ability to make correct predictions given noisy data.

• Scalability. The ability to construct the model efficiently given large amounts
of data.

The presented methods described in this section consider mainly the first two
points of view. For that purpose, an iterative learning method, a supervised clus-
tering algorithm and a fuzzy classification tree induction method are introduced.

5.1. Fuzzy Model Structures for Classification 227

5.1 Fuzzy Model Structures for Classification

5.1.1 Classical Bayes Classifier

The identification of a classifier system means the construction of a model that
predicts the class yk = {c1, . . . , cC} to which pattern xk = [x1,k, . . . , xn,k]T should
be assigned. The classic approach for this problem with C classes is based on
Bayes rule. The probability of making an error when classifying an example x is
minimized by Bayes decision rule of assigning it to the class with the largest a
posteriori probability:

x is assigned to ci ⇐⇒ p(ci|x) ≥ p(cj |x)∀j �= i. (5.1)

The a posteriori probability of each class given a pattern x can be calculated
based on the p(x|ci) class conditional distribution, which models the density of
the data belonging to the class ci, and the P (ci) class prior, which represents the
probability that an arbitrary example out of data belongs to class ci

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

p(x|ci)P (ci)∑C
j=1 p(x|cj)P (cj)

. (5.2)

As (5.1) can be rewritten using the numerator of (5.2)

x is assigned to ci ⇐⇒ p(x|ci)P (ci) ≥ p(x|cj)P (cj)∀j �= i , (5.3)

we would have an optimal classifier if we would perfectly estimate the class priors
and the class conditional densities.

In practice one needs to find approximate estimates of these quantities on a
finite set of training data {xk, yk}, k = 1, . . . , N . Priors P (ci) are often estimated
on the basis of the training set as the proportion of samples of class ci or us-
ing prior knowledge. The p(x|ci) class conditional densities can be modeled with
non-parametric methods like histograms, nearest-neighbors or parametric methods
such as mixture models.

A special case of Bayes classifiers is the quadratic classifier, where the p(x|ci)
distribution generated by the class ci is represented by a Gaussian function

p(x|ci) =
1

(2π)n/2
√

det(Fi)
exp

(
−1

2
(x − vi)

T F−1
i (x − vi)

)
(5.4)

where vi = [v1,i, . . . , vn,i]
T denotes the center of the ith multivariate Gaussian

and Fi stands for a covariance matrix of the data of the class ci. In this case,
the (5.3) classification rule can be reformulated based on a distance measure. The
sample xk is classified to the class that minimizes the d2(xk,vi) distance, where
the distance measure is inversely proportional to the probability of the data:

d2(xk,vi) =

(
P (ci)

(2π)n/2
√

det(Fi)
exp

(
−1

2
(xk − vi)

T F−1
i (xk − vi)

))−1

. (5.5)

228 Chapter 5. Fuzzy Model based Classifiers

5.1.2 Classical Fuzzy Classifier

The classical fuzzy rule-based classifier consists of fuzzy rules each one describing
one of the C classes. The rule antecedent defines the operating region of the rule
in the n-dimensional feature space and the rule consequent is a crisp (non-fuzzy)
class label from the {c1, . . . , cC} label set:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k) then ŷ = ci, [wi] (5.6)

where Ai,1, . . . , Ai,n are the antecedent fuzzy sets and wi is a certainty factor that
represents the desired impact of the rule. The value of wi is usually chosen by the
designer of the fuzzy system according to his or her belief in the accuracy of the
rule. When such knowledge is not available, wi is fixed to value 1 for any i.

The and connective is modeled by the product operator allowing for interac-
tion between the propositions in the antecedent. Hence, the degree of activation
of the ith rule is calculated as:

βi(xk) = wi

n∏

j=1

Ai,j(xj,k). (5.7)

The output of the classical fuzzy classifier is determined by the winner takes all
strategy, i.e., the output is the class related to the consequent of the rule that gets
the highest degree of activation:

ŷk = ci∗ , i∗ = arg max
1≤i≤C

βi(xk). (5.8)

To represent the Ai,j(xj,k) fuzzy set, we use Gaussian membership functions

Ai,j(xj,k) = exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)
(5.9)

where vi,j represents the center and σ2
i,j stands for the variance of the Gaussian

function. The use of the Gaussian membership function allows for the compact
formulation of (5.7):

βi(xk) = wiAi(xk) = wi exp

(
−1

2
(xk − vi)

T
F−1

i (xk − vi)

)
(5.10)

where vi = [v1,i, . . . , vn,i]
T denotes the center of the ith multivariate Gaussian

and Fi stands for a diagonal matrix that contains the σ2
i,j variances.

The fuzzy classifier defined by the previous equations is in fact a quadratic
Bayes classifier when Fi in (5.4) contains only diagonal elements (variances).

In this case, the Ai(x) membership functions and the wi certainty factors can
be calculated from the parameters of the Bayes classifier following equations (5.4)
and (5.10) as

Ai(x) = p(x|ci)(2π)n/2
√

det(Fi), wi =
P (ci)

(2π)n/2
√

det(Fi)
. (5.11)

5.1. Fuzzy Model Structures for Classification 229

5.1.3 Bayes Classifier based on Mixture of Density Models

One of the possible extensions of the classical quadratic Bayes classifier is to use
a mixture of models for estimating the class-conditional densities. The usage of
mixture models in Bayes classifiers is not so widespread [144]. In these solutions
each conditional density is modeled by a separate mixture of models. A possible
criticism of such Bayes classifiers is that in a sense they are modelling too much:
for each class many aspects of the data are modeled which may or may not play
a role in discriminating between the classes.

In this section a new approach is presented. The p(ci|x) posteriori densities are
modeled by R > C mixture of models (clusters)

p(ci|x) =

R∑

l=1

p(rl|x)P (ci|rl) (5.12)

where p(rl|x), representing the a posteriori probability of x, has been generated
by the rlth local model and P (ci|rl) denotes the prior probability of this model
representing the class ci.

Similarly to (5.2) p(rl|x) can be written as

p(ri|x) =
p(x|ri)P (ri)

p(x)
=

p(x|ri)P (ri)∑R
j=1 p(x|rj)P (rj)

. (5.13)

By using this mixture of density models the posteriori class probability can be
expressed following equations (5.2), (5.12) and (5.13) as

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

R∑

l=1

p(x|ri)P (ri)
R∑

j=1

p(x|rj)P (rj)

P (ci|rl) =

R∑
l=1

p(x|ri)P (ri)P (ci|rl)

p(x)

(5.14)
The Bayes decision rule can be thus formulated similarly to (5.3) as

x is assigned to ci (5.15)

⇐⇒ ∑R
l=1 p(x|rl)P (rl)P (ci|rl) ≥

∑R
l=1 p(x|rl)P (rl)P (cj |rl)∀j �= i

where the p(x|rl) distribution is represented by Gaussians similarly to (5.4).

5.1.4 Extended Fuzzy Classifier

A new fuzzy model that is able to represent Bayes classifier defined by (5.15)
can be obtained. The idea is to define the consequent of the fuzzy rule as the
probabilities of the given rule represents the c1, . . . , cC classes:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k) then (5.16)

ŷk = c1 with P (c1|ri) . . . , ŷk = cC with P (cC |ri) , [wi]

230 Chapter 5. Fuzzy Model based Classifiers

Similarly to Takagi–Sugeno fuzzy models [257], the rules of the fuzzy model are ag-
gregated using the normalized fuzzy mean formula and the output of the classifier
is determined by the label of the class that has the highest activation:

ŷk = ci∗ , i∗ = arg max
1≤i≤C

R∑
l=1

βl(xk)P (ci|rl)

R∑
i=1

βl(xk)

(5.17)

where βl(xk) has the meaning expressed by (5.7).
As the previous equation can be rewritten using only its numerator, the ob-

tained expression is identical to the Gaussian mixtures of Bayes classifiers (5.15)
when similarly to (5.11) the parameters of the fuzzy model are calculated as

Ai(x) = p(x|ri)(2π det(Fi))
n/2, wi =

P (ri)

(2π det(Fi))n/2
. (5.18)

The main advantage of the previously presented classifier is that the fuzzy
model can consist of more rules than classes and every rule can describe more
than one class. Hence, as a given class will be described by a set of rules, it should
not be a compact geometrical object (hyper-ellipsoid).

5.1.5 Fuzzy Decision Tree for Classification

Using not only crisp but also fuzzy predicates, decision trees can be used to model
vague decisions (see Section 3.4 for Fuzzy Regression Trees). The basic idea of
fuzzy decision trees is to combine example based learning in decision trees with
approximative reasoning of fuzzy logic [133]. This hybridization integrates the
advantages of both methodologies compact knowledge representation of decision
trees with the ability of fuzzy systems to process uncertain and imprecise infor-
mation. Viewing fuzzy decision trees as a compressed representation of a (fuzzy)
rule set, enables us to use decision trees not only for classification, but also for
approximation of continuous output functions.

An example of how a fuzzy decision tree can be used for the compressed rep-
resentation of a fuzzy rule base is given in Figure 5.1, where the rule defined by
the dashed path of the tree is the following:

If x3 is large and x2 is medium and x1 is small and x5 is medium then C1

(5.19)
ID3 and its fuzzy variant (FID) assume discrete and fuzzy domains with small car-
dinalities. This is a great advantage as it increases comprehensibility of the induced
knowledge, but may require an a priori partitioning of the numerical attributes
(see the bottom of Figure 5.1 for the illustration of such fuzzy partitioning). Since
this partitioning has significant effect to the performance of the generated model,
recently some research has been done in the area of domain partitioning while

5.1. Fuzzy Model Structures for Classification 231

l1 l2

l3

l7

x3

large small

medium

C1=0.13

C2=7.89

C1=0

C2=4.50 x2

small medium

C1=0

C2=1.95 x1

small

x5

small

medium

large

C1=0.23

C2=0.16
C1=1.31

C2=0

C1=0.44

C2=0.10

medium

C1=0.11

C2=0

large

x4

small

medium

C1=0

C2=0.49

C1=0.72

C2=1.16

x3

small med large

x2

small med large

x1

small med large

x5

small med large

l4 l5 l6 l8 l9

Figure 5.1: Example of a fuzzy decision tree and a fuzzy partitioning.

constructing a symbolic decision tree. For example, Dynamic-ID3 [92] clusters
multivalued ordered domains, and Assistant [159] produces binary trees by clus-
tering domain values (limited to domains of small cardinality). However, most
research has concentrated on a priori partitioning techniques [171].

An example for a fuzzy decision tree is given in Figure 5.1. As can be seen in
this figure each internal node is associated with a decision function (represented
by a fuzzy membership function) to indicate which nodes to visit next. Each
terminal node represents the output of a given input that leads to this node. In
classification problems each terminal node contains the conditional probabilities
P (c1|ri), . . . , P (cC |ri) of the predicted classes.

As a result of the increasing complexity and dimensionality of classification
problems, it becomes necessary to deal with structural issues of the identification
of classifier systems. Important aspects are the selection of the relevant features
and the determination effective initial partition of the input domain [65]. More-
over, when the classifier is identified as part of an expert system, the linguistic
interpretability is also an important aspect which must be taken into account.

In the following, clustering based identification techniques of classifier systems
will be presented. It will be shown that the aspects mentioned above can be con-
sidered using clustering based methods.

232 Chapter 5. Fuzzy Model based Classifiers

5.2 Iterative Learning of Fuzzy Classifiers

To improve the classification capability of the rule base, we apply a genetic algo-
rithm (GA) based optimization method [231, 243]. Also other model properties
can be optimized by applying multi-objective functions, like, e.g., search for re-
dundancy [230]. When an initial fuzzy model has been obtained from data, it is
successively reduced, simplified and finally optimized in an iterative fashion. Com-
binations of the GA with the model reduction tools described above can lead to
different modelling schemes. Three different approaches are shown in Figure 5.2.

Fisher’s feature
selection

GA optimization

Initial model

GA multi-objective
optimization

Rule base
simplification

Rule base
simplification

GA optimization

Fischer’s feature
selection and GA
optimization

Rule base simplification
and GA optimization

Combined tools

Data

Model

Initial model

Data2. 3.

Model

GA multi-objective
optimization

Rule base
simplification

Rule base
simplification

GA optimization

Initial model

Data

Model

Fisher’s feature
selection

1.

Figure 5.2: Modelling schemes resulting from combination of tools.

The model accuracy is measured in terms of the number of misclassifications.
To further reduce the model complexity, the misclassification rate is combined
with a similarity measure in the GA objective function. Similarity is rewarded
during the iterative process, that is, the GA tries to emphasize the redundancy in
the model. This redundancy is then used to remove unnecessary fuzzy sets in the
next iteration. In the final step, fine tuning is combined with a penalized similarity
among fuzzy sets to obtain a distinguishable term set for linguistic interpretation.

The GAs is subject to minimize the following multi-objective function:

J = (1 + λS∗) · MSE , (5.20)

where S∗ ∈ [0, 1] is the average of the maximum pairwise similarity that is present
in each input, i.e., S∗ is an aggregated similarity measure for the total model. The
weighting function λ ∈ [−1, 1] determines whether similarity is rewarded (λ < 0)
or penalized (λ > 0).

From the K available input-output data pairs {xk, yk} we construct the n-
dimensional pattern matrix XT = [x1, . . . ,xK] and the corresponding label vector
yT = [y1, . . . , yK]. The fuzzy antecedents Ai,j(xj) in the initial rule base are now
determined by a three step algorithm. In the first step, M multivariable member-
ship functions are defined in the product space of the features. Each describe a

5.2. Iterative Learning of Fuzzy Classifiers 233

region where the system can be approximated by a single fuzzy rule. This parti-
tioning is often realized by iterative methods such as clustering [230]. Here, given
the labeled data, a one-step approach is presented. This assumes that each class
is described by a single, compact construct in the feature space. (If this is not
the case, other methods such as, e.g, relational classification [239], must be ap-
plied.) Similar to Gustafson and Kessel’s clustering algorithm (Section 1.5.6), the
approach presented here assumes that the shape of the partitions can be approxi-
mated by ellipsoids. Hence, each class prototype is represented by a center v and
its covariance matrix Q:

vi =
1

Ni

∑

k|yk=i

xk , (5.21)

Fi =
1

Ni

∑

k|yk=i

(xk − vi)(xk − vi)
T , (5.22)

where i denotes the index of the classes, i = 1, . . . , Nc, and Ki represents the
number of samples that belong to the ith class. In the second step, the algorithm
computes the fuzzy partition matrix U whose i, kth element ui,k ∈ [0, 1] is the
membership degree of the data object xk in class i. This membership is based on
the distance between the observation and the class center:

D2
i,k = (xk − vi)F

−1
i (xk − vi)

T . (5.23)

Using this distance, the membership becomes:

µi,k = 1

/
N∑

j=1

(
Di,k

Dj,k

)2/(m−1)

, (5.24)

where m denotes a weighting exponent that determines the fuzziness of the ob-
tained partition (m = 1.8 is applied).

The rows of U now contain pointwise representations of the multidimensional
fuzzy sets describing the classes in the feature space. In the third step, the uni-
variate fuzzy sets Ai,j for the classification rules (5.6) are obtained by projecting
the rows of U onto the input variables xj and subsequently approximated the
projections by parametric functions [26]. In this section we apply triangular fuzzy
sets.

5.2.1 Ensuring Transparency and Accuracy

Using too many input variables may result in difficulties in the prediction and
interpretability capabilities of the classifier. Hence, the selection of the relevant
features is usually necessary. Generally, there is a very large set of possible fea-
tures to compose feature vectors of classifiers. As ideally the training set size
should increase exponentially with the feature vector size, it is desired to choose a
minimal subset among it. Some generic tips to choose a good feature set include

234 Chapter 5. Fuzzy Model based Classifiers

the facts that they should discriminate as much as possible the pattern classes and
they should not be correlated/redundant. There are two basic feature-selection ap-
proaches: The closed-loop algorithms are based on the classification results, while
the open-loop algorithms are based on a distance between clusters. In the for-
mer, each possible feature subset is used to train and to test a classifier, and the
recognition rates are used as a decision criterion: the higher the recognition rate,
the better is the feature subset. The main disadvantage of this approach is that
choosing a classifier is a critical problem on its own, and that the final selected
subset clearly depends on the classifier. On the other hand, the latter depends on
defining a distance between the clusters, and some possibilities are Mahalanobis,
Bhattacharyya and the class separation distance.

In the following two methods will be used for model reduction. The first method
is an open-loop feature selection algorithm that is based on Fisher’s interclass
separability criterion [65] calculated from the covariances of the clusters. See Sec-
tion 3.3.4 for more details. The other method is the similarity-driven simplification
proposed by Setnes et al. [240] (see also [230]). Differences in these reduction meth-
ods are: (i) Feature reduction based on the similarity analysis of fuzzy sets results
in a closed-loop feature selection because it depends on the actual model while the
open-loop feature selection can be used beforehand as it is independent from the
model. (ii) In similarity analysis, a feature can be removed from individual rules.
In the interclass separability method the feature is omitted in all the rules.

A2 2

A3 2

A2 1

A3 1

A11

R2

R3 Class 3

Class 2

If x1 is ... and x2 is ... then y is ...

A1 2
R1

Class 1

A2 3

A3 3

and X3 is ...

A1 3

All similar,
remove feature.

Merge similar sets.Similar to universe,
remove set.

A2 2

If x2 is ...

A1 2

S
IM

P
L

IF
Y

Figure 5.3: Similarity-driven simplification.

The similarity-driven rule base simplification method [240] uses a similarity
measure to quantify the redundancy among the fuzzy sets in the rule base. A
similarity measure based on the set-theoretic operations of intersection and union
is applied:

S(A, B) =
|A ∩ B|
|A ∪ B| (5.25)

where |.| denotes the cardinality of a set, and the ∩ and ∪ operators represent
the intersection and union, respectively. If S(A, B) = 1, then the two membership

5.2. Iterative Learning of Fuzzy Classifiers 235

functions A and B are equal. S(A, B) becomes 0 when the membership functions
are non-overlapping.

Similar fuzzy sets are merged when their similarity exceeds a user defined
threshold θ ∈ [0, 1] (θ=0.5 is applied in the following). Merging reduces the number
of different fuzzy sets (linguistic terms) used in the model and thereby increases
the transparency. If all the fuzzy sets for a feature are similar to the universal set,
or if merging led to only one membership function for a feature, then this feature
is eliminated from the model. The method is illustrated in Figure 5.3

Example 5.1 (Classification of the Wine data based on iterative learning). The
Wine data contains the chemical analysis of 178 wines grown in the same region
in Italy but derived from three different cultivars. The problem is to distinguish
the three different types based on 13 continuous attributes derived from chemi-
cal analysis as can be seen in Figure 5.4 (see also Example 2.1). Corcoran and

0 178
1

2

3
Class

0 178
10

12

14

16
Alcohol

0 178
0

2

4

6
Malic acid

0 178
1

2

3

4
Ash

0 178
10

20

30
Alcalinity ash

0 178
50

100

150

200
Magnesium

0 178
0

2

4
Tot. Phenols

0 178
0

2

4

6
Flavonoids

0 178
0

0.5

1
Non−flav.Phen.

0 178
0

2

4
Proanthoc.

0 178
0

5

10

15
Color intensity

0 178
0

1

2
Hue

0 178
1

2

3

4
OD280/OD315

0 178
0

1000

2000
Proline

Figure 5.4: Wine data: 3 classes and 13 attributes.

