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Preface

Association rule mining is receiving increasing attention. Its appeal is due, not
only to the popularity of its parent topic ‘knowledge discovery in databases
and data mining’, but also to its neat representation and understandability.
The development of association rule mining has been encouraged by active
discussion among communities of users and researchers. All have contributed
to the formation of the technique with a fertile exchange of ideas at im-
portant forums or conferences, including SIGMOD, SIGKDD, AAAI, IJCAI,
and VLDB. Thus association rule mining has advanced into a mature stage,
supporting diverse applications such as data analysis and predictive decisions.

There has been considerable progress made recently on mining in such ar-
eas as quantitative association rules, causal rules, exceptional rules, negative
association rules, association rules in multi-databases, and association rules in
small databases. These continue to be future topics of interest concerning as-
sociation rule mining. Though the association rule constitutes an important
pattern within databases, to date there has been no specilized monograph
produced in this area. Hence this book focuses on these interesting topics.

The book is intended for researchers and students in data mining, data
analysis, machine learning, knowledge discovery in databases, and anyone
else who is interested in association rule mining. It is also appropriate for use
as a text supplement for broader courses that might also involve knowledge
discovery in databases and data mining.

The book consists of eight chapters, with bibliographies after each chap-
ter. Chapters 1 and 2 lay a common foundation for subsequent material.
This includes the preliminaries on data mining and identifying association
rules, as well as necessary concepts, previous efforts, and applications. The
later chapters are essentially self-contained and may be read selectively, and
in any order. Chapters 3, 4, and 5 develop techniques for discovering hid-
den patterns, including negative association rules and causal rules. Chapter
6 presents techniques for mining very large databases, based on instance se-
lection. Chapter 7 develops a new technique for mining association rules in
databases which utilizes external knowledge, and Chapter 8 presents a sum-
mary of the previous chapters and demonstrates some open problems.



VI Preface

Beginners should read Chapters 1 and 2 before selectively reading other
chapters. Although the open problems are very important, techniques in other
chapters may be helpful for experienced readers who want to attack these
problems.

January 2002 Chengqi Zhang and Shichao Zhang
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1. Introduction

Association rule mining is an important topic in data mining. Our
work in this book focuses on this topic. To briefly clarify the back-
ground of association rule mining in this chapter, we will concentrate
on introducing data mining techniques.
In Section 1.1 we begin with explaining what data mining is. In
Section 1.2 we argue as to why data mining is needed. In Section 1.3
we recall the process of knowledge discovery in databases (KDD). In
Section 1.4 we demonstrate data mining tasks and faced data types.
Section 1.5 introduces some basic data mining techniques. Section
1.6 presents data mining and marketing. In Section 1.7, we show
some examples where data mining is applied to real-world problems.
And, finally in Section 1.8 we discuss future work involving data
mining.

1.1 What Is Data Mining?

First, let us consider transactions (market baskets) that are obtained from a
supermarket. This involves spelling out the attribute values (goods or items
purchased by a customer) for each transaction, separated by commas. Parts
of interest in three of the transactions are listed as follows.

Smith milk, Sunshine bread, GIS sugar
Pauls milk, Franklin bread, Sunshine biscuit
Yeung milk, B&G bread, Sunshine chocolate.

The first customer bought Smith milk, Sunshine bread, and GIS sugar;
and so on. Each data (item) consists of brand and product. For example,
‘Smith milk’ consists of brand ‘Smith’ and product ‘milk’.

In the past, the most experienced decision-makers of the supermarket may
have summarized patterns such as ‘when a customer buys milk, he/she also
buys bread’ (this may have been used to predict customer behaviour) and,
‘customers like to buy Sunshine products’ (may have been used to estimate
the sales of a new product). These decision-makers could draw upon years of
general knowledge and knowledge about specific associations to form effective
selections on the data.

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 1-23, 2002.
 Springer-Verlag Berlin Heidelberg 2002



2 1. Introduction

Data mining can be used to discover useful information from data like
‘when a customer buys milk, he/she also buys Bread’ and ‘customers like to
buy Sunshine products’.

Strictly speaking, data mining is a process of discovering valuable in-
formation from large amounts of data stored in databases, data ware-
houses, or other information repositories. This valuable information
can be such as patterns, associations, changes, anomalies and signif-
icant structures [Fayyad-Piatetsky-Smyth 1996, Frawley 1992]. That
is, data mining attempts to extract potentially useful knowledge from
data.

Data mining differs from traditional statistics in that formal statistical
inference is assumption-driven in the sense that a hypothesis is formed and
validated against the data. Data mining, in contrast, is discovery-driven in the
sense that patterns and hypotheses are automatically extracted from data.
In other words, data mining is data driven while statistics is human driven.

One of the important areas in data mining is association rule mining.
Since its introduction in 1993 [Agrawal-Imielinski-Swami 1993] the area of
association rule mining has received a great deal of attention. Association
rule mining has been mainly developed to identify the relationships strongly
associated among itemsets that have high-frequency and strong-correlation.
Association rules enable us to detect the items that frequently occur together
in an application. The aim of this book is to present some techniques for
mining association rules in databases.

1.2 Why Do We Need Data Mining?

There are two main reasons why data mining is needed.

(1) The task of finding really useful patterns as described above can be
discouraging for inexperienced decision-makers due to the fact that the
potential patterns in the three transactions are not often apparent.

(2) The amount of data in most applications is too large for manual analysis.

First, the most experienced decision-makers are able to wrap data such
as “Smith milk, Pauls milk, and Yeung milk” into “milk” and “B&G bread,
Franklin bread, Sunshine bread” into “bread” for the mining pattern “when
a customer buys milk, he/she also buys Bread”. In this way, the above data
in Section 1.1 can be changed to

milk, bread, sugar
milk, bread, biscuit
milk, bread, chocolate.
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Then the potential association becomes clear. Also, data such as “Smith
milk” is divided into “Smith” and “milk” for the mining pattern “customers
like to buy Sunshine products” for predicting the possible amount sold of a
new product. A set of parts of the above data in Section 1.1 is listed below.

Smith, Sunshine, GIS
Pauls, Franklin, Sunshine
Yeung, B&G, Sunshine.

The pattern “customers like to buy Sunshine products” can be mined.
As will be seen shortly, there are also some useful patterns, such as nega-

tive associations and causality, that are hidden in the data (see Chapters 3,
4, and 5). The most experienced decision-makers may also find it very diffi-
cult to discovering hidden patterns in databases because there is too much
information for a human to handle manually. Data mining is used to develop
techniques and tools for assisting experienced and inexperienced decision-
makers to analyze and process data for application purposes.

On the other hand, the pressure of enhancing corporate profitability has
caused companies to spend more time identifying diverse opportunities such
as sales and investments. To this end huge amounts of data are collected
in their databases for decision-support purposes. The short list of examples
below should be enough to place the current situation into perspective [Pro-
dromidis 2000]:

– NASA’s Earth Observing System (EOS) for orbiting satellites and other
space-borne instruments send one terabyte of data to receiving stations
each day.

– By the year 2000 a typical Fortune 500 company was projected to possess
more than 400 trillion characters in their electronic databases, requiring
400 terabytes of mass storage.

With the increasing use of databases the need to be able to digest the large
volumes of data being generated is now critical. It is estimated that only
5-10% of commercial databases have ever been analyzed [Fayyad-Simoudis
1997]. As Massey and Newing [Massey-Newing 1994] indicated, database
technology was successful in recording and managing data but failed in the
sense of moving from data processing to making it a key strategic weapon for
enhancing business competition. The large volume and high dimensionality
of databases leads to a breakdown in traditional human analysis.

Data mining incorporates technologies for analyzing data in very large
databases and can identify potentially useful patterns in the data. Also, data
mining has become very important in information industry, due to the wide
availability of huge amounts of data in electronic forms and the imminent
need for turning such data into useful information and knowledge for broad
applications including market analysis, business management, and decision
support.
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1.3 Knowledge Discovery in Databases (KDD)

Data mining has been popularly treated as a synonym for knowledge discovery
in database, although some researchers view data mining as an essential part
(or step towards) of knowledge discovery.

The emergence of data mining and knowledge discovery in databases as a
new technology has occurred because of the fast development and wide appli-
cation of information and database technologies. Data mining and KDD are
aimed at developing methodologies and tools which can automate the data
analysis process and create useful information and knowledge from data to
help in decision making. A widely accepted definition is given by Fayyad et
al. [Fayyad-Piatetsky-Smyth 1996] in which KDD is defined as the non-trivial
process of identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data. This definition points to KDD as a complicated
process comprising a number of steps. Data mining is one step in the process.

The scope of data mining and KDD is very broad and can be described as
a multitude of fields of study related to data analysis. Statistical research has
been focused on this area of study for over a century. Other fields related to
data analysis, including statistics, data warehousing, pattern recognition, ar-
tificial intelligence and computer visualization. Data mining and KDD draws
upon methods, algorithms and technologies from these diverse fields, and the
common goal is extracting knowledge from data [Chen-Han-Yu 1996].

Over the last ten years data mining and KDD have been developed at a
dramatic rate. In Information Week’s 1996 survey of 500 leading information
technology user organizations in the US, data mining came second only to
the Internet and intranets as having the greatest potential for innovation in
information technology [Fayyad-Simoudis 1997]. Rapid progress is reflected,
not only in the establishment of research groups on data mining and KDD
in many international companies, but also in the investment area of banking,
in telecommunication and in marketing sectors.

1.3.1 Processing Steps of KDD

In general, the process of knowledge discovery in databases consists of an
iterative sequence of the following steps [Han-Huang-Cercone-Fu 1996, Han
1999, Liu-Motoda 1998, Wu 1995, Zhang 1989]:

– Defining the problem. The goals of the knowledge discovery project must
be identified. The goals must be verified as actionable. For example, if the
goals are met, a business can then put newly discovered knowledge to use.
The data to be used must also be identified.

– Data preprocessing. Including data collecting, data cleaning, data selection,
and data transformation.
Data collecting. Obtaining necessary data from various internal and exter-
nal sources; resolving representation and encoding differences; joining data
from various tables to create a homogeneous source.
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Data cleaning. Checking and resolving data conflicts, outliers (unusual or
exceptional values), noisy or erroneous, missing data, and ambiguity; using
conversions and combinations to generate new data fields such as ratios or
rolled-up summaries. These steps require considerable effort often as much
as 70 percent or more of the total data mining effort.
Data selection. Data relevant to an analysis task is selected from a given
database. In other words, a data set is selected, or else attention is fo-
cused on a subset of variables or data samples, on which discovery is to be
performed.
Data transformation. Data are transformed or consolidated into forms ap-
propriate for mining by performing summary or aggregation operations.

– Data mining. An essential process, where intelligent methods are applied
in order to extract data patterns. Patterns of interest in a particular repre-
sentational form, or a set of such representations are searched for, including
classification rules or trees, regression, clustering, sequence modeling, de-
pendency, and so forth. The user can significantly aid the data mining
method by correctly performing the preceding steps.

– Post data mining. Including pattern evaluation, deploying the model, main-
tenance, and knowledge presentation.
Pattern evaluation. It Identifies the truly interesting patterns representing
knowledge, based on some interesting measures; tests the model for accu-
racy on an independent dataset one that has not been used to create the
model. Assesses the sensitivity of a model; and pilot tests the model for
usability. For example, if using a model to predict customer response, then
a prediction can be made and a test mailing done to a subset to check how
closely the responses match your predictions.
Deploying the model. For a predictive model, the model is used to pre-
dict results for new cases. Then the prediction is used to alter organiza-
tional behavior. Deployment may require building computerized systems
that capture the appropriate data and generate a prediction in real time
so that a decision maker can apply the prediction. For example, a model
can determine if a credit card transaction is likely to be fraudulent.
Maintaining. Whatever is being modeled, it is likely to change over time.
The economy changes, competitors introduce new products, or the news
media finds a new hot topic. Any of these forces can alter customer behav-
ior. So the model that was correct yesterday may no longer be good for
tomorrow. Maintaining models requires constant revalidation of the model,
with new data to assess if it is still appropriate.
Knowledge presentation. Visualization and knowledge representation tech-
niques are used to present mined knowledge to users.

The knowledge discovery process is iterative. For example, while cleaning
and preparing data you might discover that data from a certain source is
unusable, or that data from a previously unidentified source is required to
be merged with the other data under consideration. Often, the first time
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through, the data mining step will reveal that additional data cleaning is
required.

With widely available relational database systems and data warehouses,
the data preprocessing (i.e. data collecting, data cleaning, data selection, and
data transformation) can be performed by constructing data warehouses and
carrying out some OLAP (OnLine Analytical Processing) operations on the
constructed data warehouses. The steps (data mining, pattern evaluation,
and knowledge presentation processes) are sometimes integrated into one
(possibly iterative) process, referred to as data mining. Patterns maintenance
is often taken as the last step if required.

1.3.2 Feature Selection

Data preprocessing [Fayyad-Simoudis 1997] may be more time consuming and
presents more challenges than data mining. Data often contains noise and er-
roneous components, and has missing values. There is also the possibility
that redundant or irrelevant variables are recorded, while important features
are missing. Data preprocessing includes provision for correcting inaccura-
cies, removing anomalies and eliminating duplicate records. It also includes
provision for filling holes in the data and checking entries for consistency. Pre-
processing is required to make the necessary transformation of the original
into a format suitable for processing by data mining tools.

The other important requirement concerning the KDD process is ‘feature
selection’ [Liu-Motoda 1998, Wu 2000]. KDD is a complicated task and usu-
ally depends on correct selection of features. Feature selection is the process
of choosing features which are necessary and sufficient to represent the data.
There are several issues influencing feature selection, such as masking vari-
ables, the number of variables employed in the analysis and relevancy of the
variables.

Masking variables is a technique which hides or disguises patterns in data.
Numerous studies have shown that inclusion of irrelevant variables can hide
real clustering of the data so only those variables which help discriminate the
clustering should be included in the analysis.

The number of variables used in data mining is also an important con-
sideration. There is generally a tendency to use more variables than perhaps
necessary. However, increased dimensionality has an adverse effect because,
for a fixed number of data patterns, it makes the multi-dimensional data
space sparse.

However, failing to include relevant variables can also cause failure in
identifying the clusters. A practical difficulty in mining some industrial data
is knowing whether all important variables have been included in the data
records.

Prior knowledge should be used if it is available. Otherwise, mathematical
approaches need to be employed. Feature extraction shares many approaches
with data mining. For example, principal component analysis, which is a
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useful tool in data mining, is also very useful for reducing the dimension.
However, this is only suitable for dealing with real-valued attributes. Mining
association rules is also an effective approach in identifying the links between
variables which take only categorical values. Sensitivity studies using feed-
forward neural networks are also an effective way of identifying important
and less important variables. Jain, Murty and Flynn [Jain-Murty-Flynn 1999]
have reviewed a number of clustering techniques which identify discriminating
variables in data.

1.3.3 Applications of Knowledge Discovery in Databases

Data mining and KDD is potentially valuable in virtually any industrial and
business sectors where database and information technology are used. Below
are some reported applications [Fayyad-Simoudis 1997, Piatetsky-Matheus
1992].

– Fraud detection: identifying fraudulent transactions.
– Loan approval: establishing credit worthiness of a customer requesting a
loan.

– Investment analysis: predicting a portfolio’s return on investment.
– Portfolio trading: trading a portfolio of financial instruments by maximiz-
ing returns and minimizing risks.

– Marketing and sales data analysis: identifying potential customers; estab-
lishing the effectiveness of a sale campaign.

– Manufacturing process analysis: identifying the causes of manufacturing
problems.

– Experiment result analysis: summarizing experiment results and predictive
models.

– Scientific data analysis.
– Intelligent agents and WWW navigation.

1.4 Data Mining Task

In general, data mining tasks can be classified into two categories: descriptive
data mining and predictive data mining. The former describes the data set in
a concise and summary manner and presents interesting general properties
of the data; whereas the latter constructs one, or a set of, models, performs
inference on the available set of data, and attempts to predict the behav-
ior of new data sets [Chen-Han-Yu 1996, Fayyad-Simoudis 1997, Han 1999,
Piatetsky-Matheus 1992, Wu 2000].

A data mining system may accomplish one or more of the following data
mining tasks.
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(1) Class description. Class description provides a concise and succinct
summarization of a collection of data and distinguishes it from other data.
The summarization of a collection of data is known as ‘class characteriza-
tion’; whereas the comparison between two or more collections of data is
called ‘class comparison’ or ‘discrimination’. Class description should cover
its summary properties on data dispersion, such as variance, quartiles, etc.
For example, class description can be used to compare European versus
Asian sales of a company, identify important factors which discriminate
the two classes, and present a summarized overview.

(2) Association. Association is the discovery of association relationships
or correlations among a set of items. They are often expressed in the rule
form showing attribute-value conditions that occur frequently together in a
given set of data. An association rule in the form of X → Y is interpreted
as ‘database tuples that satisfy X are likely to satisfy Y ’. Association
analysis is widely used in transaction data analysis for direct marketing,
catalog design, and other business decision making process.
Substantial research has been performed recently on association analysis
with efficient algorithms proposed, including the level-wise Apriori search,
mining multiple-level, multi-dimensional associations, mining associations
for numerical, categorical, and interval data, meta-pattern directed or
constraint-based mining, and mining correlations.

(3) Classification. Classification analyzes a set of training data (i.e., a set of
objects whose class label is known) and constructs a model for each class,
based on the features in the data. A decision tree, or a set of classification
rules, is generated by such a classification process which can be used for
better understanding of each class in the database and for classification of
future data. For example, diseases can be classified based on the symptoms
of patients.
There have been many classification methods developed such as in the fields
of machine learning, statistics, databases, neural networks and rough sets.
Classification has been used in customer segmentation, business modeling,
and credit analysis.

(4) Prediction. This mining function predicts the possible values of cer-
tain missing data, or the value distribution of certain attributes in a set
of objects. It involves the finding of the set of attributes relevant to the
attribute of interest (e.g., by statistical analysis) and predicting the value
distribution based on the set of data similar to the selected objects. For ex-
ample, an employee’s potential salary can be predicted based on the salary
distribution of similar employees in the company. Up until now, regression
analysis, generalized linear model, correlation analysis and decision trees
have been useful tools in quality prediction. Genetic algorithms and neural
network models have also been popularly used in this regard.

(5) Clustering. Clustering analysis identifies clusters embedded in the data,
where a cluster is a collection of data objects that are “similar” to one an-
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other. Similarity can be expressed by distance functions, specified by users
or experts. A good clustering method produces high quality clusters to en-
sure that the inter-cluster similarity is low and the intra-cluster similarity
is high. For example, one may cluster houses in an area according to their
house category, floor area, and geographical location.
To date data mining research has concentrated on high quality and scalable
clustering methods for large databases and multidimensional data ware-
houses.

(6) Time-series analysis. Time-series analysis analyzes large set of time
series data to determine certain regularity and interesting characteristics.
This includes searching for similar sequences or subsequences, and mining
sequential patterns, periodicities, trends and deviations. For example, one
may predict the trend of the stock values for a company based on its
stock history, business situation, competitors’ performance, and the current
market.

There are also other data mining tasks, such as outlier analysis, etc. An
interesting research topic is the identification of new data mining tasks which
make better use of the collected data itself.

1.5 Data Mining Techniques

Data mining methods and tools can be categorized in different ways [Fayyad-
Simoudis 1997, Fayyad-Piatetsky-Smyth 1996]. They can be classified as clus-
tering, classification, dependency modeling, summarization, regression, case-
based learning, and mining time-series data, according to functions and ap-
plication purposes. Some methods are traditional and established, while some
are relatively new. Below we briefly review the techniques.

1.5.1 Clustering

Clustering is the unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters). The clustering problem has
been addressed in many contexts and by researchers in many disciplines;
this interest reflects its broad appeal and usefulness as one of the steps in
exploratory data analysis. Typical pattern clustering activity involves the
following steps:

(1) pattern representation (optionally including feature extraction and/or
selection);

(2) definition of a pattern proximity measure appropriate to the data domain;
(3) clustering or grouping;
(4) data abstraction (if needed); and
(5) assessment of output (if needed).
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Given a number of data patterns 1 as shown in Table 1.1, each of which
is described by a set of attributes, clustering 2 aims to devise a classification
scheme for grouping the objects into a number of classes such that instances
within a class are similar, in some respects, but distinct from those from other
classes. This involves determining the number, as well as the descriptions, of
classes. Grouping often depends on calculating a similarity or distance mea-
sure. Grouping multi-variate data into clusters according to similarity or
dissimilarity measures is the goal of some applications. It is also a useful way
to look at the data before further analysis is carried out. The methods can be
further categorized according to requirement on prior knowledge of the data.
Some methods require the number of classes to be an input, although the
descriptions of the classes and assignments of individual data cases can be
unknown. For example, the Kohonen neural network is designed for this pur-
pose. In some other methods, neither the number nor descriptions of classes
need to be known. The task is to determine the number and descriptions of
classes as well as the assignment of data patterns. For example, the Bayesian
automatic classification system-AutoClass and the adaptive resonance theory
(ART2) [Jain-Murty-Flynn 1999] are designed for this purpose.

Table 1.1. An example of data structure

Instances Attributes
1 2 · · · j · · · m

x1 x11 x12 x1j x1m

x2 x21 x22 x2j x2m

.
xi xi1 xi2 xij xim

.
xm xm1 xm2 xmj xmm

As a branch of statistics, clustering analysis has been studied extensively
for many years. Research has mainly focused on distance-based clustering
analysis, such as occurs when Euclidean distance is used. There are many
textbooks on this topic. Notable progress in clustering has been made in
unsupervised neural networks, including the self-organizing Kohonen neural
network and the adaptive resonance theory (ART). There have been many re-
ports on the application in operational state identification and fault diagnosis
within process industries.

1.5.2 Classification

If the number and descriptions of classes, as well as the assignment of indi-
vidual data patterns, are known for a given number of data patterns, such as
1 sometimes called instances, cases, observations, samples, objects, or individuals
2 also called unsupervised machine leaning
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those shown in Table 1.1, then the task classification is to assign unknown
data patterns to the established classes. The most widely used classifica-
tion approach is based on feed-forward neural networks. Classification is also
known as supervised machine learning because it always requires data pat-
terns with known class assignments to train a model. This model is then
used for predicting the class assignment of new data patterns [Wu 1995].
Some popular methods for classification are introduced in a simple way as
follows.

Decision Tree Based Classification

When a business executive needs to make a decision based on several factors,
a decision tree can help identify which factors to consider and can indicate
how each factor has historically been associated with different outcomes of
the decision. For example, in a credit risk case study, there might be data
for each applicant’s debt, income, and marital status. A decision tree creates
a model as either a graphical tree or a set of text rules that can predict
(classify) each applicant as a good or bad credit risk.

A decision tree is a model that is both predictive and descriptive. It is
called a decision tree because the resulting model is presented as a tree-like
structure. The visual presentation makes a decision tree model very easy to
understand and assimilate. As a result, the decision tree has become a very
popular data mining technique. Decision trees are most commonly used for
classification (i.e., for predicting what group a case belongs to), but can also
be used for regression (predicting a specific value).

The decision tree method encompasses a number of specific algorithms,
including Classification and Regression Trees, Chi-squared Automatic Inter-
action Detection, C4.5 and C5.0 (J. Ross Quinlan, www.rulequest.com).

Decision trees graphically display the relationships found in data. Most
products also translate the tree-to-text rules such as ‘If (Income = High
and Years on job > 5) Then (Credit risk = Good)’. In fact, decision tree
algorithms are very similar to rule induction algorithms, which produce rule
sets without a decision tree.

The primary output of a decision tree algorithm is the tree itself. The
training process that creates the decision tree is usually called induction.
Induction requires a small number of passes (generally far fewer than 100)
through the training dataset. This makes the algorithm somewhat less effi-
cient than Naive-Bayes algorithms, which require only one pass (See Naive-
Bayes and Nearest Neighbor in next subsection). However, this algorithm is
significantly more efficient than neural nets, which typically require a large
number of passes, sometimes numbering in the thousands. To be more pre-
cise, the number of passes required to build a decision tree is no more than
the number of levels in the tree. There is no predetermined limit to the num-
ber of levels, although the complexity of the tree, as measured by the depth
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and breadth of the tree, generally increases as the number of independent
variables increases.

Naive-Bayes Based Classification

Naive-Bayes is named after Thomas Bayes (1702-1761), a British minister
whose theory of probability was first published posthumously in 1764. Bayes’
Theorem is used in the Naive-Bayes technique to compute the probabilities
that are used to make predictions.

Naive-Bayes is a classification technique that is both predictive and de-
scriptive. It analyzes the relationship between each independent variable and
the dependent variable to derive a conditional probability for each relation-
ship. When a new case is analyzed, a prediction is made by combining the
effects of the independent variables on the dependent variable (the outcome
that is predicted). In theory, a Naive-Bayes prediction will only be correct
if all the independent variables are statistically independent of each other,
which is frequently not true. For example, data about people will usually
contain multiple attributes (such as weight, education, income, and so forth)
that are all correlated with age. In such a case, the use of Naive-Bayes would
be expected to overemphasize the effect of age. Notwithstanding these limi-
tations, practice has shown that Naive-Bayes produces good results, and its
simplicity and speed make it an ideal tool for modeling and investigating
simple relationships.

Naive-Bayes requires only one pass through the training set to generate a
classification model. This makes it the most efficient data mining technique.
However, Naive-Bayes does not handle continuous data, so any independent
or dependent variables that contain continuous values must be binned or
bracketed. For instance, if one of the independent variables is ‘age’, the values
must be transformed from the specific value into ranges such as ‘less than
20 years’, ‘21 to 30 years’, ‘31 to 40 years’, and so on. Binning is technically
simple, and most algorithms automate it, but the selection of the ranges can
have a dramatic impact on the quality of the model produced.

Using Naive-Bayes for classification is a fairly simple process. During
training, the probability of each outcome (dependent variable value) is com-
puted by counting how many times it occurs in the training dataset. This
is called the prior probability. For example, if the Good Risk outcome oc-
curs twice in a total of 5 cases, then the prior probability for Good Risk
is 0.4. The prior probability can be thought of in the following way: “If I
know nothing about a loan applicant, there is a 0.4 probability that the ap-
plicant is a Good Risk”. In addition the prior probabilities, Naive-Bayes also
computes how frequently each independent variable value occurs in combina-
tion with each dependent (output) variable value. These frequencies are then
used to compute conditional probabilities that are combined with the prior
probability to make the predictions. In essence, Naive-Bayes uses conditional
probabilities to modify prior probabilities.
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Nearest Neighbor Based Classification

Nearest Neighbor (more precisely k-nearest neighbor, also k-NN) is a predic-
tive technique suitable for classification models.

Unlike other predictive algorithms, the training data is not scanned or
processed to create the model. Instead, the training data is the model. When
a new case or instance is presented to the model, the algorithm looks at all
the data to find a subset of cases that are most similar to it. It then uses
them to predict the outcome.

There are two principal drivers in the k-NN algorithm: the number of
nearest cases to be used (k) and a metric to measure what is meant by
nearest.

Each use of the k-NN algorithm requires that we specify a positive integer
value for k. This determines how many existing cases are looked at when
predicting a new case. k-NN refers to a family of algorithms that we could
denote as 1-NN, 2-NN, 3-NN, and so forth. For example, 4-NN indicates that
the algorithm will use the four nearest cases to predict the outcome of a new
case.

As the term ‘nearest’ implies, k-NN is based on a concept of distance.
This requires a metric to determine distances. All metrics must result in a
specific number for the purpose of comparison. Whatever metric is used, it is
both arbitrary and extremely important. It is arbitrary because there is no
preset definition of what constitutes a ‘good’ metric. It is important because
the choice of a metric greatly affects the predictions. Different metrics, used
on the same training data, can result in completely different predictions. This
means that a business expert is needed to help determine a good metric.

To classify a new case, the algorithm computes the distance from the new
case to each case (row) in the training data. The new case is predicted to
have the same outcome as the predominant outcome in the k closest cases in
the training data.

Neural Networks Based Classification

Have you ever made an extraordinary purchase on one of your credit cards
and been somewhat embarrassed when the charge wasn’t authorized, or been
surprised when a credit card representative has asked to speak to you? Some-
how your transaction was flagged as possibly being fraudulent. Well, it wasn’t
the person you spoke to who picked your transaction out of the millions per
hour that are being processed. It was, more than likely, a neural net.

How did the neural net recognize that your transaction was unusual?
By having previously looked at the transactions of millions of other people,
including transactions that turned out to be fraudulent, the neural net formed
a model that allowed it to separate good transactions from bad. Of course,
the neural net could only pick transactions that were likely to be fraudulent.
That’s why a human must get involved in making the final determination.
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Luckily if you remembered your mother’s maiden name, the transaction would
have been approved and you would have gone home with your purchase.

Neural networks are among the most complicated of the classification
and regression algorithms. Although training a neural network can be time-
consuming, a trained neural network can speedily make predictions for new
cases. For example, a trained neural network can detect fraudulent transac-
tions in real time. They can also be used for other data mining applications,
such as clustering. Neural nets are used in other applications as well, such as
handwriting recognition or robot control.

Despite their broad application, we will restrict our discussion here to
neural nets used for classification and regression. The output from a neural
network is purely predictive. Because there is no descriptive component to
a neural network model, a neural net’s choices are difficult to understand.
This often discourages its use. In fact, this technique is often referred to as a
‘black box’ technology.

A key difference between neural networks and other techniques that we
have examined is that neural nets only operate directly on numbers. As a
result, any non-numeric data in either the independent or dependent (output)
columns must be converted to numbers before the data can be used with a
neural net.

Neural networks are based on an early model of human brain function.
Although they are described as ‘networks’, a neural net is nothing more
than a mathematical function that computes an output based on a set of
input values. The network paradigm makes it easy to decompose the larger
function to a set of related sub-functions, and it enables a variety of learning
algorithms that can estimate the parameters of the sub-functions.

1.5.3 Conceptual Clustering and Classification

Most clustering and classification approaches depend on numerically calcu-
lating a similarity, or distance measure. Because of this they are often called
similarity based methods. The knowledge used for classification assignment
is often an algorithm which is opaque and essentially a black box. Concep-
tual clustering and classification, on the other hand, develops a qualitative
language for describing the knowledge used for clustering. It is basically in
the form of production rules or decision trees which are explicit and trans-
parent. The inductive system C5.0 (previously C4.5) is a typical approach.
It is able to automatically generate decision trees and production rules from
databases. Decision trees and rules have a simple representative form, making
the inferred model relatively easy to comprehend by the user. However, the
restraint to a particular tree or rule representation can significantly restrict
the representation’s power. In addition, available approaches have been de-
veloped, mainly for problem domains where variables only take categorical
values, such as color being green and red. They are not effective in dealing
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with variables that take numerical values. The use of discretization of numer-
ical variables to categorical descriptions is a useful approach. However more
power discretization techniques are required.

1.5.4 Dependency Modeling

Dependency modeling describes dependencies among variables. Dependency
models exist at two levels: structural and quantitative. The structural level
of the model specifies (often in graphical form) which variables are locally
dependent. The quantitative level specifies the strengths of the dependen-
cies, using some numerical scale. Examples of tools for dependency modeling
include probabilistic (or Bayesian) graphs and fuzzy digraph graphs.

Take probabilistic networks as an example. Table 1.2 shows a collection
of 10 data patterns. Each is described by three attributes. The task of depen-
dency modeling, by using probabilistic networks, is to learn both the network
structure and a conditional probabilistic table. For the data collection of Ta-
ble 1.3, it is not possible to know, all at once the most probable dependencies.
Theoretically, for a given database there is a unique structure which has the
highest joint probability and can be found by certain algorithms such as
those developed by Cooper and Herskovits [Cooper-Herskovits 1991]. When
a structure is identified, the next step is to find a probabilistic table such as
that shown in Table 1.3.

Probabilistic graphical models are very powerful representation schemes
which allow for fairly efficient inference and for probabilistic reasoning. How-
ever, few methods are available for inferring the structure from data, and they
are limited to very small databases. Therefore, normally there is the need to
find the structure by interviewing domain experts. For a given data structure
there are several successful reports on learning conditional probabilities from
data.

Other dependency modeling approaches include statistical analysis (e.g.,
correlation coefficients, principal component and factor analysis) and sensi-
tivity analysis using neural networks.

1.5.5 Summarization

Summarization provides a compact description for a subset of data. Simple
examples would be the mean and standard deviations. More sophisticated
functions involve summary rules, multi-variate visualization techniques, and
functional relationships between variables.

A notable technique for summarization is that of mining association rules.
Given a database, the association rule mining techniques finds all associations
of the form:

IF {set of values} THEN {set of values}
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Table 1.2. A database example

Variable values
case x1 x2 x3

1 1 0 0
2 1 1 1
3 0 0 1
4 1 1 1
5 0 0 0
6 0 1 1
7 1 1 1
8 0 0 0
9 1 1 1
10 0 0 0

Table 1.3. The probabilistic table associated with the probabilistic structure

p(x1 = 1) = 0.5 p(x1 = 0) = 0.5
p(x2 = 1|x1 = 1) = 0.8 p(x2 = 0|x1 = 1) = 0.2
p(x2 = 1|x1 = 0) = 0.2 p(x2 = 0|x1 = 0) = 0.8
p(x3 = 1|x2 = 1) = 1 p(x3 = 0|x2 = 1) = 0

p(x3 = 1|x2 = 0) = 0.2 p(x3 = 0|x2 = 0) = 0.8

A rule is valid given two parameters minsupport and minconfidence,
such that the rule holds with certainty > minconfidence and the rule is
supported by at least minsupport cases. Some commercial systems have been
developed using this approach.

1.5.6 Regression

Linear (or non-linear) regression is one of the most common approaches used
for correlating data. Statistical regression methods often require the user to
specify the function over which the data is to be fitted. In order to specify
the function, it is necessary to know the forms of the equations governing the
correlation for the data. The advantage of such methods is that it is possible
to gain from the equation, some qualitative knowledge about input-output
relationships. However, if prior knowledge is not available, it is necessary to
find out the most probable function by trial-and-error. This may require a
great deal of time-consuming effort. Feed-forward neural networks (FFNNs)
do not need functions to be fixed in order to learn. They have shown quite
remarkable results in representing non-linear functions. However the resulting
function using a FFNN is not easy to understand and is virtually a black box
with no explanations.

1.5.7 Case-Based Learning

Case-based learning is based on acquiring knowledge represented by cases. It
employs reasoning by analogy. Case-based learning focuses on the indexing
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and retrieval of relevant precedents. Typically, the solution sequence is a
parameterized frame, or schema, where the structure is more or less fixed,
rather than expressed in terms of an arbitrary sequence of problem-solving
operators. Case-based reasoning is particularly useful for utilizing data which
has complex internal structures. Differing from other data mining techniques,
it does not require a large number of historical data patterns. Only a few
reports have been produced on the application of case-based reasoning in
process industries. These include case-based learning for historical equipment
failure databases and equipment design.

1.5.8 Mining Time-Series Data

Many industries and businesses deal with time-series or dynamic data. It is
apparent that all statistical and real-time control data used in process mon-
itoring and control is essentially time-series. Most KDD techniques cannot
account for time series of data. Time series data can be dealt with by car-
rying out preprocessing of the data in order to use minimum data points to
capture the features and remove noise. These techniques include filters, e.g.,
Kalman filters, Fourier and wavelet transforms, statistical approaches and
neural networks, as well as various qualitative signal interpretation methods.

1.6 Data Mining and Marketing

The standard success stories of KDD [Piatetsky-Matheus 1992] come primar-
ily from marketing. Suppose you own a mail-order firm. You have a database
in which, for fifteen years, you have kept data on which clients reacted to
what mailings, and what products they bought. Naturally, such a database
contains a great deal of potentially interesting data. A number of queries
become possible: first you will want to know what groups of clients there are.
Then you need to know whether to classify these according to region, age,
product groups, or spending patterns.

It would probably be wisest to use a different classification for each mar-
keting action. For example,: generally the response to mailing is 3 to 4% at
most; and the rest of the letters might as well not have been sent. A neural
network can analyze mailing from the past and in this way select only those
addresses that give a fair chance of response. Thus one can sometimes save as
much as 50% of mailing costs, while maintaining a steady response. A clus-
tering of one’s clients can be found in various ways—via statistical methods,
genetic algorithms, attribute-value learners, or neural networks. The next
question which can be asked concerns with the relationship between groups.
It also concerns with trends. Clients buying baby clothes today may buy
computer games in ten years, and fifteen years later a mopped.

It is obvious that knowing and applying these kinds of rules creates great
commercial opportunities. However, it is not an easy task to choose the right
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pattern-recognition technique for your data. There are many different tech-
niques, including Operations Research (OR) and genetic algorithms. If one
technique finds a pattern, the others will often find one as well, provided
the translation of the problem to the learning technique (the so-called repre-
sentational engineering) has been done by a specialist. In the case of neural
networks, the problem must be translated into values that can be fed to the
input nodes of a network. In the case of genetic algorithms, the problem has to
be considered in terms of strings of characters (chromosomes). A translation
to points in a multi-dimensional space has to be made with OR-techniques,
such as k-nearest neighbor.

Data mining has become widely recognized as a critical field by companies
of all types. The use of valuable information ‘mined’ from data is recognized
as necessary to maintain competitiveness in today’s business environments.
With the advent of data warehousing making the storage of vast amounts of
data common place and the continued breakthroughs in increased computing
power, businesses are now looking for technology and tools to extract usable
information from detailed data.

Data mining has received the most publicity and success in the fields of
database marketing and credit-card fraud detection. For example, in database
marketing, great accomplishments have been achieved in the following areas.

– Response modeling, predicts which prospects are likely to buy, based on
previous purchase history, demographics, geographics, and life-style data.

– Cross-sellingmaximizes sales of products and services to a company’s exist-
ing customer base by studying the purchase patterns of products frequently
purchased together.

– Customer valuation predicts the value or profitability of a customer over a
specified period of time based on previous purchase history, demographics,
geographics, and life-style data.

– Segmentation and profiling improves understanding of a customer segment
through data analysis and profiling of prototypical customers.

As to credit-card fraud detection, data mining techniques have been ap-
plied in situations such as break-in and misuse detection and user identity
verification.

1.7 Solving Real-World Problems by Data Mining

Several years ago, data mining was a new concept for many people. Data
mining products were new and marred by unpolished interfaces. Only the
most innovative or daring early adopters were attempting to apply these
emerging tools. Today’s products have matured and they are accessible to
a much wider audience [Fayyad-Simoudis 1997]. We briefly recall some well-
known data mining products below.
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One of the most popular and successful applications of database systems
is in the area of marketing where a great deal of information about customer
behavior is collected. Marketers are interested in finding customer preferences
so as to target them in their future campaigns [Berry, 1994, Fayyad-Simoudis
1997].

Development of a knowledge-discovery system is complex. It not only
involves a plethora of data mining tools, it usually depends on the application
domain which is determined by the extent of end-user involvement.

The following brief description of several existing knowledge-discovery
systems exemplifies the nature of the problems being tackled and helps to
visualize the main design issues arising therein.

(1) The SKICAT (Sky Image Cataloging and Analysis Tool) [Fayyad-
Piatetsky 1996] system concerns an automation of reduction and analysis of
the large astronomical dataset known as the Palomar Observatory Digital Sky
Survey (POSS-II). The database is huge: three terabytes of images containing
in the order of two billion sky objects. This research was initiated by George
Djorgovski from the California Institute of Technology who realized that new
techniques were required in order to analyze such huge amounts of data. He
teamed up with Jet Propulsion Laboratory’s Usama Fayyad and others. The
result was SKICAT.

The SKICAT system integrates techniques for image processing, data
classification, and database management. The goal of SKICAT is to classify
sky objects which have been too faint to be recognized by astronomers. In
order to do this the following scheme was developed: First, faint objects were
selected from “normal” sky images. Then, using data from a more powerful
telescope, the faint objects were classified. Next, the rules were generated
from the already classified set of faint objects directly from “normal” sky
images. These rules were then used for classifying faint objects directly from
“normal” sky images. The learning was carried out in a supervised mode. In
the first step the digitized sky images were divided into classes. The initial
feature extraction is done by association with SKICAT image processing soft-
ware. Additional features, invariant within and across sky images, were then
derived to assure that designed classifiers would make accurate predictions
on new sky images.

These additional, derived, features are important for the successful op-
eration of the system. Without them the performance of the system drops
significantly. To achieve this, the sky image data is randomly divided into
training and testing data sets. For each training data set a decision tree is
generated and rules are derived and checked on the corresponding testing
data. From all the rules generated, a greedy set-covering algorithm selects a
minimal subset of ‘best’ rules.

(2) Health-KEFIR (Key Findings Reporter) is a knowledge discovery sys-
tem used in health-care as an early warning system [Fayyad-Piatetsky 1996].
The system concentrates on ranking deviations according to measures of how
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interesting these events are to the user. It focuses on discovering and ex-
plaining key findings in large and dynamic databases. The system performs
an automatic drill-down through data along multiple dimensions to determine
the most interesting deviations of specific quantitative measures relative to
their previous and expected values. The deviation technique is a powerful tool
used in KEFIR to identify interesting patterns from the data. The deviations
are then ranked using some measure of ‘interestingness’, such as looking at
the actions which can be taken in response to the relevant deviations, and
may even generate recommendations for corresponding actions. KEFIR uses
Netscape to present its findings in a hypertext report, using natural language
and business graphics.

(3) TASA (Telecommunication Network Alarm Sequence Analyzer) was
developed for predicting faults in a communication network [Fayyad-Piatetsky
1996]. A typical network generates hundreds of alarms per day. TASA system
generates rules like ‘if a certain combination of alarms occur within (...) time
then an alarm of another type will occur within (...) time’. The time periods
for the ‘if’ part of the rules are selected by the user, who can rank or group
the rules once they are generated by TASA.

(4) R-MINI system uses both deviation detection and classification tech-
niques to extract useful information from noisy domains [Fayyad-Piatetsky
1996]. It uses logic to generate a minimal size rule set that is both complete
and consistent.

First it generates one rule for each example. Then it reduces the number
of rules by two subsequent steps. Step 1: it generalizes the rule so it covers
more positive examples without allowing it to cover any negative examples.
Step 2: weaker redundant rules are deleted.

Second, it replaces each rule with a rule that is simpler and will not
leave any examples uncovered. This system was tested on Standard and Poor
500 data over a period of 78 months. It was concerned with 774 securities
described by 40 variables each. The decision, discretized, variable was the
difference between the S&P 500 average return and the return of a given
portfolio. The discretization is from ‘strongly performing’ (6% above market),
through “neutral” (plus or minus 2%) to “strongly underperforming” (6%
below). The generated rules can then be used for prediction of a portfolio
return. Obviously the rules have to be regenerated periodically as new data
becomes available.

It is noted that the above knowledge discovery systems rely quite heav-
ily on the application domain constraint implicit relationships observed in
the problem, etc. The role of the user interface is also essential. Below are
examples of domain-independent systems.

(5) Knowledge Discovery Workbench (KDW) by Piatetsky-Shapiro and
Matheus (1992). This is a collection of methods used for interactive analysis
of large business databases. It includes many different methods for clustering,
classification, deviation detection, summarization, dependency analysis, etc.
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It is the user, however, who needs to guide the system in searches. Thus, if
the user is knowledgeable in both the domain and the tools used, the KDW
system can be domain-independent and versatile.

(6) Clementine is a commercial software package for data mining (In-
tegrated Solutions, Ltd.) [Fayyad-Piatetsky 1996]. Basically it is a classifier
system based on neural networks and inductive machine learning. It has been
applied for the prediction of viewing audiences for the BBC, selection of retail
outlets, anticipating toxic health hazards, modeling skin corrosivity, and so
on.

1.8 Summary

In this chapter, we have briefly introduced some background knowledge of
association rule mining with reference to its parent topic: data mining. By
way of a summary, we firstly discuss the trends of data mining. An outline
of this book is then presented.

1.8.1 Trends of Data Mining

It is expected that data mining products will evolve into tools that support
more than just the data mining step in knowledge discovery and that they
will help encourage a better overall methodology [Wu 2000]. Data mining
tools operate on data, so we can expect to see algorithms move closer to the
data, perhaps into the DBMS itself.

The major advantage that data mining tools have over traditional anal-
ysis tools is that they use computer cycles to replace human cycles [Fayyad-
Piatetsky 1996]. The market will continue to build on that advantage with
products that search larger and larger spaces to find the best model. This
will occur in products that incorporate different modeling techniques in the
search. It will also contribute to ways of automatically creating new variables,
such as ratios or rollups. A new type of decision tree, known as an oblique
tree, will soon be available. This tree generates splits based on compound
relationships between independent variables, rather than the one-variable-at-
a-time approach used today.

Many data mining tools [Fayyad-Simoudis 1997] still require a significant
level of expertise from users. Tool vendors must design better user interfaces
if they hope to gain wider acceptance of their products, particularly for use in
mid-size and smaller companies. User friendly interfaces will allow end user
analysts with limited technical skills to achieve good results. At the same
time experts will be able to tweak models in any number of ways, and rush
users, at any level of expertise, quickly through their learning curves.

Recently, many meetings and conferences have offered forums to explore
the progress and future possible work concerning data mining. For example, a
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group of researchers met in Chicago in July 1997, in La Jolla in March 1997,
and February, 1998 to discuss the current state of the art of data mining, data
intensive computing, and the opportunities and challenges for the future. The
focus of the discussions was on mining large, massive, and distributed data
sets.

As we have seen, there have been many data mining systems developed in
recent years. This trend of research and development is expected to continue
to flourish because of the huge amount of data which have been collected in
databases, and the necessity to understand research and make good use of,
such data in decision making. This serves as the driving force in data mining
[Fayyad-Stolorz 1997, Han 1999].

The diversity of data, data mining tasks, and data mining approaches pose
many challenging research issues. Important tasks presenting themselves for
data mining researchers and data mining system and application developers
are listed below:

– establishing a powerful representation for patterns in data;
– designing data mining languages;
– developing efficient and effective data mining methods and systems;
– exploring efficient techniques for mining multi-databases, small databases,
and other special databases;

– constructing of interactive and integrated data mining environments; and
– applying data mining techniques to solve large application problems.

Moreover, with increasing computerization, the social impact of data min-
ing should not be under-estimated. When a large amount of inter-related data
is effectively analyzed from different perspectives, it can pose threats to the
goal of protecting data security and guarding against the invasion of privacy.
It is a challenging task to develop effective techniques for preventing the dis-
closure of sensitive information in data mining. This is especially true as the
use of data mining systems is rapidly increasing in domains ranging from
business analysis and customer analysis to medicine and government.

1.8.2 Outline

The rest of this book focuses on techniques for mining association rules in
databases. Chapter 2 presents the preliminaries for identifying association
rules, including the required concepts, previous efforts, and techniques neces-
sary for constructing mining models upon existing mathematical techniques
so that the required models are more appropriate to the applications.

Chapters 3, 4, and 5 demonstrate techniques for discovering hidden pat-
terns, including negative association rules and causal rules. Chapter 3 pro-
poses techniques for identifying negative association rules that have low-
frequency and strong-correlation. Existing mining techniques do not work
well on low-frequency (infrequent) itemsets because traditional association
rule mining has, in the past, been focused only on frequent itemsets.



1.8 Summary 23

Chapter 4 explores techniques for mining another kind of hidden pattern
causal rules between pairs of multi-value variables X and Y by partition-
ing, for which the causal rule is represented in the form X → Y with con-
ditional probability matrix MY |X . This representation is apparently more
powerful than item-based association rules and quantitative-item-based as-
sociation rules. However, the causal relations are represented in a non-linear
form a matrix for which it is rather difficult to make decisions by the rules.
So, in Chapter 5, we also advocate a causal rule analysis.

Chapter 6 presents techniques for mining very large databases based on
‘instance selection’. It includes four models as: (1) identifying approximate
association rules by sampling; (2) searching real association rules according
to approximate association rules (3) incremental mining; and (4) anytime
algorithm.

In Chapter 7 we develop a new technique for mining association rules
in databases that utilizes external data. It includes collecting external data,
selecting believable external data, and synthesizing external data to improve
the mined association rules in a database. This technique is particularly useful
to companies such as nuclear power plants and earthquake bureaus, which
might have very small databases.

Finally, we summarize this book in Chapter 8. In particular, we suggest
four important open problems in this chapter.
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This chapter recalls some of the essential concepts related to associ-
ation rule mining, which will be utilized throughout the book. Some
existing research into the improvement of association rule mining
techniques is also introduced to clarify the process.
The chapter is organized as follows. In Section 2.1, we begin by
outlining certain necessary basic concepts. Some measurements of
association rules are discussed in Section 2.2. In Section 2.3, we
introduce the Apriori algorithm. This algorithm searches large (or
frequent) itemsets in databases. Section 2.4 introduces some research
into mining association rules. Finally, we summarize this chapter in
Section 2.5.

2.1 Basic Concepts

Association rule mining can be defined formally as follows:
I = {i1, i2, · · · , im} is a set of literals, or items. For example, goods such as

milk, sugar and bread for purchase in a store are items; and Ai = v is an item,
where v is a domain value of the attribute Ai, in a relation R(A1, · · · , An).

X is an itemset if it is a subset of I. For example, a set of items for
purchase from a store is an itemset; and a set of Ai = v is an itemset for the
relation R(PID,A1, A2, · · · , An), where PID is a key.

D = {ti, ti+1, · · · , tn} is a set of transactions, called a transaction database,
where each transaction t has a tid and a t-itemset t = (tid, t-itemset). For
example, a customer’s shopping trolley going through a checkout is a trans-
action; and a tuple (v1, · · · , vn) of the relation R(A1, · · · , An) is a transaction.

A transaction t contains an itemset X iff, for all items, where i ∈ X , i
is a t-itemset. For example, a shopping trolley contains all items in X when
going through the checkout; and for each Ai = vi in X , vi occurs at position
i in the tuple (v1, · · · , vn).

There is a natural lattice structure on the itemsets 2I , namely the sub-
set/superset structure. Certain nodes in this lattice are natural grouping
categories of interest (some with names). For example, items from a partic-
ular department such as clothing, hardware, furniture, etc; and, from within
say clothing, children’s, women’s and men’s clothing, toddler’s clothing, etc.

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 25-46, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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An itemset X in a transaction database D has a support, denoted as
supp(X). (For descriptive convenience in this book, we sometimes use p(X)
to stand for supp(X).) This is the ratio of transactions in D containing X .
Or

supp(X) = |X(t)|/|D|
where X(t) = {t in D|t contains X}.

An itemset X in a transaction database D is called as a large, or frequent,
itemset if its support is equal to, or greater than, the threshold minimal
support (minsupp) given by users or experts.

The negation of an itemset X is ¬X . The support of ¬X is supp(¬X) =
1− supp(X).

An association rule is the implication X → Y , where itemsets X and Y
do not intersect.

Each association rule has two quality measurements, support and confi-
dence, defined as

– the support of a rule X → Y is the support of X ∪ Y ; and
– the confidence of a rule X → Y is conf(X → Y ) as the ratio |(X ∪
Y )(t)|/|X(t)|, or supp(X ∪ Y )/supp(X).

That is, support = frequencies of occurring patterns; confidence = strength
of implication.

Support-confidence framework ([Agrawal-Imielinski-Swami 1993]): Let I
be a set of items in a database D, X,Y ⊆ I be itemsets, X ∩ Y = ∅,
p(X) = 0 and p(Y ) = 0. Minimal support (minsupp) and minimal confidence
(minconf) are given by users or experts. Then X → Y is a valid rule if

(1) supp(X ∪ Y ) ≥ minsupp,
(2) conf(X → Y ) = supp(X∪Y )

supp(X) ≥ minconf ,
where ‘conf(X → Y )’ stands for the confidence of the rule X → Y .

Mining association rules can be broken down into the following two sub-
problems.

(1) Generating all itemsets that have support greater than, or equal to, user
specified minimum support. That is, generating all frequent itemsets.

(2) Generating all rules that have minimum confidence in the following simple
way: For every frequent itemset X , and any B ⊂ X , let A = X − B. If
the confidence of a rule A→ B is greater than, or equal to, the minimum
confidence (or supp(X)/supp(A) ≥ minconf), then it can be extracted as
a valid rule.

To demonstrate the use of the support-confidence framework, we outline
an example of the process of mining association rules below.
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Table 2.1. A transaction database

TID Items
100 A C D
200 B C E
300 A B C E
400 B E

Let item universe be I = {A,B,C,D,E} and transaction universe be
TID = {100, 200, 300, 400}.

In Table 2.1, 100, 200, 300, and 400 are the unique identifiers of the four
transactions: A = sugar, B = bread, C = coffee, D = milk, and E = cake.

Each row in the table can be taken as a transaction. We can identify asso-
ciation rules from these transactions using the support-confidence framework.
Let

minsupp = 50% (to be frequent, an itemset must occur in at least 2
transactions); and
minconf = 60% (to be a high-confidence, or valid, rule, at least 60%
of the time you find the antecedent of the rule in the transactions,
you must also find the consequence of the rule there).

By using the support-confidence framework, we present a two-step asso-
ciation rule mining as follows.

(1) The first step is to count the frequencies of k-itemsets. In Table 2.1,
item {A} occurs in the two transactions, TID = 100 and TID = 300.
Its frequency is 2, and its support, supp(A), is 50%, which is equal to
minsupp = 50%. Item {B} occurs in the three transactions, TID = 200,
TID = 300 and TID = 400. Its frequency is 3, and its support, supp(B),
is 75%, which is greater than minsupp. Item {C} occurs in the three trans-
actions, TID = 100, TID = 200 and TID = 300. Its frequency is 3, and
its support, supp(C), is 75%, which is greater than minsupp. Item {D} oc-
curs in the one transaction, TID = 100. Its frequency is 1, and its support,
supp(D), is 25%, which is less than minsupp. Item {E} occurs in the three
transactions, TID = 200, TID = 300 and TID = 400. Its frequency is 3,
and its support, supp(E), is 75%, which is greater than minsupp. This is
summarized in Table 2.2.

Table 2.2. 1-itemsets in the database

Itemsets Frequency > minsupp
{A} 2 y
{B} 3 y
{C} 3 y
{D} 1 n
{E} 3 y
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We now consider 2-itemsets. In Table 2.1, itemset {A,B} occurs in the one
transaction, TID = 300. Its frequency is 1, and its support, supp(A∪B), is
25%, which is less than minsupp = 50%. In the formulas used in this book,
A ∪ B stands for {A,B}. Itemset {A,C} occurs in the two transactions,
TID = 100 and TID = 300, its frequency is 2, and its support, supp(A ∪
C), is 50%, which is equal to minsupp = 50%. Itemset {A,D} occurs
in the one transaction, TID = 100. Its frequency is 1, and its support,
supp(A ∪D), is 25%, which is less than minsupp = 50%. Itemset {A,E}
occurs in the one transaction, TID = 300. Its frequency is 1, and its
support, supp(A∪E), is 25%, which is less than minsupp = 50%. Itemset
{B,C} occurs in the two transactions, TID = 200 and TID = 300. Its
frequency is 2, and its support, supp(B ∪ C), is 50%, which is equal to
minsupp. This is summarized in Table 2.3.

Table 2.3. 2-itemsets in the database

Itemsets Frequency > minsupp
{A, B} 1 n
{A, C} 2 y
{A, D} 1 n
{A, E} 1 n
{B, C} 2 y
{B, E} 3 y
{C, D} 1 n
{C, E} 2 y

In the same way, 3-itemsets and 4-itemsets can be obtained. This is listed
in Tables 2.4 and 2.5.

Table 2.4. 3-itemsets in the database

Itemsets Frequency > minsupp
{A, B, C} 1 n
{A, B, E} 1 n
{A, C, D} 1 n
{A, C, E} 1 n
{B, C, E} 2 y

Table 2.5. 4-itemsets in the database

Itemsets Frequency > minsupp
{A, B, C, E} 1 n
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However, the 5-itemset in the database is null. According to the above
definitions, {A}, {B}, {C}, {E}, {A,C}, {B,C}, {B,E}, {C,E} and
{B,C,E} in Table 2.1 are frequent itemsets.

