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Preface

This volume contains 19 research papers belonging, roughly speaking, to the areas
of computational statistics, data mining, and their applications. Those papers, all
written specifically for this volume, are their authors’ contributions to honour and
celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The
volume is the brain-child of Janusz Kacprzyk, who has managed to convey his
enthusiasm for the idea of producing this book to us, its editors. Books related and
often interconnected topics, represent in a way Jacek Koronacki’s research interests
and their evolution. They also clearly indicate how close the areas of computational
statistics and data mining are.

Mohammad Reza Bonyadi and Zbigniew Michalewicz in their article
“Evolutionary Computation for Real-world Problems” describe their experience in
applying Evolutionary Algorithms tools to real-life optimization problems. In
particular, they discuss the issues of the so-called multi-component problems, the
investigation of the feasible and the infeasible parts of the search space, and the
search bottlenecks.

Susanne Bornelöv and Jan Komorowski “Selection of Significant Features Using
Monte Carlo Feature Selection” address the issue of significant features detection in
Monte Carlo Feature Selection method. They propose an alternative way of iden-
tifying relevant features based on approximation of permutation p-values by normal
p-values and they compare its performance with the performance of built-in
selection method.

In his contribution, Łukasz Dębowski “Estimation of Entropy from Subword
Complexity” explores possibilities of estimating block entropy of stationary ergodic
process by means of word complexity i.e. approximating function f(k|w) which for a
given string w yields the number of distinct substrings of length k. He constructs
two estimates and shows that the first one works well only for iid processes with
uniform marginals and the second one is applicable for much broader class of so-
called properly skewed processes. The second estimator is used to corroborate
Hilberg’s hypothesis for block length no larger than 10.

Maik Döring, László Györfi and Harro Walk “Exact Rate of Convergence of
Kernel-Based Classification Rule” study a problem in nonparametric classification

v

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-18781-5_1
http://dx.doi.org/10.1007/978-3-319-18781-5_2
http://dx.doi.org/10.1007/978-3-319-18781-5_2
http://dx.doi.org/10.1007/978-3-319-18781-5_4
http://dx.doi.org/10.1007/978-3-319-18781-5_4
http://dx.doi.org/10.1007/978-3-319-18781-5_5
http://dx.doi.org/10.1007/978-3-319-18781-5_5
http://www.ebook3000.org


concerning excess error probability for kernel classifier and introduce its decompo-
sition into estimation error and approximation error. The general formula is provided
for the approximation and, under a weak margin condition, its tight version.

Michał Dramiński in his exposition “ADX Algorithm for Supervised
Classification” discusses a final version of rule-based classifier ADX. It summa-
rizes several years of the author’s research. It is shown in experiments that inductive
methods may work better or on par with popular classifiers such as Random Forests
or Support Vector Machines.

Olgierd Hryniewicz “Process Inspection by Attributes Using Predicted Data”
studies an interesting model of quality control when instead of observing quality of
inspected items directly one predicts it using values of predictors which are easily
measured. Popular data mining tools such as linear classifiers and decision trees are
employed in this context to decide whether and when to stop the production
process.

Szymon Jaroszewicz and Łukasz Zaniewicz “Székely Regularization for Uplift
Modeling” study a variant of uplift modeling method which is an approach to assess
the causal effect of an applied treatment. The considered modification consists in
incorporating Székely regularization into SVM criterion function with the aim to
reduce bias introduced by biased treatment assignment. They demonstrate experi-
mentally that indeed such regularization decreases the bias.

Janusz Kacprzyk and Sławomir Zadrożny devote their paper “Compound
Bipolar Queries: A Step Towards an Enhanced Human Consistency and Human
Friendliness” to the problem of querying of databases in natural language. The
authors propose to handle the inherent imprecision of natural language using a
specific fuzzy set approach, known as compound bipolar queries, to express
imprecise linguistic quantifiers. Such queries combine negative and positive
information, representing required and desired conditions of the query.

Miłosz Kadziński, Roman Słowiński, and Marcin Szeląg in their paper
“Dominance-Based Rough Set Approach to Multiple Criteria Ranking with
Sorting-Specific Preference Information” present an algorithm that learns ranking of
a set of instances from a set of pairs that represent user’s preferences of one instance
over another. Unlike most learning-to-rank algorithms, the proposed approach is
highly interactive, and the user has the opportunity to observe the effect of their
preferences on the final ranking. The algorithm is extended to become a multiple
criteria decision aiding method which incorporates the ordinal intensity of prefer-
ence, using a rough-set approach.

Marek Kimmel “On Things Not Seen” argues in his contribution that frequently
in biological modeling some statistical observations are indicative of phenomena
which logically should exist but for which the evidence is thought missing. The
claim is supported by insightful discussion of three examples concerning evolution,
genetics, and cancer.

Mieczysław Kłopotek, Sławomir Wierzchoń, Robert Kłopotek and Elżbieta
Kłopotek in “Network Capacity Bound for Personalized Bipartite PageRank” start
from a simplification of a theorem for personalized random walk in an unimodal
graph which is fundamental to clustering of its nodes. Then they introduce a novel
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notion of Bipartite PageRank and generalize the theorem for unimodal graphs to
this setting.

Marzena Kryszkiewicz devotes her article “Dependence Factor as a Rule
Evaluation Measure” to the presentation and discussion of a new evaluation mea-
sure for evaluation of associations rules. In particular, she shows how the depen-
dence factor realizes the requirements for interestingness measures postulated by
Piatetsky-Shapiro, and how it addresses some of the shortcomings of the classical
certainty factor measure.

Adam Krzyżak “Recent Results on Nonparametric Quantile Estimation in a
Simulation Model” considers a problem of quantile estimation of the random
variable m(X) where X has a given density by means of importance sampling using
a regression estimate of m. It is shown that such yields a quantile estimator with a
better asymptotic properties than the classical one. Similar results are valid when
recursive Robbins-Monro importance sampling is employed.

The contribution of Błażej Miasojedov, Wojciech Niemiro, Jan Palczewski, and
Wojciech Rejchel in “Adaptive Monte Carlo Maximum Likelihood” deal with
approximation to the maximum likelihood estimator in models with intractable
constants by adaptive Monte Carlo method. Adaptive importance sampling and a
new algorithm which uses resampling and MCMC is investigated. Among others,
asymptotic results, such that consistency and asymptotic law of the approximative
ML estimators of the parameter are proved.

Jan Mielniczuk and Paweł Teisseyre in “What do We Choose When We Err?
Model Selection and Testing for Misspecified Logistic Regression Revisited”
consider common modeling situation of fitting logistic model when the actual
response function is different from logistic one and provide conditions under which
Generalized Information Criterion is consistent for set t* of the predictors pertaining
to the Kullback-Leibler projection of true model t. The interplay between t and t* is
also discussed.

Mirosław Pawlak in his contribution “Semiparametric Inference in Identification
of Block-Oriented Systems” gives a broad overview of semiparametric statistical
methods used for identification in a subclass of nonlinear-dynamic systems called
block oriented systems. They are jointly parametrized by finite-dimensional
parameters and an infinite-dimensional set of nonlinear functional characteristics.
He shows that using semiparametric approach classical nonparametric estimates are
amenable to the incorporation of constraints and avoid high-dimensionality/high-
complexity problems.

Marina Sokolova and Stan Matwin in their article “Personal Privacy Protection
in Time of Big Data” look at some aspects of data privacy in the context of big data
analytics. They categorize different sources of personal health information and
emphasize the potential of Big Data techniques for linking of these various sources.
Among others, the authors discuss the timely topic of inadvertent disclosure of
personal health information by people participating in social networks discussions.

Jerzy Stefanowski in his article “Dealing with Data Difficulty Factors while
Learning from Imbalanced Data” provides a thorough review of the approaches to
learning classifiers in the situation when one of the classes is severely
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underrepresented, resulting in a skewed, or imbalanced distribution. The article
presents all the existing methods and discusses their advantages and shortcomings,
and recommends their applicability depending on the specific characteristics of the
imbalanced learning task.

In his article James Thompson “Data Based Modeling” builds a strong case for a
data-based modeling using two examples: one concerning portfolio management
and second being the analysis of hugely inadequate action of American health
service to stop AIDS epidemic. The main tool in the analysis of the first example is
an algorithm called MaxMedian Rule developed by the author and L. Baggett.

We are very happy that we were able to collect in this volume so many contri-
butions intimately intertwined with Jacek’s research and his scientific interests.
Indeed, he is one of the authors of Monte Carlo Feature Selection system which is
discussed here and widely contributed to nonparametric curve estimation and clas-
sification (subject of Döring et al. and Krzyżak’s paper). He started his career with
research in optimization and stochastic approximation—the themes being addressed
in Bonyadi and Michalewicz as well as in Miasojedow et al. papers. He held long-
lasting interests in Statistical Process Control discussed by Hryniewicz. He also has,
as the contributors to this volume and his colleagues fromRice University, Thompson
and Kimmel, keen interests in methodology of science and stochastic modeling.

Jacek Koronacki has been not only very active in research but also has gener-
ously contributed his time to the Polish and international research communities. He
has been active in the International Organization of Standardization and in the
European Regional Committee of the Bernoulli Society. He has been and is a
longtime director of Institute of Computer Science of Polish Academy of Sciences
in Warsaw. Administrative work has not prevented him from being an active
researcher, which he continues up to now. He holds unabated interests in new
developments of computational statistics and data mining (one of the editors vividly
recalls learning about Székely distance, also appearing in one of the contributed
papers here, from him). He has co-authored (with Jan Ćwik) the first Polish text-
book in statistical Machine Learning. He exerts profound influence on the Polish
data mining community by his research, teaching, sharing of his knowledge, ref-
ereeing, editorial work, and by exercising his very high professional standards. His
friendliness and sense of humour are appreciated by all his colleagues and col-
laborators. In recognition of all his achievements and contributions, we join the
authors of all the articles in this volume in dedicating to him this book as an
expression of our gratitude. Thank you, Jacku; dziękujemy.

We would like to thank all the authors who contributed to this endeavor, and the
Springer editorial team for perfect editing of the volume.

Ottawa, Warsaw, March 2015 Stan Matwin
Jan Mielniczuk

viii Preface

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-18781-5_19
http://www.ebook3000.org


Contents

Evolutionary Computation for Real-World Problems . . . . . . . . . . . . . 1
Mohammad Reza Bonyadi and Zbigniew Michalewicz

Selection of Significant Features Using Monte Carlo
Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Susanne Bornelöv and Jan Komorowski

ADX Algorithm for Supervised Classification . . . . . . . . . . . . . . . . . . . 39
Michał Dramiński

Estimation of Entropy from Subword Complexity . . . . . . . . . . . . . . . . 53
Łukasz Dębowski

Exact Rate of Convergence of Kernel-Based Classification Rule. . . . . . 71
Maik Döring, László Györfi and Harro Walk

Compound Bipolar Queries: A Step Towards an Enhanced
Human Consistency and Human Friendliness . . . . . . . . . . . . . . . . . . . 93
Janusz Kacprzyk and Sławomir Zadrożny

Process Inspection by Attributes Using Predicted Data . . . . . . . . . . . . 113
Olgierd Hryniewicz

Székely Regularization for Uplift Modeling . . . . . . . . . . . . . . . . . . . . . 135
Szymon Jaroszewicz and Łukasz Zaniewicz

Dominance-Based Rough Set Approach to Multiple Criteria
Ranking with Sorting-Specific Preference Information . . . . . . . . . . . . 155
Miłosz Kadziński, Roman Słowiński and Marcin Szeląg

ix

http://dx.doi.org/10.1007/978-3-319-18781-5_1
http://dx.doi.org/10.1007/978-3-319-18781-5_2
http://dx.doi.org/10.1007/978-3-319-18781-5_2
http://dx.doi.org/10.1007/978-3-319-18781-5_3
http://dx.doi.org/10.1007/978-3-319-18781-5_4
http://dx.doi.org/10.1007/978-3-319-18781-5_5
http://dx.doi.org/10.1007/978-3-319-18781-5_6
http://dx.doi.org/10.1007/978-3-319-18781-5_6
http://dx.doi.org/10.1007/978-3-319-18781-5_7
http://dx.doi.org/10.1007/978-3-319-18781-5_8
http://dx.doi.org/10.1007/978-3-319-18781-5_9
http://dx.doi.org/10.1007/978-3-319-18781-5_9


On Things Not Seen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Marek Kimmel

Network Capacity Bound for Personalized Bipartite PageRank . . . . . . 189
Mieczysław A. Kłopotek, Sławomir T. Wierzchoń,
Robert A. Kłopotek and Elżbieta A. Kłopotek

Dependence Factor as a Rule Evaluation Measure . . . . . . . . . . . . . . . 205
Marzena Kryszkiewicz

Recent Results on Nonparametric Quantile Estimation
in a Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Adam Krzyżak

Adaptive Monte Carlo Maximum Likelihood . . . . . . . . . . . . . . . . . . . 247
Błażej Miasojedow, Wojciech Niemiro, Jan Palczewski
and Wojciech Rejchel

What Do We Choose When We Err? Model Selection
and Testing for Misspecified Logistic Regression Revisited . . . . . . . . . 271
Jan Mielniczuk and Paweł Teisseyre

Semiparametric Inference in Identification
of Block-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Mirosław Pawlak

Dealing with Data Difficulty Factors While Learning
from Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Jerzy Stefanowski

Personal Privacy Protection in Time of Big Data. . . . . . . . . . . . . . . . . 365
Marina Sokolova and Stan Matwin

Data Based Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
James R. Thompson

x Contents

http://dx.doi.org/10.1007/978-3-319-18781-5_10
http://dx.doi.org/10.1007/978-3-319-18781-5_11
http://dx.doi.org/10.1007/978-3-319-18781-5_12
http://dx.doi.org/10.1007/978-3-319-18781-5_13
http://dx.doi.org/10.1007/978-3-319-18781-5_13
http://dx.doi.org/10.1007/978-3-319-18781-5_14
http://dx.doi.org/10.1007/978-3-319-18781-5_15
http://dx.doi.org/10.1007/978-3-319-18781-5_15
http://dx.doi.org/10.1007/978-3-319-18781-5_16
http://dx.doi.org/10.1007/978-3-319-18781-5_16
http://dx.doi.org/10.1007/978-3-319-18781-5_17
http://dx.doi.org/10.1007/978-3-319-18781-5_17
http://dx.doi.org/10.1007/978-3-319-18781-5_18
http://dx.doi.org/10.1007/978-3-319-18781-5_19


Evolutionary Computation for Real-World
Problems

Mohammad Reza Bonyadi and Zbigniew Michalewicz

Abstract In this paper we discuss three topics that are present in the area of real-
world optimization, but are often neglected in academic research in evolutionary
computation community. First, problems that are a combination of several inter-
acting sub-problems (so-called multi-component problems) are common in many
real-world applications and they deserve better attention of research community.
Second, research on optimisation algorithms that focus the search on the edges of
feasible regions of the search space is important as high quality solutions usually
are the boundary points between feasible and infeasible parts of the search space in
many real-world problems. Third, finding bottlenecks and best possible investment
in real-world processes are important topics that are also of interest in real-world
optimization. In this chapter we discuss application opportunities for evolutionary
computation methods in these three areas.

1 Introduction

The Evolutionary Computation (EC) community over the last 30 years has spent a
lot of effort to design optimization methods (specifically Evolutionary Algorithms,
EAs) that are well-suited for hard problems—problems where other methods usually
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2 M.R. Bonyadi and Z. Michalewicz

fail [36]. As most real-world problems1 are very hard and complex, with nonlineari-
ties and discontinuities, complex constraints and business rules, possibly conflicting
objectives, noise and uncertainty, it seems there is a great opportunity for EAs to be
used in this area.

Some researchers investigated features of real-world problems that served as rea-
sons for difficulties of EAs when applied to particular problems. For example, in
[53] the authors identified several such reasons, including premature convergence,
ruggedness, causality, deceptiveness, neutrality, epistasis, and robustness, that make
optimization problems hard to solve. It seems that these reasons are either related to
the landscape of the problem (such as ruggedness and deceptiveness) or the optimizer
itself (like premature convergence and robustness) and they are not focusing on the
nature of the problem. In [38], a few main reasons behind the hardness of real-world
problems were discussed; that included: the size of the problem, presence of noise,
multi-objectivity, and presence of constraints. Apart from these studies on features
related to the real-world optimization, there have been EC conferences (e.g. GECCO,
IEEE CEC, PPSN) during the past three decades that have had special sessions on
“real-world applications”. The aim of these sessions was to investigate the potentials
of EC methods in solving real-world optimization problems.

Consequently, most of the features discussed in the previous paragraph have been
captured in optimization benchmark problems (many of these benchmark problems
can be found in OR-library2). As an example, the size of benchmark problems
has been increased during the last decades and new benchmarks with larger prob-
lems have appeared: knapsack problems (KP) with 2,500 items or traveling salesman
problems (TSP) with more than 10,000 cities, to name a few. Noisy environments
have been already defined [3, 22, 43] in the field of optimization, in both continuous
and combinatorial optimization domain (mainly from the operations research field),
see [3] for a brief review on robust optimization. Noise has been considered for both
constraints and objective functions of optimization problems and some studies have
been conducted on the performance of evolutionary optimization algorithms with
existence of noise; for example, stochastic TSP or stochastic vehicle routing prob-
lem (VRP). We refer the reader to [22] for performance evaluation of evolutionary
algorithms when the objective function is noisy. Recently, some challenges to deal
with continuous space optimization problems with noisy constraints were discussed
and some benchmarks were designed [43]. Presence of constraints has been also
captured in benchmark problems where one can generate different problems with
different constraints, for example Constrained VRP, (CVRP). Thus, the expectation
is, after capturing all of these pitfalls and addressing them (at least some of them),
EC optimization methods should be effective in solving real-world problems.

However, after over 30 years of research, tens of thousands of papers written on
Evolutionary Algorithms, dedicated conferences (e.g. GECCO, IEEE CEC, PPSN),

1By real-world problems we mean problems which are found in some business/industry on daily
(regular) basis. See [36] for a discussion on different interpretations of the term “real-world
problems”.
2Available at: http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
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dedicated journals (e.g. Evolutionary Computation Journal, IEEE Transactions on
Evolutionary Computation), special sessions and special tracks on most AI-related
conferences, special sessions on real-world applications, etc., still it is not that easy
to find EC-based applications in real-world, especially in real-world supply chain
industries.

There are several reasons for this mismatch between the efforts of hundreds of
researchers who have been making substantial contribution to the field of Evolution-
ary Computation over many years and the number of real-world applications which
are based on concepts of Evolutionary Algorithms—these are discussed in detail in
[37]. In this paper we summarize our recent efforts (over the last two years) to close
the gap between research activities and practice; these efforts include three research
directions:

• Studying multi-component problems [7]
• Investigating boundaries between feasible and infeasible parts of the search space
[5]

• Examining bottlenecks [11].

The paper is based on our four earlier papers [5, 7, 9, 11] and is organized as fol-
lows. We start with presenting two real-world problems (Sect. 2) so the connection
between presented research directions and real-world problems is apparent. Sec-
tions3–5 summarize our current research on studying multi-component problems,
investigating boundaries between feasible and infeasible parts of the search space,
and examining bottlenecks, respectively. Section6 concludes the paper.

2 Example Supply Chains

In this section we explain two real-world problems in the field of supply chain
management. We refer to these two examples further in the paper.

Transportation of water tank The first example relates to optimization of the trans-
portation of water tanks [21]. An Australian company produces water tanks with
different sizes based on some orders coming from its customers. The number of
customers per month is approximately 10,000; these customers are in different loca-
tions, called stations. Each customer orders a water tank with specific characteristics
(including size) and expects to receive it within a period of time (usually within
1month). These water tanks are carried to the stations for delivery by a fleet of
trucks that is operated by the water tank company. These trucks have different char-
acteristics and some of them are equipped with trailers. The company proceeds in
the following way. A subset of orders is selected and assigned to a truck and the
delivery is scheduled in a limited period of time. Because the tanks are empty and of
different sizes they might be packed inside each other in order to maximize trucks
load in a trip. A bundled tank must be unbundled at special sites, called bases, before
the tank delivery to stations. Note that there might exist several bases close to the
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stations where the tanks are going to be delivered and selecting different bases affects
the best overall achievable solution. When the tanks are unbundled at a base, only
some of them fit in the truck as they require more space. The truck is loaded with
a subset of these tanks and deliver them to their corresponding stations for delivery.
The remaining tanks are kept in the base until the truck gets back and loads them
again to continue the delivery process.

The aim of the optimizer is to divide all tanks ordered by customers into subsets
that are bundled and loaded in trucks (possibly with trailers) for delivery. Also, the
optimizer needs to determine an exact routing for bases and stations for unbundling
and delivery activities. The objective is to maximize the profit of the delivery at the
end of the time period. This total profit is proportional to the ratio between the total
prices of delivered tanks to the total distance that the truck travels.

Each of the mentioned procedures in the tank delivery problem (subset selection,
base selection, and delivery routing, and bundling) is just one component of the
problem and finding a solution for each component in isolation does not lead us to
the optimal solution of the whole problem. As an example, if the subset selection
of the orders is solved optimally (the best subset of tanks is selected in a way that
the price of the tanks for delivery is maximized), there is no guarantee that there
exist a feasible bundling such that this subset fits in a truck. Also, by selecting tanks
without considering the location of stations and bases, the best achievable solutions
can still have a low quality, e.g. there might be a station that needs a very expensive
tank but it is very far from the base, which actually makes delivery very costly. On
the other hand, it is impossible to select the best routing for stations before selecting
tanks without selection of tanks, the best solution (lowest possible tour distance) is
to deliver nothing. Thus, solving each sub-problem in isolation does not necessarily
lead us to the overall optimal solution.

Note also that in this particular case there are many additional considerations that
must be taken into account for any successful application. These include scheduling
of drivers (who often have different qualifications), fatigue factors and labor laws,
traffic patterns on the roads, feasibility of trucks for particular segments of roads,
and maintenance schedule of the trucks.

Mine to port operation The second example relates to optimizing supply-chain
operations of a mining company: from mines to ports [31, 32]. Usually in mine to
port operations, themining company is supposed to satisfy customer orders to provide
predefined amounts of products (the raw material is dig up in mines) by a particular
due date (the product must be ready for loading in a particular port). A port contains
a huge area, called stockyard, several places to berth the ships, called berths, and a
waiting area for the ships. The stockyard contains some stockpiles that are single-
product storage units with some capacity (mixing of products in stockpiles is not
allowed). Ships arrive in ports (time of arrival is often approximate, due to weather
conditions) to take specified products and transport them to the customers. The ships
wait in the waiting area until the port manager assigns them to a particular berth.
Ships apply a cost penalty, called demurrage, for each time unit while it is waiting
to be berthed since its arrival. There are a few ship loaders that are assigned to each
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berthed ship to load it with demanded products. The ship loaders take products from
appropriate stockpiles and load them to the ships. Note that, different ships have
different product demands that can be found in more than one stockpile, so that
scheduling different ship loaders and selecting different stockpiles result in different
amount of time to fulfill the ships demand. The goal of the mine owner is to provide
sufficient amounts of each product type to the stockyard. However, it is also in the
interest of the mine owner to minimize costs associated with early (or late) delivery,
where these are estimated with respect to the (scheduled) arrival of the ship. Because
mines are usually far from ports, the mining company has a number of trains that
are used to transport products from a mine to the port. To operate trains, there is a
rail network that is (usually) rented by the mining company so that trains can travel
between mines and ports. The owner of the rail network sets some constraints for
the operation of trains for each mining company, e.g. the number of passing trains
per day through each junction (called clusters) in the network is a constant (set by
the rail network owner) for each mine company.

There is a number of train dumpers that are scheduled to unload the products
from the trains (when they arrive at port) and put them in the stockpiles. The mine
company schedules trains and loads them at mine sites with appropriate material
and sends them to the port while respecting all constraints (the train scheduling
procedure). Also, scheduling train dumpers to unload the trains and put the unloaded
products in appropriate stockpiles (the unload scheduling procedure), scheduling the
ships to berth (this called berthing procedure), and scheduling the ship loaders to
take products from appropriate stockpiles and load the ships (the loader scheduling
procedure) are the other tasks for the mine company. The aim is to schedule the ships
and fill them with the required products (ship demands) so that the total demurrage
applied by all ships is minimized in a given time horizon.

Again, each of the aforementioned procedures (train scheduling, unload schedul-
ing, berthing, and loader scheduling) is one component of the problem. Of course
each of these components is a hard problem to solve by its own. Apart from the
complication in each component, solving each component in isolation does not lead
us to an overall solution for the whole problem. As an example, scheduling trains
to optimality (bringing as much product as possible from mine to port) might result
in insufficient available capacity in the stockyard or even lack of adequate products
for the ships that arrive unexpectedly early. That is to say, ship arrival times have
uncertainty associated with them (e.g. due to seasonal variation in weather condi-
tions), but costs are independent of this uncertainty. Also, the best plan for dumping
products from trains and storing them in the stockyard might result in a low quality
plan for the ship loaders and result in too much movement to load a ship.

Note that, in the real-world case, there were some other considerations in the
problem such as seasonal factor (the factor of constriction of the coal), hatch plan of
ships (each product should be loaded in different parts of the ship to keep the balance
of the vessel), availability of the drivers of the ship loaders, switching times between
changing the loading product, dynamic sized stockpiles, etc.

Both problems illustrate the main issues discussed in the remaining sections of
this document, as (1) they consist of several inter-connected components, (2) their
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boundaries between feasible and infeasible areas of the search space deserve careful
examination, and (3) in both problems, the concept of bottleneck is applicable.

3 Multi-component Problems

There are thousands of research papers addressing traveling salesman problems, job
shop and other scheduling problems, transportation problems, inventory problems,
stock cutting problems, packing problems, various logistic problems, to name but a
few. While most of these problems are NP-hard and clearly deserve research efforts,
it is not exactly what the real-world community needs. Let us explain.

Most companies run complex operations and they need solutions for problems
of high complexity with several components (i.e. multi-component problems; recall
examples presented in Sect. 2). In fact, real-world problems usually involve several
smaller sub-problems (several components) that interact with each other and com-
panies are after a solution for the whole problem that takes all components into
account rather than only focusing on one of the components. For example, the is-
sue of scheduling production lines (e.g. maximizing the efficiency or minimizing the
cost) has direct relationshipswith inventory costs, stock-safety levels, replenishments
strategies, transportation costs, delivery-in-full-on-time (DIFOT) to customers, etc.,
so it should not be considered in isolation. Moreover, optimizing one component
of the operation may have negative impact on upstream and/or downstream activi-
ties. These days businesses usually need “global solutions” for their operations, not
component solutions. This was recognized over 30 years ago by Operations Re-
search (OR) community; in [1] there is a clear statement: Problems require holistic
treatment. They cannot be treated effectively by decomposing them analytically into
separate problems to which optimal solutions are sought. However, there are very
few research efforts which aim in that direction mainly due to the lack of appro-
priate benchmarks or test cases availability. It is also much harder to work with a
company on such global level as the delivery of successful software solution usu-
ally involves many other (apart from optimization) skills, from understanding the
companys internal processes to complex software engineering issues.

Recently a new benchmark problem called the traveling thief problem (TTP) was
introduced [7] as an attempt to provide an abstraction of multi-component problems
with dependency among components. The main idea behind TTP was to combine
two problems and generate a new problemwhich contains two components. The TSP
and KP were combined because both of these problems were investigated for many
years in the field of optimization (including mathematics, operations research, and
computer science). TTP was defined as a thief who is going to steal m items from
n cities and the distance of the cities (d (i, j) the distance between cities i and j),
the profit of each item (pi ), and the weight of the items (wi ) are given. The thief is
carrying a limited-capacity knapsack (maximum capacity W ) to collect the stolen
items. The problem is asked for the best plan for the thief to visit all cities exactly once
(traveling salesman problem, TSP) and pick the items (knapsack problem, KP) from
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these cities in a way that its total benefit is maximized. Tomake the two sub-problems
dependent, it was assumed that the speed of the thief is affected by the current weight
of the knapsack (Wc) so that the more item the thief picks, the slower he can run. A
function v : R → R is given which maps the current weight of the knapsack to the
speed of thief. Clearly, v (0) is the maximum speed of the thief (empty knapsack)
and v (W ) is the minimum speed of the thief (full knapsack). Also, it was assumed
that the thief should pay some of the profit by the time he completes the tour (e.g.
rent of the knapsack, r ). The total amount that should be paid is a function of the
tour time. The total profit of the thief is then calculated by

B = P − r × T

where B is the total benefit, P is the aggregation of the profits of the picked items,
and T is the total tour time.

Generating a solution for KP or TSP in TTP is possible without being aware of the
current solution for the other component. In addition, each solution for TSP impacts
the best quality that can be achieved in the KP component because of the impact
on the pay back that is a function of travel time. Moreover, each solution for the
KP component impacts the tour time for TSP as different items impact the speed of
travel differently due to the variability of weights of items. Some test problems were
generated for TTP and some simple heuristic methods have been also applied to the
problem [44].

Note that for a given instance of TSP and KP different values of r and functions
f result in different instances of TTPs that might be harder or easier to solve. As
an example, for small values of r (relative to P), the value of r × T has a small
contribution to the value of B. In an extreme case, when r = 0, the contribution
of r × T is zero, which means that the best solution for a given TTP is equivalent
to the best solution of the KP component, hence, there is no need to solve the TSP
component at all. Also, by increasing the value of r (relative to P), the contribution
of r × T becomes larger. In fact, if the value of r is very large then the impact of P
on B becomes negligible, which means that the optimum solution of the TTP is very
close to the optimum solution of the given TSP (see Fig. 1).

Fig. 1 Impact of the rent
rate r on the TTP. For r = 0,
the TTP solution is
equivalent to the solution of
KP, while for larger r the
TTP solutions become closer
to the solutions of TSP

KP

TSP

r

T
T
P
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Fig. 2 How dependency between components is affected by speed (function v). When v does not

drop significantly for different weights of picked items (
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣ is small), the two problems can

be decomposed and solved separately. The value Dependency = 1 represents the two components
are dependent while Dependency = 0 shows that two components are not dependent

The same analysis can be done for the function v. In fact, for a given TSP and KP
different function v can result in different instances of TTPs that, as before, might be
harder or easier. Let us assume that v is a decreasing function, i.e. picking items with
positive weight causes drop or no change in the value of v. For a given list of items

and cities, if picking an item does not affect the speed of the travel (i.e.
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣

is zero) significantly then the optimal solution of the TTP is the composition of
the optimal solution of KP and TSP when they are solved separately. The reason is

that, with this setting (
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣ is zero), picking more items does not change the

time of the travel. As the value of
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣ grows, the TSP and KP become more

dependent (picking items have more significant impact on the travel time); see Fig. 2.

As the value of
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣ grows, the speed of the travel drops more significantly

by picking more items that in fact reduces the value of B significantly. In an extreme

case, if
∣
∣
∣
v(W )−v(0)

W

∣
∣
∣ is infinitely large then it would be better not to pick any item

(the solution for KP is to pick no item) and only solve the TSP part as efficiently as
possible. This has been also discussed in [10].

Recently, we generated some test instances for TTP and made them available
[44] so that other researchers can also work along this path. The instance set con-
tains 9,720 problems with different number of cities and items. The specification of
the tour was taken from existing TSP problems in OR-Library. Also, we proposed
three algorithms to solve those instances: one heuristic, one random search with lo-
cal improvement, and one simple evolutionary algorithm. Results indicated that the
evolutionary algorithm outperforms other methods to solve these instances. These
test sets were also used in a competition in CEC2014 where participants were asked
to come up with their algorithms to solve the instances. Two popular approaches
emerged: combining different solvers for each sub-problem and creating one system
for the overall problem.
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Problems that require the combination of solvers for different sub-problems, one
can find different approaches in the literature. First, in bi-level-optimization (and in
the more general multi-level-optimization), one component is considered the domi-
nant one (with a particular solver associated to it), and every now and then the other
component(s) are solved to near-optimality or at least to the best extent possible by
other solvers. In its relaxed form, let us call it “round-robin optimization”, the opti-
mization focus (read: CPU time) is passed around between the different solvers for
the subcomponents. For example, this approach is taken in [27], where two heuristics
are applied alternatingly to a supply-chain problem, where the components are (1)
a dynamic lot sizing problem and (2) a pickup and delivery problem with time win-
dows. However, in neither set-up did the optimization on the involved components
commence in parallel by the solvers.

A possible approach tomulti-component problemswith presence of dependencies
is based on the cooperative coevolution: a type of multi-population Evolutionary Al-
gorithm [45]. Coevolution is a simultaneous evolution of several genetically isolated
subpopulations of individuals that exist in a common ecosystem. Each subpopula-
tion is called species and mate only within its species. In EC, coevolution can be
of three types: competitive, cooperative, and symbiosis. In competitive coevolution,
multiple species coevolve separately in such a way that fitness of individual from
one species is assigned based on how good it competes against individuals from the
other species. One of the early examples of competitive coevolution is the work by
Hillis [20], where he applied a competitive predator-prey model to the evolution of
sorting networks. Rosin and Belew [47] used the competitive model of coevolution
to solve number of game learning problems including Tic-Tac-Toe, Nim and small
version of Go. Cooperative coevolution uses divide and conquer strategy: all parts of
the problem evolve separately; fitness of individual of particular species is assigned
based on the degree of collaboration with individuals of other species. It seems that
cooperative coevolution is a natural fit for multi-component problems with presence
of dependencies. Individuals in each subpopulationmay correspond to potential solu-
tions for particular component, with its own evaluation function, whereas the global
evaluation function would include dependencies between components. Symbiosis is
another coevolutionary process that is based on living together of organisms of dif-
ferent species. Although this type appears to represent a more effective mechanism
for automatic hierarchical models [19], it has not been studied in detail in the EC
literature.

Additionally, feature-based analysis might be helpful to provide new insights and
help in the design of better algorithms for multi-component problems. Analyzing
statistical feature of classical combinatorial optimization problems and their relation
to problem difficulty has gained an increasing attention in recent years [52]. Classical
algorithms for the TSP and their success depending on features of the given input
have been studied in [34, 41, 51] and similar analysis can be carried out for the
knapsack problem. Furthermore, there are different problem classes of the knapsack
problem which differ in their hardness for popular algorithms [33]. Understanding
the features of the underlying sub-problems and how the features of interactions
in a multi-component problem determine the success of different algorithms is an
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interesting topic for future researchwhichwould guide the development and selection
of good algorithms for multi-component problems.

In the field of machine learning, the idea of using multiple algorithms to solve a
problem in a betterway has been used for decades. For example, ensemblemethods—
such as boosting, bagging, and stacking—use multiple learning algorithms to search
the hypothesis space in different ways. In the end, the predictive performance of
the combined hypotheses is typically better than the performances achieved by the
constituent approaches.

Interestingly, transferring this idea into the optimization domain is not straightfor-
ward. While we have a large number of optimizers at our disposal, they are typically
not general-purpose optimizers, but very specific and highly optimized for a partic-
ular class of problems, e.g., for the knapsack problem or the travelling salesperson
problem.

4 Boundaries Between Feasible and Infeasible Parts
of the Search Space

A constrained optimization problem (COP) is formulated as follows:

find x ∈ F ⊆ S ⊆ RD such that

⎧

⎨

⎩

f (x) ≤ f (y) for all y ∈ F (a)
gi (x) ≤ 0 for i = 1 to q (b)
hi (x) = 0 for i = q + 1 to m (c)

(1)

where f , gi , and hi are real-valued functions on the search space S, q is the number
of inequalities, and m − q is the number of equalities. The set of all feasible points
which satisfy constraints (b) and (c) are denoted by F [39]. The equality constraints
are usually replaced by |hi (x)| − σ ≤ 0 where σ is a small value (normally set to
10−4) [6]. Thus, a COP is formulated as

find x ∈ F ⊆ S ⊆ RD such that

{

f (x) ≤ f (y) for all y ∈ F (a)
gi (x) ≤ 0 for i = 1 to m (b)

(2)

where gi (x) = |hi (x)| − σ for all i ∈ {q + 1, . . . , m}. Hereafter, the term COP
refers to this formulation.

The constraint gi (x) is called active at the point x if the value of gi (x) is zero.
Also, if gi (x) < 0 then gi (x) is called inactive at x . Obviously, if x is feasible and
at least one of the constraints is active at x , then x is on the boundary of the feasible
and infeasible areas of the search space.

In many real-world COPs it is highly probable that some constraints are active at
optimum points [49], i.e. some optimum points are on the edge of feasibility. The
reason is that constraints in real-world problems often represent some limitations of
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resources. Clearly, it is beneficial to make use of some resources as much as possible,
whichmeans constraints are active at quality solutions. Presence of active constraints
at the optimum points causes difficulty for many optimization algorithms to locate
optimal solution [50]. Thus, it might be beneficial if the algorithm is able to focus
the search on the edge of feasibility for quality solutions.

So it is assumed that there exists at least one active constraint at the optimum solu-
tion of COPs. We proposed [5] a new function, called Subset Constraints Boundary
Narrower (SCBN), that enabled the search methods to focus on the boundary of
feasibility with an adjustable thickness rather than the whole search space. SCBN
is actually a function (with a parameter ε for thickness) that, for a point x , its value
is smaller than zero if and only if x is feasible and the value of at least one of the
constraints in a given subset of all constraint of the COP at the point x is within
a predefined boundary with a specific thickness. By using SCBN in any COP, the
feasible area of the COP is limited to the boundary of feasible area defined by SCBN,
so that the search algorithms can only focus on the boundary. Some other extensions
of SCBN are proposed that are useful in different situations. SCBN and its extensions
are used in a particle swarm optimization (PSO) algorithm with a simple constraint
handling method to assess if they are performing properly in narrowing the search
on the boundaries.

A COP can be rewritten by combining all inequality constraints to form only one
inequality constraint. In fact, any COP can be formulated as follows:

find x ∈ F ⊆ S ⊆ RD such that

{

f (x) ≤ f (y) for all y ∈ F (a)
M (x) ≤ 0 (b)

(3)

where M (x) is a function that combines all constraints gi (x) into one function. The
function M (x) can be defined in many different ways. The surfaces that are defined
by different instances of M (x)might be different. The inequality 3(b) should capture
the feasible area of the search space. However, by using problem specific knowledge,
one can also define M (x) in a way that the area that is captured by M (x) ≤ 0 only
refers to a sub-space of the whole feasible area where high quality solutions might
be found. In this case, the search algorithm can focus only on the captured area
which is smaller than the whole feasible area and make the search more effective. A
frequently-used [29, 48] instance of M (x) is a function K (x)

K (x) =
m

∑

i=1

max {gi (x) , 0} (4)

Clearly, the value of K (x) is non-negative. K (x) is zero if and only if x is
feasible. Also, if K (x) > 0, the value of K (x) represents the maximum violation
value (called the constraint violation value).

As in many real-world COPs, there is at least one active constraint near the global
best solution of COPs [49], some researchers developed operators to enable search
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methods to focus the search on the edges of feasibility. GENOCOP (GEnetic algo-
rithm for Numerical Optimization for Constrained Optimization) [35] was probably
the first genetic algorithm variant that applied boundary search operators for dealing
with COPs. Indeed, GENOCOP had three mutations and three crossovers operators
and one of these mutation operators was a boundary mutation which could generate
a random point on the boundary of the feasible area. Experiments showed that the
presence of this operator caused significant improvement in GENOCOP for finding
optimum for problems which their optimum solution is on the boundary of feasible
and infeasible area [35].

A specific COP was investigated in [40] and a specific crossover operator, called
geometric crossover, was proposed to deal with that COP. The COP was defined as
follows:

f (x) =
∣
∣
∣
∣
∣

∑D
i=1 cos4(xi )−2

∏D
i=1 cos2(xi )

√
∑D

i=1 i x2i

∣
∣
∣
∣
∣

g1 (x) = 0.75 −
D∏

i=1
xi ≤ 0

g2 (x) =
D∑

i=1
xi − 0.75D ≤ 0

(5)

where 0 ≤ xi ≤ 10 for all i . Earlier experiments [23] shown that the value of the
first constraint (g1 (x)) is very close to zero at the best known feasible solution for
this COP. The geometric crossover was designed as xnew, j = √

x1,i x2, j , where xi, j

is the value of the j th dimension of the i th parent, and xnew, j is the value of the j th
dimension of the new individual. By using this crossover, if g1 (x1) = g1 (x2) = 0,
then g1 (xnew) = 0 (the crossover is closed under g1 (x)). It was shown that an evolu-
tionary algorithm that uses this crossover ismuchmore effective than an evolutionary
algorithmwhich uses other crossover operators in dealing with this COP. In addition,
another crossover operator was also designed [40], called sphere crossover, that was

closed under the constraint g (x) =
D∑

i=1
x2i − 1. In the sphere crossover, the value of

the new offspring was generated by xnew, j =
√

αx21, j + (1 − α) x22, j , where xi, j is

the value of the j th dimension of the i th parent, and both parents x1 and x2 are on
g (x). This operator could be used if g (x) is the constraint in a COP and it is active
on the optimal solution.

In [50] several different crossover operators closed under g (x) =
D∑

i=1
x2i −1 were

discussed. These crossovers operators included repair, sphere (explained above),
curve, and plane operators. In the repair operator, each generated solution was nor-
malized and then moved to the surface of g (x). In this case, any crossover and
mutation could be used to generate offspring; however, the resulting offspring is
moved (repaired) to the surface of g (x). The curve operator was designed in a way
that it could generate points on the geodesic curves, curves with minimum length on
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a surface, on g (x). The plane operator was based on the selection of a plane which
contains both parents and crosses the surface of g (x). Any point on this intersection
is actually on the surface of the g (x) as well. These operators were incorporated into
several optimization methods such as GA and Evolutionary Strategy (ES) and the
results of applying these methods to two COPs were compared.

A variant of evolutionary algorithm for optimization of awater distribution system
was proposed [54]. The main argument was that the method should be able to make
use of information on the edge between infeasible and feasible area to be effective in
solving the water distribution system problem. The proposed approach was based on
an adapting penalty factor in order to guide the search towards the boundary of the
feasible search space. The penalty factor was changed according to the percentage of
the feasibility of the individuals in the population in such a way that there are always
some infeasible solutions in the population. In this case, crossover can make use of
these infeasible and feasible individuals to generate solutions on the boundary of
feasible region.

In [28] a boundary search operator was adopted from [35] and added to an ant
colony optimization (ACO) method. The boundary search was based on the fact that
the line segment that connects two points x and y, where one of these points are
infeasible and the other one is feasible, crosses the boundary of feasibility. A binary
search can be used to search along this line segment to find a point on the boundary
of feasibility. Thus, any pair of points (x , y), where one of them is infeasible and
the other is feasible, represents a point on the boundary of feasibility. These points
were moved by an ACO during the run. Experiments showed that the algorithm is
effective in locating optimal solutions that are on the boundary of feasibility.

In [5] we generalized the definition of edges of feasible and infeasible space
by introducing thickness of the edges. We also introduced a formulation that, for
any given COP, it could generate another COP that the feasible area of the latter
corresponds to the edges of feasibility of the former COP. Assume that for a given
COP, it is known that at least one of the constraints in the set {gi∈Ω (x)} is active at
the optimum solution and the remaining constraints are satisfied at x , where Ω ⊆
{1, 2, . . . , m}. We defined HΩ,ε (x) as follows:

HΩ,ε (x) = max

{∣
∣
∣
∣
max
i∈Ω

{gi (x)} + ε

∣
∣
∣
∣
− ε, max

i /∈Ω
{gi (x)}

}

(6)

where ε is a positive value. Obviously, HΩ,ε (x) ≤ 0 if and only if at least one of
the constraints in the subset Ω is active and the others are satisfied. The reason is

that, the component

∣
∣
∣
∣
max
i∈Ω

{gi (x)} + ε

∣
∣
∣
∣
− ε is negative if x is feasible and at least

one of gi∈Ω (x) is active. Also, the component max
i /∈Ω

{gi (x)} ensures that the rest

of constraints are satisfied. Note that active constraints are considered to have a
value between 0 and −2ε, i.e., the value of 2ε represents the thickness of the edges.
This formulation can restrict the feasible search space to only the edges so that
optimization algorithms are enforced to search the edges. Also, it enabled the user to
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provide a list of active constraints so that expert knowledge can help the optimizer
to converge faster to better solutions.

Clearly methodologies that focuses the search on the edges of feasible area are
beneficial for optimization in real-world. As an example, in the mining problem
described in Sect. 2, it is very likely that using all of the trucks, trains, shiploaders, and
train dumpers to the highest capacity is beneficial for increasing throughput. Thus,
at least one of these constraints (resources) is active, which means that searching
the edges of feasible areas of the search space very likely leads us to high quality
solutions.

5 Bottlenecks

Usually real-world optimization problems contain constraints in their formulation.
The definition of constraints in management sciences is anything that limits a system
from achieving higher performance versus its goal [17]. In the previous section we
provided general formulation of a COP. As discussed in the previous section, it is
believed that the optimal solution of most real-world optimization problems is found
on the edge of a feasible area of the search space of the problem [49]. This belief is
not limited to computer science, but it is also found in operational research (linear
programming, LP) [12] and management sciences (theory of constraints, TOC) [30,
46] articles. The reason behind this belief is that, in real-world optimization problems,
constraints usually represent limitations of availability of resources. As it is usually
beneficial to utilize the resources as much as possible to achieve a high-quality
solution (in terms of the objective value, f ), it is expected that the optimal solution is
a point where a subset of these resources is used as much as possible, i.e., gi (x∗) = 0
for some i and a particular high-quality x∗ in the general formulation of COPs [5].
Thus, the best feasible point is usually located where the value of these constraints
achieves their maximum values (0 in the general formulation). The constraints that
are active at the optimum solution can be thought of as bottlenecks that constrain the
achievement of a better objective value [13, 30].

Decision makers in industries usually use some tools, known as decision support
systems (DSS) [24], as a guidance for their decisions in different areas of their
systems. Probably themost important areas that decisionmakers need guidance from
DSS are: (1) optimizing schedules of resources to gain more benefit (accomplished
by an optimizer in DSS), (2) identifying bottlenecks (accomplished by analyzing
constraints in DSS), and (3) determining the best ways for future investments to
improve their profits (accomplished by an analysis for removing bottlenecks,3 known
as what-if analysis in DSS). Such support tools are more readily available than one

3The term removing a bottleneck refers to the investment in the resources related to that bottleneck
to prevent those resources from constraining the problem solver to achieve better objective values.
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might initially think: for example, the widespread desktop application Microsoft
Excel provides these via an add-in.4

Identification of bottlenecks and the best way of investment is at least as valuable
as the optimization in many real-world problems from an industrial point of view
because [18]:An hour lost at a bottleneck is an hour lost for the entire system. An hour
saved at a non-bottleneck is a mirage. Industries are not only after finding the best
schedules of the resources in their systems (optimizing the objective function), but
they are also after understanding the tradeoffs between various possible investments
and potential benefits.

During the past 30 years, evolutionary computation methodologies have provided
appropriate tools as optimizers for decisionmakers to optimize their schedules. How-
ever, the last two areas (identifying bottlenecks and removing them) that are needed
in DSSs seem to have remained untouched by EC methodologies while it has been
an active research area in management and operations research.

There have been some earlier studies on identifying and removing bottlenecks
[14, 16, 25, 30]. These studies, however, have assumed only linear constraints and
they have related bottlenecks only to one specific property of resources (usually
the availability of resources). Further, they have not provided appropriate tools to
guide decision makers in finding the best ways of investments in their system so that
their profits are maximized by removing the bottlenecks. In our recent work [11],
we investigated the most frequently used bottleneck removing analysis (so-called
average shadow prices) and identified its limitations. We argued that the root of
these limitations can be found in the interpretation of constraints and the definition
of bottlenecks. We proposed a more comprehensive definition for bottlenecks that
not only leads us to design a more comprehensive model for determining the best
investment in the system, but also addresses all mentioned limitations. Because the
new model was multi-objective and might lead to the formulation of non-linear
objective functions/constraints, evolutionary algorithms have a good potential to be
successful on this proposed model. In fact, by applying multi-objective evolutionary
algorithms to the proposed model, the solutions found represent points that optimize
the objective function and the way of investment with different budgets at the same
time.

Let us start with providing some background information on linear programming,
the concept of shadow price, and bottlenecks in general. A Linear Programming (LP)
problem is a special case of COP, where f (x) and gi (x) are linear functions:

find x such that z = max cT x subject to Ax ≤ bT (7)

where A is a m × d dimensional matrix known as coefficients matrix, m is the
number of constraints, d is the number of dimensions, c is a d-dimensional vector,
b is a m-dimensional vector known as Right Hand Side (RHS), x ∈ R

d , and x ≥ 0.

4http://tinyurl.com/msexceldss, last accessed 29th March 2014.

http://tinyurl.com/msexceldss
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The shadow price (SP) for the i th constraint of this problem is the value of z when
bi is increased by one unit. This in fact refers to the best achievable solution if the
RHS of the i th constraint was larger, i.e., there were more available resources of the
type i [26].

The concept of SP in Integer Linear Programming (ILP) is different from the
one in LP [13]. The definition for ILP is similar to the definition of LP, except that
x ∈ Z

d . In ILP, the concept of Average Shadow Price (ASP) was introduced [25].
Let us define the perturbation function zi (w) as follows:

find x such that zi (w) = max cT x subject to ai x ≤ bi + w ak x ≤ bk ∀k �= i (8)

where ai is the i th row of thematrix A and x ≥ 0. Then, the ASP for the i th constraint

is defined by AS Pi = sup
w>0

{
(zi (w)−zi (0))

w

}

. AS Pi represents that if adding one unit

of the resource i costs p and p < AS Pi , then it is beneficial (the total profit is
increased) to buy w units of this resource. This information is very valuable for the
decision maker as it is helpful for removing bottlenecks. Although the value of AS Pi

refers to “buying” new resources, it is possible to similarly define a selling shadow
price [25].

Several extensions of this ASP definition exist. For example, a set of resources is
considered in [15] rather than only one resource at a time. There, it was also shown
that ASP can be used in mixed integer LP (MILP) problems.

Now, let us take a step back from the definition of ASP in the context of ILP,
and let us see how it fits into a bigger picture of resources and bottlenecks. As we
mentioned earlier, constraints usually model availability of resources and limit the
optimizers to achieve the best possible solution which maximizes (minimizes) the
objective function [26, 30, 46]. Although finding the best solution with the current
resources is valuable for decision makers, it is also valuable to explore opportunities
to improve solutions by adding more resources (e.g., purchasing new equipment)
[25]. In fact, industries are seeking the most efficient way of investment (removing
the bottlenecks) so that their profit is improved the most.

Let us assume that the decision maker has the option of providing some additional
resource of type i at a price p. It is clearly valuable if the problem solver can determine
if adding a unit of this resource can be beneficial in terms of improving the best
achievable objective value. It is not necessarily the case that adding a new resource
of the type i improves the best achievable objective value. As an example, consider
there are some trucks that load products into some trains for transportation. It might
be the case that adding a new train does not provide any opportunity for gaining extra
benefit because the current number of trucks is too low and they cannot fill the trains
in time. In this case, we can say that the number of trucks is a bottleneck. Although
it is easy to define bottleneck intuitively, it is not trivial to define this term in general.

There are a few different definitions for bottlenecks. These definitions are cate-
gorized into five groups in [13]: (i) capacity based definitions, (ii) critical path based
definitions, (iii) structure based definitions, (iv) algorithm based definitions, and (v)
system performance based definitions. It was claimed that none of these definitions
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was comprehensive and some examples were provided to support this claim. Also,
a new definition was proposed which was claimed to be the most comprehensive
definition for a bottleneck: “a set of constraints with positive average shadow price”
[13]. In fact, the average shadow price in a linear and integer linear program can be
considered as a measure for bottlenecks in a system [30].

Although ASP can be useful in determining the bottlenecks in a system, it has
some limitations when it comes to removing bottlenecks. In this section, we discuss
some limitations of removing bottlenecks based on ASP.

Obviously, the concept of ASP has been only defined for LP and MILP, but not
for problems with non-linear objective functions and constraints. Thus, using the
concept of ASP prevents us from identifying and removing bottlenecks in a non-
linear system.

Let us consider the following simple problem5 (the problem is extremely simple
and it has been only given as an example to clarify limitations of the previous defini-
tions): in a mine operation, there are 19 trucks and two trains. Trucks are used to fill
trains with some products and trains are used to transport products to a destination.
The rate of the operation for each truck is 100 tonnes/h (tph) and the capacity of each
train is 2,000 tonnes. What is the maximum tonnage that can be loaded to the trains
in 1 h? The ILP model for this problem is given by:

find x and y s.t. z = max {2000y} subject to (9)

g1 : 2000y − 100x ≤ 0, g2 : x ≤ 19, g3 : y ≤ 2

where x ≥ 0 is the number of trucks and y ≥ 0 is the number of loaded trains (y
can be a floating point value which refers to partially loaded trains). The constraint
g1 limits the amount of products loaded by the trucks into the trains (trucks cannot
overload the trains). The solution is obviously y = 0.95 and x = 0.19 with objective
value 1,900. We also calculated the value of ASP for all three constraints:

• ASP for g1 is 1: by adding one unit to the first constraint (2000y − 100x ≤ 0
becomes 2000y − 100x ≤ 1) the objective value increases by 1,

• ASP for g2 is 100: by adding 1 unit to the second constraint (x ≤ 19 becomes
x ≤ 20) the objective value increases by 100,

• ASP for g3 is 0: by adding 1 unit to the second constraint (y ≤ 2 becomes y ≤ 3)
the objective value does not increase.

Accordingly, thefirst and second constraints are bottlenecks as their corresponding
ASPs are positive. Thus, it would be beneficial if investments are concentrated on
adding one unit to the first or second constraint to improve the objective value.

5We have made several such industry-inspired stories and benchmarks available: http://cs.adelaide.
edu.au/~optlog/research/bottleneck-stories.htm.

http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm
http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm
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Adding one unit to the first constraint is meaningless from the practical point of
view. In fact, adding one unit to RHS of the constraint g1 means that the amount of
products that is loaded into the trains can exceed the trains’ capacities by one ton,
which is not justifiable. In the above example, there is another option for the decision
maker to achieve a better solution: if it is possible to improve the operation rate of
the trucks to 101 tph, the best achievable solution is improved to 1,919 tons. Thus, it
is clear that the bottleneck might be a specification of a resource (the operation rate
of trucks in our example) that is expressed by a value in the coefficients matrix and
not necessarily RHS.

Thus, it is clear that ASP only gives information about the impact of changing
RHS in a constraint, while the bottleneck might be a value in the coefficient matrix.
The commonly used ASP, which only gives information about the impact of chang-
ing RHS in a constraint, cannot identify such bottlenecks. Figure3 illustrates this
limitation.

The value of ASP represents only the effects of changing the value of RHS of the
constraints (Fig. 3, left) on the objective value while it does not give any information
about the effects the values in the coefficients matrix might have on the objective
value (constraint g1 in Fig. 3, right). However, as we are show in our example, it is
possible to change the values in the coefficient matrix to make investments in order
to remove bottlenecks.

The value of ASP does not provide any information about the best strategy of
selecting bottlenecks to remove. In fact, it only provides information about the benefit
of elevating the RHS in each constraint and does not say anything about the order of
significance of the bottlenecks. It remains the task of the decision maker to compare
different scenarios (also known aswhat-if analysis). For example, from amanagerial
point of view, it is important to answer the following question: is adding one unit to
the first constraint (if possible) better than adding one unit to the second constraint
(purchase a new truck)? Note that in real-world problems, there might be many

Fig. 3 x and y are number of trucks and number of trains respectively, gray gradient indication
of objective value (the lighter the better), shaded area feasible area, g1, g2, g3 are constraints, the
white point is the best feasible point
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resources and constraints, and a manual analysis of different scenarios might be
prohibitively time consuming. Thus, a smart strategy is needed to find the best set of
to-be-removed bottlenecks in order to gain maximum profit with lowest investment.
In summary, the limitations of identifying bottlenecks using ASP are:

• Limitation 1: ASP is only applicable if objective and constraints are linear.
• Limitation 2: ASP does not evaluate changes in the coefficients matrix (the matrix
A) and it is only limited to RHS.

• Limitation 3: ASP does not provide information about the strategy for investment
in resources, and the decision maker has to manually conduct analyses to find the
best investment strategy.

In order to resolve the limitations of ASP we proposed a new definition for bottle-
necks and a new formulation for investment [11]. We defined bottlenecks as follows:
A bottleneck is a modifiable specification of resources that by changing its value,
the best achievable performance of the system is improved. Note that this definition
is a generalization of the definition of bottleneck in [13]: a set of constraints with
positive average shadow price is defined as a bottleneck. In fact, the definition in
[13] concentrated on RHS only (it is just about the average shadow price) and it
considers a bottleneck as a set of constraints. Conversely, our definition is based on
any modifiable coefficient in the constraints (from capacity, to rates, or availability)
and it introduces each specification of resources as a potential bottleneck.

Also, in order to determine the best possible investment to a system, we defined
a Bottleneck COP (BCOP) for any COP as follows:

find x and l s.t. z =
{

max f (x, l)
min B (l)

subject to gi (x, li ) ≤ 0 for all i (10)

where l is a vector (l might contain continuous or discrete values) which contains li
for all i and B (l) is a function that calculates the cost of modified specifications of
resources coded in the vector l. For any COP, we can define a corresponding BCOP
and by solving the BCOP, the plan for investment is determined.

The identification of bottlenecks and their removal are important topics in real-
world optimization. As it was mentioned earlier, locating bottlenecks and finding the
best possible investment is of a great importance in large industries. For example,
in the mining process described in Sect. 2 not only the number of trucks, trains, or
other resources can constitute a bottleneck, but also the operation rate of any of
these resources can also constitute a bottleneck. Given the expenses for removing
any of these bottlenecks, one can use the model in Eq.10 to identify the best way of
investment to grow the operations and make the most benefit. This area has remained
untouched by the EC community, while there are many opportunities to apply EC-
based methodologies to deal with bottlenecks and investments.
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6 Discussion and Future Directions

Clearly, all three research directions (multi-component problems, edge of feasibility,
and bottlenecks and investment) are relevant for solving real-world problems.

First, as it was mentioned earlier, an optimal solution for each component does
not guarantee global optimality, so that a solution that represents the global optimum
does not necessarily contain good schedules for each component in isolation [36].
The reason lies on the dependency among components. In fact, because of depen-
dency, even if the best solvers for each component are designed and applied to solve
each component in isolation, it is not useful in many real-world cases—the whole
problem with dependency should be treated without decomposition of the compo-
nents. Note that, decomposing problems that are not dependent on each other can be
actually valuable as it makes the problem easier to solve. However, this decomposi-
tion should be done carefully to keep the problem unchanged. Of course complexity
of decomposing multi-component problems is related to the components dependen-
cies. For example, one can define a simple dependency between KP and TSP in a
TTP problem that makes the problems decomposable or make them tighten together
so that they are not easily decomposable.

Looking at dependencies among components, the lack of abstract problems that
reflect this characteristic is obvious in the current benchmarks. In fact, real-world
supply chain optimization problems are a combination ofmany smaller sub-problems
dependent on each other in a network while benchmark problems are singular. Be-
cause global optimality is in interest in multi-component problems, singular bench-
mark problems cannot assess quality of methods which are going to be used for
multi-component real-world problems with the presence of dependency.

Multi-component problems pose new challenges for the theoretical investigations
of evolutionary computation methods. The computational complexity analysis of
evolutionary computation is playing a major role in this field [2, 42]. Results have
been obtained formanyNP-hard combinatorial optimization problems from the areas
of covering, cutting, scheduling, and packing. We expect that the computational
complexity analysis can provide new rigorous insights into the interactions between
different components of multi-component problems. As an example, we consider
again the TTP problem. Computational complexity results for the two underlying
problems (KP and TSP) have been obtained in recent years. Building on these results,
the computational complexity analysis can help to understand when the interactions
between KP and TSP make the optimization process harder.

Second, there has been some experimental evidence that showed the importance of
searching the boundaries of feasible and infeasible areas in a constraint optimization
problem (COP) [40, 49, 50]. This boundary is defined as: the points that are feasible
and the value of at least one of the constraints is zero for them. In [5] three new
instances (called Constraint Boundary Narrower, CBN, Subset CBN, SCBN, and All
in a subset CBN, ACBN) for the constraint violation function were proposed which
were able to reduce the feasible area to only boundaries of the feasible area. In the
SCBN (ACBN), it is possible to select a subset of constraints and limit the boundaries
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where at least one of these constraints (all of these constraints) is (are) active. The
thickness of the boundaries was adjustable in the proposed method by a parameter
(ε). Experiments showed that changing the value of ε influences the performance of
the algorithm. In fact, a smaller value of ε causes limiting the feasible area to narrower
boundaries, which makes finding the feasible areas harder. However, although it is
harder to find the feasible areas (narrower boundaries), improving the final solutions
is easier once the correct boundary was found. Thus, as a potential future work, one
can design an adaptive method so that the search begins by exploring the feasible
area and later concentrates on the boundaries.

Finally, a new definition for bottlenecks and a newmodel to guide decisionmakers
to make the most profitable investment on their system should assist in narrowing
the gap between what is being considered in academia and industry. Our definition
for bottlenecks and model for investment overcomes several of the drawbacks of the
model that is based on average shadow prices:

• It can work with non-linear constraints and objectives.
• It offers changes to the coefficient matrix.
• It can provide a guide towards optimal investments.

This more general model can form the basis for more comprehensive analyti-
cal tools as well as improved optimization algorithms. In particular for the latter
application, we conjecture that nature-inspired approaches are adequate, due to the
multi-objective formulation of the problem and its non-linearity.

Bottlenecks are ubiquitous and companies make significant efforts to eliminate
them to the best extent possible. To the best of our knowledge, however, there seems
to be very little published research on approaches to identify bottlenecks research on
optimal investment strategies in the presence of bottlenecks seems to be even non-
existent. In the future, we will push this research further, in order to improve decision
support systems. If bottlenecks can be identified efficiently, then this information can
be easily shown to the decisionmaker,whocan then subsequently use this information
in a manual optimization process.

There is also another research direction recently introduced to address real-world
optimization problems that is locating disjoint feasible regions in a search space [4,
8].6 It has been argued that the feasible area in constrained optimization problems
might have an irregular shape and might contain many disjoint regions. Thus, it is
beneficial if an optimization algorithm can locate these regions as much as possible
so that the probability of finding the region that contain the best feasible solution is
increased. The problem of locating many disjoint feasible regions can be viewed as
niching in multi-modal optimization [4].

6we have excluded this topic from this chapter because of the lack of space.



22 M.R. Bonyadi and Z. Michalewicz

References

1. Ackoff RL (1979) The future of operational research is past. J Oper Res Soc 53(3):93–104.
ISSN 0160–5682

2. Auger A, Doerr B (2011) Theory of randomized search heuristics: foundations and recent
developments, vol 1. World Scientific. ISBN 9814282669

3. Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization.
SIAM Rev 53(3):464–501. ISSN 0036–1445

4. Bonyadi MR, Michalewicz Z (2014) Locating potentially disjoint feasible regions of a search
space with a particle swarm optimizer, book section to appear. Springer, New York

5. Bonyadi MR, Michalewicz Z (2014) On the edge of feasibility: a case study of the particle
swarm optimizer. In: Congress on evolutionary computation, IEEE, pp 3059–3066

6. Bonyadi MR, Li X, Michalewicz Z (2013) A hybrid particle swarm with velocity mutation
for constraint optimization problems. In: Genetic and evolutionary computation conference,
ACM, pp 1–8. doi:10.1145/2463372.2463378

7. Bonyadi MR, Michalewicz Z, Barone L (2013) The travelling thief problem: the first step in
the transition from theoretical problems to realistic problems. In: Congress on evolutionary
computation, IEEE

8. Bonyadi MR, Li X, Michalewicz Z (2014) A hybrid particle swarm with a time-adaptive
topology for constrained optimization. Swarm Evol Comput 18:22–37. doi:10.1016/j.swevo.
2014.06.001

9. Bonyadi MR, Michalewicz Z, Neumann F, Wagner M (2014) Evolutionary computation for
multi-component problems: opportunities and future directions. Frontiers in Robotics and AI,
Computational Intelligence, under review, 2014

10. Bonyadi MR, Michalewicz Z, Przybyek MR, Wierzbicki A (2014) Socially inspired algo-
rithms for the travelling thief problem. In: Genetic and evolutionary computation conference
(GECCO), ACM

11. Bonyadi MR, Michalewicz Z, Wagner M (2014) Beyond the edge of feasibility: analysis of
bottlenecks. In: International conference on simulated evolution and learning (SEAL), volume
To appear, Springer

12. Charnes A, Cooper WW (1957) Management models and industrial applications of linear
programming. Manag Sci 4(1):38–91. ISSN 0025–1909

13. Chatterjee A, Mukherjee S (2006) Unified concept of bottleneck. Report, Indian Institute of
Management Ahmedabad, Research and Publication Department

14. Cho S, Kim S (1992) Average shadow prices in mathematical programming. J Optim Theory
Appl 74(1):57–74

15. Crema A (1995) Average shadow price in a mixed integer linear programming problem. Eur J
Oper Res 85(3):625–635. ISSN 0377–2217

16. Frieze A (1975) Bottleneck linear programming. Oper Res Q 26(4):871–874
17. Goldratt EM (1990) Theory of constraints. North River, Croton-on-Hudson
18. Goldratt EM, Cox J (1993) The goal: a process of ongoing improvement. Gower, Aldershot
19. Heywood MI, Lichodzijewski P (2010) Symbiogenesis as a mechanism for building complex

adaptive systems: a review. In: Applications of evolutionary computation, Springer, pp 51–60
20. Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization pro-

cedure. Phys D: Nonlinear Phenom 42(1):228–234. ISSN 0167–2789
21. JacobStolkAMZM,Mann I (2013)Combining vehicle routing andpacking for optimal delivery

schedules of water tanks. OR Insight 26(3):167190. doi:10.1057/ori.2013.1
22. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-a survey. IEEE

Trans Evol Comput 9(3):303–317. ISSN 1089–778X
23. Keane A (1994) Genetic algoritm digest. ftp://ftp.cse.msu.edu/pub/GA/gadigest/v8n16.txt
24. Keen PG (1981) Value analysis: justifying decision support systems. MIS Q 5:1–15. ISSN

0276–7783
25. Kim S, Cho S-C (1988) A shadow price in integer programming for management decision. Eur

J Oper Res 37(3):328–335. ISSN 0377–2217

http://dx.doi.org/10.1145/2463372.2463378
http://dx.doi.org/10.1016/j.swevo.2014.06.001
http://dx.doi.org/10.1016/j.swevo.2014.06.001
http://dx.doi.org/10.1057/ori.2013.1
ftp://ftp.cse.msu.edu/pub/GA/gadigest/v8n16.txt


Evolutionary Computation for Real-World Problems 23

26. Koopmans TC (1977) Concepts of optimality and their uses. Am Econ Rev 67:261–274. ISSN
0002–8282

27. LauHC,SongY (2002)Combining twoheuristics to solve a supply chain optimization problem.
Eur Conf Artif Intell 15:581–585

28. Leguizamon G, Coello CAC (2009) Boundary search for constrained numerical optimization
problems with an algorithm inspired by the ant colony metaphor. IEEE Trans Evol Comput
13(2):350–368. ISSN 1089–778X

29. Li X, Bonyadi MR, Michalewicz Z, Barone L (2013) Solving a real-world wheat blending
problem using a hybrid evolutionary algorithm. In: Congress on evolutionary computation,
IEEE, pp 2665–2671. ISBN 1479904538

30. Luebbe R, Finch B (1992) Theory of constraints and linear programming: a comparison. Int J
Prod Res 30(6):1471–1478. ISSN 0020–7543

31. Maksud Ibrahimov SSZM, Mohais A (2012) Evolutionary approaches for supply chain opti-
misation part 1. Int J Intell Comput Cybern 5(4):444–472

32. Maksud Ibrahimov SSZM, Mohais A (2012) Evolutionary approaches for supply chain opti-
misation part 2. Int J Intell Comput Cybern 5(4):473–499

33. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations.
Wiley, Chichester

34. MersmannO,Bischl B, TrautmannH,WagnerM,Bossek J, NeumannF (2013)Anovel feature-
based approach to characterize algorithm performance for the traveling salesperson problem.
Ann Math Artif Intell 1–32. ISSN 1012–2443

35. Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer.
ISBN 3540606769

36. Michalewicz Z (2012) Quo vadis, evolutionary computation? Adv Comput Intell 98–121
37. Michalewicz Z (2012) Ubiquity symposium: evolutionary computation and the processes

of life: the emperor is naked: evolutionary algorithms for real-world applications. Ubiquity,
2012(November):3

38. Michalewicz Z, Fogel D (2004) How to solve it: modern heuristics. Springer, New York. ISBN
3540224947

39. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter op-
timization problems. Evol Comput 4(1):1–32. ISSN 1063–6560

40. Michalewicz Z, Nazhiyath G, Michalewicz M (1996) A note on usefulness of geometrical
crossover for numerical optimization problems. In: Fifth annual conference on evolutionary
programming, Citeseer, p 305312

41. NallaperumaS,WagnerM,NeumannF,Bischl B,MersmannO, TrautmannH (2013)A feature-
based comparison of local search and the christofides algorithm for the travelling salesperson
problem. In: Proceedings of the twelfth workshop on foundations of genetic algorithms XII,
ACM, pp 147–160. ISBN 1450319904

42. Neumann F, Witt C (2012) Bioinspired computation in combinatorial optimization: algorithms
and their computational complexity. In: Proceedings of the fourteenth international conference
on Genetic and evolutionary computation conference companion, ACM, pp 1035–1058. ISBN
1450311784

43. Nguyen T, Yao X (2012) Continuous dynamic constrained optimisation-the challenges. IEEE
Trans Evol Comput 16(6):769–786. ISSN 1089–778X

44. Polyakovskiy S,BonyadiMR,WagnerM,MichalewiczZ,NeumannF (2014)A comprehensive
benchmark set and heuristics for the travelling thief problem. In: Genetic and evolutionary com-
putation conference (GECCO), ACM. ISBN 978-1-4503-2662-9/14/07. doi:10.1145/2576768.
2598249

45. Potter M, De Jong K (1994) A cooperative coevolutionary approach to function optimization.
In: Parallel problem solving from nature, Springer, Berlin Heidelberg, pp 249–257. doi:10.
1007/3-540-58484-6269

46. Rahman S-U (1998) Theory of constraints: a review of the philosophy and its applications. Int
J Oper Prod Manage 18(4):336–355. ISSN 0144–3577

http://dx.doi.org/10.1145/2576768.2598249
http://dx.doi.org/10.1145/2576768.2598249
http://dx.doi.org/10.1007/3-540-58484-6269
http://dx.doi.org/10.1007/3-540-58484-6269


24 M.R. Bonyadi and Z. Michalewicz

47. Rosin CD, Belew RK (1995) Methods for competitive co-evolution: finding opponents worth
beating. In: ICGA, pp 373–381

48. Runarsson T, YaoX (2000) Stochastic ranking for constrained evolutionary optimization. IEEE
Trans Evol Comput 4(3):284–294. ISSN 1089–778X

49. Schoenauer M, Michalewicz Z (1996) Evolutionary computation at the edge of feasibility. In:
Parallel problem solving from nature PPSN IV, pp 245–254

50. SchoenauerM,Michalewicz Z (1997) Boundary operators for constrained parameter optimiza-
tion problems. In: ICGA, pp 322–32

51. Smith-Miles K, van Hemert J, Lim XY (2010) Understanding TSP difficulty by learning from
evolved instances, Springer, pp 266–280. ISBN 3642137997

52. Smith-Miles K, Baatar D,Wreford B, Lewis R (2014) Towards objectivemeasures of algorithm
performance across instance space. Comput Oper Res 45:12–24. ISSN 0305–0548

53. Weise T, Zapf M, Chiong R, Nebro A (2009) Why is optimization difficult? Nature-inspired
algorithms for optimisation, pp 1–50

54. Wu ZY, Simpson AR (2002) A self-adaptive boundary search genetic algorithm and its appli-
cation to water distribution systems. J Hydraul Res 40(2):191–203. ISSN 0022–1686



Selection of Significant Features Using
Monte Carlo Feature Selection

Susanne Bornelöv and Jan Komorowski

Abstract Feature selection methods identify subsets of features in large datasets.
Such methods have become popular in data-intensive areas, and performing feature
selection prior tomodel constructionmay reduce the computational cost and improve
the model quality. Monte Carlo Feature Selection (MCFS) is a feature selection
method aimed at finding features to use for classification. Here we suggest a strategy
using a z-test to compute the significance of a feature using MCFS. We have used
simulated data with both informative and random features, and compared the z-test
with a permutation test and a test implemented into the MCFS software. The z-test
had a higher agreement with the permutation test compared with the built-in test.
Furthermore, it avoided a bias related to the distribution of feature values that may
have affected the built-in test. In conclusion, the suggested method has the potential
to improve feature selection using MCFS.

Keywords Feature selection · MCFS · Monte Carlo · Feature significance ·
Classification

1 Introduction

With the growth of large datasets in areas such as bioinformatics, computational
chemistry, and text recognition, limitations in the computational resources may force
us to restrict the analysis to a subset of the data. Feature selection methods reduce the
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data by selecting a subset of the features. An assumption in feature selection is that
large datasets contain some redundant or non-informative features. If successfully
removing those, both the speed of the model training, the performance, and the
interpretation of the model may be improved [1].

There are several feature selection methods available. For a review of feature
selection techniques used in bioinformatics, see Saeys et al. [2]. Some methods are
univariate and consider one feature at a time; others include feature interactions to
various degrees. In this paperwehave studiedMonteCarlo Feature Selection (MCFS)
[3]. MCFS focuses on selecting features to be used for classification. The use of
MCFS was originally illustrated by selecting genes with importance for leukemia
and lymphoma [3], and it was later used to study e.g. HIV-1 by selecting residues in
the amino acid sequence of reverse transcriptase with importance for drug resistance
[4, 5]. Furthermore, MCFS may be used to rank the features based on their relative
importance score. Thus, MCFS may be applied even on smaller datasets if the aim
is to rank the features by their impact on the outcome (see e.g. [6–8]).

MCFS is a multivariate feature selection method based on random sampling of
the original features. Each sample is used to construct a number of decision trees.
Each feature is then given a score—relative importance (RI)—according to how it
performs in the decision trees. Thus, the selection of a feature is explicitly based on
how the feature contributes to classification.

One question is how to efficiently interpret the RI of a feature. If MCFS is used
to select a subset suitable for classification, a strategy may be to select the x high-
est ranked features [6]. However, a stronger statistical basis for making the cutoff
would be preferred, particularly, when MCFS is used to determine which features
significantly influence the outcome.

TheMCFSalgorithm is implemented in the dmLab software available at [9]. There
is a statistical test on the significance of a feature implemented in the software. The
strategy of the test is to perform a number of permutations of the decision column,
and in each permutation save the highest RI observed for any feature. Thereafter,
the test compares the RI of each feature in the original data to the 95% confidence
interval of the mean of the best RI scores [5].

Here, we suggest a different methodology that tests each feature separately to its
own set of controls. We show that this methodology leads to more accurate results
and allows us to identify the most significant feature even when they do not have the
highest RI. Furthermore, by testing each feature separately, we avoid biases related
to the distribution of feature values. Our suggested methodology is supported by
experiments using simulated data.

In conclusion, we have provided a methodology for computing the significance of
a feature using MCFS. We have shown that this methodology improves the currently
used statistical test, and discussed the implications of using alternative methods.
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2 Materials and Methods

2.1 Monte Carlo Feature Selection

The MCFS algorithm is based on extensive use of decision trees. The general idea
is to select s subsets of the original d features, each with a random selection of m
features. Each such subset is divided into a training and test set with 2/3 and 1/3 of the
objects, respectively. This division is repeated t times, and a decision tree classifier
is trained on each training set. In all, st decision trees are trained and evaluated on
their respective test set. An overview of the methodology is shown in Fig. 1.

Each feature is scored according to how it performs in these classifiers by a score
called relative importance (RI). The RI of a feature g was defined by Draminski
et al. [3] as

RIg = 1

Mg

st
∑

τ=1

(wAccτ )
u

∑

ng(τ )

IG(ng(τ ))

(
no.in ng(τ )

no.in τ

)v

(1)

where s is the number of subsets and t is the number of splits for each subset. Mg is
the number of times the attribute g was present in the training set used to construct a
decision tree. For each tree τ the weighted accuracy wAcc is calculated as the mean
sensitivity over all decision classes, using

wAcc = 1

c

c
∑

i=1

nii

ni1 + ni2 + · · · + nic
(2)

where c is the number of decision classes and ni j is the number of objects from class
i that were classified to class j .

Furthermore, for each ng(τ ) (a node n in decision tree τ that uses attribute g) the
information gain (IG) of ng(τ ) and the fraction of the number of training set objects
in (no.in) ng(τ ) compared to the number of objects in the tree root is computed.
There are two weighting factors u and v that determine the importance of the wAcc
and the number of objects in the node.

Fig. 1 Overview of the
MCFS procedure.
Reproduced from Draminski
et al. [3]
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2.2 Construction of Datasets

To apply MCFS and to compute the significance of the features, we constructed
datasets with 120 numerical and 120 binary features. For each type of features, 20
were correlated to the decision and 100 were uncorrelated. The decision class was
defined to be binary (0 or 1) with equal frequency of both decisions. The number of
simulated objects was set to either 100 or 1,000. Thus, for each object the decision
class value was randomly drawn from the discrete uniform distribution [0,1] prior to
generating the attribute values. Detailed description of the attributes is provided in
the following sections. To verify that the features with an expected correlation to the
decision indeed were correlated, the Pearson correlation between each non-random
feature and the decision was computed after the data generation (Table1).

Numerical Uncorrelated Features: RandNum0 to RandNum99. The values of a
numerical uncorrelated feature (RandNumi , 0 ≤ i ≤ 99) were randomly drawn from
the discrete uniform distribution [1, i +1]. Thus, the indices defined the range of

Table 1 Pearson correlation between each correlated feature and the decision. Presented for both
datasets (100 objects and 1,000 objects) separately

i 100 objects 1,000 objects

Numi Bini Numi Bini

0 0.74 0.96 0.74 0.95

1 0.72 0.94 0.65 0.91

2 0.58 0.86 0.63 0.87

3 0.66 0.84 0.50 0.81

4 0.50 0.77 0.50 0.78

5 0.53 0.73 0.47 0.69

6 0.19 0.60 0.43 0.66

7 0.39 0.64 0.41 0.64

8 0.34 0.56 0.35 0.60

9 0.28 0.54 0.35 0.55

10 0.38 0.39 0.28 0.46

11 0.22 0.41 0.29 0.41

12 0.18 0.33 0.23 0.45

13 0.21 0.30 0.20 0.31

14 0.29 0.33 0.14 0.32

15 0.18 0.19 0.16 0.32

16 0.15 0.31 0.16 0.18

17 –0.01 0.01 0.07 0.14

18 0.08 0.07 0.07 0.15

19 –0.06 –0.02 –0.03 0.05



Selection of Significant Features Using Monte Carlo Feature Selection 29

possible values, which allowed us to test whether the number of possible values for
a feature influenced its ranking.

Numerical Correlated Features: Num0 to Num19. The values of a numerical cor-
related feature (Numi , 0≤ i≤ 19) were defined using the following algorithm: Let X
be a random variable from the continuous uniform distribution (0,1). If X > (i+1)/21
the value was selected randomly from the binomial distribution B(6, 0.5) if Deci-
sion=0, and from B(6, 0.5)+3 if Decision=1. Otherwise, if X ≤ (i +1)/21, the value
was selected randomly from the uniform distribution [0, 9]. Thus, low values were
indicative ofDecision=0 and high values ofDecision=1, with a noise level indicated
by the feature index.

Binary Uncorrelated Features: RandBin0 to RandBin99. The values of a binary
uncorrelated feature (RandBini , 0 ≤ i ≤ 99) were defined using the following algo-
rithm: Let X be a random variable from the continuous uniform distribution (0,1). If
X > (i+1)/101 the value is 1, otherwise it is 0.

Thus, features with low indices will have ones in excess, features with middle
indices will have more even distribution of ones and zeroes, and those with high
indices will have zeroes in excess.

Binary Correlated Features: Bin0 to Bin19. The values of a binary correlated
feature (Bini , 0 ≤ i ≤ 19) were defined using the following algorithm: Let X1 be a
random variable from the continuous uniform distribution (0,1). If X1 > (i +1)/21,
the value is equal to the decision. Otherwise it is assigned by drawing another random
variable X2 from the continuous uniform distribution (0,1). If X2 > (i +1)/21, the
value is 1, otherwise it is 0.

2.3 Performing the Experiments

The experiments were performed using the dmLab software version 1.85.We applied
the rule-of-thumb to set the number of features selected in each subset to

√
d, where

d is the total number of features. Thus using 240 features, we used m = √
240 ≈

15. The number of subsets was set to s = 3,000 for the permutation runs and s =
100,000 for the original data. The number of trees trained in each subset was set to t
= 5 and the number of permutation test runs was set to cutPointRuns = 10,000. The
weighting parameters were set to u = 0 and v = 1.

There were two main arguments for using a higher number of subsets on the
original data. Firstly, ranking of the features in the original data is the most crucial
part of the experiment. Therefore, it is generally motivated to focus more of the
computational resources onto this step. Secondly, both the z-test and the built-in test
require the rankings of the original data to be stable,which is obtained by constructing
a high number of subsets.

Setting u = 0 will omit the decision tree accuracy from the calculation of RIs.
Indeed, using model performance as a selection criteria may be counter-productive
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[10], and our experience is that the inclusion of the accuracy in the calculation of the
RI overestimates the importance of all features in the original data compared to the
permuted ones. This effect is expected, since the accuracy on the original data will
reflect the most predictive features, whereas on the permuted data it will only reflect
random variation of the decision trees.

2.4 Selection of Significant Features

In this section we present different strategies to estimate the p-value of the RI of a
feature using a permutation test, either alone or in combination with additional tests.
Using a traditional permutation test requires thousands of permutations to yield
efficient estimates of small p-values. Thus, alternative tests performing a smaller
number of permutations and using these to estimate the underlying distribution may
save computational time. The test that is built-in into dmLab employs this strategy
and performs a t-test comparing the best RIs obtained during the permutation runs
to the RI of a feature on the original data. Here we suggest another approach using
a z-test to compute the p-value by estimating a normal distribution for each feature
separately.

During the permutation test the number of permutations, N , was set to 10,000 to
obtain sufficient resolution of the p-values. The permutation test p-values were then
used as a gold standard to evaluate the build-in test and the suggested z-test. For these
tests a substantially smaller number of permutations are needed. Consequently, we
used only the 100 first permutation runs to estimate the p-values using the built-in
and the z-test.

Using a Permutation Test to Select Significant Features. A permutation test may
be applied to compute an approximation of the empirical p-value of a RI. The null
hypothesis is that the RI calculated on the real data is no better than the RIs com-
puted for the permutated data. The empirical p-value approximates the probability
of observing a test statistics at least as extreme as the observed value, assuming that
the null hypothesis is true. Typically, a significance level, such as 0.05, is defined
and attributes associated with p-values below this level are considered significantly
informative.

Theoretically, the true permutation test p-value of RI = x that was measured for
a feature g would be

ptrue(RIg = x) =

Nall∑

i=1
I(RI i

g ≥ x)

Nall
(3)

where I is the indicator function taking value 1 if the condition ismet, and 0 otherwise.
RIi

g is the RI of the attribute g in permutation iand N all denotes the total number of
possible permutations. However, since N all may be extremely large, only a limited
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number of permutations are commonly performed. Furthermore, pseudo-counts are
added to avoid p-values of zero, which are theoretically impossible since at least one
possible permutation has to be identical to the original data. Thus, an approximation
of the permutation test p-value is commonly applied,which is based on the N number
of permutations with N � Nall using the following expression

p(RIg = x) =
1 +

N∑

i=1
I(RI i

g ≥ x)

N + 1
(4)

Using a z-Test to Select Significant Features. By performing N permutations, each
feature receives N estimates of its relative importance on non-informative data. If N
> 30 and the RIs are normally distributed, the distribution mean μg and standard
deviation σ g of a feature g may be estimated from the data as

μg = 1

N

N
∑

i=1

RI i
g (5)

and

σg =
√
√
√
√

1

N − 1

N
∑

i=1

(RI i
g − μg)2 (6)

where RIi
g is the RI of attribute g in permutation i .

Thus, the z-score of the RI for a feature g on the original data, RIg = x , may be
computed as

z = (x − μg)/σg. (7)

A z-test can be applied to calculate the p-value associated to a particular z-score.
Since no feature is expected to perform significantly worse on the original data
compared with the permuted one, an upper-tail p-value was computed.

Using the Built-in Test to Select Significant Features. To compare our results,
we also used the combined permutation test implemented in the dmLab software.
This test is also based on N permutations of the decision, and using each such
permuted dataset, the whole MCFS procedure is repeated and the RI of each feature
is computed. As opposed to the previous strategies, only the highest RI from each
permuted dataset (RImax) is used, independently of which feature it is based on.
Thus, N such RImax values are generated and used to estimate the parameters μmax
and σmax applying

μmax = 1

N

N
∑

i=1

RI i
max (8)
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and

σmax =
√
√
√
√

1

N − 1

N
∑

i=1

(RI i
max − μmax)2. (9)

A t-statistic is then computed per feature g as

T = (xg − μmax)/(σmax/
√

N ) (10)

and the two-sided p-value associated to the t-statistics is obtained.

3 Results

3.1 Results of Simulation Study

We applied MCFS to the datasets with 100 and 1,000 objects. Table2 summarizes
the results after MCFS using 100 objects. The RI of each feature is reported, as well
as the estimated RI mean and standard deviation on the permuted data. The 10,000
RIs computed for each feature on the permuted data were approximately bell shaped,
occasionally displaying a bias towards either of the distribution tails. The p-values
were calculated using the z-test and the permutation test as described in Sect. 2.4.
Additionally, an overall RI threshold at the 0.05 significance level was estimated to
0.0787 using the built-in method in dmLab.

Using both the z-test and the permutation test Num0-Num5, Num7-Num8, Num10,
Bin0- Bin11, Bin14, and Bin16 were significant at the 0.05 level. Using the built-in
t-test combining all features, the Bin10-Bin11, Bin14, and Bin16 were not identified as
significant since their RIwas below 0.0787. Note thatBin16 was significant according
to the z-test and the permutation test, although it had a lower RI than Num9 that was
not significant using any of the tests.

A notable association between the ranking of the random binary features and their
indices was observed (Fig. 2a), where features with intermediate indices were ranked
higher than those with low or high indices. Since the random binary features with low
or high indices were defined to have an excess of ones or zeroes, respectively, this
corresponds to a weak preference for features with a uniform distribution of values.
However, no relation between the value range of a feature and its relative importance
was observed, consistent with previously reported results [11], although the variation
of the RIs increased slightly with the value range (Fig. 2b). Both the binary and
numeric features were scored according to their expected relevance (Fig. 2c, d).

Since the data was randomly generated simulating only 100 objects, the exact size
of the effect for a feature may differ slightly from the expectation. Thus, we repeated
the same methodology with a sample size of 1,000 objects instead. The results are
shown in Table3. This time, Bin0-Bin15 and Num0-Num13 were selected using z-test
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Table 2 Results of MCFS on simulated data with 100 objects. Significant features and the three
highest ranked non-significant features of each type are shown. The features are ranked according
to their RI. Grayed lines denote non-significant features

and permutation test. The threshold using the built-in test was 0.0352, which in this
case identified the same features.

The relation between the RI scores and the indices of the features is shown in
Fig. 3. There is a substantial decrease in the noise compared with using 100 objects.
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Fig. 2 Relation between attribute indices and RI using a dataset with 100 objects. Shown for a, b
random and c, d informative features of both a, c binary and b, d numeric type. Note that the y-axis
scale varies from panel to panel

3.2 Comparison of p-Values

In order to determine how accurate the p-values obtained through the z-test were,
we compared them with the permutation test p-values (Fig. 4a). Furthermore, we
computed p-values based on the built-in method, and compared to the permutation
test p-values (Fig. 4b).

The p-values estimated using the z-test were closely following the ones obtained
by permutation test, whereas the built-in method failed to efficiently model the em-
pirical p-values, although the built-in method identified almost as many significant
features as the z-test. Essentially, the p-values obtained by applying the built-in
method were always equal to either 0 or 1. We speculate that the assumption of
comparing two means results in a biased downward estimate of the variance of the
data.

4 Discussion

We have used simulated data to evaluate the application of a z-test to identifying
features significant for classification using MCFS. The data was designed in such
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Table 3 Results of MCFS on simulated data with 1,000 objects. Significant features and the three
highest ranked non-significant features of each type are shown. The features are ranked according
to their RI. Grayed lines denote non-significant features
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Fig. 3 Relation between attribute indices and RI using a dataset with 1,000 objects. Shown for a,
b random and c, d informative features of both a, c binary and b, d numeric type. Note that the
y-axis scale varies from panel to panel

Fig. 4 Agreement between the permutation test and a p-values obtained from z-test, or b p-values
computed using the build-in strategy (showing upper-tail p-values). Calculated for the 100 objects
dataset

a way that the influence of the distribution and domain of feature values could be
evaluated. We have shown that the RI of a feature depends on its distribution of
values across the objects. Features with more evenly distributed values tend to get
higher RI scores. This is likely caused by the inclusion of the information gain in the
calculation of the RI and may cause trouble if the RIs of all features are assumed to
follow the same distribution.
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The built-in test in the dmLab software assumes that the RI of all features derive
from the same distribution, which may bias the estimate of the feature significances,
essentially preventing some features from reaching significance if other—more fa-
vorably distributed—features are present in the data. In this study we suggest that
each feature should be evaluated individually, using its own null model.

We have shown that a z-test efficiently estimates the correct p-value as validated
by a permutation test, whereas applying the built-in strategy combining a t-test with
a permutation test failed to detect some significant features and to estimate the “true”
p-values obtained by the permutation test. The built-in-strategy treats the RI com-
puted on the original data as a mean instead of a single observation, which may
underestimate the sample variation.

It should be noted that since the true standard deviation and mean of the feature
RIs on the permuted data is not known, at least 30 permutations have to be performed
to convincingly estimate the distribution parameters from the observed data in order
to apply a z-test. This puts a lower limit on the number of permutations that can be
run to estimate the feature significances. The z-test requires the RIs measured for
the permuted data to be approximately normally distributed. Almost all features in
our study had a bell shaped distribution, but sometimes with an elongated tail in one
direction. Such a tail may lead to an overestimation of the variance in the permuted
data, underestimating the significance of a feature. However, we did not observe any
such effect.

Since the features are scored according to how they participate in decision tree
classifiers, non-informative features will generally not be selected when there are
informative features in the same subset. Thus, the more informative features that are
present in the data, the lower the non-informative features are scored. We do not
expect this effect to significantly affect the estimated p-values of the informative
features, but the, comparably, non-informative ones will get very poor p-values,
which may explain why many features obtained p-values close to 1 using both the
permutation test and the z-test.

Although this methodology is efficient at detecting informative features, the most
significant features may not necessarily be the best features to use for classification.
The effect size of a feature may be more important than its significance, and both the
RI and the p-value should be considered when selecting features for classification.

5 Conclusions

MCFS is a reliable method for feature selection that is able to identify significant
features, even with small effects. In this study we showed that features with more
evenly distributed values tend to receive higher RIs than features with an uneven
distribution. To avoid biasing the selection towards such features, each feature should
be tested for significance separately. We have shown that a z-test is an efficient
method to estimate the significance of a feature and that these p-values have a strong
agreement with p-values obtained through a traditional permutation test.
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ADX Algorithm for Supervised Classification

Michał Dramiński

Abstract In this paper, a final version of the rule based classifier (ADX) is presented.
ADX is an algorithm for inductive learning and for later classification of objects. As
is typical for rule systems, knowledge representation is easy to understand by a
human. The advantage of ADX algorithm is that rules are not too complicated and
for most real datasets learning time increases linearly with the size of a dataset. The
novel elements in this work are the following: a new method for selection of the
final ruleset in ADX and the classification mechanism. The algorithm’s performance
is illustrated by a series of experiments performed on a suitably designed set of
artificial data.

1 Introduction

Atpresentwehave a lot of different classificationmethods.Themost popularmethods
are those based on distance or dissimilarity measure (e.g. kNN [6, 10]), hierarchical
methods (e.g. CART [3] and C4.5 [18, 19]), probabilistic methods (e.g. Bayessian
classifier), logic systems based on rough sets or classification rules (LEM2, MLEM2
[12, 17, 20], AQ [14, 15], CN2 [4]), and neural nets. Prediction quality of each clas-
sifier depends on a problem. After good preparation of input data (feature extraction
and selection, discretization if needed, events selection) and optimization of classi-
fier parameters, different classification techniques often give comparable results. For
very large datasets a ‘perfect’ classifier should not need separate feature selection
process and is fast enough (learning time is a logarithmic or linear function of size of
the dataset). Additionally, a classifier should generalize knowledge after the learning
process. The ADX algorithm was designed to meet all these criteria and hopefully,
it is not just one more classifier but also a good candidate to deal with very large
datasets.
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2 Definitions

Let D denote a database. Each row in a database is an event/object e, what means
that D is a set of events. Let |D| denote the number of events in D. Each column in
database D corresponds to one attribute of events. Attribute can be nominal such as
color (e.g., possible values of color are: green, red, etc.) or ordered such as height
represented by an ordered set of values/levels (e.g., small, medium and high), or
numerical such as height and weight measured, respectively, in inches and pounds.
Attributes describe events in D. All possible combinations of values of attributes
describing an event form a domain.We assume that D also includes a special attribute
called decision attribute d which determines class of each event. Thus, class di is a
value of nominal attribute d from a finite set di = {d1, . . . , dm},m < ∞.

Selector s is an expression that describes set of events by imposing some condition
on values one attribute. For example: color = blue; or weight > 80. Each simple
selector consists of a name of attribute, its single value and an operator relating the
two. Advanced/complex selector can include a list of nominal or ordered values (e.g.
color = [blue, red]) or a range of numeric values (e.g. weight = (70; 80]). Each
complex selector can be written as a set of simple selectors suitably combined into
one selector: color = [blue, red] is equivalent to color = blue OR color = red,
weight = (70; 80] is equivalent to weight > 70 AND weight ≤ 80. Selector
s which allows any value for the attribute is called universal/general and will be
presented as attribute = ∗ (e.g. color = ∗ denotes any color).

Let complex c denote a set of selectors and let length n of the complex denote
the number of selectors (simple or advanced) contained in the complex. For example
complex c = 〈s1, s2, s3〉, has length 3 (where s j , j = {1, 2, 3}, is a selector). A
complex is understood as a conjunction of selectors.

Coverage of selector s, cov(s) is the number |Ds | of events that satisfy condition
in s divided by |D|. Coverage of c, cov(c) is the number |Dc| of events that satisfy
complex c divided by |D|.

cov(s) = |Ds |
|D| , cov(c) = |Dc|

|D| (1)

For a given class di , positive set Ddi ,p is the set of events whose decision attribute
has the value corresponding to this class. Accordingly, during creation of rules, for
a given class di , all events that belong to di are called positive, all other events are
called negative Ddi,n . For a given class, positive coverage pcovdi of a given complex
c is the coverage on the subset of events which belong to the considered class di .
Negative coverage ncovdi of the complex c is the coverage on the subset of events
whose class is different from the considered class di , thus

pcovdi (c) = |Dc
di ,p|

|Ddi ,p| , ncovdi (c) = |Dc
di ,n

|
|Ddi ,n| (2)
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pcovdi (s) = |Ds
di ,p|

|Ddi ,p| , ncovdi (s) = |Ds
di ,n

|
|Ddi ,n| (3)

where Dc
di,p denotes the set of positive events for class di , covered by complex c.

Analogically, Dc
di,n

denotes the set of negative events for class di , covered by c, and
Ds

di,p, Ds
di,n

have the suitable meaning for selector s. Clearly Dc
di,p ∪ Dc

di,n
= Dc.

Note that for any di :

cov(s) = |Ds
di ,p| + |Ds

di ,n
|

|D| , cov(c) = |Dc
di ,p| + |Dc

di ,n
|

|D| , (4)

The probability of positive class occurrence for complex c is given by Eq. (5).

probdi ,p(c) = |Dc
di ,p|

|Dc
di ,p| + |Dc

di ,n
| (5)

By definition, strong rules characterize classes uniquely, and hence their negative
coverage ncov is equal to 0. If a complex has ncov > 0 and pcov > ncov for a
given class di it still characterizes this class but with some probability lesser than
1. This probability is usually called confidence or consistency of a rule. Confidence
for any strong rule equals 1. A set of complexes, understood as disjunction of the
complexes, that characterizes one class with positive confidence is called a ruleset.
A set of rulesets that characterizes all classes with positive levels of confidence is
called a ruleset family.

