

BEA WebLogic
Server™8

FOR

DUMmIES
‰

a524720 FM.qxd 5/20/03 8:37 AM Page i

a524720 FM.qxd 5/20/03 8:37 AM Page ii

by Jeff Heaton

BEA WebLogic
Server™ 8

FOR

DUMmIES
‰

a524720 FM.qxd 5/20/03 8:37 AM Page iii

BEA WebLogic Server™ 8 For Dummies®

Published by
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com and related trade
dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and other
countries, and may not be used without written permission. BEA WebLogic Server is a trademark of BEA
Systems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA-
TIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A PROFESSIONAL WHERE APPRO-
PRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CON-
SEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2003101896

ISBN: 0-7645-2472-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

is a trademark of Wiley Publishing, Inc.

a524720 FM.qxd 5/20/03 8:37 AM Page iv

About the Author
Jeff Heaton is the author of four books and more than two dozen articles, a
college instructor, and a consultant. He teaches introductory and advanced
Java at St. Louis Community College at Meramec. His specialty is in Internet,
socket-level/spidering, and artificial intelligence programming. Many exam-
ples and tutorials can be found at his web site at http://www.jeffheaton.com.
Jeff is a Sun Certified Java Programmer, a member of the IEEE, and holds a
master’s degree in Information Management from Washington University in
St. Louis.

a524720 FM.qxd 5/20/03 8:37 AM Page v

a524720 FM.qxd 5/20/03 8:37 AM Page vi

Dedication
This book is dedicated to my mother, Mary Heaton, for always supporting me
in everything I do. I love you very much and am very grateful for all you have
done for me over the years.

Author’s Acknowledgments
There are many people who were helpful in the creation of this book.

I owe a great deal to Susan Pink for all her hard work editing this book and
making sure that my ideas stayed on track and were easy to follow. I would
also like to thank Allen Wyatt for helping construct the flow of many of the
chapters in this book and adding additional material. Will Iverson did a great
job as technical editor, making sure everything was just right and suggesting
additional material as needed.

Everyone at Wiley was easy to work with, and I appreciate your support.
I would like to thank Melody Layne for working out the initial details of this
book and making it a reality. Melody was also helpful in getting information
about version 8.1 of WebLogic.

Finally, I would like to thank everyone at the Studio B agency for helping with
this and other book projects of mine. In particular, thanks to Laura Lewin for
all your help and being my agent on this book.

a524720 FM.qxd 5/20/03 8:37 AM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media
Development

Project Editor: Susan Pink

Acquisitions Editor: Melody Layne

Technical Development: Allen Wyatt,
Discovery Computing Inc.

Technical Editor: Will Iverson

Editorial Manager: Carol Sheehan

Media Development Supervisor: Richard
Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Production

Project Coordinator: Nancee Reeves

Layout and Graphics: Seth Conley,
Kelly Emkow, Carrie Foster,
Lauren Goddard, Tiffany Muth

Special Art:

Proofreaders: David Faust, Andy Hollandbeck,
Angel Perez, Carl William Pierce,
Charles Spencer, Brian Walls, TECHBOOKS
Production Services

Indexer: TECHBOOKS Production Services

Special Help: Laura Bowman

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

a524720 FM.qxd 5/20/03 8:37 AM Page viii

Contents at a Glance
Introduction ...1

Part I: Installing and Configuring WebLogic7
Chapter 1: Introducing Application Servers ..9
Chapter 2: Installing WebLogic Server ..17
Chapter 3: Gentlemen, Start Your WebLogic Engines ...35
Chapter 4: Configuring and Administering WebLogic ..45

Part II: Understanding WebLogic Components67
Chapter 5: Creating Web Applications ..69
Chapter 6: Using EJBs ..87
Chapter 7: Using Entity Beans ...107
Chapter 8: Stepping Up to Enterprise Applications ..139

Part III: Employing Web Services153
Chapter 9: Building and Deploying Web Services ...155
Chapter 10: Accessing Web Services ..173
Chapter 11: Using WebLogic Workshop ...183

Part IV: The Forgotten Services201
Chapter 12: Accessing Data with JDBC ...203
Chapter 13: Finding EJBs with JNDI ..219
Chapter 14: Using Transactions with JTA ...229
Chapter 15: Sending Messages Between Programs with JMS239

Part V: Big-Time, Heavy-Duty Server Configuration269
Chapter 16: Working with Server Clusters ...271
Chapter 17: Tuning WebLogic Server ...289
Chapter 18: Implementing Security ...301

Part VI: The Part of Tens ..319
Chapter 19: Ten Best Practices for Developers ...321
Chapter 20: Ten Tips for Administrators ..327
Chapter 21: Ten Tasks Before Going Live ...333

Index ...339

a524720 FM.qxd 5/20/03 8:37 AM Page ix

a524720 FM.qxd 5/20/03 8:37 AM Page x

Table of Contents
Introduction..1

About This Book ..1
Conventions Used in This Book ..1
What You Don’t Have to Read ...2
Foolish Assumptions ..3
How This Book Is Organized ..3

Part I: Installing and Configuring WebLogic3
Part II: Understanding WebLogic Components3
Part III: Employing Web Services ...4
Part IV: The Forgotten Services ...4
Part V: Big-Time, Heavy-Duty Server Configuration4
Part VI: The Part of Tens ..5

Icons Used in This Book ...5
Where to Go from Here ...5

Part I: Installing and Configuring WebLogic7

Chapter 1: Introducing Application Servers .9
Application Server Basics ..9

Achieving reliability through redundancy10
Making applications scalable ...11
Improving modularity ...11

J2EE, Java’s Approach to Application Servers ..12
JavaServer Pages ...12
Enterprise JavaBeans ..12
Java Transaction Service ..13
Java Message Service ..13
Java Naming and Directory Interface ..13
Enterprise applications ..13

Major Features of WebLogic Server ..14
Platform support ...14
Web applications ...14
EJB support ..14
Database connectivity ..15
Web services ..15
Clustering ...16
Security ...16

a524720 FM.qxd 5/20/03 8:37 AM Page xi

Chapter 2: Installing WebLogic Server .17
Installation Overview ..17

System requirements ..18
Getting WebLogic ..19
Understanding licensing ...20

Using the GUI Mode Installer ...21
Using Configuration Wizard ...24
Using the Console Mode Installer ...26

Installing under UNIX ..27
Installing under Windows ...28

Using the Silent Mode Installer ..29
Creating a template file ...30
Invoking the silent mode installation program33

Chapter 3: Gentlemen, Start Your WebLogic Engines 35
Writing a WebLogic Startup Script ..35

The standard startup script ...36
Constructing your own startup script ..37

Starting WebLogic from the Windows Start Menu39
Starting WebLogic Server Automatically ...40

Configuring WebLogic as a Windows service40
Running WebLogic as a UNIX daemon ..43

Chapter 4: Configuring and Administering WebLogic 45
Understanding Domains, Clusters, Servers, and Machines46
Using Administration Console ...47

Logging on to Administration Console ...47
Using Administration Console ...48

Defining Network Channels ..50
Introducing Node Manager ..53
Setting Up Node Manager ...54

Setting up the Node Manager hosts file ..54
Configuring SSL for Node Manager ...55
Configuring a control machine to use Node Manager56
Configuring startup arguments for managed servers58

Starting Node Manager ...60
Starting Node Manager using start scripts60
Starting Node Manager as a Windows service61
Setting Node Manager environment variables61

Monitoring the Server ..64

BEA WebLogic Server 8 For Dummies xii

a524720 FM.qxd 5/20/03 8:37 AM Page xii

Part II: Understanding WebLogic Components67

Chapter 5: Creating Web Applications .69
Server Basics ...69
Setting Up a Web Application ..70

Creating your server ...71
Creating your web application ..71
Testing your web application ..73
Programming your web application ...74
Packaging your web application ...74
Deploying your web application ...75

Directory Structure for Your Web Application ..77
The Files in a Web Application ..78

Using JSP ...79
A quick look at servlets ..82
Using JSTL ..83

Chapter 6: Using EJBs .87
Creating Stateless Session Beans ..88

Creating the remote interface ..88
Creating the home interface ..89
Creating the bean class ...90
Creating deployment descriptors ...91
Creating the client class ...93

Building the Stateless Session Bean EJB ..94
Deploying the Stateless Session EJB ...97
Testing the Stateless Session EJB ...98
Adding State ...99
Accessing Data with Entity Beans ...104
Configuring Message-Driven Beans ..105

Chapter 7: Using Entity Beans .107
Understanding WebLogic Database Access ...107

Creating the connection pool ..109
Creating the data source ..109

Constructing a BMP Bean ..112
Constructing the bean interface ..112
Constructing the home interface ..112
Constructing the bean implementation ..113
Constructing the bean configuration files118

Compiling a BMP Bean ...120

xiiiTable of Contents

a524720 FM.qxd 5/20/03 8:37 AM Page xiii

Constructing a CMP Bean ..123
Constructing the value objects ..123
Constructing the local bean interfaces ...125
Constructing the remote bean interface ..126
Constructing the local home interfaces ...126
Constructing the remote home interface127
Constructing the abstract bean implementation128
Constructing the bean configuration files131

Compiling a CMP Bean ...137

Chapter 8: Stepping Up to Enterprise Applications 139
Organizing Your Directories ...140

The structure of the WebLogic directory140
Examining the directory structure ..142

Creating Deployment Descriptors ..143
Understanding deployment descriptors ..144
Creating descriptors using tools ...145
Creating descriptors manually ..146

Packaging Your Enterprise Application ..149
Deploying Your Enterprise Application ..150

Part III: Employing Web Services153

Chapter 9: Building and Deploying Web Services 155
Defining a Web Service ...156
Choosing and Building a Backend Component157
Building a Synchronous Web Service ..158

Working with a Java class backend component158
Working with a stateless session EJB backend component159

Building an Asynchronous Web Service ..161
Packaging Your Web Service ..162

Packaging a synchronous service ...162
Packaging an asynchronous service ...168

Deploying Your Web Service ..168

Chapter 10: Accessing Web Services .173
Using a Static Client ..173

Understanding WSDL ..174
Generating the client stub ..175
Building the client application ...176
Running the client application ...179

Using a Dynamic Client ...180
Constructing the dynamic client ...180
Running the dynamic client ...182

BEA WebLogic Server 8 For Dummies xiv

a524720 FM.qxd 5/20/03 8:37 AM Page xiv

Chapter 11: Using WebLogic Workshop .183
Creating a Web Service ...183

Creating a Workshop application and a web service184
Adding methods to your web service ...185
Testing your web service ...189

Debugging Web Services ..193
Packaging and Deploying Web Services ...195

Directory locations ...195
Packaging a web service ...196
Packaging for a different host ..197
Deploying web services ..198

Part IV: The Forgotten Services201

Chapter 12: Accessing Data with JDBC .203
Creating a Connection Pool ...203
Defining a Data Source ..206
Using JDBC with EJBs ...208

Obtaining the connection ...212
Closing the data source ..213
Executing an SQL statement ..214
Using prepared statements ..214
Submitting a query ..215

Monitoring JDBC ...216

Chapter 13: Finding EJBs with JNDI .219
Understanding JNDI ..219

Understanding JNDI names ..220
JNDI as a universal naming service ...221

Implementing JNDI Using WebLogic ...222
Making WebLogic resources available through JNDI222
Enabling JNDI to access WebLogic objects225

Chapter 14: Using Transactions with JTA .229
Understanding Transactions ...229

Two-phase commit ..230
When to use transactions ...231
When not to use transactions ..232

Using Transactions ...233
Importing packages ...233
Using JNDI to return an object reference234
Starting the transaction ..234
Updating the database ..235
Completing the transaction ...236

xvTable of Contents

a524720 FM.qxd 5/20/03 8:37 AM Page xv

Chapter 15: Sending Messages Between Programs with JMS 239
Creating a WebLogic Message Service ...240

Creating a connection factory ...241
Defining a backing store ...244
Defining destination keys ...246
Defining templates ..248
Creating a JMS server ...250
Creating queues and topics ...252

Accessing Your Message Service ..253
ConnectionFactory ..254
Connection ...254
Session ..255
Destination ...255
MessageProducer and MessageConsumer255
Message ..255

Creating a Point-to-Point JMS Client ...257
Creating the receiver ...258
Creating the sender ...260

Creating a Publish-and-Subscribe JMS Client ..263
Creating the subscriber ..263
Creating the publisher ..265

Part V: Big-Time, Heavy-Duty Server Configuration269

Chapter 16: Working with Server Clusters .271
Understanding Clustering ..271

Performance through clustering ...272
Reliability through clustering ..273

Components of WebLogic Clustering ...273
Node Manager ..274
Clustered domain ..274
Clustered JDBC ..274
Load balancing ...275
Connection proxy ..275

Configuring WebLogic Clustering ..275
Installing WebLogic Server ...276
Creating a clustered domain ..276
Starting the WebLogic Server cluster ...283
Configuring Node Manager ..284
Configuring load balancing ..285
Configuring proxy plug-ins ...285
Configuring clustered JDBC ...288

BEA WebLogic Server 8 For Dummies xvi

a524720 FM.qxd 5/20/03 8:37 AM Page xvi

Chapter 17: Tuning WebLogic Server .289
WebLogic Server Performance Packs ...289
Thread Settings ...291

Setting thread count ..291
Detecting stuck threads ..295

JDBC Performance Settings ...295
JDBC connection pools ...295
Caching prepared statements ..296

EJB Performance Settings ..297
Setting EJB pool size ...297
Allocating pool size for session and message beans297
Allocating pool size for anonymous entity beans298
Tuning initial beans in the free pool ...298
Setting EJB caching size ...298

Starting WebLogic Server with Performance Options299
Setting Your Java Compiler ..299

Chapter 18: Implementing Security .301
Understanding WebLogic Security ..301
Secure Sockets Layer (SSL) ..301

Obtaining an identity ..303
Storing keys and certificates ..304
Enabling SSL on your server ..307

Introduction to Security Realms ...308
Users ...309
Groups ..311
Security roles ...314
Security policies ..316

Part VI: The Part of Tens ...319

Chapter 19: Ten Best Practices for Developers 321
Keep Adequate Documentation ..321
Use Usenet ...322
Don’t Over-Engineer ...322
Set Up Development Environments ..323
Know What You’re Developing ..324
Understand the Tools ...324
Create Modular, Decoupled Systems ..324
Be Mindful of Security ..325
Test Your Software ..326
Manage Your Build Process ..326

xviiTable of Contents

a524720 FM.qxd 5/20/03 8:37 AM Page xvii

Chapter 20: Ten Tips for Administrators .327
Document Procedures ..327
Define a Service Level Agreement ...328
Set Up On-Call Procedures ...328
Plan for Growth ...329
Monitor Your Servers ...329
Back Up Your Servers ...330
Keep Your Systems Secure ...330
Understand Log Files ..330
Test with Clusters ...331
Keep WebLogic Up-to-Date ...332

Chapter 21: Ten Tasks Before Going Live .333
Test Your System ...333
Conduct a Stress Test ...334
Set Up a Parallel Environment ...335
Perform Fault Testing ...335
Set Up a Bug Tracking System ...335
Formulate a Disaster Recovery Plan ..336
Choose Your Date ..337
Keep the Lines of Communication Open ..337
Be Ready for Anything ..337
Be Ready with Support ...337

Index..339

BEA WebLogic Server 8 For Dummies xviii

a524720 FM.qxd 5/20/03 8:37 AM Page xviii

Introduction

Welcome to BEA WebLogic Server 8 For Dummies. Whether you are an
administrator, a developer, a manager, or all of the above, you will find

something in this book to make your job easier.

WebLogic is the most widely used application server on the market today.
You can use WebLogic in large or small projects and to develop both tradi-
tional client-server as well as web-based applications.

About This Book
This book gives you a broad understanding of BEA WebLogic Server.
The main audience consists of developers and administrators, but anyone
involved in a WebLogic project will benefit from reading this book. Managers
can gain an overview of the components that make up their system. Quality
assurance personnel can benefit from the same understanding.

For developers, this book shows quick examples to get you up and running
in many of the technologies supported by WebLogic. Rather than give you
extensive application examples, I focus on short, easy-to-follow examples
than can become the starting point for something more complex. For admin-
istrators, I step you through many common WebLogic tasks and the configu-
ration settings you should use.

Finally, everyone should have an understanding of how the components of a
web application fit together and what WebLogic can do for your application.
This book gives you that viewpoint too.