Sen [66] applied all the 178 samples for learning 60 non-fuzzy if-then rules in
a real-coded genetic based-machine learning approach. They used a population of
1500 individuals and applied 300 generations, with full replacement, to come up
with the following result for ten independent trials: best classification rate 100%,
average classification rate 99.5% and worst classification rate 98.3% which is 3
misclassifications. Ishibuchi et al. [125] applied all the 178 samples designing a
fuzzy classifier with 60 fuzzy rules by means of an integer-coded genetic algorithm
and grid partitioning. Their population contained 100 individuals and they applied
1000 generations, with full replacement, to come up with the following result for
ten independent trials: best classification rate 99.4% (1 misclassifications), average

236 Chapter 5. Fuzzy Model based Classifiers

12 14
0

0.5

1
Alcohol

2 4
0

0.5

1
Flovonoids

2 4 6 8 10 12
0

0.5

1
Color intensity

0.60.8 1 1.21.41.6
0

0.5

1
Hue

500 1000 1500
0

0.5

1
Proline

Figure 5.5: The fuzzy sets of the optimized three rule classifier for the Wine data.

classification rate 98.5% and worst classification rate 97.8% (4 misclassifications).
In both approaches the final rule base contains 60 rules. The main difference is the
number of model evaluations that was necessary to come to the final result.

An initial classifier with three rules was constructed with the presented covar-
iance-based model initialization by using all samples resulting in 90.5% correct,
1.7% undecided and 7.9% misclassifications with the following average certainty
factors CF , [82.0, 99.6, 80.5]. Improved classifiers are developed based on the three
schemes given in Figure 5.2:

• Scheme 1: The Fisher interclass separability criterion gives the following fea-
ture ranking {8, 5, 11, 2, 3, 9, 10, 6, 7, 4, 1, 12, 13}. Classifiers where made by
adding one-by-one feature and 400 iterations with the GA-optimization. The
two best classifiers were obtained by using the first 5 or 7 features (15 or
21 fuzzy sets). This results in 98.9%, 99.4% with CF for the three classes
[0.95, 0.94, 0.84], [0.94, 0.99, 0.97], respectively.

• Scheme 2: The similarity driven simplification removed eight inputs in 3
steps: (i) {3, 5}, (ii) {2, 4, 8, 9}, (iii) {6, 12}. After each reduction, 200 GA-
iterations were done and 400 after the last reduction. The final five-rule clas-
sifier (Figure 5.5) contains only 11 fuzzy sets. The result on learning data
was 99.4% correct and CF for the three classes is [0.96, 0.94, 0.94].

• Scheme 3: 5 features are selected based on the feature ranking initially result-
ing 5% misclassification, 2 sets and 1 feature are removed based on similarity,
200 GA iterations led to a reduction with 1 set, and the final result, after 400
GA-iterations is 98.3% with CF for the three classes is [0.93, 0.91, 0.91]. The
final model contains features {1, 7, 12, 13}. The obtained sets for {1, 7, 13} are
similar as those shown in Figure 5.5.

Concluding, the repetitive simplification and optimization left 6–9 features with-
out antecedent terms. Thus, feature reduction is obtained in the different schemes.
Differences in the reduction methods are: (i) Similarity analysis results in a closed-
loop feature selection because it depends on the actual model structure while the
applied open-loop feature selection can be used beforehand as it is independent from
the model. (ii) In similarity analysis, features can be removed from individual rules
while in the interclass separability method, a feature is omitted in all the rules.

5.3. Supervised Fuzzy Clustering 237

Table 5.2: Three rule fuzzy classifier for the Wine data. The labels L, M, and H,
corresponds to Low, Medium and High, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13

Alc Mal Ash aAsh Mag Tot Fla nFlav Pro Col Hue OD2 Pro Class

R1 H - - - - - H - - M L - L 1

R2 L - - - - - - - - L L - H 2

R3 H - - - - - L - - H H - H 3

Table 5.3: Classification rates on the Wine data for ten independent runs.

Method Best result Aver result Worst result Rules Model eval

Corcoran and Sen [66] 100% 99.5% 98.3% 60 150000

Ishibuchi et al. [125] 99.4% 98.5% 97.8% 60 6000

Proposed method 99.4 % varying schemes 98.3% 3 4000-8000

The obtained classifiers result in comparable results to those in [66] and [125],
but use far less rules (3 compared to 60) and less features. Comparing the fuzzy
sets in Figure 5.5 with the data in Figure 5.4 shows that the obtained rules are
highly interpretable.

�

5.2.2 Conclusions

The design of fuzzy rule base classifiers is approached by combining separate tools
for feature selection, model initialization, model reduction and model tuning. It
is shown that these can be applied in an iterative way. A covariance-based model
initialization method is applied to obtain an initial fuzzy classifier. Successive
application of feature selection, rule base simplification and GA-based tuning re-
sulted in compact and accurate classifiers. The presented approach was successfully
applied to the Wine data.

5.3 Supervised Fuzzy Clustering for the

Identification of Fuzzy Classifiers

The automatic determination of compact fuzzy classifiers rules from data has
been approached by several different techniques. Generally, the bottleneck of the
data-driven identification of fuzzy systems is the structure identification that re-
quires nonlinear optimization as it was shown by Example 5.1 as well. Thus for
high-dimensional problems, the initialization of the fuzzy model becomes very sig-

238 Chapter 5. Fuzzy Model based Classifiers

nificant. Common initialization methods such as grid-type partitioning [125] and
rule generation on extrema initialization, result in complex and non-interpretable
initial models and the rule-base simplification and reduction steps become compu-
tationally demanding. To avoid these problems, fuzzy clustering algorithms [239]
were put forward. However, the obtained membership values have to be projected
onto the input variables and approximated by parameterized membership func-
tions that deteriorates the performance of the classifier. This decomposition error
can be reduced by using eigenvector projection [151], but the obtained linearly
transformed input variables do not allow the interpretation of the model. To avoid
the projection error and maintain the interpretability of the model, the presented
approach is based on the Gath–Geva (GG) clustering algorithm [93] instead of the
widely used Gustafson–Kessel (GK) algorithm [108], because the simplified version
of GG clustering allows the direct identification of fuzzy models with exponential
membership functions [119].

Neither the GG nor the GK algorithm utilizes the class labels. Hence, they give
suboptimal results if the obtained clusters are directly used to formulate a classical
fuzzy classifier. Hence, there is a need for fine-tuning of the model. This GA or
gradient-based fine-tuning, however, can result in overfitting and thus poor gener-
alization of the identified model. Unfortunately, the severe computational require-
ments of these approaches limit their applicability as a rapid model-development
tool.

This section focuses on the design of interpretable fuzzy rule based classifiers
from data with low-human intervention and low-computational complexity. Hence,
a new modelling scheme is introduced based only on fuzzy clustering (see also in
[17]). The presented algorithm uses the class label of each point to identify the
optimal set of clusters that describe the data. The obtained clusters are then used
to build a fuzzy classifier.

The contribution of this approach is twofold.

• The classical fuzzy classifier consists of rules each one describing one of the
C classes. In this section a new fuzzy model structure is presented where the
consequent part is defined as the probabilities that a given rule represents
the c1, . . . , cC classes. The novelty of this new model is that one rule can
represent more than one classes with different probabilities.

• Classical fuzzy clustering algorithms are used to estimate the distribution
of the data. Hence, they do not utilize the class label of each data point
available for the identification. Furthermore, the obtained clusters cannot be
directly used to build the classifier. In this section a new cluster prototype
and the related clustering algorithm have been introduced that allows the
direct supervised identification of fuzzy classifiers.

The presented algorithm is similar to the Multi-Prototype Classifier technique
[43, 227]. In this approach, each class is clustered independently from the other
classes, and is modeled by few components (Gaussian in general). The main dif-
ference of this approach is that each cluster represents different classes, and the

5.3. Supervised Fuzzy Clustering 239

number of clusters used to approximate a given class have to be determined man-
ually, while the presented approach does not suffer from these problems.

5.3.1 Supervised Fuzzy Clustering – the Algorithm

The objective of clustering is to partition the identification data Z into R clusters.
This means, each observation consists of input and output variables, grouped into
a row vector zk = [xT

k yk], where the k subscript denotes the (k = 1, . . . , N)th row
of the Z = [zk]N×n+1 pattern matrix. The fuzzy partition, which can be found in
the previous sections of this book, is represented by the U = [µi,k]R×N matrix,
where the µi,k element of the matrix represents the degree of membership, how
the zk observation is in the cluster i = 1, . . . , R.

The clustering is based on the minimization of the sum of weighted d2(zk, ri)
squared distances between the data points and the ηi cluster prototypes that
contain the parameters of the clusters.

J(Z,U, η) =
R∑

i=1

N∑

k=1

(µi,k)m d2(zk, ri). (5.26)

Classical fuzzy clustering algorithms are used to estimate the distribution of
the data. Hence, they do not utilize the class label of each data point available
for the identification. Furthermore, the obtained clusters cannot be directly used
to build the classifier. In the following a new cluster prototype and the related
distance measure will be introduced that allows the direct supervised identification
of fuzzy classifiers. As the clusters are used to obtain the parameters of the fuzzy
classifier, the distance measure is defined similarly to the distance measure of the
Bayes classifier (5.5):

1

d2(zk, ri)
= P (ri)

n∏

j=1

exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)

︸ ︷︷ ︸
Gath–Geva clustering

P (cj = yk|ri). (5.27)

This distance measure consists of two terms. The first term is based on the ge-
ometrical distance between the vi cluster centers and the xk observation vector,
while the second is based on the probability that the rith cluster describes the
density of the class of the kth data, P (cj = yk|ri). It is interesting to note that
this distance measure only slightly differs from the unsupervised Gath–Geva clus-
tering algorithm which can also be interpreted in a probabilistic framework [93].
However, the novelty of the presented approach is the second term, which allows
the use of class labels.

Similarly to the update equations of Gath–Geva clustering algorithm, the fol-
lowing equations will result in a solution using Lagrange multipliers method.

240 Chapter 5. Fuzzy Model based Classifiers

Algorithm 5.3.1 (Supervised Fuzzy Clustering).

Initialization
Given a set of data Z specify R, choose a termination tolerance ǫ > 0. Initialize the

U = [µi,k]R×N partition matrix randomly, where µi,k denotes the membership that

the zk data is generated by the ith cluster.

Repeat for l = 1, 2, . . .

Step 1 Calculate the parameters of the clusters

• Calculate the centers and standard deviation of the Gaussian membership

functions (the diagonal elements of the Fi covariance matrices):

v
(l)
i =

N∑
k=1

(
µ

(l−1)
i,k

)m

xk

N∑
k=1

(
µ

(l−1)
i,k

)m
, σ

2 (l)
i,j =

N∑
k=1

(
µ

(l−1)
i,k

)m

(xj,k − vj,k)2

N∑
k=1

(
µ

(l−1)
i,k

)m
. (5.28)

• Estimate the consequent probability parameters,

p(ci|rj) =

∑
k|yk=ci

(
µ

(l−1)
j,k

)m

∑N
k=1

(
µ

(l−1)
j,k

)m , 1 ≤ i ≤ C, 1 ≤ j ≤ R. (5.29)

• A priori probability of the cluster and the weight (impact) of the rules:

P (ri) =
1

N

N∑

k=1

(
µ

(l−1)
i,k

)m

, wi = P (ri)
n∏

j=1

1√
2πσ2

i,j

. (5.30)

Step 2 Compute the distance measure d2(zk, ri) by (5.27).

Step 3 Update the partition matrix

µ
(l)
i,k =

1
R∑

j=1

(d(zk, ri)/d(zk, rj))
2/(m−1)

, 1 ≤ i ≤ R, 1 ≤ k ≤ N. (5.31)

until ||U(l) − U(l−1)|| < ǫ.

5.3.2 Performance Evaluation

In order to examine the performance of the presented identification method two
well-known multidimensional classification benchmark problems are presented in
this subsection. The studied Wisconsin Breast Cancer and Wine data come from
the UCI Repository of Machine Learning Databases (http://www.ics.uci.edu).

The performance of the obtained classifiers was measured by ten-fold cross
validation. The data divided into ten sub-sets of cases that have similar size and
class distributions. Each sub-set is left out once, while the other nine are applied

5.3. Supervised Fuzzy Clustering 241

for the construction of the classifier which is subsequently validated for the unseen
cases in the left-out sub-set.

Example 5.2 (The Wisconsin Breast Cancer classification based on supervised GG
clustering). The Wisconsin breast cancer data is widely used to test the effective-
ness of classification and rule extraction algorithms. The aim of the classification
is to distinguish between benign and malignant cancers based on the available nine
measurements: x1 clump thickness, x2 uniformity of cell size, x3 uniformity of
cell shape, x4 marginal adhesion, x5 single epithelial cell size, x6 bare nuclei, x7

bland chromatin, x8 normal nuclei, and x9 mitosis (data shown in Figure 5.6).
The attributes have integer value in the range [1, 10]. The original database con-
tains 699 instances however 16 of these are omitted because these are incomplete,
which is common with other studies. The class distribution is 65.5% benign and
34.5% malignant, respectively.

0 500
1

1.5

2

C
la

ss

0 500
0

5

10

C
lu

m
p
 T

h
ic

k
n
es

s

0 500
0

5

10

U
n
if

.
C

el
l

S
iz

e

0 500
0

5

10
U

n
if

.
C

el
l

S
h
ap

e

0 500
0

5

10

M
ar

g
in

al
 A

d
h
es

io
n

0 500
0

5

10

E
p
it

h
.
C

el
l

S
iz

e

0 500
0

5

10

B
ar

e
N

u
cl

ei

0 500
0

5

10

B
la

n
d
 C

h
ro

m
at

in

0 500
0

5

10

N
o
rm

al
 N

u
cl

eo
li

0 500
0

5

10

M
it

o
se

s

Figure 5.6: Wisconsin breast cancer data: 2 classes and 9 attributes (Class 1: 1-445,
Class 2: 446-683).

The advanced version of C4.5 gives misclassification of 5.26% on 10-fold cross
validation (94.74% correct classification) with tree size 25 ± .5 [225]. Nauck and
Kruse [202] combined neuro-fuzzy techniques with interactive strategies for rule
pruning to obtain a fuzzy classifier. An initial rule-base was made by applying
two sets for each input, resulting in 29 = 512 rules which was reduced to 135 by
deleting the non-firing rules. A heuristic data-driven learning method was applied
instead of gradient descent learning, which is not applicable for triangular mem-
bership functions. Semantic properties were taken into account by constraining the
search space. The final fuzzy classifier could be reduced to 2 rules with 5–6 features
only, with a misclassification of 4.94% on 10-fold validation (95.06% classifica-
tion accuracy). Rule-generating methods that combine GA and fuzzy logic were
also applied to this problem [199]. In this method the number of rules to be gen-
erated needs to be determined a priori. This method constructs a fuzzy model that
has four membership functions and one rule with an additional else part. Setiono

242 Chapter 5. Fuzzy Model based Classifiers

Table 5.4: Classification rates and model complexity for classifiers constructed for
the Wisconsin Breast Cancer problem. ♮ denotes results from averaging a ten-fold
validation.

Author Method ♯ Rules ♯ Conditions Accuracy

Setiono [237] NeuroRule 1f 4 4 97.36%

Setiono [237] NeuroRule 2a 3 11 98.1%

Peña-Reyes and Sipper [199] Fuzzy-GA1 1 4 97.07%

Peña-Reyes and Sipper [199] Fuzzy-GA2 3 16 97.36%

Nauck and Kruse [202] NEFCLASS 2 10-12 95.06% ♮

Table 5.5: Classification rates and model complexity for classifiers constructed for
the Wisconsin Breast Cancer problem. Results from a ten-fold validation. GG:
Gath–Geva clustering based classifier, Sup: presented method

Method minAcc. meanAcc. maxAcc. min ♯Feat. mean♯Feat. max ♯Feat.

GG: R = 2 84.28 90.99 95.71 8 8.9 9
Sup: R = 2 84.28 92.56 98.57 7 8 9
GG: R = 4 88.57 95.14 98.57 9 9 9
Sup: R = 4 90.00 95.57 98.57 8 8.7 9

[237] has generated similar compact classifier by a two-step rule extraction from a
feedforward neural network trained on preprocessed data.

As Table 5.4 shows, our fuzzy rule-based classifier is one of the most compact
models in the literature with such high accuracy.

In the current implementation of the algorithm after fuzzy clustering an initial
fuzzy model is generated that utilizes all the 9 information profile data about the
patient. A step-wise feature reduction algorithm has been used where in every step
one feature has been removed continuously checking the decrease of the performance
of the classifier on the training data. To increase the classification performance,
the classifier is re-identified in every step by re-clustering of reduced data which
have smaller dimensionality because of the neglected input variables. As Table 5.5
shows, our supervised clustering approach gives better results than utilizing the
Gath–Geva clustering algorithm in the same identification scheme.

The ten-fold validation experiment with the presented approach showed 95.57%
average classification accuracy, with 90.00% as the worst and 95.57% as the best
performance. This is really good for such a small classifier as compared with previ-
ously reported results (Table 5.4). As the error estimates are either obtained from
10-fold cross validation or from testing the solution once by using the 50% of the
data as training set, the results given in Table 5.4 are only roughly comparable.

�

5.3. Supervised Fuzzy Clustering 243

Example 5.3 (The Wine data classification based on supervised GG clustering).
Firstly, for comparison purposes, a fuzzy classifier, that utilizes all the 13 infor-
mation profile data about the wine has been identified by the presented clustering
algorithm based on all the 178 samples (see Example 2.1 and Example 5.1). Fuzzy
models with three and six rules were identified. The three rule-model gave only 2
misclassification (correct percentage 98.9%). When a cluster was added to improve
the performance of this model, the obtained classifier gave only 1 misclassification
(99.4%). The classification power of the identified models is then compared with
fuzzy models with the same number of rules obtained by Gath–Geva clustering, as
Gath–Geva clustering can be considered the unsupervised version of the presented
clustering algorithm. The Gath–Geva identified fuzzy model achieves 8 misclas-
sifications corresponding to a correct percentage of 95.5%, when three rules are
used in the fuzzy model, and 6 misclassifications (correct percentage 96.6%) in the
case of four rules. The results are summarized in Table 5.6. As it is shown, the
performance of the obtained classifiers are comparable to those in [66] and [125],
but use far less rules (3–5 compared to 60) and less features.

Table 5.6: Classification rates on the Wine data for ten independent runs.

Method Best result Aver result Worst result Rules Model eval

Corcoran and Sen [66] 100% 99.5% 98.3% 60 150000
Ishibuchi et al. [125] 99.4% 98.5% 97.8% 60 6000
GG clustering 95.5 % 95.5 % 95.5 % 3 1

Sup (13 features) 98.9 % 98.9 % 98.9 % 3 1
Sup (13 features) 99.4 % 99.4 % 99.4 % 4 1

These results indicate that the presented clustering method effectively utilizes
the class labels. As can be seen from Table 5.6, because of the simplicity of the
presented clustering algorithm, the presented approach is attractive in comparison
with other iterative and optimization schemes that involves extensive intermediate
optimization to generate fuzzy classifiers.

The ten-fold validation is a rigorous test of the classifier identification algo-
rithms. These experiments showed 97.77% average classification accuracy, with
88.88% as the worst and 100% as the best performance (Table 5.7). The above
presented automatic model reduction technique removed only one feature without
the decrease of the classification performance on the training data. Hence, to avoid
possible local minima, the feature selection algorithm is used to select only five fea-
tures, and the presented scheme has been applied again to identify a model based
on the selected five attributes. This compact model with average 4.8 rules showed
97.15% average classification accuracy, with 88.23% as the worst and 100% as
the best performance. The resulted membership functions and the selected features

244 Chapter 5. Fuzzy Model based Classifiers

12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Alcohol
100 150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Magnesium
2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flavonoids
0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hue
500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proline

Figure 5.7: Membership functions obtained by fuzzy clustering.

Table 5.7: Classification rates and model complexity for classifiers constructed for
the Wine classification problem. Results from averaging a ten-fold validation.

Method minAcc. meanAcc. maxAcc. min ♯Feat. mean♯Feat. max ♯Feat.