3 The ADX Algorithm—Creation of a Ruleset for One Class

Let us begin with a loose description of the algorithm. The idea of the ADX (Apriori–
Decision rules eXtraction) algorithm is based on the observation that conjunction of
selectors cannot have a larger cov than minimal cov for each of these selectors. The
main goal of the algorithm is to find the best ruleset (the set of complexes such that
each of them has a possibly large pcov and a possibly small ncov for each of the
classes). The rules are built by an iteration process. In each iteration, we lengthen
complexes of high quality by one selector. Quality measure is based on pcov and
ncov and roughly speaking it is high if pcov is high and ncov is low. After creating
all the rulesets, classification can be done bymeasuring similarity of a new unlabeled
event to each ruleset. The ruleset which is most similar to the considered event will
be chosen as a classifier’s decision. We allow ambiguities, noise, and missing values
in input data.

The ADX algorithm does not try to create very long and complicated rules with
ncov = 0 (strong rules). The idea is to create a set of rather simple rules with possibly
large pcov and possibly small ncov. Sometimes a set of strong rules can perform
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badly during later prediction (e.g. for noisy data), and therefore ADX does not treat
strong rules in any special way. In the algorithm, there is no need to truncate the rules
finally obtained since theway they are constructedmakes them possibly simple, short
and general. We assume in the sequel that input data are discretized beforehand, and
hence that the ADX works on nominal values. However, a very good discretization
technique as proposed by Fayyad and Irani [9] is implemented into ADX.

3.1 First Step—Finding Selectors Base

For a given class and for each value of each attribute in D, the algorithm finds pcov
and ncov. It means that in the first step, the algorithm builds a set of contingency
tables for all attributes (excluding d). The set of all simple selectors thus obtained, to
be termed selectors base, can be sorted by quality measure Q which combines pcov
and ncov (definition of Q will be given later).

3.2 Second Step—Creation of Complexes Set

We can say that the selectors base is a set of complexes with length 1. Longer
complexes are created via an iteration process. Each iteration consists of:

• Creation of candidates (each of them being 1 simple selector longer than selectors
in the previous iteration).

• Estimation of candidates’ quality.
• Deleting useless complexes.
• Selection of parents set.
• Checking if stop criteria have been reached.

Creation of Candidates Complexes whose quality has not been estimated yet are
called candidates. Creation of such complexes with length 2 is very simple. These
are all possible selectors’ pairs excluding pairs where both selectors are based on
the same attribute. Notice that complex (length 2) c1 = 〈s1, s2〉 equals c2 = 〈s2, s1〉,
because each complex consists of conjunction of selectors. There is an important
issue about creation of complexes longer than 2. To create a new complex candidate
of length n + 1, the algorithm uses two complexes shorter by 1, which can be called
parents. Parent complexes need to have common part of length n − 1 (where n
denotes length of parents complexes). For example complex c1 = 〈s1, s2, s3〉 and
c2 = 〈s2, s3, s5〉 can be used to create c3 = 〈s1, s2, s3, s5〉. Creation of complexes
with length 2 is based on simple selectors. Complexes with length 3 are based on
selected parents complexes with length 2 and so on.
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Evaluation of Candidates’ Quality After creation of the candidates set there is a
need to separately evaluate quality of each newly created complex. During the eval-
uation process, for each complex candidate there is calculated positive and negative
coverage (pcov and ncov) on the training set. Based on these coverages, the quality
measure Q1 is calculated and is used to evaluate complexes’ usability.

Q1 = (pcov − ncov)(1 − ncov) (6)

Deleting Useless Candidates Complexes that do not cover any positive event
(pcov = 0) are deleted (to save the memory) during this step. Such complexes
do not describe a class and are useless for next steps. However the rest of the com-
plexes, including those that will not be used for creation of new candidates, are stored
for future final selection step.

Selection of Parents Within this step, ADX selects complexes as parents from
which, next candidates (longer by 1) are created. The size of parents set is defined
by parameter search Beam and selection of parents is based on measure Q1 (higher
is better). If the number of complexes which have the same (and the highest) value
of Q1 is larger than search Beam then exactly search Beam parents are selected at
random. Complexes which were not selected to be parents in the next iteration, are
stored to be used for final selection process. While parameter search Beam controls
the scope of exploration, it affects the learning time. With search Beam increas-
ing the scope of exploration increases, but unfortunately, learning time grows too.
Loosely speaking, search Beam should be set in such away that possibly best results
be obtained within acceptable time. Its default value is set to 50.

In this phase, selection of complexes with ncov = 0 as parents is allowed. Exper-
iments have shown that it leads to building longer complexes which can play positive
role during the classification process (the ruleset proves more specific).

Stop Criteria Creation of candidates has two possible stop criteria. According to
the first criterion, creation of new candidates is stopped when complex length equals
the number of attributes (without decision attribute). Creation of the ruleset has to be
finished because each single selector in complex must describe a different attribute
(complex cannot be any longer).

According to the second criterion, the algorithm is stopped when the set of new
candidates is empty (if there are no parents that have common part of n − 1 length
and new candidates cannot be created).

3.3 Third Step—Merging of Complexes

In this step, the number of created and evaluated complexes is decreased and their
quality improved. If some complexes are based on the same attribute set and only one
selector has different value, then it is possible to merge such complexes. Merging
induces creation of new selectors and removal of those merged. This new selector



44 M. Dramiński

is a disjunction of values of the corresponding base selectors. For example: 〈A =
1, B = 3,C = 4〉 ⊕ 〈A = 1, B = 3,C = 7〉 =⇒ 〈A = 1, B = 3,C = [4, 7]〉,
where new selector is C = [4, 7]. For the resulting complex pcov and ncov are the
sums of corresponding coverages of removed complex.

3.4 Fourth Step—Final Selection of the Ruleset

The final selection step is critical for the ruleset creation and is similar to truncation of
a tree—essentially it has the same effect. From the entire set of stored rules we have
to select themost appropriate subset that can be used in later successful classification.

In this phase, from the entire set of complexes, maximally f inal Beam (a number
not larger than fixed value of this parameter) of complexes is selected. Selection is
based on prediction ability of already selected rules. First of all, all the complexes
discovered so far are sorted by quality measure Q2 (7). The measure Q2 is similar
to Q1 but is more focused on complexes with lower ncov.

Q2 = (pcov − ncov)(1 − ncov)2 (7)

In order to describe final selection process, a measure Qr of prediction ability of
a ruleset has to be introduced.

Qr = (S p − Sn)(1 − Sn) (8)

where
S p =

∑

e∈Dp

S(e) (9)

Sn =
∑

e∈Dn

S(e) (10)

and S(e) is measure of event e, to be defined in the next section.
The idea of measure Qr is to estimate prediction ability of a ruleset on a given

subset of events. Factor S p denotes the sum of scores over all positive events in the
subset. Loosely speaking score S(e) of the event e expresses the level of belonging
to the given ruleset. Analogously, factor Sn is calculated only for negative events
from the selected training subset.

After sorting all the complexes we can start from the complex with the highest
Q2, and add complexes, one by one, to the temporary final ruleset. If measure Qr

calculated for the entire temporary ruleset does not decrease, the temporarily added
rule joins the final ruleset. If not the rule is removed from the temporary ruleset and
the next rule from the ranking (with slightly lower Q2) is temporarily added. If the
training set is very large to speed up the final selection process we can estimate Qr
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on a randomly selected subset of training events. The size of the selected subset is
defined by parameter max Events For Selection.

Measure Qr has high value if rules contained in temporary ruleset have possibly
high score for all positive events in the subset data and possibly low score for negative
events in the same subset. Generally speaking, the selection of rules to the final ruleset
is based on optimization of successful reclassification of events from the training
subset.

Notice that the number and quality of selected rules have high impact on speed
and quality of later classification. Therefore maximal number of rules in the final
ruleset (parameter f inal Beam) can be set larger than its default value for extremely
large and complicated data. However, for some datasets, if Qr cannot be increased
by adding next complexes, the size of the final ruleset can be smaller than default
f inal Beam value (e.g. if 1 rule in a given ruleset is sufficient to successfully predict
the class). The default setting for f inal Beam is 50.

4 Classification of New Events

During the classification process the system calculates the set of scores Sdi (e)which
describes strength of evidence of the considered event e belonging to class di .

1.

Sdi (e) =

⎧

⎪⎨

⎪⎩

S′
di
(e) =

∑

j probdi ,p(r
j

di
(e))

|rdi (e)|
pdi (e)

pdi
if ∃S′

d1
(e),S′

d2
(e)S

′
d1
(e) = S′

d2
(e) = max(S′

di
(e))

where:

• rdi (e)—denotes the set of rules/complexes from class di that cover an event e
• pdi (e)—denotes the sum of pcovdi of rules that cover an event e
• pdi—denotes the sum of pcovdi of rules from class di

• probdi ,p(r
j

di
(e))—denotes probability of class occurrence under condition that

rule/complex r j
di
covers the event e

For each class, the system calculates separate score value. Class di that has max-
imal value of a calculated index Sdi (e) provides the final decision. Score S′

di
(e)

represents average probability of rules (from one ruleset) that cover the event. If
maximal value of S′

di
(e) is related to more than one class (e.g. if the event is covered

by only strong rules S′
d1
(e) = S′

d2
(e) = 1), the score Sdi (e) is calculated based on

suitable sums of pcovdi . In this case the score is equal to the fraction of the sum
of pcovdi (e) of rules that cover the event and the sum of pcovdi of all rules in the
ruleset created for class di . If Sdi (e) still gives no result (e.g. the score for d1 equals
to score for d2) then the event is randomly classified based on frequency distribution
of considered classes. However this situation in extremely rare.
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Factors pcovdi (c) and probdi ,p(c) are calculated and stored for all complexes
from the final set. If an event is covered by a rule, the system uses suitable factor that
have been found during the learning process and based on that Sdi (e) and S′

di
(e) are

calculated.
In previous papers [7, 8] some different indices have been proposed but after

series of experiments Sdi (e) has proven to be most stable in giving best prediction
results and the ADX algorithm uses Sdi (e) (as a default) to calculate score.

5 Experiments

5.1 Artificial Data

In order to check prediction ability of the proposed classifier special synthetic
data were prepared. Based on R environment [21] 4 data sets were prepared
k = 800, 4000, 8000, 16000 and each data set contained k events split into two
equal size classes.

The data contained 3 attributes: 2 numerical(x, y) that describe location in 2D
space and the third one—decision attribute that determines the class: blue, red. For
the class blue values of x and y were generated with normal distribution (mean = 0.5
and stdev = 0.1). The class red is based on 4 similar normal distributions (each of
them contained n

8 of events) with stdev = 0.1 and placed in the space in such a way
as to surround class blue (see Fig. 1).

The ruleset built on all events of the dataset with k = 800 is the following:

#Rules for decision = blue

#Complex Size: 2

x=(0.25748622;0.35888457] and y=(-Infinity;0.7059473]p:0.087

n: 0.002 q: 0.0847 pr: 0.9722

Fig. 1 Result of ADX cross
validation, dataset n = 800,
•—correctly classified red,
◦—correctly classified blue,
�—incorrectly classified
blue, �—incorrectly
classified red
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x=(0.35888457;0.6413076] and y=(-Infinity;0.7059473] p: 0.832

n: 0.012 q: 0.8097 pr: 0.9852

x=(0.6413076;0.7087706] and y=(-Infinity;0.7059473] p: 0.054

n: 0.002 q: 0.0523 pr: 0.9565

x=(0.7087706;0.7711703] and y=(-Infinity;0.7059473] p: 0.014

n: 0.002 q: 0.0124 pr: 0.8571

#Rules for decision = red

#Complex Size: 1

x=(-Infinity;0.25748622]p: 0.340 n: 0.002 q: 0.3366 pr:0.9927

x=(0.7711703;Infinity] p: 0.302 n: 0.0 q: 0.3025 pr: 1.0

y=(0.7059473;Infinity] p: 0.492 n: 0.007 q: 0.4813 pr: 0.9850

#Complex Size: 2

x=(0.25748622;0.35888457] and y=(0.7059473;Infinity] p: 0.072

n: 0.0 q: 0.0724 pr: 1.0

x=(0.6413076;0.7087706] and y=(0.7059473;Infinity] p: 0.052

n: 0.0 q: 0.0524 pr: 1.0

x=(0.7087706;0.7711703] and y=(0.7059473;Infinity] p: 0.072

n: 0.0 q: 0.0724 pr: 1.0

x=(0.7711703;Infinity] and y=(-Infinity;0.7059473] p: 0.242

n: 0.0 q: 0.2425 pr: 1.0

Values: p, n denote pcov and ncov, q quality Q1 of the rule and pr probability
of positive class occurrence.

Results of 3 fold cross validation (average accuracy calculated for 10 repetitions)
processed on 4 datasets of different sizes are summarized in Table1. The ADX clas-
sifier was implemented in JAVA 1.6 and experiments were run on standard PC (Pen-
tium IV 3.2GHz, 4GBRAM) runningWinXP. All other algorithms came fromWeka
[22] ver. 3.4.11 and were run under R (library RWeka) with their default settings.
The SVM(SMO) classifier was run under slightly changed parameters (C = 5.0,

Table 1 Average accuracy and processing time of a single 3-fold cv

k J48 1-NN NaiveBayes RandomForest SVM ADX

800 97.9 96.8 96.7 97.6 94.8 97.4

Time[s] 0.19 0.37 0.14 0.51 0.74 0.08

4000 97.6 97.0 96.0 97.3 97.3 97.3

Time[s] 0.62 3.08 0.31 2.14 22.38 0.44

8000 97.7 97.0 96.6 97.2 97.4 98.0

Time[s] 1.3 12.3 0.5 5.1 91.95 1.16

16000 97.6 96.7 96.3 NaN 97.4 97.8

Time[s] 2.9 56.9 1.4 32.3 438.9 3.74



48 M. Dramiński

Table 2 Average accuracy and processing time of a single 3-fold cv (added noisy attributes)

k J48 1-NN NaiveBayes RandomForest SVM ADX

800 97.4 56.8 95.7 94.3 67.5 97.3

Time[s] 0.9 1.9 0.6 2.4 23 0.36

4000 97.1 54.2 95.9 97.0 89.6 97.3

Time[s] 5.9 33.3 3.2 16.2 4314 4.05

8000 97.1 56.7 96.5 97.4 95.4 98.0

Time[s] 13.7 122.2 6.4 36.9 11015 13.69

16000 97.1 55.8 96.3 97.4 96.8 97.8

Time[s] 30.2 438.2 12.5 82.4 29046 50.21

exponent = 2.0, lower OrderT erms = true) because for the specified classifica-
tion problem linear polynomial kernel has to be used.

Prediction accuracies for almost all algorithms are very high and also similar to
each other. Time needed to process 3 fold cross validation is more diversified and
ADX compared to others techniques seems to be very effective. Figure1 presents
results of one cross validation realization (data set k = 800).

For the second set of experiments each of previous datasets contained additionally
30 new randomly generated attributes (each with uniform distribution from the range
[0; 1]). The intention of such addition was to examine if ADX is sensitive to non
informative attributes and what kind of impact these attributes can have on created
rules. Table2 presents results of experiments that were processed in the same way as
previously. The SVM weka implementation is not efficient when it deals with many
non informative attributes and it can be easily noticed comparing presented cv times.

Noisy attributes badly affected only on the performance 1-NN classifier. It is no
surprise because k-NNuses all attributes tomeasure the distance andwithout sensible
feature selection k-NN leads to low prediction quality. For the ADX classifier results
did not change and rules are based only on informative x and y attributes. For the
given set of experiments the ADX was also one of the fastest classifiers.

5.2 Real Data

The second set of experiments has performed on real data, most often from [16].
For the experiments, the author used also a few commercial datasets that cannot be
published, but the results of the classification can showdifferences between classifiers
(Table3).

The dataset ‘frauds’ contains fraudulent transactions of reward receiving in loyalty
program VITAY of PKN ORLEN (PKN ORLEN is the biggest oil company in
central Europe). The number of fraudulent transactions is 3072. The dataset ‘Clients’
contains customer profiles that are divided into 6 classes. The smallest class contains
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Table 3 Real datasets used for classification experiment

Dataset Events Attributes Classes Source

Alizadehdata 62 4026 3 [2]

Golubdata 38 7129 2 [11]

Frauds 15123 33 2 PKN Orlen

Mushroom 8123 22 2 [16]

Iris 150 4 3 [16]

AbaloneData 4177 8 3 [16]

Soybean 683 35 19 [16]

Tic_tac_toe 958 9 2 [16]

Hypothyroid 3772 30 4 [16]

Ionosphere 351 35 2 [16]

Splice.asx 3190 61 3 [16]

Vote 435 17 2 [16]

Zoo 101 18 7 [16]

Clients 16920 59 6 real Polska

919 profiles and the largest contains 7598 profiles. Each customer is described by
a set of demographic features (e.g. sex, age etc.) as well as by behavioral features
based on transaction history (e.g. mobility, loyalty etc.).

For each of the datasets 3-fold cv was used 10 times of. The average result of
10 cross validations is given in Table4. Classifiers: NaiveBayes (NB), C4.5 (J48),
SVM(SMO), kNN (IBk) implemented inWEKAver. 3.4.11,were run on their default
parameters (kNN: 1-NN, linear kernel in SVM). Implementation of ADX, done in
JAVA 1.6, was run on its default parameters too. The factor wAcc is the well known
weighted/balanced accuracy which is sensitive to problems where classes are highly
unbalanced. Time given in the table is the average time of a single 3-fold cross
validation process.

Classification quality (see Table4) of the ADX implementation is comparable to
that achieved by popular effective classifiers and for themost datasets theADX is one
of the best classifiers. However there are a few datasets where default parameters of
ADXdid not lead to the highest performance. However, by applying slightly different
method for final selection of rules for ‘tic_tac_toe’ we can achieve average wAcc =
0.985, for ‘Soybean’ average wAcc = 0.864 and for ‘zoo’ average wAcc = 0.811.

The time needed for processing a single cross validation proces is much more
diversified. Great scalability of ADX can be noticed especially for large datasets. For
the dataset ‘frauds’ and ‘Clients’ average cv time equals to several/tens of seconds
in comparison to hundreds/thousands of seconds for other classifiers. In the case
of smaller datasets the ADX algorithm is still one of the fastest techniques but the
difference is not such significant.
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Table 4 Results of classification of real datasets

Dataset ADX J48 1-NN SVM NB

Alizadeh
Acc(wAcc)

94.8(89) 83.7(72.2) 97.7(95.5) 99.8(99.6) 89.4(77)

Alizadeh
CV[s]

0.77 1.44 1.68 1.15 1.21

Golub
Acc(wAcc)

87.4(79.3) 83.9(82) 87.9(81.5) 92.9(87.7) 92.6(87.3)

Golub CV[s] 0.7 1.2 1.2 1.5 1

frauds
Acc(wAcc)

85.7(74.4) 86.7(76.8) 83.5(76.2) 86.3(73.7) 47.9(64.3)

frauds CV[s] 6.4 24.6 831.9 196.5 2.9

mushroom
Acc(wAcc)

98.6(98.5) 100(100) 100(100) 100(100) 95.4(95.3)

mushroom
CV[s]

2.3 0.3 139.1 19 0.2

iris
Acc(wAcc)

93.2(93.2) 94.1(94.1) 95(95) 96.4(96.4) 95.5(95.5)

iris CV[s] 0.01 0.01 0.02 1.93 0.01

abalone
Acc(wAcc)

52.4(52) 52.7(52.7) 50.1(50.2) 54.5(53.1) 51.9(53.7)

abalone CV[s] 1.64 1.46 16.42 1.24 0.25

soybeam
Acc(wAcc)

81.9(86.4) 88.9(86.5) 90.9(91.9) 92.5(95.3) 90.6(91.8)

soybeam
CV[s]

2.3 0.1 1.4 121 1.4

tic_tac
Acc(wAcc)

76.9(71) 83.3(79.7) 97.5(96.4) 98.3(97.6) 70.9(64)

tic_tac CV[s] 0.16 0.05 0.85 1.22 0.02

hypothyroid
Acc(wAcc)

97.7(67.3) 99.5(72.4) 91.5(43.7) 93.6(38.3) 95.3(53.3)

hypothyroid
CV[s]

2.2 0.4 38.8 17.4 0.3

ionosphere
Acc(wAcc)

87.3(87.8) 89.7(87.7) 86.4(82) 87.9(84.2) 82.7(83.5)

ionosphere
CV[s]

0.2 0.25 0.47 0.32 0.06

splice.asx
Acc(wAcc)

86.1(85.7) 93.4(93.4) 73.4(78.9) 73.4(79) 95.3(94.8)

splice.asx
CV[s]

1.9 0.5 51.8 54.4 0.2

vote
Acc(wAcc)

94.1(94.2) 95.7(95.5) 92.2(92.6) 95.7(95.8) 90.1(90.4)

vote CV[s] 0.2 0.03 0.31 0.13 0.01

(continued)



ADX Algorithm for Supervised Classification 51

Table 4 (continued)

Dataset ADX J48 1-NN SVM NB

zoo
Acc(wAcc)

83.8(72.8) 93.4(85.5) 95(89.9) 95.2(88.1) 95(91)

zoo CV[s] 0.16 0.01 0.06 1.43 0.01

Clients
Acc(wAcc)

81.6(73.6) 89.6(85.5) 76.2(68.6) 87(83) 76.1(68.5)

Clients CV[s] 31 50 1739 483 1759

6 Conclusions

In the process of optimization of classifier’s parameters the speed of learning and
testing is very important. Today, in practice, we deal with huge amount of data
and even the data sample often contains thousands of events. Therefore, if various
techniques have comparable classification quality, the scalability of classifier inmany
practical applications is the most important. The ADX algorithm gives comparable
results of classification to the well known popular classification techniques but its
scalability is much better.

The general idea of combining single selectors to lengthen the rules in ADX
is very similar to lengthen itemsets in Apriori algorithm [1], but ADX produces
classification rules and uses combination of pcov and ncov to estimate rules quality.
The quality Q of the rules is used to select a fixed number of best complexes (parents)
to build complexes candidates. This solution has positive influence on efficiency of
algorithms because it limits the number of possible candidates to be created. It also
helps to create rules that do not need post pruning because high quality complex
still can cover some of negative events. The main idea of specialization of rules
to increase their quality is commonly used in many algorithms that are based on
sequential covering schema (e.g. AQ, LEM2, CN2, RIPPER [5] etc.). Creation of
many rules by combining simple selectors is in some sense analogous to creation of
spline functions in MARS (Multivariate Adaptive Regression Splines Model [13])
by combining basis functions. However, the ADX algorithm is a new rule classifier
algorithm that is fast and highly efficient, what makes it very attractive considering
large datasets.
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Estimation of Entropy from Subword
Complexity

Łukasz Dębowski

Abstract Subword complexity is a function that describes how many different sub-
strings of a given length are contained in a given string. In this paper, two estimators
of block entropy are proposed, based on the profile of subword complexity. The first
estimator works well only for IID processes with uniform probabilities. The second
estimator provides a lower bound of block entropy for any strictly stationary process
with the distributions of blocks skewed towards less probable values. Using this esti-
mator, some estimates of block entropy for natural language are obtained, confirming
earlier hypotheses.

Keywords Subword complexity · Block entropy · IID processes · Natural
language · Large number of rare events

1 Introduction

The present paper concerns estimation of block entropy of a stationary process from
subword complexity of a sample drawn from this process. The basic concepts are
as follows. Fix X as a finite set of characters, called alphabet. Let (Xi )i∈Z be a
(strictly) stationary process on a probability space (Ω,J , P), where Xi : Ω → X

and the blocks are denoted Xl
k = (Xi )

l
i=k with probabilities P(w) := P(X |w|

1 =
w). Function H(k) := E

[− log P(Xk
1)

]

is called block entropy. It is nonnegative,
growing, and concave [3, 4]. Let λ denote the empty string. Elements of set X∗ =
{λ}∪⋃

n∈NX
n are called finite strings. For a given stringw ∈ X

∗, substrings ofw are
finite blocks of consecutive characters of w. By f (k|w) we will denote the number
of distinct substrings of length k of string w. Function f (k|w) is called subword
complexity [13, 19, 25, 28].
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We are interested how to estimate block entropy H(k) given subword complexity
f (k|Xn

1 ). Estimating block entropy from a finite sample Xn
1 is nontrivial since there

are (cardX)k different blocks of length k so we cannot obtain sufficiently good
estimates of individual probabilities of these blocks for (cardX)k > n. We expect,
however, that this result may be improved for a stationary ergodic process, since
by the Shannon-McMillan-Breiman theorem [1], there are roughly only exp(H(k))

different substrings of length k that appear with substantial frequency in realization
(Xi )i∈Z. Hence it might be possible to obtain reliable estimates of block entropy
for exp(H(k)) ≤ n. Here we will show that some estimates of this kind could be
obtained via subword complexity.

Estimating block entropy for relatively long blocks drawn from a discrete sta-
tionary process has not been much investigated by mathematicians. What makes the
studied topic difficult is the necessity of doing statistical inference in the domain of
large number of rare events (LNRE), cf. [21], and under unknown type of dependence
in the process, except for the assumption of strict stationarity. These conditions may
preclude usage of standard statistical techniques of improving estimators such as
smoothing or aggregation [5, 24]. In the mathematical literature, there are more pub-
lications on entropy estimation in the context of entropy rate, e.g., [22, 29, 31, 32], or
differential entropy, e.g., [16, 20]. The idea of estimating block entropy for relatively
long blocks has been pursued, however, by physicists in some appliedworks concern-
ing the entropy of natural language and DNA [10–12, 26]. Subword complexity was
also used to compute topological entropy ofDNA, a somewhat different concept [23].

In fact, the subject of this paper can bemotivated by the following applied problem.
In the early days of information theory, Shannon [27] made a famous experiment
with human subjects and produced estimates of conditional entropy, equal to H(k +
1) − H(k), for texts in natural language for block lengths in range k ∈ [1, 100].
Many years later, Hilberg [17] reanalyzed these data and, for the considered k, he
found the approximate relationship

H(k) ≈ Akβ + hk (1)

with entropy rate h ≈ 0 and exponent β ≈ 1/2. Moreover, he conjectured that
relationship (1) may be extrapolated for much larger k, such as k being the length of
a book. There are some rational arguments that such relationshipmay hold indeed [6]
but more experimental support is required. Hence, whereas experiments with human
subjects are costly and may be loaded with large errors, there is some need for a
purely statistical procedure of estimating block entropy for relatively large blocks.

Approaches to the concerned problem proposed so far were quite heuristic. For
example, Ebeling and Pöschel [10] implemented the following scheme. First, let
n(s|w) be the number of occurrences of substring s in a string w. For a sample Xn

1 ,
let us consider this naive estimator of entropy,

Hest(k) = −
∑

w∈Xk

n(w|Xn
1 )

n − k + 1
log

n(w|Xn
1 )

n − k + 1
. (2)
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The estimator is strongly biased. In particular, Hest(k) ≤ log(n − k + 1). The bias
of Hest(k) was corrected in this way. For a Bernoulli process, the expectation of
estimator Hest(k) can be approximated as

E Hest(k) ≈

⎧

⎪⎪⎨

⎪⎪⎩

H(k) − 1

2
exp H(k)
n−k+1 ,

exp H(k)

n − k + 1
� 1 ,

log(n − k + 1) − log(2)
n − k + 1

exp H(k)
,

exp H(k)

n − k + 1
	 1 ,

(3)

whereas the value of E Hest(k) for k between these two regimes can be approximated
by a Padé approximant. Hence, given an observed value of Hest(k) and assuming
that it is equal E Hest(k) and falls between the two regimes, H(k) was estimated by
inverting the Padé approximant. The estimates obtained in [10] suggest that block
entropy for texts in natural language satisfies Hilberg’s hypothesis (1) for k ≤ 25.
Onemay doubt, however, whether the obtained estimates can be trusted. First, natural
language is not a Bernoulli process and, second, using the Padé approximant instead
of a rigorously derived expression introduces unknown errors, which can explode
when inverting the approximant.

Consequently, in this paper we will pursue some new mathematically rigorous
ideas of estimating block entropy from subword complexity. We propose two simple
estimators of block entropy. The first estimator works well only in the simple case
of IID processes with uniform probabilities. Thus we propose a second estimator,
which works for any stationary process for which the distribution of strings of a
given length is asymmetric and skewed towards less probable values. It should be
noted that this estimator yields a lower bound of entropy, in contrast to estimators
based on universal source coding, such as the Lempel-Ziv code, which provide an
upper bound of entropy [7, 9, 31, 32]. Using the second estimator, we also estimate
block entropy for texts in natural language, confirming Hilberg’s hypothesis (1) for
k ≤ 10. We believe that this result might be substantially improved. We suppose
that subword complexity conveys enough information about block entropy for block
lengths smaller than or equal themaximal repetition. For natural language, this would
allow to estimate entropy for k ≤ 100 [8].

2 Theoretical Results

Our starting point will be formulae for average subword complexity of strings drawn
from some stochastic processes. A few such formulae have been given in [14, 18,
19]. We will derive a weaker but a more general bound. First of all, let us recall,
cf. [25], that function f (k|Xn

1 ) for a fixed sample Xn
1 is unimodal and k for which

f (k|Xn
1 ) attains its maximum is called the maximal repetition. For k greater than the

maximal repetitionwe have f (k|Xn
1 ) = n−k+1. If wewant to have a nondecreasing

function of k, which is often more convenient, we may consider f (k|Xn+k−1
1 ). Now
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let us observe that f (k|Xn+k−1
1 ) ≤ min

[

(cardX)k, n
]

[19]. For a stationary process
this bound can be strengthened in this way.

Theorem 1 For a stationary process (Xi )i∈Z we have

E f (k|Xn+k−1
1 ) ≤ S̃nk :=

∑

w∈Xk

min [1, n P(w)] . (4)

Remark Obviously, S̃nk ≤ min
[

(cardX)k, n
]

.

Proof We have

f (k|Xn+k−1
1 ) =

∑

w∈Xk

1

{
n−1
∑

i=0

1
{

Xi+k
i+1 = w

}

≥ 1

}

.

Hence by Markov inequality,

E f (k|Xn+k−1
1 ) =

∑

w∈Xk

P

(
n−1
∑

i=0

1
{

Xi+k
i+1 = w

}

≥ 1

)

≤
∑

w∈Xk

min

[

1, E
n−1
∑

i=0

1
{

Xi+k
i+1 = w

}
]

=
∑

w∈Xk

min [1, n P(w)] .

For independent random variables, bound (4) can be strengthened again. Let
ok( f (k)) denote a term that divided by f (k) vanishes in infinity, i.e., limk→∞ ok ( f (k))

f (k)= 0 [15, Chap. 9].

Theorem 2 ([14, Theorem 2.1]) For a sequence of independent identically distrib-
uted (IID) random variables (Xi )i∈Z we have

E f (k|Xn+k−1
1 ) + on(1)ok(1) = Snk :=

∑

w∈Xk

(

1 − (1 − P(w))n)

. (5)

Remark We also have

Snk =
∑

w∈Xk

P(w)

n−1
∑

i=0

(1 − P(w))i ≤ S̃nk .

Formula (5) is remarkable. It states that the expectation of subword complexity for
an IID process is asymptotically such as if each substringw were drawn n times with
replacement with probability P(w). Correlations among overlaps of a given string
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asymptotically cancel out on average [14]. Function Snk is also known in the analysis
of large number of rare events (LNRE) [21], developed to investigate Zipf’s law in
quantitative linguistics [2, 30].

For the sake of further reasoning it is convenient to rewrite quantities S̃nk and Snk

as expectations of certain functions of block probability. For x > 0, let us define

g̃(x) := min [x, 1] , (6)

gn(x) := x

(

1 −
(

1 − 1

nx

)n)

. (7)

We also introduce

g(x) := lim
n→∞ gn(x) = x

(

1 − exp

(

−1

x

))

. (8)

Then we obtain

S̃nk

n
= E g̃

(

1

n P(Xk
1)

)

, (9)

Snk

n
= E gn

(

1

n P(Xk
1)

)

≈ E g

(

1

n P(Xk
1)

)

, (10)

where the last formula holds for sufficiently large n (looking at the graphs of gn and
g, for say n ≥ 20).

Usually probability of a block decreases exponentially with the increasing block
length. Thus it is convenient to rewrite formulae (9) and (10) further, using minus
log-probability Yk = − log P(Xk

1). The expectation of this random variable equals,
by definition, block entropy E Yk = H(k). In contrast, we obtain

S̃nk

n
= E σ̃(Yk − log n) , (11)

Snk

n
= E σn(Yk − log n) ≈ E σ(Yk − log n) , (12)

where σ̃(y) := g̃(exp(y)), σn(y) := gn(exp(y)), and σ(y) := g(exp(y)).
Apparently, formulae (4) and (5) combined with (11) and (12) could be used for

estimating block entropy of a process. In fact, we have the following proposition:
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Theorem 3 For a stationary ergodic process (Xi )i∈Z, we have

S̃nk

n
= σ̃ (H(k) + ok(k) − log n) + ok(1) , (13)

Snk

n
= σn (H(k) + ok(k) − log n) + ok(1) (14)

≈ σ (H(k) + ok(k) − log n) + ok(1) . (15)

Proof By the Shannon-McMillan-Breiman theorem (asymptotic equipartition prop-
erty), for a stationary ergodic process, the difference Yk − H(k) is of order ok(k)with
probability 1− ok(1) [1]. Since functions σ̃(x) and σn(x) increase in the considered
domain and take values in range [0, 1], then the claims follow from formulae (11)
and (12) respectively.

Simulations performed in the next section suggest that for a large class of
processes, observed subword complexity f (k|Xn

1 ) is practically equal to its expecta-
tion. Hence if n is large and the term ok(k) in inequality (15) is negligible, Theorems
2 and 3 suggest the following estimation procedure for block entropy of IID proceses.
First, we compute the subword complexity for a sufficiently large sample Xn

1 and,
secondly, we apply some inverse function to obtain an estimate of entropy. Namely,
by (5) and (15), we obtain the following estimate of block entropy H(k),

H (1)
est (k) := log(n − k + 1) + σ−1

(
f (k|Xn

1 )

n − k + 1

)

. (16)

Formula (16) is applicable only to sufficiently small k, which stems from using
sample Xn

1 rather than Xn+k−1
1 . Consequently, this substitution introduces an error

that grows with k and explodes at maximal repetition. As we have mentioned, for k
greater than the maximal repetition we have f (k|Xn

1 ) = n − k + 1, which implies

H (1)
est (k) = ∞, since limx→1 σ−1(x) = ∞. For k smaller than themaximal repetition,

we have H (1)
est (k) < ∞.

Estimator H (1)
est (k) resembles in spirit inverting Padé approximant proposed by

Ebeling and Pöschel [10]. Quality of this estimator will be tested empirically for
Bernoulli processes in the next section. In fact, formula (16) works very well for
uniform probabilities of characters. Then terms ok(k) and ok(1) in inequality (15)
vanish. Thus we can estimate entropy of relatively large blocks, for which only a
tiny fraction of typical blocks can be observed in the sample. Unfortunately, this
estimator works so good only for uniform probabilities of characters. The term ok(k)

in inequality (15) is not negligible for nonuniform probabilities of characters. The
more nonuniform the probabilities are, the larger the term ok(k) is. The sign of this
term also varies. It is systematically positive for small k and systematically negative
for large k. Hence reliable estimation of entropy via formula (16) is impossible in
general. This suggests that the approach of [10] cannot be trusted, either.
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The persistent error of formula (16) comes from the fact that the asymptotic
equipartition is truly only an asymptotic property. Nowwewill show how to improve
the estimates of block entropy for quite a general stationary process. We will show
that terms ok(k) and ok(1) in equality (13) may become negligible for S̃nk/n close
to 1/2. Introduce the Heaviside function

θ(y) =

⎧

⎪⎨

⎪⎩

0 y < 0 ,

1/2 y = 0 ,

1 y > 0 .

(17)

In particular, E θ(Yk − B) is a decreasing function of B. Thus we can define M(k),
the median of minus log-probability Yk of block Xk

1, as

M(k) := sup {B : E θ(Yk − B) ≥ 1/2} . (18)

Theorem 4 For any C > 0 we have

S̃nk

n
≥ 1 + exp(−C)

2
=⇒ M(k) ≥ log n − C , (19)

S̃nk

n
<

1

2
=⇒ M(k) ≤ log n . (20)

Proof First, we have σ̃(y) ≤ (1 − exp(−C))θ(y + C) + exp(−C). Thus

S̃nk/n = E σ̃(Yk − log n) ≤ (1 − exp(−C)) E θ(Yk − log n + C) + exp(−C) .

Hence if S̃nk/n ≥ (1 + exp(−C))/2 then E θ(Yk − log n + C) ≥ 1/2 and conse-
quently M(k) ≥ log n − C . As for the converse, σ̃(y) ≥ θ(y). Thus

S̃nk/n = E σ̃(Yk − log n) ≥ E θ(Yk − log n + C) .

Hence if S̃nk/n < 1/2 then E θ(Yk − log n) < 1/2 and consequently M(k) ≤ log n.

In the second step we can compare the median and the block entropy.

Theorem 5 For a stationary ergodic process (Xi )i∈Z, we have

M(k) = H(k) + ok(k) . (21)

Proof The claim follows by the mentioned Shannon-McMillan-Breiman theorem.
Namely, the difference Yk − H(k) is of order ok(k)with probability 1−ok(1). Hence
the difference M(k) − H(k) must be of order ok(k) as well.
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A stronger inequality may hold for a large subclass of processes. Namely, we
suppose that the distribution of strings of a fixed length is skewed towards less
probable values. This means that the distribution of minus log-probability Yk is
right-skewed. Consequently, those processes satisfy this condition:

Definition 1 A stationary process (Xi )i∈Z is called properly skewed if for all k ≥ 1
we have

H(k) ≥ M(k) . (22)

Assuming that the variance of subword complexity is small, formulae (22), (19),
and (4) can be used to provide a simple lower bound of block entropy for properly
skewed processes. The recipe is as follows. First, to increase precision, we extend
functions s(k) of natural numbers, such as subword complexity f (k|Xn

1 ) and block
entropy H(k), to real arguments by linear interpolation. Namely, for r = qk + (1−
q)(k − 1), where q ∈ (0, 1), we will put s(r) := qs(k) + (1− q)s(k − 1). Then we
apply this procedure.

1. Choose a C > 0 and let S := (1 + exp(−C))/2.
2. Compute s(k) := f (k|Xn

1 )/(n − k + 1) for growing k until the least k is found
such that s(k) ≥ S. Denote this k as k1 and let k2 := k1 − 1.

3. Define

k∗ := (S − s(k2)) k1 + (s(k1) − S) k2
s(k1) − s(k2)

. (23)

(We have s(k∗) = S).
4. Estimate the block entropy H(k∗) as

H (2)
est (k

∗) := log(n − k∗ + 1) − C. (24)

5. If needed, estimate entropy rate h = limk→∞ H(k)/k as

h(2)
est = H (2)

est (k
∗)/k∗. (25)

For a fixed sample size n, the above procedure yields an estimate of block entropy
H(k) but only for a single block length k = k∗. Thus to compute the estimates of
block entropy H(k) for varying k, we have to apply the above procedure for varying
n. So extended procedure is quite computationally intensive and resembles baking
a cake from which we eat only a cherry put on the top of it. By Theorems 1 and 4
we conjecture that estimator H (2)

est (k
∗) with a large probability gives a lower bound

of block entropy H(k∗) for properly skewed processes. The exact quality of this
bound remains, however, unknown, because we do not know the typical difference
between subword complexity and function S̃nk . Judging from the experiments with
Bernoulli processes described in the next section, this difference should be small but
it is only our conjecture. Moreover, it is an open question whether k∗ tends to infinity
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for growing n and whether estimator h(2)
est is consistent, i.e., whether h(2)

est − h tends

to 0 for n → ∞. That the estimator H (2)
est (k

∗) yields only a lower bound of block
entropy is not a great problem in principle since, if some upper bound is needed, it
can be computed using a universal code, such as the Lempel-Ziv code [31, 32].

3 Simulations for Bernoulli Processes

In this section we will investigate subword complexity and block entropy for a few
samples drawn fromBernoulli processes. The Bernoulli(p) process is an IID process
over a binary alphabet X = {0, 1} where P(Xi = 1) = p and P(Xi = 0) = 1 − p.
We have generated five samples Xn

1 of length n = 50000 drawn from Bernoulli(p)

processes, where p = 0.1, 0.2, 0.3, 0.4, 0.5. Subsequently, the empirical subword
complexities f (k|Xn

1 ) have been computed for k smaller than the maximal repetition
andplotted inFig. 1 togetherwith the expectation Snk computed from the approximate
formula

Snk

n
=

k
∑

s=0

(
k

s

)

ps(1 − p)k−sgn

(
p−s(1 − p)−k+s

n

)

(26)

≈
k

∑

s=0

qk(s)gn

(
p−s(1 − p)−k+s

n

)

, (27)

where

qk(s) =
exp

(

− (p−s/k)2k
p(1−p)

)

∑k
r=0 exp

(

− (p−r/k)2k
p(1−p)

) . (28)

As we can see in Fig. 1, both the variance of f (k|Xn
1 ) and the error term on(1)ok(1)

in formula (5) are negligible since even for a single sample Xn
1 , subword complexity

f (k|Xn
1 ) is practically equal to its expectation. We suppose that this property holds

also for stochastic processes with some dependence and thus estimation of entropy
from empirical subword complexity may be a promising idea.

Thus let us move on to estimation of entropy. For the Bernoulli(p) process we
have block entropy H(k) = hk, where the entropy rate is

h = −p log p − (1 − p) log(1 − p) . (29)

In Fig. 2, we compare block entropy H(k) and estimator H (1)
est (k) given by formula

(16). Only for p close to 0.5 estimator H (1)
est (k) provides a good estimate of block

entropy H(k), for block lengths smaller than roughly 25. Let us note that there are 225
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Fig. 1 Subword complexity as a function of block length for samples Xn
1 drawn from Bernoulli(p)

processes, where n = 50000 and p = 0.1, 0.2, 0.3, 0.4, 0.5. Pluses are the empirical data f (k|Xn
1 ).

Crosses are values Snk (practically the same data points)

different blocks of length 25. This number is three orders ofmagnitude larger than the
considered sample length (n = 50000). In this sample we may hence observe only a
tiny fraction of the allowed blocks and yet via formula (16) we can arrive at a good
estimate of block entropy. Unfortunately, the estimates H (1)

est (k) become very poor for
strongly nonuniform probabilities. As we can see in Fig. 2, the sign of the difference
between H(k) and H (1)

est (k) varies. Moreover, whereas H(k) = hk grows linearly,

the shape of function H (1)
est (k) is much less regular, partly it resembles a hyperbolic

function kβ , where β ∈ (0, 1), partly it looks linear, and it is not necessarily concave.
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Fig. 2 Entropy as a function of block length for Bernoulli(p) processes, where p =
0.1, 0.2, 0.3, 0.4, 0.5. Crosses are the true values H(k) = hk. Squares are estimates (16) for samples
Xn
1 of length n = 50000

(Whereas true block entropy H(k) is concave [4]). Hence function H (1)
est (k) cannot

provide a reliable estimate of block entropy in general.
To illuminate the source of this phenomenon, in Fig. 3, empirical subword com-

plexity f (k|Xn
1 ) has been contrasted with function

fpred(k|Xn
1 ) := (n − k + 1)σ (H(k) − log(n − k + 1)) , (30)



64 Ł. Dębowski
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Fig. 3 Subword complexity as a function of block length for samples Xn
1 drawn from Bernoulli(p)

processes, where n = 50000 and p = 0.1, 0.2, 0.3, 0.4, 0.5. Squares are the empirical data
f (k|Xn

1 ). Crosses are values (30)

which should equal f (k|Xn
1 ) if the term ok(k) in inequality (15) is negligible, n is

large, and the variance of subword complexity is small. Whereas we have checked
that the variance of f (k|Xn

1 ) is small indeed, the observed difference between the
empirical subword complexity and function fpred(k|Xn

1 ) must be attributed to the
term ok(k) in inequality (15). As we can see in Fig. 3, the term ok(k) vanishes
for uniform probabilities (p = 0.5) but its absolute value grows when parameter p
diverges from 0.5 and can become quite substantial. The term ok(k) is systematically
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positive for small block lengths and systematically negative for large block lengths
but it vanishes for f (k|Xn

1 ) ≈ n/2.
As we have explained in the previous section, the last observation can be used

to derive estimators H (2)
est (k) and h(2)

est given in formulae (24) and (25). Now we will
check how these estimators work. The distribution of log-probability of blocks is
approximately symmetric for Bernoulli processes, so these processes are probably
properly skewed and consequently estimators H (2)

est (k) and h(2)
est should be smaller

than the true values. Our simulation confirms this hypothesis. We have generated
five samples Xm

1 of length m = 70000 drawn from Bernoulli(p) processes, where
p = 0.1, 0.2, 0.3, 0.4, 0.5. For each of these samples we have computed estimator
H (2)
est (k) for C = 2 and subsamples Xn

1 of length n = 2 j , where j = 1, 2, 3, . . . and
n ≤ m. The results are shown in Fig. 4. As we can see in the plots, the difference
between H(k) and H (2)

est (k) is almost constant and close to C = 2. Additionally,
in Fig. 5, we present the estimates of entropy rate for Bernoulli processes given by
estimator h(2)

est for C = 2 and a sample of length n = 50000. They are quite rough but
consistently provide a lower bound as well. For the considered sample, the relative
error ranges from 17% for uniform probabilities (p = 0.5) to 20% for p = 0.05.
Thus we may say that the performance of estimators H (2)

est (k) and h(2)
est is good, at

least for Bernoulli processes.

4 Texts in Natural Language

In the previous section, we have checked that the block entropy estimator H (2)
est (k)

given by formula (24) returns quite good estimates for Bernoulli processes and per-
sistently provides a lower bound of the true block entropy. Hence in this section, we
would like to apply this estimator to some real data such as texts in natural language.
As we have mentioned, there were some attempts to estimate block entropy for texts
in natural language from frequencies of blocks [10–12]. These attempts were quite
heuristic, whereas now we have an estimator of block entropy that may work for
some class of processes.

Let us recall that estimator H (2)
est (k) works under the assumption that the process

is properly skewed, which holds e.g. if the distribution of strings of a fixed length
is skewed towards less probable values. In fact, in texts in natural language, the
empirical distribution of orthographic words, which are strings of varying length, is
highly skewed in the required direction, as described by Zipf’s law [30]. Hence we
may suppose that the hypothetical process of generating texts in natural language is
also properly skewed. Consequently, estimator H (2)

est (k) applied to natural language
data should be smaller than the true block entropy.

Having this in mind, let us make some experiment with natural language data. In
the following, we will analyze three texts in English: First Folio/35 Plays byWilliam
Shakespeare (4, 500, 500 characters),Gulliver’s Travels by Jonathan Swift (579, 438
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Fig. 4 Entropy as a function of block length for Bernoulli(p) processes, where p =
0.1, 0.2, 0.3, 0.4, 0.5. Crosses are the true values H(k) = hk. Squares are estimates (24) for C = 2
and samples Xn

1 of varying length n = 2 j where n < 70000

characters), and Complete Memoirs by Jacques Casanova de Seingalt (6, 719, 801
characters), all downloaded from the Project Gutenberg.1 For each of these texts
we have computed estimator H (2)

est (k) for C = 2 and initial fragments of texts of
length n = 2 j , where j = 1, 2, 3, . . . and n’s are smaller than the text length. In this
way we have obtained the data points in Fig. 6. The estimates look reasonable. The
maximal block length for which the estimates can be found is k ≈ 10, and in this

1www.gutenberg.org.

www.gutenberg.org
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Fig. 5 Entropy rate h for
Bernoulli(p) processes as a
function of parameter p.
Crosses are the true values,
given by formula (29).
Squares are the estimates
given by formula (25) for
C = 2 and samples Xn

1 of
length n = 50000
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case we obtain H (2)
est (k) ≈ 12.5 nats, which is less than the upper bound estimate

of H(10)/10 ≈ 1.5 nats per character by Shannon [27]. Our data also corroborate
Hilberg’s hypothesis. Namely, using nonlinear least squares, we have fitted model

H (2)
est (k) = Akβ − C, (31)

where C was chosen as 2, and we have obtained quite a good fit. The values of
parameters A and β with their standard errors are given in Table1.

To verify Hilberg’s hypothesis for k ≥ 10 we need much larger data, such as
balanced corpora of texts. The size of modern text corpora is of order n = 109

characters. If relationship (1) persists in so large data, then we could obtain estimates
of entropy H(k) for block lengths k ≤ 20. This is still quite far from the range of data
points k ∈ [1, 100] considered by Shannon in his experiment with human subjects
[27]. But we hope that estimator H (2)

est (k) can be improved to be applicable also to
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Table 1 The fitted parameters of model (1). The values after ± are standard errors

Text A β

First Folio/35 Plays by
William Shakespeare

3.57 ± 0.05 0.652 ± 0.007

Gulliver’s Travels by Jonathan
Swift

3.56 ± 0.07 0.608 ± 0.012

Complete Memoirs by Jacques
Casanova de Seingalt

3.60 ± 0.15 0.602 ± 0.021

so large block lengths. As we have shown, for the Bernoulli model with uniform
probabilities, subword complexity may convey information about block entropy for
block lengths smaller than or equal the maximal repetition. For many texts in natural
language, the maximal repetition is of order 100 or greater [8]. Hence we hope that,
using an improved entropy estimator, we may get reasonable estimates of block
entropy H(k) for k ≤ 100.

5 Conclusion

In this paper we have considered some newmethods of estimating block entropy. The
idea is to base inference on empirical subword complexity—a function that counts the
number of distinct substrings of a given length in the sample. In an entangled form,
the expectation of subword complexity carries information about the probability
distribution of blocks of a given length fromwhich information about block entropies
can be extracted in some cases.

We have proposed two estimators of block entropy. The first estimator has been
designed for IID processes but it has appeared that it works well only in the trivial
case of uniform probabilities. Thus we have proposed a second estimator, which
works for any properly skewed stationary process. This assumption is satisfied if
the distribution of strings of a given length is skewed towards less probable values.
It is remarkable that the second estimator with a large probability provides a lower
bound of entropy, in contrast to estimators based on source coding, which give an
upper bound of entropy. We stress that consistency of the second estimator remains
an open problem.

Moreover, using the second estimator, we have estimated block entropy for texts
in natural language and we have confirmed earlier estimates as well as Hilberg’s
hypothesis for block lengths k ≤ 10. Further research is needed to provide an esti-
mator for larger block lengths.We hope that subword complexity carries information
about block entropy for block lengths smaller than or equal the maximal repetition,
which would allow to estimate entropy for k ≤ 100 in the case of natural language.
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according to the error probability of the Bayes decision is studied such that the excess
error probability is decomposed into approximation and estimation error. A general
formula is derived for the approximation error. Under a weak margin condition and
various smoothness conditions, tight upper bounds are presented on the approxima-
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1 Introduction

We consider a binary classification problem. Using a kernel estimator for the posteri-
ori probability, the asymptotics of the error probability is examined of the correspond-
ing plug-in classification rule. In this paper lower and upper bounds are presented
on the rate of convergence of the classification error probability.

Let the feature vector X take values in R
d such that its distribution is denoted

by μ and let the label Y be binary valued. If g is an arbitrary decision function, then
its error probability is denoted by

L(g) = P{g(X) �= Y}.

The Bayes decision g∗ minimizes the error probability. It follows that

g∗(x) =
{

1 if η(x) > 1/2
0 otherwise,

where the posteriori probability η is given by

η(x) = P{Y = 1 | X = x}.

Let the corresponding error probability be

L∗ = P{g∗(X) �= Y}.

Put
D(x) = 2η(x) − 1,

then the Bayes decision has the following equivalent form:

g∗(x) =
{

1 if D(x) > 0
0 otherwise.

In the standardmodel of pattern recognition,we are given training labeled samples,
which are independent and identically copies of (X, Y): (X1, Y1), . . . , (Xn, Yn). Based
on these labeled samples, one can estimate the regression function D by Dn, and the
corresponding plug-in classification rule gn derived from Dn is defined by

gn(x) =
{

1 if Dn(x) > 0
0 otherwise.

In the following our focus lies on the rate of convergence of the excess error
probabilityE{L(gn)} − L∗. In Sect. 2margin conditions are discussed,whichmeasure
how fast the regression function D crosses the decision boundary. A nonparametric
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kernel regression estimate of D is introduced and a decomposition of the excess error
probability into approximation and estimation error is considered in Sect. 3. Tight
upper bounds on the approximation error are shown in Sect. 4 depending on margin
and smoothness conditions on D. By a Berry-Esseen type central limit theorem
a general expression for the estimation error is derived in Sect. 5. Finally, some
conclusions are given.

2 Margin Conditions

Given the plug-in classification rule gn derived from Dn it follows

E{L(gn)} − L∗ ≤ E{|D(X) − Dn(X)|}

(cf. Theorem 2.2 in Devroye et al. [3]). Therefore we may get an upper bound on the
rate of convergence of the excess error probability E{L(gn)} − L∗ via the L1 rate of
convergence of the corresponding regression estimation.

However, according to Sect. 6.7 in Devroye et al. [3], the classification is easier
than L1 regression function estimation, since the rate of convergence of the error
probability depends on the behavior of the function D in the neighborhood of the
decision boundary

B0 = {x; D(x) = 0}. (1)

This phenomenon has been discovered by Mammen and Tsybakov [10], Tsybakov
[13], who formulated the (strong) margin condition:

• The strong margin condition. Assume that for all 0 < t ≤ 1,

P {|D(X)| ≤ t} ≤ ctα, (2)

where α > 0 and c > 0.

Kohler and Krzyżak [7] introduced the weak margin condition:

• The weak margin condition. Assume that for all 0 < t ≤ 1,

E
{

I{|D(X)|≤t}|D(X)|} ≤ ct1+α, (3)

where I denotes the indicator function.

Obviously, the strong margin condition implies the weak margin condition:

E
{

I{|D(X)|≤t}|D(X)|} ≤ E
{

I{|D(X)|≤t}t
} = tP {|D(X)| ≤ t} ≤ ct · tα.

The difference between the strong and weak margin condition is that, for the strong
margin condition, the event
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{D(X) = 0}

counts. One can weaken the strong margin condition (2) such that we require

P {0 < |D(X)| ≤ t} ≤ ctα. (4)

Obviously, (4) implies (3). Under some mild conditions we have that α = 1.
(Cf. Lemma 2.) The margin conditions measure how fast the probability of a
t-neighborhood of the decision boundary increases with t. A large value of α corre-
sponds to a small probability of the neighborhood of the decision boundary, which
means that the probability for events far away of the decision boundary is high.
Therefore, a classifier can make the right decision more easily, hence one can expect
smaller errors for larger values of α.

Recently, Audibert and Tsybakov [1] proved that if the plug-in classifier g has
been derived from the regression estimate D̃ and if D satisfies the strong margin
condition, then

L(g) − L∗ ≤
(∫

(D̃(x) − D(x))2μ(dx)

) 1+α
2+α

. (5)

It is easy to see that (5) holds even under weak margin condition: we have that

L(g) − L∗ = E
{

I{g(X) �=g∗(X)}|D(X)|} (6)

(cf. Theorem 2.2 in Devroye et al. [3]). Let sign(x) = 1 for x > 0 and sign(x) = −1
for x ≤ 0. For fixed tn > 0,

L(g) − L∗ = E

{

I{sign D̃(X) �=sign D(X),|D(X)|≤tn}|D(X)|
}

+E

{

I{sign D̃(X) �=sign D(X),|D(X)|>tn}|D(X)|
}

≤ E
{

I{|D(X)|≤tn}|D(X)|}

+E

{

I{sign D̃(X) �=sign D(X),|D̃(X)−D(X)|>tn}|D̃(X) − D(X)|
}

,

therefore the weak margin condition implies that

L(g) − L∗ ≤ ct1+α
n + tnE

{

I{|D̃(X)−D(X)|>tn}
|D̃(X) − D(X)|

tn

}

≤ ct1+α
n + tnE

{

|D̃(X) − D(X)|2
t2n

}

.
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For the choice

tn =
(

E

{

|D̃(X) − D(X)|2
}) 1

2+α

we get (5).
For bounding the error probability, assume, for example, that D satisfies the Lip-

schitz condition: for any x, z ∈ R
d

|D(x) − D(z)| ≤ C‖x − z‖.

If D is Lipschitz continuous and X is bounded then there are regression estimates
such that ∫

(Dn(x) − D(x))2μ(dx) ≤ c21n− 2
d+2 ,

therefore (5) means that

L(g) − L∗ ≤
(

c21n− 2
d+2

) 1+α
2+α =

(

c1+α
1 n− 1+α

d+2

) 2
2+α

.

Kohler and Krzyżak [7] proved that for the standard plug-in classification rules
(partitioning, kernel, nearest neighbor) and for weak margin condition we get that
the order of the upper bound can be smaller:

n− 1+α
d+2 .

The main aim of this paper is to show tight upper bounds on the excess error
probability E{L(gn)} − L∗ of the kernel classification rule gn.

3 Kernel Classification

We fix x ∈ R
d , and, for an h > 0, let the (naive) kernel estimate of D(x) be

Dn,h(x) = 1

n

n
∑

i=1

(2Yi − 1)I{Xi∈Sx,h}/μ(Sx,h),

where Sx,h denotes the sphere centered at x with radius h. Notice thatDn,h is not a true
estimate, because its denominator contains the unknown distribution μ. However,
the corresponding plug-in classification rule defined below depends only on the sign
of Dn,h(x), and so μ doesn’t count. The (naive) kernel classification rule is

gn,h(x) =
{

1 if Dn,h(x) > 0
0 otherwise,
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(cf. Devroye [2], Devroye and Wagner [4], Krzyżak [8], Krzyżak and Pawlak [9]).
If D is Lipschitz continuous and X is bounded then, for the L1 error, one has that

E{|D(X) − Dn,h(X)|} ≤ c2h + c3√
nhd

,

(cf. Györfi et al. [5]), so for the choice

h = n− 1
d+2 , (7)

the L1 upper bound implies that

E{L(gn,h)} − L∗ ≤ c4n− 1
d+2 .

Because of (6), we have that the excess error probability of any plug-in classifi-
cation rule has the following decomposition:

E{L(gn,h)} − L∗ = E

{
∫

{sign Dn,h(x) �=sign D(x)}
|D(x)|μ(dx)

}

= In,h + Jn,h,

where

In,h = E

{
∫

{sign D̄h(x)=sign Dn,h(x) �=sign D(x)}
|D(x)|μ(dx)

}

and

Jn,h = E

{
∫

{sign Dn,h(x) �=sign D(x)=sign D̄h(x)}
|D(x)|μ(dx)

}

with D̄h(x) = E{Dn,h(x)}. In,h is called approximation error, while Jn,h is the esti-
mation error.

4 Approximation Error

First we consider the approximation error. The following proposition means that the
lower bound of the approximation error is approximately the half of the upper bound.
Further, it shows that the bounds of the approximation error are mainly determined
by the bandwidth h.

Proposition 1
(
1

2
+ o(1)

)

Īh ≤ In,h ≤ Īh,
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where

Īh =
∫

{sign D̄h(x) �=sign D(x)}
|D(x)|μ(dx).

Proof The upper bound is obvious. The lower bound follows from the central limit
theorem, since

E

{
∫

{0≥D̄h(x),Dn,h(x)≤0<D(x)}
|D(x)|μ(dx)

}

=
∫

{D̄h(x)≤0<D(x)}
|D(x)|P{Dn,h(x) ≤ 0}μ(dx)

=
∫

{D̄h(x)≤0<D(x)}
|D(x)|P{Dn,h(x) − D̄h(x) ≤ −D̄h(x)}μ(dx)

≥
∫

{D̄h(x)≤0<D(x)}
|D(x)|P{Dn,h(x) − D̄h(x) ≤ 0}μ(dx)

≥
∫

{D̄h(x)≤0<D(x)}
|D(x)|

(
1

2
+ o(1)

)

μ(dx),

where o(1) is uniform in x. This can be seen, for example, using the Berry-Esseen
inequality as in the proof of Proposition 2 below. The handling of remaining integral
is analogous.

Kohler and Krzyżak [7] bounded the rate of convergence of the excess error
probability assuming that D satisfies the weak margin condition and the Lipschitz
condition. Further they assume that X has a density which is bounded away from
zero:

f (x) ≥ c′ > 0 (8)

They proved that

E{L(gn,h)} − L∗ ≤ c5h1+α + c6
nhd

(9)

such that, for the choice (7),

E{L(gn,h)} − L∗ ≤ c7n− 1+α
d+2 .

In (9) the approximation error is upper bounded by c5h1+α . Next we show how it
follows from Proposition 1. Denote by

B0,h =
{

x;min
z∈B0

‖x − z‖ ≤ h

}

the h-neighborhood of the decision boundaryB0 defined by (1). Letλ be the Lebesgue
measure and let M∗(B0) be the outer surface (Minkowski content) of the decision
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boundary B0 defined by

M∗(B0) = lim
h↓0

λ(B0,h \ B0)

h
.

Lemma 1 If D satisfies the weak margin condition and the Lipschitz condition, then

Īh ≤ c8h1+α.

If D satisfies the Lipschitz condition, the density f of X exists, it is bounded by fmax

and M∗(B0) is finite, then
Īh ≤ c9h2.

Proof If x /∈ B0,h then
sign D̄h(x) = sign D(x).

Therefore

Īh =
∫

{sign D̄h(x) �=sign D(x)}
|D(x)|μ(dx)

=
∫

{sign D̄h(x) �=sign D(x),x∈B0,h}
|D(x)|μ(dx).

For any fixed x ∈ B0,h, there is a zx ∈ B0 such that ‖x − zx‖ ≤ h, which together
with the Lipschitz condition implies that

|D(x)| = |D(x) − D(zx)| ≤ Ch.

Thus, by the weak margin condition

Īh ≤
∫

{|D(x)|≤Ch,x∈B0,h}
|D(x)|μ(dx)

≤
∫

{|D(x)|≤Ch}
|D(x)|μ(dx)

≤ c(Ch)1+α.

Concerning the second half of the lemma, we have that

Īh ≤
∫

{|D(x)|≤Ch,x∈B0,h}
|D(x)|μ(dx)

≤ Ch
∫

{0<|D(x)|,x∈B0,h}
1μ(dx)
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= Chμ{B0,h \ B0}
≤ Chfmaxλ{B0,h \ B0}
≤ Cc10h2.

The technique of the second half of the previous proof implies that α = 1.

Lemma 2 Let D satisfies the lower Lipschitz inequality at B0, which means a c∗ > 0
exists, such that for all t ∈ [0, 1] and

x /∈ B0,c∗t

it follows
|D(x)| > t.

If the density f of X exists, it is bounded by fmax, and the outer surface M∗(B0) is
finite, then the weak margin condition holds with α = 1.

Proof We verify (4) with α = 1.

P {0 < |D(X)| ≤ t}
= P

{

0 < |D(X)| ≤ t, X ∈ B0,c∗t \ B0
} + P

{

0 < |D(X)| ≤ t, X /∈ B0,c∗t
}

≤ P
{

X ∈ B0,c∗t \ B0
} + P {0 < |D(X)| ≤ t, t < |D(X)|}

≤ c10c∗t.

Hall and Kang [6] investigated the bandwidth choice. They assumed that condi-
tional densities exist, which are bounded away from zero. Under twice differentiable
conditional densities, they proved that

E{L(gn,h)} − L∗ ≤ c11h4 + o

(
1

nhd

)

. (10)

In (10) the approximation error is upper bounded by c11h4. Next we show how it
follows from Proposition 1.

Let us introduce some notations:

p+ := P{Y = 1}, p− := P{Y = 0}

Assume that the density f of X exists. Let the conditional densities f+ and f− be
defined by

P{X ∈ A | Y = 1} =
∫

A
f+(x) dx

and

P{X ∈ A | Y = 0} =
∫

A
f−(x) dx.
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Then
f (x) = p+ · f+(x) + p− · f−(x)

and

D(x) = f̃ (x)

f (x)
,

where
f̃ (x) := p+ · f+(x) − p− · f−(x).

Moreover,

f+(x) = f (x) · (1 + D(x)
)

2p+
, f−(x) = f (x) · (

1 − D(x)
)

2p−
.

Lemma 3 Assume that f̃ is two-times differentiable with bounded second order
partial derivatives. If D satisfies the weak margin condition and the density f is
bounded below by fmin, then

Īh ≤ c12h2(1+α).

Proof Let Hf̃ be the Hessian-matrix of f̃ . Then the conditions of the lemma imply
that

sup
0≤t≤1

∣
∣(x − z)T Hf̃

(

x + t(z − x)
)

(x − z)
∣
∣ ≤ c13‖x − z‖2 (11)

with 0 < c13 < ∞. We have the decomposition

D̄h(x) =
∫

Sx,h
D(z)μ(dz)

μ(Sx,h)

=
∫

Sx,h

f̃ (z)
f (z) f (z)dz

μ(Sx,h)

=
∫

Sx,h

(

f̃ (z) − f̃ (x)
)

dz

μ(Sx,h)
+ f̃ (x)λ(Sx,h)

μ(Sx,h)

=
∫

Sx,h

(

f̃ (z) − f̃ (x)
)

dz

μ(Sx,h)
+ D(x)

f (x)λ(Sx,h)

μ(Sx,h)
.

The second order Taylor expansion

f̃ (z) − f̃ (x) = (z − x)T ∇ f̃ (x) + (z − x)T Hf̃ (x̃z)(z − x)/2

with x̃z ∈ Sx,h implies that



Exact Rate of Convergence of Kernel-Based Classification Rule 81

D̄h(x)

=
∫

Sx,h

(

(z − x)T ∇ f̃ (x) + (z − x)T Hf̃ (x̃z)(z − x)/2
)

dz

μ(Sx,h)
+ D(x)

f (x)λ(Sx,h)

μ(Sx,h)

=
∫

Sx,h
(z − x)T Hf̃ (x̃z)(z − x)/2 dz

μ(Sx,h)
+ D(x)

f (x)λ(Sx,h)

μ(Sx,h)
.

Therefore, from (11) we get that

D̄h(x) ≥ −c13h2λ(Sx,h)/2

μ(Sx,h)
+ D(x)

f (x)λ(Sx,h)

μ(Sx,h)
.

Thus, for D(x) ≥ 0 > D̄h(x), we have

|D(x)| ≤ c13h2

2f (x)
≤ c13h2

2fmin
.

The same inequality holds for D(x) < 0 ≤ D̄h(x). From the weak margin condition
we get

Īh =
∫

{

sign
(

D̄h(x)
)

�=sign
(

D(x)
)

,x∈B0,h

} |D(x)|μ(dx)

≤
∫

{

|D(x)|≤ c13h2

2fmin

} |D(x)|μ(dx)

≤ c12h2(1+α).

Under the assumption of Lemma 2 we have that the weak margin condition holds
with α = 1. Hence by Lemma 3 and Proposition 1 we get that the approximation
error In,h is upper bounded by a multiple of h4.

The question left is that whether the upper bounds in Lemmas 1 and 3 are tight.
Consider some examples, where α = 1 and Īh can be calculated showing that the
order of the lower bounds have the order of the upper bounds.

Example 1 Assume that f is the uniform density on [−1, 1]d . Let h < 1, β ≥ 1,
a > 0, b > 0, a + b < 1. Choose

p+ = 1

2
+ b

4(β + 1)

and
D(x) = ax1 + bxβ

1 · I(0,1](x1),
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where x = (x1, . . . , xd). Then

f̃ (x) = ax1 + bxβ
1 · I(0,1](x1)
2d

· I[−1,1]d (x)

f+(x) = 1 + ax1 + bxβ
1 · I(0,1](x1)

2d+1p+
· I[−1,1]d (x)

f−(x) = 1 − ax1 − bxβ
1 · I(0,1](x1)

2d+1p−
· I[−1,1]d (x).

One can check that D satisfies the weak margin condition with α = 1. If x1 > 0 then
sign D̄h(x) = sign D(x). Let Vd be the volume of the d-dimensional unit sphere, i.e.
Vd = πd/2/�(d/2 + 1). For −h < x1 ≤ 0

∫

Sx,h

D(x) μ(dx) =
∫

Sx,h

ax1 + a(z1 − x1) + bzβ
1 · I(0,1](z1)

2d
· I[−1,1]d (z) dz

= aVd

2d
hdx1+

∫ x1+h

x1−h

a(z1 − x1) + bzβ
1 ·I(0,1](z1)

2d
Vd−1

(

h2 − (z1 − x1)
2)(d−1)/2

dz1

= aVd

2d
hdx1 + bVd−1

2d

∫ x1+h

0
zβ
1

(

h2 − (z1 − x1)
2)(d−1)/2

dz1

≤ aVd

2d
hdx1 + bVd−1

2d
hd−1

∫ x1+h

0
zβ
1 dz1

≤ hd−1

2d

(

aVdhx1 + bVd−1

β + 1
hβ+1

)

.

And we have a lower bound by

∫

Sx,h

D(x)μ(dx) = aVd

2d
hdx1 + bVd−1

2d

∫ x1+h

0
zβ
1

(

h2 − (z1 − x1)
2)(d−1)/2

dz1

= aVd

2d
hdx1 + bVd−1

2d

∫ h

0
I(−x1,∞)(z̃1)(z̃1 + x1)

β
(

h2 − z̃21
)(d−1)/2

dz̃1

= aVd

2d
hdx1 + bVd−1

2d

∫ h

0

(

I(0,∞)(z̃1)z̃
β
1

(

h2 − z̃21
)(d−1)/2

+ x1I(−x̃1,∞)(z̃1)β(z̃1 + x̃1)
β−1(h2 − z̃21

)(d−1)/2
)

dz̃1

≥ aVd

2d
hdx1 + bVd−1

2d

∫ h

0

(

z̃β
1

(

h2 − z̃21
)(d−1)/2 + x1β z̃β−1

1 hd−1
)

dz̃1
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≥ aVd

2d
hdx1 + bVd−1

2d

(∫ h/2

0
z̃β
1

(

h2 − (h/2)2
)(d−1)/2

dz̃1

+
∫ h

h/2
(h/2)β−1z̃1

(

h2 − z̃21
)(d−1)/2

dz̃1 + x1hd
)

= aVd

2d
hdx1 + bVd−1

2d

( 1

β + 1
(h/2)β+1(h2 − (h/2)2

)(d−1)/2

+ (h/2)β−1(h2 − (h/2)2
)(d+1)/2 1

d + 1
+ x1hd

)

= hd−1

2d

(

(aVd + bVd−1)hx1 + bVd−1
( (3/4)(d−1)/2

(β + 1)2β+1 + (3/4)(d+1)/2

(d + 1)2β−1

)

hβ+1
)

.

For the notations

c14 = bVd−1

aVd + bVd−1

( (3/4)(d−1)/2

(β + 1)2β+1 + (3/4)(d+1)/2

(d + 1)2β−1

)

c15 = bVd−1

aVd · (β + 1)

we get that

−c14hβ < x1 =⇒ D̄h(x) > 0 =⇒ −c15 · hβ < x1

Therefore

Īh =
∫

{sign D̄h(x) �=sign D(x)}
|D(x)| μ(dx)

≥
∫ 0

−c14·hβ

∫

[−1,1]d−1
− a

2d
x1 d(x2, . . . xd) dx1 = ac214

4
· h2β

Analogously

ac214
4

· h2β ≤ Īh ≤ ac215
4

· h2β

• If β = 1, then D, f̃ , f+ and f− are Lipschitz continuous and

Īh ≥ c16h2.

• If β = 1+ ε/2 for ε > 0, then D, f̃ , f+ and f− are continuously differentiable and

Īh ≥ c17h2+ε .
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• If β = 2 + ε/2 for ε > 0, then D, f̃ , f+ and f− are two times continuously
differentiable and

Īh ≥ c18h4+ε .

5 Estimation Error

Next we consider the estimation error. Introduce the notations

Nx,h = μ(Sx,h)D̄h(x)2

1 − μ(Sx,h)D̄h(x)2

and
Rx,h = c19

√

μ(Sx,h)(1 − μ(Sx,h)D̄h(x)2)3

with a universal constant c19 > 0. Put

J̄n,h =
∫

{sign D̄h(x)=sign D(x)}
|D(x)|Φ

(

−√

n · Nx,h

)

μ(dx),

where Φ stands for the standard Gaussian distribution function.

Proposition 2 We have that

|Jn,h − J̄n,h| ≤
∫

{sign D̄h(x)=sign D(x)}
Rx,h · |D(x)|√

n + n2N3/2
x,h

μ(dx).

Put ε > 0. If the density of X exists then, for h small enough,

∫

{sign D̄h(x)=sign D(x)}
|D(x)|Φ

(

−√

(1 + ε)n · μ(Sx,h)|D̄h(x)|
)

μ(dx)

≤ J̄n,h

=
∫

{sign D̄h(x)=sign D(x)}
|D(x)|Φ

(

−√

n · μ(Sx,h)|D̄h(x)|
)

μ(dx),

and
∫

{sign D̄h(x)=sign D(x)}
Rx,h · |D(x)|√

n + n2N3/2
x,h

μ(dx)

≤
∫

{sign D̄h(x)=sign D(x)}
2c19 · |D(x)|

√

nμ(Sx,h)(1 + (
√

n · μ(Sx,h)|D̄h(x)|)3)
μ(dx)
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with a universal constant c19 > 0.

Proof First we show the following: For fixed x and h, under 0 < D̄h(x) we have that

|P{Dn,h(x) ≤ 0} − Φ
(

−√

n · Nx,h

)

| ≤ Rx,h√
n + n2N3/2

x,h

,

which implies the first half of the proposition. (The case D̄h(x) ≤ 0 and Dn,h(x) > 0
is completely analogous.) Introduce the notation

Zi = −(2Yi − 1)I{Xi∈Sx,h}.

Then

P{Dn,h(x) ≤ 0} = P

{
n

∑

i=1

Zi ≥ 0

}

= P

{∑n
i=1(Zi − E{Zi})√

nVar(Z1)
≥ −

√
nE{Z1}√
Var(Z1)

}

.

Because of

Var(Z1) = E{|Z1|2} − (E{Z1})2 = μ(Sx,h) − μ(Sx,h)
2D̄h(x)

2

and by 0 < D̄h(x) we have that

E{Z1}√
Var(Z1)

= −
√

μ(Sx,h)D̄h(x)
√

1 − μ(Sx,h)D̄h(x)2
= −√

Nx,h

Therefore the central limit theorem for the probability P{Dn,h(x) ≤ 0} implies that

P{Dn,h(x) ≤ 0} = P

{

−
∑n

i=1(Zi − E{Zi})√
nVar(Z1)

≤ −√

nNx,h

}

≈ Φ
(

−√

nNx,h

)

.

Notice that it is only an approximation. In order to make bounds out of the normal
approximation, we refer to Berry-Esseen type central limit theorem (see Theorem
14 in Petrov [12]). Thus,

∣
∣
∣P{Dn,h(x) ≤ 0} − Φ

(

−√

nNx,h

)∣
∣
∣ ≤

c19
E{|Z1|3}

Var(Z1)3/2√
n

(

1 + (√

nNx,h
)3

) ,

with the universal constant 30.84 ≥ c19 > 0 (cf.Michel [11]).Because of E{|Z1|3} =
μ(Sx,h) we get that
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c19
E{|Z1|3}

Var(Z1)3/2
= c19

μ(Sx,h)1/2
(

1 − μ(Sx,h)D̄h(x)2
)3/2 = Rx,h,

hence

∣
∣
∣P{Dn,h(x) ≤ 0} − Φ

(

−√

nNx,h

)∣
∣
∣ ≤ Rx,h√

n(1 + (n · Nx,h)3/2)
.

Concerning the second half of the proposition notice that if the density of X exists
then

Rx,h ≤ 2c19
√

μ(Sx,h)
,

and, for any ε > 0,

μ(Sx,h)D̄h(x)
2 ≤ Nx,h ≤ (1 + ε)μ(Sx,h)D̄h(x)

2

if h is small enough.

Next we show that the upper bound of the error term in the second half in

Proposition 2 is of order o
(

1
nhd

n

)

.

Lemma 4 Assume that

lim
n→∞ hn = 0 and lim

n→∞ nhd
n = ∞, (12)

and that there is a c̃ > 0 such that sign D̄h(x) = sign D(x) implies |D̄h(x)| ≥ c̃|D(x)|.
If X has a density f with bounded support then

An :=
∫

{sign D̄hn (x)=sign D(x)}
|D(x)|

√

nμ(Sx,hn)(1 + (
√

nμ(Sx,hn)|D̄hn(x)|)3)
μ(dx)

= o

(
1

nhd
n

)

. (13)

Proof Let B be the bounded support of f . Then f (x) > 0 on B and f (x) = 0 on Bc.
Introduce the notation

fn(x) = μ(Sx,hn)

λ(Sx,hn)
,

where λ stands for the Lebesgue measure. Under the conditions of the lemma we
have that
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An ≤
∫ |D(x)|

√

nμ(Sx,hn)(1 + (
√

nμ(Sx,hn)c̃|D(x)|)3)μ(dx)

=
∫ |D(x)|

√

nλ(Sx,hn)fn(x)(1 + (
√

nλ(Sx,hn)fn(x)c̃|D(x)|)3)μ(dx)

=
∫

1

fn(x)

1

c̃nλ(Sx,hn)

√

nλ(Sx,hn)fn(x)c̃|D(x)|
1 + (

√

nλ(Sx,hn)fn(x)c̃|D(x)|)3μ(dx)

= 1

c̃nhd
nVd

∫

B

f (x)

fn(x)
rn(x)dx

with

rn(x) =
√

nλ(Sx,hn)fn(x)c̃|D(x)|
1 + (

√

nλ(Sx,hn)fn(x)c̃|D(x)|)3 .

Thus, we have to show that

∫

B

f (x)

fn(x)
rn(x)dx → 0.

By theLebesgue density theorem fn(x) → f (x) and therefore fn(x)/f (x) → 1λ—a.e.
on B, and so rn(x) → 0 λ—a.e. on B. Moreover, this convergence is dominated:

rn(x) ≤ max
0≤u

u

1 + u3
=: rmax.

Thus, ∫

B
rn(x)dx → 0.

Apply the decomposition

∫

B

f (x)

fn(x)
rn(x)dx ≤

∫

B

∣
∣
∣
∣

f (x)

fn(x)
− 1

∣
∣
∣
∣
rn(x)dx +

∫

B
rn(x)dx

≤ rmax

∫

B

∣
∣
∣
∣

f (x)

fn(x)
− 1

∣
∣
∣
∣
dx + o(1).

In order to prove

∫

B

∣
∣
∣
∣

f (x)

fn(x)
− 1

∣
∣
∣
∣
dx → 0 (14)

we refer to the Riesz-Vitali-Scheffé theorem, according to which (14) is satisfied if

f

fn
≥ 0,
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f

fn
→ 1 λ—a.e. on B,

and
∫

B

f (x)

fn(x)
dx →

∫

B
1 dx = λ(B). (15)

Thus, it remains to show (15). By the generalized Lebesgue density theorem (cf.
Lemma 24.5 in Györfi et al. [5]), for each μ-integrable function m

∫

B

∣
∣
∣
∣
∣

∫

Sx,hn
m(z)μ(dz)

μ(Sx,hn)
− m(x)

∣
∣
∣
∣
∣
μ(dx) → 0.

Therefore
∫

B

∫

Sx,hn
m(z)μ(dz)

μ(Sx,hn)
μ(dx) →

∫

B
m(x)μ(dx).

Choose

m(x) = 1

f (x)
, x ∈ B.

Then

∫

B

f (x)

fn(x)
dx =

∫

B

∫

Sx,hn
m(z)μ(dz)

μ(Sx,hn)
μ(dx) →

∫

B
m(x)μ(dx) =

∫

B
1 dx = λ(B),

and the lemma is proved.

As we already mentioned, using Hoeffding and Bernstein inequalities Kohler and
Krzyżak [7] proved that under the condition (8) we have

Jn,hn ≤ c6
nhd

n
(16)

with c6 < ∞.
We believe that applying Proposition 2 the condition (8) can be weakened such

that the following conjecture holds: If X is bounded and it has a density then we
have (16).

Because of Lemma 4, this conjecture means that

∫

{sign D̄h(x)=sign D(x)}
|D(x)|Φ

(

−√

nμ(Sx,hn)|D̄hn(x)|
)

μ(dx) ≤ c6
nhd

n
. (17)

Concerning a possible way to prove (17) we may apply the covering argument of
(5.1) in Györfi et al. [5], which says that for bounded X,
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∫
1

μ(Sx,hn)
μ(dx) ≤ c20

hd
n

.

The bounded support of X can be covered by spheres Sxj,hn/2, j = 1, . . . , Mn such
that Mn ≤ c21/hd

n . Let

S′
x,hn

= Sx,hn ∩ {z : sign D̄hn(z) = sign D(z)}.

If x ∈ S′
xj,hn/2

then S′
xj,hn/2

⊆ S′
x,hn

. For (17),

∫

{sign D̄hn (x)=sign D(x)}
|D(x)|Φ

(

−√

nμ(Sx,hn)|D̄hn(x)|
)

μ(dx)

≤
Mn∑

j=1

∫

S′
xj ,hn/2

|D(x)|Φ
(

−√

nμ(Sx,hn)|D̄hn(x)|
)

μ(dx)

≤
Mn∑

j=1

∫

S′
xj ,hn/2

|D(x)|Φ
(

−
√

nμ(Sxj,hn/2)|D̄hn(x)|
)

μ(dx)

≤ 1

n

Mn∑

j=1

∫

S′
xj ,hn/2

n|D(x)|e−nμ(Sxj ,hn/2)|D̄hn (x)|2/2
μ(dx)

≤ 1

n

Mn∑

j=1

∫

S′
xj ,hn/2

n|D(x)|e−nμ(Sxj ,hn/2)c̃2|D(x)|2/2
μ(dx),

where the last inequality follows by the assumptions of Lemma 4. If

sup
j

∫

S′
xj ,hn/2

n|D(x)|e−nμ(Sxj ,hn/2)c̃2|D(x)|2/2
μ(dx) < ∞

then
∫

{sign D̄h(x)=sign D(x)}
|D(x)|Φ

(

−√

nμ(Sx,hn)|D̄hn(x)|
)

μ(dx) ≤ c22
Mn

n
≤ c6

nhd
n
.

Example 2 Notice that the upper bound in (16) is tight. As in the Example 1, if μ is
the uniform distribution and

D(x) = x1,

then sign D̄hn(x) = sign D(x) and |D̄hn(x)| = |D(x)| for hn < 1/2 and |x1| < 1/2.
Thus
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Jn,hn

≥
∫

{sign D̄hn (x)=sign D(x)}
|D(x)|Φ

(

−√

(1 + ε)nμ(Sx,hn)|D̄hn(x)|
)

μ(dx)

≥
∫ 1/2

0
zΦ

(

−
√

(1 + ε)Vdnhd
n2

−dz

)

dz

= 1

(1 + ε)Vdnhd
n2

−d

∫
√

(1+ε)Vdnhd
n2

−d/2

0
uΦ (−u) du

= 1

(1 + ε)Vdnhd
n2−d

(∫ ∞

0
uΦ (−u) du + o(1)

)

≥ c23
nhd

n
,

with 0 < c23. Hall and Kang [6] proved that if X has a density, bounded from above
and from below then

Jn,hn = o

(
1

nhd
n

)

,

which contradicts the lower bound c23
nhd

n
.

In general, we conjecture the following: If X has a density, which is bounded by
fmax, then

c24
nhd

n
≤ Jn,hn

with 0 < c24. This conjecture is supported by the fact that

μ(Sx,hn) ≤ fmaxVdhd
n .

Therefore
∫

{sign D̄hn (x)=sign D(x)}
|D(x)|Φ

(

−√

(1 + ε)nμ(Sx,hn)|D̄hn(x)|
)

μ(dx)

≥
∫

{sign D̄hn (x)=sign D(x)}
|D(x)|Φ

(

−
√

(1 + ε)nfmaxVdhd
n |D̄hn(x)|

)

μ(dx).

6 Conclusion

We presented tight upper bounds for the rate of convergence of the error probability
of kernel classification rule. Decomposing the excess error probability into the sum
of approximation and estimation error, we derived approximate formulas both for
approximation error and estimation error.
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Under weak margin condition with α and Lipschitz condition on the regression
functionD, Kohler and Krzyżak [7] showed that the approximation error In,h is upper
bounded by c5hα+1. If, in addition, the conditional densities are twice continuously
differentiable, then we proved that In,h ≤ c12h2(α+1). Furthermore, we present an
example, according to which these upper bounds are tight. Under the assumption
that the Minkowski content of the decision boundary is finite and the lower Lipschitz
inequality holds, the weak margin condition holds with α = 1. Hence we get the
upper bound In,h ≤ c11h4 as in Hall and Kang [6] as a special case.

If X has a lower bounded density, then Kohler and Krzyżak proved the upper
bound on the estimation error: Jn,h ≤ c6/(nhd). We show that this upper bound is
tight, too.
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Compound Bipolar Queries:
A Step Towards an Enhanced Human
Consistency and Human Friendliness

Janusz Kacprzyk and Sławomir Zadrożny

Abstract Database querying is a basic capability to make use of databases that are
omnipresent and huge. A crucial problem is how to make possible for an ordinary
human user to properly express his intentions and preferences as to what should be
searched for. As natural language, with its inherent imprecision, is the only fully
natural human means of communication and articulation, this makes difficult the use
of traditional binary logic based querying tools. Fuzzy logic can come to the res-
cue, notably using fuzzy logic with linguistic quantifiers. Such queries, proposed by
Kacprzyk and Ziółkowski [24], Kacprzyk et al. [25], have offered much in this con-
text, and will also be used here. While looking for further solutions in this direction,
the concept of a bipolar query has been proposed by Dubois and Prade [13], followed
by a fuzzy bipolar query due to Zadrożny [36] (cf. Zadrożny and Kacprzyk [40])
involving negative and positive information, notably meant as required and desired
conditions. A natural solution consisting in combining these two ideas was proposed
conceptually byKacprzyk andZadrożny [22], and termed a compound bipolar query.
In this paper we further extend this concept mainly by exploring some additional
aggregation related aspects of bipolar queries which include fuzzy queries with lin-
guistic quantifiers.
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1 Introduction

The purpose of this short note is to discuss some possible approaches, within the line
of research we have been active in for many years, to the very essence of flexible
querying, that is retrieving from (possibly large) numerical databases information
which the human agent really wants to find. The human agent is assumed to be an
average user, not a database specialist, and for him or her the only natural way of
articulation of his or her intentions or needs, but also preferences (i.e. which record
is good and which is not), is by using natural language a characteristic feature of
which is an inherent imprecision and vagueness.

Needless to say that the use of natural language per se is a great difficulty to the
traditional database querying systems and languages but this is not all. Namely, the
“normal”, or average human users think—as the human beings do—about a more
sophisticated and complex concepts corresponding to what they want to retrieve.
For instance, they may prefer to speak about a “good financial standing” rather than
about, for instance, “yearly income is much more than USD xx” and “loans in banks
are negligible” etc.

However, those concepts, being consistent for humans, are difficult to represent
formally through some commands of a querying language, notably the SQL. The
problem is clearly not an inherent imprecision of terms like a “high income” because
they can be represented by using fuzzy logic, and this has been known since the late
1960s (cf. a survey in Galindo [18]). The very problem is a proper representation of
the very meaning of those concepts which are at a higher level of abstraction like
a “good financial standing”. Clearly, a proper representation should involve some
aggregation of satisfaction values from the fulfillment of some conditions on some
attributes but it is not clear which type of aggregation should be employed. The usual
AND-type aggregation (and its relatedOR-type) has been dealt with in the traditional
fuzzy querying literature by just using the minimum (or a t-norm) or maximum (or
an s-norm) but this was not enough.

The first step towards a more realistic and human consistent approach to the
representation of more complex concepts in flexible (fuzzy) querying was proposed
in the mid-1986 by Kacprzyk and Ziółkowski [24], followed by Kacprzyk et al. [25]
in which the concept of a database query with a fuzzy linguistic quantifier has been
introduced.

The idea of query with a linguistic quantifier is as follows. For clarity we will
quote here an example from the real world application for which these queries have
been initially proposed at the International Institute for Applied Systems Analysis
in Laxenburg, Austria. The queries have been supposed to be employed in database
querying to be used in a decision support system for regional authorities responsi-
ble for, among other issues, water quality. Those top level people, unfamiliar with
databases, have—while being interviewed during the development of a conceptual
solution and architecture of that decision support system—expressed interest mainly
in highly aggregated and sophisticated concepts like “dangerous water pollution”.
After some discussion it has turned out that their human perception of the very
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meaning of such concepts has been that, for instance, “most of the important water
pollution indicators have considerably exceeded limits”, with the linguistic quantifier
“most” considered to be very important.

It is easy to see that meaning of that complex term, “dangerous water pollution”,
equated with the above linguistically quantified statement, has been a challenge,
mostly because of the occurrence of the linguistic quantifier “most” that has been
outside of the scope of the traditional logic, and its very essencewas even not the same
as the essence of the generalized quantifiers (cf. Mostowski [29] or Lindström [28]).
Luckily enough, Zadeh’s [35] fuzzy logic based calculus of linguistically quantified
propositions makes it possible to determine the degrees of truth of such linguistically
quantified statements. A very important capability has therefore been made available
by fuzzy querying with linguistic quantifiers.

However, as powerful as fuzzy queries with linguistic quantifiers can be, they
have not been in a position to express all fine shades of meaning of real human
intentions as to what they really want to retrieve. Among many possible steps in this
context, one in which we have been active for years (cf. Zadrożny [36], Zadrożny
and Kacprzyk [40], Zadrożny et al. [37], just to name a few) has been the concept of
a bipolar query.

The very essence of a bipolar query can be best shown on the following simple
example of looking for a “good” apartment in a database of a real estate agency.
Suppose that a customer comes to an agent and, when asked about what he or she
wants to find, responds that he or she is interested in the purchasing of a “good apart-
ment”. As such a general intention cannot be directly related to database attributes
and used by the agent to search the database, the customer is again asked what he or
she means by a good apartment. The response may often be that he or she looks for
an “inexpensive apartment” and possibly, “close to public transportation”. Notice,
however, that this is still far from the traditional pattern of queries because “and
possibly” is certainly not equivalent to the classical conjunction.

The above type of a database query may be viewed as a reflection of the so called
bipolarity. Namely, there is a sound evidence, resulting from many experiments in
social and cognitive sciences, that a human being is usually considering both positive
and negative information while making a judgment or decision. This positive and
negative information is then somehow aggregated yielding an overall judgment. The
way this aggregation is carried out may be more or less explicit but in general it may
take different forms, depending on the task, context, emotional involvement etc. In
the literature, often a special interpretation of the positive and negative information
is assumed which assigns higher importance to the latter but in a rather subtle way.
Basically, considered in the database querying context, the latter implies mandatory
requirements, as negative information is treated as corresponding to what must not
occur, and the former implies optional requirements, as positive information is treated
as concerning what is preferable, if possible. This bipolarity should therefore be
reflected in database queries.

In our context, formal and algorithmic attempts at the formalization of bipolarity
in judgments and evidence are crucial, and for us in particular those based on fuzzy
logic and possibility theory the roots of which constitute fundamental works by
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Dubois and Prade and their collaborators, to name just a few: Benferhat et al. [4] or
Dubois and Prade [14–16].

There are many aspects of bipolarity to be taken into account, cf. Zadrożny et al.
[37]. First, various models of bipolarity may be adopted, notably the use of a proper
scale to describe the phenomenon. Basically, two such models (scales) are usually
considered: bipolar univariate and unipolar bivariate, cf. Grabisch et al. [19]. The
former assumes one scale with three main levels of, respectively, negative, neutral
and positive evaluation, gradually changing, while the latter model assumes two
more or less independent scales which separately account for a positive and negative
evaluation. Usually, the intervals [−1, 1] and [0, 1] are used to represent the scales
in the respective models of bipolarity. We will use the unipolar bivariate scales to
handle bipolarity.

It is easy to see that bipolarity triggers a qualitatively different character of bipolar
evaluations. In flexible querying, a crucial problem is how to use them to order the
resulting set of tuples. Basically, one should aggregate them and obtain an overall
evaluation of each tuple against a bipolar query but, in general, it is not clear how to
do this.

Here we study a special case when positive and negative conditions may be inter-
preted in terms of desired and required conditions. Then, their aggregation may
proceed as proposed for the crisp case by Lacroix and Lavency [26]. We follow this
approach, adapt it to the fuzzy case and study its properties and possible implemen-
tations.

Basically, a prototypical example of a bipolar query considered in this paper is

C and possibly P (1)

exemplified by

find a house which is inexpensive and possibly close to public transportation

The main problem is to find a proper aggregation method to reflect the very tricky
and non-conventional aggregation operator “…and possibly,…”. In our analyses
we will adopt our approach to that aggregation (cf. Zadrożny [36], Zadrożny and
Kacprzyk [38, 40]), De Tré et al. [11, 12]) that is basically an extension of the
classic Lacroix and Lavency [26] (nonfuzzy) approach to queries with preferences.

The bipolar queries as in the example given under (1) dowell serve their purpose as
a means for a much more human consistent way of expressing what the human being
may want to retrieve (which house to find) but clearly represent a simple situation,
like a first approximation, of how real intentions and preferences are formulated by
the human being.

In addition to the choice of amodel of bipolarity, asmentioned earlier, one has also
to decide how to combine bipolar evaluations of elementary conditions comprising
the whole query and how to order query results with respect to bipolar evaluations.

The first approach may be traced to the seminal work of Lacroix and Lavency [26]
on queries with preferences composed of two types of conditions: those which are
required to be met and those which are just desired to be met. Such a query may be
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exemplified as follows: “Find houses cheaper than USD 500K and located not more
than five blocks from a railway station”. Data not satisfying the former condition
(i.e., houses more expensive than USD 500K) are readily rejected, while the dissat-
isfaction of the latter condition (i.e., located farther than five blocks from the station)
may be acceptable provided there do not exist houses satisfying both conditions
simultaneously. Thus the former conditions may be treated as providing negative
information, related to the mandatory requirements pointing out which features of
data makes them totally uninteresting to the user. The latter conditions may be seen
as providing positive information, related to the optional requirements pointing out
which features of data make them really interesting to the user. In that approach we
adopt the unipolar bivariate model of bipolarity, and we basically assume that the
bipolarity appears on the level of the whole query. Our main concern is clearly how
to combine (aggregate) both the negative and positive evaluations to obtain a total
evaluation on a traditional unipolar univariate scale that would provide simple means
for ordering the results of the query.

The introduction of a bipolar query has been a huge step forward towards a higher
human consistency and human friendliness of flexible (fuzzy) query but it has not
solved all problems.

Basically, though a bipolar query reflects the way the human beings perceive how
their real intention as to what is sought is formalized, the two parts of a bipolar
query, in its simple form concern real attributes in the database, e.g., the “price” and
“distance to a railway station”. Such an approach is justified because many formal
properties can be formulated and proved (cf. the recent Zadrożny andKacprzyk’s [40]
paper). This involvement of real database attributes may be, however, too strong a
limitation in many real situations—cf. Kacprzyk and Zadrożny [22, 23].

Namely, in most cases, a customer looking for a house or apartment uses in the
beginning much more general form of his or her intention, by stating, if we stay in
the real estate context, for instance

find a house that is affordable and possibly well located

which can be considered a zero (highest) level query formulation (intention/
preference)—cf. Kacprzyk and Zadrożny [22].

Then, if a real (human) estate agent is involved, then he or she would certainly
ask to elaborate on the mandatory/necessary (later on referred to as: required) and
optional/possible (later on referred to as: desired) conditions. And then, for instance,
the customer states

• for the required condition (“an affordable house”), I mean

find a house that is inexpensive and possibly in a modern building

• for the desired condition (“well located”), I mean

find a house that is in an affluent part of the town and possibly close to a recreational area

and these can be viewed as the first level query formulations (intentions/preferences).
One can clearly continue in the same manner and obtain, by asking the customer

to further elaborate on his or her intentions, for instance
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• for the first level required condition, in the required part, i.e. “inexpensive”

find a house that has a low price and possibly a good bank loan offer

• for the first level required condition, in the desired part, i.e. “modern building”

find a house that is in a building with an intelligent energy management and possibly with
fast lifts

• for the first level optional formulation, in the required part, i.e. “an affluent part of
the town”

find a house that is in a quiet zone and possibly is close to the business district

• for the first level desired formulation, in the desired part, i.e. “close to a recreational
area”

find a house that is close to a park and possibly close to a lake

and, obviously, one can continue in the similarway by further extending the particular
parts of the queries.

This is an example of what can happen if the customer is inclined to stay within
the bipolar query context, that is, if his intentions at consecutive levels can be best
expressed by bipolar queries.