Conventions Used in This Book
Throughout this book, several typefaces are used. Here’s a brief explanation:

� When an important term is introduced, it appears in italics.

� All URLs in the book appear in computer font. For example:

www.bea.com

b524720 intro.qxd 5/20/03 8:37 AM Page 1

� The code examples appear in computer font as well. For instance:

int i=0;

� And when a variable or command appears in the text, it’s in computer
font too. For example: “The JAVA_OPTIONS variable allows you to pass
additional parameters to the Java virtual machine.”

� Directories appear in computer font. You’ll see something like this:
“You should switch to the weblogic\bin directory.”

� Sometimes, you’ll see italic computer font, such as

c:\weblogic\bin> install -name yourWebLogicServer

This means you should type everything as written, except you should
replace yourWebLogicServer with — you guessed it — the name of your
server.

� When you should choose menu options, each option is separated by an
arrow, like this: Start➪All Programs➪Accessories➪Command Prompt.

� Code listings contain complete Java source files or configuration files. A
code listing always has a title, such as “Listing 1-1: Count to Ten.”

� Code snippets are small sections of source code that do not make up a
complete source file on their own.

What You Don’t Have to Read
For Dummies books are designed so that you can read any chapter you like, in
any order you want. This makes it easier to skip chapters that contain informa-
tion you’re already familiar with or simply don’t need. In addition, if you

� Already have a WebLogic server up and running, you can skip Part I.

� Are familiar with EJB development or aren’t planning to use EJBs, you
can skip Part II.

� Are not using web services, you can skip Part III.

� Are developing a non-web application, you can skip Part IV.

� Are just starting out with WebLogic, don’t concern yourself too much
with clustering, security, and performance tuning. These Part V topics
might be useful later, though.

� Just want to get started with WebLogic, Part VI (which contains many
suggestions for using WebLogic) is not essential reading.

2 BEA WebLogic Server 8 For Dummies

b524720 intro.qxd 5/20/03 8:37 AM Page 2

Foolish Assumptions
You should have at least a passing knowledge of the Java programming lan-
guage, but you don’t need to be an expert in Java. You should be familiar with
the following concepts:

� Entering Java programs

� Compiling and executing Java programs

� Using classes, methods, and variables

You should also have a basic familiarity with the Internet, including the use of
web browsers and downloading software from web sites.

You should also have some knowledge of SQL to understand how WebLogic
accesses external data, which is stored in databases. It is not necessary for
you to be an SQL expert, but you should be familiar with basic SELECT,
INSERT, UPDATE, and DELETE statements.

How This Book Is Organized
BEA WebLogic Server 8 For Dummies has six parts. As you proceed through
the book, each part increases in complexity. Each chapter covers a specific
topic and provides code examples, explanations, and sample projects for you
to complete. As you complete each chapter, you will have completed one or
more projects that demonstrate the main ideas discussed in that chapter.

Part I: Installing and Configuring
WebLogic
I begin by showing you how to install WebLogic. If you need no special
options, installing WebLogic can be as easy as installing any other Windows
application. If your installation has special needs, it can be a bit trickier. I
show you a standard installation and describe the details of a more complex
installation. After you find out how to install WebLogic, you discover how to
customize it to meet your needs.

3Introduction

b524720 intro.qxd 5/20/03 8:37 AM Page 3

Part II: Understanding WebLogic
Components
Creating web applications is perhaps the most common use for WebLogic. In
Part II, you find out about some of the components that make up a web appli-
cation. One of the primary components is Enterprise JavaBeans (EJB). I show
you how to construct various types of EJBs and describe their differences.

Part III: Employing Web Services
Web services work much like any Java object that contains a set of reusable
methods. The main difference is that a web service allows other programs to
call these methods through the Internet. Web services are usually accessed
using the simple object access protocol (SOAP), which means different sys-
tems can communicate. An object hosted on a Windows computer could be
accessed by a Macintosh, for example. In this part, you create a web service
using WebLogic. You also find out how to access your own web services and
those provided by third parties.

Part IV: The Forgotten Services
A number of services run behind the scenes, so they’re not noticed in a typical
web application. These services take care of binding the entire application
together and providing access to the underlying databases. For example,
Java Database Connectivity (JDBC) allows your web application to access
databases, Java Message Service (JMS) allows programs to exchange mes-
sages, and Java Naming and Directory Interface (JNDI) allows named resources
to be located. In Part IV, you discover the ins and outs of all these “behind the
scenes” services.

Part V: Big-Time, Heavy-Duty
Server Configuration
After you develop your application and test it, you’re ready for the big time.
Part V shows you some of the more advanced configuration options available
in WebLogic. For example, clustering allows you to use many different server
computers as one large virtual server. A virtual server can be much more reli-
able and can process information faster than a single server. You also find out
about different security issues and how to resolve them.

4 BEA WebLogic Server 8 For Dummies

b524720 intro.qxd 5/20/03 8:37 AM Page 4

Part VI: The Part of Tens
In Part VI, you find out about ten best practices that are a result of my experi-
ence with WebLogic and web development in general. I also provide tips for
administrators and general tips to heed before going live.

Icons Used in This Book
This icon signals a tip that I think you might find useful. These tips are pro-
vided to jumpstart your knowledge of WebLogic and save you from having to
go through a lot of trial and error.

This icon lets you know that the information you’re about to read is some-
thing that’s often overlooked but should be remembered. For example, when
you’re setting a configuration option, doing so may have an unintended side
effect. The remember icon will alert you to this.

Technical stuff is important, and you may find it interesting. But understand-
ing something flagged with this icon is not necessary to accomplishing a job.

This icon means what it says. Pay attention to the common pitfalls or errors
described. These warnings are issues that I have run into myself. By heeding
these warnings, you can save yourself the time that I spent learning these
issues.

Where to Go from Here
This book will give you a solid introduction to WebLogic. This will definitely
get you up and running with a web application. However, entire books are dedi-
cated to many of the topics that are covered here in a single chapter. In particu-
lar, you may want to check out books on some of these topics: EJB, JSP, JSTL,
JMS, JDBC, and Java. You can find a lot of information about WebLogic on the
web. Visit the WebLogic documentation site at http://e-docs.bea.com and
the Sun site at http://java.sun.com.

5Introduction

b524720 intro.qxd 5/20/03 8:37 AM Page 5

6 BEA WebLogic Server 8 For Dummies

b524720 intro.qxd 5/20/03 8:37 AM Page 6

Part I
Installing and
Configuring
WebLogic

c524720 PP01.qxd 5/20/03 8:37 AM Page 7

In this part . . .
You begin by finding out exactly what an application

server is. You look at the major components of an
application server and how WebLogic implements them.

Installation is the first step in setting up your WebLogic-
based application. You find out how to install WebLogic
on a single machine. Then you look at installing
WebLogic on many machines using a script. You also
discover a variety of ways to start WebLogic Server.

Configuration is an important and ongoing part of setting
up WebLogic Server. You need to configure WebLogic to
initially set up your web application. Later, you need to
monitor and adapt your server’s configuration to the
changing needs of your users. All these topics are covered
in this part.

c524720 PP01.qxd 5/20/03 8:37 AM Page 8

Chapter 1

Introducing Application Servers
In This Chapter
� Understanding the role of application servers

� Meeting the J2EE family of technologies

� Outlining the major features of WebLogic

In the most general sense, a server is a program that provides information
to a client that requests that information. Sometimes a server is a computer

used to centralize resources so that they can be shared by a number of differ-
ent users. For instance, file servers centralize file storage, database servers
centralize data storage, and web servers centralize the distribution of web con-
tent. In a similar vein, an application server centralizes key programming tasks.
Doing so has many advantages, as you will discover.

In this chapter, you find out about application servers, in particular BEA’s
WebLogic Server. In a recent Gartner study, BEA WebLogic Server had 34 per-
cent of the application server market share — the largest market share of any
single vendor. BEA Systems is at the forefront of market developments and
support of new standards.

WebLogic is not the only application server on the market. WebLogic’s
main competitors are IBM’s WebSphere and JBoss, an open-source applica-
tion server released under the LGPL license. In addition to these two Java-
based application servers, WebLogic faces non-Java competition, mainly from
the growing Microsoft .NET family of products.

Application Server Basics
Enterprise JavaBeans (EJB) is a technology for developing, assembling,
deploying, and managing distributed applications in an enterprise environ-
ment. This basically means that EJB provides a Java framework for executing
objects residing on different machines over a distributed network. This is a
powerful capability: It enables a user to harness the power of different
machines transparently, in a single application.

d524720 Ch01.qxd 5/20/03 8:37 AM Page 9

A machine hosting and executing an EJB object is called an EJB application
server. WebLogic, as an EJB application server, also acts as a container for
EJBs. A container provides a management system for EJB objects. An efficient
container removes the need for users and developers (to a certain extent) to
be concerned about exactly how an object will be used. Put another way, an
EJB application server provides APIs and interfaces, and an EJB is like a plug-
in that provides business logic for a specific application. As a developer, you’re
writing modules (EJBs) that are dropped into the application server, which
then loads and runs the EJBs when needed.

Servers work closely with clients. A client requests information from a server
or requests that a server do something. The server, acting on the request,
sends the requested information to the client or does what it is asked to do.

BEA WebLogic Server, as an EJB application server, interacts with clients in a
similar manner. The machine that requests WebLogic to run an EJB program
is the client. This client program can be a stand-alone Java program or another
server. (Often web servers are the clients for the services of EJBs.) EJBs allow
a busy web server to focus on what it was designed to do: serve web pages.
The web server calls upon EJBs, which reside on an application server, to
perform business-specific tasks, such as retrieving data from a database.

This division of labor is the key reason to use an application server. Dividing
the task between the client and the application server results in three imme-
diate advantages:

� Reliability

� Scalability

� Modularity

Achieving reliability through redundancy
You can run an application on your desktop machine only as long as your
machine is operational. In other words, if your machine “hangs” (becomes
locked) or the power goes off, you can’t continue to work. Application servers,
on the other hand, can offer a more reliable way of running an application
through a concept called redundancy. This simply means that you add multi-
ple servers, instruct them to act together as if they were a single server, and
then allow clients to access them. If one of the servers becomes unavailable,
the other servers pick up the slack and respond to the needs of the clients.

You can also work on an ailing server without disturbing the other servers.
You are free to reboot the crashed application server without affecting the
stability of the remaining application servers. Using multiple application
servers in this way can increase the reliability of your application.

10 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 10

Making applications scalable
As more and more clients make requests of an application server, more and
more demands are placed on that server. As the overall demands become
greater, the capability of the server to quickly fulfill each individual request
decreases. One solution to this problem is to add more horsepower to the
machine used to run the application server — perhaps more memory, a
faster hard drive, or even a faster CPU. A better solution, however, is to add
another server, clustering it with the existing server. Now the deluge of client
requests can be serviced by two machines acting as one. Need more power?
Add a third, fourth, or fifth machine. This is the essence of scalability.

As requests for services come in from the clients, the cluster automatically
dispatches these requests to the least busy of the application servers. This
allows you to increase the capacity of your application by simply adding
additional application servers rather than going through the costly process
of upgrading a production server. As a bonus, the additional servers also
increase the reliability of your system.

Improving modularity
Modularity has long been one of the chief design goals of computer program-
ming. Modular program design breaks the program into smaller units, or mod-
ules, that are developed separately. Often these modules can be reused across
several applications. Object oriented programming (OOP) was created to facil-
itate the creation of modular programs, among other design goals.

One of the most fundamental ways of making a program modular is to
separate presentation logic — the part of the program that interacts with the
user — from business logic — the part of the program that makes decisions
and performs calculations. Presentation logic should be housed in the web
server, because the web server is responsible for transmitting the HTML that
will be presented to the user. Business logic should be housed in the applica-
tion server so that it can be reused by any web pages that may need it. The
same business logic is often needed across many web pages. For example,
the business logic to update inventory would be reused on any page that
affects inventory.

An application server enables this separation. Business logic is placed in
EJBs. The application server executes the EJBs, and the results are sent to
the presentation program running on the web server.

11Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 11

J2EE, Java’s Approach to
Application Servers

Java 2 Platform, Enterprise Edition (J2EE) contains additions to the Java envi-
ronment that Sun Microsystems created to facilitate such enterprise con-
cepts as application servers. Sun has defined a specific way in which to build
application servers for Java. One advantage to this approach is that content
you develop for WebLogic Server can be used also with other J2EE applica-
tion servers. In other words, you can migrate the content to another J2EE
application server, if needed.

J2EE is not just one technology, but rather a collection of technologies. Sun
defines standards embodied as J2EE, which other vendors implement. For
example, WebLogic implements the following J2EE components:

� JavaServer Pages (JSP)

� Enterprise JavaBeans (EJB)

� Java Transaction Service (JTS)

� Java Message Service (JMS)

� Java Naming and Directory Interface (JNDI)

In other chapters, you find out more about these components of J2EE. In this
section, I briefly review the function of each of these to give you an overview
of how they fit together.

JavaServer Pages
JavaServer Pages (JSP) allow you to embed Java code directly into HTML-like
documents. JSP has access to nearly all the core features of the Java pro-
gramming language, except you’re returning only streams back to the user’s
browser. This allows you to construct complex applications using only JSP.
However, just because you can construct complex JSP-based applications
does not mean that you should. JSP is best restricted to presentation logic,
with more complex business logic delegated to EJBs.

Enterprise JavaBeans
Enterprise JavaBeans (EJB) technology allows code to be executed on a
remote system. This remote system is the application server. EJB is com-
monly used to isolate business logic from presentation logic, which usually

12 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 12

consists of JSP. EJB coordinates access with the database and shields higher
levels, such as JSP, from the need to directly access the database. In this way,
if you were to change database servers or the format of your database, all
code related to data access would be in one location.

Java Transaction Service
Java Transaction Service (JTS) is a transaction manager that allows requests
to be segmented into transactions. These transactions succeed or fail as a
whole. This prevents partial transactions from persisting if only a part of the
transaction is successful.

Java Message Service
The Java Message Service (JMS) API was developed to allow Java applications
to be message driven. A message-compatible EJB can receive and generate
messages. These messages can contain any data needed by the program.
Messaging is asynchronous, so considerable time can elapse before a response
message is received, if at all. JMS also allows messages to be saved to a mes-
sage store, such as a file or a database.

Java Naming and Directory Interface
Java Naming and Directory Interface (JNDI) is a standard extension to the Java
platform that provides naming and directory information to Java programs.
This allows EJB and other resources to have names that can be looked up by
their client programs. JNDI is a high-level standard and can use any number
of underlying name and directory services.

Enterprise applications
Enterprise applications tie many of the previously mentioned components
together into one application. An enterprise application is most commonly
made up of a web application and any EJB that may be used by that web appli-
cation. The entire enterprise application is packaged as a single archive file,
which can be easily deployed to a server such as WebLogic. This allows for
easy packaging, distribution, and deployment of your enterprise applications.

13Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 13

Major Features of WebLogic Server
As mentioned, WebLogic is the most popular application server available for
Java. WebLogic has gained this popularity due, in part, to a full set of fea-
tures. In this section, you are introduced to some of these features. In other
chapters, they are described in much greater detail.

Throughout this text, I refer to BEA’s WebLogic Server product simply as
WebLogic. BEA, however, uses the term WebLogic to refer to a family of prod-
ucts, including WebLogic Portal, WebLogic Integration, WebLogic Workshop,
and WebLogic Express. The popularity of the core WebLogic Server product,
however, has led to the shortening of the name to simply WebLogic in many
circles.

Platform support
WebLogic can run on many platforms, including Windows and many flavors of
UNIX. WebLogic is available also for many large mainframe computer systems,
providing WebLogic with greater processing power and scalability. The exten-
sive platform support of WebLogic allows you to mix and match technologies.
For example, you might run WebLogic on a mainframe computer system, back-
ing it up with a cluster of less expensive machines that run the same applica-
tions. Further, you can test your application on less expensive machines and
run your production system on more expensive, higher-bandwidth hardware.

Web applications
Although WebLogic is most commonly thought of as an application server, it
can also handle many web server functions. This means WebLogic could be
used as an all-in-one solution. JavaServer Pages (JSP) is one of the most
common forms of server-side Java programming. WebLogic includes the
capability to execute JSP. You can to create web applications in WebLogic
that make use of technologies such as JSP and custom tag libraries. Web
applications are covered in Chapter 5.