(2) The second step is to generate all the association rules from the frequent
itemsets. Because there is no frequent itemset in Table 2.5, the 4-itemsets
contribute no valid association rules. In Table 2.4, there is one frequent
itemset, {B,C,E}, with supp(B ∪ C ∪ E) = 50% = minsupp. For the
frequent itemset {B,C,E}, because supp(B∪C∪E)/supp(B∪C) = 2/2 =
100% greater thanminconf = 60%, B∪C → E can be extracted as a valid
rule. In the same way, because supp(B ∪ C ∪ E)/supp(B ∪ E) = 2/3 =
66.7%, which is greater than minconf , B ∪ E → C can be extracted as
a valid rule and, because supp(B ∪ C ∪ E)/supp(C ∪ E) = 2/2 = 100%
is greater than minconf , C ∪ E → B can be extracted as a valid rule.
Also, because supp(B ∪ C ∪ E)/supp(B) = 2/3 = 66.7% is greater than
minconf , B → C ∪ E can be extracted as a valid rule. The association
rules generated from {B,C,E} are listed in Tables 2.6 and 2.7.

Table 2.6. Association rules with 1-item consequences from 3-itemsets

RuleNo Rule Confidence support > minconf
Rule1 B ∪ C → E 100% 50% y
Rule2 B ∪ E → C 66.7% 50% y
Rule3 C ∪ E → B 100% 50% y

Table 2.7. Association rules with 2-item consequences from 3-itemsets

RuleNo Rule Confidence support > minconf
Rule4 B → C ∪ E 66.7% 50% y
Rule5 C → B ∪ E 66.7% 50% y
Rule6 E → B ∪ C 66.7% 50% y

Also, we can generate all association rules from frequent 2-itemsets in Table
2.3. This is illustrated in Tables 2.8, 2.9, 2.10 and 2.11.

Table 2.8. Association rules for {A, C}
RuleNo Rule Confidence support > minconf
Rule7 A → C 100% 50% y
Rule8 C → A 66.7% 50% y

According to the above definitions, the 14 association rules listed above
can be extracted as valid rules for Table 2.1.
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Table 2.9. Association rules for {B, C}
RuleNo Rule Confidence support > minconf
Rule9 B → C 66.7% 50% y
Rule10 C → B 66.7% 50% y

Table 2.10. Association rules for {B, E}
RuleNo Rule Confidence support > minconf
Rule11 B → E 100% 75% y
Rule12 E → B 100% 75% y

Table 2.11. Association rules for {C, E}
RuleNo Rule Confidence support > minconf
Rule13 C → E 66.7% 50% y
Rule14 E → C 66.7% 50% y

2.2 Measurement of Association Rules

Piatetsky-Shapiro ([Piatetsky 1991]) have proposed that rules from relational
tables are of the form C1 → C2, where C1 and C2 are conditions on tuples of
the relational table. Such a rule may be exact, meaning that all tuples that
satisfy C1 also satisfy C2. It may be strong, meaning that tuples satisfying
C1 almost always satisfy C2. Or, it may be approximate, meaning that some
of the tuples satisfying C1 also satisfy C2. One of the important results in
[Piatetsky 1991] is that a rule X → Y is not interesting if support(X →
Y ) ≈ support(X) × support(Y ). Now, this argument has been taken as an
important critique of mining interesting association rules. In this section, we
briefly recall several well-known measurements of association rules.

2.2.1 Support-Confidence Framework

Agrawal et al. have built a support-confidence framework (see Section 2.1) for
mining association rules from databases ([Agrawal-Imielinski-Swami 1993]).
This framework has since become a common model for mining association
rules.

The support-confidence framework is generally used as a framework
for capturing a certain type of dependence among items represented in a
database. This model measures the uncertainty of an association rule with
two factors: support and confidence. However, the measure is not adequate
for modeling all uncertainties of association rules. For instance, the measure-
ment does not provide a test for capturing the correlation of two itemsets.
Also, the support is limited in informative feedback because it represents the
number of transactions containing an itemset but not the number of items.
In order to improve this framework, some measurements on the support and
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confidence of association rules, such as the chi-squared test model ([Brin-
Motwani-Silverstein 1997]) and collective strength based measure ([Agrawal-
Yu 1998]), have been recently proposed. These different measurements on
support and confidence lead to different models for mining association rules.
Hence, the measuring of uncertainty of association rules has recently become
one of the crucial problems when mining association rules.

In fact, the measurement of the uncertainty of an event has been a popular
topic for research over the years. Mathematical probability theory and statis-
tics offer many well-developed techniques for measuring uncertainty. Thus,
there are many measuring models that can be applied for the estimation of
the uncertain factors (supp and conf) of an association rule. We now recall
three well-known measurements for association rules.

2.2.2 Three Established Measurements

1. Piatetsky-Shapiro has argued that a rule X → Y is not interesting if

support(X → Y ) ≈ support(X)× support(Y )

According to the probability interpretation in [Brin-Motwani-Silverstein
1997], support(X∪Y ) = p(X∪Y ) and confidence(X → Y ) = p(Y |X) =
p(X ∪ Y )/p(X). Then, Piatetsky-Shapiro’s argument can be denoted as

p(X ∪ Y ) ≈ p(X)p(Y )

This means that X → Y cannot be extracted as a rule if p(X ∪ Y ) ≈
p(X)p(Y ). In fact, in probability theory, p(X ∪ Y ) ≈ p(X)p(Y ) denotes
that X is approximately independent of Y .

2. A statistical definition of dependence for the sets X and Y is

Interest(X,Y ) =
p(X ∪ Y )
p(X)p(Y )

,

with the obvious extension to more than two sets ([Brin-Motwani-
Silverstein 1997]). This formula, which we shall refer to as the interest
of Y given X , is one of the main measurements of uncertainty of associ-
ation rules. In this case, the further the value is from 1, the greater the
dependence. Or, for 1 > mininterest > 0, if

| p(X ∪ Y )
p(X)p(Y )

− 1| ≥ mininterest

then X → Y is a rule of interest.

By Piatetsky-Shapiro’s argument, we can divide Interest(X,Y ) into 3
cases as follows:
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(1) if p(X ∪ Y )/(p(X)p(Y )) = 1, then p(X ∪ Y ) = p(X)p(Y ), or Y and X
are independent;

(2) if p(X∪Y )/(p(X)p(Y )) > 1, or p(X∪Y ) > p(X)p(Y ), then Y is positively
dependent on X ; and

(3) if p(X∪Y )/(p(X)p(Y )) < 1, or p(X∪Y ) < p(X)p(Y ), then Y is negatively
dependent to X , or ¬Y is positively dependent on X .

In this way, we can define another form of interpretation of rules of interest
as follows. For 1 > mininterest > 0,

(a) if

p(X ∪ Y )
p(X)p(Y )

− 1 ≥ mininterest

then X ⇒ Y is a rule of interest; and
(b) if

−( p(X ∪ Y )
p(X)p(Y )

− 1) ≥ mininterest

then X → ¬Y is a rule of interest.

This leads to two new definitions of association rules of interest as follows.

Definition 2.1 (the Piatetsky-Shapiro argument) Let I be a set of items in
the database TD, X,Y ⊆ I be itemsets, X ∩Y = ∅, p(X) = 0, and p(Y ) = 0.
Also, minsupp,minconf and mininterest > 0 are given by users or experts.
Then, X → Y can be extracted as a valid rule of interest if

(1) p(X ∪ Y ) ≥ minsupp,
(2) p(Y |X) ≥ minconf , and
(3) |p(X ∪ Y )− p(X)p(Y )| ≥ mininterest.
Definition 2.2 (the Brin, Motwani and Silverstein argument) Let I be a set
of items in the database D; X,Y (⊆ I) be itemsets; X ∩ Y = ∅; p(X) =
0; and p(Y ) = 0. The thresholds: minimum support (minsupp), minimum
confidence (minconf), and minimum interest (mininterest > 0) are given
by users or experts. Then, X → Y can be extracted as a valid rule of interest
if

(1) p(X ∪ Y ) ≥ minsupp,
(2) p(Y |X) ≥ minconf , and
(3) | p(X∪Y )

p(X)p(Y ) − 1| ≥ mininterest.

Here, condition (3) ensures that X → Y is a rule of interest.

3. According to the support-confidence framework, and the Brin, Motwani
and Silverstein argument, we can take
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(1) X ∩ Y = ∅,
(2) p(X ∪ Y ) ≥ minsupp,
(3) p(Y |X) ≥ minconf (e.g. conf(X → Y ) ≥ minconf), and
(4) | p(X∪Y )

p(X)p(Y ) − 1| ≥ mininterest,
as the conditions that association rule X → Y can be extracted to a
valid rule of interest, where the thresholds, minimum support (minsupp),
minimum confidence (minconf) and minimum interest (mininterest >
0), are given by users or experts.

Mathematical probability theory and statistics are certainly the oldest and
most widely used techniques for measuring uncertainty in many applications.
Therefore, we can also apply these rope techniques to estimate the uncertain
factors (supp and conf) of an association rule.

2.3 Searching Frequent Itemsets

Identifying frequent itemsets is one of the most important issues faced by the
knowledge discovery and data mining community. There have been a number
of excellent algorithms developed for extracting frequent itemsets in very
large databases. Apriori is a famous, and widely-used, algorithm for mining
frequent itemsets (see [Agrawal-Imielinski-Swami 1993]). For efficiency, many
variations of this approach, such as the hash-based algorithm (see [Park-
Chen-Yu 1995]) and the OPUS-based algorithm (see [Webb 2000]), have been
constructed. To match the algorithms already developed, we first present the
Apriori algorithm, we then design an optimized algorithm by pruning all
uninteresting frequent itemsets.

2.3.1 The Apriori Algorithm

As we have seen in Section 2.1, the first step of association rules mining is
finding frequent itemsets in databases. The complexity of an association rules
mining system is heavily dependent upon the complexity of the corresponding
algorithm for identifying frequent itemsets.

The following algorithm FrequentItemsets is used to generate all fre-
quent itemsets in a given database D. This is the Apriori algorithm. The
parameter dbsize is the total number of tuples in the database.

Algorithm 2.1 FrequentItemsets
begin
Input: D: data set; minsupp: minimum support;
Output: L: frequent itemsets;
let frequent itemset set L← {};
let frontier set F ← {{}};
while F = {} do begin
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–make a pass over the database D
let candidate set C ← {};
forall database tuples t do
forall itemsets f in F do
if t contains f then begin
let Cf ← candidate itemsets that are extensions

of f and contained in t;
forall itemsets cf in Cf do

if cf ∈ C then
cf .count← cf .count+ 1;

else
cf .count← 0; C ← C ∪ {cf};

end

–consolidate
let F ← {};
forall itemsets c in C do begin
if c.count/dbsize > minsupp then

L← L ∪ c;
if c should be used as a frontier in the next pass then

F ← F ∪ c;
end
end

end

The Apriori algorithm makes multiple passes over a given database. The
frontier set for a pass consists of those itemsets that are extended during
the pass. In each pass, the support for certain itemsets is measured. These
itemsets, referred to candidate itemsets, are derived from the tuples in the
database and the itemsets contained in the frontier set.

Associated with each itemset is a counter that stores the number of trans-
actions in which the corresponding itemset has appeared. This counter is
initialized to zero when an itemset is created.

Initially, the frontier set consists of only one element, which is an empty
set. At the end of a pass, the support for a candidate itemset is compared to
minsupp to determine whether it is a frequent itemset. At the same time, it
is determined whether this itemset should be added to the frontier set for the
next pass. The algorithm terminates when the frontier set becomes empty.
The support count for the itemset is preserved when an itemset is added to
the frequent/frontier set.

However, in a given large database, the Apriori algorithm FrequentItem-
sets used for identifying frequent itemsets, involves a search with little heuris-
tic information in a space with an exponential amount of items and possible
itemsets. This algorithm may suffer from large computational overheads when
the number of frequent itemsets is very large ([Webb 2000]). For example,



2.3 Searching Frequent Itemsets 35

suppose there are 1000 items in a given large database, the average number
of items in each transaction is 6. Then there are almost 1015 possible itemsets
to be counted in the database. In the next subsection, we present an efficient
algorithm for picking up itemsets of interest.

To illustrate the use of the Apriori algorithm, we use the data in Table
2.1 where minsupp = 50%.

Firstly, the 1-itemsets {A}, {B}, {C}, {D}, and {E} are generated as
candidates at the first pass over the dataset, whereA.count = 2,B.count = 3,
C.count = 3, D.count = 1, and E.count = 3. Because minsupp = 50% and
dbsize = 4, {A}, {B}, {C}, and {E} are frequent itemsets. Three are listed
in Table 2.12.

Table 2.12. Frequent 1-itemsets in the dataset in Table 2.1

Itemsets Frequency > minsupp
{A} 2 y
{B} 3 y
{C} 3 y
{E} 3 y

Secondly, the frequent 1-itemsets {A}, {B}, {C}, and {E} are appended
into the frontier set F , and the second pass begins over the dataset to search
for 2-itemset candidates. Each such candidate is a subset of F . The 2-itemset
candidates are {A,B}, {A,C}, {A,E}, {B,C}, {B,E}, and {C,E}, where
A ∪ B.count = 1, A ∪ C.count = 2, A ∪ E.count = 1, B ∪ C.count = 2,
B ∪E.count = 3, and C ∪E.count = 2. A ∪C, B ∪C, B ∪E and C ∪E are
frequent itemsets. They are listed in Table 2.13.

Table 2.13. Frequent 2-itemsets in the dataset in Table 2.1

Itemsets Frequency > minsupp
{A, C} 2 y
{B, C} 2 y
{B, E} 3 y
{C, E} 2 y

Thirdly, the frequent 1-itemsets and 2-itemsets are appended into the
frontier set F , and the third pass begins over the dataset to search for 3-
itemset candidates. Frequent 3-itemsets are listed in Table 2.14.

Table 2.14. Frequent 3-itemsets in the dataset

Itemsets Frequency > minsupp
{B, C, E} 2 y
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Fourthly, the frequent 1-itemsets, 2-itemset, and 3-itemsets are appended
into the frontier set F , and the fourth pass begins over the dataset to search
for 4-itemset candidates. There is no frequent 4-itemset, and the algorithm
is ended.

2.3.2 Identifying Itemsets of Interest

Recalling Piatetsky-Shapiro’s argument, if

p(X ∪ Y ) ≈ p(X)p(Y )

then X → Y cannot be extracted as a rule. In fact, in probability theory,
p(X∪Y ) ≈ p(X)p(Y ) denotesX as approximately independent of Y . In other
words, if |p(X∪Y )−p(X)p(Y )| ≥ mininterest, the rule X → Y is of interest,
and X ∪ Y is called an interested itemset, where mininterest is a minimum
interest value specified by users. In the reverse case, if |p(X∪Y )−p(X)p(Y )| <
mininterest, the rule X → Y is not of interest, and X ∪ Y is called an
uninteresting itemset. For this argument, we can establish a faster algorithm
for picking out all itemsets of interest in a given database.

As we will see shortly, many of the frequent itemsets will relate to rules
that are not of interest. If only frequent itemsets of interest are extracted, the
search space can be greatly reduced. Therefore, we now construct an efficient
algorithm for identifying frequent itemsets of interest, by pruning.

Normally, the Apriori algorithm is used to generate all frequent item-
sets in a given database. We want only the interesting frequent itemsets in
the database to be generated. Thus, the uninteresting frequent itemsets are
pruned in the following algorithm.

Algorithm 2.2 FrequentItemsetsbyPruning
begin
Input: D: data set; minsupp: minimum support; mininterest: min-
imum interest;
Output: Frequentset: frequent itemsets;
(1) let frequent set Frequentset← {};
(2) let L1 ← {frequent 1-itemsets};
let Frequentset← Frequentset ∪ L1;

(3) for (k = 2; Lk−1 = {}; k ++) do
begin

//Generate all possible k-itemsets of interest in D.
letCk ← {{x1, . . . xk−2, xk−1, xk} | {x1, . . . xk−2, xk−1} ∈ Lk−1 ∧

{x1, . . . xk−2, xk} ∈ Lk−1};
for any transaction t in D do
begin

//Check which k-itemsets are included in transaction t.
let Ct ← the k-itemsets in t that are contained by Ck;
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for any itemset A in Ct do
let A.count← A.count+ 1;

end
let Lk ← {c|c ∈ Ck ∧ (p(c) = (c.count/|D|) >= minsupp)};

//Prune all uninteresting k-itemsets in Lk

for any itemset i in Lk do
if an itemset i is not of interest then;
let Lk ← Lk − {i};

end
let Frequentset← Frequentset ∪ Lk;

(4) output the frequent itemsets Frequentset in D;
end

The algorithm FrequentItemsetsbyPruning is used to generate all fre-
quent itemsets of interest in a database D. This algorithm is similar to the
former algorithm, FrequentItemsets, so we simply elucidate the differences
in Step (3). This step generates all sets Lk for k ≥ 2 by way of a loop, where
Lk is the set of all frequent k-itemsets in D generated in the kth pass of the
algorithm, and the end-condition of the loop is Lk−1 = {}. For k ≥ 2, we
need to prune all uninteresting k-itemsets from the set Ck. That is, for any
itemset i in Ck, if |p(X ∪ Y )− p(X)p(Y )| < mininterest for any expressions
i = X ∪ Y of i, then i is an uninteresting frequent itemset, and it must be
pruned from Ck.

After all uninteresting frequent itemsets are pruned, the searched space
for extracting frequent itemsets is obviously reduced, and all data can be
maintained in the memory. To demonstrate the use of the above algorithm,
we present the following example.

Example 2.1 Let D be a given transaction database with 10 transactions
from a grocery store (see Table 2.15). Let A = bread, B = coffee, C = tea,
D = sugar, E = beer, and F = butter. Assume minsupp = 0.3 and
mininterest = 0.07. The supports of frequent itemsets in both the set L by
FrequentItemsets and the set Frequentset by FrequentItemsetsbyPruning
are shown below.

In Table 2.15, there are six 1-itemsets: A, B, C, D, E and F , in RD.
For minsupp = 0.3, all are frequent 1-itemsets in both of the sets L and
Frequentset. This is listed in Table 2.16 below. And L1 = {A,B,C,D,E, F}.

In Table 2.15, the set C2 of the 2-itemsets is: AB 1, AC, AD, AE,
AF , BC, BD, BE, BF , CD, CE, CF , DE, DF and EF . Each of the
above 2-itemsets contains at least one subset of L1. For minsupp = 0.3,
L2 = {AB,AC,AD,BC,BD,BF,CD,CF} are all frequent 2-itemsets of L,
as listed in Table 2.17, for the algorithm FrequentItemsets.
1 For simplicity, we sometimes use AB for {A, B}.
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Table 2.15. Transaction databases in RD

Transaction ID Items
T1 A, B, D
T2 A, B, C, D
T3 B, D
T4 B, C, D, E
T5 A, C, E
T6 B, D, F
T7 A, E, F
T8 C, F
T9 B, C, F
T10 A, B, C, D, F

Table 2.16. 1-items in both of L and Frequentset

Item Number of Support
Transactions p(X)

A 5 0.5
B 7 0.7
C 6 0.6
D 6 0.6
E 3 0.3
F 5 0.5

Table 2.17. 2-itemsets in L

Item Number of Support
Transactions p(X)

A, B 3 0.3
A, C 3 0.3
A, D 3 0.3
B, C 4 0.4
B, D 6 0.6
B, F 3 0.3
C, D 3 0.3
C, F 3 0.3

However, for minsupp = 0.3 and mininterest = 0.07, L2 = {BD}
are all frequent 2-itemsets in Frequentset as listed in Table 2.18, for
the algorithm FrequentItemsetsbyPruning. Certainly, because |p(A∪B)−
p(A)p(B)| = |0.3 − 0.5 ∗ 0.7| = 0.05 < mininterest = 0.07, |p(A ∪ C) −
p(A)p(C)| = 0 < mininterest, |p(A ∪ D) − p(A)p(D)| = 0 < mininterest,
|p(B ∪ C) − p(B)p(C)| = 0.02 < mininterest, |p(B ∪ F ) − p(B)p(F )| =
0.05 < mininterest, |p(C ∪ D) − p(C)p(D)| = 0.06 < mininterest, and
|p(C ∪ F ) − p(C)p(F )| = 0 < mininterest. Therefore, AB, AC, AD, BF ,
CD, and CF are not of interest. Hence, AB, AC, AD, BF , CD and CF are
pruned from L2 before it is appended into Frequentset.
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Table 2.18. 2-itemsets in Frequentset

Item Number of Support
Transactions p(X)

B, D 6 0.6

In Table 2.15, the set C3 of the 3-itemsets is: ABC, ABD, ACD,
BCD, BCF , BDF , and CDF . For minsupp = 0.3, L3 = {ABD,BCD}
are all frequent itemsets in L, as listed in Table 2.19, for the algorithm
FrequentItemsets.

Table 2.19. Supports of frequent itemsets in L

Itemset Number of Support
Transactions p(X)

A, B, D 3 0.3
B, C, D 3 0.3

However, in the algorithm FrequentItemsetsbyPruning, for minsupp =
0.3 and mininterest = 0.07, C3 = {} and L3 = {}, as all 3-itemsets are
pruned from C3 because of interest. Thus, Step 2 ends. The frequent itemsets
in Frequentset are the output.

The algorithm FrequentItemsets still needs to identify the longer fre-
quent itemsets in RD. In Table 2.15, the set C4 of the 4-itemsets is: ABCD.
For minsupp = 0.3, L4 = {}. Thus, Step 2 ends, and the frequent itemsets
in L are the output.

The above example show that, there are eight frequent 2-itemsets in L as a
result of the algorithm FrequentItemsets, and only one frequent 2-itemset in
Frequentset created by FrequentItemsetsbyPruning, after the uninterest-
ing frequent itemsets are pruned. In total, there are sixteen frequent itemsets
in L, and eight frequent itemsets of interest in Frequentset. Furthermore,
we can also cut down the searched space by focusing on association rules
of interest in the algorithm FrequentItemsetsbyPruning. This is the same
technique as that used in the algorithm based on OPUS ([Webb 2000]).

2.4 Research into Mining Association Rules

Much of the research activity in the field of data mining has centered around
association rules. There are many excellent publications which summarize
this research, such as [Chen-Han-Yu 1996, Fayyad-Piatetsky 1996, Fayyad-
Stolorz 1997]. The main task of mining association rules is to derive a set of
strong association rules in the form of I → J , where I and J are disjoint sets
of items ([Agrawal-Imielinski-Swami 1993, Brin-Motwani-Silverstein 1997,
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Han-Karypis-Kumar 1997, Miller-Yang 1997, Park-Chen-Yu 1997, Srikant-
Agrawal 1997]). In order to implement this task, a wide range of problems
have been investigated covering such diverse topics as efficient algorithms
for mining association rules ([Agrawal-Srikant 1994, Brin-Motwani-Silverstein
1997, Park-Chen-Yu 1997]), measures of itemsets ([Brin-Motwani-Silverstein
1997, Aggarawal-Yu 1998]), parallel data mining for association rules ([Han-
Karypis-Kumar 1997]), and so on. In this section, we simply recall three
typical approaches of mining association rules established in current liter-
ature: the chi-squared test ([Brin-Motwani-Silverstein 1997]), the FP-tree
based model ([Han-Pei-Yin 2000]), and the OPUS based algorithm ([Webb
2000]).

2.4.1 Chi-squared Test Method

The chi-squared test method was presented by Brin, Motwani and Silverstein
([Brin-Motwani-Silverstein 1997]). This method measures the significance of
associations via the chi-squared test for correlation used in classical statistics.
This leads to a measure that is upward closed in the itemset lattice, enabling
reduction of the mining problem to a search for a border between correlated
and uncorrelated itemsets in the lattice. This approach is useful because it
not only captures correlation, but also detects negative implication. We now
demonstrate this using an example.

Example 2.2 Suppose we have the market basket data from a grocery store,
consisting of n baskets. Let us focus on the purchase of tea and coffee. In
the following table, rows t and ¬t correspond to baskets that do and do not,
contain tea, and similarly columns c and ¬c correspond to coffee. The numbers
represent the percentage of baskets.

Table 2.20. Purchase of tea and coffee

c ¬c
∑

row

t 20 5 25
¬t 70 5 75∑

col
90 10 100

We can apply the support-confidence model to the potential association
rule t → c. The support for this rule is 20%, which is fairly high. The con-
fidence is the conditional probability that a customer buys coffee, given that
he/she buys tea, i.e., P [t∧c]/P [t] = 20/25 = 0.8, or 80%, which is also fairly
high. At this point, we may conclude that the rule t→ c is a valid rule.

Let us consider the fact that a priori probability that a customer buys
coffee is 90%. In other words, a customer who is known to buy tea is less likely
to buy coffee (by 10%) than a customer about whom we have no information.
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This means that the correlation value would be taken as a parameter to
determine whether a rule is valid or not. For this purpose, Brin, Motwani
and Silverstein have offered a measure for discovering association rules using
the chi-squared test as follows.

Let p(A) be the probability that event A occurs, and p(¬A) = 1 − p(A)
the probability that event A does not occur. Likewise, p(A ∧B) is the prob-
ability that both event A and event B occur together, and p(¬A ∧B) is the
probability that event B occurs but event A does not, and so on.

Definition 2.3 The events A and B are independent if p(A∧B) = p(A)p(B).

Similarly, if p(A ∧ B ∧ C) = p(A)p(B)p(C), then A,B, and C are 3-way
independent.

Definition 2.4 If two events are not independent, they are dependent or
correlated.

If there is a series of n trials, the number of times event A occurs is
denoted by On(A), or just O(A) when n is understood. p(A) can be estimated
by On(A)/n. In this way it can be estimated whether p(A ∧B) = p(A)p(B).

To put this in the context of mining association rules, {ia1, · · · , iam} ⊂ I
is a correlation rule if the occurrences of the items ia1 , · · · , iam are correlated.
Let R be {i1,¬i1} × · · · × {ik,¬ik} and r = r1 · · · rk ∈ R. Here R is the set
of all possible basket values, and r is a single basket value. Each value of r
denotes a cell. This terminology comes from viewing R as a k-dimensional
table, known as a contingency table. Let O(r) denote the number of baskets
falling into cell r. To test whether a given cell is dependent, we must determine
whether the actual count in cell r differs sufficiently from the expectation.

In the chi-squared test, expectation is calculated under the assumption of
independence. Thus, E[ij] = On(ij) for a single item, E[¬ij ] = n − On(ij),
and E[r] = n × E[r1]/n × · · · × E[rk]/n. Then the chi-squared statistic is
defined as follows:

χ2 =
∑

r∈R

(O(r) − E[r])2/E[r]

In short, this is a normalized deviation from expectation. The chi-squared
statistic, as defined, will specify whether all k items are k-way independent.
In order to determine whether some subsets of items are correlated, for in-
stance A,B and C in Example 2.1, we merely restrict the range of r to
{A,¬A} × {B,¬B} × {C,¬C}. If all the variables were really independent,
the chi-squared value would be 0 (allowing for fluctuations if n <∞). If it is
higher than a cutoff value (3.84 at the 95% significance level) we reject the
independence assumption. Note that the cutoff value for any given signifi-
cance level can be obtained from widely available tables for the chi-squared
distribution. We now demonstrate the use of the test with the data from
Example 2.1.
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Example 2.3 Let the contingency table for itemsets C and D in Example
2.1 be as follows:

Table 2.21. The contingency table of C and D

D ¬D
∑

row

C 3 3 6
¬C 3 1 4∑

col
6 4 10

Now E[C] = O(C) = 6, while E[D] = O(D) = 6. Note that E[C] is the
sum of row 1, while E[D] is the sum of column 1. The chi-squared value is

(3 − 6× 6/10)2/(6× 6/10) + (3− 6× (10− 6)/10)2/(6× (10− 6)/10)
+ (3− (10− 6)× 6/10)2/((10− 6)× 6/10)
+ (1− (10− 6)× (10− 6)/10)2/((10− 6)× (10− 6)/10)
+ 0.1 + 0.15 + 0.15 + 0.225 = 0.625

Since 0.625 is less than 3.84, we do not reject the independence assump-
tion at the 95% confidence interval.

Example 2.4 Consider itemsets B and D in Example 2.1. The contingency
table is as follows:

Table 2.22. The contingency of B and D

D ¬D
∑

row

B 6 1 7
¬B 0 3 3∑

col
6 4 10

Now E[B] = O(B) = 7, while E[D] = O(D) = 6. The chi-squared value
is

(6 − 6× 6/10)2/(6× 6/10) + (1− 6× (10− 6)/10)2/(6× (10− 6)/10)
+ (0− (10− 7)× 6/10)2/((10− 7)× 6/10)
+ (3− (10− 7)× (10− 6)/10)2/((10− 7)× (10− 6)/10)
= 1.6 + 0.8167 + 1.8 + 2.7 = 6.9167

This chi-squared value of 6.9167 is significant at the 95% significance level.
Furthermore, the largest contribution to the χ2 value comes from the bottom-
right cell, indicating that the dominant dependence is a veteran, being over
40. This matches our intuition.
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2.4.2 The FP-tree Based Model

Traditional frequent patterns mining adopt an Apriori-like candidate set
generation-and-test approach. However, a candidate set generation is still
costly, especially when there exist prolific patterns and/or long patterns. To
overcome this difficulty, Han, Pei and Yin have proposed a novel frequent
pattern mining model based on the frequent pattern tree (FP-tree) ([Han
2000]). The FP-tree structure is defined as follows.

Definition 2.5 (FP-tree): A frequent pattern tree is a tree structure defined
below.

– It consists of one root labelled ‘null’, a set of item prefix subtrees which are
the children of the root, and a frequent-item header table.

– Each node in the item prefix subtree consists of three fields: item-name,
count and node-link, where item-name registers which item the particular
node represents, count registers the number of transactions represented by
the portion of the path reaching the node, and node-link links to the next
node in the FP-tree which carries the same item-name; or it is null if there
are none.

– Each entry in the frequent-item header table consists of two fields, (1) item-
name and (2) head of node-link, which points to the first node in the FP-tree
carrying the item-name.

The process of the FP-tree based model is as follows.
First, an FP-tree is constructed, which is an extended prefix-tree struc-

ture storing crucial, quantitative information about frequent patterns. Only
frequent length-1 items will have nodes in the tree, and the tree nodes are
arranged in such a way that more frequently occurring nodes will have a
better chance of sharing nodes than less frequently occurring ones.

Second, an FP-tree-based pattern fragment growth mining method is de-
veloped, which starts from a frequent length-1 pattern (as an initial suffix
pattern), and examines only its conditional pattern base (a ‘sub-database’
which consists of the set of frequent items co-occurring with the suffix pat-
tern). It then constructs its (conditional) FP-tree, and performs mining re-
cursively with such a tree. The pattern growth is achieved via concatenation
of the suffix pattern with the new patterns generated from a conditional FP-
tree. Since a frequent itemset in any transaction is always encoded in the
corresponding path of the frequent pattern trees, pattern growth ensures the
completeness of the result. In this context, the method is not an Apriori-like
restricted generation-and-test but a restricted test only. The major opera-
tions of mining are count accumulation and prefix path count adjustment,
which are usually much less costly than the candidate generation and pattern
matching operations performed in most Apriori-like algorithms.

Third, the search technique employed in mining is a partitioning-based,
divide-and-conquer method rather than the Apriori-like bottom-up genera-
tion of frequent itemsets combinations. This dramatically reduces the size of
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the conditional pattern base generated at the subsequent level of search, as
well as the size of its corresponding conditional FP-tree. Moreover, it trans-
forms the problem of finding long frequent patterns into looking for shorter
ones and then concatenating the suffix. It employs the least frequent items
as the suffix, which offers good selectivity. All these techniques contribute to
a substantial reduction in search costs.

2.4.3 OPUS Based Algorithm

Identifying frequent itemsets is a procedure for searching an exponential space
that consists of all possible combinations of items and itemsets in a given
database. This is necessary because the items are randomly combined in
the transactions of a database, and the considered itemsets in the database
are apparently of an exponential amount. For example, suppose we have
market basket data from a grocery store with 1000 items. There are then 21000

possible itemsets occurring in the database. Conventional mining approaches
are Apriori-like. Each is a two-stage process consisting of: (1) generating
frequent itemsets, and (2) generating association rules. (for details, please see
‘support-confidence framework’ in Sections 2.1 and 2.2.) However, this can
impose large computational overheads when the number of frequent itemsets
is very large ([Webb 2000]). This will often be the case when association rule
analysis is performed on domains other than basket analysis, or when it is
performed for basket analysis with basket information augmented by other
customer information.

Webb has presented an alternative approach to direct search for asso-
ciation rules for some applications ([Webb 2000]). This method applies the
OPUS search to prune the search space on the basis of inter-relationships
between itemsets.

Therefore, we can see that mining association rules can be tackled as a
search process that starts with general rules (rules with one condition on
the left hand side (LHS)) and searches through successive specializations
(rules formed by adding additional conditions to the LHS). Such a search is
unordered. That is, the order in which successive specializations are added
to an LHS is significant, and A∧B ∧C → X is the same as C ∧B ∧A→ X .
An important component of an efficient search in this context is minimizing
the number of association rules that need to be considered. A key technique
used to eliminate potential association rules from consideration is ‘optimistic
pruning’. Optimistic pruning operates by forming an optimistic evaluation of
the highest rule value that might occur in a region of the search space. An
optimistic evaluation is one that cannot be lower than the actual maximum
value. If the optimistic value for the region is lower than the lowest value that
is of interest, then that region can be pruned. If a search seeks the top m
association rules, then it can maintain a list of the top m rules encountered
at that point during the search. If an optimistic evaluation is lower than
the lowest value of a rule in the top m, then the corresponding region of
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the search space may be pruned. Other pruning rules could perhaps identify
regions that can be pruned because they contain only rules that fail to meet
prespecified constrains such as:

– minimum support (the frequency in the data of the right hand side (RHS)
or of the RHS and LHS in combination);

– minimum lift; or
– being one of the top m association rules on some specified criteria.

Here, ‘lift’ is a frequently utilized measure of association rule utility. The lift
of an association rule = |LHS∧RHS|

|LHS| / |RHS|
n , where |X | is the number of cases

with conditions X , and n is the total number of cases in the data set.
The term credible rule is used to denote association rules for which, at

some given point in a search, it is possible that the rule will be of interest,
using whatever criteria of interest applies for the given search.

If we restrict association rules to having a single condition on the RHS,
two search strategies are plausible:

(1) for each potential RHS, the condition explores the space of possible LHS
conditions; or

(2) for each potential LHS combination of conditions, the space of possible
RHS conditions is explored.

The former strategy leads to the most straight-forward implementation as
it involves a simple iteration through a straight-forward search for each poten-
tial RHS condition. However, this implies accessing the count of the number
of cases covered by the LHS many times, once for each RHS condition for
which an LHS is considered. At the very least, this entails computational
overheads for caching information. At worst, it requires a pass through the
data each time the value is to be utilized. While a pass through the data has
lower overheads when the data is stored in memory rather than on disk, it is
still a time-consuming operation that must be avoided if computation is to
be efficient.

The algorithm, which applies the OPUS search algorithm to obtain an
efficient search for association rules, is designed as a recursive procedure with
three arguments:

(1)CurrentLHS: the set of conditions in the LHS of the rule currently being
considered;

(2) AvailableLHS: the set of conditions that may be added to the LHS of
rules to be explored below this point;

(3) AvailableRHS: the set of conditions that may appear on the RHS of a
rule in the search space at this point and below.

This algorithm is computationally efficient for association rule analysis
during which the number of rules to be found can be constrained and all
data can be maintained in memory.
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2.5 Summary

Knowledge discovery in databases has been an active and attractive re-
search challenge both in the areas of Artificial Intelligence and Databases
([Wu 1995, Zhang 1989]). A prevailing topic in this area is mining associ-
ation rules from databases. Agrawal, Imielinski and Swami have proposed
a support-confidence framework for discovering association rules ([Agrawal-
Imielinski-Swami 1993]). This framework is now widely accepted as a measure
of uncertainty in association rules. However, because different measures on
uncertainty lead to different models for mining association rules, measuring
of uncertainty of association rules has become one of the crucial problems
concerning mining association rules. For this reason, we have systematically
studied possible means of measuring association rules in this chapter. The
key points of this chapter are:

– presented some needed concepts for dealing with association rules;
– recalled previous efforts concerning association rule mining;
– designed an efficient algorithm for identifying association rules of interest;
and

– introduced three efforts on mining association rules: the chi-squared test
model ([Brin-Motwani-Silverstein 1997]), the FP-tree based model ([Han-
Pei-Yin 2000]) and the OPUS based algorithm ([Webb 2000]).



3. Negative Association Rule

During decision making, we are often confronted by a huge amount of
factors. These factors may be either an advantage or a disadvantage
to a decision objective. For the purpose of low-risk (high-profit), we
must scrutinize the possible behavior of these factors. It is partic-
ularly useful to grasp which of the disadvantage factors will rarely
occur when the expected advantage factors occur, by using past data.
Also, we take into account that there are essential differences between
positive and negative association rule mining. Using a pruning algo-
rithm we can reduce the search space, however, some pruned itemsets
may be useful in the extraction of negative rules.
In this chapter, we present new techniques for identifying negative
association rules of interest in databases. The chapter is organized
as follows. We begin by introducing our motivation for the research
in Section 3.1. We argue why our algorithm is focused on discov-
ering positive and negative itemsets of interest in databases. This
argument is illustrated in Section 3.2. In Section 3.3, we illustrate
the effectiveness of focusing on negative association rules of interest.
In Section 3.4, we first define the conditions of negative itemsets
of interest, and then propose an algorithm for generating all possi-
ble positive and negative itemsets of interest for a given database.
In Section 3.5, we build a new model for extracting and measuring
positive and negative association rules of interest using the argument
of Piatetsky-Shapiro, and probability theory. In Section 3.6, we com-
pare our model with some existing mining techniques and, finally, we
summarize the contents of the chapter in Section 3.7.

3.1 Introduction

Traditional association rule mining has been mainly focused on identifying
the relationships strongly associated among itemsets that have frequent and
high-correlation. Association rules enable us to detect the items that com-
monly occur together in an application. Association rules from the support-
confidence framework are positive rules (see Chapter 2). They indicate that

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 47-84, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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the presence of some itemsets will imply the presence of other itemsets within
the same transactions.

In applications, an association rule A → B is used to predict that ‘if
A occurs, then B generally also occurs’. For efficiency, we can apply this
association rule to place ‘B near to A’ for applications such as store layout,
product placement and supermarket management. For a store, associations
analyzing suggests:

(1) higher-rank items, or itemsets, should be placed near to a seller;
(2) B should be placed near to A if there is a rule A→ B for itemsets A and
B.

The first strategy leads to highly efficient marketing due to the fact that
goods frequently purchased every day in the store can easily be reached by
the seller. The second strategy saves time for the seller because a group of
goods often purchased together in the store are selectively laid out. Below we
look at two examples with different types of association rules.

Example 3.1 Consider six itemsets, A,B,C,D,E and F , two association
rules, saying ,A → B and E → F (from the support-confidence model), and
two aisles in a supermarket to place these six itemsets. We know that A and
B should be put in the same aisle, as should E and F . How about C and D?

From the two positive association rules, C andD are not positively associ-
ated with any of the other itemsets. What if we have a rule such as A→ ¬C,
which says that the presence of A in a transaction implies that C is highly
unlikely to be present in the same transaction? We call rules of the form
A→ ¬C negative rules. (In the following sections, we will also have negative
rules in the forms ¬A → C and ¬A → ¬C.) Negative rules indicate that
the presence of some itemsets will imply the absence of other itemsets in the
same transactions. In our current example, if we have a negative association
between A and C (and no other negative associations with C), we would put
C in the same aisle as E and F .

Example 3.2 Investors in an estate will encounter problems of environmen-
tal quality, natural resource use, and problems also of an economic and polit-
ical nature. Analysis of circumstances that give rise to environmental prob-
lems, resource use conflicts, and possible policy solutions to these problems
and conflicts, must depend, not only on positive, but also on negative associ-
ation rules from past data.

This example shows that negative association rules become very impor-
tant if a decision maker wants, for application purposes, to know which dis-
advantage factors rarely occur when certain advantage factors occur. Because
negative association rules are hidden in infrequent itemsets, existing mining
techniques do not work well when identifying these rules.
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There are two issues that have motivated our research into mining, not
only positive association rules, but also negative association rules. First, deci-
sion making in many applications, such as product placement and investment
analysis, often involves a number of factors, including advantage factors and
disadvantage factors. To minimize negative impacts, and maximize possible
benefits, we must scrutinize which of the side-effect factors will rarely (if ever)
occur when the expected advantage factors occur. Negative association rules
such as A → ¬C are very important in decision making because A → ¬C
can tell us that C (which may be a disadvantage factor) rarely occurs when
A (which may be an advantage factor) occurs. Therefore, the above two ex-
amples demonstrate that associations among different factors, both positive
and negative, are useful.

Second, experience in the areas of science and engineering have shown
that negative relationships (such as negative numbers in mathematics, and
negative assertions in logic) play the same important role as positive relation-
ships do. Association rules like A→ ¬C describe another type of relationship
among itemsets: negation. Therefore, negative association rules can be as im-
portant as positive rules in association analysis, although negative rules are
hidden and differ.

For the above reasons, we advocate a way to discover negative associa-
tion rules when identifying (positive) association rules in databases. Mining
negative association rules brings us two direct benefits.

– Logically, the first benefit is to further complete associated relationships
among items as a system in science and technology, in the same way as
we require negative (real) numbers in applications after systems of natural
numbers and positive real numbers are formed.

– The second benefit is to offer more information which might be of use in
supporting decisions for applications.

To illustrate how negative association rules hidden in databases can be
identified, we use the example below.

Example 3.3 Suppose we have market basket data from a grocery store, con-
sisting of n baskets. Let us focus on the purchase of tea (t) and coffee (c).
And let supp(t) = 0.25 and supp(t ∪ c) = 0.2.

We now apply the support-confidence framework (see [Agrawal-Imielinski-
Swami 1993]) to the potential association rule t → c. The support for this
rule is 0.2, which is fairly high. The confidence is the conditional probability
that a customer buys coffee, given that he/she buys tea, i.e.,

supp(t ∪ c)/supp(t) = 0.2/0.25 = 0.8

which is also pretty high. At this point, we may conclude that the rule t→ c
is a valid rule.
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Now, let supp(c) = 0.6, supp(t) = 0.4, supp(t∪c) = 0.05, and minconf =
0.52. Then the conditional probability is

supp(t ∪ c)/supp(t) = 0.05/0.4 = 0.125 < minconf = 0.52,

and supp(t∪c) = 0.05 are low. This means that t∪c is an infrequent itemset,
and t→ c cannot be extracted as a rule in the support-confidence framework.
But

supp(t ∪ ¬c) = supp(t)− supp(t ∪ c) = 0.4− 0.05 = 0.35

is very high, and

supp(t ∪ ¬c)/supp(t) = 0.35/0.4 = 0.875 > minconf

Therefore, t→ ¬c should be extracted from the database.
The rule t→ ¬c is a negative rule. From Example 3.3, we need to exam-

ine infrequent itemsets (such as t ∪ c) to identify negative association rules.
Existing algorithms for association analysis have concentrated on identifying
only frequent itemsets in a given database. This indicates that existing algo-
rithms for discovering frequent itemsets are inadequate for mining negative
association rules.

In fact, for many applications, such as catalog design, store layout, prod-
uct placement, supermarket management and planning, mining positive as-
sociation rules enables us to determine which itemsets occur associated with
an itemset A. And it is also important to apply negative association rules to
determine which itemsets rarely occur associated with A.

However, from the above examples, identifying negative association rules
requires infrequent itemsets in databases. And, as we know, previous algo-
rithms have generally been involved with identifying only frequent itemsets
in a given database. This means that existing algorithms for discovering fre-
quent itemsets are inadequate for extracting negative association rules.

On the other hand, the identification of infrequent itemsets of interest
will involve confronting search spaces of an exponential size. To solve these
problems, we construct a novel and efficient algorithm for picking out, not
only all positive itemsets of interest, but also negative itemsets of interest in
databases. The main advantage of this algorithm is to reduce the size of the
searched space which consists of all possible items and itemsets in a database.

The approach in this chapter differs from existing work in association
analysis in two aspects. First, infrequent itemsets in databases are of interest
to us for mining negative association rules. Second, to design an efficient
model for mining both positive and negative association rules in databases,
we estimate the confidence of association rules, using an increasing degree of
the rule’s conditional probability relative to its priori probability.
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3.2 Focusing on Itemsets of Interest

Although data mining is commonly defined as a non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns
in data (see [Fayyad-Piatetsky 1996]), positive association rules mining has,
to date, solved the only useful aspect of data mining. As we advance into a
more mature stage, researchers are exploring alternatives for finding hidden
patterns. One of hidden patterns is negative association rule among itemsets
that have infrequent and high-correlation. Negative patterns are important
in applications, which tell us which of items rarely occur together. Unfor-
tunately, up until now, mining negative association rules has received little
attention. The aim of this chapter is to develop techniques for identifying
negative association rules of interest in databases.

As we will see, mining negative association rules is very different from that
of mining positive association rules in databases. In particular, identifying
negative association rules presents new problems. These include:

(1) identification of infrequent itemsets of interest;
(2) the exponential increase of the amount of involved (infrequent and fre-

quent) itemsets in databases;
(3) how to efficiently identify both frequent and infrequent itemsets of interest

in databases; and
(4) the construction of an alternative model for measuring negative associa-

tion rules in databases.

So, specified models for extracting negative association rules must be de-
veloped. Before constructing an efficient mining model, we now elucidate
why our algorithm is focused on discovering association rules of interest in
databases.

As we have seen, mining both positive and negative association rules
requires, not only frequent itemsets, but also some infrequent itemsets. How-
ever, identifying frequent itemsets is itself a procedure for searching an ex-
ponential space which consists of all possible items and itemsets in a given
database. This is because the items are randomly combined in the transac-
tions of the database. And the number of itemsets to be considered in the
database can be of an exponential size. For example, suppose we have market
basket data from a grocery store, consisting of n baskets with 1000 items.
Then there are 21000 possible itemsets which might occur in the database.
Although the Apriori algorithm (see [Agrawal-Srikant 1994]), which is a fa-
mous procedure in knowledge discovery and data mining, only deals with
frequent itemsets in databases, it can impose large computational overheads
when the number of frequent itemsets is very large (see [Han-Pei-Yin 2000,
Webb 2000]). To overcome this difficulty, Han, Pei and Yin proposed a novel
frequent pattern mining model based on an FP-tree (see [Han-Pei-Yin 2000]).
Meanwhile, Webb presented an alternative approach to the association rule
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discovery ([Webb 2000]). This was a one-step mining approach, which applies
an OPUS-search to prune the search space on the basis of inter-relationships
between itemsets. According to their experiments, both of the above algo-
rithms are more efficient than the Apriori algorithm and its derivatives.

Now, we have to consider some of the infrequent itemsets which are used
to discover negative association rules in databases. The amount of handled
itemsets is obviously very large. We note that some itemsets pruned in the
OPUS based algorithm might be useful for extracting negative association
rules in a database. In other words, perhaps a frequent itemset should not be
pruned in spite of the fact that it is not contained in any association rules.
Some such frequent itemsets in databases might still be helpful to negative
association rules. So, the existing pruning techniques are not appropriate for
the discovery of negative association rules.

On the other hand, as we will see shortly, the number of possible infrequent
itemsets for negative association rules is often far greater than the number
of frequent itemsets in a database. This means that the amount of itemsets
involved in a database (including possible positive and negative) grows to
almost double. Hence, an efficient algorithm for mining negative associations
must be developed.

For efficiency, when we mine, we focus our attention on only positive and
negative itemsets of interest. In this way, we clarify what negative itemsets
are, and which are interesting negative itemsets for applications. To do so,
we use the argument of Piatetsky-Shapiro on association rules of interest
([Piatetsky 1991]).

Even if we do so, there might still be the problem of exponential searching
spaces for some applications. Indeed, the data sets faced by miners can be
very large. Complete computation for mining this kind of database might not
be feasible, or indeed warranted, when the sources are bounded. To facilitate
mining large scale databases, we advocate a two-phase approach. In the first
phase, we locate all approximate positive and negative itemsets of interest
within a selected instance set of a given large scale database by using a
pruning technique. The second phase adds up the accurate values for all
approximate positive and negative itemsets of interest in the database. The
key problem is how to construct an instance set. It must fit two requirements:

(1) the set must be infrequent enough to be tackled in the memory; and
(2) the frequency of itemsets in the instance set must be approximate to that

in the original database.

Sampling is naturally the fastest and best way to obtain approximate itemsets
of interest from databases.

To select instances in a given large database, we first apply the central
limit theorem to determine, by precision, the size of the instance set. We
then choose at random the instances in the database by using a pseudo-
random number generator. Experience with statistics tells us that the selected
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instance set can approximately hold to the distribution of itemsets in a given
database if the data in the database follows a Bernoulli distribution or a
binomial distribution.

Actually, a transaction randomly appended into a database has two pos-
sible outcomes for an itemset A. They are 1 or 0. Suppose the probability of
A occurring in the database is p, and the probability of A not occurring is
q = 1 − p, then the itemset A in this database has a Bernoulli distribution
according to the definition in [Durrett 1996]. Note that an itemset with a
Bernoulli distribution can also be taken with a binomial distribution. Since
operations (not including the ‘sort’ operation) on a database are random,
an operated database can also be taken as a Bernoulli trial (or a binomial
distribution) for an itemset, if the database has not been sorted. Hence, the
above method is generally sound enough to deal with large scale databases.

Note that the above approximating discovery can be useful in many ap-
plications, including marketing and stock investment, where time might be
limited and only approximate association rules are required. Indeed, for a
short-term stock investor, time is money. Thus, if an investor can obtain ap-
proximate frequent itemsets from data in the stock databases quickly, these
itemsets might be sufficient to enable profitable decisions on investments to
be made. On the other hand, if a stock investor tried to extract all accurate
supports of frequent itemsets from the databases, too much time might be
spent to make decisions and the most opportune time for investment might
pass.

However, looking into reducing search space is not the main aim of this
chapter. For further details of some techniques which lessen the amount of
handled positive and negative itemsets in searched spaces, please see Chapter
6. Meanwhile, this chapter focuses on identifying itemsets of interest in appli-
cations. To demonstrate the utility, we cut down the number of attributes of
each transaction in a given database to an appropriate integer so as to avoid
exponential research space. In doing so, we implement an algorithm specially
designed for mining negative associations.

3.3 Effectiveness of Focusing on Infrequent Itemsets of
Interest

As we have seen, negative association rule mining presents more challenges
than positive association rule mining due to the fact that negative association
rules can be hidden in huge amounts of infrequent itemsets. Unfortunately,
existing algorithms are inadequate for identifying negative association rules.
Focusing on identifying negative association rules from interesting infrequent
itemsets can reduce search space. We will demonstrate the effectiveness of
our approach by an example, but first, let us examine, by example, existing
techniques to ascertain whether any can serve the purpose of identifying
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negative association rules. We assume that minsupp = 0.4 and minconf =
0.6.

Example 3.4 Consider a database TD = {(A,B, D); (B, C, D); (B, D);
(B, C, D, E); (A, B, D, F )}, which has 5 transactions, separated by semi-
colons. Each transaction contains several items, separated by commas.

1. The first solution (a traditional association rule mining technique) is used
to identify positive association rules A→ B (supp = 0.6 and conf = 1),
A→ D (supp = 0.6 and conf = 1), A→ BD (supp = 0.6 and conf = 1),
AB → D (supp = 0.6 and conf = 1), AD → B (supp = 0.6 and
conf = 1), C → B (supp = 0.4 and conf = 1), C → D (supp = 0.4 and
conf = 1), and so on, from 7 frequent itemsets: AB, AD, BC, BD,
CD, ABD, and BCD, in TD. This method cannot be used to identify
negative association rules.

2. The second solution is to directly extend a traditional mining algorithm
to identify negative association rules when positive rules are searched for
in TD. The negative association rules are A→ ¬C, A→ ¬E, A→ ¬F ,
B → ¬E, B → ¬F , C → ¬A, C → ¬E, C → ¬F , D → ¬E, D → ¬F ,
and so on, from 49 infrequent itemsets:

AC,AE,AF,BE,BF,CE,CF,DE,DF,EF,ABC,ABE,
ABF,ACD,ACE,ACF,ADE,ADF,AEF,BCE,BCF,BDE,BDF,
BEF,CDE,CDF,CEF,DEF,ABCD,ABCE,ABCF,ABDE,ABDF,
ABEF,ACDE,ACDF,ACEF,ADEF,BCDE,BCDF,BDEF,CDEF,
ABCDE,ABCDF,ABCEF,ABDEF,ACDEF,BCDEF,ABCDEF.

There are at least 818 possible negative association rules generated from
the 49 infrequent itemsets by using this solution. For example, there are
at least 110 possible negative rules generated from the infrequent
itemset ABCDEF alone.

People may argue that existing techniques, such as the OPUS based al-
gorithm [Webb 2000], can be used to reduce search space. However, some
itemsets that are pruned in the OPUS based algorithm may be useful for
extracting negative association rules from a database. This is the essential
difference between positive and negative association rule mining. In this chap-
ter, we develop new techniques which reduce search space. We demonstrate
the effectiveness of our approach in the continuation of Example 3.4 as fol-
lows.

3. The third solution (Our approach) is to search those itemsets that are
of interest. The simplest method is to consider expressions consisting of
frequent itemsets. That is, if X is an infrequent itemset of interest, there
is at least one expression X = AB where both A and B are frequent
itemsets. In this way, we can reduce the search space to 4 interesting
infrequent itemsets: AC, ABC, ACD, and ABCD.
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From the first observation, traditional approaches cannot directly help
identify negative rules. Using the second solution, it needs to search huge
amounts of negative association rules (at least 818) for a rather small
database. It would be difficult for a user to browse negative rules when the
database is even slightly large. In particular, it is a challenge to identify
which of the rules are really useful to applications. Also, existing techniques
are inefficient in reducing search space. So, at present, we must search huge
spaces to identify negative rules. This strongly encourages us to develop new
techniques for identifying negative rules. In fact, our solution (3) explores ef-
ficient techniques which overcome various difficulties in negative rule mining.
This chapter goes on to exploit efficient techniques which confront the size
and complications of negative association rules in data.

Based on the above analysis, the problem can be formulated as follows.

Research is focused on identifying negative association rules of the
form: A → ¬B (or ¬A → B or ¬A → ¬B), of interest in applica-
tions, where A and B are itemsets, and ¬X stands for the negation
of an itemset X.

3.4 Itemsets of Interest

As we have seen, there can be almost exponential infrequent itemsets in a
database, and only some are useful for mining negative association rules of
interest. So we must make clear which of the negative association rules are
significant for applications. In this section, we first determine the conditions
for identifying negative itemsets of interest in databases. Then, we construct
a procedure for identifying positive and negative itemsets of interest.

3.4.1 Positive Itemsets of Interest

Previous work on the amount of ‘usefulness’ or ‘interest’ of a rule has focused
on how much the actual support of a rule exceeded the expected support,
based on the support of the antecedent and consequent ([Srikant-Agrawal
1997]). Piatetsky-Shapiro argued that a rule X → Y is not interesting if

support(X → Y ) ≈ support(X)× support(Y )

(see [Piatetsky 1991]). This argument reaches a significant probabilistic level,
so we take it as one of the conditions for judging which are the itemsets of
interest.

Because confidence(X → Y ) and support(X ∪ Y ) can be interpreted
according to probability theory as:

support(X ∪ Y ) = p(X ∪ Y )
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confidence(X → Y ) = p(Y |X) =
p(X ∪ Y )
p(X)

([Brin-Motwani-Silverstein 1997, Srikant-Agrawal 1996]) then the Piatetsky-
Shapiro argument can be represented as

p(X ∪ Y ) ≈ p(X)p(Y )

This formula is referred to as the interest of Y given X , and is one of the
main measurements of uncertainty in association rules. Certainly, the further
the value is from 1, the more the dependence. Using Piatetsky-Shapiro’s
argument, we present a new concept for mining association rules from large
databases with the following theorem.