This need not always be the case.
Our point of departure is here again that those imprecisely specified desired and

required conditions are clearly not directly related to the particular attributes in the
database, so that they cannot directly be employed for querying. Usually, those con-
ditionsmay adequately be represented by some aggregation of conditions on attribute
values. For instance, such an aggregation can proceed by using a linguistic quantifier
driven aggregation via Zadeh’s [35] calculus of linguistically quantified propositions.
To be more specific, combination of the desired and required condition may itself be
a condition of a fuzzy query. For convenience, we will present this new extension
in terms of our fuzzy querying interface, FQUERY for Access, which supports an
extended version of SQL, cf. Kacprzyk and Zadrożny [20, 21] and Bosc and Pivert
[6] in the sense that, first, it supports linguistic terms in queries exemplified by fuzzy
values such as “inexpensive” and fuzzy relations (fuzzy comparison operators) such
as “much less than” as in the following SQL query

SELECT *
FROM apartment
WHERE (price IS inexpensive) AND

(distance to bus stop IS
muchlessthan 4 blocks)

(2)

So, to best express the customer’s intention, we can use in the required and desired
conditions of the source bipolar query linguistic quantifiers such as “most”, “almost
all” etc. which play the role of flexible aggregation operators. This leads to the
concept of a bipolar fuzzy query with a linguistic quantifier.
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Therefore, staying for clarity in the real estate context, we have the following
situation

• we assume a bipolar query of the general type

C and possibly P (3)

in which we have

– a required conditionC , exemplified in the real estate case considered by “afford-
able”,

– a desired condition P , exemplified in the real estate case by “well located”,

• we assume that the required and desired conditions involve a linguistic quanti-
fier driven aggregation of some partial conditions (which directly correspond to
attributes in a real estate database in question!).

This boils down to the determination of a degree of truth of a linguistically quan-
tified proposition in the sense of Zadeh [35].

For instance, suppose that

• the required condition “affordable” is defined as follows

Q of conditions among {ci }i=1,...,nC are to be satisfied (4)

where nC is the number of conditions in C , exemplified by

Most of conditions among ‘price IS inexpensive, bank loan IS easy to get, bank interest IS
not much higher than x%, …’ are to be satisfied

• the desired condition “conveniently located” is defined as follows

Q of conditions among {pi }i=1,...,n P are to be satisfied (5)

where n P is the number of conditions in P , exemplified by

Most of conditions among ‘distance to railroad station IS short, distance to bus stop IS much
less than 5 blocks, number of buses at stop IS high, …’ are to be satisfied

Therefore, in the new so called compound bipolar queries proposed Kacprzyk
and Zadrożny [23] we have a traditional bipolar query, denoted as (C, P), in which
both C and P are fuzzy queries themselves, namely, fuzzy queries with linguistic
quantifiers.

We will now present first a more detailed exposition of the compound fuzzy
query proposed. We will start with a brief summary of the essence of fuzzy queries
with linguistic quantifiers and then of bipolar queries in Sects. 2 and 3, respectively.
Finally,wewill present the essence of our newproposal combining the bipolar queries
with queries with linguistic quantifiers.
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2 Queries with Linguistic Quantifiers

We assume that the linguistic quantifiers are meant in the sense of Zadeh, and can
be handled by two basic calculi: Zadeh’s original calculus based on fuzzy logic and
by using Yager’s OWA operators. We will show the use of the former.

Zadeh’s calculus of linguistically quantified propositions concerns natural lan-
guage type expressions like

“Most Swedes are tall” (6)

where “Most” is an example of a linguistic quantifier.Other examples include “almost
all”, “much more than 50%” etc. These are examples of so-called relative quantifiers
we are interested in.

A linguistically quantified proposition exemplified by (6) may be written as

Qx A(x) (7)

where Q denotes a linguistic quantifier (e.g.,most), X = {x} is a universe of discourse
(e.g., a set of Swedes), and A(x) is a predicate corresponding to a certain property
(e.g., of being tall).

The problem is to compute the truth value of (7). First, Q is equated with a fuzzy
set defined in [0, 1], and we assume that Q is a regular nondecreasing quantifier,
such that

y1 ≤ y2 ⇒ μQ(y1) ≤ μQ(y2); μQ(0) = 0; μQ(1) = 1 (8)

where the particular y ∈ [0, 1] correspond to proportions of elements with property
A and μQ(y) is the degree to which a given proportion matches the semantics of Q.
For example, Q = “most” might be given as

μQ(y) =
⎧

⎨

⎩

1 for y > 0.8
2y − 0.6 for 0.3 ≤ y ≤ 0.8
0 for y < 0.3

(9)

The predicate A is modeled by an appropriate fuzzy set A defined in X with its
membership function μA.
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Formally, the truth degree of (7) is computed using the following formula

Truth(Qx A(x)) = μQ(
1

n

n
∑

i=1

μA(xi )) (10)

where n is the cardinality of X .
In the case of linguistically quantified statements with importance, exemplified

by “Most (Q) of young (B) Swedes are tall (A)”, written generally as

Q Bx A(x) (11)

where Q denotes a linguistic quantifier (e.g.,most), X = {x} is a universe of discourse
(e.g., a set of Swedes), B(x) denotes importance of the particular x’s, and A(x) is a
predicate corresponding to a certain property (e.g., of being tall), we have

Truth(Q Bx A(x)) = μQ(

∑n
i=1 μB(xi ) ∧ μA(xi )

∑n
i=1 μB(xi )

)

where “∧” is the minimum but may be replaced by a t-norm, if appropriate.
To find Truth(Qx A(x)) and Truth(Q Bx A(x)) one can also use Yager’s ordered

weighted averaging (OWA) operators defined as follows. Let W ∈ [0, 1]m, W =
[w1, . . . , wm],∑m

i=1 wi = 1 be a weight vector. Then the OWA operator of dimen-
sion m and weight vector W is a function OW : [0, 1]m −→ [0, 1] such that

OW (a1, . . . , am) = W ◦ B =
m

∑

i=1

wi bi (12)

where bi is i th largest element among ai ’s and B = [b1, . . . , bm]; ◦ denotes the
scalar product.

The OWA operators generalize many widely used aggregation operators. In
particular one obtains the maximum, minimum and average operators assuming
W = [1, 0, . . . , 0, 0], W = [0, 0, . . . , 0, 1] and W = [ 1

m , 1
m , . . . , 1

m , 1
m ], respec-

tively.
The OWA operators may be used to model linguistic quantifiers. Assume that Q

is a regular non-decreasing linguistic quantifier in the sense of Zadeh (8). Then the
weight vector of the corresponding OWAoperator is defined byYager [30] as follows

wi = μQ

(
i

m

)

− μQ

(
i − 1

m

)

, i = 1, . . . , m (13)

Then, we can easily find the corresponding truth values of linguistically quantified
statements.

Since the purpose of this paper is to introduce a new class of compound bipo-
lar queries involving as a required and desired condition a query with linguistic
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quantifiers, we will only assume that the truth value of a linguistically quantified
proposition representing the query is calculated by using some method, and the type
of the method (mainly Zadeh’s [35] calculus of linguistically quantified propositions
or Yager’s [30] OWA operators) does not matter for our further considerations.

The fuzzy linguistic quantifiers may occur in various clauses of the SQL query
and we will follow the approach adopted in our FQUERY for Access package, cf.
Kacprzyk and Zadrożny [20, 21], i.e., they will be used as operators aggregating
conditions in the WHERE clause. For example, with “most” defined by (9), the inter-
pretation of that aggregation may be

“Most of the predicates {Ai }i=1,...,n are satisfied” (14)

for any number, n, of predicates.
Therefore, we have formal means to define and implement queries with fuzzy

linguistic quantifiers, denoted for simplicity as

• Qx A(x) for the query with a linguistic quantifier of type (7), the truth value of
which is given by (4), i.e.

Truth(Qx P(x)) = μQ(
1

n

n
∑

i=1

μP (xi ))

• Q Bx A(x) for the query with a linguistic quantifier of type (11), the truth value
of which is given by (12), i.e.

Truth(Q Bx P(x))

= μQ(

∑n
i=1 μB(xi ) ∧ μP (xi )

∑n
i=1 μB(xi )

)

where “∧” is the minimum but may be replaced by another t-norm.

3 Bipolar Fuzzy Database Queries

Nowwe will briefly show the concept of a bipolar fuzzy query as meant in this paper
and discuss some properties and related aspects that will be of relevance for this
paper, referring the reader to our other publications for details, notably Zadrożny
and Kacprzyk [40].

As we have already mentioned, a query is to be meant as a condition expressing
what the user is looking for, and the response to a query is a list of tuples satisfying
this condition(s). For simplicity we assume just for now that we have simple, atomic
conditions with constraints on the values of the attributes characterizing a given
relation (table), and these atomic conditions are connected using the logical connec-
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tives of the conjunction, disjunction and negation; notice that we do not consider for
now the use of linguistic quantifiers as proposed by Kacprzyk and Ziȯłkowski [24],
Kacprzyk et al. [25]; and they will be introduced into the bipolar queries later in this
paper.

Basically, such a simple fuzzy query concerning attribute X using a linguistic
term modeled by fuzzy set A may be denoted as

X is A (15)

where X in (15)may denote the attributeprice, while the fuzzy set A may represent
the linguistic term “low”.

A unipolar scale is clearly associated with (15) as μA(x) denotes the degree to
which a given attribute value is compatible with the meaning of a given linguistic
term and hence the degree towhich this value satisfies the query condition. Therefore,
this is a unipolar fuzzy querying approach.

Bipolarity in (fuzzy) database querying is essentiallymeant as the incorporation of
negative and positive assessments/evaluations of data. In our real estate context, for a
customer the location near a railroad station may be welcome (a positive assessment)
while its highprice is discouraging (a negative assessment). Evenmore, the placement
near a stationmay be attractive (positively assessed) due to a commuting convenience
and at the same time unattractive (negatively assessed) due to, e.g., the noise and
social environment.

The first aspect, as already mentioned in the Introduction, that is crucial is related
to a proper scale for expressing the bipolarity. An effective and efficient solution is to
employ two types of scales (cf. Grabisch et al. [19]) bipolar univariate and unipolar
bivariate. In the former, an assessment is expressed as a number from [−1, 1], which
is divided into three parts expressing the negative (<0), neutral (0) and positive (>0)
assessments, respectively. In the latter, the positive and negative assessments are
expressed separately on two unipolar scales with values from [0, 1]. In our case it
will be more convenient to use two separate unipolar scales what is effective and
efficient; cf. for instance Yorke [34] for some psychological justifications.

Another important aspect is the level of data to which assessments are applied.
They can refer to: the values of the particular attribute domains, and to the whole
tuples (cf. [12]).

Bipolar queries have been first conceptualized in the context of fuzzy logic and
using its tools and techniques by Dubois and Prade [13] (cf. Dubois and Prade [14]
for a comprehensive exposition) and their basic idea is to distinguish two types of
query conditions which are related to the (flexible) constraints representing what is
required (this, or better to say its negation, corresponds to the negative condition)
and what is merely desired (this directly corresponds to the positive condition).
Thus, in Dubois and Prade’s approach there is no symmetry between negative and
positive evaluations: the former are treated as more important. This is clear, in fact by
their very semantics. This is confirmed by the original Dubois and Prade’s strategy
to generate an answer to such a query which may be briefly stated as “first select
(with respect to the negative condition) and then order (with respect to the positive
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condition)”. To implement this strategy for fuzzy conditions, Dubois and Prade [13,
14, 16] propose to employ the lexicographic order of the tuples represented by vectors
of two degrees of matching of the negative and positive conditions. This is clearly a
legitimate, yet conceptually simple and effective and efficient solution.

Research on bipolar queries in the sense adopted in this paper was triggered by
the seminal paper of Lacroix and Lavency [26] who proposed the use of a query
with two categories of conditions (similarly to the approach of Dubois and Prade,
mentioned above): C which is required (mandatory), and P which expresses just
mere preferences (desires). Such a query obviously involves bivariate unipolar scale
with the negative evaluation corresponding to not satisfying the required condition
C , and positive evaluation corresponding directly to satisfying the desired condition
P . Thus, concerning the very interpretation of negative and positive evaluations it
is the same approach which was later adopted by Dubois and Prade in the above
mentioned works, as well as by current authors in virtually all their works on bipolar
queries.

The crucial aspect of the semantics of Lacroix and Lavency’s approach is related
to the “and possibly” operator in (1). Such an aggregation operator has been later
proposed independently by Dubois and Prade in default reasoning and earlier by
Yager [31, 32] in multicriteria decision making with so-called possibilistically qual-
ified criteria which should be satisfied unless they interfere with the satisfaction of
other criteria. This is in fact the essence of the aggregation operator “and possibly”
as proposed by Lacroix and Lavency. This concept was also applied by Bordogna
and Pasi [5] in information retrieval.

Lacroix and Lavency [26] consider only the case of crisp conditions C and P so
that a bipolar query (C, P)may be processed using the “first select usingC then order
using P” strategy, i.e., the answer to the bipolar query (C, P) is obtained by, first,
finding tuples satisfying C and, second, choosing from among them those satisfying
P , if any. Such a very meaning was also assumed while fuzzifying the Lacroix and
Lavency approach, notably in Zadrożny [36], and Zadrożny and Kacprzyk [38], and
is used also here. As to other approaches, cf. Bosc and Pivert [7, 8], Dubois and
Prade [14] or Lietard et al. [27].

Suppose that queries are addressed to a set of tuples T = {t j } (a relation). The
negative and positive assessments defining a bipolar query are identified with the
predicates (fuzzy sets) that represent them, denoted as C and P , respectively (the
negative assessment corresponds to the complement of C). For a tuple t ∈ T , C(t)
and P(t) denote either that t satisfies the respective condition (in crisp case) or a
degree of this satisfaction, in a fuzzy case. Therefore, the whole bipolar query is
denoted, as mentioned earlier, by (C, P).

Lacroix and Lavency’s [26] aggregation of C and P in “C and possibly P”
proceeds as follows. A tuple t belongs to the answer set of a query (1) if it satisfies
the (crisp) condition given by

C(t) and possibly P(t) ≡ C(t) ∧ ∃s(C(s) ∧ P(s)) ⇒ P(t)
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Notice that if there is no conflict between P and C with respect to the content of a
database, i.e., there are tuples satisfying both of them, then the query collapses to
C ∧ P , where ∧ is the minimum (i.e. the conventional “and”) while if there are no
tuples satisfying both P and C , then the query collapses to C . Thus, clearly, in this
interpretation of the bipolar query, the matching degree of a tuple t depends not only
on t , but also on the whole set of tuples T which implies serious difficulties as the
non-conventional “and possibly” aggregation cannot proceed via just the use of the
values of the arguments.

The crucial issue is how to interpret the non-standard “and possibly” aggregation
operator in the fuzzy context. We proposed three different ways to derive the logical
formulas expressing the matching degree of a bipolar query with the “and possibly”
operator (cf. Zadrożny and Kacprzyk [40]). Two of them rely on the treating the
“and possibly” operator as a special case of the Chomicki’s winnow operator [10,
40]. These three ways are the following

• by a direct fuzzification of (16):

C(t) and possibly P(t) ≡ C(t) ∧ (∃s (C(s) ∧ P(s)) ⇒ P(t)) (16)

• by a direct fuzzification of the winnow operator (cf. [10]):

C(t) and possibly P(t) ≡ C(t) ∧ ¬∃s ((C(s) ∧ P(s) ∧ ¬P(t))) (17)

• by using our fuzzy version of the winnow operator (cf. Zadrożny and Kacprzyk
[40]):

C(t) and possibly P(t) ≡ C(t) ∧ ∀s (C(s) ⇒ (¬P(s) ∨ P(t))) (18)

In the classical Boolean logic all these three formulas are equivalent but this
is not true in the context of fuzzy (multivalued) logic where different versions of
the the conjunction and disjunction may be obtained using various t-norms and
t-conorms, respectively [17]. We will consider the so-called De Morgan Triples
(∧,∨,¬) that comprise of a t-norm ∧, a t-conorm ∨ and a negation ¬, where
¬(x ∨ y) = ¬x ∧ ¬y holds. The following three De Morgan Triples are of a special
importance in fuzzy logic [17]: (∧min,∨max ,¬), (∧Π,∨Π,¬), (∧W ,∨W ,¬), called
in what follows, respectively, the MinMax, Π and W triples, and the particular t-
norms and t-conorms are

t − norms
x ∧min y = min(x, y) minimum
x ∧Π y = x · y product
x ∧W y = max(0, x + y − 1) Łukasiewicz

t − conorms
x ∨max y = max(x, y) maximum
x ∨Π y = x + y − x · y probabilistic sum
x ∨W y = min(1, x + y) Łukasiewicz
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and ¬ in all the above De Morgan Triples is ¬x = 1 − x .
In fuzzy logic, the universal and existential quantifier are meant, for the finite

universes, to correspond to the maximum and minimum operators, respectively.
One can consider two implication operators related to the given DeMorgan Triple

(∧,∨,¬), the so-called S-implications

x →S−∨ y = ¬x ∨ y (19)

and R-implications
x →R−∧ y = sup{z : x ∧ z ≤ y} (20)

Thus, for the particular De Morgan Triples, we obtain the following R-implication
operators

x →R−min y =
{

1 for x ≤ y
y for x > y

x →R−Π y =
{

1 for x = 0
min{1, y

x } for x �= 0

x →R−W y = min(1 − x + y, 1)

and the following S-implication operators

x →S−max y = max(1 − x, y)

x →S−Π y = 1 − x + x · y

x →S−W y = min(1 − x + y, 1)

Basically, in a series of our papers (cf. Zadrożny and Kacprzyk [39]), which
culminated in Zadrożny and Kacprzyk [40], we analyzed in detail many aspects
related to the choice of one of the formulas (16)–(18) to represent the bipolar queries
and an appropriate modeling of the logical connectives occurring therein, i.e., the
choice of one of the De Morgan Triples.

These are just some examples of more relevant properties that may be useful for
the modeling of bipolar queries. For more information, we refer the reader to our
recent paper [40].

Now, we will proceed to the very topic of this paper, namely the presentation of
a new concept of compound bipolar queries combining traditional bipolar queries
with queries with fuzzy linguistic quantifiers.
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4 Compound Bipolar Queries: A Synergistic Combination
of Bipolar Queries and Queries with Fuzzy Linguistic
Quantifiers

In the discussion of the very essence and main properties of bipolar queries we have
assumed up to now a simple, general form of a bipolar query, denoted by (C, P),
meant as “C and possibly P”. As we have already mentioned, the particular C’s and
P’s can take on a more sophisticated form, namely can themselves be fuzzy queries
with linguistics quantifiers. This gives rise to a new concept of a compound bipolar
query proposed here as outlined in the Introduction.

Since the paper is meant to propose this new concept, and due to a lack of space,
wewill only present in a simple and illustrativeway somemore relevant formulations
presented for the new compound bipolar queries. For clarity, we will strongly relate
our discussion to the motivating example of real estate, and this will certainly not
limit the generality.

For convenience of the reader, and clarity of presentation, let us repeat now the
real estate example mentioned in the Introduction. Moreover, we will only use the
approachbasedonadirect fuzzificationof (16), i.e. of the sourceLacroix andLavency
logical formulation of bipolar queries.

Our source bipolar query is

find a house which is affordable and possibly well located

which is written as [cf. due to (1)]

C and possibly P (21)

and, due to (16), we have

C(t) and possibly P(t) ≡ C(t) ∧ (∃s (C(s) ∧ P(s)) ⇒ P(t))

The two types of conditions that exist in (21) are

• a required condition C , exemplified in the real estate case considered by “afford-
able”,

• a desired condition P , exemplified in the real estate case by “well located”.

We assume that the required and desired conditions involve a linguistic quantifier
driven aggregation of some partial conditions (which directly correspond to attributes
in a real estate database in question!), that is, correspond themselves to queries with
fuzzy linguistic quantifiers.

For instance, in our real estate context

• the required condition “affordable” may be defined as (22), that is

Q of conditions among {ci }i=1,...,nC are to be satisfied. (22)
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where nC is the number of conditions in C , exemplified by

Most of conditions among ‘price IS inexpensive, bank loan IS easy to get, bank interest IS
not much higher than X%, …’ are to be satisfied

• the desired condition “well located” may be defined as follows (cf. (5))

Q of conditions among {pi }i=1,...,n P are to be satisfied. (23)

where n P is the number of conditions in P , exemplified by

Most of conditions among ‘distance to railroad station IS short, distance to bus stop IS
much less than 5 blocks, number of buses at stop IS high, …’ are to be satisfied

The truth values of (22) and (23) are calculated due to—obviously assuming a
regular nondecreasing quantifier (8)—as

• for the required condition C

Truth(Qici (t)) = μQ(
1

nC

nC∑

i=1

μci (t)) (24)

where nC is the cardinality of the set of required conditions,
• for the desired condition P

Truth(Qipi (t)) = μQ(
1

n P

n P∑

i=1

μpi (t) P(xi )) (25)

where n P is the cardinality of the set of desired conditions.

Now, as we havementioned, wewill only use the approach based on a direct fuzzi-
fication of the source Lacroix and Lavency logical formulation of bipolar queries,
i.e. (16).

Our query (C, P) can therefore be written as [cf. (1)]

C and possibly P (26)

which, since C and P are queries (conditions) with fuzzy linguistic quantifiers, i.e.
C(t) ≡ Q1 ci (t) and P(t) ≡ Q2 pi (t), respectively, can further be written for
simplicity as

Q1ci and possibly Q2 pi (27)

which in turn implies due to (16)
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Q1 ci (t) and possibly Q2 pi (t)

≡ Q1ci (t) ∧ ((∃s Q1ci (s) ∧ Q2 pi (s)) ⇒ Q2 pi (t))
(28)

We have limited our analysis, for simplicity, to C and P constituting queries with
fuzzy linguistic quantifiers that are represented by linguistically quantified propo-
sitions without importance. One can clearly consider the case with importance, i.e.
(11) with the truth value of the linguistically quantified proposition with importance
calculated due to (12). Then, we only need to replace in (28) the respective truth
values of P and C by those calculated due to (12).

5 Concluding Remarks

We have further elaborated on the concept of a compound bipolar query which
we introduced conceptually in Kacprzyk and Zadrożny [22]. This new query type
combines the concept of a bipolar query proposed byDubois andPrade [13], followed
by a fuzzy bipolar query due to Zadrożny [36] (cf. Zadrożny and Kacprzyk [40]),
involving negative and positive information, notably meant as required and desired
conditions with the concept of a query with fuzzy linguistic quantifiers proposed by
Kacprzyk and Ziółkowski [24], and Kacprzyk et al. [25]. We show a new quality that
can be gained by such a combination, and illustrate our arguments and approach on
an easily comprehensible real estate example.
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Process Inspection by Attributes
Using Predicted Data

Olgierd Hryniewicz

Abstract SPC procedures for process inspection by attributes are usually designed
under the assumption of directly observed quality data. However, in many practical
cases this direct observations are very costly or even hardly possible. For example, in
the production of pharmaceuticals costly and time consuming chemical analyses are
required for the determination of product’s quality even in the simplest case when
we have to decide whether the inspected product conforms to quality requirements.
The situation is evenmore difficultwhen quality tests are destructive and long-lasting,
as it is in the case of reliability testing. In such situations we try to predict the actual
quality of inspected items using the values of predictors whose values are easily
measured. In the paper we consider a situation when traditional prediction models
based on the assumption of the multivariate normal distribution cannot be applied.
Instead, for prediction purposes we propose to use some techniques known from data
mining. In this study, which has an introductory character, and is mainly based on
the results of computer simulations, we show how the usage of popular data mining
techniques, such as binary regression, linear discrimination analysis, and decision
trees may influence the results of process inspection.

1 Introduction

The majority of popular Statistical Process Control (SPC) tools have been designed
under the assumption that the observed quality characteristics are independent, and
usually normally distributed. Only few SPC procedures, such as the T2 control chart,
introduced by Hotelling in the 1947, were designed for the statistical inspection of
processes described by multivariate data, see [6]. However, in modern production
processes many process characteristics can be measured simultaneously, and very
often the assumption of the multivariate normality of their observed values simply
does not hold. Recently, in the works like [8, 12–14] some new techniques have been

O. Hryniewicz (B)

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland
e-mail: hryniewi@ibspan.waw.pl

© Springer International Publishing Switzerland 2016
S. Matwin and J. Mielniczuk (eds.), Challenges in Computational Statistics
and Data Mining, Studies in Computational Intelligence 605,
DOI 10.1007/978-3-319-18781-5_7

113



114 O. Hryniewicz

proposed for dealing with interdependent statistical quality data. They are mainly
based on the so called profile data. In this approach a regression-type model that
describes the relationship between the quality characteristic of interest and some
other explanatory variables is built. Then, control charts are used for the control of
stability of the parameters (profiles) of such regression models. These methods can
be used for the analysis of different dependencies of a regression type, both linear and
non-linear. However, in practically all cases the proposed models have been obtained
under the assumption of the normality of measured characteristics. Moreover, it is
assumed that all important quality characteristics of interest are directly measurable.

Automation of contemporary production processes allows for measurements of
important parameters of produced items. When specification limits are set for the
values of these measurements one can say that 100% quality inspection has been
implemented for this process. However, in many cases actual quality characteristics
of interest cannot be measured during a process. For example, in the production
of pharmaceuticals costly and time consuming chemical analyses are required for
the determination of product’s quality even in the simplest case when we have to
decide whether the inspected product conforms to quality requirements. In such and
similar cases 100% inspection is hardly feasible. The same is when the measurement
procedure is disruptive as in the case of the measurement of breaking strength. The
most difficult, and practically impossible to implement, are measurements which are
both disruptive and long-lasting. For example, [5] considered the case when the most
important quality characteristic is the lifetime of a produced object. In all these cases
a direct inspection of quality characteristics of interest is practically impossible. One
can think, however, about an indirect inspection of such characteristics. In such a
case we should measure other easily measurable characteristics, and use obtained
values for the prediction of the unobserved values of the quality characteristic of
interest.

The problemof an indirect inspection of important quality characteristics attracted
attention of relatively few authors for the last more than fifty years. According to the
most popular approach, introduced in a series of papers by Owen and collaborators,
see [9], a multivariate probability distribution of the random vector (Z, X1, . . . , Xk)

is built, where Z is the quality characteristic of interest, and X1, . . . , Xk are the char-
acteristics which are directly measurable in a production process. In all these papers
it was assumed that the vector (Z, X1, . . . , Xk) is described by the multivariate (usu-
ally bivariate) normal (Gaussian) distribution describing (Z, X1, . . . , Xk). Another
approach is based on the assumption that the relation between the predicted random
variable Z and the explanatory variables X1, . . . , Xk is described by a certain (usu-
ally linear) regression model. Also in this case the normality assumption about Z is
usually used in practice. In both cases there is a direct link of the proposed methods
to the multivariate SPC tools mentioned in the first paragraph of this section.

Unfortunately, the models mentioned above are of rather limited applicability
when the actual multivariate probability distribution of (Z, X1, . . . , Xk) is different
from the normal (Gaussian) one, and when the number of predictors (explanatory
variables) X1, . . . , Xk is not small. In order to cope with this problem [5] has pro-
posed to use the data miningmethodology. In his proposal the simplest case when the
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random variable Z is described by the Bernoulli distribution is considered. In such
a case a classifier (e.g. linear classifier, decision tree or artificial neural net-
work) is built using training data consisted of the limited number of observations
(Z, X1, . . . , Xk), and this classifier is used in the inspection process for “labeling”
the produced items. In statistical quality control this type of inspection is named “by
attributes”. One can think, however, about the application of this methodology for a
more general setting when the variable Z is real-valued. In such a case one can use
such data mining methods as e.g. regression trees for the prediction of its unobserved
values.

Classifiers used in the inspection process are usually built using small amount of
data, named training data. Thus, the results of classification are not error-free. What
is more important, however, that the relation between the results of classification and
the actual level of the quality characteristic of interest may be quite complicated.
Therefore, there is a need to investigate the impact the quality of the classification
procedures on the efficiency of SPC procedures used in production processes. This
problem was first approached in [5]. In this paper we extend his results and consider
a more general model of the process inspection.

The remaining part of this paper is organized as follows. In Sect. 2 we describe
an assumed mathematical model of the inspection process and discuss the problem
of the prediction of directly unobserved quality characteristics using data mining
techniques. In Sect. 3 we describe a simulation model used for the evaluation of
three prediction algorithms, namely theBinaryRegression, theLinearDiscrimination
Analysis (LDA) and the Classification Decision Tree Quinlan’s C4.5 algorithm. In
Sect. 4 the performance of these algorithms is evaluated in terms of prediction errors
for both non-shifted and shifted process levels. Then, in Sect. 5, we compare the
efficiency of the considered prediction algorithms for two types of 100% process
inspectionmethods. Some conclusions and indication for a future work are presented
in the last section of the paper.

2 Mathematical Model of a Process with Predicted Values
of Quality Characteristics

A general mathematical model of a process with predicted values of quality char-
acteristics is a simple one. Let Z1, . . . , Zp be p quality characteristics whose values
are not directly observed using measurement tools available for process operators.
Their values should be predicted using observations X1, . . . , Xk of k predictors. It
can be done if we assume their common probability distribution, i.e. the probability
distribution of a vector (Z1, . . . , Zp, X1, . . . , Xk). According to the famous Sklar’s
theorem this distribution is univocally described by a (p + k)-dimensional copula,
and marginal probability distributions of Z1, . . . , Zp and X1, . . . , Xk . Unfortunately,
this general model is hardly applicable in practice. Therefore, we need to propose a
model that is simpler and more easy for practical interpretation. One of such possible
simple models was proposed in [5]. This model has a hierarchical 3-level structure.
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On the top level there is a one-dimensional real-value quality characteristic T . How-
ever, for purpose of quality inspection we are not interested in the values of T , but
in the values of a binary (attribute) variable defined as

Zt =
{

0 , T ≥ t
1 , T < t

(1)

This model has a direct interpretation when items produced in the monitored
process are considered as either conforming or nonconforming to certain quality
requirements. In his paper [5] considers a process where the life-time of produced
items is the actual quality characteristic of interest. However, we can never identify
its precise probability distribution. Instead, we can identify the probability distribu-
tion of a random variable T describing the results of an accelerated life test (ALT)
or even a highly accelerated life-time test (HALT). Basing on previously accumu-
lated experience we assume that items whose predicted life-time T which would be
observed in the ALT test is smaller than a certain value t are potentially less reliable,
and can be considered as nonconforming. Thus, one can believe that the inference
about the values of Zt is more robust to uncertainties related to the unknown relation-
ship between the actual life-time and the predicted value of the life-time that would
be observed in the accelerated life-time tests.

The first level of our model describes the predictors X1, . . . , Xk . In order to make
it simpler for future simulations we assume that consecutive pairs of predictors
(Xi, Xi+1), i = 1, . . . , k−1are describedby k−1copulasCi(Fi(Xi), Fi+1(Xi+1)), i =
1, . . . , k − 1, where F1(X1), . . . , Fk(Xk) are the cumulative probability functions of
the marginal distribution of the predictors. In our model we have to assume the type
of the proposed copulas, and the strength of dependence between the pairs of ran-
dom variables whose joint two-dimensional probability distributions are described
by these copulas. Pearson’s coefficient of correlation r is often used for this purpose.
However, its applicability is limited to the case of the classical multivariate normal
distribution, or—in certain circumstances—to the case of the multivariate elliptic
distributions (for more information see [2]). When dependent random variables can-
not be described by such a model, and it is a usual case when the predicted variable is
the life-time, a non-parametric measures of dependence should be used. In our model
we propose to use Kendall’s coefficient of association τ defined, in its population
version in terms of copulas, as (see [7])

τ(X, Y) = 4
∫ ∫

[0,1]2
C(u, v)dC(u, v) − 1. (2)

Numerical comparisons of the values of Pearson’s r, Kendall’s τ , and Spearman’s
ρ presented in [4] show that the usage of Pearson’s r in the analysis of reliability
data may lead to wrong conclusions, and Kendall’s τ is in this case a much better
measure of dependence.

In order to have a more realistic model for simulation purposes [5] proposed
to use an in-between second level of latent variables HX1, . . . , HXk . Each hidden
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variable HXi is associated with the predictor variable Xi and its fictitious realizations
are measured at the same scale as the predicted random variable T . The dependence
between HXi and Xi is described by the copula CHi(FHi(HXi), Fi(Xi)). Moreover, we
assume that there exists a certain linear relationship between the expected value of
HXi and the expected value of Xi. This assumption is needed if we want to model the
effects of the shifts in the expected values of the predictors on the expected value of
the predicted variable T which is related to the hidden variables by a certain, possibly
nonlinear, function

T = f (HX1, . . . , HXk). (3)

The probability distribution of T , and hence the probability distribution of Zt ,
can be observed only in specially designed experiments. In practice, however, we
can observe only their predicted values T ′ and Z ′

t , respectively. As in production
processes we are mainly interested in the binary classification of produced items for
prediction purposes we may use several, say s, classifiers, K1, . . . , Ks, each of the
form

Z ′
t = K(X1, . . . , Xk) (4)

In practical applications one can choose only one appropriate classifier or an
ensamble of classifiers with a predetermined decision rule (e.g. majority voting).

3 Process Inspection

Statistical methods for process inspection have been successfully used in industrial
practice since the works of Shewhart in 1920s. They usually have a form of control
charts that allow to visualize the results of measurements of random samples taken
from the inspected process. In contemporary production processes, however, all pro-
duced may be inspected automatically, and the observed values of measured quality
characteristics have a form of respective time series.

The main aim of statistical process control (SPC) is to keep the process under
control. From amathematical point of view it means that the probability distributions
of the quality characteristics of interest should be stable in time. In practice it is
required that their expected values and variances should be constant in time. Shifts
in the expected values (in one or both directions) and the increase of variance are
considered as the signs of the process deterioration, and appropriate correction actions
should be taken in order to make the process stable.

From a statistical point of view SPC processes can be viewed as the procedures
for the detection of a change-point of a process. Since the introduction of sequential
statistical methods (late 1940s and early 1950s) many statistical procedures related
to the change-point problem have been proposed, both in classical and Bayesian
setting. A good overview of basic methods can be found in the book [1], available
on the internet. The most useful methods have been implemented in commercial
software packages, and in recently developed R package changepoint available at
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the repository CRAN. Recently, the problem of the change-point detection has also
attracted attention of the Artificial Intelligence community (e.g., see [15]).

Despite the abundance of good methods for the change-point detection practi-
tioners in industry prefer to use old and very simple methods such as, e.g., control
charts. Even if a production process is 100% inspected the results of inspection can
be analyzed and visualized using a well-known control charts. The CUSUM control
chart seems to be the most appropriate chart for this purpose. However, for some
practitioners it looks as too complicated and not easy for interpretation. Therefore,
in this study we consider two simpler approaches used in practice.

In the first approach the process is divided into consecutive segments of the con-
stant length of n elements. In the second approach only the last n produced items are
taken into account, so the inspection process uses a kind of a sliding window of the
width n. The results of such inspection are analyzed on a (usually virtual) control
chart. In the first case it is a classical Shewhart control chart. In the second case it is
a Moving Average (MAV) chart with a Shewhart-like control limits. In both cases an
alarm signal is generated if the observed value of the fraction nonconforming falls
beyond the control limits calculated from the data taken from a process which is in
a stable state.

In the case of the inspection by attributes the control limits of the Shewhart chart
are calculated from a simple formula

CLSh = p̂ ± 3

√

p̂(1 − p̂)

n
, (5)

where p̂ is the fraction of nonconforming items, estimated from a process data. In
the case of the MAV chart the consecutive values displayed on the chart are strongly
correlated. Therefore, for the construction of theMAV control chart with a Shewhart-
type (i.e., three sigma) control limits we have to estimate not only the value of p̂, but
the value of its standard deviation σp̂ as well. If we estimate these values the control
limits of the MAV chart are given by

CLMAV = p̂ ± 3σp̂. (6)

One has to note, that the construction of the Shewhart control chart is easier from a
practical point of view. When we calculate the value of p̂ we do not need to retain the
original data, and we can use this value for the design of control charts for segments
of a different size. In the case of the MAV control chart we have to recalculate
from the original data the value of σp̂ if we want to change the width of a sliding
window.
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4 Process Simulation

The general model described in Sect. 3 does not allow, due to its complexity, to infer
about important characteristics of the inspection process. A large computer simula-
tion program that can be used for the Monte Carlo evaluation of many characteristics
which are important to practitioners has been developed. In the current version the
program implements the model described in Sects. 3 and 4 for only four predictors.
Moreover, this implementation is somewhat restricted as some of its important fea-
tures are typical for the case when reliability characteristics of produced items have
to be predicted in the inspection process.

The simulationprogramconsists of threemodules. Firstmodule generates a stream
of data points, i.e. the values of predictors, the value of the unobservedoutput variable,
and the class associated with this value. The second module builds classification
(prediction) algorithms, and computes the predicted class of the output variable
using the values of predictors as its input. The third module simulates the process of
inspection, i.e. building and operating a control chart.

In the first module of the simulation program the probability distributions of pre-
dictors defined by a user on the first level of the model can be chosen from a set of
five distributions: uniform, normal, exponential, Weibull, and log-normal. Each of
these distributions is represented either as a two-parameter parameter single distrib-
ution or as a mixture of two such distributions. This second option enables a user to
model more complex distributions such as, e.g., bimodal ones. For the second level
of the model a user can choose the probability distributions of the hidden variables
from a set of distributions which are typically used for the description of reliability
data (i.e., defined on the positive part of the real line): exponential, Weibull, and
log-normal. The dependence between the pairs of predictors, and between predictors
and associated hidden variables can be described by the following copulas: indepen-
dent, normal, Clayton, Gumbel, Frank, and Fairlie-Gumbel-Morgenstern (FGM).
The detailed description of these copulas can be found, e.g., in [7]. The strength of
this dependence is defined by the value of Kendall’s coefficient of association τ . The
expected values of the distributions of the hidden variables in this simulation model
depend in a linear way on the expected values of its related predictors. Finally, on
the third level, hidden random variables are transformed to the final random variable
T . The relation between the hidden variables and T is strongly non-linear, and is
described by operators of a “min-max” type.

Several types of classifiers (several linear regression models, two Linear Discrim-
inant Analysis procedures, and one decision tree classifier) have been implemented
in the second module of the simulation program. The classifiers are built using sam-
ples of size nt of training data consisted of the vectors of the values of predictors
(x1, x2, x3, x4), and the actual value of the assigned class. In this paper we con-
sider only three of them which represent three different general approaches to the
classification problem.

The first considered classifier is a simple binary linear regression. We label the
considered classes by 0 and 1, respectively, and consider these labels as real numbers,
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treating them as observations of a real dependent variable in the linear regression
model of the following form:

R = w1 ∗ X1 + w2 ∗ X2 + w3 ∗ X3 + w4 ∗ X4 + w0, (7)

where R is the predicted class of an item described by explanatory variables
X1, X2, X3, X4, andw1, w2, w3, w4, w0 are respective coefficients of regression equa-
tion estimated from a training set of nt elements. The value of R estimated from (7)
is a real number, so an additional requirement is needed for the final classification
(e.g. if R < 0, 5 an item is classified as belonging to the class 0, and to the class 1
otherwise). The only advantage of this naive method is its simplicity. In the prob-
lem of binary classification the logistic regression is definitely a better choice, but
the classical linear regression is implemented in all spreadsheets, such as, e.g., MS
Excel. For this reason we have chosen this classifier as the easiest to implement in
practice.

The next classifier implements the algorithm of the Linear Discriminant Analy-
sis (LDA) introduced by Fisher, and described in many textbooks on multivariate
statistical analysis and data mining (see, e.g. [3]). In this method statistical data are
projected on a certain hyperplane estimated from the training data. New data points
which are closer to the mean value of the projected on this hyperplane training data
representing the class 0 than to the mean value of training data representing the
remaining class 1 are classified to the class 0. Otherwise, they are classified to the
class 1. The equation of the hyperplane is given by the following formula:

L = y1 ∗ X1 + y2 ∗ X2 + y3 ∗ X3 + y4 ∗ X4 + y0, (8)

where L is the value of the transformed data point calculated using the values of the
explanatory variables X1, X2, X3, X4, and y1, y2, y3, y4, y0 are respective coefficients
of the LDA equation estimated from a training set of nt elements. If ZL denote the
decision point, a new item is classified to the class 0 if L ≤ ZL , and to the class 1
otherwise. In our simulation we implemented the classical method of the calculation
of ZL , and this point is just the average of the mean values of the transformed data
points from the training set that belonged to the class 0 and the class 1, respectively.
The calculation of the LDA equation (8) is not so simple. However, it can be done
using basic versions of many statistical packages such as SPSS, STATISTICA, etc.
Therefore,wehave implemented this classifier in order to representmethods available
in basic versions of professional statistical packages of general purpose.

The third considered classifier is based on the implementation of the one of the
most popular datamining classification algorithms, namely the classification decision
tree (CDT) algorithm C4.5 introduced by [10], and described in many textbooks on
data mining, such as, e.g., [11]. In our simulations we used its version (known as
J48) implemented in the WEKA software, available from the University of Waikato,
Hamilton, New Zealand, under the GNU license. The decision tree is constructed
using “IF..THEN..ELSE” rules, deducted from the training data. In this paper for
the description of the CDT classifier we use the notation of the MS Excel function
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IF(lt, t, f ), where lt is a logical condition (e.g.C < 50), t is the actionwhen lt = true,
and f is the action when lt = false. The actions t and f can be defined as the
combinations of other IF functions, or—finally—as the assignments of classes to
the considered items.

The third module of the program is dedicated to the simulation of a production
process. The simulated process is described by twomathematicalmodels. Firstmodel
describes the process in the so called Phase I when it is considered as being under
control. Second model represents a process that has been deteriorated, and is consid-
ered as not being under control. Each simulation run begins with the simulation of a
sample of nd items which are used for the estimation of the parameters of the inspec-
tion procedure (Shewhart control charts or MAV control charts). Separate control
charts are designed for actual and predicted (using different classifiers) data. Next,
n − 1 items (we call them historical data) are simulated using a first model in order
to represent the process before its possible transition to the possible out of control
state. This additional sample is needed if we want to simulate theMAV control chart.
After the historical data have been generated we start to simulate consecutive items
using either the first model (for the analysis of process’ behavior when it is under
control) or the second model (for the analysis of process’ behavior when it is out
of control). The first item generated in this way forms, together with the historical
data, the first sample whose fraction of nonconforming items (actual and predicted
using different classifiers) is compared with the control lines of the respective con-
trol charts. If the value of one (or more) of these fractions falls beyond the control
limit of the respective control chart an alarm signal is generated. Consecutive items
are generated until the moment when the alarm signals have been observed on all
considered control charts. Note, that for the MAV chart decisions are taken after the
generation of each consecutive item. In contrast to the MAV chart, for the Shewhart
chart decisions are taken after the generation of consecutive segments of n items.

In order to evaluate statistical properties of the simulated inspection processes we
have to repeat the simulation process NR times. In the context of 100% inspection
the most important characteristic of the inspection process is its Time to Signal (TS).
By the Time to Signal we understand the number of inspected items between the
moment of process deterioration and the alarm signal. The data obtained from NR

simulation runs let us to analyze the probability distributions of TS, and to compute
the estimated values of important characteristics such as its average value (ATS),
median, standard deviation, and skewness.

The simulation program described above can be run using different settings of
parameters. In the paper by [5] only one particular setting was used.We have decided
to continue thiswork using the same setting of parameters. This allows us not to repeat
some interesting findings that have been already described in [5]. In the model used
in the simulation experiments described in this paper the random predictor X1 is
distributed according to the normal distribution, X2 has the exponential distribution,
X3 is distributed according to the log-normal distribution, and X4 has the Weibull
distribution. The dependence between X1 and X2 has been described by the Clay-
ton copula with τ = 0, 8. The joint distribution of X2 and X3 is described by the
normal copula with τ = −0, 8 (Notice that this is bivariate “normal” distribution,
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but with non-normal marginals!), and the joint distribution of X3 and X4 has been
described by the Frank copula with τ = 0, 8. The hidden variable HX1 is described
by the log-normal distribution, and its joint probability distribution with X1 has been
described by the normal copula with τ = −0, 8. The joint distribution of HX2 and
X2 has been described by the Frank copula with τ = 0, 9, and the marginal distri-
bution of HX2 is assumed to be the exponential. The joint model of HX3 and X3 is
similar, but the copula describing the dependence in this case is the Gumbel cop-
ula. Finally, the hidden variable HD is described by the Weibull distribution, and its
joint probability distribution with D has been described by the Clayton copula with
τ = −0, 8. The random variable T that describes the life time has been defined as
T = min[max(HX1, HX2), min(HX3, HX4)]. The parameters of the aforementioned
distributions have been found experimentally in such a way, that the items belong-
ing to class 1 have the values of T smaller than 5, and to class 0 otherwise. More-
over, the relation between the predictors X1, X2, X3, X4 and their hidden counterparts
HX1, HX2, HX3, HX4 is such that a shift in the expected value of each observed vari-
able, measured in terms of its standard deviation, results with the similar shift of
the expected value of its hidden counterpart, measured in terms of its own standard
deviation.

Theoretically, classifiers can be built using training data for each production run.
However, the collection of training data is usually very costly (it requires, e.g., mak-
ing long-lasting destructive tests), and the same classifier can be used for several
production runs. In our experiment we have decided to use ten sets of classifiers.
Each of these sets consisted of classifiers designed using the same training data set
of nt = 100 elements. Note that in the datamining community this size of the training
data is considered as small, and usually insufficient. However, in production reality
this is often the upper limit for the number of elements which can be used for the
experimental building of the prediction model.

The coefficients of the regression equation (7) are presented for the considered
ten data sets in Table1. Those coefficients that have been indicated by the regression
statistical tool as statistically non-significant have been printed in this Table in italics.
However,we have to remember that in the calculation of the significance of regression
coefficient it is assumed that observed data are distributed according to the normal
probability distribution. In our case it is obviously not true, so in our classification
experiment we have used full regression equations.

Just a first look at Table1 reveals that the estimated regression equation (7) may
be completely different, depending on the chosen training data set. However, some
general pattern is visible: only explanatory variableX2 (represented by the coefficient
w2) is significant for all regression lines. On the other hand, the explanatory variable
X3 (represented by the coefficient w3) seems to be of no practical importance in the
classification process.

A similar comparison of the decision model parameters in the LDA case is pre-
sented in Table2. In this case we cannot say about statistical significance of the
parameters of the decision rule. However, the general impression is the same as in
the case of the regression algorithm. The particular models look completely different
depending on the training data set. However, in all the cases the explanatory variable
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Table 1 Regression model—different sets of training data

Dataset w1 w2 w3 w4 w5

Set 1 −0.133 −0.034 −0.0001 −0.026 3.036

Set 2 0.010 −0.039 0.0001 −0.033 2.321

Set 3 0.144 −0.033 <0.0001 0.0002 1.359

Set 4 −0.194 −0.034 −0.0005 −0.019 3.396

Set 5 −0.346 −0.021 −0.0006 0.002 3.763

Set 6 0.073 −0.047 <0.0001 −0.023 2.058

Set 7 −0.142 −0.040 −0.0004 −0.0008 3.019

Set 8 0.109 −0.038 <0.0001 −0.001 1.611

Set 9 −0.346 −0.039 0.0002 −0.034 4.054

Set 10 −0.002 −0.018 −0.0005 0.042 1.745

Table 2 Linear discrimination analysis—different sets of training data

Dataset y1 y2 y3 y4 y0 Midpoint

Set 1 0.687 0.174 0.001 0.133 −6.338 0.628

Set 2 −0.045 0.178 −0.001 0.151 −2.710 −0.014

Set 3 −0.646 0.148 <0.0005 −0.001 1.663 0.464

Set 4 0.880 0.152 0.002 0.087 −7.499 0.585

Set 5 1.500 0.091 0.003 −0.008 −9.121 0.254

Set 6 −0.342 0.219 <0.0005 0.107 −1.399 0.706

Set 7 0.703 0.196 0.002 0.037 −6.044 0.784

Set 8 −0.501 0.173 <0.0005 0.006 0.636 0.629

Set 9 1.458 0.127 0.001 0.143 −10.048 0.344

Set 10 0.008 0.087 0.002 −0.206 0.272 0.771

X3 seems to have no effect (very low values of the coefficient describing this variable)
on the classification.

Finally, let us considered different decision rules estimated for theCDT algorithm.
Because of a completely different structure of decision rules presented in Table3 we
cannot compare directly these rules with the rules described by Eqs. (7)–(8). They
also look completely different for different training data sets, but in nearly all cases
(except for the Set 9) decision are predominantly (and in two cases exclusively) based
on the value of the explanatory variable X3. One can notice that the weights assigned
to the explanatory variables in the CDT algorithm are nearly exactly opposite to
the weights assigned in the classification models (7)–(8). In order to explain this
shocking difference one should take into account that both the linear regression
and the LDA procedures are based on the assumption of the linear dependence and
normality. Hryniewicz [5] shows the example of training data from which it is clear
that in the considered model the dependence between the random variable T and the
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Table 3 Decision trees—different sets of training data

Dataset Decision rule

Set 1 IF(X3 <= 70,0181; IF(X3 <= 56,1124; 1; IF(X3 <= 63,2962; 2; 1)); IF(X4 <=
16,4381; 2; IF(X1 <= 4,3509; 2; 1)))

Set 2 IF(X3 <= 56,4865; 1; IF(X4 <= 17,3301; 2; IF(X1 <= 4,0217; 2; 1)))
Set 3 IF(X3 <= 73,6148; IF(X3 <= 57,1355; 1; IF(X1 <= 5,0876; 2; IF(X4 <=

4,497; 2; 1))); IF(X4 <= 17,3499; 2; 1))
Set 4 IF(X3 <= 70,2191; 1; IF(X4 <= 15,9098; 2; 1))
Set 5 IF(X3 <= 73,1584; 1; (IF(X4 <= 17,0516; (IF(X3 <= 87,8921; (IF(X4 <=

5,0679; 2; 1)); 2)); 1)))
Set 6 IF(X3 <= 60,3912; 1; IF(X4 <= 16,3504; 2; 1))
Set 7 IF(X3 <= 71,8184; 1; 2)
Set 8 IF(X3 <= 71,4456; 1; (IF(X3 <= 983,0929; 2; (IF(X4 <= 18,8213; 2; 1)))))
Set 9 IF(X2 <= 14,7339; (IF(X4 <= 16,7482; (IF(X4 <= 4,527; 1; 2)); 1)); 1)
Set 10 IF(X3 <= 60,5044; 1; 2)

explanatory variables X3 and X4 is definitely not linear, but also non-monotonic. This
dependence cannot be captured by the measures of linear correlation in the linear
models (7)–(8). Moreover, this example shows that the explanatory potential of these
two variables is seemingly much greater than the potential of the variables X1 and
X2. We will discuss this problem in the next section of this paper.

In the experiment we used a different coding of the observed classes ((2,1) instead
of (0,1)), and this feature is reflected in the values of coefficients presented Tables1
and 2, and the description of rules presented in Table3. However, this change does
not influence the properties of the considered classifiers.

In our simulation experiment we have simulated NR runs of the inspected process.
Each of the ten sets of classifiers was used a random number of times NR,j, j =
1, . . . , 10 having the same expectation NR/10. The joint probability distribution of
NR,1, . . . , NR,10 was multinomial with parameter NR, and with all probabilities equal
to 1/10.

5 Simulation Experiments—Selected Results

5.1 General Remarks

Theproblemof process inspectionusingpredictedbinary attribute data canbedecom-
posed into the following subproblems of great practical importance:

• Accuracy of classifiers in the presence of strongly non-linear dependence and
non-normal measurement data;

• Influence of imperfect classification on observed process quality levels;
• Effectiveness of different inspection policies based on the predicted attributes.
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Each of these problems should be subdivided into parts. First, when the process
data are generated by the same model as the data used for the design of classifiers.
Second, when these two types of data are generated by different mechanisms. The
second of these problems is seldom considered by the data mining community where
it is usually assumed that the model discovered from training data is the same as the
model that describes future data. In the area of statistical process control (SPC) this
assumption may not hold, as we may face processes (or parts of them) which, by
definition, are described by models different from those discovered from the training
data.

The problems mentioned above have been analyzed using the results of many
simulation experiments. In the following subsections we will present only a part
of these results which seems to us the most interesting. It is important to notice,
however, that all of the presented here results have been obtained for one model
of the process, described in Sect. 4. Therefore their interpretation should be rather
of qualitative character. They should be considered rather as the signalization of
important problems than already established solutions.

5.2 Accuracy of Classifiers

There exist many methods that can be used for the evaluation of the quality of
classifiers. Some of them are simple and natural, some others (e.g. the methods
based on the analysis of the ROC characteristic) are much more complicated, and
more difficult to interpret. In this research we have decided to use five simple to
calculate qualitymeasures of classifiers: Accuracy, Sensitivity, Precision, Specificity,
and the F1 index. Definitions of these measures can be found in every book on data
mining, and in the Internet (Wikipedia). The results presented below have been
obtained from 1000 simulation runs. In each simulation run a sample of 5000 items
was generated, and evaluated by one set of classifiers taken randomly from 10 sets
described in Sect. 4. Therefore, the results presented below represent averages taken
on the population of ten different sets of classifiers.

In Tables4, 5, 6, 7 and 8we distinguish nine cases. The case labeled Sh0 represents
the situation when both the training set and the evaluation set are generated from
the same model. In the SPC context it means that the inspected process is under
control. The cases labeled ShXim-05s represent the situation when the evaluation set
was generated by the the model for which the expected value of the predictor Xi has
been shifted by −0, 5σ , where σ is the standard deviation of Xi. Similarly, the cases
labeled ShXip-05s represent the situation when the evaluation set was generated by
the the model for which the expected value of the predictor Xi has been shifted by
+0, 5σ . In these tables RegBin stands for the binary regression classifier, LDA stands
for the LDA classifier, and C4.5 stands for Quinlan’s decision tree C4.5 classifier.

In the 45 comparisons (5 indices times 9 types of processes) the decision tree C4.5
classifier was the best 27 times. Moreover, for 9 types of processes it has dominated
the remaining classifiers 7 times, and in neither of these types it was dominated by
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Table 4 Average accuracy of implemented classifiers

Process RegBin LDA C4.5

Sh0 0.861 0.858 0.910

ShX1m-05s 0.860 0.863 0.910

ShX1p-05s 0.858 0.846 0.910

ShX2m-05s 0.839 0.861 0.911

ShX2p-05s 0.869 0.842 0.909

ShX3m-05s 0.828 0.853 0.667

ShX3p-05s 0.866 0.844 0.861

ShX4m-05s 0.845 0.848 0.892

ShX4p-05s 0.866 0.846 0.834

Table 5 Average sensitivity of implemented classifiers

Process RegBin LDA C4.5

Sh0 0.548 0.718 0.830

ShX1m-05s 0.520 0.686 0.821

ShX1p-05s 0.564 0.736 0.838

ShX2m-05s 0.407 0.595 0.830

ShX2p-05s 0.626 0.786 0.832

ShX3m-05s 0.468 0.647 0.943

ShX3p-05s 0.594 0.764 0.519

ShX4m-05s 0.500 0.653 0.712

ShX4p-05s 0.586 0.765 0.838

Table 6 Average precision of implemented classifiers

Process RegBin LDA C4.5

Sh0 0.859 0.733 0.829

ShX1m-05s 0.877 0.760 0.836

ShX1p-05s 0.844 0.711 0.824

ShX2m-05s 0.912 0.818 0.829

ShX2p-05s 0.800 0.667 0.828

ShX3m-05s 0.934 0.846 0.495

ShX3p-05s 0.795 0.661 0.857

ShX4m-05s 0.878 0.764 0.882

ShX4p-05s 0.832 0.695 0.655
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Table 7 Average specificity of implemented classifiers

Process RegBin LDA C4.5

Sh0 0.967 0.905 0.937

ShX1m-05s 0.975 0.923 0.939

ShX1p-05s 0.957 0.883 0.935

ShX2m-05s 0.985 0.950 0.938

ShX2p-05s 0.942 0.861 0.935

ShX3m-05s 0.984 0.943 0.548

ShX3p-05s 0.949 0.869 0.965

ShX4m-05s 0.633 0.698 0.781

ShX4p-05s 0.957 0.871 0.832

Table 8 Average F1-index of implemented classifiers

Process RegBin LDA C4.5

Sh0 0.664 0.719 0.823

ShX1m-05s 0.650 0.717 0.820

ShX1p-05s 0.664 0.710 0.825

ShX2m-05s 0.558 0.680 0.824

ShX2p-05s 0.715 0.717 0.822

ShX3m-05s 0.619 0.727 0.640

ShX3p-05s 0.673 0.700 0.624

ShX4m-05s 0.633 0.698 0.781

ShX4p-05s 0.678 0.714 0.720

any of its competitors. Therefore, for the assumed model of dependence it obviously
outperforms its competitors. This result is not unexpected, as the assumed model of
the process was strongly non-linear and non-normal. The performance of a simple
binary regression classifier is also quite good, and this confirms the opinion presented
in Sect. 4.2 of [3] that in the case of only two distinguished classes this classifier
performs well. This may suggest the usage of the ensemble of three classifiers with
the majority of voting decision rule. What is somewhat unexpected is poor efficiency
of the LDA classifier whose behavior is usually similar (or even better—especially in
the case of more than 2 considered classes) to that of based on linear regression. The
possible explanation of this phenomenon can be related to non-normality of input
data, as the calculation of the decision criterion in LDA strongly depends on this
assumption (see [3]).
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5.3 Process Quality Levels for Predicted Observations

The accuracy of the considered classifiers is, as it is seen from the results presented
in Sect. 5.2, far from being perfect. Therefore, the observed process quality levels,
expressed in terms of the fraction of nonconforming items, may be quite different
from the actual one. In Table9 we show the estimates of the fraction nonconforming
p estimated from samples of 1000 elements. The entries of Table9 represent the
averages obtained over the population of the considered ten sets of classifiers in
1000 simulation runs. The column labeled Actual represents the values obtained if
the actual values of the quality characteristic were directly observed.

From Table9 one can immediately see that in many cases the observed levels of
process’ quality are different from the actual ones. This is due to erroneous results
of classification where we can distinguish two cases: erroneous classification of
nonconforming items as conforming (false positives), and erroneous classification
of conforming items as nonconforming (false negatives). This problemwas discussed
in details in [5]. When the fraction of false positives is larger than the fraction of
false negatives is larger, then the observed process’ quality level will be smaller than
the actual one, and vice versa. Classification errors of both types should be avoided,
but their consequences could be different. When the observed process’ quality level
is smaller than the actual one, and it is always the case when the binary regression
classifier is used, nonconforming items (e.g., potentially unreliable) pass quality
inspection. When consequences of non-detecting nonconforming items are serious
this situation should be avoided. On the other hand, if the observed process’ quality
level is larger than the actual one we face losses incurred by the false rejection of
good items.

The comparison of observed and actual quality levels yields only partial infor-
mation about the efficiency of inspection. Consider, for example the case when the
percentages of false positives and false negatives are large but equal. In this case the
observed and the actual quality levels will be the same, but economic consequences

Table 9 Observed values of the fraction nonconforming p

Process Actual RegBin LDA C4.5

Sh0 0.252 0.163 0.252 0.257

ShX1m-05s 0.253 0.151 0.232 0.253

ShX1p-05s 0.252 0.178 0.275 0.260

ShX2m-05s 0.252 0.114 0.188 0.256

ShX2p-05s 0.253 0.208 0.303 0.259

ShX3m-05s 0.303 0.153 0.236 0.601

ShX3p-05s 0.234 0.178 0.280 0.148

ShX4m-05s 0.270 0.155 0.170 0.229

ShX4p-05s 0.244 0.176 0.284 0.331
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for the process’ owner may be disastrous. Therefore, we should look for other fea-
tures which could help us in distinguishing between “good” and “bad” classifiers.
One has to note, however, than the terms “good” and “bad” are strongly context-
dependent. Let us consider how the performance of classifiers influences the ability
of the inspection process to detect process’ disruptions. From Table9 we see that
shifts in the expected values of two predictors, X1 and X2, practically do not change
the actual fraction nonconforming. However, the observed fractions of nonconform-
ing items are changing quite significantly when RegBin and LDA classifiers are
used for prediction purposes. The consequences of this situation can be detrimen-
tal, either due to the increasing rate of false alarms (when the observed fraction of
nonconforming items increases) or the increasing fraction of accepted nonconform-
ing items (when the observed fraction of nonconforming items decreases). Another
dangerous situation we observe in the case of the shift in the expected value of the
explanatory variable X4. For all considered classifiers the observed fractions of non-
conforming items are changing but in the exactly opposite direction that the change
of the actual value of this quality characteristic.

A more complex situation is noticed when the shift in the expected value of the
predictor X3 is observed, as it can be seen from Fig. 1.

When this expected value decreases the actual fraction of nonconforming items
significantly increases. This phenomenon cannot be detected when RegBin and LDA
classifiers are used, but is even amplified when we use the C4.5 classifier for predic-
tion purposes. Therefore, when this classifier is used, the deterioration of the process
will be quickly detected. However, as “free lunches” do not exist, we have to pay
in this case for the increased fraction of false positives when the actual fraction of
nonconforming items is decreasing. A more detailed explanation of this problem can
be found in [5].

While discussing the consequences of the usage of the C4.5 classifier one can
think if the analysis of popular measures of the quality of classification may be

Fig. 1 Observed fraction nonconforming in the presence of shift in X3 (multiples of σ )
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Fig. 2 Values of F1-index in the presence of shift in X3 (multiples of σ )

useful. On Fig. 2 we see how the value of the popular F1-index changes with the
change of the expected value of X3, and thus with the change of the actual fraction
of nonconforming items. We see that for processes being in “in-control” or “nearly
in-control” state the decision tree C4.5 classifier visibly outperforms its competitors.
However, in the presence of large (both positive and negative) shifts in the expected
value of X3 the situation is quite different. When we try to interpret the consequences
of this “bad” performancewe can find that in the case of negative shifts this erroneous
behavior is even useful, and in the case of positive shifts the negative consequences
are quite improbable (processes usually do not improve spontaneously their quality).
Therefore, the analysis of the measures of the quality of classification should be
accompanied by the analysis of the consequences of incorrect classification.

5.4 Properties of Inspection Policies

The main goal of the research described in this paper is to develop an efficient
inspection procedure for a production process when the quality of produced items
is observed indirectly. When classical SPC tools, such as control charts, are used
there are two main questions to be answered. First, how to design the chosen control
chart. Second, what is the ability of this chart to detect process’ deterioration. In the
problem considered in this paper we have to add a third question about the influence
of the quality of used classifiers on the effectiveness of process’ inspection.

In the classical SPC the effectiveness of a control chart is measured by its Average
Run Length (ARL) defined as the average number of samples taken between the
occurrence of deterioration and the alarm or as the average number of samples taken
between consecutive alarms when the process is under control. When we use SPC
procedures for the analysis of the results of 100% inspection we have to use the
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Average Time to Signal (ATS) characteristic. ATS in this case is defined as the
average number of items produced between the occurrence of deterioration and the
alarm or as the average number of items produced between consecutive alarms when
the process is under control.

When quality of produced items is evaluated by attributes (either conforming or
nonconforming) Shewhart p-charts with one-sided (upper) control limits are usually
used. Charts with two-sided control limits are used only when we want to detect
improvements of the process (e.g.when the input rawmaterial is changed to a newand
supposedly better one). In our experiments we have considered both types of control
charts. However, for reasons explained in the previous section (actual deterioration
of a process can be signaled as its “improvement”—see the case of the X4 predictor)
we have decided to suggest the usage of two-sided control charts.

Let us consider the application of the Shewhart control chart for the process
inspection. First, let us consider the case when the inspected process is under control.
In Table10 we present the values of ATS (usually denoted ATS0) for different sizes
of samples (segments of the process). The parameters of the control chart have been
calculated using the estimated value of the fraction of nonconforming items estimated
from the sample of 1000 elements taken from a stable process.In the column labeled
“Actual” we present the values of ATS of the chart for the actual, but not observed,
values of the quality characteristic.

The similar values for the MAV control chart are presented in Table11.
The results presented inTables10 and11 are strikingly different, but this difference

is not difficult to explain. In the case of the Shewhart control chart decisions are taken
after observing a sample of n elements. Thus, the value of, e.g., ATS0 = 30000 when
the sample size is, e.g., equal to 100 means that on average 300 samples are evaluated
before the alarm (This is the value of ARL!). In the case of the MAV control chart
the decision is taken after each produced item. Thus, the value of ATS is the same as
the value of ARL. It means that the “waiting time” in terms of the number of taken
decisions is in the case of theMAV chart much larger than in the case of the Shewhart
chart, but the relationship between the respective values of the average time to signal
(ATS) is just opposite.

Note that in the case of a stable inspected process each alarm is a false one.
Therefore, we should prefer larger sample sizes n in order to have these alarms not
so frequently. This can be achieved by the widening of distance between control

Table 10 Average time to signal ATS0—Shewhart chart

Sample size Actual RegBin LDA C4.5

100 31119 34055 32883 31526

200 48194 50710 50338 49556

300 65289 73189 71630 64340

400 75432 77902 78753 70359

500 93990 92629 92638 86232
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Table 11 Average time to signal ATS0—MAV chart

Sample size Actual RegBin LDA C4.5

100 4158 4700 4091 4201

200 6593 7317 6314 6742

300 8715 9596 8431 8486

400 10828 11004 10650 10037

500 12221 11513 12521 11761

Table 12 Average time to signal ATS (shifted process)—Shewhart chart

Sample size Actual RegBin LDA C4.5

100 3359 39669 27618 2935

200 3204 50710 37381 4592

300 4008 63318 40791 5699

400 3140 60572 43864 6781

500 2835 68963 45039 11445

Table 13 Average time to signal ATS (shifted process)—MAV chart

Sample size Actual RegBin LDA C4.5

100 638 5247 3837 501

200 815 6349 4879 562

300 782 8746 5382 729

400 905 9864 6430 657

500 744 10234 6284 2030

limits on a chart. The effect of such a change may be, unfortunately, detrimental if
we want to detect the deterioration of the inspected process as quickly as possible.
In Tables12 and 13 we present the values of ATS when the expected value of the
explanatory variable (predictor) X3 is shifted downwards by 0, 5σ . From the second
column of the Table9 we see that this shift results in the increase of the fraction
nonconforming by 20%. This a really severe deterioration of the process and should
be detectes as quickly as possible.

From the analysis of simulation results presented in Tables10, 11, 12 and 13 we
see that the inspection is effective only in the case when the decision tree classifier
C4.5 is used for the prediction of quality of inspected items. When the LDA clas-
sifier is used the inspection process allows to detect deterioration but with visibly
smaller efficiency. The binary regression RegBin classifier is in the considered case
completely ineffective. From the analysis of Tables4, 5, 6, 7 and 8 we see that in
the considered case the decision tree C4.5 classifier in comparison to its competi-
tors is characterized by a larger value of Sensitivity and smaller values of Precision
and Specificity. The same is when we compare the LDA and the RegBin classi-
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fiers. This behavior of classifiers can be explained by noting that high sensitivity and
low precision and specificity describe the situation when the observed percentage of
nonconforming items is larger than the actual one. Therefore, in the case of process
deterioration the probability of alarm increases, and the value of ATS decreases.
One should note, however, that in the case of a stable (under control) process the
observed value of the fraction of nonconforming items is also larger than the actual
one. This phenomenon results with a somewhat misleading information about the
actual process level, but does not inflict the probability of false alarm (and the ATS0
value), as the control limits are designed on the basis on observed but not actual
values of the fraction of nonconforming items.

All the results described in this paper represent averages calculated with respect
to different sets of classifiers. From more detailed results, presented in [5] for the
case of the inspection based on the Shewhart p-chart, one can find that depending on
the instance of the training set alarms may be triggered when the actual impact of
shifts in explanatory variables on actual quality is negligible, and—vice versa—may
not be triggered when it is needed. This behavior strongly depends upon the type of a
classifier, and its parameters estimated from a training data. Moreover, In this paper
we assumed that alarms are triggered by crossing either the lower or the upper control
limit. When only the upper control limit of the control chart is active, the respective
values of the ATS are much larger, especially in the case of no-shift or when the shift
in the explanatory variable has a small effect on the quality variable of interest. The
situation is even worse when the deterioration of the process is accompanied with
lowering of the observed fraction of nonconforming items, as it is the case in the
upwards shift of the explanatory variable X4. In such a case such deterioration may
be never noticed using considered statistical methods.

6 Conclusions

The results presented in this paper add important information to that already given in
[5]. However, this information is still of a very preliminary character, as the results
from simulation experiments represent only one particular model of a process. They
confirm the findings presented in [5] that in the case of non-normal distributions
of quality characteristics, non-linear dependencies between observable (explana-
tory), and not directly observable (only predicted!) values quality characteristics of
processes the inspection procedures based on control charts may be not effective.
The most popular classifiers that are used for prediction purposes may not perform
well, and their performance is difficult to be predicted in advance. Further research
is needed with the aim to find ensambles of classifiers that can be more effective than
single classifiers in finding process’ deterioration. Such ensambles have to be robust
to the change of the model of data used in their design.
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Székely Regularization for Uplift Modeling

Szymon Jaroszewicz and Łukasz Zaniewicz

Abstract Uplift modeling is a subfield of machine learning concerned with pre-
dicting the causal effect of an action at the level of individuals. This is achieved by
using two training sets: treatment, containing objects which have been subjected to
an action and control, containing objects onwhich the action has not been performed.
An uplift model then predicts the difference between conditional success probabil-
ities in both groups. Uplift modeling is best applied to training sets obtained from
randomized controlled trials, but such experiments are not always possible, in which
case treatment assignment is often biased. In this paper we present a modification
of Uplift Support Vector Machines which makes them less sensitive to such a bias.
This is achieved by including in the model formulation an additional term which
penalizes models which score treatment and control groups differently. We call the
technique Székely regularization since it is based on the energy distance proposed
by Székely and Rizzo. Optimization algorithm based on stochastic gradient descent
techniques has also been developed. We demonstrate experimentally that the pro-
posed regularization term does indeed produce uplift models which are less sensitive
to biased treatment assignment.

1 Introduction

The aim of conventional classification methods is to predict the class membership
probabilities of new objects’ based on a given training dataset. In practice, however,
usually a more important question is how this probability changes as a result of some
action.Modeling this particular change (or difference) is the scope of uplift modeling.
In contrast to traditional response modeling, uplift approach uses two training sets:
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treatment dataset with data on objects on which a particular action was taken, and
control with data on untreated cases.

Probably the most intuitive example of utility of uplift modeling is a direct mar-
keting campaign for a certain product. It is easy to see that we can divide customers
into four groups:

1. Customers who purchased the product because they were targeted and would not
have purchased otherwise.

2. Customers who would have purchased the product regardless of whether they
were targeted or not.

3. Customers who would not have purchased the product regardless of whether they
were targeted or not.

4. Customers who were going to purchase the product, but were annoyed by the
action and, as a result, changed their mind.

In the first group the action is clearly beneficial, and in the fourth clearly detrimental.
In the second and third groups the action has no real effect and those two groups can in
fact be aggregated into a single neutral group. Similar problems arise in personalized
medicine where a treatment may bring recovery from a disease, but the patient may
also be exposed to dangerous side effects.

In contrast, traditional classification models are only able to distinguish two
groups: those who respond (after, not necessarily because of the action) and those
who do not. In many real world situations, this distinction does not correspond to the
problem actually being solved.

1.1 Biased Treatment Assignment Problem

A very important aspect of uplift modeling is how the cases are assigned to treat-
ment and control groups. The best scenario is a randomized controlled experiment,
where the assignment is random and does not depend on the features of the cases.
Unfortunately, such an experiment is not always possible (e.g. for ethical or financial
reasons) or only historical data may be available where, for example, the treatment
was applied to patients which a doctor considered most suitable.

If treatment assignment was not random and biased then the effect of the action
cannot, usually, be estimated directly. Consider, for example, a medical treatment
with potentially serious side effects. The doctor might then decide not to apply it to
patients in severe condition who will thus be placed in the control group. However,
such cases are also more likely not to recover from the disease making the control
group outcomes look worse and the treatment more effective than it is in reality.

In this paper we present Uplift Support Vector Machines originally proposed
in [22] with an additional penalty term, whichwe call Székely regularizer. As a result,
we obtain uplift models which are additionally forced to make similar predictions
on the treatment and control groups, thus helping to reduce the effect of treatment
assignment bias.
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The additional regularizer is based on so called energy distance between proba-
bility distributions proposed by Székely and Rizzo [6, 18, 19]. The distance has the
property that it is zero if and only if the distributions are identical, it can thus be used
to enforce similar distributions of model scores in the treatment and control groups.

2 Related Work

Uplift modeling has received relatively little attention in the literature. The first paper
mentioning it explicitly was [10] where decision trees designed specifically for that
problem were discussed. More details on the method were later presented in [11].

A trivial approach to uplift modeling uses two probabilistic classifiers, one built
on the treatment dataset, the other on control, whose predicted probabilities are then
subtracted. The approach may however suffer from a serious drawback: both models
will focus on predicting class probabilities in both groups and ignore the (usually
much weaker) differences between them. A good example can be found in [11].
Therefore, most research in uplift modeling has been concerned with approaches
which model the conditional difference in success probabilities directly.

Many such approaches are based on adaptations of decision trees. For example,
in [11] uplift trees have been proposed which are based on a statistical test of success
rate differences after the split and in [15, 16] trees based on information theoretical
divergences between treatment and control class probabilities. Ensembles of deci-
sion trees have been described in [2]; a more thorough analysis of various types of
ensembles in the uplift setting can be found in [17].

Regression based techniques can be found for example in [4], where a class
variable transformation is presented which allows for converting uplift modeling
problems into classification problems. Similar techniques have been discussed in the
statistical literature [12, 21].

In [22] Uplift Support Vector Machines have been proposed which allow for
explicit identification of cases for which the action is positive, neutral and negative.
Themodel is described in the next section.Another type of uplift SVMswas proposed
in [8] and is based on direct maximization of the area under the uplift curve.

Good overviews of uplift modeling can be found in [11] and in [16]. Procedures
for correcting treatment assignment bias will be discussed in Sect. 5.3.

2.1 Uplift Support Vector Machines

Let us first introduce some notation. Vectors will be denotedwith boldface, lowercase
letters, x, w. A dataset is a collection of records (xi , yi ) where xi is the i th feature
vector and yi ∈ {−1, 1} the class value for the i th record. The outcome 1 is considered
the successful or desired outcome. The superscript T will be used to denote terms
related to the treatment group and the superscript C terms related to the control. For
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example, the treatment training dataset is DT = {(xT
i , yT

i ) : i = 1, . . . , nT } and the
control training set is DC = {(xC

i , yC
i ) : i = 1, . . . , nC }.

We now discuss in more details the Uplift Support Vector Machines presented
in [22] which we will use as the starting point for further developments. The machine
is based on two separating hyperplanes

H1 : 〈w, x〉 − b1 = 0, H2 : 〈w, x〉 − b2 = 0.

The model predictions are made according to the following formula:

M(x) =

⎧

⎪⎨

⎪⎩

+1 if 〈w, x〉 > b1 and 〈w, x〉 > b2,

0 if 〈w, x〉 ≤ b1 and 〈w, x〉 > b2,

−1 if 〈w, x〉 ≤ b1 and 〈w, x〉 ≤ b2,

(1)

that is, the model classifies the effect of the action on a point x as positive (+1),
negative (−1), or neutral (0). A graphical interpreation of themodel is shown in Fig. 1
(taken from [22]). The hyperplane H1 separates positive and neutral predictions and
the hyperplane H2 separates neutral and negative predictions.

H1

H2
T+

ξi,1C+

ξi,2

T+C−

T+

ξi,1ξi2

T−
ξi,2

ξi,1

C+

+1

0

− 1

Fig. 1 The Uplift SVM optimization problem. Example points belonging to the positive class in
the treatment and control groups are marked respectively with T+ and C+. Analogous notation is
used for points in the negative class. The figure shows penalties incurred by points with respect to
the two hyperplanes of the USVM. Positive sides of hyperplanes are indicated by small arrows at
the right ends of lines in the image. Red solid arrows denote the penalties incurred by points which
lie on the wrong side of a single hyperplane, blue dashed arrows denote additional penalties for
being misclassified also by the second hyperplane
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Let us now formulate the optimization task which allows for finding the model’s
parameters w, b1, b2. We will use DT+ = {(xi , yi ) ∈ DT : yi = +1} to denote data
points belonging to the positive class in the treatment group and DT− = {(xi , yi ) ∈
DT : yi = −1} to denote points in that group belonging to the negative class.
Analogous notation is used for points in the control group.1

The version presented here is slightly different than that given in [22]: the soft
margin penalties are averaged separately over the treatment and control groups. As
a result both groups have the same impact on the optimized risk. The optimization
problem is to find weights w maximizing the function R(w) defined as

R(w) = 1

2
〈w, w〉 + C1

nT

∑

DT+

ξi,1 + C2

nT

∑

DT−

ξi,1 + C2

nT

∑

DT+

ξi,2 + C1

nT

∑

DT−

ξi,2

+ C1

nC

∑

DC−

ξi,1 + C2

nC

∑

DC+

ξi,1 + C2

nC

∑

DC−

ξi,2 + C1

nC

∑

DC+

ξi,2, (2)

subject to constraints

〈w, xi 〉 − b1 ≥ +1 − ξi,1, for all (xi , yi ) ∈ DT+ ∪ DC−,

〈w, xi 〉 − b1 ≤ −1 + ξi,1, for all (xi , yi ) ∈ DT− ∪ DC+,

〈w, xi 〉 − b2 ≥ +1 − ξi,2, for all (xi , yi ) ∈ DT+ ∪ DC−,

〈w, xi 〉 − b2 ≤ −1 + ξi,2, for all (xi , yi ) ∈ DT− ∪ DC+,

ξi, j ≥ 0, for all i = 1, . . . , n, j ∈ {1, 2}.

Note that the model has two penalty coefficients, C1 and C2. The properties of
the model are given in detail in [22], here we only review the main results without
proofs, which easily carry over to the modified formulation given in this paper. First,
the model is valid iff b1 ≥ b2, this is the case when C2 ≥ C1 which puts a constraint
on the values of C1 and C2. The role of the coefficient C1 is the same as in classical
SVMs. From Fig. 1 it is clear that the coefficientC2 determines the additional penalty
for points which are on the wrong side of both hyperplanes (e.g. a treatment point
with negative outcome which is classified as positive). It turns out that the ratio
C2/C1 determines the proportion of neutral predictions. For C1 = C2 no points are
classified as neutral and for a sufficiently large value of C2/C1 almost all points are.

In the following sections we will add an additional penalty term to (2) which will
force similar model behavior in the treatment and control groups.

1The values of the class variable should not be confused with model predictions defined in (1). For
example, a model prediction of +1 means that we expect the class variable to take the value of +1
if the action is performed (yT = +1) and to take the value of −1 if the action is not performed
(yC = −1).
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3 Székely Regularized Support Vector Machines

One way to view an uplift model is as a function which maps feature vectors into the
set {−1, 0,+1}. The value is interpreted as a decision on whether the action applied
to a given case will be beneficial, neutral, or detrimental. Another approach is for the
model to return a score: a real number being an increasing function of the predicted
probability that the action will be beneficial. In this paper we are going to define our
Uplift Support Vector Machines using the discrete prediction model but for testing
and regularization purposes we will use the linear score 〈w, x〉.

3.1 Distribution of Scores in Controlled Randomized
Experiments

Let us now state an important property of score based uplift models used in controlled
randomized experiments. Let Ms be an uplift model returning a score and Ms(x) the
score returned by the model for a specific instance x. When the feature vector x is
picked at random from a population distribution, then Ms(x) is a random variable.
Suppose xT is picked at random from the treatment population and xC from the
control population. In a randomized controlled trial xT and xC follow the same
distributions and therefore Ms(xT ) and Ms(xC ) are random variables following the
same distributions. If the treatment assignment is not random, the distributions of
xT and xC differ and so may those of Ms(xT ) and Ms(xC ).

In this paper we will use this property to obtain models which are less sensitive
to treatment assignment bias. This will be achieved by adding a regularization term
penalizing models which yield different score distributions in the treatment and
control training sets.

3.2 The Energy Distance

In this paper we make use the concept of energy distance (also called E-statistic)
e(α) proposed in 2005 by Székely and Rizzo [6, 18–20]. Initially this concept was
introduced as a measure of distance between clusters, but it is in fact a general a
statistical distance between two or more probability distributions. The name comes
from the fact that it was first derived from physics; later Székely applied this concept
to statistics.

Let A = {a1, a2, . . . an1}, B = {b1, b2, . . . bn2} be two nonempty sets of points
in Rd . Formally, e(α)(A, B) is defined as
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e(α)(A, B) = n1n2

n1 + n2

[
2

n1n2

n1∑

i=1

n2∑

j=1

‖ai − b j‖α

− 1

n2
1

n1∑

i=1

n1∑

j=1

‖ai − a j‖α − 1

n2
2

n2∑

i=1

n2∑

j=1

‖bi − b j‖α

]

, (3)

where ‖ · ‖ is the Euclidean norm and α is parameter that influences the behavior of
the distance. If α = 2 then the distance is equal to zero iff the means of A and B
are equal. The case α ∈ (0, 2) is more interesting, since the distance is then equal
to zero iff the sets A and B are equal. Moreover, if A and B are random samples
and α ∈ (0, 2), then, as the size of A and B grows to infinity, the distance between
them tends to zero iff A and B are drawn from the same distribution (for α = 2
the distributions from which they are drawn only need to have equal means). This
property is important for the task the distance will be used for in this paper. Notice
also that for d = 1 the Euclidean norms reduce to absolute values.

3.3 Model Formulation

We modify the risk function of Uplift Support Vector Machines by adding an extra
term responsible for penalizing the difference in score distributions in the treatment
and control groups. We call this term the Székely regularization term. The risk func-
tion of the regularized USVMs is

R(w) = 1

2
〈w, w〉 + C1

nT

∑

DT+

ξi,1 + C2

nT

∑

DT−

ξi,1 + C2

nT

∑

DT+

ξi,2 + C1

nT

∑

DT−

ξi,2

+ C1

nC

∑

DC−

ξi,1 + C2

nC

∑

DC+

ξi,1 + C2

nC

∑

DC−

ξi,2 + C1

nC

∑

DC+

ξi,2

+ C3S(DT , DC , w). (4)

The risk is optimized subject to the same constraints as the risk given in (2). Above,
S(DT , DC , w) is the Székely regularizer given by

S(DT , DC , w) = 2

nT nC

nT
∑

i=1

nC
∑

j=1

|〈w, xT
i 〉 − 〈w, xC

j 〉|α

− 1

(nT )2

nT
∑

i=1

nT
∑

j=1

|〈w, xT
i 〉 − 〈w, xT

j 〉|α
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− 1

(nC )2

nC
∑

i=1

nC
∑

j=1

|〈w, xC
i 〉 − 〈w, xC

j 〉|α. (5)

Note that 〈w, xi 〉 is the score assigned by the model to a data record xi , and (5) is thus
the energy distance (3) applied to the sets of scores assigned by the model to records
in the treatment and control groups. Due to the properties of the energy distance the
term will penalize models for which distributions of scores in both groups differ.

The factor C3 determines the strength of the penalty. The fraction nT nC

nT +nC from (3) is
absorbed into C3 for the ease of exposition.

Let us now discuss the choice of α. Since we want to guarantee equal score
distributions we need α ∈ (0, 2) [19]. However for α < 1 the function S exhibits
strong non-convexity and is thus more difficult to optimize. We should, therefore,
chooseα from the interval [1, 2).We found values close to 1 towork better in practice
but for α = 1 the function S is not differentiable. We thus settled for α = 1.1 which
gives good properties and a smoother function to optimize. Note, however, that S
may not be convex even for α ∈ [1, 2).

4 Optimization

We now describe the method used to optimize (4) subject to the constraints specified
below (2). As a first step we rewrite the problem as an unconstrained optimization
problem using the hinge loss:

R(w) =1

2
〈w, w〉

+ C1

nT

∑

DT+

h(yT
i (〈w, xT

i 〉 − b1)) + C2

nT

∑

DT+

h(yT
i (〈w, xT

i 〉 − b2))

+ C2

nT

∑

DT−

h(yT
i (〈w, xT

i 〉 − b1)) + C1

nT

∑

DT−

h(yT
i (〈w, xT

i 〉 − b2))

+ C2

nC

∑

DC+

h(−yC
i (〈w, xC

i 〉 − b1)) + C1

nC

∑

DC+

h(−yC
i (〈w, xC

i 〉 − b2))

+ C1

nC

∑

DC−

h(−yC
i (〈w, xC

i 〉 − b1)) + C2

nC

∑

DC−

h(−yC
i (〈w, xC

i 〉 − b2))

+ C3S(DT , DC , w), (6)

where h is the hinge loss function given by

h(q) = max{0, 1 − q}.
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We are going to use the Averaged Stochastic Gradient Descent algorithm [9] in
order to optimize (4). The reason is that the algorithm is fast, stable and works well
with non-smooth functions. Note that in our optimization problem the derivatives of
the target function are not guaranteed to exist so methods such as conjugate gradient
descent are not applicable.

In order to optimize the expression given in (6) we first need to compute its
subgradient (since R(w) is not everywhere differentiable there are values of w for
which the gradient does not exist). Note that the subgradient of the hinge loss h(q)

is

∂h(q)

∂q
=

⎧

⎪⎨

⎪⎩

−1 if q < 1,

any value in [−1, 0] if q = 1,

0 if q > 1.

Since for q = 1 any value in [−1, 0] can be picked we will simply set

∂h(q)

∂q
= −1[1−q>0]. (7)

We can now give the expression for the subgradient of the minimized risk given in (6)

∂ R(w)

∂w
=

w − C1

nT

∑

DT+

1[

1−yT
i (〈w,xT

i 〉−b1)>0
]xT

i yT
i − C2

nT

∑

DT+

1[

1−yT
i (〈w,xT

i 〉−b2)>0
]xT

i yT
i

− C2

nT

∑

DT−

1[

1−yT
i (〈w,xT

i 〉−b1)>0
]xT

i yT
i − C1

nT

∑

DT−

1[

1−yT
i (〈w,xT

i 〉−b2)>0
]xT

i yT
i

+ C2

nC

∑

DC+

1[

1+yC
i (〈w,xC

i 〉−b1)>0
]xC

i yC
i + C1

nC

∑

DC+

1[

1+yC
i (〈w,xC

i 〉−b2)>0
]xC

i yC
i

+ C1

nC

∑

DC−

1[

1+yC
i (〈w,xC

i 〉−b1)>0
]xC

i yC
i + C2

nC

∑

DC−

1[

1+yC
i (〈w,xC

i 〉−b2)>0
]xC

i yC
i

+ C3
∂S(DT , DC , w)

∂w
, (8)

where

∂S(DT , DC , w)

∂w

= 2

nT nC

nT
∑

i=1

nC
∑

j=1

α|〈w, xT
i − xC

j 〉|α−1sgn(〈w, xT
i − xC

j 〉)(xT
i − xC

j )
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− 1

(nT )2

nT
∑

i=1

nT
∑

j=1

α|〈w, xT
i − xT

j 〉|α−1sgn(〈w, xT
i − xT

j 〉)(xT
i − xT

j )

− 1

(nC )2

nC
∑

i=1

nC
∑

j=1

α|〈w, xC
i − xC

j 〉|α−1sgn(〈w, xC
i − xC

j 〉)(xC
i − xC

j ). (9)

4.1 Averaged Stochastic Gradient Descent Algorithm
for Székely Regularized USMVs

The Stochastic Gradient Descent algorithm typically works by picking random dat-
apoints, computing the contribution of those points to the gradient and updating
current weights with a decreasing update coefficient.

Notice, however, that each term in the Székely regularizer given in (5) operates
on a pair of treatment datapoints and a pair of control datapoints. In order to apply a
stochastic optimization algorithm to the problem we thus take, at each iteration, four
randomly selected records, two from the treatment training set and two from control.
The weight update is then computed based on four training points instead of one.

The algorithm is given in Fig. 2. The expressions ∂l(w, xT
i , yT

i )/∂w and
∂S(xT

i , xT
j , xC

k , xC
l , yT

i , yT
j , yC

k , yC
l , w)/∂w used in the algorithm will be given

below. Notice that in step 10 we take the average of the weight vectors wt obtained
during all steps of the algorithm. This is the so called Polyak-Ruppert averaging [1,
7, 9] which improves the convergence properties of the algorithm.

In order to provide the expressions for ∂l/∂w and ∂S/∂w used in the algorithm, as
well as to prove its convergence, we first need to compute the subgradient of the target
risk function (9) for each random sample. Sincewe are dealingwith pairs of treatment

1. w0 = 0
2. For t ← 1, 2, . . .
3. Draw two samples (xT

i , yT
i ), (xT

j , yT
j ) uniformly at random from DT

4. Draw two samples (xC
k , yC

k ), (xC
l , yC

l ) uniformly at random from DC

5. g ← wt−1 + 1
2

∂l(wt−1,xT
i ,yT

i )
∂wt−1

+ 1
2

∂l(wt−1,xT
j ,yT

j )
∂wt−1

6. g ← g + 1
2

∂l(wt−1,xC
k ,yC

k )
∂wt−1

+ 1
2

∂l(wt−1,xC
l ,yC

l )
∂wt−1

7. g ← g + C3
∂S(xT

i ,xT
j ,xC

k ,xC
l ,yT

i ,yT
j ,yC

k ,yC
l ,wt−1)

∂wt−1

8. γt ← 1√
t

9. wt ← wt−1 − γtg
10. wa ← 1

t

∑t
t′=1 wt′

11. If converged:
12. Return wa

Fig. 2 The Averaged Stochastic Gradient descent algorithm for Székely regularized uplift support
vector machines
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and control points, each sample will involve four data records: xT
i , xT

j , xC
k , xC

l and

their corresponding class values yT
i , yT

j , yC
k , yC

l . The subgradient of the risk for the
given sample is given by the following equation

∂ R(xT
i , xT

j , xC
k , xC

l , yT
i , yT

j , yC
k , yC

l , w)

∂w

= w + 1

2

∂l(w, xT
i , yT

i )

∂w
+ 1

2

∂l(w, xT
j , yT

j )

∂w

+ 1

2

∂l(w, xC
k , yC

k )

∂w
+ 1

2

∂l(w, xC
l , yC

l )

∂w

+ C3
∂S(xT

i , xT
j , xC

k , xC
l , yT

i , yT
j , yC

k , yC
l , w)

∂w
, (10)

where the parts resulting from differentiating the hinge loss are

∂l(w, x, y)

∂w

= xy ·

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−C11[1−y(〈w,x〉−b1)>0] − C21[1−y(〈w,x〉−b2)>0] if (x, y) ∈ DT+
−C21[1−y(〈w,x〉−b1)>0] − C11[1−y(〈w,x〉−b2)>0] if (x, y) ∈ DT−
C11[1+y(〈w,x〉−b1)>0] + C21[1+y(〈w,x〉−b2)>0] if (x, y) ∈ DC−
C21[1+y(〈w,x〉−b1)>0] + C11[1+y(〈w,x〉−b2)>0] if (x, y) ∈ DC+

(11)

and the part for the subgradient of the Székely regularizer is

∂S(xT
i , xT

j , xC
k , xC

l , yT
i , yT

j , yC
k , yC

l , w)

∂w

= α

2

[|〈w, xT
i − xC

k 〉|α−1sgn(〈w, xT
i − xC

k 〉)(xT
i − xC

k )

+ |〈w, xT
i − xC

l 〉|α−1sgn(〈w, xT
i − xC

l 〉)(xT
i − xC

l )

+ |〈w, xT
j − xC

k 〉|α−1sgn(〈w, xT
j − xC

k 〉)(xT
j − xC

k )

+ |〈w, xT
j − xC

l 〉|α−1sgn(〈w, xT
j − xC

l 〉)(xT
j − xC

l )
]

− α|〈w, xT
i − xT

j 〉|α−1sgn(〈w, xT
i − xT

j 〉)(xT
i − xT

j )

− α|〈w, xC
k − xC

l 〉|α−1sgn(〈w, xC
k − xC

l 〉)(xC
k − xC

l ).

A necessary condition for the Stochastic Gradient Descent algorithm to converge is
that the expectation (taken over the randomly sampled vectors) of the subgradient (10)
be equal to the subgradient computed on the full dataset given in (8). Since in the
algorithm given in Fig. 2 we are using four randomly sampled data points we need
to take the expectation over all of them.
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We will denote the expectation over (xT
i , yT

i ) by E
T
i [·], analogous notation will

be used for expectations over records in the control group. Notice that, since the
records in the stochastic optimization algorithm are chosen uniformly at random, we
have

E
T
i [ f (xT

i , yT
i )] = 1

nT

nT
∑

i=1

f (xT
i , yT

i ), E
C
k [ f (xC

i , yC
i )] = 1

nC

nC
∑

i=1

f (xC
i , yC

i ).

(12)
Further, denote by E[·] the expectation over all four randomly chosen samples
(xT

i , yT
i ), (xT

j , yT
j ), (xC

k , yC
k ), (xC

l , yC
l ), i.e.

E[·] = E
T
i E

T
j E

C
k E

C
l [·].

Let us now compute, term by term, the expectation of the subgradient given in (10).
Clearly Ew = w. Also, using (11) and (12) we get

E
∂l(w, xT

i , yT
i )

∂w
= E

T
i

∂l(w, xT
i , yT

i )

∂w

= − 1

nT

nT
∑

i=1

xT
i yT

i

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C11[

1−yT
i (〈w,xT

i 〉−b1)>0
]

+ C21[

1−yT
i (〈w,xT

i 〉−b2)>0
] if (xT

i , yT
i ) ∈ DT+

C21[

1−yT
i (〈w,xT

i 〉−b1)>0
]

+ C11[

1−yT
i (〈w,xT

i 〉−b2)>0
] if (xT

i , yT
i ) ∈ DT−

= −C1

nT

∑

DT+

1[

1−yT
i (〈w,xi 〉−b1)>0

]xT
i yT

i − C2

nT

∑

DT+

1[

1−yT
i (〈w,xi 〉−b2)>0

]xT
i yT

i

− C2

nT

∑

DT−

1[

1−yT
i (〈w,xT

i 〉−b1)>0
]xT

i yT
i − C1

nT

∑

DT−

1[

1−yT
i (〈w,xT

i 〉−b2)>0
]xT

i yT
i .

We now move to computing the expectation of the subgradient of the Székely regu-
larizer. Note that

E|〈w, xT
i − xC

k 〉|α−1sgn(〈w, xT
i − xC

k 〉)(xT
i − xC

k )

= E
T
i E

C
k |〈w, xT

i − xC
k 〉|α−1sgn(〈w, xT

i − xC
k 〉)(xT

i − xC
k )

= 1

nT nC

nT
∑

i=1

nC
∑

k=1

|〈w, xT
i − xC

k 〉|α−1sgn(〈w, xT
i − xC

k 〉)(xT
i − xC

k ).

By symmetry, the three other pairs of treatment and control points lead to the same
expected value. Similarly
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The expression for the pair of control points is analogous. Finally we get
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j ).

Combining the above results we get exactly the subgradient of the risk which
is minimized by Székely regularized Uplift Support Vector Machines given in (8)
and (9).

Therefore the necessary condition for convergence is satisfied. For sufficiency, let
us examine the properties of the optimization problem (6). Notice first, that although
the term 1

2 〈w, w〉 is strongly convex and the remaining terms are convex, the Székely
penalty term is not. Therefore the optimized function need not be convex and we
cannot guarantee global convergence. Suppose that there exists a bound D such that
‖w∗‖ ≤ D and ‖wt‖ ≤ D for all iteration steps t . Note that the risk function is
Lipschitz continuous on any closed region of the parameter space. It follows that
the subgradient of R is bounded throughout the algorithm and the convergence is

guaranteed based on results given in [7, Sect. 11.0] for γt = Ct− 1
2 . The constant C

was chosen to be 1 in our implementation.
Let us now briefly comment on the existence of the bound D. Without additional

assumptions we cannot formally guarantee that at every iteration we have ‖wt‖ ≤ D.
To obtain such guarantees, an extra step can be added to Algorithm 2, which, after
each iteration, projects wt onto a ball of some radius D [7]. In practice we saw no
convergence problems and the extra step was not necessary.

If we make an additional assumption that the Székely penalty S is locally convex
around the minimum we can guarantee fast convergence rates. Since 1

2 〈w, w〉 is
strongly convex and a sum of a convex and a strongly convex function is strongly
convex, the risk R(w) given in (6) becomes strongly convex. The convergence rate

is then O(t−1) for γt = Ct− 1
2 following the results in [1, Theorem 3]. The constant

C was chosen to be 1 in our implementation.
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Note that the step size used guarantees convergence for non strongly convex
functions and fast convergence for strongly convex ones.

5 Experimental Evaluation

In this section we will present an experimental evaluation of the proposed approach.
We begin with a general discussion on evaluating uplift models, then describe our
approach to testing under treatment assignment bias, and finally present the results
of experiments.

5.1 Evaluating Uplift Models

Evaluating uplift models is more difficult than evaluating traditional classifiers. For
each case we only know the outcome after the action was applied or when the action
was not taken, never both. Therefore, we cannot decide whether specific cases have
been correctly classified or not. This is known as the fundamental problem of causal
inference [3].

Let us now discuss so called uplift curves used to graphically analyze the perfor-
mance of uplift models. One type of curves used to assess standard classifiers are
lift curves (also known as cumulative gains curves or cumulative accuracy profiles),
where the x axis corresponds to the number of cases targeted and the y axis to the
number of successes captured by the model. An uplift curve is computed by sub-
tracting the lift curve obtained on the control test set from the lift curve obtained on
the treatment test set. Both curves are generated using the same uplift model. The
number of successes on the y axes is expressed as a percentage of the total population
which guarantees that the curves can be meaningfully subtracted.