GG: R = 3 83.33 94.38 100 10 12.4 13
Sup: R = 3 88.88 97.77 100 12 12.6 13
GG: R = 3 88.23 95.49 100 4 4.8 5
Sup: R = 3 76.47 94.87 100 4 4.8 5
GG: R = 6 82.35 94.34 100 4 4.9 5
Sup: R = 6 88.23 97.15 100 4 4.8 5

are shown in Figure 5.7. Comparing the fuzzy sets in Figure 5.7 with the data in
Figure 5.4 shows that the obtained rules are highly interpretable. For example, the
Flavonoids are divided in Low, Medium and High, which is clearly visible in the
data.

�

5.3.3 Conclusions

A new fuzzy classifier has been presented to represent Bayes classifiers defined
by mixture of Gaussians density model. The novelty of this new model is that
each rule can represent more than one classes with different probabilities. For

5.4. Fuzzy Classification Tree 245

the identification of the fuzzy classifier a supervised clustering method has been
worked out that is the modification of the unsupervised Gath–Geva clustering
algorithm. In addition, a method for the selection of the relevant input variables
has been presented. The presented identification approach is demonstrated by the
Wisconsin Breast Cancer and the Wine benchmark classification problems. The
comparison to Gath–Geva clustering and GA-tuned fuzzy classifiers indicates that
the presented supervised clustering method effectively utilizes the class labels and
is able to identify compact and accurate fuzzy systems.

5.4 Supervised Clustering based Fuzzy Partitioning
for Fuzzy Decision Tree Induction

This section will investigate how supervised clustering can be used for the effec-
tive partitioning of the input domains (see also in [208]). The application of fuzzy
clustering for the quantization of the input variables is not a completely new idea.
In [215] it has been shown that the results of the clustering coming in the form
of a series of prototypes can be directly used to complete a quantization of the
continuous attributes. In contrast with most discretization of continuous variables
that deal with a single variable only, this approach concerns all the variables dis-
cussed at the same time. The discretization mechanism is straightforward: project
the cluster prototypes on the respective variables (coordinate axes) and construct
the discretization intervals (Figure 5.8).

x 1

x 2

Figure 5.8: Clustering based partitioning of the input domains.

246 Chapter 5. Fuzzy Model based Classifiers

Our approach differs from the previously presented methods in the following
main issues:

• It uses the extended version of fuzzy classifiers that is presented in Sec-
tion 5.1.4.

• Rule-based interpretation and rule-reduction. After the induction of the tree
the resulted decision tree can be transformed into a rule-based fuzzy system
without any approximation error. Since FID is based on the ID3 algorithm
(see Section 5.1.5), it generates trees where every branch of the tree contains
all of the fuzzy tests defined on the domain of the selected variable. Hence,
the generated fuzzy decision tree is often more complex than is needed, which
often leads to unnecessarily complex classifiers due to the addition of mean-
ingless rules. Hence, there is a place for rule-reduction tools as well.

• The main idea of the section is the application of the previously presented
supervised clustering algorithm (see Section 5.3) to generate the fuzzy sets
used by the fuzzy decision tree induction algorithms.

• Similarity-driven simplification. Since FID assumes fuzzy domains with small
cardinalities, the performance and the size of the inducted trees are highly
determined by the quality and the number of the membership functions
extracted from the clustering. Hence, to obtain a parsimonious and inter-
pretable fuzzy classifiers similarity-driven rule base simplification algorithm
was applied (Section 5.2.1) to merge the similar fuzzy sets on each input
domain.

• Obtaining fuzzy data and fuzzy partitioning. Contrary to other clustering
based input partitioning approaches, the results of the applied supervised
clustering algorithm can be directly used by fuzzy decision tree induction
algorithms.

Beside the effective utilization of the class label information, the main
benefit of the applied clustering algorithm is that the clusters are represented
by Gaussian membership functions, hence there is no need to project the re-
sulted clusters into the input variables of the model, so there is no projection
error that decreases the performance of the model building procedure (see
also Algorithm 3.3.1, 3.4.2, 4.1.1, 4.2.1 and 5.3.1). According to the utilized
results of the fuzzy clustering algorithm two approaches can be followed at
the step of the induction of the decision tree.

– SC-FID1: The obtained membership functions are only used for the
quantization of the input variables.

– SC-FID2: The fuzzy clustering is considered as a tool to obtain a com-
pact representation of the class distribution in terms of a fuzzy model.
In this approach, each rule of the fuzzy classifier identified by the clus-
tering algorithm is considered as a fuzzy data, so the entire rule base is

5.4. Fuzzy Classification Tree 247

a compact “fuzzy database”. In this approach the FID algorithm does
not utilize the original crisp data set, but it generates the fuzzy decision
tree based on fuzzy data generated by the clustering algorithm.

This section deals with the SC-FID1 approach, since this approach can
be used for the partitioning of the input variables.

The presented approach is applied to four well-known classification problems
available from the Internet: to the Wisconsin Breast Cancer, the Iris, the Wine
and the Thyroid classification problems in Example 5.4.

5.4.1 Fuzzy Decision Tree Induction

Decision trees can be represented in terms of logical rules, where each concept is
represented by one disjunctive normal form, and where the antecedent consists
of a sequence of attribute value tests. These attribute value tests partition the
input domains of the classifier into intervals represented by the fuzzy sets, and the
operating region of the rules is formulated by and connective of these domains.
This interpretation of decision trees allows their transformation into rule-based
(fuzzy) systems:

Algorithm 5.4.1 (Fuzzy Classification Tree Induction).

Step 0 Index the leaves (the terminal nodes) of the tree by li, where i =
1, . . . , R, where R is the number of leaves that will be identical to the
number of the rules of the fuzzy classifier.

Step 1 Select a terminal node li, i ∈ {1, . . . , R} and collect all the attribute
value tests Ai,j related to the path of the selected terminal node to the root
of the tree, where j ∈ {1, . . . , n}.

Step 2 The Ai,j attribute value tests (membership functions) define the ante-
cedent part of the ith rule, and the conditional probabilities P (c1|ri), . . .,
P (cC |ri) at the consequent part of the rule are given by the example counts
computed by the FID algorithm [133].

until i = R (all of the rules are recorded for all the leaves in the rule-based
system).

Since FID is based on the ID3 algorithm, it generates trees where every branches of
the tree contain all of the fuzzy tests defined on the domain of the selected variable.
Hence, the generated fuzzy decision tree is often more complex than is needed due
to the addition of meaningless rules. Hence, the rules that are responsible for only
a small number of data samples are erased form the rule-base, because they only
cover exceptions or noise in the data.

248 Chapter 5. Fuzzy Model based Classifiers

In FID 3.3 trapezoidal membership functions are used to describe the fuzzy
sets Ai,j(xj):

Ai,j(xj ; ai,j , bi,j , ci,j , di,j) = max

(
0, min

(
xj − ai,j

bi,j − ai,j
, 1,

di,j − xj

di,j − ci,j

))
. (5.32)

The problem that is addressed in this section is how the previously presented
parameters of the fuzzy sets (5.32) can be obtained to provide an effective partition
of the input variables to the fuzzy decision induction algorithm. The key idea of
our solution is to use a supervised fuzzy clustering algorithm for this purpose.

5.4.2 Transformation and Merging of the Membership Functions

The supervised clustering algorithm presented in Section 5.3 obtains a rule-based
fuzzy classifier defined with rules in the format given by (5.16) with Gaussian mem-
bership functions. Since the public implementation of the FID algorithm (FID 3.3)
uses trapezoidal membership functions to describe the Ai,j(xj) fuzzy sets (5.32),
there is a need for a method to transform the obtained Gaussian membership
functions into trapezoidal ones. For this transformation the parameters of the
Gaussian membership function can be used: ai,j = vi,j −3σi,j , bi,j = vi,j −0.5σi,j ,
ci,j = vi,j + 0.5σi,j and di,j = vi,j + 3σi,j . To obtain a parsimonious and inter-
pretable fuzzy classifier a fuzzy set-merging algorithm can be applied which can
be found in the introduction of this section.

The obtained membership functions are only used for the quantization of the
input variables, so the FID algorithm generates a fuzzy decision tree based on the
original training data and the obtained fuzzy partitioning. In the remaining part
of the section this approach is referred as SC-FID1 algorithm, since Supervised
Clustering is used to provide input data for the Fuzzy Induction of a Decision
tree.

For the induction of the decision trees the standard FID algorithm is used
without any modification. To make the application of this program easy in the
MATLAB� programming environment, we developed an interface which supports
all the functions of FID 3.3 in the MATLAB� environment. This FID Tool-
box is available from our website: http://www.fmt.vein.hu/softcomp. The main
feature of this interface is that the generated tree can be transformed into a
rule-based fuzzy model in the format of the Fuzzy Model Identification Toolbox
(http://www.dcsc.tudelft.nl/∼babuska/).

Example 5.4 (Comparative application study to demonstrate the effectiveness of
the Fuzzy Classification Tree). This subsection is intended to provide a compara-
tive study based on a set of multivariate classification problems to present how the
performance and the complexity of the classifier is changing trough the step-wise
model building procedure of the previously presented SC-FID1 algorithm.

5.4. Fuzzy Classification Tree 249

The selected Iris, Wine, Wisc and Thyroid data sets, coming from the UCI
Repository of Machine Learning Databases (http://www.ics.uci.edu), are examples
of classification problems with different complexity, e.g., large and small numbers
of features (see Table 5.8).

Table 5.8: Complexity of the classification problems.

Problem ♯Samples ♯Features ♯Classes

Iris 150 4 3
Wine 178 13 3
Wisc 699 9 2
Thyroid 215 5 3

During the experiments, the performances of the classifiers are measured by
ten-fold cross validation. This means, that the data set is divided into ten sub-
sets, and each sub-set is left out once, while the other nine are applied for the
construction of the classifier which is subsequently validated for unseen cases in
the left-out sub-set.

To demonstrate the effectiveness of the presented SC-FID1 approach, the re-
sults obtained by the supervised (Supclust) and unsupervised Gath–Geva (GGclust)
clustering based fuzzy classifiers (5.16) (see [17] for more details) are compared
to the performances of fuzzy decision trees generated by the uniformly distributed
(Ruspini-type) partitioning of the input variables. To illustrate how the supervi-
sion of the clustering improves the classification performance, not only partition-
ing based on the supervised clustering algorithm has been used for the induction
of the trees (SC-FID1), but the results of the unsupervised Gath–Geva clustering
(C-FID1). Table 5.9 shows the results of this comparison study, while the perfor-
mances of the classifiers during the step-wise model building procedure are shown
in Figure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12.

Table 5.9: Classification rates (acc.) achieved on the WINE classification problem.
Average results of tenfold validation at the number of initial membership functions
of the input variables are: 3–7.

♯Fuzzy Sets Supclust SC-FID1 GGclust C-FID1 Ruspini

c = 3 96.63 96.08 93.85 94.90 96.60
c = 4 95.00 96.05 92.74 95.98 96.05
c = 5 94.41 96.60 90.46 95.46 93.79
c = 6 95.49 95.49 92.71 96.05 92.65
c = 7 97.22 95.46 94.44 96.60 89.77

250 Chapter 5. Fuzzy Model based Classifiers

In these figures the presented SC-FID1 is monitored by logging the number of
rules, conditions and performances of the classifiers in the function of the number
of clusters (i.e., the initial number of fuzzy sets on each input variables). As it ap-
pears from the figures, the best performances are usually obtained by the rule-based
fuzzy classifiers by the supervised clustering algorithm (Supclust). The accuracy of
these models decreases considerably after the transformation of the Gaussian mem-
bership function into trapezoidal ones. However, after the merging of membership
functions and the induction of the decision tree accurate, yet compact classifiers
can be obtained.

The fuzzy decision trees induced based on uniform (Ruspini-type) partition of
the input variables gives worse classification performances and much complex clas-
sifiers compacted to the clustering based results, so the effectiveness of rule reduc-
tion method appears. Hence, these results confirm that the presented approach (SC-
FID1) generates transparent and compact fuzzy classifiers, thanks to the effective
input partitioning obtained by the supervised clustering.

3 4 5 6 7 8 9 10
92

94

96

98

A
c
c
u

ra
c
y
 %

3 4 5 6 7 8 9 10
0

10

20

30

40

N
o

.
o

f
C

o
n

d
it
io

n
s

3 4 5 6 7 8 9 10
0

5

10

15

Initial No. of Fuzzy sets

N
o

.
o

f
R

u
le

s

Figure 5.9: Classification performances and complexities of the classifiers on the
IRIS data set in the function of the number of clusters. (0: Ruspini, X: SC-FID1,
–: Supculst)

�

5.4. Fuzzy Classification Tree 251

3 4 5 6 7 8
85

90

95

100

A
c
c
u
ra

c
y
 %

3 4 5 6 7 8
0

50

100

150

N
o
.
o
f
C

o
n
d
it
io

n
s

3 4 5 6 7 8
0

10

20

30

Initial No. of Fuzzy sets

N
o
.
o
f
R

u
le

s

Figure 5.10: Classification performances on the WINE data set. (0: Ruspini, X:
SC-FID1, –: Supculst)

3 4 5 6 7 8 9 10
90

92

94

96

98

A
c
c
u
ra

c
y
 %

3 4 5 6 7 8 9 10
0

50

100

N
o
.
o
f
C

o
n
d
it
io

n
s

3 4 5 6 7 8 9 10
2

4

6

8

10

N
o
.
o
f
R

u
le

s

Figure 5.11: Classification performances on the WISC data set. (0: Ruspini, X:
SC-FID1, –: Supculst)

252 Chapter 5. Fuzzy Model based Classifiers

3 4 5 6 7 8 9
70

80

90

100

A
c
c
u
ra

c
y
 %

3 4 5 6 7 8 9
0

20

40

60
N

o
.
o
f
C

o
n
d
it
io

n
s

3 4 5 6 7 8 9
0

5

10

15

Initial No. of Fuzzy sets

N
o
.
o
f
R

u
le

s

Figure 5.12: Classification performances on the THYROID data set. (0: Ruspini,
X: SC-FID1, –: Supculst)

5.4.3 Conclusions

In this section a new approach to the identification of compact and accurate fuzzy
classifiers has been presented. For the identification of the fuzzy classifier a super-
vised clustering method has been used to provide input partitioning to the fuzzy
decision tree induction algorithm. The presented SC-FID1 approach is demon-
strated by the Wisconsin Breast Cancer, the Iris, the Thyroid and the Wine
benchmark classification problems. The comparison to the uniform partitioning
based decision tree induction method indicates that the presented supervised clus-
tering method effectively utilizes the class labels and is able to lead to compact
and accurate fuzzy systems with the help of a standard decision tree induction
algorithm.

Chapter 6

Segmentation of
Multivariate Time-series

Partitioning a time-series into internally homogeneous segments is an important
data mining problem. The changes of the variables of a multivariate time-series
are usually vague and do not focus on any particular time point. Therefore, it is
not practical to define crisp bounds of the segments. Although fuzzy clustering
algorithms are widely used to group overlapping and vague objects, they cannot
be directly applied to time-series segmentation, because the clusters need to be
contiguous in time. This chapter proposes a clustering algorithm for the simulta-
neous identification of local Probabilistic Principal Component Analysis (PPCA)
models used to measure the homogeneity of the segments and fuzzy sets used to
represent the segments in time. The algorithm favors contiguous clusters in time
and is able to detect changes in the hidden structure of multivariate time-series. A
fuzzy decision making algorithm based on a compatibility criteria of the clusters
have been worked out to determine the required number of segments, while the
required number of principal components are determined by the screeplots of the
eigenvalues of the fuzzy covariance matrices. The application example shows that
this new technique is a useful tool for the analysis of historical process data.

6.1 Mining Time-series Data

A sequence of N observed data, x1, . . . ,xN , ordered in time, is called time-series.
Sequence data are similar to time-series but without time label: they consist of
sequences of ordered events (e.g., DNA-sequences). Mining of time-series data
could be very important because

• time-series databases are very large, and long multivariate time-series cannot
be handled well by human inspectors,

254 Chapter 6. Segmentation of Multivariate Time-series

• they definitely can contain valuable information,

• real-life time-series can be taken from business, physical, social and behav-
ioral science, economics, engineering, etc.

There are various tasks related to time-series, but they form basically two
groups:

• to identify the nature of the phenomenon that generates the time-series,

• to predict the future values of the variables (see, e.g., [152]).

Related to that, particular tasks can be: trend analysis, seasonal pattern search,
similarity search, segmentation etc. In the following sections the latter will be
deeply described, but the others are briefly discussed here.

Time-series can be viewed (as in case of much other analysis as well) that the
data contain a systematic pattern (whose components can be identified), and ran-
dom noise (e.g., measuring error) that makes it difficult to recognize the patterns.
The systematic pattern according to [110] can be decomposed into three main
components or movements:

• trend movement (the main direct of the variable over a long period of time),

• cyclic movements (long period oscillations of the trend movement, may be
periodic or not)

• seasonal movements (events that occur from time to time, e.g., in every year)

Time-series analysis can be viewed as time-series decomposition into the ele-
ments mentioned above.

Trend analysis. To determine the trend in a time-series one of the most often
applied methods is the (weighted) moving average. It means that instead of the
actual value of the variable the average of data in a ‘window’ is used. The length of
the window has an effect on the range of the smoothing. There are other methods,
e.g., free-hand method, where the user draws an approximation curve to the data.
It cannot be applied in case of large datasets, but its ‘automated version’ can be,
where a simple curve is fitted to the data based on the least squares criterion (e.g.,
spline fitting).

Seasonality analysis. It is formally defined as correlational dependency of order
k between each ith element of the series and the (i−k)th element and measured by
autocorrelation (i.e., a correlation between the two terms); k is usually called the
lag. (See also Section 4.4.2.) If the measurement error is not too large, seasonality
can be visually identified in the series as a pattern that repeats every k elements.

• Autocorrelation correlogram. Seasonal patterns of time series can be exam-
ined via correlograms. The correlogram (autocorrelogram) displays graphi-
cally and numerically the autocorrelation function, that is, serial correlation
coefficients (and their standard errors) for consecutive lags in a specified
range of lags (e.g., 1 through 30). Ranges of two standard errors for each lag

6.2. Time-series Segmentation 255

are usually marked in correlograms but typically the size of auto correlation
is of more interest than its reliability because we are usually interested only
in very strong (and thus highly significant) autocorrelations.

• Examining correlograms. While examining correlograms one should keep in
mind that autocorrelations for consecutive lags are formally dependent. Con-
sider the following example. If the first element is closely related to the
second, and the second to the third, then the first element must also be
somewhat related to the third one, etc. This implies that the pattern of se-
rial dependencies can change considerably after removing the first-order auto
correlation (i.e., after differencing the series with a lag of 1).

• Partial autocorrelations. Another useful method to examine serial depen-
dencies is to examine the partial autocorrelation function – an extension of
autocorrelation, where the dependence on the intermediate elements (those
within the lag) is removed. In other words the partial autocorrelation is simi-
lar to autocorrelation, except that when calculating it, the (auto) correlations
with all the elements within the lag are partialled out.

One aim can be removing the serial dependency. Serial dependency for a par-
ticular lag of k can be removed by differencing the series, that is converting each
ith element of the series into its difference from the (i − k)th element. There are
two major reasons for such transformations.

First, one can identify the hidden nature of seasonal dependencies in the se-
ries. Remember that, as mentioned in the previous paragraph, autocorrelations
for consecutive lags are interdependent. Therefore, removing some of the autocor-
relations will change other auto correlations, that is, it may eliminate them or it
may make some other seasonalities more apparent. The other reason for remov-
ing seasonal dependencies is to make the series stationary which is necessary for
several techniques (e.g., ARIMA).

Similarity search. It finds data sequences that differ only slightly from the given
query sequence. Given a set of time-series sequences, there are two types of simi-
larity search. Subsequence matching finds all of the data sequences that are similar
to the given sequence, while whole sequence matching finds those sequences that
are similar to one other. As a similarity measure, Euclidean distance is typically
used, but often useful to transform the data from time domain into frequency
domain, discrete Fourier transform of discrete wavelet transform can be used.