Theorem 3.1 (Piatetsky-Shapiro’s argument) Let I be a set of items in
the database TD, X,Y ⊆ I be itemsets, X ∩ Y = ∅, supp(X) = 0, and
supp(Y ) = 0, where minsupp,minconf and mininterest > 0 are given by
users or experts. Then X → Y can be extracted as a rule of interest if

(1) supp(X ∪ Y ) ≥ minsupp,
(2) supp(Y |X) ≥ minconf , and
(3) |supp(X ∪ Y )− supp(X)supp(Y )| ≥ mininterest.
Proof: We need only prove that

| supp(X ∪ Y )
supp(X)supp(Y )

− 1| ≥ mininterest

For (3),

|supp(X ∪ Y )− supp(X)supp(Y )|
supp(X)supp(Y )

≥ mininterest

supp(X)supp(Y )
,

or

| supp(X ∪ Y )
supp(X)supp(Y )

− 1| ≥ mininterest

supp(X)supp(Y )

Because supp(X)supp(Y ) ≤ 1, so

mininterest

supp(X)supp(Y )
≥ mininterest

1
= mininterest.

Hence,

| supp(X ∪ Y )
supp(X)supp(Y )

− 1| ≥ mininterest

According to the definition of interest, X → Y can be extracted as a rule of
interest.

∇
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As we can see, there are three thresholds: minimum support (minsupp),
minimum confidence (minconf) and minimum interest (mininterest) re-
quired for rules of interest. According to Piatetsky-Shapiro’s argument in
Theorem 3.1, if X → Y is a rule of interest, the condition |supp(X ∪ Y ) −
supp(X)supp(Y )| ≥ mininterest must be satisfied. However, different ap-
plications may require different values of minimum interest (mininterest).
For example, mininterest = 0.08 is a valid choice in Example 3.3, but it
is a poor choice when all supports of the itemsets are less than 0.08. Hence,
we must determine an appropriate minimum interest (mininterest) for an
application.

By the condition of interest rules, if supp(X ∪ Y ) = minsupp for itemset
X∪Y , X → Y would be possibly extracted as a rule of interest. In particular,
if supp(X ∪ Y ) = supp(X) = supp(Y ) = minsupp, X → Y might also be
extracted as a rule of interest. This means that all the necessary conditions
of interest rules would be satisfied. And for minimum interest (mininterest),
the condition

|supp(X ∪ Y )− supp(X)supp(Y )| = minsupp−minsupp2 ≥ mininterest
must hold. Therefore, we can take minsupp−minsupp2 as an upper bound
of mininterest. For example, for minsupp = 0.2,

mininterest ≤ minsupp−minsupp2 = 0.2− 0.22 = 0.16

and if minsupp = 0.001,

mininterest ≤ minsupp−minsupp2 = 0.001− 0.0012 = 0.00099

Theorem 3.1 indicates that X → Y cannot be extracted as a rule
of interest if supp(X ∪ Y ) ≈ supp(X)supp(Y ). Actually, supp(X ∪ Y ) ≈
supp(X)supp(Y ) denotes X is very nearly independent of Y in probability
theory terms. Generally, if supp(X ∪ Y ) − supp(X)supp(Y ) ≥ mininterest,
the rule X → Y is of interest. Strictly speaking, if

(1) X ∩ Y = ∅,
(2) supp(X ∪ Y ) ≥ minsupp,
(3) supp(X ∪ Y )− supp(X)supp(Y ) ≥ mininterest, and
(4) supp(X ∪ Y )/supp(X) ≥ minconf
and then X → Y is a valid association rule of interest, wheremininterest is a
minimum interest value specified by users. And X∪Y is called a positive item-
set of interest. Otherwise, if |supp(X∪Y )−supp(X)supp(Y )| < mininterest
or supp(X ∪Y )/supp(X) ≤ minconf , the rule X → Y is not of interest, and
X ∪ Y is called an uninteresting itemset.

In the reverse case, if i is a positive itemset of interest, there is at least
an expression i = X ∪Y such that X and Y satisfy the above four conditions
for positive association rules of interest.
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3.4.2 Negative Itemsets of Interest

To mine negative association rules, all itemsets for such rules in a given
database must be generated. For example, if A → ¬B (or ¬A → B, or
¬A → ¬B) can be found, then supp(A ∪ ¬B) ≥ minsupp (or supp(¬A ∪
B) ≥ minsupp, or supp(¬A ∪ ¬B) ≥ minsupp) must hold. This means that
supp(A ∪ B) < minsupp may hold. And the itemset A ∪ B may not be
generated as a frequent itemset when using conventional algorithms. In other
words, A ∪B may be an infrequent itemset. However, numbers of infrequent
itemsets are usually too large in databases to be easily handled. Therefore,
we have to pick out only the infrequent itemsets useful to applications. Which
infrequent itemsets are of interest? To answer this question, we must define
some conditions for recognizing all infrequent itemsets of interest.

Generally, in a large scale database, if A is a frequent itemset and B is an
infrequent itemset with frequency 1, then A → ¬B is a valid negative rule.
In fact, supp(A) ≥ minsupp and supp(B) ≈ 0. So

supp(A ∪ ¬B) ≈ supp(A) ≥ minsupp
and

conf(A→ ¬B) = supp(A ∪ ¬B)/supp(A) ≈ 1 ≥ minconf
This means that rule A→ ¬B is valid. There can be a number of itemsets of
this kind in databases. For example, some rarely purchased goods in a store
fit into this category. However, it is frequent itemsets that usually attract
attention to in applications. Hence, any patterns mined in databases would
commonly relate to frequent itemsets. This means that if A→ ¬B (or ¬A→
B, or ¬A → ¬B) is a negative rule of interest, A and B would involve only
frequent itemsets. This is one of the main reasons for identifying interesting
negative association rules.

For applications and probability significance, the itemsets for negative
association rules of the form A → ¬B (or ¬A → B, or ¬A → ¬B) would
satisfy the following conditions:

(1) A ∩B = ∅;
(2) supp(A) ≥ minsupp and supp(B) ≥ minsupp; and
(3) supp(A ∪ ¬B) ≥ minsupp (or supp(¬A ∪ B) ≥ minsupp, or supp(¬A ∪
¬B) ≥ minsupp).

Here condition (2) can guarantee the probability significance of negative as-
sociation rules. The others assure the rules to be valid. Generally, an infre-
quent itemset i is called a negative itemset if there is at least one expression
of i = A ∪B such that A and B match the above three conditions.

For the Piatetsky-Shapiro argument, if supp(A ∪ ¬B) − supp(A)
supp(¬B) ≥ mininterest, the rule A→ ¬B is of interest. Therefore if
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(1) A ∩B = ∅,
(2) supp(A) ≥ minsupp, supp(B) ≥ minsupp, and supp(A∪¬B) ≥ minsupp,
(3) supp(A ∪ ¬B)− supp(A)supp(¬B) ≥ mininterest, and
(4) supp(A ∪ ¬B)/supp(A) ≥ minconf ,
then A → ¬B is a valid negative association rule of interest, where minin-
terest is a minimum interesting value specified by users. And A ∪ B is a
negative itemset of interest. Otherwise, the rule A → ¬B is not of interest,
and A ∪ B is an uninteresting itemset. Thus, uninteresting itemsets are any
itemsets in a database which exclude both positive and negative itemsets of
interest. These itemsets need to be pruned to reduce the space searched when
we mine.

On the other hand, if i is a negative itemset of interest, there is at least
one expression i = A ∪ B such that one of the rules: A → ¬B, or ¬A → B,
or ¬A→ ¬B, is a valid negative association rule of interest.

As we will see shortly, there are many frequent itemsets related to as-
sociation rules that are not of interest. If the extracted itemsets deal only
with positive and negative itemsets of interest, the search space can be ex-
tremely reduced. Therefore, the algorithm in the next subsection focuses on
only searching for frequent itemsets of interest from a given database.

3.5 Searching Interesting Itemsets

As mentioned, the Apriori algorithm identifies only frequent itemsets, and
does not include any infrequent ones. On the other hand, it takes only a little
heuristic information to search an exponential space consisting of items and
possible itemsets in a given database. However, this algorithm may suffer from
large computational overheads when the number of frequent itemsets is very
large ([Han-Pei-Yin 2000, Webb 2000]). For this reason, we now construct an
efficient focussed algorithm for picking up all positive and negative itemsets
of interest in a given database.

3.5.1 Procedure

Procedure 3.1 InterestItemsetsbyPruning
begin

Input: D: data set; minsupp: minimum support; mininterest:
minimum interest;

Output: PL: set of positive itemsets of interest; NL: set of negative
itemsets of interest;
(1) let the set of positive itemsets of interest PL← ∅;
let the set of negative itemsets of interest NL← ∅;

(2) let Frequent1 ← {frequent 1-itemsets};
let PL← PL ∪ Frequent1;
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(3) for (k = 2; (Lk−1 = ∅ and Sk−1 = ∅); k + +) do
begin
//Generate all possible positive and negative k-itemsets of interest
in D.
(3.1) let Temk ← the k-itemsets constructed from Frequenti (1 ≤
i ≤ k − 1);

(3.2) for any transaction t in D do
begin
//Check which k-itemsets are included in transaction t.

let Temt ← the k-itemsets in t and are also contained by
Temk;

for any itemset A in Temt do
let A.count← A.count+ 1;

end
(3.3) let Ck ← the k-itemsets in Temk that each k-itemset con-

tains at least a subset in Lk−1;
let Frequentk ← {c|c ∈ CK ∧ (supp(c) = (c.count/|D|) >=
minsupp)};
let Lk ← Frequentk;
let Nk ← Temk − Frequentk;
//Prune all uninteresting k-itemsets in Lk

(3.4) for any itemset i in Lk do begin
if an itemset i is uninteresting then
let Lk ← Lk − {i};
let PL← PL ∪ Lk;

(3.5) let Sk ← {i|i ∈ Nk and i is a negative itemset};
//Prune all uninteresting k-itemsets in Sk

for any itemset i in Sk do begin
if an itemset i is uninteresting then
let Sk ← Sk − {i};

let NL← NL ∪ Sk;
end

(4) output the positive and negative itemsets of interest as PL and
NL;

end

The algorithm InterestItemsetsbyPruning is used to generate all posi-
tive and negative itemsets of interest in a given database D, where PL is the
set of all positive (or frequent) itemsets of interest in D, and NL is the set
of all negative (or infrequent) itemsets of interest in D. However, though PL
and NL contain only positive and negative itemsets of interest respectively,
all frequent itemsets in Frequenti (i > 0) must be saved for generating future
negative itemsets of interest. So, there are three kinds of sets: PL, NL, and
Frequenti (i > 0) to be retained during the running of the above algorithm.
In this chapter, the pruning is limited to reduce PL and NL.
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The initialization is done in Step (1). Step (2) generates the set Frequent1
of all frequent 1-itemsets in the database D as the first pass of the algorithm
in the database D. And Frequent1 is also appended into PL.

Step (3) generates all sets Lk and Sk for k ≥ 2 by a loop, where Lk is the
set of all positive k-itemsets of interest in the database D generated in the
kth pass of the algorithm, Sk is the set of all negative k-itemsets of interest
in the database D generated in the kth pass of the algorithm, and the end-
condition of the loop is of both Lk−1 = ∅ and Sk−1 = ∅. Each subsequent
pass in Step (3), for example pass k, consists of five phases as follows.

The first phase (3.1) is to generate the set Temk of all k-itemsets in the
database D, where each itemset in Temk is the union of two certain frequent
itemsets in Frequenti for 1 ≤ i ≤ k−1. That is, for itemsets A in Frequenti0
and B in Frequenti1 (1 ≤ i0, i1 ≤ k − 1), if A ∪ B is a k-itemset, A ∪ B is
appended into Temk. Meanwhile, each itemset in Temk is counted in the
database D by a loop in phase (3.2). And Ck, frequentk, Lk, and Nk are
generated in the second phase (3.3). Ck is the set of all possible frequent
k-itemsets in Temk, for which each of this kind of k-itemset must contain at
least a subset that is an element of Lk−1. Both frequentk and Lk are the
set of all frequent k-itemsets in Ck where their supports are greater than,
or equal to, minsupp, and where |D| is the number of transactions in the
database D. That is, Lk is the set of all positive k-itemsets in Ck. Nk is the
set of all infrequent k-itemsets in Temk, where their supports are less than
minsupp. Or, Nk = Temk − frequentk, and Nk is the set of all possible
negative k-itemsets in Temk.

Selection of all positive and negative k-itemsets of interest is carried out in
phases (3.4) and (3.5). In phase (3.4), if an itemset i in Lk satisfies |supp(X∪
Y ) − supp(X)supp(Y )| < mininterest for any expressions i = X ∪ Y of i,
then i is an uninteresting frequent itemset and it must be pruned from Lk.
After all uninteresting frequent itemsets are pruned from Lk, the set Lk is
appended into PL. In phase (3.5), all negative itemsets inNk are first assigned
to Sk. Then all negative itemsets of interest in Sk are selected. That is, if an
itemset i in Sk satisfies |supp(X ∪ Y )− supp(X)supp(Y )| < mininterest for
any expression i = X ∪ Y of i, then i is an uninteresting frequent itemset
and it must be pruned from Sk. After all uninteresting frequent itemsets are
pruned from Sk, the set Sk is appended into NL.

Step (4) outputs the positive and negative itemsets of interest as PL and
NL in the database D, where each itemset i in PL must be, together with its
support supp(i), greater than, or equal to, the minimum support minsupp,
and each itemset i in PL must satisfy the conditions that determine which
itemset is a negative itemset of interest. The algorithm is ended in Step (5).

We have noticed that, although the sets PL and NL of the positive and
negative itemsets of interest in the database D are minimized in the algo-
rithm, the searched space for negative itemsets of interest is still huge. We
will approach this problem in a later chapter.
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3.5.2 An Example

After all uninteresting frequent itemsets are pruned, the searched space for
extracting positive and negative itemsets of interest is obviously reduced.
This is more efficient than using the Apriori algorithm and its derivatives.
To demonstrate the use of the above algorithm, we present the following
example. (The data has been already dealt with in Example 2.1 of Chapter
2.)

Example 3.5 In Table 3.1, a transaction database TD with 10 transactions
is obtained from a grocery store. Let A = bread, B = coffee, C = tea, D =
sugar, E = beer, F = butter. Assume minsupp = 0.3 and mininterest =
0.07.

Table 3.1. Transaction database TD

Transaction ID Items
T1 A, B, D
T2 A, B, C, D
T3 B, D
T4 B, C, D, E
T5 A, C, E
T6 B, D, F
T7 A, E, F
T8 C, F
T9 B, C, F
T10 A, B, C, D, F

For comparison, we first list all positive and negative itemsets. The sup-
ports of the single positive frequent items in database TD are shown in Table
3.2 and other positive itemsets in TD are listed in Table 3.3. The possible
negative itemsets in TD are given in Table 3.4.

Table 3.2. Frequent items in TD

Item Number of Support
Transactions supp(X)

A 5 0.5
B 7 0.7
C 6 0.6
D 6 0.6
E 3 0.3
F 5 0.5

We now mine this database using the efficient algorithm above. In Table
3.1, there are six 1-itemsets: A, B, C, D, E, and F in the database TD.
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Table 3.3. Frequent itemsets in TD

Itemset Support supp(X) Itemset Support supp(X)
A, B 0.3 A, C 0.3
A, D 0.3 B, C 0.4
B, D 0.6 B, F 0.3
C, D 0.3 C, F 0.3

A, B, D 0.3 B, C, D 0.3

Table 3.4. All negative itemsets in TD

Itemset Support supp(X) Itemset Support supp(X)
A,E 0.2 A, F 0.2
B, E 0.1 C, E 0.2
D, E 0.1 D, F 0.2
E,F 0.1 A, B, C 0.2

A, B, F 0.1 A, C, D 0.2
A, C, F 0.1 A,B, E 0.2
A, D, E 0 A, D, F 0.1
B, C, E 0.1 B, C, F 0.2
B, D, E 0.1 B, D, F 0.2
B, E,F 0 C, E,F 0
D, C, F 0.1 A, B, C, D 0.2

A, B, D, F 0.1 A, B,D, E 0
A, B, C, F 0.1 B, C, D, E 0.1
B, C, D, F 0.1

For minsupp = 0.3, all are frequent 1-itemsets in PL. These are the same as
those listed in Table 3.2. Also, Frequent1 = {A,B,C,D,E, F}.

For Table 3.1, the set Tem2 of the 2-itemsets is: AB, AC, AD, AE,
AF , BC, BD, BE, BF , CD, CE, CF , DE, DF , and EF , constructed by
Frequent1. Forminsupp = 0.3, Frequent2 = L2 = {AB, AC, AD, BC, BD,
BF , CD, CF} all are frequent 2-itemsets. So N2 = {AE, AF , BE, CE, DE,
DF , EF}, and S2 = N2.

However, the pruning technique1 is applied in our algorithm so as to re-
duce the searched space. That is, we prune all uninteresting itemsets from
Lk and Sk in each loop. For mininterest = 0.07, L2 = {BC,BD} is
the set of all positive 2-itemsets of interest in PL as listed in Table 3.5
below, for the algorithm InterestItemsetsbyPruning. Certainly, because
|supp(A ∪ B) − supp(A)supp(B)| = 0.05 < mininterest, |supp(A ∪ C) −
supp(A)supp(C)| = 0 < mininterest, |supp(A ∪ D) − supp(A)supp(D)| =
0 < mininterest, |supp(B ∪ F ) − supp(B)supp(F )| = 0.05 < mininterest,
|supp(C ∪D)− supp(C)supp(D)| = 0.06 < mininterest, and |supp(C ∪F )−
1 Note that the following results in this example are generated according to only
the first three conditions of positive or negative itemsets of interest. The fourth
condition for confidence will be considered in the next section. The searched
space is further reduced if the fourth condition is involved when we identify all
positive and negative itemsets of interest in a database.
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supp(C)supp(F )| = 0 < mininterest, so AB, AC, AD, BC BF , CD and
CF are not of interest. Hence, AB, AC, AD, BC, BF , CD and CF are
pruned from L2 before it is appended into PL. Also, S2 = {BE} is the set
of all negative 2-itemsets of interest in NL listed in Table 3.6 below, for the
algorithm InterestItemsetsbyPruning.

Table 3.5. Positive 2-itemsets of interest in PL

Item Number of Support
Transactions supp(X)

B, D 6 0.6

Table 3.6. Negative 2-Iitemsets of interest in NL

Item Number of Support
Transactions supp(X)

B, E 1 0.1

For Table 3.1, the set Tem3 of the 3-itemsets is: ABC, ABD, ABE,
ABF , ACD, ACE, ACF , ADE, ADF , AEF , BCD, BCE, BCF , BDE,
BDF , BEF , CDE, CDF , CEF , and DEF constructed by Frequent1 and
Frequent2. For minsupp = 0.3, Frequent3 = L3 = {ABD,BCD} are
all frequent 3-itemsets. So N3 = {ABC, ABF , ACD, ACF , ABE, ADE,
ADF , BCE, BCF , BDE, BDF , BEF , CEF}, and S3 = N3. However, for
mininterest = 0.07 L3 = {ABD,BCD} the set of all positive 3-itemsets of
interest in PL is listed in Table 3.7 below, after all uninteresting itemsets
have been pruned from L3. Thus, S3 = {ABE, ADE, BDE, BEF , CDF ,
CEF} is the set of all negative 3-itemsets of interest in NL listed in Table
3.8 as follows, after all uninteresting itemsets have been pruned from S3.

Table 3.7. Positive 3-itemsets of interest in PL

Itemset Number of Support
Transactions supp(X)

A, B, D 3 0.3
B, C, D 3 0.3

For Table 3.1, the set Tem4 of the 4-itemsets is: ABCD, ABCF , ABDE,
ABDF , BCDE, and BCDF . For minsupp = 0.3, Frequent4 = L4 = ∅.
Thus, S4 = N4 = Tem4. Meanwhile, S4 = {ABCD, ABDF , BCDF} is the
set of all negative 4-itemsets of interest in NL listed in Table 3.9 below, after
all uninteresting itemsets have been pruned from S3.

Algorithm InterestItemsetsbyPruning still needs to identify longer fre-
quent itemsets in D for NL. In Table 3.1, the set Tem5 of the 5-itemsets is:
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Table 3.8. Negative 3-itemsets of interest in NL

Itemset Number of Support
Transactions supp(X)

A, B, E 2 0.2
A, D, E 0 0.0
B, D, E 1 0.1
B, E, F 0 0.0
C, D, F 1 0.1
C, E, F 0 0.0

Table 3.9. Negative 4-itemsets of interest in NL

Itemset Number of Support
Transactions supp(X)

A, B, C, D 2 0.2
A, B, D, F 1 0.1
B, C, D, F 1 0.1

ABCDF . For minsupp = 0.3, Frequent5 = L5 = ∅. So S5 = N5 = Tem5,
and S4 = ∅ after all uninteresting itemsets are pruned from S3. Step (3) is
now ended. Then the results listed in the above tables are output in Step (4).

Certainly, there are 16 frequent itemsets, and only 10 positive itemsets of
interest, in PL. There are 27 negative itemsets, and only 10 negative itemsets
of interest in NL. Note that we do not consider that the confidence of a rule
has to be greater than, or equal to, the minimum confidence minconf in this
example, when identifying positive and negative itemsets of interest. This is
because, in the next section, the above data will be used to test our measure
model for confidences in association rules. If we seriously consider this factor,
there are only 8 positive itemsets of interest in PL, where 6 positive itemsets
of interest in PL are 1-itemsets. And there are 9 negative itemsets of interest
in NL.

3.5.3 A Twice-Pruning Approach

As we have seen, the search space for NL is still very large. The algorithm
based on OPUS will be modified for mining negative association rules. (For
details of OPUS, see [Webb 2000].) Webb’s OPUS based model argues that,
for some applications, we can directly search for association rules. This means
that some frequent itemsets can be pruned if these itemsets do not occur in
any association rules. However, the technique cannot be applied directly to
identify infrequent itemsets of interest. The reason is that some itemsets
pruned by the OPUS based algorithm may be useful in extracting negative
association rules of interest in applications. So we now present an alternative,
efficient and effective approach for mining itemsets of interest by pruning.

For the procedure InterestItemsetsbyPruning, pruning is used in Step
(3.4) and (3.5) for positive and negative itemsets, respectively. The conditions
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of pruning are the first three conditions for itemsets of interest both positive
and negative. To direct search positive and negative association rules, we must
consider the fourth condition of each of the positive and negative itemsets
of interest defined in Section 3.4.1 and Section 3.4.2. We now describe the
OPUS based method for identifying negative association rules.

To identify infrequent itemsets of interest efficiently, we propose build-
ing a twice-pruning approach by using OPUS. It is outlined as follows. If a
frequent itemset is pruned straight away when frequent itemsets of interest
are searched, it cannot occur any longer in the frequent itemsets. But it can
occur in infrequent itemsets of interest. If the itemset is then pruned when
infrequent itemsets of interest are searched, it is removed from the rest of the
searched space. If an infrequent itemset is pruned when infrequent itemsets
of interest are searched, it does not then impact on searching for frequent
itemsets of interest.

3.6 Negative Association Rules of Interest

Mathematical probability theory and statistics are the oldest and most widely
used techniques for measuring uncertainty in many applications. These tech-
niques can be applied to estimate the uncertainty factors (support and
confidence) of an association rule. In this section we present a model based
on the Piatetsky-Shapiro argument, and on probability theory, for mining
association rules of interest in databases.

3.6.1 Measurement

Recall the relationship between p(Y |X) and p(Y ) for a possible rule X → Y
in Subsection 3.4.1. Here, Piatetsky-Shapiro’s argument also stands for the
statistical definition of dependence of the sets X and Y below (see [Brin-
Motwani-Silverstein 1997])

Interest(X,Y ) =
p(X ∪ Y )
p(X)p(Y )

=
p(Y |X)
p(Y )

This formula is referred to as the interest of Y , givenX . Certainly, the fur-
ther the value is from 1, the greater the dependence. When Interest(X,Y ) =
1, then p(Y |X) = p(Y ) means that Y and X are independent. When
Interest(X,Y ) > 1, p(Y |X) > p(Y ) means that Y is positively dependent
on X , or the probability that the occurrence of Y is increased when X oc-
curs. Also, when Interest(X,Y ) < 1, then p(Y |X) < p(Y ) means that Y is
negatively dependent on X , or the probability that the occurrence of Y is
decreased when X occurs.

Considering the relationship between the conditional probability p(Y |X)
and the probability p(Y ), we can divide Interest(X,Y ) into three cases as
follows.
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(1) If Interest(X,Y ) = 1 or p(Y |X) = p(Y ), then Y and X are independent.
(2) If Interest(X,Y ) > 1 or p(Y |X) > p(Y ), then Y is positively dependent

on X , and p(Y |X)− p(Y ) satisfies:

0 < p(Y |X)− p(Y ) ≤ 1− p(Y )

In particular, we have

0 <
p(Y |X)− p(Y )

1− p(Y )
≤ 1

Certainly, the bigger the ratio (p(Y |X)− p(Y ))/(1− p(Y )) is, the heavier
the positive dependence.

(3) If Interest(X,Y ) < 1 or p(Y |X) < p(Y ), then Y is negatively dependent
on X (or ¬Y is positively dependent on X). And p(Y |X)− p(Y ) satisfies:

0 > p(Y |X)− p(Y ) ≥ −p(Y )

In particular, we have

0 <
p(Y |X)− p(Y )
−p(Y )

≤ 1

Certainly, the bigger the ratio (p(Y |X)−p(Y ))/(−p(Y )) is, the heavier the
negative dependence will be.

For the first case, the rule X → Y and the negative rules between X
and Y are not of interest because X and Y are independent. In particular,
an infrequent neighbor of 1 is not of interest. That is, if |p(Y |X)− p(Y )| <
mininterest, X → Y , and the negative rules between X and Y are not of
interest as yet.

The second case has been widely explored in previous data mining models,
where the rule X → Y may be an association rule of interest. The last case
has received little attention. In this case, because Y is negatively dependent
on X , then X → ¬Y may be a negative association rule of interest. To offer
more information to applications, this category of negative association rules
of interest would also be mined.

Accordingly, we can obtain the following theorem.

Theorem 3.2 Let I be the set of items in a database TD; X,Y ⊆ I be
itemsets; X ∩ Y = ∅; p(X) = 0; and p(Y ) = 0. Also, minsupp,minconf and
mininterest > 0 are given by users or experts. Then X → Y can be extracted
as a rule if

(1) p(X ∪ Y ) ≥ minsupp,
(2) p(Y |X) ≥ minconf , and
(3) |p(Y |X)− p(Y )| ≥ mininterest.
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Proof: We need only prove | p(X∪Y )
p(X)p(Y )−1| ≥ mininterest. For (3) of the above

theorem, we have

|p(Y |X)− p(Y )|
p(Y )

≥ mininterest
p(Y )

,

or

| p(X ∪ Y )
p(X)p(Y )

− 1| ≥ mininterest
p(Y )

Because 0 < p(Y ) ≤ 1, thus

mininterest

p(Y )
≥ mininterest

Hence,

| p(X ∪ Y )
p(X)p(Y )

− 1| ≥ mininterest

Hence, X → Y can be extracted as a rule of interest.
∇

The certainty factor model is an excellent model to reflect the above rela-
tionships between p(Y |X) and p(Y ) (see [Shortliffe 1976]). This is denoted as
PR (probability ratio) in this chapter, and is the ratio of the conditional prob-
ability and the priori probability describing the increased degree of p(Y |X)
relative to p(Y ) as follows.

PR(Y |X) =






p(Y |X)−p(Y )
1−p(Y )

if p(Y |X) ≥ p(Y ), p(Y ) = 1

p(Y |X)−p(Y )
p(Y ) , if p(Y ) > p(Y |X), p(Y ) = 0

According to p(Y |X) = p(X ∪ Y )/p(X), we have

PR(Y |X) =






p(X∪Y )−p(X)p(Y )
p(X)(1−P (Y ))

if p(X ∪ Y ) ≥ p(X)p(Y )
p(X)(1− p(Y )) = 0

p(X∪Y )−p(X)p(Y )
p(X)p(Y )

if p(X ∪ Y ) < p(X)p(Y )
p(X)p(Y ) = 0
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Or,

PR(Y |X) =






supp(X∪Y )−supp(X)supp(Y )
supp(X)(1−SUPP (Y ))

if supp(X ∪ Y ) ≥ supp(X)supp(Y )
supp(X)(1− supp(Y )) = 0

supp(X∪Y )−supp(X)supp(Y )
supp(X)supp(Y )

if supp(X ∪ Y ) < supp(X)supp(Y )
supp(X)supp(Y ) = 0

where supp(Y |X) in the certainty factor model is replaced by supp(X ∪
Y )/supp(X) for the convenience of mining association rules in databases. We
note that, PR has properties as follows.

Property 3.1 Assuming ΩY = {Y,¬Y } is the hypothesis frame of discern-
ment, and X ⊆ ΩY is the available evidence based on observations, the in-
creased ratio PR of conditional probability relative to priori probability satis-
fies:

PR(Y |X) + PR(¬Y |X) = 0

Proof: (a) Let p(Y |X) ≥ p(Y ). Then, because

p(Y |X) + p(¬Y |X) = 1,
p(¬Y |X) = 1− p(Y |X) ≤ 1− p(Y )

= p(¬Y )

Therefore,

PR(Y |X) =
p(Y |X)− p(Y )

1− p(Y )

PR(¬Y |X) =
p(¬Y |X)− p(¬Y )

p(¬Y )

Hence,

PR(Y |X) + PR(¬Y |X)

=
p(Y |X)− p(Y )

1− p(Y )
+
p(¬Y |X)− p(¬Y )

p(¬Y )

=
p(Y |X)− p(Y )

1− p(Y )
+

(1− p(Y |X))− (1− p(Y ))
1− p(Y )

= 0

(b) If p(Y |X) < p(Y ) then, because

p(Y |X) + p(¬Y |X) = 1
p(¬Y |X) = 1− p(Y |X) > 1− p(Y )

= p(¬Y )
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Therefore,

PR(Y |X) =
p(Y |X)− p(Y )

p(Y )

PR(¬Y |X) =
p(¬Y |X)− p(¬Y )

1− p(¬Y )

Hence,

PR(Y |X) + PR(¬Y |X)

=
p(Y |X)− p(Y )

p(Y )
+
p(¬Y |X)− p(¬Y )

1− p(¬Y )

=
p(Y |X)− p(Y )

1− p(Y )
+

(1− p(Y |X))− (1− p(Y ))
1− (1− p(Y ))

= 0

So, we have PR(Y |X) + PR(¬Y |X) = 0.
∇

To discover and measure both positive and negative association rules,
we take PR(Y |X) as the confidence level of the association rule for given
itemsets X and Y . We can see that confidence(X → Y ) matches certain
special cases, as follows.

– Using probability theory, if p(Y |X) = p(Y ), Y and X are independent.
The confidence of the association rule X → Y would be assigned as

confidence(X → Y ) = PR(Y |X) = 0

– If p(Y |X)−p(Y ) > 0, Y is positively dependent onX . When p(Y |X) = 1 is
the strongest condition, Y is positively dependent onX , and the confidence
of the association rule X → Y would be assigned as

confidence(X → Y ) = PR(Y |X) = 1

– Again, if p(Y |X) − p(Y ) < 0, Y is negatively dependent on X . When
p(Y |X) = p(Y ) is the weakest condition, Y is negatively dependent on X ,
and the confidence of the association rule X → ¬Y would be assigned as

confidence(X → ¬Y ) = PR(Y |X) = 0

– When p(Y |X) = 0 is the strongest condition, Y is negatively dependent on
X , and the confidence of the association rule X → ¬Y would be assigned
as

confidence(X → ¬Y ) = PR(Y |X) = 1
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By way of description, we take half of the above formula, PR(Y |X) =
(p(Y |X)− p(Y ))/(1− p(Y )), or

PR(Y |X) =
supp(X ∪ Y )− supp(X)supp(Y )

supp(X)(1− supp(Y ))
if supp(X ∪ Y ) ≥ supp(X)supp(Y )
supp(X)(1− supp(Y )) = 0,

as a metric for the confidence of rule X → Y in the following discussion. We
now present the definition of association rules of interest using this metric as
follows.

Definition 3.1 Let I be a set of items in a database TD, i = A∪B ⊆ I be an
itemset, A∩B = ∅, supp(A) = 0, and supp(B) = 0. Also, minsupp,minconf
and mininterest > 0 are given by users or experts. Then,

(1) if supp(A∪B) ≥ minsupp, supp(A∪B)−supp(A)supp(B) ≥ mininterest,
and PR(B|A) ≥ minconf , then A → B can be extracted as a rule of
interest;

(2) if supp(A ∪ ¬B) ≥ minsupp, supp(A) ≥ minsupp, supp(B) ≥ minsupp,
supp(A ∪ ¬B) − supp(A)supp(¬B) ≥ mininterest, and PR(¬B|A) ≥
minconf , then A→ ¬B can be extracted as a rule of interest;

(3) if supp(¬A ∪B) ≥ minsupp, supp(A) ≥ minsupp, supp(B) ≥ minsupp,
supp(¬A ∪ B) − supp(¬A)supp(B) ≥ mininterest, and PR(B|¬A) ≥
minconf , then ¬A→ B can be extracted as a rule of interest; and

(4) if supp(¬A∪¬B) ≥ minsupp, supp(A) ≥ minsupp, supp(B) ≥ minsupp,
supp(¬A∪¬B)− supp(¬A)supp(¬B) ≥ mininterest, and PR(¬B|¬A) ≥
minconf , then ¬A→ ¬B can be extracted as a rule of interest.

This definition shows four kinds of valid association rules of interest. Case
1 defines the positive association rules of interest. Case 2, Case 3 and Case
4 deal with negation. In the definition, supp(∗) ≥ minsupp guarantees that
association rules describe the relationships between two frequent itemsets;
supp(X ∪Y )−supp(X)supp(Y ) ≥ mininterest leads to the association rules
that are of interest; and PR(∗) ≥ minconf is the condition that association
rules are valid and believable.

3.6.2 Examples

We now demonstrate how to apply this model to identify association rules.
We use the data in Example 3.5, letting minsupp = 0.2, minconf = 0.4 and
mininterest = 0.08.

Example 3.6 For itemset B ∪ D in PL, supp(B) = 0.7, supp(D) = 0.6
and supp(B ∪D) = 0.6, we have supp(B ∪D) − supp(B)supp(D) = 0.18 >
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mininterest = 0.08. This means that the belief increases, or B → D, can be
extracted as an association rule. Furthermore,

PR(D|B) =
supp(D ∪B)− supp(B)supp(D)

supp(B)(1− supp(D))
=

0.6− 0.7 ∗ 0.6
0.7 ∗ (1− 0.6)

= 0.642857

Therefore,
supp(B ∪D) = 0.6, PR(D|B) = 0.642857

is the support and the confidence of B → D. According to our model, B → D
can be extracted as a valid rule of interest.

Example 3.7 For itemset B ∪ E in NL, supp(B) = 0.7, supp(¬E) = 0.7,
and supp(B∪¬E) = 0.6, we have supp(B∪¬E)−supp(B)supp(¬E) = 0.11 >
mininterest = 0.08. This means that the belief increases, or that B → ¬E
can be extracted as an association rule. Furthermore,

PR(¬E|B) =
supp(B ∪ ¬E−supp(B)supp(¬E)

supp(B)(1−supp(¬E))
=

0.6− 0.7 ∗ 0.7
0.7 ∗ (1− 0.7)

= 0.5238,

and so,
supp(B ∪ ¬E) = 0.6, PR(¬E|B) = 0.5238

is the support and the confidence of B → ¬E. According to our model,
B → ¬E can be extracted as a valid rule of interest due to the fact that
PR(¬E|B) > minconf , supp(B ∪ ¬E) > minsupp, supp(B) > minsupp,
and supp(E) = minsupp.

By the PR model, B → D and A ∪ B → D can be extracted as rules of
interest. And {B,D} and {A,B,D} are all the positive itemsets of interest
in Example 3.5.

Similarly, for itemsets in NL, we can use the PR model to extract all
negative association rules. Using the PR model, B → ¬E, A ∪ B → ¬E,
A ∪ D → ¬E, B ∪ D → ¬E, B ∪ F → ¬E, C ∪ F → ¬E, D → ¬C ∪ F ,
A ∪ B ∪ D → ¬E and B ∪ D → ¬C ∪ F can be extracted as rules of in-
terest. And {B,E}, {A,B,E}, {A,D,E}, {B,D,E},{B,F,E}, {C,F,E},
{D,C, F}, {A,B,D,E} and {B,D,C, F} are all negative itemsets of inter-
est in Example 3.5.

As we have seen, if all conditions of positive and negative itemsets of
interest are considered when we mine, the searched space can further be
reduced.

For minsupp = 0.2, minconf = 0.4 and TD in Example 3.5, all associa-
tion rules in the support-confidence framework are as follows:

A→ B, supp(A ∪B) = 0.3, conf(A→ B) = 0.6
A→ C, supp(A ∪C) = 0.3, conf(A→ C) = 0.6
A→ D, supp(A ∪D) = 0.3, conf(A→ D) = 0.6
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B → C, supp(B ∪ C) = 0.4, conf(B → B) = 0.571
B → D, supp(B ∪D) = 0.6, conf(B → D) = 0.857
B → F, supp(B ∪ F ) = 0.3, conf(B → F ) = 0.43
C → D, supp(C ∪D) = 0.3, conf(C → D) = 0.5
C → F, supp(C ∪ F ) = 0.3, conf(C → F ) = 0.5
A→ B ∪D, supp(A ∪B ∪D) = 0.3, conf(A→ B ∪D) = 0.6
A ∪B → D, supp(A ∪B ∪D) = 0.3, conf(A ∪B → D) = 1
A ∪D → B, supp(A ∪B ∪D) = 0.3, conf(A ∪D → D) = 1
B → C ∪D, supp(B ∪ C ∪D) = 0.3, conf(B → C ∪D) = 0.43
B ∪ C → D, supp(B ∪ C ∪D) = 0.3, conf(B ∪ C → D) = 0.75
B ∪D → C, supp(B ∪ C ∪D) = 0.3, conf(B ∪D → C) = 0.5

As we have seen, the itemsets of some rules (such as A → C, A →
D, C → F , and A → B ∪ D) are independent, but are extracted as valid
association rules in the support-confidence framework. On the other hand,
mining negative association rules enables us to determine which itemsets do
not occur collectively. This means that negative association rules are also
important in applications.

3.7 Algorithms Design

The task of mining association rules in our PRmodel is to discover all positive
and negative association rules of interest. In fact, this can be broken down
into the following two issues.

(1) Generating the set PL of all positive frequent itemsets, and the set NL
of all negative frequent itemsets;

(2) Generating all the rules of the form A → B or B → A in PL, and all
the rules of the form ¬A→ B, or B → ¬A, or ¬A→ ¬B, or ¬B → ¬A in
NL.

Let D be a database, and minsupp, minconf and mininterest be given
by users. The algorithm for searching for association rules in our probability
ratio model is constructed as follows.

Algorithm 3.1 PRModel
begin
Input: D: database; minsupp,minconf , mininterest: threshold

values;
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Output: X → Y : association rule;
(1) call routine InterestItemsetsbyPruning;

// Generating all positive association rules in PL.
(2) for any frequent itemset A in PL do
for any itemset X ∪ Y = A and X ∩ Y = ∅ do begin

if supp(X ∪ Y )− supp(X)supp(Y ) ≥ mininterest then
if PR(Y |X) ≥ minconf then
output the rule X → Y
with confidence PR(Y |X) and support supp(A);

if PR(X |Y ) ≥ minconf then
output the rule Y → X
with confidence PR(X |Y ) and support supp(A);

end;
// Generating all negative association rules in NL.

(3) for any itemset A in NL do
for any itemsets X ∪ Y = A and X ∩ Y = ∅ do begin
// Generating negative association rules of the form: ¬X → Y or
Y → ¬X .
(3.1) supp(X) ≥ minsupp and supp(Y ) ≥ minsupp and supp(¬X∪
Y ) ≥ minsupp then
if supp(¬X∪Y )−supp(¬X)supp(Y ) ≥ mininterest then begin

if PR(Y |¬X)| ≥ minconf then
output the rule ¬X → Y
with confidence PR(Y |¬X) and support supp(¬X |Y );

if PR(¬X |Y )| ≥ minconf then
output the rule Y → ¬X
with confidence PR(¬X |Y ) and support supp(Y ∪ ¬X);

end;
// Generating negative association rules of the form: ¬X → ¬Y
or ¬Y → ¬X .

(3.2) if supp(X) ≥ minsupp and supp(Y ) ≥ minsupp and
supp(¬X ∪ ¬Y ) ≥ minsupp then
if supp(¬X ∪ ¬Y ) − supp(¬X)supp(¬Y ) ≥ mininterest then
begin

if PR(¬Y |¬X)| ≥ minconf then
output the rule ¬X → ¬Y
with confidence PR(¬Y |¬X) and support supp(¬X |¬Y );

if PR(¬X |¬Y )| ≥ minconf then
output the rule ¬Y → ¬X
with confidence PR(¬X |¬Y ) and support supp(¬Y ∪¬X);

end;
end;

end.



3.8 Identifying Reliable Exceptions 75

The algorithm PRModel generates, not only all positive association rules
in PL, but also all negative association rules in NL. The initialization is done
in Step (1), where the procedure InterestItemsetsbyPruning is called in for
handling the sets PL and NL of all positive and negative itemsets of interest
respectively, in the database D.

Step (2) generates all positive association rules of interest of the form
X → Y , in the set PL, where supp(X∪Y )−supp(X)supp(Y ) ≥ mininterest.
If PR(Y |X) ≥ minconf , X → Y is extracted as a valid rule of interest, with
confidence PR(Y |X) and support supp(X∪Y ). And if PR(X |Y ) ≥ minconf ,
Y → X is extracted as a valid rule of interest, with confidence PR(X |Y ) and
support supp(X ∪ Y ).

Step (3) generates all negative association rules of interest of the form
¬X → Y , or Y → ¬X , or ¬X → ¬Y , or ¬Y → ¬X , in the set NL. This is
completed in Step (3.1) and Step (3.2). In Step (3.1), for supp(X) ≥ minsupp
and supp(Y ) ≥ minsupp, supp(¬X ∪ Y ) ≥ minsupp, and supp(¬X ∪ Y ) −
supp(¬X)supp(Y ) ≥ mininterest. If PR(Y |¬X) ≥ minconf , ¬X → Y is
extracted as a valid rule of interest, with confidence PR(Y |¬X) and support
supp(¬X ∪ Y ). And, for PR(¬X |Y ) ≥ minconf , Y → ¬X is extracted as a
valid rule of interest, with confidence PR(¬X |Y ) and support supp(¬X∪Y ).

In Step (3.2), for supp(X) ≥ minsupp and supp(Y ) ≥ minsupp,
supp(¬X ∪ ¬Y ) ≥ minsupp, and supp(¬X ∪ ¬Y ) − supp(¬X)supp(¬Y ) ≥
mininterest. If PR(¬Y |¬X) ≥ minconf , ¬X → ¬Y is extracted as a valid
rule of interest, with confidence PR(¬Y |¬X) and support supp(¬X ∪ ¬Y ).
And, for PR(¬X |¬Y ) ≥ minconf , ¬Y → ¬X is extracted as a valid rule of
interest, with confidence PR(¬X |¬Y ) and support supp(¬X ∪ ¬Y ).

3.8 Identifying Reliable Exceptions

Mining exceptions in databases have been studied recently in [Liu et al. 1999]
and [Liu et al. 2000]. For comparison, this section simply recalls the tech-
niques.

Patterns hidden in databases can fall into three categories as follows.

– strong patterns: regularities for numerous objects;
– weak patterns: reliable exceptions representing a relatively small number of

objects; and
– random patterns: random and unreliable exceptions.

Liu et al. present techniques for mining the weak ‘patterns-reliable’ ex-
ceptions, which are infrequent and high-confidence.

3.8.1 Confidence Based Interestingness

When no other information is given, an event with lower occurring proba-
bility gives more information than an event with higher probability. From
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information theory, we know that the number of bits required to describe the
occurrence is defined as

I = −log2P

where P = the probability that the event will occur.
Similarly, for a given rule AB → X , with confidence Pr(X |AB), we

will require −log2(Pr(X |AB)) and −log2(Pr(¬X |AB)) number of bits to
describe the events X and ¬X , given AB. Thus, the total number of bits
required to describe the rule AB → X is

IAB0
C = (−Pr(X |AB)log2Pr(X |AB)) + (−Pr(¬X |AB)log2Pr(¬X |AB))

where, IAB0
C = number of bits required to describe AB → X when no other

knowledge has been applied.
However, the difference in the number of bits in describing the rule

AB → X in terms of A → X and B → X can bring surprises. The big-
ger the difference in describing the rule AB → X , the more interesting it is.
Therefore, to estimate the relative interestingness in terms of A → X and
B → X , we need to know the number of bits required to describe the event
X when the probability of that event occurring given A and B, is Pr(X |A)
and Pr(X |B), respectively.

Since the rule AB → X describes the event X in terms of A and B,
therefore, to describe a similar event X , in terms of A and B using the rule
A → X and B → X we need −log2Pr(X |A) and −log2Pr(X |B) number
of bits. Now, in rule AB → X , the probability of the event X occurring is
Pr(X |AB). Therefore, the expected number of bits required to describe all
the X events in rule AB → X , in terms of A and B using the two rules is
−Pr(X |AB)(log2Pr(X |A) + log2Pr(X |B)). Similarly, for the event ¬X in
rule AB → X , −Pr(¬X |AB)(log2Pr(¬X |A) + log2Pr(¬X |B)) number of
bits will be required. Thus the total number of bits required to describe the
event X and ¬X in the rule AB → X by the rules A→ X and B → X is

IAB1
C = (−Pr(X |AB)[log2Pr(X |A)) + log2Pr(X |B))]

− Pr(¬X |AB)[log2Pr(¬X |A) + log2Pr(¬X |B)]

where IAB1
C = number of bits required when AB → X is described by A→ X

and B → X .
Thus, the relative surprise, or relative interestingness, that comes from

the difference between two descriptions for the given rule AB → X is

RIAB
C = IAB1

C − IAB0
C

= −Pr(X |AB)[log2

Pr(X |A)Pr(X |B)
Pr(X |AB)
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− Pr(¬X |AB)[log2

Pr(¬X |A)Pr(¬X |B)
Pr(¬X |AB)

= Pr(X |AB)[log2

Pr(X |AB)
Pr(X |A)Pr(X |B)

+ Pr(¬X |AB)[log2

Pr(¬X |AB)
Pr(¬X |A)Pr(¬X |B)

where RIAB
C = the relative surprise or interestingness of the rule, considering

the confidence and knowledge about other rules.
The interestingness of a rule that we have formulated in terms of con-

fidence gives the exact impression of relative entropy. Here the entropy of
a rule is calculated relative to the other rules. It is a measure of distance
between two distributions. In statistics, this arises as an expected logarithm
of the likelihood ratio. The relative entropy D(p(x)||q(x)) is a measure of the
inefficiency of assuming that the distribution is q(x), when the true distribu-
tion is p(x). The relative entropy, or Kullback Leibler distance, between two
probability functions is defined as,

D(p(x)||q(x)) =
∑

x∈X

p(x)log
p(x)
q(x)

In estimating the interestingness of the rule AB → X with true confidence
Pr(X |AB) we approximated its confidence from the rules A→ X and B →
X .

3.8.2 Support Based Interestingness

By stating that the support of a rule AB → X , we mean thet the frequency
of the rule’s consequent evaluation is A by AB, relative to the whole dataset.
When we know the support of the two common sense rules A→ X and B →
X , we know the relative frequency of the consequent X and ¬X evaluated
by A and B respectively. A similar relative entropy measure can be applied
to estimate the surprise from the support. Now, for the newly discovered rule
AB → X , the true distributions of the consequent X and ¬X evaluated by
A and B are Pr(ABX) and Pr(AB¬X) respectively. From the knowledge of
one of our common sense rules, A→ X , for which the relative frequencies of
X and ¬X are Pr(AX) and Pr(A¬X) respectively, thiscan be used to find
the distance between two distributions of consequence using relative entropy.
The relative entropy of AB → X , relative to the rule A → X in terms of
their support, is thus

D(AB→X ||A→X)= Pr(ABX)log
Pr(ABX)
Pr(AX)

+Pr(AB¬X)log
Pr(AB¬X)
Pr(A¬X)
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Similarly, for rule B → X , the relative entropy is

D(AB→X ||B→X)= Pr(ABX)log
Pr(ABX)
Pr(BX)

+Pr(AB¬X)log
Pr(AB¬X)
Pr(B¬X)

Thus the total relative interestingness due to the rule’s support that comes
from the relative entropy of AB → X for the two common-sense rules is,

RIAB
s = D(AB → X ||A→ X) +D(AB → X ||B → X)

= Pr(ABX)log
Pr(ABX)

Pr(AX)Pr(BX)

+ Pr(AB¬X)log
Pr(AB¬X)

Pr(A¬X)Pr(B¬X)

Hence, the total interestingness of a rule AB → X relative to A→ X and
B → X is

RI = RIAB
c +RTAB

s

This includes support, confidence and consideration of other rules in the
estimation of the relative surpriseness.

3.8.3 Searching Reliable Exceptions

To search for weak patterns (i.e., reliable exceptions) from databases, a simple
and efficient approach was proposed in [Liu et al. 2000], which uses devia-
tion analysis to identify interesting exceptions and explore reliable ones. The
approach is based on the following observations.

(1) An exception might occur when a low support is found in the data, or it
might be a strong pattern.

(2) A reasonable induction algorithm can summarize data and learn rules.
(3) Attributes in the rules are salient features.

Observation (1) suggests that exceptions cannot be extracted from the data
by applying standard machine learning techniques. Observations (2) and (3)
allow us to focus on important features so that an efficient method for finding
reliable exceptions can be found. The approach consists of the four phases
below.

Rule Induction and Focusing Obtaining strong patterns: normally, a user
can stop here in his preliminary data mining probing. If the number of rules
is too large, the user can choose to focus on the strongest rules. Let us assume
that several rules have caught our attention and we are curious to know any
reliable exceptions with respect to these strong patterns. This is a filtering
step that helps us focus on a few attributes quickly. If we are confident about
what we want to investigate, i.e., we know the relevant attributes, then this
step can be replaced by user specification of relevant attributes.
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Contingency Table and Deviation Now we focus on a particular at-
tribute in a rule. We can use these attributes and the class attribute to build
a two-way contingency table that allows us to calculate deviations.

Table 3.10. Contingency table

Class Attribute R-Total
V1 V2 · · · Vc

C1 (n11)x11 (n12)x12 · · · (n1c)x1c n1.

C2 (n21)x21 (n22)x22 · · · (n2c)x2c n2.

· · · · · · · · · · · · · · · · · ·
Cr (nr1)xr1 (nr2)xr2 · · · (nrc)xrc nr.

C-Total n.1 n.2 · · · n.c n

In the table, xij are the frequencies of occurrence found in the data,
and nij = ni.n.j/n is the expected frequency of occurrence. Also, n =∑r

i=1

∑c
j=1 xij —total, n.j =

∑
j = 1rxij , a column total (C-Total), and

ni. =
∑
j = 1cxij is a row total (R-Total). Using the expected frequency as

the norm, we can define the deviation as

δij =
xij − nij

nij

Positive, Negative, and Outstanding Deviations Using the above def-
inition to calculate deviations, we can expect to have three types: positive,
zero, or negative. If the deviation is positive, it suggests that what is con-
cerned is consistent with strong patterns; if it is zero, it is the norm; and
if it is negative, what’s concerned is inconsistent with strong patterns. The
value of delta displays the magnitude of deviation. A large value means the
deviation could be caused by chance. Since we are concerned about reliable
exceptions, and reliability is subject to user need, we specify that a threshold
δt is positively outstanding; for δt < 0, any deviation δ < δt is negatively
outstanding. Deviations are powerful, and useful in this case, as they provide
a simple way of identifying interesting patterns in the data.

Reliable Exceptions After we have identified the outstanding, negative
deviations of attribute-values with respect to the class label, we can get all
the instances that contain these attribute-value and class pairs, and perform
further mining on the focused dataset—a window, using any data mining
techniques is preferable. For example, we can continue searching for frequent
itemsets to investigate the above exceptional combinations. As the number of
instances is much smaller now than originally, the mining performance should
improve greatly. Reliable exceptions could be those longest frequent itemsets
with high support in the window.

A strong association rule found in the window might itself be a strong
rule that can be found in the whole data set. We need to make sure that
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what we find are indeed weak patterns—low support but high confidence.
In other words, any sub-itemsets found in a reliable exception should be ex-
cluded if they hold high support in the whole data. A simple method is as
follows. Assuming that X is a sub-itemset that does not include any nega-
tively deviated attributes in a strong association rule found in the window,
we can compare the support supwin of X in the window, and its counterpart
supwho in the whole data. Note that what we really want to check is P (X, c)
for the window, and P (X) for the whole data, with respect to X → c. If we
consider their ratio, they are actually the confidence values. Therefore, if the
difference supwin − confwho is sufficiently large (as confwin is always 1, the
large difference means a low confwho), we should be satisfied that X ’s high
confidence is unique to the window, otherwise, X does not have sufficient
evidence to be included in the final reliable exception.

3.9 Comparisons

For simplicity, we compare our proposed approach with the support-confi-
dence framework outlined in Chapter 2, the interest model in Chapter 2, the
exception mining model, and the strong negative association model described
in this section.

3.9.1 Comparison with Support-Confidence Framework

We now compare the proposed PR model with the support-confidence frame-
work (denoted by SCF ) from the functions. The SCF model usually gen-
erates association rules in databases, some of which are not of interest, and
it only deals with frequent itemsets. However, the PR model discovers both
positive and negative association rules in databases, all of which are of in-
terest. And it deals too with, not only frequent itemset of interest, but also
infrequent itemsets of interest. Therefore, our probability ratio model offers
more necessary information for applications than the SCF model does.

3.9.2 Comparison with Interest Models

Piatetsky-Shapiro has argued that a rule X → Y is not interesting if
support(X → Y ) ≈ support(X) × support(Y ) ([Piatetsky 1991]). In order
to fit this argument, Brin, Motwani and Silverstein have suggested measur-
ing significance of association rules via the chi-squared test for correlation
from classical statistics ([Brin-Motwani-Silverstein 1997]). Again, Srikant and
Agrawal have applied the chi-square values to check whether association rules
are statistically significant so as to implement Piatetsky-Shapiro’s argument
([Srikant-Agrawal 1997]). For simplicity, we focus on the Chi-Squared test
model here (denoted by CST ).
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Models based on the chi-square test depend upon eight probabilities
— supp(X), supp(Y ), supp(¬X), supp(¬Y ), supp(X ∪ Y ), supp(X ∪ ¬Y ),
supp(¬X ∪ Y ), and supp(¬X ∪ ¬Y ) — to construct a contingency table for
the itemset X ∪ Y and to determine whether itemset X ∪ Y is the minimal
dependent itemset using the chi-squared test.

Unfortunately, while Brin, Motwani and Silverstein mention that there
are negative relationships among itemsets, their work does not build basic
techniques, such as how to identify which negative associations are of interest
or how to search for those associations. Because mining negative associations
requires certain infrequent itemsets, it is very different from mining positive
association rules. Therefore, an alternative mining model must be explored.

The PR model requires five probabilities — supp(X), supp(Y ), supp(X∪
Y ), supp(¬X), and supp(¬X ∪ Y ) — to determine whether X → Y or
X → ¬Y can be extracted as rules. In particular, this model has developed
techniques for identifying negative association rules in databases.