The interpretation of the uplift curve is as follows: on the x axis we choose the
percentage of the population on which the action is to be performed and on the y axis
we read the difference between the success rates in the treatment and control groups.
The value at x = 100% gives the gain in success probability from treating the whole
population. A diagonal line corresponds to random selection. The Area Under the
Uplift Curve (AUUC) can be used as a simple summary. In this paper we subtract
the area under the diagonal line from this value in order to obtain more meaningful
numbers. More details on evaluating uplift models and on uplift curves can be found
in [11, 15].

Since there are now two test sets (treatment and control) procedures such as
crossvalidation are performed independently on them. In this paper we use ten times
ten-fold crossvalidation to obtain the uplift curves.
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5.2 The Right Heart Catheterization Dataset

The right heart catheterization dataset [5] contains data about 5735 patients admitted
to hospitals in serious condition. 2184 of them were subjected to the right heart
catheterization procedure (RHC) and constitute the treatment group; the remaining
3551 did not receive the procedure and are the controls. The data does not come
from a randomized study, the application of RHC was decided based on patients’
condition, so the group selection is biased, in fact, it was done retrospectively based
on historical data. Because of this characteristics, as well as its relatively large size,
the dataset is ideal to test our algorithm.

The class variable was the attribute Death denoting patient death during the
first 180 days after hospital admission. Patient survival was considered the positive
outcome. To avoid information leaks we removed other outcome related variables
such as date of death or date of last contact.

The predictive attributes describe various characteristics of the patient such as age,
sex, education, income, medical insurance, the disease the patient suffers from. Also
present are results of diagnostics performed at admission such as blood pressure,
temperature, results of blood tests, and various scores describing the severity of
patient’s condition.

5.3 Testing Methodology—Correcting Group Selection Bias

Testing the performance of themodelswas, however,more challenging than in case of
randomized controlled trials. As discussed in Sect. 5.1 testing uplift models is based
on an assumption that groups of treatment and control records with similar scores
are indeed similar. Unfortunately, this is usually not the case for biased treatment
selection.

In order to test the model’s predictions we thus had to correct the bias in the test
sets. In practice, such corrections are typically achieved using so called propensity
scores [14]. A propensity score is the probability that a given patient, described by
a feature vector x, will be assigned to the treatment group. There are several ways
propensity scores can be used to correct for nonrandom group assignment. In this
paper we are going to use inverse probability of treatment weighting (IPTW) [13].

The IPTW method assigns to each treatment group record a weight inversely
proportional to the probability that a record with those characteristics is selected for
treatment. This way, cases to which treatment is applied disproportionately often are
given lower weights and underrepresented cases higher weights. The control group
records are, analogously, given weights proportional to the inverse of the probability
that a record with a given feature vector is not given the treatment. Note that for a
randomized controlled trial all records within a group receive equal weights.

To summarize, our testing procedure works as follows: we build a model with
nonrandom treatment assignment using the Székely penalty term to correct for the
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Fig. 3 ROC curve for the
propensity score model

bias, then we test the model on treatment and control test sets on which the bias has
been corrected using the inverse probability of treatment weighting. Since different
bias correction procedures are used for model construction and testing, we believe
that it is less likely that the estimated model performance is a result of an uncorrected
treatment assignment bias.

In order to use the IPTWprocedure one needs to know the probability of treatment
assignment conditional on patients’ characteristics. Unfortunately, this probability is
usually unknown and needs to be estimated. Here, we use a logistic regression model
trained on full data before crossvalidation splits. The ROC curve for the model is
shown in Fig. 3 (area under the ROC curve is 0.686). It can be seen that the model
is able to predict reasonably well whether a given patient will receive the RHC
procedure. One can conclude that treatment assignment is indeed seriously biased.

5.4 Experimental Results

We will now present the experimental results. Figure4 shows uplift curves drawn
for several values of the Székely penalty coefficient C3. All experiments were per-
formed for C1 = C2 = 1, only the value of C3 was changed. Ten times ten-fold
crossvalidation was used to obtain the curves. The curves are drawn based on data
weighted using inverse probability of treatment weighting (IPTW) to correct treat-
ment assignment bias. More detailed data on areas under the uplift curves are given
in the second row of Table1.

Overall the treatment is not effective and the application of the right heart catheter-
ization procedure seems to decrease patients chances of survival. This is in line with
the findings presented in [5].
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Fig. 4 Uplift curves for
Uplift SVM models with
different Székely penalty
coefficients

Table 1 The influence of the Székely penalty coefficient C3 on the area under the uplift curve and
the differences between scores in the treatment and control groups

C3 penalty coef-
ficient

0 0.01 0.1 1 10 100

AUUC 0.1505 0.1511 0.1559 0.2030 0.4035 0.0727

Difference
between score
means

0.1051 0.1050 0.1036 0.0839 0.0202 0.004

Kolmogorov-
Smirnov statistic

0.3436 0.3433 0.3411 0.3026 0.1103 0.0320

It can be seen that without the Székely correction (C3 = 0) the curve follows the
diagonal line corresponding to a model assigning treatment at random, except for
the 20% of highest scored cases for which RHC does indeed bring improvement in
survival rate over random selection.

With increasing values of the Székely penalty coefficient C3, the area under the
uplift curve is steadily increasing, up to C3 = 100 where the performance rapidly
drops. This shows that the application of the Székely penalty does indeed improve
model performance under treatment assignment bias.

The best performance is achieved forC3 = 10, and Fig. 4 shows that this particular
model achieves good performance over awide range of scores, bringing improvement
over random selection for about 75% of the population. The area under the uplift
curve is more than two and a half times better than for the unregularized model.

The drop in performance for very high value of the regularization parameter is
typical for regularized models in general: too high a penalty leads to the model
ignoring the data and focusing only on the regularization term.

To further analyze the effect of the Székely penalty on model behavior we ana-
lyze the distributions ofmodel scores in treatment and control groups. Figure5 shows
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Fig. 5 Empirical cumulative distribution functions of scores in the treatment and control groups
for various Székely regularization coefficient values

the empirical cumulative distribution functions of model score distributions in the
treatment and control groups for various strength of the Székely regularization term.
The charts were obtained on a single repetition of the ten fold crossvalidation. Addi-
tionally, we computed two types of statistics summarizing the discrepancies: the
difference between score means in the two groups and the Kolmogorov-Smirnov
statistic, i.e. the maximum difference between the empirical cumulative distribution
functions of the two groups. The summary statistics are given in the third and fourth
rows of Table1 and are shown graphically in Fig. 6.

It can be seen that for the unregularized model, the distributions of scores in
both groups differ significantly. The score means differ by about 0.1, which is a
fairly large value since the scores range roughly from −0.5 to 0.5. The value of the
Kolmogorov-Smirnov statistic is almost 0.35.

When the Székely penalty increases, the distributions become closer to each other.
For C3 = 0.01 and C3 = 0.1 the decrease is tiny but noticeable and is accompanied
by a tiny but noticeable improvement in the area under the uplift curve.WhenC3 = 1
the score distributions already come much closer to each other with the difference
between means decreasing to about 0.084; at the same time AUUC increased by
about 35%with respect to the unregularized model. A further tenfold increase of the
penalty coefficient makes the distributions very similar; the difference in means is
just 0.02 and the Kolmogorov-Smirnov statistic just 0.11. The AUUC is 2.68 times
higher than for the unregularized model.

A further tenfold increase in the value of C3 makes the score distributions in the
treatment and control groups practically identical, however the regularization is too
strong and the model no longer correctly predicts for whom the RHC procedure is
beneficial. In fact its predictions are not better than random assignments.
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Fig. 6 Statistics summarizing the differences between score distributions in the treatment and
control groups for various Székely regularization coefficient values

Let us now summarize our experimental findings. First, it was shown that the
unregularized model behaves poorly after treatment assignment bias correction is
applied. Moreover, it produces significantly different scores in the treatment and
control groups likely modeling not the real causal impact of the action but the differ-
ences in group assignment. As the Székely penalty term increased, the differences
between scores the model assigns to treatment and control records became much
smaller, accompanied by large improvements in model performance. One can thus
conclude that using the Székely penalty term does indeed reduce model’s suscepti-
bility to treatment assignment bias, proving the main claim of the paper.

6 Conclusions

We have presented a regularization method which corrects the behavior of uplift
models under nonrandomized treatment assignment. The approach is based on an
energy distance proposed by Székely and Rizzo which offers a practical way of
ensuring similarity ofmodel scores in the treatment and control datasets. Experiments
performed on the right heart catheterization dataset confirm the usefulness of the
proposed approach.
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Dominance-Based Rough Set Approach
to Multiple Criteria Ranking with
Sorting-Specific Preference Information

Miłosz Kadziński, Roman Słowiński and Marcin Szeląg

Abstract Anovel multiple criteria decision aidingmethod is proposed, that delivers
a recommendation characteristic for ranking problems but employs preference infor-
mation typical for sorting problems. The method belongs to the category of ordinal
regression methods: it starts with preference information provided by the Decision
Maker (DM) in terms of decision examples, and then builds a preference model
that reproduces these exemplary decisions. The ordinal regression is analogous to
inductive learning of a model that is true in the closed world of data where it comes
from. The sorting examples show an assignment of some alternatives to pre-defined
and ordered quality classes. Although this preference information is purely ordinal,
the number of quality classes separating two assigned alternatives is meaningful
for an ordinal intensity of preference. Using an adaptation of the Dominance-based
Rough Set Approach (DRSA), the method builds from this information a decision
rule preference model. This model is then applied on a considered set of alterna-
tives to finally rank them from the best to the worst. The decision rule preference
model resulting from DRSA is able to represent the preference information about
the ordinal intensity of preference without converting this information into a cardinal
scale. Moreover, the decision rules can be interpreted straightforwardly by the DM,
facilitating her understanding of the feedback between the preference information
and the preference model. An illustrative case study performed in this paper supports
this claim.
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1 Introduction

Decision problems considered in Multiple Criteria Decision Aiding (MCDA) con-
cern a set of alternatives evaluated on a consistent family of criteria. MCDA gives
the decision makers some tools and methods for structuring the problem, prefer-
ence handling, and carrying forward the process of decision making. Taking into
account the type of expected results, the term decision can be interpreted in different
ways. Generally, in MCDA we distinguish three types of decision problems: choice,
ranking, and sorting.

In choice problems, one aims at selecting a small subset of potentially best al-
ternatives. In ranking problems, alternatives should be ordered from the best to the
worst. Finally, the sorting problem is about assigning the alternatives to some pre-
defined and ordered classes. When considering multiple conflicting criteria, arriving
at a recommendation for each type of decision problems requires the use of some
particular decision aiding method [19].

Each MCDA method is distinguished by the type of admitted preference infor-
mation, ways of constructing and exploiting the preference model, and techniques
used to work out a recommendation. Usually, these methods are designed for dealing
with either ranking and choice or sorting (ordinal classification) problems.

In this paper, we introduce a novel MCDA method that delivers recommendation
characteristic for ranking problems but makes use of preference information that is
typical for sorting problems. This method employs an adaptation of the Dominance-
based Rough Set Approach (DRSA) (see [8, 11, 12, 21, 22]). Given the preference
information in terms of class assignments (sorting) of some reference alternatives,
it builds a decision rule preference model. This model is then applied on a set of
alternatives to be ranked, yielding a recommendation in terms of a weak order of
these alternatives.

The method proposed belongs to the category of ordinal regression methods that
start with preference information provided by the Decision Maker (DM) in terms
of decision examples, and then build a mathematical model that replicates these
exemplary decisions. For this ability, the model is called DM’s preference model.

The motivation behind the proposed approach to multiple criteria ranking is
twofold:

• the preference information provided by the DM in terms of sorting examples
permits to express the intensity of preference between alternatives in a purely
ordinal way, such that intensity of preference of a over b is comparable to that of c
over d only if the interval of classes between the assignment of a and b includes or
is included in the interval of c and d; otherwise the intensities are non-comparable;

• the decision rule preference model resulting from DRSA is able to express the
preference relation with the above meaning of the ordinal intensity without any
transformation of the input preference information; moreover, the decision rules
can be interpreted straightforwardly by the DM, facilitating her understanding of
the feedback between the preference information and the preference model.
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Let us comment on thesemotivations inmore detail. First, let us observe that when
the final aim is to construct a ranking of all considered alternatives, the preference
information has often the form of pairwise comparisons of some or all considered
alternatives. This is quite natural, because position of each alternative in the ranking
depends on result of its comparison with other alternatives. These pairwise com-
parisons often admit a multi-graded preference relation, expressing an intensity of
preference.

For example, in the Analytical Hierarchy Process [20], the DM is supposed to
compare pairwise all considered alternatives and express the intensity of preference
on a pre-defined cardinal ratio scale. In the MACBETH method [1], all pairs of
alternatives are assigned to some ordered classes of preference intensity and, finally,
a cardinal intensity scale concordant with these assignments is computed. Some other
methods do not require more from the DM than an ordinal expression of preference
intensity, like “a is preferred to b at least as strongly as c is preferred to d”, and obtain
in consequence a single-graded quaternary relation in the set of pairs of alternatives;
this is the case of the GRIP method [7], which builds a set of general additive
value functions that replicate the ordinal preference information, and provides at the
output necessary and possible quaternary relations that contribute to construction of
necessary and possible rankings, respectively.All abovemethods use a value function
preference model. Observe that rankings established by a value function permit to
speak about intensity of preference between alternatives in the ranking, as the scale
of the value function is an interval scale.

MCDA methods that use outranking relation preference model do not consider
intensity of preference either in the input preference information, or in the resulting
ranking, which has an ordinal character.

Methods based on logical representation of preferences in terms of monotonic
decision rules, like DRSA, are able to process preference information with specified
intensity of preference [8]. In this case, the pairwise comparisons of some reference
alternatives get a degree of intensity of preference assigned by theDM.These degrees
are linearly ordered, so that DRSA can approximate upward and downward unions of
the degrees. Decision rules induced from these approximations suggest assignment
of a pair of alternatives to a preference relation having at least or at most a specified
degree of intensity. Application of these rules on a set of alternatives leads to a fuzzy
preference graph, whose exploitation with a weighted fuzzy net flow score procedure
leads to a final ranking. A difference of positions in this ranking does not have the
meaning of intensity of preference, which is similar to rankings obtained by methods
using as preference model an outranking relation.

Experience indicates, however, that answering the questions about the intensity
of preference between two alternatives in cardinal terms requires too big cognitive
effort on the part of the DM. Facilitating the DM’s elicitation of the intensity of
preference for pairwise comparisons is thus the first motivation of this paper. The
method proposed in this paper permits the DM to express the intensity of preference
between reference alternatives in a purely ordinal way, as assignments of alterna-
tives to pre-defined and ordered quality classes. The order of these classes has no
cardinal meaning, so that the number of classes separating two assigned alternatives
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is not meaningful for intensity of preference. The only comparison of intensities of
preference is possible when an interval of classes for alternatives a, b includes or is
included in the interval of classes for alternatives c, d; precisely, the following eight
situations of comparability for intensities of preference may occur:

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b includes the
interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b includes the
interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b is included in
the interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b is included in
the interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b includes the
interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b includes the
interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b is included in
the interval of classes for c, d;

• (a, b) � (c, d) if a � b, c � d, and the interval of classes for a, b is included in
the interval of classes for c, d.

The second motivation is related to the choice of the preference model type. We
chose the logical preference model in terms of monotonic decision rules. This is be-
cause axiomatic analysis of all three preference model types leads to the conclusion
that decision rules, as they are defined in DRSA, are the only aggregation operators
that give account ofmost complex interactions among criteria, are non-compensatory,
accept ordinal evaluation scales and do not convert ordinal evaluations into cardinal
ones [14]. Rules identify values that drive DM’s decisions—each rule is a scenario
of a causal relationship between evaluations on a subset of criteria and a compre-
hensive judgment. They are also easily interpretable by users who trust proposed
recommendations more [13].

In this introduction, we should also refer to ranking methods based on preference
learning in a way proposed by Machine Learning (ML) [10]. In ML, this task is
known as “learning to rank” and also involves learning of a preference model from
pairwise comparisons of some alternatives (called items in ML) [5, 9, 18]. Precisely,
the pairwise comparisons are provided by users (DMs) as lists of items with some
partial order between items in each list. This information is called the training data.
Machine preference learning consists in discovering a model that predicts preference
for a new set of items (or the input set of items considered in a different context) so
that the produced ranking is statistically “similar” to the order provided as the training
data. In this approach, learning is traditionally achieved by minimizing an empirical
estimate of an assumed loss function on rankings [6]. Learning to rank emerged
to address application needs in areas such as information retrieval, Internet-related
applications, and bio-informatics. Indeed, ranking is at the core of document retrieval,
collaborative filtering, or computational advertising. In recommender systems, a
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ranked list of related items should be recommended to a user who has shown interest
in some other items. In computational biology, one ranks candidate structures in
protein structure prediction problem, whereas in proteomics there is a need for the
identification of frequent top scoring peptides.

MCDA and machine preference learning show many similarities, however, there
are also striking differences between them [4]. In particular, MCDA stimulates the
DM to interact with the method by incrementally enriching the preference infor-
mation and observing its consequences on the recommended rankings. This feature
reveals a specific aspect of learning adopted in MCDAwhich contrasts with ML ori-
ented towards preference discovery without interaction with the DM. For the purpose
of this article, we should also stress that neither in MCDA nor in machine preference
learning, the ordinal intensity of preference has been considered in the way explained
above as the first motivation.

The paper is organized as follows. In Sect. 2, we define notation and basic concepts
related to the preference information and approximated sets of pairs of alternatives.
Induction of decision rules from rough approximations is described in Sect. 3. Ap-
plication of decision rules on a set of alternatives is a subject of Sect. 4. In Sect. 5,
exploitation of a preference graph resulting from application of decision rules is pre-
sented together with the end result in form of a weak order on the set of alternatives.
In Sect. 6, an illustrative example shows how the proposed method can be applied in
a hypothetical case study. The final section includes summary and conclusions.

2 Notation and Basic Concepts

We shall use the following notation:

• A = {x, y, . . .}—a finite set of alternatives to be ranked;
• C1, C2, . . . , C p—p predefined preference-ordered classes, where Ch+1 is pre-
ferred to Ch , h = 1, . . . , p −1; moreover, H = {1, . . . , p} denotes the set of class
indices;

• AR = {a, b, . . .}—afinite set ofm reference alternatives, onwhich theDMaccepts
to express holistic preferences, such that each reference alternative is assigned to
one of the classes C1, C2, . . . , C p; we assume that AR ⊆ A;

• B = AR × AR ;
• G = {g1, g2, . . . , g j , . . . , gn}—a finite set of n evaluation criteria with ordinal or
cardinal scales; without loss of generality, we assume that all criteria are of gain
type, i.e., the greater the criterion value, the better.

A criterion with the cardinal scale is called a cardinal criterion; the set of all
cardinal criteria is denoted by G N ⊆ G, whileJG N denotes their indices. A criterion
with the ordinal scale is called an ordinal criterion; the set of all ordinal criteria is
denoted by G O ⊆ G, while JG O denotes their indices. Moreover, G N ∪ G O = G
and G N ∩ G O = ∅. For the sake of simplicity, we assume that for each cardinal
criterion g j ∈ G N , intensity of preference of a over b is defined as the difference of



160 M. Kadziński et al.

evaluations, i.e., it is equal toΔ j (a, b) = g j (a)−g j (b). In case of criterion g j ∈ G O

with an ordinal scale, one can only establish an order of evaluations g j (a), a ∈ A.

Preference information. We assume that the DM provides a set of assignment
examples, each one consisting of a reference alternative a ∈ AR and its assignment
ClDM (a) = Ci , 1 ≤ i ≤ p.

Dominance relation for pairs of alternatives. The pair of alternatives (a, b) ∈ B
dominates pair (c, d) ∈ B with respect to set of criteriaG, denoted by (a, b)D2(c, d),
if and only if (iff):

• for all g j ∈ G N , Δ j (a, b) ≥ Δ j (c, d), where Δ j (a, b) = g j (a) − g j (b);
• for all g j ∈ G O , g j (a) ≥ g j (c) and g j (b) ≤ g j (d).

Dominance relation D2 is a partial weak order on B. If (a, b)D2(c, d), one expects
that not ClDM (c) ≥ ClDM (a) and ClDM (d) ≤ ClDM (b), with at least one of these
relations being strict. Violation of this principle is considered as an inconsistency
with respect to dominance relation D2 on B and the order imposed on considered
classes.

Granules of knowledge. The set of pairs of alternatives dominating (a, b) ∈ B,
D+
2 (a, b), is called the dominating set or positive dominance cone:

D+
2 (a, b) = {(c, d) ∈ B : (c, d)D2(a, b)}. (1)

The set of pairs of alternatives dominated by (a, b), D−
2 (a, b), is called the dominated

set or negative dominance cone:

D−
2 (a, b) = {(c, d) ∈ B : (a, b)D2(c, d)}. (2)

Approximated sets of pairs of alternatives. Since classes C1, . . . , C p are
preference-ordered, when comparing two reference alternatives a, b ∈ AR , where
a ∈ Ci and b ∈ C j , 1 ≤ i, j ≤ p, three possibilities may arise:

• i = j , which means that a is indiscernible with b,
• i > j , which means that a is preferred to b,
• i < j , which means that b is preferred to a.

Notice that the comparison of two reference alternatives has an ordinal character
only. In consequence, given two pairs of reference alternatives (a, b), (c, d) ∈ B,
one can compare them with respect to preference only if the interval of classes to
which a, b belong includes (or is included in) the interval of classes to which c, d
belong. Specifically, if ClDM (a) ≥ ClDM (c) and ClDM (b) ≤ ClDM (d), then a is
preferred to b at least as much as c is preferred to d (c is preferred to d at most as
much as a is preferred to b). Otherwise, these pairs are incomparable.

Let us consider the following set of pairs of alternatives

Si, j = {(a, b) ∈ B : ClDM (a) = Ci and ClDM (b) = C j }, (3)
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where 1 ≤ i, j ≤ p. It includes pairs of alternatives with the same preference of the
first alternative over the second one.

Using definition (3), one can define the following unions of sets:

S�(i, j) =
⋃

k≥i,l≤ j

Sk,l; (4)

S�(i, j) =
⋃

k≤i,l≥ j

Sk,l , (5)

where 1 ≤ i, j, k, l ≤ p. Union S�(i, j) is a set composed of pairs of reference
alternatives (a, b) such that a is preferred to b at least as much as c is preferred
to d, where (c, d) ∈ Si, j . Analogously, union S�(i, j) is a set composed of pairs of
reference alternatives (a, b) such that a is preferred to b at most as much as c is
preferred to d, where (c, d) ∈ Si, j .

Notice that the above unions are binary relations, thus, the expressions (a, b) ∈
S�(i, j) and aS�(i, j)b can be used alternatively.Moreover, the unions are related in the
following way: S�(i, j) ⊇ S�(k,l) if and only if i ≤ k and j ≥ l, for all i, j, k, l ∈ H ;
analogously, S�(i, j) ⊇ S�(k,l) if and only if i ≥ k and j ≤ l, for all i, j, k, l ∈ H .
Thus, there exist two lattices of unions S�(i, j) and S�(i, j), respectively, ordered by
weak inclusion relation. These lattices can be depicted by Hasse diagrams.

Figure1 presents Hasse diagram of lattice of unions S�(i, j), while Fig. 2 presents
Hasse diagram of lattice of unions S�(i, j), 1 ≤ i, j ≤ 4; in both diagrams arcs show
the direction of inclusion, i.e., an arc leading from union U1 to U2 marks inclusion
U1 ⊆ U2. For example, in case of union S�(3,2):

S�(3,2) ⊇ S�(3,1) ⊇ S�(4,1) and

S�(3,2) ⊇ S�(4,2) ⊇ S�(4,1).

Fig. 1 Hasse diagram of the lattice of unions S�(i, j) for 1 ≤ i, j ≤ 4
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Fig. 2 Hasse diagram of the lattice of unions S�(i, j) for 1 ≤ i, j ≤ 4

Moreover, in case of union S�(2,2):

S�(2,2) ⊇ S�(1,2) ⊇ S�(1,3) ⊇ S�(1,4) and

S�(2,2) ⊇ S�(2,3) ⊇ S�(1,3) ⊇ S�(1,4) and

S�(2,2) ⊇ S�(2,3) ⊇ S�(2,4) ⊇ S�(1,4).

Rough approximations. We approximate unions S�(i, j) using positive dominance
cones D+

2 (·, ·), and unions S�(i, j) using negative dominance cones D−
2 (·, ·). The

lower and upper approximations of S�(i, j) and S�(i, j) are defined, respectively, as:

S�(i, j) = {(a, b) ∈ S�(i, j) : D+
2 (a, b) ∩ (S�(i−1, j) ∪ S�(i, j+1)) = ∅}; (6)

S�(i, j) = {(a, b) ∈ B : D−
2 (a, b) ∩ S�(i, j) �= ∅}; (7)

S�(i, j) = {(a, b) ∈ S�(i, j) : D−
2 (a, b) ∩ (S�(i, j−1) ∪ S�(i+1, j)) = ∅}; (8)

S�(i, j) = {(a, b) ∈ B : D+
2 (a, b) ∩ S�(i, j) �= ∅}, (9)

where 1 ≤ i, j ≤ p.
Finally, the boundaries of S�(i, j) and S�(i, j) are defined, respectively, as:

Bn(S�(i, j)) = S�(i, j) \ S�(i, j), (10)

Bn(S�(i, j)) = S�(i, j) \ S�(i, j). (11)

Let us explain the idea underlying definitions of S�(i, j) and S�(i, j). On one hand,
S�(i, j) contains pairs of reference alternatives (a, b) ∈ B which are not dominated
by any pair of reference alternatives (c, d) ∈ B such that the class of c is worse
(worse or equal) than that of a and the class of d is better or equal (better) than that



Dominance-Based Rough Set Approach to Multiple Criteria Ranking … 163

of b. For example, the lower approximation of S�(3,2) contains pairs of reference
alternatives (a, b)which are not dominated by any pair (c, d) belonging to S�(2,2) or
S�(3,3). On the other hand, S�(i, j) contains pairs of reference alternatives (a, b) ∈ B
which dominate at least one pair of reference alternatives (c, d) belonging to S�(i, j).

3 Induction of Decision Rules

We assume that a preference model of the DM is a set of minimal decision rules,
being statements of the type: “if premise, then conclusion” that represent a form
of dependency between the condition part and the decision part. The premise of a
rule is a conjunction of elementary conditions concerning individual criteria, and the
decision part of a rule suggests that a pair of alternatives covered by the rule should
be assigned to particular union S�(i, j) or S�(i, j), 1 ≤ i, j ≤ p. We say that a pair
of alternatives is covered by a decision rule if it matches the premise of the rule.
On the other hand, a pair of alternatives supports a decision rule if it matches both
premise and conclusion of the rule. Although we can distinguish certain, possible,
and approximate rules, in this paper we will focus on the certain rules only.

In order to induce certain decision rules with conclusion x S�(i, j)y or x S�(i, j)y,
1 ≤ i, j ≤ p, one needs to consider:

• positive examples, i.e., consistent pairs of reference alternatives concordant with
given conclusion (pairs of reference alternatives from the lower approximation
S�(i, j) or S�(i, j), respectively), and

• negative examples, i.e., pairs of reference alternatives contained in S�(i−1, j) ∪
S�(i, j+1) or S�(i, j−1) ∪ S�(i+1, j), respectively.

Observe that sets of positive and negative examples do not make partition of B.
Apart from both types of examples, B includes also so-called neutral examples, i.e.,
pairs of reference alternatives that belong to B \ (S�(i, j) ∪ S�(i−1, j) ∪ S�(i, j+1)) or
B \ (S�(i, j) ∪ S�(i, j−1) ∪ S�(i+1, j)), respectively. These examples are not taken into
account during rule induction.

In the following, when defining the syntax of decision rules, instead of concise
conclusion x S�(i, j)y, we employ the equivalent expression ClDM (x) ≥ Ci and
ClDM (y) ≤ C j , which is more informative for the DM. For the same reason, instead
of conclusion x S�(i, j)y, we use the expression ClDM (x) ≤ Ci and ClDM (y) ≥ C j .

We distinguish two types of decision rules:

• “at least” decision rules, with the following syntax:

if Δ j1(x, y) ≥ δ j1 and . . . and Δ jv (x, y) ≥ δ jv and . . . and g jv+1(x) ≥ r jv+1

and g jv+1(y) ≤ s jv+1 and . . . and g jz (x) ≥ r jz and g jz (y) ≤ s jz

then ClDM (x) ≥ Ci and ClDM (y) ≤ C j ,
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• “at most” decision rules, with the following syntax:

if Δ j1(x, y) ≤ δ j1 and . . . and Δ jv (x, y) ≤ δ jv and . . . and g jv+1(x) ≤ r jv+1

and g jv+1(y) ≥ s jv+1 and . . . and g jz (x) ≤ r jz and g jz (y) ≥ s jz

then ClDM (x) ≤ Ci and ClDM (y) ≥ C j ,

where δ jk ∈ {g jk (a) − g jk (b) : (a, b) ∈ B} ⊆ 
, for jk ∈ { j1, . . . , jv} ⊆ JG N ;
(r jk , s jk ) ∈ {(g jk (a), g jk (b)) : (a, b) ∈ B} ⊆ 
×
, for jk ∈ { jv+1, . . . , jz} ⊆ JG O .
For instance, considering ranking of cars, a decision rule could be “if car x has
maximum speed at least 25km/h greater than car y (cardinal criterion), and car x
has comfort at least 3 while car y has comfort at most 2 (ordinal criterion), then car
x is assigned to class at least C3 while car y is assigned to class at most C1”, where
values 2 and 3 code ordinal evaluations ‘medium’ and ‘good’, respectively.

The sets of “at least” and “at most” decision rules with the above syntax can be
induced using one of the well-known rule induction algorithms, e.g., VC-DomLEM
algorithm [2, 3], DomLEM algorithm [15, 23] or LEM2 algorithm [16, 17].

4 Application of Decision Rules

After induction of decision rules, the next step of the proposed methodology for
multiple criteria ranking is the application of induced rules on set A. This application
yields a preference structure on set A. Each pair of alternatives (x, y) ∈ A × A can
be covered by some decision rules suggesting assignment to relations S�(i, j) and/or
to relations S�(i, j), 1 ≤ i, j ≤ p. It can be also not covered by any rule. In order to
represent these situations, we introduce the following binary relations on A:

S
�(i, j) = {(x, y) ∈ A × A : ∃ r ∈ RS�(i, j) such that r covers (x, y)}, (12)

S
�(i, j) = {(x, y) ∈ A × A : ∃ r ∈ RS�(i, j) such that r covers (x, y)}, (13)

where 1 ≤ i, j ≤ p and RS�(i, j) denotes set of rules with conclusion ClDM (x) ≥
Ci and ClDM (y) ≤ C j . Notice that S�(i, j) andS�(i, j) are twodifferent relations. The
first one (see Definition (4)) is defined on set AR and concerns class assignments
of reference alternatives, while the second one, introduced above, is defined on
set A and concerns coverage by induced decision rules.

The preference structure on A, composed of relations S�(i, j) and S
�(i, j), 1 ≤

i, j ≤ p, can be represented by a preference graph. It is a directed multigraph G.
Each vertex (node) vx of the preference graph corresponds to exactly one alternative
x ∈ A. One can distinguish in G two types of arcs: S�(i, j)-arcs and S�(i, j)-arcs. For
example, given p = 4, the preference graph features an S�(4,1)-arc from vertex vx to
vy iff xS�(4,1)y. G is a multigraph since for any pair of alternatives (x, y) ∈ A × A
there may be more than one arc from vertex vx to vertex vy . A final recommendation
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for the multiple criteria ranking problem at hand, in terms of a complete weak order
of all alternatives belonging to set A, can be obtained upon a suitable exploitation of
the preference graph.

5 Exploitation of the Preference Graph

For the purpose of exploitation of the preference graph we employ the Weighted
Fuzzy Net Flow Score (WFNFS) procedure described in [8]. As proved in [8], this
procedure ensures that the obtained ranking contains dominance relation on set A,
i.e., if alternative a dominates b with respect to set of criteria G, then a is going to
be ranked not lower than b. Since relations given by (12) and (13) are crisp, in the
following we describe a simplified version of this procedure that we call Weighted
Net Flow Score (WNFS) procedure.

Let [] denote the Iverson bracket function defined as:

[P] =
{

1 if P is true,
0 otherwise.

(14)

In order to exploit a preference graph resulting from application of decision rules
on set A, we employ scoring function N F S : A → 
 defined as

N F S(x) = ∑

y∈A\{x}

(
∑

1≤ j≤i≤p
w�(i, j)

([xS�(i, j)y] − [yS�(i, j)x])

− ∑

1≤i≤ j≤p
w�(i, j)

([xS�(i, j)y] − [yS�(i, j)x])
)

,
(15)

where weights w�(i, j), for i ≥ j , and weights w�(i, j), for i ≤ j , are by default
equal to one but can be set different by the DM, e.g., in order to express greater
importance of preference between alternatives from more distant classes. For each
alternative x ∈ A, N F S(x) takes into account two types of arguments in favor of
x (i.e., existence of y ∈ A \ {x} such that xS�(i, j)y, and existence of y ∈ A \ {x}
such that yS�(i, j)x) and two types of arguments in disfavor of x (i.e., existence of
y ∈ A \ {x} such that yS�(i, j)x , and existence of y ∈ A \ {x} such that xS�(i, j)y). In
the following, we will also use the notions of strength andweakness of an alternative,
with respect to S�(i, j) and S�(i, j). For instance, the strength of x ∈ A with respect to
S

�(i, j) is the value
∑

y∈A\{x}
∑

1≤ j≤i≤p w�(i, j)[xS�(i, j)y], while the weakness of
x ∈ A with respect to S

�(i, j) is the value
∑

y∈A\{x}
∑

1≤i≤ j≤p w�(i, j)[xS�(i, j)y].
Notice that if we put weightsw�(i, j) andw�(i, j) on respective arcs of the considered
preference graph, then calculation of N F S(x) is equivalent to the calculation of
a kind of net flow of vertex vx of this graph, where positive and negative inflows
and outflows are considered. Function NFS induces a weak order on A, which is a
solution of the considered multiple criteria ranking problem.
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6 Illustrative Example

In this section, we illustrate the use of the presented method by considering real-
world data concerning 13 Polish research units (group of joint evaluation, called
SI3MU). The units are evaluated on the following three gain-type criteria:

• scientific activity (g1) including scientific publications in international journals
and number of patents; the evaluation reflects an average number of points gained
by a single researcher of the unit;

• scientific potential (g2) including the ability to grant scientific degrees, number
of professor titles obtained by researchers of this unit in the evaluation period, as
well as prestigious memberships of the researchers; all achievements are scored
and these scores are summed up to get an evaluation;

• material effects of unit’s activities (g3) representing money acquired from grants
or cooperation with industry.

The performances of the 13 considered research units (denoted by a to m) are given
in Table1. The objective of the study is to order the units from the best to the
worst. Although the aim consists in delivering a ranking, we will employ preference
information which is specific for multiple criteria sorting problems.

Assignment examples. The preference information consists of exemplary class as-
signments for 6 randomly chosen reference units (these are distinguished with a
non-empty entry in Table1 (column Ref.)). There are 2 units assigned to each of the
three considered classes Cl1–Cl3 (with Cl3 being the best class). The assignment
examples are derived from the original classification provided by the PolishMinistry
of Science and Higher Education in 2014. Our aim is to “learn” a rule preference
model on the 6 assignment examples, and apply this model on the whole set of 13
units in order to rank them.

Rough approximations. The provided 6 assignment examples entail consideration
of 36 pairs of reference alternatives. It turns out that there is no inconsistency with
respect to dominance relation D2 on the set of these pairs and the order imposed on
considered classes. The lower approximations for selected unions S�(i, j) and S�(i, j),
1 ≤ i, j ≤ 3, are presented in Table2. Obviously, in this case they are equal to upper
approximations.

Minimal sets of decision rules. To induce decision rules from the lower approxi-
mations given in Table2, we used a heuristic algorithm of a sequential covering type
(inspired by LEM2). When selecting conditions for inclusion in a decision rule, we
preferred these conditions that allowed to cover maximal number of positive exam-
ples, and then, to break possible ties, conditions which allowed to cover minimal
number of negative examples. The resulting minimal sets of decision rules for se-
lected unions are listed in Table3. Each of them consists of just a single decision rule
with at most two conditions.
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Table 1 Research units’ performances and class assignments for reference units (column Ref.)

Unit g1 g2 g3 Ref.

a 29.41 127 270.93 Cl3
b 30.57 122 280.14 −
c 31.34 283 122.78 Cl3
d 46.46 117 34.44 Cl2
e 15.99 50 155.55 −
f 20.08 108 47.43 Cl2
g 17.03 60 61.12 −
h 23.65 150 27.22 −
i 9.54 109 50.65 −
j 11.41 106 28.39 Cl1
k 10.98 2 13.28 Cl1
l 9.66 0 11.69 −
m 4.16 2 1.35 −

Table 2 Lower approximations for selected unions S�(i, j), S�(i, j), 1 ≤ i, j ≤ 3

S�(3,1) = {(a, j), (a, k), (c, j), (c, k)}
S�(3,2) = {(a, j), (a, k), (c, j), (c, k), (a, d), (a, f ), (c, d), (c, f )}
S�(2,1) = {(a, j), (a, k), (c, j), (c, k), (d, j), (d, k), ( f, j), ( f, k)}
S�(3,3) = {(a, j), (a, k), (c, j), (c, k), (a, d), (a, f ), (c, d), (c, f ), (a, a), (a, c), (c, a), (c, c)}
S�(2,2) = {(a, j), (a, k), (c, j), (c, k), (a, d),(a, f ), (c, d),(c, f ), (d, j),(d, k), ( f, j), ( f, k),

(d, d), (d, f ), ( f, d), ( f, f )}
S�(1,1) = {(a, j), (a, k), (c, j), (c, k), (d, j), (d, k), ( f, j), ( f, k), ( j, j), ( j, k), (k, j), (k, k)}
S�(1,3) = {( j, a), (k, a), ( j, c), (k, c)}
S�(2,3) = {( j, a), (k, a), ( j, c), (k, c), (d, a), ( f, a), (d, c), ( f, c)}
S�(1,2) = {( j, a), (k, a), ( j, c), (k, c), ( j, d), (k, d), ( j, f ), (k, f )}
S�(3,3) = {( j, a), (k, a), ( j, c), (k, c), (d, a), ( f, a), (d, c), ( f, c)(a, a), (a, c), (c, a), (c, c)}
S�(2,2) = {( j, a), (k, a), ( j, c), (k, c), (d, a), ( f, a), (d, c), ( f, c), ( j, d), (k, d), ( j, f ), (k, f ),

(d, d), (d, f ), ( f, d), ( f, f )}
S�(1,1) = {( j, a), (k, a), ( j, c), (k, c), ( j, d), (k, d), ( j, f ), (k, f ), ( j, j), ( j, k), (k, j), (k, k)}

Weights of arcs in the preference graph. To compute the score N F S(x) of each
unit x ∈ A, we employed the weights w�(i, j) and w�(i, j) given in Table4. These
weights were chosen to be symmetric, i.e., w�(i, j) = w�( j,i). Moreover, they were
set so that to express:

• greater importance of preference between units from more distant classes, e.g.,
w�(3,1) = 6 > w�(3,2) = 3 > w�(3,3) = 1;
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Table 3 Minimal sets of decision rules induced from lower approximations of selected unions
S�(i, j), S�(i, j), 1 ≤ i, j ≤ 3

Appr. Rule

S�(3,1) if Δ1(x, y) ≥ 18.0 and Δ3(x, y) ≥ 94.39 then Cl(x) ≥ C3 and Cl(y) ≤ C1

S�(3,2) if Δ2(x, y) ≥ 10.0 and Δ3(x, y) ≥ 75.35 then Cl(x) ≥ C3 and Cl(y) ≤ C2

S�(2,1) if Δ1(x, y) ≥ 8.67 and Δ3(x, y) ≥ 6.05 then Cl(x) ≥ C2 and Cl(y) ≤ C1

S�(3,3) if Δ1(x, y) ≥ −156.0 and Δ3(x, y) ≥ −148.15 then Cl(x) ≥ C3 and Cl(y) ≤ C3

S�(2,2) if Δ1(x, y) ≥ −12.99 and Δ3(x, y) ≥ −9.0 then Cl(x) ≥ C2 and Cl(y) ≤ C2

S�(1,1) if Δ1(x, y) ≥ −0.43 then Cl(x) ≥ C1 and Cl(y) ≤ C1

S�(1,3) if Δ1(x, y) ≤ −18.0 and Δ3(x, y) ≤ −94.39 then Cl(x) ≤ C1 and Cl(y) ≥ C3

S�(2,3) if Δ2(x, y) ≤ −10.0 and Δ3(x, y) ≤ −75.35 then Cl(x) ≤ C2 and Cl(y) ≥ C3

S�(1,2) if Δ1(x, y) ≤ −8.67 and Δ3(x, y) ≤ −6.05 then Cl(x) ≤ C1 and Cl(y) ≥ C2

S�(3,3) if Δ1(x, y) ≤ 156.0 and Δ3(x, y) ≤ 148.15 then Cl(x) ≤ C3 and Cl(y) ≥ C3

S�(2,2) if Δ1(x, y) ≤ 12.99 and Δ3(x, y) ≤ 9.0 then Cl(x) ≤ C2 and Cl(y) ≥ C2

S�(1,1) if Δ1(x, y) ≤ 0.43 then Cl(x) ≤ C1 and Cl(y) ≥ C1

Table 4 Weights of arcs in the preference graph

w�(3,1) w�(3,2) w�(2,1) w�(1,1) w�(2,2) w�(3,3)

6 3 3 1 1 1

w�(1,3) w�(2,3) w�(1,2) w�(1,1) w�(2,2) w�(3,3)

6 3 3 1 1 1

• equal importance of preference for pairs of units for which the class difference is
the same, e.g., w�(3,2) = w�(2,1) = 3.

Ranking. In Table5, we show the result of application of the induced decision rules
on set A, and aggregation of the resulting relations S�(i, j) and S�(i, j) using scoring
function N F S with the weights provided in Table4. The obtained ranking is unique
for the induced set of decision rules and adopted weights. For clarity, for each re-
search unit we additionally decompose its comprehensive score into the strength and
weakness derived from both S

�(i, j) and S
�(i, j). The final ranking (see Table5, col-

umn Rank(x)) reproduces the preference order derived from assignments examples,
i.e., all reference units assigned to class Clh+1 are ranked better than these assigned
to class Clh , for h = 1, 2. Moreover, when compared with the original classification
of the Polish Ministry of Science and Higher Education, all units judged as the best
(worst) ones by the Ministry, i.e., a to c ( j to m), attain clearly positive (negative)
scores in our procedure.



Dominance-Based Rough Set Approach to Multiple Criteria Ranking … 169

Table 5 Final scores (column N F S(x)) and ranks (column Rank(x)) of research units (for each
unit, we provide its strength and weakness reflected in N F S(x), both with respect to S

�(i, j) and
S

�(i, j))

Unit (x) S
�(i, j)

S
�(i, j) N F S(x) Rank(x) Ref.

Strength Weakness Strength Weakness

a 116 10 117 10 213 1 Cl3
b 113 9 114 8 210 2 −
c 100 8 100 9 183 3 Cl3
d 41 28 45 30 28 4 Cl2
e 39 37 41 35 8 5 −
f 37 46 38 45 −16 7 Cl2
g 27 42 29 41 −27 8 −
h 35 31 35 34 5 6 −
i 26 54 22 59 −63 9 −
j 23 72 21 75 −103 10 Cl1
k 16 85 18 84 −135 11 Cl1
l 15 86 16 86 −141 12 −
m 13 93 13 93 −160 13 −

7 Summary and Conclusions

We presented a new method for multiple criteria ranking problem, characterized by
the following features:

• the preference information provided by the DM has the form of sorting examples,
i.e., assignments of some reference alternatives to pre-defined and ordered quality
classes,

• the intensity of preference between any two alternatives is considered as purely
ordinal, i.e., the number of quality classes separating two assigned alternatives is
not meaningful for intensity of preference,

• the intensity of preference for pairs of quality classes can be represented by a
lattice depicted by Hasse diagram, i.e., one can say that intensity of preference
for a pair of alternatives is greater than that of another pair, only if the interval of
classes for the first pair includes that of the second pair,

• the method employs the decision rule preference model—the rules are induced
from rough approximations of unions of preference intensity relations, without
converting the ordinal input preference information into cardinal one,

• the set of rules is an easy to read summary of scenarios of causal relationships
between evaluations of pairs of reference alternatives on a subset of criteria and a
comprehensive judgment,
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• application of decision rules on a considered set of alternatives leads to a preference
graph—its exploitation using the weighted net flow score procedure results in a
linear ranking.

In conclusion, one can observe that the proposedmethod doeswhat was promised:
starting from an ordinal preference information about intensity of preference on a
subset of alternatives, it builds an intelligible preference model being compatible
with the input preference information, and applies this model on the whole set of
considered alternatives to finally rank them from the best to the worst. An illustrative
case study performed at the end of this paper supports this claim.

Acknowledgments The first author acknowledges financial support from the National Science
Center (grant no. DEC-2013/11/D/ST6/03056). The third author declares that he is a scholarship
holder within the 2012/2013 project “Scholarship support for Ph.D. students specializing in ma-
jors strategic for Wielkopolska’s development”, Sub-measure 8.2.2 of Human Capital Operational
Programme, co-financed by European Union under the European Social Fund.

References

1. Bana eCostaCA,Vansnick J-C (1994)MACBETH: an interactive path towards the construction
of cardinal value functions. Int Trans Oper Res 1(4):387–500
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11. Greco S, Matarazzo B, Słowiński R (1999) Rough approximation of a preference relation by

dominance relations. Eur J Oper Res 117:63–83
12. GrecoS,MatarazzoB, Słowiński R (2001)Rough sets theory formulticriteria decision analysis.

Eur J Oper Res 129(1):1–47
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On Things Not Seen

Marek Kimmel

Abstract Some statistical observations are frequently dismissed as “marginal” or
even “oddities” but are far from such. On the contrary, they provide insights that
lead to a better understanding of mechanisms which logically should exist but for
which evidence is missing. We consider three case studies of probabilistic models
in evolution, genetics and cancer. First, ascertainment bias in evolutionary genetics,
arising when comparison between two or more species is based on genetic markers
discovered in one of these species. Second, quasistationarity, i.e., probabilistic equi-
libria arising conditionally on non-absorption. Since evolution is also the history of
extinctions (which are absorptions), this is a valid field of study. Third, inference
concerning unobservable events in cancer, such as the appearance of the first malig-
nant cell, or the first micrometastasis. The topic is vital for public health of aging
societies. We try to adhere to mathematical rigor, but avoid professional jargon, with
emphasis on the wider context.

1 Introduction

This essay attempts to persuade the Reader that statistical observations that may be
dismissed as “marginal” or even “oddities” are far from such. On the contrary, they
provide insights that lead to a better understanding of mechanisms which logically
should exist but for which evidence is (and likely has to be) missing. To remain
focused, we adhere to probabilistic models in evolution, genetics and cancer, disci-
plines in which the author claims expertise. The paper includes three case studies.
First, ascertainment bias in evolutionary genetics, arising when comparison between
two or more species is based on genetic markers discovered in one of these species.
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Second, quasistationarity, i.e., probabilistic equilibria arising conditionally on non-
absorption. Since evolution is the history of extinctions (which are absorptions), this
is a valid field of study. Third, inference concerning unobservable events in cancer,
such as the appearance of the first malignant cell, or the first micrometastasis. The
topic is vital for public health, particularly in aging societies. We try to adhere to
mathematical rigor wherever needed and to provide references. Discussion concerns
the wider context and philosophical implications.

2 Ascertainment Bias in Evolutionary Genetics

It has been observed that in evolutionary comparisons of Species 1 and 2, it is
easy to err by using markers that were discovered in Species 1 and then sampled
(“typed”) in Species 1 and 2. Genetic markers have to exhibit among-individual
variation to be useful and therefore if a marker is discovered in Species 1, then on
the average it is more variable in Species 1 than in Species 2. Variability of markers
serves as a proxy for the rate of nucleotide substitution, which in turn may be a
proxy for the rate of evolution. For this reason, if Species 1 and 2 descend from a
common ancestral species, such as Human and Chimpanzee, andmarkers discovered
in Species 1 (Human, for example) are employed, then we may deduce that Human
has been evolving faster than its sister species Chimpanzee, when in fact it has not
[2, 7, 23]. One remedy for this effect (being a form of the ascertainment bias) is to
also use markers discovered in Species 2 and compare the outcomes in both cases.
However, how to analyze such data and what inferences might be drawn? Li and
Kimmel [19] demonstrate that this is quite complicated and that conclusions may be
far from obvious.

2.1 Microsatellite DNA and Divergence of Human and
Chimpanzee

Microsatellite loci are stretches of repeated DNAmotifs of length of 2–6 nucleotides.
An example is a triplet repeat (motif of length 3) with allele length X = 4 (motif
repeated 4 times)

· · · |ACG|ACG|ACG|ACG| · · · .

Mutations in such loci usually have the form of expansions or contractions occurring
at a high rate, ν ∼ 10−3–10−4 per generation. More specifically,

X −→ X + U (1)

whereU is an integer-valued random variable, at times constituting a Poisson process
with intensity ν. Mutations in this StepwiseMutationModel (SMM),mathematically
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form an unrestricted random walk (see e.g., [9]). Microsatellites are highly abun-
dant in the genome. They are also highly polymorphic (variable). Applications of
microsatellites include: forensics (identification), mapping (locating genes), and evo-
lutionary studies.

A microsatellite locus can be considered to have a denumerable set of alleles
indexed by integers. Two statistics can summarize the variability at a microsatellite
locus in a sample of n chromosomes: The estimator of the genetic variance

V̂ /2 =
n

∑

i=1

(

Xi − X
)2

/ (n − 1) , (2)

where Xi = Xi (t) is the length of the allele in the i th chromosome in the sample
and X is the mean of the Xi

V (t) = E(V̂ ) = E[(Xi − X j )
2], (3)

and Xi and X j are exchangeable random variables representing the lengths of two
alleles from the population [17]; and the estimator of homozygosity

P̂0 = (n
K

∑

k=1

p2k − 1)/(n − 1), (4)

where pk denotes the relative frequency of allele k in the sample

Fig. 1 Evolutionary history of a locus in two species. Demographic scenario employed in the
mathematical model and simuPOP simulations. Notation: N0, N1, and N2, effective sizes of the
ancestral, cognate, and noncognate populations, respectively; X0, X1, and X2, increments of allele
sizes due to mutations in the ancestral allele, in chromosome 1 and in chromosome 2, respectively.
From Ref. [19]
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P0(t) = E(P̂0) = Pr[Xi (t) = X j (t)]. (5)

Random variables Xi are exchangeable but not independent.
Li and Kimmel [19] considered evolutionary history of a locus in two species.

They employed the following demographic scenario in the mathematical model and
simuPOP [20] simulations (Fig. 1). At time t before present (time is counted in
reverse direction), a microsatellite locus is born in an ancestral species. At time t0,
the ancestral species splits into species 1 (called cognate) and species 2 (called non-
cognate). Notation: N0, N1, and N2, are effective lengths of the ancestral, cognate,
and non-cognate populations, respectively; X0, X1, and X2 are increments of allele
lengths due to mutations in the ancestral allele, in chromosome 1 sampled at time 0
(present) from cognate population 1 and in chromosome 2, sampled from the non-
cognate population 2.

2.2 Ascertainment Bias versus Drift and Mutation

In the random walk-like SMM model of mutation, a good measure of variability at
a microsatellite locus is the length (repeat count) in a randomly sampled individual.
Let us suppose that we discover a sequence of short motif repeats in the cognate
species 1 and if its number of repeats Y1 is greater or equal the threshold value x ,
we retain this microsatellite (we say we discovered it). Then we find a homologous
microsatellite in species 2, i.e., microsatellite which is located in the same genomic
region (technically, flanked by sequences of sufficient similarity), provided such
microsatellite can be found. We take samples of microsatellite lengths from species
1 and 2, and consider their lengths to be realizations of random variables Y ′

1 and Y2,
respectively. We then consider the difference

D = E[Y ′
1|Y1 ≥ x] − E[Y2|Y1 ≥ x].

Other things being equal, D is a manifestation of the ascertainment bias and is likely
to be positive. However, things may not be entirely equal. For example, if species
1 has a lower mutation rate than species 2, then its microsatellites will tend to have
lower maximum length, which may reduce D. On the other hand, if, say, species 2
consistently has had a smaller population size, then genetic drift might have removed
some of the variants and now species 2 microsatellites will have lower maximum
length,whichmay inflate D. Li andKimmel [19] carried out analytical and simulation
studies of D under wide range of parameter values and obtained very good agreement
of both techniques (Fig. 2). Briefly, as explained already, the observed difference D
in allele lengths may be positive or negative depending on relative mutation rates and
population sizes in the species 0 (ancestral), 1, and 2. In conclusion, mutation rate
and demography may amplify or reverse the sampling (ascertainment) bias. Other
effects were studied by different researchers. For example, Vowles and Amos [23]
underscore the effects of upper bounds of repeat counts. An exhaustive discussion is
found in Ref. [19].
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(a)

Fig. 2 Observed difference D in allele sizes may be positive or negative. Comparison of simuPOP
simulations with computations based on Eq. (15). a Values of D for the basic parameter values
b0 = b1 = b2 = b = 0.55, ν0 = ν1 = ν = 0.0001, t0 = 2 × 105 generations, and t = 5 × 105

generations, with the effective sizes of all populations concurrently varying from 2×104 to 4×105

individuals and with mutation rates ν2 varying from ν to 5ν. b Values of D for the basic parameter
values b0 = b1 = b2 = b = 0.55, ν0 = ν2 = ν = 0.0001, t0 = 2 × 105 generations, and
t = 5 × 105 generations, with the effective sizes of all populations concurrently varying from
2× 104 to 4× 105 individuals and with mutation rates ν1 varying from ν to 5ν (assuming 20 years
per generation). From Ref. [19]

2.3 Hominid Slowdown and Microsatellite Statistics

Li and Kimmel [19] considered evidence for and against the so-called hominid slow-
down (as discussed e.g., in Bronham et al. 1996), the observation that as the great apes
become closer to theHuman lineage, their nucleotide substitution rates (rates of point
mutations in the genome) decrease. Consistent with this, Human and Human ances-
tors are expected to have slower substitution rates than Chimpanzee and its ancestors
(following the divergence from the common ancestral species about 7 million years
ago). Is this also true of microsatellite loci? Different molecular mechanisms shape
these two types of mutations. Nucleotide substitutions result from random errors in
DNA replication, which then may not be repaired, but also may lead to dysfunc-
tional proteins which will be eliminated from the population by natural selection
(as discussed e.g., in [10]). Microsatellite mutations, as explained already, result
from replicase slippage. Most microsatellites are located in noncoding regions and
therefore are considered selectively neutral.

The study [19] involves a reconstruction of the past demography of Human and
its ancestors as well as hypothetical demography of Chimpanzee and its ancestors,
includingmigrations of Human from its ancestral African territory and resulting pop-
ulation growth interrupted by recent glaciations and other events. Without getting
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into technical details, the conclusion is that microsatellite mutation rate is likely to
be higher in Human than in Chimpanzee. It is interesting to observe that also the
regulatory sites in the genome usually have the form of simple repeats (albeit inter-
rupted) and vary quite considerably among species of mammals (as reviewed e.g.,
in Ref. [13]). It is possible to further hypothesize that evolution in higher mammals
chose the path of regulation of gene expression as opposed to modification of the
amino acid sequences in proteins; possible reason being that these latter might be
too slow.

3 Quasistationarity in Genome Evolution

Let us consider an effect which is important if extinctions are indeed common in
evolution. Suppose that a proliferating population has a random component of such
nature that it leads any lineage to extinction with probability 1. On the other hand,
proliferation is sufficiently fast to make up for extinction so that the non-extinct
part may persist indefinitely. The long-term distribution of types of individuals in
the population conditional on non-extinction, if such distribution exists, is called
the quasistationary distribution. Quasistationarity in a more general sense has been
studied by mathematicians for a long time; relevant literature has been collected by
Pollet [21]. Here we will limit ourselves to an example from cell biology concerning
gene amplification, based on an experiment pioneered by Schimke [22], with math-
ematical model developed by Kimmel and Axelrod [15] and then generalized by
Kimmel [14] and Bansaye [3]. Let us notice that extinction causes information about
evolution of the population to be scrambled. Therefore, if quasistationary distribu-
tions are interpreted as if they were ordinary stationary distributions, the conclusions
may be paradoxical or misleading.

3.1 Gene Amplification in Cancer and Schimke’s Experiments

One of the prevalent types of rearrangements in human cancer genome is gene ampli-
fication, i.e., increase of the number of gene copies in cells beyond the usual diploid
complement. Some examples have been provided by [1], but the phenomenon is quite
common, usually appearing under the guise of copy number variation (CNV; Fig. 3).

Classical experiments demonstrating gene amplification and its connection with
drug resistance have been carried out in Schimke [22]. The gist of the experimental
data can be described as follows. After passaging surviving cultured cells to ever
increasing levels of metothrexate (MTX) over the period of the order of 10 Msec =
5 month, it was possible to evolve cells that were resistant to extremely high doses
of MTX (Fig. 4). When the cells were put back into no MTX medium, they were
observed to lose resistance within about 100 cell doublings (some cultures did not,
but we sweep these under the rug for now).
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Fig. 3 Cytogenetics of gene amplification. Amplified DNA can be present in various forms includ-
ing double minutes. A two-chromosome genome is depicted (top of the figure). Examples of array
CGH copy number profiles (bottom left; plotted as the normalized log2 ratio) are shown with cor-
responding FISH pictures (bottom right) of the cells using BAC clones from the region of the
amplicon indicated by the red and green arrows. Many red and green signals can be seen in the
double minutes in a methotrexate-resistant human cell line. From Ref. [1]

Fig. 4 Loss of resistance in
Schimke’s experiments.
Cells resistant to MTX are
exposed to nonselective
conditions. Some cell lines
lose resistance completely
(circles), while other only
partially (squares and
triangles). From Ref. [5]
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Schimke discovered, using techniques available at that time, that the highly resis-
tant cell had, besides the usual chromosomes, small extrachromosomal DNA ele-
ments roughly dicentric (he named them the “double minute chromosomes” or DM
for short) that contained extra copies of the dihydrofolate reductase (DHFR) gene,
that confers resistance to MTX [1]. It became clear that the increased resistance was
due to amplification of the DHFR gene. But how did the amplified copies get there?
Clearly a supercritical process of gene copy proliferation was at play. However, how
did the cells know to multiply gene copies? The ghost of Lamarck knocked at the
door.

3.2 Probabilists to Rescue

Fortunately for the common sense, Kimmel and Axelrod [15] conceived an idea
consistent with the neo-Darwinian paradigm (despite appearances, this sentence is
not necessarily an oxymoron). The hypothesis can be stated as follows:

• Increased resistance is correlatedwith increased numbers of gene copies on double
minute chromosomes (DM).

• The number of DHFR genes on double minutes in a cell may increase or decrease
at each cell division. This is because double minutes do not have centromeres,
which are required to faithfully segregate chromosomes into progeny cells.

• The process of DM proliferation in cells is subcritical, since the DM do not effi-
ciently replicate. Therefore cells grown in the absence of the drug gradually lose
resistance to the drug, by losing extra gene copies.

The following model has been constructed by Kimmel and Axelrod [15].

• Galton-Watson process of gene amplification and deamplification in a randomly
chosen line of descent (Fig. 5).

– Double minute chromosomes replicate irregularly
– Upon cell division, DMs are asymmetrically assigned to progeny cells.

• The process is subcritical, i.e., the average number of DMs at division is less than
twice that number assigned to the cell at birth. This is consistent with imperfect
replication and segregation of DMs.

Hypotheses of the model explain why, under nonselective conditions, the number
of DMs per cell decreases which causes gradual loss of resistance (Fig. 5). In other
words, zero is an absorbing state for the number of DMs. However, under selective
conditions, only the cells with nonzero DM count survive. Therefore, conditionally
on nonabsorption (non-extinction of the DMs), according to the Yaglom theorem for
subcritical branching processes, the number of DMs per cell converges in distribution
to a quasistationary distribution.

Specifically, suppose that proliferation ofDMs fromone cell generation to another,
in a randomly selected ancestry line of cells is described by a Galton-Watson branch-
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Fig. 5 A simplified view of gene amplification and deamplification process. Each cell with at least
one gene copy can give rise to 2 progeny cells, each of which with probability b has amplified
(doubled) count of DM gene copies, with probability d has deamplified (halved) count, or with
probability 1 − b − d, the same number. Halving of a single DM results in 0 DMs. Histogram at
the bottom shows the resulting distribution of gene copies per cell in the fourth generation. From
Ref. [15]

ing process with the number of “progeny” of a DM is a nonnegative integer random
variable with generic probability generating function (pgf) f (s), under the usual
conditional independence hypotheses. As already noticed, this process is subcritical,
i.e., m = f ′(1−) < 1. Let Zn denote the number of DMs in generation n and let
fn(s) denote the pgf of Zn .

Yaglom Theorem (see e.g., Theorem 4 in Kimmel and Axelrod [16]) If m < 1,
then P[Zn = j |Zn > 0] converges, as n → ∞ to a probability function whose pgf
B(s) satisfies the equation

B[ f (s)] = mB(s) + (1 − m).

Also,

1 − fn(0) ∼ mn

B′(1−)
, n → ∞.

Yaglom limit is also an example of a quasistationary distribution, sayμ(x), which
in a general Markov chain can be defined via the following condition

μ(x) =
∑

y≥1 μ(y)Py[X (t) = x]
∑

y≥1 μ(y)Py[X (t) �= 0] ,

where Py[X (t) = x] is the transition probability matrix.
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Let us suppose now that cell population has been transferred toMTX-freemedium
at generation n = N . Based on the Yaglom Theorem, the fraction of resistant cells
decreases roughly geometrically

1 − fn(0) ∼ mn−N

B′(1−)
, n > N ,

while {Zn|Zn > 0} remains unchanged. Moreover, if 2m > 1, then the net growth
of the resistant population is observed also at the selection phase (n ≤ N ).

Loss of DMs in non-selective conditions has been visualized experimentally [5].
Population distribution of numbers of copies per cell can be estimated by flow cytom-
etry. Proportion of cells with amplified genes decreases with time (Fig. 6). Shape of
the distribution of gene copy number in the subpopulation of cells with amplified
genes appears unchanged as resistance is gradually lost.

Fig. 6 Loss of resistance visualized by flowcytometry. Population distribution of numbers of copies
per cell can be estimated by flow cytometry. Proportion of cells with amplified genes decreases with
time. Shape of the distribution of gene copy number in the subpopulation of cells with amplified
genes appears unchanged as resistance is gradually lost. From Ref. [5]
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An important finding is that if 2m > 1, i.e., if absorption is not too fast, then cell
proliferation outweighs the loss of cell caused by the selective agent (MTX) and the
resistant subpopulation grows in absolute numbers also under selective conditions
(when n ≤ N ; details in the original paper and the book).

A more general mathematical model of replication of “small particles” within
“large particles” and of their asymmetric division (“Branching within branching”)
has been developed by Kimmel [14] and followed up by Bansaye [3]. It is interesting
to notice that quasistationary distributions are likely to generate much heterogeneity.
An example is provided by large fluctuations of the critical Galton-Watson process
before extinction; see Wu and Kimmel [24].

3.3 Quasistationarity and Molecular Evolution

An observation can be made that trends observed in molecular evolution can be mis-
leading, if they are taken at their face value andwithout an attempt to understand their
underlying “mechanistic” structure. It may be concluded, looking at the evolution
of resistance in cells exposed to MTX that there exists something in the MTX that
literally leads to an increase of the number of DM copies. So, gene amplification
is “induced” by MTX. Only after it is logically deduced that DMs have to undergo
replication and segregation and assuming that both these processes are less orderly
in DMs than in the “normal” large chromosomes, the conclusion concerning the true
nature of the process (selection superimposed on subcritical branching) follows by
the laws of population genetics.

4 Unobservables in Cancer

Early detection of cancer by mass screening of at risk individuals remains one of the
most contentious issues in public health. We will mainly use lung cancer (LC) as an
example. The idea is to identify the “at risk” population (smokers in the LC case), and
then to apply an “early detection” procedure (CT-scan in the LC case), periodically,
among the members of the “at risk” population. By treating the early (and implicitly,
curable) cases discovered this way, a much higher cure rate is assured than that of
spontaneously appearing symptomatic cases. Is this reasoning correct? Two types
of arguments have been used to question the philosophy just described. On one
hand, part of the early detection may constitute overdiagnosis. Briefly, by the effect
known from the renewal theory, a detection device with less than perfect sensitivity,
placed at a fixed point in time and confronted with examined cases “flowing in time”,
preferentially detects cases of longer duration, i.e. those for which the asymptomatic
early disease is more protracted. This effect is known as the length-biased sampling
(discussion in Ref. [12]). Its extreme form, called overdiagnosis, causes detection of
cases that are so slow that they might show only at autopsy, or cases which look
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like cancer but do not progress at all. Overdiagnosis, if it were frequent, would
invalidate early detection: a large number of “early non-cancers” would be found
and unnecessarily treated, causing increased morbidity and perisurgical mortality,
without much or any reduction in LC death count.

On the other hand, the following scenario is possible, which also may invalidate
screening for early detection, although for an opposite reason. If it happens that LC
produces micrometastases, which are present when the primary tumor is of submil-
limeter size, then detection of even 2–3mm tumors (achievable using CT) is futile,
since the micrometastases progress and kill the patient whether the primary tumor
has been detected or not.

How to determine if screening reduces number of LC deaths? The orthodox bio-
statistics approach is “empirical”. It consists of designing a two-arm RCT (screened
versus non-screened high risk individuals) and comparing numbers of LC deaths
in the two arms. This methodology is statistically sound, but it may be considered
unethical. Patients in the control arm are denied potentially life-saving procedures.
Those in the screened arm do not necessarily take advantage of the current state-of-
art technology. Two sources of reduced contrast are: noncompliance in the screened
arm and/or “voluntary” screening in the control arm. It has been claimed that the
results of the Mayo Lung Project (MLP) 1967–1981 trial, which influenced recom-
mendations not to screen for LC by chest X ray were simply due to lack of power to
demonstrate mortality reduction by 5–10% which might be achievable using X ray
screening [12]. Finally, the National Lung Screening Trial (NLST) in the USA, in
which around 50,000 smokers took part, demonstrated that a series of three annual
screenings followed by treatment of detected cases reduced mortality by about 20%.
It has to be noted, that predictions of similar magnitude reduction obtained using
modeling [18] have been almost universally disregarded by the medical community.

The NLST has left as many questions unanswered as it did answer. One of them is
the choice of the “best” high-risk group for LC screening. Given limited resources,
how to allocate them to subgroups of screenees so that the efficacy of amass screening
program is maximized. Even if the meaning of the term “efficacy” is clarified, it is
still unknown who should be screened. Are these the heaviest smokers, the smokers
who have smoked for the longest period of time, individuals with family history of
lung cancer, or those with impaired DNA-repair capacity [11]? At what age does
it make sense to start screening and how often should the individuals be screened?
Answers to these questions require knowledge of the natural course of disease, which
is exactly what is not observable (Fig. 7).

Arguably, modeling can help. If a model of carcinogenesis, tumor growth and pro-
gression (i.e., nodal and distant metastases) is constructed and validated and models
of early detection and post-detection follow-up are added to it, then various scenarios
of screening can be tested in silico. Another use of modeling is less utilitarian, but
equally important. It can be called the inverse problem: How much is it possible
to say about the course of cancer based on snapshots including the disease charac-
teristics at detection? To what extent is the size of the primary tumor predictive of
the progression of the disease? In [6] some inferences of this type have been made
(Fig. 8).
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Fig. 7 Time lines of cancer progression and detection

Fig. 8 Distributions of occult nodal and distant metastases in the simulated lung cancer patients
(1988–1999) with stage N0M0, N1M0 and M1 stratified by tumor size. *TS, Primary tumor size
(cm) in diameter **In SEER data, 7208 were N0M1, which is 9.7% of 74109 that had N and M
staged. This stage is not modeled. From Ref. [6]

Figure8 depicts distributions of undetected (so-called occult) nodal and distant
metastases in the simulated lung cancer patients, fitting demographic and smoking
patterns of theSEERdatabase 1988–1999, detectedwith stageN0M0,N1M0andM1,
stratified by primary tumor size. N0 and N1 correspond to the absence and presence
of lymph node metastasis, and M0 and M1 to the absence and presence of distant
metastasis, respectively. In other words, modeling allows to estimate how many of
lung cancers detected as belonging to a given category, in reality belong to different,
prognostically less favorable, categories. The results show some unexpected trends.
The most important are the three top rows of Fig. 8, which concern tumors detected
without nodal or distant metastases (N0M0). These tumors, on the face of things,
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offer best prognosis. Model predictions confirm this intuition, up to a point. Indeed
up to the primary tumor size of about 1cm, more than 50% of apparent N0M0
tumors are indeed N0M0. If they are detected at larger sizes, then only a minority
are truly N0M0, and the rest have occult metastases. So, if these tumors below 1cm
are removed, there is a good chance the patient is cured. But, surprisingly, there is
another turning point. At sizes above 2.5–3cm, again majority of tumors are N0M0.
Similar, though not as distinctive trend is present when we consider tumors detected
as N1M0. Therefore, if a very large tumor is discovered without apparent nodal and
distant metastasis and it is resectable, then the suggestion is that it might be resected
for cure.

The explanation for this peculiar pattern is that if the rates of growth and pro-
gression (metastasizing) of tumors are distributed, then detection is “cutting out
windows” in the distributions, through which the tumor population is observed. In
the large primary tumor size category with no metastases observed, we deal with
the fast growing, slowly metastasizing subset. Other subpopulations simply present
with metastasis when the primary tumor is large, become symptomatic and quickly
progress to death. So, active detection leads to biased TNM distributions, with the
bias sometimes being non-intuitive.

Mathematical models of the NLST trial predicted its outcome in two publications,
one in 2004 [18] and the other in 2011 ([8]; submitted for publication before the
NLST outcomewas announced), using two different modeling approaches. As stated
already, at that time these papers were universally ignored.

5 Discussion

What is the role and use of statistics as a profession (science?) and of statisticians
as professionals (scientists?). In minds of other scientists (physicists, biologists or
physicians) statistics is mainly perhaps a useful, but strictly confirmatory field. What
is expected of a collaborating statistician is the “p-value” or the sample size needed
to obtain a given “power” of a test as required by the funding agencies. However,
one may reflect on how many useful and deep scientific concepts and techniques
are statistical in nature. Some of them have been revolutionary. We may list some
with biological applications: Fluctuation Analysis (FA) in cell biology, Moolgavkar-
Knudson (M-K) model of carcinogenesis, Wright-Fisher (W-F) model in population
genetics, Capture-Recapture (C-R) method in ecology, Maximum Likelihood (ML)
and Least Squares (LS) methods in molecular phylogenetics, and other. However, let
us notice that these methods are based on models that include structural features of
the biological nature of the phenomenon in question. Some of these are unobserv-
able, such as mutations in cells in FA, stage transition times in M-K, segregation
of chromosomes to progeny in W-F, collections of individuals in C-R and ancestral
nodes in phylogenetics.
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Arguably, statistics is most useful, when it considers phenomena in a “gray zone”
such as inference on the unseens, i.e., processes that we believe are real, but which
cannot be directly observed. Three phases of scientific inquiry, are usually present:

1. Initially, when there is little or no data; the unseens are not suspected to exist,
2. Existence of the unseens is revealed through progress in data collection and

logical analysis,
3. Further progress may lead to resolution of the unseen by a reductionist approach.

Examples considered in the essay involve analyses in Phase 2. Each involves unseens
that may become observable at some time. Also, each required construction of a new
model based on inferred biology of the process. In addition, each of the examples
includes a statistical sampling mechanism, which introduces a bias (we may call it
the ascertainment bias). The role of the model is among other, to understand and
counter the bias. Arguably, this is the true purpose of statistical analysis.
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Bipartite PageRank
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Abstract In this paper a novel notion of Bipartite PageRank is introduced and
limits of authority flow in bipartite graphs are investigated. As a starting point we
simplify the proof of a theorem on personalized random walk in unimodal graphs
that is fundamental to graph nodes clustering. As a consequence we generalize this
theorem to bipartite graphs.

Keywords Bipartite graphs · Social networks · PageRank

1 Introduction

The notion of the PageRank as ameasure of importance of aweb pagewas introduced
in [11]. Since then a large flow of publications on this topic emerged, starting with
methods of computation [2] and numerous applications (Webpage ranking, client and
seller ranking, clustering, classification of web pages, word sense disambiguation,
spam detection, detection of dead pages etc.) and variations (personalized PageRank,
topical PageRank, Ranking with Back-step, Query-Dependent PageRank etc.), [7].
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Fig. 1 An unoriented network

In this paper our attention is focused on a certain aspect of personalized PageRank,
related to its usage as a way to cluster nodes of an undirected graph1 (see Fig. 1).
While a number of algorithms has been developed based on PageRank variations
with the concept that a group of pages forms a cluster when it is unlikely to be left
by a random walker, the fundamental theorem on this issue seems to have quite a
complex proof—see e.g. [3, Lemma 2].

In this paper we will make an attempt to simplify it (Sect. 2) and further we will
generalize it to bipartite graphs (Sect. 3).

Our interest in bipartite graphs arouse due to the fact that such graphs are of par-
ticular interests in a number of application domains where the relationships between
objects may be conveniently represented in the form of a graph. The success story
of PageRank prompts the researchers to apply it also to those graphs e.g. describing
mutual evaluations of students and lecturers [9], reviewers andmovies in amovie rec-
ommender systems, or authors and papers in scientific literature or queries and URLs
in query logs [4], or performing image tagging [1]. However, these attempts seem
to be somehow counterproductive because the PageRank was explicitly designed
to remove periodicity from the graph structure, whereas the bipartite graphs have
explicitly this kind of structure. Therefore a suitable generalization of PageRank to
such structures is needed in order to retain both advantages of the bipartite graph
representation and those of PageRank. This paper can be seen as a contribution in

1An unoriented graph may serve as the representation of relationships spanned by a network of
friends, telecommunication infrastructure or street network of a city, etc.
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this direction. Please note that Theorem 4 in [10] states that “PageRank’s algorithm
will not work on bipartire graphs”. We provide a method allowing to overcome this
inconvenience.

2 Unimodal PageRank

Let us restrict to one of the many interpretations of PageRank as the probability
(“in the limit”) that a knowledgeable but mindless random walker (see Fig. 2) will
encounter a given Web page. Knowledgeable because he knows the addresses of all
the web pages. Mindless because he chooses a next page to visit without paying
attention to any hints on its contents. So upon entering a particular web page, if it
has no outgoing links, the walker jumps to any Web page with uniform probability.
If there are outgoing links, he chooses with uniform probability one of the outgoing
links and goes to the selected web page, unless he gets bored. If he gets bored
(which may happen with a fixed probability ζ on any page), he jumps to any web
page with uniform probability. Thus ζ is referred to as teleportation probability
or dumping factor. This variant of PageRank shall be called traditional uniform
PageRank. Careful analysis of its properties with particular emphasis on the case
ζ → 1 can be found in [5].

At the other extremewe can consider amindless page-u-fan randomwalkerwho is
doing exactly the same, but in case of a jump out of boredom he does not jump to any
page, but to the page u. A page ranking obtained in this way is called single-page

Fig. 2 Random walker interpretation of PageRank
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Fig. 3 A preferred group of pages of a random walker

personalized PageRank. Its applications to classification of the users of a social
network site into groups are discussed e.g. in [6].

There is an interesting relationship between the knowledgeable and the page-
fan walkers: if there exists one page-fan for each web page then the traditional
uniform PageRank vector of the knowledgeable walker is the average of single-page
personalized PageRank vectors of all these one page-fan walkers (Fig. 3).

Also there are plenty possibilities of other mindless walkers between these two
extremes. For example once the walker is bored, he can jump to a page from a set U
with a uniform probability or with probability proportional to the out-degree of the
pages from this set. A detailed treatment of these topics can be found e.g. in [8] to
which unacquainted reader is warmly referred.

In any of the cases the PageRank is interpreted as the probability “in the limit”
of a random walker reaching a web page. This probability can be considered as a
kind of “authority” of the page. We can assign also to the edges the probability that
a walker will pass this edge. The probabilities assigned to edges can be viewed as a
“flow of authority”.

So let us introduce some notation. By r wewill denote a (column) vector of ranks:
r j will mean the PageRank of page j . All elements of r are non-negative and their
sum equals 1.

Let P = [pi j ] be a matrix such that if there is a link from page j to page i , then
pi, j = 1

outdeg( j) , where outdeg( j) is the out-degree of node j .2 In other words, P is
column-stochastic matrix satisfying

∑

i pi j = 1 for each column j . If a node had an

2 For some versions of PageRank, like TrustRank pi, j would differ from 1
outdeg( j) giving preferences

to some outgoing links over others. We are not interested in such considerations here.
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out-degree equal 0, then prior to construction of P the node is replaced by one with
edges outgoing to all other nodes of the network.

Under these circumstances we have

r = (1 − ζ) · P · r + ζ · s (1)

where s is the so-called “initial” probability distribution (i.e. a column vector with
non-negative elements summing up to 1) that is also interpreted as a vector of Web
page preferences.

For a knowledgeable walker (case of traditional uniform PageRank) for each
node j of the network s j = 1

|N | , where |N | is the cardinality of the set of nodes N
constituting the network. For a page-u-fan (single-page personalized PageRank) we
have su = 1, and s j = 0 for any other page j �= u.

Let us introduce now multipage uniform personalized PageRank. It corresponds
to a random walker that once he is bored, he jumps to any of the pages from a set U
with uniform probability—one may say the walker is a uniform-set-U -fan. we get

s j =
⎧

⎨

⎩

1

|U | if j ∈ U

0 otherwise
, j = 1, . . . |N |

In this paper we will be interested in multipage hub-oriented personalized PageR-
ank. It corresponds to a random walker that, once bored, jumps to any of the pages
from a setU with probability proportional to its out-degree—one may say the walker
is a hub-oriented-set-U -fan.

s j =
⎧

⎨

⎩

outdeg( j)
∑

k∈U outdeg(k)
if j ∈ U

0 otherwise
, j = 1, . . . |N | (2)

Instead of looking at a random walker or at authority flow “in the limit”, we can
look at the Web as a pipe-net through which the authority is flowing in discrete time
steps, starting from the initial distribution defined by some r(0) vector.

In single time step a fraction ζ of the authority of a node j flows into so-called
super-node, and the fraction 1−ζ

outdeg( j) is sent from this node to each of its children
in the graph. After the super-node has received authorities from all the nodes, it
redistributes the authority to all the nodes in fractions defined in the vector s. We
assume that the authority circulates lossless (we have a kind of a closed loop here).

Beside this, as was proven in many papers, we have to do here with a self-
stabilizing process (under some conditions). Starting with any stochastic vector r(0)

and applying the operation

r(n+1) = (1 − ζ) · P · r(n) + ζ · s
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the series {r(n)}will converge to r, the dominating eigenvector3 of the matrix P from
Eq. (1) (i.e. r is the eigenvector corresponding to the maximal eigenvalue λ = 1 of
the matrix P).

Subsequently let us consider only connected graphs (one-component graphs) with
symmetric links, i.e. undirected graphs. An unoriented edge between nodes means
that there are oriented edges in both directions. Hence for each node j the relation-
ships between in- and out-degrees are:

indeg( j) = outdeg( j) = deg( j)

Let us pose the question: how is the PageRank ofU -set pages related to the PageRank
of other pages (that is those pages where there are no jumps out of being bored)?

First, let us note some obvious cases.

(a) Assume that ζ = 0, that is the random walker does not get bored. Let K =
∑

j∈N deg( j) denote the number of outgoing edges of the whole undirected
network (K is twice as large as the number of unoriented edges of the network).
Then for each j : r j = deg( j)

K , which is proved easily when one looks at the
network as a network of channels through which the authority flows from one
node to the other. Because the super-node does not play any role, and with the
above-mentioned r each channel is filled with the same amount of authority 1

K ,
that is in each bi-directional channel the flow is compensated. Hence such a
PageRank vector remains stable—it is the fixed point of Eq. (1). Note that self-
stabilizing is not guaranteed here.

(b) On the other extreme, if ζ = 1 (only jumps through super-node) then r = s
(stability guaranteed).

Let us note that for ζ > 0 the authority accumulated by the super-node equals
exactly ζ. Particularly, this amount of the authority is redistributed to all the “fan”
pages U ⊂ N .

Let us discuss now a hub-oriented-set-U -fan defined in Eq. (2). Assume for a
moment that the set U is identical with N , and that at a time-point t the authority
distribution is

r (t)j = deg( j)

K
(3)

Consider the next moment t + 1. Authority flew from the node j to the super-node
amounting to ζ deg( j)

K , and into each (outgoing) link (1 − ζ) 1
K . The very same node

j gets from the super-node authority amounting to ζ deg( j)
K , and from each (ingoing)

link (1− ζ) 1
K . Hence r(t+1) = r(t) so the r(t) defined in Eq. (3) is our solution of the

Eq. (1).
For nonzero ζ the stabilization is guaranteed.
Let us now turn to the situation where U is only a proper subset of N , and let us

ask: “How much authority from outside of U can flow into U via super-node at the

3Called also principal eigenvector.
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point of stability?” Let us denote by po the total mass of authority contained in all
the nodes outside of U . Then our question concerns the quantity poζ. Note that this
is the same amount of authority that leaves U via links outgoing from this set to its
complement (as a net balance). It is claimed that, see e.g. [3]:

Theorem 1 For the multipage hub-oriented personalized PageRank we have

poζ ≤ (1 − ζ)
|∂(U )|
V ol(U )

where ∂(U ) is the set of edges leading from U to the nodes outside of U (the so-
called “edge boundary of U”), hence |∂(U )| is the cardinality of the boundary,
and V ol(U ), called volume or capacity of U, is the sum of out-degrees of all nodes
from U.

Before starting the proof let us stress the importance of this theorem for the task of
clustering. Some clustering algorithms assume that the set U is a good cluster if the
amount of authority poζ leaving it via outgoing links is low. But this theorem states
that this is not the full story. If you take a bigger subgraph then a chance of authority
leaving it will be reduced no matter how the internal structure looks like. So in fact
the cluster value should be considered with respect to this natural limitation—“the
worst case” of internal link structure and not just the absolute value.

Proof The idea of the proof is as follows:

1. We want to find a vector rb of authorities such that if r(t) ≤ rb at a time point t ,
then this inequality is true for any t ′ > t .

2. Then we shall show that such a vector r(t) of authorities really exists, for which
r(t) ≤ rb holds.

3. Next we shall demonstrate that starting with any initial conditions the vector
r(t) ≤ rb is reachable.

4. The proof finishes when we show that the limiting vector rb allows us to conclude
that the claim of the theorem is valid.

ad.1. To find the distribution r(t
′) for t ′ > t we state that if in none of the links the

passing amount of authority will exceed

γ = (1 − ζ)
1

∑

k∈U deg(k)

then at any later time point t ′ > t the inequality r (t
′)

j ≤ r (t)j holds at any node j ∈ U .
To justify this statement note that if a node j �∈ U gets via links l j,1, . . . , l j,deg( j)

the authority amounting to

al j,1 ≤ γ, . . . , al j,deg( j) ≤ γ
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then it accumulates

a j =
deg( j)
∑

k=1

a j,k ≤ γ · deg( j)

of total authority, and in the next time step the following amount of authority flows
out through each of these links:

(1 − ζ)
a j

deg( j)
≤ γ(1 − ζ) ≤ γ

If a node j ∈ U gets via incoming links l j,1, . . . , l j,deg( j) the authority amounting
to al j,1 ≤ γ, . . . , al j,deg( j) ≤ γ then, due to the authority obtained from the super-node

equal to b j = ζ deg( j)
∑

k∈U deg(k) = deg( j)γ ζ
1−ζ , in the next step through each link the

authority amounting to

(1 − ζ)
a j

deg( j)
+ (1 − ζ)

b j

deg( j)
≤ γ(1 − ζ) + γ

ζ

1 − ζ
(1 − ζ)

= γ(1 − ζ) + γζ = γ

flows out.
So if already at time point t the authority flowing out through any link from any

node did not exceed γ (they were equal to it or to zero), then this property will hold
(by induction) forever. This phenomenon is illustrated on Fig. 4. Here U is a sub-
set consisting of 10 nodes randomly chosen from the graph representing karate
network, [12]. Left panel shows the number of entries of the vector r satisfying the
condition r(t

′) ≤ rb. As we see, at iteration t = 9 the vector rb is reached and for
any t > 9 the inequality is satisfied. The difference rb − r(t) is shown on the right
panel.
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Fig. 4 Illustration of the fact that r(t
′) ≤ rb for any t ′ > t (see text for the description)
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ad.2. Assume the following value of the PageRank vector at time t :

r f
j =

⎧

⎨

⎩

deg( j)
∑

k∈U deg(k)
if j ∈ U

0 otherwise
(4)

It is easily seen that the amount outflowing through each edge of each node in U
amounts exactly to γ = (1 − ζ) 1∑

k∈U deg(k) , while for the other nodes it is zero and
0 < γ. Hence there exists in fact a configuration for which the starting conditions
are matched.

Note also that such a reasoning supports our conviction that Eq. (4) can be true
for t = 0 only. In subsequent steps the authority assigned to the nodes form the set
U flows to the remaining nodes.

ad.3. Imagine now that instead of injecting into an empty network at the first moment
the whole amount of authority r f , we inject at time t = 0 a fraction ζr f , at time
t = 1 (1 − ζ)ζr f , and in general, at time t = i a fraction (1 − ζ)iζr f . Then at
moment t = i in each edge no more authority than γζ

∑i
j=0(1 − ζ)i will flow so

that in the limit γ will not be exceeded. But this is exactly what happens with an
arbitrary initial vector r injected into the network at time t . Whatever its nature, ζ
portion of it is injected via the supernode proportionally to r f at time point 0, and so
on, so that in the limit the initial authority vector plays no role at all. So the favorite
situation will be reached in the end.

ad.4. Now it remains to show that the condition mentioned in step 1 of the proof
really matches the thesis of the theorem.

Let us notice first that, due to the closed loop of authority circulation, the amount
of authority flowing into U from the nodes belonging to the set U = N\U must be
identical with the amount flowing out of U to the nodes in U .

But from U only that portion of authority flows out that flows out through the
boundary of U because no authority leaves U via super-node (it returns from there
immediately). As at most the amount γ∂(U ) leaves U , then

poζ ≤ γ∂(U ) = (1 − ζ)
∑

k∈U deg(k)
∂(U ) = (1 − ζ)

∂(U )

V ol(U ) �

Let us note in passing that ∂(U )
V ol(U )

is known as conductance in case that V ol(U ) ≤
0.5V ol(N ). Otherwise the denominator of conductance would be equal to V ol(N )−
V ol(U ) (difference between the capacity of the whole network and the set U ).

Observe also, that po, as the amount of the authority assigned to the nodes forming
the set U , can be expressed as r(U ) = 1− r(U ). Denoting by c(U ) the conductance
of U we obtain another form of the theorem

r(U ) ≥ 1 − ζ

ζ
c(U ) (5)
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Finally, let us note that the assumption of the hub-oriented random walk is an
important one because the above theorem is not valid for other choices of the distri-
bution s. To show this consider a numerical example. Let U has the form U ′ ∪ {u}
where U ′ is a clique (complete sub-graph) consisting of 1000 nodes and u is a node
having two neighbors: one belongs to the clique U ′ and the second is a node outside
the clique. Assume further that only one node from U ′ has a link to a node outside
the clique. Thus the volume of U is V ol(U ) = 1000 × 999 + 1 + 2 = 999,003.
Suppose that ζ = 1/2. Would the theorem be true also for multipage personalized
uniform random walker then one would have: po · 0.5 ≤ (1 − 0.5) 2

999,003 which

means po ≤ 2
999,003 . But as each node of U gets from the super-node authority

amounting to 0.5
1.001 , including the degree 2 node u, and thereafter, from this u node

half of the authority would go outside of U , then po ≥ 0.25
1.001 , which is an immediate

contradiction.

3 Bipartite PageRank

Some non-directed graphs occurring e.g. in social networks are in a natural way
bipartite graphs. Thus there exist nodes of two modalities and meaningful links
may occur only between nodes of distinct modalities (e.g. authors and their papers,
communities and their members, clients and items (or products) purchased by them,
Fig. 5).

Some literature exists already for such networks attempting to adapt PageRank
to the specific nature of bipartite graphs, e.g. [4]. Whatever investigations were
performed, apparently no generalization of Theorem 1 was obtained.

One seemingly obvious choice would be to use the unimodal PageRank, like it
was done in papers [1, 9], because a bipartite graph is in fact a graph. But this would

Fig. 5 An example of a bipartite graph
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be conceptually wrong because the nature of the super-node would cause authority
flowing between nodes of the same modality which is prohibited by the definition of
these networks.

Therefore in this paper we intend to close this conceptual gap and will introduce
a novel approach to Bipartite PageRank and will extend the Theorem 1 to this case.

So let us consider the flow of authority in a bipartite network with two distinct
super-nodes: one collecting the authority from items and passing them to clients, and
the other the authority from clients and passing them to items.

rp = (1 − ζcp) · Pcp · rc + ζcp · sp (6)

rc = (1 − ζ pc) · Ppc · rp + ζ pc · sc (7)

The following notation is used in these formulas

• rp, rc, sp, and sc are stochastic vectors, i.e. the non-negative elements of these
vectors sum to 1;

• the elements of matrix Pcp are: if there is a link from page j in the set of Clients
to a page i in the set of I tems, then pcp

i j = 1
deg( j) , otherwise pcp

i j = 0;
• the elements of matrix Ppc are: if there is a link from page j in the set of I tems
to page i in the set of Clients, then p pc

i j = 1
deg( j) , and otherwise p pc

i j = 0;
• ζcp ∈ [0, 1] is the boredom factor when jumping from Clients to Items;
• ζ pc ∈ [0, 1] is the boredom factor when jumping from Items to Clients.

Definition 1 The solutions rp and rc of equation system (6) and (7) will be called
item-oriented and client-oriented bipartite PageRanks, resp.

Again we assume that we have sets of preferred clients and items and we are
interested in the outflow of authority towards the other items and clients.

Subsequently we will study first the flow of authority in some special cases to
proceed to formulation of limiting theorems.

Let us assume first that

ζ pc = ζcp = 0

i.e. that the super-nodes have no impact.
Let K = ∑

j∈Clients deg( j) = ∑

j∈I tems deg( j) mean the number of edges
leaving one of the modalities. Let us consider a situation in which the amount of
authority in each node j ∈ Clients is rc

j = deg( j)
K , and that r p

j = deg( j)
K for any

j ∈ I tems. Because through each link the same amount of 1
K authority will flow

out, within each bidirectional link the amounts passed cancel out each other. So the
r’s defined this way are a fixed point (and solution) of the Eqs. (6) and (7).

For the other extreme, when ζcp = ζ pc = 1 one obtains that rp = sp, rc = sc.
In analogy to the traditional PageRank let us note at this point that for ζcp, ζ pc > 0

the “fan”-nodes of both the modalities (the sets of them being denoted with U p for
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Fig. 6 Two sets of preferred nodes in a bipartite graph

items and U c for clients), will obtain in each time step from the super-nodes the
amount of authority equal to ζ pc for clients and ζ pc for products, resp.

Let us now think about a fan of the group of nodes U p,U c who prefers the
hubs, and assume first that U p = I tems,U c = Clients. Assume further that at
the moment t we have the following state of authority distribution: node j contains
rc/p

j (t) = deg( j)
K (meaning same formula for r p and rc). Let us consider now the

moment t + 1. From the product node j to the first super-node the authority ζ pc deg( j)
K

flows, and into each outgoing link (1− ζ pc) 1
K is passed. On the other hand the client

node j obtains from the same super-node authority ζ pc indeg( j)
K , while from each

ingoing link (1 − ζ pc) 1
K what means that rc(t + 1) = rc(t). In an analogous way

we can show that rp(t + 1) = rp(t). So a solution to the system of Eqs. (6) and (7)
is found.

Let us now turn to the case when U p,U c are only proper subsets (or at least one
of them) of Items and Clients, resp (Fig. 6). We shall be interested in the net amount
of authority leaving each U p,U c to the nodes belonging to other modality via the
outgoing links. This is equivalent to the amount of authority coming from the other
nodes via supernodes to the sets U p,U c.

Applying techniques similar to the uni-modal case we can prove the theorem
analogous to Theorem 1.

Theorem 2 For the preferential personalized bipartite PageRank we have

pc,oζ
cp ≤ (1 − ζ pc)

|∂(U p

U c )|
min(V ol(U p), V ol(U c))

and

pp,oζ
pc ≤ (1 − ζcp)

|∂(U c

U p )|
min(V ol(U p), V ol(U c))
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where

• pc,o is the sum of authorities from the set Clients\U c,
• pp,o is the sum of authorities from the set I tems\U p,
• ∂(U c

U p ) is the set of edges outgoing from Uc into nodes from I tems\U p (that is
“fan’s border” of U c),

• ∂(U p

U c ) is the set of edges outgoing from U p into nodes from Clients\U c (that is
“fan’s border” of U p),

• V ol(U c) is the sum of degrees of all nodes from U c (capacity of U c)
• V ol(U p) is the sum of degrees of all nodes from U p (capacity of U p). �

Proof We have a painful surprise this time. In general we cannot define a useful state
of authority of nodes, analogous to that of traditional PageRank from the previous
section, so that in both directions between U p and U c nodes the same amount of
authority would flow. This is due to the fact that in general capacities of U c and U p

may differ. Therefore a broader generalization is required.
To find such a generalization let us reconsider the way how we can limit the flow

of authority in a single “channel” (link from one node to the other). The amount of
authority passed consists of two parts: a variable one being a share of the authority
at the feeding end of the channel and a fixed one coming from a super-node. So,
by increasing the variable part we come to the point that the receiving end gets less
authority than this node fed into the channel—this is because of increased “evapo-
ration” to the supernode.

Let us seek the amount of authority d being an upper bound on authority residing
in a node per its incidental link such that if this limitation is obeyed in a given step,
it is also obeyed in the subsequent ones. So let i be a client node of degree deg(i)
and j be a product node of degree deg( j). This means that the amount of authority
at i shall not exceed d · deg(i) and d · deg( j) at j . In the next step node i gets the
authority of no more than ζ pc deg(i)

∑

v∈Uc deg(v) + deg(i) · d · (1 − ζ pc). Node j gets the

authority of no more than ζcp deg( j)
∑

v∈U p deg(v) + deg( j) · d · (1− ζcp). We are interested
if the following holds:

d · deg(i) ≥ ζ pc deg(i)
∑

v∈U c deg(v)
+ deg(i) · d · (1 − ζ pc)

d · deg( j) ≥ ζcp deg( j)
∑

v∈U p deg(v)
+ deg( j) · d · (1 − ζcp)

This may be simplified to

d ≥ ζ pc 1
∑

v∈U c deg(v)
+ d · (1 − ζ pc)
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d ≥ ζcp 1
∑

v∈U p deg(v)
+ d · (1 − ζcp)

Hence:

d · ζ pc ≥ ζ pc 1
∑

v∈U c deg(v)
, d · ζcp ≥ ζcp 1

∑

v∈U p deg(v)

And finally:

d ≥ 1
∑

v∈U c deg(v)
, d ≥ 1

∑

v∈U p deg(v)

So if we denote V ol(U p) = ∑

v∈U p deg(v) and V ol(U c) = ∑

v∈U c deg(v) we
get finally

d = max

(
1

V ol(U p)
,

1

V ol(U c)

)

= 1

min(V ol(U p), V ol(U c))

Let us notice first that, due to the closed loop of authority circulation, the amount
of authority flowing into U c from the nodes belonging to the set U p = I tems\U p

must be identical with the amount flowing out of U p to the nodes in U c. The same
holds when we interchange the indices p and c.