6.2 Time-series Segmentation

In this chapter a fuzzy clustering based algorithm is presented which is useful
for the fuzzy segmentation of multivariate temporal databases (these results were
published in [10]). Time-series segmentation addresses the following data mining
problem: given a time-series, T , find a partitioning of T into c segments that
are internally homogeneous [272]. Depending on the application, the goal of the

256 Chapter 6. Segmentation of Multivariate Time-series

segmentation is to locate stable periods of time, to identify change points, or to
simply compress the original time-series into a more compact representation [170].
Although in many real-life applications a lot of variables must be simultaneously
tracked and monitored, most of the segmentation algorithms are used for the anal-
ysis of only one time-variant variable [154]. Hoverer, in some cases it is necessary
to synchronously segment the time-series of the variables.

The segmentation of multivariate time-series is especially important in the
data-based analysis and monitoring of modern production systems, where huge
amount of historical process data are recorded with distributed control systems
(DCS). These data definitely have the potential to provide information for product
and process design, monitoring and control [290]. This is especially important in
many practical applications where first-principles modelling of complex “data rich
and knowledge poor” systems are not possible [143]. Therefore, KDD methods
have been successfully applied to the analysis of process systems, and the results
have been used in process design, process improvement, operator training, and
so on [281]. Hence, the data mining algorithm presented in this chapter has been
developed to the analysis of the historical process data of a medium and high-
density polyethylene (MDPE, HDPE) plant. The operators of this polymerization
process should simultaneously track many process variables. Of course, due to
the hidden nature of the system the measured variables are correlated. Hence,
it is useful to monitor only some principal components that is widely applied in
advanced process monitoring. The main problem of this approach is the fact that
in some cases the hidden process, which can be observed as the correlation among
the variables, varies in time. In our example this phenomenon can occur when
a different product is formed, and/or different catalyst is applied, or there are
significant process faults, etc. The segmentation of only one measured variable
is not able to detect such changes. Hence, the segmentation algorithm should be
based on multivariate statistical tools.

To demonstrate this problem let us consider the synthetic dataset shown in
Figure 6.1. The observed variables that can be seen in Figure 6.1(b) are not in-
dependent, they were generated by the latent variables shown in Figure 6.1(a).
The correlation among the observed variables changes at the quarter of the time
period, and the mean of the latent variables changes at the half of the time period.
These changes are marked by vertical lines in Figure 6.1(a).

As it can be seen in Figure 6.1(b), such information can be detected neither by
application of univariate segmentation algorithms, nor by the visual inspection of
the observed variables. Hence, the aim of this chapter is to develop an algorithm
that is able to handle time-varying characteristics of multivariate data: (i) changes
in the mean; (ii) changes in the variance; and (iii) changes in the correlation
structure among the variables.

To discover that type of changes of the hidden relationships of multivariate
time-series, multivariate statistical tools should be applied by the segmentation
algorithm. Among the wide range of possible tools, e.g., random projection, in-
dependent component analysis, the presented algorithm utilizes Principal Com-

6.2. Time-series Segmentation 257

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5

10

time

y
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5

10

time

y
2

(a) Latent variables

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

time

x
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−0.5

0

0.5

time

x
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1

0

1

2

time

x
3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

time

x
4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−0.4
−0.2

0
0.2
0.4

time

x
5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−1
−0.5

0
0.5

time

x
6

(b) Observed variables

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

β
i(t

k
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

A
i(t

k
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

p
(

z
k
 |
 η

i)

time

(c) Results obtained by fuzzy clustering,
(–): q = 2 ,(- -): q = 5

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

H
o

te
ll

in
g

 T
2

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Q
 R

ec
o

n
st

ru
ct

io
n

 e
rr

o
r

time

(d) Results obtained by the bottom-up al-
gorithm, (–): q = 2 ,(- -): q = 5

Figure 6.1: The synthetic dataset and its segmentation by different algorithms
based on two and five principal components.

ponent Analysis (PCA) (for more details see Section 2.1.1). Linear PCA can give
good prediction results for simple time-series, but can fail in the analysis of his-
torical data having changes in regime or having nonlinear relations among the
variables. The analysis of such data requires the detection of locally correlated
clusters [61]. These algorithms do the clustering of the data to discover the lo-
cal relationship among the variables similarly to mixture of Principal Component
Models [265].

Mixtures have been extensively used as models where the data can be consid-
ered as originating from several populations mixed in varying proportions, and
Expectation Maximization (EM) is widely used to estimate the parameters of the
components in a mixture [44]. The clusters obtained by Gath–Geva (GG) cluster-
ing, also referred to Fuzzy Maximum Likelihood clustering, are multivariate Gaus-

258 Chapter 6. Segmentation of Multivariate Time-series

sian functions. The Alternating Optimization (AO) of these clusters is identical
to the Expectation Maximization (EM) (maximum likelihood estimation) identi-
fication of the mixture of these Gaussian models with fuzzy weighting exponent
m = 2 [40].

Time-series segmentation may be considered as clustering with a time-ordered
structure. The contribution of this chapter is the introduction of a new fuzzy
clustering algorithm which can be effectively used to segment large, multivariate
time-series. Since the points in a cluster must come from successive time points,
the time-coordinate of the data has to be also considered during the clustering.
One possibility to deal with time is to define a new cluster prototype that uses
time as an additional variable. Hence, the clustering is based on a distance measure
which consists of two terms: the first distance term is based on how the data are in
the given segment defined by the Gaussian fuzzy sets defined in the time domain,
while the second term measures how far the data are from the hyperplane of the
PCA model of the segments.

The fuzzy segmentation of time-series is an adequate idea. The changes of the
variables of the time-series are usually vague and are not focused on any particular
time point. Therefore, it is not practical to define crisp bounds of the segments. For
example, if humans visually analyze historical process data, they use expressions
like “this point belongs to this operating point less and belongs to the other more”.
A good example of this kind of fuzzy segmentation is how fuzzily the start and the
end of early morning is defined. Fuzzy logic is widely used in various applications
where the grouping of overlapping and vague objects is necessary [1], and there
are many fruitful examples in the literature for the combination of fuzzy logic with
time-series analysis tools [35, 96, 170, 284].

The key problem of the application of fuzzy clustering for time-series segmenta-
tion is the selection of the number of segments for the clustering process. Obviously,
this is a standard problem also in the classical c-means clustering. In the context
of time series, however, it appears to be even more severe. For this purpose a
bottom-up algorithm has been worked out where the clusters are merged during a
recursive process. The cluster merging is coordinated by a fuzzy decision making
algorithm which utilizes a compatibility criterion of the clusters [146], where this
criterion is calculated by the similarity of the Principal Component Models of the
clusters [166].

Time-series Segmentation Problem Formulation

A time-series T = {xk|1 ≤ k ≤ N} is a finite set of N samples labeled by
time points t1, . . . , tN , where xk = [x1,k, x2,k, . . . , xn,k]T . A segment of T is a
set of consecutive time points S(a, b) = {a ≤ k ≤ b}, xa,xa+1, . . . ,xb. The c-
segmentation of time-series T is a partition of T to c non-overlapping segments
Sc

T = {Si(ai, bi)|1 ≤ i ≤ c}, such that a1 = 1, bc = N , and ai = bi−1 + 1. In other
words, a c-segmentation splits T to c disjoint time intervals by segment boundaries
s1 < s2 < . . . < sc, where Si(si−1 + 1, si).

6.2. Time-series Segmentation 259

Usually the goal is to find homogeneous segments from a given time-series.
In such cases the segmentation problem can be defined as constrained clustering:
data points should be grouped based on their similarity, but with the constraint
that all points in a cluster must come from successive time points. (See [174] for
the relationship of time series and clustering from another point of view.) In order
to formalize this goal, a cost(S(a, b)) cost function with the internal homogeneity
of individual segments should be defined. The cost function can be any arbitrary
function. For example in [117, 272] the sum of variances of the variables in the
segment was defined as cost(S(a, b)). Usually, the cost(S(a, b)) cost function is
defined based on the distances between the actual values of the time-series and the
values given by a simple function (constant or linear function, or a polynomial of a
higher but limited degree) fitted to the data of each segment. Hence, the optimal
c-segmentation simultaneously determines the ai, bi borders of the segments and
the θi parameter vectors of the models of the segments by minimizing the cost of
c-segmentation which is usually the sum of the costs of the individual segments:

cost(Sc
T) =

c∑

i=1

cost(Si) . (6.1)

This cost function can be minimized by dynamic programming, which is computa-
tionally intractable for many real datasets [117]. Consequently, heuristic optimiza-
tion techniques such as greedy top-down or bottom-up techniques are frequently
used to find good but suboptimal c-segmentations [149, 252]:

Sliding window: A segment is grown until it exceeds some error bound. The pro-
cess repeats with the next data point not included in the newly approximated
segment. For example a linear model is fitted on the observed period and the
modelling error is analyzed.

Top-down method: The time-series is recursively partitioned until some stopping
criterion is met.

Bottom-up method: Starting from the finest possible approximation, segments are
merged until some stopping criterion is met.

Search for inflection points: Searching for primitive episodes located between two
inflection points.

In the next section a different approach will be presented based on the clustering
of the data.

Bottom-Up Segmentation Algorithm

In data mining, the bottom-up algorithm has been used extensively to support
a variety of time-series data mining tasks [149]. The algorithm begins creating a
fine approximation of the time-series, and iteratively merge the lowest cost pair of
segments until a stopping criteria is met. When the Si and Si+1 pair of adjacent

260 Chapter 6. Segmentation of Multivariate Time-series

segments are merged, the cost of merging the new segment with its right neighbor
and the cost of merging the Si−1 segment with its new larger neighbor must be
calculated. The pseudocode for algorithm is shown in Table 6.1.

Table 6.1: Bottom-up segmentation algorithm

• Create initial fine approximation.

• Find the cost of merging for each pair of segments:
mergecost(i) = cost(S(ai, bi+1))

• while min(mergecost) < maxerror

– Find the cheapest pair to merge: i = argmini(mergecost(i))

– Merge the two segments, update the ai, bi boundary indices, and recal-
culate the merge costs.
mergecost(i) = cost(S(ai, bi+1))
mergecost(i − 1) = cost(S(ai−1, bi))

end

This algorithm is quite powerful since the merging cost evaluations requires
simple identifications of PCA models which is easy to implement and computa-
tionally cheap to calculate. Because of this simplicities and because PCA defines
linear hyperplane, the presented approach can be considered as the multivariate
extension of the piecewise linear approximation (PLA) based time-series segmen-
tation and analysis tools developed by Keogh [149, 150].

Principal Component Analysis (PCA) was described in details in Section 2.1.1.
However, it is advantageous to overview this method just because of the notation as
well. PCA is based on the projection of correlated high-dimensional data onto a hy-
perplane. This mapping uses only the first few q nonzero eigenvalues and the corre-
sponding eigenvectors of the Fi = UiΛiU

T
i , covariance matrix, decomposed to the

Λi matrix that includes the eigenvalues λi,j of Fi in its diagonal in decreasing order,
and to the Ui matrix that includes the eigenvectors corresponding to the eigen-
values in its columns. The vector yi,k = W−1

i (xk) = WT
i (xk) is a q-dimensional

reduced representation of the observed vector xk, where the Wi weight matrix

contains the q principal orthonormal axes in its column Wi = Ui,qΛ
1
2

i,q.
Based on PCA the cost(Si) can be calculated in two ways. This cost can be

equal to the reconstruction error of this segment

cost(Si) =
1

bi − ai + 1

bi∑

k=ai

Qi,k (6.2)

where Qi,k = (xk − x̂k)T (xk − x̂k) = xT
k (I−Ui,pU

T
i,p)xk. When the hyperplane of

the PCA model has an adequate number of dimensions, the distance of the data

6.3. Fuzzy Cluster based Fuzzy Segmentation 261

from the hyperplane is resulted by measurement failures, disturbances and negli-
gible information, so the projection of the data into this p-dimensional hyperplane
does not cause significant reconstruction error.

Although the relationship among the variables can be effectively described by a
linear model, in some cases it is possible that the data is distributed around some
separated centers in this linear subspace. The Hotelling T 2 measure is often used
to calculate the distance of the data point from the center in this linear subspace.
This can be also used to compute cost(Si)

cost(Si) =
1

bi − ai + 1

bi∑

k=ai

T 2
i,k =

1

bi − ai + 1

bi∑

k=ai

yT
i,kyi,k. (6.3)

6.3 Fuzzy Cluster based Fuzzy Segmentation

When the variance of the segments are minimized during the segmentation, equa-
tion (6.1) results in the following equation:

cost(Sc
T) =

c∑

i=1

si∑

k=si−1+1

‖ xk − vx
i ‖2=

c∑

i=1

N∑

k=1

βi(tk)d2(xk,vx
i) , (6.4)

where d2(xk,vx
i) represents the distance between the vx

i mean of the variables in
the ith segment (center of the ith cluster) and the xk data point; and βi(tk) ∈
{0, 1} stands for the crisp membership of the kth data point in the ith segment,
and:

βi(tk) =

{
1 if si−1 < k ≤ si

0, otherwise.
(6.5)

This equation is well comparable to the typical error measure of standard k-means
clustering but in this case the clusters are limited to contiguous segments of the
time-series instead of the Voronoi regions in Rn.

The changes of the variables of the time-series are usually vague and are not
focused on any particular time point. As it is not practical to define crisp bounds
of the segments, in this chapter Gaussian membership functions, Ai(tk), are used
to represent the βi(tk) ∈ [0, 1] fuzzy segments of a time-series:

Ai(tk) = exp

(
−1

2

(tk − vt
i)

2

σ2
i,t

)
, βi(tk) =

Ai(tk)
c∑

j=1

Aj(tk)
. (6.6)

(These terms are analogous to the Gaussian membership function and the degree
of activation of the ith rule in classical fuzzy classifier as can be seen in Section 5.1.)
For the identification of the vt

i centers and σ2
i,t variances of the membership func-

tions, a fuzzy clustering algorithm is introduced. The algorithm, which is similar to

262 Chapter 6. Segmentation of Multivariate Time-series

the modified Gath–Geva clustering [18], assumes that the data can be effectively
modelled as a mixture of multivariate (including time as a variable) Gaussian dis-
tribution, so it minimizes the sum of the weighted squared distances between the
zk = [tk,xT

k]T data points and the ηi cluster prototypes

J =

c∑

i=1

N∑

k=1

(µi,k)
m

d2(zk, ηi) (6.7)

where µi,k represents the degree of membership of the observation zk = [tk,xT
k]T

is in the ith cluster (i = 1, . . . , c) and m ∈ [1,∞) is a weighting exponent that
determines the fuzziness of the resulting clusters (usually chosen as m = 2).

The Gath–Geva clustering algorithm can be interpreted in a probabilistic
framework, since the d2(zk, ηi) distance is inversely proportional to the proba-
bility that the zk data point belongs to the ith cluster, p(zk|ηi). The data are
assumed to be normally distributed random variables with expected value vi and
covariance matrix Fi. The Gath–Geva clustering algorithm is equivalent to the
identification of a mixture of Gaussians that represents the p(zk|η) probability
density function expanded in a sum over the c clusters

p(zk|η) =

c∑

i=1

p(zk|ηi)p(ηi) (6.8)

where the p(zk|ηi) distribution generated by the ith cluster is represented by the
Gaussian function

p(zk|ηi) =
1

(2π)
n+1

2

√
det(Fi)

exp

(
−1

2
(zk − vi)

T F−1
i (zk − vi)

)
(6.9)

and

p(ηi) is the unconditional cluster probability

(normalized such that
∑c

i=1 p(ηi) = 1 holds), where ηi represents the parameters
of the ith cluster, ηi = {p(ηi),vi,Fi|i = 1, . . . , c}.

Since the time variable is independent from the xk variables, the presented
clustering algorithm is based on the following d2(zk, ηi) distance measure

p(zk|ηi) =
1

d2(zk, ηi)
= αi︸︷︷︸

p(ηi)

1√
2πσ2

i,t

exp

(
−1

2

(tk − vt
i)

2

σ2
i,t

)

︸ ︷︷ ︸
p(tk|ηi)

× 1

(2π)
r
2

√
det(Ai)

exp

(
−1

2
(xk − vx

i)T A−1
i (xk − vx

i)

)

︸ ︷︷ ︸
p(xk|ηi)

(6.10)

6.3. Fuzzy Cluster based Fuzzy Segmentation 263

which consists of three terms. The first αi term represents the a priori probability
of the cluster, while the second represents the distance between the kth data point
and the vt

i center of the ith segment in time. The third term represents the distance
between the cluster prototype and the data in the feature space where vx

i means
the coordinate of the ith cluster center in the feature space and r is the rank of
Ai distance norm corresponding to the ith cluster.

The presented cluster prototype formulated by (6.10) is similar to that used
by the Gath–Geva clustering algorithm. However, it utilizes a different distance
norm, Ai. In the following section, it will be demonstrated how this norm can be
based on the principal component analysis of the cluster.

6.3.1 PCA based Distance Measure

The Ai distance norm can be defined in many ways. It is wise to select this
norm to scale the variables so that those with greater variability do not dominate
the clustering. One can scale by dividing by standard deviations, but a better
procedure is to use statistical (Mahalanobis) distance, which also adjusts for the
correlations among the variables.

In this case Ai is the fuzzy covariance matrix Ai = Fi, where

Fi =

N∑
k=1

(µi,k)
m

(xk − vx
i) (xk − vx

i)
T

N∑
k=1

(µi,k)
m

. (6.11)

When the variables are highly correlated, the Fi covariance matrix can be ill-
conditioned and cannot be inverted. Recently two methods have been worked out
to handle this problem [27].

The first method is based on fixing the ratio between the maximal and minimal
eigenvalues of the covariance matrix. The second method is based on adding a
scaled unity matrix to the calculated covariance matrix.

Both methods result in invertible matrices, but neither of them extracts the
potential information about the hidden structure of the data.

One limiting disadvantage of PCA is the absence of an associated probability
density or generative model which is required to compute p(xk|ηi). Tipping and
Bishop [265] developed a method called Probabilistic Principal Component Anal-
ysis (PPCA). In the PPCA the log-likelihood of observing the data under this
model is

L =

N∑

k=1

ln(p(xk|ηi)) = −N

2

{
n ln(2π) + ln (det(Ai)) + trace(A−1

i Fi)
}

(6.12)

264 Chapter 6. Segmentation of Multivariate Time-series

where Ai = σ2
i,xI + WiW

T
i is the modified covariance matrix of the ith cluster

which can be used to compute the p(xk|ηi) probability. The log-likelihood is max-
imized when the columns of Wi span the principal subspace of the data. Tipping
and Bishop proofed that the only nonzero stationary points of the derivative of
(6.12) with respect to Wi occur for

Wi = Ui,q

(
Λi,q − σ2

i,xI
)1/2

Ri (6.13)

where Ri is an arbitrary q × q orthogonal rotation matrix and σ2
i,x is given by

σ2
i,x =

1

n − q

n∑

j=q+1

λi,j . (6.14)

The algorithmic description of the Expectation Maximization (EM) approach to
PPCA model is given in [265] but it can also be found in the following section,
where the estimation of this model is incorporated into the clustering procedure.

6.3.2 Modified Gath–Geva Clustering for
Time-series Segmentation

One of the most important advantages of PPCA models is that it allows their
combination into mixture of models. Mixtures have been extensively used as mod-
els where data can be viewed as arising from several populations mixed in varying
proportions, and Expectation Maximization (EM) is widely used to estimate the
parameters of the components in a mixture [44]. The clusters obtained by Gath–
Geva (GG) clustering, also referred to Fuzzy Maximum Likelihood clustering,
are multivariate Gaussian functions. The Alternating Optimization (AO) of these
clusters is identical to the Expectation Maximization (EM) (maximum likelihood
estimation) identification of the mixture of these Gaussian models when the fuzzy
weighting exponent is m = 2 [40].