On the other hand, the CST model usually generates association rules in
databases, all of which are of interest, but it only deals with frequent itemsets.
This method does not build basic techniques, such as how to identify which
negative association rules are of interest, or how to search for those association
rules. In particular, the model requires three procedures: the chi-square test,
the Interest(X,Y ) test, and the computing confidence to discover association
rules of interest. However, the PR model finds both positive and negative
association rules in databases, all of which are of interest. It deals with, not
only frequent itemset of interest, but also infrequent itemsets of interest. Also,
a model for mining negative association rules of interest is advocated in the
PR model. In particular, this model only requires the procedure probability
ratio to discover association rules of interest.

From the above observations, it is clear that the PR model is a better
measure of uncertainty for mining association rules.

3.9.3 Comparison with Exception Mining Model

Patterns in a database can be divided into strong, weak and random. Strong
patterns can be helpful for applications. As we have argued, weak patterns
can also be very useful to applications. However, most current data min-
ing techniques cannot effectively support weak pattern mining or ‘exception’
mining as it is known ([Liu et al. 1999, Liu et al. 2000]).

Huan Liu and his group advocated an algorithm for finding weak pat-
terns, known as reliable exceptions, from databases, and written as the EMM
model. Negative association rules are an important kind of weak pattern.

In the EMM model, the interestingness of an exceptional rule AB → X
is measured by dependence on the composition of knowledge concerning the
rules A→ X and B → X .

Searching interesting exceptional rules by the EMM model is based on
the chi-square test, and requires eight probabilities — supp(X), supp(Y ),
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supp(¬X), supp(¬Y ), supp(X ∪ Y ), supp(X ∪ ¬Y ), supp(¬X ∪ Y ), and
supp(¬X ∪¬Y ) — to construct the contingency table for the itemset X ∪ Y
and to determine whether itemset X ∪ Y is the minimal dependent itemset
using the chi-squared test.

For the PR model, we focus only on mining negative association rules of
interest. The interestingness of a negative rule between itemsets X and Y is
measured by four conditions as defined in Section 3.4. This requires only five
probabilities — supp(X), supp(Y ), supp(X∪Y ), supp(¬X) and supp(¬X∪Y )
— to determine whether X → Y or X → ¬Y can be extracted as rules.

Note that the EMM model also generates negative association rules in
databases, all of which are of interest. This often requires three steps: (1)
testing confidence-based interestingness, (2) testing support-based interest-
ingness, and (3) searching exceptional rules. However, if we wish to discover
negative association rules by using the EMM model, it is not clear how we
can identify which of X → ¬Y , ¬X → Y , Y → ¬X , ¬Y → X can be ex-
tracted, using the same facts as in the CST model. Therefore, it is clear that
the PR model is better than the EMM model for finding negative association
rules of interest.

3.9.4 Comparison with Strong Negative Association Model

Savasere, Omiecinski and Navathe have developed a new approach for finding
negative associations which leads to a very large number of rules with low
interest measures ([Savasere-Omiecinski-Navathe 1998]). By combining pre-
viously discovered positive associations with domain knowledge to constrain
the search space fewer, but more interesting negative rules can be mined.

In [Savasere-Omiecinski-Navathe 1998], a negative association rule is de-
fined as an implication of the form X ⇒ Y , where X ∩ Y = ∅, where X
is called the antecedent, and where Y is the consequence of the rule. Every
rule also has a rule interest measure. The interest measure RI of a negative
association rule X ⇒ Y is defined as follows:

RI =
ε[support(X ∪ Y )]− support(X ∪ Y )

support(X)

where ε[support(X)] is the expected support of an itemsetX . The rule interest
RI is negatively related to the actual support of the itemset X ∪ Y . It is the
highest if the actual support is zero, and zero if the actual support is the
same as the expected support.

The problem of finding negative rules can now be stated as follows. Given
a database of customer transactions,D, and a taxonomy T on the set of items,
find all rules X ⇒ Y such that (a) support(X), and support(Y ) are greater
than the minimum support minsupp; and (b) the rule interest measure is
greater than minRI, where minsupp and minRI are specified by the user.
Condition (a) is necessary to ensure that the generated rule is statistically
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significant. For example, even if the rule perfectly predicts 10 out of 10 million
cases, it is not particularly useful because it is not general enough.

On the other hand, although the approach in [Savasere-Omiecinski-
Navathe 1998] is able to discover negative relationships, it cannot identify con-
crete expressions of negative rules. In particular, the technique is knowledge-
dependent. Knowledge is often poor and costly. This means that the approach
is far from being useful in real-world applications.

Our PRmodel can identify negative association rules of the form A→ ¬B
(or ¬A → B or ¬A → ¬B), which are of interest in applications. This
distinguishes our model from the strong negative association model above.

3.10 Summary

As we know, many business decisions, such as sales and investments, involve
a number of factors which include both advantage and disadvantage factors.
To minimize disadvantage impacts and maximize possible benefits, we must
consider the probability that factors occur, the probability that side-effect
factors occur, and negative associations among the factors must be faced.
Therefore, identifying negative association rules is useful to applications.

As we have seen, in order to identify negative association rules, we must
face factors such as: infrequent itemsets, exponential search space, and mea-
surement. Specific and efficient mining models must be developed for discov-
ering negative association rules in databases.

Unfortunately, while Brin, Motwani and Silverstein mentioned that there
are negative relationships among itemsets, their work did not build basic
techniques, such as how to identify which negative associations are of interest.
Nor did they demonstrate how to search for those associations.

However, exception mining has dealt with negative association rules min-
ing ([Liu et al. 1999, Liu et al. 2000]). The work has focused on exceptional
rules of the form AB → X whose interestingness is measured by dependence
on the composition of knowledge concerning the rules A → X and B → X .
In real-world applications, negative associations often occur. They cannot al-
ways be classified into exceptional patterns. On the other hand, the approach
for searching negative association rules requires many prior probabilities of
conjunctions among A, B, and X .

In this chapter, we have constructed a new method for mining negative
association rules in databases. Our approach is a novel one because

(a) infrequent itemsets are considered of interest in the PR method;
(b) we have used an increasing degree of conditional probability relative to

prior probability to estimate confidences of positive and negative associa-
tion rules; and
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(c) the PR model can identify negative association rules of the form A→ ¬B
(or ¬A → B or ¬A → ¬B), which are of interest in applications. This, in
particular, also distinguishes the PR model from existing models.

The key points of this chapter are thus as follows.

(1) Created the conditions of negative itemsets of interest.
(2) Constructed an efficient algorithm to identify all possible positive and

negative itemsets of interest in a given database.
(3) Proposed a new model to measure and extract both positive and negative

association rules in databases.
(4) Evaluated the effectiveness of the proposed model by comparing.



4. Causality in Databases

A causal rule between two variables, X → Y , captures the relation-
ship that the presence of X causes the appearance of Y . Because of
its usefulness (in comparison with association rules), the techniques
for mining causal rules are beginning to be developed. However, the
effectiveness of existing methods, such as LCD and CU-path algo-
rithms, is limited for mining causal rules among invariable items.
These techniques are not adequate for the discovery and representa-
tion of causal rules among multi-value variables. In this chapter, we
propose techniques for mining causality between the variables X and
Y by partitioning, where causality is represented in the formX → Y ,
with the conditional probability matrix MY |X . These techniques are
also applied to find causal rules in probabilistic databases.
This chapter begins by stating the problems faced in Section 4.1.
Some necessary basic concepts are defined in Section 4.2. In Section
4.3 we first define a ‘good partition’ for generating item variables
from items, and we then present a method of mining causality of
interest from large databases. In Section 4.4 we advocate an ap-
proach for finding dependencies among variables. In Section 4.5 we
apply the proposed causality mining techniques to mining probabilis-
tic databases. And finally, we conclude in Section 4.6.

4.1 Introduction

Conventional association-rules mining techniques are mainly focused on three
representative patterns in large databases as follows.

(1) Item-based association rule. Work on mining item-based association
rules has been reported in such publications as [Agrawal-Imielinski-Swami
1993], [Agrawal-Srikant 1994], [Brin-Motwani-Silverstein 1997], [Piatetsky
1991], [Shintani-Kitsuregawa 1998] and [Srikant-Agrawal 1997]. For exam-
ple, the rule tea → sugar with supp = 20% and conf = 80% is an item-
based association rule. It implies that ‘80% of all customers who buy tea
also buy sugar’.

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 85-120, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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(2) Quantitative association rule. Work on mining quantitative associ-
ation rules has been reported in such publications as [Han-Cai-Cercone
1993], [Miller-Yang 1997] and [Srikant-Agrawal 1996]. For example, from
[Srikant-Agrawal 1996] we have the following:

〈Age : 30..39〉 ∧ 〈Married : Y es〉 → 〈NumCars : 2〉

with supp = 10% and conf = 100% as a Quantitative association rule,
where ‘Age’ and ‘NumCars’ are quantitive attributes and ‘Married’ is a
categorical attribute. This means that ‘10% of married people between 30
and 39 have at least 2 cars’.

(3) Causality. Work on mining causality among variables in large databases
has also been begun by [Cooper 1997], [Heckerman-Geiger-Chickering 1995]
and [Silverstein-Brin-Motwani-Ullman 1998] because of its usefulness to
practical applications such as decision-making and planning. An example
from [Silverstein-Brin-Motwani-Ullman 1998] states that:

states→ united

is a causal rule. This means that ‘the presence of states causes the appear-
ance of united in the clari.world news.

Research into the first two patterns has resulted in a well-considered valu-
able framework. There have also been some research into mining causal-
ity, such as the LCD algorithm ([Cooper 1997]) and the CU-path algo-
rithm ([Silverstein-Brin-Motwani-Ullman 1998]), which utilize constraint-
based causal discovery for mining causal relationships in market basket data.
In fact, the CU-path algorithm is an improved model of the LCD algorithm,
which applies the chi-squared formula to test the dependence, independence,
and conditional independence between variables, so as to find possible causal
relationships between these variables.

However, previous techniques in causality mining can only identify causal
rules among simple variables, such as the causal rule quoted above (states→
united), used for words in the clari.world news hierarchy. These techniques
are inadequate for discovering causal rules among multi-value variables from
large databases and for representing them.

Mining causality among multi-value variables in many applications, such
as decision-making, diagnosis and planning, can be useful for solving problems
in applications. Accordingly, in this chapter, we propose a model based on
partitioning, presented by [Zhang-Zhang 2001], for mining causality among
multi-value variables in large databases. Here the causality is represented
by the form X → Y , with conditional probability matrix MY |X (see [Pearl
1988]). The tasks of mining causality can be regarded simply as

(1) partitioning item variables, and
(2) estimating conditional probability matrices for rules of interest.
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The second task will be implemented using the Piatetsky-Shapiro argu-
ment. However, the first task is more difficult, while problems in the sec-
ond task include implementing an equi-depth partitioning model and find-
ing a method of calculating the number of partitions required as posed by
[Srikant-Agrawal 1996], unfortunately, because previous partitions on data
are generally blind (relative to a given database), the quantitative items and
item variables generated are sometimes bad, or at least not good. One of our
main contributions in this chapter is to advocate a new partitioning model
for determining all item variables for a given database, which decomposes the
‘bad quantitative items’ and ‘bad item variables’, and composes the ‘not-good
quantitative items’ and the ‘not-good item variables’.

Though causal rules among item variables can be both useful and ex-
pressive, mining item-based association rules and quantitative association
rules is still necessary for many practical applications. For example, when
the item variable X impacts on item variable Y at only a few point-values,
this knowledge is represented in the item-based association rule and quanti-
tative association rule more efficiently than in causality.

4.2 Basic Definitions

Assume I is a set of items in a database D, and a subset of the same type
of items in I is referred to as a quantitative item. For convenience, we use
the term ‘quantitative item’ as a set and its name interchangeably. Certainly,
an item A ∈ I can be taken as a special quantitative item. An item variable
denotes a variable which represents a quantitative item in a set of quantitative
items of the same domain.

An item-based association rule (formally defined in Chapter 2) is a rela-
tionship of the form

A→ B,

where A and B are itemsets and A ∩ B = ∅. This has both support and
confidence greater than, or equal to, the minimum support (minsupp) and
the minimum confidence (minconf) thresholds, respectively.

A quantitative association rule is a relationship of the form

〈attribute1, value1〉 → 〈attribute2, value2〉,
where attribute1 and attribute2 are attributes, value1 and value2 are subsets
of the domains of attribute1 and attribute2 respectively, and 〈attribute1, val-
ue1〉 and 〈attribute2, value2〉 are quantitative items. We now illustrate the
mining of quantitative association rules using an example.

Example 4.1 Consider a personnel database at a university. The interest
data is a set of records with ‘educational level’, and ‘salary’ of a first job. We
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extract 30000 such records from the database. The statistical results are listed
in Table 4.1.

Table 4.1. Statistical results of interest data

Education Salary Number

[3500,+∞) 8500
Doctor [2100, 3500) 1400

[0, 2100) 100
[3500,+∞) 1900

Master [2100, 3500) 7100
[0, 2100) 1000

[3500,+∞) 200
UnderMaster [2100, 3500) 3000

[0, 2100) 6800

In Table 4.1, the domain of Education can be partitioned into Doctor,
Master, and UnderMaster; or Doctor, Master, and UnderMaster are
quantitative items. The domain of Salary can be partitioned into three quan-
titative items [3500,+∞), [2100, 3500) and [0, 2100). And ‘Number’ repre-
sents the statistical results, such as the number of transactions that contain
the quantitative items Master, and [2100, 3500) is 7100. In the light of the
models in [Han 1993, Srikant 1996], we can extract quantitative association
rules as follows.

Rule1 Education = Doctor ⇒ Salary ≥ 3500
with confidence 0.85

Rule2 Education =Master⇒ Salary ∈ [2100, 3500)
with confidence 0.71

Rule3 Education = UnderMaster⇒ Salary < 2100
with confidence 0.68

where Rule1, Rule2 and Rule3 are three quantitative association rules.
This means that finding such quantitative rules is beneficial when mining
databases with categorical attributes.

A causal rule is a relationship between X and Y of the form

X ⇒ Y,

where X and Y are variables with values in the ranges of R(X) and R(Y ),
respectively. Here, x ∈ R(X) is called a point-value of X , where x is a quan-
titative item in data mining.

In order to mine these causal rules, we propose a new model for finding
causality in large databases based on ‘good partition’. Causality is repre-
sented by the form X → Y , with a conditional probability matrix MY |X
according to Bayesian rules, where MY |X is as
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MY |X
�
=P (y|x)�=P (Y = y|X = x)

=





p(y1|x1) P (y2|x1) · · · p(yn|x1)
p(y1|x2) p(y2|x2) · · · p(yn|x2)
· · ·

p(y1|xm) p(y2|xm) · · · p(yn|xm)





where p(yj |xi) = p(Y = yj|X = xi) are the conditional probabilities, i =
1, 2, · · · ,m, and j = 1, 2, · · · , n.

For example, if X and Y are two item variables with ranges {Doctor,
Master, UnderMaster} and {[3500,+∞), [2100, 3500), [0, 2100)} respec-
tively, as in Example 4.1, we can obtain the causal rule X ⇒ Y with a
conditional probability matrix as follows.

MY |X =




0.85 0.14 0.01
0.19 0.71 0.1
0.02 0.3 0.68





where,

p(Y = [3500,+∞)|X = Doctor) = 0.85,
p(Y = [2100, 3500)|X = Doctor) = 0.14,
p(Y = [0, 2100)|X = Doctor) = 0.01,
p(Y = [3500,+∞)|X =Master) = 0.19,
p(Y = [2100, 3500)|X =Master) = 0.71,
p(Y = [0, 2100)|X =Master) = 0.1,
p(Y = [3500,+∞)|X = UnderMaster) = 0.02,
p(Y = [2100, 3500)|X = UnderMaster) = 0.3, and
p(Y = [0, 2100)|X = UnderMaster) = 0.68.

This nice result is due to a better partition. However, because parti-
tions on data are generally blind relative to a given database, it is dif-
ficult to construct a reasonable partition for applications. For example, if
{Doctor, UnderDoctor} is a partition on R(Education) as in Example 4.1,
then Rule2 and Rule3 can be neither generalized in the causal rule X → Y
nor discovered as a valid rule. This means UnderDoctor is a bad quanti-
tative item under the partition. Furthermore, if two quantitative items can
compose a new quantitative item under a partition, and the new quantitative
item is not a bad quantitative item, then the two quantitative items are re-
ferred to as not-bad quantitative items. If a quantitative item cannot be
composed with any other quantitative item into a not-bad quantitative item
under the partition, it is called a good quantitative item.

Also, if an item variable causes a quantitative rule not to be generalized in
a certain causal rule, it is called a bad item variable. If two item variables
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can compose a new item variable under a partition, and the new item variable
is not a bad item variable, then the two item variables are referred to as not-
bad item variables. If an item variable cannot be composed with any other
item variable into a not-bad item variable under the partition, it is called a
good item variable.

A partition, which can cause bad quantitative items or bad item vari-
ables, is called a bad partition. A partition which can cause not-good item
variables or not-good item variables, is called a not-good partition. If all
quantitative items and item variables are good under a partition, this parti-
tion is called a bad partition.

For any two itemsets i1 and i2, i1 and i2 are property tolerant if, and only
if, i1 and i2 have the same property, attribute or constraint. Thus, i1 and i2
are associated tolerant if, and only if, for any itemset i3, p(i3|i1) ≈ p(i3|i2).
Again, two quantitative items, q1 and q2, are property tolerant if, and only
if, q1 and q2 have the same property, attribute or constraint. In addition,
q1 and q2 are associated tolerant if, and only if, for any quantitative item
q3, p(q3|q1) ≈ p(q3|q2). And the two item variables X1 and X2 are property
tolerant if, and only if, X1 and X2 have the same property, attribute or
constraint. While, X1 and X2 are associated tolerant if, and only if, for any
item variable Y , p(Y |X1) ≈ p(Y |X2).

4.3 Data Partitioning

Causality among variables is often hidden in data. Thus we must preprocess
the faced data by partitioning. In this section, we propose techniques for
partitioning data in a given database.

4.3.1 Partitioning Domains of Attributes

Although there are a great many existing data partitioning models, a ma-
jor issue in mining causality research is still partitioning techniques on data
and domains of attributes for specific applications. In data mining, there are
two partitioning data models: the knowledge based partitioning model ([Han-
Cai-Cercone 1993]) and the equi-depth partitioning model ([Srikant-Agrawal
1996]). Han, Cai and Cercone have put forward a knowledge based partition-
ing model, which requires background knowledge, such as concept hierarchies,
data relevance, and expected rule forms ([Han-Cai-Cercone 1993]). This parti-
tioning is efficient in discovering a certain kind of quantitative association rule
from relational databases by using an attribute-oriented induction method.
The other model, known as an equi-depth partitioning model, has been pro-
posed by Srikant and Agrawal. This is an alternative method for the mea-
surement of partial completeness ([Srikant-Agrawal 1996]). This partitioning
model is useful for mining quantitative association rules in databases. Here,
the number of partitions required can be calculated as
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Number of Intervals =
2n

m(K − 1)
where n is the number of quantitative attributes, m is the minimum support,
and K is the partial completeness level.

Generally, a quantitative item does not occur in the transactions of a
database. When searching for quantitative association rules in databases, we
say that a quantitative item i is contained by a transaction t of a database
D if there exists at least one element of i occurring in t. (Note that each
quantitative item consists of multiple simpler items.) The support of the
quantitative item i is defined as 100 ∗ s% of transactions in D that contain
at least one element of i. Or

s = |i(t)|/|D|
where i(t) = {t in D|t contains at least one element of i}.

In this way, we can map the quantitative association rules problem into a
Boolean association rules problem. And some item-based mining techniques
and algorithms can also be used to identify quantitative association rules.

However, such a partition on data is blind relative to a given database.
It is possible that some quantitative items are bad, and some are not-good,
because of the blindness of the partition to a given database. In fact, the
number of partitions does not concern the ‘associated tolerant’. We will use a
so-called ‘good partition’ to generate quantitative items, and item variables,
for a given database. This decomposes the ‘bad item variables’ and composes
the ‘good item variables’.

Let D be a given database and I the set of all items in D. Our partitioning
model is described as follows.

(1) Generating relative properties, attributes, and constraint conditions for
D.

(2) Generating the set QI of all quantitative items by way of those relative
constraint conditions, where all quantitative items form a partition of I.

(3) Optimizing all the quantitative items, utilizing the decomposition and
composition for quantitative items.

(4) Generating the set IV of all item variables by those relative properties and
attributes, where all item variables form a partition of QI, and each item
variable takes certain quantitative items as its point-values. This means,
in a way, that each item variable can be viewed as a set of quantitative
items with the same property (or attribute).

(5) Optimizing all the item variables, using the decomposition and composi-
tion for item variables.

As we have seen, when generating quantitative items and item variables by
partitioning, we need to consider all data in a given database so as to obtain
a ‘good partition’ on the data. However, databases in real applications are
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often very large, which makes partitioning a time-consuming procedure. For
efficiency, we can essentially partition the faced data on a training set of given
data sets.

4.3.2 Quantitative Items

Generally, there are different partitions for the domain of an attribute in
different applications. Thus, we must consider user requirements and the
reasonableness of a problem when determining a partition.

In previous sections, we partitioned the domains of Education and Salary
as

{Doctor,Master, UnderMaster}
and

{[3500,+∞), [2100, 3500), [0, 2100)}
respectively, where X and Y stood for Education and Salary. In this exam-
ple, the constraint condition on the quantitative item Doctor is Education =
Doctor, the constraint condition on the quantitative item UnderMaster is
that Education is lower than Master, the constraint condition on the quan-
titative item [3500,+∞) is 3500 ≤ Salary < +∞, and the constraint con-
dition on the quantitative item [2100, 3500) is 2100 ≤ Salary < 3500. For
R(Education),

q1 = [x]Education=Doctor,

q2 = [x]Education=Master , and

q3 = [x]Education=UnderMaster

are three subsets of R(Education). For R(Salary),

q4 = [x]3500≤Salary<+∞,
q5 = [x]2100≤Salary<3500, and

q6 = [x]0≤Salary<2100

are three subsets of R(Salary), where each subset is a set of discrete real
numbers. For simplicity, q4, q5 and q6 will be denoted as the three intervals:
[3500,+∞), [2100, 3500) and [0, 2100).

According to this, we can formally define quantitative items and the par-
tition as follows.

Definition 4.1 Assume I is a set of items. A quantitative item over I is
a set of all items satisfying the constraint condition CR. A consequence of
quantitative items, q1, q2, · · · , qk, is a partition of I if it satisfies:
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(1) I = q1 ∪ q2 ∪ · · · ∪ qk;
(2) qi = {A|A ∈ I ∧ [A]CRi}, where CRi is a constraint relation, and [A]CRi

means that item A satisfies the constraint CRi; and
(3) qi ∩ qj = ∅ for i �= j, 1 ≤ i, j ≤ k.

In fact, a quantitative item is the generalization of some items with the
same constraint condition. For the above example, the consequence of the
quantitative items q1, q2, · · · , q6 is a partition of I. And q1 is a generaliza-
tion of Doctor with education Doctor, q3 is a generalization of Bachelor,
UnderBachelor with education lower than Master, q4 is a generalization of
items with salary over 3500, and q6 is a generalization of items with a salary
less than 2100.

According to the different requirements of applications, we can divide
them into different sets of quantitative items. For example, we can partition
R(Education) and R(Salary) as

{Doctor, UnderDoctor},
{Doctor,Master,Bachelor, UnderBacheor},
{Doctor,Master, UnderMaster}

and

{[7200,+∞), [3500, 7200), [2100, 3500), [0, 2100)},
{[3500,+∞), [2100, 3500), [0, 2100)},
{[3500,+∞), [0, 3500)},

respectively. However, a reasonable partition on data for data mining also
needs to consider the identity on support of items and the associated degree
of an item with other items. And so, we apply decomposition and composition
for quantitative items to generate a good partition.

4.3.3 Decomposition and Composition of Quantitative Items

In order to find a ‘good partition’ for a given database, the quantitative
items partitioned in properties must be optimized. We now define a method
to decompose and compose quantitative items.

Lemma 4.1 Let I be the set of all items of a given database, and QI be the
set of all quantitative items under a partition.

(i) For q ∈ QI, q is a bad quantitative item if, and only if, there are at least
two items, i1 and i2, in I such that i1 → i3 and i2 → i4 can all be extracted
as valid rules, and i3 ∩ i4 = ∅, where i3 and i4 are itemsets over I.
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(ii) For q ∈ QI, q is a good quantitative item if, and only if, all items in q
are associated tolerant. More intuitively, for any two items i1, i2 ∈ q and
i3 ∈ I, p(i3|i1) ≈ p(i3|i2) holds.

(iii) For q1, q2 ∈ QI, q1 and q2 are not-good quantitative items if, and only
if, q1 and q2 can be composed into a new quantitative item q3, and q3 is a
good quantitative item.

Proof: This can be directly proven according to previous definitions. ∇
Certainly, bad quantitative items are not allowed in mining quantitative

association rules. And not-good quantitative items are also avoided unless
they are specifically required. Accordingly, we now build the decomposition
of bad quantitative items and the composition of not-good quantitative items
as follows.

Procedure 4.1 DecComposeQI;
begin

Input: I: set of all items, QI: set of all quantitative items in
property;

Output: OQI: set of optimized quantitative items;
(1) let OQI ← ∅;

let qset← QI;
for any element q in qset do begin

if q is a bad quantitative item then
if i1, i2 ∈ q and they are not associated tolerant then

beginif
decompose q into two sub-quantitative items q1 and

q2 such that
q1 ∪ q2 = q, i1 ∈ q1 and i2 ∈ q2;

let qset← (qset− {q}) ∪ {q1, q2};
endif;

enddo;
(2) for any two elements q1 and q2 in qset do begin

if q1 and q2 are property tolerant then
if q1 and q2 are associated tolerant then beginif

compose q1 and q2 into a new quantitative item q such
that q = q1 ∪ q2

and q is not a bad quantitative item;
let qset← (qset− {q1, q2}) ∪ {q};

endif;
enddo;

(3) let OQI ← qset;
output OQI;

end;
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The procedureDecComposeQI is used to generate a setOQI of optimized
quantitative items by decomposing ‘bad quantitative items’ and composing
(property or associated) tolerant quantitative items. This work is completed
in a three-step process as follows.

Step (1) decomposes ‘bad quantitative items’ in QI, which is a set of all
quantitative items in a property. For example, let [3500,+∞) for R(Salary)
be a bad quantitative item. We need to divide [3500,+∞) into two quantita-
tive items such as [3500, 5000) and [5000,+∞) if [3500, 5000) and [5000,+∞)
are not associated tolerant. In other words, this step decomposes each bad
quantitative item in QI into two quantitative items which are not associated
tolerant.

Step (2) composes any two tolerant quantitative items in QI. For exam-
ple, let [0, 1500) and [1500, 2100) for R(Salary) be two tolerant quantitative
items. We need to merge [0, 1500) and [1500, 2100) as a quantitative item
[0, 2100) if [0, 2100) is not a bad quantitative item. That is, this step com-
poses any two tolerant quantitative items in QI into a quantitative item that
is not a bad quantitative item.

Then, Step (3) outputs the optimized quantitative items in OQI.

4.3.4 Item Variables

According to our partitioning model, an attribute such as Education and
Salary can be taken as an item variable. For the above item variables X
and Y , X is the set of quantitative items Doctor, Master and UnderMaster
all with the same attribute, Education. That is, any element of X denotes
a degree of education. And Y is the set of quantitative items: [3500,+∞),
[2100, 3500) and [0, 2100) with the same attribute — Salary. That is, any
element of y is denoted as an order of salary. However, an attribute some-
times needs to be divided into several different variables for specific appli-
cations according to different properties. For example, let the domain of the
attribute ‘Weather’ in a system be {strongsun,middlesun,weaksun, lheavy-
rain,middlerain, lightrain, · · ·}. In some applications, ‘Weather’ is some-
times taken as a variable, and sometimes it is divided into different variables
such as X1, X2, · · ·, where the domain of X1 is {strongsun,middlesun,weak-
sun}, the domain of X2 is {heavyrain,middlerain, lightrain}, · · ·. In this
partitioning, item variable X1 is used for describing the degree of sun, or all
elements of X1 have the same property: sun. Item variable X2 is used for
describing the degree of rain, or all elements of X2 have the same property:
rain. We can now formally define the item variables as follows.

Definition 4.2 Assume QI is a set of quantitative items. An item variable
over QI is a set of all quantitative items satisfying a property (or attribute).
A consequence of the item variables X1, X2, · · · , Xm is a partition of QI if it
satisfies:
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(1) QI = X1 ∪X2 ∪ · · · ∪Xm;
(2) the range of Xi is the set {q|q ∈ QI ∧ P1(q)}, where P1 is a property
(or attribute), and P1(q) indicates that the quantitative item q satisfies the
property P1; and

(3) Xi ∩Xj = ∅ for i �= j, 1 ≤ i, j ≤ m.

An item variable is the generalization of certain quantitative items with
the same properties. From previous examples,QI = {q1, q2, q3, q4, q5, q6}, and
we take X and Y as two item variables with domains R(X) = {q1, q2, q3} and
R(Y ) = {q4, q5, q6}, respectively. Then the consequence of item variables,
X and Y , is a partition of QI according to the above definition. Also, we
apply decomposition and composition for item variables to generate a good
partition.

4.3.5 Decomposition and Composition for Item Variables

Lemma 4.2 Let I be the set of all items of a given database, and QI the
set of all quantitative items under a partition. And IV is the set of all item
variables under a partition.

(1) For X ∈ IV , X is a bad item variable if, and only if, there are at least
two quantitative items q1 and q2 in X, such that q1 → q3 and q2 → q4 can
all be extracted as valid quantitative rules, and q3 ∩ q4 = ∅, where q3 and
q4 are quantitative itemsets over QI.

(2) For X ∈ IV , X is a good item variable if, and only if, all quantitative
items in X are associated tolerant. More intuitively, for any two items
q1, q2 ∈ X and q3 ∈ QI, p(q3|q1) ≈ p(q3|q2) holds.

(3) For X1, X2 ∈ IV , X1 and X2 are not-good item variables if, and only if,
X1 and X2 can be composed into a new item variable X3 and X3 is a good
item variable.

Proof: This can directly be proven according to previous definitions. ∇
Certainly, bad item variables are not permitted in mining causal rules.

And not-good item variables are also avoided, unless they are specifically
required. Accordingly, we now build a decomposition of bad item variables
and a composition of not-good item variables as follows.

Procedure 4.2 DecComposeIV
begin

Input: QI: set of all quantitative items, IV : set of all item vari-
ables in property,

Output: OIV : set of optimized item variables;
(1) let OIV ← ∅;

let vset← IV ;
for any element X in vset do begin
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if X is bad item variable then
if q1, q2 ∈ R(X) and they are not associated tolerant

then beginif
decompose X into two item variable X1 and X2

such that
R(X1) ∪ R(X2) = R(X), q1 ∈ R(X1) and q2 ∈

R(X2);
let qset← (vset− {X}) ∪ {X1, X2};

endif;
enddo;

(2) for any two elements X1 and X2 in vset do begin
if X1 and X2 are property tolerant then

if X1 and X2 are associated tolerant then beginif
compose X1 and X2 into a new item variable X such

that
R(X) = R(X1) ∪R(X2) and X is not bad item vari-

able;
let vset← (vset− {X1, X2}) ∪ {X};

endif;
enddo;

(3) let OIV ← vset;
output OIV ;

end;

The procedure DecComposeIV generates a set OIV of optimized item
variables by decomposing ‘bad item variables’ and composing (property or
associated) tolerant item variables. This procedure is similar to the procedure
DecComposeQI. This work is also designed to be completed in a three-step
process as follows.

Step (1) is to decompose ‘bad item variables’ in IV , which is a set of
all item variables in a property. For example, let {largesnow, middlesnow,
smallsnow, largerain, middlerain, smallrain} for R(Weather) be a bad
item variable. We need to divide {largesnow,middlesnow, smallsnow, large-
rain, middlerain, smallrain} into two item variables such as {largesnow,
middlesnow, smallsnow} and {largerain,middlerain, smallrain} if {large-
snow,middlesnow, smallsnow} and {largerain,middlerain, smallrain} are
not associated tolerant. In other words, this step decomposes each bad item
variable in QI into two item variables that are not associated tolerant.

Step (2) is to compose any two tolerant item variables in IV . For exam-
ple, let {largesnow, middlesnow, smallsnow} and {largerain, middlerain,
smallrain} for R(Weather) be two tolerant item variables. We need to merge
{largesnow, middlesnow, smallsnow} and {largerain, middlerain, small-
rain} as an item variable {largesnow, middlesnow, smallsnow, largerain,
middlerain, smallrain} if {largesnow, middlesnow, smallsnow, largerain,
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middlerain, smallrain} is not a bad item variable. That is, the step com-
poses any two tolerant item variables in IQ into an item variable that is not
a bad item variable.

And Step (3) outputs the optimized item variables in OIV .

4.3.6 Procedure of Partitioning

We now build an algorithm for a partitioning model as follows. We let D be
a given database, and I the set of all items in D.

As we have argued, generating all quantitative items and item variables
by partitioning requires the consideration of all data in a given database so
as to obtain a ‘good partition’ on the data. And real databases are often
very large. This means that partitioning is a time-consuming procedure. For
efficiency, we suggest that the following partitioning procedure is performed
on a training set of given data sets. Therefore, it is important to select a set
of instances from a database (see [Liu-Motoda 1998]).

Procedure 4.3 PartitionData

begin
Input: D: database, Table: a concept hierarchy table, I: set of all

items in D;
Output: OQI: the set of quantitative items, OIV : the set of item

variables;
(1) generate Sp the set of properties, Sa the set of attributes by
Table, and Sc the set of constraint conditions for D;
QI ← ∅;
IV ← ∅;

(2) let I ← all items in D;
for c ∈ Sc do begin

generate qc over I
if qc �= ∅ then

let QI ← QI ∪ {qc};
endfor;
for each item i of I then

if i is not contained in any quantitative item then begin
let r ← r ∪ {i};
let QI ← QI ∪ {r};

endif
(3) optimize QI by procedure DecComposeQI;
(4) for a ∈ Sp ∪ Sa do begin

generate xa over QI;
if xa �= ∅ then

let IV ← IV ∪ {xa};
endfor
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for each quantitative item q of QI do
if q is not a value of any item variable then begin

let z ← z ∪ {q};
let IV ← IV ∪ {z};

endif
(5) optimize IV by procedure DecComposeIV;
endall;

The procedure PartitionData generates a partition on a given database,
and obtains a set of optimized quantitative items OQI and a set of optimized
item variables OIV . The initialization of the procedure is carried out in Step
(1).

Step (2) generates a set of quantitative items: OQI, from I, which is
the set of all items in D. The items in I are divided into subsets accord-
ing to the conditions (such as in Sc which is a set of constraint condi-
tions for D), where any two subsets are not intersected. Then, each of
the remaining items in I is taken as a single subset. For example, let
{largesnow, middlesnow, smallsnow, largerain, middlerain, smallrain,
strongsun, middlesun, weaksun} for R(Weather) be a part of I. These
can be divided into three quantitative items such as q1 = {largesnow,
middlesnow, smallsnow}, q2 = {largerain, middlerain, smallrain}, and
q3 = {largesun, middlesun, smallsun}. This step only partitions the items
into rough quantitative items. These rough quantitative items are optimized
in Step (3) by calling in the procedure DecComposeQI.

Step (4) is to generate a set of item variables, IV , from QI, after the
elements in QI are optimized. The quantitative items in QI are divided into
subsets according to conditions (such as in Sp which is the set of properties),
where any two subsets are not intersected. Each of the remaining quantitative
items in QI is then taken as a single subset. For example, let {q1, q2, q3, q4,
q5} for R(Weather) be quantitative items in QI. They can be divided into
three item variables such as v1 = {q1, q2, q3}, v2 = {q4}, and v3 = {q5}. This
step only partitions the quantitative items into rough item variables. These
rough item variables are optimized in Step (5) by calling in the procedure
DecComposeIV .

4.4 Dependency among Variables

In this section, we first present a method for acquiring the conditional prob-
abilities of the point-values (quantitative items) of an item variable given
another item variable, and we then propose a way to identify causal rules of
interest.
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4.4.1 Conditional Probabilities

After quantitative items and item variables are generated, the work of mining
causal rules in databases becomes easy. We can calculate the probabilities
p(X = a), p(Y = b), and p(Y = b∧X = a) for any two item variables X and
Y as follows.

p(X = a) = N(X = a)/n
p(Y = a) = N(Y = b)/n
p(Y = b ∧X = a) = N(Y = b ∧X = a)/n

where n is the total number of tuples in the database, N(X = a) denotes
the number of tuples in the database that contain the quantitative item a,
N(Y = b) denotes the number of tuples in the database that contain the
quantitative item b, and N(Y = b ∧X = a) denotes the number of tuples in
the database that contain the quantitative items a and b. Now we can solve
the conditional probability of Y = b, given X = a, as

p(Y = b|X = a) =
p(Y = b ∧X = a)

p(X = a)
In Example 4.2, we illustrate how the above method can be used.

Example 4.2 Ten tuples are selected from a relational database, as shown
in Table 4.2. The supports and probabilities of single quantitative items and
sets of quantitative items are shown in the table. Because there are 10 tuples
in the database, the support is the number of tuples in which the items or sets
of quantitative items occur, divided by 10.

Table 4.2. Some data in the database

EMP# Education salary
25 doctor 5000
26 doctor 4500
27 doctor 3500
28 doctor 3500
29 doctor 4100
30 doctor 3500
31 doctor 4200
32 doctor 5400
33 doctor 2600
34 doctor 2000

Let n be the number of all tuples in the above database, and let N(a)
stand for the number of tuples in the database where quantitative items or
a set of quantitative items a occurs in. For example, N(a) of quantitative
item [3500,+∞) and the set of quantitative item {Doctor, [3500,+∞)} can
be counted as



4.4 Dependency among Variables 101

– N([3500,+∞)): the number of all tuples in the database where its projec-
tion on Salary is greater than, or equal to, 3500; and

– N({Doctor, [3500,+∞)}): the number of all tuples in the database where
its projection on Education is Doctor and its projection on Salary is
greater than, or equal to, 3500.

Accordingly, we can obtain the N(a) of quantitative itemsets as shown in
Table 4.3.

Table 4.3. Statistical results for Table 4.2

Itemset Number of Support Probability
Tuples sup(X) p(X)

[3500,+∞) 8 80% 0.8
[2100, 3500) 1 10% 0.1
[0, 2100) 1 10% 0.1
Doctor 10 100% 1

Doctor, [3500,+∞) 8 80% 0.8
Doctor, [2100, 3500) 1 10% 0.1
Doctor, [0, 2100) 1 10% 0.1

According to previous definitions, we obtain

p(Y = [3500,+∞)|X = Doctor) =
p(Y = [3500,+∞)∧X = Doctor)

p(X = Doctor)
= 0.8

p(Y = [2100, 3500)|X = Doctor) =
p(Y = [2100, 3500)∧X = Doctor)

p(X = Doctor)
= 0.1

p(Y = [0, 2100)|X = Doctor) =
p(Y = [0, 2100)∧X = Doctor)

p(X = Doctor)
= 0.1

4.4.2 Causal Rules of Interest

As you will see in Table 5.1, when the item variable X impacts on the item
variable Y at only one, or a few, point-values, the conditional probability
matrix will contain much unnecessary information. In this case, an associa-
tion rule (based on items), or a quantitative association rule, would be more
efficient than the above causal rule. For this reason, if a causal rule X → Y
with MY |X is of interest, it must satisfy three conditions:

(1) there must be sufficient conditional probabilities p(yi|xj) in MY |X that
are greater than, or equal to, minconf ;



102 4. Causality in Databases

(2) for a point-value p(yi|xj) ≥ minconf , p(xj ∪ yi) ≥ minsupp in MY |X ;
and

(3) these point-values must also match the Piatetsky-Shapiro argument ([Pi-
atetsky 1991]), or p(yi|xj) − p(xj) must be greater than, or equal to, a
threshold λ given by users.

This means that, if QI is a set of quantitative items in a database D, X
and Y are item variables in D, R(X) ⊂ QI, |R(X)| = n, R(Y ) ⊂ QI,
|R(Y )| = m, where minsupp,minconf , γ > 0, α > 0, λ > 0, and η > 0, are
given by users or experts. Here γ is the minimum number of itemsets with
supports greater than or equal to minsupp, η is the minimum number of
conditional probabilities, α is the minimum number of probabilities satisfying
the Piatetsky-Shapiro argument. Then, X ⇒ Y is a causal rule of interest if
there are enough point-pairs (xj , yi) inMY |X such that p(xj∪yi) ≥ minsupp,
p(Y = yi|X = xj) ≥ minconf and (p(Y = yi|X = xj)− p(Y = yi)) ≥ λ.

For example, let minsupp = 0.3, minconf = 0.6, γ > 2, α > 2, λ =
0.1 and η = 2. And QI = {Doctor, Master, UnderMaster, [3500, +∞),
[2100, 3500), [0, 2100)} as in Example 4.1, and X = {Doctor, Master,
UnderMaster}, |R(X)| = 3, Y = {[3500, +∞), [2100, 3500), [0, 2100)}, and
|R(Y )| = 3. On the basis of the above definition, X ⇒ Y with MY |X can be
extracted as a causal rule of interest.

Theorem 4.1 Let QI be a set of quantitative items in a database D, X and
Y be item variables in D, R(X) ⊂ QI, |R(X)| = n, R(Y ) ⊂ QI, |R(Y )| = m,
and R(X) ∩ R(Y ) = ∅. Also, minsupp,minconf , γ > 0, α > 0, λ > 0 and
η > 0 are given by users or experts. Let

(1) Ssupport = {(xj , yi)|p(xj ∪ yi) ≥ minsupp ∧ (1 ≤ i ≤ m) ∧ (1 ≤ j ≤ n)},
(2) Sconf = {(xj , yi)|p(Y = yi|X = xj) ≥ minconf ∧ (1 ≤ i ≤ m) ∧ (1 ≤ j ≤
n)}, and

(3) Sdepend = {(xj , yi)|(p(Y = yi|X = xj) − p(Y = yi)) ≥ λ ∧ (1 ≤ i ≤
m) ∧ (1 ≤ j ≤ n)}.

The causal rule X ⇒ Y is of interest if, and only if, |Ssupport ∩ Sconf ∩
Sdepend| ≥ min{n,m, γ, η, α}.

Proof: We first prove (“⇒”). According to the definition of the rule of
interest, there are enough point-pairs (xj , yi) inMY |X , such that p(xj ∪yi) ≥
minsupp, p(Y = yi|X = xj) ≥ minconf , and (p(Y = yi|X = xj) − p(Y =
yi)) ≥ λ. Or

|Ssupport ∩ Sconf ∩ Sdepend| ≥ min{n,m, γ, η, α}
Now we prove (“⇐”). Because |Ssupport ∩ Sconf ∩ Sdepend| ≥ min{n,m,

γ, η, α}, so
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|Ssupport| ≥ min{n,m, γ}
|Sconf | ≥ min{n,m, η}
|Sdepend| ≥ min{n,m, α}

That is, the causal rule X → Y is of interest. ∇

4.4.3 Algorithm Design

Let D be a given database, and let minsupp, minconf , α, λ, η be threshold
values given by users. Our algorithm for mining causal rules in databases is
as follows.

Algorithm 4.1 CausalityDB
begin

Input: D: database, minsupp, minconf , α, λ, η: threshold values;
Output: X → Y : causal rule, MY |X : the conditional probability

matrix of Y given X;
(1) call the procedure PartitionData;
(2) for X,Y ∈ OIV do

for each element a in R(X) and b in R(Y ) do begin
let p(Y = b|X = a)← p(Y = b ∧X = a)/p(X = a);
let CRSET ← the rule X → Y as a candidate rule;

with conditional probability matrix of Y givenX :MY |X ;
endfor

(3) for each extracted rules R with MY |X in CRSET dogegin
let Ssupport ← {(xj , yi)|p(xj ∪ yi) ≥ minsupp ∧ (1 ≤ i ≤ m) ∧

(1 ≤ j ≤ n)};
let Sconf ← {(xj , yi)|p(Y = yi|X = xj) ≥ minconf ∧ (1 ≤ i ≤

m) ∧ (1 ≤ j ≤ n)};
let Sdepend ← {(xj , yi)|(p(Y = yi|X = xj) − p(Y = yi)) ≥

λ ∧ (1 ≤ i ≤ m) ∧ (1 ≤ j ≤ n)};
if |Ssupport| < min{n,m, γ} then

generate item-based rules or quantitative rules for Ssupport;
else if |Sconf | < min{n,m, η} then

generate item-based rules or quantitative rules for Sconf ;
else if |Sdepend| < min{n,m, α} then

generate item-based rules or quantitative rules for Sdepend;
else let NewCRSET ← the rule X → Y as an interest

rule;
with conditional probability matrix of Y givenX :MY |X ;

enddo;
(4) call RefineRules(NewCRSET , RSET );
(5) output RSET ;
endall.
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The algorithm CausalityDB finds all causal rules of the form X → Y
attached to a conditional probability matrix MY |X , from a given database
D.

Step (1) calls in the procedure PartionData for data preprocessing so as
to generate all possible quantitative items and item variables in D. This has
already been discussed in Section 4.3.

Step (2) generates the conditional probability matrix MY |X for each pair
of item variables X and Y by computing the supports of the related quanti-
tative items. Each rule is a candidate causal rule in CRSET .

Step (3) determines which of the candidate rules in CRSET are of inter-
est. In fact, the matrices of causal rules of interest contain much unnecessary
information. It is not easy to use them in real applications. Therefore, they
are optimized in Step (4) by calling in the procedure RefineRules, the op-
timizing technique of which is presented in Chapter 5.

From this algorithm we can obtain a theorem as follows.

Theorem 4.2 For a given large database, D, minsupp and minconf are
given by users. If A→ B is extracted as a rule in Algorithm 4.1, then it is
of interest under the partition.

Proof: There are three kinds of rules extracted in Algorithm 1. We need
to prove that each kind of rule is of interest under our partition. We do this
in the following way.

(i) If A andB are itemsets, A→ B is of interest under the partition according
to Theorem 4.1 and the Piatetsky-Shapiro argument ([Piatetsky 1991]).

(ii) If A and B are quantitative items, A→ B is of interest under the partition
according to Theorem 4.1 and the Piatetsky-Shapiro argument ([Piatetsky
1991]).

(iii) If A and B are item variables, it can be directly proven that A→ B is of
interest under the partition by Algorithm 4.1 and the Piatetsky-Shapiro
argument ([Piatetsky 1991]).

∇

Theorem 4.3 For a given large database, D, minsupp and minconf are
given by users. Let RI and RC be the set of item-based rules (or quantitative
rules) and the rules in Algorithm 4.1, respectively, then RI is generalized by
RC .

Proof: According to Procedure 4.3, the partition on items and the par-
tition on quantitative items are all good partitions. This means that, for any
rule A→ B in RI , it satisfies

(a) A and B are all itemsets, A → B is in RC , or generalized in a certain
quantitative association rule in RC under the partition for items, or gener-
alized in a certain causal rule X → Y under the partition for quantitative
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items; where A and B are generalized in two particular quantitative items
in R(X) and R(Y ), respectively.

(b) A and B are all quantitative items, A→ B is in RC , or generalized in a
certain causal rule X → Y , under the partition for quantitative items.

Consequently, RI is generalized by RC .
∇

4.5 Causality in Probabilistic Databases

Today’s database systems must tackle uncertainty in the data they store
([Zhang 2000]). Such uncertainty arises from different sources, such as mea-
surement errors, approximation errors, and the dynamic nature of the real
world. In order to perform anything efficiently, some useful dependent pat-
terns in probabilistic databases must be discovered. However, probabilistic
data in 1NF (First Normal Form) relations is redundant, with the result that
previous mining techniques fail for probabilistic databases. For this reason,
an alternative mining model for such databases is established in this section.
In this model, the partition proposed in Section 4.3 is applied to preprocess
probabilistic data, and Bayesian rules are used to identify causality.

4.5.1 Problem Statement

Recently, there has been much work done on mining special databases. For
example, techniques for mining special databases include spatial data min-
ing ([Cai-Cercone-Han 1991, Ester-Kriegel-Sander 1997, Han-KS 1997, Ng-
H 1994]), which finds novel and interesting relationships, and characteris-
tics that may exist implicitly in spatial databases; temporal databases min-
ing ([Chen-Park-Yu 1998]); image data mining ([Cromp-Campbell 1993]),
for multi-dimensional remotely sensed images; mining time-series databases
([Tsumoto 1999]), text mining ([Feldman-AFLRS 1999]), and Web mining
([Srivastava-CDT 2000]), for the discovery and application of usage patterns
from Web data. However, there has been no work done on mining probabilis-
tic databases.

Today’s database systems must handle uncertainties in the data they
store. For example, in an image retrieval system, an image processing algo-
rithm may fetch images that are similar to a given sample image, and feed
the results into a relational database. These results are generally uncertain.
In a sensor application, depending on the reliability of the sensor, the data
from the sensor is generally associated with a probability.

A model of mining causality among multi-value variables in large data-
bases based on partition has already been proposed in previous sections.
This technique can capture the dependencies among multi-value variables in
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probabilistic databases. Consequently, in this chapter, we propose a model for
discovering dependency rules from probabilistic databases, where the prob-
abilistic data model in [Dey 1996] and [Zhang 2000] is adopted. We now
illustrate this in Example 4.3.

Example 4.3 Consider a probabilistic personnel database at a university.
The interest data is a set of records concerning ‘education’, ‘salary’ and ‘pS’
(probability) of an employee, as shown in Table 4.4.

Table 4.4. A probabilistic relation

EMP# Education salary pS

3025 Doctor 4100 0.8
3025 Doctor 2500 0.1
3025 Doctor 1800 0.1
6637 Doctor 3500 0.14
6637 Doctor 2400 0.06
6637 Master 3500 0.1
6637 Master 2400 0.6
6637 Master 1800 0.1
7741 Bachelor 3500 0.1
7741 Bachelor 2400 0.1
7741 Bachelor 1500 0.8

To mine such a database, we first need to partition the domain of
Education into Doctor, Master, and UnderMaster; and the domain of
Salary into [3500,+∞), [2100, 3500) and [0, 2100), using a partition. Doctor,
Master, UnderMaster, [3500,+∞), [2100, 3500), and [0, 2100) are quantita-
tive items. We now compute the probabilities of the quantitative items in the
database. Let X and Y stand for Education and Salary, respectively, and let
τ1, τ2, · · · , τ10 be the sequential tuples in Table 4.4. Then, for EMP#3025,

p(X = Doctor) = τ1(pS) + τ2(pS) + τ3(pS) = 0.8 + 0.1 + 0.1 = 1
p(X =Master) = 0, p(X = UnderMaster) = 0, p(Y = [3500,+∞))

= 0.8
p(Y = [21003500)) = 0.1, p(Y = [0, 2100)) = 0.1;

for EMP#6637,

p(X = Doctor) = τ4(pS) + τ5(pS) = 0.14 + 0.06 = 0.2
p(X =Master) = τ6(pS) + τ7(pS) + τ8(pS)

= 0.1 + 0.6 + 0.1 = 0.8
p(X = UnderMaster) = 0, p(Y = [0, 2100)) = 0.1,
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p(Y = [3500,+∞)) = τ4(pS) + τ6(pS) = 0.14 + 0.1 = 0.24
p(Y = [2100, 3500)) = τ5(pS) + τ7(pS) = 0.06 + 0.6 = 0.66

and for EMP#7741,

p(X = Doctor) = 0, p(X =Master) = 0
p(X = UnderMaster) = τ9(pS) + τ10(pS) + τ11(pS)

= 0.1 + 0.1 + 0.8 = 1
p(Y = [3500,+∞)) = 0.1, p(Y = [2100, 3500)) = 0.1
p(Y = [0, 2100)) = 0.8

That is, X = (1, 0, 0) and Y = (0.8, 0.1, 0.1) for EMP# = 3025; X =
(0.2, 0.8, 0) and Y = (0.24, 0.66, 0.1) for EMP# = 6637; and X = (0, 0, 1)
and Y = (0.1, 0.1, 0.8) for EMP# = 7741. More are listed in Table 4.5.

Table 4.5. Probabilities of X and Y in the database

EMP# p(x1) p(x2) p(x3) p(y1) p(y2) p(y3)
3025 1 0 0 0.8 0.1 0.1
3125 0 1 0 0.1 0.8 0.1
3225 0 0 1 0.1 0.1 0.8
3335 0.9 0.1 0 0.73 0.17 0.1
3515 0.9 0 0.1 0.73 0.1 0.17
3625 0.1 0.9 0 0.17 0.73 0.1
3820 0 0.9 0.1 0.1 0.73 0.17
4014 0.1 0 0.9 0.17 0.1 0.73
4516 0 0.1 0.9 0.1 0.17 0.73
4725 0.8 0.2 0 0.66 0.24 0.1
5218 0.8 0 0.2 0.66 0.1 0.24
6637 0.2 0.8 0 0.24 0.66 0.1
6714 0 0.8 0.2 0.1 0.66 0.24
6925 0.2 0 0.8 0.24 0.1 0.66
7005 0 0.2 0.8 0.1 0.24 0.66
7313 0.8 0.1 0.1 0.66 0.17 0.17
7516 0.1 0.8 0.1 0.17 0.66 0.17
7741 0.1 0.1 0.8 0.17 0.17 0.66
7913 0.7 0.3 0 0.59 0.31 0.1
8125 0.7 0 0.3 0.59 0.1 0.31

Next, we need to find a conditional probability matrix MY |X to fit the
data as the above probabilities of the item variables. If these data are fitted
in a conditional probability matrix MY |X , then the causality between X and
Y can be determined by this matrix. Another main goal of this chapter is to
build a model which will learn these probabilities. In fact, using the algorithm
designed in this section we can acquire a conditional probability matrixMY |X
from the above data as follows.



108 4. Causality in Databases

MY |X =




p11 p12 p13

p21 p22 p23

p31 p32 p33



 =




0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8





Finally, we extract X → Y as a valid rule, which has a conditional prob-
ability matrix MY |X and a support greater than, or equal to, some user
specified minimum support (minsupp) threshold.

However, previous models used for discovering causality among item vari-
ables have only been efficient for traditional databases that have certain data.
In order to mine probabilistic databases, in this chapter, we propose a new
model for discovering useful causal rules in probabilistic databases, where the
probabilistic data of interest is preprocessed by a partition. Of course, after
preprocessing the probabilistic data set of interest, statistical techniques can
be used straight away to discover patterns in the data sets. For efficiency,
a random search model and a partition search method are proposed as im-
proved models to overcome the weaknesses of the statistical model.

4.5.2 Required Concepts

Given an item variableX , all point values ofX can construct a vector such as
(x1, x2, ..., xn). Each state of X can be described by point values associated
with probabilities in the vector, that is, (p(x1) = a1, p(x2) = a2, ..., p(xn) =
an), is a state of X . This state will be written as (a1, a2, ..., an). All states of
X constructing the state space of X , will be denoted by S(X).

For example, let the possible values of item variable X be red, green,
yellow, blue, purple, then (p(red) = 0.3, p(green) = 0.25, p(yellow) =
0.05, p(blue) = 0.11, p(purple) = 0.29) ∈ S(X); or (0.3, 0.25, 0.05, 0.11, 0.29) ∈
S(X) is a state of X .

The problem of mining dependency rules in probabilistic databases is
how to generate all rules X → Y that have both support and MY |X , where
support is greater than, or equal to, some user specified minimum support
(minsupp) threshold.

4.5.3 Preprocess of Data

The key to mining probabilistic databases is to build an effective partition on
the data. This was carried out in Section 4.3. Probabilistic data preprocessing
is demonstrated by an example as follows.

In general, probabilistic relations have deterministic keys. That is, each
tuple represents a known real entity. Non-key attributes describe the prop-
erties of the entities, and may be deterministic or stochastic in nature. For
example, Table 4.4 adopts a 1NF view of probabilistic relations. Its N1NF
(Non-First Normal Form) view is shown in Table 4.6.