But from U p only that portion of authority flows out to U c that flows out through
the boundary of U p because no authority leaves the tandem U p,U c via super-nodes
(it returns from there immediately). As the amount d(1− ζ pc)∂(U p

U c ) leaves at most
the U p through outlinks not going into U c, then

pc,oζ
cp ≤ d(1 − ζ pc)

∣
∣
∣∂(

U p

U c
)

∣
∣
∣ = (1 − ζ pc)

1

min(V ol(U p), V ol(U c))

∣
∣
∣∂(

U p

U c
)

∣
∣
∣

For the flow from U c to U p we have analogous derivation.
Let us now consider the issue if the flow d is obtainable in the links by specially

initializing the authorities of the nodes of the network. Assume that each node j of
U p was initialized to deg( j)

V ol(U p)
and each node i of U c was initialized to deg(i)

V ol(U c)
and

the remaining nodes are zero which is a valid initialization as the sum over nodes in
each modality is equal 1. Under these circumstances the authority of each node per
link is 1

V ol(U c)
for U c nodes and 1

V ol(U p)
for U p nodes which is precisely what we

need.
The last part of the proof is to show that this advantegous condition will be

achieved in the limit and here we just can repeat the respective fragment of the proof
of the preceding theorem. Again of course ζ ′s must be non-zero. �

Note by the way that the convergence is achieved in an analogous way as done
for the HITS (consult e.g. [8, Chap. 11]).
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4 Concluding Remarks

In this paper we have introduced a novel approach to the concept of bipartite Page
Rank and have proposed limits for the flow of authority in a bipartite graph.

These limits can be used for example when verifying validity of clusters in such
graphs. It is quite common to assume that the better the cluster the less authority
flows out of it when treating the cluster as the set on which a fan concentrates while
a personalized PageRank is computed. The theorem says that the outgoing authority
has a natural upper limit dropping with the growth of the size of the sub-network so
that the outgoing authority cluster validity criterion cannot be used because it will
generate meaningless large clusters. So a proper validity criterion should make a
correction related to the established limits in order to be of practical use.

In fact, this should be combined with a bootstrapping approach: an outgoing
authority should be compared with randomly generated structures of the cluster
network to find out if this outgoing authority for a given structure is likely to differ
from a random structure.

To justify this remark note that the primary state-of-the-art mistake of the state-of-
the-art-clustering algorithms is the lack of any verification if the discovered structure
of clusters is really a new piece of knowledge or just an artifact of large scaled random
processes. This affects also the numerous graph clustering algorithms. Therefore we
propose in particular the following:

(1) significance of the clusters should be tested, and
(2) quality of the clusters should be tested.

The significance should be tested using Monte Carlo method as follows: For a
cluster, count the number of edges in it. Next create random graphs over the set
of cluster nodes of the same size in terms of the number of edges, according to
some randomprocess (requesting e.g. connectivity). For the original graph, substitute
the cluster with the newly generated random graph and compute the personalized
PageRank. Repeat this a number of times and count the share of random graphs for
which the amount of out-flowing authority from the cluster is lower than for the
original graph. If it is lower than say 5%, the cluster is significant.

For significant clusters compute the quotient of outgoing authority with the the-
oretical limits. The best clusters are those with the lowest quotient.

As a further research direction it is obvious that finding tighter limits is needed,
or a proof that the found limits are the lowest ones possible. This would improve the
evaluation of e.g. cluster quality.
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Dependence Factor as a Rule Evaluation
Measure

Marzena Kryszkiewicz

Abstract Certainty factor and lift are known evaluation measures of association
rules. Nevertheless, they do not guarantee accurate evaluation of the strength of
dependence between rule’s constituents. In particular, even if there is a strongest
possible positive or negative dependence between rule’s constituents X and Y , these
measures may reach values quite close to the values indicating independence of X
and Y . Recently, we have proposed a new measure called a dependence factor to
overcome this drawback. Unlike in the case of the certainty factor, when defining
the dependence factor, we took into account the fact that for a given rule X → Y ,
the minimal conditional probability of the occurrence of Y given X may be greater
than 0, while its maximal possible value may less than 1. In this paper, we first
recall definitions and properties of all the three measures. Then, we examine the
dependence factor from the point of view of an interestingness measure as well as
we examine the relationship among the dependence factor for X and Y with those
for X̄ and Y , X and Ȳ , as well as X̄ and Ȳ , respectively. As a result, we obtain a
number of new properties of the dependence factor.

1 Introduction

Certainty factor and lift are known measures of association rules. The former measure
was offered in the expert system Mycin [9], while the latter is widely implemented in
both commercial and non-commercial data mining systems [2]. Nevertheless, they
do not guarantee accurate evaluation of the strength of dependence between rule’s
constituents. In particular, even if there is a strongest possible positive or negative
dependence between rule’s constituents X and Y , these measures may reach values
quite close to the values indicating independence of X and Y . This might suggest
that one deals with a weak dependence, while in fact the dependence is strong. In [4],
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we proposed a new measure called a dependence factor to overcome this drawback.
Unlike in the case of the certainty factor, when defining the dependence factor, we
took into account the fact that for a given rule X → Y , the minimal conditional
probability of the occurrence of Y given X may be greater than 0, while its maximal
possible value may less than 1. The dependence factor always takes value 1 if a
dependence is strongest possible positive, whereas for a strongest possible negative
dependence, it always takes value –1; in the case of independence, it takes value 0.

In [4], we have focused on examining properties of the dependence factor as a mea-
sure of dependence between rule’s constituents/events. Our new main contribution in
this paper is: (1) the examination of the dependence factor as an interestingness mea-
sure with respect to the interestingness postulates formulated by Piatetsky-Shapiro
in [7], and (2) the derivation of the relationship among the dependence factor for X
and Y , with those for X̄ and Y , X and Ȳ , as well as X̄ and Ȳ , respectively.

Our paper has the following layout. In Sect. 2, we briefly recall basic notions
of association rules, their basic measures (support, confidence) as well as lift and
certainty factor. In Sect. 3, we recall maximal and minimal values of examined mea-
sures in the case when probabilities of rule’s constituents are fixed, as shown in [4]. In
Sect. 4, we recall the definition and properties of the dependence factor after [4]. Our
new contribution is presented in Sects. 5 and 6. In Sect. 5, we examine the usefulness
of the dependence factor as an interestingness measure, while in Sect. 6, we identify
the relationship between the dependence factors for events and their complements.
Section 7 concludes our work.

2 Basic Notions and Properties

In this section, we recall the notion of association rules after [1].

Definition 1 Let I = {i1, i2, . . . , im} be a set of distinct literals, called items (e.g.
products, features, symptoms). Any subset X of the set I is called an itemset. A
transaction database is denoted by D and is defined as a set of itemsets. Each
itemset T in D is a transaction. An association rule is an expression associating two
itemsets:

X → Y, where Ø �= Y ⊆ I and X ⊆ I\Y.

Itemsets and association rules are typically characterized by support and confi-
dence, which are simple statistical parameters.

Definition 2 Support of an itemset X is denoted by sup(X) and is defined as the
number of transactions in D that contain X ; that is

sup(X) = |{T ∈ D |X ⊆ T }|.

Support of a rule X → Y is denoted by sup(X → Y ) and is defined as the support
of X ∪ Y ; that is,
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sup(X → Y ) = sup(X ∪ Y ).

Clearly, the probability of the event that itemset X occurs in a transaction equals
sup(X)/|D |, while the probability of the event that both X and Y occur in a transaction
equals sup(X ∪ Y )/|D|. In the remainder, the former probability will be denoted by
P(X), while the latter by P(XY).

Definition 3 The confidence of an association rule X → Y is denoted by conf (X →
Y ) and is defined as the conditional probability that Y occurs in a transaction provided
X occurs in the transaction; that is:

conf(X → Y ) = sup(X → Y )

sup(X)
= P(XY )

P(X)
.

A large amount of research was devoted to strong association rules understood
as those association rules the supports and confidences of which exceed user-defined
support threshold and confidence threshold, respectively. However, it has been argued
in the literature that these two measures are not sufficient to express different interest-
ingness, usefulness or unexpectedness aspects of association rules [3, 5–8, 10–12].
In fact, a number of such measures of association rules was proposed (see e.g. [3,
5–8, 10–12]. Among them very popular measures are lift [2] and certainty factor
[9].

Definition 4 The lift of an association rule X → Y is denoted by lift(X → Y )

and is defined as the ratio of the conditional probability of the occurrence of Y in a
transaction given X occurs there to the probability of the occurrence of Y ; that is:

lift(X → Y ) = con f (X → Y )

P(Y )
.

Lift may be also defined in an equivalent way in terms of probabilities only:

Property 1

lift(X → Y ) = P(XY )

P(X) × P(Y )
.

Definition 5 The certainty factor of an association rule X → Y is denoted by
cf(X → Y ) and is defined as the degree to which the probability of the occurrence
of Y in a transaction can change when X occurs there as follows:

c f (X → Y ) =

⎧

⎪⎨

⎪⎩

con f (X→Y )−P(Y )
1−P(Y )

if con f (X → Y ) > P(Y ),
0 if con f (X → Y ) = P(Y ),
− P(Y )−con f (X→Y )

P(Y )−0 if con f (X → Y ) < P(Y ).

The definition of the certainty factor is based on the assumption that the probability
of the occurrence of Y in a transaction given X occurs there (conf (X → Y )) can
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0 P(Y ) conf(X→Y)   1 0 conf(X→Y ) P(Y ) 1

Fig. 1 Calculating the absolute value of the certainty factor as the ratio of the lengths of respective
intervals when conf (X → Y ) > P(Y ) (on the left-hand side) and when conf (X → Y ) < P(Y )

(on the right-hand side)

be increased from P(Y ) up to 1 and decreased from P(Y ) down to 0. In Fig. 1, we
visualize the meaning of the absolute value of the certainty factor as the ratio of the
lengths of respective intervals.

As shown in Property 2, the certainty factor can be expressed equivalently in terms
of unconditional probabilities (by multiplying the numerator and denominator of the
formula in Definition 5 by P(X)) or lift (by dividing the numerator and denominator
of the original cf formula by P(Y )).

Property 2

(a) c f (X → Y ) =

⎧

⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
P(X)−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),

0 if P(XY ) = P(X) × P(Y ),

− P(X)×P(Y )−P(XY )
P(X)×P(Y )−0 if P(XY ) < P(X) × P(Y ).

(b) c f (X → Y ) =

⎧

⎪⎪⎨

⎪⎪⎩

li f t (X→Y )−1
1

P(Y )
−1

if li f t (X → Y ) > 1,

0 if li f t (X → Y ) = 1,

− 1−li f t (X→Y )
1−0 if li f t (X → Y ) < 1.

Both lift and certainty factor are related to the notion of (in)dependence of events,
where two events are treated as independent if the product of the probabilities of their
occurrences equals the probability that the two events co-occur. Otherwise, they are
regarded as dependent. Note that this notion of dependence does not indicate which
event is a reason of the other. However, it allows formulating whether the dependence
between events is positive or negative in the case when the events are dependent on
each other.

Definition 6 X and Y are:

• independent if P(XY) = P(X) × P(Y ),
• dependent positively if P(XY) > P(X) × P(Y ),
• dependent negatively if P(XY) < P(X) × P(Y ).

In Table 1, we provide equivalent conditions in terms of P , conf , lift and cf for
independence, positive dependence and negative dependence, respectively, between
two itemsets.

In general, one may distinguish between symmetric (two direction) measures of
association rules and asymmetric (one direction) ones.
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Table 1 Conditions for independence, positive dependence and negative dependence

(In)dependence (In)dependence
condition

Equivalent conditions in
terms of measures for
X → Y

Equivalent conditions in
terms of measures for
Y → X

Y and X are dependent
positively

P(XY) >
P(X) × P(Y )

conf (X → Y ) > P(Y )

lift(X → Y ) > 1
cf (X → Y ) > 0

conf (Y → X) > P(X)

lift(Y → X) > 1
cf (Y → X) > 0

Y and Xare independent P(XY) =
P(X) × P(Y )

conf (X → Y ) = P(Y )

lift(X → Y ) = 1
cf(X → Y ) = 0

conf (Y → X) = P(X)

lift(Y → X) = 1
cf(Y → X) = 0

Y and Xare dependent
negatively

P(XY) <
P(X) × P(Y )

conf (X → Y ) < P(Y )

lift(X → Y ) < 1
cf(X → Y ) < 0

conf (Y → X) < P(X)

lift(Y → X) < 1
cf(Y → X) < 0

Definition 7 A measure m is called symmetric (two direction) if m(X → Y ) =
m(Y → X) for any X and Y. Otherwise, it is called an asymmetric (one direction)
measure.

Property 3

(a) conf(X → Y ) = conf(Y → X) is not guaranteed to hold.
(b) lift(X → Y ) = lift(Y → X).
(c) cf(X → Y ) = cf(Y → X) is not guaranteed to hold if conf(X → Y ) > P(Y ).
(d) cf(X → Y ) = cf(Y → X) if conf(X → Y ) ≤ P(Y ).

As follows from Property 3, conf is an asymmetric measure and lift is a symmetric
measure. On the other hand, we observe that strangely cf has a mixed nature—
asymmetric for positive dependences and symmetric for negative dependences and
independences. This observation provoked us to revisit the definition of cf and to
propose its modification in [4]. When defining the dependence factor there, we took
into account the fact that in some circumstances it may be infeasible to increase
the probability of the occurrence of Y in a transaction under the presence of X
(conf (X → Y )) from P(Y ) up to 1 as well as it may be infeasible to decrease it from
P(Y ) down to 0.

3 Maximal and Minimal Values of Rule Measures

In this section, we first recall global maximal and minimal values of rule measures
(Table 2). Next, following [4], we recall maximal and minimal values of rule measures
for given values of P(X) and P(Y ).

In the remainder of the paper, we denote maximal probability and minimal probability
of the co-occurrence of X and Y given P(X) and P(Y ) are fixed by max_P(XY |P(X),P(Y ))

and min_P(XY |P(X),P(Y )), respectively. Analogously, maximal confidence and minimal
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Table 2 Global maximal and minimal values of rule measures

Measure Max Min

P(XY) 1 0

conf (X → Y ) 1 0

lift(X → Y ) ∞ 0

cf(X → Y ) 1 if Y depends on X positively −1 if Y depends on X
negatively

confidence (maximal lift, minimal lift, maximal certainty factor, minimal certainty factor)
of X → Y given P(X) and P(Y ) are fixed are denoted by max_conf (X → Y |P(X),P(Y ))

and min_conf (X → Y |P(X),P(Y )) (max_lift(X → Y |P(X),P(Y )), min_lift(X →
Y |P(X),P(Y )), max_cf (X → Y |P(X),P(Y )), min_cf (X → Y |P(X),P(Y )), respectively.

Property 4

(a) max_conf (X → Y |P(X),P(Y)) = max_P(XY |P(X),P(Y))
P(X)

(b) min_conf (X → Y |P(X),P(Y)) = min_P(XY |P(X),P(Y))
P(X)

(c) max_lift(X → Y |P(X),P(Y)) = max_conf (XY |P(X),P(Y))
P(Y) = max_P(XY |P(X),P(Y))

P(X)×P(Y)

(d) min_lift(X → Y |P(X),P(Y)) = min_conf (XY |P(X),P(Y))
P(Y) = min_P(XY |P(X),P(Y))

P(X)×P(Y)

(e) max_cf (X → Y |P(X),P(Y)) = max_conf (X→Y |P(X),P(Y))−P(Y)
1−P(Y)

= max_P(XY |P(X),P(Y ))−P(X)×P(Y )

P(X)−P(X)×P(Y )
= max_li f t (XY |P(X),P(Y ))−1

1
P(Y )

−1

(f) min_cf(X → Y |P(X),P(Y )) = − P(Y )−min_con f (X→Y |P(X),P(Y ))

P(Y )−0

= − P(X)×P(Y )−min_P(XY |P(X),P(Y ))

P(X)×P(Y )−0 = − 1−min_li f t (XY |P(X),P(Y ))

1−0

In Proposition 1, we show how to calculate min_P(XY |P(X),P(Y )) and max_P(XY |P(X),P(Y )).
We note that neither max_P(XY |P(X),P(Y )) necessarily equals 1 nor min_P(XY |P(X),P(Y ))

necessarily equals 0. Figure 2 illustrates this.

Proposition 1

(a) max_P(XY |P(X),P(Y )) = min{P(X), P(Y )}
(b) min_P(XY |P(X),P(Y )) =

{

0 if P(X) + P(Y ) ≤ 1
P(X) + P(Y ) − 1 if P(X) + P(Y ) > 1

= max{0, P(X) + P(Y ) − 1}
The next proposition follows from Property 4 and Proposition 1.

Proposition 2

(a) max_conf (X → Y |P(X),P(Y )) = min{P(X),P(Y )}
P(X)

=
{

1 if P(X) ≤ P(Y ),
P(Y )
P(X)

if P(Y ) < P(X).
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X Y X Y X Y
x x x x
x x x x
x x x x

x x
x x x 
x x

(a) (b) (c)

Fig. 2 a max_P(XY |P(X),P(Y )) = min{P(X), P(Y )} = min
{ 3

6 ,
2
6

} = 2
6 . b

min_P(XY |P(X),P(Y )) = 0 if P(X) + P(Y ) ≤ 1. c min_P(XY |P(X),P(Y )) = P(X) + P(Y ) − 1 =
5
6 + 4

6 − 1 = 3
6 if P(X) + P(Y ) > 1

(b) min_conf (X → Y |P(X),P(Y )) = max{0,P(X)+P(Y )−1}
P(X)

=
{

0 if P(X) + P(Y ) ≤ 1,
P(X)+P(Y )−1

P(X)
if P(X) + P(Y ) > 1.

(c) max_lift(X → Y |P(X),P(Y )) = min{P(X),P(Y )}
P(X)×P(Y )

= 1
max{P(X),P(Y )} .

(d) min_lift(X → Y |P(X),P(Y )) = max{0,P(X)+P(Y )−1}
P(X)×P(Y )

=
{

0 if P(X) + P(Y ) ≤ 1,
P(X)+P(Y )−1

P(X)×P(Y )
if P(X) + P(Y ) > 1.

(e) max_cf (X → Y |P(X),P(Y )) = min{P(X),P(Y )}−P(X)×P(Y )
P(X)−P(X)×P(Y )

=
1

max{P(X),P(Y )}−1
1

P(Y )
−1

=
⎧

⎨

⎩

1 if P(X) ≤ P(Y ),
1

P(X)
−1

1
P(Y )

−1
if P(X) > P(Y ).

(f) min_cf (X → Y |P(X),P(Y )) = − P(X)×P(Y )−max{0,P(X)+P(Y )−1}
P(X)×P(Y )−0

= max{0,P(X)+P(Y )−1}
P(X)×P(Y )

− 1 =
{ −1 if P(X) + P(Y ) ≤ 1

P(X)+P(Y )−1
P(X)×P(Y )

− 1 if P(X) + P(Y ) > 1.

In Table 3, we summarize real achievable maximal and minimal values of P(XY),
conf (X → Y ), lift(X → Y ) and cf(X → Y ) for given values of P(X) and P(Y ).

4 Dependence Factor

In this section, we recall the definition of the dependence factor of a rule X → Y ,
which we offered in [4] as a modification of the certainty factor. Unlike the certainty
factor, it is based on real maximal and minimal values of conf (X → Y ) for given
values of P(X) and P(Y ). Then we present the properties of this measure.
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Table 3 Real achievable maximal and minimal values of P(XY), conf (X → Y ), lift(X → Y ) and
cf(X → Y ) for given values of P(X) and P(Y )

Measure Max for given values of P(X) and
P(Y )

Min for given values of P(X) and
P(Y )

P(XY) min {P(X), P(Y )} max {0, P(X) + P(Y ) − 1}
conf (X → Y )

min{P(X),P(Y )}
P(X)

max{0,P(X)+P(Y )−1}
P(X)

lift(X → Y )
min{P(X),P(Y )}

P(X)×P(Y )
max{0,P(X)+P(Y )−1}

P(X)×P(Y )

cf(X → Y )
min{P(X),P(Y )}−P(X)×P(Y )

P(X)−P(X)×P(Y )
if Y

depends on X positively
− P(X)×P(Y )−max{0,P(X)+P(Y )−1}

P(X)×P(Y )−0 if
Y depends on X negatively

Definition 8 The dependence factor of X → Y is denoted by df(X → Y ) and is
defined as the ratio of the actual change of the probability of the occurrence of Y in
a transaction given X occurs there to its maximal feasible change as follows:

d f (X → Y ) =

⎧

⎪⎨

⎪⎩

con f (X→Y )−P(Y )
max_con f (X→Y | P(X ), P(Y ))−P(Y )

if con f (X → Y ) > P(Y ),

0 if con f (X → Y ) = P(Y ),
− P(Y )−con f (X→Y )

P(Y )−min_con f (X→Y |P(X ), P(Y ))
if con f (X → Y ) < P(Y ).

The dependence factor not only determines by how much the probability of the
occurrence of Y in a transaction changes under the presence of X with respect to by
how much it could have changed, but also it determines by how much the probability
of the occurrence of X and Y in a transaction differs from the probability of their
common occurrence under independence assumption with respect to by how much
it could have been different (see Proposition 3a). In addition, the dependence factor
determines by how much the value of the lift of a rule X → Y differs from the value
1 (that is, from the value indicating independence of rule’s constituents in terms of
the lift measure) with respect to by how much it could have been be different (see
Proposition 3b).

Proposition 3

(a) d f (X → Y ) =

⎧

⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
max_P(XY |P(X),P(Y ))−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),

0 if P(XY ) = P(X) × P(Y ),
− P(X)×P(Y )−P(XY )

P(X)×P(Y )−min_P(XY |P(X),P(Y ))
if P(XY ) < P(X) × P(Y ).

(b) d f (X → Y ) =

⎧

⎪⎨

⎪⎩

li f t (X→Y )−1
max_li f t (X→Y |P(X),P(Y ))−1 if li f t (X → Y ) > 1,
0 if li f t (X → Y ) = 1,
− 1−li f t (X→Y )

1−min_li f t (X→Y |P(X),P(Y ))
if li f t (X → Y ) < 1.

Theorem 1

(a) If P(XY) > P(X) × P(Y ), then df(X → Y ) ∈ (0, 1].
(b) If P(XY) = P(X) × P(Y ), then df(X → Y ) = 0.
(c) If P(XY) < P(X) × P(Y ), then df(X → Y ) ∈ [−1, 0).

Proof Follows from Proposition 3a. �
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Table 4 Maximal and minimal values of df(X → Y ) for any given values of P(X) and P(Y )

Measure Max for any given values of
P(X) and P(Y )

Min for any given values of
P(X) and P(Y )

df(X → Y ) 1 if X and Y are dependent
positively

–1
if X and Y are dependent
negatively

As follows from Proposition 3a, the dependence factor is a symmetric measure.

Theorem 2 df(X → Y ) = df (Y → X).

Based on Proposition 1 and 3a, we will express the dependence factor df(X → Y )

in terms of P(XY), P(X) and P(Y ), which will be useful for examining properties
of this measure.

Theorem 3

d f (X → Y ) =

⎧

⎪⎨

⎪⎩

P(XY )−P(X)×P(Y )
min{P(X),P(Y )}−P(X)×P(Y )

if P(XY ) > P(X) × P(Y ),
0 if P(XY ) = P(X) × P(Y ),
− P(X)×P(Y )−P(XY )

P(X)×P(Y )−max{0,P(X)+P(Y )−1} if P(XY ) < P(X) × P(Y ).

One may easily note that df(X → Y ) reaches 1 when P(XY) is maximal for given
values of P(X) and P(Y ); that is, when P(XY) = min {P(X), P(Y )} or, in other
words, when the dependence between X and Y is strongest possible positive for
given values of P(X) and P(Y ). Analogously, df(X → Y ) reaches –1 when P(XY)
is minimal for given values of P(X) and P(Y ); that is, when P(XY) = max {0, P(X)+
P(Y ) − 1} or, in other words, when the dependence between X and Y is strongest
possible negative for these probability values (Table 4).

Based on Theorem 3 and Property 2a, one may derive relations between the
dependence factor and the certainty factor as follows:

Theorem 4

(a) df (X → Y ) ≥ cf (X → Y ) if P(XY) > P(X) × P(Y ),
(b) df (X → Y ) = cf (X → Y ) = 0 if P(XY) = P(X) × P(Y ),
(c) df (X → Y ) ≤ cf (X → Y ) if P(XY) < P(X) × P(Y ),
(d) df (X → Y ) = max{cf (X → Y ), cf (Y → X)} if P(XY) > P(X) × P(Y ),
(e) df (X → Y ) = cf (X → Y ) if P(XY) < P(X) × P(Y )

and P(X) + P(Y ) < 1,
(f) df (X → Y ) < cf (X → Y ) if P(XY) < P(X) × P(Y )

and P(X) + P(Y ) > 1.

Tables 5–6 illustrate the findings expressed as Theorem 4. In particular, Table 5 shows
values of lift(X → Y ), cf(X → Y ) and df(X → Y ) for P(X) = 0.6 and P(Y ) = 0.3;
that is, in the case when P(X) + P(Y ) ≤ 1. For these values of P(X) and P(Y ),
the maximal possible value for P(XY) equals min {P(X), P(Y )} = 0.3. The fact of
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Table 5 Comparison of values of lift(X → Y ), cf(X → Y ) and df(X → Y ) when
P(X) + P(Y ) ≤ 1

P(X) P(Y ) P(XY) P(X) ×
P(Y )

lift(X →
Y )

cf(X →
Y )

cf(Y →
X)

df (X →
Y ) =
df (Y →
X)

0.60 0.30 0.30 0.18 1.67 0.29 1.00 1.00

0.60 0.30 0.25 0.18 1.39 0.17 0.58 0.58

0.60 0.30 0.20 0.18 1.11 0.05 0.17 0.17

0.60 0.30 0.18 0.18 1.00 0.00 0.00 0.00

0.60 0.30 0.15 0.18 0.83 –0.17 –0.17 –0.17

0.60 0.30 0.10 0.18 0.56 –0.44 –0.44 –0.44

0.60 0.30 0.00 0.18 0.00 –1.00 –1.00 –1.00

Table 6 Comparison of values of lift(X → Y ), cf(X → Y ) and df(X → Y ) when
P(X) + P(Y ) > 1

P(X) P(Y ) P(XY) P(X) ×
P(Y )

lift(X →
Y )

cf(X →
Y )

cf(Y →
X)

df (X →
Y ) =
df (Y →
X)

0.80 0.60 0.60 0.48 1.25 0.38 1.00 1.00

0.80 0.60 0.55 0.48 1.15 0.22 0.58 0.58

0.80 0.60 0.50 0.48 1.04 0.06 0.17 0.17

0.80 0.60 0.48 0.48 1.00 0.00 0.00 0.00

0.80 0.60 0.45 0.48 0.94 –0.06 –0.06 –0.37

0.80 0.60 0.40 0.48 0.83 –0.17 –0.17 –1.00

reaching the maximal possible value by P(XY) for the given values of P(X) and
P(Y ) is reflected by the value of df(X → Y ) = 1, which means that the dependence
between X and Y is strongest possible positive. On the other hand, cf(X → Y )

= 0.29 does not reflect this fact. In general, the real dependence of Y on X may
be underestimated when expressed in terms of cf(X → Y ). Also the value 1.67 of
lift(X → Y ) itself does not reflect the strong positive dependence between X and Y
in the considered case in the view that the lift may reach very large values (close to
infinity) in general.
Table 6 shows values of lift(X → Y ), cf(X → Y ) and df(X → Y ) for P(X) = 0.8
and P(Y ) = 0.6; that is, in the case when P(X) + P(Y ) > 1. For these values of
P(X) and P(Y ), the minimal possible value of P(XY) equals P(X) + P(Y ) − 1 =
0.4. Then the dependence between X and Y is strongest possible negative. This is
reflected by the value of df(X → Y ) = −1. On the other hand, cf(X → Y ) = –0.17
does not reflect this fact by itself. Also the value 0.83 of lift(X → Y ) itself does not
reflect the strong negative dependence between X and Y as it is positioned closer to
the value 1 characteristic for independence rather than to the value 0.
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5 Dependence Factor as an Interestingness Measure

In [7], Piatetsky-Shapiro postulated that a good interestingness measure of an asso-
ciation rules X → Y should fulfill the following conditions:

1. be equal to 0 if X and Y are independent; that is, if P(XY) = P(X) × P(Y ),
2. be increasing with respect to P(XY) given P(X) and P(Y ) are fixed,
3. be decreasing with respect to P(X) given P(XY) and P(Y ) are fixed or be

decreasing with respect to P(Y ) given P(XY) and P(X) are fixed.

According to [7], the following rule interest measure ri(X → Y ) = |D |×[P(XY)−
P(X)× P(Y )] fulfills the above postulates. Nevertheless, we notice that this measure
does not always satisfy the third postulate. Beneath we present the case in which the
ri measure violates this postulate:

Let P(Y ) = 0. Then, P(XY) = 0. In this case, ri(X → Y ) = 0 for each value of
P(X) in the interval [0, 1]. Thus, ri(X → Y ) is not guaranteed to be decreasing with
respect to P(X) given P(XY) and P(Y ) are fixed. Analogically, we would derive
that ri(X → Y ) = 0 for each value of P(Y ) in the interval [0, 1] if P(X) = 0. So,
ri(X → Y ) is not guaranteed to be decreasing with respect to P(X) given P(XY)
and P(Y ) are fixed. As a result, ri(X → Y ) does not fulfill the third postulate if
P(X) or P(Y ) equals 0.

In fact, the novelty(X → Y )measure, which was defined in [5] as [P(XY)–P(X)×
P(Y )], violates the third postulate in the same way as ri(X → Y ).

Now, we will focus on examining if the dependence factor fulfills the postulates
of rule interestingness. We start with formulating the properties of probabilities of
events which will be useful in our examination.

Proposition 4

(a) If P(X) = 0 or P(Y ) = 0 or P(X) = 1 or P(Y ) = 1, then P(XY) =
P(X) × P(Y ).

(b) If P(XY) �= P(X) × P(Y ), then P(X), P(Y ) ∈ (0, 1).

Proof Ad (a) Trivial.

Ad (b) Follows from Proposition 4a. �

Theorem 5 Let X → Y be an association rule.

(a) df(X → Y ) = 0 iff P(XY) = P(X) × P(Y ).
(b) df is increasing with respect to P(XY) given P(X) and P(Y ) are fixed.
(c) df is non-increasing with respect to P(X) given P(XY) and P(Y ) are fixed. In

addition, df is decreasing with respect to P(X) given P(XY) and P(Y ) are fixed,
P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0.

(d) df is non-increasing with respect to P(Y ) given P(XY) and P(X) are fixed.
In addition, df is decreasing with respect to P(Y ) given P(XY) and P(X) are
fixed,P(X) /∈ {0, P(XY), 1} and P(XY) �= 0.



216 M. Kryszkiewicz

Proof Ad (a, b) Follow trivially from Theorems 1 and 3.

Ad (c) Let us first determine the derivative df ′(X → Y ) of df(X → Y ) as a function
of variable P(X) based on Theorem 3 in all possible cases when P(XY) �= P(X) ×
P(Y ). We will use the fact that in such cases P(X), P(Y ) ∈ (0, 1) (by Proposition
4b).

Case P(XY) > P(X) × P(Y ) and min{P(X), P(Y )} = P(X).
Then P(XY) > P(X) × P(Y ) > 0 and
df ′(X → Y ) = P(XY )×(1−P(Y ))

(P(X)−P(X)×P(Y ))2 < 0.

Case P(XY) > P(X) × P(Y ) and min{P(X), P(Y )} = P(Y ).
Then
df ′(X → Y ) = P(Y )×(P(XY )−P(Y ))

(P(Y )−P(X)×P(Y ))2 .

Hence:

• If P(XY) = P(Y ), then df ′(X → Y ) = 0.
• If P(XY) �= P(Y ), then P(XY) < P(Y ), so df ′(X → Y ) < 0.

Case P(XY) < P(X) × P(Y ) and max{0, P(X) + P(Y ) − 1} = 0.
Then
df ′(X → Y ) = P XY×(P(Y )

(P(X)×P(Y ))2 .

Hence:

• If P(XY) = 0, then df ′(X → Y ) = 0.
• If P(XY) �= 0, then df ′(X → Y ) < 0.

Case P(XY) < P(X)× P(Y ) and max{0, P(X)+ P(Y )− 1} = P(X)+ P(Y )− 1.
Then
df ′(X → Y ) = (1−P(Y ))×(P(XY )−P(Y ))

(P(X)×P(Y )−(P(X)+P(Y )−1))2 = (1−P(Y ))×(P(XY )−P(Y ))

((1−P(X))×(1−P(Y )))2
.

Hence:

• If P(XY) = P(Y ), then df ′(X → Y ) = 0.
• If P(XY) �= P(Y ), then P(XY) < P(Y ), so df ′(X → Y ) < 0.

Now, let us consider the case when P(XY) = P(X)× P(Y ) and P(Y ) ∈ (0, 1). Then
P(X) may take only one value, namely P(XY )

P(Y )
.

Finally, we note that for P(Y ) = 0 as well as for P(Y ) = 1, P(XY) = P(X)× P(Y )

(by Proposition 4a), and so, df(X → Y ) = 0 for each value of P(X) in the interval
[0, 1].

Thus, df is a non-increasing function with respect to P(X) given P(XY) and P(Y )

are fixed. However, if P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0, then df is a decreasing
function with respect to P(X) given P(XY) and P(Y ) are fixed.
Ad (d) Analogous to the proof of Theorem 5c. �
Corollary 1 df(X → Y ) fulfills the first and second Piatetsky-Shapiro postulates.
In addition, it fulfills the third Piatetsky-Shapiro postulate if P(Y ) /∈ {0, P(XY), 1}
and P(XY) �= 0 or if P(X) /∈ {0, P(XY), 1} and P(XY) �= 0.

Proof By Theorem 5. �
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6 Dependence Factors for Events and Their Complements

In this section, we examine the relationship between the dependence factors for
events and their complements. We start with determining extreme values of joint
probabilities of events and their complements. Next, we prove that the character
of the (in)dependence between X and Y determines uniquely the character of the
(in)dependence between X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. Even-
tually, we derive the relationship among the dependence factor for X and Y , with
those for X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively.

Proposition 5

(a) max_P(XY |P(X),P(Y )) = 1 iff P(X) = P(Y ) = 1.
(b) min_P(XY |P(X),P(Y )) = 0 iff P(X) + P(Y ) ≤ 1.
(c) P(X) + P(Y ) ≤ 1 iff (1 − P(X)) + (1 − P(Y )) ≥ 1 iff P(X̄) + P(Ȳ ) ≥ 1.

Proof Ad (a) Follows from Proposition 1a.
Ad (b) Follows from Proposition 1b.
Ad (c) Trivial. �

Proposition 6

(a) max_P(X̄ Ȳ |P(X̄),P(Ȳ )) = min{P(X̄), P(Ȳ )} = min{1 − P(X),

1 − P(Y )} = 1 − max{P(X), P(Y )}
(b) min_P(X̄ Ȳ |P(X̄),P(Ȳ )) = max{0, P(X̄) + P(Ȳ ) − 1} =

max{0, (1 − P(X)) + (1 − P(Y )) − 1} = max{0, 1 − P(X) − P(Y )}
(c) max_P(XȲ |P(X),P(Ȳ )) = min{P(X), P(Ȳ )} = min{P(X), 1 − P(Y )}
(d) min_P(XȲ |P(X),P(Ȳ )) = max{0, P(X) + P(Ȳ ) − 1} =

max{0, P(X) + (1 − P(Y )) − 1} = max{0, P(X) − P(Y )}
(e) max_P(X̄Y |P(X̄),P(Y )) = min{P(X̄), P(Y )} = min{1 − P(X), P(Y )}
(f) min_P(X̄Y |P(X̄),P(Y )) = max{0, P(X̄) + P(Y ) − 1} =

max{0, (1 − P(X)) + P(Y ) − 1} = max{0, P(Y ) − P(X)}
Proof Ad (a, c, e) Follows from Proposition 1a, saying that max_P(VZ|P(V ),P(Z)) =
min{P(V ), P(Z)}.
Ad (b, d, f) Follows Proposition 1b, saying that min_P(VZ|P(V ),P(Z)) = max{0,
P(V ) + P(Z) − 1}. �

Lemma 1

(a) P(XY) > P(X)× P(Y ) iff P(X̄ Ȳ ) > P(X̄)× P(Ȳ ) iff P(XȲ ) < P(X)× P(Ȳ )

iff P(X̄Y ) < P(X̄) × P(Y ).
(b) P(XY) = P(X)× P(Y ) iff P(X̄ Ȳ ) = P(X̄)× P(Ȳ ) iff P(XȲ ) = P(X)× P(Ȳ )

iff P(X̄Y ) = P(X̄) × P(Y ).
(c) P(XY) < P(X)× P(Y ) iff P(X̄ Ȳ ) < P(X̄)× P(Ȳ ) iff P(XȲ ) > P(X)× P(Ȳ )

iff P(X̄Y ) > P(X̄) × P(Y ).

Proof We will proof the proposition using the following equations:
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• P(X̄) = 1 − P(X), P(Ȳ ) = 1 − P(Y ),
• P(X̄Y ) = P(Y ) − P(XY), P(XȲ ) = P(X) − P(XY),
• P(X̄ Ȳ ) = P(X̄) − P(X̄Y ) = 1 − P(X) − P(Y ) + P(XY).

Ad (a)

• P(X̄ Ȳ ) > P(X̄)×P(Ȳ ) iff 1−P(X)−P(Y )+P(XY) > (1−P(X))×(1−P(Y ))

iff P(XY) > P(X) × P(Y ).
• P(XȲ ) < P(X)× P(Ȳ ) iff P(X)− P(XY) < P(X)× (1 − P(Y )) iff P(XY) >

P(X) × P(Y ).
• P(X̄Y ) < P(X̄)× P(Y ) iff P(Y )− P(XY) < (1 − P(X))× P(Y ) iff P(XY) >

P(X) × P(Y ).

Ad (b, c) Analogous to the proof of Lemma 1a. �

Proposition 7

(a) X and Y are dependent positively iff X̄ and Ȳ are dependent positively iff X and
Ȳ are dependent negatively iff X̄ and Y are dependent negatively.

(b) X and Y are independent iff X̄ and Ȳ are independent iff X and Ȳ are independent
iff X̄ and Y are independent.

(c) X and Y are dependent negatively iff X̄ and Ȳ are dependent negatively iff X
and Ȳ are dependent positively iff X̄ and Y are dependent positively.

Proof Follows from Lemma 1. �

Lemma 2 (Proof in Appendix)

(a) df (X → Y ) = df (X̄ → Ȳ )

(b) df (X → Ȳ ) = df (X̄ → Y )

(c) df (X → Ȳ ) = −df (X → Y )

Theorem 6 follows immediately from Lemma 2.

Theorem 6

df(X → Y ) = df (X̄ → Ȳ ) = −df (X → Ȳ ) = −df (X̄ → Y ).

Corollary 2

(a) df (X → Y ) reaches maximum iff df (X̄ → Ȳ ) reaches maximum iff df (X → Ȳ )

reaches minimum iff df (X̄ → Y ) reaches minimum.
(b) df (X → Y ) reaches minimum iff df (X̄ → Ȳ ) reaches minimum iff df (X → Ȳ )

reaches maximum iff df (X̄ → Y ) reaches maximum.
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7 Conclusions

In [4], we have offered the dependence factor as a new measure for evaluating the
strength of dependence between rules’ constituents. Unlike in the case of the certainty
factor, when defining the dependence factor, we took into account the fact that for a
given rule X → Y , the minimal conditional probability of the occurrence of Y given
X may be greater than 0, while its maximal possible value may less than 1. df(X →
Y ) always reaches 1 when the dependence between X and Y is strongest possible
positive, –1 when the dependence between X and Y is strongest possible negative,
and 0 if X and Y are independent. Unlike the dependence factor, the certainty factor
itself as well as lift are misleading in expressing the strength of the dependence.
In particular, if there is strongest possible positive dependence between X and Y ,
cf(X → Y ) is not guaranteed to reach its global maximum value 1 (in fact, its
value can be quite close to 0 that suggests independence). On the other hand, if
there is strongest possible negative dependence between X and Y , cf(X → Y ) is not
guaranteed to reach its global minimum value –1 (in fact, its value can be quite close
to 0). Similarly, lift may reach values close to the value 1 (that means independence
in terms of this measure) even in the cases when the dependence between X and
Y is strongest possible positive or strongest possible negative. Thus, we find the
dependence factor more accurate measure of a rule constituents’ dependence than
the certainty factor and lift.

In this paper, we have: (1) examined the dependence factor as an interesting-
ness measure with respect to the interestingness postulates formulated by Piatetsky-
Shapiro in [7], and (2) derived the relationship among the dependence factor for X and
Y with those for X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. We have proved
that the dependence factor df(X → Y ) fulfills all Piatetsky-Shapiro interestingness
postulates if P(Y ) /∈ {0, P(XY), 1} and P(XY) �= 0 or if P(X) /∈ {0, P(XY), 1}
and P(XY) �= 0. Otherwise, it fulfills the first two postulates entirely and the third
postulate partially as df(X → Y ) is a non-increasing function rather than decreasing
with respect to the marginal probability of an event given the joint probability and the
marginal probability of the other event are fixed. On the other hand, it can be observed
that several interestingness measures of association rules proposed and/or discussed
in the literature does not fulfill all interestingness postulates from [7], including the
rule interest ri [7] and novelty [5], which violate the third postulate for zero marginal
probabilities.

In this paper, we have found that the character of the (in)dependence between X
and Y determines uniquely the character (positive/negative) of the (in)dependence
between X̄ and Y, X and Ȳ , as well as X̄ and Ȳ , respectively. We have also found
that the absolute value of the dependence factors is the same for events and their
complements. We find this result justified as the marginal and joint probabilities of
events and all their complements depend uniquely on the triple of the probabilities
〈P(X), P(Y ), P(XY)〉.
Acknowledgments We wish to thank an anonymous reviewer for constructive comments, which
influenced the final version of this paper positively.
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Appendix

Proof of Lemma 2
In the proof, we will use the following equations:

• P(X̄) = 1 − P(X), P(Ȳ ) = 1 − P(Y ),
• P(X̄Y ) = P(Y ) − P(XY ), P(XȲ ) = P(X) − P(XY ),

• P(X̄ Ȳ ) = P(X̄) − P(X̄Y ) = 1 − P(X) − P(Y ) + P(XY).

Ad (a)

Case P(X̄ Ȳ ) > P(X̄) × P(Ȳ ):
This case is equivalent to the case when P(XY) > P(X)× P(Y ) (by Lemma 1a).

Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= P(X̄ Ȳ ) − P(X̄) × P(Ȳ )

max _P(X̄ Ȳ |P(X̄),P(Ȳ )) − P(X̄) × P(Ȳ )
= /* by Proposition 6a */

= (1 − P(X) − P(Y ) + P(XY )) − (1 − P(X)) × (1 − P(Y ))

(1 − max{P(X), P(Y )}) − (1 − P(X)) × (1 − P(Y ))

= P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= d f (X → Y ).

Case P(X̄ Ȳ ) = P(X̄) × P(Ȳ ):
This case is equivalent to the case when P(XY ) = P(X) × P(Y ) (by Lemma

1b). Then:
df (X̄ → Ȳ ) = /* by Proposition 3a */

= 0 = /* by Proposition 3a */

= df (X → Y ).

Case P(X̄ Ȳ ) < P(X̄) × P(Ȳ ) and P(X̄) + P(Ȳ ) ≤ 1:
This case is equivalent to the case when P(XY) < P(X)× P(Y ) (by Lemma 1c)

and P(X) + P(Y ) ≥ 1 (by Proposition 5c). Then:
df (X̄ → Ȳ ) = /* by Proposition 3a */

− P(X̄) × P(Ȳ ) − P(X̄ Ȳ )

P(X̄) × P(Ȳ ) − min _P(X̄ Ȳ |P(X̄),P(Ȳ ))
= /* by Proposition 6b */

= − (1 − P(X)) × (1 − P(Y )) − 1(−P(X) − P(Y ) + P(XY ))

(1 − P(X)) × (1 − P(Y )) − max{0, 1 − P(X), P(Y )}
= − P(X) × P(Y ) − P(XY )

(1 − P(X) − P(Y ) + P(X) × P(Y )) − (0)

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − (P(X) + P(Y ) − 1)



Dependence Factor as a Rule Evaluation Measure 221

= − P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= d f (X → Y ).

Case P(X̄ Ȳ ) < P(X̄) × P(Ȳ ) and P(X̄) + P(Ȳ ) > 1:
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) + P(Y ) < 1 (by Proposition 5c). Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= − P(X̄) × P(Ȳ ) − P(X̄ Ȳ )

P(X̄) × P(Ȳ ) − min _P(X̄ Ȳ |P(X̄),P(Ȳ ))
/* by Proposition 6b */

= − (1 − P(X)) × (1 − P(Y )) − (1 − P(X) − P(Y ) + P(XY ))

(1 − P(X)) × (1 − P(Y )) − max{0, 1 − P(X), P(Y )}
= − P(X) × P(Y ) − P(XY )

(1 − P(X) − P(Y ) + P(X) × P(Y )) − (1 − P(X) − P(Y ))

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − 0

= − P(X) × P(Y ) − P(XY )

(P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= d f (X → Y ).

Ad (b)
The proof is analogous to the proof of Lemma 1a.

Ad (c)

Case P(XȲ ) > P(X) × P(Ȳ ) and P(X) ≤ P(Ȳ ):
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) ≤ 1 − P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= P(XȲ ) − P(X) × P(Ȳ )

max _P(XȲ |P(X),P(Ȳ )) − P(X) × P(Ȳ )
= /* by Proposition 6c */

= (P(X) − P(XY )) − P(X) × (1 − P(Y ))

min{P(X), 1 − P(Y )} − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − 0

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= −d f (X → Y ).
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Case P(XȲ ) > P(X) × P(Ȳ ) and P(X) > P(Ȳ ).
This case is equivalent to the case when P(XY ) < P(X)× P(Y ) (by Lemma 1c)

and P(X) > 1 − P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= P(XȲ ) − P(X) × P(Ȳ )

max_P(XȲ |P(X),P(Ȳ )) − P(X) × P(Ȳ )
= /* by Proposition 6c */

= (P(X) − P(XY )) − P(X) × (1 − P(Y ))

min{P(X), 1 − P(Y )} − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

(1 − P(Y )) − P(X) × (1 − P(Y ))

= P(X) × P(Y ) − P(XY )

P(X) × P(Y ) − max{0, P(X) + P(Y ) − 1} = /* by Theorem 3 */

= −d f (X → Y ).

Case P(XȲ ) = P(X) × P(Ȳ ):
This case is equivalent to the case when P(XY ) = P(X) × P(Y ) (by Lemma

1b). Then:
d f (X̄ → Ȳ ) = /* by Proposition 3a */

= 0 = /* by Proposition 3a */

= −d f (X → Y ).

Case P(XȲ ) < P(X) × P(Ȳ ) and P(X) + P(Ȳ ) ≤ 1.
This case is equivalent to the case when P(XY ) > P(X)× P(Y ) (by Lemma 1a)

and P(X) ≤ P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */

= − P(X) × P(Ȳ ) − P(XȲ )

P(X) × P(Ȳ ) − min _P(XȲ |P(X),P(Ȳ ))
= /* by Proposition 6d */

= − P(X) × (1 − P(Y )) − (P(X) − P(XY ))

P(X) × (1 − P(Y )) − max{0, P(X) − P(Y )}
= − P(XY ) − P(X) × P(Y )

(P(X) − P(X) × P(Y )) − (0)

= − P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= −d f (X → Y ).

Case P(XȲ ) < P(X) × P(Ȳ ) and P(X) + P(Ȳ ) > 1.
This case is equivalent to the case when P(XY ) > P(X)× P(Y ) (by Lemma 1a)

and P(X) > P(Y ). Then:
d f (X → Ȳ ) = /* by Proposition 3a */
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= − P(X) × P(Ȳ ) − P(XȲ )

P(X) × P(Ȳ ) − min _P(XȲ |P(X),P(Ȳ ))
= /* by Proposition 6d */

= − P(X) × (1 − P(Y )) − (P(X) − P(XY ))

P(X) × (1 − P(Y )) − max{0, P(X) − P(Y )}
= − P(XY ) − P(X) × P(Y )

P(X) × (1 − P(Y )) − (P(X) − P(Y ))

= − P(XY ) − P(X) × P(Y )

P(Y ) − P(X) × P(Y )

= − P(XY ) − P(X) × P(Y )

min{P(X), P(Y )} − P(X) × P(Y )
= /* by Theorem 3 */

= −d f (X → Y ). �
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Recent Results on Nonparametric
Quantile Estimation in a Simulation Model

Adam Krzyżak

Abstract We present recent results on nonparametric estimation of a quantile of
distribution of Y given by a simulation model Y = m(X), where m : Rd → R is a
function which is costly to compute and X is aRd -valued random variable with given
density. We argue that importance sampling quantile estimate of m(X), based on a
suitable estimate mn of m achieves better rate of convergence than the estimate based
on order statistics alone. Similar results are given for Robbins-Monro type recursive
importance sampling and for quantile estimation based on surrogate model.

1 Introduction

In this paper we consider simulation model of a complex system described by

Y = m(X),

where X is aRd -valued random variable with density f : Rd → R and m : Rd → R

is an unknown function whose values may be computed at arbitrarily chosen design
points, incurring however high computation costs. Let

G(y) = P{Y ≤ y} = P{m(X) ≤ y} (1)

be the cumulative distribution function (cdf) of Y . For α ∈ (0, 1) we are interested
in estimating quantiles of the form

qα = inf{y ∈ R : G(y) ≥ α}
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using at most n evaluations of the function m. Here we assume that the density f of
X is known.

A simple idea is to estimate qα using an i.i.d. sample X1, . . . , Xn of X and to
compute the empirical cdf

Gm(X),n(y) = 1

n

n
∑

i=1

I{m(Xi )≤y} (2)

and to use the corresponding plug-in estimate

qα,n = inf{y ∈ R : Gm(X),n(y) ≥ α}. (3)

Set Yi = m(Xi ) (i = 1, . . . , n) and let Y1:n, . . . , Yn:n be the order statistics of
Y1, . . . , Yn , i.e., Y1:n, . . . , Yn:n is a permutation of Y1, . . . , Yn such that

Y1:n ≤ · · · ≤ Yn:n .

Since

qα,n = Y�nα�:n

is in fact an order statistic, the properties of this estimate can be studied using the
results from order statistics. In particular Theorem 8.5.1 in Arnold et al. [1] implies
that in case that m(X) has a density g which is continuous and positive at qα we have

√
n · g(qα) · Y�nα�:n − qα√

α · (1 − α)
→ N (0, 1) in distribution.

This implies

P
{

|q̄α,n − qα| >
cn√

n

}

→ 0 (n → ∞) (4)

whenever cn → ∞ (n → ∞).
In this paper we present a survey of our recent results on application of nonpara-

metric techniques to estimating qα , which lead to faster convergence rates than (4).
In particular we will discuss

• nonparametric quantile estimation using importance sampling
• recursive quantile estimation using Robbins-Monro type importance sampling
• nonparametric quantile estimation based on surrogate model.

Throughout this paper we use the following notation: N, N0, Z and R are the sets
of positive integers, nonnegative integers, integers and real numbers, respectively.
For a real number z we denote by 
z� and �z� the largest integer less than or equal to
z and the smallest integer larger than or equal to z, respectively. ‖x‖ is the Euclidean
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norm of x ∈ R
d , and the diameter of a set A ⊆ R

d is denoted by

diam(A) = sup {‖x − z‖ : x, z ∈ A} .

For f : Rd → R and A ⊆ R
d we set

‖ f ‖∞,A = sup
x∈A

| f (x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function
m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 α j = k the partial derivative ∂k m

∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣
∣
∣
∣

∂km

∂xα1
1 . . . ∂xαd

d

(x) − ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣
∣
∣
∣
≤ C · ‖x − z‖s

for all x, z ∈ R
d .

For nonnegative random variables Xn and Yn we say that Xn = OP(Yn) if

lim
c→∞ lim sup

n→∞
P(Xn > c · Yn) = 0.

The paper is organized as follows. In Sect. 2 we introduce importance sampling
and apply it to quantile estimation. Quantile estimation by recursive procedure of
Robbins-Monro type importance sampling is discussed in Sect. 3 and Monte Carlo
surrogate quantile estimates are considered in Sect. 4.

2 Nonparametric Quantile Estimation Using Importance
Sampling

In this section we apply importance sampling (IS) to obtain an estimate of qα which
converges faster to qα than order statistics. Our presentation is based on Kohler
et al. [31] where more detailed treatment of the problem at hand is given. Given a
sequence of independent and identically distributed random variables X, X1, X2, . . .

and a function φ : Rd → R the standard approach to estimating Eφ(X) is to use
sample averages

1

n

n
∑

i=1

φ(Xi ).

The goal of importance sampling is to improve estimation of Eφ(X), by using a new
random variable Z with a density h satisfying for all x ∈ R

d
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φ(x) · f (x) �= 0 ⇒ h(x) �= 0

and generating an i.i.d. sequence Z , Z1, Z2, . . . which is then used to estimate

E{φ(X)} = E
{

φ(Z) · f (Z)

h(Z)

}

by
1

n

n
∑

i=1

φ(Zi ) · f (Zi )

h(Zi )
, (5)

whereas we assume that 0
0 = 0. We choose h such that the variance of (5) is small

(see for instance Sect. 4.6 in Glasserman [18], Neddermayer [38] and the literature
cited therein).

Quantile estimation using importance sampling has been considered by Can-
namela et al. [6], Egloff and Leippold [16] and Morio [35]. The authors proposed
new estimates in variousmodels, however only Egloff and Leippold [16] investigated
consistency of their method. None of the papers analyzed the rates of convergence.

As m is costly to evaluate we replace it by a surrogate function which is cheap
to evaluate at arbitrary points and we use important sampling to sample it using
of cluster properties of the distribution of X . Such surrogate functions have been
considered in context of quadratic response surfaces by Kim and Na [25] and Das
and Zheng [8], in context of support vector machines by Hurtado [23], Deheeger and
Lemaire [10] and Bourinet et al. [5], in context of neural networks by Papadrakakis
and Lagaros [40], and in context of kriging and related concepts by Santner et al.
[45] (see Sects. 3.3 and 3.4 with further references therein), Kaymaz [24] and Bichon
et al. [4].No theoretical results concerning the rates of convergence of the investigated
estimates have been provided in the papers cited above.

Oakley [39] and Dubourg et al. [15] use the kriging approximation method, with
pragmatic devices, the latter authors for the related, but simpler problemof estimating
the distribution function value of m(X) at 0 (i.e., estimation of a failure rate, here
0 instead of a general real y without loss of generality). They assume parametric
model with m that is a realization of a Gaussian distributed random function. On the
basis of a set of pairs (x1, y1), . . . , (xn, yn) of moderate size n, with design vectors
xi suitably chosen and yi = m(xi ), by the Bayes principle a posterior distribution for
m is obtained, with posterior mean function m∗, which interpolates m at the design
points x1, . . . , xn . According to this posterior distribution a new realization function
is chosen with cheap evaluations on a large set of randomly chosen design vectors.
This yields more information on the original estimation problem including some
useful additional design points and the procedure is repeated. Refer to [15, 39] for
more details.

In Kohler et al. [31] a new importance sampling quantile estimate is proposed
and its rates of convergence are analyzed. It is done in a completely nonparametric
context imposing mild smoothness assumption on m (the structure of m is unknown)



Recent Results on Nonparametric Quantile Estimation in a Simulation Model 229

in view of good approximation by a surrogate function. The basic idea is to use an
initial estimate of the quantile based on the order statistics of samples of m(X) in
order to determine an interval [an, bn] containing the quantile. Then we construct
an estimate mn of m and restrict f to the inverse image m−1

n ([an, bn]) of [an, bn]
to construct a new random variable Z enabling us to sample only from the region
important for the computation of the quantile. Our final estimate of the quantile is
then defined as an order statistic of m(Z), where the level of the order statistics takes
into account that we sample only from a part of the original density f . Under suitable
assumptions on the smoothness of m and on the tails of f we are able to show that

this estimate achieves the rate of convergence of order log1.5 n
n .

2.1 Definition of the Estimate

Let n = n1 + n2 + n3 where n1 = n1(n) = 
n/3� = n2 = n2(n) and n3 =
n3(n) = n − n1 − n2. We use n1 evaluations of m to generate an initial estimate of
qα , n2 evaluations of m to construct an approximation of m, and we use n3 additional
evaluations of m to improve our initial estimate of qα .

Let qα,n1 be the quantile estimate based on order statistics introduced in Sect. 1.
In order to improve it by importance sampling, we will use additional observations
(x1, m(x1)), …, (xn2 , m(xn2)) of m at points x1, . . . , xn2 ∈ R

d and use an estimate

mn(·) = mn(·, (x1, m(x1)), . . . , (xn2 , m(xn2))) : Rd → R

of m : Rd → R. Both will be specified later. Let Kn = [−ln, ln]d for some ln > 0
such that ln → ∞ as n → ∞ and assume that the supremum norm error of mn on
Kn is bounded by βn > 0, i.e.,

‖mn − m‖∞,Kn := sup
x∈Kn

|mn(x) − m(x)| ≤ βn . (6)

Set

an = qα,n1 − 2 · log n√
n

− 2 · βn and bn = qα,n1 + 2 · log n√
n

+ βn,

where both quantities depend (via qα,n1 ) on the data

dn1 = {

(X1, m(X1)), . . . , (Xn1 , m(Xn1))
}

.

Next we replace X by a random variable Z with the density

h(x) = c2 · (I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}
) · f (x)
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where

c2 =
(∫

Rd

(

I{x∈Kn : an≤mn(x)≤bn} + I{x /∈Kn}
)

f (x)dx

)−1

= 1

1 − γ1 − γ2
.

Here

γ1 = P{X ∈ Kn, mn(X) < an|dn1} =
∫

Rd
1Kn(x) · 1{x :mn(x)<an} · f(x)dx

and

γ2 = P{X ∈ Kn, mn(X) > bn|dn1} =
∫

Rd
1Kn(x) · 1{x :mn(x)>bn} · f(x)dx

can be computed exactly for given f and mn . A realization of random variable Z can
be constructed by a rejectionmethod:Wegenerate independent realizations of X until
we observe a realization x which satisfies either x ∈ [−ln, ln]d and an ≤ mn(x) ≤ bn

or x /∈ [−ln, ln]d , which we then use as the realization of our Zn . In our application
below we approximate them by the suitable Riemann sums. Observe that an and
bn depend on dn1 and therefore the density h and the distribution of Z are random
quantities. Furthermore on the event

{

|qα,n1 − qα| ≤ log n√
n

}

we have that
∫

Rd

(

I{x∈Kn : an≤mn(x)≤bn } + I{x /∈Kn}
)

f (x)dx ≥ P
{

qα − log n√
n

≤ m(X) ≤ qα + log n√
n

}

> 0,

(7)
provided, e.g., the density of m(X) is positive and continuous at qα . Hence outside of
an event whose probability tends to zero for n → ∞ the constant c2 and the density
h are in this case well defined. A key Lemma 1 below relates the quantile qα to the
quantile of m(Z) (for the proof refer to [31]).

Lemma 1 Assume that (6) holds, m(X) has a density which is continuous and
positive at qα and let Z be a random variable defined as above. Furthermore set

ᾱ = α − γ1

1 − γ1 − γ2

and

qm(Z),ᾱ = inf{y ∈ R : P{m(Z) ≤ y|dn1} ≥ ᾱ}
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wheredn1 = {(X1, m(X1)), . . . , (Xn1 , m(Xn1)}. Then we have with probability tend-
ing to one for n → ∞ that

qα = qm(Z),ᾱ .

Let Z , Z1, Z2, …be independent and identically distributed and set

Gm(Z),n3(y) = 1

n3

n3∑

i=1

I{m(Zi )≤y}.

We estimate qα (which is outside of an event whose probability tends to zero for
n → ∞ according to Lemma 1 equal to qm(Z),ᾱ) by

q̄m(Z),ᾱ,n3 = inf
{

y ∈ R : Gm(Z),n3(y) ≥ ᾱ
}

= inf

{

y ∈ R : Gm(Z),n3(y) ≥ α − γ1

1 − γ1 − γ2

}

.

As before we have that q̄m(Z),ᾱ,n3 is an order statistic of m(Z1), …, m(Zn3):

q̄m(Z),ᾱ,n3 = m(Z)�ᾱ·n3�:n3 .

we approximate m by the spline estimate mn introduced below. We use well-known
results from spline theory to show that if we choose the design points z1, …, zn

equidistantly in Kn = [−ln, ln]d , then a properly defined spline approximation of a
(p, C)-smooth function achieves the rate of convergence l p

n /n p/d .
In order to define the spline approximation, we introduce polynomial splines,

i.e., sets of piecewise polynomials satisfying a global smoothness condition, and a
corresponding B-spline basis consisting of basis functions with compact support as
follows:

Choose K ∈ N and M ∈ N0, and set uk = k · ln/K (k ∈ Z). For k ∈ Z let
Bk,M : R → R be the univariate B-spline of degree M with knot sequence (uk)k∈Z
and support supp(Bk,M ) = [uk, uk+M+1]. In case M = 0 B-spline Bk,0 is the
indicator function of the interval [uk, uk+1), and for M = 1 we have

Bk,1(x) =

⎧

⎪⎨

⎪⎩

x−uk
uk+1−uk

, uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0 , elsewhere,

(so-called hat-function). The general recursive definition of Bk,M can be found, e.g.,
in de Boor [9], or in Sect. 14.1 of Györfi et al. [21]. These B-splines are basis func-
tions of sets of univariate piecewise polynomials of degree M , where the piecewise
polynomials are globally (M − 1)-times continuously differentiable and where the
M th derivatives of the functions have jump points only at the knots ul (l ∈ Z).
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Fork = (k1, . . . , kd) ∈ Z
d wedefine the tensor product B-spline Bk,M : Rd → R

by

Bk,M (x (1), . . . , x (d)) = Bk1,M (x (1)) · . . . · Bkd ,M (x (d)) (x (1), . . . , x (d) ∈ R).

With these functions we define SK ,M as the set of all linear combinations of all
those tensor product B-splines above, whose support has nonempty intersection with
Kn = [−ln, ln]d , i.e., we set

SK ,M =
⎧

⎨

⎩

∑

k∈{−K−M,−K−M+1,...,K−1}d

ak · Bk,M : ak ∈ R

⎫

⎬

⎭
.

It can be shown by using standard arguments from spline theory, that the functions
inSK ,M are in each component (M − 1)-times continuously differentiable and that
they are equal to a (multivariate) polynomial of degree less than or equal to M (in
each component) on each rectangle

[uk1 , uk1+1) × · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Z
d), (8)

and that they vanish outside the set

[

−ln − M · ln
K

, ln + M · ln
K

]d

.

Next we define spline approximations using so-called quasi interpolants: For a con-
tinuous function m : Rd → R we define an approximating spline by

(Qm)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d

Qkm · Bk,M

where
Qkm =

∑

j∈{0,1,...,M}d

ak,j · m(tk1, j1 , . . . , tkd , jd )

for some ak,j ∈ R defined below and some suitably chosen points tk, j ∈ supp(Bk,M )

= [k · ln/K , (k + M + 1) · ln/K ]. It can be shown that if we set

tk, j = k · ln
K

+ j

M
· ln

K
( j ∈ {0, . . . , M}, k ∈ {−K ,−K + 1, . . . , K − 1})

and

tk, j = −ln + j

M
· ln

K
( j ∈ {0, . . . , M}, k ∈ {−K −M,−K −M +1, . . . ,−K −1}),
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then there exist coefficients ak,j (which can be computed by solving a linear equation
system), such that

|Qk f | ≤ c3 · ‖ f ‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd +M+1] (9)

for any k ∈ Z
d , any continuous f : Rd → R and some universal constant c1, and

such that Q reproduces polynomials of degree M or less (in each component) on
Kn = [−ln, ln]d , i.e., for any multivariate polynomial p : Rd → R of degree M or
less in each component we have

(Qp)(x) = p(x) (x ∈ Kn) (10)

(cf., e.g., Theorems 14.4 and 15.2 in [21]).
Next we define our estimate mn as a quasi interpolant. We fix the degree M ∈ N

and set

K =
⌊


n1/d
2 � − 1

2M

⌋

,

where we assume that n2 ≥ (2M + 1)d . Furthermore we choose x1, . . . , xn2 such
that all of the (2M · K + 1)d points of the form

(
j1

M · K
· ln, . . . ,

jd
M · K

· ln

)

( j1, . . . , jd ∈ {−M · K ,−M · K + 1, . . . , M · K })

are contained in {x1, . . . , xn2}, which is possible since (2M · K + 1)d ≤ n2. Then
we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpolant satisfying (17) and (19). The com-
putation of Qm requires only function values of m at the points x1,…, xn2 and hence
mn is well defined.

It follows from spline theory (cf., e.g., proof of Theorem 1 in Kohler [29]) that if
m is (p, C)-smooth for some 0 < p ≤ M + 1 then the above quasi interpolant mn

satisfies for some constant c4 > 0

‖mn − m‖∞,Kn := sup
x∈Kn

|mn(x) − m(x)| ≤ c4 · l p
n

n p/d
2

, (11)

i.e., (6) is satisfied with βn = c4 · l p
n /n p/d

2 .
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2.2 Main Results

The following theorem presents the rate of convergence result for the quantile esti-
mate using a general estimate of m.

Theorem 1 Assume that X is a R
d-valued random variable which has a density

with respect to the Lebesgue measure. Let m : Rd → R be a measurable function.
Assume that m(X) has a density g with respect to the Lebesgue measure and let
α ∈ (0, 1). Assume that the density g of m(X) is positive at qα and continuous on R.

Let the estimate q̄Z ,ᾱ,n of qα be defined as in Sect.2.1 with βn = log n√
n

and assume

that regression estimate mn satisfies (6). Furthermore assume that

P{X /∈ Kn} = O

(√

log(n)√
n

)

(12)

Then

|q̄m(Z),ᾱ,n3 − qα| = OP

(

log1.5(n)

n

)

.

The proof is given in [31] and is omitted. For m estimated by the spline estimate
from the previous section we get the following result.

Corollary 1 Assume that X is a R
d-valued random variable which has a density

with respect to the Lebesgue measure. Let m : Rd → R be a (p, C)-smooth function
for some p > d/2. Assume that m(X) has a density g with respect to the Lebesgue
measure. Let α ∈ (0, 1) and let qα be the α-quantile of m(X). Assume that the density
g of m(X) is positive at qα and continuous on R.

Let mn be the spline estimate from Sect.2.1 with M ≥ p − 1 and define the
estimate q̄Z ,ᾱ,n of qα as in Sect.2.1 with βn = log n√

n
and ln = log n. Furthermore

assume that

P{||X || ≥ log n} = O

(√

log(n)√
n

)

. (13)

Then

|q̄m(Z),ᾱ,n3 − qα| = OP

(

log1.5(n)

n

)

.

It follows from Markov inequality that (13) is satisfied whenever

E
{

exp

(
1

2
· ‖X‖

)}

< ∞.

If (13) does not hold it is possible to change the definition of ln in Corollary 1 to get
an (maybemodified) assertion under a weaker tail condition. It is possible to improve
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the factor log1.5(n) in Corollary 1, provided one changes the definition of an and bn .
More precisely, let (γn)n be a monotonically increasing sequence of positive real
values which tends to infinity and assume

P{||X || ≥ log n} = O

(√
γn√
n

)

.

Set

an = qα,n1 −
√

γn√
n

and bn = qα,n1 +
√

γn√
n

.

By applying (4) in the proof of Theorem 1 it is possible to show that under the
assumptions of Corollary 1 the estimate based on the above modified values of an

and bn satisfies

|q̄m(Z),ᾱ,n − qα| = OP

(γn

n

)

.

3 Recursive Quantile Estimation Using Robbins-Monro
Type Importance Sampling

Here we summarize our results on recursive quantile estimation using Robbins-
Monro importance sampling. For full account we refer the reader to Kohler et al.
[30]. In this section we use ideas from Kohler et al. [30] and importance sampling
combinedwith an approximation of the underlying functionm in order to improve the
rate of convergence of our recursive estimate of the quantile. Let Y be a real-valued
random variable with cumulative distribution function (cdf) G(y) = P{Y ≤ y}. We
are interested in estimating quantiles of Y of level α ∈ (0, 1), which can be defined
as any value between

qlower
α = inf{y ∈ R : G(y) ≥ α} and qupper

α = sup{y ∈ R : G(y) ≤ α}.

We assume that Y has a bounded density g with respect to the Lebesgue-Borel-
measure which is positive in a neighborhood of qupper

α , which implies that there
exists a uniquely determined quantile qα = qupper

α = qlower
α . Let Y , Y1, Y2, …be

independent and identically distributed. Given Y1, …, Yn , we are interested in esti-
mates q̂n,α = q̂n,α(Y1, . . . , Yn) of qα with the property that the error q̂n,α − qα

converges quickly towards zero in probability as n → ∞.
A simple estimate of qα is given by order statistics. Let Y1:n, . . . , Yn:n be the order

statistics of Y1, . . . , Yn , i.e., Y1:n, . . . , Yn:n is a permutation of Y1, . . . , Yn such that
Y1:n ≤ . . . ≤ Yn:n . Then we can estimate qα by

qα,n = Y�nα�:n .

Note that qα,n satisfies (4).
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In order to compute the above estimate one needs to sort the given data Y1, …,
Yn in increasing order, which requires an amount of time of order n · log(n) and an
amount of space of order n (the latter one in order to save all values of the data points
simultaneously). In case that one wants to compute a quantile estimate for a very
large sample size, a recursive estimate might be more appropriate. Such a recursive
estimate can be computed by applying the Robbins-Monro procedure to estimate the
root of G(z) − α. In its most simple form one starts here with an arbitrary random
variable Z1, e.g., Z1 = 0, and defines the quantile estimate Zn recursively via

Zn+1 = Zn − Dn

n
· (I{Yn≤Zn} − α

)

(14)

for some suitable sequence Dn ≥ 0. The Robbins-Monro procedure was originally
proposed by Robbins andMonro [43] and further developed and investigated as well
as applied in many different situations, cf., e.g., the monographs Benveniste et al.
[3], Ljung et al. [33], Chen [7] and Kushner and Yin [32], and the literature cited
therein. Refined versions of the above simple Robbins-Monro estimate achieve the
same rate of convergence as in (4) and (4), explicitly in Tierney [49] and Holst [22]
by additional use of a recursive estimate of g(qα) or, for g Hölder continuous at qα ,
as a consequence of general results on averaged Robbins-Monro estimates due to
Ruppert [44] and Polyak and Juditsky [41].

Consider again simulation model (1), where random variable Y is given by
Y = m(X) for some known measurable function m : R

d → R and some R
d -

valued random variable X . We want to use an importance sampling variant of the
recursive estimate (14) based on a suitably defined approximation mn of m. In case
that the functionm is p-times continuously differentiable and that X satisfies a proper
exponential moment condition we show that this importance sampling variant of the
recursive estimate achieves up to some logarithmic factor a rate of convergence of
order n−1/2−p/(2d) for 0 < p ≤ d.

3.1 Main Result

We combine a Robbins-Monro estimate with importance sampling in order to
improve the rate of convergence. Here we assume that our data is given by Y = m(X)

for some knownmeasurable functionm : Rd → R and someRd -valued randomvari-
able X with known distribution μ. We assume that we have available a deterministic
approximation m̃n of m which satisfies

‖m̃n − m‖∞,[−ln ,ln ]d ≤ logp+1(n) · n−p/d (15)

for sufficiently large n for some 0 < p ≤ d, where ln = log(n). Set

mn = m̃n − logp+1(n) · n−p/d .
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Then we have
‖mn − m‖∞,[−ln ,ln ]d ≤ 2 · logp+1(n) · n−p/d (16)

and
mn(x) ≤ m(x) for all x ∈ [−ln, ln]d (17)

for sufficiently large n (more precisely, for n ≥ n0, where n0 ∈ N is some unknown
positive deterministic integer).

We recursively define a sequence of estimates Zn of qα . We start by choosing an
arbitrary (w.l.o.g. deterministic) Z1, e.g., Z1 = 0. After having constructed already
Z1, …, Zn , we choose a random variable X (I S)

n such that X (I S)
n has the distribution

Hn(B) = μ
(({x ∈ [−ln, ln]d : mn(x) ≤ Zn} ∪ ([−ln, ln]d)c

) ∩ B
)

Ḡn(Zn)
(B ∈ Bd)

where Bd is the set of all Borel sets in R
d and where

Ḡn(z) = μ
(

{x ∈ [−ln, ln]d : mn(x) ≤ z} ∪ ([−ln, ln]d)c
)

. (18)

By construction, the distribution Hn has the Radon-Nikodym derivative (conditional
on Zn)

d Hn

dμ
(x) = I{mn(x)≤Zn} · I{x∈[−ln ,ln ]d } + I{x /∈[−ln ,ln ]d }

Ḡn(Zn)
.

A realization of such a random variable can be constructed using a rejection method:
we generate independent realizations of X until we observe a realization x which
satisfies either x ∈ [−ln, ln]d and mn(x) ≤ Zn or x /∈ [−ln, ln]d , which we then
use as the realization of our X (I S)

n .
Next we choose i.i.d. random variables Xn,1, Xn,2, …, Xn,n distributed as X ,

which are independent of all other random variables constructed or used until this
point and we set

Zn+1 = Zn − Dn

n
·
(

I{m(X (I S)
n )≤Zn} · G̃n(Zn) − α

)

, (19)

where Dn = log2(n) and

G̃n(z) = 1

n

n
∑

i=1

(

I{mn(Xn,i )≤z,Xn,i ∈[−ln ,ln ]d } + I{Xn,i /∈[−ln ,ln ]d }
)

(z ∈ R).

The main result below is an upper bound on the error of this quantile estimate.

Theorem 2 Let X, X1,1, X2,1, X2,2, X3,1, X3,2, X3,3, …be independent and iden-
tically distributed R

d-valued random variables and let m : R
d → R be a
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measurable function. Let α ∈ (0, 1) and let qα be the α-quantile of Y = m(X).
Assume that Y = m(X) has a bounded density g with respect to the Lebesgue-Borel
measure which is bounded away from zero in a neighborhood of qα . Define X (I S)

n as
above, where mn satisfies (16) and (17) for some 0 < p ≤ d, and let q̂(I S)

α,n = Zn

be the Robbins-Monro importance sampling quantile estimate defined above with
Dn = log2(n). Then

P
{

X /∈ [− log(n), log(n)]d
}

> 0 (n ∈ N) and E{e‖X‖} < ∞ (20)

imply

q̂(I S)
α,n → qα a.s. and

∣
∣
∣q̂(I S)

α,n − qα

∣
∣
∣ = OP

(

log3+p/2(n) · n−1/2−p/(2d)
)

.

The proof can be found in [30] and is omitted.

Remark 1 The construction of an approximation mn which satisfies (15) in case
of a (p, C)—smooth function m can be obtained, e.g., by spline approximation of
the function m using n points in [− log(n), log(n)]d (cf., e.g., Kohler et al. [31]),
which can be either chosen equidistantly in [− log(n), log(n)]d or can be defined
recursively such that we reuse for computation of mn+1 evaluations of m used for
computation of mn . Thus as in the case importance sampling algorithm discussed
in Kohler et al. [31], our algorithm achieves the faster rate of convergence than the
estimate based on order statistics, but it requires less space to be computed than the
order statistics or the estimate in Kohler et al. [31].

4 Nonparametric Quantile Estimation Based on Surrogate
Model

In this section we present quantile estimates based on a surrogate model. These
estimates achieve under suitable conditions better rates of convergence than the ones
based on order statistics (see (4)). For in-depth discussion we refer the reader to Enss
et al. [17]. The basic idea is to first construct an estimatemn ofm and then to estimate
the quantile qm(X),α by a Monte Carlo estimate of the quantile qmn(X),α , where

qmn(X),α = inf
{

y ∈ R : PX {x ∈ R
d : mn(x) ≤ y} ≥ α

}

.

Themain result presented in Theorem 3 below concerns the error of thisMonte Carlo
estimate. We show that if the local error of mn is small in areas where m(x) is close
to qm(X),α , i.e., if for some small δn > 0
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|mn(x) − m(x)| ≤ δn

2
+ 1

2
· |m(x) − qm(X),α| for PX -almost all x,

then the error of the Monte Carlo estimate q(MC)
mn(X),Nn ,α of qm(X),α is small, i.e.,

∣
∣
∣q

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(

δn + 1√
Nn

)

,

where Nn is the sample size of the Monte Carlo estimate. We use this result to
analyze the rate of convergence of two different estimates, whereas the error of mn

is globally small for the first estimate but only locally small for the second estimate.
We show in particular that if m is (p, C)-smooth, i.e., if m is p-times continuously
differentiable (see the exact definition below), then the first estimate achieves (up to
some logarithmic factor) a rate of convergence of order n−p/d (as compared to the
rate n−1/2 of the order statistics estimate above), but the second one achieves (again
up to some logarithmic factor) the rate of order n−2p/d .

In order to construct the surrogate mn any kind of nonparametric regression esti-
mate can be used. Possible choices include kernel regression estimate (cf., e.g.,
Nadaraya [36, 37], Watson [50]), Devroye and Wagner [11], Stone [46, 47] or
Devroye and Krzyżak [13]), partitioning regression estimate (cf., e.g., Györfi [20] or
Beirlant and Györfi [2]), nearest neighbor regression estimate (cf., e.g., Devroye [12]
or Devroye et al. [14]), orthogonal series regression estimate (cf., e.g., Rafajłowicz
[42] or Greblicki and Pawlak [19]), least squares estimates (cf., e.g., Lugosi and
Zeger [34] or Kohler [27]) or smoothing spline estimates (cf., e.g., Wahba [51] or
Kohler and Krzyżak [28]). For survey of quantile regression we refer the reader to
Yu et al. [52], Takeuchi et al. [48] and Koenker [26].

The idea of estimating the distribution of a random variable m(X) by the dis-
tribution of mn(X), where mn is a suitable surrogate (or estimate) of m, has been
considered in a number of papers, see for example the discussion on applications of
surrogate models in Sect. 2.

Various versions of importance sampling algorithms using surrogate models have
been used in Dubourg et al. [15] and in Kohler et al. [31], whereas in the latter article
theoretical results have also been provided.

4.1 A General Error Bound

Let X , X1, X2, …be independent and identically distributed random variables. In
this section we consider a general Monte Carlo surrogate quantile estimate defined
as follows: First data

(x1, m(x1)), . . . , (xn, m(xn))



240 A. Krzyżak

is used to construct an estimate

mn(·) = mn(·, (x1, m(x1)), . . . , (xn, m(xn))) : Rd → R

of m. Here xi = Xi is one possible choice for the values of x1, …, xn ∈ R
d , but not

the only one (see the next two sections below). Then Xn+1, …, Xn+Nn are used to
define a Monte Carlo estimate of the α-quantile of mn(X) by

q̂(MC)
mn(X),Nn ,α = inf

{

y ∈ R : Ĝ(MC)
mn(X),Nn

(y) ≥ α
}

,

where

Ĝ(MC)
mn(X),Nn

(y) = 1

Nn

Nn∑

i=1

I{mn(Xn+i )≤y}.

Intuitively it is clear that the error of mn will influence the error of the above quantile
estimate. Our main result states that for the error of the above quantile estimate it is
not important that the local error of mn is small in areas where m is far away from
the quantile to be estimated.

Theorem 3 Let X be an R
d-valued random variable, let m : Rd → R be a measur-

able function and let α ∈ (0, 1). Define the Monte Carlo surrogate quantile estimate
q̂(MC)

mn(X),Nn ,α of qm(X),α as above and let q̂(MC)
m(X),Nn ,α be the Monte Carlo quantile

estimate of qm(X),α based on m(Xn+1), …, m(Xn+Nn ), i.e.,

q̂(MC)
m(X),Nn ,α = inf

{

y ∈ R : Ĝ(MC)
m(X),Nn

(y) ≥ α
}

,

where

Ĝ(MC)
m(X),Nn

(y) = 1

Nn

Nn∑

i=1

I{m(Xn+i )≤y}.

For n ∈ N let δn > 0 be such that the estimate mn satisfies

|mn(Xn+i ) − m(Xn+i )| ≤ δn

2
+ 1

2
· |qm(X),α − m(Xn+i )| for all i ∈ {1, . . . Nn}.

(21)
Then we have

∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ ≤ δn + 2 ·

∣
∣
∣q̂

(MC)
m(X),Nn ,α − qm(X),α

∣
∣
∣ .

For the proof of Theorem 3 we refer the reader to [17]. We immediately conclude
from (4).

Corollary 2 Let X be an R
d -valued random variable, let m : R

d → R be a
measurable function and let α ∈ (0, 1). Assume that m(X) has a density which



Recent Results on Nonparametric Quantile Estimation in a Simulation Model 241

is continuous and positive at qm(X),α . Define the Monte Carlo surrogate quantile

estimate q̂(MC)
mn(X),Nn ,α of qm(X),α as above. For n ∈ N let δn > 0 be such that the

estimate mn satisfies (21) with probability one. Then

∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(

δn + 1√
Nn

)

Remark 2 If

|mn(x) − m(x)| ≤ δn

2
+ 1

2
· |m(x) − qm(X),α| for PX -almost all x, (22)

then (21) holds with probability one.

Remark 3 Condition (21) is in particular satisfied if we choose

δn = 2 · ‖mn − m‖∞,supp(PX ),

so Corollary 2 implies

∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(

‖mn − m‖∞,supp(PX ) + 1√
Nn

)

. (23)

Remark 4 If the support of X is unbounded, it might be difficult to construct esti-
mates for which the error is uniformly small on the whole support as requested in
Remark 2. But under suitable assumptions on the tails of X it suffices to approximate
m on a compact set. Indeed, let βn > 0 be such that

Nn · P{X /∈ [−βn, βn]d} → 0 (n → ∞).

Then it follows from Theorem 3 that in this case

∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(

‖mn − m‖∞,supp(PX )∩[−An ,An ]d + 1√
Nn

)

.

4.2 A Surrogate Quantile Estimate Based on a Non-adaptively
Chosen Surrogate

In this section we choose mn as a non-adaptively chosen spline approximand in the
definition of our Monte Carlo surrogate quantile estimate.

To do this, we choose α > 0 and set βn = log(n)α and we define a spline
approximand which approximates m on [−βn, βn]d . To this end we use polynomial
splines defined in Sect. 2 as follows.
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Choose K ∈ N and M ∈ N0, and set uk = k · βn/K (k ∈ Z). For k ∈ Z let
Bk,M : R → R be the univariate B-spline of degree M with knot sequence (ul)l∈Z
and support supp(Bk,M ) = [uk, uk+M+1]. For more details on spline construction
refer to Sect. 2.

Define SK ,M as the set of all linear combinations of all those tensor product
B-splines, where the support has nonempty intersection with [−βn, βn]d , i.e., we set

SK ,M =
⎧

⎨

⎩

∑

k∈{−K−M,−K−M+1,...,K−1}d

ak · Bk,M : ak ∈ R

⎫

⎬

⎭
.

It can be shown by using standard arguments from spline theory, that the functions in
SK ,M are in each component (M − 1)-times continuously differentiable, that they
are equal to a (multivariate) polynomial of degree less than or equal to M (in each
component) on each rectangle

[uk1 , uk1+1) × · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Z
d), (24)

and that they vanish outside of the set

[

βn − M · βn

K
, βn + M · βn

K

]d

.

Next we define spline approximands using so-called quasi interpolands: For a func-
tion m : [−βn, βn]d → R we define an approximating spline by

(Qm)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d

Qkm · Bk,M

where
Qkm =

∑

j∈{0,1,...,M}d

ak,j · m(tk1, j1 , . . . , tkd , jd )

for some ak,j ∈ R defined below and for suitably chosen points tk, j ∈ supp(Bk,M )∩
[−βn, βn]. It can be shown that if we set

tk, j = k

K
· βn + j

K · M
· βn = k · M + j

K · M
· βn ( j ∈ {0, . . . , M}, k ∈ {−K , . . . , K − 1})

and

tk, j = −βn + j

K · M
( j ∈ {0, . . . , M}, k ∈ {−K − M,−K − M + 1, . . . ,−K − 1}),
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then there exist coefficients ak,j (which can be computed by solving a linear equation
system), such that

|Qk f | ≤ c1 · ‖ f ‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd +M+1] (25)

for any k ∈ {−M,−M + 1, . . . , K − 1}d , any f : [−βn, βn]d → R and some
universal constant c1, and such that Q reproduces polynomials of degree M or less (in
each component) on [−βn, βn]d , i.e., for any multivariate polynomial p : Rd → R

of degree M or less (in each component) we have

(Qp)(x) = p(x) (x ∈ [−βn, βn]d) (26)

(cf., e.g., Theorems 14.4 and 15.2 in Györfi et al. [21]).
Next we define our estimate mn as a quasi interpoland. We fix the degree M ∈ N

and set

K = Kn =
⌊
n1/d� − 1

2 · M

⌋

.

Furthermore we choose x1, . . . , xn such that all of the (2 · M · K + 1)d points of the
form
(

j1
M · K

· An, . . . ,
jd

M · K
· An

)

( j1, . . . , jd ∈ {−M ·K ,−M ·K +1, . . . , M ·K })

are contained in {x1, . . . , xn}, which is possible since (2 · M · K + 1)d ≤ n. Then
we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpoland satisfying (25) and (26). The
computation of Qm requires only function values of m at the points x1, …, xn , i.e.,
the estimate depends on the data

(x1, m(x1)), . . . , (xn, m(xn)),

and hence mn is well defined.

Theorem 4 Let X be an R
d -valued random variable, let m : Rd → R be a mea-

surable function and let α ∈ (0, 1). Assume that m(X) has a density which is con-
tinuous and positive at qα and that m is (p, C)-smooth for some p > 0 and some
C > 0. Define the Monte Carlo surrogate quantile estimate q̂(MC)

mn(X),Nn ,α of qm(X),α

as in Sect.4.1, where mn is the spline approximand defined above with parameter
M ≥ p − 1.

Assume furthermore that

Nn · P{X /∈ [− log(n)α, log(n)α]d} → 0 (n → ∞). (27)
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Then
∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(
log(n)α·p

n p/d
+ 1√

Nn

)

.

In particular, if we set Nn = �n2p/d/ log(n)2·α·p� then we get

∣
∣
∣q̂

(MC)
mn(X),Nn ,α − qm(X),α

∣
∣
∣ = OP

(
log(n)α·p

n p/d

)

.

It follows fromTheorem 4 that in case thatm be (p, C)-smooth for some p > d/2
or some p > d, respectively, and that

n2·p/d · P{X /∈ [− log(n)α, log(n)α]} → 0 (n → ∞),

then the aboveMonteCarlo surrogate quantile estimate achieves a rate of convergence
better than n−1/2 or n−1, respectively. It follows fromMarkov inequality that (27) is
for instance satisfied if

E{exp(X)} < ∞ and
Nn

nα
→ 0 (n → ∞).

For in-depth discussion of the surrogate quantile estimate based on a non-
adaptively and adaptively chosen surrogate the reader is referred to Enss et al. [17].

5 Conclusions

In the paper we discussed recent results on nonparametric quantile estimation using
importance sampling, Robbins-Monro type importance sampling and surrogatemod-
els. We also dealt with nonparametric maximum quantile estimation. The problems
discussed have both theoretical flavor and are important in applications. Further
research on these problems is conducted.
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e-mail: wrejchel@gmail.com

© Springer International Publishing Switzerland 2016
S. Matwin and J. Mielniczuk (eds.), Challenges in Computational Statistics
and Data Mining, Studies in Computational Intelligence 605,
DOI 10.1007/978-3-319-18781-5_14

247



248 B. Miasojedow et al.

1 Introduction

Maximum likelihood (ML) is a well-known and often used method in estimation of
parameters in statistical models. However, for many complex models exact calcula-
tion of such estimators is very difficult or impossible. Such problems arise if con-
sidered densities are known only up to intractable norming constants, for instance in
Markov random fields or spatial statistics. The wide range of applications of models
with unknown norming constants is discussed e.g. in [10].Methods proposed to over-
come the problems with computing ML estimates in such models include, among
others, maximum pseudolikelihood [2], “coding method” [9] and Monte Carlo max-
imum likelihood (MCML) [5, 9, 15, 17]. In our paper we focus on MCML.

In influential papers [4, 5] the authors prove consistency and asymptotic normality
ofMCML estimators. To improve the performance ofMCML, one can adjust control
parameters in the course of simulation. This leads to adaptive MCML algorithms.
We generalize the results of the last mentioned papers first to an adaptive version of
importance sampling and then to a more complicated adaptive algorithm which uses
resampling andMarkov chain Monte Carlo (MCMC) [7]. Our analysis is asymptotic
and it is based on the martingale structure of the estimates. The main motivating
examples are the autologistic model (with or without covariates) and its applications
to spatial statistics as described e.g. in [9] and the autonormal model [11].

2 Adaptive Importance Sampling

Denote by fθ , θ ∈ Θ , a family of unnormalized densities on space Y . A dominating
measure with respect to which these densities are defined is denoted for simplicity
by dy. Let yobs be an observation. We intend to find the maximizer θ� of the log-
likelihood

�(θ) = log fθ (yobs) − log c(θ),

where c(θ) is the normalizing constant.We consider the situationwhere this constant,

c(θ) =
∫

Y
fθ (y)dy,

is unknown and numerically intractable. It is approximated with Monte Carlo sim-
ulation, resulting in

�m(θ) = log fθ (yobs) − log ĉm(θ), (2.1)

where ĉm(θ) is a Monte Carlo (MC) estimate of c(θ). The classical importance
sampling (IS) estimate is of the form
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ĉm(θ) = 1

m

m
∑

j=1

fθ (Y j )

h(Y j )
, (2.2)

where Y1, . . . , Ym are i.i.d. samples from an instrumental density h. Clearly, an
optimal choice of h depends on themaximizer θ� of �, sowe should be able to improve
our initial guess about h while the simulation progresses. This is the idea behind
adaptive importance sampling (AIS). A discussion on the choice of instrumental
density is deferred to subsequent subsections. Let us describe an adaptive algorithm
in the following form, suitable for further generalizations. Consider a parametric
family hψ , ψ ∈ Ψ of instrumental densities.

Algorithm AdapIS

1. Set an initial value of ψ1, m = 1, ĉ0(θ) ≡ 0.
2. Draw Ym ∼ hψm .
3. Update the approximation of c(θ):

ĉm(θ) = m − 1

m
ĉm−1(θ) + 1

m

fθ (Ym)

hψm (Ym)
.

4. Update ψ : choose ψm+1 based on the history of the
simulation.

5. m = m + 1; go to 2.

At the output of this algorithm we obtain an AIS estimate

ĉm(θ) = 1

m

m
∑

j=1

fθ (Y j )

hψ j (Y j )
. (2.3)

The samples Y j are neither independent nor have the same distribution. However
(2.3) has a nice martingale structure. If we put

Fm = σ
{

Y j , ψ j : j ≤ m
}

thenψm+1 isFm-measurable. Thewell-knownproperty of unbiasedness of IS implies
that

E

(
fθ (Ym+1)

hψm+1(Ym+1)

∣
∣
∣Fm

)

= c(θ). (2.4)

In other words, fθ (Ym)/hψm (Ym)−c(θ) aremartingale differences (MGD), for every
fixed θ .
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2.1 Hypo-convergence of �m and Consistency of θ̂m

In this subsection we make the following assumptions.

Assumption 1 For any θ ∈ Θ

sup
ψ

∫
fθ (y)2

hψ(y)
dy < ∞.

Assumption 2 The mapping θ �→ fθ (y) is continuous for each fixed y.

Assumption 1 implies that for any θ , there is a constant Mθ < ∞ such that for all j ,

E

((
fθ (Y j )

hψ j (Y j )

)2∣∣
∣
∣
F j−1

)

≤ Mθ , a.s.,

because Y j ∼ hψ j . Note that Assumption 1 is trivially true if the mapping y �→
fθ (y)/hψ(y) is uniformly bounded for θ ∈ Θ , ψ ∈ Ψ . Recall also that

m(ĉm(θ) − c(θ)) =
m

∑

j=1

( fθ (Y j )

hψ j (Y j )
− c(θ)

)

is a zero-meanmartingale. UnderAssumption 1, for a fixed θ ∈ Θ , we have ĉm(θ) →
c(θ) a.s. by the SLLN for martingales (see Theorem A.2, Appendix A), so �m(θ) →
�(θ) a.s. This is, however, insufficient to guarantee the convergence of maximum
likelihood estimates θ̂m (maximizers of �m) to θ�. Under our assumptions we can
prove hypo-convergence of the log-likelihood approximations.

Definition 1 A sequence of functions gm epi-converges to g if for any x we have

sup
B∈N (x)

lim sup
m→∞

inf
y∈B

gm(y) ≤ g(x),

sup
B∈N (x)

lim inf
m→∞ inf

y∈B
gm(y) ≥ g(x),

where N (x) is a family of all (open) neighbourhoods of x .
A sequence of functions gm hypo-converges to g if (−gm) epi-converges to (−g).

An equivalent definition of epi-convergence is in the following theorem:

Theorem 1 ([14, Proposition 7.2]) gm epi-converges to g iff at every point x

lim sup
m→∞

gm(xm) ≤ g(x), for some sequence xm → x,

lim inf
m→∞ gm(xm) ≥ g(x), for every sequence xm → x .
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As a corollary to this theorem comes the proposition that will be used to prove
convergence of θ̂m , the maximizer of �m , to θ� (see, also, [1, Theorem 1.10]).

Proposition 1 Assume that gm epi-converges to g, xm → x and gm(xm)− inf gm →
0. Then g(x) = inf y g(y) = limm→∞ gm(xm).

Proof (We will use Theorem 1 many times.) Let ym be a sequence converging to x
and such that lim supm→∞ gm(ym) ≤ g(x) (such sequence ym exists). This implies
that lim supm→∞ inf gm ≤ g(x). On the other hand, g(x) ≤ lim infm→∞ gm(xm) =
lim infm→∞ inf gm , where the equality follows from the second assumption on xm .
Summarizing, g(x) = limm→∞ inf gm = limm→∞ gm(xm). In particular, inf g ≤
limm→∞ inf gm .

Take any ε > 0 and let xε be such that g(xε) ≤ inf g+ ε. There exists a sequence
ym converging to xε such that g(xε) ≥ lim supm→∞ gm(ym) ≥ lim supm→∞ inf gm ,
hence limm→∞ inf gm ≤ inf g+ ε. By arbitrariness of ε > 0 we obtain limm→∞ inf
gm ≤ inf g. This completes the proof.

Theorem 2 If Assumptions 1 and 2 are satisfied, then �m hypo-converges to � almost
surely.

Proof The proof is similar to the proof of Theorem 1 in [4]. We have to prove that
ĉm epi-converges to c. Fix θ ∈ Θ .

Step 1: For any B ∈ N (θ), we have

lim inf
m→∞ inf

ϕ∈B
ĉm(ϕ) ≥

∫

inf
ϕ∈B

fϕ(y)dy =: c(B). (2.5)

Indeed,

inf
ϕ∈B

ĉm(φ) = inf
ϕ∈B

1

m

m
∑

j=1

fϕ(Y j )

hψ j (Y j )
≥ 1

m

m
∑

j=1

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )

= 1

m

m
∑

j=1

(

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )
− c(B)

)

+ c(B).

The sum is that of martingale differences, so assuming that there is M < ∞ such
that

sup
j
E

((

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )
− c(B)

)2
∣
∣
∣
∣
F j−1

)

≤ M
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the SLLN implies (2.5). We have the following estimates:

E

((

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )
− c(B)

)2
∣
∣
∣
∣
F j−1

)

= Var

(

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )

∣
∣
∣
∣
F j−1

)

≤ E

((

inf
ϕ∈B

fϕ(Y j )

hψ j (Y j )

)2
∣
∣
∣
∣
F j−1

)

≤ E

(( fθ (Y j )

hψ j (Y j )

)2
∣
∣
∣
∣
F j−1

)

≤ Mθ ,

where the last inequality is by Assumption 1.
Step 2: We shall prove that supB∈N (θ) lim infm→∞ infϕ∈B ĉm(φ) ≥ c(θ).
The left-hand side is bounded from below by supB∈N (θ) c(B). Further, we have

sup
B∈N (θ)

c(B) ≥ lim
δ↓0 c(B(θ, δ)) =

∫

lim
δ↓0 inf

ϕ∈B(θ,δ)
fϕ(y)dy =

∫

fθ (y)dy = c(θ),

where the first equality follows from the dominated convergence theorem (the dom-
inator is fθ ) and the last—from the Assumption 2.

Step 3: We have

sup
B∈N (θ)

lim sup
m→∞

inf
ϕ∈B

ĉm(ϕ) ≤ sup
B∈N (θ)

inf
ϕ∈B

lim sup
m→∞

ĉm(ϕ) = sup
B∈N (θ)

inf
ϕ∈B

c(ϕ) ≤ c(θ).

Hence, supB∈N (θ) lim supm→∞ infϕ∈B ĉm(ϕ) ≤ c(θ).

Note that almost sure convergence in the next Proposition corresponds to the
randomness introduced by AdapIS and yobs is fixed throughout this paper.

Proposition 2 If Assumptions 1 and 2 hold, θ� is the unique maximizer of � and
sequence (θ̂m) (where θ̂m maximizes �m) is almost surely bounded then θ̂m → θ�

almost surely.

Proof As we have already mentioned, by SLLN for martingales, �m(θ) → �(θ),
pointwise. Hypo-convergence of �m to � implies, by Proposition 1, that the maxi-
mizers of �m have accumulation points that are the maximizers of �. If � has a unique
maximizer θ� then any convergent subsequence of θ̂m , maximizers of �m , converges
to θ�. The conclusion follows immediately.