Similarly to GG clustering, in the presented algorithm the optimal parameters
of the ηi = {vx

i ,Ai, v
t
i , σ

2
i,x, αi} cluster prototypes are determined by the mini-

mization of the (6.7) functional subjected to the classical clustering constraints
(1.12), (1.13) and (1.14). The Alternating Optimization (see Section 1.5.3 and
Section 1.5.4) results in the easily implementable algorithm described in Algo-
rithm 6.3.1.

The usefulness and accuracy of the algorithm depends on the right choice of
the q number of principal components (PCs) and the c number of the segments.
Hence, the crucial question of the usefulness of the presented cluster algorithm is
how these parameters can be determined in an automatic manner. This will be
presented in the following two subsections.

6.3. Fuzzy Cluster based Fuzzy Segmentation 265

Algorithm 6.3.1 (Clustering for Time-Series Segmentation).

Initialization
Given a time-series T specify c and q, choose a termination tolerance ǫ > 0, and

initialize the values of Wi,v
x
i , σ2

i,x, µi,k.

Repeat for l = 1, 2, . . .

Step 1 Calculate the ηi parameters of the clusters

• a priori probability of the cluster

αi =
1

N

N∑

k=1

µi,k. (6.15)

• the cluster centers

v
x
i =

∑N
k=1(µi,k)m (xk −Wi〈yi,k〉)∑N

k=1(µi,k)m
(6.16)

where the expectation of the latent variables is 〈yi,k〉 = M−1
i WT

i (xk − vx
i) and

the q × q matrix Mi = σ2
i,xI + WT

i Wi.

• the new values of Wi

W̃i = FiWi

(
σ2

i,xI + M
−1
i W

T
i FiWi

)−1

(6.17)

where Fi computed by (6.11).
• the new value of σ2

i,x

σ2
i,x =

1

q
trace(Fi − FiWiM

−1
i W̃

T
i). (6.18)

• the distance norm (n × n matrix)

Ai = σ2
i,xI + W̃iW̃

T
i . (6.19)

• the model parameters in time: the center and the standard deviation

vt
i =

N∑
k=1

(µi,k)m tk

N∑
k=1

(µi,k)m

, σ2
i,t =

N∑
k=1

(µi,k)m
(
tk − vt

i

)2

N∑
k=1

(µi,k)m

. (6.20)

Step 2 Compute the d2(zk, ηi) distance measures by (6.10).

Step 3 Update the partition matrix

µ
(l)
i,k =

1
∑c

j=1 (d(zk, ηi)/d(zk, ηj))
2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (6.21)

until ||U(l) − U(l−1)|| < ǫ.

266 Chapter 6. Segmentation of Multivariate Time-series

6.3.3 Automatic Determination of the Number of Segments

In data mining, the bottom-up segmentation algorithm has been extensively used
to support a variety of time series data mining tasks [149]. The algorithm starts by
creating a fine approximation of the time series, and iteratively merges the lowest
cost pair of segments until a stopping criteria is met. For the automatic selection
of the number of segments, a similar approach is presented in this section. The
presented recursive cluster merging technique evaluates the adjacent clusters for
their compatibility (similarity) and merges the clusters that are found to be com-
patible. Then, after the proper initialization of the parameters of the new cluster
the clustering is performed again. During this merging and re-clustering procedure
the number of clusters is gradually reduced, until an appropriate number of clus-
ters is found. This procedure is controlled by a fuzzy decision making algorithm
based on the similarity between the PCA models.

Similarity of PCA Models

The similarity of two PCA models (i.e., hyperplanes) can be calculated by the
PCA similarity factor, SPCA, developed by Krzanowski [166, 246]. Consider two
segments, Si and Sj, of a dataset having the same n variables. Let the PCA models
for Si and Sj consist of q PC’s each. The similarity between these subspaces is
defined based on the sum of the squares of the cosines of the angles between each
principal component of Ui,q and Uj,q:

Si,j
PCA =

1

q

q∑

i=1

q∑

j=1

cos2 θi,j =
1

q
trace

(
UT

i,qUj,qU
T
j,qUi,q

)
. (6.22)

Because the Ui,q and Uj,q subspaces contain the q most important principal com-
ponents that account for the most of the variance in their corresponding datasets,
Si,j

PCA is also a measure of similarity between the segments Si and Sj .
Since the purpose of the segmentation is also to detect changes in the mean of

the variables, it is not sufficient to compute only the Si,j
PCA similarity factor but

the distance among the cluster centers also has to be taken into account

d(vx
i ,vx

j) = ‖vx
i − vx

j ‖. (6.23)

Hence, the compatibility criterion has to consider the c1
i,j = Si,j

PCA and c2
i,j =

d(vx
i ,vx

j) factors.

The Decision Making Algorithm

Because the compatibility criterion quantifies various aspects of the similarity
of the clusters, the overall cluster compatibility should be obtained through an
aggregation procedure. A fuzzy decision making algorithm can be used for this
purpose [146].

6.3. Fuzzy Cluster based Fuzzy Segmentation 267

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spca

m
e

m
b

e
rs

h
ip

Parallelism

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance

m
e

m
b

e
rs

h
ip

Closeness

ν
1

ν
2

Figure 6.2: Membership functions for parallelism and closeness of clusters.

Compatibility criteria (6.22) and (6.23) are evaluated for each pair of clusters.
The resulted compatibility matrix is descriptive concerning the structure of the
whole time-series, e.g., repetitive motifs can be also detected from the analysis of
the compatibility of the non-adjacent clusters. Following a fuzzy decision making
approach, the decision goals for each criterion have to be defined using a fuzzy set.
Figure 6.2 shows the triangular membership functions defined for the two criteria.
The important parameters of the membership functions are the limits of their
support, characterized by the ν1 knot point for parallelism and ν2 for closeness.
The values of ν1 and ν2 are given by averaging compatibilities according to

ν1 =
1

c(c − 1)

c∑

i=1

c∑

j=1
j �=i

c1
i,j , (6.24)

ν2 =
1

c(c − 1)

c∑

i=1

c∑

j=1
j �=i

c2
i,j . (6.25)

Evaluating the membership functions with the values c1
i,j and c2

i,j , one obtains the

µ1
i,j degree of parallelism and µ2

i,j of closeness. The overall cluster compatibility is
determined by the aggregation of the two criteria. A fuzzy aggregation operator
is used for this purpose. The outcome of the decision procedure is the O overall
compatibility matrix whose Oi,j elements are given by

Oi,j =

[
(µ1

i,j)
2 + (µ2

i,j)
2

2

]1/2

. (6.26)

268 Chapter 6. Segmentation of Multivariate Time-series

Given the O compatibility matrix, the clusters that will be merged must be iden-
tified and combined. Clusters can be merged in several ways. Our method merges
the most similar pair of adjacent clusters as long as the value of the corresponding
Oi,i+1 is above a threshold γ.

Cluster Merging

The applied bottom-up strategy merges two adjacent clusters in each iteration. To
preserve the information represented by the clusters there is a need for a merging
method that can directly compute the new initial parameters of the cluster from
the merged clusters. This can be done by several ways (e.g., by Stroupe and
Durrant-Whyte methods [188]). In this chapter the method developed by P. M.
Kelly is applied [147].

The vx
i∗ mean of the resulting cluster is computed from the individual cluster

means

vx
i∗ =

Ni

Ni∗
vx

i +
Nj

Ni∗
vx

i+1 (6.27)

where Ni =
∑N

k=1 µi,k, Ni+1 =
∑N

k=1 µi+1,k and Ni∗ = Ni + Ni+1, while the Fi∗

new covariance matrix is calculated from the Fi and Fi+1 old covariance matrices
as

Fi∗ =
Ni − 1

Ni∗ − 1
Fi+

Ni+1 − 1

Ni∗ − 1
Fi+1+

NiNi+1

Ni∗(Ni∗ − 1)
[(vx

i −vx
i+1)(v

x
i −vx

i+1)
T]. (6.28)

The new values of Wi∗ and σ2
i∗,x can be computed by (6.13) and (6.14) based on

the eigenvector-eigenvalue decomposition of Fi∗. Based on the obtained results the
p(xk|ηi∗) probabilities can be easily computed (see the algorithm in Section 6.3.2).

This method can also be applied to merge the membership functions character-
ized by the parameters vt

i , σ2
i,t and vt

i+1, σ2
i+1,t, and the p(tk|ηi∗) probabilities can

be determined from the new values of vt
i∗ and σ2

i∗,t by (6.10). The unconditional
probability of the i∗th cluster is equal to the sum of the probabilities of the previ-
ous clusters p(ηi∗) = p(ηi) + p(ηi+1). After the previously presented initialization
of the new cluster prototype the new µi∗,k membership values can be computed
by (6.10) and (6.21).

6.3.4 Number of Principal Components

Beside the selection of the right number of clusters, the second bottleneck of the
successful application of the presented algorithm is the selection of the right num-
ber of principal components. This can be done by the analysis of the eigenvalues
of the covariance matrices of the initial segments. For this purpose a so-called
screenplot can be drawn that plots the ordered eigenvalues according to their con-
tribution to the variance of data. Another possibility is to define q based on the

6.3. Fuzzy Cluster based Fuzzy Segmentation 269

desired accuracy (loss of variance) of the PPCA models:

q−1∑

j=1

λi,j/
n∑

j=1

λi,j < accuracy ≤
q∑

j=1

λi,j/
n∑

j=1

λi,j . (6.29)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

e
ig

e
n

v
a

lu
e

s

Scoreplot

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.75

0.8

0.85

0.9

0.95

1

number of eigenvalues

ra
te

 o
f

c
u

m
u

la
ti
v
e

 s
u

m

(a) Synthetic dataset.

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

ei
g

en
v

al
u

es

Screeplot

1 2 3 4 5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

number of eigenvalues

ra
te

 o
f

cu
m

u
la

ti
v

e
su

m

(b) Industrial dataset.

Figure 6.3: Screeplots of the synthetic and the industrial data shown in Figure 6.1
and Figure 6.4, respectively.

The synthetic dataset shown in Figure 6.1 was initially partitioned into ten
segments. As Figure 6.3(a) illustrates, the magnitude of the eigenvalues and their
cumulative rate to their sum show that two PCs are sufficient to approximate the
distribution of the data with 98% accuracy. Obviously, this analysis can be fully
automatized.

It is interesting to note that the analysis of the fuzzy hypervolume cluster
validity measure is similar to the approach of the analysis of the eigenvalues,
because the Vi = (det(Fi))

1/2 hypervolume of a cluster is proportional to the
product of the eigenvalues. Hence, the right number of principal components can
be also determined based on the product of the q largest eigenvalues.

6.3.5 The Segmentation Algorithm

Based on the previously presented building blocks the presented clustering based
segmentation algorithm is formulated as shown in Algorithm 6.3.2.

This formulation of the algorithm shows that although there is a need to define
some parameters of the algorithm before its application (γ, ǫ, and the initial num-
ber of clusters), it is possible to apply the method for high-dimensional time-series
even if almost nothing is known about the structure of these series in advance.

270 Chapter 6. Segmentation of Multivariate Time-series

Algorithm 6.3.2 (Time-Series Segmentation Algorithm).

Step 1 Uniformly segment the data by a large number of segments (in the ex-
amples given in this chapter ten segments were used as starting point).
Determine the q number of the principal components based on the anal-
ysis of the eigenvalues of these segments. For this purpose screeplot or
cluster validity measure can be used (see Section 6.3.4 for more details).

Step 2 The values of m fuzziness parameter, the γ threshold for the O com-
patibility matrix and the ǫ termination tolerance must be chosen. In the
case studies m = 2, ǫ = 10−4, the value of γ is usually between 0.3–0.75
depending of the homogeneity of the time-series.

Step 3 Execute the clustering algorithm (see Section 6.3.2). The cluster merg-
ing must be evaluated after a predefined number of iteration steps (see
Section 6.3.3). In all of our applications this number was 100. The algo-
rithm stops if the termination tolerance is reached and cluster merging is
not necessary.

Hence, the method is useful for knowledge discovery. Of course, data mining is
an iterative procedure. The results of the segmentation should be evaluated by
human experts or by the performances of other modelling and data mining tools
based on the segmented data, and if it is needed, the “knowledge worker” should
return to the segmentation task with a new set of these parameters.

6.3.6 Case Studies

In this section the effectiveness of the developed algorithm will be illustrated by
two examples: the synthetic dataset introduced in Section 6.2 and an industrial
dataset taken from an industrial polymerization reactor, and the obtained results
will be compared to the results given by the multivariate extension of the bottom-
up segmentation algorithm of Keogh [149].

Example 6.1 (Synthetic time-series segmentation based on GG clustering). The
synthetic dataset given in Figure 6.1 is designed to illustrate how a multivariate
segmentation algorithm should detect the changes of the latent process behind the
high-dimensional data.

In Figure 6.3 it has been shown that the screeplot of the eigenvalues suggests that
the clustering algorithm should take into account two principal components. From
Figure 6.1(c) – which shows the βi normalized and the Ai(t) = p(tk|ηi) Gaussian
membership functions, and the p(zk|ηi) probabilities – it can be seen that with
this parameter the presented method found five segments and it is able to detect

6.3. Fuzzy Cluster based Fuzzy Segmentation 271

the changes in the correlation structure and in the mean of the data. The S
i(i+1)
PCA

similarity measures of the adjacent clusters are 0.99, 0.17, 0.99, and 0.99812, which
suggest that the correlation among the variables has significantly changed between
the first and the second segment, while the other segments differ mainly in their
mean. These results agree with Figure 6.1(a) and justify the accuracy and the
usefulness of the presented method.

To illustrate the importance of the selection of the right number of PCs the same
segmentation has been performed with only one PC. In this case, the algorithm
found 10 nearly symmetric segments, hence it was not able to explore the hidden
information behind the data. As it is depicted in Figure 6.1(c), in case of five PCs
the algorithm gave reasonable, but not so characteristic result.

These results were compared to the results of the bottom-up method based on the
Hotelling T 2 (top) and the reconstruction error Q (bottom) shown in Figure 6.1(d).
The bottom-up algorithm based on the reconstruction error Q is sensitive to the
change in the correlation structure but it was not able to find the change in the
mean. The method based on the Hotelling T 2 measure is on the contrary. The
method based on the Q measure is very sensitive to the number of PCs. As can be
seen in Figure 6.1(d) when q = 2 the result is very different from that obtained by
q = 5, but in both cases the algorithm finds the change in the correlation structure.

This comparison showed contrary to the multivariate extensions of the classical
bottom-up segmentation algorithm, the developed cluster analysis based segmen-
tation algorithm can simultaneously handle the problems of the detection of the
change of the latent process and the change of the mean of the variables and it is
more robust with respect to the number of principal components.

�

Example 6.2 (Application of clustering based time-series segmentation to process
monitoring). Manual process supervision relies heavily on visual monitoring of
characteristic shapes of changes in process variables, especially their trends. Al-
though humans are very good at visually detecting such patterns, it is a difficult
problem for a control system software. Researchers with different background, for
example from pattern recognition, digital signal processing and data mining, have
contributed to the process trend analysis development [154, 252, 284].

The aim of this example is to show how the presented algorithm is able to
detect meaningful temporal shapes from multivariate historical process data. The
monitoring of a medium and high-density polyethylene (MDPE, HDPE) plant is
considered. The plant is operated by TVK Ltd. (www.tvk.hu), which is the largest
Hungarian polymer production company and produces raw materials for versatile
plastics used for household goods, packaging, car parts and pipe. An interesting
problem with the process is that it requires the production about ten product grades
according to the market demand. Hence, there is a clear need to minimize the time
of changeover between the different products because off-specification product may

272 Chapter 6. Segmentation of Multivariate Time-series

be produced during the process transition. The difficulty of the analysis of the pro-
duction and the transitions comes from the fact that there are more than ten process
variables that need to be simultaneously monitored. Measurements are available in
every 15 seconds on process variables xk, which are the polymer production inten-
sity (PE), the inlet flowrates of hexene (C6in), ethlylene (C2in), hydrogen (H2in),
the isobutane solvent (IBin) and the catalyzator (Kat), the concentrations of ethy-
lene (C2), hexene (C6), and hydrogen (H2) and the slurry in the reactor (slurry),
and the temperature of the reactor (T).

0 50 100 150
−10

0

10

C
2
 (

w
%

)

0 50 100 150
−5

0

5

C
6
 (

w
%

)

0 50 100 150
−20

0

20

H
2
 (

m
o
l%

)

0 50 100 150
−10

0

10

sl
u
rr

y
 (

g
/c

m
3
)

0 50 100 150
−2

0

2

T
 (

o
C

)

time [h]

(a) States of the reactor.

0 50 100 150
−10

0

10

P
E

 (
t/

h
)

0 50 100 150
−5

0

5

C
6
in

 (
k
g
/h

)

0 50 100 150
−5

0

5

C
2
in

 (
t/

h
)

0 50 100 150
−5

0

5
H

2
in

 (
k
g
/h

)

0 50 100 150
−5

0

5

IB
in

 (
t/

h
)

0 50 100 150
−5

0

5

K
at

in

time [h]

(b) Input variables of the reactor.

0 50 100 150
0

0.5

1

β
i(t

k
)

0 50 100 150
0

0.5

1

A
i(t

k
)

0 50 100 150
0

0.5

1

p
(

z
k
 |

η
i)

time

(c) Fuzzy segmentation results,
q = 5, γ = 0.4.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

H
o
te

ll
in

g
 T

2

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Q
 R

ec
o
n
st

ru
ct

io
n
 e

rr
o
r

time [h]

(d) Bottom-up segmentation results.

Figure 6.4: Segmentation of the industrial dataset.

The dataset used in this example represents 160 hours of operation and includes
three product transitions around the 24, 54, and 86th hour. The initial number of
the segments was ten and the γ threshold was chosen to γ = 0.4. In the Figure 6.3 it
can be seen that q = 5 principal components must be considered for 95% accuracy.

6.4. Conclusions 273

As Figure 6.4 shows, both the bottom-up and the clustering based algorithm
are able to detect the product transitions, and all the three methods gave similar
results. This reflects that the mean and the covariance of the data were not inde-
pendently changed. This is also confirmed by the analysis of the compatibilities of
the adjacent clusters. As it can be seen, the product transitions are represented by
two independent clusters, while the third transition was not so characteristic that
it would require an independent segment. This smooth transition between the third
and the fourth product is also reflected by how the p(zk|ηi) probabilities overlap
between the 75–125th hour of operation. The changes of the p(zk|ηi) probabilities
around the 135th hour of operation are also informative, as the period of lower or
drastically changing probabilities reflect some erroneous operation of the process.
The results are similar if more than 5 principal components are taken into account.

This example illustrated that the presented tool can be applied for the segmenta-
tion of a historical database and with the application of this tool useful information
can be extracted concerning the changes of the operation regimes of the process and
process faults. In the current state of our project we use this tool to compare the
production of different products and extract homogenous segments of operation that
can be used by a Kalman-filter based state estimation algorithm for the identifica-
tion of useful kinetic parameters and models which are able to predict the quality
of the products [4].

�

6.4 Conclusions

This chapter presented a new clustering algorithm for the fuzzy segmentation of
large multivariate time-series. The algorithm is based on the simultaneous iden-
tification of fuzzy sets which represent the segments in time and the hyperplanes
of local PCA models used to measure the homogeneity of the segments. The algo-
rithm favors contiguous clusters in time and is able to detect changes in the hidden
structure of multivariate time-series. A fuzzy decision making algorithm based on
a compatibility criterion of the clusters has been worked out to determine the re-
quired number of segments, while the required number of principal components are
determined by the screeplots of the eigenvalues of the fuzzy covariance matrices.

The results suggest that the presented tool can be applied to extract useful
information from temporal databases, e.g., the detected segments can be used to
classify typical operational conditions and analyze product grade transitions.