In Table 4.6, X = (1, 0, 0) and Y = (0.8, 0.1, 0.1) for EMP# = 3025;
X = (0.2, 0.8, 0) and Y = (0.24, 0.66, 0.1) for EMP# = 6637; and X =
(0, 0, 1) and Y = (0.1, 0.1, 0.8) for EMP# = 7741.
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Table 4.6. A probabilistic relation

EMP# Education salary, pS

4100, 0.8
3025 doctor 2500, 0.1

1800, 0.1
Doctor, 0.2 3500, 0.24

6637 master, 0.8 2400, 0.66
1800, 0.1
3500, 0.1

7741 bachelor 2400, 0.1
1500, 0.8

Though the N1NF models provide a framework for describing intuitively
the nature of uncertainty data, they pose the usual implementation problems
associated with all N1NF relations. Much of the previous work done on mod-
eling probabilistic data is based on 1NF relations, therefore, our work in this
section concentrates on the 1NF probabilistic relational model.

You will note that the techniques for partitioning quantitative attributes
are the same as in previous sections. With no loss of generality, an attribute
is taken as an item variable in this section. The probabilities of quantitative
items are required to satisfy

p(Z = a) =
∑

τ(K)=k∧τ(Z)=a

τ(pS)

For example, some probabilities of quantitative items in Table 4.4 are as
follows. For EMP#3025,

p(X = Doctor) + p(X =Master) + p(X = UnderMaster) = 1 + 0 + 0 = 1

p(Y =[3500,+∞))+p(Y =[2100, 3500))+p(Y =[0, 2100)) = 0.8+0.1+0.1 = 1

for EMP#6637,

p(X = Doctor)+p(X =Master)+p(X = UnderMaster) = 0.2+0.8+0 = 1

p(Y=[3500,+∞))+p(Y=[2100, 3500))+p(Y=[0, 2100))=0.24+0.66+0.1 = 1

and for EMP#7741,

p(X = Doctor) + p(X =Master) + p(X = UnderMaster) = 0 + 0 + 1 = 1

p(Y =[3500,+∞))+p(Y =[2100, 3500))+p(Y =[0, 2100)) = 0.1+0.1+0.8 = 1

We now show the data preprocess using the following procedure.
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Procedure 4.4 Generatedata
begin

Input: D: probabilistic database, γ: threshold values;
Output: PS: set of probabilities of interest;

(1) call the procedure PartitionData;
let IV ← all item variables;
let PS ← ∅;

(2) let DS ← ∅,
for a subset X of set Z of IV beginfor

let Y ← Z −X ;
let DS ← DS ∪ {X,Y };
for each tuple τ in D beginfor1

for each key value τ(K) = k beginfor2
for each element a in R(X) do

let p(X = a)←∑
τ(K)=k∧τ(X)=a τ(pS);

for each element a in R(Y ) do
let p(Y = a)←∑

τ(K)=k∧τ(Y )=a τ(pS);
endfor2
if |X | > 0 then

let DS ← DS ∪ {p(X), p(Y )};
endfor1
let PS ← PS ∪ {DS};

endfor
(3) output PS set of probability sets;
endall.

The procedure Generatedata preprocesses the data in a given probabilis-
tic database so as to find all interesting data.

Step (1) calls in the procedure PartionData for data preprocessing so as
to generate all possible quantitative items and item variables in D. This has
already been discussed in Section 4.3. Initialization is also done in this step.

Step (2) is to standardize the probabilities of quantitative items by the
formula

p(X = a) =
∑

τ(K)=k∧τ(X)=a

τ(pS)

The standardized data set is output in Step (3).
For a given probabilistic database, the preprocess of the database gener-

ates a set, PS, of the sets DS which are the probabilities of item variables.

4.5.4 Probabilistic Dependency

We now present a method to calculate a conditional probability matrixMX|Y
for a possible rule X → Y , and we then estimate the support for the rule.
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For a given probabilistic database, X and Y are two item variables. Let
R(X) = {x1, x2, ..., xn}, R(Y ) = {y1, y2, ..., ym}, and DS = {(a, b)|a ∈
S(X), b ∈ S(Y )} ∈ PS be a set of k data generated by the procedure
Generatedata. In order to mine the rule of the form X → Y , we need to
determine the conditional probability matrix of Y given X : MY |X . The in-
fluence of X on Y is the following formula according to the Bayesian rule,

P (Y = yi|X = x) =
n∑

k

p(yi|xk) ∗ p(xk), (4.1)

where x ∈ R(X), i = 1, 2, · · · ,m.
In the following, P (Y = yi|X = x) is denoted by bi, and p(yi|xj) is

denoted by pji, where i = 1, 2, · · ·, m, j = 1, 2, · · ·, n. Now, given a =
(p(x1) = a1, p(x2) = a2, · · ·, p(xn) = an) ∈ S(X) as an observation, then bi
can be solved in Equation 4.2 as follows

n∑

k

akpki, (4.2)

where i = 1, 2, · · · ,m.
Intuitively, there is a relationship between data a and b from Equation 4.2

if (a, b) is an observation. And pji are invariant, where aj and bi are variable
factors. Therefore, by using Equation 4.2, we can construct a method for
identifying probabilistic causal rules.

In this section, our goal is to find the probability, pji, from probabilistic
databases. So, for DS, the following function is the ideal expectation for all
elements of DS to satisfy:

f(p1i, p2i, ..., pni) =
∑

t∈DS
(
n∑

k

ajkpki − bji)2

and the value of f(p1i, p2i, ..., pni) must be the minimum. Or, the above for-
mula can be written as

f(p1i, p2i, ..., pni) =
∑

(
n∑

k

ajkpki − bji)2

Theorem 4.4 The minimal solutions to the above formula for constants
p1i, p2i, ..., pni are

p1i =
d1

d
, p2i =

d2

d
, · · · , pni = dn

d
,

where di, the determinant of the matrix after ith rank in A, is replaced by
the constant rank

∑
(aj1bji),

∑
(aj2bji), · · ·,

∑
(ajnbji). And i = 1, 2, · · ·,

m.
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Below, we will show how the above solutions were derived.
Using the principle of extreme values in mathematical analysis, we can

find the minimum by taking the partial derivatives over f(p1i, p2i, · · ·, pni)
with respect to p1i, p2i, · · ·, pni. We must determine, and then set, these
derivatives to 0. That is,






∂f
∂p1i

= 2
∑
(
∑n
k ajkpki − bji)aj1 = 0

∂f
∂p1i

= 2
∑
(
∑n
k ajkpki − bji)aj2 = 0

· · ·
∂f
∂p1i

= 2
∑
(
∑n
k ajkpki − bji)ajn = 0

or,






p1i

∑
(aj1)2 + p2i

∑
(aj1aj2) + · · ·+ pni

∑
(aj1ajn)−

∑
(aj1bji) = 0

p1i

∑
(aj1aj2) + p2i

∑
(aj2)2 + · · ·+ pni

∑
(aj2ajn)−

∑
(aj2bji) = 0

· · ·

p1i

∑
(aj1ajn) + p2i

∑
(ajnaj2) + · · ·+ pni

∑
(ajn)2 −

∑
(ajnbji) = 0

Let A be the coefficient matrix of this equation group concerning p1i, p2i,
· · ·, pni. If d = |A| �= 0, then this equation group has only one result, which
is

p1i =
d1

d
, p2i =

d2

d
, · · · , pni = dn

d
,

where di is the determinant of the matrix after the ith rank in A is replaced
by the constant rank

∑
(aj1bji),

∑
(aj2bji), · · ·,

∑
(ajnbji), and i = 1, 2, · · ·,

m.
In the above, pji represents the probabilities of Y = yi under the condition

X = xj , i = 1, 2, · · ·, m; and j = 1, 2, · · ·, n. In order to assure the
probabilistic significance, the results should be:

pji := pji/(p1i + p2i + · · ·+ pni),

where, i = 1, 2, · · ·, m; j = 1, 2, · · ·, n.
Another measurement of X → Y is its degree of support. Because this

is a probabilistic dependency rule, we define a metric to check the degree
of MY |X which fits the given fact set. For the fact (a, b) ∈ DS, a = (a1,
a2, · · ·, an) ∈ S(X) and b = (b1, b2, · · ·, bm) ∈ S(Y ), let b′ = (b′1, b

′
2, · · ·,

b′m) = a ·MY |X . Then the fitting error is defined as
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error(b, b′) = |b− b′| =
m∑

i=1

|bi − b′i|

If error(b, b′) is less than, or equal to, some user specified maximum allowance
error e, then fact (a, b) supports the conditional probability matrix MY |X .
We let N be the size of DS that is the data set of interest, and M be the
number of data supporting MY |X in DS. Then, the support of X → Y is
defined as

support(X,Y ) =M/N

If support(X,Y ) ≥ minsupp, X → Y with MY |X can be extracted as valid
rule.

Algorithm. We now give the algorithm for the above statistical model.

Algorithm 4.2 MLP
Input: D: probabilistic database, minsupp and e: threshold values;
Output: X → Y : causal rule, MY |X : the conditional probability matrix

of Y given X;

Begin
call the procedure Generatedata;
Let DS ← a set of probabilities in D with respect to item variables

X and Y ;
Calculate MY |X ;
For (a, b) ∈ DS do

Statistics M the number of data supporting MY |X in DS for e;
If M/|DS| ≥ minsupp then

Output X → Y with MY |X and support(X,Y );
End.

The algorithm MLP generates causal rules of the form X → Y attached
to a conditional probability matrixMY |X , from a given probabilistic database
D.

It firstly calls in the procedure Generatedata to preprocess the data in
D. Then, for each pair of interesting item variables X and Y , the conditional
probability matrix MY |X is obtained from the database by considering each
pair of quantitative items of X and Y .

The above method can synthesize the probability meanings of all point
values of a sample. We now illustrate the use of this algorithm by Example
4.4.

Example 4.4 For a given probabilistic database, X and Y are two item vari-
ables. Let R(X) = {x1, x2} and R(Y ) = {y1, y2, y3}. Twenty two probabilities
are generated by the procedure Generatedata, as shown in Table 4.7.
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Table 4.7. Probabilities of X and Y

EMP# p(x1) p(x2) p(y1) p(y2) p(y3)
01 1 0 0.5 0.3 0.2
02 0 1 0.1 0.6 0.3
03 0.9 0.1 0.46 0.33 0.21
04 0.1 0.9 0.14 0.57 0.29
05 0.8 0.2 0.42 0.36 0.22
06 0.2 0.8 0.18 0.54 0.28
07 0.7 0.3 0.38 0.39 0.23
08 0.3 0.7 0.22 0.51 0.27
09 0.6 0.4 0.34 0.42 0.24
10 0.4 0.6 0.26 0.48 0.26
11 0.5 0.5 0.3 0.45 0.25
12 0.95 0.05 0.48 0.315 0.205
13 0.05 0.95 0.12 0.585 0.295
14 0.85 0.15 0.44 0.345 0.215
15 0.15 0.85 0.16 0.555 0.285
16 0.75 0.25 0.4 0.375 0.225
17 0.25 0.75 0.2 0.525 0.275
18 0.65 0.35 0.36 0.405 0.235
19 0.35 0.65 0.24 0.495 0.265
20 0.55 0.45 0.32 0.435 0.245
21 0.855 0.145 0.3 0.4 0.4
22 0.654 0.346 0.4 0.2 0.4

We can acquire a great deal of probabilistic information for the rule from
these data by using the above method. That is, the following equation group
can be established from the data as follows,






8.131241p11 + 3.427759p21 = 4.3121

3.427759p11 + 7.013241p21 = 2.4079

So, we have,





p11 = 0.4856369

p21 = 0.1059786

In the same way, we can obtain,





8.131241p12 + 3.427759p22 = 4.41105

3.427759p12 + 7.013241p22 = 5.17395

and we then have,





p12 = 0.2793863

p22 = 0.595241
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Hence, 




8.131241p13 + 3.427759p23 = 2.92135

3.427759p13 + 7.013241p23 = 2.87365

And we have,





p13 = 0.4059914

p23 = 0.2949115

In order to assure the probability significance level of the prior probabili-
ties, the results should be:

p11 = p11/(p11+p12+p13) = 0.4856369/(0.4856369+0.2793863+0.4059914) =
0.414715, and

p12 = 0.238585, p13 = 0.3467
p21 = 0.10639, p22 = 0.597553, p23 = 0.296057

That is, we acquire a conditional probability matrix MY |X for the above rule
as follows

MY |X =
[
p11 p12 p13

p21 p22 p23

]
=

[
0.414715 0.238585 0.3467
0.10639 0.597553 0.296057

]

If the allowance error e is equal to, or less than, 0.3, then X → Y (with
conditional probability matrixMY |X) can be extracted as a valid probabilistic
rule, with a support of 1.

4.5.5 Improvements

As we have seen from algorithm MLP , the statistical model is blind. So the
results are very rough. Also, some rules may be lost for allowance error e. We
now present two optimal algorithms: random search and partition search.

Random Search Algorithm. In algorithm MLP , Bayesian rules and re-
gression techniques are applied to fit the data set. In fact, if X → Y with
conditional probability matrix MY |X , and a high support, supp, can be ex-
tracted as a valid probabilistic rule, then there are supp ∗N data satisfying
MY |X for the allowance error e; where N is the number of data in the interest
set. Therefore, we can randomly choose n data in the set to directly solve
MY |X , where n is R(X). We now use the data in Example 4.4 to demonstrate
this argument.

First, for n = 2, let EMP# = 3 and EMP# = 13 be the randomly
selected data in Table 4.7. Then the possible MY |X is solved as follows.
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0.9p11 + 0.1p21 = 0.46

0.05p11 + 0.95p21 = 0.12

So, we have,





p11 = 0.5

p21 = 0.1

In the same way, we can obtain,





0.9p12 + 0.1p22 = 0.33

0.05p12 + 0.95p22 = 0.585

We then have,





p12 = 0.3

p22 = 0.6

Hence, 




0.9p13 + 0.1p23 = 0.21

0.05p13 + 0.95p23 = 0.295

and





p13 = 0.2

p23 = 0.3

In order to assure the probability significance level of the prior probabil-
ities, the results should be:

p11 = p11/(p11 + p12 + p13)
= 0.5/(0.5 + 0.3 + 0.2)
= 0.5

and

p12 = 0.3, p13 = 0.2
p21 = 0.1, p22 = 0.6, p23 = 0.3

That is, we acquire a conditional probability matrix MY |X for the above
rule as follows
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MY |X =
[
p11 p12 p13

p21 p22 p23

]
=

[
0.5 0.3 0.2
0.1 0.6 0.3

]

Then, for Table 4.7, we check how much data fits the matrixMY |X for the
allowance error, e. Let e = 0.08, then the former 20 data can fit matrixMY |X
for the allowance error 0.08. We can also apply algorithmMLP to merge the
20 data so as to obtain a better matrix for the data. In this example, the new
matrix is the same as the above matrix, MY |X .

Finally, we check how much data fits the new matrix for the allowance
error e for Table 4.7. We letM be the number of data fitting the new matrix
in Table 4.7, and minsupp = 0.6. Then the support is M/N . If M/N ≥
minsupp, X → Y with MY |X and the support of M/N can be extracted as
a valid rule. For this example, M/N = 20/22 = 0.909 > minsupp = 0.6. So,
X → Y with matrix

MY |X =
[
0.5 0.3 0.2
0.1 0.6 0.3

]

and the support 0.909 can be extracted as a valid rule.
This algorithm for random search is designed as follows.

Algorithm 4.3 RandomSearch
Input: D: probabilistic database, minsupp and e: threshold values;
Output: X → Y : causal rule, MY |X: the conditional probability matrix;

Begin
Let DS ← a set of probabilities of item variables X and Y in D;
For n selected random data in DS do;
Begin
Calculate MY |X using R;
For (a, b) ∈ DS do
Statistics M the number of data supporting MY |X in DS for e;
If M/|DS| ≥ minsupp then

Begin
Output X → Y with MY |X and support(X,Y );
Goto LL;

end
end

LL: End.

The algorithm RandomSearch is also used to generate causal rules of the
form X → Y , attached to a conditional probability matrix MY |X , from a
given probabilistic database, D. However, this algorithm is performed on a
set of instances (random samples). So it is more efficient than the algorithm
MLP .
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Partition Search Algorithm. Using the random search algorithm, weak-
nesses in the algorithm MLP can be overcome. In other words, we can dis-
cover all possible rules in a data set of interest, for which the results are more
accurate than those in algorithm MLP . However, this model has one fatal
problem: its running time in the worst case, is increased exponentially as

CnN
CnM
∗ t,

where t is the time taken solving matrix MY |X by n random data, CnN is the
number of all possible selections of n random data in DS, and CnM is the
number of all possible selections of n random data in the data set, where its
data supports a matrix MY |X .

To solve this problem, we propose to use heuristic information to reduce
the running time to an acceptable level. We first partition the data set into
several subsets, where the data in each subset has a specific property. Then,
a random search model is applied to these subsets. We now illustrate this
method using the data in Table 4.7.

First, we partition the data into groups:

– Group1 = {1, 3, 5, 12, 14, 16} with property p(x1) > p(x2), p(y1) > p(y2)
and p(y1) > p(y3);

– Group2 = {2, 4, 6, 8, 13, 15, 17, 19} with property p(x1) < p(x2), p(y1) <
p(y2) and p(y1) < p(y3);

– Group3 = {7, 9, 18, 20} with property p(x1) > p(x2), p(y2) > p(y1) and
p(y2) > p(y3); and

– Group4 = {10, 11, 21, 22} the remaining data.
We can then randomly choose n data in each subset to directly solve

MY |X , where n is R(X). Suppose that the data set of interest, DS, is parti-
tioned into k subsets: DS1, DS2, · · ·, DSk, with sizes: N1, N2, · · ·, Nk. The
running time in the worst case is

(CnN1
+ CnN2

+ · · ·+ CnNk−1
+
CnNk

CnMk

) ∗ t

where CnNi
is the number of all possible selections of n random data in DSi,

and CnMk
is the number of all possible selections of n random data in a subset

of DSk, where its data supports a matrix MY |X . Obviously, the partition
search is faster than the random search.

The algorithm for partition search is designed as follows.

Algorithm 4.4 PartitionSearch
Input: D: probabilistic database, minsupp and e: threshold values;
Output: X → Y : causal rule, MY |X : the conditional probability matrix

of Y given X;
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Begin
Let DS ← a set of probabilities of item variables X and Y in D;
Let PS ← all partitioned subsets of DS;
For each subset A in PS do
Begin
Let R← select randomly n data in A;
Calculate MY |X using R;
For (a, b) ∈ DS do
Statistics M the number of data supporting MY |X in DS for e;
If M/|DS| ≥ minsupp then
Begin
Output X → Y with MY |X and support(X,Y );
Goto LL;

End
End

LL: End.

The algorithm PartitionSearch is an alternative approach for generating
causal rules of the form X → Y , attached to a conditional probability matrix
MY |X , from a given probabilistic databaseD. This algorithm is more effective
and efficient than the two former algorithms, MLP and RandomSearch.

4.6 Summary

In this chapter, we have proposed a new approach for mining causality among
multi-value variables in large databases, based on partition, where causality
is represented by the form X → Y , with a conditional probability matrix
MY |X ([Pearl 1988]). To end this chapter, a simple comparison with previous
work, and a summary, are presented.

As we have seen, past research into mining association rules ([Agrawal-
Imielinski-Swami 1993, Piatetsky 1991]) and quantitative association rules
([Han-Cai-Cercone 1993, Srikant-Agrawal 1996]) is not only useful, but also
paves the way for identifying causality ([Silverstein-Brin-Motwani-Ullman
1998]). There has also been significant work done in mining causal relation-
ships using the Bayesian analysis ([Cooper 1997, Heckerman 1995]).

With Bayesian learning techniques (such as described in [Cooper 1997,
Heckerman 1995, Pearl 1988]), a user typically specifies a prior probability
distribution over a space of possible Bayesian networks. These algorithms
then search for that network, which maximizes the posterior probability of the
data provided. In general, the algorithms attempt to balance the complexity
of the network with its fit to the data.

The main differences between our causality mining model and previous
methods are summarized below.
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(1) Item-based association rules and quantitative association rules can still
be discovered as two special causal forms in our model. In other words,
discovering causal rules is a generalization of mining item-based association
rules and quantitative association rules. In particular, good partition on
items as a concept is proposed.

(2) A model for partitioning the quantitative items into item variables has
been presented, where each item variable is a set of certain quantitative
items with the same property (or attribute). In particular, a good partition
on quantitative items as a concept is proposed.

(3) Causality in databases is mined, and represented by the form X → Y ,
with the conditional probability matrix MY |X .

(4) Our model for discovering causality in databases is focused on causal rules
of interest, which satisfy three conditions: Piatetsky-Shapiro’s argument,
minimum support, and minimum confidence.

(5) Another important difference is that our model offers a method for op-
timizing conditional probability matrices of causal rules (see Chapter 5),
which merges unnecessary information in extracted causal rules. It seems
that this model might be used to optimize knowledge in intelligent systems.

Mining causality among variables in large databases is very useful for
practical applications such as decision-making and planning. It is still an
important and prevailing topic in machine learning. Accordingly, some mining
models for causality in databases, such as the LCD algorithm ([Cooper 1997])
and the CU-path algorithm ([Silverstein 1998]), which are constraint-based
for causal discovery, have been proposed for mining causal relationships in
market basket data. However, these methods are of only limited efficiency
on causal relationships between items. Discovering causality among variables
in large databases still requires further exploration. For this reason, we have
built a model for mining such causality in large databases which is based on
partitioning. The key points of this chapter are as follows:

(1) Defined ‘property tolerant’ and ‘associated tolerant’.
(2) Presented a new model to partition items into item variables for a given
database. This model decomposes the ‘bad item variables’ and composes
the ‘not-good item variables’.

(3) Proposed a model for discovering causal rules of interest from databases
based on this partition. In particular, item-based association rules and
quantitative association rules were also extracted as specific forms.

(4) Proposed a statistical model for discovering causal rules from probabilistic
databases using Bayesian rule.

(5) Two improved models, random search algorithm and partition search
algorithm, were presented.
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Causal rules attached to matrices can be used to capture causal rela-
tionships among multi-value variables in data. However, because the
causal relations are represented in a non-linear form (a matrix), it is
rather difficult to make decisions using the causal rules. Therefore,
one of the main challenges is to reduce the complexity of the repre-
sentation. As important research into post data mining, this chapter
firstly establishes a method of optimizing causal rules which tackles
the ‘useless’ information in the conditional probability matrices of the
extracted rules. Then, techniques for constructing polynomial func-
tions for approximate causality in data are advocated. Finally, we
propose an approach for finding the approximate polynomial causal-
ity between two variables from a given data set by fitting.
This chapter is organized as follows. We begin in Section 5.1 by in-
troducing causal rule analysis. A problem statement is presented in
Section 5.2. In Section 5.3, we construct a method for improving
causal rules so as to reduce the useless information in their matri-
ces once causal rules are extracted. In Section 5.4, we establish an
encoder technique and present a method of constructing a linear ap-
proximating function for the simplest causality. We then suggest a
method for handling higher-degree polynomial problems in Section
5.5. In Section 5.6, we propose an alternative approach for finding
polynomial causality by fitting. This is followed by a summary.

5.1 Introduction

Because causality among multi-value variables is represented in conditional
probability matrices, it often suffers from NP-hard implementations ([Cooper
1987]). In particular, the amount of probabilistic information necessary for
computation is often overwhelming. Therefore, approximating conditional
probability matrices is one of the most important issues we face. Using encod-
ing, this chapter presents an approximate polynomial function for non-linear
causality.

Though causal rules with matrices have been widely accepted as a suit-
able, general and natural knowledge representation framework for decision

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 121-159, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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making under uncertainty, the computation has been proven to be NP-hard
as might have been expected ([Cooper 1987, Shimony-Charniak 1990]). This
has generally prevented problem formulations from utilizing the full repre-
sentational capabilities of the framework. For example, an n ∗m conditional
probability matrix needs at least n ∗m storage units to save its n ∗m proba-
bilities (elements). And operating the causal rules is a non-linear procedure
which depends upon the multiplication of matrices. Therefore, the sizes of n
and m heavily impact on the efficiency of the framework. This leads to low-
efficiency decision making, although the problems faced may be tractable. For
efficiency, in this chapter, we aim at constructing an approximate polynomial
function to replace a non-polynomial causal rule, by encoding. This model
requires, at most, 2 ∗Max{n,m} storage units.

In order to apply causal rules efficiently, we design a causal rule analysis.
This causal analysis consists of a three-phase approach. In the first phase,
a technique is proposed for reducing useless (unnecessary) information for
the causal rules mined. Obviously, this technique of reducing useless infor-
mation is extremely useful for optimizing knowledge in intelligent systems.
In the second phase, a method for constructing polynomial functions is ad-
vocated. This approximates causality in data. In the final phase, we propose
an approach for finding approximate polynomial causality by fitting.

5.2 Problem Statement

As described in Chapter 4, because the partition on data is blind, relative to
a given database, the point-value space of a variable is difficult to fit in with
real-world applications. Or, if only the probabilities of some point-values are
greater than, or equal to, minconf , then others can be taken as unnecessary
information in the conditional probability matrix.

On the other hand, causal rules attached to matrices can be used to
capture the causal relations among multi-value variables in data. However,
because the causal relations are represented in a non-linear form (matrix),
it is rather difficult to make decisions by the rules. We now illustrate this
problem by an example.

Example 5.1 In many cracked criminal cases, suspicious footprints discov-
ered at the scene of a crime are useful for estimating the height and weight of a
suspect. Let X denote the length of a footprint of a suspect, and Y the height of
the suspect. For simplicity, suppose the domain of X be {long,middle, short}
and the domain of Y be {tall,middle, small}. Experience shows that Y is rel-
atively dependent on X. For a data set, D, of the length of footprints and the
height of people in a certain town, the conditional probability matrix of Y ,
given X, is as follows.
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MY |X =




0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8





Now, suppose one clue is that ‘the probabilities that the length X of a sus-
picious footprint is long, middle and short are 0.7, 0.2 and 0.1, respectively’,
then we have,

[0.7 0.2 0.1]




0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8



 =
[
0.59 0.24 0.17

]

Therefore, y = (0.59, 0.24, 0.17) is the result that we require. This means,
0.59, 0.24 and 0.17 are the probabilities that the height of the suspect is tall,
middle and small, respectively.

In Example 5.1, the operations are obviously non-linear. Let us consider
some probabilities of X and the corresponding values of Y , which are listed
below.

p(x1) p(x2) p(x3) p(y1) p(y2) p(y3)
0.9 0.1 0 0.73 0.17 0.1
0 1 0 0.1 0.8 0.1
0 0.7 0.3 0.1 0.59 0.31
0.6 0 0.4 0.52 0.1 0.38
0.1 0.1 0.8 0.17 0.17 0.66

Intuitively, there is no direct linear relationship between (p(x1), p(x2),
p(x3)) and (p(y1), p(y2), p(y3)) in the above table. Now we encode the results
using the following functions:

EX(x) = p(x1)102 + p(x2)104 + p(x3)106

EY (y) = p(y1)102 + p(y2)104 + p(y3)106

Then the above table can be transformed into a table of the form:

EX(x) EY (y)
1090 101773
10000 108010
307000 315910
400060 381052
801010 661717

Now we takeEX(x) and EY (y) as an ordered pair of the form (EX(x), EY (y)).
In fact, (1090, 101773), (10000, 108010), (307000, 315910), (400060, 381052),
and (801010, 661717) are fitted into a line. The line is of the form:

EY (y) = 0.7EX(x) + 101010.
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Once the above formulas are determined, then for all x, we can determine
EY (y) by those formulas. Further, we can determine p(y1), p(y2) and p(y3)
by E−1

Y (y), where E−1
Y (y) is the decorder function of EY (y). For example,

let x = (0.1, 0.3, 0.6), then EX(x) = 603010. By using the above formulae,
EY (y) = 523117. So, by using E−1

Y (y), p(y1) = 0.17, p(y2) = 0.31 and p(y3) =
0.52. As a matter of fact, this result is the same as the result obtained by
using Pearl’s inference model (see [Pearl 1988] for this model). Hence, we can
replace MY |X with the above function.

This means that we can represent the causality in Example 5.1 by using
a polynomial function. As we have stated in Chapter 1, knowledge represen-
tation is an important step in the post data-mining of KDD. Therefore, the
above function can be used in causality mining.

As one of the phases of causal rule analysis, we will establish an ap-
proximation function similar to the above formulae to close the causal rules
with matrices by encoding. More formally, for a causal rule X → Y , let
the domain of X be R(X) = {x1, x2, ..., xm}, the domain of Y be R(Y ) =
{y1, y2, ..., yn}, and the conditional probability matrix beMY |X . Suppose s =
(p(x1), p(x2), · · · , p(xm)) be an observation, P (YP ) = (p(y1), p(y2), · · · , p(yn))
be the result obtained by operating the matrix, and P (YZ) = (p(y′1), p(y

′
2),

· · ·, p(y′n)) be the result obtained by operating the corresponding approxima-
tion function. Our goal is to find the approximate solution P (YZ) by using
the approximation function such that

||P (YZ)− P (YP )|| ≤ θ
where,

||P (YZ)−P (YP )|| = ||p(y′1)−p(y1)||+ ||p(y′2)−p(y2)||+ · · ·+ ||p(y′n)−p(yn)||

where θ > 0 is small enough.
Once the function is constructed for the above causal rule, MY |X can

be approximated by this function. The storage space of this rule, as part
of a node in a belief network, can be reduced from O(mn) to O(m), and
its running time can be decreased from O(mn) to O(m). Hence, the task
of causality mining should be to find approximate polynomial functions in
databases. Or it can be taken as a step of post-data-mining such that causal
rules attached to matrices are represented in linear functions after they are
discovered.

5.2.1 Related Concepts

Before move on to construct linear functions for causality, we recall some of
the concepts that we use. Throughout this chapter, upper case letters, such
as A,B, · · ·, represent random variables and lower case letters such as a, b, · · ·
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represent the possible assignments to the associated upper case letter random
variable.

Definition 5.1 Given a random variable A, the set of possible values for A
(known as the range of A) will be denoted by R(A). For x ∈ R(A), x is the
point value of A. And |R(A)| denotes the the number of possible values of A.

For example, let the possible values of the random variable A be red,
green, yellow, blue, purple. Then, R(A) = {red, green, yellow, blue, purple},
and |R(A)| = 5.

Definition 5.2 Given a random variable A, all point values of A can con-
struct a vector such as (x1, x2, ..., xn). Each state of A can be described by
its point values associated with probabilities in the vector. That is, (P (x1) =
a1, P (x2) = a2, ..., P (xn) = an) is a state (or observation) of A. This state
will be written as (a1, a2, ..., an). All states of A construct the state space of
A, which will be denoted by S(A).

For example, let the possible values of the random variable A be red,
green, yellow, blue, purple, then (P (red) = 0.3, P (green) = 0.25, P (yellow) =
0.05, P (blue) = 0.11, P (purple) = 0.29) ∈ S(A); or (0.3, 0.25, 0.05, 0.11,
0.29) ∈ S(A) is a state of A.

There are infinite elements in S(A). In this chapter, we concentrate on
a random sample space Ω(A) of S(A), because it is impossible to give con-
sideration to all elements in S(A). Let the sample space have & elements in
Ω(A), where & as the capacity of Ω(A), denoted by 
(Ω(A)).
Definition 5.3 � is a set of rational numbers. �+ is a set of positive rational
numbers.

Definition 5.4 Given a random variable A ∈ V , a one-to-one mapping EA :
S(A)→ �+, is referred to as an encoder for A.

The requirement that an encoder is one-to-one mapping is necessary to
assure that the encoder is a reversible mode because we need to be able to
recover the original probability values after they have been handled.

Definition 5.5 Given a causal rule X → Y , let R(X) = {x1, x2, · · ·, xn},
R(Y ) = {y1, y2, · · ·, ym}, and let a = (a1, a2, · · ·, an) ∈ S(X) be an observed
value (or state) of X. Then the state b = (b1, b2, · · ·, bm) ∈ S(Y ) of Y can
be determined by the observed value and MY |X . That is,

(a1 a2 . . . an)MY |X = (b1 b2 . . . bm)

or

aMY |X = b (5.1)

This is an alternative form of causality that is represented in a non-linear
function.
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5.3 Optimizing Causal Rules

This section carries out the first phase of causal rule analysis. It presents a
method for reducing unnecessary information in matrices after causal rules
are mined.

5.3.1 Unnecessary Information

If the probabilities of a row (or a column) of a conditional probability matrix
satisfy p(Y = yi|X = xj) < minconf for i = i0 and j = 1, 2, · · · ,m (or
i = 1, 2, · · · , n and j = j0), then this row (or column) is referred to as the
unnecessary information in the matrix. For example, let us partition the
domains of Education and Salary as

{PostDoctor,Doctor, PostMaster,Master,Bachelor, UnderBachelor}

and
{[3500,+∞), [2400, 3500), [0, 2400)}

respectively, where X and Y stand for Education and Salary, respectively.
The statistical results are from a database as listed in Table 5.1.

Table 5.1. Statistical results of interest data

Education Salary Number

[3500,+∞) 9000
PostDoctor [2100, 3500) 900

[0, 2100) 100
[3500,+∞) 8000

Doctor [2100, 3500) 1900
[0, 2100) 100

[3500,+∞) 1000
PostMaster [2100, 3500) 7500

[0, 2100) 1500
[3500,+∞) 3100

Master [2100, 3500) 3100
[0, 2100) 3800

[3500,+∞) 2400
Bachelor [2100, 3500) 3800

[0, 2100) 3800
[3500,+∞) 2000

UnderBachelor [2100, 3500) 4000
[0, 2100) 4000

According to the above model, X → Y can be extracted as a causal rule
with the conditional probability matrix MY |X as follows.
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M1
Y |X =





0.9 0.09 0.01
0.8 0.19 0.01
0.1 0.75 0.15
0.31 0.31 0.38
0.24 0.38 0.38
0.2 0.4 0.4





In this conditional probability matrix, if minconf = 0.6, then p(Y =
yi|X = Master) < minconf , p(Y = yi|X = Bachelor) < minconf , and
p(Y = yi|X = UnderBachelor) < minconf . That is, rows 4, 5 and 6 cer-
tainly contain unnecessary information. In fact, when given evidences are
(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), and (0, 0, 0, 0, 0, 1), the results propagated by
the rule are (0.31, 0.31, 0.38), (0.24, 0.38, 0.38), and (0.2, 0.4, 0.4). These re-
sults cannot be useful to applications. They must be reduced if possible. We
now define a model to refine the extracted causal rules.

5.3.2 Merging Unnecessary Information

Let X −→ Y be an extracted causal rule with conditional probability ma-
trix MY |X . Assume the domain of X is R(X) = {x1, x2, ..., xm}, and the
domain of Y is R(Y ) = {y1, y2, ..., yn}. The problems of merging unnecessary
information are outlined below:

(1) Finding out all columns i1, i2, · · · , is, where any column ik holds p(yik |xj) <
minconf for j = 1, 2, · · · ,m and k = 1, 2, · · · , s.

(2) Merging all columns i1, i2, · · · , is into column i1 if s > 1, and deleting
columns i2, · · · , is from MY |X .

(3) Finding out all rows i1, i2, · · · , it where any row ik holds p(yj |xik) <
minconf for j = 1, 2, · · · , n and k = 1, 2, · · · , t.

(4) Merging all rows i1, i2, · · · , it, into row i1, if t > 1, and deleting rows
i2, · · · , it from MY |X .

A procedure for optimizing a given set of causal rules is designed as fol-
lows.

Procedure 5.1 RefineRules
begin
Input: NewCRSET : the set of interest causal rule;
Output: RSET : the set of optimized causal rules;

(1) let RSET ← ∅;
for each rule X → Y with MY |X in NewCRSET do begin

(2) let col ← ∅;
for each column i of MY |X beginfor
for j := 1 to m do
if p(yi|xj) ≥ minconf then
next i
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let col← col ∪ {i};
endfor

(3) for j := 1 to m do
let pj ← 0;

for each i ∈ col do
for j := 1 to m do
let pj ← pj + p(yi|xj);

for j := 1 to m do
let pj ← pj/|col|;

for each i ∈ col do
delete column i from matrix MY |X ;

add (p1, p2, · · · , pm) as a new column of MY |X ;
(4) let r ← ∅;

for each row i of MY |X beginfor
for j := 1 to n do
if p(yj |xi) ≥ minconf then
next i

else let r ← r ∪ {i};
endfor

(5) for j := 1 to n do
let pj ← 0;

for each i ∈ r do
for j := 1 to n do
let pj ← pj + p(yj |xi);

for j := 1 to n do
let pj ← pj/|r|;

for each i ∈ r do begin
delete row i from matrix MY |X ;
add (p1, p2, · · · , pn) as a new row of MY |X ;

endfor
(6) let RSET ← optimized rule X → Y with MY |X ;
endfor

endall;

The procedure RefineRules is used to optimize all causal rules of inter-
est in NewCRSET by merging unnecessary information into corresponding
conditional probability matrices. Step (1) consists of the initialization of the
procedure. Optimization is performed in a for-loop as follows.

Step (2) is to find the set, col, of columns i1, i2, · · · , is, where any column
ik holds p(yik |xj) < minconf for j = 1, 2, · · · ,m and k = 1, 2, · · · , s.

Step (3) merges the columns i1, i2, · · · , is into a single column i1, if s > 1,
and deletes columns i2, · · · , is from MY |X .

Step (4) is to find the set, r, of rows i1, i2, · · · , it where, any row ik holds
p(yj |xik ) < minconf for j = 1, 2, · · · , n, and k = 1, 2, · · · , t.
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Step (5) is to merge the rows i1, i2, · · · , it into a single row i1 if t > 1, and
delete rows i2, · · · , it from MY |X .

The optimized causal rules are saved into RSET .
We now demonstrate the use of this model using the above rules. As a

matter of fact, when X =Master, X = Bachelor, andX = UnderBachelor,
we cannot determine what salary will be earned. In order to reduce this
unnecessary information, we can merge these three quantitative items into
the quantitative itemM&U . Hence, the above data can be reduced, as shown
in Table 5.2.

Table 5.2. Statistical results of interest data

Education Salary Number

[3500,+∞) 9000
PostDoctor [2100, 3500) 900

[0, 2100) 100
[3500,+∞) 8000

Doctor [2100, 3500) 1900
[0, 2100) 100

[3500,+∞) 1000
PostMaster [2100, 3500) 7500

[0, 2100) 1500
[3500,+∞) 7500

M&U [2100, 3500) 10900
[0, 2100) 11600

Hence, for the following causal rule X → Y , with the conditional proba-
bility matrixMY |X , the domain of X is R(X) = {PostDoctor,Doctor, Post-
Master,M&U}, and the domain of Y is R(Y ) = {[3500,+∞), [2100, 3500),
[0, 2100)}.

M2
Y |X =





0.9 0.09 0.01
0.8 0.19 0.01
0.1 0.75 0.15
0.25 0.363 0.387





Theorem 5.1 Merging of the row for unnecessary information is reasonable.

Proof: In the above merge, rows i1, i2, · · · , it refer to unnecessary in-
formation, if all rows satisfy p(yj |xik) < minconf for j = 1, 2, · · · , n, and
k = 1, 2, · · · , t. Rows i1, i2, · · · , it are all merged as row i1 with p(yj|xi1 ) =
(p(yj |xi1 ) + p(yj|xi2 ) + · · ·+ p(yj |xit))/t, for j = 1, 2, · · · , n. Certainly,

n∑

j=1

p(yj|xi1 ) = (p(y1|xi1) + p(y1|xi2 ) + · · ·+ p(y1|xit))/t

+ (p(y2|xi1) + p(y2|xi2 ) + · · ·+ p(y2|xit))/t
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+ · · ·
+ (p(yn|xi1) + p(yn|xi2 ) + · · ·+ p(yn|xit))/t
= (1 + 1 + · · ·+ 1)/t = 1

Hence, the merge of the row for unnecessary information is reasonable.
∇

5.3.3 Merging Items with Identical Properties

As we have seen, this merging of quantitative items can improve the proba-
bility matrix. On the other hand, when X = PostDoctor and X = Doctor,
we can determine that a salary is in [3500,+∞) with higher confidence. Such
quantitative items are called items with identical property. For the same
reason, we can merge these two quantitative items into a quantitative item
P&D. Hence, the above data can be reduced as shown in Table 5.3.

Table 5.3. Statistical results of interest data

Education Salary Number

[3500,+∞) 17000
P&D [2100, 3500) 2800

[0, 2100) 200
[3500,+∞) 1000

PostMaster [2100, 3500) 7500
[0, 2100) 1500

[3500,+∞) 7500
M&U [2100, 3500) 10900

[0, 2100) 11600

Hence, the causal rule X → Y with the conditional probability matrix
MY |X is as follows, where the domain of X is R(X) = {P&D,PostMaster,
M&U}, and the domain of Y is R(Y )={[3500, +∞), [2100, 3500), [0, 2100)}.

M3
Y |X =




0.85 0.14 0.01
0.1 0.75 0.15
0.25 0.363 0.387





Let X −→ Y be an extracted causal rule with conditional probability
matrix MY |X . Assume the domain of X is R(X) = {x1, x2, ..., xm}, and
the domain of Y is R(Y ) = {y1, y2, ..., yn}. The problems of merging such
quantitative items are formally described below:

(1) finding out all columns i1, i2, · · · , is where column ik holds p(yik |xj) ≥
minconf at some j (1 ≤ j ≤ m) and k = 1, 2, · · · , s.

(2) merging all columns i1, i2, · · · , is into column i1 if s > 1, and deleting
columns i2, · · · , is from MY |X .
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(3) finding out all rows i1, i2, · · · , it where row ik holds p(yj |xik) ≥ minconf
at some j (1 ≤ j ≤ m) and k = 1, 2, · · · , t.

(4) merging all rows i1, i2, · · · , it into row i1 if t > 1, and deleting rows
i2, · · · , it from MY |X .

The algorithm for merging quantitative items with identical properties is
similar to the above procedure for reducing unnecessary information, so we
omit it here.

Theorem 5.2 Merging of a column for unnecessary information is reason-
able.

Proof: The proof is similar to the proof of Theorem 5.1.
∇

Above, we have illustrated that causal rules are useful for reasoning and
decision under uncertainty. When such rules are applied, the probabilities
of the merged point-values are added altogether as the probability of a new
point-value. This is used as a substitute for the merged point-values. For
example, let an evidence be (0.7, 0.1, 0.08, 0.08, 0.02, 0.02) for M1

Y |X . If this
is used as an inference in M3

Y |X , the evidence (0.7, 0.1, 0.08, 0.08, 0.02, 0.02)
needs to merge into (0.8, 0.08, 0.12). In this way, we can obtain Y =
(0.718, 0.216, 0.066). In other words, 0.718 is the probability that a person
can earn a salary within [3500,+∞), 0.216 is the probability that he/she can
earn a salary within [2100, 3500), and 0.066 is the probability that he/she
can earn a salary within [0, 2100).

Theorem 5.3 For a given large database D, minsupp and minconf , if X →
Y is extracted as a rule in our model, then X → Y is an optimized rule.

Proof: There are two kinds of causal rules.

(1) If X and Y are either itemsets or quantitative items, X → Y is certainly
an optimized rule.

(2) IfX and Y are item variables, then a conditional probability matrixMY |X
is attached to this rule, and unnecessary information in MY |X is merged
in rows and columns of the matrix. Also, items with identical properties in
MY |X are merged in rows and columns of the matrix. Consequently,MY |X
is an optimal matrix after reducing unnecessary information. Or, X → Y
is an optimized rule.

∇

5.4 Polynomial Function for Causality

This section, and the next, tackle the second phase of causal rule analysis.
For approximating causality, we first construct a suitable encoding method.



132 5. Causal Rule Analysis

5.4.1 Causal Relationship

As we have seen, the causal relationship between the variables X and Y
are described by attaching to a conditional probability matrix MY |X . In
our view, the conditional probability matrix MY |X can also be transformed
to an approximation function. For convenience, we focus first on a simple
classification for the causal relationships between X and Y .

Generally, for a rule X → Y , we divide the causality between X and Y
into three cases.

Case–I : A linear relationship between X and Y .
Example 5.1 presents a typical linear relationship between X and
Y , which constitutes the simplest form of causality.

Case–II : A polynomial relationship between X and Y .
For example, the total distance, X , traveled by a free-falling object,
is directly proportional to the square of the time, Y , of travel. There
is a polynomial relationship between the total distance traveled and
the time of travel of the object.

Case–III : A non-polynomial relationship between X and Y .
For example, let X be ‘years’ and Y be ‘the population of China’.
There is a non-polynomial relationship between the population of
China and years.

Case-I obviously refers to a class of tractable problems in Bayesian net-
works. Also, there are potential polynomial functions that can be used to
approximate some non-polynomial causal relations (Case-II). These non-
polynomial causal relations refer, as well, to tractable problems in Bayesian
networks. In the remainder of this chapter, we construct polynomial functions
for approximating the propagation.

5.4.2 Binary Linear Causality

For simplicity, suppose X → Y is a causal rule with a matrixMY |X . In order
to establish a 1st-order linear function to replace (1), we construct a function
of the form F (a) = k1EX(a)+k0, close to equation 5.1. Ideally, this function
should be expected to satisfy F (a) = EY (b). That is

k1EX(a) + k0 = EY (b)

or

k1EX(a) + k0 = EY (aMY |X) (5.2)

Equation 5.2 needs to determine the constants k1 and k0, and the map-
pings (encoders) EX and EY . We will first determine the encoders EX and
EY .



5.4 Polynomial Function for Causality 133

Let R(X) = {x1, x2, · · ·, xk}, and R(Y ) = {y1, y2, · · ·, ym}. And let the
state space of X be

S(X) = {(p1, p2, · · · , pk)|1 ≤ i ≤ k, 0 ≤ pi ≤ 1,
k∑

i=1

pi = 1}

The encoder EX is defined as,

EX(p1, p2, · · · , pk) = 10dp1 + 102dp2 + · · ·+ 10kdpk
where d > 0 is a positive integer, and d is determined as (i) d = r + 1, if
the decimal places demanded is r in an application; otherwise (ii) d = n+ 1
when 10n−1 < Max{|R(X)|, |R(Y )|} ≤ 10n.

As a rule, the encoders would naturally capture the sort of the point
values of X . For example, assume R(X) = {none-rain, small-rain, middle-
rain, heavy-rain}, then we can construct EX(1, 0, 0, 0) = 10d, EX(0, 1, 0, 0) =
102d, EX(0, 0, 1, 0) = 103d, EX(0, 0, 0, 1) = 104d as the encoder values of
‘none-rain’, ‘small-rain’, ‘middle-rain’, and ‘heavy-rain’, respectively. This
matches the ordered relationship of the amount of rain. Also, the encoder
of X must be determined as an increasing order by the increasing order of
the encoder of Y , due to the fact that the encoders directly influence the
efficiency of the constructed approximate functions. Hence, it is important
to determine an encoder for constructing an approximation function. The
following examples in Subsection 5.4.4 will demonstrate this further.

Theorem 5.4 The above encoder EX is a one-to-one mapping.

Proof: Reduction to absurdity. Let the encoder of (p1, p2, · · · , pk) be equal
to the encoder of (p′1, p2,

′ · · · , p′k). That is

EX(p1, p2, · · · , pk) = EX(p′1, p2,′ · · · , p′k)
or,

10dp1 + 102dp2 + · · ·+ 10kdpk
= 10dp′1 + 102dp′2 + · · ·+ 10kdp′k

or,
10d(p1 − p′1) + 102d(p2 − p′2) + · · ·+ 10kd(pk − p′k) = 0.

We know, from the above suppositions, that not all of pi − p′i(i =
1, 2, · · · , k) are equal to 0. We assume that when i = j1, j2, · · · , jm, pi−p′i �= 0,
where, j1 < j2 < · · · < jm. Then the above formula can be re-written to,

10j1d(pj1 − p′j1) + · · ·+ 10jmd(pjm − p′jm) = 0
or,

10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1
)

= −10jmd(pjm − p′jm)
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In other words,

||10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1
)||

= ||10jmd(pjm − p′jm)||
or,

||10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1
)||

= 10jmd||pjm − p′jm ||
Because 0 ≤ pi ≤ 1, so,

10jmd||pjm − p′jm ||

≥ 10jmd10−d

= 10(jm−1)d

On the other hand, according to the suppositions

1 ≤ i ≤ k, 0 ≤ pi ≤ 1,
k∑

i=1

pi = 1

and

1 ≤ i ≤ k, 0 ≤ p′i ≤ 1,
k∑

i=1

p′i = 1

we have, ||pj1 − p′j1 || + · · · + ||pjm − p′jm || ≤ 1 and ||pjm − p′jm || �= 0. So
||pj1 − p′j1 ||+ · · ·+ ||pjm−1 −p′jm−1

|| < 1. And notice the power of 10 of each
operand, when we have,

||10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1
)||

≤ ||10j1d(pj1 − p′j1)||+ · · ·+ ||10jm−1d(pjm−1 − p′jm−1
)||

< 10jm−1d.

Because jm−1 < jm, therefore jm−1 ≤ jm−1, and thus the above inequa-
tion can be reduced as,

||10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1
)||

< 10jm−1d

≤ 10(jm−1)d

Hence,
||10j1d(pj1 − p′j1) + · · ·+ 10jm−1d(pjm−1 − p′jm−1

)||
< 10jmd||pjm − p′jm ||
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This contradicts the above suppositions. That is, the above encoder is a
one-to-one mapping. ∇

Intuitively, this theorem shows EX(p1, p2, · · ·, pk) = EX(p′1, p
′
2, · · ·, p′k),

iff p1 = p′1, p2 = p′2, · · · , pk = p′k. In this case the encoder of EY is the same
as EX .

We now determine the constants k1 and k0. Because our goal is to com-
press (1) to an approximation function, so for all states in S(X), or a ∈ S(X),
the approximation function must satisfy:

||k1EX(a) + k0 − EY (aMY |X)|| < ε
where ε > 0 is small enough. Or, for

f ′(k1, k0) =
∑

a∈S(X)

(k1EX(a) + k0 − EY (aMY |X))2

the value of f ′(k1, k0) must be the minimum. Or for Ω(A) ⊂ S(A) and

f(k1, k0) =
∑

a∈Ω(X)

(k1EX(a) + k0 − EY (aMY |X))2

the value of f(k1, k0) must be the minimum.

Theorem 5.5 The minimal solution to the above formula for constants
k1, k0 is

k1 =
ω1 − ω2

ω3 − ω4

k0 = 1/
(Ω(X))(ω5 − ω6)

where,

ω1 =
∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

EY (aMY |X)

ω2 = 
(Ω(X)
∑

a∈Ω(X)

(EY (aMY |X)EX(a))

ω3 = (
∑

a∈Ω(X)

EX(a))2, ω4 = 
(Ω(X))
∑

a∈Ω(X)

E2
X(a)

ω5 =
∑

a∈Ω(X)

EY (aMY |X), ω6 = k1
∑

a∈Ω(X)

EX(a))

Proof: We now present the proof of Theorem 5.5 by deriving the above
solutions as follows.
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For the principle of extreme value in mathematical analysis, we can find
the minimum by taking the partial derivatives over f(k1, k0) with respect to
k1, k0 we must determine, and then set these derivatives to 0. That is,






∂f
∂k1

= 2
∑

a ∈ Ω(X)
((k1EX(a) + k0 − EY (aMY |X))EX(a)) = 0

∂f
∂k0

= 2
∑

a ∈ Ω(X)
(k1EX(a) + k0 − EY (aMY |X)) = 0

Or,






k1
∑

a∈Ω(X)
E2
X(a)+k0

∑

a∈Ω(X)
EX(a)− ∑

a∈Ω(X)
(EY (aMY |X)EX(a)) = 0

k1
∑

a ∈ Ω(X)
EX(a) + k0
(Ω(X)) − ∑

a ∈ Ω(X)
EY (aMY |X) = 0

So, we can estimate k1 and k0 by solving the above equation group as follows,





k1 = ω1−ω2
ω3−ω4

k0 = 1/
(Ω(X))(ω5 − ω6)

where,

ω1 =
∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

EY (aMY |X)

ω2 = 
(Ω(X)
∑

a∈Ω(X)

(EY (aMY |X)EX(a))

ω3 = (
∑

a∈Ω(X)

EX(a))2

ω4 = 
(Ω(X))
∑

a∈Ω(X)

E2
X(a)

ω5 =
∑

a∈Ω(X)

EY (aMY |X)

ω6 = k1
∑

a∈Ω(X)

EX(a))

Then, the above formula F (a) = k1EX(a) + k0 is the approximation
function of Equation 5.1.

∇
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For an observation a, F (a) can be gained from the above formula. Then
we can solve b1, b2, ..., bm by F (a). That is,

bi = (INT (F (a)/10(i−1)d)− INT (F (a)/10id) ∗ 10d)/10d

where i = 1, 2, · · · ,m, and INT () is an integer function. In order to assure
the probability significance level of the results, the final results are:

b1 : = Max{0, 1− (b2 + b3 + ...+ bm)}
bi : = bi/(b1 + b2 + ...+ bm)

where, i = 1, 2, · · · ,m.

Theorem 5.6 For rules of the form X → Y where the causality is of the
form Case-I, the causality can be perfectly fitted by F (a) above.

Proof: This can be obtained immediately from the above minimization
problem, and from Theorem 5.5. ∇

5.4.3 N-ary Linear Propagating Model

We now discuss the 1st-order linear form of the general rules of the form:

X1 ∧X2 ∧ · · · ∧Xn → Y

In order to construct a 1st-order linear function to close the causality of such
a rule, we construct a function of the form,

F (a) = k0 + k1EX1(a1) + · · ·+ knEXn(an)
Ideally, it would satisfy the following equation,

k0 + k1EX1(a1) + · · ·+ knEXn(an) = EY (b) (5.3)

In Equation 5.3 we need to determine the constants k0, k1, · · · , kn, and
the encoders EX1, · · · , EXn and EY . The encoders of EX1, · · · , EXn and EY
are determined in the same way as in Subsection 5.4.2. Therefore, we need
only determine the constants k0, k1, · · · , kn.

For ai ∈ S(Xi), i = 1, 2, · · · , n, the result b can be solved by the non-linear
form of causality. Again, b, and the states a1, a2, · · · , an, can be constructed
as a vector of the form (a1, a2, · · · , an, b), and the set of all these vectors
is written as ST . Then, for t = (a1, a2, · · · , an, b) ∈ ST , the function must
satisfy:

||k0 + k1EX1(a1) + · · ·+ knEXn(an)− EY (b)|| < ε
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where ε > 0 is small enough. Or, for

f ′(k0, k1, · · · , kn) =
∑

t∈ST
(k0 + k1EX1(a1) + · · ·+ knEXn(an)− EY (b))2

the value of f ′(k0, k1, · · · , kn) must be the minimum. Or letting ST ⊂ ST ,
for

f(k0, k1, · · · , kn) =
∑

t∈ST

(k0 + k1EX1(a1) + · · ·+ knEXn(an)− EY (b))2

the value of f(k0, k1, · · · , kn) must be the minimum.

Theorem 5.7 The minimal solutions to the above formula for the constants
k0, k1, · · · , kn are

k0 =
d0
d
; k1 =

d1
d
; · · · ; kn =

dn
d

where d is the determinant of the coefficient matrix of the following equa-
tion group with respect to k0, k1, · · · , kn and d �= 0, di is the determinant
after the ith rank in d is replaced with the constant rank

∑
EY (b), and∑

(EY (b)EX1(a1)), · · ·,
∑

(EY (b)EXn(an)).

Proof: Below, we show the proof of Theorem 5.7 by derivation from the
above solutions.