Of course, it is not easy to show boundedness of θ̂m in concrete examples. In the
next section we will prove consistency of θ̂m in models where log-likelihoods and
their estimates are concave.

2.2 Central Limit Theorem for Adaptive Importance Sampling

Let θ̂m be a maximizer of �m , i.e. the AIS estimate of the likelihood given by (2.1)
with (2.3). We assume that θ� is a unique maximizer of �. For asymptotic normality
of θ̂m , we will need the following assumptions.
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Assumption 3 First and second order derivatives of fθ with respect to θ (denoted
by ∇ fθ and ∇2 fθ ) exist in a neighbourhood of θ� and we have

∇c(θ) =
∫

∇ fθ (y)dy, ∇2c(θ) =
∫

∇2 fθ (y)dy.

Assumption 4 θ̂m = θ� + Op(1/
√

m).

Assumption 5 Matrix D = ∇2�(θ�) is negative definite.

Assumption 6 For every y, function ψ �→ hψ(y) is continuous and hψ(y) > 0.

Assumption 7 For some ψ� we have ψm → ψ� almost surely.

Assumption 8 There exists a nonnegative function g such that
∫

g(y)dy < ∞ and
the inequalities

sup
ψ

fθ�(y)2+α

hψ(y)1+α
≤ g(y), sup

ψ

|∇ fθ�(y)|2+α

hψ(y)1+α
≤ g(y),

sup
ψ

‖∇2 fθ�(y)‖1+α

hψ(y)α
≤ g(y)

are fulfilled for some α > 0 and also for α = 0.

Assumption 9 Functions ∇2�m(θ) are asymptotically stochastically equicontionu-
ous at θ�, i.e. for every ε > 0 there exists δ > 0 such that

lim sup
m→∞

P

(

sup
|θ−θ�|≤δ

‖∇2�m(θ) − ∇2�m(θ�)‖ > ε

)

= 0.

Let us begin with some comments on these assumptions and note simple facts which
follow from them. Assumption 3 is a standard regularity condition. It implies that a
martingale property similar to (2.4) holds also for the gradients and hessians:

E

( ∇ fθ (Ym+1)

hψm+1(Ym+1)

∣
∣
∣Fm

)

= ∇c(θ), E

( ∇2 fθ (Ym+1)

hψm+1(Ym+1)

∣
∣
∣Fm

)

= ∇2c(θ). (2.6)

Assumption 4 stipulates square root consistency of θ̂m . It is automatically fulfilled if
�m is concave, in particular for exponential families. Assumption 7 combined with
6 is a “diminishing adaptation” condition. It may be ensured by an appropriately
specifying step 4 of AdapIS. The next assumptions are not easy to verify in general,
but they are satisfied for exponential families on finite spaces, in particular for our
“motivating example”: autologistic model. Let us also note that our Assumption 9
plays a similar role to Assumption (f) in [4, Theorem 7].
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Assumption 8 together with (2.4) and (2.6) allows us to apply SLLN for
martingales in a formgiven inTheoremA.2,AppendixA. Indeed, fθ� (Ym)/hψm (Ym)−
c(θ�),∇ fθ�(Ym)/hψm (Ym)−∇c(θ�) and∇2 fθ�(Ym)/hψm (Ym)−∇2c(θ�) areMGDs
with bounded moments of order 1 + α > 1. It follows that, almost surely,

ĉm(θ�) → c(θ�), ∇ ĉm(θ�) → ∇c(θ�), ∇2ĉm(θ�) → ∇2c(θ�). (2.7)

Now we are in a position to state the main result of this section.

Theorem 3 If Assumptions 3–9 hold then

√
m

(

θ̂m − θ�

)

→ N (0, D−1V D−1) in distribution,

where D = ∇2�(θ�) and

V = 1

c(θ�)2
VARY∼hψ�

[∇ fθ�(Y )

hψ�(Y )
− ∇c(θ�)

c(θ�)

fθ�(Y )

hψ�(Y )

]

,

where ψ� is defined in Assumption 7.

Proof It is well-known (see [12, Theorem VII.5]) that we need to prove

√
m∇�m(θ�)

d−→ N (0, V ) (2.8)

and that for every M > 0, the following holds:

sup
|θ−θ�|≤M/

√
m

m
∣
∣
∣�m(θ) − �m(θ�)

− (θ − θ�)
�∇�m(θ�) − 1

2
(θ − θ�)

�D(θ − θ�)

∣
∣
∣

p−→ 0.

(2.9)

First we show (2.8). Since ∇�m(θ) = ∇ fθ (yobs)/ fθ (yobs) − ∇ ĉm(θ)/ĉm(θ) and
∇�(θ�) = ∇ fθ�(yobs)/ fθ�(yobs) − ∇c(θ�)/c(θ�) = 0, we obtain that

∇�m(θ�) = ∇c(θ�)

c(θ�)
− ∇ ĉm(θ�)

ĉm(θ�)
=

∇c(θ�)

c(θ�)
ĉm(θ�) − ∇ ĉm(θ�)

ĉm(θ�)
. (2.10)

The denominator in the above expression converges to c(θ�) in probability, by (2.7).
In view of Slutski’s theorem, to prove (2.8) it is enough to show asymptotic normality
of the numerator. We can write

∇c(θ�)

c(θ�)
ĉm(θ�) − ∇ ĉm(θ�) = − 1

m

m
∑

j=1

ξ j ,



Adaptive Monte Carlo Maximum Likelihood 255

where we use the notation

ξ j = ∇ fθ�(Y j )

hψ j (Y j )
− ∇c(θ�)

c(θ�)

fθ�(Y j )

hψ j (Y j )
.

Now note that ξ j are martingale differences by (2.4) and (2.6). Moreover,

E

(

ξ jξ
T
j |F j−1

)

=
∫

(

∇ fθ�(y)

hψ j (y)
− ∇c(θ�)

c(θ�)

fθ�(y)

hψ j (y)

)

(

∇ fθ�(y)

hψ j (y)
− ∇c(θ�)

c(θ�)

fθ�(y)

hψ j (y)

)

�hψ j (y)dy,

so Assumptions 6 and 7 via dominated convergence and Assumption 8 (with α = 0
in the exponent) entail

E

(

ξ jξ
T
j |F j−1

)
a.s.−−→ c(θ�)

2V .

Now we use Assumption 8 (with α > 0 in the exponent) to infer the Lyapunov-type
condition

E

(

|ξ j |2+α|F j−1

)

≤ const ·
∫

g(y)dy < ∞.

The last two displayed formulas are sufficient for a martingale CLT (Theorem A.1,
Appendix A). We conclude that

1√
m

m
∑

j=1

ξ jξ j
� d−→ N (0, c(θ�)

2V ),

hence the proof of (2.8) is complete.
Now we proceed to a proof of (2.9). By Taylor expansion,

�m(θ) − �m(θ�) − (θ − θ�)
�∇�m(θ�) = 1

2
(θ − θ�)

�∇2�m(θ̃)(θ − θ�)

for some θ̃ ∈ [θ, θ�]. Consequently, the LHS of (2.9) is

≤ sup
|θ−θ�|≤M/

√
m

θ̃∈[θ,θ�]

m

∣
∣
∣
∣

1

2
(θ − θ�)

� (

∇2�m(θ̃) − ∇2�(θ�)
)

(θ − θ�)

∣
∣
∣
∣

≤ M2

2
sup

|θ−θ�|≤M/
√

m

∥
∥
∥∇2�m(θ) − ∇2�(θ�)

∥
∥
∥

≤ M2

2
sup

|θ−θ�|≤M/
√

m

∥
∥
∥∇2�m(θ) − ∇2�m(θ�)

∥
∥
∥ + M2

2

∥
∥
∥∇2�m(θ�) − ∇2�(θ�)

∥
∥
∥ .
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The first term above goes to zero in probability by Assumption 9. The second term
also goes to zero because

∇2�m(θ�) − ∇2�(θ�) = ∇2 log c(θ�) − ∇2 log ĉm(θ�)

= ∇2c(θ�)

c(θ�)
− ∇c(θ�)

c(θ�)

∇c(θ�)
�

c(θ�)
− ∇2ĉm(θ�)

ĉm(θ�)
+ ∇ ĉm(θ�)

ĉm(θ�)

∇ ĉm(θ�)
�

ĉm(θ�)

p−→ 0,

in view of (2.7). Therefore (2.9) holds and the proof is complete.

2.3 Optimal Importance Distribution

We advocate adaptation to improve the choice of instrumental distribution h. But
which h is the best? If we use (non-adaptive) importance sampling with instrumental
distribution h then themaximizer θ̂m of theMC likelihood approximation has asymp-

totic normal distribution, namely
√

m
(

θ̂m − θ�

)
d−→ N (0, D−1V D−1), (m → ∞)

with

V = 1

c(θ�)2
VARY∼h

[∇ fθ�(Y )

h(Y )
− ∇c(θ�)

c(θ�)

fθ�(Y )

h(Y )

]

.

This fact is well-known [4] and is a special case of Theorem 3. Since the asymptotic
distribution is multidimensional its dispersion can be measured in various ways,
e.g., though the determinant, the maximum eigenvalue or the trace of the covariance
matrix. We examine the trace which equals to the asymptotic mean square error of
the MCML approximation (the asymptotic bias is nil). Notice that

c(θ�)
2V = VARY∼h

η(Y )

h(Y )
= EY∼h

η(Y )η(Y )�

h(Y )2
=

∫
η(y)η(y)�

h(y)
dy,

where

η(y) = ∇ fθ�(y) − ∇c(θ�)

c(θ�)
fθ�(y).

Since tr
[

D−1η(y)η(y)�D−1
] = (D−1η(y))� D−1η(y) = |D−1η(y)|2, the mini-

mization of tr(D−1V D−1) is equivalent to

∫ |D−1η(y)|2
h(y)

dy → min,
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subject to h ≥ 0 and
∫

h = 1. By Schwarz inequality we have

∫ |D−1η(y)|2
h(y)

dy =
∫ ( |D−1η(y)|√

h(y)

)2

dy
∫ (√

h(y)
)2

dy

≥
(∫ |D−1η(y)|√

h(y)

√

h(y)dy

)2

=
(∫

|D−1η(y)|dy

)2

,

with equality only for h(y) ∝ |D−1η(y)|. The optimum choice of h is therefore

h�(y) ∝
∣
∣
∣
∣
D−1

(

∇ fθ�(y) − ∇c(θ�)

c(θ�)
fθ�(y)

)∣
∣
∣
∣
. (2.11)

Unfortunately, this optimality result is chiefly of theoretical importance, because it
is not clear how to sample from h� and how to compute the norming constant for
this distribution. This might well be even more difficult than computing c(θ).

The following example shows some intuitive meaning of (2.11). It is a purely “toy
example” because the simple analitical formulas exist for c(θ) and θ� while MC is
considered only for illustration.

Example 1 Consider a binomial distribution onY = {0, 1, . . . , n} given by πθ (y) =
(n

y

)

py(1− p)n−y . Parametrize the model with the log-odds-ratio θ = log p/(1− p),

absorb the
(n

y

)

factor into the measure dy to get the standard exponential family form
with

fθ (y) = eθy and c(θ) =
n

∑

y=0

(
n

y

)

eθy = (1 + eθ )n .

Taking into account the facts that ∇c(θ�)/c(θ�) = yobs and ∇ fθ (y) = yeθy we
obtain that (2.11) becomes h�(y) ∝ |y − yobs|eθy (factor D−1 is a scalar so can
be omitted). In other words, the optimum instrumental distribution for AIS MCML,
expressed in terms of p = eθ /(1 + eθ ) is

PY∼h� (Y = y) ∝
(

n

y

)

|y − yobs|py(1 − p)n−y .

3 Generalized Adaptive Scheme

Importance sampling, even in its adaptive version (AIS), suffers from the degeneracy
of weights. To compute the importance weights fθ (Ym)/hψm (Ym) we have to know
norming constants for every hψm (or at least their ratios). This requirement severly
restricts our choice of the family of instrumental densities hψ . Available instrumental
densities are far from h� and far from fθ /c(θ). Consequently the weights tend to
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degenerate (most of them are practically zero, while a few are very large). This
effectively makes AIS in its basic form impractical. To obtain practically applicable
algorithms, we can generalize AIS as follows. In the same situation as in Sect. 2,
instead of the AIS estimate given by (2.3), we consider a more general Monte Carlo
estimate of c(θ) of the form

ĉm(θ) = 1

m

m
∑

j=1

d̂(θ, ψ j ), (3.1)

where the summands d̂(θ, ψ j ) are computed by an MC method to be specified later.
For now let us just assume that this method depends on a control parameter ψ which
may change at each step. A general adaptive algorithm is the following:

Algorithm AdapMCML

1. Set an initial value of ψ1, m = 1, ĉ0(θ) ≡ 0.
2. Compute an “incremental estimate” d̂(θ, ψm).
3. Update the approximation of ĉm(θ):

ĉm(θ) = m − 1

m
ĉm−1(θ) + 1

m
d̂(θ, ψm).

4. Update ψ : choose ψm+1 based on the history of the
simulation.

5. m = m + 1; go to 2.

AdapIS in Sect. 2 is a special case of AdapMCML which is obtained by letting
d̂(θ, ψm) = fθ (Ym)/hψm (Ym).

3.1 Variance Reduction Via Resampling and MCMC

The key property of the AIS exploited in Sect. 2 is the martingale structure implied
by (2.4) and (2.6). The main asymptotic results generalize if given ψ , the estimates
of c(θ) and its derivatives are conditionally unbiased. We propose an algorithm
for computing d̂ in (3.1) which has the unbiasedness property and is more effi-
cient than simple AIS. To some extent it is a remedy for the problem of weight
degeneracy and reduces the variance of Monte Carlo approximations. As before,
consider a family of “instrumental densities” hψ . Assume they are properly nor-
malized (

∫

hψ = 1) and the control parameter ψ belongs the same space as the
parameter of interest θ (Ψ = Θ). Further assume that for every ψ we have at our
disposal a Markov kernel Pψ on Y which preserves distribution πψ = fψ/c(ψ), i.e.
fψ(y)dy = ∫

fψ(y′)Pψ(y′, dy)dy′. Let us fix ψ. This is a setup in which we can
apply the following importance sampling-resampling algorithm ISReMC:
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Algorithm ISReMC

1. Sample Y1, . . . , Yl ∼ hψ .

2. Compute the importance weights Wi = w(Yi ) = fψ(Yi )

hψ(Yi )
and put

W• = ∑l
i=1 Wi .

3. Sample Y �
1 , . . . , Y �

r ∼ ∑l
i=1 δYi (·)Wi/W• [Discrete distribution

with mass Wi/W• at point Yi ].
4. For k = 1, . . . , r generate a Markov chain trajectory,

starting from Y �
k and using kernel Pψ :

Y �
k = Y 0

k , Y 1
k , . . . , Y s

k , Y s+1
k , . . . , Y s+n

k .

Compute d̂(θ, ψ) given by

d̂(θ, ψ) = W•
l

1

r

r
∑

k=1

1

n

s+n
∑

u=s+1

fθ (Y u
k )

fψ(Y u
k )

. (3.2)

This algorithm combines the idea of resampling (borrowed from sequential MC;
steps 2 and 3) with computing ergodic averages in multistart MCMC (step 4; notice
that s is a burn-in and n is the actual used sample size for a singleMCMCrun, repeated
r times). More details about ISReMC are in [7]. In our context it is sufficient to note
the following key property of this algorithm.

Lemma 1 If d̂(θ, ψ) is the output of IReMC then for every θ and every ψ ,

Ed̂(θ, ψ) = c(θ).

If Assumption 3 holds then also

E∇d̂(θ, ψ) = ∇c(θ), E∇2d̂(θ, ψ) = ∇2c(θ).

Proof We can express function c(θ) and its derivatives as “unnormalized expecta-
tions” with respect to the probability distribution with density πψ = fψ/c(ψ):

c(θ) = EY∼πψ

fθ (Y )

fψ(Y )
c(ψ),

∇c(θ) = EY∼πψ

∇ fθ (Y )

fψ(Y )
c(ψ), ∇2c(θ) = EY∼πψ

∇2 fθ (Y )

fψ(Y )
c(ψ).
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Let us focus on Ed̂(θ, ψ). Write

a(y) = E

(

1

n

s+n
∑

u=s+1

fθ (Y u)

fψ(Y u)

∣
∣
∣
∣
Y 0 = y

)

(3.3)

for the expectation of a single MCMC estimate started at Y 0 = y. Kernel Pψ

preserves πψ by assumption, therefore EY∼πψ a(Y ) = EY∼πψ fθ (Y )/ fψ(Y ) =
c(θ)/c(ψ). Put differently,

∫

a(y) fψ(y)dy = c(θ).
We make a simple observation that

E

(

d̂(θ, ψ)
∣
∣Y1, . . . , Yl , Y �

1 , . . . , Y �
r

)

= W•
l

1

r

r
∑

k=1

a(Y �
k ).

This conditional expectation takes into account only randomness of the MCMC
estimate in step 4 of the algorithm. Now we consecutively “drop the conditions”:

E

(

d̂(θ, ψ)
∣
∣Y1, . . . , Yl

)

= W•
l

l
∑

i=1

a(Yi )
Wi

W•
= 1

l

l
∑

i=1

a(Yi )Wi .

The expectation above takes into account the randomness of the resampling in step
3. Finally, since Yi ∼ hψ in step 1, we have

Ed̂(θ, ψ) = Ea(Yi )Wi = EY∼hψ a(Y )
fψ(Y )

hψ(Y )

=
∫

a(y) fψ(y)dy = c(θ).

This ends the proof for d̂. Exactly the same argument applies to ∇d̂ and ∇2d̂ .

We can embed the unbiased estimators produced by ISReMC in our general
adaptive scheme AdapMCML. At each step m of the adaptive algorithm, we have
a new control parameter ψm . We generate a sample from hψm , compute weights,
resample and run MCMC using ψm . Note that the whole sampling scheme at stage
m (including computation of weights) depends on ψm but not on θ . In the adaptive
algorithm random variable ψm+1 is Fm measurable, where Fm is the history of
simulation up to stage m. Therefore the sequence of incremental estimates d̂(θ, ψm)

satisfies, for every θ ∈ Θ ,

E(d̂(θ, ψm+1)|Fm) = c(θ). (3.4)
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Moreover, first and second derivatives exist and

E(∇d̂(θ, ψm+1)|Fm) = ∇c(θ), E(∇2d̂(θ, ψm+1)|Fm) = ∇2c(θ). (3.5)

Formulas (3.4) and (3.5) are analogues of (2.4) and (2.6).

3.2 Asymptotics of Adaptive MCML

In this subsection we restrict our considerations to exponential families on finite
spaces. This will allow us to prove main results without formulating complicated
technical assumptions (integrability conditions analoguous to Assumption 8 would
be cumbersome and difficult to verify). Some models with important applications,
such as autologistic one, satisfy the assumptions below.

Assumption 10 Let

fθ (y) = exp[θ�t (y)],

where t (y) ∈ R
d is the vector of sufficient statistics and θ ∈ Θ = R

d . Assume that
y belongs to a finite space Y .

Now, since Y is finite (although possibly very large),

c(θ) =
∑

y

exp[θ�t (y)].

Note that Assumption 3 is automatically satisfied.

Assumption 11 Control parameters ψ belong to a compact set Ψ ⊂ R
d .

We consider algorithm AdapMCML with incremental estimates d̂ produced by
ISReMC. The likelihood ratio in (3.2) and its derivatives assume the following form:

fθ (Y )

fψ(Y )
= exp[(θ − ψ)�t (Y )],

∇ fθ (Y )

fψ(Y )
= t (Y ) exp[(θ − ψ)�t (Y )],

∇2 fθ (Y )

fψ(Y )
= t (Y )t (Y )� exp[(θ − ψ)�t (Y )]

(3.6)

(the derivatives are with respect to θ , with ψ fixed). Assumptions 11 and 10 together
with Assumption 6 imply that d̂(θ, ψ j ) are uniformly bounded, if θ belongs to a
compact set. Indeed, the importance weights Wi in (3.2) are uniformly bounded
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by Assumptions 6 and 11. Formula (3.6) shows that the ratios fθ (y)/ fψ j (y) =
exp[(θ − ψ j )

�t (y)] are also uniformly bounded for ψ j and θ belonging to bounded
sets. Since the statistics t (y) are bounded, the same argument shows that ∇d̂(θ, ψ j )

and ∇2d̂(θ, ψ j ) are uniformly bounded, too.
For exponential families, log c(θ) and log ĉm(θ) are convex functions. It is a well

known property of exponential family that ∇2 log c(θ) = VARY∼πθ t (Y ) and thus it
is a nonnegative definite matrix. A closer look at ĉm(θ) reveals that ∇2 log ĉm(θ) is
also a variance-covariance matrix with respect to some discrete distribution. Indeed,
it is enough to note that ĉm(θ) is of the form

ĉm(θ) =
∑

j,k,u

exp[θ�t j,k,u]a j,k,u,

for some t j,k,u ∈ R
d and a j,k,u > 0 (although if ISReMC within AdapMCML is

used to produce ĉm(θ) then t j,k,u and a j,k,u are quite complicated random variables
depending on ψ j ).

Let θ̂m be a maximizer of �m(θ) = θ�t (yobs) − log ĉm(θ) and assume that θ� is
the unique maximizer of �(θ) = θ�t (yobs) − log c(θ).

Proposition 3 If Assumptions 6, 10 and 11 hold, then θ̂m → θ� almost surely.

Proof Boundedness of d̂(θ, ψm) for a fixed θ together with (3.4) implies that
d̂(θ, ψm) − c(θ) is a bounded sequence of martingale differences. It satisfies the
assumptions of SLLN for martingales in Appendix A. Therefore ĉm(θ) → c(θ).
Consequently, we also have �m(θ) → �(θ), pointwise. Pointwise convergence of
convex functions implies uniform convergence on compact sets [13, Theorem 10.8].
The conclusion follows immediately.

Theorem 4 If Assumptions 5–7, 10 and 11 hold, then

√
m(θ̂m − θ�) → N (0, D−1V D−1) in distribution,

where D = ∇2�(θ�) and

V = 1

c(θ�)2
VAR

[

∇d̂(θ�, ψ�) − ∇c(θ�)

c(θ�)
d̂(θ�, ψ�)

]

,

where d̂(θ�, ψ�) is a result of the IS/Resampling algorithm ISReMC, described in
the previous subsection, with ψ = ψ� and θ = θ�.

Note that d̂(θ�, ψ�) is a purely imaginary object, being a result of an algorithm
initialized at a “limiting instrumental parameter”ψ� and evaluated at the “trueMLE”
θ�, both unknown. It is introduced only to concisely describe the variance/covariance
matrix V . Note also that ∇c(θ�)/c(θ�) is equal to t (yobs), the observed value of the
sufficient statistic.
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Proof (of Theorem 4) The proof is similar to that of Theorem 3, so we will not repeat
all the details. The key argument is again based onSLLNandCLT formartingales (see
Appendix A). In the present situation we have more complicated estimators d̂(θ, ψ j )

than in Theorem 3. They are now given by (3.2). On the other hand, we work under
the assumption that fθ is an exponential family on a finite state spaceY . This implies
that conditions (3.4) and (3.5) are fulfilled and the martingale differences therein are
uniformly bounded (for any fixed θ and also for θ running through a compact set).
Concavity of �m(θ) and �(θ) further simplifies the argumentation.

As in the proof of Theorem 3, we claim that (2.8) and (2.9) hold. The first of
these conditions, (2.8), is justified exactly in the same way: by applying the CLT to
the numerator and SLLN to the denominator of (2.10). Now, we consider martingale
differences given by

ξ j = ∇d̂(θ�, ψ j ) − ∇c(θ�)

c(θ�)
d̂(θ�, ψ j ).

It follows from the discussion preceding the theorem that ξ j are uniformly bounded,
so the CLT can be applied. Similarly, SLLN can be applied to d̂(θ�, ψ j ) − c(θ�).

Assumption (9) holds because third order derivatives of log ĉm(θ) are uniformly
bounded in the neighbourhood of θ�. This allows us to infer condition (2.9) in the
same way as in the proof of Theorem 3.

Note also that we do not need Assumption 4. To deduce the conclusion of the
theorem from (2.9) we have to know that θ̂m is square-root consistent. But this
follows from the facts that �m(θ) is concave and the maximizer of the quadratic
function−(θ−θ�)

�∇�m(θ�)− 1
2 (θ−θ�)

� D(θ−θ�) in (2.9) is square-root consistent
by (2.8).

4 Simulation Results

In a series of small scale simulation experiments, we compare two algorithms. The
first one, used as a “Benchmark” is a non-adaptive MCML. The other is AdapMCML
which uses ISReMC estimators, as described in Sect. 3. Synthetic data used in our
study are generated from autologistic model, described below. Both algorithms use
Gibbs Sampler (GS) as an MCMC subroutine and both use Newton-Raphson itera-
tions to maximize MC log-likelihood approximations.

4.1 Non-adaptive and Adaptive Newton-Raphson-Type
Algorithms

Well-knownNewton-Raphson (NR)method in our context updates points θm approx-
imating maximum of the log-likelihood as follows:
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θm+1 = θm + ∇2�m(θm)−1∇�m(θm),

where �m is given by (2.1).
Non-adaptive algorithms are obtained when some fixed value of the “instrumen-

tal parameter” is used to produce MC samples. Below we recall a basic version of
such an algorithm, proposed be Geyer [4] and examined e.g. in [9]. If we consider
an exponenial family given by Assumption 10, then �m(θ) = θ�t (yobs)− log ĉm(θ).
Let ψ be fixed and Y0, Y1, . . . , Ys, . . . , Ys+m be samples approximately drawn from
distribution πψ ∝ fψ . In practice an MCMC method is applied to produce such
samples, s stands for a burn-in. In all our experiments the MCMCmethod is a deter-
ministic scan Gibbs Sampler (GS). Now, we let

ĉm(θ) ∝ 1

m

s+m
∑

u=s+1

exp[(θ − ψ)�t (Yu)].

Consequently, if ωu(θ) = exp[(θ − ψ)�t (Yu)] and ω•(θ) = ∑s+m
u=s+1 ωu(θ), then

the derivatives of the log-likelihood are expressed via weighted moments,

∇�m(θ) = t (yobs) − t (Y ), t (Y ) = 1

ω•(θ)

s+m
∑

u=s+1

ωu(θ)t (Yu),

∇2�m(θ) = − 1

ω•(θ)

s+m
∑

u=s+1

ωu(θ)(t (Yu − t (Y ))(t (Yu) − t (Y ))�.

The adaptive algorithm uses ĉm(θ) given by (3.1), with summands d̂(θ, ψ j )

computed byISReMC, exactly as described in Sect. 3. TheMCMCmethod imbedded
in ISReMC is GS, the same as in the non-adaptive algorithm. Importance sampling
distribution hψ in steps 1 and 2 of ISReMC is pseudo-likelihood, described by
formula (4.1) in the next subsection. Computation of ψm+1 in step 4 of AdapMCML
uses one NR iteration: ψm+1 = ψm +∇2�m(ψm)−1∇�m(ψm), where �m is given by
(2.1) with ĉm produced by AdapMCML.

4.2 Methodology of Simulations

For our experiments we have chosen the autologistic model, one of chief motivating
examples for MCML. It is given by a probability distribution on Y = {0, 1}d×d

proportional to

fθ (y) = exp

(

θ0
∑

r

y(r) + θ1
∑

r∼s

y(r)y(s)

)

,



Adaptive Monte Carlo Maximum Likelihood 265

Table 1 Sufficient statistics, maximum log-likelihood andMPL estimate for example with d = 10

Statistic T ML θ� Log-Lik �(θ�) MPL θ̂

(59, 74) (−1.21, 0.75) −15.889991 (−1.07, 0.66)

Table 2 Sufficient statistics, maximum log-likelihood and MPL estimate for example with d = 15

Statistic T ML θ� Log-Lik �(θ�) MPL θ̂

(142, 180) (−0.46, 0.43) 12.080011 (−0.57, 0.54)

where r ∼ s means that two points r and s in the d × d lattice are neighbours. The
pseudo-likelihood hψ is given by

hψ(y) ∝
∏

r

exp

(

θ0y(r) + θ1
∑

s:r∼s

y(r)y(s)
obs

)

. (4.1)

In our study we considered lattices of dimension d = 10 and d = 15. The values
of sufficient statistics T = (∑

r y(r),
∑

r∼s y(r)y(s)
)

, exact ML estimators θ� and
maxima of the log-likelihoods are in the Tables1 and 2. We report results of several
repeated runs of a “benchmark” non-adaptive algorithm and our adaptive algorithm.
The initial points are (1) the maximum pseudo-likelihood (MPL) estimate, denoted
by θ̂ (also included in the tables) and (2) point (0, 0). Number of runs is 100 for
d = 10 and 25 for d = 15. Below we describe the parameters and results of these
simulations. Note that we have chosen parameters for both algorithms in such a way
which allows for a “fair comparison”, that is the amount of computations and number
of required samples are similar for the benchmark and adaptive algorithms.

For d = 10: In benchmark MCML, we used 1000 burn-in and 39,000 col-
lected realisations of the Gibbs sampler; then 20 iterations of Newton-Raphson were
applied. AdapMCML had 20 iterations; parameters within ISReMC were l = 1000,
r = 1, s = 100, n = 900.

The results are shown in Figs. 1 and 2.
For d = 15: In benchmark MCML, we used 10,000 burn-in and 290,000 col-

lected realisations of the Gibbs sampler; then 10 iterations of Newton-Raphson were
applied. AdapMCML had 10 iterations; parameters within ISReMC were l =10,000,
r = 1, s = 1000, n =19,000.

The results are shown in Figs. 3 and 4. The benchmark algorithm started from 0
for d = 15 failed, so only the results for the adaptive algorithm are given in the right
parts of Figs. 3 and 4.
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Fig. 1 Log-likelihood at the output of MCML algorithms; d = 10; 100 runs

Fig. 2 Output of MCML algorithms; d = 10; 100 repetitions
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Fig. 3 Log-likelihood at the output of MCML algorithms; d = 15; 25 repetitions

Fig. 4 Output of MCML algorithms; d = 15; 25 repetitions
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4.3 Conclusions

The results of our simulations allow to draw only some preliminary conclusions,
because the range of experiments was limited. However, some general conclusions
can be rather safely formulated. The performance of the benchmark, non-adaptive
algorithm crucially depends on the choice of starting point. It yields quite satisfactory
results, if started sufficiently close tho themaximum likelihood, for example from the
maximum pseudo-likelihood estimate. Our adaptive algorithm is much more robust
and stable in this respect. If started from a good initial point, it may give slightly
worse results than the benchmark, but still is satisfactory (see Fig. 2). However,
when the maximum pseudo-likelihood estimate is not that close to the maximum
likelihood point, the adaptive algorithm yields an estimate with a lower variance (see
Fig. 2). When started at a point distant from the maximum likelihood, such as 0, it
works much better than a non-adaptive algorithm. Thus the algorithm proposed in
our paper can be considered as more universal and robust alternative to a standard
MCML estimator.

Finally let us remark that there are several possibilities of improving our adaptive
algorithm. Some heuristically justified modifications seem to converge faster and be
more stable than the basic version which we described. Modifications can exploit the
idea of resampling in a different way and reweigh past samples in subsequent steps.
Algorithms based on stochastic approximation, for example such as that proposed in
[16], can probably be improved by using Newton-Raphson method instead of simple
gradient descent. However, theoretical analysis of suchmodified algorithms becomes
more difficult and rigorous theorems about them are not available yet. This is why
we decided not to include these modified algorithms in this paper. Further research
is needed to bridge a gap between practice and theory of MCML.

Acknowledgments This work was partially supported by Polish National Science Center No. N
N201 608 740.

Appendix A: Martingale Limit Theorems

For completeness, we cite the following martingale central limit theorem (CLT):

Theorem A.1 ([8, Theorem 2.5]) Let Xn = ξ1 + · · · + ξn be a mean-zero (vector
valued) martingale. If there exists a symmetric positive definite matrix V such that

1

n

n
∑

j=1

E

(

ξ jξ
T
j |F j−1

) p−→ V, (A.1)
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1

n

n
∑

j=1

E

(

ξ jξ
T
j 1|ξ j |>ε

√
n |F j−1

) p−→ 0 for each ε > 0, (A.2)

then

Xn√
n

d−→ N (0, V ).

The Lindeberg condition (A.2) can be replaced by a stronger Lyapunov condition

1

n

n
∑

j=1

E

(

|ξ j |2+α|F j−1

)

≤ M for some α > 0 and M < ∞. (A.3)

A simple consequence of [6, Theorem 2.18] (see also [3]) is the following strong
law of large numbers (SLLN).

Theorem A.2 Let Xn = ξ1 + · · · + ξn be a mean-zero martingale. If

sup
j
E

(

|ξ j |1+α|F j−1

)

≤ M for some α > 0 and M < ∞

then
Xn

n
a.s.−−→ 0.
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Abstract The problem of fitting logistic regression to binary model allowing for
missppecification of the response function is reconsidered. We introduce two-stage
procedure which consists first in ordering predictors with respect to deviances of
the models with the predictor in question omitted and then choosing the minimizer
of Generalized Information Criterion in the resulting nested family of models. This
allows for large number of potential predictors to be considered in contrast to an
exhaustivemethod.We prove that the procedure consistently choosesmodel t∗ which
is the closest in the averaged Kullback-Leibler sense to the true binary model t . We
then consider interplay between t and t∗ and prove that for monotone response func-
tion when there is genuine dependence of response on predictors, t∗ is necessarily
nonempty. This implies consistency of a deviance test of significance under misspec-
ification. For a class of distributions of predictors, including normal family, Rudd’s
result asserts that t∗ = t . Numerical experiments reveal that for normally distrib-
uted predictors probability of correct selection and power of deviance test depend
monotonically on Rudd’s proportionality constant η.
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1 Introduction

We consider a general binary regression model in which responses y ∈ {0, 1} are
related to explanatory variables x = (1, x1, . . . , x p)

′ ∈ R p+1 by the equation

P(y = 1|x) = q(x′β), (1)

where vector β = (β0, β1, . . . , βp)
′ is an unknown vector of parameters and q :

R → (0, 1) is a certain unknown response function. To the data pertaining to (1) we
fit the logistic regression model i.e. we postulate that the posterior probability that
y = 1 given x is of the form

p(x′γ) = exp(x′γ)/[1 + exp(x′γ)], (2)

where γ ∈ R p+1 is a parameter. Ourmain interest here is the situationwhen the logis-
tic model is misspecified i.e. p �= q. Let t = {0} ∪ {1 ≤ k ≤ p : βk �= 0} be the true
model i.e. consisting of indices of nonzero coefficients corresponding to true predic-
tors and of the intercept denoted by 0. Our taskmay be either to identifymodel t when
incorrectly specified model (2) is fitted or, less ambitiously, to verify whether t con-
tains indices corresponding to predictors i.e. whether response depends on predictors
at all. The situation of incorrect model specification is of importance because of obvi-
ous reasons as in real applications usually we have no prior knowledge about data
generation process and, moreover, goodness-of-fit checks may yield inconclusive
results. Thus investigating to what extent selection and testing procedures are resis-
tant to response function misspecification is of interest. This is especially relevant
with large number of possible features and sparsity when selecting true predictors is
a challenge in itself and is further exacerbated by possible model misspecification.
Moreover, some data generation mechanisms lead directly to misspecified logistic
model. As an example we mention [6] who consider the case of logistic model when
each response is mislabeled with a certain fixed probability.

In the paper we consider selection procedures specially designed for large p
scenario which use Generalized Information Criterion (GIC). This criterion encom-
passes, for specific choices of parameters, such widely used criteria as Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC). AIC is known to
overestimate the dimension of the true model (see e.g. [4]) whereas BIC in the case
of correctly specified linear model with fixed p is consistent [7]. There are many
modifications of AIC and BIC which among others are motivated by the phenom-
enon that for large p depending on the sample size BIC also choses too large number
of variables. We mention in particular modified BIC [3, 23], Extended BIC (EBIC)
which consists in adding a term proportional to log p to BIC [8, 9] and Risk Inflation
Criterion [15]. Qian and Field [20] consider GIC and proved its consistency under
correct specification. In this line of research [9] propose minimization of EBIC over
all possible subsets variables of sizes not larger than k when k is some sufficiently
large number. However, this approach becomes computationally prohibitive for even
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moderate k. Other important approach is based on l1-penalized loglikelihood and
its extensions and modifications such as Elastic Net (see [24]) and SCAD [14]. It is
known that l1-penalization leads to cancelation of some coefficients and thus can be
considered as model selection method. For discussion of other approaches we refer
to [5, 10, 17] and references there.

The aims of the paper are twofold. We first introduce two-step modification of
a procedure based on GIC, the minimizer of which over the family of all possible
models is used as a selector of relevant variables. In the casewhen number of possible
predictors is large such an approach is practically unfeasible due to high computa-
tional cost of calculating GIC for all possible subsets. This is a reason, likely the
only one, why these methods are not frequently used and sequential greedy methods
are applied in practice. However, greedy methods lack theoretical underpinning and
it is known that they may miss true predictors. We thus propose a specific two-stage
greedy method which consists in first ranking the predictors according to residual
deviances of the models containing all variables but the considered one. Then in the
second stageGIC isminimized over the nested family ofmodels pertaining to increas-
ing sets of the most important variables. We prove that such procedure picks with
probability tending to 1 the logistic model t∗ which minimizes averaged Kullback-
Leibler distance from the binary model (1). This is to the best of our knowledge
the first formal result on the consistency of greedy selection procedure for logistic
regression even in the case when p = q. As a by-product we obtain the known
result concerning behaviour of GIC optimized over the family of all models due to
[22]. As in their paper the very general framework is considered for which stringent
assumptions are needed we note that it is possible to prove the result under much
weaker conditions (cf. their Proposition 4.2 (i), (ii) and Theorem 2 below). In view
of the result the nature of the interplay between t∗ and t becomes relevant. However,
it seems that the problem, despite its importance, has failed to attract much attention.
Addressing this question, admittedly partially, is the second aim of the paper. We
discuss Rudd’s (1983) result in this context which states that for certain distribu-
tions of predictors β∗ = ηβ for some η ∈ R, where β∗ which minimizes averaged
Kullback-Leibler distance from the binary model to logistic regressions. This obvi-
ously implies that t∗ = t if η �= 0. As our main result in this direction we prove in
Theorem 4 if t contains genuine regressors so does t∗ provided that q is monotone
and not constant. This implies in particular that in such a case significance test for
regressors constructed under logistic model is consistent under misspecification. We
also discuss the relevance of proved results in practice by investigating probability of
correct model selection for two-stage procedure and power of test of significance for
moderate sample sizes. In particular, we empirically verify that, surprisingly, mis-
specification of the model may lead to larger probabilities of correct selection and
positive selection rate than for correct specification and stress the importance of the
proportionality constant η in this context. Namely, it turns out that this phenomenon
occurs mostly in the cases when η > 1. Moreover, we established that probability of
correct selection and power of deviance test depend monotonically on η.
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Generalization to the case when p is large in comparison to n is left for further
study. As the fitting of the full model in the first stage of the procedure excludes its
application when p > n an initial screening of variables which is commonly done
in applications (see e.g. [9]) would be necessary.

The paper is structured as follows. Section2 contains preliminaries, in Sect. 3
we introduce and prove consistency of two-step greedy GIC procedure. Interplay
between t and t∗ is discussed in Sect. 4 together with its consequence for consis-
tency of deviance test under misspecification. In Sect. 5 we describe our numerical
experiments and Appendix contains proofs of auxiliary lemmas.

2 Preliminaries

Observe that the first coordinate ofβ in (1) corresponds to the intercept and remaining
coefficients to genuine predictors which are assumed to be random variables. We
assume that β is uniquely defined. The data consists of n observations (yi , xi )which
are generated independently from distribution Px,y such that conditional distribution
Py|x is given by Eq. (1) and distribution of attribute vector x is (p + 1)-dimensional
with first coordinate equal to 1. We consider the case when x is random since in this
situation behaviour of β∗ of maximum likelihood estimator β̂ for incorrect model
specification can be more easily described (cf. definition (6) below, see however [13]
for analogous development for deterministic predictors).

As a first remark note that as distribution Px,y which satisfies (1) with parameters
q and β satisfies also (1) for parameters q̃ and cβ + α where c > 0 and q̃(s) =
q((s − α)/c). It follows that when q is unknown only the direction of the vector
β̃ = (β1, . . . , βp)

′ may be possibly recovered.
LetX be n×(p+1) designmatrix with rows x1, . . . , xn andY = (y1, . . . , yn)′ be

a response vector. Under the logistic regressionmodel, the conditional log-likelihood
function for the parameter γ ∈ R p+1 is

l(γ, Y|X) =
n

∑

i=1

{yi log[p(x′
iγ)] + (1 − yi ) log[1 − p(x′

iγ)]}

=
n

∑

i=1

{yi x′
iγ − log[1 + exp(x′

iγ)]}.

Note that we can alternatively view l(γ, Y|X) defined above as an empirical risk
corresponding to the logistic loss. Define also the score function for the parameter
γ ∈ R p+1

sn(γ) = ∂l(γ, Y|X)

∂γ
=

n
∑

i=1

[yi − p(x′
iγ)]xi = X′(Y − p(γ)), (3)
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where p(γ) = (p(x′
1
γ), . . . , p(x′

nγ))′. The negative Hessian matrix will be denoted
by

Jn(γ) = −∂l2(γ, Y|X)

∂γ∂γ′ =
n

∑

i=1

{p(x′
iγ)[1 − p(x′

iγ)]}xi x′
i = X′Π(γ)X, (4)

whereΠ(γ) = diag{p(x′
1
γ)(1− p(x′

1
γ)), . . . , p(x′

nγ)(1− p(x′
nγ))}. Under assump-

tion E(x2k ) < ∞, for k = 1, . . . , p it follows from the Law of Large Numbers that

n−1 Jn(γ)
P−→ Ex{xx′ p(x′γ)[1 − p(x′γ)]} =: J (γ). (5)

Observe that in the case of incorrect model specification cov[sn(γ)|x1, . . . , xn] =
∑n

i=1{q(x′
i
γ)[1− q(x′

i
γ)]}xi x′

i is not equal to negative Hessian Jn(γ) as in the case
of correct model specification when p(·) = q(·).

The maximum likelihood estimator (ML) β̂ of parameter β is defined to be

β̂ = arg max
γ∈R p+1

l(γ, Y|X).

Moreover define
β∗ = arg min

γ∈R p+1
E{Δx[q(x′β), p(x′γ)]},

where

Δx[q(x′β), p(x′γ)] = q(x′β) log
q(x′β)

p(x′γ)
+ [1 − q(x′β)] log 1 − q(x′β)

1 − p(x′γ)

is the Kulback-Leibler distance from the true Bernoulli distribution with the parame-
ter q(x′β) to the postulated one with the parameter p(x′γ). Thus β∗ is the parameter
corresponding to the logistic model closest to binary model with respect to Kullback-
Leibler divergence. It follows from [16] that

β̂
P−→ β∗ (6)

Using the fact that ∂p(x′γ)/∂γ = p(x′γ)[1 − p(x′γ)]x it is easy to see that

E
[
∂Δx[q(x′β), p(x′γ)]

∂γ

]

= E[−q(x′β)x + p(x′γ)x]

and

E
[
∂2Δx[q(x′β), p(x′γ)]

∂γγ′

]

= E{p(x′γ)[1 − p(x′γ)]xx′}
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is positive-semidefinite. Thus from the first of the above equations we have

E[q(x′β)x] = E[p(x′β∗)x] = E(yx). (7)

Note that as the first coordinate of x is equal one which corresponds to intercept, the
pertaining equation is

E[q(x′β)] = E[p(x′β∗)] = E(y). (8)

Using (3) and (7) we obtain

cov{E[sn(β∗)|x1, . . . xn]} = nE{xx′[q(x′β) − p(x′β∗)]2}
− nE{x[q(x′β) − p(x′β∗)]}{E{x[q(x′β) − p(x′β∗)]}}′

= nE{xx′[q(x′β) − p(x′β∗)]2}.

We also have

E{cov[sn(β
∗)|x1, . . . , xn]} = nE{xx′q(x′β)[1 − q(x′β)]}.

Let Kn(γ) = cov[sn(γ)] be covariance matrix of score function sn(γ). From above
facts we have

n−1Kn(β∗)
= E

{

xx′{q(x′β)[1 − q(x′β)] + [q(x′β) − p(x′β∗)]2}
}

=: K (β∗). (9)

The form of Kn(β
∗) will be used in the proof of Lemma 2. From (6) it is also easy

to see that
β∗ = arg min

γ∈R p+1
E{−l(γ, Y|X)}.

It follows from [19] that β∗ exists provided 0 < q(β ′x) < 1 almost everywhere
with respect to Px and is unique provided E ||x|| < ∞. In the following we will
always assume that β∗ exists and is unique. In the case of correct specification, when
p(·) = q(·) we have β∗ = β. In general β∗ may be different from β. The most
immediate example is when q(s) = p(−s) which corresponds to logistic model
with switched classes. In this case β∗ = −β. Li and Duan [19], p. 1019 give an
example when supports of β and β∗ are disjoint for a loss different than logistic. Let
t∗ = {0} ∪ {1 ≤ k ≤ p : β∗

k �= 0}. In Sect. 4 we discuss the relationships between
β and β∗ as well as between t and t∗ in more detail. In Sect. 3 we give conditions
under which set t∗ is identified consistently. Under certain assumptions we can also
have t∗ = t and thus identification of set t is possible.

Let us discuss the notation used in this paper. Let m ⊆ f := {0, 1, . . . , p} be
any subset of variable indices and |m| be its cardinality. Each subset m is associ-
ated with a model with explanatory variables corresponding to this subset. In the
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following f stands for the full model containing all available variables and by null
we denote model containing only intercept (indexed by 0). We denote by β̂m a
maximum likelihood estimator calculated for model m and by β∗

m the minimizer
of averaged Kullback-Leibler divergence when only predictors belonging to m are
considered. Thus β∗ = β∗

f . Moreover, β∗(m) stands for β∗ restricted to m. Depend-
ing on the context these vectors will be considered as |m|-dimensional or as their
(p+1)-dimensional versions augmented by zeros.We need the following fact stating
that when m ⊇ t∗ then β∗

m is obtained by restricting β∗ to m.

Lemma 1 Let m ⊇ t∗ and assume β∗ is unique. Then β∗
m = β∗(m).

Proof The following inequalities hold

E{Δx[q(x′β), p(x′
mβ∗

m)]} ≥ E{Δx[q(x′β), p(x′β∗)]}
= E{Δx[q(x′β), p(x′

mβ∗(m))]}.

From the definition of projection the above inequality is actually equality and from
the uniqueness the assertion follows.

3 Consistency of Two-Step Greedy GIC Procedure

We consider the following model selection criterion

G I C(m) = −2l(β̂m, Y|X) + an|m|,

where m is a given submodel containing |m| variables, β̂m is a maximum likelihood
estimator calculated for model m (augmented by zeros to p-dimensional vector) and
an is penalty. Observe that an = log(n) corresponds to Bayesian Information Crite-
rion and an = 2 corresponds to Akaike Information Criterion. GIC was considered
e.g. by [22]. We would like to select a model which minimizes G I C over a family

M := {{0} ∪ s : s ⊆ {1, . . . , p}},

i.e. the family of all submodels of f containing intercept. Denote the corresponding
selector by t̂∗. As M consists of 2p models and determination of t̂∗ requires cal-
culation of GIC for all of them this becomes computationally unfeasible for large
p. In order to restrict the space of models over which the optimal value of criterion
function is sought we propose the following two-stage procedure.

Step 1. The covariates {1, . . . , p} are ordered with respect to the residual deviances

D f \{i1} f ≥ D f \{i2} f ≥ · · · ≥ D f \{i p} f .
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Step 2. The considered model selection criterion G I C is minimized over a family

Mnested := {{0}, {0} ∪ {i1}, {0} ∪ {i1, i2}, . . . , {0} ∪ {i1, i2, . . . , i p}}.

We define t̂∗gr as the minimizer of GIC over Mnested. The intuition behind the first
step of the procedure is that by omitting the true regressors from the model their cor-
responding residual deviances are increased significantly more than when spurious
ones are omitted. Thus the first step may be considered as screening of the family
M and reducing it to Mnested by whittling away elements likely to be redundant.

The following assumption will be imposed on Px and penalization constants an

(A1) J (β∗) is positive definite matrix.
(A2) E(x2k ) < ∞, for k = 1, . . . , p.
(A3) an → ∞ and an/n is nonincreasing and tends to 0 as n → ∞.

The main result of this section is the consistency of the greedy procedure defined
above.

Theorem 1 Under assumptions (A1)–(A3) greedy selector t̂∗gr is consistent i.e.
P(t̂∗gr = t∗) → 1 when n → ∞.

The following two results which are of independent interest constitute the proof of
Theorem1. The first result asserts consistency of t̂∗. This is conclusion of Proposition
4.2 (i) and (iii) in [22]. However, as the framework in the last paper is very general,
it is possible to prove the assertions there under much milder assumptions without
assuming e.g. that loglikelihood satisfies weak law of large numbers uniformly in β

and similar assumption on Jn . Theorem 3 states that after performing the first step
of the procedure relevant regressors will precede the spurious ones with probability
tending to 1. Consistency of GIC in the almost sure sense was proved by [20] for
deterministic regressors under some extra conditions.

Theorem 2 Assume (A1)–(A3). Then t̂∗ is consistent i.e.

P(t̂∗ = t∗) = P[ min
m∈M,m �=t∗

G I C(m) > G I C(t∗)] → 1.

Consider two models j and k and denote by

Dn
jk = 2[l(β̂k, Y|X) − l(β̂ j , Y|X)] (10)

deviance of the model k from the model j .

Theorem 3 Assume conditions (A1)–(A2). Then for all i ∈ t∗ \ {0} and j �∈ t∗ \ {0}
we have

P[D f \{i} f > D f \{ j} f ] → 1, as n → ∞.

Proof (Theorem 1) As the number of predictors is finite and does not depend on n
the assertion in Theorem 3 implies that with probability tending to one model t∗ will
be included inMnested. This in view of Theorem 2 yields the proof of Theorem 1.
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The following lemmas will be used to prove Theorem 2. Define sequence

d2
n = min{[ max

1≤i≤n
||xi ||2]−1, [ min

k∈t∗,1≤k≤p
(1/2)β∗

k ]2}. (11)

Remark 1 It follows fromLemma 6 that under assumptions (A2) and (A3) if t∗\0 �=
∅ we have nd2

n/an
P−→ ∞.

Two lemmas below are pivotal in proving Theorem 2. The proofs are in the appendix.

Lemma 2 Let c ⊇ m ⊇ t∗. Assume (A1)–(A2). Then Dmc = OP (1).

Lemma 3 Let w �⊇ t∗ and c ⊇ t∗. Assume (A1)–(A2). Then P(Dwc > α1nd2
n ) → 1

as n → ∞, for some α1 > 0.

Proof (Theorem 3) It follows from Lemma 3 that for i ∈ t we have P[Dn
f \{i} f >

α1nd2
n ] → 1, for α1 > 0 and by Remark 1 nd2

n
P−→ ∞. By Lemma 2 we have that

D f \{ j} f = OP (1) for j ∈ t∗, which end the proof.

Proof (Theorem 2) Consider first the case t∗ = {0} ∪ m, m �= ∅. We have to show
that for all models m ∈ M such that m �= t∗

P[−2l(β̂ t∗ , Y|X) + |t∗|an < −2l(β̂m, Y|X) + |m|an] → 1,

as n → ∞ which is equivalent to P[Dmt∗ > an(|t∗| − |m|)] → 1. In the case of

m �⊇ t∗ this follows directly from Lemma 3 and nd2
n/an

P−→ ∞. Consider the case
of m ⊃ t∗. By Lemma 2 Dmt∗ = OP (1). This ends the first part of the proof in view
of an(|t∗| − |m|) → −∞. For t∗ = {0} we only consider the case m ⊃ t∗ and the
assertion P[Dmt∗ > an(1 − |m|)] → 1 follows again from Lemma 2.

4 Interplay Between t and t∗

In view of the results of the previous section t∗ can be consistently selected by two-
stepGICprocedure.Aswewant to choose t not t∗, the problemwhat is the connection
between these two sets naturally arises. First we study the problem whether it is
possible that t∗ is {0} whereas t does contain genuine regressors. Fortunately, the
answer under some mild conditions on the distribution Px,y , including monotonicity
of response function q, is negative.We proceed by reexpressing the fact that t∗ = {0}
in terms of conditional expectations and then showing that the obtained condition
for monotone q can be satisfied only in the case when y and x are independent.

Let β̃ = (β1, . . . , βp), β̃
∗ = (β∗

1 , . . . , β∗
p) and x̃ = (x1, . . . , x p). The first

proposition (proved in the appendix) gives the simple equivalent condition for t∗ =
{0}.
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Proposition 1 E(x|y = 1) = E(x|y = 0) if and only t∗ = {0}.
Let f (x̃|y = 1) and f (x̃|y = 0) be the density functions of x̃ in classes y = 1 and
y = 0, respectively and denote by F(x̃|y = 1) and F(x̃|y = 0) the correspond-
ing probability distribution functions. Note that the above proposition in particular
implies that in the logistic model for which expectations of x in both classes are
equal we necessarily have β̃ = 0. The second proposition asserts that this is true for
a general binary model under mild conditions. Thus in view of the last proposition
under these conditions t∗ = {0} is equivalent to t = {0}.
Proposition 2 Assume that q is monotone and densities f (x̃|y = 1), f (x̃|y = 0)
exist. Then E(x̃|y = 1) = E(x̃|y = 0) implies f (x̃|y = 1) = f (x̃|y = 0) a.e., i.e.
y and x̃ are independent.

Proof Define h(x̃) as the density ratio of f (x̃|y = 1) and f (x̃|y = 0). Observe
that as

h(x̃) = f (x̃|y = 1)

f (x̃|y = 0)
= P(y = 0)

P(y = 1)

q(β0 + x̃′β̃)

1 − q(β0 + x̃′β̃)
(12)

we have that h(x̃) = w(x̃′β̃) and w is monotone.
Consider first the case p = 1. It follows from the monotone likelihood ratio

property (see [18], Lemma 2, Sect. 3) that since h(x̃) is monotone then conditional
distributions F(x̃|y = 1) and F(x̃|y = 0) are ordered and as their expectations are
equal this implies F(x̃|y = 1) = F(x̃|y = 0) and thus the conclusion for p = 1.

For p > 1 assume without loss of generality that β1 �= 0 and consider the
transformation z = (z1, . . . , z p) = (β̃

′
x̃, x2, . . . , x p)

′. Denote by f̃ (z|y = 1) and
f̃ (z|y = 0) densities of z in both classes. It is easy to see that we have

f̃ (z|y = 1) = β−1
1 f

(

(z1 − β2z2 − · · · − βpz p)/β1, z2, . . . , z p
∣
∣ y = 1),

f̃ (z|y = 0) = β−1
1 f

(

(z1 − β2z2 − · · · − βpz p)/β1, z2, . . . , z p
∣
∣ y = 0)

and

f̃ (z|y = 1)

f̃ (z|y = 0)
= w

(

β̃
′
((z1 − β2z2, . . . , βpz p)/β1, z2, . . . , z p)

)

= w(z1). (13)

It follows from (13) that marginal densities f̃1(z1|y = 1), f̃1(z1|y = 0) satisfy
f̃1(z1|y = 1)/ f̃1(z1|y = 0) = w(z1) and the first part of the proof yields f̃1(z1|y =
1) = f̃1(z1|y = 0).
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Thus we have for fixed z1

f̃ (z|y = 1)

f̃ (z|y = 0)
= f̃ (z2, . . . , z p|z1, y = 1) f̃1(z1|y = 1)

f̃ (z2, . . . , z p|z1, y = 0) f̃1(z1|y = 0)

= f̃ (z2, . . . , z p|z1, y = 1)

f̃ (z2, . . . , z p|z1, y = 0)
= w(z1),

which implies that for any z1 we have f̃ (z2, . . . , z p|z1, y = 1) = f̃ (z2, . . . , z p|z1,
y = 0) and thus f̃ (z|y = 1) = f̃ (z|y = 0) and consequently f (x̃|y = 1) =
f (x̃|y = 0) which ends the proof.

Observe now that in view of (12) if f (x̃|y = 1) = f (x̃|y = 0) then q(β0 + x̃′β̃) is
constant and thus β̃ = 0 if 1, x1, . . . , x p are linearly independent with probability 1
i.e. x′b = b0 a.e. implies that b = 0 (or equivalently that Σx > 0). Thus we obtain

Theorem 4 If q is monotone and not constant and 1, x1, . . . , x p are linearly inde-

pendent with probability 1 then t∗ = {0} is equivalent to t = {0} or, β̃
∗ �= 0 is

equivalent to β̃ �= 0.

Now we address the question when t = t∗. The following theorem has been proved
in [21], see also [19] for a simple proof based on generalized Jensen inequality.

Theorem 5 Assume that β∗ is uniquely defined and there exist θ0, θ1 ∈ R p such
that

(R) E(x̃|x̃′β = z) = θ0 + θ1z.

Then β̃
∗ = ηβ̃, for some η ∈ R.

It is well known that Rudd’s condition (R) is satisfied for eliptically contoured distri-
butions. In particular multivariate normal distribution satisfies this property (see e.g.
[19], Remark 2.2). The case when η �= 0 plays an important role as it follows from
the assertion of Theorem 5 that then t∗ = t . Note that in many statistical problems
we want to consistently estimate the direction of vector β and not its length. This is
true for many classification methods when we look for direction such that projection
on this direction will give maximal separation of classes. Theorem 4 implies that
under its conditions η in the assertion of Theorem 5 is not equal zero. Thus we can
state

Corollary 1 Assume (A1)–(A3), (R) and conditions of Theorem 4. Then

P(t̂∗gr = t) → 1

i.e. two-stage greedy G I C is consistent for t .

Proof Under (R) it follows from Theorem 5 that β̃
∗ = ηβ̃ and as q is monotone and

not constant it follows from Theorem 4 that η �= 0 and thus t = t∗. This implies the
assertion in view of Theorem 2.
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In thenext sectionbymeansof numerical experimentswewill indicate thatmagnitude
of η plays an important role for probability of correct selection. In particular we will
present examples showing that when regressors are jointly normal and thus Ruud’s
condition is satisfied, probability of correct selection of t by two-step greedy GIC
can be significantly larger under misspecification than under correct specification.

The analogous result to Corollary 1 follows for t̂∗ when G I C is minimized over
the whole family of 2p models.

The important consequence of Theorem 4 is that power of significance test will
increase to 1 when there is dependence of y on x even when logistic model is
misspecified and critical region is constructed for such model. Namely, consider
significance test for H0 : β̃ = 0 with critical region

C1−α = {Dnull,t̂∗gr
> χ2

|t̂∗gr |−1,1−α
} (14)

where χ2
k,1−α is quantile of order 1−α of chi-squared distribution with k degrees of

freedom. Observe that if p = q it follows from Theorem 2 and [12] that under null
hypothesis P(C1−α|H0) → α what explains the exact form of the threshold of the
rejection region when the logistic model is fitted. We have

Corollary 2 Assume that conditions of Theorem 4 are satisfied and β̃ �= 0. Consider
test of H0 : β̃ = 0 against H1 : β̃ �= 0 with critical region C1−α defined in (14).
Then the test is consistent i.e. P(Dnull,t̂∗gr

∈ C1−α|H1) → 1.

Observe that if β̃
∗ �= 0 then in view of Remark 1 nd2

n → ∞. Then the main results

and Lemma 3 imply that when β̃
∗ �= 0 P[Dnull,t̂∗gr

> χ2
|t̂∗gr |−1,1−α

] → 1 for any

α > 0 and the test is consistent. But in view of Theorem 4 β̃
∗ �= 0 is implied by

β̃ �= 0.

5 Numerical Experiments

In this section we study how the incorrect model specification affects the model
selection and testing procedures, in particular how it influences probability of correct
model selection, positive selection rate, false discovery rate and power of a test of
significance. In the case when attributes are normally distributed we investigate how
these measures depend on proportionality constant η appearing in Rudd’s theorem.

Recall that t denotes the minimal true model. Convention that β t is subvector of
β corresponding to t is used throughout. We consider the following list of models.

(M1) t = {10}, βt = 0.2,
(M2) t = {2, 4, 5}, β t = (1, 1, 1)′,
(M3) t = {1, 2}, β t = (0.5, 0.7)′,
(M4) t = {1, 2}, β t = (0.3, 0.5)′,
(M5) t = {1, . . . , 8}, β t = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)′.
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Models (M3)–(M5) above are considered in [9]. The number of all potential attributes
is initially set to be p = 15 so the proportion of relevant variables varies from
6.66% (for model M1) to 53.33% (for model M5). Recall that q(·) denotes a true
response function, i.e. for a given x, y is generated from Bernoulli distribution with
success probability q(x′β). The logistic model defined in (2) is fitted. Let FN (0,1)(·)
denote distribution function of standard normal random variable and FCauchy(u,v)(·)
distribution function of Cauchy distribution with location u and scale v. In the case
of incorrect model specification, the following response functions are considered:

q1(s) = FN (0,1)(s) (Probit model),

q2(s) =

⎧

⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (0.1, 0.8)

0.1 for FN (0,1)(s) ≤ 0.1

0.8 for FN (0,1)(s) ≥ 0.8,

q3(s) =

⎧

⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (0.2, 0.7)

0.2 for FN (0,1)(s) ≤ 0.2

0.7 for FN (0,1)(s) ≥ 0.7,

q4(s) =
{

FN (0,1)(s) for |s| > 1

0.5 + 0.5 cos[4π FN (0,1)(s)]FN (0,1)(s) for |s| ≤ 1,

q5(s) = FCauchy(0,1)(s),

q6(s) = FCauchy(0,2)(s),

Studied response functions are shown in Fig. 1. Dashed line there corresponds to
fitted logistic response function p(·).

We consider two distributions of attributes, in both cases attributes are assumed to
be independent. In the first scenario x j have N (0, 1) distribution and in the second x j

are generated from Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1). Thus in the first
case condition (R) of Theorem 5 is satisfied. This implies β̃

∗ = ηβ̃, for some η ∈ R.
One of our main goals is to investigate how the value of η affects the performance
of model selection and testing procedures.

Recall that although Rudd’s condition is a property of distribution of predictors
and β it follows from definition of β∗ that η depends on the model as well as
on misspecified response q(·). Table1 shows values of estimated proportionality
constant η, denoted by η̂. To calculate η̂, for each variable k ∈ t , the value β̂k/βk ,
where β̂ is based on n = 106 observations is computed and then the values are
averaged over all attributes. The first column corresponds to η = 1 and it allows
to gauge the variability of η̂. Note also that the smallest value of η̂ equal 0.52 and
the second largest (equal 1.74) are obtained for the model M2 and responses q6 and
q1, respectively. It follows that in the first case estimated β is on average two times
smaller than the true one and around 1.7 times larger in the second case. Observe also
that when β̂ and β are approximately proportional, for q(s) such that q(s) > p(s)
for s > 0 we can expect that β̂ > β as we try to match q(x′

iβ) with p(x′
i β̂).
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Fig. 1 Responses functions. Dashed line corresponds to fitted logit model p(·)

Table 1 Values of η̂ for considered models

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·)
M1 0.988 1.642 1.591 1.591 0.788 1.241 0.651

M2 1.005 1.741 0.863 0.537 1.735 0.874 0.522

M3 0.993 1.681 1.352 0.968 1.524 1.045 0.580

M4 1.005 1.644 1.510 1.236 1.293 1.140 0.610

M5 1.013 1.779 0.897 0.552 1.724 0.879 0.532

This results in η̂ > 1. Thus as expected for q1, η̂ is greater than 1, whereas for q6 it
is smaller than 1.

It is noted in [2] (Sect. 4.2) that the probit function can be approximated by the
scaled logit function as q1(s) ≈ p(a ·s), where the scaling constant a = √

8/π ≈ 1.6
is chosen so that the derivatives of the two curves are equal for s = 0. Observe that
constant a is very close to η̂ calculated for q1 (see Table1).
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In order to select the final model we use the two-step greedy procedure with
Bayesian Information Criterion (BIC) described in Sect. 3. All fitted models include
intercept.

Let t̂∗ denote the model selected by a given selection criterion. As the measures
of performance we use the following indices:

• probability of correct model selection (CS): P(t̂∗ = t),
• positive selection rate (PSR): E(|t̂∗ ∩ t |/|t |),
• false discovery rate (FDR): E(|t̂∗ \ t |/|t̂∗|),
• power of significance test (POWER): P(Dnull,t̂∗ ∈ C1−α|H1), where C1−α is
critical region and H1 corresponds tomodelsM1–M5.Levelα = 0.05was adopted
throughout.

Empirical versions of the above measures are calculated and the results are averaged
over 200 simulations. In the case of difficult models containing several predictors
with small contributions CS can be close to zero and thus PSR and FDR are much
more revealing measures of effectiveness. Observe that PSR is an average fraction
of correctly chosen variables with respect to all significant ones whereas FDR mea-
sures a fraction of false positives (selected variables which are not significant) with
respect to all chosen variables. Thus PSR = 1 means that all significant variables
are included in the chosen model whereas FDR = 0 corresponds to the case when
no spurious covariates are present in the final model. Instead of using critical region
based on asymptotic distribution defined in (14) for which the significance level usu-
ally significantly exceeded assumed one, Monte Carlo critical value is calculated.
For a given n and p 10000 datasets from null model are generated, for each one t̂∗
and Dnull,t̂∗ is computed and this yields distribution of Dnull,t̂∗ . The critical value is
defined as empirical quantile of order (1 − α) for Dnull,t̂∗ .

Table2 shows the results for n = 200. The highlighted values are maximal value
in row (minimal values in case of FDR) and the last column pertains to maximal
standard deviation in row. Observe that the type of response function influences
greatly all considered measures of performance. Values of POWER are mostly larger
than CS as detection of at least one significant variable usually leads to rejection of
the null hypothesis. The most significant differences are observed for model M5 for
which it is difficult to identify all significant variables as some coefficients are close
to zero but it is much easier to reject the null model. However, when there is only one
significant variable in the model, the opposite may be true as it happens for model
M1. Note also that CS, PSR and POWER are usually large for large η̂. To make this
point more clear Fig. 2 shows the dependence of CS, PSR, POWER on η̂. Model M1
is not considered for this graph as it contains only one significant predictor. In the
case of CS, PSR and POWER monotone dependence is evident. However FDR is
unaffected by the value of η which is understandable in view of its definition.

Table3 shows the results for n = 200 when attributes x j are generated from
Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1). Observe that the greatest impact of
the change of x on CS occurs for truncated probit responses q2 and q3 for which
in the case of M2–M5 CS drops dramatically. The change affects also PSR but to a
lesser extent.
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Table 2 CS, PSR, FDR and POWER for x j ∼ N (0, 1) with n = 200, p = 15

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·) max sd

M1 CS 0.100 0.410 0.410 0.400 0.070 0.190 0.060 0.035

PSR 0.170 0.530 0.530 0.520 0.110 0.300 0.080 0.036

FDR 0.218 0.198 0.198 0.198 0.142 0.234 0.243 0.030

POWER 0.080 0.200 0.200 0.200 0.110 0.120 0.040 0.028

M2 CS 0.820 0.760 0.850 0.550 0.770 0.870 0.590 0.035

PSR 1.000 1.000 1.000 0.860 1.000 1.000 0.867 0.016

FDR 0.050 0.072 0.040 0.051 0.061 0.038 0.064 0.011

POWER 1.000 1.000 1.000 0.970 1.000 1.000 0.970 0.012

M3 CS 0.680 0.790 0.760 0.670 0.680 0.660 0.250 0.034

PSR 0.920 0.995 0.975 0.910 0.985 0.940 0.590 0.023

FDR 0.068 0.073 0.082 0.060 0.103 0.095 0.087 0.013

POWER 0.980 1.000 1.000 0.950 1.000 0.990 0.550 0.035

M4 CS 0.300 0.700 0.680 0.440 0.380 0.380 0.050 0.035

PSR 0.650 0.940 0.920 0.795 0.740 0.765 0.310 0.023

FDR 0.130 0.078 0.073 0.113 0.140 0.103 0.153 0.021

POWER 0.700 1.000 0.990 0.890 0.870 0.830 0.290 0.033

M5 CS 0.000 0.090 0.010 0.000 0.110 0.000 0.000 0.022

PSR 0.647 0.821 0.601 0.391 0.815 0.595 0.372 0.012

FDR 0.033 0.031 0.034 0.047 0.024 0.038 0.068 0.010

POWER 1.000 1.000 1.000 0.950 1.000 1.000 0.930 0.018

To investigate this effect further we consider the probit function truncated at levels
c and 1 − c

q7(s) =

⎧

⎪⎨

⎪⎩

FN (0,1)(s) for FN (0,1)(s) ∈ (c, 1 − c)

0.2 for FN (0,1)(s) ≤ c

0.7 for FN (0,1)(s) ≥ 1 − c,

which is a generalization of q2 and q3. Figure7 shows howparameter c influencesCS,
PSR and FDR when the response is generated from q7 and attributes are generated
from Gaussian mixture 0.95N (0, 1) + 0.05N (5, 1).

To illustrate the result concerning the consistency of greedy two-stepmodel selec-
tion procedure stated in Corollary 1 we made an experiment in which dependency
on n is investigated. Figures3 and 4 show considered measures of performance with
respect to n for models M4 and M5. Somehow unexpectedly in some situations the
results for incorrect model specification are better than for the correct specification,
e.g. for model (M4) CS is larger for q1, q2 and q4 than for q(·) = p(·) (cf. Fig. 3).
The results for q6 are usually significantly worse than for p, which is related to the
fact that η̂ for this response is small (see again Table1). Observe also that the type
of response function clearly affects the PSRs whereas FDRs are similar in all cases.
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Fig. 2 CS, PSR, FDR, POWER versus η̂ for n = 200, p = 15. Each point corresponds to different
response function

Figure5 shows how the power of the test of significance for the selectedmodel and
for the full model depends on the value of coefficient corresponding to the relevant
variable in model M1. We see that for both correct and incorrect specification the
power for selected model is slightly larger than for the full model for sufficiently
large value of coefficient β10. The difference is seen for smaller values of β in case
of misspecification.

Finally we analysed how the number of potential attributes p influences the per-
formance measures. The results shown in Fig. 6 for model M1 and n = 500 indicate
that FDR increases significantly when spurious variables are added to the model. At
the same time CS decreases when p increases, however, PSR is largely unaffected.

In conclusion we have established that when predictors are normal quality of
model selection and power of the deviance test depend on the magnitude of Rudd’s
constant η. When η > 1 one can expect better results than for correct specification.
Moreover, values of CS, PSR and POWER depend monotonically on η.
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Table 3 CS, PSR, FDR and POWER for x j ∼ 0.95N (0, 1) + 0.05N (5, 1) with n = 200, p = 15

Model p(·) q1(·) q2(·) q3(·) q4(·) q5(·) q6(·) max sd

M1 CS 0.140 0.540 0.490 0.370 0.270 0.220 0.060 0.036

PSR 0.220 0.700 0.670 0.490 0.330 0.320 0.110 0.036

FDR 0.403 0.263 0.270 0.233 0.452 0.344 0.245 0.034

POWER 0.220 0.460 0.450 0.240 0.340 0.260 0.090 0.035

M2 CS 0.790 0.730 0.180 0.050 0.780 0.720 0.350 0.034

PSR 0.993 1.000 0.943 0.573 1.000 0.977 0.777 0.021

FDR 0.052 0.070 0.278 0.227 0.056 0.084 0.094 0.016

POWER 1.000 1.000 0.990 0.740 1.000 1.000 0.980 0.031

M3 CS 0.600 0.740 0.140 0.090 0.700 0.440 0.140 0.035

PSR 0.925 1.000 0.915 0.725 0.990 0.855 0.600 0.021

FDR 0.103 0.095 0.338 0.283 0.106 0.169 0.163 0.019

POWER 1.000 1.000 0.990 0.840 1.000 1.000 0.790 0.029

M4 CS 0.330 0.670 0.120 0.040 0.410 0.210 0.010 0.035

PSR 0.690 0.920 0.700 0.620 0.800 0.685 0.385 0.020

FDR 0.148 0.077 0.235 0.230 0.127 0.147 0.248 0.027

POWER 0.950 1.000 0.930 0.760 1.000 0.890 0.460 0.035

M5 CS 0.010 0.140 0.000 0.000 0.070 0.000 0.000 0.025

PSR 0.641 0.834 0.338 0.194 0.792 0.573 0.324 0.011

FDR 0.013 0.020 0.188 0.185 0.017 0.034 0.054 0.015

POWER 1.000 1.000 0.970 0.720 1.000 1.000 0.960 0.032

In addition to tests on simulated data we performed an experiment on real data.
We used Indian Liver Patient Dataset publicly available at UCI Machine Learning
Repository [1]. This data set contains 10 predictors: age, gender, total Bilirubin,
direct Bilirubin, total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos. The
binary response indicates whether the patient has a liver disease or not. Our aim
was to use real explanatory variables describing the patients to generate an artificial
response from different response functions. This can mimic the situation in which
the liver disease cases follow some unknown distribution depending on explanatory
variables listed above. We applied the following procedure. Predictors chosen by
stepwise backward selection using BIC were considered. Estimators pertaining to
3 chosen variables (1st-age, 4th-direct Bilirubin and 6th-albumin) are treated as
new true parameters corresponding to significant variables whereas the remaining
variables are treated as not significant ones. Having the new parameter β and vectors
of explanatory variables x1, . . . , xn in the data we generate new y1, . . . , yn using
considered response functions p, q1, . . . , q6.

Table 4 shows fraction of simulations in which the given variable was selected
to the final model when the two-step procedure was applied. Note that this measure
is less restrictive than CS used in previous experiments. Observe that the choice of
response function affects the probabilities, e.g. direct Bilirubin is chosen in 80%
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Fig. 3 CS, PSR, FDR, POWER versus n for model (M4), p = 15. Note change of the scale
for FDR
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simulations for correct specification and only in 12% simulations for q3. The sig-
nificant variables are most often chosen to the final model for p and q1. It is seen
that direct Bilirubin is less likely to be selected in the case of most of the considered
response functions (Fig. 7).
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Table 4 Probabilities of selecting variables to the final model for Indian liver patient dataset

Relevant
variable

β p q1 q2 q3 q4 q5 q6

1 −0.02 0.95 1.00 1.00 0.88 0.87 0.95 0.62

0 0.00 0.12 0.13 0.20 0.11 0.09 0.09 0.11

0 0.00 0.23 0.23 0.16 0.07 0.18 0.19 0.27

1 −0.67 0.80 0.77 0.36 0.12 0.30 0.60 0.63

0 0.00 0.11 0.15 0.26 0.08 0.17 0.10 0.17

1 −0.02 1.00 1.00 0.44 0.10 0.95 0.84 0.72

0 0.00 0.17 0.17 0.27 0.05 0.09 0.22 0.19

0 0.00 0.23 0.16 0.13 0.01 0.08 0.15 0.16

0 0.00 0.28 0.15 0.06 0.02 0.08 0.18 0.17

0 0.00 0.22 0.14 0.06 0.04 0.10 0.16 0.12
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Fig. 7 CS, PSR, FDR versus c for q7, x j ∼ 0.95N (0, 1) + 0.05N (5, 1), n = 200 and p = 15

Appendix A: Auxiliary Lemmas

This section contains some auxiliary facts used in the proofs. The following theorem
states the asymptotic normality of maximum likelihood estimator.

Theorem 6 Assume (A1) and (A2). Then

√
n(β̂ − β∗) d−→ N (0, J−1(β∗)K (β∗)J−1(β∗))

where J and K are defined in (5) and (9), respectively.

The above Theorem is stated in [11] (Theorem 3.1) and in [16] ((2.10) and Sect. 5B).
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Lemma 4 Assume that max1≤i≤n |x′
i (

γ − β)| ≤ C for some C > 0 and some
γ ∈ R p+1. Then for any c ∈ R p+1

exp(−3C)c′ Jn(β)c ≤ c′ Jn(γ)c ≤ exp(3C)c′ Jn(β)c, a.e.

Proof It suffices to show that for i = 1, . . . , n

exp(−3C)p(x′
iβ)[1−p(x′

iβ)] ≤ p(x′
iγ)[1−p(x′

iγ)] ≤ exp(3C)p(x′
iβ)[1−p(x′

iβ)].

Observe that for γ such that maxi≤n |x′
i (

γ − β)| ≤ C there is

p(x′
i
γ)[1 − p(x′

i
γ)]

p(x′
iβ)[1 − p(x′

iβ)] = ex′
i (

γ−β)

[

1 + ex′
i β

1 + ex′
i
γ

]2

≥ e−C

[

e−x′
i β + 1

e−x′
i β + eC

]2

≥ e−3C .

(15)
By replacing β and γ in (15) we obtain the upper bound for c′ Jn(γ)c.

Lemma 5 Assume (A1) and (A2). Then l(β̂, Y|X) − l(β∗, Y|X) = OP (1).

Proof Using Taylor expansion we have for some β̄ belonging to the line segment
joining β̂ and β∗

l(β̂, Y|X) − l(β∗, Y|X) = √
n(β̂ − β∗)′[Jn(β̄)/n]√n(β̂ − β∗)/2, (16)

Define set An = {γ : ||γ − β∗|| ≤ sn}, where sn is an arbitrary sequence such that
ns2n → 0. Using Schwarz and Markov inequalities we have for any C > 0

P[max
i≤i≤n

|x′
i (γ − β∗)| > C] ≤ P[ max

1≤i≤n
||xi ||sn > C]

≤ n max
i≤i≤n

P[||xi || > Cs−1
n ] ≤ C−2ns2n E(||x||2) → 0.

Thus using Lemma 4 the quadratic form in (16) is bounded with probability tending
to 1 from above by

exp(3C)
√

n(β̂ − β∗)′[Jn(β∗)/n]√n(β̂ − β∗)/2,

which is OP (1) as
√

n(β̂ − β∗) = OP (1) in view of Theorem 6 and n−1 Jn(β∗) P−→
J (β∗).
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A.1 Proof of Lemma 2

As β∗
m = β∗

c we have for c ⊇ m ⊇ t∗

l(β̂c, Y|X) − l(β̂m , Y|X) = [l(β̂c, Y|X) − l(β∗
c , Y|X)] + [l(β∗

m , Y|X) − l(β̂m |X, Y)],

which is OP (1) in view of Remark 1 and Lemma 5.

A.2 Proof of Lemma 3

The difference l(β̂c, Y|X) − l(β̂w, Y|X) can be written as

[l(β̂c, Y|X) − l(β∗, Y|X)] + [l(β∗, Y|X) − l(β̂w|X, Y)]. (17)

It follows from Lemma 5 and Remark 1 that the first term in (17) is OP (1). We will
show that the probability that the second term in (17) is greater or equal α1nd2

n , for
some α1 > 0 tends to 1. Define set An = {γ : ||γ − β∗|| ≤ dn}. Using the Schwarz
inequality we have

sup
γ∈An

max
i≤n

|x′
i (γ − β∗)| < max

1≤i≤n
||xi ||dn ≤ 1, (18)

with probability one. Define Hn(γ) = l(β∗, Y|X) − l(γ, Y|X). Note that H(γ) is
convex and H(β∗) = 0. For any incorrect model w, in view of definition (11)
of dn , we have β̂w /∈ An for sufficiently large n. Thus it suffices to show that
P(infγ∈∂ An Hn(γ) > α1nd2

n ) → 1, as n → ∞, for some α1 > 0. Using Taylor
expansion for some γ̄ belonging to the line segment joining γ and β∗

l(γ, Y|X) − l(β∗, Y|X) = (γ − β∗)′sn(β
∗) − (γ − β∗)′ Jn(γ̄)(γ − β∗)/2

and the last convergence is implied by

P[ sup
γ∈∂ An

(γ − β∗)′sn(β
∗) > inf

γ∈∂ An
(γ − β∗)′ Jn(γ̄)(γ − β∗)/2 − α1nd2

n ] → 0. (19)

It follows from Lemma 4 and (18) that for γ ∈ An

(γ − β∗)′ Jn(γ̄)(γ − β∗) ≥ e−3(γ − β∗)′ Jn(β∗)(γ − β∗). (20)

Let τ = exp(−3)/2.Using (20), the probability in (19) can be bounded fromabove by
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P[ sup
γ∈∂ An

(γ − β)′sn(β) > τd2
nλmin(Jn(β)) − α1nd2

n ]
+ P[ inf

γ∈∂ An
(γ − β)′ Jn(γ̄)(γ − β)/2 < τd2

nλmin(Jn(β))]. (21)

Let λ−
1 = λmin(J (β))/2. Assuming α1 < λ−

1 τ , the first probability in (21) can be
bounded by

P[dn||sn(β)|| > τnd2
nλ−

1 − α1nd2
n ] + P[λmin(Jn(β)) < λ−

1 n]
≤ P[||sn(β)|| > (τλ−

1 − α1)n
1/2a1/2

n ]
+ P[ndn < n1/2a1/2

n ] + P[λmin(Jn(β)) < λ−
1 n]. (22)

Consider the first probability in (22). Note that sn(β∗) is a random vector with
zero mean and the covariance matrix Kn(β∗). Using Markov’s inequality, the fact
that cov[sn(β

∗)] = nK (β∗) and taking α1 < λ−τ it can be bounded from above by

tr{cov[sn(β
∗)]}

(τλ− − α1)2n2d2
n

= tr [Kn(β
∗)]

(τλ− − α1)2n2d2
n

≤ nκp

(τλ− − α1)2n2d2
n

(23)

≤ κp

(τλ− − α1)2an
→ 0,

where the last convergence follows from an → ∞.
The convergence to zero of the second probability in (22) follows from nd2

n/an
P−→

∞. As eigenvalues of a matrix are continuous functions of its entries, we have

λmin(n−1 Jn(β∗)) P−→ λmin(J (β∗)). Thus the convergence to zero of the third prob-
ability in (22) follows from the fact that in view of (A1) matrix J (β∗) is positive
definite. The second term in (21) is bounded from above by

P[ inf
γ∈∂ An

(γ − β)′ Jn(γ̄)(γ − β)/2 < τd2
nλmin(Jn(β))]

≤ P[ inf
γ∈∂ An

(γ − β)′[Jn(γ̄) − 2τ Jn(β)](γ − β)/2

+ 2τd2
nλmin(Jn(β))/2 < τd2

nλmin(Jn(β))]
≤ P[ inf

γ∈∂ An
(γ − β)′[Jn(γ̄) − 2τ Jn(β)](γ − β)/2 < 0] → 0,

where the last convergence follows from Lemma 4 and (18).

Lemma 6 Assume (A2) and (A3). Then we have maxi≤n ||xi ||2an/n
P−→ 0.

Proof Using Markov inequality, (A2) and (A3) we have that ||xn||2an/n
P−→ 0.

We show that this implies the conclusion. Denote gn := max1≤i≤n ||xi ||2an/n and
hn := ||xn||2an/n. Define sequence nk such that n1 = 1 and nk+1 = min{n >

nk : maxi≤n ||xi ||2 > maxi≤nk ||xi ||2} (if such nk+1 does not exist put nk+1 = nk).
Without loss of generality we assume that for A = {nk → ∞} we have P(A) = 1
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as on Ac the conclusion is trivially satisfied. Observe that gnk = hnk and hnk

P−→ 0

as a subsequence of hn
P−→ 0 and thus also gnk

P−→ 0. This implies that for any
ε > 0 there exists n0 ∈ N such that for nk > n0 we have P[|gnk | ≤ ε] ≥ 1 − ε.
As for n ∈ (nk, nk+1) gn ≤ gnk since an/n is nonincreasing we have that if n ≥ n0

P[|gn| ≤ ε] ≥ 1 − ε i.e. gn
P−→ 0.

A.3 Proof of Proposition 1

Assume first that β̃
∗ = 0 and note that this implies p(β0 + x̃′β̃∗

) = p(β0) = C ∈
(0, 1). From (8) we have

P(y = 1) = E(y) = E[E(y|x̃)] = E[q(β0 + x̃′β̃)] = E[p(β∗
0 + x̃′β̃∗

)] = C. (24)

Using (24) and (7) we get

E(x̃y) = E{E[x̃y|x̃]} = E{x̃E[y|x̃]} = E[x̃q(β0 + x̃′β̃)] (25)

= E[x̃ p(β∗
0 + x̃′β̃∗

)] = E(x̃)C.

From (24) we also have

E(x̃y) = Ex̃I {y = 1} = E(x̃|y = 1)P(y = 1) = E(x̃|y = 1)C.

Comparing the last equation and right-side term in (25) we obtain E(x̃|y = 1) =
E x̃ = E(x̃|y = 0). Assume now E(x̃|y = 1) = E(x̃|y = 0) which implies as before
that that E(x̃|y = 1) = E(x̃). Thus

E(x̃y) = E(x̃|y = 1)E(y) = E(x̃)E(y). (26)

Since (β∗
0 , β̃

∗
) is unique it suffices to show that (7) and (8) are satisfied for β̃

∗ = 0
and β∗

0 such that Ep(β∗
0 ) = P(Y = 1). This easily follows from (26).
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Semiparametric Inference in Identification
of Block-Oriented Systems

Mirosław Pawlak

Abstract In this paper,we give the semiparametric statistics perspective on the prob-
lemof identification of a class of nonlinear dynamic systems.Wepresent a framework
for identification of the so-called block-oriented systems that can be represented by
finite-dimensional parameters and an infinite-dimensional set of nonlinear charac-
teristics that run typically through a nonparametric class of univariate functions. We
consider systems which are expressible exactly in this form and the case when they
are approximative models. In the latter case, we derive projections, that is, solutions
which minimize the mean L2 error. The chief benefit of such an approach is to make
classical nonparametric estimates amenable to the incorporation of constraints and
able to overcome the celebrated curse of dimensionality and system complexity.
The developed methodology is explained by examining semiparametric versions of
popular block-oriented structures, i.e., Hammerstein, Wiener, and parallel systems.

1 Introduction

The aim of system identification is to build a mathematical model of a class of
dynamic systems from observed input-output data. This is a well-examined subject
in the field of theoretical and applied automatic control, signal processing as well as
process dynamics. The comprehensive overviewof classical andmodern system iden-
tification theory and its applications can be found in [2, 17, 21, 31]. There, the com-
mon approach to identification of dynamic systems is based on parametric models
and the corresponding identification algorithms rely on the classical theory of max-
imum likelihood and prediction error. In contrast, modern statistics, machine learn-
ing and econometrics offer a large class of estimation techniques where parametric
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assumption is not required [6, 9, 15, 16, 18–20, 30]. This includes strategies ranging
from fully nonparametric algorithms to a more restrictive semiparametric inference.
Surprisingly until recently, there has been a little influence of this powerful method-
ology on system identification. In [29] the machine learning theory approach has
been applied to the parametric identification problem for linear systems with infinite
memory having the fading memory property. In [26] an overview of recent con-
tributions on the use of the regularization and RKHS (Reproducing Kernel Hilbert
Space) theories in the context of identification of linear systems is presented. In [13]
the statistical nonparametric estimation theory has been fully utilized and extended
to identification of large class of nonlinear dynamic systems. Various nonparametric
methods have been examined including classical Nadaraya–Watson kernel estimates,
estimates employing orthogonal series expansions and the nonparametric version of
stochastic approximation. The extension of the nonparametric function estimation
setting to system identification is often non-trivial as in this case the functional rela-
tionship between observed signals and the unknown characteristics is in the indirect
form. This type of hidden information regarding the unknown functions yields often
to the lack of uniqueness and requires solving some indirect (inverse) estimation
problems. Furthermore, the observed data do not often meet the mixing dependence
condition, the assumption commonly assumed in the nonparametric/semiparametric
statistical inference.

In this paper we focus on a class of dynamic nonlinear systems, often referred to
as block-oriented, that find numerous applications in control engineering, chemical
dynamics and biomedical systems [11]. Block-oriented nonlinear systems are rep-
resented by a certain composition of linear dynamical and nonlinear static models.
Hence, a block-oriented system is defined by the pair (λ, m(•)), where λ defines
infinite-dimensional parameter representing impulse response sequences of linear
dynamical subsystems, whereas m(•) is a vector of nonparametric multidimensional
functions describing nonlinear elements. In the parametric identification approach to
block-oriented systems one assumes that both λ and m(•) are known up to unknown
finite dimensional parameters, i.e., λ = λ(ϑ) and m(•) = m(•; ζ ) for ϑ , ζ being
finite dimensional unknown parameters. There are numerous identification algo-
rithms for estimating ϑ , ζ representing specific block-oriented systems, see [10, 11]
for an overview of the subject. Although such methods are quite accurate, it is well
known, however, that parametricmodels carry a risk of incorrect model specification.
On the other hand, in the nonparametric setting λ and m(•) are completely unspeci-
fied and therefore the corresponding nonparametric block-oriented system does not
suffer from risk of misspecification. Nevertheless, since nonparametric estimation
algorithmsmake virtually no assumptions about the form of (λ, m(•)) they tend to be
slower to converge to the true characteristics of a block-oriented system than correctly
specified parametric algorithms. Moreover, the convergence rate of nonparametric
methods is inversely proportional to the dimensionality of input and interconnecting
signals. This is commonly referred to as the “curse of dimensionality”. Nonparamet-
ric methods have attracted a great deal of attention in statistics and econometrics,
see [20, 30] for an overview of the subject. The number of texts on nonparametric
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algorithms tailored to the needs of engineering and system identification in particular
is much smaller, see [13, 19] for recent contributions.

In practice, we can accept intermediate models which lie between parametric and
fully nonparametric cases. For this so called semiparametric models we specify a
parametric form for some part of the model but we do not require the paramet-
ric assumption for the remaining parts of the model. Hence, the nonparametric
description (λ, m(•)) of the system is now replaced by (θ, g(•)), where θ is a finite
dimensional vector and g(•) is a set of nonparametric nonlinearities being typi-
cally univariate functions. The parameter θ represents characteristics of all linear
dynamical subsystems and low-dimensional approximations of multivariate nonlin-
earities. The fundamental issue is to characterize the accuracy of approximation of
(λ, m(•)) by the selected semiparametric model (θ, g(•)). This challenging problem
will be addressed in this paper in some specific cases. Once such characterization
is resolved, we can make use of this low complexity semiparametric representation
to design practical identification algorithms that share the efficiency of parametric
modelling while preserving the high flexibility of the nonparametric case. In fact, in
many situations we are able to identify linear and nonlinear parts of a block-oriented
system under much weaker conditions on the system characteristics and underlying
probability distributions.

A semiparametric inference is based on the concept of blending together para-
metric and nonparametric estimation methods. The basic idea is to first examine the
parametric part of the block-oriented structure as if all nonparametric parts were
known. To eliminate the dependence of a parametric fitting criterion on the charac-
teristics of the nonparametric parts, we form pilot nonparametric estimates of the
characteristics being indexed by a finite-dimensional vector of the admissible value
of the parameter. Then, this is used to establish a parametric fitting criterion (such
as least squares) with random functions representing all estimated nonparametric
characteristics. The resulting parameter estimates are employed to form final non-
parametric estimates of the nonlinear characteristics. As a result of this interchange,
we need some data resampling schemes in order to achieve some statistical indepen-
dence between the estimators of parametric and nonparametric parts of the system.
This improves the efficiency of the estimates and facilitates the mathematical analy-
sis immensely. In Sect. 2 we examine sufficient conditions for the convergence of
our identification algorithms for a general class of semiparametric block-oriented
systems. This general theory is illustrated (Sect. 3) in the case of semiparametric ver-
sions of Hammerstein systems,Wiener system, and parallel connections.We show in
this context that the semiparametric strategy leads to consistent estimates of (θ, g(•))

with optimal rates which are independent of the input signal dimensionality. These
results are also verified in some simulation studies.

An overview of the theory and applications of semiparametric inference in statis-
tics and econometrics can be found in [15, 20, 28, 34].
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2 Nonparametric and Semiparametric Inference

The modern nonparametric inference provides a plethora of estimation methods
allowing us to recover system characteristics with the minimum knowledge about
their functional forms. This includes classical methods like k−nearest neighbours,
kernel and series estimators. On the other hand, sparse basis functions, regularization
techniques, support vector machines, and boosting methods define modern machine
learning alternatives [16, 18, 23].

For a given set of training data DN = {(X1, Y1), . . . , (XN , YN )} taken at the input
and output of a certain system, a generic nonparametric estimate of a regression
function m(x) = E{Yt |Xt = x} can be written as

m̂ N (x) =
N
∑

t=1

αt Yt K(x, Xt ), (1)

where K(x, v) is a kernel function and {αt } is a weight sequence. For the clas-
sical kernel estimate {αt } plays role of the normalizing sequence, i.e., αt =
(
∑N

i=1 K(x, Xi ))
−1 for each t , where K(x, v) is the kernel of the convolution type,

i.e., K(x, v) = K(x − v). On the other hand, in support vector kernel machines, {αt }
is selected by the optimization algorithm defined by the maximal-margin separa-
tion principle and the kernel function is of the inner product type (Mercer’s kernels)
K(x, v) = ∑l φl(x)φl(v). In order to achieve the desired consistency property, i.e.,
that m̂ N (x) tends to m(x) as N → ∞, the kernel function must be tuned locally. This
can be achieved by introducing the concept of smoothing parameters that control the
size of local information that is employed in the estimation process. For instance, in
the kernel estimate we use Kb(x − v) = b−dK((x − v)/b), for x, v ∈ Rd , where b
is a positive number, usually called the bandwidth.

The consistency is the desirable property and ismet bymost classical nonparamet-
ric techniques. Some modern techniques like support vector machines are not local
since they use the entire training data in the design process. This can be partially
overcome by using the properly regularized kernels.

A serious limitation in the use of nonparametric estimators is the fact that they
are prone to the dimensionality of observed signals as well as the smoothness of
estimated characteristics [9, 20, 30]. To illustrate this point, let us consider the
following multiple-input, single-output (MISO), nonlinear autoregressive model of
order p:

Yn = m(Yn−1, Yn−2, . . . , Yn−p, Un) + Zn, (2)

where Un ∈ Rd is the input signal, Zn is noise process, and m(•, •) is a (p + d)—
dimensional function. It is clear that m(•, •) is a regression function of Yn on the past
outputs Yn−1, Yn−2, . . . , Yn−p and the current input Un . Thus, it is a straightforward
task to form a multivariate nonparametric regression estimate such as the one in
(1), where the signal Xt ∈ R p+d is defined as Xt = (Yt−1, Yt−2, . . . , Yt−p, Ut ).
The convergence analysis, [9, 20], of such an estimate will strongly depend on the
stability conditions of the nonlinear recursive difference equation:
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yn = m(yn−1, yn−2, . . . , yn−p, un).

With this respect, a fading-memory type assumption along with the Lipschitz conti-
nuity ofm(•, •) seem to be sufficient for the consistency of nonparametric regression
estimates. Hence, for m(•, •) being a Lipschitz continuous function the best possible

rate can be OP

(

N− 1
2+p+d

)

, where OP (•) denotes the convergence in probability.

For the second order system p = 2 and two-dimensional input this gives a very slow
rate of OP (N−1/6). This apparent curse of dimensionality also exists in the case of
the MISO Hammerstein system which will be examined in the next section.

To overcome this problemone can consider to approximate the regression function
m(x) = E{Yt |Xt = x}, x ∈ Rq , by some low-dimensional structures.We are looking
for a parsimonious semiparametric alternative which can be represented by a finite-
dimensional parameter and a set of single-variable nonlinearities. The following is
a simple semiparametric model for m(x):

μ(x) = g(θT x), (3)

where the function g(•) and the parameter θ ∈ Rq are unknown and must be esti-
mated. We note that g(•) is a single variable function and thus the curse of dimen-
sionality for the model μ(x) is removed. The model μ(x) is not uniquely defined. In
fact if g(•) is linear then we cannot identify θ . Moreover, the scaling of the vector θ

does not influence the values of g(•) if we rescale g(•) accordingly. Hence, we need
to normalize θ either by setting one of the coefficients of θ to one, e.g., θ1 = 1 or by
imposing the restriction ||θ || = 1. We will call the set of all such normalized values
of θ as Θ .