Beside the industrial application example a synthetic dataset was analyzed
to convince the readers about the usefulness of the method. Furthermore, the
MATLAB� code of the algorithm is available from our website

(www.fmt.vein.hu/softcomp/segment),
so the readers can easily test the presented method on their own datasets.

The application of the identified fuzzy segments in intelligent query systems
designed for multivariate historical process databases is an interesting and useful
idea for future research.

Appendix

Hermite Spline Interpolation

Lets define a cubic spline for a knot sequence Ξ, a = ξ0 < ξ1 < . . . < ξN = b.
The cubic spline is then based on cubic polynomes of the form S(x), given for
each subinterval [ξ0, ξ1], [ξ1, ξ2], . . . , [ξN−1]. These polynomes are connected at the
interior knots Ξ in such a way that S(x) has two continuous derivatives on [a, b].
Every cubic splines can be written in the form:

S(x) = αx3 + βx2 + γx + δ +

B−1∑

i=1

ai|x − ξi|3 . (A.1)

Thus, S(x) is simply a linear combination of the functions

x3, x2, x, 1, |x − ξ1|3, . . . , |x − ξN−1|3 . (A.2)

An efficient notation for identification is given by Horiuchi [120], who defined the
piecewise polynoms by a combination of the function-value and its first derivative
at the knots:

Si(x) =
dS(ξi)

dx
· (ξi+1 − x)2(x − ξi)

h2
i

−dS(ξi+1)

dx
· (x − ξi)

2(ξi+1 − x)

h2
i

+S(ξi) ·
(ξi+1 − x)2(2(x − ξi) + hi)

h3
i

+S(ξi+1) ·
(x − ξi)

2(2(ξi+1 − x) + hi)

h3
i

, (A.3)

where hi = (ξi+1 − ξi).

276 Appendix: Hermite Spline Interpolation

Denote:

ai(x) =
(ξi+1 − x)2(x − ξi)

h2
i

, (A.4)

bi(x) = − (x − ξi)
2(ξi+1 − x)

h2
i

, (A.5)

ci(x) =
(ξi+1 − x)2(2(x − ξi) + hi)

h3
i

, (A.6)

di(x) =
(x − ξi)

2(2(ξi+1 − x) + hi)

h3
i

, (A.7)

and

yi = S(ξi), (A.8)

y′
i =

dS(ξi)

dx
, (A.9)

then (A.3) can be given as:

Si(x) = yiai(x) + yi+1bi(x) + y′
ici(x) + y′

i+1di(x). (A.10)

Now, the unknown variables yi and y′
i can be determined by a least square method.

Define a quadratic objective function Q by:

Q(y1, y
′
1, . . . , yN , y′

N+1) =

N∑

k=1

(S(xk) − yk)
2
. (A.11)

The function Q can be minimized by solving the normal equations derived by
partial differentiation of (A.11) with θ = [y1, y

′
1, . . . , yN , y′

N]:

Appendix: Hermite Spline Interpolation 277

Define for ν ∈ {a, b, c, d}:

νi =

qi∑

k=pi

ν1(xk). (A.12)

dQ

dθ
= 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · · ·
· · · · · · · · ·

c1d1 a1d1 d2
1 b1d1 · · · · −d1yk

c1b1 a1b1 b1d
2
1 b2

1 · · · · −b1yk

· · · · · · · · ·
· · · · cNdN aNdN d2

N bNdN −dNyk

· · · · cNbN aNbN bNd2
N b2

N −bNyk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2
1 a1c1 c1d1 b1c1 · · · · −c1yk

a1c1 a2
1 a1d1 a1b1 · · · · −a1yk

· · c2
2 a2c2 c2d2 b2c2 · · −c2yk

· · a2c2 a2
2 a2d2 a2b2 · · −a2yk

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[
θT

1

]

(A.13)

Bibliography

[1] J. Abonyi. Fuzzy Model Identification for Control. Birkhäuser, Cambridge,
MA, 2003.

[2] J. Abonyi. Instrument Engineers’ Handbook – ed: B.G. Lipták, volume 2,
chapter Neural Networks for Process Modelling, pages 253–264. 4 edition,
2005.

[3] J. Abonyi. Instrument Engineers’ Handbook – ed: B.G. Lipták, volume 2,
chapter Software for Fuzzy Logic Control, pages 360–374. 4 edition, 2005.

[4] J. Abonyi, P. Arva, S. Nemeth, Cs. Vincze, B. Bodolai, Zs.Horvath, G. Nagy,
and M. Nemeth. Operator support system for multi product processes – ap-
plication to polyethylene production. In European Symposium on Computer
Aided Process Engineering, pages 347–352. Lappeenranta, Finland, 2003.

[5] J. Abonyi, R. Babuska, H. Verbruggen, and F. Szeifert. Using a priori knowl-
edge in fuzzy model identification. International Journal of Systems Science,
31:657–667, 2000.

[6] J. Abonyi and R. Babuška. Local and global identification and interpre-
tation of parameters in Takagi–Sugeno fuzzy models. In Proceedings IEEE
International Conference on Fuzzy Systems, San Antonio, USA, May 2000.

[7] J. Abonyi, R. Babuška, T. Chovan, and F. Szeifert. Incorporating prior
knowledge in fuzzy c–regression models – application to system identifica-
tion. In Proceedings of the Intelligent Systems in Control and Measurement
Symposium, INTCOM 2000, pages 99–110, Veszprem, Hungary, 2000.

[8] J. Abonyi, A. Bodizs, L. Nagy, and F. Szeifert. Hybrid fuzzy convolution
model and its application in predictive control. Chemical Engineering Re-
search and Design, 78:597–604, 2000.

[9] J. Abonyi, B. Feil, and R. Babuska. State-space reconstruction and predic-
tion of chaotic time series based on fuzzy clustering. International Conference
on Systems, Man and Cybernetics, October 2004.

280 Bibliography

[10] J. Abonyi, B. Feil, S. Nemeth, and P. Arva. Modified Gath–Geva clustering
for fuzzy segmentation of multivariate time-series. Fuzzy Sets and Systems
– Fuzzy Sets in Knowledge Discovery, 149(1):39–56, 2005.

[11] J. Abonyi and F. Szeifert J.A. Roubos, M. Oosterom. Compact ts-fuzzy
models through clustering and OLS plus FIS model reduction. In Proc. of
IEEE international conference on fuzzy systems, Sydney, Australia, 2001.

[12] J. Abonyi, B.G. Lakatos, and Zs. Ulbert. Modelling and control of isothermal
crystallizers by self-organising maps. Chem. Eng. Trans., 1(3):1329–1334,
2002.

[13] J. Abonyi and J. Madar. Instrument Engineers’ Handbook – ed: B.G. Lipták,
volume 2, chapter Genetic and Other Evolutionary Algorithms, pages 181–
192. 4 edition, 2005.

[14] J. Abonyi, L. Nagy, and F. Szeifert. Hybrid fuzzy convolution modelling and
identification of chemical process systems. International Journal of Systems
Science, 31:457–466, 2000.

[15] J. Abonyi, H. Roubos, R. Babuska, and F. Szeifert. Identification of Semi-
Mechanistic Models with Interpretable TS-fuzzy Submodels by Clustering,
OLS and FIS Model Reduction, chapter 10. Fuzzy modelling and the
interpretability-accuracy trade-off. Part I, interpretability issues. Studies in
Fuzziness and Soft Computing, Physica-Verlag. 2003.

[16] J. Abonyi, H. Roubos, and F. Szeifert. Data-driven generation of compact,
accurate, and linguistically sound fuzzy classifiers based on a decision tree
initialization. International Journal of Approximate Reasoning, pages 1–21,
2003.

[17] J. Abonyi and F. Szeifert. Supervised fuzzy clustering for the identification
of fuzzy classifiers. Pattern Recognition Letters, 24(14):2195–2207, 2003.

[18] J. Abonyi, F. Szeifert, and R. Babuska. Modified Gath-Geva fuzzy clustering
for identification of Takagi-Sugeno fuzzy models. IEEE Systems, Man and
Cybernetics, Part B., pages 612–621, 2002.

[19] A. Ahalt, A.K. Khrisnamurthy, P. Chen, and D.E. Melton. Competitive
learning algorithms for vector quantization. Neural Networks, 3:277–290,
1990.

[20] H. Akaike. A new look at the statistical model identification. IEEE Trans.
on Automatic Control, 19:716–723, 1974.

[21] M.R. Anderberg. Cluster Analysis for Applications. Academic Press, Inc.,
1973.

[22] H.C. Andersen, A. Lotfi, and L.C. Westphal. Comments on ‘Functional
Equivalence Between Radial Basis Function Networks and Fuzzy Inference

Bibliography 281

Systems’. pages 1529–1530, May 1998. IEEE Transactions on Neural Net-
works.

[23] Y. Ashkenazy. The use of generalized information dimension in measuring
fractal dimension of time series. Physica A, 271:427–447, 1999.

[24] M. Ataei, B. Lohmann, A. Khaki-Sedigh, and C. Lucas. Model based method
for estimating an attractor dimension from uni/multivariate chaotic time
series with application to bremen climatic dynamics. Chaos, Solitons and
Fractals, 19:1131–1139, 2004.

[25] J.G. Augustson and J. Minker. An analysis of some graph theoretical clus-
tering techniques. J. ACM, 17(4):571–588, 1970.

[26] R. Babuška. Fuzzy Modelling for Control. Kluwer Academic Publishers,
Boston, 1998.

[27] R. Babuška, P. J. van der Veen, and U. Kaymak. Improved covariance
estimation for Gustafson-Kessel clustering. IEEE International Conference
on Fuzzy Systems, pages 1081–1085, 2002.

[28] R. Babuška and H.B. Verbruggen. New approach to constructing fuzzy rela-
tional models from data. In Proceedings Third European Congress on Intel-
ligent Techniques and Soft Computing EUFIT’95, pages 583–587, Aachen,
Germany, August 1995.

[29] R. Babuška and H.B. Verbruggen. Constructing fuzzy models by product
space clustering. In H. Hellendoorn and D. Driankov, editors, Fuzzy Model
Identification: Selected Approaches, pages 53–90. Springer, Berlin, Germany,
1997.

[30] R. Babuška and H.B. Verbruggen. Fuzzy identification of Hammerstein sys-
tems. In Proceedings Seventh IFSA World Congress, volume II, pages 348–
353, Prague, Czech Republic, June 1997.

[31] R. Babuška and H.B. Verbruggen. Fuzzy set methods for local modelling
and identification. In R. Murray-Smith and T.A. Johansen, editors, Multiple
Model Approaches to Nonlinear Modelling and Control, pages 75–100. Taylor
& Francis, London, UK, 1997.

[32] R. Babuška, H.B. Verbruggen, and H.J.L. van Can. Fuzzy modelling of
enzymatic penicillin–G conversion. Engineering Applications of Artificial
Intelligence, 12(1):79–92, 1999.

[33] F.B. Backer and L.J. Hubert. A graph theoretic approach to goodness-of-fit
in complete-link hierarchical clustering. J. Am. Stat. Assoc., 71:870–878,
1976.

[34] R.A. Baeza-Yates. Introduction to data structures and algorithms related to
information retrieval, pages 13–27. Information Retrieval: Data Structures
and Algorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, 1992.

282 Bibliography

[35] J.F. Baldwin, T.P. Martin, and J.M. Rossiter. Time series modelling and
prediction using fuzzy trend information. Proceedings of 5th International
Conference on Soft Computing and Information Intelligent Systems, pages
499–502, 1998.

[36] G.H. Ball and D.J. Hall. Isodata, a novel method of data analysis and
classification. Technical report, Stanford University, Stanford, CA, 1965.

[37] A. Banerjee and Y. Arkun. Model predictive control of plant transitions us-
ing a new identification technique for interpolating nonlinear models. Jour-
nal of Process Control, 8:441–457, 1998.

[38] A.M. Bensaid, L.O. Hall, J.C. Bezdek, L.P. Clarke, M.L. Silbiger, J.A. Ar-
rington, and R.F. Murtagh. Validity-guided (re)clustering with applications
to image segmentation. IEEE Transactions on Fuzzy Systems, 4:112–123,
1996.

[39] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, 1981.

[40] J.C. Bezdek and J.C. Dunn. Optimal fuzzy partitions: A heutristic for es-
timating the parameters in a mixture of normal distributions. IEEE Trans-
actions on Computers, pages 835–838, 1975.

[41] J.C. Bezdek, R.J. Hathaway, R.E. Howard, C.A. Wilson, and M.P. Wind-
ham. Local convergence analysis of a grouped variable version of coordinate
descent. Journal of Optimization Theory and Applications, 71:471–477, 1987.

[42] J.C. Bezdek and S.K. Pal. Fuzzy Models for Pattern Recognition. IEEE
Press, New York, 1992.

[43] A. Biem, Katagiri S., McDermott E., and Juang BH. An application of dis-
criminative feature extraction to filter-bank-based speech recognition. IEEE
Transactions On Speech And Audio Processing, 9(2):96–110, 2001.

[44] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[45] C.M. Bishop, M. Svensen, and C.K.I. Williams. Developments of the gener-
ative topographic mapping. Neurocomputing, 21:203–224, 1998.

[46] C.M. Bishop, M. Svensen, and C.K.I. Williams. Gtm: the generative topo-
graphic mapping. Neural Comput., 10(1):215–234, 1998.

[47] C.M. Bishop and M.E. Tipping. A hierarchical latent variable model for
data visualization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(3):281–293, March 1998.

[48] T. Bohlin. A case study for grey box identification. Automatica, 30(2):307–
318, 1994.

Bibliography 283

[49] J.D. Bomberger and D.E. Seborg. Determination of model order for NARX
models directly from input–output data. Journal of Process Control, 8:459–
468, Oct–Dec 1998.

[50] K.M. Bossley. Neurofuzzy Modelling Approaches in System Identification.
PhD thesis, University of Southampton, 1997.

[51] R. Brachman and T. Anand. The process of knowledge discovery in
databases. In Advances in Knowledge Discovery and Data Mining, pages
37–58. AAAI/MIT Press, 1994.

[52] V.L. Brailovsky. A probabilistic approach to clustering. Pattern Recogn.
Lett., 12(4):193–198, 1991.

[53] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Chapman and Hall (Wadsworth, Inc.), 1984.

[54] M. Leok B.T. Estimating the attractor dimension of the equatorial weather
system. Acta Physica Polonica A, 85, 1994.

[55] Letellier C. and Aguirre L.A. Investigating nonlinear dynamics from time
series: The influence of symmetries and the choice of observables. Chaos,
12(3):549–558, September 2002.

[56] J.A. Cadzow and O.M. Solomon. Algebraic approach to system identifi-
cation. IEEE Trans. on Acoust. Speach, Signal Processing, 34(3):492–496,
1988.

[57] F. Camastra. Data dimensionality estimation methods: a survey. Pattern
Recognition, 36:2945–2954, 2003.

[58] L. Cao. Practical method for determining the minimum embedding dimen-
sion of a scalar time series. Physica D, 110:43–50, 1997.

[59] G.A. Carpenter and S. Grossberg. Normal and amnesic learning, recognition,
and memory by a neural model of cortico-hippocampal interactions. Trends
in Neuroscience, 16(4):131–137, 1993.

[60] M. Casdagli. Nonlinear prediction of chaotic time series. Physica D, 35:335–
356, 1989.

[61] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new
approach to indexing high dimensional spaces. Proceedings of the 26th VLDB
Conference Cairo Egypt, page P089, 2000.

[62] C. Chatterjee and V.P. Roychowdhury. On self-organizing algorithms and
networks for class-separability features. IEEE Transactions on Neural Net-
works, 8(3):663–678, 1997.

[63] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern
Anal. Mach. Intell., 17(7):790–799, 1995.

284 Bibliography

[64] S.L. Chiu. Selecting input variables for fuzzy models. Journal of Intelligent
and Fuzzy Systems, 4:243–256, 1996.

[65] K.J. Cios, W. Pedrycz, and R.W. Swiniarski. Data Mining Methods for
Knowledge Discovery. Kluwer Academic Press, Boston, 1998.

[66] A.L. Corcoran and S. Sen. Using real-valued genetic algorithms to evolve
rule sets for classification. In IEEE-CEC, pages 120–124, Orlando, USA,
1994.

[67] D. Cubanski and D. Cyganski. Multivariable classification through adaptive
Delaunay-based c0 spline approximation. IEEE Transactions on Pattern
Analyzis and Machine Intelligence, 17:403–417, 1995.

[68] Dick de Ridder and Robert P.W. Duin. Sammon’s mapping using neural
networks: A comparison. Pattern Recognition Letters, 18:1307–1316, 1997.

[69] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. J. Royal Stat. Soc. B., 39(1):1–38,
1977.

[70] E. Diday and J.C. Simon. Clustering analysis. Digital Pattern Recognition,
47–94. Springer-Verlag, Secaucus, NJ, 1976.

[71] A. Dobra and J. Gehrke. Secret: A scalable linear regression tree algorithm.
In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 2002. Edmonton, Alberta,
Canada.

[72] D. Dong and T.J. McAvoy. Nonlinear principal component analysis – based
on principal curves and neural networks. Computers and Chemical Engi-
neering, 20(1):65–78, 1996.

[73] F.J. Doyle, B.A. Ogunnaike, and R.K. Pearson. Nonlinear model-based
control using second-order volterra models. Automatica, 31:697, 1995.

[74] N.R. Draper and H. Smith. Applied Regression Analysis, 3rd Edition. John
Wiley and Sons, Chichester, 1994.

[75] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy
Control. Springer-Verlag, Heidelberg, Germany, 1993.

[76] R.C. Dubes. How many clusters are best? – an experiment. Pattern Recogn.,
20(6):645–663, 1987.

[77] R.C. Dubes. Cluster analysis and related issues. In Handbook of pattern
recognition & computer vision, pages 3–32, River Edge, NJ, USA, 1993.
World Scientific Publishing Co., Inc.

[78] M.P. Dubuisson and A.K. Jain. A modified hausdorff distance for object
matching. In Proceedings of International Conference on Pattern Recognition
(ICPR 94), pages 566–568, 1994.

Bibliography 285

[79] J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting
compact well separated cluster. Journal of Cybernetics, 3:32–57, 1974.

[80] H.Al. Duwaish and N.M. Karim. A new method for identification of Ham-
merstein model. Automatica, 33(10):1871–1875, 1997.

[81] H.Al. Duwaish, N.M. Karim, and V. Chandrasekar. Use of multilayer feed-
forward neural networks in identification and control of Wiener model. IEE
Proceedings of Control Theory and Applications, 143(3):255–258, 1996.

[82] Mendes EMAM and Billings S.A. An alternative solution to the model struc-
ture selection problem. IEEE Transactions on Systems Man and Cybernetics
part A-Systems and Humans, 31(6):597–608, 2001.

[83] E. Eskinat, S.H. Johnson, and W. Luyben. Use of Hammerstein models in
identification of nonlinear systems. AIChE Journal, 37(2):255–268, 1991.

[84] J.D. Farmer and J.J. Sidorowich. Predicting chaotic time series. Physical
Review Letters, 59(8):845–848, 1987.

[85] B. Feil, J. Abonyi, and F. Szeifert. Model order selection of nonlinear input-
output models – a clustering based approach. Journal of Process Control,
14(6):593–602, 2004.

[86] B.A. Foss, T.A. Johansen, and A.V. Sorensen. Nonlinear predictive control
using local models – applied to a batch fermentation processes. Control
Engineering Practice, 3:389–396, 1995.

[87] A.M. Fraser and H.L. Swinney. Independent coordinates for strange attrac-
tors from mutual information. Physical Review A, 33(2):1134–1140, 1986.

[88] J.H. Friedman. Multivariate adaptive regression splines. The Annals of
Statistics, 19:1–141, 1991. with discussion.