In the same way as in the above subsection, we can find the minimum by
taking the partial derivatives over f(k0, k1, · · · , kn) with respect to k0, k1, · · · ,
kn we must determine, and we then set these derivatives to 0. That is,






∂f
∂k0

= 2
∑

t ∈ ST
(k0 + k1EX1(a1) + · · · knEXn(an)− EY (b)) = 0

∂f
∂k0

= 2
∑

t ∈ ST
((k0 + k1EX1(a1) + · · · knEXn(an)− EY (b))EX1(a1)) = 0

· · ·
∂f
∂k0

= 2
∑

t ∈ ST
((k0 + k1EX1(a1) + · · · knEXn(an)− EY (b))EXn(an)) = 0
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Or,





k0
(Ω(ST )) + k1
∑
EX1(a1) + · · ·+ kn

∑
EXn(an) =

∑
EY (b)

k0
∑
EX1(a1) + k1

∑
E2
X1(a1) + · · ·+ kn

∑
(EXn(an)EX1(a1))

=
∑

(EY (b)EX1(a1))

· · ·

k0
∑
EXn(an) + k1

∑
(EX1(a1)EXn(an)) + · · ·+ kn

∑
E2
Xn(an)

=
∑

(EY (b)EXn(an))

Let A be the coefficient matrix of this equation group with respect to
k0, k1, · · · , kn. If d = |A| �= 0, then this equation group has the following
unique solution






k0 = d0
d

k1 = d1
d

· · ·

kn = dn

d

where di is the determinant of the matrix after the ith rank in A is replaced
with the constant rank

∑
EY (b),

∑
(EY (b)EX1(a1)), · · ·,

∑
(EY (b)EXn(an)).

Then the formula F (a) = k0 + k1EX1(a1) + · · · + knEXn(an) is the ap-
proximation function of (3).

∇
In the same way, b1, b2, · · · , bm can be determined by F (a) according to

the decoder in the above subsection.

Theorem 5.8 For rules of the form X1 ∧X2 ∧ · · · ∧Xn → Y in Case-I, the
causality can be perfectly fitted by the above F (a).

Proof: The theorem can be proved immediately from the above mini-
mization technique, and from Theorem 5.7.

∇

5.4.4 Examples

Now two simple examples demonstrate the use of the above approximation
function.
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Table 5.4. Some data for Example 5.2

p(x1) p(x2) p(x3) p(y1) p(y2) p(y3)
0.9 0 0.1 0.73 0.1 0.17
0.1 0.9 0 0.17 0.73 0.1
0 0.1 0.9 0.1 0.17 0.73
0.8 0 0.2 0.66 0.1 0.24
0.2 0 0.8 0.24 0.1 0.66
0 0.2 0.8 0.1 0.24 0.66
0 0.3 0.7 0.1 0.31 0.59
0.7 0.2 0.1 0.59 0.24 0.17
0.1 0.2 0.7 0.17 0.24 0.59
0.4 0.6 0 0.38 0.52 0.1
0 0.6 0.4 0.1 0.52 0.38
0.1 0.3 0.6 0.17 0.31 0.52
0.2 0.6 0.2 0.24 0.52 0.24
0.2 0.2 0.6 0.24 0.24 0.52
0.5 0.3 0.2 0.45 0.31 0.24

Example 5.2 Example 5.1 demonstrates a typical linear causality between
X and Y . We can represent this as a linear function. Suppose the encoders
of X and Y are both the same as in Subsection 5.4.2, and d = 2. Some of
the data is listed in Table 5.4.

According to Theorem 5.5, k0 and k1 are determined, using the data in
Table 5.4 concerning S(X) and S(Y ) as follows:

k0 = 101010, k1 = 0.7

Hence, the approximating function is as follows:

F (a) = 0.7EX(a) + 101010

Given an observation a = (p(x1) = 0.3, p(x2) = 0.5, p(x3) = 0.2), the
probabilities of the point values of YP can be gained by the non-linear causal-
ity as follows,

p(y1) = 0.31, p(y2) = 0.45, p(y3) = 0.24

The encoder of this observation is asEX(a) = 205030. If this is substituted
into the above approximation function, we have,

F (a) = 244531

According to the decoder in Subsection 5.4.2, we can obtain the proba-
bilities of the point values of YZ from F (a) as follows,

p(y1) = 0.31, p(y2) = 0.45, p(y3) = 0.24



5.4 Polynomial Function for Causality 141

So, we have

||P (YZ)−P (YP )|| = ||pZ(y1)−pP (y1)||+||pZ(y2)−pP (y2)||+||pZ(yn)−pP (yn)||
= 0

The values of EYP and EYZ are listed in Table 5.5, for some given random
observations on (p(x1), p(x2), p(x3)).

Table 5.5. Comparison of EYP and EYZ

p(x1) p(x2) p(x3) EX(a) F (a) EYZ EYP

0.2 0 0.8 800020 522028 522028 522028
0 0.1 0.9 901000 562420 562420 562420
0.2 0.1 0.7 701020 482428 482428 482428
0.6 0.3 0.1 103060 243244 243244 243244
0.1 0.7 0.2 207010 284824 284824 284824

Note that, if d = 3, then k0 and k1 are determined according to samples
such as: k0 = 100100100, k1 = 0.7. Then the approximating function is as
follows:

F (a) = 0.7EX(a) + 100100100

And, if d = 4, then k0 and k1 are determined according to some samples
as: k0 = 100010001000, k1 = 0.7. Then the approximating function is as
follows:

F (a) = 0.7EX(a) + 100010001000

This example shows, for rules of the form X → Y in Case-I, the causality
can be perfectly fitted by the above F (a). In this example, we have directly
used the encoder method described in Subsection 5.4.2. However, the encoder
of X usually needs to consider the increasing order of the encoder of Y . We
illustrate this argument with the following example.

Example 5.3 For the rule X → Y , let d = 2 and

MX|Y =




0.1 0.8 0.1
0.1 0.1 0.8
0.8 0.1 0.1





For this matrix, the encoder ofX must give consideration to the increasing
order of the encoder of Y . Thus, the encoders from Subsection 5.4.2 are not
the best choice.

In fact, the minimum and maximum of EY are 101080 and 801010,
respectively, according to the encoder method we have used. The minimum
of EY corresponds to the probabilities of point values of Y as
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p(y1) = 0.8, p(y2) = 0.1, p(y3) = 0.1,

and the minimum corresponds to the state of X as

p(x1) = 0, p(x2) = 0, p(x3) = 1

Also, themaximum of EY corresponds to the probabilities of the point values
of Y as

p(y1) = 0.1, p(y2) = 0.1, p(y3) = 0.8

while the maximum corresponds to the state of X as

p(x1) = 0, p(x2) = 1, p(x3) = 0

Therefore, these encoders are obviously not the best choice for estimating the
approximation function of the rule.

Certainly, if the encoder EX is determined with respect to the increasing
order of the encoder of Y (or the encoders of states (0, 0, 1) and (0, 1, 0)
are the minimum and the maximum respectively, of the encoder of X),
then these encoders are more appropriate for estimating the approximation
function. In order to construct this encoder, we must re-arrange the order of
the point values as

x3, x1, x2

and rename them as

z1 = x3, z2 = x1, z3 = x2

Then, the state space is S(X) = {(p(z1) = a1, p(z2) = a2, p(z3) = a3)|a1 +
a2 + a3 = 1}, and the encoder is

EX(a) = EX(a1, a2, a3) = 10da1 + 102da2 + 103da3

or

EX(a) = 10dp(x3) + 102dp(x1) + 103dp(x2)

and

EY (b) = 10dp(y3) + 102dp(y1) + 103dp(y2)

Now we can solve the approximation function with the above encoder as
follows:

F (a) = 0.7EX(a) + 101010

Given an observation a = (p(x1) = 0.2, p(x2) = 0.1, p(x3) = 0.7), the
probabilities of the point values of YP can be gained by the non-linear causal-
ity as follows,
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p(y1) = 0.59, p(y2) = 0.24, p(y3) = 0.17

The corresponding state of this observation is (0.7, 0.2, 0.1), and the
encoder of the state is EX(a) = 107020. If this is substituted into the above
approximation function, we have

F (a) = 175924

According to the decoder in Section 5.4.2, we can obtain the probabilities
of YZ from F (a) as follows,

p(y1) = 0.59, p(y2) = 0.24, p(y3) = 0.17

So, we have

||P (YZ)−P (YP )|| = ||pZ(y1)−pP (y1)||+||pZ(y2)−pP (y2)||+||pZ(yn)−pP (yn)||

= 0

This example shows that if the causality of rules is of the form X → Y
in Case-I, the causality can be perfectly fitted by F (a) above.

5.5 Functions for General Causality

This section presents a means of constructing a polynomial function close
to Equation 5.1, which can be applied to the approximating problem of
causality in Case-II and Case-III as defined in Subsection 5.4.1.

If there is no non-polynomial function in Equation 5.1, we can estimate an
approximation function. Ideally, this function should be expected to satisfy

||k2E2
X(a) + k1EX(a) + k0 − EY (aMY |X)|| < ε,

where ε > 0 is small enough. Or, for

f ′(k2, k1, k0) =
∑

a∈S(X)

(k2E2
X(a) + k1EX(a) + k0 − EY (aMY |X))2

the value of f ′(k2, k1, k0) must be the minimum. Or for Ω(A) ⊂ S(A) and

f(k2, k1, k0) =
∑

a∈Ω(X)

(k2E2
X(a) + k1EX(a) + k0 − EY (aMY |X))2

the value of f(k2, k1, k0) must be the minimum.
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Theorem 5.9 The minimal solutions to the above formula for the constants
k2, k1, k0 are

k2 =
η1(EY )ξ4(EX)− η2(EY )ξ2(EX)
ξ1(EX)ξ4(EX)− ξ2(EX)ξ3(EX)

k1 =
η1(EY )ξ3(EX)− η2(EY )ξ1(EX)
ξ2(EX)ξ3(EX)− ξ1(EX)ξ4(EX)

k0 = 1/
(Ω(X))(
∑

a ∈ Ω(X)
EY (aMY |X)− k2

∑

a ∈ Ω(X)
E2
X(a)

− k1 ∑

a ∈ Ω(X)
EX(a))

Where,

ξ1(EX) = 
(Ω(X))
∑

a∈Ω(X)

E4
X(a)− (

∑

a∈Ω(X)

E2
X(a))

2

ξ2(EX) = 
(Ω(X))
∑

a∈Ω(X)

E3
X(a)−
(Ω(X))

∑

a∈Ω(X)

E2
X(a)

ξ3(EX) = 
(Ω(X))
∑

a∈Ω(X)

E3
X(a)−

∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

E2
X(a)

ξ4(EX) = 
(Ω(X))
∑

a∈Ω(X)

E2
X(a)−
(Ω(X))

∑

a∈Ω(X)

EX(a)

η1(EY ) = 
(Ω(X))
∑

a∈Ω(X)

(EY (aMY |X)E2
X(a)

−
∑

a∈Ω(X)

E2
X(a)

∑

a∈Ω(X)

(EY (aMY |X)

η2(EY ) = 
(Ω(X))
∑

a∈Ω(X)

(EY (aMY |X)EX(a)

−
∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

(EY (aMY |X)

Proof: We now present the proof of Theorem 5.9 by the derivation of
the above solutions.

Using the principle of extreme value in mathematical analysis, we can
find the minimum by taking the partial derivatives over f(k2, k1, k0) with
respect to k2, k1, k0 that we must determine. We then set these derivatives
to 0. That is,
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∂f
∂k2

= 2
∑

a ∈ Ω(X)
((k2E2

X(a) + k1EX(a) + k0 − EY (aMY |X))E2
X(a)) = 0

∂f
∂k1

= 2
∑

a ∈ Ω(X)
((k2E2

X(a) + k1EX(a) + k0 − EY (aMY |X))EX(a)) = 0

∂f
∂k0

= 2
∑

a ∈ Ω(X)
(k1EX(a) + k0 − EY (aMY |X)) = 0

Or,





k2
∑

a ∈ Ω(X)
E4
X(a) + k1

∑

a ∈ Ω(X)
E3
X(a) + k0

∑

a ∈ Ω(X)
E2
X(a)

− ∑

a ∈ Ω(X)
(EY (aMY |X)E2

X(a)) = 0

k2
∑

a ∈ Ω(X)
E3
X(a) + k1

∑

a ∈ Ω(X)
E2
X(a) + k0

∑

a ∈ Ω(X)
EX(a)

− ∑

a ∈ Ω(X)
(EY (aMY |X)EX(a)) = 0

k2
∑

a ∈ Ω(X)
E2
X(a) + k1

∑

a ∈ Ω(X)
EX(a) + k0
(Ω(X))

− ∑

a ∈ Ω(X)
EY (aMY |X) = 0

Let

ξ1(EX) = 
(Ω(X))
∑

a∈Ω(X)

E4
X(a)− (

∑

a∈Ω(X)

E2
X(a))

2,

ξ2(EX) = 
(Ω(X))
∑

a∈Ω(X)

E3
X(a)−
(Ω(X))

∑

a∈Ω(X)

E2
X(a),

ξ3(EX) = 
(Ω(X))
∑

a∈Ω(X)

E3
X(a)−

∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

E2
X(a),

ξ4(EX) = 
(Ω(X))
∑

a∈Ω(X)

E2
X(a)−
(Ω(X))

∑

a∈Ω(X)

EX(a),

η1(EY ) = 
(Ω(X))
∑

a∈Ω(X)

(EY (aMY |X)E2
X(a)

−
∑

a∈Ω(X)

E2
X(a)

∑

a∈Ω(X)

(EY (aMY |X),

η2(EY ) = 
(Ω(X))
∑

a∈Ω(X)

(EY (aMY |X)EX(a)

−
∑

a∈Ω(X)

EX(a)
∑

a∈Ω(X)

(EY (aMY |X)
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We can gain the following solutions by solving the above equation group
as follows:






k2 = η1(EY )ξ4(EX)−η2(EY )ξ2(EX)
ξ1(EX)ξ4(EX)−ξ2(EX)ξ3(EX )

k1 = η1(EY )ξ3(EX)−η2(EY )ξ1(EX)
ξ2(EX)ξ3(EX)−ξ1(EX)ξ4(EX )

k0 = 1/
(Ω(X))(
∑

a ∈ Ω(X)
EY (aMY |X)

−k2 ∑

a ∈ Ω(X)
E2
X(a)− k1

∑

a ∈ Ω(X)
EX(a))

∇

Theorem 5.10 For rules of the form X → Y in Case-II or Case-III, and the
encoders can be constructed in increasing order, these causality relationships
can be perfectly fitted by F (a) above.

Proof: This can be obtained immediately from the above minimization
problem, and from Theorem 5.9.

∇
The approximation function f(k3, k2, k1, k0) = k3E

3
X(a) + k2E

2
X(a) +

k1EX(a) + k0, or other higher order functions, can be constructed in the
same way as above. Generally, polynomial approximating functions for the
rules of the form X1 ∧ X2 ∧ · · · ∧ Xn → Y , can also be constructed in the
same way. Now we demonstrate this with an example.

Let the conditional probability matrix of a node be

MY |X =




0.5 0.2 0.3
0.3 0.4 0.3
0.2 0.4 0.4





Suppose the encoders of X and Y are the same as those in Subsection
5.4.2, and d = 2. The appropriate data is listed in Table 5.6.

According to the method above, k0, k1, and k2 are determined by the
above probabilities in S(X) and S(Y ) as follows:

k0 = 302693.63, k1 = 0.10128629, k2 = −1.26717× 10−10

Then the approximating function is as follows:

F (a) = −1.26717× 10−10E2
X(a) + 0.10128629EX(a) + 302693.63

Given an observation a = (p(x1) = 0.3, p(x2) = 0.5, and p(x3) = 0.2), the
probabilities of the point values of YP can be gained by non-linear causality
as follows,

p(y1) = 0.34, p(y2) = 0.34, p(y3) = 0.32
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Table 5.6. Some probabilities for X → Y

p(x1) p(x2) p(x3) p(y1) p(y2) p(y3)
0 0.9 0.1 0.29 0.4 0.31
0.1 0 0.9 0.23 0.38 0.39
0.2 0.8 0 0.34 0.36 0.3
0.8 0.1 0.1 0.45 0.24 0.31
0.1 0.8 0.1 0.31 0.38 0.31
0 0.3 0.7 0.23 0.4 0.37
0.7 0.1 0.2 0.42 0.26 0.32
0.1 0.2 0.7 0.25 0.38 0.37
0 0.4 0.6 0.24 0.4 0.36
0.6 0.1 0.3 0.39 0.28 0.33
0.1 0.6 0.3 0.29 0.38 0.33
0.1 0.3 0.6 0.26 0.38 0.36
0.2 0.2 0.6 0.28 0.36 0.36
0.5 0.5 0 0.4 0.3 0.3
0 0.5 0.5 0.25 0.4 0.35

The encoder of this observation is EX(a) = 205030. If it is substituted
into the above approximation function, we have,

F (a) = 323455.04

According to the decoder in Subsection 5.4.2, we can obtain the proba-
bilities of the point values of YZ from F (a) as follows,

p(y1) = 0.55, p(y2) = 0.34, p(y3) = 0.32

To assure the probability significance level of the results, we note that the
final results would be

p(y1) = 0.34, p(y2) = 0.34, p(y3) = 0.32

where p(y1) = max{0, 1− (p(y2) + p(y3))) = 1− 0.34− 0.32 = 0.34.
So, we have

||P (YZ)−P (YP )|| = ||pZ(y1)−pP (y1)||+||pZ(y2)−pP (y2)||+||pZ(yn)−pP (yn)||

= 0

Now, given another observation a = (p(x1) = 0.1, p(x2) = 0, and
p(x3) = 0.9), the probabilities of the point values of YP can be gained by
the propagating model of Bayesian networks as follows,

p(y1) = 0.23, p(y2) = 0.38, p(y3) = 0.39

The encoder of this observation is asEX(a) = 900010. If this is substituted
into the above approximation function, we have,
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F (a) = 393749.66

According to the decoder in Subsection 5.4.2, we can obtain the proba-
bilities of the point values of YZ from F (a) as follows,

p(y1) = 0.49, p(y2) = 0.37, p(y3) = 0.39

In order to assure the probability significance level of the results, we note
that the final results would be

p(y1) = 0.24, p(y2) = 0.37, p(y3) = 0.39

So, we have

||P (YZ)−P (YP )|| = ||pZ(y1)−pP (y1)||+||pZ(y2)−pP (y2)||+||pZ(yn)−pP (yn)||
= 0.02

For some given random observations on (p(x1), p(x2), p(x3)), the results
of EYP and EYZ are listed as follows.

Table 5.7. Comparison of EYP and EYZ for general cases

p(x1) p(x2) p(x3) EX(a) F (a) EYZ EYP

0.3 0.5 0.2 205030 323455 323434 323434
1 0 0 100 302703 302743 302050
0 0 1 1000000 403853 403822 404020
0.1 0.8 0.1 108010 313632 313633 313831
0.4 0.2 0.4 402040 343394 343333 343234
0.5 0 0.5 500050 353310 353332 353035
0.1 0.2 0.7 702010 373735 373726 373825

Again, we can construct an approximate function for d = 3 with the same
samples:

k0 = 300246064, k1 = 0.1002169, k2 = −6.69927× 10−14

Then the approximating function is as follows:

F (a) = −6.69927× 10−14E2
X(a) + 0.1002169EX(a) + 300246064

Now, given an observed value as p(x1) = 0.1, p(x2) = 0, and p(x3) = 0.9,
the probabilities of the point values of YP can be gained from Pearl’s plausible
inference model as follows,

p(y1) = 0.23, p(y2) = 0.38, p(y3) = 0.39

The encoder of this observed value is EX(a) = 900000100. If it is substi-
tuted into the above approximation function, we have,
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F (a) = 390386000

According to the decoder, we can obtain the probabilities of the point
values of YZ from F (a) as follows,

p(y1) = 0.00, p(y2) = 0.386, p(y3) = 0.39

In order to assure the probability significance level of the results, the final
results are:

p(y1) = 0.224, p(y2) = 0.386, p(y3) = 0.39

So, we have

||P (YZ)−P (YP )|| = ||pZ(y1)−pP (y1)||+||pZ(y2)−pP (y2)||+||pZ(y3)−pP (y3)||

= 0.012

These results show that ||P (YZ) − P (YP )|| has decreased from 0.02 to
0.012 for the observation (p(x1) = 0.1, p(x2) = 0, and p(x3) = 0.9). However,
the impact range of the computing error is not reduced with d enlarged.

5.6 Approximating Causality by Fitting

This section presents the final phase of causal rule analysis.
As we have seen, we can discover approximate polynomial causality in

data by encoding. In scientific research, we often need to find a causal rela-
tionship in a function, from numerical data. For example, let the numerical
values of X and Y be x1, x2, · · ·, xn, and y1, y2, · · ·, yn as listed below:

X x1 x2 · · · xn
Y y1 y2 · · · yn

In this section, we propose a method for finding the approximate linear
causality between X and Y from the given numerical data, by fitting.

5.6.1 Preprocessing of Data

Suppose D = {(xi, yi), 1 ≤ i ≤ n} indicates a set of all numerical data. We
need a preprocess for this data.

First, a set D is divided along the y-axis into k groups of data as follows:

D1, D2, ·, Dk
This should satisfy the three conditions below.
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(1) ∀(xij , yij) ∈ Di, yij ∈ [yi, yi], where yi and yi are the supremum and
infimum of yij inDi, respectively, j = 1, 2, · · · , ni, where ni is the observed
point numbers in Di; and n =

∑k
i=1 ni. And, for y ∈ [yi, yi] and ∀y′ ∈

[yi+1, yi+1] , it must hold that y ≤ y′.
(2) If Di border Dj and j = i+1, then [yi, yi]∩ [yj , yj] exists at most at one
point, yj = yi.

(3) y and x have an approximate polynomial relationship on [yi, yi]. That is,
there exist two constants, a and b, so that y = a+bx can close at the point
where y ∈ [yi, yi].

In fact, we can adopt a linear-relational coefficient as a measure to divide
the set D.

After D is divided, the data in Di becomes a polynomial relationship.
Hence, we can use the extreme points of each set Di as its deputy points. In
other words, we select the points y′1, y′1, y

′
2, ..., y

′
k as deputy points. Let m be

the number of deputy points, renamed as y1, y2, ..., ym. The corresponding
point values of X will be x1, x2, · · · , xm, and we write the point values of Y
as G1(x1), G1(x2), ..., G1(xm). Therefore, we have constructed a deputy value
set U = (xi, G1(xi)), or

X x1 x2 · · · xm
Y G1(x1) G1(x2) · · · G1(xm)

5.6.2 Constructing the Polynomial Function

We now present a method for finding approximate polynomial causality be-
tween X and Y , from the above numerical data, by fitting. This is performed
by the following theorem.

Theorem 5.11 For U , the approximate polynomial function for fitting the
data can be constructed as

F (x) = F1(x) +
N∑

i=1

(Fi+1(x)(
2i∏

j=1

(x− xj)))

where,

Fk(x) =
(x− x2k)

(x2k−1 − x2k)
Gk(x2k−1) +

(x− x2k−1)
(x2k − x2k−1)

Gk(x2k)

and k = 1, 2, · · · , N ; N is the fitting times; and Gk is the fitted data.

Proof: As the proof of Theorem 5.11, we will now show how we construct
this approximating polynomial function. For U , suppose the polynomial func-
tion is
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F (x) = F1(x) + (x− x1)(x− x2)G2(x)

where

F1(x) =
(x− x2)
(x1 − x2)

G1(x1) +
(x− x1)
(x2 − x1)

G1(x2)

and where the values of G1(X) = F (x) are listed in the above table. Now
(x− x1)(x− x2)G2(X) represents a remainder term, and the values of G2(x)
at the other points can be solved as,

G2(xi) =
G1(xi)− F1(xi)
(xi − x1)(xi − x2)

where i = 3, 4, · · · ,m.
If |(G2(x3) + G2(x4) + ... + G2(xm))(x − x1)(x − x2)| < δ, where δ >

0 is a small value determined by an expert, or, m − 2 ≤ 0, then we end
the procedure, and we obtain F (x) = F1(x). The term G2(x) is neglected.
Otherwise, we go on to the above procedure for the remaining data as follows.
For the data,

EX x3 x4 · · · xm
G2(x) G2(x3) G2(x4) · · · G2(xm)

let

G2(x) = F2(x) + (x − x3)(x − x4)G3(x)

where

F2(x) =
(x− x4)
(x3 − x4)

G2(x3) +
(x− x3)
(x4 − x3)

G2(x4)

And (x− x1)(x− x2)(x− x3)(x− x4)G3(x) is the remainder term. Then the
values of G3(x) at the other points can be solved as,

G3(xi) =
G2(xi)− F2(xi)
(xi − x3)(xi − x4)

where i = 5, 6...,m.
If (G3(x5) +G3(x6) + ...+G3(xm))(x− x1)(x− x2)(x− x3)(x− x4) < δ,

where δ > 0 is a small value determined by expert; or if m− 4 ≤ 0, then the
procedure is ended, and obtain F (x) = F1+(x−x1)(x−x2)F2(x), where the
term G3(x) is neglected. Otherwise, we carry on with the above procedure
for the remaining data.

We can obtain a function after repeating the above procedure several
times. However, the above procedure is repeated N times (N ≤ [m/2]) at
most. Finally, we can gain an approximating function as follows.
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F (x) = F1(x) +G2(x)(x − x1)(x− x2)
= F1(x) + (F2(x) +G3(x)(x − x3)(x − x4))(x − x1)(x− x2)
· · ·

= F1(x) +
m∑

i=1

(Fj+1(x)(
2i∏

j=1

(x− xj)))

∇
F (X) is the approximating function of Y that we require. It is a polyno-

mial function for which the order is not over 2N + 1.
In fact, if F (x) fits the data of X and Y perfectly, then F (x) must be an

increasing function. So we have the following theorem.

Theorem 5.12 F (x) is an increasing function under the above encoders, or
for ∀x′, x′′(x′ > x′′)→ F (x′) > F (x′′).

Proof: First, we prove that Fi(x) (i = 1, 2, · · · ,m) are increasing func-
tions. We apply induction to Fi(x).

(1) When i = 1,

F1(x) =
(x− x2)
(x1 − x2)

G1(x1) +
(x− x1)
(x2 − x1)

G1(x2)

For ∀x′, x′′, x′ > x′′,

F1(x′)− F1(x′′) =
(x′ − x2)
(x1 − x2)

G1(x1) +
(x′ − x1)
(x2 − x1)

G1(x2)

− (
(x′′ − x2)
(x1 − x2)

G1(x1) +
(x′′ − x1)
(x2 − x1)

G1(x2))

=
(x′ − x′′)(G1(x2)−G1(x1))

(x2 − x1)
> 0

That is, F1(x′) > F1(x′′), or F1(x) is an increasing function.
(2) Suppose Fk−1(x) is an increasing function, we want to prove that

Fk(x) is also an increasing function. Because

Fk(x) =
(x− x2k)

(x2k−1 − x2k)
Gk(x2k−1) +

(x− x2k−1)
(x2k − x2k−1)

Gk(x2k)

and Fk−1(x) is an increasing function, according to the method of construct-
ing Gk(x), Gk is an increasing function; or, for ∀x′, x′′(x′ > x′′)→ Gk(x′) >
Gk(x′′), so for ∀x′, x′′, x′ > x′′ we have
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Fk(x′)− Fk(x′′) = (x′ − x2k)
(x2k−1 − x2k)

Gk(x2k−1) +
(x′ − x2k−1)
(x2k − x2k−1)

Gk(x2k)

− (
(x′′ − x2k)

(x2k−1 − x2k)
Gk(x2k−1) +

(x′′ − x2k−1)
(x2k − x2k−1)

Gk(x2k))

=
(x′ − x′′)(Gk(x2k)−Gk(x2k−1))

(x2k − x2k−1)
> 0

That is, Fk(x′) > Fk(x′′), or Fk(x) is an increasing function. Hence, Fi(x)
(i = 1, 2, · · · ,m) are increasing functions.

∇
Because Hi(x) =

∏2i
j=1(x− xj) (i = 1, 2, · · · ,m) are increasing functions,

so Hi(x)Fi(x) (i = 2, 3, · · · ,m) are increasing functions. That is, F (x) is an
increasing function, or for ∀x′, x′′(x′ > x′′)→ F (x′) > F (x′′).

Furthermore, we have the following theorem.

Theorem 5.13 Let a1, a2, a3 ∈ S(X), b1 = a1MY |X , b2 = a2MY |X , b3 =
a3MY |X , and (EX(a1) > EX(a2) > EX(a3))∧ (EY (b1) > EY (b2) > EY (b3)).
Then F (EX(a1)) > F (EX(a3)) > F (EX(a3)).

Proof: This can be proved immediately from the procedure of construct-
ing F (x) and from Theorem 5.12.

∇
Suppose δ = 0.1 in the following examples. It is important to demonstrate

that the above function fits a given data set, D, efficiently. Now we select a
data set from function x2 + x+ 2 as,

X 0 1 2 3 4 5 6 7 8 9
Y 2 4 8 14 22 32 44 58 74 92

For the above data, the approximation function is

F (x) = F1(x) + (x− 0)(x− 1)G2(x)

where

F1(x) =
(x− 1)
(0− 1)

2 +
(x− 0)
(1− 0)

4

= 2x+ 2

and G2(2) = 1, G2(3) = 1, G2(4) = 1, G2(5) = 1, G2(6) = 1, G2(7) = 1,
G2(8) = 1, G2(9) = 1.
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Because

(2 − 0)(2− 1)G2(2) + (3− 0)(3− 1)G2(3)
+ (4 − 0)(4− 1)G2(4) + (5− 0)(5− 1)G2(5)
+ (6 − 0)(6− 1)G2(6) + (7− 0)(7− 1)G2(7)
+ (8 − 0)(8− 1)G2(8) + (9− 0)(9− 1)G2(9)
> 1

and 10− 2 > 0. So, for the following results:

X 2 3 4 5 6 7 8 9
G2(x) 1 1 1 1 1 1 1 1

let

G2(x) = F2(x) + (x− 2)(x− 3)G3(x)

where

F2(x) =
(x− 3)
(2− 3)

1 +
(x− 2)
(3− 2)

1

= 1

and G3(4) = 0, G3(5) = 0, G3(6) = 0, G3(7) = 0, G3(8) = 0, G3(9) = 0.
Because

(4− 0)(4− 1)(4− 2)(4 − 3)G3(4)+(5− 0)(5− 1)(5− 2)(5− 3)G3(5)
+ (6− 0)(6− 1)(6− 2)(6 − 3)G3(6)+(7− 0)(7− 1)(7− 2)(7− 3)G3(7)
+ (8− 0)(8− 1)(8− 2)(8 − 3)G3(8)+(9− 0)(9− 1)(9− 2)(9− 3)G3(9)
= 0

so

G2(x) = F2(x) + (x− 2)(x− 3)G3(x)
= F2(x)
= 1

Furthermore, we can obtain the polynomial function

F (x) = F1(x) + (x − 0)(x− 1)G2(x)
= 2x+ 2 + x(x− 1)1
= x2 + x+ 2

This means that the constructed function can fit real polynomial functions.



5.6 Approximating Causality by Fitting 155

5.6.3 Algorithm Design

In this subsection, we design an algorithm for constructing an approximate
function by fitting. Let the data in a data set be listed as follows:

X X [1] X [2] · · · X [n]
Y Y [1] Y [2] · · · Y [n]

After the data is preprocessed, the table becomes

X X [1] X [2] · · · X [m]
Y Y [1] Y [2] · · · Y [m]

An algorithm for discovering causal relational functions in data sets is con-
structed below.

Algorithm 5.1 PFCPI
begin

(1) readln(δ);
(2) for i→ 1 to n do

begin
readln(X [i]);
readln(Y [i])
end;

(3) preprocess the data;
let N1← 0;
for i→ 1 to n do
for j → 1 to n do
let GG[i, j]← 0;FF [i, j]← 0;

(4) for j → 1 to m do
begin
let X [j]← encoder X [j];
let Y [j]← encoder Y [j];
let GG[1, j]← Y [j];
end;

(5) if 2N + 1 ≥ m then goto (6);
(6) for j → 2N + 1 to m do

begin
let
FF [N, j]← X[j]−X[2N ]

X[2N−1]−X[2N ]GG[N, 2N−1]+ X[j]−X[2N−1]
X[2N ]−X[2N−1]GG[N, 2N ]

let GG[N + 1, j]← GG[N,j]−FF [N,j]
(X[j]−X[2N−1])(X[j]−X[2N ]) ;

end;
(7) if

∑ |GG[N + 1, j]| > δ then
begin
let N ← N + 1;
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goto (5);
end;

(8) output the result F (x);
(9) end of all.

The algorithm PFCPI is to generate a polynomial function F (x) for a
given data set, where the function FF [i, j] is the same as Fj , as described
in Theorem 5.11. Also, function GG[i, j] is the same as Gj , as described in
Theorem 5.11. The algorithm is initialized in Steps (1) and (2); Step (3)
preprocesses the given data; Step (4) encodes the given data; Step (5) checks
the condition 2N +1 ≥ m; Step (6) calculates Nth function; Step (7) checks
the condition

∑ |GG[N + 1, j]| > δ; and Step (8) outputs the result F (x).

5.6.4 Examples

We now demonstrate the efficiency of the approximation function by an ex-
ample.

It is important to demonstrate the efficiency with which the above func-
tion fits a given data set D. The following data set is taken directly from a
real application.

Consider a simple probabilistic table consisting of only one random vari-
able, say A, where R(A) = { red, green, yellow, blue, purple }. And the
probabilities are:

P (A = red) = 0.02

P (A = green) = 0.50

P (A = yellow) = 0.00

P (A = blue) = 0.37

P (A = purple) = 0.11

To find a function for fitting the above data, we first encode the data.
The encoders of the data of A and P (A) are (EA(yellow) = 1, EA(red) = 2,
EA(blue) = 3, EA(purple) = 4, EA(green) = 5, and EP (A=yellow) = 0,
EP (A=(red) = 6, EP (A=blue) = 16, EP (A=purpl) = 30, and EP (A=green) = 48).
That is,

EA 1 2 3 4 5
EP (A) 0 6 16 30 48

For the above data, the procedure for finding an approximate fitting func-
tion is as

F (x) = F1(x) + (x− 1)(x− 2)G2(x)
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where

F1(x) =
(x− 2)
(1− 2)

0 +
(x− 1)
(2− 1)

6

= 6x− 6

and G2(3) = 2, G2(4) = 2, G2(5) = 2.
Because G2(3)+G2(4)+G2(5) > 1, therefore we have the following results

EX 3 4 5
G2(x) 2 2 2

Let

G2(x) = F2(x) + (x− 3)(x− 4)G3(x)

where

F2(x) =
(x− 4)
(3− 4)

2 +
(x− 3)
(4− 3)

2

= 2

and G3(5) = 0.
Because G3(5) = 0, so

G2(x) = F2(x) + (x− 2)(x− 3)G3(x)
= F2(x)
= 2

Furthermore, we can gain a polynomial function as,

F (x) = F1(x) + (x − 1)(x− 2)G2(x)
= 6x− 6 + (x− 1)(x− 2)2
= 2x2 − 2

Therefore, EP (A)(x) = 2E2
A(x) − 2 and P (A = a) = E−1

P (A)(a) =
EP (A)(a)/100.

As we have seen, we need only twice the approximation procedures to
acquire the final result, and this result fits the above data completely. On the
other hand, this method does not require the encoders to be constructed in
a sophisticated way.

Also, the approach in this section can be used to find a linear function to
replace a non-linear causality in a matrix. We now demonstrate how the data
of a given rule with a matrix is fitted by this approach. Let a conditional
probability matrix of a rule be
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MY |X =




0.2 0.4 0.4
0.3 0.4 0.3
0.5 0.2 0.3





According to our encoder method, the order of the point variables must be
rearranged as x3, x2, x1. Then they are renamed as z1 = x3, z2 = x2, z3 = x1.
Now we select a random data set as follows

EZ 1090 2080 8020 9010 800020 900010 1000000
EY 302248 302446 303634 303832 383626 393823 404020

For the above data, an approximation function is found as follows.

F (x) = F1(x) + (x− 1090)(x− 2080)G2(x)

where

F1(x) =
(x− 2080)

(1090− 2080)
302248 +

(x− 1090)
(2080− 1090)

302446

= 0.2x+ 302030

and G2(8020) = 0, G2(9010) = 0, G2(800020) = −1.229933 ∗ 10−7,
G2(900010) = −1.092822 ∗ 10−7, G2(1000000) = −9.83214561 ∗ 10−8.

Because

||G2(8020)(8020 − 1090)(8020− 2080)||
+ ||G2(9010)(9010− 1090)(9010− 2080)||
+ ||G2(800020)(800020− 1090)(800020− 2080)||
+ ||G2(900010)(900010− 1090)(900010− 2080)||
+ ||G2(1000000)(1000000− 1090)(1000000− 2080)||
> 1

and 7− 2 > 0. Therefore we obtain the following data:

EZ 800020 900010 1000000
G2(x) −1.229933E − 7 −1.092822E − 7 −9.83214561E− 8

Notice that, because G2(8020) = 0 and G2(9010) = 0, they do not need
to be fitted.

Let
G2(x) = F2(x) + (x− 800020)(x− 900010)G3(x)

where

F2(x) =
(x− 900010)

(800020− 900010)
(−1.229933E − 7)

+
(x− 800020)

(900010− 800020)
(−1.092822E − 7)

= 1.37124 ∗ 10−13x− 2.326947 ∗ 10−7

and G3(1000000) = −1.375653 ∗ 10−19.
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Because ||G2(1000000)(1000000−1090)(1000000−2080)(1000000−800020)
(1000000− 900010)|| > 1 and 7− 6 > 0, so for the following data:

EZ 900010 1000000
G2(x) 0 −1.375653E− 19

let
G3(x) = F3(x) + (x − 900010)(x− 1000000)G4(x)

where

F2(x) =
(x− 1000000)

(900010− 1000000)
0

+
(x − 900010)

(1000000− 900010)
(−1.375653E − 19)

= 1.37579 ∗ 10−24x+ 1.238225 ∗ 10−18.

Because 7 − 7 = 0 and G4(x) can be neglected, we can obtain the poly-
nomial function as

F (x) = 0.2x+ 302030
+ (x− 1090)(x− 2080)(1.37124 ∗ 10−13x− 2.326947 ∗ 10−7)
+ (x− 1090)(x− 2080)(x− 800020)
∗ (x− 900010)(1.37579 ∗ 10−24x

+ 1.238225 ∗ 10−18)

5.7 Summary

There are still some limitations involved when using causal rules with ma-
trices, which prevent their general use. For example, its complexity has been
proven to be NP-hard. The techniques in this chapter have been used for
causal rule analysis. First a method was proposed for optimizing matrices for
causal rules. Secondly, we constructed ‘by encoding’ approximate polynomial
functions to replace non-linear causality. In particular, we presented a new
approach for finding approximate polynomial causality from numerical data,
by fitting. The key points of this work are as follows.

(1) Established a method of purifying causal rules, which reduces unnecessary
information in their matrices once the rules were extracted.

(2) Presented a means for constructing an encoder and a decoder.
(3) Constructed an method of propagating probabilities in Bayesian networks
when causality in Case-I.

(4) Suggested a method of constructing an approximation function for
Bayesian networks when causality in Case-II and Case-III.

(5) Proposed a new approach for finding approximate linear causality from
numerical data by fitting.



6. Association Rules in Very Large Databases

Dealing with very large databases is one of the defining challenges
in data mining research and development. Some databases are sim-
ply too large (e.g., with terabytes of data) to be processed at one
time. An ideal way of mining very large databases would be by us-
ing paralleling techniques. This system employs hardware technology,
such as parallel machines, to implement concurrent data mining al-
gorithms. However, parallel machines are expensive, and less widely
available, than single processor machines. This chapter presents some
techniques for mining association rules in very large databases, using
instance selection.
The chapter is organized as follows. In Section 6.1, we spell out our
motivation. In Section 6.2, we present a way of selecting instances
from a very large database. In Section 6.3, we present a method of
finding all approximate association rules of interest based on instance
selection. In Section 6.4, we advocate an approach which searches
true association rules by a one-pass over a database. This method
depends upon approximate association rules. An incremental mining
technique is developed in Section 6.5. In Section 6.6, an improved
method of incremental mining is advocated. Finally, we summarize
the chapter in Section 6.7.

6.1 Introduction

One of the main challenges in data mining is to identify association rules in
very large databases that are comprised of millions of transactions and items.
The main limitation of these approaches, however, is that multiple passes over
the database are required. For very large databases that are typically disk
resident, this requires reading the database completely for each pass, resulting
in a large number of disk I/Os. The larger the size of a given database, the
greater the number of disk I/Os. Therefore, more efficient mining models are
being exploited. Accordingly, many variants of the Apriori algorithm (such as
the hash based algorithm (see [Park-Chen-Yu 1997]), sampling (see [Toivonen
1996]) and the OPUS AR algorithm (see [Webb 2000]) have been reported.

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 161-198, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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To mine huge databases, there are three approaches possible: (1) the use of
feature selection based algorithms, (2) the use of parallel mining techniques,
and (3) mining by sampling.

The method of mining very large databases based on feature selection
(DMFS) selects only the features that are so-called ‘relevant’ to goal pat-
terns, or functions ([Kohavi-John 1997, Liu-Setiono 1998, Seshadri-Weiss-
Sasisekharan 1995]). Although it is often efficient to reduce the searched
space by eliminating all irrelevant features, the selected features still make
up a huge data set.

An ideal way of mining very large databases would appear to be by using
paralleling techniques ([Agrawal-John-Shafer 1996, Chattratichat-etc 1997,
Cheung 1996, Park-Chen-Yu 1995b, Parthasarathy-Zaki-Li 1998, Shintani-
Kitsuregawa 1998]). This method employs hardware technology, such as par-
allel machines, to implement concurrent data mining algorithms. Hence, some
developers have endeavored to scale up data mining algorithms by changing
existing sequential techniques into parallel versions. Certainly, these algo-
rithms are effective and efficient, and play an important role in mining very
large databases.

However, parallel machines are expensive, and less widely available than
single processor machines. Moreover, parallel data mining algorithms usu-
ally require more than just the availability of massive parallel machines. For
example, they need extra software to distribute the components of parallel
algorithms among the processors of the parallel machines. Also, this strategy
does not work with all existing data mining algorithms. Some are sequential
in nature, and can not make use of parallel hardware. And finally, it is usually
a huge enterprise to re-implement existing software, and is often not worth
the effort.

Recently, a sampling model for mining very large databases has been
investigated. This model is also known as ‘instance selection based mining’
([Toivonen 1996]). Sampling consists of selecting a small data set, RD, from a
very large database D, such that, for any pattern P of D, an existing pattern
P ′ in RD is approximate to P .

Sampling models (also known as ‘instance selection based models’) for
mining very large databases do not require high-performance computers, and
can be run on some personal computers. On the other hand, many applica-
tions, such as marketing and stock investment, may work under time con-
strains with little requirement for accuracy where the supports of itemsets
are concerned. Indeed, for a short-term stock investor, time can cost money.
Therefore, if an investor is able to obtain all approximate frequent itemsets
from the data in his stock databases in a short time, those itemsets might be
sufficient to enable an optimal decision to be made on a specific investment so
that a quick profit can be made. On the other hand, if a stock investor were
to attempt to extract all the accurate supports of frequent itemsets from his
database it would be time-consuming. By the time a decision could be made,
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the best time for investment might have passed. To satisfy these applications,
faster approximating mining models must be developed.

On the other hand, most users work in environments with bounded com-
putational resources. For example, many people use personal computers or
work stations without access to powerful compute servers. This means that
if algorithms for mining very large databases were designed to work within
bounded resources, then the techniques could be used by more people.

For the above reasons, we present some techniques for mining very large
databases when resources are bounded. The techniques focus on instance
selection by sampling, and include: mining approximate association rules of
interest; searching real association rules by one pass over a database, depend-
ing on approximate association rules, an incremental mining model; and an
anytime incremental mining algorithm.

A database, D, is considered in a trial as follows. Any itemset A in D can
be taken as a random variable. If the itemset A occurs in a transaction T in
D (written as T (A)), it is 1; otherwise, it is 0 (written as ¬T (A)). Let P be
the set of all transactions in which the itemset A occurs, and let Q be the
set of all transactions in which the itemset A does not occur. Then P and Q
form a partition of D as follows:

P = {T |T (A)}
Q = {T |¬T (A)}

Thus, each transaction has two possible outcomes for itemset A. They are
1 and 0. Suppose the probability of A occurring in the database is p, and
the probability of A not occurring is q = 1 − p. Then, the itemset A in this
database has a Bernoulli distribution according to the definition in [Durrett
1996]. In particular, an itemset with a Bernoulli distribution can also be taken
as having a binomial distribution.

Such trials (data sets) generally involve large amounts of data. Problem
solving involving these trials typically relies on approximate results. The ear-
liest method discovered, was approximation by the ‘large number law’. How-
ever, the results are very crude using this method. Some better approaches,
such as Chernoff bounds ([Hagerup 1989]) and the central limit theorem
([Durrett 1996]) have been proposed.

Recently, the ‘Chernoff bounds’ technique has been applied to instance
selection for mining very large databases in [Srikant-Agrawal 1997, Toivo-
nen 1996]. In this instance selection, each database is taken with a binomial
distribution.

Our work in this chapter focuses on applying the central limit theorem
to select instances for mining association rules in very large databases. The
instance selection we propose is a faster mining model, especially when the
database is viewed as following a Bernoulli distribution, or a binomial distri-
bution.
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6.2 Instance Selection

In probability theory it is usually called a trial, when a situation is such that
only two outcomes (for example, success and failure) are possible. The vari-
able element in a trial is described by a probability distribution on a sample
space of two elements, 0 representing failure and 1 success; this distribution
assigns the probability 1 − θ to 0 and θ to 1, where 0 ≤ θ ≤ 1. Suppose
we consider n independent repetitions of a given trial. The variable element
is described by the probability distribution on a sample space of 2n points,
the typical point being x = (x1, x2, · · · , xn), where each xi is 0 or 1, and xi

represents the result of the ith trial. The appropriate probability distribution
is defined by

pθ(x) = θm(x)(1− θ)n−m(x)

where m(x) =
∑n

i=1 xi is the number of 1s within the results of the n trials.
This is the case because the trials are independent.

Given an x in this situation, it seems reasonable to estimate θ by using
m(x)/n, the proportion of successes obtained. This appears, in a sense, to be
a ‘good’ estimate of θ.

In this way, a databaseD can be taken as a trial. Any itemset A is 1 if that
itemset occurs in a transaction T (written as T (A)), or else it is 0 (written
as ¬T (A)). Suppose the probability of A occurring in the database is p, and
the probability of A not occurring is q = 1 − p. Then, the database can be
taken as a Bernoulli trial, according to the definition in [Durrett 1996]. We
can approximate the probability, p, of A by using the central limit theorem.

6.2.1 Evaluating the Size of Instance Sets

As we have seen, some applications require only approximate frequent item-
sets. There are already many techniques designed to deal with such approx-
imations, including the large number law, Chernoff bounds ([Hagerup-Rub
1989]), and the central limit theorem ([Durrett 1996]) — all for tackling large
data sets. In our method, for efficiency, the central limit theorem is applied
to estimate the size of samples, or instance sets.

The central limit theorem has been one of the most remarkable results of
work on applications involving probability theory. Loosely put, it states that
the sum of a large number of independent random variables has a distribution
that is approximately normal. Hence, it not only provides a simple method
for computing approximating probabilities for sums of independent random
variables, but it also helps explain the remarkable fact that the empirical fre-
quencies of so many natural populations exhibit bell-shaped (normal) curves.
In its simplest form the central limit theorem is as follows.

Let X1, X2, · · · be a sequence of independent and identically distributed
random variables, each having finite mean E(Xi) = µ and V ar(Xi) = σ2.
Then the distribution of
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X1 + · · ·+Xn − nµ
σ
√
n

tends to the standard normal as n→∞. That is,

P{X1 + · · ·+Xn − nµ
σ
√
n

≤ a} → 1√
2π

∫ a

−∞
e−x2/2dx as n→∞ (6.1)

This means that we can approximate probabilities of random variables by
applying the central limit theorem. (Readers are referred to [Durrett 1996]
for other relevant concepts and theorems.)

In this chapter, we will set up some mining techniques based on instance
selection by sampling. The first step is to apply the central limit theorem to
generate instance sets from a sample from a large database. We estimate the
sample size below.

Theorem 6.1 Let D be a large database, T1, T2, · · · , Tm be the transactions
in D, X be an itemset in D, η > 0 be the degree of asymptotic to frequent
itemsets, and ξ ≥ 0 be the upper probability of P [|Ave(Xn) − p| ≤ η], where
Ave(Xn) is the average of X occurring in n transactions in D. Suppose the
records in D are matched Bernoulli trials. If n random records of D are
sufficient to determine the approximate frequent itemsets in D, according to
the central limit theorem, n must be as follows:

n ≥
z2(1+ξ)/2

4η2
(6.2)

where zx is a standard normal distribution function. (See the Appendix in
[Durrett 1996].)

Proof: From the given conditions in this theorem, we take

P (|Ave(Xn)− p| ≤ η) = ξ
Clearly,

P (|Ave(Xn)− p| ≤ η) = P (−η ≤ (Ave(Xn)− p) ≤ η)
= P (

−η
1/(2
√
n)
≤ (Ave(Xn)− p)

1/(2
√
n)

≤ η

1/(2
√
n)
)

≈ N(2η√n)−N(−2η√n)
= 2N(2η

√
n)− 1

and for this probability to equal ξ we need

N(2η
√
n) =

1
2
(1 + ξ)
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which is satisfied by
2η
√
n = z(1+ξ)/2

Then, the required value for n is

n ≥
z2(1+ξ)/2

4η2

∇
We now illustrate the use of this theorem in Example 6.1.

Example 6.1 Suppose a new process is available for doping the silicon chips
used in electronic devices, and p (unknown) is the probability that each chip
produced in this way is defective. We assume that the defective chips are
independent of each other. How many chips, n, must we produce and test so
that the proportion of defective chips found (Ave(Xn)) does not differ from
p by more than 0.01, with probability at least 0.99? That is, we want n such
that

P (|Ave(Xn)− p| < 0.01) > 0.99
where η = 0.01, ξ = 0.995, and z0.95 = 2.57. Thus we have

n =
2.572

4 ∗ 0.012 = 16513
which is considerably smaller than the value n = 27000 that is required when
using the approximating model in Chernoff bounds ([Srikant-Agrawal 1997,
Toivonen 1996]).

The procedure for applying the central limit theorem to estimate the size
of an instance set is designed as in Procedure 6.1.

Procedure 6.1 SampleSize

Input: η: accuracy of results, ξ: probability of requirements
Output: n: estimated sample size

Begin
read accuracy of results η;
read probability of requirements ξ;

let n← z2
(1+ξ)/2

4η2 + 1;
output the size of instance set n;
end.

Procedure SampleSize is to estimate the size of an instance set for given
accuracy of results and probability of requirements using the central limit
theorem.
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6.2.2 Generating Instance Set

Based on Theorem 6.1, we can obtain a random instance set from the
database in two steps: (1) we generate n random numbers, where n is de-
termined by the central limit theorem; and (2) we choose n transactions in
the database according to the random numbers. In this subsection, we present
a procedure for generating random databases (instance sets).

Generally, it is difficult to apply absolutely random numbers when choos-
ing tuples from a database. Therefore, pseudo-random numbers are used so
as to control the selection of the random data subset generated.

There are many methods for generating pseudo-random numbers. We
choose one from the following pseudo-random number generators.

Suppose the pseudo-random numbers are:

x0, x1, x2, · · ·

Then the ith pseudo-random number (i > 0) can be determined as

xi = (axi−1 + b) MOD m (6.3)

where a, b, and m are constants. The sequence x0, x1, x2, · · · is a sequence of
integers between 0 and m− 1.

In the above formula, if a = 1, the other linear pseudo-random number
generator is:

xi = (xi−1 + b) MOD m (6.4)

and, if b = 0, a simple linear pseudo-random number generator is:

xi = axi−1 MOD m (6.5)

It appears that the first generator, ( 6.3), is the best. It has a higher
stochastic degree when x0, a, b,m are mutually prime numbers. Therefore, for
simplicity, we only present an algorithm for that generator, and we generate
pseudo-random numbers as in Procedure 6.2.

Procedure 6.2 RandomNumber

begin
Input: a: integer constant, b: integer constant, m: real database size,

n: random database size, x0: first pseudo-random number;
Output: X: set of pseudo-random numbers;
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(1) let X ← ∅;
let a← a bigger prime number;
let b← a prime number which is different from a;
read x0 a prime number which is different from a and b;
let c← x0;
let X ← X ∪ {x0};

(2) while |X | �= n do begin
let xi ← (a ∗ c+ b) MOD m;
if xi �∈ X then
let X ← X ∪ {xi};
let c← xi;

end
(3) for i = 1 to n do

output random number xi in X ;
end;

The procedure RandomNumber generates n random numbers, where n is
equal to the sample size. We can apply these numbers to select n instances as
a sample. Step (1) carries out initialization. To generate m different random
numbers, a, b, and x0 are three different prime number, where m is equal to
the size of a given large database. Step (2) generates n random numbers and
saves them into set X , where each random number is less than m, according
to the operator ‘MOD’. Step (3) outputs the generated random numbers.

Note that m is required to be equal to, or greater than, the size of a given
very large database, such that each transaction in the database has the same
probability to be selected.

The method for generating random instance sets from real database is as
follows: (1) generating a set X of pseudo-random numbers, where |X | = n;
and (2) generating the random database RD (instance set) from D, using
the pseudo-random number set X . That is, for any xi ∈ X , we obtain the
(xi + 1)th record of D and append it into RD. The generation of a random
index database from a real database is demonstrated in Procedure 6.3.

Procedure 6.3 RandomDatabase

begin
Input: D: original real database;
Output: RD: random database;
(1) let RD ← ∅;
call procedure SampleSize to estimate the size of instance set;
call procedure RandomNumber to generate the set X of n random
numbers;

(2) for any numbers xi in X do begin
let j ← xi + 1;
let record← the jth record in D;
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let RD ← RD ∪ {record};
end

(3) output the random database RD;
end;

The procedure RandomDatabase generates a sample RD from the given
large database D by a set of random numbers. In Step (1), an initial value
∅ is first assigned to the sample RD; then the size of an instance set is
estimated by calling in the procedure SampleSize; finally, the set X of n
random numbers is generated by calling in the procedure RandomNumber.
Step (2) generates the random data subset RD of D by using the numbers in
X . The ith transaction in RD is the xith record in the database D. Because
the random numbers required must be different from each other when they
are generated, each record in the database D can be dealt with, at most, one
time. And the records in RD consist of random instances selected from the
database D. In Step (3), the sample RD is output.

Note that generating the random database RD of the given database D
does not mean that a new database RD is established. It only serves to build
a view RD over D.

6.3 Estimation of Association Rules

In this section, we first present a procedure for identifying frequent itemsets
in an instance set (sample set) by pruning. Then we construct an algorithm
for searching approximate association rules.

6.3.1 Identifying Approximate Frequent Itemsets

As we have seen, we require only the instance set of a given large database
to find approximate frequent itemsets. We now construct an algorithm for
mining frequent itemsets in the generated random database RD (instance
set). The algorithm is similar to that constructed in Chapter 2, and the use
of the algorithm is the same as for the Apriori algorithm designed in Chapter
2.

Procedure 6.4 ApproximateItemsets

begin
Input: D: data set; minsupp: minimum support; mininterest: min-
imum interest;
Output: ApproximateISet: approximate frequent itemsets;
(1) let large set ApproximateISet← ∅;
call procedure RandomDatabase to generate the instance set RD;
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(2) let L1 ← {frequent 1-itemsets};
let ApproximateISet← ApproximateISet ∪ L1;

(3) for (k = 2; Lk−1 �= ∅; k ++) do
begin

//Generate all possible k-itemsets of interest in RD.
letCk ← {{x1, . . . xk−2, xk−1, xk} | {x1, . . . xk−2, xk−1} ∈ Lk−1 ∧

{x1, . . . xk−2, xk} ∈ Lk−1};
for any transaction t in RD do
begin

//Check which k-itemsets are included in transaction t.
let Ct ← the k-itemsets in t that are contained by Ck;
for any itemset A in Ct do
let A.count← A.count+ 1;

end
let Lk ← {c|c ∈ Ck ∧ (p(c) = (c.count/|RD|) >= minsupp)};

//Prune all uninteresting k-itemsets in Lk

for any itemset i in Lk do
if an itemset i is uninteresting then;
let Lk ← Lk − {i};

end
let ApproximateISet← ApproximateISet ∪ Lk;

(4) output the frequent/large itemsets ApproximateISet in RD;
end;

The procedure ApproximateItemsets generates all approximate frequent
itemsets in a sample RD. It is a Apriori-like algorithm. The initialization and
generating sample RD of a given database, D, are carried out in Step (1).
In Step (2), set L1 of all frequent 1-itemsets in RD is generated in the first
pass of the algorithm.