EJB support
Perhaps the most basic feature of a Java-based application server is support
for Enterprise JavaBeans (EJB). WebLogic includes extensive support for the
five types of EJB:

14 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 14

� Stateless bean

� Stateful bean

� Message bean

� Container-managed persistence (CMP) entity bean

� Bean-managed persistence (BMP) entity bean

Additionally, WebLogic makes other important services available to these
beans, such as database connection pooling and naming services. EJB sup-
port is discussed in Chapters 6 and 7.

Database connectivity
Databases are often the heart of any serious application. Because of this,
WebLogic includes extensive support for relational databases. One of the most
important features is database connection pooling. This allows WebLogic —
instead of individual EJBs — to manage connections to the database.

Database connections are an expensive resource. Processor cycles and
extensive network communication are required to open and close these
connections, and this can slow down other operations. By using a database
connection pool, WebLogic can reuse its pool of open database connections,
freeing the application from the overhead of constantly creating and destroy-
ing database connections. Database connectivity is discussed more fully in
Chapter 12.

Web services
Web services are a new technology that provides a more uniform way of
accessing the components of an application. Web services allow your appli-
cation to receive XML messages from other applications and respond to
those requests using XML. This means other applications can make use of
your application using only the HTTP protocol.

XML messages are sent and received using the Simple Object Access Protocol
(SOAP), a W3C standard that specifies how web services should be accessed
by their client programs. By supporting a standard protocol such as SOAP,
many different systems can access the web services that you make available
through WebLogic Server. Web services are discussed in Chapter 9. Acces-
sing web services is discussed in Chapter 10.

15Chapter 1: Introducing Application Servers

d524720 Ch01.qxd 5/20/03 8:37 AM Page 15

One of the new features of WebLogic (as of Version 7) is WebLogic Workshop,
which enables someone who is not familiar with J2EE to construct web ser-
vices. WebLogic Workshop provides a number of tools and frameworks to
make designing web services easier. WebLogic Workshop is discussed in
Chapter 11.

Clustering
Clustering is the capability to chain together many individual application
servers. These application servers are clones of each other, performing the
same task. The clustering capabilities of WebLogic enable these servers to
handle requests even though some of the application servers may fail. This
greatly increases the reliability of your application.

Clustering also allows your web application to become very scalable.
Because you now have many application servers handling requests from
clients, you can handle a greater number of incoming requests. Clustering is
discussed in more detail in Chapter 16.

Security
Security is a major concern in any application — and when your application
is accessible through the Internet, the need for security increases. WebLogic
can help you with three specific areas of security:

� Securing your data transmissions. Data transmissions are secured using
SSL/HTTPS. This prevents a hacker from accessing data packets as they
are transmitted between the browser and the web server.

� Controlling access by users. You may want to restrict some users from
accessing the overall system and restrict other users from accessing
only certain parts of the system. WebLogic provides features that allow
you to define users and control exactly what they have access to.

� Verifying administrators. WebLogic’s Administration Console enables
you to easily configure your server remotely. Unfortunately, this also
means that a hacker can configure your system remotely. WebLogic pro-
vides security to all configuration programs to limit access by unautho-
rized users. Security is discussed in Chapter 18.

16 Part I: Installing and Configuring WebLogic

d524720 Ch01.qxd 5/20/03 8:37 AM Page 16

Chapter 2

Installing WebLogic Server
In This Chapter
� Preparing to install

� Installing using GUI mode

� Introducing Configuration Wizard

� Installing using console mode

� Installing using silent mode

It makes sense that before you can use WebLogic, you must install it on
the machine that you want to use as your Internet server. This chapter

discusses the different ways that you can install the program on your system.
Even if you inherited a server that already has WebLogic installed, you will
probably want to at least skim this chapter so that you’re aware of the differ-
ent installation (and configuration) options available.

Installation Overview
Installing WebLogic is a straightforward process. WebLogic has several instal-
lation methods available, one of which should fit your needs:

� GUI installation. This is the most common method of installing
WebLogic — and the easiest. The graphical user interface (GUI) allows
you to see what’s happening during the installation process.

� Console installation. If you’re working with a so-called “headless”
remote server, which allows only terminal connections, this installation
method is for you.

� Silent installation. If you need to install WebLogic on a number of differ-
ent systems, you can “script” the installation process to make it quicker
and easier.

d524720 Ch02.qxd 5/20/03 8:37 AM Page 17

All three installation methods work on both Windows and UNIX systems.
Which installation method should you choose? Unless restricted by the capa-
bilities of the target system, the answer lies in your needs and your comfort
level with your computer. Each installation method is covered in this chapter,
so you can get a good idea of which method you should choose.

First, however, you should know the system requirements for WebLogic as
well as how to get your hands on the software. It also doesn’t hurt to know
how WebLogic is licensed by BEA Systems. Read on for all the details!

System requirements
Before you can take a class at a local college, you must meet the prerequi-
sites. To be successful in the class, you must fulfill the stated requirements.
The same is true of WebLogic Server. The installation program will check that
your system has met certain prerequisites before it attempts the installation.
Those requirements are outlined in this section.

Essentially, you need a computer system that will function well under Windows
NT Server 4; Windows 2000 Server; Windows 2000 Advanced Server; Sun
Solaris 7, 8, or 9; HP-UX 11 or 11i; IBM AIX 4.3.3 or 5L; or several flavors of
Linux. If your system will run one of these comfortably, you should have no
problems running WebLogic.

You can find detailed information about which systems are certified to work
with WebLogic at the following address:

http://e-docs.bea.com/

Hard-drive space requirements
If you install the complete WebLogic Server, approximately 525MB of disk
space are required. This number includes 35MB for the JDK installation and
142MB for the examples. This is only the hard-drive space required for
WebLogic itself. Your own application data will require additional space.

Hard-drive space requirements used to be considerably more important
when hard drives cost more money than they do these days. It takes a con-
siderable amount of trouble to move a system from one hard drive to a larger
drive. Due to the low cost of hard drives today, it simply makes sense to go
for one of the larger sizes available for your system.

It’s likely that continuous operation of WebLogic Server will be important.
Because of this, you should apply the same measures to WebLogic Server
as you do to any other production server. For example, you may use a RAID
array to provide redundant hard drives. This way, if one of your hard drives

18 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 18

fails, your system will continue running while you replace the faulty hard
drive. Plus, with a RAID array, your system does not go down during the
replacement. The full scope of your system’s redundancy and reliability
capability is, in the end, driven by uptime needs and budget.

Memory requirements
Just as regular applications have memory requirements, so does WebLogic.
However, the memory requirements for WebLogic are considerably higher
than regular end-user applications that you may have installed. For WebLogic
Server, 1GB of RAM is recommended. You can get by with less RAM, but it
may degrade the performance of your server.

JDK requirements
WebLogic requires Java to be present. If you’re using a Windows installation,
a copy of Java Development Kit is bundled with your installation program.

Some UNIX distributions of WebLogic do not include a copy of JDK. Versions
of the WebLogic installation program that do include JDK have a .bin exten-
sion. If you’re trying to install from one of these distributions, you must make
sure that the JDK BIN directory is in your path. If you don’t have a copy of
JDK already installed on your system, you should use a version of WebLogic
that includes JDK.

Finding out whether Java is properly installed on your UNIX or Windows
machine is easy. Simply enter the following command at the command
prompt:

java –version

If Java is properly installed, you’ll see the version information for your JDK. If
Java isn’t installed, you’ll get an error. For more information about installing Java,
refer to the online documentation provided with JDK that you downloaded.

Other requirements
Finally, if you’re installing using the GUI installation program, you must have a
color depth of at least 8 bits. Nearly any computer produced since 1997 will
have a color depth of at least 8 bits and most likely higher. If you’re using either
of the other two installation methods, you don’t need to worry about color.

Getting WebLogic
WebLogic is available on CD-ROM or from the BEA Systems web site. If you
have WebLogic on CD-ROM, you save some time because you don’t have to
download a huge installation file. (CD-ROMs are available for purchase from

19Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 19

any BEA Systems sales representative.) Most people download WebLogic
from the BEA Systems web site. You can find the download here:

http://commerce.beasys.com/showallversions.jsp?family=WLS

The preceding URL is accurate as of this writing, but it may have changed by
the time you read this book.

Registration is required of everyone who wants to download. After register-
ing, you can proceed to the download area.

You can download WebLogic in two ways. The first is called the net installer
and is similar to many net-aware installation programs. You essentially down-
load a 20MB installation program and answer some questions; then the instal-
lation program downloads additional elements, as necessary.

The second download method is called the package installer. With this
method, you download the entire stand-alone installation program, which
varies in size depending on the version of WebLogic you want to download.
(The size could be anywhere from 155MB to 275MB.) This option is great if
you want to keep a copy of the installation program on CD (as a backup). If
you plan on doing a silent installation, you must download the entire package
installer. The silent installation mode is not supported by the net installer.

If you choose to use the net installer, the installation process is similar to
downloading the package installer and using the GUI installation. Refer to the
appropriate major sections, later in this chapter, for more information on
each of the installation modes and how to use them.

Understanding licensing
To use WebLogic Server, you must have a valid license. When you first install
WebLogic, an evaluation license is created and is valid for 90 days. This evalua-
tion version works just like a real license, except that you’re limited to 20 con-
current connections. After this evaluation period is up, you must purchase a
real WebLogic license.

You can choose from two different licenses:

� Development license

� Production license

A development license, which costs less than the production license, allows
only 15 concurrent connections at a time. A production license has no con-
nection limit.

20 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 20

The development license allows you to create several development servers,
potentially one for each of your developers, to create your system before you
place it into production. This spares you the prohibitive cost of buying a pro-
duction license for each developer.

If you have licenses for older versions of WebLogic, you must purchase new
license files. Contact BEA software to see whether upgrade pricing is available.

Using the GUI Mode Installer
The easiest way to install WebLogic is to use the GUI mode installer. This pro-
gram uses a graphical user interface to guide you through the installation
process. Here’s how to do an installation using the GUI mode installer:

1. If you obtained WebLogic as a CD-ROM product, insert the CD-ROM in
your CD-ROM drive. If you obtained WebLogic from the web, double-
click the installer that you downloaded.

The installer program begins, and you see the Welcome screen shown in
Figure 2-1.

2. Click Next.

A license agreement appears.

3. Assuming you agree to all the fine print, choose the Yes option and
click Next.

Figure 2-1:
The

Welcome
screen
for the

WebLogic
GUI

installation.

21Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 21

The screen shown in Figure 2-2 appears. The BEA home directory is
where the common programs used by all BEA software are stored. The
default home directory on Windows is c:\bea.

4. Use the default directory or choose a new directory.

If you want a new directory, click Browse and select the directory or
type a new directory path in the text box just above the Browse button.

5. When you’re satisfied with the home directory, click Next.

The screen shown in Figure 2-3 appears.

Figure 2-3:
Choose

the type of
installation.

Figure 2-2:
Specify a

BEA home
directory.

22 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 22

6. Choose the type of installation you want and then click Next.

Usually, you’ll want to perform a typical installation. If you choose
Typical Installation, skip to Step 8. You might choose Custom Installation
if you don’t want certain WebLogic components installed for security or
space considerations.

7. If you choose Custom Installation, specify what you want to install, as
shown in Figure 2-4, and then click Next.

By default, all components are installed. If you don’t need a certain com-
ponent installed, clear the check box beside its name.

8. Specify a directory for WebLogic, as shown in Figure 2-5.

In Steps 4 and 5, you created a BEA home directory. This step creates a
directory for WebLogic itself. This product directory is usually a sub-
directory of the BEA home directory. The product directory will contain
all files needed by your application.

As in Steps 3 and 4, you can use the default directory, you can use the
Browse button to select a different directory, or you can simply type a
new directory path in the text box.

9. When you’re satisfied with the product directory, click Next.

The installation begins. In the installer’s title bar and in the lower-right
corner, you can see progress indicators. When the indicators reach
100%, the installation is complete, and you see a Congratulations mes-
sage, as shown in Figure 2-6.

Figure 2-4:
You can
specify
which

components
to install.

23Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 23

Note the option shown at the bottom of Figure 2-6. This option allows you to
install XML Spy, which is an XML development environment.

Using Configuration Wizard
In this section, you use Configuration Wizard to create a server. After
installing WebLogic, Configuration Wizard is accessible right away.

Figure 2-6:
Congrat-
ulations.

You’ve
installed

WebLogic.

Figure 2-5:
Choose a

directory for
installing

WebLogic.

24 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 24

Throughout this process, you’ll see references to a domain. Although a
domain can contain multiple web servers, the examples in this chapter
assume that your domain has only one server. For more on domains, see
Chapter 4.

To create a domain, follow these steps.

1. Choose Start➪BEA WebLogic Platform 8.1➪Configuration Wizard.

Configuration Wizard starts and the screen shown in Figure 2-7 appears.

2. Select the Create a new WebLogic configuration option, and then Click
Next.

In this example, you create a server. To modify an existing server, you
would choose the Add to an existing WebLogic configuration option.

3. Select a template and type a name for your domain. Click Next.

To follow along with the example, select the Basic WebLogic Server
Domain template.

4. Choose Express as your configuration type.

This is the most common option. (You might choose Customized if you
want to create a clustered environment, which is covered in Chapter 16.)

Figure 2-7:
BEA

Configur-
ation

Wizard.

25Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 25

5. Create the administrative user.

To create the administrative user, type a user name and a password.
Ideally, the password should be something that’s not found in the diction-
ary and should consist of both letters and numbers.

Make sure that you remember the user name and password because
you’ll need them to change configuration settings on your server.

6. Click Next.

The screen shown in Figure 2-8 appears.

7. Review your settings, and then click Create.

In a few moments, your domain is created.

Using the Console Mode Installer
The console mode installer does not use a graphical interface, and many
people think it’s harder to use than the GUI installer. You can use the console
mode installer in Windows or UNIX. If you’re using a UNIX system that doesn’t
have access to a GUI, you must use the console mode installer.

Figure 2-8:
Server

summary.

26 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 26

Two types of console mode installers are available, and which type BEA
Systems provides depends on the version of the operating system you’re
using. If you have UNIX, the extension of your installer can be .bin or .jar. For
Windows, it’s .exe. The following sections describe how to install under UNIX
and Windows operating systems.

Installing under UNIX
If your system uses UNIX, your installer could have a .bin or a .jar file name
extension. If your installer has the .bin extension, that means the installer
includes Java Development Kit (JDK), as described earlier. Installation files
ending in .jar do not include JDK.

Installing with a .bin file
If you have an installer file that ends in .bin, how you install the file depends
on whether you downloaded the installation file from the Internet or have it
available on CD.

To install your .bin file if you have it available on a CD, follow these steps:

1. Log on to the system as the user who will run WebLogic Server.

2. Open a command-line shell.

3. Insert the WebLogic CD in the CD-ROM drive.

4. Change to the weblogic_platform801 directory on the CD.

5. Invoke the following command:

./filename.bin –mode=console

where filename.bin is the name of the installer.

The installation program installs WebLogic.

If you downloaded the .bin file, the steps are slightly different:

1. Log on to the system as the user who will run WebLogic Server.

2. Open a command-line shell.

3. Go to the directory where you downloaded WebLogic and invoke the
following two commands:

chmod a+x filename.bin
./filename.bin –mode=console

where filename.bin is the name of the installer.

The installation program installs WebLogic.

27Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 27

Installing with a .jar file
If you have an installer file that ends in .bin, follow these steps:

1. Log on to the system as the user who will run WebLogic Server.

2. Open a command-line shell.

3. Include the bin directory of your JDK at the beginning of the PATH
variable:

PATH=javapath/bin:$PATH
export PATH

where javapath is the full path to your JDK directory.

4. Change to the directory that contains the .jar file.

5. Do one of the following:

• If you’re using JDK 1.3.1_03 or higher, type the following:

java –jar filename.jar –mode=console

where filename.jar is the name of the installer.

• If you’re using the AIX version of UNIX, type the following:

java –classpath filename.jar
com.bea.installer.BEAInstallController

where filename.jar is the name of the installer.

The installation program installs WebLogic.

Installing under Windows
If you have an install file that uses the .exe file extension, WebLogic assumes
that you already have Java installed and set up in your system path. How you
install the file depends on whether you downloaded the installation file from
the Internet or have it available on CD.

If you’re installing from a CD-ROM, follow these steps:

1. Log on to the system as the user who will run WebLogic Server.

2. Open a command-prompt window.

To do so, choose Start➪All Programs➪Accessories➪Command Prompt.