[89] K.P. Fruzetti, A. Palazoglu, and K.A. McDonald. Nonlinear model predictive
control using Hammerstein models. Jounral of Process Control, 7(1):31–41,
1997.

[90] K.S. Fu and S.Y. Lu. A clustering procedure for syntactic patterns. IEEE
Trans. Syst. Man Cybern., 7:734–742, 1977.

[91] K. Fukunaga and D.R. Olsen. An algorithm for finging intrinsic dimension-
ality of data. IEEE Trans. Comput., 20(2):165–171, 1976.

[92] R. Gallion, D.C.St. Clair, C. Sabharwahl, and W.E. Bond. Dynamic id3: A
symbolic learning algorithm for many-valued attribute domains. In in Proc.
1993 Symp.Applied Computing., pages 14–20, New York, ACM Press, 1993.

[93] I. Gath and A.B. Geva. Unsupervised optimal fuzzy clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 7:773–781, 1989.

286 Bibliography

[94] E.P. Gatzke and F. Doyle III. Multiple model approach for CSTR control. In
Proceedings of the 14th Triennieal IFAC World Congress, pages N–7a–11–5,
1999.

[95] N. Gershenfeld, B. Schoner, and E. Metois. Cluster-weighted modelling for
time-series analysis. Nature, 397:329–332, 1999.

[96] A.B. Geva. Hierarchical-fuzzy clustering of temporal-patterns and its appli-
cation for time-series prediction. Pattern Recognition Letters, 20:1519–1532,
1999.

[97] D. Girimonte, R. Babuska, and J. Abonyi. Fuzzy clustering for selecting
structure of nonlinear models with mixed discrete and continuous inputs. In
FUZZ-IEEE’04 Conference, Budapest, Hungary, 2004.

[98] G.C. Gotlieb and S. Kumar. Semantic clustering of index terms. J. ACM,
15:493–513, 1968.

[99] K.C. Gowda and E. Diday. Symbolic clustering using a new dissimilarity
measure. IEEE Trans. Syst. Man Cybern., 22:368–378, 1992.

[100] K.C. Gowda and G. Krishna. Agglomerative clustering using the concept of
mutual nearest neighborhood. Pattern Recogn., 10:105–112, 1977.

[101] J.C. Gower and G.J.S. Ross. Minimum spanning trees and single-linkage
cluster analysis. Appl. Stat., 18:54–64, 1969.

[102] P. Grassberger and I. Procaccia. Measuring the strangeness of strange at-
tractors. Physica D, 9:189–208, 1983.

[103] P. Grassberger and I. Procaccia. Measuring the strangeness of strange at-
tractors. Physica D, 9:189–208, 1983.

[104] A. Grauel and H. Mackenberg. Mathematical analysis of the Sugeno con-
troller leading to general design rules. Fuzzy Sets and Systems, 85:165–175,
1997.

[105] S. Grossberg. How does a brain build a cognitive code? Psychological Review,
87:1–51, 1980.

[106] S. Grossberg. The link between brain, learning, attention, and consciousness.
Consciousness and Cognition, 8:1–44, 1999.

[107] J.K. Gugaliya, R.D. Gudi, and S. Lakshminarayanan. Multi-model decompo-
sition of nonlinear dynamics using a fuzzy-cart approach. Journal of Process
Control, 15:417–434, 2005.

[108] D.E. Gustafson and W.C. Kessel. Fuzzy clustering with fuzzy covariance
matrix. In Proceedings of the IEEE CDC, San Diego, pages 761–766, 1979.

[109] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

Bibliography 287

[110] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2001.

[111] M. Hanesch, R. Scholger, and M.J. Dekkers. The application of fuzzy c-
means cluster analysis and non-linear mapping to a soil data set for the
detection of polluted sites. Phys. Chem. Earth, 26:885–891, 2001.

[112] E.J. Hartman, J.D. Keeler, and J.M. Kowalski. Layered neural networks with
gaussian hidden units as universal approximations. Neural Computation,
2:210–215, 1990.

[113] R.J. Hathaway and J.C. Bezdek. Switching regression models and fuzzy
clustering. IEEE Transactions on Fuzzy Systems, 1:195–204, 1993.

[114] X. He and H. Asada. A new method for identifying orders of input-output
models for nonlinear dynamic systems. Proceedings of the ACC, San Fran-
sisco, CA:2520–2523, 1993.

[115] H. Hellendoorn and D. Driankov, editors. Fuzzy Model Identification: Se-
lected Approaches. Springer, Berlin, Germany, 1997.

[116] E. Hernandez and Y. Arkun. Control of nonlinear systems using polynomial
ARMA models. AICHE Journal, 39(3):446–460, 1993.

[117] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. T. Toivonen.
Time-series segmentation for context recognition in mobile devices. IEEE
International Conference on Data Mining (ICDM 01), San Jose, California,
pages 203–210, 2001.

[118] F. Hoffmann and O. Nelles. Genetic programming for model selection of
TSK-fuzzy systems. Information Sciences, 136(1-4):7–28, August 2001.

[119] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis
– Methods for Classification, Data Analysis and Image Recognition. John
Wiley and Sons, 1999.

[120] J. Horiuchi, M. Kishimoto, M. Kamasawa, and H. Miyakawa. Data base
simulation of batch and fed-batch cultures for α-amylase production using a
culture data base and a statistical procedure. Journal of Fermentation and
Bioengineering, 76(4):326–332, 1993.

[121] K.J. Hunt, R. Haas, and R. Murray-Smith. Extending the functional equiv-
alence of radial basis function networks and fuzzy inference systems. IEEE
Transactions on Neural Networks, 7(3):776–781, 1996.

[122] K.J. Hunt, D. Sbarbaro, R. Zbikowki, and P.J. Gawthrop. Neural networks
for control systems – A survey. IEEE Transactions on Neural Networks,
28:1083–1112, 1992.

[123] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing im-
ages using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell.,
15(9):850–863, 1993.

288 Bibliography

[124] M. Ichino and H. Yaguchi. Generalized minkowski metrics for mixed feature-
type data analysis. IEEE Trans. Syst. Man Cybern., 24:698–708, 1994.

[125] H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation of fuzzy
classifier systems for multidimensional pattern classification problems. IEEE
Transaction on Systems, Man, and Cybernetics: Part B, 29:601–618, 1999.

[126] I. Ivanova and M. Kubat. Initialization of neural networks by means of
decision trees. Knowledge-Based Systems, 8:333–344, 1995.

[127] R.A. Jacobs and M.I. Jordan. Learning piecewise control strategies in a
modular neural network architecture. IEEE Transactions on Systems, Man,
and Cybernetics, 23(2):337–345, 1993.

[128] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall
advanced reference series. Prentice-Hall, Inc., 1988.

[129] J.-S. R. Jang and C.-T. Sun. Functional Equivalence Between Radial Basis
Function Networks and Fuzzy Inference Systems. IEEE Transactions on
Neural Networks, 4(1):156–159, Jan. 1993.

[130] J.-S.R. Jang. Input selection for ANFIS learning. In Proceedings of the IEEE
International Conference on Fuzzy Systems, volume 2, pages 1493–1499, New
York, USA, 1996.

[131] J.-S.R. Jang, C.-T. Sun, and E. Mizutani. Neuro–Fuzzy and Soft Computing;
a Computational Approach to Learning and Machine Intelligence. Prentice–
Hall, Upper Sadle River, 1997.

[132] J.S.R. Jang and C.T. Sun. Neuro-fuzzy modelling and control. Proceedings
of the IEEE, 83:378–406, 1995.

[133] C.Z. Janikow. Fuzzy decision trees: Issues and methods. IEEE Trans. SMC-
B, 28:1–14, 1998.

[134] R.A. Jarvis and E.A. Patrick. Clustering using a similarity method based
on shared near neighbors. IEEE Trans. Comput. C, 22(8):1025–1034, 1973.

[135] X. Jiang and H. Adeli. Fuzzy clustering approach for accurate embedding
dimension identification in chaotic time series. Integrated Computer-Aided
Engineering, 10:287–302, 2003.

[136] Y. Jin. Fuzzy modelling of high–dimensional systems. IEEE Transactions
on Fuzzy Systems, 8:212–221, 2000.

[137] T.A. Johansen. Operating regime based process modelling and identification.
PhD thesis, Department of Engineering Cybernetics, Norwegian Institute of
Technolgy, University of Trondheim, Norway, 1994.

[138] T.A. Johansen. Identification of non–linear systems using empirical data
and a priori knowledge – an optimisation approach. Automatica, 32:337–
356, 1996.

Bibliography 289

[139] T.A. Johansen and R. Babuska. On multi-objective identification of takagi-
sugeno fuzzy model parameters. In Preprints 15th IFAC Word Congress,
Barcelona, Spain, 2002.

[140] T.A. Johansen, R. Shorten, and R. Murray-Smith. On the interpretation
and identification of Takagi–Sugeno fuzzy models. IEEE Transactions on
Fuzzy Systems, 8:297–313, 2000.

[141] J.H. Ward Jr. Hierarchical grouping to optimize an objective function. J.
Am. Stat. Assoc., 58:236–244, 1963.

[142] Norman F. Jr. Hunter. Nonlinear prediction of speach signals. In M. Casdagli
and S. Eubanks, editors, Nonlinear Modelling and Forecasting, Addison-
Wesley, pages 467–492, 1992.

[143] J.Zhang, E.B. Martin, and A.J. Morris. Process monitoring using non-linear
statistical techniques. Chemical Engineering Journal, 67:181–189, 1997.

[144] N. Kambhatala. Local Models and Gaussian Mixture Models for Statistical
Data Processing. Ph.D. Thesis, Oregon Gradual Institute of Science and
Technology, 1996.

[145] T. Kavli. ASMOD – an algorithm for adaptive spline modelling of observa-
tion data. International Journal of Control, 58(4):947–967, 1993.

[146] U. Kaymak and R. Babuska. Compatible cluster merging for fuzzy mod-
elling. In Proceedings of the IEEE International Conference on Fuzzy Sys-
tems, pages 897–904. Yokohama, Japan, 1995.

[147] P.M. Kelly. An algorithm for merging hyperellipsoidal clusters. Technical
Report LA-UR-94-3306, Los Alamos National Laboratory, Los Alamos, NM,
1994.

[148] M.B. Kennen, R. Brown, and H.D.I. Abarbanel. Determining embedding
dimension for phase-space reconstruction using a geometrical construction.
Physical Review, A:3403–3411, 1992.

[149] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for seg-
menting time series. IEEE International Conference on Data Mining, page
http://citeseer.nj.nec.com/keogh01online.html, 2001.

[150] E. Keogh and M. Pazzani. An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feedback. 4th
Int. Conf. on KDD., pages 239–243, 1998.

[151] E. Kim, S. Kim, and M. Park. A transformed input-domain approach to
fuzzy modelling. IEEE Transactions on Fuzzy Systems, 6:596–604, 1998.

[152] L. Kindermann and A. Lewandowski. Natural interpolation of time series.
BSIS Technical Reports 03-3, RIKEN Brain Science Institute, Lab for Math-
ematical Neuroscience, Japan ÖFAI, 2004.

290 Bibliography

[153] B. King. Step-wise clustering procedures. J. Am. Stat. Assoc., 69:86–101,
1967.

[154] S. Kivikunnas. Overview of process trend analysis methods and applications.
ERUDIT Workshop on Applications in Pulp and Paper Industry, page CD
ROM, 1998.

[155] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading,
MA, 1973.

[156] T. Kohonen. Self-organization and associative memory. Springer, Berlin,
2nd edition, 1984.

[157] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480, 1990.

[158] T. Kohonen. The self-organizing map. Neurocomputing, 21:1–6, 1998.

[159] I. Konenko, I. Bratko, and E. Roskar. Experiments in automatic learning of
medical diagnostic rules. Tech. Rep., J. Stefan Inst. Yugoslavia, 1994.

[160] A. Kovacs and J. Abonyi. Vizualization of fuzzy clustering results by modi-
fied Sammon mapping. In Proceedings of the 3rd International Symposium of
Hungarian Researchers on Computational Intelligence, pages 177–188, 2004.

[161] M.A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. Neural Computation, 9(7):1493–1516, 1991.

[162] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. American Mathematical Society, 7:48–50, 1956.

[163] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29:1–27, 1964.

[164] J.B. Kruskal. Nonmetric multidimensional scaling: a numerical method.
Psychometrika, 29:115–130, 1964.

[165] J.B Kruskal and M. Wish. Multidimensional scaling. Sage University Papers
on Quantitative Applications in the Social Sciences, 07(011), 1978. Newbury
Park, CA.

[166] W.J. Krzanowsky. Between group comparison of principal components. J.
Amer. Stat. Assoc., pages 703–707, 1979.

[167] M. Kubat. Decision trees can initialize radial-basis-function networks. IEEE
Trans. NN, 9:813–821, 1998.

[168] Aguirre L.A. and Mendes E.M.A.M. Global nonlinear polynomial models:
Structure, term clusters and fixed points. International Journal of Bifurca-
tion and Chaos, 6(2):279–294, Februar 1996.

Bibliography 291

[169] Aguirre L.A. and Billings S.A. Improved structure selection for nonlin-
ear models based on term clustering. International Journal of Control,
62(3):569–587, September 1995.

[170] M. Last, Y. Klein, and A. Kandel. Knowledge discovery in time se-
ries databases. IEEE Transactions on Systems, Man, and Cybernetics,
31(1):160–169, 2000.

[171] M. Lebowitz. Categorizing numeric information for generalization. Cognitive
Science, 9:285–308, 1985.

[172] I.J. Leontaritis and S.A. Billings. Experimental design and identifiably for
nonlinear systems. International Journal of Systems Science, 18:189–202,
1987.

[173] G. Liang, D.M. Wilkes, and J.A. Cadzow. Arma model order estimation
based on the eigenvalues of the covariance matrix. IEEE Trans. on Signal
Processing, 41(10):3003–3009, 1993.

[174] T.W. Liao. Clustering of time series data – a survey. Pattern Recognition,
2005. In Press.

[175] G. Lightbody, P. O’Reilly, K. Kelly, and J. McCormick. Neural modelling
of chemical plant using MLP and B-spline networks. Control Engineering
Practice, 5(11):150–1515, 1997.

[176] B. Lillekjendlie, D. Kugiumtzis, and N. Christophersen. Chaotic time series
– part II: System identification and prediction. Modelling, Identification and
Control, 15(4):225–243, 1994.

[177] P. Lindskog and L. Ljung. Tools for semi-physical modelling. In Proceedings
IFAC SYSID, volume 3, pages 237–242, Kopenhagen, Danmark, 1994.

[178] D.A. Linkens and M.-Y. Chen. Input selection and partition validation for
fuzzy modelling using neural network. Fuzzy Sets and Systems, pages 299–
308, 1999.

[179] L. Ljung. System Identification, Theory for the User. Prentice–Hall, New
Jersey, 1987.

[180] W.-Y. Loh. Regression trees with unbiased variable selection and interaction
detection. Statistica Sinica, 12:361–386, 2002.

[181] S.Y. Lu and K.S. Fu. A sentence-tosentence clustering procedure for pattern
analysis. IEEE Trans. Syst. Man Cybern., 8:381–389, 1978.

[182] W. Luo, M.N. Karim, A.J. Morris, and E.B. Martin. A control relevant iden-
tification of a pH waste water neutralization process using adaptive radial
basis function networks. Computers and Chemical Engineering, 20/S:1017–
1022, 1996.

292 Bibliography

[183] Korenberg M., Billings S.A., Liu Y.P., and McIlroy P.J. Orthogonal
parameter-estimation algorithm for nonlinear stochastic-systems. Interna-
tional Journal of Control, 48(1):193–210, 1988.

[184] E.H. Mamdani. Advances in the linguistic synthesis of fuzzy controllers.
International Journal of Man-Machine Studies, 8:669–678, 1976.

[185] E.H. Mamdani, T. Teraqno, K. Asai, and M. Sugeno. Fuzzy-systems theory
and its applications. Nature, 359:788–788, 1992.

[186] J. Mao and A.K. Jain. A self-organizing network for hyperellipsoidal clus-
tering (hec). IEEE Trans. Neural Netw., 7:16–29, 1996.

[187] J. Mao and K. Jain. Artificial neural networks for feature extraction and
multivariate data projection. IEEE Trans. on Neural Networks, 6(2):296–
317, 1995.

[188] P. Marcelino, P. Nunes, P. Lima, and M.I. Ribeiro. Improving object local-
ization through sensor fusion applied to soccer robots. Actas do Encontro
Cientifico do Robotica, 2003.

[189] T. Martinetz and K. Schulter. Topology representing networks. Neural
Networks, 3:507–522, 1994.

[190] J. McQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pages 281–297, 1967.

[191] C. Merkwirth, U. Parlitz, I. Wedekind, and W. Lauterborn. TSTOOL User
Manual, Version 1.11. http://www.physik3.gwdg.de/ tstool/indexde.html,
April 12. 2002.

[192] R. Michalski, R.E. Stepp, and E. Diday. Automated construction of clas-
sifications: conceptual clustering versus numerical taxonomy. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-5, 5:396–409, 1983.

[193] S. Migaly, J. Abonyi, and F. Szeifert. Fuzzy self-organizing map based on
regularized fuzzy c-means clustering. Advances in Soft Computing, Engineer-
ing Design and Manufacturing, Springer Engineering Series, pages 99–108,
2002.

[194] T. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, 1997.

[195] J. Moody and C.J. Darken. Fast Learning in Networks of Locally-Tuned
Processing Units. Neural Computation, 1:281–294, 1989.

[196] R. Murray-Smith and T.A. Johansen. Multiple Model Appraoches to Mod-
elling and Control. Taylor and Francis, London, 1997.

[197] R. Murray-Smith and T.A. Johansen, editors. Multiple Model Approaches
to Nonlinear Modelling and Control. Taylor & Francis, London, UK, 1997.

Bibliography 293

[198] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms
which use cluster centers. Comput. J., 26:354–359, 1984.

[199] C.A. Pe na Reyes and M. Sipper. A fuzzy genetic approach to breast cancer
diagnosis. Artificial Intelligence in Medicine, 17:131–155, 2000.

[200] G. Nagy. State of the art in pattern recognition. Proc. IEEE, 56:836–862,
1968.

[201] K.S. Narendra and K. Parthasarathy. Identification and control of dynamical
systems. IEEE Transactions on Neural Networks, 1:4–27, 1990.

[202] D. Nauck and R. Kruse. Obtaining interpretable fuzzy classification rules
from medical data. Artificial Intelligence in Medicine, 16:149–169, 1999.

[203] A. Negiz and A. Cinar. Monitoring of multivariable dynamic processes and
sensor auditing. Journal of Process Control, 8(5):375–380, 1998.

[204] O. Nelles. Nonlinear System Identification. Springer, Berlin, Germany, 2001.

[205] S.J. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener
model predictive control (WMPC) to a pH neutralization experiment. IEEE
Transactions on Control Systems Technology, 7:437–445, 1999.

[206] S.J. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener
model predictive control (WMPC) to an industrial c2–splitter. Journal of
Process Control, 9:461–473, 1999.

[207] K. Ozawa. A stratificational overlapping cluster scheme. Pattern Recogn.,
18:279–286, 1985.

[208] P.F. Pach, J. Abonyi, S. Nemeth, and P. Arva. Supervised clustering and
fuzzy decision tree induction for the identification of compact classifiers. In
5th International Symposium of Hungarian Researchers on Computational
Intelligence, Budapest, Hungary, 2004.

[209] N.R. Pal, J.C. Bezdek, and E.C.K. Tsao. Generalized clustering networks
and Kohonen’s self-organization scheme. IEEE Transactions on Neural Net-
works, 4(4):549–557, 1993.

[210] N.R. Pal and V.K. Eluri. Two efficient connectionist schemes for structure
preserving dimensionality reduction. IEEE Transactions on Neural Net-
works, 9:1143–1153, 1998.