Step (3) generates all sets Lk for k ≥ 2 by a loop, where Lk is the set
of all frequent k-itemsets in RD generated in the kth pass of the algorithm,
and the end-condition of the loop is Lk−1 = ∅. For k >= 2, we need to prune
all uninteresting k-itemsets from the set Ck. That is, for any itemset i in Ck,
if |p(X ∪ Y ) − p(X)p(Y )| < mininterest for any expressions i = X ∪ Y of
i, then i is an uninteresting frequent itemset, and it must be pruned from
Ck. Each subsequent pass in Step (3), say pass k, consists of three phases.
The first phase is to generate the set Ck of all k-itemsets in RD where each
k-itemset contains at least a subset of Lk−1. This means that a k-itemset in
RD is pruned from Ck if the k-itemset does not contain any subsets of Lk−1.
The second phase is a loop, which adds the occurrences up for itemsets of
Ck in RD. The final phase is to determine the frequent k-itemsets Lk by the
k-itemset with c.count/|RD|) >= minsupp in Ck, where |RD| is the number
of transactions in the sample RD. And then the set Lk is appended into
ApproximateISet.
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Step (4) outputs the frequent itemsets ApproximateISet in RD, where
each itemset, i, in ApproximateISet must be with its support p(i) greater
than, or equal to, the minimum support minsupp.

Obviously, the above algorithm is efficient for discovering the approxi-
mate frequent itemsets in a given large database. However, if the support
of an itemset A is in the neighbour of minsupp, then A can sometimes be
treated as a frequent itemset and sometimes not as a frequent itemset, due to
approximation errors. In other words, some such itemsets are frequent item-
sets in D but not in RD, and some such itemsets are not frequent itemsets
in D but are frequent itemsets in RD. This is a weakness of approximating
models. For example, consider a random subset RD of a given large database
D. Let minsupp = 0.2 and the probability of error be tolerated at 0.05. Let
two itemsets be A and B in D, with probabilities (supports) 0.18 and 0.23
respectively. Assume also that A and B are generated with probabilities 0.21
and 0.194 respectively, in the random database RD. This means that A is a
frequent itemset in RD, and B is not a frequent itemset in RD, due to an
approximating error of 0.05. These are undesirable results.

In fact, the neighbour of minsupp does not effect the goal of discovering
high-support itemsets in databases. In applications such as marketing and
stock investment, all the high-support itemsets in databases are sufficient to
enable users to make correct decisions. Thus, the above approximating error
might be tolerated in some applications to save time and cost. However, if
we must reduce approximation errors, we can control the process by lowering
the upper probability of P [|Ave(Xn)−p| ≤ η] when we estimate the size of a
sample for certain applications. Studies in this section focus on applications
that work well under approximate results.

6.3.2 Measuring Association Rules of Interest

For an association rule X → Y , let p(X), p(Y ), and p(X ∪ Y ) denote
the fraction of rows satisfying condition X , Y , XY , respectively, and let
p(Y |X) = p(X ∪ Y )/p(X) (X ∪ Y being the conjunction of X and Y ). Note
that p(X ∪ Y ) and p(Y |X) are the support and confidence of a rule X → Y .
We will consider an interestingness, J-measure, used in [Smyth-Goodman
1992], which is defined as

J(X,Y ) = p(X)[p(Y |X)log2
p(Y |X)
p(Y )

+ (1 − p(Y |X))log2
1− p(Y |X)
1− p(Y ) ]

The first term ‘p(X)’ measures the generality of the rule. The term inside
the square bracket measures the ‘discrimination power’ of X on Y , i.e., how
dissimilar the priori p(Y ) and the posteriori p(Y |X) are about Y . The dis-
similarity is ‘two-sided’ in that p(Y |X) could be either larger or smaller than
p(X), due to p(Y |X)log2 p(Y |X)

p(Y ) and (1− p(Y |X))log2 1−p(Y |X)
1−p(Y ) , respectively.
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The rule is useful as it implies a high degree of dissimilarity. In our frame-
work of association rules X → Y , however, the larger the confidence p(Y |X),
the more interesting the rule. Therefore, for association rules we will use the
‘one-sided’ J-measure equation:

IJ(X,Y ) = p(X)p(Y |X)log2
p(Y |X)
p(Y )

for measuring the interestingness. Because p(Y |X) = p(X ∪ Y )/p(X),

IJ(X,Y ) = p(X ∪ Y )log2
p(X ∪ Y )
p(X)p(Y )

We now use an example to demonstrate how to find this model when
discovering association rules. Let minsupp = 0.2, minconf = 0.4 and
mininterest = 0.05.

Example 6.2 For an itemset A ∪C, let p(A) = 0.5, p(C) = 0.4; and p(A ∪
C) = 0.36, and we have p(A ∪ C)− p(A)p(C) = 0.16 > mininterest = 0.05.
According to the above definition, rule A → C may be extracted as a rule of
interest. Furthermore,

p(C|A) = p(A ∪C)
p(A)

=
0.36
0.5

= 0.72

and

IJ(A,C) = p(A ∪C)log2

p(A ∪C)
p(A)p(C)

= 0.36log2

0.36
0.5 ∗ 0.4 = 0.3053

According to our model, A→ C can be extracted as a rule of interest due
to the fact that the confidence p(C|A) = 0.72 > minconf , the interestingness
IJ (A,C) = 0.3053 > mininterest, and the support p(A ∪ C) = 0.36 >
minsupp.

6.3.3 Algorithm Designing

Let D be a very large database, |D| the total number of transactions in D, I
the set of all items in D and, for X ⊆ I, |X | is the number of transactions in
D that contain itemset X , minsupp,minconf , mininterest and γ as given
by users. The algorithm for discovering association rules in our probability
ratio model is constructed as in Algorithm 6.1.

Algorithm 6.1 ApproximatingM

begin
Input: D: database, minsupp,minconf , mininterest and γ: thresh-
old values;
Output: approximate rules;
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(1)determine the sample size, n, based on the central limit theorem;
let RD ← generating the sample database with n transactions;
call the procedure ApproximateItemsets for RD;
let L← ApproximateISet;
let T ← false;

(2) for any frequent itemset A ⊂ L do
begin
for any itemset X ⊂ A do
begin
if IJ (X, (A−X)) ≥ mininterest then
if p((A −X)|X) ≥ minconf then
output the rule X → (A−X)
with confidence p((A−X)|X) and support p(A);

end;
end;

(3) if certain rules are required then
begin
call FinalFrequentItemset;
let L← LL;
let T ← true;
end;

(4) if T then
goto step (2);

end.

The algorithm ApproximatingM is to generate a set of approximate asso-
ciation rules by sampling. It can also generate accurate association rules in D,
based on approximations. This is accomplished by calling in two procedures,
as shown below in Section 6.4.

In Step (1) of the above algorithm, the sample database and the frequent
itemsets in the sample are generated; Step (2) creates all association rules of
interest. That is, all rules of the form X → (A − X) if the interestingness
IJ (X, (A − X)) ≥ mininterest, the confidence p((A − X)|X) ≥ minconf ,
and the support p(X) ≥ minsupp; Step (3) deals with certain rules using the
procedure FinalFrequentItemset, as presented in Section 6.4, to generate
all hopeful itemsets and certain rules are extracted from them.

6.4 Searching True Association Rules Based on
Approximations

Certainly, if only approximate rules are required by applications, then the
algorithm ApproximatingM can satisfy such applications. However, some
applications need real rules. This requirement can be met by the model of
‘assisting knowledge discovery’ below.
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As has been shown, our model is efficient in discovering approximate
association rules in large databases. However, if the support of an itemset
A is in the neighbourhood of minsupp, then A can sometimes be treated
as a frequent itemset, and sometimes not as a frequent itemset, according
to approximation errors. In other words, some such itemsets are frequent
itemsets inD but not inRD, and some such itemsets are not frequent itemsets
in D, but are frequent itemsets in RD. This is a weakness of our model.

On the other hand, if we cannot compromise the validity of mined rules,
or if the true support and confidence of a rule are necessary for some ap-
plications, η > 0 can be expected to be much smaller. This implies that we
must end up with a very large sample from the database, which diminishes
the gains achieved by sampling.

However, because of the randomness of data in a given database, we can
first roughly generate a possible set of frequent itemsets. Then this set is
used as heuristic information to obtain frequent itemsets with only one pass
through the database. In this way, we can use such heuristic information
to (1) assist knowledge discovery where accuracy is important or certain
support and confidence is desirable, and (2) determine whether an itemset
in the neighbourhood of minsupp, in the random subset of a given database,
is a frequent itemset. However, for significance of probability, minsupp > η
would hold.

Definition 6.1 If an itemset A in RD is greater than, or equal to,minsupp−
η, then it is reasonable from probabilistic significance to conjecture that A is
a frequent itemset in the database D. An itemset such as A is called a hope-
ful frequent itemset in D. Reversely, if an itemset A in RD is less than
minsupp− η, then it is reasonable and comprehensive from probabilistic sig-
nificance to believe that it is impossible for A to be a frequent itemset in the
database D.

Apparently, assessing hopeful frequent itemsets is not only useful to the
itemsets in the neighbourhood of minsupp, but also efficient in assisting non-
approximate knowledge discovery in databases. We now present an algorithm
for accomplishing two such tasks.

Procedure 6.5 TFrequentItemset

begin
Input: η: accuracy of results, minsupp: minimum support,

D: original database, HLIsSet: set of hopeful frequent item-
sets;
Output: LI: frequent itemsets D;
(1) let LI ← ∅;
let HLIsSet ← all hopeful frequent itemsets with support ≥
minsupp− η in the sample;
for i = 1 to N do
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let Li ← ∅;
for A ∈ HLIsSet do

let L|A| ← L|A| ∪ {A};
(2) for each tuple τ of D do

begin
let Q← τ ;
let k ← 0;
while Q �= ∅ do
begin
let P ← ∅;
let k ← k + 1;
for each ik ⊂ Q the k-itemsets do
if ik ∈ Lk then
begin
let Countik

← Countik
+ 1;

let P ← P ∪ ik;
end;

let Q← P ;
end;

end;
(3) for each itemset α of HLIsSet do

if Countα ≥ minsupp then
let LI ← LI ∪ {α};

(4) output the set LI of all frequent itemsets in D;
end;

Here, the initialization is carried out in Step (1); Step (2) generates the
sets Lk of k-itemsets in the original database D; Step (3) finds all frequent
itemsets in D and stores them into LI; Step (4) outputs the frequent itemsets
LI.

This algorithm requires less running time and space than previous algo-
rithms for generating frequent itemsets. (We will discuss its complexity in
the next section.) We now demonstrate this in a simple way in Example 6.3.

Example 6.3 Let τ = {A,B,C, F,E,H} be a transaction in D, and the
subsets of τ be in HLIsSet as

{A}, {B}, {E}, {H}
{A,B}, {A,E}, {B,E}, {A,H}, {B,H}, {E,H}

{A,B,E}, {A,B,H}, {B,E,H}
{A,B,E,H}

For the tuple τ , the procedure works as follows.
First loop, Q = τ and k = 1. Next each of CountA, CountB, CountE,

and CountH adds 1, and P = {A,B,E,H}.
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Second loop, Q = P = {A,B,E,H} and k = 2. Then each of CountAB,
CountAE, CountAH , CountBE, CountBH , and CountEH adds 1, and P =
{A,B,E,H}.

Third loop, Q = P = {A,B,E,H} and k = 3. Then CountABE,
CountABH , and CountBEH each adds 1, and P = {A,B,E,H}.

Fourth loop, Q = P = {A,B,E,H} and k = 4. Then CountABEH adds
1, and P = {A,B,E,H}.

Fifth loop, P = ∅; and this loop ends.
In this procedure, 28 units are used to store the names of 14 different

itemsets and their counts. However, it requires 2∗6! = 1440 units to store the
names of 720 different itemsets and their counts from previous algorithms for
generating frequent itemsets. Thus, our algorithm requires less running time
and space.

Again, if the confidence of a rule A → B is in the neighbourhood of
minconf , then A → B can sometimes be extracted as a valid rule, and
sometimes not as a valid rule, depending upon the approximate error. The
problem of the neighbourhood (minconf − ξ,minconf + ξ) of minconf can
be addressed using a similar method as that used for the neighbourhhood of
minsupp. However, for significance of probability, minconf > ξ would hold.
We now illustrate how to handle the neighbourhood ofminconf in Procedure
6.6.

Procedure 6.6 FinalFrequentItemset

begin
Input: LI: set of frequent itemsets, minconf : minimum confidence,
ξ: probability of requirements,
Output: LL: final frequent itemsets;
(1) let LL← ∅;
(2) for any frequent itemset A ⊂ LI do

begin
for any itemset X ⊂ A do
begin
if p(X ∪ (A−X))− p(X)p(A−X) ≥ mininterest then
if PR((A−X)|X) ≥ minconf − ξ then
let LL← LL ∪A ∪X ∪ (A−X);

end;
(3) output LL;
end;

Here, LL is the set of all hopeful itemsets with respect to both neighbour-
hoods of minsupp and minconf .

Now, we can describe a model for applying our method to assist non-
approximate knowledge discovery in databases. For a given large database
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D, and the user specified minsupp and minconf , the following steps are
performed. We:

(1) generate a random subset RD of D according to our model;
(2) generate the set HLIsSet of all hopeful frequent itemsets in RD with
support greater than, or equal to, max{0,minsupp−approximate error};

(3) generate all final frequent itemsets in D with support greater than or
equal to minsupp by Procedure 6.6;

(4) generate all the rules with both support and confidence greater than, or
equal to, minimum support and minimum confidence, respectively, accord-
ing to the final frequent itemsets in the database.

It is obvious that, applying approximate results to assist knowledge discovery
requires only a rough estimation, such as η = 0.01 and ξ = 0.9, which is
enough to generate all hopeful frequent itemsets.

In order to handle the problem caused by both the neighbourhood of
minsupp and the neighbourhood ofminconf , we can use two methods as fol-
lows. One method is to take max{0,minsupp−η} and max{0,minconf− ξ}
as the minimum support and minimum confidence respectively. This is for
applications that require only approximate results. Another method requires
more accurate results, or true support and confidence, and the following
method can be performed.

Algorithm 6.2 NeighbourRules

begin
(1) Generate a random subset RD of D;
(2) Generate all hopeful frequent itemsets in RD with support greater

than, or equal to, max{0,minsupp− approximate error};
(3) Generate the set RSET of all the rules with both support and con-

fidence greater than or equal to minimum support (max{0,minsupp−
η}) and minimum confidence (max{0,minconf − ξ}) respectively,
according to the hopeful frequent itemsets in RD;

(4) For the subset PS of RSET with both support and confidence in
the neighbourhood of minsupp and the neighbourhood of minconf
respectively, generate the set V RS of all rules in PS that is valid
in D;

(5) Output (RSET − PS) ∪ V RS.
end

The algorithm NeighbourRules also considers that the supports (or con-
fidences) of association rules are in the neighbourhood of minsupp (or the
neighbourhood of minconf). Because they may be valid rules in the origi-
nal database, we would compute their supports and confidences when true
association rules are searched for.
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Theorem 6.2 For a given large database D, minsupp and minconf are
given by users. A→ B can be extracted as an approximate rule in Algorithm
NeighbourRules if A→ B is a valid rule in D.

Proof: We first prove (“⇒”). According to the above assumption, if
(1) support(A ∪B) ≥ max{0,minsupp− η}, and
(2) confidence(A→ B) ≥ max{0,minconf − ξ},
hold in a random subset RD of D, by (4) and (5) in Algorithm Neighbour-
Rules, we can obtain

(i) support(A ∪B) ≥ minsupp, and
(ii) confidence(A→ B) ≥ minconf .
This means that A→ B is still a valid rule in D.

The proof of (“⇐”) can be directly obtained from the above definition.
So, A → B can be extracted as an approximate rule in the algorithm

NeighbourRules if, and only if, A→ B is a valid rule in D. ∇
In the real-world, many applications, such as catalog design, store layout,

product placement, marketing, stock investment, supermarket management
and planning, need only approximate frequent itemsets for goals such as aim-
ing at the shortest time and resource bounded. It is a good idea when mining
frequent itemsets to select a sample from a given database for estimating the
support of candidates ([Srikant-Agrawal 1997, Toivonen 1996]). (For conve-
nience, the following comparison is on frequent itemsets.) Thus, if we choose
a random subset RD of D as the operating object for mining the frequent
itemsets of a very large database, D, for example, over 106 transactions,
the running time can be minimized. Such a random subset would maintain
the support of an itemset in RD as approximately equal to that in D. This
requires that the transactions of a given database are randomly appended
into the database so as to hold a binomial distribution. In [Srikant-Agrawal
1997, Toivonen 1996], the Chernoff bounds technique has been applied to
mine approximate frequent itemsets, where the database is taken as with a
binomial distribution. The method of mining approximate frequent itemsets
in Chernoff bounds is as follows. First, the formula

n =
1
2η2
ln

2
1− ξ

is used to estimate the size of a subset RD of a given D, where ξ is the degree
of approximate frequent itemsets asymptotic to frequent itemsets, and η is
the upper probability of approximate frequent itemsets with error ξ. Then we
mine all approximate frequent itemsets in RD. If true association rules are
required, one scan of D is able to discover all real frequent itemsets using the
approximate frequent itemsets. In our opinion, there are two ways to improve
the above algorithms. One is to reduce the sample size. As a matter of fact,
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it can be cut down by about half by using the central limit theorem under
the same conditions. Another way is to narrow the search space by using a
pruning technique. To solve this problem, in this chapter, we construct a new
algorithm for identifying approximate frequent itemsets.

6.5 Incremental Mining

As we have seen, approximate association rules can be identified in very large
databases by sampling. We can also identify real association rules by only one
pass over the database upon the discovered approximations. But this still
requires scanning all data in the database. Therefore, it is still impossible
to mine a very large database on a personal computer. For efficiency, this
section presents an incremental mining technique. This incremental mining
is based on weighting. The following techniques are generalized for application
purposes. As we will see shortly, if only the sizes of data sets are considered
when assigning weights, the real association rules in the database can be
generated.

Incremental mining firstly generates an instance set D from a given very
large database TD, using the sampling techniques in Section 6.2. D is mined
by the algorithm ApproximatingM . Secondly, an incremental data set D+ is
generated from TD using the sampling techniques. (Note that all transactions
in D do not appear in the incremental data set.) Then D+ is mined by the
algorithm ApproximatingM . Thirdly, the mined rules in D+, and old rules
in D, are synthesized by weighting. Fourthly, we let D → D ∪D+, and the
second step and third step are repeated until all transactions in TD are dealt
with.

To mine very large databases incrementally, a key point is the reusing
technique. That is, some promising itemsets are kept for reuse and some
infrequent itemsets may become frequent. We now illustrate this in Example
6.4.

Example 6.4 Suppose we have a market basket data set, D, from a grocery
store, consisting of n baskets, and an incremental data set D+ with m baskets
(where m = n/100, minsupp = 0.01, and minconf = 0.4). Let us focus
on the purchase of tea (t), sugar (s) and coffee (c), where (1) p(t) = 0.25,
p(t ∪ s) = 0.001 and p(t ∪ c) = 0.2 in D; and (2) p(t) = 0.5, p(t ∪ s) = 0.48
and p(t ∪ c) = 0.001 in D+.

We now apply the support-confidence model ([Agrawal-Imielinski-Swami
1993]) to the potential association rules t → c and t → s. The support for
rule t → c is 0.2, which is fairly high. The confidence is of the conditional
probability that a customer buys coffee, given that he/she buys tea, i.e., p(t∪
c)/p(t) = 0.2/0.25 = 0.8, which too is fairly high. At this point, we may
conclude that the rule t→ c is a valid rule in D. The support for rule t→ s
is 0.001, which is lower. Then t→ s cannot be extracted as a valid rule in D.
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However, the data in the incremental data set D+ strongly supports that
t → s can be found to be a valid rule because its support with 0.5, and its
confidence with p(t ∪ s)/p(t) = 0.48/0.5 = 0.96, are very high in D+. And
t→ c cannot be extracted as a valid rule in D+ due to the fact that its support
with 0.001 is lower.

Although the data in D ∪ D+ still supports that t → c can be extracted
to be a valid rule (because its support with 0.198 and its confidence with
p(t∪s)/p(t) = 0.198/0.2525 = 0.784 are higher) and t→ s cannot be extracted
to be a valid rule (because its support with 0.00579 is lower), when a decision
is made for this grocery store, t → s may be also taken as a valid rule by
using competition.

In the above example, t→ s represents new behavior of a purchaser in the
incremental data set. This behavior would be captured during incremental
mining by using competition.

Let D be a given database, D+ the incremental data set to D, and A an
itemset that occurs in D. And let A+ stand for A occurring in D+. Then A
is a frequent itemset in D ∪D+ only if the support of A is greater than, or
equal to, minsupp. The support-confidence framework is defined below for
the above data sets (see Chapter 2).

Definition 6.2 An association rule A→ B can be extracted as a valid rule
in D ∪D+ only if it has both support and confidence greater than, or equal
to, minsupp and minconf respectively. Or if

supp(A ∪B) = t(A ∪B) + t(A
+ ∪B+)

c(D) + c(D+)
≥ minsupp

conf(A→ B) =
supp(A ∪B)
supp(A)

≥ minconf

where c(D) and c(D+) are the cardinalities of D and D+, respectively; and
t(A) and t(A+) denote the number of tuples that contain itemset A in D, and
the number of tuples that contain itemset A in D+, respectively.

6.5.1 Promising Itemsets

For efficiency, we reuse the information from the old frequent itemsets. This
means, some old frequent itemsets must be retained. For example, let D be a
given database with 100 transactions, andD+ be an incremental data set with
20 transactions. Assume minsupp = 0.55, and A is an itemset with support
0.5 in D, and with support 1 in D+. This means that A is an infrequent
itemset in D, and A becomes a frequent itemset with support 0.5833 after
the incremental data set D+ is added to D. To improve performance, the
support of itemset A should be kept to avoid re-mining the whole data set.
This itemset is called a promising itemset. We now present the conditions
that determine promising itemsets.
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Let D be a given database, D+ be an incremental data set, and A be an
itemset that occurs in D. And let A+ stand for A occurring in D+. Then, A
is a frequent itemset only if the support of A in D ∪D+ is greater than, or
equal to, minsupp, or:

t(A) + t(A+)
c(D) + c(D+)

≥ minsupp

where c(D) and c(D+) are the cardinalities of D and D+, respectively; and
t(A) and t(A+) denote the number of tuples that contain the itemset A in
D and the number of tuples that contain the itemset A in D+, respectively.
According to the confidence-support framework, supp(A) = t(A)/c(D) and
supp(A+) = t(A+)/c(D+). Accordingly, we have the following theorems.

Theorem 6.3 It is possible that an old infrequent itemset A (supp(A) <
minsupp) will become a frequent itemset in the incremental database only if

supp(A+) > minsupp

Proof: If an old infrequent itemset A is to become frequent in the incre-
mental database, the following formula must hold:

t(A) + t(A+)
c(D) + c(D+)

≥ minsupp

That is,

c(D) ∗ supp(A) + c(D+)supp(A+)
c(D) + c(D+)

≥ minsupp

So,

c(D+)supp(A+) ≥ c(D) ∗minsupp+ c(D+) ∗minsupp− c(D) ∗ supp(A)
Or,

c(D+)(supp(A+)−minsupp) ≥ c(D) ∗ (minsupp− supp(A))
Because c(D+) > 0, and supp(A) < minsupp or minsupp− supp(A) > 0,

the following condition must hold:

supp(A+)−minsupp > 0
That is,

supp(A+) > minsupp

∇
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For convenience, the condition supp(A+) > minsupp is sometimes re-
placed with t(A+) > c(D+) ∗minsupp in our algorithms.

Now, the promising itemsets in D must satisfy the following theorem.

Theorem 6.4 An infrequent itemset A is kept if

supp(A) > minsupp+
n0

c(D)
(minsupp− 1)

where n0 is the maximum among the sizes of incremental databases.

Proof: Because an old infrequent itemset A will become frequent in the
updated database, then

t(A) + t(A+)
c(D) + c(D+)

≥ minsupp

The minimum condition is as:

c(D) ∗ supp(A) + c(D+)supp(A+)
c(D) + c(D+)

= minsupp

So,

c(D) ∗ supp(A) = c(D) ∗minsupp+ c(D+) ∗minsupp− c(D+)supp(A+)

Or,

supp(A) = minsupp+
c(D+)
c(D)

(minsupp− supp(A+))

> minsupp+
n0

c(D)
(minsupp− 1)

∇

6.5.2 Searching Procedure

We now propose a new model for mining very large databases incrementally.
The model is illustrated in Figure 6.1.

In Figure 6.1, DB stands for a database to be mined; DBi (i =
1, 2, · · · , n, · · ·) are incremental data sets; RB1i is the set of itemsets in DBi,
where i = 1, 2, · · · , n, · · ·; RB1 is the set of itemsets in DB; RBj is the set of
results weighted from RBj−1 and RB1(j−1), where j = 2, 3, · · · , n, · · ·.
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Fig. 6.1. Incremental Databases Mining.

In this approach, a given database DB is firstly mined and all frequent
itemsets and promising itemsets are stored in RB1. Secondly, each incre-
mental data set DBi is mined and all frequent itemsets are stored in RB1i.
According to the requirements given by users, we can assign a weight to each
set DBi. Thirdly, we can synthesize all rules in RBi and RB1i by weighting.
Finally, we select the high rank itemsets in RBi+1 as our output.

To implement the above procedure, we build a two phase approach for
mining association rules from incremental data sets. In the first phase, a
weighting model of mining association rules is presented. Many factors re-
flecting properties of data can be fused into the weighted model. To engage
the new frequent itemset problem, some infrequent itemsets, or new itemsets,
may be changed into frequent itemsets. To deal with this problem, we advo-
cate a competitive set approach in the second phase. Using a competitive set
method, some itemsets can became frequent itemsets by competing within
our incremental mining model.

In this subsection, we construct only the weighted model. The competitive
set method and assignment of weights are dealt with in the next subsection.

To mine rules incrementally, we construct an incremental mining model
by weighting to highlight some of the properties of data.
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Let w1 and w2 be the weights of D and D+, respectively. Then, for any
association rules X → Y , we define the support and confidence as

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y ),
confw(X → Y ) =

suppw(X ∪ Y )
suppw(X)

where supp1(X ∪Y ) and supp2(X ∪Y ) are the supports of X → Y in D and
D+, respectively; and suppw(X ∪ Y ) and confw(X → Y ) are the support
and confidence of X → Y in D ∪D+, which are the weighted results.

Definition 6.3 (Incremental mining model by weighting): An asso-
ciation rule A → B can be extracted as a valid rule in D ∪ D+ if it has
both support and confidence greater than, or equal to, minsupp and minconf,
respectively. Or

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y ) ≥ minsupp

confw(X → Y ) =
suppw(X ∪ Y )
suppw(X)

≥ minconf

Example 6.5 Let c(D) = 80, c(D+) = 20, a rule X → Y is with supp1(X ∪
Y ) = 0.4 and conf1(X → Y ) = 0.5 in D, and supp2(X ∪ Y ) = 0.3 and
conf1(X → Y ) = 0.6 in D+. Then we can take weights as

w1 =
c(D)

c(D) + c(D+)
=

80
80 + 20

= 0.8,

w2 =
c(D+)

c(D) + c(D+)
=

20
80 + 20

= 0.2

So,

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y )
= 0.8 ∗ 0.4 + 0.2 ∗ 0.3 = 0.38

Because

supp1(X) =
supp1(X ∪ Y )
conf1(X → Y )

=
0.4
0.5

= 0.8

supp2(X) =
supp2(X ∪ Y )
conf2(X → Y )

=
0.3
0.6

= 0.5

suppw(X) = w1 ∗ supp1(X) + w2 ∗ supp2(X)
= 0.8 ∗ 0.8 + 0.2 ∗ 0.5 = 0.74

Hence

confw(X → Y ) =
suppw(X ∪ Y )
suppw(X)

=
0.38
0.74

= 0.5135
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In fact, according to the assumption in the above example, we can obtain
t(X ∪ Y ) = 32, t(X) = 64, t(X+ ∪ Y +) = 6, t(X+) = 10, by the support-
confidence framework,

supp(X ∪ Y ) = t(X ∪ Y ) + t(X+ ∪ Y +)
c(D) + c(D+)

=
32 + 6
80 + 20

= 0.38

supp(X) =
t(X) + t(X+)
c(D) + c(D+)

=
64 + 10
80 + 20

= 0.74

conf(X → Y ) =
supp(X ∪ Y )
supp(X)

=
0.38
0.74

= 0.5135.

This means, the results obtained in the incremental mining model by
weighting are the same as those obtained in the support-confidence framework
if the weights only take into account the sizes of D and D+. Indeed, the
weights can also take into account other cases, such as the novelty of the
data, or both the size of the database and the novelty of the data.

Thus, if we consider only the sizes of data sets when we assign weights, the
true association rules in the database can be generated. In other words, the
support-confidence framework is a special case of incremental mining model
by weighting. Therefore, we have a theorem as follows.

Theorem 6.5 Previous mining models, such as the support-confidence frame-
work, are special cases in the incremental mining model.

Proof:We need to prove that supp and conf in support-confidence frame-
work are special cases of suppw and confw, respectively. Certainly, we can
take the assignment of weights as follows:

w1 =
c(D)

c(D) + c(D+)
, w2 =

c(D+)
c(D) + c(D+)

We first prove that supp in the support-confidence framework is a special
case of suppw. For X → Y , supp1(X ∪ Y ) = c1(X ∪ Y )/c(D) and supp2(X ∪
Y ) = c2(X ∪ Y )/c(D+). According to the definition of suppw we have

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y )
=

c(D)
c(D) + c(D+)

c1(X ∪ Y )
c(D)

+
c(D+)

c(D) + c(D+)
c2(X ∪ Y )
c(D+)

=
c1(X ∪ Y ) + c2(X ∪ Y )

c(D) + c(D+)
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This means that the weighted support, suppw(X ∪ Y ), is equal to the sup-
port of the rule X → Y in D ∪ D+. Hence, supp in the support-confidence
framework is a special case of suppw.

We now prove that conf in the support-confidence framework is a special
case of confw. For X → Y , conf1(X ∪ Y ) = supp1(X ∪ Y )/supp1(X) and
conf2(X ∪ Y ) = supp2(X ∪ Y )/supp2(X). According to the definition of
confw we have

confw(X → Y ) =
suppw(X ∪ Y )
suppw(X)

=
c1(X∪Y )+c2(X∪Y )

c(D)+c(D+)

c1(X)+c2(X)
c(D)+c(D+)

=
c1(X ∪ Y ) + c2(X ∪ Y )

c1(X) + c2(X)

This means that the weighted confidence, confw(X → Y ), is equal to the
confidence of the rule X → Y in D∪D+. Or, conf in the support-confidence
framework is a special case of confw. Hence, the support-confidence frame-
work is a special case of the incremental mining model. ∇

Directly, for any association rules X → Y , we can define its support and
confidence as

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y ),
confw(X → Y ) = w1 ∗ conf1(X → Y ) + w2 ∗ conf2(X → Y )

where conf1(X → Y ) and conf2(X → Y ) are the confidences of X → Y in
D and D+, respectively.

Definition 6.4 (direct incremental mining model by weighting): An
association rule A → B can be extracted as a valid rule in D ∪D+ if it has
both support and confidence greater than, or equal to, minsupp and minconf,
respectively. Or

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y ) ≥ minsupp
confw(X → Y ) = w1 ∗ conf1(X → Y ) + w2 ∗ conf2(X → Y ) ≥ minconf
For the data in the above example, confw(X → Y ) = w1 ∗ conf1(X →

Y ) + w2 ∗ conf2(X → Y ) = 0.8 ∗ 0.5 + 0.2 ∗ 0.6 = 0.52.
Generally, for D, D1, · · ·, Dn with weights w1, w2, · · · , wn+1, we define

the weighted suppw(X ∪ Y ) and confw(X → Y ) for a rule X → Y as follows

suppw(X ∪ Y ) = w1 ∗ supp(X ∪ Y ) + w2 ∗ supp1(X ∪ Y )
+ · · ·+ wn+1 ∗ suppn(X ∪ Y )

confw(X → Y ) = w1 ∗ conf(X → Y ) + w2 ∗ conf1(X → Y )
+ · · ·+ wn+1 ∗ confn(X → Y )
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where supp(X∪Y ), and supp1(X∪Y ), · · ·, suppn(X∪Y ) are the the supports
of the rule X → Y in D, and D1, · · ·, Dn respectively; and conf(X → Y ),
conf1(X → Y ), · · ·, confn(X → Y ) are the confidences of the rule X → Y
in D, D1, · · ·, Dn respectively;

6.5.3 Competitive Set Method

As has been shown, our model is efficient in reflecting the changes of asso-
ciation rules in incremental databases. Indeed, some infrequent itemsets, or
new itemsets, may be changed into frequent itemsets. This is referred to as
the problem of infrequent itemsets. To deal with this problem, we advocate
a competitive set approach. In this subsection, we construct a competitive
model. In the next subsection we will present the assignment of weights.

To tackle the problem of infrequent itemsets, a competitive set CS is
used to store all promising itemsets, where each itemset in CS can become
a frequent itemset by competition. We now define some operations on CS.

Let D be a given database, D+ the incremental data set to D, A an
itemset, supp(A) the support of A in D, and supp(A+) the relative support
of A in D+. Firstly, all promising itemsets in D are appended into CS.

Secondly, when an itemset might become invalid after an incremental
mining is carried out, it would be appended into CS if the weighted support
is greater than, or equal to, mincruc.

Thirdly, some frequent itemsets in D+ would be appended into CS after
an incremental mining if the weighted supports are greater than, or equal to,
mincruc. These itemsets are neither in the set of frequent itemsets, nor in CS.
But their supports are fairly high in D+. This means, their supports in D are
unknown. For unknown itemsets, a compromise proposal seems reasonable.
So we can regard their supports in D as mincruc/2. For any such itemset
X , suppw(X) = w1 ∗ mincruc/2 + w2 ∗ supp(X+) according to the weight
model. And, for suppw(X) ≥ mincruc, itemset X is appended into CS. In
other words, if

supp(A+) ≥ mincruc(2− w1)
2w2

in D+, itemset X is appended into CS; otherwise, itemset X is appended
into CS′ if the weighted support is greater than, or equal to, mincruc/2, of
which CS′ is an extra competitive set. And CS′ is used to record another
kind of promising itemset. The operations on CS′ are similar to those on
CS. The main use of CS′ is to generate a category of itemset with middle
supports in D+. For example, letmincruc = 0.3 andminsupp = 0.6. Assume
the support of an itemset A is less than 0.3 in a given database D, and that
the supports of A in the incremental data sets D1, D2, · · · D9 are all 0.64.
Because the support of A is less than 0.3 inD, A is not kept in the system. Let
w1 = 0.75 be the weight of the old database, and w2 = 0.25 the weight of the
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new incremental data set. According to the operations on CS, suppw(A) =
w1∗mincruc/2+w2∗supp(A+) = 0.75∗0.15+0.25∗0.64 = 0.2725. This means
that itemset A cannot be appended into CS. However, the support is greater
than mincruc/2 = 0.15. From the changes of data, the itemset can become
a frequent itemset if there are enough incremental data sets. Accordingly, we
use CS′ to capture this feature of the data in the incremental data sets. The
changes for the support of the itemset A are listed as follows.

supp(A) < 0.3→ 0.15 ∗ 0.75 + 0.64 ∗ 0.25 = 0.2725
→ A with supp(A) = 0.2725⇒ CS′

→ 0.2725 ∗ 0.75 + 0.64 ∗ 0.25 = 0.364375
→ A with supp(A) = 0.2725⇒ CS

→ 0.364375 ∗ 0.75 + 0.64 ∗ 0.25 = 0.43328
→ 0.43328 ∗ 0.75 + 0.64 ∗ 0.25 = 0.48496
→ 0.48496 ∗ 0.75 + 0.64 ∗ 0.25 = 0.52372
→ 0.52372 ∗ 0.75 + 0.64 ∗ 0.25 = 0.55279
→ 0.55279 ∗ 0.75 + 0.64 ∗ 0.25 = 0.57459
→ 0.57459 ∗ 0.75 + 0.64 ∗ 0.25 = 0.590945
→ 0.590945 ∗ 0.75 + 0.64 ∗ 0.25 = 0.60321

Fourthly, some itemsets in CS′ are appended into CS after each mining
if the weighted supports are greater than, or equal to, mincruc

Finally, some itemsets are deleted from CS after each mining of as-
sociation rules is completed. By the weighted model, for any A ∈ CS,
suppw(A) = w1 ∗ supp(A) + w2 ∗ supp(A+). If suppw(A) < mincruc, A is
deleted from CS; otherwise, A is kept in CS with the new support suppw(A).

6.5.4 Assigning Weights

After defining the competition, we can present the assignment of weights. We
have seen that the weighting in the above model is generally straightforward
once weights are reasonably assigned. Before assigning weights, we briefly
discuss how to determine weights. Obviously, the assignment of weights would
be determined by the degree of belief of users on new data.

Considering Requirements of Users To assign weights, we consider the
sizes of the old data sets and sizes of the incremental data sets.

Sometimes users might give certain requirements for mining new rules
which have arisen from incremental data sets. For example, a new, or infre-
quent item, can be expected to be competed for as a frequent item when it
is strongly supported n times continually by incremental data sets. We can
assign weights to data sets according to this requirement.

Let minsupp and mincruc be given by users. Assume that A is an infre-
quent item (or a new item) in a databaseD. The support of A in incremental
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data sets are all taken as 1, and supp(A) = minsupp after n increments.
For simplicity, we assume that D is assigned a weight w1 and all incremental
data sets are assigned the same weight, w2. According to the above compe-
tition, we can obtain supp(A) = wn

1 ∗ (mincruc/2) + w2 after 1 increment.
And supp(A) = wn

1 ∗ (mincruc/2) + (wn−1
1 + wn−2

1 + · · · + 1) ∗ w2 after n
increments, because A can be changed as a frequent item. That is,

wn
1 ∗ (mincruc/2) + (wn−1

1 + wn−2
1 + · · ·+ 1) ∗ w2 = minsupp

or

wn
1 ∗ (mincruc/2) + (wn−1

1 + wn−2
1 + · · ·+ 1) ∗ (1− w1) = minsupp

Therefore,

wn
1 ∗(mincruc/2)+wn−1

1 +wn−2
1 + · · ·+1−(wn

1 +w
n−1
1 + · · ·+12) = minsupp

or
wn

1 ∗ (mincruc/2)− wn
1 + 1 = minsupp

Hence,

w1 =
(
1−minsupp
1−mincruc/2

) 1
n

And w2 = 1− w1.

Example 6.6 Let mincruc = 0.3, minsupp = 0.6 and n = 4. Then

w1 =
(
1−minsupp
1−mincruc/2

) 1
n

=
(
1− 0.6
1− 0.3/2

) 1
4

= 0.8282

and w2 = 1− w1 = 1− 0.8282 = 0.1718.
Considering Many Factors Sometimes, many factors must be considered
by applications. For this reason, we must first assign weights to data sets
according to each factor. Then, the final weights are synthesized from all the
weights.

Considerm factors. Let w11, w12, · · · , w1m be assigned to a given database,
D, according to m factors, and let w21, w22, · · · , w2m be assigned to the in-
cremental data set D+ according to m factors. Then we can take the average
of the above weights as the weights of the data sets. That is, the weight w1

of D is
w1 = (w11 + w12 + · · ·+ w1m)/m

and the weight w2 of D+ is

w2 = (w21 + w22 + · · ·+ w2m)/m
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Example 6.7 Consider Example 6.5. Let c(D) = 90 and c(D+) = 10. Then
D and D+ are assigned weights according to the sizes of the data sets. For
example, w12 = 90/(90 + 10) = 0.9 and w22 = 10/(90 + 10) = 0.1. Now
we consider two factors: the requirements of users and the sizes of data sets.
D and D+ are assigned weights according to the two factors w1 = (w11 +
w12)/2 = (0.8282 + 0.9)/2 = 0.8641 and w2 = (w21 + w22)/2 = (0.1718 +
0.1)/2 = 0.1359, respectively.

We can, of course, construct more complicated models to assign weights
to data sets by combining the above methods. For example, we can construct
a method for assigning different weights to different incremental data sets.

6.5.5 Algorithm of Incremental Mining

Incremental mining generates all valid association rules and a competitive
set (CS). Each valid rule A → B has both support and confidence that are
greater than, or equal to, the minimum support (minsupp) and minimum
confidence (minconf) thresholds. That is, for regular associations,

suppw(A ∪B) ≥ minsupp
confw(A→ B) ≥ minconf

We now present an algorithm for an incremental mining model by weight-
ing.

Let V LDB be a given very large database. Let D be the first incremental
data set (random instance set), D+ the incremental data set, supp and conf
the support and confidence functions of rules in D, supp+ and conf+ the
support and confidence functions of rules in D+, and minsupp, minconf ,
mincruc the threshold values; where mincruc (< Min{minsupp,minconf})
is the crucial value. Algorithm 6.3 is our incremental mining algorithm for
mining association rules in very large databases.

Algorithm 6.3 Miningrules

begin
Input: V LDB: very large database; n0,minsupp,minconf ,mincruc:
threshold values;
Output: X → Y : weighted association rule;
(1) generate an instance set of V LDB;
let R← all rules mined in D;
let CS ← ∅; CS′ ← ∅; TD← ∅; i← 0;

(2) for any itemset A in D do
if supp(A) ≥ mincruc then
if A don’t occur in any rule in R then
let CS ← CS ∪ {A};
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(3) for all incremental data sets from V LDB do
begin

let D+ ← an incremental data set;
mine data set D+;
call procedure weight;

end
end.

The algorithmMiningrules is to discover a very large database incremen-
tally by weighting. The initialization is carried out in Steps (1) and (2). Step
(3) performs the incremental mining of rules. And the procedure, weight,
is called in to synthesize the old association rules and the new rules in an
incremental data set. The elements in R, CS, and CS′ are all the results of
the latest mining. The procedure weight is as in Procedure 6.7.

Procedure 6.7 weight

begin
Input: D+: database; minsupp, minconf , mincruc: threshold val-
ues;

R: rule set; CS, CS′: sets of itemsets;
Output: X → Y : rule; CS, CS′: sets of itemsets;
(1) input w1 ← the weight of D;
input w2 ← the weight of D+;
let RR← R; R← ∅; temp← ∅;
let Itemset← all itemsets in D+;
let CSD+ ← all frequent itemsets in D+;
let i← i+ 1;

(2) for any X → Y ∈ RR do
begin
let supp(X ∪Y )← w1 ∗ supp(X ∪Y )+w2 ∗ supp(X+∪Y +);
let conf(X → Y )← w1 ∗ conf(X → Y ) + w2 ∗ conf+(X →

Y );
if supp ≥ minsupp and conf ≥ minconf then
begin
let R← rule X → Y ;
output X → Y as a valid rule of ith mining;
end;
else let temp← temp ∪ {X,X ∪ Y };
end;

(3) for any B ∈ CS do
begin
let supp(B)← w1 ∗ supp(B) + w2 ∗ supp(B+);
if supp(B) ≥ minsupp then
for any A ⊂ B do
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begin
let supp(A)← w1 ∗ supp(A) + w2 ∗ supp(A+);
let conf(A→ (B −A))← supp(B)/supp(A);
if conf(A→ (B −A)) ≥ minconf then
begin
let R⇐ rule A→ (B −A);
output A→ (B −A) as a valid rule of ith minings;
end;
else let temp← temp ∪ {B,A};
end

end;
(4) call competing;
end;

The Procedure weight is responsible for weighting the old association
rules and the new rules in an incremental instance set. The initialization is
done in Step (1). In Step (2), the weighting operations are performed on the
rules in RR, where RR is the set of valid rules in the last maintenance. In
this Step, all valid rules are appended into R, and the itemsets of all invalid
rules weighted are temporarily stored in temp. In Step (3), all rules from the
competitive set CS are extracted, and all invalid itemsets weighted in CS
are temporarily stored in temp. (Note that any itemset in CS′ can become a
promising itemset and may be appended into CS by competition. However, it
cannot become a frequent itemset. In other words, CS′ can be ignored when
rules are mined.) In Step (4), the procedure, competing, is called in to tackle
the competing itemsets for CS and CS′ as shown in Procedure 6.8.

Procedure 6.8 competing

begin
Input: mincruc: threshold values; temp, Itemset, CSD+ , CS′: sets
of itemsets; w1, w2: weights;
Output: CS, CS′: competitive sets;;
(1) let temp1← ∅; temp2← ∅;
(2) for A ∈ temp do

if suupp(A) ≥ mincruc then
let temp1← A;
else if suupp(A) ≥ mincruc/2 then
let temp2← A;

(3) for A ∈ CS′ do
begin
let supp(A)← w1 ∗ supp(A) + w2 ∗ supp(A+);
if suupp(A) ≥ mincruc then
let temp1← A;
else if suupp(A) ≥ mincruc/2 then
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let temp2← A;
end

(4) for A ∈ CSD+ do
begin
let supp(A)← w1 ∗mincruc/2 + w2 ∗ supp(A+);
if suupp(A) ≥ mincruc then
let temp1← A;
else if suupp(A) ≥ mincruc/2 then
let temp2← A;

end
(5) let CS ← temp1; let CS′ ← temp2;
end;

The procedure competing considers the competition of infrequent item-
sets. The initialization is done in Step (1). In Step (2), all itemsets in temp are
handled, and all itemsets with supports in the interval [mincruc,minsupp)
are appended into CS and the itemsets with supports in interval [mincruc/2,
mincruc) are appended into CS′. Steps (3) and (4) are similar to Step (2)
and deal with the itemsets in CS′ and CSD+ , respectively.

6.6 Improvement of Incremental Mining

As we have seen, the incremental mining technique allows for very large
databases to be searched on a personal computer. And, if we consider only the
sizes of data sets to assign weights, the real association rules in the database
can be generated. Though the first data set is a random instance set with
P [|Ave(Xn)−p| ≤ η] for each itemset X , there are still error problems in the
neighborhoods of minsupp and minconf (see Section 6.5), where Ave(Xn)
is the average of X occurring in n transactions of a database TD. For this
reason, the incremental mining algorithm is terminated only after all data in
a given very large database is processed.

In fact, the following two cases are possible: (1) the first N high-ranking
frequent itemsets are supported by m instance sets and, (2) the support
and confidence of each such frequent itemset are almost identical (or contain
very small differences) in the m instance sets. If one of them occurs, we would
certainly terminate the algorithm at once and output the N frequent itemsets
if we require only the first N frequent itemsets.

There can also be other requirements proposed by users. To accommodate
this, in this section we design an improved algorithm— an anytime algorithm
— for searching association rules in databases.

6.6.1 Conditions of Termination

Let TD be a very large database. And D, D1, D2, · · ·, Dn are n+1 random
instance sets generated from TD. TD = D∪ D1∪ D2∪ · · · ∪ Dn, and each
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transaction of TD is contained by only one instance set. For any frequent
itemset X mined by incremental mining,

|Ave(Xi)− p| → 0, when i→ n

It is typically a time-consuming procedure to deal with all incremental
data sets when we mine. For some applications, we may wish to terminate the
algorithm. For example, when someone requires only approximate association
rules, the algorithm can be terminated, and support results produced at
any time. We detail two conditions for terminating the incremental mining
algorithm below.

(1) A request for approximate association rules at a certain time t is received.
(2) ExistingN high-ranking association rules are supported bym incremental
data sets; and the support and confidence of each of their rules have very
small differences in the m incremental data sets.

Condition (1) is used as a response to outside requests for current results.
The system may not be terminated when the condition occurs. For example,
a stock investor may require approximate results at time t1 for rough decision
making, and more accurate results at time t2 for confirmation of the deci-
sion. The user gets some results at time t1 without implementing the stop
instruction. Therefore, the system is not stopped at time t1.

If Condition (2) occurs, the identified results are confirmed by enough
instance sets. And the system is automatically terminated. In this case, the
remaining data in a given database is no longer processed. And the data in
the database is in a well-distribution.

Let N0 > 1 and minratio be minimum number and minimum ratio, re-
spectively, as given by users or experts. For the database TD, assume each of
the first N high-ranking frequent itemsets discovered are practically identical
in all the instance sets D, D1, D2, · · ·, DN0−1. This means that the number of
instance sets is equal to the minimum number N0, and the ratio of support of
the first N high-ranking frequent itemsets is 1 (≥ miniratio). Also, the first
N high-ranking frequent itemsets are confided. Hence, the system is stopped,
and the first N high-ranking frequent itemsets are output as the final results.

When Conditions (1) and (2) are not satisfied, the system takes a great
deal of time to discover patterns in a very large database.

6.6.2 Anytime Search Algorithm

An anytime algorithm is a class of algorithm whose quality of results improves
gradually as computation time increases ([Zilberstein,1996]). It is particularly
useful for solving problems where the search space is very large and the quality
of the results can be compromised.
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For very large databases, we can also design an anytime search algorithm
such that users can ask for the current association rules at anytime while
the mining system is autonomously searching the database. Obviously, users
would expect that association rules would become increasingly closer to true
rules in a database with the passing of time. With this algorithm, users can
make a decision on time, and the accuracy of association rules, depending
upon application requirements. A short-term stock investor might be happy
to terminate the mining process early and thus obtain less accurate patterns
from stock databases, and a long-term stock investor might run the mining
system slightly longer to obtain more accurate patterns.

To support result inquiries at anytime, we design two tables to save the
mined results at different times while the mining process is still running.

Table 6.1. WR: the weighted results

name of rule support confidence rank
r1 supp1 conf1 1
r2 supp2 conf2 2
· · · · · · · · · · · ·
rm suppm confm m

In Table 6.1 (WR table), ‘ri’ is a rule, ‘suppi’ is the weighted support of
the rule ri, ‘confi’ is the weighted confidence of the rule ri, and ri is ranked
in the ith row by the weighted supports of rules from large to small. It lists
the current weighted information for all valid association rules. Users may
access information at a time t0.

Table 6.2. FR: the frequencies of rules

name of rule support confidence frequency
R1 Supp1 Conf1 f1

R2 Supp2 Conf2 f2

· · · · · · · · · · · ·
Rm Suppm Confm fm

In Table 6.2 (FR table), ‘Ri’ is a rule, ‘Suppi’ is the weighted support
of the rule Ri, ‘Confi’ is the weighted confidence of the rule Ri, ‘fi’ is the
number of instance sets from which Ri is extracted as a valid rule in the
fi instance sets, and Ri is ranked in the ith row by the supports of rules
from high to low. It lists the current support information concerning all valid
association rules in the mined instance sets. (Again, users might be interested
in asking for it at a time t0.)
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We now design the anytime search algorithm.

Algorithm 6.4 AnytimeSearch

begin
Input: V LDB: very large database; n0,minsupp,minconf ,mincruc:
threshold values;
Output: X → Y : weighted association rule;
(1) let the table of the weighted rules WR← ∅;
let the table of the frequencies of rules FR← ∅;
let CS ← ∅; CS′ ← ∅; TD← ∅; i← 0;
let Number← 0;

(2) generate an instance set of V LDB;
let R← all rules mined in D;
let WR← R, where rules in WR are ranked by support;
let FR ← R, where rules in FR are ranked by support and the
frequency of each rule is 1;
let Number← Number + 1;

(3) output the first instance set is mined;
output tables WR and FR;

(4) for any itemset A in D do
if supp(A) ≥ mincruc then
if A don’t occur in any rule in R then
let CS ← CS ∪ {A};

(5) for all incremental data sets from V LDB do
begin
let D+ ← an incremental data set;
let Number← Number + 1;
mine the Numberth instance set D+;
for all rules in D+ do
call weight;

for all weighted rules of interest do
begin
update WR by new results, where rules in WR are

ranked by support;
update FR by new results, where rules in FR are

ranked by support;
output the Number instance sets are mined;
output tables WR and FR;
if i ≥ N0 then
if Condition 2 is satisfied then
terminate the incremental mining;

end
end

end.
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The algorithmAnytimeSearch is designed for mining very large databases
incrementally. Users can ask for the current association rules at anytime while
the mining system is autonomously mining a database. The initialization is
done in Step (1).

Step (2) firstly generates an instance set D from V LDB by sampling.
Secondly, D is mined to obtain all valid and approximate association rules
in the data set. The results are saved in a set, R. Finally, the rules in R are
used to form two tables, WR and FR.

Step (3) is to output the tables WR and FR as the results of the first
incremental data set so as to answer any inquiry at this time point.

Step (4) is to set up the competition set for the first incremental data set,
D.

Step (5) consists of two parts. The first part is to process an incremental
data set D+ by the procedure weight. The second part is to process the
tables WR and FR. In this part, tables WR and FR are firstly updated by
the new results from the data set D+ and then, in answer to any inquiry at
this point, the tables WR and FR are output as results. This occurs, just
after the Numberth incremental data set has been processed.

An important process in Step 5 is the checking of whether or not Condition
2 is satisfied. Obviously, the earlier Condition 2 is satisfied, the more the
running time is saved.

6.7 Summary

Mining association rules is an expensive process. Mining approximate associ-
ation rules on a sample from a large database can reduce computation costs
significantly. Srikant and Agrawal have suggested a method for selecting the
sample of a given large database when estimating the support of candidates
using Chernoff bounds ([Srikant-Agrawal 1997]). Also, Toivonen has applied
Chernoff bounds to discover frequent itemsets in large databases ([Toivonen
1996]). However, previous approximate models based on Chernoff bounds
may require sample sizes larger than our model based on the central limit
theorem, when searching for frequent itemsets in large databases. For many
applications, such as marketing and stock investment, there may be time
and cost constraints and little requirement for total accuracy. To satisfy such
applications, faster approximating mining models need to be developed.

Also, as we have argued, most users work under resource-bounded. They
often work on personal computers or work stations, rarely having the chance
to work on a parallel environment. This means that if algorithms for mining
very large databases are designed to work under resource-bounded, rather
than on specific environments, then the techniques can be shared by more
people.
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In this chapter, we have presented techniques for mining very large
databases, which can work well when resources are bounded. The key points
of this chapter are as follows.

(1) Presented a method of applying the theorems to estimate the size of
random database that enables us to mine approximate association rule.

(2) Proposed an efficient algorithm to discover approximate association rules
of interest by pruning.

(3) Discussed the neighbourhood of minsupp and estimated the complexity
of both previous models, and our model. The complexity of mining fre-
quent databases can be computationally and physically decreased to an
acceptable amount by pruning and approximation.

(4) Advocated an incremental mining technique by weighting.
(5) Constructed an anytime search algorithm for mining very large databases.

It is worth while to point out that the proposed incremental mining tech-
niques can be used to mine dynamic databases. To deal with a dynamic
database, we can take the first data set as the old database in the incre-
mental mining algorithm, and the new data from the applications as the
incremental data set.