28 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 28

3. Go to the weblogic_platform801 directory on the CD-ROM.

If you obtained WebLogic from the Web, go to the directory where you
downloaded WebLogic.

4. Invoke the following command:

net_platform801_3in32.exe –mode=console

The installation program installs WebLogic.

If you downloaded WebLogic from the web, follow these steps instead:

1. Log on to the system as the user who will run WebLogic Server.

2. Open a command-prompt window.

3. Go to the directory where you downloaded WebLogic.

4. Invoke the following command:

filename –mode=console

where filename is the name of the file that you downloaded.

Using the Silent Mode Installer
Silent mode installation works much like the GUI installation program. The
main difference is that the silent mode installer gets all its input from a file,
whereas the GUI installer gets all its input from the user. Silent installation
can be used under Windows and UNIX.

Silent installation is valuable when you must perform the same installation on
many different computers.

Using the silent mode installer involves two main steps:

1. Create an installer properties file.

2. Use the installer properties file to invoke the installer.

You perform Step 1 once and then repeat Step 2 on every computer on which
you want to install the server.

In this section, you see how to carry out these two steps. I begin by showing
you how to create an installer properties file, sometimes referred to as a tem-
plate file.

29Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 29

Creating a template file
To install using the silent method, you must create a template file. The tem-
plate file contains all the setting information that you would normally provide
to the GUI installation utility. These settings are all expressed inside XML
tags. Make sure that you do not modify the structure of the XML tags.

Follow these steps to create a template file:

1. Obtain a template file from the following location:

http://e-docs.bea.com/wls/docs81/install/instsil.
html#1042712

An example template file is also shown later in this chapter.

2. Save the contents of the template file to a file named silent.xml. Place
this file in the directory containing the WebLogic Server installation
program.

3. Modify your template file so that the settings make sense for your
needs.

See Table 2-1 for a list of settings.

Table 2-1 Mandatory Silent Mode Installation Properties
Property What It Is

BEAHOME The BEA home directory. This directory holds
common files used by multiple BEA products, such
as the license file.

RUN_DOMAIN_WIZARD Specifies whether Configuration Wizard should be
run. If True, the wizard is run; if False, it is not. If you
choose to run Configuration Wizard, you must spec-
ify the data values used by the wizard, as detailed in
Table 2-2.

USER_INSTALL_DIR The directory into which you will install WebLogic.

Only a few properties need to be set in the template file; these are shown in
Table 2-1. If you choose to control Configuration Wizard with the template file
(by setting RUN_DOMAIN_WIZARD to True), the number of properties you need
to set suddenly becomes much larger. The Configuration Wizard properties
you can set in the template file are detailed in Table 2-2.

30 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 30

Table 2-2 Configuration Wizard Properties
Property What It Is

ADMIN_HOST_NAME_OR_IP The Administration Server name or IP address.

ADMIN_LISTEN_PORT The port at which the Administration Server
listens.

C_domainName The beginning of a domain name specification.
One or more of these attributes can be specified
to create domains. (On UNIX systems, do not
include spaces in the domain name.)

C_password The password to be used with the administrative
user for this server. The password must contain
at least 8 characters but no more than 20. Do not
use spaces or XML reserved characters such
as <, >, {, or }.

C_serverListenAddress The DNS name or system IP for the server.

C_serverListenPort= Used to specify the server listen port. Most web
servers use port 80. WebLogic uses port 7001 by
default.

C_serverName Used to specify the server name for the specified
domain. Do not include spaces in the server
name.

C_serverSSLListenPort= Used to specify the SSL server listen port, which
is used for HTTPS connections. Most web
servers use port 443. WebLogic uses port 7002 by
default.

C_username A user name to start the server and access
Administration Console. Do not use spaces or
XML reserved characters such as <, >, {, or }.

ClusterMCAddr The multicast IP address that Administration
Server uses to communicate with clustered
servers. WebLogic uses 237.0.0.1 by default.

ClusterName Name of the cluster (if any) to create. Do not
include spaces in the cluster name.

ClusterPort The multicast port that Administration Server
uses to communicate with clustered servers.
WebLogic uses port 7777 by default.

(continued)

31Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 31

Table 2-2 (continued)
Property What It Is

clusterServers If the SERVER-RUN-AS parameter is set to Admin
data group Server with Clustered Managed Server(s), specifies

the configuration of the cluster. For each server in
the cluster, you must specify the following three
items: clusterServerRegName (the name of the
server as registered with Administration Server),
clusterServerHostIP (the DNS name or IP
address of the machine), and clusterServer
ListenPort (the server listening port).

DB_EMAIL_ADDRESS The e-mail sending address used by WebLogic
Integration.

DB_EMAIL_HOST The default e-mail server used by WebLogic
Integration.

domain.directory The full path to the domain directory. On UNIX
systems, do not include spaces in path names.

INSTALL_NT_SERVICE Used to specify whether the server should be
installed as a service when installing on a Windows
system. Possible values are yes and no.

INSTALL_WINDOWS_ Used on a Windows system to specify whether a
STARTUP_MENU WebLogic option should be installed on the

Windows Start menu. Possible values are yes and
no (the default).

MANAGED_SERVER_ The machine or server name as registered with
REGISTERED_NAME_ Administration Server.
IN_ADMIN

managedServers If the SERVER-RUN-AS parameter is set to Admin
data group Server with Managed Server(s), specifies the

configuration of the managed servers in the domain.
For each managed server, you must specify four
items: managedServerRegName (the name of the
server as registered with Administration Server),
managedServerHostIP (the DNS name or IP
address of the machine), managedServer
ListenPort (the server listening port), and
managedServerSSLListenPort (the secure
listening port).

selectedJar The full path and file name of the template JAR file
to be used by Configuration Wizard to create the
domain and configure the server.

32 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 32

Property What It Is

SERVER-RUN-AS Determines the server configuration created by
Configuration Wizard. Possible settings are Single
Server, Admin Server with Managed Server(s),
Admin Server with Clustered Managed Server(s),
and Managed Server (with owning Admin Server
configuration).

To specify a setting for a property, you use the property name and
value as an XML tag. For example, the following sets a value for the
USER_INSTALL_DIR property:

<data-value name=”USER_INSTALL_DIR” value=”C:\bea\weblogic81”
/>

Using the property types shown in Table 2-1, you can create a properties file
that the installer will use. An example of a Windows silent.xml file is shown in
Listing 2-1.

Listing 2-1: Silent Install Properties File

<?xml version=”1.0” encoding=”UTF-8”?>
<domain-template-descriptor>
<input-fields>
<data-value name=”BEAHOME” value=”C:\bea” />
<data-value name=”USER_INSTALL_DIR” value=”C:\bea\weblogic81” />
<data-value name=”RUN_DOMAIN_WIZARD” value=”false” />
<data-value name=”domain.directory” value=”C:\bea\user_domains\mydomain” />
<data-value name=”C_domainName” value=”mydomain” />
<data-value name=”C_serverName” value=”myserver” />
<data-value name=”C_username” value=”system” />
<data-value name=”C_password” value=”weblogic” />
<data-value name=”C_serverListenAddress” value=”” />
<data-value name=”C_serverListenPort” value=”7001” />
<data-value name=”C_serverSSLListenPort” value=”7002” />
<data-value name=”ClusterName” value=”mycluster” />
<data-value name=”ClusterPort” value=”7777” />
<data-value name=”selectedJar”

value=”C:\bea\weblogic81\common\templates\domains\wls.jar” />
<data-value name=”INSTALL_NT_SERVICE” value=”no” />
<data-value name=”INSTALL_WINDOWS_STARTUP_MENU” value=”no” />
<data-value name=”DB_EMAIL_HOST” value=”myserver” />
<data-value name=”DB_EMAIL_ADDRESS” value=”name@bea.com” />

</input-fields>
</domain-template-descriptor>

33Chapter 2: Installing WebLogic Server

d524720 Ch02.qxd 5/20/03 8:37 AM Page 33

Invoking the silent mode
installation program
Now that you’ve created a properties file to be used as a template for your
installation, you’re ready to invoke the silent installer program and perform
the actual installation. You can perform the silent installation once or many
times. (The silent mode was designed to be used when you want to perform
the same installation more than once.)

The instructions for how to start the silent mode installation program are
slightly different between UNIX and Windows. The next two sections explain
invoking the silent mode installer in both UNIX and Windows.

If you’re using the silent mode installation under Windows, follow these steps:

1. Log on to the Windows system with an account that has administrator
rights.

2. Open a command-prompt window.

3. If you’re installing from a CD-ROM, go to the CD-ROM directory. If you
obtained WebLogic from the web, go to the directory where you
downloaded WebLogic.

4. Invoke the following command:

filename.exe –f fullpath\silent.xml

where filename.exe is the name of the installer and fullpath is the
path to your installer properties file.

The installation program installs WebLogic.

If you’re using the silent mode installation under UNIX, follow these steps:

1. Log on to the UNIX system as the target user.

2. Open a command-prompt window.

3. If you’re installing from a CD-ROM, go to the CD-ROM directory. If you
obtained WebLogic from the web, go to the directory where you
downloaded WebLogic.

4. Invoke the following command:

sh filename.bin -f fullpath/silent.xml

where filename.bin is the name of the installer and fullpath is the
path to your installer properties file.

The installation program installs WebLogic.

34 Part I: Installing and Configuring WebLogic

d524720 Ch02.qxd 5/20/03 8:37 AM Page 34

Chapter 3

Gentlemen, Start Your
WebLogic Engines

In This Chapter
� Writing a startup script

� Starting WebLogic from the Start menu

� Starting WebLogic automatically

You normally don’t think much about starting application programs. You
simply click the appropriate icon and the application starts. If you want,

starting WebLogic can be this simple. However, WebLogic also offers several
other ways to start the server: from a script and from the Windows Start
menu.

Writing a WebLogic Startup Script
One of the most common ways to start WebLogic Server is by using a startup
script. A startup script is nothing more than an ordered list of commands that
would normally be issued at the Windows or UNIX command prompt. Starting
WebLogic Server from an existing startup script has several advantages:

� There is no need to enter the admin ID and password each time.

� Other related commands, such as mapping network drives, can automat-
ically be performed as part of the script.

� The script can be started easily by other automated processes.

However, using a custom startup script has some potential disadvantages,
such as the following:

d524720 Ch03.qxd 5/20/03 8:37 AM Page 35

� If the admin password is embedded in the script, the script is less
secure than the supplied script.

� It takes time to properly create a startup script.

� A user must be logged on to the server to run the startup script.

You begin finding out about startup scripts by examining the standard
startup script that WebLogic creates for new server instances.

The standard startup script
Fortunately, you do not need to build your startup script from scratch. Every
time that you create a new server instance, as described in Chapter 4, a stan-
dard startup script is created for you. You can modify this script as you see
fit. The standard startup script is named startWebLogic.cmd if you’re running
Windows and startWebLogic.sh if you’re running UNIX. The contents of the
Windows and UNIX startup scripts are similar. Listing 3-1 shows an example
of the standard startup script generated by WebLogic for the Windows oper-
ating system.

Listing 3-1: Typical Windows WebLogic Startup Script

echo off
SETLOCAL

@rem Set SERVER_NAME to the name of the server you want to
@rem start.
set SERVER_NAME=myserver

@rem Set WLS_USER equal to your system username and
@rem WLS_PW equal to your system password for no username
@rem and password prompt during server startup. Both are
@rem required to bypass the start prompt. This is not
@rem recommended for a production environment.
set WLS_USER=
set WLS_PW=

@rem Set Production Mode. When this is set to true,
@rem the server starts in production mode. When
@rem set to false, the server starts in development
@rem mode. If it is not set, it will default to false.
set STARTMODE=

@rem Set JAVA_OPTIONS to the java flags you want to pass to
@rem the vm. i.e.:
@rem set JAVA_OPTIONS=-Dweblogic.attribute=value
@rem -Djava.attribute=value

36 Part I: Installing and Configuring WebLogic

d524720 Ch03.qxd 5/20/03 8:37 AM Page 36

set JAVA_OPTIONS=-
Dweblogic.security.SSL.trustedCAKeyStore=C:\bea\
weblogic81\server\lib\cacerts

@rem Set JAVA_VM to the java virtual machine you want to run.
@rem For instance:
@rem set JAVA_VM=-server
set JAVA_VM=

@rem Set MEM_ARGS to the memory args you want to pass to
@rem java. For instance:
@rem set MEM_ARGS=-Xms32m -Xmx200m
set MEM_ARGS=

@rem Call Weblogic Server
call “C:\bea\weblogic81\server\bin\startWLS.cmd”

ENDLOCAL

The startup script is not too difficult to understand. Lines that begin with
@rem are remarks, or comments, added so you can understand what the dif-
ferent command lines do. The lines that do not begin with @rem are inter-
preted by WebLogic and are used to start the server.

Through the startup script, you set environment variables that control the
launch and runtime operation of WebLogic Server. To create a customized
startup script, you begin by modifying these variables in the standard script.
I show you how to do this in the next section.

If additional commands must be executed before the server starts, simply
modify the script to include the commands. A script is executed line by line,
so make sure that the commands appear in the script file before the end,
where the startWLS.cmd file is invoked. (This is the script command to start
WebLogic Server.)

Constructing your own startup script
In the preceding section, you saw that WebLogic creates a standard script
that you can modify. In this section, you find out how to set the various envi-
ronment variables in the script. The first step in modifying a startup script is
to load it into a text editor. A startup script doesn’t require a special program
for editing; it is nothing but a plain text file. In Windows, you can do your
editing in a program such as Notepad. In UNIX, you can use a program such
as vi or pico. However, you’re not limited to using these programs; any text
editor will suffice.

37Chapter 3: Gentlemen, Start Your WebLogic Engines

d524720 Ch03.qxd 5/20/03 8:37 AM Page 37

If you’re not familiar with the UNIX environment, you will probably find the vi
editor confusing. The pico editor more closely resembles Windows Notepad.
To use the pico editor from UNIX, you type the pico command followed by
the name of the file you’re editing. For example, the following command edits
the web.xml file using pico as your editor:

pico web.xml

Now that the startup script is opened, you can make your desired changes.
Table 3-1 lists some of the environment variables you can modify.

Table 3-1 WebLogic Environment Variables
Variable Name What It Is

JAVA_OPTIONS The Java command-line options for running the server.

JAVA_VM The Java argument specifying the VM to run such
as -server or -client (hotspot is deprecated).

MEM_ARGS The variable to override the standard memory arguments
passed to Java.

STARTMODE The operating mode for the server. Specify True for
production mode servers and False for development
mode.

WLS_PW The WebLogic user password used to start the server.

WLS_USER The WebLogic user ID used to start the server.

Usually, you will not want to change the default virtual machine that Java is
using. Java achieves performance gains by compiling Java instructions into
the native instruction set of the computer. If you specify the -classic option
for JAVA_VM, no compiling is used. If you specify the -server or -client
option, a compiler optimized for server or client operations, respectively, is
used. There’s no reason to ever run WebLogic using the -client option.

In Table 3-1, look at the STARTMODE variable and the mention of development
and production modes. When you want to know whether something is work-
ing properly, use development mode because it helps you track down prob-
lems. Production mode reports fewer errors and generally runs faster.

A side effect of development mode is that you’ll need to clear the logs more
often and pay more attention to your server. Production mode also preloads
more of the server, so if you’re restarting the server frequently, you’ll want to
use development mode.

38 Part I: Installing and Configuring WebLogic

d524720 Ch03.qxd 5/20/03 8:37 AM Page 38

You can also specify the user ID and password when staring the server. To
specify the user information, you should use the WLS_PW and WLS_USER vari-
ables. This will prevent WebLogic from prompting you each time it starts.
The JAVA_OPTIONS variable allows you to pass additional parameters to the
Java virtual machine. The MEM_ARGS variable allows you to request additional
memory. The format for MEM_ARGS follows:

MEM_ARGS=-Xms128m -Xmx512m

This command specifies 128MB of initial memory size and 512MB as the max-
imum memory size.

If you get out-of-memory errors in WebLogic, you should adjust the MEM_ARGS
variable.

Now that you have seen how to start WebLogic Server using a startup script,
I will now show you how you can easily start WebLogic Server from the
Windows Start menu.

Starting WebLogic from the
Windows Start Menu

You use the Windows Start menu to start most Windows applications. When
you choose to start WebLogic from the Start menu, a default script is created
for you and a shortcut to that script is placed in the Start menu.