In system identification the vector of covariates Xt can be decomposed as Xt =
(Ut , Vt ), where Ut ∈ Rd has the interpretation of the input signal and Vt ∈ R p

defines the past values of the output signal. Then we can propose a few alternatives
to the model in (3), e.g.,

μ(u, v) = ρT v + g(γ T u), (4)

where ρ ∈ R p and γ ∈ Rd are unknown parameters. This semiparametric model
applied in (2) would result in a partially linear nonlinear system of the form

Yn = ρ1Yn−1 + ρ2Yn−2 + · · · + ρpYn−p + g(γ T Un) + Zn . (5)

The statistical inference for the model in (3), i.e., estimation of (θ, g(•)) requires
the characterization of the “true” characteristics (θ∗, g∗(•)). This can be done by
finding the optimal L2 projection of the original system onto the model defined in
(3). Hence, we wish to minimize the risk function

Q(θ, g(•)) = E{(Yt − g(θT Xt ))
2} (6)
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with respect to θ ∈ Θ and g(•) such that E{g2(θT Xt ))} < ∞. The minimizer of
Q(θ, g(•)) will be denoted as (θ∗, g∗(•)). Since the minimization of Q(θ, g(•)) is
equivalent to the minimization of E{(Yt − g(θT Xt ))

2|Xt }. This is the L2 projection
and for a given θ ∈ Θ the solution is g(w; θ) = E{Yt |θT Xt = w}. This is just a
regression function of Yt on θT Xt , i.e., the best predictor of the output signal Yt by
the projection of Xt onto the direction defined by the vector θ . Plugging this choice
into Q(θ, g(•)), i.e., calculating Q(θ, g(•; θ)) we can readily obtain the following
score function

Q(θ) = E{(Yt − g(θT Xt ; θ)2} = E{(var(Yt |θT Xt )}. (7)

The minimizer of Q(θ) with respect to θ ∈ Θ defines the optimal θ∗ and conse-
quently the corresponding optimal nonlinearity g∗(w) = g(w; θ∗). This yields the
minimal risk Q∗

sp = Q(θ∗) for the pre-selected semiparametric model. It is clear
that this risk is larger than the Bayes risk Q∗ corresponding to the fully nonpara-
metric approach. On the other hand, Q∗

sp is smaller than the risk Q∗
p corresponding

to the parametric choice. Hence, we have the following relationship between the
aforementioned modelling strategies

Q∗ ≤ Q∗
sp ≤ Q∗

p.

It should be noted, however, that these inequalities only hold for the limit case, i.e., if
the training sample size is infinite. In a practical finite sample size situation, there is
no preferable modelling approach that gives the smallest generalized identification
error.

In the semiparametric case characterized by (7), it is difficult to determine an
explicit formula for the projection g(w; θ) and then to find θ∗ minimizing the risk
in (7). It is clear that the smoothness and shape of g(w; θ) is controlled by the
smoothness of m(x) and the conditional distribution of Xt given θT Xt . To shed
some light on this issue let us consider a simple example.

Example 1. Let Yt = m(Ut , Ut−1) + Zt be the nonlinear autoregressive regression
modelwithm(x1, x2) = x1x2. Assume that {Ut } is zeromean unit variance stationary
Gaussian process with the correlation function E{Ut+τUt } = ρ(τ). Let us also
denote ρ = ρ(1). The noise process {Zt } is assumed to be a stationary process
with zero mean and unit variance being, moreover, independent of {Ut }. We wish
to determine the best L2 approximation of the system Yt = UtUt−1 + Zt by a
semiparametric model of the form g(Ut + θUt−1). The aforementioned discussion
reveals that first we have to determine the projection g(w; θ) = E{Yt |Ut + θUt−1 =
w} and next to find the optimal θ∗ by minimizing the risk Q(θ) = E{var(Yt |Ut +
θUt−1)}. To do so, let us first note that the random vector (Ut−1, Ut + θUt−1) has
the bivariate Gaussian distribution with zero mean and covariance matrix

(

1 ρ + θ

ρ + θ 1 + θ2 + 2θρ

)

.
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This fact and some algebra yield

g(w; θ) = a(θ)w2 + b(θ), (8)

where a(θ) = (ρ + θ(1 − θ))/(1 + θ2 + 2θρ) and b(θ) = −θ(1 − ρ2))/(1 + θ2 +
2θρ). Further algebra leads also to an explicit formula for the projection error Q(θ)

for a given θ . In Fig. 1we depict Q(θ) as a function of θ for the value of the correlation
coefficient ρ equal to 0, 0.4, 0.8. The dependence of Q(θ) on negative values of ρ is
just a mirror reflection of the curves shown in Fig. 1. Interestingly, we observe that in
the case ofρ = 0wehave twovalues of θ minimizing Q(θ), i.e., θ∗ = ±1/

√
3.When

|ρ| is increasing, the optimal θ is unique and is slowly decreasing from θ∗ = 0.577
for ρ = 0 to θ∗ = 0.505 for ρ = 0.9. On the hand, the value of the minimal error
Q(θ∗) is decreasing fast from Q(θ∗) = 0.75 for ρ = 0 to Q(θ∗) = 0.067 for
ρ = 0.9. Figure2 shows the optimal nonlinearities g∗(w) = g(w; θ∗) corresponding
to the values ρ = 0, 0.4, 0.8. It is worth noting that g∗(w) for ρ = 0 is smaller
than g∗(w) for any ρ > 0. Similar relationships hold for ρ < 0. Thus, we can
conclude that the best approximation (for ρ = 0) of the system Yt = UtUt−1 + Zt

by the class of semiparametric models {g(Ut + θUt−1) : θ ∈ Θ} is the model

Yt = g∗(Ut + θ∗Ut−1) + Zt , where θ∗ = ±1/
√
3 and g∗(w) = ±

√
3−1
4 w2 ∓

√
3
4 . In

the case when, e.g., ρ = 0.5 we obtain θ∗ = 0.532 and g∗(w) = 0.412w2 − 0.219.
We should also observe that our semiparametricmodel represents theWiener cascade
system with the impulse response (1, θ∗) and the nonlinearity g∗(w), see Sect. 3
for further discussion on Wiener systems. The fact that the correlation reduces the
value of the projection error Q(θ) can be interpreted as follows. With an increasing
correlation between input variables the bivariate function m(Ut , Ut−1) = UtUt−1
behaves like a function of a single variable. In fact, from (8) we have that b(θ) → 0
as |ρ| → 1.

Thus far, we have discussed the preliminary aspects of the semiparametric infer-
ence concerning the characterization of the optimal characteristics (θ∗, g∗(•)) of the
model in (3). Next, we wish to set up estimators of θ∗ and g∗(w). If the regression

Fig. 1 The projection error
Q(θ) versus θ for the values
of the correlation coefficient
ρ = 0, 0.4, 0.8
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Fig. 2 The optimal
nonlinearity g�(w) for the
values of the correlation
coefficient ρ = 0, 0.4, 0.8
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function g(w; θ) = E{Yt |θT Xt = w}, θ ∈ Θ is assumed to be known, then, due
to (7), an obvious estimator of θ∗ would be a minimizer of the following empirical
counterpart of Q(θ):

QN (θ) = N−1
N
∑

t=1

(Yt − g(θT Xt ; θ))2. (9)

Since g(w; θ) is unknown, this is not a feasible estimator. We can, however, estimate
the regression function g(w; θ) by some standard nonparametric methods like kernel
algorithms, see (1). Let ĝ(w; θ) denote a nonparametric estimate of g(w; θ). As a
concrete choice we use the classical kernel estimate

ĝ(w; θ) =
N
∑

t=1

Yt K ((w − θT Xt )/b)/

N
∑

l=1

K ((w − θT Xl)/b), (10)

where b is the bandwidth parameter that controls the accuracy of the estimate.
In the limit any reasonable nonparametric estimate ĝ(w; θ) is expected to tend to

g(w; θ)which, in turn, satisfies the restriction g(w; θ∗) = g∗(w). Hence, substituting
g(w; θ) in (9) by ĝ(w; θ) we can obtain the following criterion depending solely
on θ :

Q̂N (θ) = N−1
N
∑

t=1

(Yt − ĝ(θT Xt ; θ))2. (11)

It is now natural to define an estimate θ̂ of θ∗ as the minimizer of Q̂N (θ), i.e.,

θ̂ = argmin
θ∈Θ

Q̂N (θ). (12)

This approach may lead to an effective estimator of θ∗ subject to some limitations.
First, as we have already noted, we should be able to estimate the projection g(w; θ)
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for a given θ . In the context of block-oriented systems, the difficulty of this step
depends on the complexity of the studied nonlinear system, i.e., whether nonlinear
components can be easily estimated as if the parametric part of the system were
known. This is due to the fact that some intermediate signals in block-oriented
systems are not measured. Nevertheless, in the next section we will demonstrate
that effective identification algorithms are feasible for semiparametric versions of
Hammerstein, Wiener and parallel systems. Second, we must minimize the criterion
Q̂N (θ) which may be an expensive task mostly if θ is highly dimensional and if
the gradient vector of Q̂N (θ) is difficult to evaluate. To partially overcome these
computational difficulties we can use the following generic iterative algorithm:

Step 1: Select an initial θ̂ (old) and set ĝ(w; θ̂ (old)).
Step 2: Minimize the criterion

Q̃N (θ) = N−1
N
∑

t=1

(Yt − ĝ(θT Xt ; θ(old)))2 (13)

with respect to θ and use the obtained value θ̂ (new) to update ĝ(w; θ), i.e., go to
Step 1 in order to get ĝ(w; θ(new)).
Step 3: Iterate between the above two steps until a certain stopping rule is satisfied.

Note that in the above algorithm the criterion Q̃N (θ) has a weaker dependence
on θ than the original criterion Q̂N (θ). In fact, in Q̃N (θ) the estimate ĝ(w; θ) of the
projection g(w; θ) is already specified.

Concerning the recovery of the model optimal nonlinearity g∗(•) we can use the
estimate θ̂ and plug it back into our pilot estimate ĝ(w; θ) to obtain ĝ(w; θ̂ ). This
can define a nonparametric estimate of g∗(•). Nevertheless, one can use any other
nonparametric estimate g̃(•; θ) with θ replaced by θ̂ . Yet another important issue is
the problem of selecting a smoothing parameter, like the bandwidth b in the kernel
estimate in (10), which tunes nonparametric estimates ĝ(•; θ) and ĝ(•). The former
estimate is used as a preliminary estimator of the projection g(•; θ) so that θ∗ can be
estimated in the process of minimizing Q̂N (θ) in (11). On the other hand, the latter
estimate is used as a final estimate of g∗(•). Hence, we may be forced to select two
separate smoothing parameters. The one for ĝ(•; θ), and the other for ĝ(•). This can
be done by augmenting the definition of Q̂N (θ) in (11) by adding the smoothing
parameter as a variable in Q̂N (θ). Hence, we define Q̂N (θ, b) and then minimize
Q̂N (θ, b) simultaneously with respect to θ and b. The bandwidth obtained in this
process is by no means good for selecting the estimate θ̂ . Whether this is the proper
choice for the accurate estimation of ĝ(•) is not quite clear, see [14] for the affir-
mative answer to this controversy in the context of the classical regression problem
from i.i.d. data.

In order to establish consistency properties of the aforementioned estimates we
first need to establish that the criterion Q̂N (θ) in (11) tends (P) as N → ∞ to
the limit criterion Q(θ) in (7) for a given θ ∈ Θ . This holds under fairly general
conditions due to the law of large numbers. Furthermore, as we have already argued
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we identify the optimal θ∗ with the minimum of Q(θ). Note, however, that Q̂N (θ) is
not a convex function of θ and therefore need not achieve a unique minimum. This,
however, is of no serious importance for the consistency since we may weaken our
requirement on the minimizer θ̂ of Q̂N (θ) and define θ̂ as any estimator that nearly
minimizes Q̂N (θ), i.e.,

Q̂N (θ̂) ≤ inf
θ∈Θ

Q̂N (θ) + δN , (14)

for any random sequence δN , such that δN → 0(P), see [28]. It is clear that (14)
implies that Q̂N (θ̂) ≤ Q̂N (θ∗) + δN and this is sufficient for the convergence of θ̂

defined in (14) to θ∗.
Since θ̂ depends on the whole mapping θ 	→ Q̂N (θ), the convergence of θ̂ to

θ∗ requires uniform consistency of the corresponding criterion function, i.e., we

need supθ∈Θ

∣
∣
∣Q̂N (θ) − Q(θ)

∣
∣
∣ → 0(P). This uniform convergence is the essential

step in proving the convergence of θ̂ to θ∗. This can be established by using formal
techniques for verifying whether the following class of functions

{(y − ĝ(w; θ))2 : θ ∈ Θ}

satisfies a uniform law of large numbers that is often referred to as the Glivienko-
Cantelli property [28]. This along with the assumption that the limit criterion Q(θ)

is a continuous function on the compact set Θ ⊂ Rq , such that θ∗ ∈ Θ , imply that
for any sequence of estimators θ̂ that satisfy (14) we have

θ̂ → θ∗ as N → ∞(P).

A related issue of interest pertaining to a given estimate is the rate of convergence,
i.e., how fast the estimate tends to the true characteristic. Under the differentiability
condition of the mapping θ 	→ (• − ĝ(•; θ))2 we can consider the problem of the
convergence rate.Hence, if Q(θ) admits the second-order Taylor expansion at θ = θ∗
then for θ̂ defined in (14) with NδN → 0(P), we have

θ̂ = θ∗ + OP (N−1/2). (15)

This is the usual parametric rate of convergence.
Since θ̂ → θ∗ then it is reasonable to expect that the estimate g(•; θ̂ ) converges

to g(•; θ∗) = g∗(•). The following decomposition will facilitate this claim

g(•; θ̂ ) − g∗(•) = {ĝ(•; θ̂ ) − ĝ(•; θ∗)}
+ {ĝ(•; θ∗) − g∗(•)}. (16)

The convergence (P) of the second term to zero in the above decomposition repre-
sents a classical problem in nonparametric estimation. The difficulty of establishing
this convergence depends on the nature of the dependence between random signals
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within the underlying system. Concerning the first term in (16) we can apply the
linearization technique, i.e.,

ĝ(•; θ̂ ) − ĝ(•; θ∗) =
{

∂

∂θ
ĝ(•; θ)|θ=θ∗

}T

(θ̂ − θ∗)

+ oP (‖θ̂ − θ∗‖).

To show the convergence (P) of the first term to zero it suffices to prove that the
derivative has a finite limit (P). This fact can be directly verified for a specific
estimate ĝ(•; θ) of g(•; θ). Hence, the statistical accuracy of ĝ(•; θ̂ ) is determined
by the second term of the decomposition in (16). It is well known that the common
nonparametric estimates reveal the rate ĝ(•; θ∗) = g∗(•)+ OP (N−β), where 1/3 ≤
β < 1 depends on the smoothness of g∗(•), see [13, 20, 30]. Thus, we obtain

ĝ(•; θ̂ ) = g∗(•) + OP (N−β). (17)

For instance, if g∗(•) is the Lipschitz continuous function and ĝ(•; θ̂ ) is the ker-
nel nonparametric estimate then (17) holds with β = 1/3. For twice differentiable
nonlinearities, this takes place with β = 2/5.

The criterion Q̂N (θ) in (11) utilizes the same data to form the pilot nonparametric
estimate ĝ(w; θ) and to define Q̂N (θ). This is not generally a good strategy and some
form of resampling scheme should be applied in order to separate measurements into
the testing data (used to form Q̂N (θ)) and training sequence (used for forming the
estimate ĝ(w; θ)). Such separation will facilitate not only the mathematical analysis
of the estimation algorithms but also gives a desirable separation of parametric and
nonparametric estimation problems, which allows one to evaluate parametric and
nonparametric estimates more precisely. One such a strategy would be the leave-
one-out method which modifies Q̂N (θ) as follows

Q̄N (θ) = N−1
N
∑

t=1

(Yt − ĝt (θ
T Xt ; θ))2, (18)

where ĝt (w; θ) is the version of the estimate ĝ(w; θ) with the training data pair
(Xt , Yt ) omitted from calculation. For instance, in the case of the kernel estimate in
(10) this takes the form

ĝt (w; θ) =
N
∑

i �=t

Yi K ((w − θT Xi )/b)/

N
∑

l �=t

K ((w − θT Xl)/b).

Yet another efficient resampling scheme is based on the partition strategy which
reorganizes a set of training data DN into two non overlapping subsets that are
dependent as weakly as possible. Hence, we define two non overlapping subsets T1,
T2 of the training set DN such that T1 is used to estimate the projection g(w; θ)



308 M. Pawlak

whereas T2 is used as a testing sequence to form the least-squares criterion Q̂N (θ)

in (11). There are various strategies to split the data for the efficient estimation of
θ∗ and g∗(•). The machine learning principle says the testing sequence T2 should
consist (if it is feasible) of independent observations, whereas the training sequence
T1 can be quite arbitrary [6].

3 Semiparametric Block-Oriented Systems

In this section,wewill illustrate the semiparametricmethodologydeveloped inSect. 2
by examining a few concrete cases of block-oriented systems. This includes popular
Hammerstein, Wiener, and parallel structures.

3.1 Semiparametric Hammerstein Systems

Let us begin with the multiple-input, single-output (MISO) Hammerstein system
which is depicted in in Figure 3. This is a cascade system consisting of a nonlinear
characteristicm(·) followedby a linear dynamic subsystemwith the impulse response
function {λn}. Only the input Un and output Yn signals are measured, the other
intermediate signals are not available. The fully nonparametric Hammerstein system
is given by the following input-output relationship:

Yn = Λ(z)Vn + H(z)en,

Vn = m(Un), (19)

where Λ(z) is a causal transfer function defined as Λ(z) = ∑∞
i=0 λi z−i , with z−1

being the backward-shift operator, i.e., Λ(z)Vn =∑∞
i=0 λi Vn−i .

Moreover,
∑∞

i=0 |λi | < ∞ and Λ(z) is stable, i.e., Λ(z) has poles within the unit
circle. The noise transfer function, H(z) = ∑∞

i=0 hi z−i satisfies
∑∞

i=0 |hi | < ∞
and has both poles and zeros within the unit circle. The latter requirement is imposing
the assumption that the noise model is stable and inversely stable, see [21]. The input
noise process {en} is white with a finite variance.

Fig. 3 MISO Hammerstein
system

m(•)
Un Vn

Λ(z)

en

+

H(z)

Yn

Zn
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The system in in Fig. 3 is excited by the d-dimensional inputUn , which is assumed
to be a sequence of i.i.d. random vectors. The output of the linear dynamic subsys-
tem is corrupted by an additive noise Zn being independent of {Un}. The system
nonlinearity m(•) is a nonparametric measurable function defined on Rd such that
E |m(Un)| < ∞.

It is known, see [13], that if Λ(∞) = 1 and E{m(Un)} = 0 then m(u) =
E{Yn|Un = u}. This fact holds for any correlated noise process. This key identity
allows us to recoverm(•) by applying nonparametric regression estimates such those
defined in (1). The technical obstacles include the fact that the internal signal Vn is
not measured and that the output process {Yn} need not be of mixing type. In fact, let
Yn = 0.5Yn−1 + m(Un) be the Hammerstein system with the AR(1) linear process
and the nonlinearity being m(u) = 1 for u ≥ 0 and m(u) = 0 otherwise. Then, using
the result proved in [1] we can conclude that {Yn} is not strongly-mixing.

Let m̂ N (•) be a nonparametric regression function estimate based on the train-
ing data DN = {(U1, Y1), . . . , (UN , YN )}. It can be demonstrated (under common
smoothing conditions on m(u)) that for a large class of nonparametric regression
estimates, see [13], we have

m̂ N (u) = m(u) + OP

(

N−2/(d+4)
)

. (20)

Hence, the estimates suffer the curse of dimensionality since the rate of convergence
gets slower as d increases. It is alsoworth noting that the linear part of the systemΛ(z)
can be recovered via the correlation method independently on the form of the system
nonlinearity and the noise structure, see [13]. This defines a fully nonparametric
identification strategy for the MISO Hammerstein system. The statistical accuracy,
however, of such estimation algorithms is rather low due to the generality of the
problem.

Inmany practical situations and due to the inherent complexity of the nonparamet-
ric Hammerstein system it is sufficient if we resort to the following semiparametric
alternative of (19) (see Fig. 4)

Yn = Λ(z; λ)Vn + H(z; λ)en,

Vn = g(γ T Un), (21)

whereΛ(z; λ) and H(z; λ) are parametrized rational transfer functions. The function
g(•) and the d—dimensional parameter γ define the one-dimensional semiparamet-

Fig. 4 Semiparametric
MISO Hammerstein model

Un Vn

en

+
Yn

γ g(•)
Wn
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Λ(z; λ)

H(z; λ)
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ric approximation of m(•) which was already introduced in Sect. 2, see (3). Note the
class of dynamical systems represented by the rational transfer functions covers a
wide range of linear autoregressive and moving average processes.

Hence, the semiparametric model in (21) is characterised by the pair (θ, g(•)),
where θ = (λ, γ ). Since the identifiability of the model requires that Λ(∞; λ) =
1 and γ1 = 1, therefore we can define the parameter space as Θ = {(λ, γ ) :
Λ(∞; λ) = 1, γ1 = 1}, such that Θ is a compact subset of R p+d , where p is the
dimensionality of λ. In order to develop constructive identification algorithms let us
define the concept of the true Hammerstein system corresponding to (21). We may
assume without loss of generality that the true system is in the form as in (21) and
this will be denoted by the asterisk sign, i.e., the true system is defined as

Yn = Λ(z; λ∗)Vn + H(z; λ∗)en,

Vn = g∗(γ ∗T Un), (22)

where it is natural to expect that θ∗ ∈ Θ .
Since the dependence of Yn on Vn is linear then we can recall, see [21], that a

one-step ahead prediction error for a given θ ∈ Θ is given by

εn(θ) = H−1(z; λ)
[

Yn − Λ(z; λ)Vn(γ )
]

, (23)

where Vn(γ ) is the counterpart of the true signal Vn corresponding to the value
γ . Under our normalization we note that for a given γ T Un the best L2 pre-
dictor of Vn(γ ) is the regression E{Vn(γ )|γ T Un} = E{Yn|γ T Un}. Hence, let
g(w; γ ) = E{Yn|γ T Un = w} be the regression function predicting the unobserved
signal Vn(γ ). It is worth noting that g(w; γ ∗) = g∗(w).All these considerations lead
to the following form of (23)

εn(θ) = H−1(z; λ)
[

Yn − Λ(z; λ)g(γ T Un; γ )
]

. (24)

Reasoning now as in Sect. 2 we can readily form the score function for estimating θ∗

QN (θ) = N−1
N
∑

n=1

ε2n(θ).

This is a direct counterpart of the criterion defined in (9). As we have already noted
the regression g(w; γ ) is unknown but can be directly estimated by nonparametric
regression estimates. For example, we use the kernel method, see (10),

ĝ(w; γ ) =
N
∑

t=1

Yt K ((w − γ T Ut )/b)/

N
∑

l=1

K ((w − γ T Ul)/b). (25)
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Using this or any other nonparametric regression estimate in QN (θ) we can form
the practical score function for estimating θ∗

Q̂N (θ) = N−1
N
∑

n=1

ε̂2n(θ), (26)

where ε̂n(θ) is the version of (24) with g(γ T Un; γ ) replaced by ĝ(γ T Un; γ ). The
minimizer of Q̂N (θ) = Q̂N (λ, γ ) defines an estimate (λ̂, γ̂ ) of (λ∗, γ ∗). Following
the reasoning from Sect. 2 we can show that (λ̂, γ̂ ) tends (P) to (λ∗, γ ∗). Further-
more, under additional mild conditions we can find that (λ̂, γ̂ ) is converging with
the optimal OP (N−1/2) rate.

Let us assume that the linear subsystem of the Hammerstein structure is of the
finite impulse response type of order p (FIR(p)), i.e., Λ(z; λ∗) = 1 +∑p

i=1 λ
∗
i z−i

[9, 21]. Then we can estimate Λ(z; λ∗) (independently of g∗(•) and γ ∗) via the
correlation method, see [13]. In fact, for a given function η : Rd → R such that
Eη(Un) = 0 and E{η(Un)g∗(Wn)} �= 0 we have the following estimate of λ∗

λ̃t = N−1∑N−t
i=1 Yt+iη(Ui )

N−1
∑N

i=1 Yiη(Ui )
, t = 1, . . . , p.

This applied in (26) gives the simplified least squares criterion for selecting γ

Q̂N (γ ) = N−1
N
∑

i=p+1

(

Yi −
p
∑

t=0

λ̃t ĝ
(

γ T Ui−t ; γ
)
)2

. (27)

Once the parametric part of the Hammerstein system is obtained one can define the
following nonparametric estimate for the system nonlinearity

ĝ(w) = ĝ(w; γ̂ ),

where ĝ(w; γ ) is any nonparametric consistent estimate of g(w; γ ) and γ̂ is the
minimizer of Q̂N (λ, γ ).

Recalling the arguments given in Sect. 2 we can conclude that if g∗(w) is twice
differentiable and if we select the bandwidth as b = cN−1/5 then we have

ĝ(w) = g∗(w) + OP (N−2/5).

This rate is independent of the dimensionality of the input signal and it is known to be
optimal [30]. This should be contrasted with the nonparametric Hammerstein system
identification accuracy, see (20). The bandwidth choice is critical for the precision
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of the kernel estimate. The choice b = cN−1/5 is only asymptotically optimal and in
practice one would like to specify b depending on the data at hand. One possibility
as we have already pointed out, would be to extend the criterion Q̂N (θ) in (26) and
include b into theminimization process. Hence, wewould have themodified criterion
Q̂N (θ, b).

It is worth noting that in the above two-step scheme the estimate ĝ(w; γ ) in (26)
and the criterion function Q̂N (θ) share the same training data. This is usually not the
recommended strategy since it may lead to estimates with unacceptably large vari-
ance. Indeed, some resampling schemes would be useful here which would partition
the training data into the testing and training sequences. The former should be used to
form the criterion Q̂N (λ, γ ), whereas the latter to obtain the nonparametric estimate
ĝ(w; γ ). The aforementioned concepts are illustrated in the following simulation
example, see also [24] for further details.

Example 2. In our simulation example, the d-dimensional input signal Un is gen-
erated according to uncorrelated Gaussian distribution Nd(0, σ 2I). We assume
that the actual system can be exactly represented by the semiparametric model,

with the characteristics γ = (

cos(θ), sin(θ)/
√

d − 1, . . . , sin(θ)/
√

d − 1
)T

and
g(w) = 0.7 arctan(βw). Note that with this parameterization ||γ || = 1. The true
value of γ corresponds to θ∗ = π/4. The slope parameter β defining g(w) is changed
in some experiments. Note that the large β defines the nonlinearity with a very rapid
change at w = 0. The FIR(3) linear subsystem is used with the transfer function
Λ∗(z) = 1 + 0.8z−1 − 0.6z−2 + 0.4z−3. The noise Zt is N (0, 0.1). In our simula-
tion examples we generate L different independent training sets and determine our
estimates γ̂ and ĝ(·) described in this section. The local linear kernel estimate with
the kernel function K (w) = (1− w2)2, |w| ≤ 1 was employed. In implementing the
kernel estimate, the window length b was selected simultaneously with the choice of
γ . Furthermore, in the partition resampling strategy the size of the training subset is
set to 55% of the complete training data of the size n = 150. It is also worth noting
that the optimal b needed for estimating a preliminary regression estimate ĝ(w; γ ),
has been observed to be different than that required for the final estimate ĝ(w).

Figure5a shows the mean squared error (MSE) of γ̂ versus the parameter β.
Figure5b gives the identical dependence for the mean integrated squared error
(MISE) of ĝ(·). In both figures we have d = 2. We observe a little influence of
the complexity of the nonlinearity g(w) on the accuracy of the estimating γ . This
is not the case for estimating g(w). Clearly, a faster changing function is harder to
estimate than the one that changes slowly. Figure6a, b show the influence of the
input dimensionality on the accuracy of γ̂ and ĝ(·). The slope parameter is set to
β = 2. As d varies from d = 2 to d = 10 we observe a very little change in the error
values. This supports the observation that the semiparametric approach may behave
favorably in high dimensions.
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Fig. 5 a M SE(γ̂ ) versus the slope parameter β; b MISE(ĝ) versus the slope parameter β; n = 150,
d = 2

Fig. 6 a M SE(γ̂ ) versus the input dimensionality d; b M I SE(ĝ) versus the input dimensionality
d; n = 150, β = 2

3.2 Semiparameric Wiener Systems

In this section, we will illustrate the semiparametric methodology developed in
Sect. 2 by the examination of the constrained Wiener system. The system is shown
in Fig. 7 and is characterized by the pair (λ∗, m∗(•)), where λ∗ ∈ R p+1 is the vector

Fig. 7 Semiparametric
Wiener system

Zn

YnUn Wn
m∗(•){λ∗

i , 0 ≤ i ≤ p}
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representing the true impulse response function of the linear subsystem, whereas
m∗(•) is a function representing the nonlinear characteristic. TheWiener system can
be viewed as the inverse cascade connection to the Hammerstein system examined in
the previous section, see [13, 25] for algorithms for nonparametric identification of
Wiener systems. Thus,we have the following time-domain input–output relationship:

⎧

⎪⎨

⎪⎩

Wn =
p
∑

l=0

λ∗
l Un−l

Yn = m∗(Wn) + Zn

, (28)

where the order p of the dynamic FIR(p) type subsystem is assumed to be known.
The tandem nature of theWiener system yields the scaling effect, that is, one can only
estimate λ∗ up to a multiplicative constant. Let us consider a Wiener system with
the characteristics m̄∗(w) = m∗(w/c) and λ̄∗ = cλ∗, c being an arbitrary nonzero
constant. Then it is easy to see that the new system is indistinguishable from the
original one. Thus, in order to get around this identifiability problem we need some
normalization of the sequence λ∗ = {λ∗

l , 0 ≤ l ≤ p}. A simple normalization is to
assume that λ0 = 1.

To proceed further, it is necessary to introduce the space Λ of all admissible
impulse response functions λ = {λl , 0 ≤ l ≤ p} of order p which satisfy the
normalization constraint λ0 = 1. Hence, let Λ = {λ ∈ R p+1 : λ0 = 1} such that
λ∗ ∈ Λ. By virtue of the semiparametric methodology of Sect. 2, we first wish to
characterize the system nonlinearity for a given λ ∈ Λ. Hence, let

Wn(λ) =
p
∑

l=0

λl Un−l , (29)

be the interconnecting signal of the Wiener system corresponding to λ ∈ Λ. Conse-
quently, the following regression function

m(w; λ) = E{Yn|Wn(λ) = w}, (30)

plays the role of the best approximate of m∗(w) for a given λ ∈ Λ. It is clear
that Wn(λ∗) = Wn and m(w; λ∗) = m∗(w). The smoothness of m(w; λ) plays
an important role in the statistical analysis of our identification algorithms. Since
m(w; λ) = E{m∗(Wn)|Wn(λ) = w}, the smoothness of m(w; λ) is controlled by the
smoothness of m∗(w) and the conditional distribution of Wn on Wn(λ).

Example 1 To illustrate the dependence of m(w; λ) on m∗(w) in terms of smooth-
ness, let {Un} be an i.i.d sequence with a normal distribution N (0, σ 2). Then, denot-
ing by φ(•) the N (0, 1) density and after some algebra we have,

m(w; λ) =
∫ ∞

−∞
m∗(μ(λ)w + vσ(λ))φ(v)dv, (31)
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where

μ(λ) = λT λ∗

‖λ‖2 , σ 2(λ) = σ 2
[

‖λ∗‖2 − (λT λ∗)2

‖λ‖2
]

.

In Fig. 8 we plot m(w; λ) in (31) as a function of w with λ = (1, λ1)T , λ∗ =
(1, 1)T , σ 2 = 1, and the discontinuous nonlinearity m∗(w) = sgn(w). Values λ1 =
−0.9, 0, 0.9 are used. Note that the value λ1 = 0 indicates that there is no dynamical
subsystem in theWiener system. The continuity of m(w; λ) is apparent. In Fig. 9, we
plot m(w; λ) versus λ for a few selected values of w, that is, w = −1,−0.1, 0.1, 1.
The sensitivity of m(w; λ) with respect to λ is small for points which lie far from the
point of discontinuity w = 0. On the other hand, we observe a great influence of λ

at the points which are close to the discontinuity.

In general, we have that

m(w; λ) =
∫ ∞

−∞
m∗(z) f (z|w; λ)dz,

Fig. 8 The regression
function m(w; λ) in (31)
versus w, with λ = (1, λ1)T ,
λ∗ = (1, 1)T ,
m∗(w) = sgn(w). Values
λ1 = −0.9, 0, 0.9
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Fig. 9 The regression
function m(w; λ) in (31)
versus λ1, with
λ = (1, λ1)T , λ∗ = (1, 1)T ,
m∗(w) = sgn(w). Values
w = −1,−0.1, 0.1, 1
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where f (z|w; λ) is the conditional probability density function of Wn on Wn(λ).
Then recalling the result in [22] (Proposition 6.1.1) we can infer that m(w; λ) is
continuous if

w 	→
∫

A
f (z|w; λ)dz (32)

is lower semicontinuous for every measurable set A. We say that the function h :
R → R is lower semicontinuous if lim inf z→x h(z) ≥ h(x), x ∈ R. Note that the
class of lower semicontinuous functions admits some discontinues functions.

Our principal goal is to recover the pair (λ∗, m∗(•)) from the the training set

DN = {(U1, Y1), . . . , (UN , YN )}, (33)

where {Ui } is a stationary sequence of random variables with the marginal density
function fU (•). Owing to the semiparametric methodology discussed in Sect. 2, we
first must estimate the regression function m(w; λ). This can easily be done using
any previously studied regression estimates applied to synthetic data parametrized
by λ:

{(Wp+1(λ), Yp+1), . . . , (WN (λ), YN )}. (34)

This yields an estimate m̂(w; λ), which allows one to define a predictive error as a
function of only the linear subsystem characteristic λ. Then, we can write the score
function as follows:

Q̂N (λ) = N−1
N
∑

j=p+1

(Y j − m̂(W j (λ); λ))2. (35)

The strategy of estimating λ∗ is now based on the minimization of Q̂N (λ).

Identification Algorithms The criterion Q̂n(λ) in (35) uses the same data to form
the pilot estimate m̂(w; λ) and to define Q̂n(λ). This is not generally a good strategy
and some form of resampling scheme should be applied in order to separate the
data into the testing and training sequences. Hence, consider the partition strategy
that reorganizes a set of training data DN into two non-overlapping subsets that are
statistically independent. Owing to the fact that the observations Yn and Yn+p+1 are
statistically independent, we define T1 as the subset of training set DN consisting
of n1 observations after deleting the first p data points due to the memory effect.
Similarly let T2 be the remaining part of DN separated from T1 by the distance of
length p. By construction we note that T1 and T2 are independent random subsets
of DN . This is the useful property that allows us to design efficient estimates of λ∗,
m(w; λ), and consequently m∗(•). We use the subset T1 to estimate the regression
function m(w; λ) whereas T2 is used as a testing sequence to form the least-squares
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p n1 p n2

T1 T2

Fig. 10 The partition of the training set DN into independent subsets T1 and T2

criterion to recover the impulse response sequence λ∗. Also, let I1 and I2 denote the
indices of data points {(Ui , Yi ), 1 ≤ i ≤ N }which belong to T1 and T2, respectively.
Figure10 shows an example of the partition of T into T1 and T2. Here we have
n2 = N − 2p − n1.

It is clear that there other possible partitions of a training data set. In fact, the
machine learning theory principle says the testing sequence T2 should consists of
independent observations, whereas the training sequence T1 can be arbitrary [5, 6]. In
our situation this strategy can be easily realized by choosing the testing observations
that are p + 1 positions apart from each other.

The Nadaraya–Watson regression estimate applied to the subset T1 takes the fol-
lowing form:

m̂(w; λ) =
∑

j∈I1 Y j K
(

w−W j (λ)

b

)

∑

j∈I1 K
(

w−W j (λ)

b

) , (36)

for a given λ ∈ Λ.
This pilot estimate ofm(w; λ) can now be used to form the least-squares approach

to recover the impulse response λ∗ of the Wiener system. Thus, the least-squares
version of the criterion function in (35) confined to the data set T2 takes the following
form

Q̂N (λ) = 1

n2

∑

i∈I2

{Yi − m̂(Wi (λ); λ)}2. (37)

A natural estimate of λ∗ is the following minimizer of Q̂N (λ):

λ̂ = argmin
λ∈Λ

Q̂N (λ). (38)

Once the estimate λ̂ is obtained, one can define the following estimate of the nonlinear
characteristic m∗(•) of the Wiener system

m̂(w) = m̂(w; λ̂). (39)

It is clear that the criterion Q̂N (λ) need not possess a unique minimum and,
moreover, an efficient procedure to find the minimum of Q̂N (λ) is required. This can
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be partially overcome by applying the iterative algorithm introduced Sect. 2, see (13).
This requires determining for a given λ̂(old) the minimum of the partially specified
score function,

Q̃N (λ) = 1

n2

∑

i∈I2

{

Yi − m̂
(

Wi (λ); λ̂(old)
)}2

. (40)

There are various ways to refine the above procedure by, e.g., employing some
preliminary estimate of λ∗, rather than selecting an arbitrary λ̂(old) at the initial step.
In fact, assuming that the input signal {Un} is a stationary zero-mean white Gaussian
process and then by a direct algebra we can show that

E{YnUn−r } = αλ∗
r ,

for r = 1, 2, . . . , p and where the constant α is well defined assuming that
E |W0m∗(W0)| < ∞. Since λ∗

0 = 1 we can recover λ∗
r by the following correla-

tion estimate

λ̂r = N−1∑N
j=r+1 U j−r Y j

N−1
∑N

j=1 U j Y j
, r = 1, . . . , p.

It is worth noting that this is a consistent estimate of λ∗
r provided that the input signal

is a stationary white Gaussian process. If the input process is at least close to being
Gaussian, we can still choose λ̂r as the initial value λ̂

(old)
r in the aforementioned

iterative algorithm. This may drastically reduce the number of iterations required in
the algorithm.

The algorithm uses a kernel estimate which, in turn, needs the selection of the
bandwidth parameter b. Due to the splitting strategy, our criterion Q̂N (λ) or its
simplified form Q̃N (λ) are already in the form of a predictive error, and we can
incorporate the bandwidth into the definition of our criterion. Hence, we can use

Q̃N (λ; b) = 1

n2

∑

i∈I2

{

Yi − m̂
(

Wi (λ); λ̂(old)
)}2

as the criterion for selecting both λ and b.

Convergence Analysis This section is concerned with the convergence analysis of
the identification algorithms λ̂ and m̂(•) proposed in (38) and (39), respectively. We
will employ the basic methodology established in Sect. 2.

Let fW (•) and fW (•; λ) be marginal density functions of random processes {Wn}
and {Wn(λ)}, respectively. Note that fW (•) and fW (•; λ) always exist since they
are obtained by the (p + 1)-fold convolution of the scaled version of fU (•)—the
probability density function of the input process. In the subsequent sections of this
chapter we give sufficient conditions for the convergence of λ̂ and m̂(•).
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A. Parametric Estimation

Owing to the results in Sect. 2, we can extend a definition of the least-squares estimate
to a class of minimizers that nearly minimize Q̂N (λ), i.e.,

Q̂N (λ̂) ≤ inf
λ∈Λ

Q̂N (λ) + εN , (41)

for any random sequence {εN } such that εN
N→ 0, (P). As we have already noted,

(41) implies that Q̂N (λ̂) ≤ Q̂N (λ∗) + εN and this is sufficient for the convergence
of λ̂ in (41) to λ∗.

Let us begin with the observation that due to the independence of the sample sets
T1 and T2 we have,

Q̄(λ) = E{Q̂N (λ)|T1} = E{(Yt − m̂(Wt (λ); λ))2|T1}, (42)

where (Wt (λ), Yt ) is a random vector, which is independent of T1. The definition of
m(w; λ) in (30) and the fact that the noise is independent of {Yn} yield:

Q̄(λ) = E Z2
t + E{(m(Wt (λ); λ) − m∗(Wt ))

2}
+ E{(m̂(Wt (λ); λ) − m(Wt (λ); λ))2|T1}. (43)

The last term in the above decomposition represents the integrated squared error
between the kernel estimate m̂(w; λ) and the regression function m(w; λ). We can
easily show that under the standard assumptions on the kernel function and the
bandwidth sequence {bN } (see Assumptions A4 and A5 listed below), the last term
in (43) tends (P) to zero. Since, moreover, Q̂N (λ) converges (P) to its average Q̄(λ)

for every λ ∈ Λ, then we may conclude that:

Q̂N (λ)
N→ Q(λ), (P) for every λ ∈ Λ, (44)

where,
Q(λ) = E Z2

t + E{(m(Wt (λ); λ) − m∗(Wt ))
2}. (45)

This asymptotic criterion can be now used to characterize the true impulse response
function λ∗. In fact, since Q(λ∗) = E Z2

t , we have Q(λ∗) ≤ Q(λ), λ ∈ Λ. Never-
theless, λ∗ need not be a unique minimum of Q(λ). Indeed, the second term in (45)
is equal to zero for such λ values which belong to the following set:

S = {λ ∈ Λ : P{m∗(Wt ) = E(m∗(Wt )|Wt (λ))} = 1}. (46)

This set defines all possible values minimizing Q(λ) and it is clear that λ∗ ∈ S. The
property P{m∗(Wt ) = E(m∗(Wt )|Wt (λ))} = 1 may hold for other λ values, but this
happens in very rare cases. Note, however, that S = R p+1 if m∗(•) is a constant
function. Excluding this singular situation we may certainly assume that Q(λ) has
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the unique global minimum at λ∗. This assumption will be applied throughout our
convergence considerations.

The following formal assumptions are required for consistency:

A1 Let the density fU (•) of the input process be a continuous function bounded
away from zero on some small neighborhood of the point u = 0.

A2 Let m∗(•) be a non-constant continuous function defined on the support of the
random process {Wn} such that E |m∗(Wn)|2 < ∞.

A3 Let the space Λ = {λ ∈ R p+1 : λ0 = 1} of all admissible impulse response
functions be a compact subset of R p+1.

A4 Let the kernel function K (•) be continuous and satisfy the following restriction:

k11[−r,r ](w) ≤ K (w) ≤ k21[−R,R](w),

for some positive constants r ≤ R, k1 ≤ k2.
A5 Let the smoothing sequence {bN } be such that bN → 0 and NbN → 0 as

N → ∞.

The kernel function satisfying Assumption A4 is called a boxed kernel and there
is a large class of kernels that may be categorized as such.

The following theorem gives sufficient conditions for the convergence of the
identification algorithm defined in (41) to the true impulse response function λ∗.

Theorem 1 Let λ̂ be any estimate defined in (41) and let λ∗ be a unique minimizer
of the limit criterion Q(λ). Suppose that Assumptions A1–A5 hold. Then we have,

λ̂
N→ λ∗, (P).

The critical part in proving this theorem is to show the uniform convergence of
Q̂N (λ) to its average Q̄(λ), that is, that,

sup
λ∈Λ

|Q̂N (λ) − Q̄(λ)| → 0, (P) as N → ∞.

Such a property is often called a Glivienko–Cantelli property. This is the property of
a set of functions,

{(Y − m̂(W (λ); λ))2 : λ ∈ Λ}, (47)

which defines the criterion Q̂N (λ).
If stronger requirements are imposed on (47), for example, that the nonlinearity

m∗(•) and the noise process {Zn} are bounded, then the set in (47) defines theVapnik–
Chervonenkis class. This allows one to show the following exponential inequality:

P

{

sup
λ∈Λ

|Q̂N (λ) − Q̄(λ)| ≥ δ|T1
}

≤ c(N )e−αn2δ2 , (48)
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for every δ > 0 and some α > 0. The sequence c(N ) is known to not grow faster
than a polynomial in N . It is worth noting that bound (48) holds uniformly over
all training sequences T1 of size n1. The important consequence of this is that the
accuracy of the estimate λ̂ does not depend critically on the training sequence T1.
Hence, the training sequence can be quite arbitrary, whereas the testing part T2 of
the training set should be as independent as possible [5, 6].

The result of Theorem1 combinedwith the further technical argumentsmentioned
briefly in Sect. 2 allow us to evaluate the rate of convergence of the estimate λ̂. This
is summarized in the following theorem.

Theorem 2 Let all the assumptions of Theorem 1 be satisfied. Let the derivative
K (1)(•) of the kernel function exist and be bounded. Suppose that fU (•) and m∗(•)

have two continuous, bounded derivatives. Then for any sequence of estimators λ̂

that satisfy (41) with nεN
N→ 0(P) and such that λ̂

N→ λ∗(P) we have

λ̂ = λ∗ + OP (N−1/2).

This result shows that the semiparametric least-squares estimation method can
reach the usual

√
N parametric rate of convergence. Nevertheless, additional smooth-

ness conditions on the input density and system nonlinearity are required. On the
contrary, the correlation type estimators of λ∗ can reach the

√
N ratewithout virtually

any assumptions on the nonlinearity and the system memory. The critical assump-
tion, however, is that the input signal is Gaussian [13]. See, however, [12, 25] for
alternative nonparametric identification algorithms of Wiener systems without the
assumption of Gaussianity.

B. Nonparametric Estimation

The estimate λ̂ of the linear subsystem found in the preceding section allows one to
define an estimate of m̂(•) as in (39), that is, m̂(•) = m̂(•; λ̂), where m̂(•; λ) is the
kernel estimate defined in (36). The first step in proving the consistency result for
m̂(•) is to apply the decomposition in (16). The convergence of the second term in
this decomposition

m̂(•; λ∗) − m∗(•)
N→ 0, (P), (49)

represents the classical problem in nonparametric estimation. In our case the output
process is p-dependent, that is, the random variables Yi and Y j are independent
as long as |i − j | > p. Then the proof of (49) results from the fact that for any
p-dependent random process {ξi } such that E{ξi } = 0 and Eξ2i < ∞ we have

E

⎛

⎝

N
∑

j=1

ξ j

⎞

⎠

2

≤ (p + 1)
N
∑

j=1

Eξ2j . (50)
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Concerning the first term in (16), note that we wish to apply the linearization tech-
nique with respect to λ̂ − λ∗. To do so, let us write the kernel estimate m̂(w; λ) in
(36) as follows:

m̂(w; λ) = r̂(w; λ)

f̂ (w; λ)
, (51)

where

r̂(w; λ) = n−1
1 b−1

∑

j∈I1

Y j K

(
w − W j (λ)

b

)

and

f̂ (w; λ) = n−1
1 b−1

∑

j∈I1

K

(
w − W j (λ)

b

)

.

Note that f̂ (w; λ) is the kernel estimate of the density function f (w; λ), whereas
m̂(w; λ) is the kernel estimate of m(w; λ) f (w; λ).

Now using (51) and recalling that W j (λ
∗) = W j , we can express the derivative

of m̂(w; λ∗) with respect to W j , j ∈ I1 as follows:

D j (w) = n−1
1 b−2K (1)

(
w − W j

b

)

· r̂(w; λ∗) − Y j f̂ (w; λ∗)
f̂ 2(w; λ∗)

, (52)

where r̂(w; λ∗), f̂ (w; λ∗) are defined as in (51) with λ = λ∗. Next, let us note that

W j (λ̂) − W j (λ
∗) =

p
∑

t=1

(λ̂t − λ∗
t )U j−t , j ∈ I1.

Then we can approximate m̂(w) − m̂(w; λ∗) by the first term of Taylor’s formula,

∑

j∈I1

D j (w)(W j (λ̂) − W j (λ
∗)) =

p
∑

t=1

(λ̂t − λ∗
t )At,n(w),

where
At,N (w) =

∑

j∈I1

D j (w)U j−t ,

for 1 ≤ t ≤ p.

Since, by Theorem 1, we have that λ̂t − λ∗
t

N→ 0(P), it is sufficient to show that
the stochastic term At,N (w) tends (P) to a finite function as N → ∞. Let us note
that by the standard technical considerations we can show that f̂ (w; λ∗) and r̂(w; λ∗)
converge (P) to fW (w) and m∗(w) fW (w), respectively. By this and (52), we see that
the term At,N (w) is determined by the following two expressions:
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J1(w) = n−1
1 b−2

∑

j∈I1

K (1)
(

w − W j

b

)

U j−t ,

J2(w) = n−1
1 b−2

∑

j∈I1

K (1)
(

w − W j

b

)

Y jU j−t .

It suffices to examine the term J2(w). Let us start by noting that

J2(w) = ∂

∂w
J̄2(w), (53)

where

J̄2(w) = n−1
1 b−1

∑

j∈I1

K

(
w − W j

b

)

Y j X j−t .

It can be shown by using (50) that

J̄2(w)
N→ m∗(w)a(w), (P), (54)

where a(w) is some finite function. The convergence (P) of J̄2(w) implies the con-
vergence (P) of the derivative due to the general result presented in [35]. Thus, by
(53) and (54) we obtain

J2(w)
N→ ∂

∂w
{m∗(w)a(w)}, (P).

The aforementioned discussion explains themain steps used to prove the convergence
of the estimate m̂(w) defined in (39) to the true nonlinearity m∗(w). Note that the
linearization technique requires some differentiability conditions both on the system
characteristics and the kernel function. Hence, we need the following additional
formal assumptions:

A6 Let fU (•) have a bounded and continuous derivative.
A7 Let m∗(•) have a bounded and continuous derivative.
A8 Let the derivative K (1)(•) of the kernel function exist and be bounded.

All these considerations lead to the following convergence result for the nonlinear
subsystem identification algorithm.

Theorem 3 Let m̂(•) = m̂(•; λ̂), where m̂(•; λ) is the kernel regression estimate
defined in (36). Let all of the assumptions of Theorem 1 hold. If, further, Assumptions
A6–A8 are satisfied, then we have

m̂(w) → m∗(w), (P), as N → ∞

at every point w ∈ R where fW (w) > 0.
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The conditions imposed in Theorem 3 are by no means the weakest possible and
it may be conjectured that the convergence holds at a point where fW (w) and m∗(w)

are continuous.
In the proof of Theorem 3, we have already shown that m̂(w) − m̂(w, λ∗) is of

order,
p
∑

t=1

(λ̂t − λt ) At,N (w),

where At,N (w)
N→ At (w)(P), some finite function At (w). Then, due to Theorem 2,

we have that

m̂(w) − m∗(w) = {m̂(w; λ∗) − m∗(w)} + OP (N−1/2). (55)

Hence, the rate of convergence of m̂(w) to m∗(w) depends merely on the speed at
which the first term on the right-hand side of (55) tends to zero. This is, however,
an usual problem in nonparametric estimation. Indeed, the rate is controlled by the
smoothness of the nonlinearity m∗(w) and density fW (•). Note that the smoothness
of fW (•) can be inferred by the smoothness of fU (•). Since we have assumed
that fU (•) and m∗(•) have two continuous bounded derivatives, then by standard
analysis we may readily obtain that m̂(w; λ∗)−m∗(w) = OP (N−2/5), provided that
the kernel function is even and the bandwidth b is selected as b(N ) = aN−1/5, some
positive constant a. Consequently, we come to the following theorem.

Theorem 4 Let all the assumptions of Theorems 2 and 3 be satisfied. Suppose that
the kernel function is even. Then we have

m̂(w) = m∗(w) + OP (N−2/5).

Extensions Thus far, we have examined the one channel Wiener system with a
finite memory and the univariate nonlinearity. We have employed the semiparamet-
ric approach to identify the parametric and nonparametric parts of the system. This
strategy can be further extended to other types ofWiener systems. Amongmany pos-
sible alternatives we single out a multichannel model with separate dynamical parts
and a common nonlinearity. A two-channel version of this particular class of Wiener
systems is shown in Fig. 11. This model is important since the celebrated result due to
Boyd and Chua [3] assures that any time-invariant nonlinear system, which satisfies
the so-called fading memory property, can be approximated by a nonlinear moving-
average operator having the structure depicted in Fig. 11. In the statistical setting
the fading memory assumption results in a certain type of physical/predictive data
dependence such that two input signals which are close in the recent past, but not
necessarily close in the remote past, yield present outputs that are close. A similar
concept of dependence has been introduced in [32], see also [33].
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Fig. 11 The generalized
two-channel Wiener model

Zn

Yn

W1,n

W2,n

{λ∗
1,i, 0 ≤ i ≤ p}

{λ∗
2,i, 0 ≤ i ≤ p}

m∗(•, •)
Un

Themodel in Fig. 11 can be easily identifiedwithin the semiparametric framework
examined in Sect. 2. Hence, without loss of generality, let us consider the following
two-channel system

Yn = m∗
⎛

⎝

p
∑

i=0

λ∗
1,i Un−i ,

p
∑

j=0

λ∗
2, j Un− j

⎞

⎠+ Zn, (56)

where λ∗
1 = {λ∗

1,i , 0 ≤ i ≤ p} and λ∗
2 = {λ∗

2,i , 0 ≤ i ≤ p} are unknown parameters
and m∗(•, •) is the unknown nonlinearity.

The first important issue, similar to that studied for the single inputWiener model,
is whether the parameter λ∗ = (λ∗

1, λ
∗
2) ∈ Rs , s = 2p + 2, is identifiable. The

previous normalization λ1,0 = λ2,0 = 1 is not sufficient in this case; we must
further restrict a class of admissible impulse response sequences and nonlinearities.
Concerning the parameter space of all admissible impulse response functions we
assume that λ ∈ Λ ⊂ Rs for Λ being a compact subset of Rs , where λ = (λ1, λ2).

In general, we can only identify a linear subspace spanned by (λ∗
1, λ

∗
2). To be able

to identify the individual parameters we can assume that λ∗
1 and λ∗

2 are not collinear.
Furthermore, assume that m∗(•, •) is not a constant function and that the derivatives
of m∗(w1, w2) with respect to each of the variables are not linearly dependent. This
assures us that the nonlinearity is sufficiently far from being constant and linear.

The solution of the identification problem for the model (56) is now straightfor-
ward. Indeed, we can follow the ideas developed in the previous section starting with
an important concept of the optimal predictor of the output signal for a given λ ∈ Λ,

m(w1, w2; λ) = E{Yn|W1,n(λ1) = w1, W2,n(λ2) = w2}, (57)

where W1,n(λ1) = ∑p
i=0 λ1,iUn−i and W2,n(λ2) = ∑p

j=0 λ2, jUn− j . We have
the obvious constraints W1,n(λ∗

1) = W1,n , W2,n(λ∗
2) = W2,n and m(•, •; λ∗) =

m∗(•, •). Next, using the partition strategy of the training set shown in Fig. 10, the
regression function m(w1, w2; λ) can be estimated by the two-dimensional version
of the kernel estimate m̂(w1, w2; λ) for a given λ = (λ1, λ2) ∈ Λ. This allows us to
obtain the least-squares score function estimate λ̂ of λ∗ having the

√
N convergence

property. The corresponding estimate of m∗(w1, w2) is m̂(w1, w2) = m̂(w1, w2; λ̂).
Then the reasoning leading to the results of Theorems 3 and 4 readily yields,

m̂(w1, w2) = m∗(w1, w2) + OP (N−1/3), (58)
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where fU (•) and m∗(•, •) are twice continuously differentiable. The rate in (58)
needs the proper choice of the bandwidth parameter b(N ) of the following form
b(N ) = aN−1/6, for some positive constant a. Note that the rate in (58) is slower
that that for the one channel Wiener system, see Theorem 4. This is due to the fact
that we are estimating a bivariate function for which the rate is slower than for an
univariate one. Further restriction of m∗(w1, w2) to the class of additive functions of
the form m1(w1) + m2(w2) would yield the identification algorithm with the one-
dimensional rate OP (N−2/5), see [13] for some results regarding identification of
additive systems.

3.3 Semiparametric Parallel Systems

In this section we make use of the semiparametric methodology in the context of the
parallel system with a single (without loss of generality) input and a finite memory
linear subsystem.Hence, the system shown in Fig. 12 is assumed to be the true system
with the following input-output description:

Yn = m∗(Un) +
p
∑

j=0

λ∗
jUn− j + Zn . (59)

The identifiability condition for this system is that λ∗
0 = 1. Hence, let Λ = {λ ∈

R p+1 : λ0 = 1} be a set of all admissible parameters that is assumed to be the
compact subset of R p+1.

As we have already discussed, the semiparametric least squares strategy begins
with the elimination of the nonlinear characteristic from the optimization process.
To this end let,

Wn(λ) =
p
∑

j=0

λ jUn− j , (60)

be the output of the linear subsystem for a given λ ∈ Λ. Clearly Wn(λ∗) = Wn .

Fig. 12 Semiparametric
nonlinear parallel model

Yn

Zn
Wn{λ∗

i , 0 ≤ i ≤ p}

m∗(•)

Un
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Next, we form the required projection

m(u; λ) = E{Yn − Wn(λ)|Un = u} (61)

such that m(u; λ∗) = m∗(u). In fact, noting that

m(u; λ) = m∗(u) +
p
∑

j=0

(λ∗
j − λ j ) E{Un− j |Un = u},

we can confirm that m(u; λ∗) = m∗(u).
For a given training set DN = {(U1, Y1), . . . , (UN , YN )} we can easily form a

nonparametric estimate of the regression function m(u; λ). Hence let,

m̂(u; λ) =
∑N

t=p+1(Yt − Wt (λ))K
(

u−Ut
b

)

∑N
t=1 K

(
u−Ut

b

) , (62)

be the kernel regression estimate of m(u; λ).
The mean-squared criterion for estimating λ∗ can now be defined as follows:

Q̂N (λ) = N−1
N
∑

t=p+1

(

Yt − m̂(Ut ; λ) − Wt (λ)
)2

. (63)

The minimizer of the prediction error Q̂N (λ) defines an estimate λ̂ of λ∗. As soon
as λ̂ is determined we can estimate m∗(u) by the two-stage process, i.e., we have,

m̂(u) = m̂(u; λ̂). (64)

Thus far we have used the same data for estimating the pilot regression estimate
m̂(u; λ) and the criterion function Q̂n(λ). This may lead to consistent estimates but
the mathematical analysis of such algorithms is lengthy. In Sect. 3.2 we suggested
the partition resampling scheme which gives a desirable separation of the training
and testing data sets and reduces the mathematical complications. This strategy can
be easily applied here, i.e., we can use a subset of DN to derive the kernel estimate in
(62) and then utilize the remaining part of DN for computing the criterion function
Q̂N (λ).

For estimates of λ̂ and m̂(u) obtained as outlined above, we can follow the argu-
ments given in Sect. 2 and show that λ̂ → λ∗(P) and consequently m̂(u; λ̂) →
m(u; λ∗) = m∗(u)(P).

Theminimization procedure required to obtain λ̂ can be involved due to the highly
nonlinear nature of Q̂N (λ). A reduced complexity algorithm can be developed based
on the general iterative scheme described in Sect. 2, see (13). Hence, for a given
λ̂(old), set m̂(u; λ̂(old)). Then we form the modified criterion,
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Q̃N (λ) = N−1
N
∑

t=p+1

(

Yt − m̂(Ut ; λ̂(old)) − Wt (λ)
)2

, (65)

and find
λ̂(new) = argmin

λ∈Λ
Q̃N (λ).

Next, we use λ̂(new) to get m̂(u; λ̂(new)) and iterate the above process until the criterion
Q̃N (λ) does not change significantly. It is worth noting that Wt (λ) in (65) is a linear
function of λ and therefore we can explicitly find λ̂(new) that minimizes Q̃N (λ).

We shouldnote that the above algorithmcanworkwith thedependent input process
{Un}. However, if {Un} is a sequence of i.i.d. random variables, then the correlation
method provides the following explicit solution for recovering λ∗. In fact, we have

λ∗
j = cov(Yn, Un− j )

var(U0)
; j = 1, . . . , p.

Note also that
m∗(u) = E{Yn|Un = u} − u.

which allowsus to recoverm∗(u). Empirical counterparts of cov(Yn, Un− j ), var(U0),
and the regression function E{Yn|Un = u} define the estimates of the system charac-
teristics. Although these are explicit estimates, they are often difficult to generalize
in more complex cases. On the other hand, the semiparametric approach can easily
be extended to a large class of interconnected complex systems.

4 Concluding Remarks

In this paper we have described the unified framework for identification of systems
that can be represented or approximated by the infinite dimensional parameter and
a set of univariate nonparametric functions. The parametric part of this paradigm is
representing linear dynamic subsystems of the nonlinear model as well as projections
on the low-dimensional subspaces. The latter case is essential for reducing the curse
of dimensionality. The developed methodology is illustrated in the context of pop-
ular block-oriented systems. We have argued that the semiparametric inference can
offer an attractive strategy for identification of large scale composite systems where
one faces an inherent problem of dimensionality and model complexity. In fact, the
semiparametric paradigm allows us to project the original systemonto some parsimo-
nious alternative. The semiparametric version of the least squares method employed
in this paper determines such a projection via an optimization procedure. We have
examined a class of semiparametric dynamic systems characterized by functions of
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single variable and finite dimensional projection parameters. The model in (3) is an
important example of this class. The following is the natural generalization of the
approximation in (3)

μ(x) =
L
∑

l=1

gl(θ
T
l x), (66)

where now we wish to specify the univariate functions {gl(•), 1 ≤ l ≤ L} and the
parameters {θl , 1 ≤ l ≤ L}. Often one also needs to estimate the degree L of this
approximation network. The approximation properties of (66) has been examined
in [7]. It is worth noting the nonlinear characteristic in Example 1 of Sect. 2, i.e.,
m(x1, x1) = x1x2, can be exactly reproduced by the network in (66). In fact, we have

x1x2 = 1

4
(x1 + x2)

2 − 1

4
(x1 − x2)

2.

This corresponds to (66) with g1(w) = 1
4w2, g2(w) = − 1

4w2 and θ1 = (1, 1)T ,
θ2 = (1,−1)T .

Semiparametric models have been extensively examined in the econometric liter-
ature, see [15, 20, 34]. There, they have been introduced as more flexible extension
of the standard linear regression model and popular models include partial linear
and multiple-index models. These are static models and this paper can be viewed
as the generalization of these models to dynamic nonlinear block-oriented systems.
In fact, the partially linear models fall into the category of parallel models, whereas
multiple-index models correspond to Hammerstein/Wiener connections. Semipara-
metric models have recently been introduced in the nonlinear time series literature
[9, 27]. Some preliminary results on semiparametric inference in system identifica-
tion are reported in [8, 13].

In the approximation theory the model in (3) has been recently examined, see [4]
and the references cited therein, as the one-dimensional approximation to functions
of many variables. The problem of learning of such approximations from a finite
number of point queries has been studied. The accuracy of such approximations
depends on the smoothness of g(•) and the sparsity of the vector θ ∈ Rq .

There are numerous ways to refine the results of this paper. First of all, one can
consider a more robust version the least-square criterion with a general class of loss
function. This would lead to the semiparametric alternative of M-estimation [28]. As
a result, we could examine semiparametric counterparts ofmaximum-likelihood esti-
mation and some penalized M-estimators. The latter would allow us to incorporate
some shape constraints like convexity and monotonicity of underlying characteris-
tics. The extension of the semiparametric strategy to continuous-time systems would
be an interesting problem for future research. The issue of identification of highly
dimensional dynamic systems modelled by semiparametric structures with some
sparsity constraints could be another area of interest. On the more technical side, the
question of finding semiparametric efficient estimators of the parametric component
of a semiparametric block-oriented model remains an open issue, see [28] for the
basic theory of semiparametric efficiency.
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Dealing with Data Difficulty Factors While
Learning from Imbalanced Data

Jerzy Stefanowski

Abstract Learning from imbalanced data is still one of challenging tasks inmachine
learning and data mining. We discuss the following data difficulty factors which
deteriorate classification performance: decomposition of the minority class into rare
sub-concepts, overlapping of classes and distinguishing different types of examples.
New experimental studies showing the influence of these factors on classifiers are
presented. The paper also includes critical discussions of methods for their identifi-
cation in real world data. Finally, open research issues are stated.

1 Introduction

Data mining and machine learning have shown tremendous progress in last decades
and have become ones of the main sub-fields of computer sciences. The supervised
learning of object classification is one of the most common tasks considered both in
theory and practice. Discovered classification knowledge is often used as a classifier
to predict class labels for unclassified, new instances. This task has been intensively
studied and a large number of approaches, based on different principles, have been
already introduced; for some reviews the reader can consult, e.g. [4, 49].

Nevertheless many real world problems still reveal difficulties for learning accu-
rate classifiers and require new solutions. One of these challenges is learning from
imbalanced data,where at least one of the target classes contains amuch smaller num-
ber of examples than the other classes. This class is usually referred to as theminority
class, while the remaining classes are denoted asmajority ones. For instance, in med-
ical problems the number of patients requiring special attention is much smaller than
the number of patients who do not need it. Class imbalances have been also observed
in many other application domains such as fraud detection in telephone calls or
credit cards transactions, bank risk analysis, technical diagnostics, network intrusion
detection, image recognition, detecting specific astronomical objects in sky surveys,
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text categorization, information filtering; for some reviews see, e.g., [10, 18, 29, 30,
72].

In all those problems, the correct recognition of the minority class is of key impor-
tance. For instance, in a medical diagnosis a failure in recognizing an illness and not
assigning a proper treatment to a patient is much more dangerous than misdiagnos-
ing a healthy person, whose diagnosis may be verified by additional examinations.
Although focusing attention on a critical class and considering misclassification
errors are similar to cost sensitive learning [16], dealing with imbalanced classes is
not the same, as the costs of misclassifications are rather unknown in advance [50].
Even if they could be somehow approximated, they may be different for particular
instances of the given class.

The standard classifiers do not work sufficiently well with imbalanced data [29,
30, 41, 74]. They mainly concentrate on larger classes and often fail to classify suffi-
ciently accurately minority class examples. For instance, [45] describes an informa-
tion retrieval system, where the minority class contained only 0.2% of all examples.
Although all considered classifiers achieved the overall accuracy close to 100%,
they were useless because they failed to deliver requested documents from this
class. While this degradation of classification performance has been known earlier
from applications, improving classifiers for imbalanced data has received a growing
research interest in the last decade and a number of specialized methods have been
proposed, for their review see, e.g., [10, 18, 29, 30].

Although several specialized methods exist, the identification of conditions for
their efficient use is still an open researchproblem. It is also related tomore fundamen-
tal issues of better understanding the nature of the imbalance data and key properties
of its underlying distribution which makes this problem too difficult to be handled.

Note that many authors introducing their new method usually carry out its exper-
imental evaluation over some data sets and show its better performance than some
reference methods. However, these evaluations are usually quite limited and authors
do not ask the above mentioned questions on data characteristics. In more compre-
hensive comparative studies, as [2, 70], data sets are categorized with respect to the
global ratio between imbalanced classes or the size of the minority class only. Nev-
ertheless, it seems that these numbers do not sufficiently explain differences between
classification performance of the compared methods. For instance, for some data sets
even with a high imbalance ratio, the minority class can be sufficiently recognized
by many standard classifiers.

Some researchers claim that the global imbalance ratio is not a problem itself and
it may not be the main source of difficulties for learning classifiers. Following related
works [22, 34, 37, 47, 60] and earlier studies of Stefanowski et al. [52, 53, 55, 65]we
claim that other, as we call them, data difficulty factors, referring to characteristics
of minority class distributions, are also influential. They include:

• decomposition of the minority class into many rare sub-concepts—also known as
small disjuncts [32, 34, 36, 67, 73],

• an effect of too strong overlapping between the classes,
• a presence of too many minority examples inside the majority class region.
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When these data difficulty factors occur together with class imbalance, they may
seriously hinder the recognition of the minority class, see e.g. a study [47, 64].
Moreover, in earlier paper of Stefanowski et al. we have proposed to capture some
of these data difficulty factors by considering the local characteristics of learning
examples from the minority class [53, 55].

We claim that the studies on data difficulty factors are still not sufficiently devel-
oped and even well known among machine learning or data mining communities.
Furthermore, most of these studies have been carried out on special synthetic data
with assumed distributions of the minority class, while good identification of these
factors in the real data sets is not easy and it poses still open questions and requires
new solutions.

The aim of this paper is to survey the main current research on the above men-
tioned data difficulty factors including our own new experimental results. We will
present consequences of these data factors on the classification performance. Then,
we critically discuss current methods for their identification and put open questions
on the directions of their future developments. Finally, we will claim that the proper
analyzing of these data factors could be the basis for developing new specialized
algorithms for imbalanced data.

The paper is organized as follows. Section2 summarizes related pre-processing
methods and evaluation issues. Difficulties caused by a fragmentation of theminority
class into rare sub-concept are described in Sect. 3. It is followed by a discussion of
class overlapping in Sect. 4. Then, the novel view of types of minority examples, the
method for their identification in real world data sets, its experimental evaluation are
presented. The final section concludes the paper.

2 Pre-processing Methods for Class Imbalances

Methods addressing class imbalances are usually categorized into two groups:

• Data level methods—these are classifier-independent methods that rely on trans-
forming the original data distribution of classes into the better one for learning
classifiers, e.g., by re-sampling or focused filtering some examples.

• Algorithmic level methods—they involve modifications of the algorithm.

In this paper we do not intend to provide a comprehensive review of all proposed
methods and rather will briefly present the selected data level methods only as they
will be considered in further experiments. The comprehensive reviews can be found
in, e.g., [10, 18, 29, 30, 52, 66, 72].

The methods on the algorithmic level include the following sub-categories: adap-
tations to cost-sensitive learning, changing of internal algorithm bias (either in search
strategies, evaluation criteria or classification strategies), generalizations of ensem-
bles or one-class learning. On the other hand, methods on data level modify imbal-
anced data to provide the class distribution more appropriated for learning classi-
fiers. Many of these proposed methods offer a more balanced distribution of classes.
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In general, changing the class distribution towards a more balanced one improves
the performance for most data sets and classifiers [29]. We describe the best well
known pre-processing methods below.

2.1 Random Re-sampling and Informed Pre-processing

The most popular re-sampling methods are random over-sampling which replicates
examples from the minority class, and random under-sampling which randomly
eliminates examples from the majority classes until a required degree of balance
between class cardinalities is reached. However, several authors showed the simple
random re-sampling methods were not sufficiently good at improving recognition of
imbalanced classes. Random under-sampling may potentially remove some impor-
tant examples and simple over-sampling may also lead to overfitting [11, 42]. The
recent research focuses on particular examples, taking into account information about
their distribution in the attribute space [29].

Kubat and Matwin claim in [42] that characteristics of mutual positions of exam-
ples is a source of difficulty for learning from imbalanced data, see also their more
applied study [43]. They introduced one-side-sampling method (OSS), which filters
the majority classes in a focused way [42]. It is based on distinguishing different
types of learning examples: safe examples, borderline (located near the decision
boundary) and noisy examples. They propose to use Tomek links (two nearest exam-
ples having different labels) to identify and delete the borderline and noisy examples
from majority classes.

Then, the Nearest Cleaning Rule (NCR) method is introduced in [44] and it is
based on the focused removal of examples from the majority class. It applies the
edited nearest neighbour rule (ENNR) to the majority classes [75]. ENNR first looks
for a specific number of nearest neighbours ([44] recommends using 3 neighbours)
of the “seed” example, re-classifies it with them and then removes these majority
examples, which cause the wrong re-classification. Experiments have shown that
NCR outperforms OSS [44].

The best well know informative sampling method is the Synthetic Minority Over-
sampling Technique (SMOTE) [11]. It is also based on the k nearest neighbourhood,
however it exploits it to selectively over-sample the minority class by creating new
synthetic examples. It considers each minority class example as a “seed” and finds
its k-nearest neighbours also from the minority class. Then, according to the user-
defined over-sampling ratio—or , SMOTE randomly selects or of these k neighbours
and randomly introduces new examples along the lines connecting the seed example
with these selected neighbours. It generate artificial examples for both qualitative
and quantitative attribute.

Some of the assumptions behind SMOTE could still be questioned. First, using
the same over-sampling ratio to all minority examplesmay be doubtful for some data.
Several researchers claim that unsafe examples are more liable to be misclassified,
while safe examples located inside the class regions are easier to be learned and do
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not require such a strong over-sampling.What is more important, SMOTEmay over-
generalize the minority class as it blindly over-samples the attribute space without
considering the distribution of neighbours from the majority class. To overcome
such limitations several generalizations of SMOTEhavebeen recently introduced; for
reviews see [48, 62]. They usually follow one of the two directions: (1) an integration
of standard SMOTE with an extra post-processing step or (2) a modification of an
internal sampling strategy.

Thefirst solution is to integrate SMOTEwith a post-processing phase includingfil-
tering the most harmful examples. For instance, using ENNR after SMOTE performs
quite well with tree classifiers [2] and rules [52]. Yet a more elaborated approach
is presented in [62], where an additional bagging ensemble is used to identify the
most misclassified examples and iteratively remove them if it improves evaluation
measures. The other group of more “internal” extensions includes two general solu-
tions. The first generalizations over-sample some types of minority examples only.
For instance, in Borderline-SMOTE only the borderline examples could be seeds for
over-sampling [27]. The other generalizations attempt to modify localizations for
introducing the new synthetic examples. In Safe Level SMOTE and LN-SMOTE the
distribution of local sub-areas around the seed example and its selected neighbour
are analysed and the new example is generated closer to a safer one [48].

Hybrid methods combine of over-sampling with cleaning difficult examples.
Besides a simple integration of SMOTE with either ENN or Tomek links [68] other
more complex methods offer sophisticated internal combinations of different oper-
ations, e.g. by using evolutionary algorithms to optimize some parameters, as the
balancing ratio, combinations of over-sampling versus under-sampling amount, see
e.g. [21, 71].

SPIDER is another hybrid method that selectively filters out harmful examples
from the majority class and amplifies the difficult minority examples [65]. In the first
stage it applies ENNR to distinguish between safe and unsafe examples (depending
how k neighbours reclassify the given “seed” example). For the majority class—
outliers or the neighbours which misclassify the seed minority example are either
removed or relabeled. The remaining unsafe minority examples are additionally
replicated depending on the number of majority neighbours.

Note that in all the above mentioned methods k nearest neighbourhood is often
calculated with the HVDM metric (Heterogeneous Value Difference Metric) [75].
Recall that it aggregates normalized distances for both continuous and qualitative
attributes, however it uses the Stanfil and Valtz value difference metric for qualitative
attributes.

Many generalizations of ensembles are based on integrating re-sampling to mod-
ify contents of training samples in bagging or boosting. For instance, SMOTE-Boost
is an integration of SMOTEwith classical AdaBoost to focus successive classifiers on
the minority class [10]. Another representative is IIvotes, where SPIDER is added
to Breiman’s importance sampling of bootstraps [6]. Other extensions of bagging
re-balance the class distribution inside each bootstrap sample into fully balanced



338 J. Stefanowski

ones, by either simple random over-sampling of the minority examples, or by
under-sampling the majority class—for their review and experimental comparison
see [7, 19].

2.2 Evaluation Issues

Imbalanced data constitutes a challenge not only when constructing a classifier, but
also when evaluating its performance. Indeed, an overall classification accuracy is
not the best criterion characterizing performance of a classifier as it is biased toward
the majority classes. A good recognition of the minority is more preferred, thus a
classifier should be characterized rather by other specialized measures, e.g. by its
sensitivity and specificity for the minority class.

Both these and other similar measures are defined with the confusion matrix for
two class only, where typically the class label of the minority class is called positive
and the class label of themajority class is negative [29, 35]. Even if data containsmore
majority classes the classifier performance on these classes are usually aggregated
into one negative class.

The sensitivity (also called a True-Positive Rate or Recall of the minority class) is
defined as the ratio of correctly recognized examples from the minority class while
the specificity is the ratio of correctly excluded examples from themajority classes (in
a case of binary classification the specificity of the minority class is the recall of the
majority class). More attention is usually given to sensitivity than to specificity [24].
However, in general there is trade-off between these two measures, i.e., improving
the sensitivity too much may lead to deterioration of specificity at the same time—
see experimental results in [25]. Thus, some measures summarizing both points
of view are considered. One of them is G-mean [42], calculated as a geometric
mean of sensitivity and specificity. Its key idea is to maximise the recognition of
each of minority and majority classes while keeping these accuracies balanced. An
important, useful property of theG-mean is that it is independent of the distribution of
examples between classes. An alternative criterion aggregating precision and recall
for the minority class is F-measure; for a deeper discussion of its properties see e.g.
[29]. Other less frequently used measures are nicely reviewed in [38].

Several authors also use the ROC (Receiver Operating Characteristics) curve
analysis in case of scoring classifiers. A ROC curve is a graphical plot of a true
positive rate (sensitivity) as a function of false positive rate (1-specificity) along
different threshold values characterizing the performance of the studied classifier
[35]. The quality of the classifier performance is reflected by the area under a ROC
curve (so called AUC measure) [10, 35, 38]. Although AUC is a very popular tool,
some researchers have discussed some limitations, e.g. in the case of highly skewed
data sets it could lead to an overoptimistic estimation of the algorithm’s performance
[28]. Thus, other proposals include Precision Recall Curves or other special cost
curves (see their review in [13, 29]).
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3 Nature of Imbalanced Data

A data set is considered imbalanced when it is characterized by an unequal distribu-
tion between classes. N. Japkowicz refers it to the between-class imbalance [33]. It
is evaluated by the global class imbalance ratio IR. Assume that the data set D con-
tains n learning examples assigned to two classes: the minority class MK with Nmin

representatives and the majority class W K having Nmaj examples. Depending on the
literature sources, IR is usually expressed as either Nmaj/Nmin or the percentage of
Nmin in the total number of examples n.

There is no unique opinion about the threshold for the degree of such imbalance
between the class cardinalities to establish data to be imbalanced. Some researchers
have studied the data setswhere one classwas several times smaller than other classes,
while others have considered more severe imbalance ratios as, e.g., with IR = 10/1,
100/1 or even greater. Without showing a precise threshold value for this ratio, we
repeat after [72] that the problem is associated with lack of data (absolute rarity), i.e.
the number of examples in the rare (minority) class is too small to recognize properly
the regularities in the data.

Although this description implies binary (two-class) problems, data with many
majority classes are often aggregated into one global majority class—which is a case
considered in this paper. However, note that some authors also consider multi-class
data sets, where imbalances may exist between various classes.

The imbalance of a learning data set can be either intrinsic (in the sense that
it is a direct result of the nature of the data space) or extrinsic (caused by reasons
external to the data space). Extrinsic imbalances can be caused by too high costs
of acquiring the examples from the minority class, e.g. due to economic or privacy
reasons [72] or comes from technical time or storage factors. For instance, He et al.
give in [29] examples of learning from continuous balanced data stream where due
to technical sporadic interruptions in transmissions of some sub-blocks inside the
analyzed stream would become an extrinsic imbalanced data set.

Gary Weiss also discusses problems of data rarity and distinguishes between
relative imbalance and absolute rarity. In the former case, the data set contains too
small minority class. However, if it is possible to collect/sample more examples and
to increase the total size of data while keeping the same global imbalance ratio, it may
happen that the absolute cardinality of the minority class will not be rare anymore
and it may be easier to be learned [72].

On the other hand, some studies have shown that for even highly imbalanced data
the minority class can be sufficiently accurately learned by all standard algorithms
[2]. Examples of such popular UCI benchmark data sets are new-thyroid or
vehicle—see their experimental analysis in [52]. Indeed one can image binary
class distributions which could be linearly separated with not so much disturbance
from even high imbalances assuming that the minority class does not represent an
absolute rarity. In case of a clear separation the minority class boundary could be
easily approximated by many algorithms.
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Fig. 1 MDS visualization of
class distribution in ecoli
imbalanced data

Distributions of real world imbalance data usually are not similar to the above
examples. For instance, Napierala in her attempts to visualize imbalanced data with
either multi-dimensional scaling or non-linear projections [52] to low dimensional
(2 or 3 variables) has showed such distributions as presented in Fig. 1. One can notice
that in ecoli data both classes are not separated, instead they seriously overlap. The
consistent region belonging solely to the minority class is rather very small—most
examples lie in a mixed region between the classes. Another observation is presence
of small sub-groups of the minority class, having sometimes few instances only.

Furthermore, well known comprehensive experimental studies where many spe-
cialized approaches over large collections of imbalanced data show that simply
discussing the global imbalance ratio does not sufficiently explain differences of
classification performance of these approaches [22, 37, 47, 53, 64].

All these results lead us to conclude that the global imbalance ratio is not the
only, and possibly not the main, data factor that hinders deterioration of learning
classifiers. As some researchers claims one should rather consider data set complexity
which should be more influential. Data complexity can be understood as the difficult
properties distribution of examples from both classes in the attribute space. It is not
particularly surprising that it shows a crucial impact on learning, as one could expect
that data complexity should affect learning also in balanced domains. However, when
data complexity occurs together with the class imbalance data difficulty factors, the
deterioration of classification performance is amplified and it affects mostly (or
sometimes only) the minority class.

The term “data complexity” can comprise different data distribution patterns. Up
to now, the researchers have distinguished several data difficulty factorswhich hinder
learning in imbalanced domains, such as: decomposing the minority class into rare
sub-concepts, overlapping, and presence of outliers, rare instances or noise. We will
discuss their role in the next sections.
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4 Decomposition of the Minority Class

4.1 Rare Sub-concepts and Small Disjuncts

Nearly all research on data difficulty factors were carried out by experimental stud-
ies with synthetic data. The most well known and inspiring studies are research of
Nathalie Japkowicz and her co-operators. They focused on within-class imbalance,
i.e. target concepts (classes) were decomposed into several sub-concepts [33, 37].
To check howmuch increasing the level of such a decomposition could influence the
classification performance, they carried our many experiments with specially gener-
ated data. They controlled three parameters: the size of the training set, the imbalance
ratio, and so called degree of concept complexity (understood as a decomposition of
the class into a number of sub-concepts). Two classes were considered—theminority
versus the majority class. In their first experiments each data set was generated over
a one-dimension interval. Depending on the concept complexity, the input interval
was divided into a number of sub-intervals of the same size (up to five), each asso-
ciated with a different class label. Following similar assumptions, in further studies
they generated additional data sets in five-dimensional space, where an occurrence
of classes was modeled by separate clusters.

Decision tree (C4.5) and multi layered perceptron neural networks (MLP) were
learned from these data sets. The results of their experimental evaluation showed
that imbalance ratio did not cause the degradation of classifiers’ performance as
much as increasing the degree of complexity (the number of sub-intervals). The
worst classification results were obtained for the highest decomposition of classes (5
sub-intervals), in particular if they contained too small number of examples. On the
other hand, in much larger data, where sub-clusters were represented by a reasonable
number of examples, the imbalance ratio alone did not decrease the classification
performance as much [37].

According to Japkowicz [33], if such imbalanced sub-concepts contain quite a
small number of minority class examples, then the deterioration of classification
performance is associated with the problem of so called small disjuncts—which was
originally introduced by Holte et al. in standard (balanced) learning of symbolic
classifiers [32]. Briefly speaking, a classifier learns a concept by generating disjunct
forms (e.g. rules of tree) to describe it. Small disjuncts are these parts of the learned
classifier which cover a too small number of examples [32, 67, 72]. It has been
observed in the empirical studies that small disjuncts contribute to the classification
error more than larger disjuncts. In case of fragmented concepts (in particular in
the minority class) the presence of small disjunct arises [29]. The impact of small
disjuncts was also further studied by other researchers, see e.g. [59, 73]. In par-
ticular, additional experiments with applying other classifiers on the artificial data
constructed in the similar way as [34] showed that decision trees were the most sen-
sitive to the small disjuncts, then the next was multi layered perceptron, and support
vector machines were the less sensitive to them.
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Fig. 2 Clover data set

Fig. 3 Paw data set

Stefanowski studied in [64] more complicated decision boundaries in two dimen-
sional, numerical data. First data sets, called sub-clus, contained rectangles defin-
ing the minority class distributions. All these sub-rectangles are surrounded by the
uniformly distributed examples from the majority class. Figure2 represents the next
shape, called a clover, a more difficult, non-linear setting, where theminority class
resembles a flower with elliptic petals (here 3 sub-concepts—petals). The examples
of majority class were uniformly distributed in all the free parts. Similarly to earlier
Japkowicz et al. research [37] , the size of data was changed (from 200 to 1200 exam-
ples) and the imbalance ratio changed from fully balanced IR = 1 till more highly
imbalanced IR = 9. The minority class was also stepwise decomposed from 2 to 6
sub-parts. Finally, other non-linear shapes of the minority class sub-concepts were
presented in paw data, see Fig. 3.

Three algorithms: k–nearest neighbor (k-NN), decision tree (J4.8)—and rule
(JRIP)–based classifiers were considered. Representative results of the sensitivity
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Table 1 Sensitivity of k-NN classifier with respect to decomposing the minority class into sub-
concepts and changing other parameters of sub-class data

Number of
sub-clusters

IR = 5 IR = 9

600 400 200 600 400 200

2 0.82 0.8 0.78 0.78 0.76 0.45

3 0.78 0.72 0.70 0.66 0.74 0.25

4 0.75 0.70 0.68 0.64 0.50 0.15

5 0.73 0.68 0.42 0.58 0.45 0.11

6 0.64 0.62 0.36 0.42 0.32 0.10

Table 2 Sensitivity of a tree classifier with respect to decomposing the minority class into sub-
concepts and changing imbalance IR

Number of sub-clusters
versus IR

600 400

3 5 7 9 3 5 7 9

2 0.92 0.92 0.83 0.80 0.94 0.85 0.82 0.80

3 0.90 0.85 0.80 0.78 0.84 0.78 0.72 0.70

4 0.85 0.80 0.78 0.74 0.82 0.75 0.68 0.60

5 0.75 0.35 0.24 0.06 0.14 0.10 0 0

6 0.22 0.10 0 0 0.06 0 0 0

Data size –600 and 400 examples

measure are shown in Table1 for k-NN classifier and in Table2 for decision trees.
One can notice that while changing the size of the data—larger number 600 and
400 did not influence so much as 200 ones. The highest decrease of evaluation mea-
sures (also for G-mean) was observed for increasing the number of sub-regions of
the minority class combined with decreasing the size of a data set—for all sizes
of data it degraded the performance of a classifier much more than increasing the
imbalanced ratio. The tree and rule classifiers showed the similar performance. The
degradation of performance was larger if the decision boundary became non-linear
even for larger data set. It is illustrated in Table2 by results for tree classifier and
clover data. The stepwise growth of the number of sub-regions (from 2 to 6) in
clover shape decreases much more the sensitivity measure than stepwise increase
of the class imbalance ratio (from 3 to 9).

4.2 Dealing with Small Disjuncts

As a consequence of this research special approaches to handle the problem of small
disjuncts were proposed in [34, 37]. They are based on specialized over-sampling
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of the minority class, sometimes also the majority class, with respect to inflate small
disjuncts. The most well known proposal is cluster-based over-sampling [37]. Its
idea is to consider not only the between class imbalance but also the within-class
imbalance (imbalance between discovered sub-clusters of each class) and to over-
sample the data set by improving these two types of imbalances simultaneously.
More precisely, the approach workflow is the following:

1. Apply a clustering algorithm to examples from each class separately. In this way,
one discovers Cmin clusters in Nmin examples from the minority class MK and
Cmaj clusters in Nmaj examples from the majority class W K .

2. Inside the majority class all the clustersCmaj, except the largest one, are randomly
oversampled so as to get exactly the same number of examples as inside the largest
cluster. In this way the current size of the majority class increases from Nmaj to
Maxmaj.

3. In the minority class, each cluster is randomly over-sampled until it will contain
Maxmaj/Cmin examples, where Cmin is the number of clusters inside the minority
class.

As the over-sampled data set will finally contain the same number of examples and
all sub-clusters will also be of the same size, the authors claim that no between-class
andnowithin-class imbalances remain inside the transformeddata. They successfully
applied this approach to several artificial data as well as to 2 real world problems of
letter recognition [36] and text classification [57]. In these applications they applied
k-means clustering algorithm, although they did not give precise hints how to tune
an appropriate k value.

SimilarlyBorowski [8] considered this pre-processing in text categorization of two
larger collection of documents. The first collection was Reuters 21578 and its subset,
called MadApte,1 where 9603 documents constituted a training set (the minority
class—corn—contained 181 examples) while 3299 ones were used a testing set.
The other collection was OHSUMED containing text summaries restricted to sub-
parts from 23 cardiovascular diseases.2 The training set contained 10,000 summaries
(the minority class—CO1 disease—has 423 documents) while the testing sets
was build on 10,000 summaries. In both collections NLP techniques were applied
to extract around 5000 terms in a vector space representation. Then features were
selected to around a fewhundred by using chi-square and entropy gain filters. Tables3
and 4 summarize the main classification results of using different pre-processing
methods with the following classifiers: Naive Bayes (abbreviated as NB), k-nearest
neighbour (k-NN), logistic regression (Reg-Log) support vector machines (SVM).
For cluster over-sampling we tested 6 values k = 4, . . . , 10—the best values were 6
and 7 depending on data. SMOTE was applied with 5 neighbours and testing over-
sampling ratios or between 100 and 1000% (with a step 100)—the best ratio was
400. Note that the cluster over-sampling improved both G-mean and F-measure.
However, these improvements were not as high as those achieved by using SMOTE.

1Reuters data is at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
2OSHSUMED available at http://ir.ohsu.edu/ohsumed/ohsumed.html.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://ir.ohsu.edu/ohsumed/ohsumed.html
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Table 3 Applying cluster over-sampling and SMOTE to Reuters data

Method Classifiers Evaluation measure

NB k-NN Reg-Log SVM

Cluster-oversample 0.42 0.41 0.49 0.45 F

0.77 0.71 0.77 0.69 G-mean

SMOTE 0.38 0.46 0.47 0.46 F

0.88 0.83 0.90 0.91 G-mean

No pre-processing 0.0 0.34 0.18 0.4 F

0.0 0.56 0.33 0.59 G-mean

Table 4 Applying cluster over-sampling and SMOTE to Oshumed data

Method Classifiers Evaluation measure

NB k-NN Reg-Log SVM

Cluster-oversample 0.46 0.40 0.48 0.43 F

0.72 0.64 0.71 0.68 G-mean

SMOTE 0.34 0.41 0.47 0.49 F

0.81 0.77 0.83 0.82 G-mean

No pre-processing 0.13 0.38 0.34 0.46 F

0.27 0.61 0.51 0.65 G-mean

A quite similar conclusion was reached by another study of Napierala et al. [55]
with synthetic data sets—subclass, clover and paw—which were affected
by different amounts of disturbance (increasing amount of overlapping and rare
examples—this type of examples is further defined in Sect. 6.1). The representative
results are presented in Table5 where base denotes using a classifier without any
pre-processing, RO is a simple random over-sampling, CO—cluster over-sampling,
NCR—nearest cleaning rule, and the last column refers to SMOTE.While analyzing
these results one can notice that cluster over-sampling is competitive with other
methods for data sets containing the minority class without any perturbations. Then,
the more complex, overlapped and affected shapes of the minority class sub-parts,
the better are other pre-processing methods as SMOTE and SPIDER.

Yet another approach to deal with the above-mentioned within class decompo-
sition was presented in [26]. Gumkowski and Stefanowski proposed to use a two
phase approach including: (1) clustering and (2) constructing a hierarchical classi-
fiers. More precisely,

1. Use a clustering algorithm to identify sub-concepts of the minority class.
2. Construct Voronoi diagram sub-regions around centroids of the identified minor-

ity class clusters; Assign also majority class examples to these sub-regions fol-
lowing the distance to the nearest centroid of the minority class cluster.
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Table 5 G-mean for synthetic data sets with varying degrees of the disturbance ratio

Data set Pre-processing method

Base RO CO NCR SPIDER SMOTE

subclus-0 0.937 0.937 0.948 0.925 0.929 0.938

subclus-30 0.733 0.724 0.724 0.702 0.715 0.712

subclus-50 0.559 0.565 0.602 0.664 0.621 0.704

subclus-70 0.407 0.442 0.469 0.596 0.578 0.541

clover-0 0.739 0.742 0.761 0.778 0.791 0.738

clover-30 0.636 0.637 0.651 0.722 0.676 0.665

clover-50 0.506 0.554 0.549 0.696 0.607 0.601

clover-70 0.418 0.465 0.489 0.658 0.568 0.571

paw-0 0.904 0.913 0.918 0.918 0.902 0.968

paw-30 0.763 0.776 0.771 0.785 0.778 0.833

paw-50 0.657 0.686 0.686 0.752 0.712 0.786

paw-70 0.508 0.582 0.569 0.718 0.651 0.718

Table 6 G-mean performance of the hierarchical classifiers with cluster analysis (HC) against a
standard decision tree (J4.8)

Data Classifier Sensitivity F G-mean

paw-0 treeJ48 0.855 0.968 0.713

HC 0.940 0.975 0.844

paw-separ treeJ48 0.98 0.925 0.739

HC 0.961 0.946 0.864

paw-overlap treeJ48 0.0 0.0 0.0

HC 0.741 0.81 0.614

paw-outliers treeJ48 0.0 0.0 0.0

HC 0.86 0.89 0.729

3. Learn separate classifiers from learning examples (from both classes) located in
each sub-region.

4. Built the arbiter for the set of classifiers—i.e. for a new instance, find to which
Voronoi region it belongs and use its classifier to make a final decision.

This approach was implemented in WEKA with X-means clustering algorithm
and J4.8 decision trees and its resulting classifier will be further abbreviated as HC.
X-means is a kind of wrapper around running k-means with different k. The resulting
clustering is chosen with respect to optimizing BIC criterion [51].

In Table6 we show results of using this approach with J4.8 trees over several
versions of the synthetic data set paw. We used it as it models three different sub-
concepts inside the minority class (see its idea in Fig. 3). The first data, called paw-0
is just a version illustrated in this figure without any disturbance. In this construction
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two sub-concepts are quite close to each other, so may mislead the clustering algo-
rithm (X-means has a tendency to propose 2 clusters instead of three clusters). There-
fore, we constructed a versionwithmore separated clusters (moving clusters away)—
this is called paw-separ. Then, we additionally disturbed minority class shapes
by introducing overlapping (paw-overlap) and moving more minority examples
inside the majority class as outliers.

In case of these synthetic data sets paw, where sub-parts are relatively well sep-
arated, this algorithm can divide the space into three sub-areas and the hierarchical
classifierHC improves slightly the sensitivity and othermeasures comparing to using
a single, standard tree. The improvements are a bit higher for paw-0, with more
difficult separation. For more disturbed data paws with overlapping and outliers
the standard trees deteriorates its performance while the HC classifier maintains
its good performance—although values of evaluation measures are smaller than in
cleaner shapes. However, we can conclude that in all cases the proposed approach
improves evaluation measures.

4.3 Open Issues

Although the idea of identifying and dealingwith small disjuncts sounds quite appeal-
ing, several open issues remain critical if one needs to analyse real-world data sets.
Note that most of the above discussed studies have been carried out with special
synthetic data while for real ones the underlying distribution of the minority class is
unknown and it is not easy to approximate (or even to guess) the possible number
and structure of sub-concepts.

Up to now most researchers have used clustering algorithms to find these sub-
concepts. Other, quite rare studies concern analyzing classification or association
rules, mainly their evaluation measures as coverage or similar ones, to distinguish
between small and large disjuncts.

For clustering nearly all authors applied k-means algorithm. The main problem is
to tune k number of searched clusters. However, other problems include dealing with
non-spherical, complex shapes of clusters, an influence of overlapping, noise or out-
liers. It is also not obvious which clustering evaluation criteria should be considered
as the most common ones were proposed for standard unsupervised framework [49].
Here, one deals with at least partly supervised and imbalanced case where one has
to distinguish between minority and majority examples inside clusters. Even if clus-
tering algorithms are applied separately to each class the algorithm may improperly
agglomerate smaller sub-parts of the minority into too large ones (see experiences
with paw data in [26]).

Tuning clustering algorithm parameters in the wrapper framework is also non-
trivial. First, it refers to choosing an appropriate quality criterion. Some authors
propose to consider tuning clustering together with learning the final classifier and
evaluate the integrated approach with special imbalance measures (as e.g. G-mean,
AUC). To avoid possible over-fitting it is necessary to use an extra validation set or
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an internal cross validation inside the training set. This was a case in experimental
studies as [8, 61]. However, one should take into account that the data set may be
highly imbalanced and it may be difficult, or even impossible, to select a sufficient
number of minority examples inside learning, validation and test parts. Perhaps new
solutions of partly informed bootstrap sampling could be developed. One should also
remember that scanning too many k may be too time consuming or even not realistic.

Nevertheless, k-means may not be the best algorithm to be used in this context, in
particular for more complex distributions of the minority class which we will discuss
in further sections. Besides non-linear and complex decision shapes of clusters, over-
lapping many minority examples could be either singletons like outliers or rare cases
(a kind of pairs or triples). Additional experiments with real data sets showed that
approaches such as clustering or building hierarchical classifiers are not effective for
such difficult data sets [26, 55].Moving toward density based clustering algorithms is
one of the solutions. They can distinguish between core instances (creating clusters)
and noisy ones (referring to outliers or rare cases). However tuning parameters of
DBSCANorOPTICS is also not an easy task even in a classical unsupervised version
[17]. The current heuristics do not take into account a distinction between minority
and majority examples but treat them in the same unsupervised way. Some recent
proposals of working with DBSCAN try to look for new heuristics [58]. However,
we think that it is necessary to develop a new family of semi-supervised density
algorithms which take into account labels of examples while constructing neighbour
clusters. Finally as imbalanced data sets usually contain minority class outliers new
approaches for their detection are still necessary.

5 Overlapping Between Minority and Majority Classes

Researchers also study different difficulty factors characterizing imbalanced data.
An overlapping between minority and majority classes is one of them. Although
many previous studies in classical machine learning have shown that overlapping of
different classes deteriorates the total classification accuracy, its influences on the
minority class is thoroughly examined. As the minority class is under-represented in
the data set, it will be more likely under-represented also in the overlapping region.
As a result, the algorithms may shift the decision boundary too close to the minority
class, in the worst case treating the whole overlapping area as belonging to the
majority class definition.