[211] R.D. Pascal-Marqui, A.D. Pascual Montano, K. Kochi, and J.M. Carazo.
Smoothly distributed fuzzy c-means: a new self organizing map. Pattern
Recognition, 34:2395–2402, 2001.

[212] K.M. Passino and S. Yurkovic. Fuzzy Control. Addison-Wesley, New York,
USA, 1998.

294 Bibliography

[213] R.K. Pearson. Selecting nonlinear model structures for computer control.
Journal of Process Control, 13(1):1–26, 2003.

[214] R.K. Pearson and B.A. Ogunnaike. Nonlinear process identification. In M.A.
Henson and D.E. Seborg, editors, Nonlinear Process Control, pages 11–109.
Prentice–Hall, Englewood Cliffs, NJ, 1997.

[215] W. Pedrycz and A. Zenon Sosnowskic. The design of decision trees in the
framework of granular data and their application to software quality models.
Fuzzy Sets and Systems, 123:271–290, 2001.

[216] M.H. Petrick and B.Wigdorowitz. A priori nonlinear model structure selec-
tion for system identification. Control Engineering Practise, 5(8):1053–1062,
1997.

[217] K. Pettis, T. Bailey, T. Jain, and R. Dubes. An intrinsic dimensionality es-
timator from near-neighbor information. IEEE Trans. Pattern Anal. Mach.
Intell., 1(1):25–37, 1979.

[218] M. Pottman and R.K. Pearson. Block-oriented narmax models with output
multiplicities. AIChE Journal, 44:131–140, 1998.

[219] M. Pottman, H. Unbehauen, and D.E. Seborg. Application of a general muti–
model approach for identification of highly nonlinear systems. International
Journal of Control, 57:97–120, 1993.

[220] M.J.D. Powell. Radial basis functions for multivariable interpolation – A
review. In Algorithms for Approximation, pages 143–167. Clarendon Press,
Oxford, 1987.

[221] R. Prim. Shortest connection networks and some generalizations. Bell Sys-
tem Technical Journal, 36:1389–1401, 1957.

[222] D.C. Psichogios and L.H. Ungar. A hybrid neural network – first principles
approach to process modelling. AIChE J., 38:1499–1511, 1992.

[223] S.J. Qin and T.J. McAvoy. Nonlinear PLS modelling using neural networks.
Computers and Chemical Engineering, 12(4):379–391, 1992.

[224] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[225] J.R. Quinlan. Improved use of continuous attributes in c4.5. Journal of
Artificial Intelligence Research, 4:77–90, 1996.

[226] V.V. Raghavan and C.T. Yu. A comparison of the stability characteristics of
some graph theoretic clustering methods. IEEE Trans. Pattern Anal. Mach.
Intell., 3:393–402, 1981.

[227] A.F.R. Rahman and M.C. Fairhurst. Multi-prototype classification: im-
proved modelling of the variability of handwritten data using statistical
clustering algorithms. Electron. Lett., 33(14):1208–1209, 1997.

Bibliography 295

[228] H. Rainer. Secret: A scalable linear regression tree algorithm. In Proc. of the
annual conf. of the North America Fuzzy Information Processing, 444–449
1997.

[229] C. Rhodes and M. Morari. Determining the model order of nonlinear in-
put/output systems. AIChE Journal, 44:151–163, 1998.

[230] J.A. Roubos and M. Setnes. Compact fuzzy models through complexity
reduction and evolutionary optimization. In Proc. of IEEE international
conference on fuzzy systems, pages 762–767, San Antonio, USA, 2000.

[231] J.A. Roubos, M. Setnes, and J. Abonyi. Learning fuzzy classification rules
from data. In R. John and R. Birkenhead, editors, Developments in Soft
Computing. Springer, Physica Verlag, 2001.

[232] D. Saez and A. Cipriano. Fuzzy modelling for a combined cycle power
plant. In Proceedings IEEE international Fuzzy Systems Conference, vol-
ume 2, pages 1186–1190, Seoul, Korea, 1999.

[233] G. Saltong. Developments in automatic text retrieval. Science, 253:974–980,
1991.

[234] T. Sauer, J.A. Yorke, and M. Casdagli. Embedology. Journal of Statistical
Physics, 65(3/4):579–615, 1991.

[235] J. Schubert, R. Simutis, M. Dors, and I. Havlik ab A. Lubbert. Biopro-
cess optimization and control: Application of hybrid modelling. Journal of
Biotechnology, 35:51–68, 1994.

[236] L.K. Sethi. Entropy nets: From decision trees to neural networks. Proc.
IEEE, 78:1605–1613, 1990.

[237] R. Setiono. Generating concise and accurate classification rules for breast
cancer diagnosis. Artificial Intelligence in Medicine, 18:205–219, 2000.

[238] R. Setiono and W.K. Leow. On mapping decision trees and neural networks.
Knowledge Based Systems, 13:95–99, 1999.

[239] M. Setnes and R. Babuška. Fuzzy relational classifier trained by fuzzy clus-
tering. IEEE Trans. SMC–B, 29:619–625, 1999.

[240] M. Setnes, R. Babuška, U. Kaymak, and H.R. van Nauta Lemke. Similarity
measures in fuzzy rule base simplification. IEEE Transactions on Systems,
Man and Cybernetics – Part B: Cybernetics, 28(3):376–386, 1998.

[241] M. Setnes, R. Babuška, and H.B. Verbruggen. Rule-based modelling: Preci-
sion and transparency. IEEE Trans. SMC-C, 28:165–169, 1998.

[242] M. Setnes, V. Lacrose, and A. Titli. Complexity reduction methods for
fuzzy systems design. In H.B. Verbruggen and R. Babuška, editors, Fuzzy
Logic Control: Advances in Applications, pages 185–218. World Scientific,
Singapore, 1999.

296 Bibliography

[243] M. Setnes and J.A. Roubos. Transparent fuzzy modelling using fuzzy clus-
tering and GA’s. In In NAFIPS, pages 198–202, New York, USA, 1999.

[244] C.E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379–432, 1948.

[245] R. Simutis and A. Lübbert. Exploratory analysis of bioprocesses using ar-
tificial neural network-based methods. Biotechnology Progress, 13:479–487,
1997.

[246] A. Singhal and D.E. Seborg. Matching patterns from historical data using
PCA and distance similarity factors. Proceedings of the American Control
Conference, pages 1759–1764, 2001.

[247] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.-Y. Glorennec,
H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modelling in system
identification: a unified overview. Automatica, 31:1691–1724, Dec 1995.

[248] A. Skeppstedt, L. Ljung, and M. Millnert. Construction of composite models
from observed data. International Journal of Control, 55:141–152, 1992.

[249] S. Skogestad. Dynamics and control of distilation columns. Chem. Eng. Res.
Des. (Trans IChemE), 75:539–562, 1997.

[250] P.H.A. Sneath and R.R. Sokal. Numerical Taxonomy. Freeman, London,
UK, 1973.

[251] R. Srinivasan, C. Wang, W.K. Ho, and K.W. Lim. Dynamic principal compo-
nent analysis based methodology for clustering process states in agile chem-
ical plants. Ind. Eng. Chem. Res., 43:2123–2139, 2004.

[252] G. Stephanopoulos and C. Han. Intelligent systems in process engineering:
A review. Comput. Chem. Engng., 20:743–791, 1996.

[253] H.T. Su and T.J. McAvoy. Integration of multilayer percepton networks
and linear dynamic models: A Hammerstein modelling approach. Ind. Eng.
Chem. Res., 32:1927–1936, 1993.

[254] M. Sugeno and G.T. Kang. Fuzzy modelling and control of multilayer in-
cinerator. Fuzzy Sets and Systems, 18:329–346, 1986.

[255] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative
modelling. IEEE Transactions on Fuzzy Systems, 1(1):7–31, 1993.

[256] M.J. Symon. Clustering criterion and multi-variate normal mixture. Bio-
metrics, 77:35–43, 1977.

[257] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applica-
tion to modelling and control. IEEE Transactions on Systems, Man and
Cybernetics, 15(1):116–132, 1985.

Bibliography 297

[258] F. Takens. Detecting strange attractor in turbulence. D.A. Rand, L.S.
Young (Eds.), Dynamical Systems and Turbulence, Springer, Berlin, pages
366–381, 1981.

[259] E. Tanaka. Theoretical aspects of syntactic pattern recognition. Pattern
Recogn., 28:1053–1061, 1995.

[260] H.A.B. te Braake. Neural Control of Biotechnological Processes. PhD thesis,
Delft University of Technology, Department of Electrical Engineering, Delft,
The Netherlands, 1997.

[261] H.A.B. te Braake, M.A Botto, H.J.L. van Can, J.S. Costa, and H.B. Ver-
bruggen. Linear predictive control based on approximate input-output feed-
back linearization. IEE Proceedings – Control Theory and Applications,
146(4):295–300, 1999.

[262] A. Tholudur and W.F. Ramirez. Optimization of fed-batch bioreactors using
neural network parameter function models. Biotechnology Progress, 12:302–
309, 1996.

[263] M.L. Thompson and M.A. Kramer. Modelling chemical processes using prior
knowledge and neural networks. AIChE Journal, 40:1328–1340, 1994.

[264] W.D. Timmons, H.J. Chizeck, and P.G. Katona. Parameter-constrained
adaptive control. Ind. Eng. Chem. Res., 36:4894–4905, 1997.

[265] M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal compo-
nent analyzers. Neural Computation, 11(2):443–482, 1999.

[266] G.T. Toussaint. The relative neighborhood graph of a finite planar set.
Pattern Recogn., 12:261–268, 1980.

[267] E.C.K. Tsao, J.C. Bezdek, and N.R. Pal. Fuzzy kohonen clustering networks.
Pattern Recognition, 27(5):757–764, 1994.

[268] H.J.A.F Tulleken. Gray-box modelling and identification using physical
knowledge and Bayesian techniques. Automatica, 29:285–308, 1993.

[269] T. Ullrich, K. Hohm, and H. Tolle. On the integration of expert knowledge in
interpolating controllers. In Proceedings of International ICSC/IFAC Sym-
posium on Neural Computation (NC 98), Vienna, Austria, 1998.

[270] T. Ullrich and H. Tolle. Delaunay–based local model networks for nonlinear
system identification. In Proceedings of IASTED International Conference
Applied Modelling and Simulation, Banff, Canada, 1997.

[271] H.J.L. van Can, H.A.B. te Braake, C. Hellinga, K.Ch.A.M. Luyben, and J.J.
Heijnen. Strategy for dynamic process modelling based on neural networks
and macroscopic balances. AIChE Journal, 42:3403–3418, 1996.

298 Bibliography

[272] K. Vasko and H.T.T. Toivonen. Estimating the number of segments in time
series data using permutation tests. IEEE International Conference on Data
Mining, pages 466–473, 2002.

[273] A. Vathy-Fogarassy, B. Feil, and J. Abonyi. Minimal spanning tree based
fuzzy clustering. In Cemal Ardil, editor, Transactions on Enformatika, Sys-
tems Sciences and Engineering, volume 8, pages 7–12, 2005.

[274] J. Vesanto. Neural network tool for data mining: Som toolbox. Proceedings of
Symposium on Tool Environments and Development Methods for Intelligent
Systems (TOOLMET2000), pages 184–196, 2000.

[275] P. Vuorimaa, T. Jukarainen, and E. Karpanoja. A neuro-fuzzy system for
chemical agent detection. IEEE Transactions On Fuzzy Systems, 4:403–414,
1995.

[276] B. Wahlberg. System–identification using laguerre models. IEEE Transac-
tions on Automatic Control, 36(5):551–562, 1991.

[277] B. Wahlberg. System-identification using kautz models. IEEE Transactions
on Automatic Control, 39(6):1276–1282, 1994.

[278] D.M. Walker and N.B. Tufillaro. Phase space reconstruction using input-
output time series data. HP Labs Technical Reports HPL-1999-24, 990223,
1999.

[279] L.X. Wang and J.M. Mendel. Fuzzy Basis Functions, Universal Approxima-
tors, and Orthogonal Least-Squares Learning. IEEE Trans Neural Networks,
3(5):807–814, Sept. 1992.

[280] L.X. Wang. A course in Fuzzy Systems and Control. Prentice Hall, New
York, USA, 1997.

[281] X.Z. Wang. Data Mining and Knowledge Discovery for Process Monitoring
and Control. Springer, 1999.

[282] S. Watanabe. Pattern Recognition: Human and Mechanical. John Wiley and
Sons, Inc., New York, NY, 1985.

[283] D.R. Wilson and T.R. Martinez. Improved heterogeneous distance functions.
J. Artif. Intell. Res., 6:1–34, 1997.

[284] J.C. Wong, K. McDonald, and A. Palazoglu. Classification of process trends
based on fuzzified symbolic representation and hidden markov models. Jour-
nal of Process Control, 8:395–408, 1998.

[285] X.L. Xie and G.A. Beni. Validity measure for fuzzy clustering. IEEE Trans.
PAMI, 3(8):841–846, 1991.

[286] G. Xinbo and X. Weixin. Advances in theory and applications of fuzzy
clustering. Chinese Science Bulletin, 45(11):961–970, 2000.

Bibliography 299

[287] L. Xu, A. Krzyzak, and E. Oja. Rival penalized competitive learning for
clustering analysis, RBF net and curve detection. IEEE Transactions on
Neural Networks, 4(4):636–649, 1993.

[288] R.R. Yager and D.P. Filev. Essentials of Fuzzy Modelling and Control. John
Wiley, New York, 1994.

[289] Y. Yam. Fuzzy approximation via grid point sampling and singular value
decomposition. IEEE Transactions on Systems, Man, and Cybernetics –
Part B., 27(6):933–951, 1997.

[290] Y. Yamashita. Supervised learning for the analysis of the process operational
data. Computers and Chemical Engineering, 24:471–474, 2000.

[291] H. Yan. Fuzzy curve-tracing algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 5:768–773, 2001.

[292] W. Yao. Improving Security of Communication via Chaotic Synchronization.
Phd thesis, the University of Western Ontario, 2002.

[293] J. Yen and L. Wang. Application of statistical information criteria for opti-
mal fuzzy model construction. IEEE Transactions on Fuzzy Systems, 6:362–
372, 1998.

[294] J. Yen and L. Wang. Simplifying fuzzy rule-based models using orthogonal
transformation methods. IEEE Transaction on Systems, Man, and Cyber-
netics: Part B, 29:13–24, 1999.

[295] J. Yen, L. Wang, and C.W. Gillespie. Improving the interpretability of
TSK fuzzy models by combining global learning and local learning. IEEE
Transactions on Fuzzy Systems, 6(4):531–537, 1998.

[296] I.S. Yenyukov. Data analysis learning symbolic and numeric knowledge,
chapter Indices for projection pursuit. Nova Science Publishers, New York,
1989.

[297] S.Y. Yi and M.J. Chung. Identification of fuzzy relational model and its
application to control. Fuzzy Sets and Systems, 59(1):25–33, 1993.

[298] L.A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[299] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. IEEE Trans. Comput. C, 20:68–86, 1971.

[300] D. Zhang, M. Kamel, and M.T. Elmasry. Fuzzy clustering neural network
(FCNN): competitive learning and parallel architecture. Journal of Intelli-
gent and Fuzzy Systems, 2(4):289–298, 1994.

[301] K. Zhang. Algorithms for the constrained editing distance between ordered
labeled trees and related problems. Pattern Recogn., 28:463–474, 1995.

[302] Y. Zhu. Parametric Wiener model identification for control. In Proceedings
IFAC Word Congress, pages H–3a–02–1, Bejing, China, July 1999.

Index

Akaike information criterion, 183
alternative optimization, 19
ANOVA decomposition, 145
assessment of output, 3
Auto-associative feed-forward

networks, 58
autocorrelation, 254
autocorrelation correlogram, 254
average mutual information, 201
axis-orthogonal projection, 100

B-spline network, 94
basis function, 95
Bayes classifier, 227
between-class covariance matrix, 112
block-oriented modelling, 146
bottleneck layer, 58
bottom-up segmentation algorithm,

259
Box–Jenkins model, 144
box-counting dimension, 205

chaotic time series, 198
classification, 225
classification and regression tree,

134
cluster

merging, 268
prototype, 18
validity, 4
validity measures, 40

clustering, 2
complete-link hierarchical

clustering, 10
cores, 91

correlation dimension, 205
correlogram , 254
curse of dimensionality, 115

data
abstraction, 3
matrix, 5
preprocessing, 83

decision tree, 115
defuzzification, 85
Discriminant Analysis, 58
distance norm, 2

embedding dimension, 199
empirical modelling, 142
Euclidean distance, 6
expectation maximization, 13

false nearest neighbor method, 185
feature, 5

extraction, 1, 48
selection, 1

feedback block-oriented model, 147
FID algorithm, 230, 246
final prediction-error, 183
firing strength, 85
free run simulation, 145
fuzzification, 83
Fuzzy

Curve-Tracing Algorithm, 70
Sammon Mapping, 59
Self-Organizing Map, 67

fuzzy
basis function, 86
c-means functional, 18

302 Index

classifier, 228
clustering, 17
covariance matrix, 25
decision tree, 117
inference, 85
logic, 81
modelling, 81
regression tree, 115
relational model, 85
segmentation of time-series, 261
set theory, 82

Gath–Geva clustering algorithm, 28
Generative Topographic Mapping ,

58
Gram-Schmidt orthogonalization,

112
grid partition, 87
Gustafson–Kessel algorithm , 24

Hammerstein model, 38, 147
hierarchical clustering, 9
hierarchical fuzzy system, 115

ID3 algorithm, 230, 246
if-then rule, 84
impulse response model, 144
inner-product norms, 24
input

-output model, 143
projection, 145
sequence design, 143
transformation, 145

interclass separability, 112

k-means algorithm, 11
Karhunen-Loeve transform, 50

lag time, 201
local dimension, 199
LOLIMOT, 118

Mahalanobis distance, 6
Mamdani fuzzy model, 85

maximum likelihood estimation, 28
membership function, 83
minimum description length, 183
Minkowski distance, 6
model order selection, 183
model validation, 143
Moore-Penrose pseudo inverse , 111
multi-step-ahead prediction , 145
multidimensional scaling, 59
mutual information, 201
mutual neighbor distance, 7

NAARX model, 146
NARX model, 144, 148
NOE model , 144
noise modelling, 143
number of principal components,

268
number of segments, 266

operating regime, 92
ordinary least-squares estimation,

101
orthogonal least squares method,

111
output-error (OE) model , 144

parallel model, 145
parameter estimation, 143
partial autocorrelations, 255
partitional clustering, 10
pattern, 5
pattern proximity, 2
PCA similarity factor , 266
piece-wise models, 93
postprocessing, 86
principal component, 48
Principal Component Analysis, 48
Probabilistic Principal Component

Analysis, 263
product-sum-gravity inference, 88
Projection Pursuit, 57

radial basis function, 95

Index 303

Regularized Fuzzy c-means
Clustering, 67

rule base, 84

Sammon mapping, 52
scatter partition, 88
seasonality analysis, 254
Self-Organizing Map, 54
semi-mechanistic modelling, 162
series-parallel model, 145
similarity

-driven rule base simplification,
234

measures, 5
of PCA models, 266
search, 255

single-link hierarchical clustering, 10
singleton fuzzy model, 88
SOM codebook, 55
state-space reconstruction, 198
structure selection, 115, 133, 143
supervised fuzzy clustering, 239
system identification, 141

Takagi–Sugeno (TS) fuzzy model, 85
terminal node, 120
time-series, 253
time-series segmentation, 253, 255
total least-squares estimation, 101
tree partition, 88
trend analysis, 254
triangular membership function, 89

universal approximation, 86

vector quantizer, 55
Volterra model, 146
Voronoi regions, 261

weighting exponent, 18
Wiener model, 147
within-class covariance matrix, 112