Starting WebLogic Server from the Start menu has a few immediate advan-
tages. Perhaps the biggest advantage is that this method is simple. Another
benefit is that if you’ve defined several different instances of your server, you
can see them all in a single place. All WebLogic Server instances are started
by choosing Start➪BEA WebLogic Platform 8.1➪User Projects.

To start WebLogic from the Start menu, you must specify — when you config-
ure your server — that you want to use the Start menu. For more information
on setting up WebLogic Server instances, refer to Chapter 4.

Starting WebLogic from the Start menu also has a few disadvantages. For
example, you can’t use the Start menu to automatically start the server when
the computer boots. (For this reason, using the Start menu is considered a
manual method of starting WebLogic Server.) A related drawback is that a
user must be logged on to the system before the server can be started.

39Chapter 3: Gentlemen, Start Your WebLogic Engines

d524720 Ch03.qxd 5/20/03 8:37 AM Page 39

Starting WebLogic Server Automatically
So far, you’ve read about two methods of starting WebLogic Server: through a
startup script and from the Windows Start menu. Both methods require you to
be logged on to the system to start WebLogic Server. When you’re using
WebLogic Server in a production environment, you normally want the server to
start automatically as part of the overall machine booting process. After all, it
could be that this machine’s only purpose is to run WebLogic Server. In this
section, I describe two methods you can use to automatically start WebLogic
Server at machine startup, without any manual intervention on your part.

The first automated method works only on the Windows platform. You can
configure WebLogic to run as a Windows service. Windows services run in the
background, out of the direct reach of users who may be logged on to the
system. Additionally, services can be configured to start when the machine is
first started.

The second automated method that can be used works only on the UNIX plat-
form. UNIX programs that run in the background, independent of the current
user, are called daemons. By configuring WebLogic to run as a UNIX daemon,
your server starts automatically and is not directly affected by users logging
on to and off the system.

Running WebLogic Server by one of these automated means makes server
startup, shutdown, and error handling less obvious to system users, so these
methods are more suitable for a production environment. When you’re still
developing your application and will likely be starting and stopping your
server often, you’ll find that using the Start menu or a startup script is much
more convenient than running either a UNIX daemon or a Windows service.

Configuring WebLogic as a
Windows service
The most common way to start WebLogic Server in a Windows production
environment is as a Windows service. In this section, you find out how to
configure WebLogic Server to run as a Windows service, as well as how to
start and stop a Windows service. Starting WebLogic Server as a Windows
service has several advantages:

� Your WebLogic service starts automatically when Windows loads.

� No user needs to be logged on for WebLogic Server to be running.

� WebLogic Server can be stopped and restarted by any program designed
to work with Windows services.

� WebLogic Server runs out of direct reach of the current user.

40 Part I: Installing and Configuring WebLogic

d524720 Ch03.qxd 5/20/03 8:37 AM Page 40

The only drawback to running WebLogic Server as a Windows service is that
debugging server applications can be more difficult because the current user
doesn’t have direct access to the running server. (This is why you should run
WebLogic Server as a service only on a production machine, not on a devel-
opment machine.)

Next, you configure WebLogic Server as a Windows service. You see how to
do this for a new WebLogic Server instance as well as an existing WebLogic
Server instance. Finally, you see how to remove WebLogic as a service.

Configuring a new WebLogic Server instance
Configuring a WebLogic Server instance to run as a Window service is easy.
When you first configure a server instance using Domain Configuration
Wizard (see Chapter 4), you are given the option of making this server a
Windows service. If you select the option to install your server instance as
a service, your WebLogic Server will be running in the background the next
time you reboot the machine.

To configure WebLogic Server to run as a service, you must be a Windows
user with administrative privileges.

Configuring an existing WebLogic Server instance
If you have an existing WebLogic Server instance that you’d like to configure
to run as a Windows service, you must run a command-line utility. Follow
these steps:

1. Open a command-prompt window.

To do so, choose Start➪All Programs➪Accessories➪Command Prompt.

2. Switch to the weblogic\bin directory.

3. Run the install command, specifying the name of the WebLogic Server
instance that you would like to configure as a service.

For example:

c:\weblogic\bin> install -name yourWebLogicServer

To configure a WebLogic Server instance to run as a service, you must
be logged on to Windows using an account that has administrative privi-
leges. Replace yourWebLogicServer with the name of your server.

Removing a WebLogic Server instance
Configuring a WebLogic Server instance as a Windows service doesn’t have
to be a one-way operation. If you ever need to turn off the instance, so that it
doesn’t operate as a service, follow these steps:

41Chapter 3: Gentlemen, Start Your WebLogic Engines

d524720 Ch03.qxd 5/20/03 8:37 AM Page 41

1. Open a command-prompt window.

Choose Start➪All Programs➪Accessories➪Command Prompt.

2. Switch to the weblogic\bin directory.

3. Run the remove command, specifying the name of the WebLogic
Server instance that you want to remove.

For example:

c:\weblogic\bin> remove -name yourWebLogicServer

To change how a service operates, you must be logged on to Windows
using an account that has administrative privileges. Replace
yourWebLogicServer with the name of your server.

Starting and stopping your service
If you’re already familiar with how to manage Windows services, you’ll
find that WebLogic service administration is similar. To start or stop your
WebLogic service, you use the Services applet from the Control Panel, which
is shown in Figure 3-1.

Figure 3-1:
Windows
services.

42 Part I: Installing and Configuring WebLogic

d524720 Ch03.qxd 5/20/03 8:37 AM Page 42

The following steps show you how to start and stop your service:

1. Choose Start➪Control Panel.

2. Click the Administrative Tools icon.

3. Double-click the Services icon.

A listing of all services configured on this system is displayed. All
WebLogic services begin with beasvc.

4. Right-click your WebLogic service.

A menu appears that allows you to start or stop your service.

The Properties menu option allows you to configure the start type for your
service, which determines whether the service should be started automati-
cally when Windows starts. The default setting for this option is Automatic
Startup When Windows Starts.

Running WebLogic as a UNIX daemon
If you want your WebLogic Server to start automatically under UNIX, you
must configure the server to run as a UNIX daemon. A UNIX daemon process,
like a Windows service, is a program that runs in the background.

Starting WebLogic Server as a daemon has the following advantages:

� This startup method is compatible with the UNIX operating system.

� Your WebLogic service starts automatically when UNIX loads.

� No user needs to be logged on for WebLogic Server to be running.

� Your WebLogic service starts and stops in a way that is consistent with
other UNIX daemon processes.

� WebLogic Server runs out of direct reach of the current user.

The last advantage in the list, however, can also be a disadvantage. Having
direct access to the running server can be helpful when debugging the
server.

To set up your WebLogic Server instance to run as a daemon, do this:

1. Change to the superuser by issuing the su command and entering the
root password.

To set up WebLogic Server to run as a daemon, you must have root
access.

43Chapter 3: Gentlemen, Start Your WebLogic Engines

d524720 Ch03.qxd 5/20/03 8:37 AM Page 43

2. Create a daemon script.

This script will start and stop your WebLogic Server instance by calling
the startup script that you created earlier in the chapter. Listing 3-2
shows an example daemon script; note that you need to supply the com-
plete path to your own script. The name of this script should reflect the
server instance it was associated with. For this example, I assume that
you named it myserver.

3. Place this script in the /etc/rc.d/init.d/ directory.

4. Add a symbolic link to this script from the appropriate run levels.

This will cause your script to be executed both when the machine is
starting up and shutting down. Inside /etc/rc.d/rc5.d/ and
/etc/rc.d/rc3.d/, you must place a symbolic link using the ln -s
command. You must start the name of your link with an S, which means
startup. The command you would use for the name myserver follows:

ln -s /etc/rc.d/init.d/myserver /etc/rc.d/rc5.d/Smyserver

5. Create a kill script.

This is accomplished by placing a link, which starts with K, in the
/etc/rc.d/rc6.d and /etc/rc.d/rc0.d directories. You would use a
command such as

ln -s /etc/rc.d/init.d/myserver /etc/rc.d/rc5.d/Kmyserver

The preceding directory structure was taken from Red Hat Linux. Other
UNIX implementations may vary.

Listing 3-2: Sample Daemon Script

#!/bin/sh

#see how we were called

case “$1” in
start)

... enter the complete path to your startup script here
;;
stop)

... enter the complete path to your shutdown script here
;;

esac

exit 0

Now that you have created the appropriate links, your server should start in
the background the next time you start the machine.

44 Part I: Installing and Configuring WebLogic

d524720 Ch03.qxd 5/20/03 8:37 AM Page 44

Chapter 4

Configuring and Administering
WebLogic

In This Chapter
� Configuring at the domain, cluster, server, or machine level

� Configuring with Administration Console

� Working with network channels and address points

� Presenting Node Manager

� Setting up and starting Node Manager

� Monitoring the server with Administration Console

Configuration and administration are two important topics when dealing
with an application server such as WebLogic. In other chapters, you find

out how to perform tasks that are usually carried out while you’re developing
a web application. Configuration and administration, however, are ongoing,
day-to-day operations.

Common configuration tasks for WebLogic include adding users, defining net-
work channels, defining access points, setting up security, and creating server
instances. Administration involves checking the health of your server and
ensuring that everything is properly configured. In this chapter, you find out
how to perform all these tasks.

Domains are an important WebLogic feature. The next section describes
domains as well as other logical structures in WebLogic.

d524720 Ch04.qxd 5/20/03 8:38 AM Page 45

Understanding Domains, Clusters,
Servers, and Machines

When configuring or administering WebLogic, you’re working at one of the
following four levels:

� Domain. A collection of servers and clusters. The domain is the highest
administrative level in WebLogic.

� Cluster. A collection of servers that acts like one server.

� Server. An instance of WebLogic running on a machine.

� Machine. An individual computer that may be running one or more
servers.

It is important that you understand these levels so that you understand the
scope of any changes you may make.

A machine is the physical hardware on which you run WebLogic. When you
install WebLogic, you install it on a machine. A server is defined by an installa-
tion, or instance, of WebLogic. Most times, a one-to-one ratio exists between
machines and servers (in other words, one machine has one WebLogic Server
installed on it), but you could install multiple servers on a single machine, if
you needed to. You should always remember the distinction that WebLogic
makes between servers (which are virtual or logical) and machines (which
are physical).

A cluster is a group of servers that acts as one single server. The two main
reasons for using a cluster are reliability and scalability. A cluster can be
more reliable than a single server. If a single server goes down, your web
application is no longer available to your users. If you have more than one
server running in a cluster, however, one server can go down without taking
the entire web application down with it.

A cluster can also make your web application more scaleable. Rather than
buying bigger and more expensive machines to house your system, you can
simply add additional services. As new requests come in from users, the clus-
ter will assign each individual request out to one of the servers in the cluster.
To learn more about clusters, refer to Chapter 18.

A domain is the highest administrative level in WebLogic. It is simply a
number of clusters and servers grouped together for administrative pur-
poses. You will likely use more than one domain if you have a large number
of servers and clusters. For most applications, a single domain will suffice.

46 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 46

Do not confuse a WebLogic domain with an Internet domain name. There is
no connection between the two.

Using Administration Console
Most of your configuration activities will take place at the server level, inside
Administration Console. Administration Console allows you to configure one
server at a time. You access Administration Console through a web browser,
just like you do your actual web site. Because of this, you must make sure
that your web server is started before trying to use Administration Console
to configure it.

Because Administration Console is accessed through a web browser, you can
easily configure your server from anywhere on the Internet.

Logging on to Administration Console
Before you can administer a server, you need to know how to access and log
on to Administration Console. Follow these steps:

1. Make sure that WebLogic Server is running.

See Chapter 3 if you need a refresher on how to start your server.

2. Start your favorite web browser.

3. In the browser, type the URL of your server’s Administration Console.

If you’re running the browser and the server on the same computer,
use http://localhost:7001/console/ for the URL. If you’re
running the browser and the server on different computers, use
http://computername:7001/console/, where computername is
the name of the computer running WebLogic Server. The WebLogic
login screen appears, as shown in Figure 4-1.

Note: If you didn’t install WebLogic using the default settings and
WebLogic listens to a different port than 7001, you must replace 7001
with the port number you specified during installation.

4. Type your username and password.

If you’re trying to administer one of the sample servers provided by
WebLogic, your username is installadministrator and the password
is installadministrator.

47Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 47

Because Administration Console enables you to configure your server
from anywhere on the Internet, make sure that you secure it by using a
username and password that are not easily guessed. It’s always a good
idea to have a password that is not in the dictionary. A password with
more than eight characters that includes numerals is ideal.

5. Click Sign In.

Administration Console appears, as shown in Figure 4-2.

Using Administration Console
Now that you’re logged on to Administration Console, you’re ready to config-
ure your server. Administration Console is divided into two major sections,
similar to many other Windows tools, such as Windows Explorer. On the left
side of the screen is a hierarchical depiction of the major configuration areas,
with each configuration area displayed as a folder. If a folder has a plus sign
to its left, you can click it to show more detail. (To hide the details, click the
minus sign to the left of the folder.)

Figure 4-1:
Logging

on to
Admini-
stration

Console.

48 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 48

The right side of the screen contains information and options related to what-
ever you selected on the left side of the screen.

Administration Console offers a wide range of choices, which at first glance
can be overwhelming. Fortunately, you need to concern yourself only with
configuration areas corresponding to the parts of WebLogic that you’re using.

Table 4-1 summarizes the configuration areas supported by Administration
Console. Also listed is the chapter to turn to for more information on each of
these areas, with two exceptions: Domain Log Filters and Tasks, which are
explained next. The Domain Log Filters configuration area is similar to corre-
sponding features in a regular web server. It allows you to specify the type of
information that should be maintained in the log files for the domain. The
Tasks item is basically a way to review the most recent actions taken in
Administration Console. When you click this item, WebLogic displays the
completed tasks in the right portion of the screen. You can then click one of
the tasks listed and see a description of what the task involved and when the
task was completed.

Figure 4-2:
Viewing
Admini-
stration

Console.

49Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 49

Table 4-1 Major WebLogic Configuration Areas
Configuration Area What It Does See

Servers Configures the servers that you Chapter 5
have set up.

Clusters Creates and manages clusters. Chapter 16
From this area, you can assign
servers to clusters.

Machines Configures machines using Chapter 4
Node Manager.

Network Channels Creates and configures network Chapter 4
channels that allow users to
connect to your server in a variety
of ways.

Deployments Configures and deploys your EJBs. Chapter 6

Services Configures a variety of tools such Chapter 12 (JDBC);
as JDBC, JCOM, JMS, and JTA. Chapter 15 (JMS);

Chapter 14 (JTA)

Security Maintains and manages the Chapter 18
security of your site.

Domain Log Filters Allows you to select which server
log entries are passed to the domain
log. You usually keep the default
settings.

Tasks Displays a list of tasks that were
recently carried out by WebLogic
administrators.

Defining Network Channels
Network channels establish a connection between WebLogic Server and the
outside world. By using network channels, WebLogic can support a variety
of protocols. This means that you don’t need to be aware of the differences
between these protocols when you create your web application. Instead, you
create your application to be compatible with WebLogic and leave the proto-
col infrastructure to the network channels.

After your web application is ready, you simply make it available over what-
ever protocols you want. If you want to add additional protocol support later,
you just add additional network channels.

50 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 50

Network channels allow you to specify how TCP/IP ports on a computer are
connected to the services provided by WebLogic. Each network channel
defines the following attributes about a connection to WebLogic Server:

� The protocol (for example, HTTP, HTTPS, T3, T3S, or COM)

� The TCP/IP port to listen on

� Whether or not tunneling is supported

� Whether the connection is to clients or other WebLogic Servers

Network channels are created using the Network Access Point section of
Administration Console.

WebLogic uses the terms network access point and network channel inter-
changeably — sometimes even on the same screen, as shown in Figure 4-3.
I refer to them as network channels.

Before you can work with a network channel, you must create one. Follow
these steps:

1. Log on to Administration Console.

2. On the left side of the Administration Console screen, click the
Servers folder, and then click your server.

The information on the right side of the screen changes to reflect the
configuration area you selected.

3. Click the Protocols tab and then click the Channels subtab.

The screen shown in Figure 4-3 appears.

4. Click the Configure a new Network Channel link.

The screen shown in Figure 4-4 appears.

5. Configure your network channel.

Notice the caution icon. It simply means that if you make a change to the
option, you might have to restart the server.