5.1 Experimental Studies

Prati et al. started more systematic studies on the role of overlapping [60]. They
generated artificial data sets where the minority and the majority class were repre-
sented by two clusters in five dimensional space (examples where generated around
centroids following the Gaussian distribution). Two parameters were investigated:
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the imbalance ratio, and the distance between centroids—so classes could be moved
from clear separation to high overlapping. For the C4.5 classifier they showed that
increasing the overlapping ratio was more responsible for decreasing AUC results
than decreasing cardinality of the minority class.

Then, an influence of increasing overlapping was more precisely examined in
[22]. Garcia et al. generated two-dimensional data sets with two classes separated
by a line orthogonal to one of the axis. They assumed a fixed size of data and
changed the overlapping amount for a given imbalance ratio and vice versa. Results of
experiments with 6 different classifiers showed that increasing overlapping degraded
their performance more (with respect to minority class) than changing the imbalance
ratio. Moreover, in the other experiments they fixed the amount of overlapping and
changed the distribution of the minority examples by increasing their number in the
overlapping area. Again the results confirmed that increasing the local imbalance
ratio and the size of the overlapping area were more influential than changing the
overall imbalance ratio. However, these factors influenced performance of particular
classifiers in a different way. For instance k—nearest neighbor classifier was the
most sensitive to changes in the local imbalance region. Naive Bayes, MLP and
J4.8 worked better in the dense overlapping region. These conclusions have been
later verified in additional experiments (focusing on performance of k-NN and other
evaluation measures), see [23]. One of their conclusions was that when overlapping
regions increased, the more local classifiers—like k-NN with smaller values of k—
performed better with recognition of the minority class.

The other study in [14] focused on the effects of overlapping and class imbal-
ance on support vector machines (SVM). The authors showed that when the overlap
level was high, it was unlikely that collecting more training data would produce a
more accurate classifier. They also observed that the performance of SVM decreased
gradually with the increasing imbalance ratio and overlapping, and that there was
a sudden drop when the imbalance ratio equaled to 20% and the overlapping level
exceeded 60%, regardless of the training set size.

Prati et al. have recently come back to studying the overlapping in class imbal-
ance [3]. Comparing to their previous work [60] they investigated the usefulness of
five different re-sampling methods on the same difficult artificial data sets: popu-
lar random-over sampling, random under-sampling, Nearest Cleaning Rule (NCR)
[44], SMOTE and SMOTE + ENN [11]. Their main conclusion was that appropriate
balancing of training data usually led to a performance improvement of C4.5 clas-
sifiers for highly imbalanced data sets with highly overlapped classes. However, the
improvements depend on the particular pre-processing method and the overlapping
degree. For the highest degree of overlapping it was not clear which method was the
best (NCR worked there quite well). Results for other overlapping degrees showed
that over-sampling methods in general, and SMOTE-based methods in particular,
were more effective than under-sampling. Then, the data cleaning step used in the
SMOTE + ENN seemed to be especially suitable in situations having a higher degree
of overlapping.

Finally, we come back to our studies [39, 64] where the effect of overlapping was
studied together with other factors such as decomposition of the minority class into
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Table 7 Influence of overlapping on the sensitivity of the tree classifier learned from subclass data

Number of
sub-clusters

IR = 5 IR = 9

0% 10% 20% 0% 10% 20%

3 0.96 0.91 0.85 0.94 0.9 0.75

4 0.96 0.89 0.78 0.94 0.87 0.74

5 0.96 0.87 0.76 0.90 0.81 0.66

6 0.94 0.84 0.74 0.88 0.68 0.38

Overlapping is expressed by % of borderline examples from the minority class. Total number of
examples –800

smaller sub-concepts and more complicated non-linear borders. The k-NN, rules
(MODLEM [63]) and J4.8 decision tree classifier were applied to a collection of
specially generated artificial data sets sub-class, clover (described in the previous
section). Table7 shows influence of stepwise increase of the amount overlapping
on the tree classifier. The degree of overlapping is measured as a percentage of the
size of the minority class. It was observed that stepwise increase of overlapping
more strongly decrease the sensitivity. For instance, let us analyse the first column
(%)—the sensitivity changes from 0.96 to 0.94. While for any of the number of sub-
clusters the sensitivity decreases in range of nearly 0.2 (see, e.g. 4 sub-clusters, the
sensitivity decreases from 0.96 to 0.78). The similar tendency can be observed for
rule and k-NN classifiers.

The influence of overlapping on specialized pre-processing was also studied
in [55]. The tree and rule classifiers (J4.8 and MODLEM) were integrated with
standard random over-sampling, cluster over-sampling, nearest cleaning rule and
SPIDER. All these methods were applied to artificial data sets as sub-clus,
clover and alsomore complicated versions of paw data. The results clearly showed
that all methods of pre-processing improved the sensitivity of both classifiers. How-
ever, simpler random over-sampling and cluster over-sampling performed compara-
bly on all non-disturbed data sets.While onmore difficult sets (disturbance over 30%)
both NCR and SPIDER methods were clearly better than there over-sampling
methods.

5.2 Detecting Overlapping in Real World Data Sets

Note that the data difficulty factors, as overlapping, were examined using mostly
artificial data sets [22, 60, 64], in which the data distribution was given a priori and
the degree of each factor could be precisely controlled by augmenting or diminishing
the degree of overlapping [22, 60] as well as the number and cardinality of small
disjuncts [36, 37]. Moreover, the data sets were usually two-dimensional.
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The difficult issue is to analyse data factors in real-world imbalanced data sets
where the natural underlying distribution of minority examples is unknown and has
to discovered or at least approximated. Although some researchers published wide
comprehensive experimental studies with several popular UCI benchmark data—
see e.g. [2, 19, 40, 70], nearly all of them are just comparative experiments of
using different standard classifiers [47, 59, 70], ensembles [7, 19] or pre-processing
methods [2]. The authors have mainly tried to identify general differences of studied
algorithms, quite often without a deeper analysis of hidden data characteristics, or
referred to averaged values of these data factors which were easier to be calculated
as the total number of minority examples or the global imbalance ratio.

There is not so much research on direct evaluation of overlapping in the real world
data sets. For example, in [14] (concerning the effects of overlapping and imbalance
on the SVM classifier), the authors propose to estimate the degree of overlapping
in real-world data sets by measuring a number of support vectors which can be
removed from the classifier without deteriorating the classification accuracy. In the
next chapter we will present a simpler and intuitive method based on analyzing local
characteristics of minority examples.

6 Types of Minority Examples with Respect
to Their Local Characteristics

6.1 Motivations

The first paper discussing different types of minority examples is [42] where Kubat
and Matwin have distinguished between safe, borderline and noisy examples. Bor-
derline examples are located in the area surrounding class boundaries, where the
minority and majority classes overlap. However, they are not only located in the
overlapping zone (discussed in the previous section) as they could also be difficult
examples located in specific sub-areas near highly non-linear decision boundaries.
Safe examples are placed in relatively homogeneous areas with respect to the class
label. So, they are inside typical clear parts of target concepts, which located fur-
ther from the decision boundary between classes. By noisy examples they understand
individuals from one class occurring in safe areas of the other class. However, authors
applied this term to majority class individuals inside the minority class and proposed
to remove them from the training set [42].

Here we share these authors’ opinions saying that as the minority class is often
under-represented in the data, one should be careful with the similar treatment of
the singletons from the minority class and rather not recognizing them as noise.
Moreover, it is worth to stress that the typical understanding of noisy examples in
machine learning corresponds to a kind of data imperfections or errors (see e.g. [20,
62, 69])which come fromeither randomerrors in descriptions of examples or froman
inappropriate description language. Researchers usually distinguish between class
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noise (errors with assigning a correct class label to a given example) or attribute
noise (erroneous attribute values which could lead to wrong decisions, in particular,
if such an example is located too close to decision boundaries) [9]. The typical
approaches to deal with such noisy examples include: (1) identification of suspicious
examples and eliminating or correcting them (e.g., by using edited approaches for k-
nearest neighbour classifiers) or (2) omitting them during the learning phase to solve
overfitting phenomena (e.g., by pruning in decision trees or rules). These approaches
may improve the total classification accuracy in the standard learning perspective,
see e.g. [9, 20].

However, the role of noisy examples in imbalanced data has not been deeply
studied yet. Some authors randomly injected changes of class labels or attribute
values to noise free data [1, 62, 69]. In such a way in [1, 69] effectiveness of
standard techniques for handling class noise was evaluated. These two independent
experimental results showed that all learning algorithms were sensitive to noise in
the minority examples, however some of them, such as Naive Bayes and k—nearest
neighbor classifiers, were often more robust than more complex learners, such as
support vector machines or Random Forests. In more recent our studies [62], the
authors introduced both class noise and attribute noise, by either changing the class
label or the attribute values, respectively. The comparison concerned the SMOTEpre-
processing method and its several extensions. It showed that SMOTE was sensitive
to the noisy data and its extensions which also clean noise introduced by SMOTE,
were necessary. In particular, the new proposed specialized noise filter added as
post-processing to SMOTE, called SMOTE-IPF, can deal with some of these noisy
examples [62].

Napierala and Stefanowski in their papers [52–55] claimed that one should be
very careful with directly transferring standard methods for dealing with noise to
difficultminority class examples, as it may lead to removal or relabel too high number
of minority examples, or to prune too many elements of classifiers mainly for the
minority class. This claim is also consistent with research of Koshgoftar et al. [69]
which also stated that in the class imbalance setting, using standard approaches for
handling noise “can be catastrophic”. The study in [9] also showed that when there
is an abundance of data, it is better to detect properly “bad data” at the expense of
throwing away “good data”, while in case when the data are rare, more conservative
filters are better.

What is even more important—the noisy examples are often misclassified with
singletons playing a role of outliers. Note that the outlier is just an untypical exam-
ple not coming from erroneous measurements. As the minority class can be under-
represented in the data, the minority class singletons located in the majority class
areas can be outliers, representing a rare but valid sub-concept of which no other
representatives could be collected for training. A quite similar opinion was expressed
e.g. in [42], where the authors suggested that minority examples should not be
removed as they are too rare to be wasted, even considering the danger that some of
them are noisy. In [76], which concerns the detection of noise in balanced data sets,
the authors suggest to be cautious when performing automatic noise correction, as it
may lead to ignoring outliers which is “questionable, especially when the users are
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very serious with their data”. In our opinion, the minority class examples conform
to this case.

We claim that the minority and majority distant examples should be treated in a
different way. Majority examples located inside the minority class regions are more
likely to be a true noise and they could be candidates for removing or relabeling. In
general, noisymajority examples are undesired as they can cause additional fragmen-
tation of the minority class and can increase the difficulties in learning its definition.
On the other hand, minority examples considered as outliers should be rather kept in
the learning set and properly treated by next pre-processing methods or specialized
algorithms for imbalanced data.

Moreover, it is worth to distinguish yet another type of so-called rare examples.
These are pairs or triples of minority class examples, located inside the majority
class region, which are distant from the decision boundary so they are not borderline
examples, and at the same time are not pure singletons. The role of these examples
has been preliminarily studied in the experiments with special artificial data sets [55,
64]. It has been shown that rare examples significantly degraded the performance of
classifiers. Additionally, various pre-processing methods performed differently on
such rare examples. Finally, works on graphical visualizations of real-world imbal-
anced data sets [53] have shown existence of such types of examples. The reader can
also analyse Fig. 1 where the minority class contains mainly unsafe examples: many
borderline, pairs or triples of rare small “islands” and many outliers.

Napierala and Stefanowski in their earlier research [53, 55] claimed that many of
considered data difficulty factors could be linked to the distinguishing the following
types of examples forming the minority class distribution:

• safe examples
• borderline examples
• rare examples
• outliers

They also claimed that distinguishing these types of examples can be useful to
focus attention on difficulties of the minority class distributions, to support inter-
pretations of differences in the performance of classifiers or specialized methods
applied to imbalanced data as well as to develop new specialized algorithms. In the
next subsection we will briefly discuss some of these issues.

6.2 Identification of Example Types

Distinguishing four types of examples refers to most of previously discussed data
difficulty factors. If the minority class distribution will contain mainly unsafe exam-
ples, it could indicate that the minority class does not constitute a whole concept
but is affected by different disturbances. Although one cannot directly discover sub-
concepts, it is possible to indirectly show possible decomposition. A larger number
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of borderline examples will directly approximate overlapping difficulty factors. Fur-
thermore, rare examples and outliers also express data difficulty discussed in the
previous sub-section. Finally, it should be stressed that authors of related works
focus rather on studying single data factors and usually do not consider several data
factors occurring together. What is even more important to notice, they usually car-
ried out their experiments with artificially generated data, where given perturbations
were introduced to assumed data distribution, and rarely attempt to transfer such
studies to real world methods.

Therefore, while considering our distinguishing of four types of examples, the
research open issue is—how does one can automatically and possibly simply iden-
tify these example type in real world data sets (with unknown underlying class
distributions).

Note that the visualisation projectionmethods—discussed in [52]—could confirm
the occurrence of different types of examples in some real-world data sets but they
cannot be directly applied in the real-world settings. First of all, they cannot be used
for very large data sets, as the visualisation of thousands of points would be difficult
to read. Secondly, the projection to two dimensions may not always be feasible, as
the data set may be intrinsically characterized by more dimensions.

Furthermore, as we attempt to stress in earlier sections, it is practically easy to
directlymeasure only the simplest data characteristics as the global imbalanced ratio,
data size, etc. while other more influential data factors are rather difficult to precisely
estimate in real world, not trivial data sets. Some of already proposed methods may
rather very roughly indicate the presenceof the givendata factors. For instance, in [14]
(concerning the effects of overlapping and imbalance on the support vector machine
classifier), the authors proposed to approximate the possible amount of overlapping
in real-world data sets by measuring a number of support vectors which can be
removed from the classifier without deteriorating the classification accuracy. Other
methods for identification of unsafe or noisy examples are based on an extensive
using cross-validated ensembles, bagging and boosting. However, their parameters
are not easy to tune. Moreover, not all instances misclassified by ensembles may be
noisy examples as some of them could be rather difficult but valid examples.

Therefore, Napierala and Stefanowski have looked for new simple techniques
which should more directly identify the difficult types of example distributions in
imbalanced data. Moreover, they could be more intuitive for user with respect to
principles and rules of their parametrization.

The proposed method origins from the hypotheses [53] on role of the mutual
positions of the learning examples in the attribute space and the idea of assessing the
type of example by analyzing class labels of the other examples in its local neigh-
bourhood. By a term local we understand that one should focus on the processing
characteristics of the nearest examples due to the possible sparse decomposition
of the minority class into rather rare sub-concepts with non-linear decision bound-
aries. Considering a larger size of the neighbourhood may not reflect the underlying
distribution of the minority class.

In general, such a neighbourhood of the minority class example could be modeled
in different ways. In further considerations we will use an analysis of the class labels
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among k-nearest neighbours [52, 53]. An alternative approach to model the local
neighbourhood with kernel functions has been recently presented in [52]—however,
its experimental evaluation has given similar conclusions as to data characteristics.

Constructing the k—neighbourhood involves decisions on choosing the value of
k and the distance function. In our previous considerations we have followed results
of analyzing different distance metrics [46] and chose the HVDM metric (Hetero-
geneous Value Difference Metric) [75]. Its main advantage for mixed attributes is
that it aggregates normalized distances for qualitative and quantitative attributes. In
particular, comparing to other metrics HVDMprovides more appropriate handling of
qualitative attributes as instead of simple value matching, as it makes use of the class
information to compute attribute value conditional probabilities by using a Stanfil
and Valtz value difference metric for nominal attributes [75]. Tuning k value should
be done more carefully. In general, different values may be considered depending
on the data set characteristic. Values smaller than 5, e.g. k = 3, may poorly distin-
guish the nature of examples, especially if one wants to assign them to four types.
Too high values, on the other hand, would be inconsistent with the assumption of
the locality of the method and not useful while dealing with complex, non-linear
and fragmented distributions of the minority class. In this paper we do not solve the
problem of an automatic tuning this value with respect to complexity of the minority
class distribution and its difficulty factors, leaving it for future research.

Experiments from [52] over many UCI data sets have showed that choosing k =
5, 7, 9 and 11 values has led to quite similar categorizations of data with respect to
proportions of theminority class types. Belowwewill show assigning types minority
class for the smallest k values.

Depending on the number of examples from the majority class in the local neigh-
bourhood of the given minority class example, we can evaluate whether this example
could be safe or unsafe (difficult) to be learned. If all, or nearly all, its neighbours
belong the minority class, this example is treated as the safe example, otherwise it is
one of unsafe types. For instance, in case of k = 5 the type of example x is defined
as follows:

• if 5 or 4 of its neighbours belong to the same class as x, it is treated as a safe
example;

• if the numbers of neighbours from both classes are similar (proportions 3:2 or
2:3)—it is a borderline example;

• if it has only one neighbour with the same label (1:4) it is a rare example;
• if all neighbours come from the opposite class (0:5)—it is an outlier.

Similar interpretations can be extended for larger values of k. For instance, in case
of k = 7 and the neighbourhood distribution 7:0 or 6:1 or 5:2—a safe example; 4:3
or 3:4—a borderline example; again the number of neighbours from both classes are
approximately the same; 2:5 or 1:6—a rare example; and 0:7—an outlier. Such an
interpretation can be extended for larger neighbourhoods and even tuning bandwidth
in kernels—see such an analysis in [52].

The analysis of this neighbourhood has been applied in experiments with UCI
imbalanced real-world data sets [52, 53]. The results of labeling types of minority
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class examples are presented inTable8.Note thatmanydata sets contain rather a small
number of safe minority examples. The exceptions are three data sets composed of
almost only safe examples: flags, breast-w, car. On the other hand, there
are data sets such as cleveland, balance-scale or solar-flare, which
do not contain any safe examples. We carried out a similar neighbourhood analysis
for themajority classes andmade a contrary observation—nearly all data sets contain
mainly safemajority examples (e.g.yeast: 98.5%,ecoli: 91.7%) and sometimes
a limited number of borderline examples (e.g. balance-scale: 84.5% safe and
15.6% borderline examples).What is evenmore important, nearly all data sets do not
contain any majority outliers and at most 2% of rare examples. These results show
that outliers and rare examples can constitute an important part of theminority class—
there are some data sets where they even prevail in the minority class. Therefore, one
should be cautious with considering all of them as noise and applying noise-handling
methods such as relabeling or removing these examples from the learning set.

6.3 Influence of Example Types on Classification Performance

The results of labeling the minority class examples can also be used to categorize
data sets. depending on the dominating type of examples from the minority class.
Only in abdominal-pain, acl, new-thyroid and vehicle data sets,
safe minority examples prevail. Therefore, we can treat these 4 data sets as repre-
sentatives of safe data sets. In the next category the borderline examples dominate
in the distribution of the minority class. As could be observed in Table8, even in
data sets with clean borders a considerable amount of examples (up to 36%) can
be labeled as borderline ones. So, the percentage of borderline examples must be
even higher to represent some overlapping between classes. We could treat a data set
as a borderline data set if it contains more than 50% of borderline examples—for
instance these arecredit-g, ecoli, haberman, hepatitis. Additional
data sets—as car and scrotal-pain—are located somewhere between safe and
borderline categories. As the amount of safe examples is too low, they are mostly
inside the borderline category. Then, several data sets contain many rare examples.
Although they are not as numerous as borderline examples, they constitute even 20–
30% of the minority class. The rare category includes haberman (also assigned to
borderline category), cmc, breast-cancer, cleveland, glass, hsv
and abalone data sets, which have at least 20% of rare examples. Other data sets
contain less than 10% of these examples. Finally, some data sets contain a relatively
high number of outlier examples—sometimes more than a half of the whole minority
class. We can assign the data set to outlier category if more than 20% of examples
are labeled as outliers.

In previous studies [52, 53] we compared different learning algorithms and shown
that distinguishing these data characteristics is co-related with differentiating differ-
ences in the performance of classifiers. First, for the safe data nearly all compared
single classifiers (SVM,RBF, k-NN, J4.8 decision trees or PART rules) perform quite
well with respect to sensitivity, F-measure or G-mean. The larger differentiation of
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Table 8 Labeling minority
examples expressed as a
percentage of each type of
examples occurring in this
class

Data set Safe Border Rare Outlier

abdominal_pain 61.39 23.76 6.93 7.92

balance-scale 0.00 0.00 8.16 91.84

breast-cancer 21.18 38.82 27.06 12.94

breast-w 91.29 7.88 0.00 0.83

bupa 20.69 76.55 0.00 2.76

car 47.83 47.83 0.00 4.35

cleveland 0.00 45.71 8.57 45.71

cmc 13.81 53.15 14.41 18.62

credit-g 15.67 61.33 12.33 10.67

ecoli 28.57 54.29 2.86 14.29

flags 100.00 0.00 0.00 0.00

haberman 4.94 61.73 18.52 14.81

hepatitis 18.75 62.50 6.25 12.50

hsv 0.00 0.00 28.57 71.43

ionosphere 44.44 30.95 11.90 12.70

new-thyroid 68.57 31.43 0.00 0.00

pima 29.85 56.34 5.22 8.58

postoperative 0.00 41.67 29.17 29.17

scrotal_pain 50.85 33.90 10.17 5.08

solar-flareF 2.33 41.86 16.28 39.53

transfusion 18.54 47.19 11.24 23.03

vehicle 74.37 24.62 0.00 1.01

yeast-ME2 5.88 47.06 7.84 39.22

classifiers occurs for more unsafe data sets. For instance, SVM and RBF classifiers
work much better for safe category, while rare or outlier data strongly deteriorate
their classification performance. Rare and especially outlier examples are extremely
difficult to recognize. PART, J48 and sometimes 1NN may classify them but at a
very low level. On the other hand, SVM and RBF fail to classify minority examples
in these data sets.

Similar analysis has been carried out for the most representative pre-processing
approaches, showing that the competence area of each method depends on the data
difficulty level, based on the types of minority class examples [56]. Again in the case
of safe data there are no significant differences between the compared methods—
even random over-sampling works quite accurate. However, for borderline data
sets Nearest Cleaning Rules performs best. On the other hand, SMOTE [11] and
SPIDER [65], which can add new examples to the data, have proved to be more
suitable for rare and outlier data sets.

For more details on the competence of each studied single classifier and pre-
processing methods see [52]. Moreover, our results often confirm the results of the
related works conducted on artificial data sets, see [2, 23, 55].
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Finally, yet another analysis for different generalizations of bagging ensembles
specialized for class imbalances, have been carried out in our recent papers [5, 7]. For
safe data sets nearly all bagging extensions for imbalanced data achieve similar high
performance. The strong differences between classifiers occur for the most difficult
data distributions with a limited number of safe minority examples. Furthermore, the
best improvements of all evaluation measures for Roughly Balanced Bagging and
Nearest Balanced Bagging are observed for the most unsafe data sets with many rare
examples and outliers [5].

7 Final Remarks and Open Research Challenges

This paper concerns problems of learning classifiers from imbalanced data. Although
many specialized methods have been introduced, it is still a challenging problem.We
claim that besides developing new algorithms for improving classifiers, it is more
interesting to askmore general research questions on the nature of the class imbalance
problem, properties of an underlying distribution of the minority class in data, and
its influence on performance of various classifiers and pre-processing methods.

Themain aimof this study is to discuss the data difficulty factorswhich correspond
to sources of difficulties in recognizing the minority class. Following the literature
survey and own studies we have focused our attention on the following factors:

• decomposition of the minority class into rare sub-concepts,
• overlapping of classes and borderline examples,
• distinguishing different types of the minority examples.

For each difficulty factor we have discussed its influence of classification perfor-
mance and details of its practical identification in real data sets. The main lesson
from various experiments is that these factors are more influential than the global
imbalance ratio or the absolute size of the minority class which have been more often
considered in the related literature up to now.

Our experiments with synthetics data have clearly showed that increasing data
complexity (understood as decomposition of the minority class into many sub-
parts) decreased evaluation measures more than changing the imbalance ratio or
the absolute size of the class. We have also showed that combining the minority
class decomposition with non-linear decision boundaries and overlapping makes the
learning task extremely difficult. However, as it has been discussed and showed
on several illustrative examples, identification of sub-clusters (corresponding to
small disjuncts) in real world data, e.g. by clustering algorithms, is still an open
research challenge. In particular, it is not obvious how to tune algorithm parameters
(e.g. a number of expected clusters in k-mean) and to deal with complex shapes or
outliers. We think that developing a new kind of a semi-supervised density based
algorithm (where it is necessary to deal with presence of minority versus majority
examples inside clusters) could be a promising research direction. Similar limitations
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are manifested by current methods for identification of overlapping minority and
majority class distributions.

The other novel contributions are distinguishing different types of minority exam-
ples and proposing a new method for their identification in real world data sets. This
identification method is based on analyzing class distribution inside the local k-
neighbourhood of the minority examples. It can also approximate many discussed
data difficulty factors, except discovering small disjuncts. Its experimental evaluation
has led us to several novel observations with respect to earlier studies on imbalanced
data. First, analyzing types of examples in many UCI imbalanced data sets has
showed that safe examples are uncommon in most of the imbalanced data. They
rather contain all types of examples, but in different proportions. Depending on the
dominating type of identified minority examples, the considered data sets could be
categorized as: safe, border, rare or outlier. Borderline examples appear in most of
the data sets and often constitute more than a half of the minority class.We could also
observe that rare and outlier examples are not only extremely difficult for most of
the learning methods, but they are often quite numerous in the imbalanced data sets.

Our other comparative experiments have showed that the classifier performance
could be related to the above mentioned categories of data. First, for the safe data
nearly all compared single classifiers perform quite well. The larger differentiation
occurs for more unsafe data set. For instance, support vector machines and RBF
neural networks work much better for safe data category, while rare or outlier data
strongly deteriorate their classification performance. On the other hand, unpruned
decision trees and k-NN classifiers work better for more unsafe data sets. Similar
analysis has been carried out for the most representative pre-processing approaches,
showing that the competence area of each method also depends on the data difficulty
level; Formore details see [52]. The other experiments for different generalizations of
bagging ensembles for class imbalances, have been carried out in the recent paper [7].

We also claim that the appropriate treatment of these factors, in particular types
of minority example, within new proposals of either pre-processing or classifiers,
should lead to improving their classification performance. Although it is not inside
the scope of this paper, we mention that such research has already been undertaken
and resulted in proposing: informed pre-processing method LN-SMOTE [48], rule
induction algorithm BRACID [54] and nearest neighbour generalization of bagging,
called NBBag [5].

On the other hand, several topics still remain open issues for future research.
Besides already mentioned semi-supervised clustering for detecting small disjuncts,
one could look for a more flexible method of tuning k in the local neighborhood
method for identification of types of examples with respect to the given data set;
studying differences between outliers and real noise; detecting singleton examples
in empty spaces (which is an absolute rarity different to the situation of single exam-
ples surrounded by k-neighbours from opposite classes), developing a new method
for dealing with such examples, re-considering k-neighbourhood methods in highly
dimensional spaces, studying different over-sampling with respect to identified dif-
ferent characteristics of sub-areas of data. Finally, it is worth to consider mutli-class
imbalanced problems, where at least two smaller classes are particularly interesting
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to experts and they prefer to improve their recognition separately and do not allow to
aggregate them together. Although some authors have already attempted to decom-
pose this problem into one-against all or pairwise coupling classifiers, we think it
would be more beneficial to look for another framework with unequal costs of mis-
classifications between classes.
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Personal Privacy Protection in Time
of Big Data

Marina Sokolova and Stan Matwin

Abstract Personal privacy protection increasingly becomes a story of privacy
protection in electronic data format. Personal privacy protection also becomes
a showcase of advantages and challenges of Big Data phenomenon. Accumulation of
massive data volumes combined with development of intelligent Data Mining algo-
rithms allows more data being analysed and linked. Unintended consequences of Big
Data analytics include increasing risks of discovery new information about individ-
uals. There are several approaches to protect privacy of individuals in the largeS.
Matwin data sets, privacy-preserving Data Mining being an example. In this paper,
we discuss content-aware prevention of data leaks. We concentrate on protection of
personal health information (PHI), arguably the most vulnerable type of personal
information. This paper discusses the applied methods and challenges which arise
when we want to hold health information private. PHI leak prevention on the Web
and on online social networks is our case study.

1 Introduction

Personal privacy protection increasingly becomes a story of privacy protection in
electronic data. Personal privacy protection also becomes a showcase of advantages
and challenges of Big Data phenomenon. Accumulation of massive data volumes of
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Table 1 PHI sources and data formats

Organizations Individuals

Main PHI
sources

PHI data
formats

Example Main PHI
sources

PHI data
formats

Example

Electronic
Health Record

Structured and
semistructured

Race:Caucas
Gender:Fem
Age: 3yr
Diag_1:250.83
Readmit: NO

Online
communities

Unstructured I have a family
history of
Alzheimer’s
disease. I have
seen what it
does and its
sadness is a
part of my life

personal information (finances, health care, retail) combined with development of
intelligent Data Mining algorithms allows personal data being analysed and linked
in an innovative, but not always positive, way. Unintended consequences of Big Data
analytics include increasing risks of discovering more information about individuals
than was originally expected to be disclosed. For example, cross-site information
aggregation can harvest information and link profiles on different social networking
sites. By comparing the attributes from those profiles, individual profiles can be
linked with high confidence. Furthermore, the attribute values can be used in the
Web search to get other profiles of the individual [13].

As more data accumulates in various sources, large data breaches and inadvertent
data leaks are becoming common: 2,164 incidents were reported in 2013,1 a record
number so far. Such incidents also expose a growing number of individual records,
with 822 mln. records exposed in 2013. 48.5% of all breaches had happened in US,
5.5%—in UK, 2.7%—in Canada, whereas other countries accounted for a smaller
number of the incidents. 99% of disclosed data was in electronic format. Further,
we consider only data in the electronic format.

Responding to the public demand, data mining and machine learning research
communities became involved in individual’s privacy protection through Privacy-
Preserving Data Mining, i.e., methods that perform data mining tasks in a way that
strives to preserve privacy. The methods help to protect organizational and personal
privacy in malicious breaches or inadvertent data leaks.

In this paper, we discuss content-aware prevention of inadvertent data leaks. We
use protection of personal health information (PHI) as our on-going example. PHI
refers to combination of personal information of an individual (e.g., date of birth)
and information about one’s health (e.g., diagnosis). PHI can be distributed by orga-
nizations and individuals alike; Table1 provides data examples. All existing PHI
protection methods are based on analysis of the data’s content and as such they pro-
vide a comprehensive example for our study. Further in the paper, we provide more
details on Data Leak Prevention (DLP) and PHI methods and techniques used to

1 https://www.riskbasedsecurity.com/reports/2013-DataBreachQuickView.pdf.

https://www.riskbasedsecurity.com/reports/2013-DataBreachQuickView.pdf
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safeguard data and information, and on challenges faced while solving the DLP and
PHI protection problems. PHI leak detection on the Web and in online communi-
ties provides us with case studies of DLP applications, which has not yet been well
studied. We discuss the problem challenges and suggest possible approaches to its
solution. Discussion of future work and recommendations conclude the paper.

2 Principles of Data Security

Before we start a discussion of tools dedicated to content-aware DLP, we want to
point out that basic good practices in personal data protection should start with sys-
tematic utilization of standard computer security techniques. These basic precautions
apply to both data privacy breaches by malicious attackers, and to privacy violations
by inadvertent disclosure (most often, human error). In particular, the following
principles, if consistently reinforced across organizations, would be purposeful:

• compulsory encryption of all at rest data. This will protect against hacker attacks
harvesting inactive data (e.g. the Target attack in 2013 and Home Depot attack
in 2014 would likely be less significant if the data was encrypted; re-occurring
attacks on E-commercewebsites resulting in theft of credit card informationwould
become inconsequential if data from past transactions were encrypted for storage).

• acknowledged tracing of private data access by authorized personnel. This would,
to a large extent, avoid intentional privacy breaches internal to the organization.
The approach has been used successfully in health care environments in major
global centres to protect health-related data of recognized celebrities.

• education. In particular, sensitizing personnel with access to personal data about
the dangers of placing this data in email, USBmemory keys, laptops taken outside
the organization and other Internet of Things devices.

We suggest that only after an organization is satisfied with ensuring the basic level of
protection, described above and easily auditable, it should implement more targeted
DLP techniques, particularly those meant to protect privacy in data made available
for secondary use.

3 Data Leaks

There are many possible dimensions of data leaks. Leaks can be inadvertent or
malicious, caused by insiders, third parties, or outsiders. Data can be in motion (e.g.,
traversing a network), at rest (e.g., stored on a computer for future use) or in use
(e.g., processed on selected nodes of a network, but not traversing it at the moment).
Most of our discussion involves data at rest. We will note when data in motion or
in use are considered. In this study, we discuss prevention of inadvertent leaks. The
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leaks, unfortunately, had become expected as sharing the data among many insiders
and outside service providers became the norm [7]. In 2013, more than 500 major
data leaks were inadvertent. 66.4% of inadvertent leaks have known causes; among
those, information is disclosed on Web in 16.7% and through email—in 14.7%.

With 10% of cost savings per patient from adoption of electronic medical/health
records (EHR) [12], we observe the rising use of electronic data capture tools in
clinical research. Large electronic repositories of personal health information (PHI)
are being built up. For instance, in Ontario, Canada, the use of electronic medical
records was doubled in 2006–20122; in Europe, UK has the biggest EHR market,
with $2.1bn in projected spending by the end of 2015.3 We expect that the volume of
PHI will grow with acceleration of home-delivered health care programs which are
based on development of Internet of Things and the corresponding concept of Wear
Your Own Device (WYOD) [26]. Heart monitoring implants and wearable sensors
to detect falls are examples of biosensing devices used in home care.

PHI is in demand by academia and government agencies. The fast and wide-
ranging acceptance of EHR guarantees its frequent secondary use, i.e. any use which
differs from the original purpose of the data gathering. Data custodians (e.g., hospi-
tals, doctor offices, government agencies)must assure its confidentiality and integrity
and adhere to privacy and security rules, while making data available for secondary
use. Integrating privacy protection in the EHR design can be a powerful tool [6], but
might not be sufficient if used by its own.

Large medical data breaches and inadvertent disclosure are becoming common,
substantially increasing concerns about data leaks. Survey of 43 US companies has
shown that there are some distinct consequences of a data breach in health care.4 In
this industry more than others, customers notified of a data breach are more likely
to discontinue association with companies that failed to secure sensitive data about
them.While the average customer turnover due to a data breach was generally 3.6%,
customer turnover in financial services due to a data breach—5.5%, in health care
it was a much higher—6.5%. And the cost of a health care breach, at $282 per
record, was more than twice as high as that of the average retail breach at $131 per
record (ibid.). The survey also showed that 44% of data breaches occurred due to
external causes involving third parties to whom the data has been transferred. PHI
has leaked from health care providers, through documents sent by employees and
medical students [11]. Data with insufficiently removed personal information can
too cause PHI breaches [16].

Concerns about PHI leaks cause a moral retribution: patients may withhold infor-
mation from a healthcare provider because of concerns over with whom the infor-
mation might be shared, or how it might be used. The PHI breaches are potent legal
issues, as PHI protection acts have been enabled by governments: Health Insurance

2https://www.infoway-inforoute.ca/index.php/news-media/2012-news-releases/use-of-electronic-
medical-records-doubled-over-six-years.
3http://www.computerweekly.com/news/2240215175/UK-shows-biggest-take-up-of-electronic-
Health-records-in-Europe.
4http://www.networkworld.com/news/2009/020209-data-breach.html.

https://www.infoway-inforoute.ca/index.php/news-media/2012-news-releases/use-of-electronic-medical-records-doubled-over-six-years
https://www.infoway-inforoute.ca/index.php/news-media/2012-news-releases/use-of-electronic-medical-records-doubled-over-six-years
http://www.computerweekly.com/news/2240215175/UK-shows-biggest-take-up-of-electronic-Health-records-in-Europe
http://www.computerweekly.com/news/2240215175/UK-shows-biggest-take-up-of-electronic-Health-records-in-Europe
http://www.networkworld.com/news/2009/020209-data-breach.html
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Portability and Accountability Act, often known as HIPAA (US),5 Personal Health
Information Protection Act, or PHIPA (Ontario, Canada),6 Data Protection Direc-
tive, or Directive 95/46/EC (EU).7 It is thus imperative to have a global knowledge
of best protocols and systems that protect privacy and confidentiality in data.

4 Personal Health Information: Definitions and Concepts

Personal Health Information (PHI) is a frequently used term usually defined through
a set of meta-categories related to a person and his/her health conditions. The choice
and number of meta-categories varies. For example, PHI is viewed as personally
identifiable information (names, dates of birth and death, address, family relation)
coupled with the health information about the person (diagnosis, prescriptions, med-
ical procedure) [19]. In [10], PHI is identified through three meta-categories: exact
personal identifiers (name, date of birth), quasi-identifiers (race, location) and sensi-
tive health information (diagnosis, treatment). Studies by [29] have shown that ref-
erences to health care providers (hospital, clinic) and professionals (doctors, nurses)
frequently appeared in EHRs and revealed patient’s health; thus such references
should be considered as PHI. The Health Insurance Portability and Accountability
Act (HIPAA) defines PHI in the most specific terms. It protects 18 PHI categories,
e.g., geolocation, health plan beneficiary number. We list the categories in Table2.

PHI can be stored and transferred in structured, semi-structured and unstructured
text format. The former examples include pharmacy and admission records, the
latter examples—free-text parts of patient’s electronic medical records and letters,
respectively. Health care organizations aremain producers of PHI, and their networks
and data bases are the major PHI depositories. PHI can be found on many online
forums and social networks [8].

Data sharing and the secondary use of data are beneficial for patients, medical
specialists, researchers in various domains and health care administration. At the
same time, privacy laws mandate that individual’s consent is obtained before the PHI
data is shared. Obtaining the consent has been shown to lead to population selection
bias [9]. To avoid pitfalls of both PHI disclosure and the consent request, data can
go through a modification process, in which removal, alteration of generalization of
personally identifiable information makes it difficult to identify a person from data.
Such process is called anonymization. When patient records are anonymized, health
care organizations are able to share such data without seeking preliminary patient’s
consent.

5http://www.hhs.gov/ocr/privacy/index.html.
6http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_04p03_e.htm.
7http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML.

http://www.hhs.gov/ocr/privacy/index.html
http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_04p03_e.htm
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML
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Table 2 Health information protected by the Health Insurance Portability and Accountability Act

1. Names 10. Account numbers

2. All geographical subdivisions smaller than a
State, including street address, city, county,
precinct, zip code, and their equivalent
geocodes, except for the initial three digits of a
zip code

11. Certificate/license numbers

3. Dates (other than year) for dates directly
related to an individual, including birth date,
admission date, discharge date, date of death;
and all ages over 89

12. Vehicle identifiers and serial numbers,
including license plate numbers

4. Phone numbers 13. Device identifiers and serial numbers

5. Fax numbers 14. Web Uniform Resource Locators (URLs)

6. Electronic mail addresses 15. Internet Protocol (IP) address numbers

7. Social Security numbers 16. Biometric identifiers, including finger,
retinal and voice prints

8. Medical record numbers 17. Full face photographic images and any
com- parable images

9. Health plan beneficiary numbers 18. Any other unique identifying number,
characteristic, or code

Three major types of data attributes are considered when anonymization is dis-
cussed [10]:

• explicit identifiers allow direct linking of an instance to a person (e.g., a cellular
phone number or a drivers license number to its holder);

• quasi-identifiers, possibly combined with other attributes, may lead to other
data sources and result in unique identification of a person; quasi-identifiers are
often dates (birth, death, admission), locations (postal codes, hospital names, and
regions), race, ethnicity, languages spoken, aboriginal status, and gender;

• non-identifying attributes are those for which there is no known inference linking
to an explicit identifier.

Although all explicit identifiers are usually removed from the data as part of data
preprocessing, this action may not be sufficient for privacy protection and other
anonymization actions are required. For quasi-identifiers de-identification options
are time-dependent, as algorithm’s design is based on data sources and possible
linkage of the day. At the same time, new attributes and data sources that can lead
to a linkage to explicitly identifying attributes are constantly being engineered, thus,
there will never be certainty about future de-identification as being shown in genomic
data anonymization [14].

Commonly used Data Mining anonymization approaches may be categorized in
the following groups:
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Table 3 Comparison of k-anonymity, de-identification and differential privacy methods with
respect to data format and data size

Suitable data format Data size required for performance

Structured Unstructured Semi-
structured

Single
record

Data set Two
data sets

k-anonymity Yes No No No Yes No

(text)
De-identification

No Yes Yes Yes Yes No

Differential
privacy

Yes No No No Yes Yes

1. k-anonymization. This approach stipulates that each record in a data set is similar
to at least another k-1 records on the potentially identifying variables.

2. de-identification commonly refers to retrieval and extraction of PHI terms from
semi-structured and unstructured texts.

3. differential privacy ensures that adding or removing a single dataset item does
not substantially influence the outcome of data analysis.

The methods are evaluated through the information loss they incur and their effi-
ciency. Applicability of those methods considerably varies. In Table3 we exemplify
data formats and data sizes necessary for each method.

5 Content-Aware Data Leak Prevention

Content-aware data leak prevention is the most technologically challenging part
of data leak prevention. From the technology perspective, the methods discussed
here belong to the field of Privacy-Preserving Data Mining; for survey refer to [16].
Content analysis of data is criticalwhen two conflicting forces are at play: necessity to
share the data and obligation to protect information the data holds. With the increase
of secondary use of EHR (i.e., necessity to share) and the growing awareness of
individual’s privacy protection (i.e., obligation to protect), PHI leak prevention is
a primary example of content-dependent leak prevention technology. Finances and
security are other popular fields for deployment of content-aware information leak
prevention tools. Such tools are deployed in banks, financial companies, government,
i.e. organizations that keep and process sensitive and confidential information [28].

In a commonly used practice, DLP technologies monitor communications or
networks to detect PHI leaks. When a leak is detected the affected individual or
organization is notified, at which point they can take remedial action. DLP can
either prevent a PHI leak or detect it after it happens. Some methods, applied to
structured and unstructured data, remove explicit identifiers [27]. However, several
well-popularized cases had shown that such removal may be insufficient for de-
identification [16]. The majority of k-anonymity algorithms, which are applied to
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structured data sets, use generalization and suppression. Generalization reduces the
value of attribute in precision or abstraction, at the same time reducing utility of
the data. Suppression replaces a record’s value on an attribute with a missing value
(this is called cell suppression), or in extreme cases a whole record is removed from
the data set. Suppressing patient identifiable information may be insufficient when
organizations disclose patient information, devoid of the sensitive information, to
other agencies, e.g., DNA records transfer to publicly available data banks. In the
case of distributed data, patients’ organization-visit patterns, or trails, can re-identify
records to the identities from which they were derived.

While processing unstructured, free-form text data, tools apply Natural Lan-
guage Processing, InformationExtraction, andMachineLearningmethods to enforce
safer data management [17, 18]. Typically, a text de-identification method is either
designed for one type of documents, e.g. discharge summaries, or a collection of doc-
uments coming from one health care facility. De-identification tasks apply Named
Entity Recognition to identify, and possibly transform, personal information (names,
age, location) [29]. Performance of algorithms is usually measured in numbers of
individual term recognition. The reported metrics are F-score, Recall, and Precision
[20]. Let us exemplify on the results of de-identification of nurse notes, i.e. short
free-form texts, which contain abbreviations and professional terminology [21]. Stat
De-id, an open-source de-identification tool, uses rules in search personal informa-
tion. It can also use area-customised dictionaries (local person names, geographic and
health care provider names). When the dictionaries are used, the overall Precision is
74.9%.When the dictionaries are not used, the overall Precision decreases to 72.5%.
Performance substantially varies on identification of separate term categories. For
person names, the use of the customized dictionaries is adverse: Precision = 73.1%
without the dictionaries and 72.5%—with them. Locations, in contrast, considerably
benefit from the use of the dictionaries: Precision increases from 84.0 to 92.2%when
the local information is available, Recall—from 37.0 to 97.0%. Unfortunately, these
results are considerably lower than manual de-identification, where the averaged
Precision = 98.0% (ibid.).

Development of new de-identification algorithms is constrained by limited access
to training textual data. At that time, i2b2 data is the only set of clinical notes available
for research.8 Building such data is labor- and cost-consuming, as every sentence
needs to be manually examined and anonymized. Use of advanced NLP methods
can remedy the training data bottleneck as suggested in [5]. The researchers used
distributional similarity for acquiring lexical information fromnotes typed by general
practitioners. Lexical acquisition from ‘sensitive’ text enables effective processing of
much larger datasets and, perhaps, will lead to construction of repository of training
data.

Some techniques suggest that data holders securely collaborate through a third
party: health care organizations keep all sensitive information in an encrypted state
until the third party certifies that the data to be disclosed satisfies a formal data
protection model [15]. It is important to note that those techniques are designed and

8https://www.i2b2.org/NLP/DataSets/Main.php.

https://www.i2b2.org/NLP/DataSets/Main.php
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applied to the data at rest. There is a general lack of tools which can detect and
de-identify PHI in data sets in motion and in use. As with general DLP, different
methods and tools may be required to safe-guard data in motion, at rest and in use.
For the data in motion, if DLP is deployed to monitor email then a PHI alert can
be generated before the email is sent. Early work in this area has been done by
one of the authors [1, 3, 4]. This work investigated some of the issues related to
privacy in an organizational setting, and proposed an approach based on information
extraction and email content analysis in terms of compliance or non-compliance
with organizational privacy rules. The approach emphasized a Role-based Access
Control (RBAC) approach to checking compliance with privacy rules, as well as the
need for ontologies which are needed to represent the roles and access privileges in
an organization. A prototype has been developed in the university domain, where
different agents (students, professors, administrative staff) have access to different
information and can only communicate selected information to other agents. The
prototype was based on a the real guidelines regarding Privacy Policy on the release
of student information. For instance, student marks in a course C, accessible to
administrative staff, can bemailed only to professors who teachC. Student’s personal
information cannot be emailed to other students or professors, etc.

For the data at rest, if DLP is used to monitor PHI leaks on the Internet (e.g., on
peer-to-peer file sharing networks or onweb sites), then the alerts pertain to leaks that
have already occurred, at which point the affected individual or data custodian can
attempt to contain the damage and stop further leaks. Other common shortcomings
of the existing tools are:

• they apply to data sets built by health care providers; so far, few teams are actively
involved in PHI leak prevention outside of health care providers’ data sets.

• although patient records may provide information collected during multiple visits
(this is called longitudinal data), there are currently techniques for the deiden-
tification of numerical longitudinal medical and health records [24], but there
are no longitudinal de-identification techniques for textual data; current text de-
identification methods are designed for the cross-sectional data which is collected
by observing patients at the same point of time or disregarding time differences.

6 PHI Leak Prevention on the Web

Emergence of the user-friendly Web 2.0 technologies imposed new challenges on
DLP methods, due to increased volumes of data and an exponential increase in the
number of data contributors. As online media becomes the main medium for the
posting and exchange of information, analysis of this online data can contribute to
studies of the general public’s opinions on health-related matters. It has been shown
that significant volumes of PHI can be found on the Web hubs (e.g., microblogs,
online forums, social networks). Currently, 19–28% of Internet users participate
in online health discussions. Surveys of medical forum participants revealed that
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personal testimonials attract attention of up to 49% of participants, whereas only
25% of participants are motivated by scientific and practical content [2]. A 2011
survey of the US population estimated that 59% of all adults have looked online for
information about health topics such as a specific disease or treatment.9

Texts which host both PII and health information (PHI texts) are not analyzed
regardingwhether detectedPHI is self-disclosedor publishedby apresumably trusted
confidant. For example, a dedicated web site YourPrivacy separately considers PII in
web posts, whereas health information is viewed within the scope of doctor-patient
communication.10 A few studies which analyzed information disseminated by health
care professionals did not focus on PHI leaks, nor they analyzed large volumes of
texts, thus do not have sufficient generalization power.

Indiscrimination between self-disclosure and confidentiality breaches means that
PHI may remain on the Web, even when it has been detected due to the absence of
rules prohibiting its self-disclosure. At the same time, the Web-posted information
is freely available to 40% of the world population, i.e. reaching 3 billion web users
world-wide.11 A concerned individual might not be aware about the PHI leak before
the situation becomes harmful. For health care organizations, a timely detection of
posted patient’s PHI can prevent a breach of professional conduct. It can avert a
possible negative impact for the company hosting the web site. Examples of host
companies include such industry giants as Google, which hosts health discussion
groups, and Yahoo!, which hosts health and wellness groups. Detection of the Web-
posted PHI, thus, may prevent leaks in which legal and financial repercussions can
be severe. Albeit hosting companies claim non-responsibility for displayed contents,
courts may and do disagree.12

Identification of PHI leaks can be done by combining efforts of Natural Language
Processing (NLP), Machine Learning (ML) and Software Engineering (SE), as it is
often done with Web mining in general. Detection results must be delivered quickly.
Efficiency is important, especially when health information is not innocuous (e.g.,
HIV, SARS, Ebola). Wemust make sensitive information unavailable as soon as pos-
sible. To that end, all relevant texts should be found and passed formanual processing.
(People do not always agree on sensitivity assessment, so inter-judge agreement may
be not all that high. We cannot definitely say that 100% recall is indeed required.)
Manual processing requires that false positives be as rare as possible, lest human
control become lax with time.

There is another challenge: outside online medical communities, only a small
percentage of text could have sensitive PHI information [25]. The learning algorithm,
therefore, bases its decision on highly imbalanced input data, and the balance can
change with time. Furthermore, possible inferences from publicly available data
can have unintended consequences. To detect such consequences, security systems
may use external knowledge repositories (e.g., Wikipedia, electronic dictionaries).

9http://pewinternet.org/Reports/2011/Social-Life-of-Health-Info.aspx.
10http://www.yourprivacy.co.uk/.
11http://www.internetlivestats.com/internet-users/.
12http://en.wikipedia.org/wiki/District_of_Columbia_v.Heller.

http://pewinternet.org/Reports/2011/Social-Life-of-Health-Info.aspx
http://www.yourprivacy.co.uk/
http://www.internetlivestats.com/internet-users/
http://en.wikipedia.org/wiki/District_of_Columbia_v.Heller
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Access to the additional information requires NLP- and ML-enhanced tools which
are capable of extracting new knowledge from previously unseen data [8]. The last,
but not the least, challenge is caused by stream-like data arrival. A continuous,
steadfast current of information brings in unpredictability of content and context of
individual data units. To detect PHI leak, a system has to process vast amount of un-
predetermined information. To prevent adverse consequences, the detection should
happen in the shortest possible time interval. Both requirements make the task of
the Web-posted PHI leak prevention being computationally and methodologically
complicated.

For a “smart” solution of seemingly intractable technological problem,wepropose
to concentrate on characteristics of PHI texts, instead. Each PHI file can be identified
with a large, but restricted number of characteristics (e.g., names, addresses, diseases,
drugs). We hypothesize that the PHI text detection can be compared to rare event
detection. Those are extremely infrequent events whose characteristics make them
or their consequences highly valuable. Such events appear with extreme scarcity and
are hard to predict, although they are expected eventually to appear. The detection
procedure can be based on finding distinguishable characteristics of the event. For
detecting the Web-posted PHI, the proposed strategy is three-fold:

• develop, or adapt, a search algorithm which effectively seeks texts with a high
potential of PHI (e.g., documents distributed by health organizations and health-
care employees, lectures, presentations); the algorithm should effectively and effi-
ciently discharge unrelated and irrelevant information;

• construct a set of the characteristics that can provide a high accuracy of PHI text
detection; the sought after characteristics are syntactic and semantic indicators
of PII and PHI in a text; for PII, we consider soft regular expressions for family
relations, person’s introductions, age-identifying events and dates, etc.; for PHI,
we suggest the identification of term collocations in knowledge sources, used by
health care organizations;

• apply named entity recognition through the use of specialized dictionaries; these
dictionaries should contain information that is relevant for the given geographic
area; note that geographic parameters are the most prominent pointers in person’s
identification.

7 PHL Leak Prevention in Online Communities

On the Web, most of PHI is disclosed through online communities. Despite the sen-
sitive nature of PHI, participants do not always understand the risks of its online
disclosure [30]. For example, a survey of participants from a popular forum Patients
Like Me has found that 84% of participants were comfortable with sharing their
medical data with other participants, and 20% with the whole world [31]. This is
a potentially dangerous behaviour, as while participants may be in control of their
messages, they cannot control the use of modern text analysis methodologies by third



376 M. Sokolova and S. Matwin

parties. By the means of Information Retrieval, Information Extraction, and Natural
Language Processing, PHI can be harvested from the messages and further used
to impinge with the privacy of the individuals. Three common tendencies illustrate
this. First, online utilities facilitating the search of registered users: almost 50% of
disease-focused online communities had a tool performing such search. The most
frequent user-searching queries were gender, age, username, geographic area, and
disease [23]. Second, entice of disclosure of PHI: all medical forums encourage
participants to share their experience of illness and seek advice from other partici-
pants. Such personal testimonials attract the attention of up to 49% of participants
[2]. Third, PHI-related marketing: 25% of surveyed disease-focused networks were
selling health-related products, includingmedical devices, parapharmaceutical prod-
ucts, and over-the-counter drugs and supplements [22]. Although online communi-
ties have developed and implemented policies which include the use of self-selected
nicknames and editing of messages with unique identifiers (e.g., contact informa-
tion, last names can be altered or removed), strong concerns have been expressed
that such policies are not sufficient to protect the forum content, i.e., user messages.
Additionally, many social media outlets gather and store participants’ demographic
and habitual information, records of past and future treatments, some outlets publish
an aggregated statistics of participants [22].

To improve safety of this public space, we propose to develop evidence-based
guidelines that help online users to avoid excessive PHI disclosure in online posts.
One approach to alleviate some privacy-related problems is to protect PHI at the
data origin or at the earliest opportunity before posting it. This approach is effective
when the data origin venues are known and their numbers are limited, thus can be
possibly tractable, e.g. messages posted on a given medical forum. However, it may
not work in the distributed environment of online communities which enables users
withmultitude of platforms to postmessages, either as amember of the group or as an
individual. For example, from 41 social networks focusing on diseases, 14 networks
claimed to be present as a group on at least one other social network (ibid.).

We propose to focus on those aspects of online privacy that are more directly
at the user’s control, i.e., privacy protection in user-written text. For instance, our
guidelines will inform the users about potentially hazardous effects of disclosing
personal identifiable information (e.g., full name, age), geographic personal pointers
(e.g., home address, work location) and health information (e.g., diagnosis, health
care unit). To achieve this goal, Social Mining technology can be used. It consists of
the following steps: (i) identify online communities’ characteristics that promote an
excessive disclosure of PHI; (ii) determine the extent of problem, by investigating the
proportion of users that excessively reveal PHI; and (iii) identify the demographics
of the users that excessively reveal PHI. Necessity of such guidelines can be seen
from an example of online text:

Message 1: [user’s name] My brother Jim Smith …
Message 2: [user’s name] “toss a few prayers up for my brother’s roomie John

Doe who in icu with a compound fracture of the knee”.
Combined, both messages explicitly identify a person (John Doe who lives with

Jim Smith) andhis current health condition (a compound fracture of the knee treated in
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ICU). The informationmakes the public aware that the said John Doe, being admitted
to the hospital for a supposedly long time, neither currently lives at homenor is present
at work. The person and health status link is dangerously excessive, e.g., the home
can be targeted and vandalized during the absence of the residents. To prevent this
excessive disclosure, our guidelines will inform users that “Personally identifiable
information identifies a person among other individuals and usually consists of a
person’s given and family names and points to a location of the said person either
through a home address or geographic relations (e.g., the name of the employer)”.
Two other guidelines could educate users on the steps to be taken to prevent the
message from being over-informative:

• “Avoid linking the name of the person and his/her diagnosis with the health care
organization”. Aware of this guideline, users would instead write “toss a few
prayers up for my brother’s roomie who has a compound fracture of the knee”.

• “Avoid linking the name of the person and his/her physical geographic location”.
Aware of this guideline, users would instead write “toss a few prayers up for John
Doe who has a compound fracture of the knee”.

By being informedwhat constitutes personally identifiable information, users will be
aware of potential dangers of posting given and family names and geographic pointer
of a person. After being guided on how to avoid an inadvertent disclosure of private
information and personally identifiable information, users will not jeopardize their
safety and will improve security of their adobes. The users will also be sensitized to
what information they can post about others, thus, reducing the chances of inadvertent
confidentiality breaches.

8 Final Remarks and Future Work

This paper summarizes some of the existing challenges in privacy protection within
realms of Big Data, when personal information of individuals can be found, cross-
examined and aggregated frommanydifferent data sources.Wehave discussedmerits
of content-aware prevention of inadvertent data leaks and its application to protection
of personal health information. We have illustrated that successful implementation
of leak prevention methods relies on solution of several Data Mining problems. In
this paper, we have proposed pro-active content-aware prevention of personal health
information leaks which can work well in online communities.

So far, the early attempts at solutions are developed. If robust leak prevention
methods are to be built in order to avoid harmful privacy violation incidents, there
is a strong need to work on a number of important issues. We outline some of the
issues below, and welcome a discussion on others.

• One of such issues is the detection of personally identifying information and
health information in multi-modal data, e.g., data containing text and images, web



378 M. Sokolova and S. Matwin

page data combining text, images and web site links, and potential inference from
external web site links, e.g., Wikipedia.

• Another issue concerns data anonymization specifically in the healthcare context.
What original data properties should be preserved, guaranteeing the quality and
utility of data for secondary data use (e.g. research)? What quasiidentifiers should
be changed and how (for example, postal code can be changed in a different
way depending on the country). What are the appropriate techniques, especially
for longitudinal data? Techniques such as random name and address substitution,
use of non-existing names and addresses are popular now, but were they properly
assessed?What are the criteria andmeasures of successful anonymization, leading
to measures of degree of privacy protection?

• This leads us to system development, testing, and deployment issues. They include
the challenges of combining Software Engineering,Machine Learning andNatural
Language Processing components and obtaining efficient, scalable systems. There
are all-important issues of system testing and evaluation of systems performance
and user-acceptance: training and testing, failure detection, applicability of per-
formance measures, e.g., efficiency, effectiveness, robustness, accuracy, precision,
and generalization of results.

• Finally, there are important non-technical issues that need to be addressed for any
proposed technical solution. They include such questions as where does responsi-
bility shift from data custodian to the PHI DLP system creators? What are respon-
sibilities of third parties, e.g., secondary data users? How to train and sensitize
users of the DLP systems?

We hypothesize that solution of the following problems is important for future
development of Privacy-preserving Data Mining methods:

• Balancing individual privacy and collective privacy within shared data; for exam-
ple, in the same hospital data, privacy concerns can be different for patients diag-
nosed with “good” disease and those who are diagnosed with “bad” disease.

• Estimating feasibility of personalized privacy; we can start with looking into two
questions: personal pros and cons can andwill changewith time—how to deal with
old data sets? can existing techniques generalize well from personalized records?

• Search for measures and metrics assessing algorithm’s performance in privacy
protection.

As for immediate PPDM tasks, we suggest to build repository of data sets, similar
to UCI and develop a tool kit similar toWEKA.We believe that these are socially and
economically important research areas, worthy of attention of the privacy research
community.
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Data Based Modeling

James R. Thompson

Abstract Statisticians spend a great deal of time coming up with tests that are
frequently useless in practice and then proving the asymptotic optimality of the
tests under the assumption of conditions that do not actually exist. There is another
approach: we can use the data to build models. This is the goal of Tukey’s
“Exploratory Data Analysis.” In this paper I will be examining alternatives to the
Neoclassical Analysis of the stock market, the dominant view still in schools of
business, data notwithstanding. Then I will give a brief analysis of the breakdown of
America’s public health service in stopping the progression of the AIDS epidemic
and demonstrate that simply closing down the gay bathhouses would have prevented
AIDS from progressing from an endemic to a full blown epidemic which has already
killed more Americans than died in the two world wars.

Keywords Capital market line · Simugram · Maxmedian · AIDS

1 The Introduction

There is a tendency for mathematicians and statisticians (including “applied” ones)
to believe that in the vast literature of theoretical tools, there must be one appropriate
to the problem at hand. This is generally not the case. This fact has been emphasized
by Marian Rejewski, who cracked the Enigma code used by the German armed
forces, and most sophisticatedly by the German Navy. Dr. Rejewski was not just
a theoretical mathematician, but one who had four years of statistical training at
Gottingen. Given the task in 1931, he tried the rich panolpy of techniques he had
learnt to no effect. Bydgoszcz, where he attended high school was part of the German
chunk of partitioned Poland. So as a cadet in high school he learned much about the
eccentricities used inmilitary and naval German reports. For example, memos started
with a line beginning with “Von” followed by a second line starting with “Zu”. Then
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turning linguist and cultural sociologist, Rejewski built up a template of forms that
must be used in military discourse. At the end of the day, he had reduced the number
of feasible combinations in Enigma from 1092 to a manageable 100,000. Every time
the code was changed by the Germans, using a few dozen cypher clerks, the Rejewski
team could come up with the settings used in the new format in a week or so. (It
should be noted in passing that the submarine codes could only be changed when
submarines were docking at German occupied ports and that the SS never departed
from the original settings of 1932).

The British have always minimized the fact that it was the Poles who cracked
Enigma. However, Rejewski and his crew saved the British from a starvation-induced
peace with the Nazis. Rejewski’s filtering “bombe” was the first digital computer
and the coding is correctly viewed as proto-Unix. It is usually the case that real
world problems require stepping outside the standard tool boxes of mathematics and
statistics.

2 If Only the Market Were a Martingale (But It Is Not)

One way to express the Weak Form of the Efficient Market Hypothesis is to require
that stocks have martingale structure, i.e., for a stock S(t), the expected value at any
future time t + r is S(t). In other words, a stock which has been going up for the last
10 sessions is no more worthy an investment than a stock which has gone down for
the last 10 sessions. This is counterintuitive, but has been the basis of several Nobel
Prizes in Economics. One of these belongs to William Sharpe for his Capital Market
Theory [1, 2].

If we may assume that investors behave in a manner consistent with the Efficient
Market Hypothesis, then certain statements may be made about the nature of capital
markets as a whole. Before a complete statement of capital market theory may be
advanced, however, certain additional assumptions must be presented:

1. The μ and σ of a portfolio adequately describe it for the purpose of investor
decision making [U = f (σ,μ)].

2. Investors can borrow and lend as much as they want at the riskless rate of interest.
3. All investors have the same expectations regarding the future, the same portfolios

available to them, and the same time horizon.
4. Taxes, transactions costs, inflation, and changes in interest rates may be ignored.

Under the above assumptions, all investors will have identical opportunity sets,
borrowing and lending rates (rL = rB) and, thus, identical optimal borrowing-
lending portfolios, say X (see Fig. 1).

The borrowing-lending line for the market as whole is called the Capital Market
Line. The “market portfolio” (X ) employed is the total universe of available securities
weighted by their total stock value relative to all the stocks in the market universe
(called the market portfolio) by the reasoning given above. The CML is linear and it
represents the combination of a risky portfolio (X ) and a riskless security (a T−Bill).
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Fig. 1 The capital market
line

rL =rB

µ

X

One use made of the CML is that its slope provides the so-called market price of
risk, or, that amount of increased return required by market conditions to justify the
acceptance of an increment to risk, that is

slope = μ(X) − r

σ(X)
.

The simple difference μ(X) − r is called the equity premium, or the expected return
differential for investing in risky equities rather than riskless debt.

This very elegant result of Sharpe indicates that one simply cannot do better than
invest along the Sharpe Superefficient Frontier (CML). Of course, if one wishes to
invest on “autopilot” there are ways to do so. John Bogle has effectively and non-
mathematically argued [3] that the value of investment counsellors is, in general, not
worth their fees. Many years ago, he founded the Vanguard S&P 500 fund (among
others) which maintains a portfolio balanced according to the market cap values of
each of the members of the Standard and Poor selected basket of top 500 stocks.
Thus the weight of investment in the i ′th stock would be

wi = Vi

ΣVj
(1)

where Vi is the total market value of all the stocks in company i . Interestingly,
Bogle’s strategy is actually very close to the “total market index fund” suggested by
Nobel laureate William Sharpe. However, Thompson et al. [4] took a backlook at
50,000 randomly selected portfolios from the 1,000 largest market cap stocks over
a period of 40 years. They discovered that over over half lie above the CML. How it
has been that EMH enthusiasts apparently failed to crunch the numbers is a matter
of conjecture. Nor is this result surprising, since the Standard and Poor Index fund
over this period has averaged an annual return of somewhat in excess of 10% while
Buffett’s Berkshire-Hathaway has delivered over 20% (Fig. 2).

When we see that randomnly selected portfolios frequently lie above the Cap-
ital Market Line, we are tempted to see what happens when we make a selection
based on equal weights of, for example, the Standard and Poor 100. We shall also
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Fig. 2 Randomly selected portfolios beating the super efficient frontier portfolios

Fig. 3 Market cap weight versus equal weight

demonstrate the results of Thompson’s patented Simugram portfolio selection
algorithm [5]. Space does not permit a discussion of this algorithm. Suffice it to
say that though quite different from the fundamental analysis of Buffet, it achieves
roughly the same results. During the economic shocks caused by the market collapse
of 2008–2009, both the Simugram and the analysis of Buffett proved themselves
nonrobust against massive intervention of the Federal Reserve Bank to save the large
banks. (Now that QE3 has ended, Simugram appears to be working again).

We show such a comparison in Fig. 3.
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3 “Everyman’s” MaxMedian Rule for Portfolio
Management

If index funds, such as Vanguard’s S&P 500 are popular (and with some justification
they are), this is partly due to the fact that over several decades the market cap
weighted portfolio of stocks in the S&P 500 of John Bogle (which is slightly different
that a totalmarket fund) has small operataing fees, currently, less than0.1%compared
to fund management rates typically around 40 times that of Vanguard. And, with
dividends thrown in, it produces around a 10% return. Many people prefer large cap
index funds like those of Vanguard and Fidelity. The results of managed funds have
not been encouraging overall, although those dealing with people like Peter Lynch
and Warren Buffet have done generally well. John Bogle probably did not build his
Vanguard funds because of any great faith in fatwahs coming down from the EMH
professors at the University of Chicago. Rather, he was arguing that investors were
paying too much for the “wisdom” of the fund managers. There is little question that
John Bogle has benefited greatly the middle class investor community.

That being said,we have shown earlier thatmarket capweighted funds do no better
(actually worse) than those selected by random choice. It might, then, be argued that
there are nonrandom strategies which the individual investor could use to his/her
advantage. For example if one had invested in the stocks with equal weight in the
S&P 100 over the last 40 years rather than by weighting according to market cap, he
would have experienced a significantly higher annual growth (our backtest revealed as
much as a 5% per year difference in favor of the equal weighted portolio).We remind
the reader that the S&P 100 universe has been selected by fundamental analysis from
the S&P 500 according to fundamental analysis and balance.Moreover, the downside
losses in bad years would have been less than with a market cap weighted fund. It
would be nice if we could come up with a strategy which kept only 20 stocks in the
portfolio. If one is into managing ones own portfolio, it would appear that Baggett
and Thompson [6] did about as well with their MaxMedian Rule as the equal weight
of the S&P 100 using a portfolio size of only 20 stocks. I am harking back to the old
morality play of “Everyman” where the poor average citizen moving through life is
largely abandoned by friends and advisors except for Knowledge who assures him
“Everyman, I will accompany you and be your guide.”

The MaxMedian Rule [6] of Baggett and Thompson, given below, is easy to use
and appears to beat the Index, on the average, by up to an annual multiplier of 1.05,
an amount which is additionally enhanced by the power of compound interest. Note
that (1.15/1.10)45 = 7.4, a handy bonus to one who retires after 45 years. A purpose
of the MaxMedian Rule was to provide individual investors with a tool which they
could use and modify without the necessity of massive computing. Students in my
classes have developed their own paradigms, such as the MaxMean Rule. In order
to use such rules, one need only purchase for a very modest one time fee the Yahoo
base hquotes program from hquotes.com. (The author owns no portion of the hquotes
company).
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Fig. 4 A comparison of
three investment strategies

The MaxMedian Rule

1. For the 500 stocks in the S&P 500 look back at the daily returns S( j, t) for the
preceding year

2. Compute the day to day ratios r( j, t) = S( j, t)/S( j, t − 1)
3. Sort these for the year’s trading days
4. Discard all r values equal to one
5. Look in the 500 medians of the ratios
6. Invest equally in the 20 stocks with the largest medians
7. Hold for one year, then liquidate.

In Fig. 4 we examine the results of putting one present value dollar into play in
three different investments: 5% yielding T-Bill, S&P 500 Index Fund, MaxMedian
Rule. First, we shall do the investment simply without avoiding the intermediate
taxing structure. The assumptions are that interest income is taxed at 35%; capital
gains and dividends are taxed at 15%; and inflation is 2%. As we see, the T-Bill
invested dollar is barely holding its one dollar value over time. The consequences
of such an investment strategy are disastrous as a vehicle for retirement. On the
other hand, after 40 years, the S&P 500 Index Fund dollar has grown to 11 present
value dollars. The MaxMedian Rule dollar has grown to 55 present value dollars.
Our investigations indicate that the MaxMedian Rule performs about as well as an
equal weighted S&P 100 portfolio, though the latter has somewhat less downside in
bad years. Of course, it is difficult for the individual investor to buy into a no load
equal weight S&P 100 index fund. So far as the author knows, none currently exist,
though equal weighted S&P 500 index funds do (the management fees seem to be
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in the 0.50% range). For reasons not yet clear to the author, the advantage of the
equal weight S&P index fund is only 2% greater than that of the market cap weight
S&P 500. Even so, when one looks at the compounded advantage over 40 years, it
appears to be roughly a factor of two. It is interesting to note that the bogus Ponzi
scheme of Maidoff claimed returns which appear to be legally attainable either by
the MaxMedian Rule or the equal weight S&P 100 rule. This leads the author to the
conclusion that most of the moguls of finance and the Federal Reserve Bank have
very limited data analytical skills or even motivation to look at market data.

3.1 Investing in a 401-k

Money invested in a 401-k plan avoids all taxes until the money is withdrawn, at
which time it is taxed at the current level of tax on ordinary income. In Table1, we
demonstrate the results of adding an annual inflation adjusted $5,000 addition to a
401k for 40 years, using different assumptions of annual inflation rates. ($5,000 is
very modest but that sum can be easily adjusted.) All values are in current value
dollars.

We recall that when these dollars are withdrawn, taxes must be paid. So, in com-
puting the annual cost of living, one should figure in the tax burden. Let us suppose
the cost of living including taxes for a family of two is $70,000 beyond Social
Security retirement checks. We realize that the 401-k portion which has not been
withdrawn will continue to grow (though the additions from salary will have ceased
upon retirement). Even for the unrealistically low inflation rate of 2% the situation is
not encouraging for the investor in T-bills. Both the S&P Index holder and the Max
Median holder will be in reasonable shape. For the inflation rate of 5%, the T-bill
holder is in real trouble. The situation for the Index Fund holder is also risky. The
holder in the MaxMedian Rule portfolio appears to be in reasonable shape. Now, by
historical standards, 5% inflation is high for the USA. On the other hand, we observe
that the decline of the dollar against the Euro during the Bush Administration was
as high as 8% per year.

Hence, realistically, 8% could be a possibility to the inflation rate for the future
in the United States. In such a case, of the four strategies considered, only the return
available from theMaxMedian Rule leaves the family in reasonable shape. Currently,
even the Euro is inflation-stressed due to the social welfare excesses of some of the

Table 1 40 year end results of three 401-k strategies

Inflation 2% 3% 5% 8%

T-Bill 447,229 292,238 190,552 110,197

S&P Index 1,228,978 924,158 560,356 254,777

MaxMedian 4,660,901 3,385,738 1,806,669 735,977
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Eurozone members. From a societal standpoint, it is not necessary that an individual
investor achieve spectacular returns. What is required is effectiveness, robustness,
transparency, and simplicity of use so that the returns will be commensurate with
the normal goals of families: education of children, comfortable retirement, etc.
Furthermore, it is within the power of the federal government to bring the economy
to such a passwhere even the prudent cannotmake do. The history ofmodern societies
shows that high rates of inflation cannot be sustained without some sort of revolution,
such as thatwhich occurred at the end of theWeimarRepublic. Unscrupulous bankers
encourage indebtedness on the unwary, taking their profits at the front end and leaving
society as a whole to pick up the bill. Naturally, as a scientist, I would hope that the
empirical rules such as theMaxMedian approach of Baggett and Thompson will lead
to fundamental insights about the market and the economy more generally. Caveat:
The MaxMedian Rule is freeware not quality assured or extensively tested. If you
use it, remember what you paid for it. The goal of the MaxMedian Rule is to enable
the individual investor to develop his or her own portfolios without the assistance
of generally overpriced and underachieving investment fund managers. The investor
gets to use all sorts of readily available information in public libraries, e.g., Investors
Business Daily. Indeed, many private investors will subscribe to IBD as well as to
other periodicals. Obviously, even if a stock is recommended by theMaxMedian rule
(or any rule) and there is valuable knowledge, such as that the company represented
by the stock is under significant legal attack for patent infringement, oil spills, etc.,
exclusion of the stock from the portfolio might be indicated. The bargain brokerage
Fidelity provides abundant free information for its clients and generally charges less
than 8 dollars per trade.

Obviously, onemight choose rather aMaxMean rule or aMax 60 Percentile rule or
an equal weight Index rule. The MaxMedian was selected to minimize the optimism
caused by the long right hand tails of the log normal curves of stock progression.
MaxMean is therefore more risky. There are many which might be tested by a forty
year backtest. My goal is not to push the MaxMedian Rule or the MaxMean Rule or
the equal weight S&P 100 rule or any rule, but rather allow the intelligent investor to
invest without paying vast sums to overpriced and frequently clueless MBAs. If, at
the end of the day, the investor chooses to invest in market cap based index funds, that
is suboptimal but not ridiculous. What is ridiculous is not to work hard to understand
as much as practicable about investment. This chapter is a very good start. It has to
be observed that at this time in history, investment in US Treasury Bills or bank cds
would appear to be close to suicidal. Both the Federal Reserve and the investment
banks are doing the Americanmiddle class no good service. 0.1% return on Treasury
Bills is akin to theft, and what some of the investment banks do is akin to robbery.
By lowering the interest rate to nearly zero, the Federal Reserve has damaged the
savings of the average citizen and laid the groundwork for future high inflation. The
prudent investor is wise to invest in stocks rather than in bonds.

I havenomagic riskless formula for getting rich.Rather, I shall offer someopinions
about alternatives to things such as buying T-Bills. Investing in market cap index
funds is certainly suboptimal. However, it is robustness and transparency rather than
optimality which should be the goal of the prudent investor. It should be remembered



Data Based Modeling 389

that most investment funds do charge the investor a fair amount of his/her basic
investmentwhatever be the results. TheEMHis untrue anddoes not justify investment
in a market cap weighted index fund. However, the fact is that, with the exception of
such gurus asWarren Buffett and Peter Lynch, the wisdom of the professional market
forecaster seldom justifies the premium of the guru’s charge. There are very special
momentum based programs (on one of which the author holds a patent), in which the
investor might do well. However, if one simply manages one’s own account, using
MaxMean or MaxMean within an IRA, it would seem to be better than trusting in
gurus who have failed again and again. Berksire-Hathaway has proved to be over
the years a vehicle which produces better than 20% return. For any strategy that the
investor is considering, backtesting for, say, 40 years, is a very good idea. That is
not easy to achieve with equal weight funds, since they have not been around very
long. Baggett and Thompson had to go back using raw S&P 100 data to assess the
potential of an S&P 100 equal weight fund. If Bernie Maidoff had set up such a fund,
he might well have been able to give his investors the 15% return he promised but
did not deliver.

The United States government has been forcing commercial banks to grant mort-
gage loans to persons unlikely to be able to repay them, and its willingness to allow
commercial banks to engage in speculative derivative sales, is the driving force behind
the market collapse of the late Bush Administration and the Obama Administration.
Just the war cost part of the current crisis due to what Nobel Laureate Joseph Stiglitz
has described as something beyond a three trillion dollar war in the Middle East
has damaged both Berkshire-Hathaway’s and other investment strategies. To survive
in the current market situation, one must be agile indeed. Stiglitz keeps upping his
estimates of the cost of America’s war in the Middle East. Anecdotally, I have seen
estimates as high as six trillion dollars. If we realize that the cost of running the entire
US Federal government is around three trillion dollars per year, then we can see what
a large effect Bush’s war of choice has had on our country’s aggregate debt. This
fact alone would indicate that a future damqging inflation is all but certain. To some
extent, investing in the stock market could be viewed as a hedge against inflation.

In the next section, we will examine another cause of denigration and instability
in the economy, the failure of the Centers for Disease Control to prevent the AIDS
endemic from becoming an AIDS epidemic.

4 AIDS: A New Epidemic for America

In 1983, I was investigating the common practice of using stochastic models in deal-
ing with various aspects of diseases. Rather than considering a branching process
model for the progression of a contagious disease, it is better to use differential
equation models of the mean trace of susceptibles and infectives. At this time the
disease had infected only a few hundred in the United States and was still some-
times referred to as GRIDS (Gay Related Immunodeficiency Syndrome). The more
politically correct name of AIDS soon replaced it.
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Even at the very early stage of an observed United States AIDS epidemic, several
matters appeared clear to me:

• The disease favored the homosexual male community and outbreaks seemed most
noticeable in areas with sociologically identifiable gay communities.

• The disease was also killing (generally rather quickly) people with acute
hemophilia.

• Given the virologist’s maxim that there are no new diseases, AIDS in the United
States had been identified starting around 1980 because of some sociological
change. A disease endemic under earlier norms, it had blossomed into an epi-
demic due to a change in society.

At the time, which was before the HIV virus had been isolated and identified,
there was a great deal of commentary both in the popular press and in the medical
literature (including that of the Centers for Disease Control) to the effect that AIDS
was a new disease. Those statements were not only false but were also potentially
harmful. First of all, from a practical virological standpoint, a new disease might
have as a practical implication genetic engineering by a hostile foreign power. This
was a time of high tension in the Cold War, and such an allegation had the potential
for causing serious ramifications at the level of national defense.

Secondly, treating an unknown disease as a new disease essentially removes the
possibility of stopping the epidemic sociologically by simply seeking out and remov-
ing (or lessening) the cause(s) that resulted in the endemic being driven over the
epidemiological threshold.

For example, if somehow a disease (say, the Lunar Pox) has been introduced
from the moon via the bringin in of moon rocks by American astronauts, that is an
entirely differentmatter than, say, amysterious outbreak of dysentery in St. Louis. For
dysentery in St. Louis, we check food and water supplies, and quickly look for “the
usual suspects”—unrefrigerated meat, leakage of toxins into the water supply, and
so on. Given proper resources, eliminating the epidemic should be straightforward.

For the Lunar Pox, there are no usual suspects. We cannot, by reverting to some
sociological status quo ante, solve our problem. We can only look for a bacterium
or virus and try for a cure or vaccine. The age-old way of eliminating an epidemic
by sociological means is difficult—perhaps impossible.

In 1982, it was already clear that the United States public health establishment
was essentially treating AIDS as though it were the Lunar Pox. The epidemic was at
levels hardly worthy of the name in Western Europe, but it was growing. Each of the
European countries was following classical sociological protocols for dealing with a
venereal disease. These all involved somemeasure of defacilitating contacts between
infectives and susceptibles. The French demanded bright lighting in gay “make-out”
areas. Periodic arrests of transvestite prostitutes in the Bois de Boulogne were widely
publicized. The Swedes took much more draconian steps, mild in comparison with
those of the Cubans. The Americans took no significant sociological steps at all.

However, as though following the Lunar Pox strategy, the Americans outdid the
rest of the world inmoney thrown at research related to AIDS. Some of this was spent
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on isolating the unknown virus. However, it was the French, spending pennies to the
Americans’ dollars, at the Pasteur Institute who first isolated HIV. In the intervening
30 years since isolation of the virus, no effective vaccine or cure has been produced.

4.1 Why Was the AIDS Epidemic so Much More Prevalent
in America Than in Other First World Countries?

Although the popular press in the early 1980s talked of AIDS as being a new disease
prudence and experience indicated that it was not. Just as new species of animals
have not been noted during human history, the odds for a sudden appearance (absent
genetic engineering) of a new virus are not good. My own discussions with pathol-
ogists with some years of experience gave anecdotal cases of young Anglo males
who had presented with Kaposi’s sarcoma at times going back to early days in the
pathologists’ careers. This pathology, previously seldom seen in persons of North-
ern European extraction, now widely associated with AIDS, was at the time simply
noted as isolated and unexplained. Indeed, a few years after the discovery of the HIV
virus, HIV was discovered in decades old refrigerated human blood samples from
both Africa and America.

Although it was clear that AIDS was not a new disease, as an epidemic it had
never been recorded as such. Because some early cases were from the Congo, there
was an assumption by many that the disease might have its origins there. Record
keeping in the Congo was not and is not very good. But Belgian colonial troops had
been located in that region for many years. Any venereal disease acquired in the
Congo should have been vectored into Europe in the 19th century. But no AIDS-like
disease had been noted. It would appear, then, that AIDSwas not contracted easily as
is the case, say, with syphilis. Somehow, the appearance of AIDS as an epidemic in
the 1980s, and not previously, might be connected with higher rates of promiscuous
sexual activity made possible by the relative affluence of the times.

Then there was the matter of the selective appearance of AIDS in the American
homosexual community. If the disease required virus in some quantity for effective
transmission (the swift progression of the disease in hemophiliacs plus the lack of
notice of AIDS in earlier times gave clues that such might be the case), then the
profiles in Figs. 5 and 6 give some idea of why the epidemic seemed to be centered
in the American homosexual community. If passive to active transmission is much
less likely than active to passive, then clearly the homosexual transmission patterns
facilitate the disease more than the heterosexual ones.

Fig. 5 Heterosexual
transmission of AIDs Low Chance

Transmission

Male   Female
Of Further
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Fig. 6 Homosexual transmission of AIDs

One important consideration that seemed to have escaped attentionwas the appear-
ance of the epidemic in 1980 instead of 10 years earlier. Gay lifestyles had begun to
be tolerated by law enforcement authorities in the major urban centers of America
by the late 1960s. If homosexuality was the facilitating behavior of the epidemic,
then why no epidemic before 1980? Of course, believers in the “new disease” theory
could simply claim that the causative agent was not present until around 1980. In
the popular history of the early American AIDS epidemic, And the Band Played
On, Randy Shilts points at a gay flight attendant from Quebec as a candidate for
“patient zero.” But this “Lunar Pox” theory was not a position that any responsible
epidemiologist could take (and, indeed, as pointed out, later investigations revealed
HIV samples in human blood going back into the 1940s).

What accounts for the significant time differential between civil tolerance of
homosexual behavior prior to 1970 and the appearance of the AIDS epidemic in the
1980s? Were there some other sociological changes that had taken place in the late
1970s that might have driven the endemic over the epidemiological threshold?

It should be noted that in 1983, data were skimpy and incomplete. As is frequently
the casewith epidemics, decisions need to bemade at the early stageswhen one needs
to work on the basis of skimpy data, analogy with other historical epidemics, and a
model constructed on the best information available.

I remember in 1983 thinking back to the earlier American polio epidemic that
had produced little in the way of sociological intervention and less in the way of
models to explain the progress of the disease. Although polio epidemics had been
noted for some years (the first noticed epidemic occurred around the time of World
War I in Stockholm), the American public health service had indeed treated it like
the “Lunar Pox.” That is, they discarded sociological intervention based on past
experience of transmission pathways and relied on the appearance of vaccines at
any moment. They had been somewhat lucky, since Dr. Jonas Salk started testing
his vaccine in 1952 (certainly they were luckier than the thousands who had died
and the tens of thousands who had been permanently crippled). But basing policy on
hope and virological research was a dangerous policy (how dangerous we are still
learning as we face the reality of 650,000 Americans dead by 2011 from AIDS). I
am unable to find the official CDC death count in America as of the end of 2014, but
a senior statistician colleague from CDC reckons that 700,000 is not unreasonable.

Although some evangelical clergymen inveighed against the epidemic as divine
retribution on homosexuals, the function of epidemiologists is to use their God-given
wits to stop epidemics. In 1983, virtually nothing was being done except to wait for
virological miracles.
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One possible candidate was the turning of a blind eye by authorities to the gay
bathhouses that started in the late 1970s. These were places where gays could engage
in high frequency anonymous sexual contact. By the late 1970s they were allowed
to operate without regulation in the major metropolitan centers of America. My
initial intuition was that the key was the total average contact rate among the target
population.Was themarginal increase in the contact rate facilitated by the bathhouses
sufficient to drive the endemic across the epidemiological threshold? It did not seem
likely. Reports were that most gays seldom (many, never) frequented the bathhouses.

In the matter of the present AIDS epidemic in the United States, a great deal of
money is being spent. However, practically nothing in the way of steps for stop-
ping the transmission of the disease is being done (beyond education in the use of
condoms). Indeed, powerful voices in the Congress speak against any sort of gov-
ernment intervention. On April 13, 1982, Congressman Henry Waxman [7] stated
in a meeting of his Subcommittee on Health and the Environment, “I intend to fight
any effort by anyone at any level to make public health policy regarding Kaposi’s
sarcoma or any other disease on the basis of his or her personal prejudices regarding
other people’s sexual preferences or life styles.” (It is significant that Representative
Waxman has been one of the most strident voices in the fight to stop smoking and
global warming, considering rigorous measures acceptable to end these threats to
human health.)

In light of Congressman Waxman’s warnings, it would have taken brave public
health officials to close the gay bathhouses. We recall how Louis Pasteur had been
threatened with the guillotine if he insisted on proceeding with his rabies vaccine
and people died as a result. He proceeded with the testings, starting on himself.
There were no Louis Pasteurs at the CDC. The Centers for Disease Control have
broad discretionary powers and its members have military uniforms to indicate their
authority. They have no tenure, however. The Director of the CDC could have closed
the bathhouses, but that would have been an act of courage which could have ended
his career. Of all the players in the United States AIDS epidemic, Congressman
Waxman may be more responsible than any other for what has turned out to be a
death tally exceeding any of America’s wars, including its most lethal, the American
War Between the States (aka the Civil War).

5 The Effect of the Gay Bathhouses

But perhaps my intuitions were wrong. Perhaps it was not only the total average
contact rate that was important, but a skewing of contact rates, with the presence
of a high activity subpopulation (the bathhouse customers) somehow driving the
epidemic. It was worth a modeling try.

The model developed in [8] considered the situation in which there are two sub-
populations: the majority, less sexually active, and a minority with greater activity
than that of the majority. We use the subscript “1” to denote the majority portion
of the target (gay) population, and the subscript “2” to denote the minority portion.
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The latter subpopulation, constituting fraction p of the target population, will be
taken to have a contact rate τ times the rate k of the majority subpopulation. The
following differential equations model the growth of the number of susceptibles Xi

and infectives Yi in subpopulation i (i = 1, 2).

dY1

dt
= kαX1(Y1 + τY2)

X1 + Y1 + τ (Y2 + X2)
− (γ + μ)Y1,

dY2

dt
= kατ X2(Y1 + τY2)

X1 + Y1 + τ (Y2 + X2)
− (γ + μ)Y2, (2)

d X1

dt
= − kαX1(Y1 + τY2)

X1 + Y1 + τ (Y2 + X2)
+ (1 − p)λ − μX1,

d X2

dt
= − kατ X2(Y1 + τY2)

X1 + Y1 + τ (Y2 + X2)
+ pλ − μX2.

where

k = number of contacts per month,
α = probability of contact causing AIDS,
λ = immigration rate into the population,
μ = emigration rate from the population,
γ = marginal emigration rate from the population due

to sickness and death.

In Thompson [8], it was noted that if we started with 1,000 infectives in a target
population with kα = 0.05, τ = 1, a susceptible population of 3,000,000 and the
best guesses then available (μ = 1/(15× 12) = 0.00556, γ = 0.1, λ = 16,666) for
the other parameters, the disease advanced as shown in Table2.

Next, a situation was considered in which the overall contact rate was the same
as in Table2, but it was skewed with the more sexually active subpopulation 2 (of
size 10%) having contact rates 16 times those of the less active population.

Even though the overall average contact rate in Tables2 and 3 is the same
(kα)overall = 0.05, the situation is dramatically different in the two cases. Here,
it seemed, was a prima facie explanation as to how AIDS was pushed over the

Table 2 Extrapolated AIDS cases: kα = 0.05, τ = 1

Year Cumulative deaths Fraction infective

1 1751 0.00034

2 2650 0.00018

3 3112 0.00009

4 3349 0.00005

5 3571 0.00002

10 3594 0.000001
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Table 3 Extrapolated AIDS cases: kα = 0.02, τ = 16, p = 0.10

Year Cumulative deaths Fraction infective

1 2,184 0.0007

2 6,536 0.0020

3 20,583 0.0067

4 64,157 0.0197

5 170,030 0.0421

10 855,839 0.0229

15 1,056,571 0.0122

20 1,269,362 0.0182

threshold to a full-blown epidemic in the United States: a small but sexually very
active subpopulation.

This was the way things stood in 1984 when I presented my AIDS paper at the
summer meetings of the Society for Computer Simulation in Vancouver. It hardly
created a stir among the mainly pharmacokinetic audience who attended the talk.
And, frankly, at the time I did not think too much about it because I supposed that
probably even as the paper was being written, the “powers that be” were shutting
down the bathhouses. The deaths at the time were numbered in the hundreds, and
I did not suppose that things would be allowed to proceed much longer without
sociological intervention. Unfortunately, I was mistaken.

In November 1986, the First International Conference on Population Dynamics
took place at the University of Mississippi where there were some of the best bio-
mathematical modelers from Europe and the United States. I presented my AIDS
results [9], somewhat updated, at a plenary session. By this time, I was already
alarmed by the progress of the disease (over 40,000 cases diagnosed and the bath-
houses still open). The bottom line of the talk had become more shrill: namely, every
month delayed in shutting down the bathhouses in the United States would result
in thousands of deaths. The reaction of the audience this time was concern, partly
because the prognosis seemed rather chilling, partly because the argument was sim-
ple to follow and seemed to lack holes, and partly because it was clear that something
was pretty much the matter if things had gone so far off track.

After the talk, the well-known Polish probabilist Robert Bartoszyński, with whom
I had carried out a lengthy modeling investigation of breast cancer and melanoma
(at the Curie-Sklodowska Institute in Poland and at Rice), took me aside and asked
whether I did not feel unsafe making such claims. “Who,” I asked, “will these claims
make unhappy”? “The homosexuals,” said Bartoszyński. “No, Robert,” I said, “I
am trying to save their lives. It will be the public health establishment who will be
offended.”

And so it has been in the intervening years. I have given AIDS talks before
audiences with significant gay attendance in San Francisco, Houston, Washington,
and other locales without any gay person expressing offense. Indeed, in his 1997
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book [10], Gabriel Rotello, one of the leaders of the American gay community, not
only acknowledges the validity of my model but also constructs a survival plan for
gay society in which the bathhouses have no place.

5.1 A More Detailed Look at the Model

A threshold investigation of the two-activity population model (2) is appropriate
here. Even today, let alone in the mid-1980s, there was no chance that one would
have reliable estimates for all the parameters k, α, γ, μ, λ, p, τ . Happily, one of
the techniques sometimes available to the modeler is the opportunity to express
the problem in such a form that most of the parameters will cancel out. For the
present case, we will attempt to determine the kα value necessary to sustain the
epidemic when the number of infectives is very small. For this epidemic in its early
stages one can manage to get a picture of the bathhouse effect using only a few
parameters: namely, the proportion p of the target population which is sexually very
active and the activity multiplier τ .

For Y1 = Y2 = 0 the equilibrium values for X1 and X2 are (1 − p)(λ/μ) and
p(λ/μ), respectively. Expanding the right-hand sides of (2) in a Maclaurin series,
we have (using lower case symbols for the perturbations from 0)

dy1
dt

=
[

kα(1 − p)

1 − p + τ p
− (γ + μ)

]

y1 + kα(1 − p)τ

1 − p + τ p
y2

dy2
dt

= kατ p

1 − p + τ p
y1 +

[
kατ2 p

1 − p + τ p
− (γ + μ)

]

y2.

Summing then gives

dy1
dt

+ dy2
dt

= [kα − (γ + μ)] y1 + [kατ − (γ + μ)] y2.

In the early stages of the epidemic,

dy1/dt

dy2/dt
= (1 − p)

pτ
.

That is to say, the new infectives will be generated proportionately to their relative
numerosity in the initial susceptible pool times their relative activity levels. So,
assuming a negligible number of initial infectives, we have

y1 = (1 − p)

pτ
y2.
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Substituting in the expression for dy1/dt + dy2/dt , we see that for the epidemic to
be sustained, we must have

kα >
(1 + μ)(1 − p + τ p)

1 − p + pτ2
(γ + μ). (3)

Accordingly we define the heterogeneous threshold via

khetα = (1 + μ)(1 − p + τ p)

1 − p + pτ2
(γ + μ).

Now, in the homogeneous contact case (i.e., τ = 1), we note that for the epidemic
not to be sustained, the condition in Eq. (4) must hold.

kα < (γ + μ). (4)

Accordingly we define the homogeneous threshold by

khomα = (γ + μ).

For the heterogeneous contact case with khet, the average contact rate is given by

kaveα = pτ (khetα) + (1 − p)(khetα) = (1 + μ)(1 − p + τ p)

1 − p + pτ2
(γ + μ).

Dividing the sustaining value khomα by the sustaining value kaveα for the heteroge-
neous contact case then produces

Q = 1 − p + τ2 p

(1 − p + τ p)2
.

Notice that we have been able here to reduce the parameters necessary for con-
sideration from seven to two. This is fairly typical for model-based approaches: the
dimensionality of the parameter space may be reducible in answering specific ques-
tions. Figure7 shows a plot of this “enhancement factor” Q as a function of τ . Note
that the addition of heterogeneity to the transmission picture has roughly the same
effect as if all members of the target population had more than doubled their con-
tact rate. Remember that the picture has been corrected to discount any increase in
the overall contact rate which occurred as a result of adding heterogeneity. In other
words, the enhancement factor is totally a result of heterogeneity. It is this hetero-
geneity effect which I have maintained (since 1984) to be the cause of AIDS getting
over the threshold of sustainability in the United States. Data from the CDC onAIDS
have been other than easy to find. Concerning the first fifteen years of the epidemic,
Dr. Rachel MacKenzie of the WHO was kind enough to give me the data. Grateful
though I was for that data, I know there was some displeasure from theWHO that she
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Fig. 7 Effect of a high activity subpopulation

had done so, and after 1995 the data appeared on the internet very irregularlywith two
and three year gaps between data postings. Since the United States was contributing
most of the money for AIDS conferences, grants and other activities, I can under-
stand the reluctance of the WHO to give out information which showed how badly
the Americans were doing compared to the rest of the First World. Transparency is
generally assumed in scientific research, but that assumption is unfortunately wrong
in some of the most important situations. Suffice it to say that during the 15 years
of WHO data I was presented, the United States had 10 times the AIDS rate per
100,000 of the UK, 8 times that of Netherlands, 7 times that of Denmark, 4 times
that of Canada, and 3.5 times that of France. One can understand the embarrass-
ment of the American CDC. I regret to say that AIDS goes largely unmentioned and
unnoticed by the American media and such agencies as the NIH, the PHS, and the
NCI. Benjamin Franklin once said: “Experience keeps a hard school and a fool will
learn by none other.” What about those who continue failed policies ad infinitum? I
believe Albert Einstein called them insane.

Sometimes establishment inertia trumps facts. When I started my crusade against
the bathhouses, there were two in Houston. Now, within 5miles of the TexasMedical
Center, there are 17. One of these adjoins the hotel Rice frequently uses to house
its visitors. Vancouver, which had no bathhouses when I gave my first AIDS lecture
there, nowhas 3.As somemay remember if they attended the recent nationalmeetings
of the ASA held in Vancouver, the Gay Pride Parade there has floats from the major
Canadian banks and from the University of British Columbia School of Medicine.
Gay bathhouses are popping up in several European cities as well. The American
AIDS establishment has the pretence of having drugs which can make an AIDS
sufferer as treatable as a diabetic. That these drugs are dangerous and over time
frequently produce pain so severe tht users eventually opt for cessation of treatment
is not much spoken about.
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6 Conclusions

Data analysis to a purpose is generally messy. If I think back on the very many
consulting jobs I have done over the years, very few were solvavable unless one
went outside the box of classical statistical tools into other disciplines and murky
waters. Indeed, the honoree of this Festschrift Jacek Koronacki is a good example to
us all of not taking the easy way out. During martial law, I offered him a tenured post
at Rice. I cautioned him that in the unlikely event the Red Army ever left Poland, the
next administration would be full of unsavory holdovers from the junior ranks of the
Party posing as Jeffersonian reformers. Jacek left Rice, nevertheless, with his wife,
daughter and unborn son. He said he could not think of abandoning Poland and his
colleagues. It would be ignoble to do so. He would return to Poland with his family
and hope God would provide. I have to say that though I was correct in my prophecy,
Jacek chose the right path.
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