7. Association Rules in Small Databases

Accidents in nuclear power plants can cause environmental disasters
and create personal, economical and ecological damage. Therefore,
research into automatic surveillance and early nuclear accident de-
tection has received much attention. To reduce nuclear accidents, re-
liable information is needed for controlling, and/or preventing, such
accidents. Hence, extracting useful patterns from limited data in nu-
clear power plants is very important, and is imperative for the pur-
pose of safety. This kind of knowledge is generally obtained from
theoretical, experimental, and real data. However, nuclear accidents
rarely occur, and we may discover nothing from the accident database
in a plant. Therefore, reliable mining of an accident database in a nu-
clear power plant would require dependence upon external data as
well.
Utilizing external data collected from external data-sources via the
Internet for small database mining provides a feasible way to deal
with the small database problem.
A company that has a large database may also wish to utilize external
data, in addition to internal data, when making decisions for high-
profit purposes. Therefore, employing external data has become a
challenging topic. Successful decision-making usually depends upon
expert analysts and the utilization of all possible information.
This chapter presents a new model for mining association rules in
small databases, utilizing external data. This model might also be
appropriate for certain large database mining.
This chapter is organized as follows. We begin by describing why we
need to utilize external data in Section 7.1. Section 7.2 outlines
the problems of utilizing external data. In Section 7.3, we discuss
how to collect information from the media. Section 7.4 advocates a
framework for sharing external data. Section 7.5 presents a model
for synthesizing the collected patterns. Section 7.6 designs an algo-
rithm for improving mined patterns using quality external data. We
summarize in the last section.

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 199-224, 2002.
 Springer-Verlag Berlin Heidelberg 2002
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7.1 Introduction

As we have seen in previous chapters, there are many approaches for mining
very large databases. Some have become accepted tools and technology, and
some are already playing important roles in diverse applications.

An association rule describes a strong correlation between two frequent
itemsets in a database. Because the objects mined occur frequently in
databases, association rules are useful for real-world applications. In par-
ticular, frequent itemsets are beneficial for determining association rules in
large scale databases. But it is unrealistic to extract association rules from
small databases by way of identifying frequent itemsets. For example, if a boy
wants to win the love of a girl and get married, he may not be able to form a
pattern from his limited knowledge of the girl. He must learn how to obtain
common-sense, experience, and models from other people. If this information
is synthesized into his data, he can have a successful marriage.

As mentioned above, nuclear accidents rarely occur and, if current mining
techniques are applied to the accident database in a given nuclear power
plant, nothing may be discovered that will reduce future accidents. In other
words, current mining techniques cannot work well when databases are very
small. However, it is imperative for the purpose of safety that useful patterns
are extracted from data in nuclear power plants, however limited the data
might be. Accordingly, an efficient model for mining small databases must
be explored, and utilizing external data collected from other data-sources by
way of the Internet provides a feasible way to deal with the problem.

Fortunately, individuals and organizations can take advantage of the re-
markable possibilities of access to information and knowledge that the Inter-
net provides. Web technologies such as HTTP and HTML have dramatically
changed enterprise information management. A corporation can benefit from
intranets and the Internet to gather, manage, distribute, and share data,
inside and outside their business.

As techniques for the use of the Internet advance into a mature stage,
sources and information sharing become easier. This means that a company
can take into account both internal and external data when making decisions.
However, it is very important that the external data is analyzed, confirmed,
judged, and synthesized before it is used, so that reasonable results can be
obtained. For example, the value of a rule may be changed when the rule
is delivered, the external data itself might not be true, and the data-source
might not be trustworthy.

As we examine these problems, we keep in mind that a company that
does have a very large database might also want to collect external data for
lucrative decision making. Therefore, the employment of external data for
applications has become a challenging topic in the web era.

In this chapter, breaking away from the traditional data mining frame-
work that deals with internal and external data equally, we argue that the
first step for utilizing external data is to identify believable data-sources for
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given mining tasks. A framework for utilizing external data is thus built for
data preprocessing. In this framework, we advocate pre- and post-analysis
techniques for dealing with external data. Due to the fact that only relevant,
uncontradictable and high veridical data-sources are used, this process not
only reduces the search costs, but also generates quality patterns. This ap-
proach is particularly useful for companies or organizations such as nuclear
power plants and earthquake bureaus, which often have very small databases
but require further reliable knowledge for their applications.

Our main target in this chapter is to present techniques for mining asso-
ciation rules in databases by synthesizing possible external data. Our model
is a four-phase approach as listed below.

– The first phase is responsible for collecting external data potentially useful
to the mining goal.

– The second phase selects the believable external data from the data col-
lected.

– The third phase synthesizes the external data selected.
– The last phase applies the believable external data to enhance the rules
mined in the small database.

7.2 Problem Statement

The process of knowledge discovery in databases (KDD) is defined as an
iterative sequence consisting of the following steps: defining the problem,
data preprocessing, data mining, and post processing ([Han 1999, Liu 1998,
Wu 1995]). Data preprocessing may be more time consuming, and presents
more challenges, than data mining (see [Fayyad-Simoudis 1997]).

Generally, data preprocessing includes data collecting, data cleaning, data
selection, and data transformation ([Han 1999]). Therefore, data collection is
an important part of knowledge discovery in databases. In the process, neces-
sary data from various internal and external sources must be joined together
to create a huge homogeneous dataset. In existing techniques, internal and
external data are combined into a single dataset for mining tasks, and both
play an equal role in the dataset. However, because external data collected
may be untrustworthy, even fraudulent, it has the potential to disguise really
useful patterns. If external data is not preprocessed before it is applied, it can
cause identified patterns which conduct high-risk applications. This section
clarifies some of the problems involving when utilizing external data.

7.2.1 Problems Faced by Utilizing External Data

Traditional data collecting among various data-sources directly borrows data
from external sources to create a huge dataset suitable for a given mining
task. Thus, internal and external data can play equally important roles in
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the mining task. The process of KDD, using external data, is depicted in
Figure 7.1.

Internal

External
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     DS

External
        DS2

...
External

  DSn

  Rule set

    Huge data set

 Datacollecting

joining

mining

L

Fig. 7.1. Data collecting for a mining task

In Figure 7.1, ‘InternalDS’ is a set of internal data that will be mined;
‘ExternalDSi’ is the ith data-source collected; ‘Datacollecting’ is the proce-
dure of data collecting; ‘Hugedataset’ is the set of all data in internal and
external data-sources after joining; and ‘Ruleset’ is the set of rules (patterns)
that are discovered from ‘Hugedataset’. To the left of the cured line ‘L’ is
data collecting. To the right of ‘L’, is the rest of the process of KDD.

As illustrated in Figure 7.1, joining all data together from internal and
external data-sources into a single dataset for discovery leads to three main
limitations.

1. Low-quality (including noisy, erroneous, ambiguous, untrustworthy, and
fraudulent) data can disguise really useful patterns.

2. It is not clear which of the collected data-sources are relevant to a given
mining task. In other words, data in irrelevant data-sources plays an
equally important role in the mining task.

3. There is no confirmation as to which of the collected data-sources are
really useful to the specific mining task.

Because of noise and related issues, external data can be impure. In par-
ticular, collected data may be fraudulent, and it can disguise really useful
patterns in data. Fraudulent data can also cause applications to fail. For ex-
ample, a stock investor needs to collect information from other data-sources
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for an investment decision. If the investor gathers fraudulent information, and
the information is directly applied to investment decisions, he or she may lose
money. Hence, it is very important that quality external data is selected.

Based on the above analysis, the problem for our research can be formu-
lated as follows.

Given a mining task on a dataset DS, and n data-sources collected
for the mining task, we are interested in (1) building a framework
for preprocessing collected external data, and (2) improving mined
patterns by using quality external data.

There are diverse techniques useful for other steps of the process of KDD,
such as in [Han 2000, Liu 1998, Wu 1995]. This chapter focuses on identifying
believable data-sources.

7.2.2 Our Approach

As we have seen, selecting believable data from external data is crucial when
mining databases. In this chapter, we propose an approach for identifying
believable external data-sources as a first step in utilizing external data, which
is towards databases mining. We illustrate our approach in Figure 7.2.
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Fig. 7.2. Identifying believable collected data-sources

Figure 7.2 extends the process in Figure 7.1 by embedding a necessary
procedure ‘Identifyingtrustfuldatasources’ for ranking collected data-sources.
The data-sources are rankedDSi1,DSi2, · · ·,DSim, · · ·,DSin, in decreasing
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order of their believability. Only the data in high-belief data-sources DSi1,
DSi2, · · ·, DSim is recommended for given mining tasks. The procedure
includes two steps as follows.

1. Pre-analysis, which is an insight into the relevant and uncontradictable
data-sources collected. This is useful when we have no any other infor-
mation concerning the data-sources.

2. Post-analysis, which is to learn the data-sources using historical data (a
training set).

To improve mined patterns, a synthesis is built for utilizing collected
quality external data.

7.3 External Data Collecting

In this section, we suggest a way to gather information from various sources.
To mine small databases, we might use external data collected from sources
such as email, the Web, journals, papers, and newspapers. To discover useful
patterns in the databases, we first mine them, and then synthesize the mined
association rules and collected information.

7.3.1 Available Tools

Useful information can be gathered by experts in scientific, technical, and
economic fields from sources as mentioned above. The information can then
be represented in the manner required.

The vast amount of relevant information available on the WWW (World
Wide Web) has great potential to improve the quality of decision-making, by
enhancing mined results in very small databases ([Lesser 1998, Lesser 2000]).
However, data on the WWW can be undisciplined, structureless, dynamical,
changeable, uncertain, and huge. Large numbers of information sources, with
their different levels of accessibility, reliability and associated costs, present
us with a complex information gathering coordination problem ([Lesser 1998,
Lesser 2000]). Also, the information gathered must then be transformed into
the required representation. Information on the WWW is usually free of
charge, but selecting quality data can be time-consuming.

Email is currently a novel and popular way to quickly and effectively
share and exchange information. Information via email is controllable, and
representation of the information can be of an appropriate form. However,
acquiring the information can cost money.

News media, such as television, radio, magazines, and newspapers can
also be an important source of relevant information. From such media, we
can collect news like ‘If A, then B’, where ‘A’ and ‘B’ are things that might
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have happened in some place at a certain time. The information can be easily
transformed into the structure that we want.

Finally, academic forums such as books, journals, conferences, tutorials,
seminars, and academic magazines are useful sources of theoretical informa-
tion. Such information is generally sophisticated, well explained, and detailed.
However, some information might be conjecture and will need to be verified.
Information from these sources usually costs money.

Information gathered must be analyzed, tested, synthesized, and refined
before it is applied, because it may be unfit for the specific purpose. Then ex-
ternal information can be taken as interpreted knowledge which can enhance
the patterns mined in a given small database.

There have been many nice methods for information gathering from the
WWW proposed in recent literature ([Etzioni 1996, Lesser 1998, Lesser 2000,
Martin 2000]). We now illustrate, in a simple way, how to gather useful in-
formation from the Web using some tools available on the Web.

Using these tools, individuals and organizations can take advantage of
the remarkable possibilities access to information and knowledge on the In-
ternet provide. Web technologies such as HTTP and HTML have dramat-
ically changed enterprise information management. Information search en-
gines, such as Google, Yahoo, Alta Vista, Excite, offer easy ways of collecting
relevant information. Moreover, an intranet relying on Internet technology
and protocols enables intra-organizational communication and internal infor-
mation sharing through the corporate internal network. For example, a multi-
national corporation can benefit from intranets and the Internet to gather,
manage, distribute, and share data, inside and outside the corporation.

A company can exploit the Internet, and intranet features, in several
ways. It can use internal HTML or XML pages, or external URLs containing
organizational datasets, to make information accessible throughout the com-
pany. More proactive methods for creating and revising corporate datasets in-
clude integrating messages exchanged through email in the corporate dataset,
extracting information from the external Web sources for technological or
strategic intelligence, and using computer-supported cooperative work tools
to support a complex-system of collaborative design or collaborative software
development. The wide variety of organizational choices involves experts in
different areas ([Martin 2000]) such as:

– human knowledge sources (experts, specialists, or operators), whose knowl-
edge must be made explicit or who have written documents that others can
access through an organizational dataset;

– knowledge engineers, who acquire and model knowledge;
– knowledge watchers, who gather, filter, analyze, and distribute knowledge
elements from the external world (from external information Web sources,
for example);

– organizational dataset developers, who concretely build, organize, anno-
tate, maintain, and evolve the corporate dataset;
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– a team of validating experts (for example, a reference team), who validate
knowledge elements before their insertion in the organizational dataset;

– corporate dataset users, who must be able to easily access and reuse the
elements in the dataset;

– organizational dataset manages, who supervise the organizational project
on the dataset.

Wherever knowledge is available, it would generally be represented in
the form required by applications. In this chapter, all collected knowledge is
represented as rules.

7.3.2 Indexing by a Conditional Associated Semantic

Let D be the set of terms in a given document, and Q be the set of terms in a
query. The prevailing methods consist of one which is based on terms of sim-
ilarity, and another which is based on latent semantics. Relatively speaking,
latent semantics is preferable. However, these models are considered inde-
pendently. For example, the semantic distance of D and Q is the sum of the
semantic distance between terms. This means, terms are used without any
relationships. Generally, a term in D (or Q) has independent semantics. Pre-
vious models are based on this semantic measurement. In fact, all terms in
D (or Q) have associated semantics. For example, x is a term in D (or Q),
and there is a semantic set of x given D (or Q). Or, in general, for any S
the subset of D (or Q), and x in S, then there is a semantic set of x, given
S. In our opinion, this associated semantics of terms must be considered in
semantic indexing.

We now present an approach for measuring similarity between two docu-
ments by latent semantics.

For a term t of D, the associated semantics of t is a set of all possible
semantics of t given D, denoted by AS(t|D). Or

AS(t|D) = {s|s is a possible semantics of t given D}
We define the distance between terms t1 and t2 of D based on associated

semantics as follows:

mAS(t1, t2) =
|AS(t1|D) ∩AS(t2|D)|
|AS(t1|D) ∪AS(t2|D)|

Certainly, the larger mAS(t1, t2), the smaller the distance between terms t1
and t2.

Example 7.1 Let t1, t2 and t3 be three terms, and AS(t1|D) = {a1, a2,
b2, c1}, AS(t2|D) = {a2, b1, b2, c1}, and AS(t3|D) = {a1, a2, b2, c1, c2}. Then

mAS(t1, t2) =
|AS(t1|D) ∩AS(t2|D)|
|AS(t1|D) ∪AS(t2|D)| =

3
5
= 0.6
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mAS(t1, t3) =
|AS(t1|D) ∩AS(t3|D)|
|AS(t1|D) ∪AS(t3|D)| =

4
5
= 0.8

mAS(t2, t3) =
|AS(t2|D) ∩AS(t3|D)|
|AS(t2|D) ∪AS(t3|D)| =

3
6
= 0.5

Also, we define the distance between a document D and a query Q based
on associated semantics as follows, where D = {d1, d2, · · · , dn} and Q =
{q1, q2, · · · , qk}.
1. The simplest similarity measurement is

MAS(D,Q)=
|(AS(d1|D)∪· · ·∪AS(dn|D))∩(AS(q1|Q)∪· · ·∪AS(qk|Q))|
|AS(d1|D)∪· · ·∪AS(dn|D)∪AS(q1|Q)∪· · ·∪AS(qk|Q)|

2. For a rigorous similarity measurement, and no lost generality, we assume
n ≥ k in the above, and we construct the following distance table between
terms.

Table 7.1. Mutual distances among terms given D and Q

q1 q2 · · · qk ∅ · · · ∅
d1 a11 a12 · · · a1k a1(k+1) · · · a1n

d2 a21 a22 · · · a2k a2(k+1) · · · a2n

...
...

...
...

...
...

dn an1 an2 · · · ank an(k+1) · · · ann

In Table 7.1, aij = mAS(di, qj) when i = 1, 2, · · · , n and j = 1, 2, · · · , k;
aij = 0, when i = 1, 2, · · · , n and j = k + 1, · · · , n.
There are two means of solving the values, which are average values and
weight values. We take the greatest value in the above as the distance
between D and Q. Or,

MAS(D,Q) =Max{mi}Ni=1

3. The Boolean OR-Query, which is a query which can be described in a
standard format such as a Boolean expression. The common Boolean
expression is as follows.

Q = (q1 ∧ · · · ∧ qi) ∨ (qi+1 ∧ · · · ∧ qj) ∨ · · · ∨ (qk+1 ∧ · · · ∧ qn)
Assuming Q1={q1, · · · , qi}, Q2={qi+1, · · · , qj}, · · ·, Qm={qk+1, · · · , qn}.
Then the query can be expressed as

Q = Q1 ∨Q2 ∨ · · · ∨Qm

The similarity measurement between D and Q is defined as

MAS(D,Q) =Max{MAS(D,Q1),MAS(D,Q2), · · ·MAS(D,Qm)}
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7.3.3 Procedures for Similarity

Because similarity using latent semantics is similar to that of associated se-
mantics, we only present algorithms of similarity by associated semantics.
Let D be a given document and Q be a query. Our algorithm for the simplest
similarity by associated semantics is as follows.

Procedure 7.1 SimpleSimMeasure

begin
Input: D: document, Q: a query;
Output: M sim

AS (D,Q): the similarity;
(1) for d ∈ D do
begin

generate AS(d|D);
let ASD ← ASD ∪AS(d|D);

end
for q ∈ Q do

begin
generate AS(q|Q);
let ASQ ← ASQ ∪AS(q|Q);

end
(2) let M sim

AS (D,Q)← |ASD ∩ASQ|/|ASD ∪ASQ|;
(3) output the similarity between D and Q is M sim

AS (D,Q);
endall.

end;

The procedure SimpleSimMeasure estimates the similarity between two
documents, D and Q, by using latent semantics.

An algorithm for rigorous similarity by associated semantics is as follows.
(For simplicity, let D = {d1, d2, · · · , dn}, Q = {q1, q2, · · · , qk}, and n = k.)

Procedure 7.2 RigSimMeasure

begin
Input: D: document, Q: a query;
Output: M rig

AS (D,Q): the similarity;
(1) input the weight set {w1, w2, · · · , wn};
for d ∈ D do

generate AS(d1|D), AS(d2|D), · · ·, AS(dn|D);
for q ∈ Q do

generate AS(q1|Q), AS(q2|Q), · · · , AS(qn|Q);
(2) for d ∈ D do
for q ∈ Q do

let aij ← mAS(di, qj);



7.4 A Data Preprocessing Framework 209

(3) let I ← the set of all possible reorders of (1, 2, · · · , n);
let M rig

AS (D,Q)← 0;
for i = 1 to n do

for any (l1, l2, · · · , ln) ∈ I do
begin

let tem← w1 ∗ ail1 + w2 ∗ ail2 + · · ·+ wn ∗ ailn ;
if tem > M rig

AS (D,Q) then
let M rig

AS (D,Q)← tem;
end

(4) output the similarity between D and Q is M rig
AS (D,Q);

endall.
end;

The procedure RigSimMeasure estimates the similarity between two
documents, D and Q, by using associated semantics.

7.4 A Data Preprocessing Framework

After external data is collected, we must preprocess it before it is used. This
section sets up a framework for selecting quality external data.

In this framework, we propose to determine which data-sources are veridi-
cal by pre- and post-analysis. Pre-analysis develops techniques for searching,
for example, relevant and uncontradictable data-sources. This is useful when
we have no further information about the data-sources. Post-analysis is used
to learn the veridical degrees of data-sources based upon experience (the
training set). This is historical data arising from the application of external
data-sources.

7.4.1 Pre-analysis: Selecting Relevant and Uncontradictable
Collected Data-Sources

For a given data-source DS, and the set DSSet of the collected data-sources
DS1, DS2, · · ·, DSm, we first pre-analyze the data-sources from DSSet us-
ing their features and knowledge when we have no any other information
about them. We do this to select those data-sources that are relevant and
uncontradictable to DS.

Relevant Data-Source Selecting We define a metric similarity function
to measure the relevance between pairs of data-sources. Similarity between
data-sources is expressed by the closeness function, such that a high closeness
corresponds to a high degree of similarity; whereas two data-sources with a
very low closeness are considered to be rather dissimilar.

Let the data-sources be drawn from a set DSSet of multiple data-sources,
and let sim be a metric closeness function for pairs of data-sources. That is,
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sim : DSSet×DSSet→ [0, 1]. We now propose a technique for constructing
a function for the similarity sim.

Let Feature(DSi) be the set of all features in DSi (i = 1, 2, · · · ,m)1. We
need to select data-sources fromDSSet = {DS1, DS2, · · · , DSm} forDS such
that each data-source is relevant to a data-source DS under a measurement.

The features of data-sources can be used to measure the closeness of a pair
of data-sources. We call the measurement sim, and it is defined as follows.

1. A function for the similarity between the feature sets of two data-sources
DSi and DSj is as

sim(DSi, DSj) =
|Feature(DSi) ∩ Feature(DSj)|
|Feature(DSi) ∪ Feature(DSj)|

where ‘∩’ denotes set intersection, ‘∪’ denotes set union, and ‘|X |’ is the
number of elements in the set X .

In the above definition of similarity,

sim : Feature(DSSet)× Feature(DSSet)→ [0, 1]

we take the size of the intersection of a pair of the feature sets of data-sources
to measure the closeness of the two data-sources. That is, a large intersection
corresponds to a high degree of similarity, whereas two data-sources with a
small intersection are considered to be rather dissimilar.

We now illustrate the use of the above similarity by an example.

Example 7.2 Let Feature(DS1) = {a1, a2, a3} and Feature(DS2) = {a2,
a3, b1, b2} be two sets of features of two data-sources DS1 and DS2, respec-
tively. The similarity between DS1 and DS2 is as follows.

sim(DS1, DS2) =
|Feature(DS1) ∩ Feature(DS2)|
|Feature(DS1) ∪ Feature(DS2)| =

2
5
= 0.4

Note that, if sim(DSi, DSj) = 1, it simply means that Feature(DSi) =
Feature(DSj), or DSi and DSj can be relevant under the measurement sim.
It does not mean that DSi = DSj when sim(DSi, DSj) = 1.

In this chapter, we have proposed a simple and understandable function
for measuring the similarity of pairs of data-sources. We could, of course,
construct more functions for similarity using, for example, the weights of
features.

Using the above similarity on data-sources, we define data-sources α-
relevant to DS below.
1 The features of a data-source are often selected from its data. If we can only

share the rules (patterns) of the data-source, the features of the data-source can
be selected from the rules (patterns).
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Definition 7.1 A data-source DSi is α-relevant to DS under the measure-
ment sim1 if sim(DSi, DS) > α, where α (> 0) is a threshold.

For example, let α = 0.4. Consider both the data Feature(DS1) =
{i1, i2, i3, i4, i5} and the data Feature(DS) = {i1, i3, i4, i5, i6, i7}. Because
sim(DS1, DS) = 0.556 > α = 0.4, the data-source DS1 is 0.4-relevant to
DS.

Definition 7.2 Let DSSet be a set of m data-sources D1, D2, · · · , Dm. The
set of the selected data-sources in DSSet that are α-relevant to a data-source
DS under the similarity measure sim (denoted as RDS(DS,DSSet, sim, α))
is defined as follows:

RDS(DS,DSSet, sim, α) = {ds ∈ DSSet|ds is α-relevant to DS}

Uncontradictable Data-Source Selecting The process of selecting rele-
vant data-sources considers their features. Also, we can check the contradic-
tion between pairs of data-sources by comparing their knowledge if we have
no any other information about those data-sources. Two data-sources, DSi

and DSj , are contradictive if there is at least one proposition A such that A
holds in DSi, and ¬A holds in DSj . Then A is called a ‘contradictive propo-
sition’ in the data-sources DSi and DSj . We use the ratio of contradictive
propositions in data-sources DSi and DSj to measure the contradiction be-
tween the two data-sources. We now define a function for the contradiction,
contrad, below.

Let Rule(DSi) be the set of all propositions in DSi (i = 1, 2, · · · ,m). We
need to select data-sources from DSSet = {DS1, DS2, · · · , DSm} for DS,
such that each data-source is uncontradictable to a data-source DS under a
measurement below.

2. We can construct the contradiction, contrad, by using the ratio of con-
tradictive propositions in the data-sources DSi and DSj , as follows.

contrad(DSi, DSj) =
number of contra-propositions in DSi and DSj

|Rule(DSi) ∪Rule(DSj)|
In the above definition of the contradiction, contrad : Rule(DSSet) ×

Rule(DSSet) → [0, 1], we take the number of contradictive propositions in
the data-sources to measure the contradiction of the two data-sources. That
is, a large number corresponds to a high degree of contradiction, whereas two
data-sources with a small intersection are considered to be strongly uncon-
tradiction.

We illustrate the use of the contradiction, contrad, by an example below.
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Example 7.3 Let Rule(DS1) = {A,B,¬C,D} and Rule(DS2) = {A, ¬B,
C, E, F} be two sets of propositions of two data-sources, DS1 and DS2,
respectively. The contradiction between DS1 and DS2 is measured as follows.

contrad(DS1, DS2) =
number of contra-propositions in DS1 and DS2

|Rule(DS1) ∪Rule(DS2)|
=
2
6
= 0.3333

Using the above contradiction on the data-sources, we define data-sources
β-uncontradictable to DS below.

Definition 7.3 A data-source DSi is β-uncontradictable to a data-source
DSj under the measure contrad if 1 − contrad(DSi, DSj) > β, where β
(> 0) is a threshold.

For example, let β = 0.8. Consider the data in Example 7.3. Because
1 − contrad(DS1, DS2) = 1 − 0.3333 = 0.6667 < β = 0.8, the data-source
DS1 is not 0.8-uncontradictable to DS2.

Definition 7.4 Let DSSet be the set of m data-sources D1, D2, · · · , Dm.
The set of the selected data-sources in DSSet that are β-uncontradictable
to a data-source DS under the contradiction measure contrad (denoted as
UDS(DS,DSSet, contrad, β)) is defined as follows:

UDS(DS,DSSet, contrad, β)={ds ∈DSSet|ds is β-uncontradictable toDS}

7.4.2 Post-analysis: Summarizing Historical Data

When we have information, such as in the case of applying external data-
sources (or a training set), collected data can be post-analyzed. Suppose we
have applied external data-sources DS1, DS2, DS3, and DS4 for ten real-
world applications as shown in Table 7.2.

Table 7.2. Past data of using external knowledge

DS1 DS2 DS3 DS4 result
a1 1 1 1 yes
a2 1 1 1 1 yes
a3 1 1 no
a4 1 1 no
a5 1 1 no
a6 1 1 yes
a7 1 1 1 yes
a8 1 1 1 yes
a9 1 1 no
a10 1 1 1 1 yes
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In Table 7.2, DSi stands for the ith data-source; ai indicates the ith
application; ‘1’ means that the knowledge in a data-source is applied to an
application, and we use DSi = 1 to indicate that the ith data-source is
applied to an application. Also, ‘result’ measures the success of the applica-
tions, ‘result = yes’ means that an application is successful and, ‘result = no’
means that an application is a failure. For application a1, three data-sources
DS2, DS3, and DS4 have been applied.

After analyzing past data, we can find out which of the data-sources are
veridical. The data in the above table shows

R1 : DS4 = 1→ result = yes with frequency = 5
R2 : (DS1 = 1) ∧ (DS2 = 1) ∧ (DS3 = 1) ∧ (DS4 = 1)

→ result = yes with frequency = 2
R3 : (DS1 = 1) ∧ (DS2 = 1)→ result = no with frequency = 2
R4 : (DS1 = 1) ∧ (DS3 = 1)→ result = no with frequency = 2
R5 : (DS1 = 1) ∧ (DS2 = 1) ∧ (DS3 = 1)

→ result = yes with frequency = 1
R6 : (DS1 = 1) ∧ (DS4 = 1)→ result = yes with frequency = 1
R7 : (DS2 = 1) ∧ (DS3 = 1) ∧ (DS4 = 1)

→ result = yes with frequency = 2

where R1 denotes that applications are successful when the knowledge in
data-source DS4 is used in the applications with frequency 5; R2 means that
applications are successful when DS1, DS2, DS3, and DS4 are all applied
to applications with frequency 2; and so on.

The above seven rules are considered when we determine the veridicality
of data-sources. For example, the rules show that data-sourceDS4 is veridical
in past applications.

Also, we can check if an external pattern is trustworthy according to the
historical data of applying patterns. Let P1, P2, · · ·, P6 be six patterns. The
historical data for applying patterns is listed in Table 7.3.

Table 7.3. The historical data for applying patterns

P1 P2 P3 P4 P5 P6 result
a1 1 1 1 1 yes
a2 1 1 1 1 yes
a3 1 1 1 no
a4 1 1 1 no
a5 1 1 1 no
a6 1 1 1 1 yes
a7 1 1 1 1 yes
a8 1 1 1 1 1 yes
a9 1 1 1 1 no
a10 1 1 1 1 yes
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In Table 7.3, Pi stands for the ith patterns; ‘1’ is where a pattern is
applied to an application, and we use Pi = 1 to indicate that the ith pattern
is applied to an application. Also, ‘ai’ and ‘result’ are the same as in Table
7.2. For application a1, the first four patterns, P1, P2, P3, and P4, have
been applied.

Using the past data, we can discover which of the patterns are believable.
For example,

PR1 : P1 = 1→ result = yes with frequency = 5
PR2 : (P1 = 1) ∧ (P2 = 1)→ result = yes with frequency = 5
PR3 : (P1 = 1) ∧ (P5 = 1)→ result = yes with frequency = 3
PR4 : (P1 = 1) ∧ (P6 = 1)→ result = yes with frequency = 3
PR5 : (P1 = 1) ∧ (P3 = 1)→ result = yes with frequency = 3
PR6 : (P1 = 1) ∧ (P4 = 1)→ result = yes with frequency = 2

are some rules identified from Tables 7.2, where PR1 denotes that appli-
cations are successful when the pattern P1 is used in applications with fre-
quency 5; PR2 means that applications are successful when both P1 and P2
are applied to applications with frequency 5; and so on.

Using historical data, such as that in Tables 7.2 and 7.3, we can post-
analyze collected knowledge. And we can determine which data-sources are
veridical, and which collected patterns are believable. The above instance only
elucidates how possible information can be used to judge the veridicality of
a data-source. If we are able to obtain more information, we can make a
judgement on veridicality by synthesizing.

7.4.3 Algorithm Designing

In this subsection, we design an algorithm for preprocessing collected knowl-
edge by means of a framework. As we have seen, the proposed framework
can be taken as a basis for preprocessing collected external knowledge. Upon
pre-analysis and post-analysis, we can rank all data-sources by their veridical
degrees decreasingly, and we can select the first 10%, or more, as the veridical
data-sources.

The purpose of ranking is to preprocess collected knowledge by determin-
ing veridical degrees of data-sources. After pre-analyzing and post analyzing
the data-sources, we can make generalizations to single out the most believ-
able candidates among the data-sources in order to compose a reference list
for knowledge sharing. With the increase of information about data-sources,
the reference list becomes more and more accurate and data-sources can then
solely rely on it for sharing data.

At the very beginning, the historical data table (HDT) has no knowledge
about the data-sources. We can only pre-analyze the data-sources using their
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features and knowledge to rank the data-sources. After several applications,
we can also rank the data-sources by synthesizing their veridical degrees. For
example, consider the data in Table 7.2. The cases for applying the four
data-sources DS1, DS2, DS3, and DS4 are listed in Table 7.4.

Table 7.4. The cases of applying the four data-sources DS1, DS2, DS3, and DS4

frequency success fail success-ratio
DS1 8 4 4 0.5
DS2 7 5 2 0.714
DS3 7 5 2 0.714
DS4 4 4 0 1

In Table 7.4, frequency is the number of applications that use a data-
source; success is the success times for applications when a data-source was
applied; fail is the fail times for applications when a data-source was applied;
and ‘success-ratio’ is success/frequency.

From the above table, DS1 was applied 8 times with success-ratio 0.5;
DS2 was applied 7 times with success-ratio 0.714; DS3 was applied 7 times
with success-ratio 0.714; and DS4 was applied 4 times with success-ratio 1.

We can now use the success-ratios to determine the veridical degrees of
the data-sources. One way is to normalize the success-ratios as the veridical
degrees of the data-sources as below.

vdDS1 =
0.5

0.5 + 0.714 + 0.714 + 1
= 0.167,

vdDS2 =
0.714

0.5 + 0.714 + 0.714 + 1
= 0.238,

vdDS3 =
0.714

0.5 + 0.714 + 0.714 + 1
= 0.238,

vdDS4 =
1

0.5 + 0.714 + 0.714 + 1
= 0.357,

where vdDSi stands for the veridical degree of the ith data-source (i =
1, 2, 3, 4).

We have seen that data-source DS4 has the highest success-ratio, and it
has the highest veridical degree; and DS1 has the lowest success-ratio, and
it has the lowest veridical degree.

Furthermore, the veridical degree of DSi (i = 1, 2, · · · , n) can be defined
as follows:

vdDSi =
success-ratio of DSi∑n

j=1 success-ratio of DSj
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However, to highlight the data-sources with high success-ratios, we can
construct many methods to assign veridical degrees to data-sources. The
simplest way is defined as follows.

vdDSi =
(success-ratio of DSi)2∑n

j=1( success-ratio of DSj)2

We now check effectiveness using the above data.

vdDS1 =
0.52

0.52 + 0.7142 + 0.7142 + 12
= 0.11

vdDS2 =
0.7142

0.52 + 0.7142 + 0.7142 + 12
= 0.225

vdDS3 =
0.7142

0.52 + 0.7142 + 0.7142 + 12
= 0.225

vdDS4 =
12

0.52 + 0.7142 + 0.7142 + 12
= 0.44

In this formula, the data-source DS4 has the highest success-ratio and its
veridical degree has been increased; and DS1 has the lowest success-ratio and
its veridical degree has been decreased. In other words, the data-sources with
high success-ratios are highlighted. Accordingly, the external data-sources are
ranked DS4, DS2, DS3, DS1.

However, when we rank data-sources upon historical data only, if a be-
lievable data-source is utilized frequently with untrustworthy data-sources
in applications, the belief of the data-source is impacted upon. We can first
pre-analyze the data-sources using their features and knowledge to determine
their veridical degree before the data-sources are utilized. Thus we can con-
duct the use of the data-sources in applications to determine their veridical
degrees.

In our approach, we focus on only three factors: relevance, uncontra-
dictability, and veridicality, when ranking data-sources. Other factors are
similar to the above. To synthesize the three factors for ranking, we can use
the weighting techniques proposed in [Good 1950]. We now design an algo-
rithm for ranking external data-sources by pre- and post-analysis as follows.

Algorithm 7.1 Data-sourcesRank

begin
Input: DS: data-source; DSi: m data-sources;
Output: S: a set of data-sources;
(1) input the collected data-sources DSi relevant to DS;
(2) transform the information in each data-source into rules;
(3) pre-analyze the data-source DS1, · · ·, DSm;
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(4) rank the data-sources by synthesizing the pre-analyzing results
decreasingly;

(5) post-analyze the data-sources according to the ranking by pre-
analysis;

(6) rank the data-sources by synthesizing the post-analyzing results
decreasingly;

(7) let S ← all high-ranking data-sources;
(8) output S;
end

The algorithm Data-sourcesRank ranks the collected m data-sources
DS1, DS2, · · · , DSm relevant to the data-source DS, according to the pro-
posed framework, where S is the set of all high-ranking data-sources.

Step (1) inputs the collected data-sources DS1, DS2, · · · , DSm relevant to
the data-source DS.

Step (2) transforms the information in the data-sources into rules for the
purpose of mining association rules in DS.

Step (3) pre-analyzes the data-sources using their features and knowledge
to select data-sources that are relevant and uncontradictable to DS.

Step (4) first synthesizes the results of pre-analysis by weighting, and
then ranks the external data-sources according to the decreasing synthesizing
results.

Step (5) is to generate the veridical degrees of the selected data-sources
in Step (4) by using historical data as follows

vdDSi =
(success-ratio of DSi)2∑n

j=1( success-ratio of DSj)2

For convenience, Step (6) ranks the data-sources by synthesizing the
pre-analysis (including relevance and uncontradictability) and post-analysis
(veridical degrees) decreasingly. Step (7) selects all high-ranking data-sources
and saves them into S. And the final result, S, is output in Step (8), where
the data-sources in S are suggested to the user as believable data-sources.

7.5 Synthesizing Selected Rules

When we have selected some external knowledge using the techniques in the
first two phases, this knowledge can be synthesized so that we can apply
it to improve the results from a given database. We represent the external
knowledge as rules.

To assist the exploration of small databases using the collected knowledge
represented in the data-sources, we first need to synthesize all gathered rules2.
2 For description, we also regard them as of the form X → Y , with a support supp

and a confidence conf .



218 7. Association Rules in Small Databases

Then we apply the synthesized rules to determine which rules are of interest
in small databases. In this section, we present a new model for synthesizing
the collected rules3.

Let D1, D2, · · · , Dm be m different data-sources, and Si the set of rules
from Di (i = 1, 2, · · · ,m). For a given rule X → Y , suppose w1, w2, · · ·, wm

are the weights of D1, D2, · · · , Dm respectively. The synthesizing is defined
as follows.

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y )
+ · · ·+ wm ∗ suppm(X ∪ Y ),

confw(X → Y ) = w1 ∗ conf1(X → Y ) + w2 ∗ conf2(X → Y )
+ · · ·+ wm ∗ confm(X → Y )

7.5.1 Assigning Weights

To synthesize rules from data-sources, we need to determine a weight for
each data-source. The weight of a data-source is determined by the inter-
support relationship between a data-source and its rules. This means that if
a data-source supports a larger number of high-belief rules, the weight of the
data-source should also be higher.

In order to synthesize association rules from different data-sources, we
need to determine a weight for each data-source. Let D1, D2, · · · , Dm be m
different data-sources, Si the set of association rules fromDi (i = 1, 2, · · · ,m),
and S = {S1, S2, · · · , Sm}. According to Good’s definition on weight ([Good
1950]), the voting of a rule R in S can be used to assign R a weight wR.
In practice, a company headquarters might be interested in rules that are
supported, or voted for, by majority of data-sources. High-voting rules have
a larger chance of becoming valid in the union of all data-sources than low-
voting rules. Hence, the higher the voting rate of a rule, the larger the weight
of the rule should be.

Meanwhile, the inter-support relationship between a data-source and its
rules can be applied to determine the weight of the data-source. If a data-
source supports a larger number of high-voting rules, the weight of the data-
source should also be higher. The above idea is now illustrated by an example.

Let minsupp = 0.2, minconf = 0.3, and the following rules be mined
from three data-sources.

(1) S1 is a set of association rules from a data-source D1:
A ∧B → C with supp = 0.4, conf = 0.72;
A→ D with supp = 0.3, conf = 0.64;
B → E with supp = 0.34, conf = 0.7;

3 Because of data privacy and related issues, it is possible that some data-sources
may share their association rules but not their original data. Therefore, this
section focuses on the rules collected from data-sources.
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(2) S2 is a set of association rules from a data-source D2:
B → C with supp = 0.45, conf = 0.87;
A→ D with supp = 0.36, conf = 0.7;
B → E with supp = 0.4, conf = 0.6;

(3) S3 is a set of association rules from a data-source D3:
A ∧B → C with supp = 0.5, conf = 0.82;
A→ D with supp = 0.25, conf = 0.62;

Assume S′ = {S1, S2, S3}. Then there are a total of four rules in S′:

R1 A ∧B → C
R2 A→ D
R3 B → E
R4 B → C

From the above rules mined from different data-sources, there are 2 data-
sources that support, or vote for, rule R1

4, 3 data-sources support/vote
for rule R2, 2 data-sources support/vote rule R3, and 1 data-source sup-
ports/votes for rule R4. Following Good’s weight of evidence ([Good 1950]),
the voting of a rule in S′ is used to assign a weight to that rule. After nor-
malization, the weights are assigned as follows:

wR1 =
2

2 + 3 + 2 + 1
= 0.25

wR2 =
3

2 + 3 + 2 + 1
= 0.375

wR3 =
2

2 + 3 + 2 + 1
= 0.25

wR4 =
1

2 + 3 + 2 + 1
= 0.125

As we have seen, rule R2 has the highest voting and the highest weight;
and rule R4 has the lowest voting and the lowest weight. Let S = {S1, S2, · · · ,
Sm}, and R1, R2, · · · , Rn all be rules in S. Then the weight of Ri is defined
as follows.

wRi =
Num(Ri)∑n

j=1Num(Rj)

where i = 1, 2, · · · , n; andNum(R) is the number of data-sources that contain
rule R, or the voting of R in S.

Meanwhile, if a data-source supports, or votes for, a larger number of
high-voting rules, the weight of the data-sources should also be higher. If the
rules from a data-source are rarely present in other data-sources, the data-
source would be assigned a lower weight. To implement this argument, the
4 This support is different from the support defined in Chapter 2. The support

here is the number of data-sources that vote for the rule.
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sum of the multiplications of weights of rules and their voting can be used to
assign weights to the data-sources. For the above rule set S′, we have

wD1 = 2 ∗ 0.25 + 3 ∗ 0.375 + 2 ∗ 0.25 = 2.125
wD2 = 1 ∗ 0.125 + 2 ∗ 0.25 + 3 ∗ 0.375 = 2
wD3 = 2 ∗ 0.25 + 3 ∗ 0.375 = 1.625

After normalization, the weights of the three data-sources are assigned as
follows:

wD1 =
2.125

2.125 + 2 + 1.625
= 0.3695

wD2 =
2

2.125 + 2 + 1.625
= 0.348

wD3 =
1.625

2.125 + 2 + 1.625
= 0.2825

As we have seen, data-source D1 supports, or votes for, most rules with
high weights and it has the highest weight; data-source D3 supports, or votes
for, the fewest rules with high weights, and it has the lowest weight.

Let D1, D2, · · · , Dm be m different data-sources; Si the set of association
rules from Di (i = 1, 2, · · · ,m); S = {S1, S2, · · · , Sm}; and R1, R2, · · · , Rn be
all rules in S. Then the weight of Di is defined as follows.

wDi =

∑
Rk∈Si

Num(Rk) ∗ wRk∑m
j=1

∑
Rh∈Sj

Num(Rh) ∗ wRh

where, i = 1, 2, · · · ,m.
After all data-sources have been assigned weights, the association rules

can be synthesized by the weights of the data-sources. The synthesizing pro-
cess is illustrated as follows.

For rule R1: A ∧B → C,

supp(A ∪B ∪ C) = wD1 ∗ supp1(A ∪B ∪ C) + wD3 ∗ supp3(A ∪B ∪ C)
= 0.3695 ∗ 0.4 + 0.2825 ∗ 0.5 = 0.28905

conf(A ∧B → C) = wD1 ∗ conf1(A ∧B → C) + wD3 ∗ conf3(A ∧B → C)
= 0.3695 ∗ 0.72 + 0.2825 ∗ 0.82 = 0.49769

For rule R2: A→ D,

supp(A∪D) = wD1 ∗ supp1(A∪D) + wD2 ∗ supp2(A∪D)wD3 ∗ supp3(A∪D)
= 0.3695 ∗ 0.3 + 0.348 ∗ 0.36 + 0.2825 ∗ 0.25 = 0.306755

conf(A→ D) = wD1 ∗ conf1(A→ D)
+ wD2 ∗ conf2(A→ D) + wD3 ∗ conf3(A→ D)
= 0.3695 ∗ 0.64 + 0.348 ∗ 0.7 + 0.2825 ∗ 0.62 = 0.68043
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For rule R3: B → E,

supp(B ∪ E) = wD1 ∗ supp1(B ∪E) + wD2 ∗ supp2(B ∪ E)
= 0.3695 ∗ 0.34 + 0.348 ∗ 0.4 = 0.26483

conf(B → E) = wD1 ∗ conf1(B → E) + wD2 ∗ conf2(B → E)
= 0.3695 ∗ 0.7 + 0.348 ∗ 0.6 = 0.46745

For rule R4: B → C,

supp(B ∪C) = wD2 ∗ supp2(B ∪ C) = 0.348 ∗ 0.45 = 0.1566
conf(B → C) = wD2 ∗ conf2(B → C) = 0.348 ∗ 0.87 = 0.30276

The above rules are ranked by their supports as R2, R1, R3, and R4.
According to this ranking, high-ranking rules can be used in applications.

Note that it is not difficult to find other methods of assigning weights
to given data-sources. For example, we can use the size of data-sources to
assign weights. For D1, D2, and D3, let |D1|, |D2|, and |D3| be 30, 25, and
45, respectively. We can obtain

wD1 =
|D1|

|D1|+ |D2|+ |D3| =
30

30 + 25 + 45
= 0.3

wD2 =
|D2|

|D1|+ |D2|+ |D3| =
25

30 + 25 + 45
= 0.25

wD3 =
|D3|

|D1|+ |D2|+ |D3| =
45

30 + 25 + 45
= 0.45

Also, we can consider veridical degrees to assign weights to data-sources,
or we can synthesize multiple factors to assign weights.

7.5.2 Algorithm Design

Let D1, D2, · · · , Dm be m data-sources, Si the set of association rules from
Di (i = 1, 2, · · · ,m), suppi and confi the supports and confidences of rules
in Si, and minsupp and minconf the threshold values given by the user.
The synthesizing algorithm for association rules in different data-sources is
designed as follows.

Algorithm 7.2 Synthesizing
Input: S1, S2, · · · , Sm: rule sets; minsupp, minconf : threshold values;
Output: X → Y : synthesized association rules;

(1) let S ← {S1 ∪ S2 ∪ · · · ∪ Sm};
(2) for each rule R in S do
let Num(R)← the number of data-sources that contain rule R in S;
let wR ← Num(R)∑

R′∈S
Num(R′)

;



222 7. Association Rules in Small Databases

(3) for i = 1 to m do

let wi ←
∑

Rk∈Si
Num(Rk)∗wRk∑

m

j=1

∑
Rh∈Sj

Num(Rh)∗wRh

;

(4) for each rule X → Y ∈ S do
let suppw ← w1 ∗ supp1 + w2 ∗ supp2 + · · ·+ wm ∗ suppm;
let confw ← w1 ∗ conf1 + w2 ∗ conf2 + · · ·+ wm ∗ confm;

(5) rank all rules in S by their supports;
(6) output the high-ranking rules in S whose support and confidence are at
least minsupp and minconf respectively;

(7) end all.

The Synthesizing algorithm above generates high-ranking rules from the
association rule sets S1, S2, · · · , Sm, where each high-ranking rule has a high
voting, support and confidence. Step (2) assigns a weight to each rule in S
according to its voting. Step (3) assigns a weight to each data-source (and
therefore its corresponding rule set) by the number of high-voting rules that
the rule set supports. Step (4) synthesizes the support and confidence of each
rule in S by the weights of different data-sources. According to the weighted
supports, we rank the rules of S in Step (5). Output in Step (6) is the high-
ranking rules selected by the user requirements.

7.6 Refining Rules Mined in Small Databases

In some cases, the mined association rules in small databases might not be
trustworthy due to the fact that they contain too little information. On the
other hand, synthesized collected rules contain a great deal of information,
and high-ranking rules are generally believable. Therefore, if a mined associ-
ation rule with higher confidence matches a high-ranking rule synthesized in
the above method, then we can certainly extract this rule as a valid one in a
small database. To demonstrate this idea, we use weighting as follows.

Let SD and D be a small database and the synthesized data-source re-
spectively, and R1 and R2 the set of rules in SD and D respectively. For a
given rule X → Y , suppose w1 and w2 are the weights of SD and D, and the
weighting is defined as follows.

suppw(X ∪ Y ) = w1 ∗ supp1(X ∪ Y ) + w2 ∗ supp2(X ∪ Y )
confw(X → Y ) = w1 ∗ conf1(X → Y ) + w2 ∗ conf2(X → Y )

Certainly, we can determine the above weights, w1 and w2, by applica-
tions, experts, users and so on. Now we design the algorithm for mining small
databases as follows.

Algorithm 7.3 MiningSmallDB
Input: SD: small database; Si: the set of the collected rules (1 ≤ i ≤ m),

minsupp, minconf : threshold values; w1, w2: weights;
Output: X → Y : valid association rules;
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(1) mine SD in Apriori algorithm (see Chapter 2);
let R1 ← the association rules in SD;

(2) collect data-sources {S1, S2, · · · , Sm};
(3) select rules from the collected knowledge by the techniques in Section
7.4;

(4) call Synthesizing(Si, S);
let R2 ← S;

(5) for each rule X → Y ∈ R1 do
let suppw ← w1 ∗ supp1 + w2 ∗ supp2;
let confw ← w1 ∗ conf1 + w2 ∗ conf2;

(6) rank all rules in R1;
(7) output the high-ranking rules in R1;
(8) end all.

The MiningSmallDB algorithm above generates high-ranking and valid
rules in a small database, where each ranked rule has a high support and
confidence. Step (1) is to generate all possible association rules in the given
small database SD by the Apriori algorithm. And the association rules are
saved in R1. Step (2) is the same as in Procedure 7.1.

Step (3) is to select believable rules from the collected knowledge using
the techniques in Section 7.4. Step (4) is to aggregate the selected rules in
S1, S2, · · · and Sm into the set S by the procedure Synthesizing. And the
synthesized rules in S are saved in R2.

Step (5) is to enhance the rules in R1 by weighting. Note that, for a rule
A → B ∈ R1 and A → B �∈ R2, the rule A → B would be labeled and
not be presented in the ranked results. Step (6) is to rank the synthesized
association rules. And the high-ranking rules are output in Step (7).

Obviously, we can also mine large scale databases by usingMiningSmall-
DB, and, in this case, the mined results are obviously fused with more infor-
mation than in previous models for mining large scale databases.

7.7 Summary

Traditional association rule mining techniques are effective for large scale
databases. However, the techniques may not be helpful for mining the small
databases of certain companies or organizations, which expect to be able to
apply data mining techniques to extract useful patterns from their databases
in order to make their decisions. Data in databases such as the accident
database of a nuclear power plant and the earthquake warning database in
an earthquake bureau, may not be large enough to form sufficient patterns.
Thus, current mining techniques are not adequate in these cases.

On the other hand, the advance of techniques in connection with the
Internet ensures that a company can use, not only internal data, but also
external data when making constructive decisions.
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For this reason, we have presented techniques for mining databases by
using external knowledge. The key points of this chapter are as follows.

– Proposed an approach for collecting external knowledge by associated se-
mantics.

– Advocated a technique for synthesizing the selected rules by weighting.
– Designed an algorithm for improving the rules mined from a given database
by external knowledge (rules).



8. Conclusion and Future Work

After compiling this book, we acknowledge that association rule mining is
still in a stage of exploration and development. There remain some essential
issues that need to be explored for identifying useful association rules. In this
chapter, these issues are outlined as possible future problems to be solved. In
Section 8.1, we summarize the previous seven chapters. And then, in Section
8.2, we describe four other challenging problems in association rule mining.

8.1 Conclusion

We have introduced fundamental association rule mining techniques and
methods. Moving on from traditional association rule mining, we have devel-
oped new and effective fundamental techniques and methods for association
rule mining. The key points are as follows.

1. The importance and challenge of association rule mining has been argued
in Chapter 1.

2. Techniques for identifying hidden patterns of negative association rules
of interest were proposed in Chapter 3.

3. To discover and represent causal rules among multi-value variables, we
proposed techniques for mining the causality between variables X and Y
by partitioning in Chapter 4. Here causality is represented in the form
X → Y with conditional probability matrix MY |X .

4. Also in Chapter 4, the proposed techniques were applied to extract causal
rules from probabilistic databases.

5. To use causal rules efficiently, we presented a causal rule analysis in
Chapter 5. The causal analysis is a three-phase approach. The first phase
is to merge useless (unnecessary) information in extracted causal rules.
The second phase is to construct polynomial functions to approximate
causality in data. The final phase is to find the approximate polynomial
causality by fitting.

6. In Chapter 6, we presented some new techniques for mining association
rules in very large databases, using instance selection.

7. In Chapter 7, we designed a framework for utilizing external data. It
included collecting external data, selecting quality external data, and

C. Zhang and S. Zhang: Association Rule Mining, LNAI 2307, pp. 225-228, 2002.
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synthesizing the selected external data to improve association rules mined
from a database.

Most of the techniques and methods in this book are recent work carried
out by authors. Compared to preexisting association rule mining techniques,
there are four positive features proposed in this book.

(1) Effectiveness. Our techniques are effective in discovering hidden pat-
terns. For example, techniques in Chapter 3 are effective in identifying
negative association rules of the form A→ ¬B (or ¬A→ B or ¬A→ ¬B),
which are of interest in databases. Also, the techniques are effective in
mining causal rules in probabilistic databases.

(2) Low-Cost. Because instance selection, incremental mining and anytime
techniques are used, the search costs are extremely reduced. In particular,
the anytime mining algorithm can be used to serve multi-users.

(3) Understandability and Familiarity. Although negative association
rules and causal rules are hidden in data, they are not strange to users.
The techniques that are proposed, including Bayesian rules, sampling, data
partition, similarity, and weighting, are all well-known techniques.

(4) Incorporating Domain and Expert Knowledge. To efficiently iden-
tify useful association rules, techniques from multiple principles, such as
Probability, Statistics, Artificial Intelligence, and Information Retrieval,
are assembled into the algorithms we have designed. For example, to mea-
sure relevance between an external data-source and a dataset, we have
proposed a similarity model based on Information Retrieval.

Association rule mining is an arduous task, and this book cannot cover
all problems in association rule mining. However, the book provides a prac-
tical way of understanding and applying association rule mining techniques,
including attack ways to association rule mining problems.

8.2 Future Work

Association rule mining is an attractive topic of research in the field of data
mining. We stress, however, that association rule mining is still in a stage of
exploration and development. There are still some essential issues that need to
be studied for identifying useful association rules. These issues are suggested
as open problems in this section. We hope that data mining researchers can
circumvent these problems as soon as possible.

Potential problems for association rule mining are suggested below:

1. establishing database-independent measurements;
2. developing efficient and effective hidden pattern mining methods and

systems;
3. identifying deep-level association rules; and
4. exploring techniques for mining association rules in multi-databases.
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Firstly, the minimal-support threshold of interesting association rules di-
rectly impacts on the automation and performance of data mining. For exam-
ple, if minimal-support is too large, nothing useful can be found in a database;
whereas small minimal-support leads to low-performance. However, though
existing interesting measurements (such as frequency, chi-squared statistic
and J-measure) are effective for identifying interesting itemsets in databases,
they are actually difficult to those used in applications. For example, given
a database, users or experts are required to assign the threshold (minimal-
support) before interesting itemsets are searched for and extracted from the
database using existing measurements. It is impossible to assign an appropri-
ate threshold for the database if the users or experts have no knowledge of the
database. This means that existing interesting measurements are database-
dependent. Therefore, database-independent measurements should be devel-
oped for high-performance.

Secondly, there are many exceptional patterns hidden in databases. In
real-world applications, exceptional patterns often present as more glamorous
than common patterns in such areas as marketing, science discovery, and
information safety. For example, intrusion detection should be focused on
analyzing infrequent itemsets. This obliges us to explore efficient and effective
algorithms and systems for hidden pattern mining.

Thirdly, most existing association rule mining techniques focus on effec-
tive and efficient mining algorithms. It is true that association rules are useful
in real-world applications. However, these association rules can be regarded as
shallow-level rules because they are only a simple survey or induction of data.
For example, let ‘if A, then a patient can recover at most 7 days’ be identified
from the databases of a hospital, where ‘A’ is an itemset. This quantitative
association rule simply summarizes some of the data in the databases. This
rule can be used to train student or inexperienced doctors. However, expe-
rienced doctors are often interested in more in-depth representation of the
rule, which says, ‘if B, then a patient may recover in 5 days’, where ‘B’ is an
itemset. This means, the in-depth representation of a rule can provide a bet-
ter decision for users. Thus, it is valuable for identifying in-depth association
rules.

Finally, the increasing use of multi-database technology, such as computer
communication networks, distributed database systems, federated database
systems, multi-database language systems, and homogeneous multi-database
language systems, has led to the development of many multi-database sys-
tems in real-world applications. Many organizations need to mine multiple
databases, which are distributed in their branches, for the purpose of decision-
making. On the other hand, there are essential differences between mono-
and multi-database mining. Because they are fascinated with mono-database
mining techniques, traditional multi-database mining techniques are not ade-
quate for discovering patterns such as ‘85% of the branches within a company
agreed that a customer usually purchases sugar if he or she purchases coffee’.
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Therefore, developing effective and efficient techniques for mining association
rules in multi-databases is very important.

Although there are many other problems in the area of association rule
mining, the solving of the above four problems is essential and, in our opinion,
requires early attention.
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