At a minimum, you should specify a listen port and address. (You may
have to scroll the screen to see them.) Listen port is the regular port
used when a browser accesses a URL that starts with http. SSL listen
port is used when a secure page is requested with a URL that starts with
https.

6. Click Create.

You’ve created the channel.

51Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 51

Figure 4-4:
Configuring

a new
network
channel.

Figure 4-3:
Current

network
channels.

52 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 52

Introducing Node Manager
In WebLogic terminology, a node is an individual element of a cluster.
Earlier in the chapter, I mentioned that clusters are made up of individual
WebLogic Servers. Thus, nodes and servers are essentially synonymous. In
addition, because a one-to-one relationship often exists between servers
and machines, the term node can be used also to refer to an individual
machine. A node controlled by Node Manager is called a managed server.

You use Node Manager only when you need to manage a large number of
nodes. Node Manager can be somewhat tricky to configure because it runs
on multiple machines and relies heavily on script files and environmental
variables. If you’re going to be working with only a single WebLogic Server,
you don’t need to concern yourself with Node Manager.

Node Manager has the following two main components:

� Node Manager, which runs on each managed server

� Administration Server, which runs on one computer and coordinates all
Node Managers

Under a Node Manager system, you have a network of computers running
Node Manager and a single machine running Administration Server. Node
Manager is most useful when you’re using a cluster (a group of servers that
appear as one server). By having more than one server, your system gains
greater reliability and performance. Clustering is covered in Chapter 16.

One of the jobs of Administration Server is to restart Node Manager comput-
ers when they lock up, so it’s a good idea to make sure that Administration
Server is running on a computer that’s not also running Node Manager. If
Administration Server was running on a server that crashed, Administration
Server would be down as well. And because Administration Server can’t
restart itself, it would be unable to restart the server.

In particular, Node Manager allows you to

� Start remote managed servers

� Restart managed servers that have shut down unexpectedly or crashed

� Automatically monitor the health of managed servers and restart the
server when appropriate

� Force the shutdown of a managed server that has failed to respond to a
shutdown request

In this section, you find out how to set up Node Manager and use it to per-
form various tasks.

53Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 53

Setting Up Node Manager
To set up Node Manager, you must perform the following tasks:

1. Set up the Node Manager hosts file.

2. Configure SSL for Node Manager.

3. Configure a control machine to use Node Manager.

4. Configure startup arguments for managed servers.

You can perform all these tasks from Administration Console. After these pre-
requisite tasks have been performed, Node Manager is ready for use and is
available from Administration Console. You’ll then be able to start and stop
managed servers and configure exactly how Node Manager operates.

Setting up the Node Manager hosts file
Node Manager will accept commands only from servers running on trusted
hosts. You can identify a trusted host by an IP address, such as
192.168.1.1, or by a domain name, such as www.mycompany.com.

Only machines that have their IP address or domain name in the hosts file
will be allowed to connect. By default, the hosts file is named nodemanager.
hosts and is installed in the following directory:

c:\bea\weblogic81\common\nodemanager\config

To specify a different name and location for the trusted hosts file, you simply
use a Node Manager command-line argument. For more information, see the
upcoming “Configuring startup arguments for managed servers” section.

The nodemanager.hosts file contains one line for each trusted host on
which Administration Server runs. The nodemanager.hosts file provided
with WebLogic contains the following:

localhost
127.0.0.1

The hosts file is an ordinary text file that can be edited with any text editor.
Using this text editor, you can easily add or remove hosts.

If you want to identify a trusted host by its host name, you must enable
reverse DNS lookup. This option is specified when starting Node Manager by
including the following command-line option:

-Dweblogic.nodemanager.reverseDnsEnabled=true

54 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 54

Without the command-line parameter, the default is to disable reverse DNS
lookup.

In a typical production environment, Node Manager should not be on the
same machine as Administration Server. Make sure that nodemanager.hosts
contains only those machines that host Administration Server. Also make
sure that your Node Manager machine is not accessible to the outside world
through your firewall. Otherwise, it could be used by hackers to compromise
your system.

Configuring SSL for Node Manager
Communication between Node Manager and Administration Server must be
secure. Because of this, the Secure Socket Layer (SSL) protocol is used. This
security is bidirectional, in that messages from both Node Manager and
Administration Server are encrypted with SSL.

To make use of SSL encryption, you must use a public key infrastructure,
which includes a password-protected private key and an identity certificate.
Node Manager uses the same certificate format and public key infrastructure
that WebLogic Server uses.

Before you can do much with Node Manager, you must obtain a key and cer-
tificate files. These are usually obtained from a vendor such as Verisign.
Obtaining SSL keys and certificates is covered in Chapter 18.

For testing, WebLogic includes demonstration key and certificate files named
demokey.pem and democert.pem, respectively. They enable you to set up
and use SSL communication. After you install WebLogic, these files are avail-
able in various folders on your system, as summarized in Table 4-2.

Table 4-2 Directories for SSL Certificates
Directory What It Does

\samples\server\config\examples Contains the keys used for the
examples domain

\samples\server\config\petstore Contains the keys used for the pet
store domain

\common\nodemanager\config Contains the keys for use with the
installed Node Manager application

(continued)

55Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 55

Table 4-2 (continued)
Directory What It Does

your domain directory Contains the sample key and certifi-
cate files that are copied to your
own domains when you create your
domains through Configuration
Wizard

It’s a good idea to use the sample security files when you’re testing and devel-
oping your system. They enable you to get up and running quickly without
purchasing real SSL certificates.

Using these files, I will now show you how to configure SSL for Administration
Server. Authority certificates are stored in a special location known as a key-
store. You must specify the location of the path to the keystore by using the
following startup argument:

-Dweblogic.security.SSLtrustedCAKeyStore

You must make sure that Administration Server’s startup script or service
command-line specifies this argument. For example, the following startup
command specifies the paths to these two files:

java -Xms200m -Xmx200m -classpath
%CLASSPATH% -Dweblogic.Name=myadminserver
-Dbea.home=c:\bea -Djava.security.policy=
c:\bea\weblogic81\server\lib\weblogic.policy
-Dweblogic.security.SSL.trustedCAKeyStore=
c:\bea\weblogic81\server\lib\cacerts
weblogic.Server

When calling Java from the command line as just shown, you can’t use line
breaks as part of the command line. In an actual script file, the preceding
command would be represented as one long line.

Configuring a control machine
to use Node Manager
Some configuration is required before you can use Node Manager. First, you
must create a machine definition for each machine that runs a Node Manager
process:

56 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 56

1. Log on to Administration Console.

2. On the left side of the Administration Console screen, click the
Machines folder.

The information on the right side of the screen changes to reflect the
configuration area you selected.

3. On the right side of the screen, click the Configure a new Machine link.

4. Make sure that the General tab (of the Configuration tab) is displayed.
Then, in the Name box, type a new name for your machine, as shown
in Figure 4-5.

Your machine name should be unique, and should make it easy for you
to associate the computer with that name.

5. Click the Create button.

WebLogic creates your machine definition.

6. Click the Node Manager tab.

The screen shown in Figure 4-6 appears.

7. Type the listen address and port that Node Manager uses for requests.

Usually, you should accept the default values for the IP address and
port. If you use a different IP address and port, you must provide this
information to each node.

Figure 4-5:
Configuring

a new
machine.

57Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 57

8. Click the Apply button to save your changes.

9. Click the Servers tab.

A screen similar to the one in Figure 4-7 appears.

10. Specify which of the domain’s servers will work with Node Manager.

To specify a particular server, click the check box next to that server’s
name.

11. Click Apply to apply your changes.

Configuring startup arguments for
managed servers
The Administration Server SSL configuration applies to the domain as a whole.
After configuring Administration Server, each Node Manager instance that you
run in the domain must specify startup arguments that identify the location of
the keystore, password, and certificate files to use for SSL communication.

SSL is configured by providing command-line properties to Node Manager.
Table 4-3 lists these command-line properties.

Figure 4-6:
Setting up

an address
and a port.

58 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 58

Table 4-3 Node Manager SSL Command-Line Properties
Property What It Does

-Dweblogic.nodemanager.keyFile Specifies the path to the key file,
which could be encrypted.

-Dweblogic.nodemanager. Specifies the password to use if the
keyPassword key file is encrypted.

-Dweblogic.nodemanager. Specifies the path to the certificate
certificateFile file.

-Dweblogic.security.SSL. Specifies the path to the keystore
trustedCAKeyStore that holds a private key.

-Dweblogic.nodemanager. Controls Administration Server
sslHostNameVerificationEnabled host name checks against the

nodemanager.hosts file. This
should be disabled only when
you’re using demonstration
certificates.

Figure 4-7:
Specifying

servers
for Node

Manager.

59Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 59

For example, to start Node Manager using the SSL configuration provided
with the sample SSL certificate and key, you would use the following lengthy
command:

java.exe -Xms32m -Xmx200m -classpath %CLASSPATH%
-Dbea.home=c:\bea
-Dweblogic.nodemanager.keyFile=
c:\bea\user_domains\mydomain\demokey.pem
-Dweblogic.security.SSL.trustedCAKeyStore=
c:\bea\weblogic81\server\lib\cacerts
-Dweblogic.nodemanager.certificateFile=
c:\bea\user_domains\mydomain\democert.pem
-Djava.security.policy=
c:\weblogic81\server\lib\weblogic.policy
-Dweblogic.nodemanager.sslHostNameVerificationEnabled=false
weblogic.nodemanager.NodeManager

Although the preceding code looks like more than one line, you must enter it
as a single command.

Starting Node Manager
Node Manager is a Java program and can be started by simply using the java
command. In a production environment, you should automate this process
by specifying that Node Manager be started as either a Windows service or
a UNIX daemon.

In this section, you find out how to start Node Manager both from start
scripts and as a Windows service. For more information about starting pro-
grams as UNIX daemons, refer to Chapter 3.

Starting Node Manager using start scripts
WebLogic includes some sample start scripts that you can use to start Node
Manager. These start scripts are installed in the following directory:

c:\bea\weblogic81\server\bin

The name of your start script is as follows.

� startNodeManager.cmd for Windows

� startNodeManager.sh for UNIX

Both scripts set the required Node Manager environment values and start the
Node Manager process.

60 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 60

When the script is executed, the current directory is changed to the following:

c:\bea\weblogic81\common\nodemanager

This directory will be used as a working directory for storing output and log
files. If you want to specify a different working directory, edit the start script
with a text editor and set the value of the NODEMGR_HOME variable to the
directory that you would like to use.

It’s also necessary to edit the sample start script to ensure that Node
Manager startup arguments are set to the correct listen address and port
number for your Node Manager process.

Starting with a start script is useful in a development environment, where
you may need to stop and start Node Manager frequently.

Starting Node Manager as a
Windows service
The c:\bea\weblogic81\ server\bin directory also contains scripts to
install and uninstall Node Manager as a Windows service. These scripts are
named installNodeMgrSvc.cmd and uninstallNodeMgrSvc.cmd. You can
invoke either script from the command line.

In a production environment, it’s a good idea to run Node Manager as a ser-
vice. This ensures that no one has to be logged on to the server for Node
Manager to be running.

When you run installNodeMgrSvc.cmd, it creates a default Windows ser-
vice for Node Manager named NodeManager_localhost_5555. You may
want to edit installNodeMgrSvc.cmd before running the script to change
the service name or to use nondefault environment variables or startup argu-
ments. If you edit installNodeMgrSvc.cmd to change the listen port or host
name, make the same change to uninstallNodeMgrSvc.cmd so that it
removes the correct service name.

Setting Node Manager environment
variables
You can set many of the options of Node Manager by using environmental
variables. You are not required to use all the features of Node Manager. By
default, Node Manager performs as follows:

61Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 61

� The automatic restarting of managed servers is enabled.

� The automatic shutdown of managed servers is disabled.

� Node Manager monitors the managed servers that it has started.

In this section, you see how to change these settings.

Environmental variables are operating system variables that hold configura-
tion information. Node Manager uses environmental variables to specify con-
figuration settings. These are already set up for you when you run the startup
scripts described previously. If you will be modifying the startup scripts,
however, you must know the meanings of these environmental variables. A
complete list of these variables is given in Table 4-4.

Table 4-4 Node Manager Environmental Variables
Variable What It Does

CLASSPATH Specifies the location of JAR files.

JAVA_HOME Specifies the JVM that you will use for Node Manager. This
should be set to the directory that Java is installed to.

PATH The PATH environment variable should include the
WebLogic Server bin directory as well as the path to your
Java executable. This specifies the path to executables that
must run.

WL_HOME Specifies the directory that WebLogic was installed into (for
example, c:\bea\weblogic81)

You can also set several Java properties when starting Node Manager.
The following command shows the format for starting Node Manager using
properties:

java [java_property=value ...] -D[nodemanager_property=value]
-D[server_property=value]
weblogic.nodemanager.NodeManager

A nodemanager_property begins with the prefix weblogic.property and
directly affects the behavior of the Node Manager process. Table 4-5 summa-
rizes these properties.

If you specify your own options for Java, always specify a minimum heap size
of 32MB (-Xms32m) to avoid running out of memory. If you’re using the
scripts provided with WebLogic, this value is set automatically.

62 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 62

Table 4-5 Node Manager Properties
Property Default What It Does

weblogic. localhost Specifies the address where
ListenAddress Node Manager listens for

connection requests.

weblogic. 5555 Specifies the TCP port
ListenPort number where Node

Manager listens for connec-
tion requests.

weblogic. ./config/ Specifies the path to the
nodemanager. democert. certificate file used for
certificateFile pem SSL authentication.

weblogic. none Specifies the Java home
nodemanager. directory that Node Manager
javaHome uses to start Managed

Servers.

weblogic. ./config/ Specifies the path to the
nodemanager. demokey. private key file to use for SSL
keyFile pem communication with

Administration Server.

weblogic. password Specifies the password used
nodemanager. to access the encrypted
keyPassword private key in the key file.

weblogic. true For UNIX systems other than
nodemanager. Solaris or HP-UX, set this
nativeVersionEnabled property to false to run Node

Manager in non-native mode.

weblogic. false Specifies whether entries in
nodemanager. the trusted hosts file can
reverseDnsEnabled contain DNS names (instead

of IP addresses).

weblogic. ./NodeManagerLogs Specifies the path in which
nodemanager. Node Manager stores log
savedLogsDirectory files. Node Manager

creates a subdirectory in
savedLogsDirectory
named NodeManagerLogs.

(continued)

63Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 63

Table 4-5 (continued)
Property Default What It Does

weblogic. false Specifies whether or not
nodemanager. Node Manager performs
sslHostName host name verification.
Verification
Enabled

weblogic. ./nodemanager.sh For UNIX systems, specifies
nodemanager. the path of a script file used
startTemplate to start managed servers.

weblogic. ./nodemanager. Specifies the path to the
nodemanager. hosts trusted hosts file that Node
trustedHosts Manager uses. See the

“Setting up the Node
Manager hosts file” section.

weblogic. n/a Specifies the root directory
nodemanager. of the WebLogic Server
weblogicHome installation. This is used as

the default value of
-Dweblogic.
RootDirectory for servers
that do not have a configured
root directory.

Monitoring the Server
Monitoring is an important part of WebLogic administration. Monitoring
allows you to quickly see an overview of how different parts of WebLogic are
performing. WebLogic allows you to monitor the following areas:

� CORBA connection pools

� EJB

� HTTP

� JDBC

� JMS

� JNDI

� JTA subsystem

64 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 64

� Security

� Servers

All monitoring activity takes place through Administration Console. The mon-
itoring functions of Administration Console are not isolated to one specific
area. Rather, these functions are placed in the same area as the system that
they’re monitoring.

In general, to find the monitoring page for a specific service in WebLogic,
follow these steps:

1. Log on to Administration Console.

2. In the Services folder (on the left side of the screen), click the folder
representing the service you want to monitor.

The information at the right side of the console changes to reflect the
service you selected.

3. On the right side of the screen, click the Monitoring tab.

The monitoring page shown in Figure 4-8 appears.

Figure 4-8:
Beginning

the
monitoring

process.

65Chapter 4: Configuring and Administering WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 65

The monitoring page shows you how many connections are active, how many
threads are waiting on a connection, and how many connections are unavail-
able. From here, you can monitor your connection.

66 Part I: Installing and Configuring WebLogic

d524720 Ch04.qxd 5/20/03 8:38 AM Page 66

Part II
Understanding

WebLogic
Components

e524720 PP02.qxd 5/20/03 8:38 AM Page 67

In this part . . .

WebLogic Server can make use of many different com-
ponents. In this part, you find out about these com-

ponents and how they interact. You begin by constructing a
web application. This application becomes the foundation
upon which you build many of your other components.

Next, you’re introduced to EJBs — Enterprise JavaBeans.
EJBs allow you to create models that perform specific
tasks. You find out about two types of EJBs — stateful and
stateless session beans — as well as BMP (bean-managed
persistence) and CMP (container-managed persistence)
entity beans.

Then you create the one component that ties together all
the other components: an enterprise application. The
enterprise application can hold a web application and the
EJBs used by that web application. In this way, you can
package your application as one complete application.

e524720 PP02.qxd 5/20/03 8:38 AM Page 68

Chapter 5

Creating Web Applications
In This Chapter
� Finding out the differences between web and application servers

� Setting up your first web application

� Understanding what’s in a web application

� Using JSP, servlets, and JSTL

A web server can send a wide range of files to a client, on request. These
files are the HTML, JSP, servlet, and other files needed to display your

web site. These files, taken collectively, are referred to as a web application.
Creating a web application is the topic of this chapter.

Server Basics
The difference between a web server and an application server can be con-
fusing. As web and application servers continue to evolve, considerable over-
lap is created between the roles of these two types of software.

A web server is a program that sends web pages to a browser so that they
can be displayed to users. For example, when you use your browser to visit a
search engine, the browser requests the web page containing the search form.
The server provides the form to your browser, which in turn displays the form
for you to use. When you fill out the form, your browser sends your informa-
tion to the web server. In short, the web server’s primary job is interacting
with the client software, such as your web browser.

Following are examples of programs commonly thought of as web servers:

� Apache: One of the oldest web servers and the leading one as measured
by its installed base. Apache is open source and freely available.

� Microsoft Internet Information Server (IIS): Microsoft’s web server,
commonly used to run active server pages (ASP). IIS is the second
largest web server, as measured by its installed base.

f524720 Ch05.qxd 5/20/03 8:38 AM Page 69

� Tomcat: A freely available open-source web server. Tomcat can be used
either as a stand-alone server or with another web server that doesn’t
support JSP on its own.

An application server is a program whose primary purpose is to process data
entered by the user. The application server does this by managing connec-
tions to the database. The user doesn’t see the application server directly.
The web server accesses the application server, and the user sees only the
results of the application server’s work through the web server. An applica-
tion server can’t be used alone to create an application, so most application
servers, such as WebLogic and WebSphere, include their own web server as
well. This allows you to deliver a complete application with both the web and
application servers.

The following programs are commonly thought of as application servers,
though some are capable of functioning also as web servers:

� WebLogic. A commercial application and web server developed by BEA
Systems.

� WebSphere. An application and web server developed and marketed by
IBM and usually used with IBM’s Visual Age products.

� JBoss. An open-source application server. JBoss does not have the
market share of WebLogic or WebSphere, but it’s gaining in popularity.

Setting Up a Web Application
WebLogic is a great tool for setting up web applications. And in this section,
you discover how to use WebLogic to do just that. The following steps are
involved in setting up a web application:

1. Create your server. You create a server instance in WebLogic’s
Administration Console.

2. Create your web application. You create the web application in Admini-
stration Console. This will be a simple web application that doesn’t yet
have any content.

3. Test your web application. After you create your web application, you
start your server and make sure that you set up the basic web applica-
tion properly.

4. Program your web application. Now that your web application is work-
ing correctly, you can add some content. Programming your web appli-
cation is a lengthy process that uses several technologies. This is by far
the most time-consuming step. The amount of time that it takes is deter-
mined by the complexity of your web application.

70 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 70

5. Package your web application. You can optionally decide to package
your web application into a WAR file — a single module file that contains
nearly all your web application. (Only external resources such as data-
bases are not included.) This can make it very easy to distribute your
web application.

6. Deploy your web application. After you package your web application,
you can deploy it to any number of servers. After your web application
is deployed, it’s ready to be used.

Creating, testing, packaging, and deploying your web application take little
time compared to programming your web application. At the end of the chap-
ter, I present an overview of the technologies available for programming your
web application. More detailed information on individual technologies that
you can use to build your web application can be found in other chapters.

The three steps of creating, testing, and deploying your server could be con-
sidered initial setup tasks. However, you create your server only once, but
you test and deploy it repeatedly as you change your web application.

Creating your server
To run a web application, you need a server. One server can host multiple web
applications. The easiest way to create a server is to use Domain Configuration
Wizard. In Chapter 2, I go into the details of creating a server using Configur-
ation Wizard, so refer to that chapter for more information.

Creating your web application
In this section, I show you how to create a web application. A web application
can come in one of two forms. In this section, you create an exploded web appli-
cation, which is made up of actual directories on your server computer. The
other form of web application is a web archive (WAR) file, which contains the
directory structure of an exploded web application.

Usually, you begin with an exploded web application, because it’s easier to
work with the files in a regular directory structure. Then you package your
exploded web application into a WAR file.

Follow these steps to create a web application:

1. Make sure that WebLogic is not running.

If you started WebLogic from the Start menu, simply close WebLogic’s
window. If you started WebLogic as a service, stop the service.

71Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 71

2. Create your application directory.

Choose a name for your web application and create a directory of the
same name in your domain’s applications directory. For example, if
you wanted to create an application named myapp, you would create a
directory named

c:\bea\user_projects\mydomain\applications\myapp

3. Create an index file named index.html.

Create an index file that will be displayed when the user visits your web
site. Listing 5-1 shows a sample index file.

4. Create your WEB-INF directory.

The WEB-INF directory holds configuration files needed by your web
application. You should create a WEB-INF directory within the directory
you created in Step 2. If your web application were named myapp, for
example, your WEB-INF directory would be named

c:\bea\user_projects\mydomain\applications\myapp\WEB-INF

5. Create a web application descriptor named web.xml and save it in the
WEB-INF directory.

Listing 5-2 shows a sample web.xml file.

Listing 5-1: Sample index.html File

<html>
<head>
<title>Welcome</title>
</head>
<body>
<h1>Welcome</h1>
</body>
</html>

Listing 5-2: Sample web.xml File

<?xml version=”1.0” encoding=”UTF-8” ?>

<!DOCTYPE web-app PUBLIC
“-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd” >

<web-app>
<display-name>Example Application</display-name>

</web-app>

Now that you’ve created your web application, you’re ready to test it.

72 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 72

Testing your web application
To test your web application, you need to first start your server. You can
start a web server in several ways; see Chapter 3 for the details.

If you decided to have your web server start as a Windows service, the
server will start automatically when you reboot (and on all subsequent
reboots). If you want to start your server as a Windows service without
rebooting, open the Windows Control Panel, double-click Administrative
Tools, and then double-click the Services icon. Your new server begins with
the prefix beasvc followed by the domain and server name that you chose in
Chapter 2.

If you didn’t set up your server as a Windows service, you should start
your server using its icon. Choose Start➪BEA WebLogic Platform 8.1➪
User Projects➪(Your Domain Name)➪Start Server. (Your Domain Name) is
the name of the domain that you created in Chapter 2. The screen shown in
Figure 5-1 appears.

Now, to verify that your web application is running, open your favorite
browser and type the following in the URL box:

http://localhost:7001/myapp

Figure 5-1:
Your

new web
application.

73Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 73

This URL assumes that you used the default port when you created your
server. If you used a different number for your port (see Chapter 2), replace
7001 with that number.

Programming your web application
Assuming that you followed the steps outlined earlier in the chapter (and
that you named the domain for your server mydomain), the root directory for
this web application is

C:\bea\user_projects\mydomain\applications\myapp

You may want to simply use this web application on your single WebLogic
Server. However, now is the time that you would normally begin program-
ming your web application. You can use many different technologies to do
this. Later in this chapter, I introduce you to some of them. Other chapters
are dedicated to showing you how to use WebLogic and J2EE technologies to
construct your web application.

Packaging your web application
At this point, you haven’t created much of a web application. Other chapters
show you how to create more advanced web applications. After you’ve cre-
ated a more advanced web application, you’ll likely want to package it as a
web archive (WAR) file. Doing so means you’ll be able to rapidly deploy your
application on another server by simply copying the WAR file to the new
server and using Administration Console to deploy the file.

Packaging is not a step that you do only once. As your web application
grows, you have to repackage it each time you need an up-to-date WAR file.

If you’ll be creating an enterprise application, you need to package your web
application as a WAR file. Enterprise applications are discussed in Chapter 8.

To create a WAR file from DefaultWebApp, issue the following command from
a command prompt:

jar cvf MyWebApp.war -C web-app-dir *.*

replacing web-app-dir with the root directory of your web application. For
example, you could use the following to create a WAR file for the sample
application developed in this chapter:

jar cvf MyWebApp.war -C
C:\bea\user_projects\mydomain\applications\Default
WebApp *.*

74 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 74

If you haven’t added the JDK bin directory as part of your system path, you
must use the full path name of the jar command, as shown here:

c:\bea\jdk131_03\bin\jar cvf MyWebApp.war -C
C:\bea\user_projects\mydomain\applications\Default
WebApp *.*

Deploying your web application
Now that you’ve packaged your web application, you can deploy it to any
WebLogic Server that you want. You can also make it part of an enterprise
application, as discussed in Chapter 8. WebLogic includes a program called
Administration Console that can help you with most of the work necessary
to deploy your web application. (For more on Administration Console, see
Chapter 4.)

After you create your web application, you may want to change some of its
options. Fortunately, these settings are not set in stone. You can change them
by configuring your web application. The best way to find out how to config-
ure your server is to just jump right in and do it:

1. Log on to Administration Console.

If you need a refresher on how to do this, refer to Chapter 4. Here, how-
ever, you need to use your administrative username and password to
actually log on.

2. In the left pane, click the Deployments folder, and then click the Web
Application Modules folder.

The right pane looks similar to Figure 5-2.

3. In the right pane, click the Deploy a new Application link.

4. Click the upload your file(s) link.

This link is in the right pane, in the “Step 1” section. The screen shown
in Figure 5-3 appears.

5. Locate and open the WAR file that you want to add.

Click the Browse button, locate your WAR file, and then click Open.

6. Upload the WAR file.

WebLogic reads the WAR file and displays a directory at the bottom of
the right pane, as shown in Figure 5-4.

75Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 75

Figure 5-3:
Specify a

WAR file to
upload.

Figure 5-2:
Using

Administra-
tion Console

to modify
your web

applications.

76 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 76

7. In the directory tree, click the radio button link to the left of the JAR
file name.

You may have to scroll to see the radio button and WAR file name.

8. Type a name for your web application.

The name can contain letters and numbers.

9. Click Deploy.

Now that you’ve seen how to create and deploy a web application, it’s time to
look at some of the technologies that you can include in a web application.

Directory Structure for Your
Web Application

Earlier in this chapter (in the section “Creating your server”), you created a
directory to hold your web application. This is only the root-level directory
for your application. You should create other directories — in fact, an entire
directory structure — to help organize the information in your application.

Figure 5-4:
Selecting

your
uploaded
WAR file.

77Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 77

As an administrator, you must be aware of the directory structure of your
web application. Doing so will help you make your application more efficient
and economical on space, as well as more logical for you and others who
must work with your application. Table 5-1 shows some of the important
directories and files contained in your web application.

Table 5-1 WEB-INF Subdirectories and Files
Directory and File What It Is

WEB-INF/web.xml The main web application deployment
configuration file. This file contains many
configuration settings and has a standard
format, so it can be used by many different web
servers.

WEB-INF/weblogic.xml This file is similar to web.xml except it
contains settings specific to WebLogic.

WEB-INF/classes Contains server-side class files, such as
servlets.

WEB-INF/lib Contains JAR files used by the web application.
JAR files contain Java classes that will be used
by your web application.

The WEB-INF directory is a private directory in your domain’s root directory.
Private directories are not accessible to users who browse your web site. All
configuration information for your web application is stored in this directory.
Later, when you want to deploy your web application, you copy this direc-
tory structure or archive it to a web archive (WAR) file.

Now that you have an overview of the technologies that make up a web appli-
cation, it’s time to see how to use some of them.

The Files in a Web Application
Now you have a generic web application that’s like any web application cre-
ated with WebLogic. In this section, you make your web application perform
a task by adding different types of custom files to it. Following are some of
these custom files:

� JSP (JavaServer Pages). Similar to HTML files in that they contain
HTML formatting information that defines how to display the page.
However, JSP can contain embedded Java that further defines the

78 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 78

appearance of a page, so JSP is dynamic. For more information about
how to program JSP, see Making Use of JSP by Madhushree Ganguli (pub-
lished by Wiley Publishing, Inc.).

� JSTL (JSP Standard Tag Library). Another way of programming JSP.
Instead of using Java commands, however, you use special tags, like
HTML. The result is a more consistent JSP file. For more on program-
ming JSTL, see my book on JSTL, JSP Standard Tag Library Kick Start
(published by Sams).

� Servlet. A Java program that produces HTML output. Most
functions of the servlet have been replaced by JSP and JSTL. For
more information about how to program servlets, check out Java Servlet
Programming Bible by Suresh Rajagopalan (Editor), Ramesh Rajamani,
Ramesh Krishnaswamy, and Sridhar Vijendran (published by Wiley
Publishing, Inc.).

Using JSP
One common way to create web applications is to use Java Server Pages
(JSP). With JSP, you can generate web pages that pull their content from a
variety of sources, such as user input or a database. Unlike HTML pages,
which remain the same from view to view (they’re static), JSPs can change
their content (they’re dynamic). JSPs usually form the front line of your web
application because they’re the level that the user directly interacts with.

Finding a home for JSPs
When you create JSP files, you store them in the root directory of your web
application, but they’re not limited to that location. You can also create subdi-
rectories and place JSP files there as well. You determined the location of your
web application’s root directory when you created your web application.

You can also create additional directories under the root directory. For exam-
ple, you might want to create a directory named images to hold all graphic
files used with your web application.

Creating a JSP file
JSP files are ordinary text files, so you can create a JSP file with any text file
editor.

You can create JSP files also with HTML editing tools such as FrontPage or
Dreamweaver. Although HTML editors such as these are of little help writing
the Java source code part of a JSP, they can help you to create the HTML that
provides the look and feel of your JSP.

79Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 79

JSPs are a blend of HTML and Java code. If you know Java, it won’t take you
long to figure out how to create JSPs. This book doesn’t attempt to teach you
JSP. To find out more about JSP, refer to Making Use of JSP by Madhushree
Ganguli (published by Wiley Publishing, Inc.).

Figure 5-5 shows an example of a web page created using JSP. This page dis-
plays a form that allows the user to enter an ID and a password. The program
then displays that same information. This simple example shows the dynamic
nature of JSP, in that the JSP can integrate the data that you enter with the
HTML that it displays.

The source code for this page is shown in Listing 5-3. The JSP code is not
very long, but it runs quite handily on WebLogic.

Listing 5-3: JSP to Prompt the User for an ID and a Password

<html>
<head>
<title>Form Example</title>

</head>
<body>

<%

Figure 5-5:
An example

of a JSP-
generated
web page.

80 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 80

if(request.getMethod().equalsIgnoreCase(“post”))
{%>
User id:<%=request.getParameter(“uid”)%>

Password:<%=request.getParameter(“pwd”)%>

<hr/>
<%}
%>

<table border=0>
<form method=”post”>
<tr><td>User Id</td>
<td><input type=”text” name=”uid”></td>
</tr>
<tr><td>Password</td>
<td><input type=”text” name=”pwd”></td>
</tr>
<tr><td colspan=”2”><input type=”submit”/>
</td></tr>

</form>
</table>

</body>
</html>

The JSP is a mix of HTML and Java code. When Java code appears in JSP,
the code is enclosed by <% and %>. This is true for both large blocks of code,
spanning several lines, or a small block containing a single statement (as in
<%=i%>).

The following steps summarize how the JSP in Listing 5-3 executes:

1. The example page is loaded into the browser. No POST is detected, so
the form is displayed.

2. The user enters data.

3. The form POSTs the entered data back to itself.

4. The example page begins again. A POST is detected, so the POSTed vari-
ables are displayed.

You may be wondering what I mean by POSTing data. HTTP (the underlying
protocol of the Web) has three basic types of requests: POST, GET, and HEAD.
HEAD simply verifies that a page still exists. Search engines typically use the
HEAD request to purge their lists of dead links. The two request types that
you need to understand are GET and POST.

The GET request is the most common request type. When a browser requests a
web page, it uses a GET request. When you type a URL in a browser or follow a
hyperlink, you’re performing a GET request. Step 1 of this JSP page checks to
see whether a POST request is being performed, by using this line:

if(request.getMethod().equalsIgnoreCase(“post”))

81Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 81

If this is the first request for the page, the request method is a GET request,
not a POST request. Thus, the JSP simply displays the form to request user
information.

When Step 3 is performed, however, the page is retrieved using a POST
request. The POST request is similar to a GET request. In both the POST and
GET requests, you request a URL and get a page back. The main difference is
that the POST request allows you to supply additional information with the
request. In Listing 5-3, the extra information is the data that the user entered.
When you reach Step 3, the JSP detects that a POST request is in progress and
displays the results of the POST request rather than the form.

Step 4 now begins. The user may enter information and begin the process
again.

You can save time by designing a JSP to POST back to itself. Otherwise, you
need two JSPs: one to display the form and a second to process the data
returned by the form. POSTing to the JSP that created the form saves having
to have two JSPs for each form.

JSP pages are converted to Java source files. These source files are then com-
piled to servlets and presented to the user as the application runs.

A quick look at servlets
A servlet is nothing more than a Java class constructed so that it can output
to a web server. In the old days (before JSPs), you could create interactive
Java web pages only by using servlets.

A JSP file is actually a servlet. The code in a JSP file is first translated to a
.java file. This .java file contains a servlet. When you create the servlet your-
self, the translation step is eliminated, resulting in faster execution time.

Listing 5-4 shows a simple “Hello World” servlet.

Listing 5-4: Servlet to Display “Hello World”

import javax.servlet.*;
import java.io.*;

public class ExampleServlet extends GenericServlet
{
public void service(ServletRequest request, ServletResponse

response)
{
response.setContentLength(helloString.length());
response.setContentType(“text/plain”);

82 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 82

try
{
PrintStream rs = new

PrintStream(response.getOutputStream());
rs.print(“Hello, world\r\n”);

}
catch (IOException e)
{
// handle any errors
}

}
}

If you’re familiar with Java, you might notice in Listing 5-4 that a servlet is
simply a regular Java program. The service method fulfills the same pur-
pose as main in a regular Java program.

The servlet communicates by using the ServletRequest parameter
that’s passed in. To send data back to the web browser, you use the
ServletResponse object, which is passed to the service method.
For more information on servlets, you might want to read Java Servlet
Programming by Jason Hunter and William Crawford (published by O’Reilly
& Associates).

Using JSTL
One of the main disadvantages of both JSP and servlets is that they mix regu-
lar Java program code and HTML-type tags, which display the page layout.
JSP Standard Tag Library (JSTL), however, eliminates this difference by
requiring the use of tags, rather than Java code. Because of this, Java pro-
grammers find JSTL not as familiar as JSP. In many ways, JSTL is a new web
programming language separate from JSP.

Installing JSTL
To use JSTL, you must have a JSP 1.2 (or higher) server installed, such as
WebLogic. (Isn’t it handy that you just happen to have such a server?)
WebLogic doesn’t include JSTL support by default; it must be added. You
can obtain JSTL from the following URL:

http://java.sun.com/products/jsp/jstl/

From here, you can download and discover more about JSTL.

To use JSTL, you must unzip the distribution files and install them in the cor-
rect locations in WebLogic. Follow these three steps:

83Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 83

1. Copy the JSTL JAR files to WebLogic’s lib directory.

If you’re using Windows, the likely location of your lib directory is
\WEB-INF\lib. A number of JAR files are included with the JSTL release;
copy each of these files to the WebLogic lib directory.

2. Copy the JSTL TLD files to WebLogic’s WEB-INF directory.

The WEB-INF directory is probably at this location: \WEB-INF. If you
look at the JSTL distribution files, you should notice eight files with the
.tld extension. Copy all eight files to your WEB-INF directory.

3. Modify the web.xml file to include the TLD files.

JSTL is made up of eight tag libraries. Add an entry for each library by
adding <taglib> directives inside the main <web-app> directive. The
entries you should add are shown in Listing 5-5.

Listing 5-5: web.xml Entries Used for JSTL

<taglib>
<taglib-uri>http://java.sun.com/jstl/fmt</taglib-uri>
<taglib-location>/WEB-INF/fmt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/fmt-rt</taglib-uri>
<taglib-location>/WEB-INF/fmt-rt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/core-rt</taglib-uri>
<taglib-location>/WEB-INF/c-rt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/sql</taglib-uri>
<taglib-location>/WEB-INF/sql.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/sql-rt</taglib-uri>
<taglib-location>/WEB-INF/sql-rt.tld</taglib-location>

</taglib>

<taglib>

84 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 84

<taglib-uri>http://java.sun.com/jstl/x</taglib-uri>
<taglib-location>/WEB-INF/x.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/x-rt</taglib-uri>
<taglib-location>/WEB-INF/x-rt.tld</taglib-location>

</taglib>

You’re now ready to test your installation of JSTL. To do so, create a JSP file
that uses JSTL. I will show you how to do this in the next section.

If JSTL is not installed correctly and you try to view a JSTL page, you proba-
bly won’t see an error message. If JSTL is not interpreting your tags, they’re
passed through directly to the web browser. The web browser interprets
these tags as unknown HTML tags, which most browsers simply ignore.

A JSTL example
JSTL code is stored in a JSP file. Because of this, you can easily mix JSTL code
with both HTML and Java code, as shown in Listing 5-6, a simple JSTL exam-
ple that counts to ten.

Listing 5-6: Count to Ten Using JSTL

<%@ taglib uri=”http://java.sun.com/jstl/core” prefix=”c” %>
<html>
<head>
<title>If with Body</title>

</head>

<body>
<c:if test=”${pageContext.request.method==’POST’}”>
<c:if test=”${param.guess==’Java’}”>You guessed it!

</c:if>

<c:if test=”${param.guess!=’Java’}”>You are wrong

</c:if>

(continued)

85Chapter 5: Creating Web Applications

f524720 Ch05.qxd 5/20/03 8:38 AM Page 85

Listing 5-6 (continued)

</c:if>

<form method=”post”>Guess what computer language
I am thinking of?

<input type=”text” name=”guess” />

<input type=”submit” value=”Try!” />

</form>

</body>
</html>

As you can see from Listing 5-6, there’s no Java code on the page. Tag pro-
gramming determines whether you guessed the correct word. A good exam-
ple of tag programming is the method JSTL uses for an if statement. The
body of the if statement is enclosed in <c:if> and </c:if> tags. The
expression that the <c:if> tag evaluates is provided by the var attribute.

Complete coverage of JSTL is beyond the scope of this book. For more infor-
mation on JSTL, you might want to check out a book I wrote called JSP
Standard Tag Library Kick Start (published by Sams).

86 Part II: Understanding WebLogic Components

f524720 Ch05.qxd 5/20/03 8:38 AM Page 86

Chapter 6

Using EJBs
In This Chapter
� Creating a stateless session bean

� Compiling, deploying, and testing your stateless session bean

� Adding state to a session bean

� Introducing entity beans and message-driven beans

Enterprise JavaBeans, or EJBs, are individual units that you break your
web application into and host using WebLogic Server. In this chapter,

you create (and install) an EJB. These individual units represent functional
areas of your web application, making your web application easy to maintain
and increasing the likelihood of reusing the code.

Creating EJBs, however, is only half of the story. Your EJBs must ultimately be
used somewhere. In this chapter, you also find out how to use these EJBs in
web applications that you’ve created with WebLogic.

Several types of EJBs are available:

� Stateful session beans. An EJB that holds information from one invoca-
tion to the next. Holding this information requires overhead, so stateful
session beans should be used sparingly.

� Stateless session beans. An EJB that doesn’t hold any information from
one invocation to the next. This is the most commonly used EJB.

� Entity beans. A bean that represents some form of persistent data. An
entity bean usually corresponds to one record of data.

� Message beans. An EJB that receives JMS messages.

f524720 Ch06.qxd 5/20/03 8:38 AM Page 87

In this chapter, I focus on session beans, presenting an example of both a
stateful and stateless EJB. These are the two most basic types of EJBs sup-
ported by WebLogic. Entity beans are described in Chapter 7. Message beans
are introduced here and discussed in Chapter 15.

Creating Stateless Session Beans
In the world of Enterprise JavaBeans, a stateless session bean simply means
that the bean doesn’t remember anything from one invocation to the next.
This is useful because it takes some overhead to maintain this memory. You
should use stateless session beans whenever possible.

To create a stateless session bean, you must include five components:

� Remote interface. The client class uses this interface to call your EJB.

� Home interface. The client program uses this interface to create
instances of the EJB.

� Bean class. The bean class holds the functionality of the bean. Most of
your code will be placed in this class.

� Deployment descriptor. The deployment descriptor is an XML file that
contains the names of all the classes that make up your EJB.

� Client class. The client class is not part of the EJB. This is a class that
calls the EJB.

In this section, you find out what you must do to create each of these
components.

Creating the remote interface
The process of creating a bean begins with the creation of a remote interface.
Your remote interface must extend (using the Java keyword extends) the
javax.ejb.EJBObject interface and define the methods that you want to
make available with your EJB. The client uses the remote interface to access
your EJB. The remote interface is only a template to specify how to access
the bean class. You will have only method templates — no actual code.

Your remote interface is implemented as a Java interface. A Java interface
explains something that can be accomplished but never explains how to
accomplish it. An interface does not contain program logic. It contains only
method headers that list the methods available to any class that implements
the interface. The remote interface for your stateless session bean is shown
in Listing 6-1.

88 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 88

Listing 6-1: Remote Interface for Your Stateless EJB

// Sample.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;

public interface Sample extends EJBObject
{
public String sampleMethod(int n)
throws RemoteException;

}

I created a class named Sample that contains a single method named
sampleMethod. Although this EJB has only one method, you can add as many
methods as needed to create your EJB.

Creating the home interface
After you create the remote interface, the next step is to create a home inter-
face. The home interface is a Java class that extends the EJBHome class. It’s
called a home interface because it’s used by the client to instantiate
instances of the EJB.

The home interface defines the creation and removal of session beans.
Fortunately, you don’t need to write all the methods of the parent EJBHome
interface. You need to write only a create method that returns the type of
remote interface.

The home interface is shown in Listing 6-2. For stateless session beans, your
home interface will always be this simple.

Listing 6-2: Home Interface for Your Stateless EJB

// SampleHome.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;

public interface SampleHome extends EJBHome
{
public Sample create()
throws RemoteException,CreateException;

}

89Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 89

Creating the bean class
Up to this point in your stateless session bean creation, you’ve created only
two interfaces. In this section, you create the bean class, where all the real
work takes place. The bean class is a regular Java class that implements the
SessionBean class. Listing 6-3 shows the bean class for your bean.

Listing 6-3: Class for Your Stateless EJB

// SampleBean.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;
import javax.swing.*;

public class SampleBean implements SessionBean
{

private SessionContext stx;

//Required methods, not used by this type of bean
public void ejbCreate(){}
public void ejbRemove(){}
public void ejbActivate(){}
public void ejbPassivate(){}

// setter for the SessionContext
public void setSessionContext(SessionContext ctx)
{
ctx = this.stx;

}

// the sample method

public String sampleMethod(int num)
throws RemoteException

{
switch(num)
{
case 1:return “One”;
case 2:return “Two”;
case 3:return “Three”;
case 4:return “Four”;
case 5:return “Five”;
case 6:return “Six”;
case 7:return “Seven”;
case 8:return “Eight”;
case 9:return “Nine”;

90 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 90

case 10:return “Ten”;
default:return “Some Number”;

}
}

}

The bean class is more complex than the interfaces you created
previously in the chapter. The setSessionContext method receives
javax.ejb.SessionContext, which you need for stateful beans.

The SessionContext object stores information that you want to hold
between calls to your EJB. WebLogic passes SessionContext to the
setSessionContext method. The SessionContext object is stored to a
class property, as we did in setSessionContext.

Creating deployment descriptors
Deployment descriptors are the configuration files that allow WebLogic to
know about your EJBs. WebLogic uses two EJB-specific deployment descrip-
tors; both are XML files:

� ejb-jar.xml. Required by J2EE, this descriptor remains the same
whether you’re using WebLogic or another application server. The pri-
mary purpose of this file is to map your bean to its class files and to
define the type of bean.

� weblogic-ejb-jar.xml. This descriptor includes configuration infor-
mation required by WebLogic but not by J2EE. This file is specific to
WebLogic and would have no meaning to another application server.
This file contains information for performance, clustering, and security.

The ejb-jar.xml descriptor required for the example stateless bean is
shown in Listing 6-4.

Listing 6-4: J2EE Deployment Descriptor for Your Stateless EJB

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>SampleObject</ejb-name>
<home>com.dummies.ejb.SampleHome</home>
<remote>com.dummies.ejb.Sample</remote>
<ejb-class>com.dummies.ejb.SampleBean</ejb-class>

(continued)

91Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 91

Listing 6-4 (continued)

<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

</ejb-jar>

The elements you must configure are summarized in Table 6-1. The primary
purpose of these elements is to name the home, interface, and bean classes
that you created previously.

Table 6-1 Selected EJB Deployment Descriptor Elements
Element What It Is

ejb-name The name of the EJB.

home The class that implements the home interface for
the bean.

remote The class that implements the remote interface
for the bean.

ejb-class The class that implements the logic for the bean.

session-type The type of session that this bean supports. This
value is Stateless or Stateful.

transaction-type This property specifies whether the bean or the
container will manage persistence for an entity
bean. Should be container or bean. See
Chapter 7.

In addition to the standard EJB deployment descriptor, you must create
a WebLogic-compatible deployment descriptor. An example of a WebLogic
deployment descriptor is shown in Listing 6-5. You must configure a number
of elements, primarily enterprise elements. These are covered in Chapter 8.

Listing 6-5: WebLogic Deployment Descriptor for Your Stateless EJB

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>SampleObject</ejb-name>
<jndi-name>SampleObject</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

92 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 92

Creating the client class
Up to this point, you’ve focused on how to configure the application server.
However, the reason you put an EJB on an application server is so a client
program can access the functionality in the EJB. In this section, you create a
client that can access your EJB. Listing 6-6 shows a simple client that
accesses the EJB that you just created.

When I refer to client and server, you may think that this means two different
machines. This is not necessarily the case. The client and server could be the
same machine.

Listing 6-6: Java Program to Access Your Stateless EJB

package com.dummies.ejb;

import javax.ejb.*;
import javax.rmi.*;
import java.rmi.*;
import java.util.*;
import javax.swing.*;
import javax.naming.*;

public class SampleClient
{
public static void main(String[] args)
{
try
{
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

h.put(Context.PROVIDER_URL, “t3://localhost:7001”);
Context initial = new InitialContext(h);
Object obj = initial.lookup(“SampleObject”);

SampleHome samplehome = (SampleHome)
PortableRemoteObject.narrow(obj , SampleHome.class);
Sample sample = samplehome.create();
String str =
JOptionPane.showInputDialog(“Enter your number”);

JOptionPane.showMessageDialog(null,
sample.sampleMethod(Integer.parseInt(str)));

}
catch(Exception e)
{
System.out.println(e);
JOptionPane.showMessageDialog(null ,
“Exception:”+e);

}
}

}

93Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 93

To access the EJB using the client program, you must first create a
Properties object that will contain information specifying which WebLogic
Server you will connect to:

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

h.put(Context.PROVIDER_URL, “t3://localhost:7001”);

The server that you’re connecting to is on port 7001 of the localhost server.
The localhost address specifies the current computer.

After you’ve constructed your properties, you must obtain a Context object.
To obtain a Context object, you initialize IntialContext with the
Properties object that you just created (h):

Context initial = new InitialContext(h);

Now that you have a Context object, you can use it to access your EJB:

Object obj = initial.lookup(“SampleObject”);
SampleHome samplehome = (SampleHome)
PortableRemoteObject.narrow(obj , SampleHome.class);

Finally, you’re ready to create your EJB as an object. To do this, you call the
create method of the samplehome object:

Sample sample = samplehome.create();

Now that you have the object, you can use it. The user is prompted for a
number, which is then passed to the sample object:

String str =
JOptionPane.showInputDialog(“Enter your number”);

JOptionPane.showMessageDialog(null,
sample.sampleMethod(Integer.parseInt(str)));

The result returned from the EJB is then displayed. As you can see from this
example, you call the EJB just like any other Java object. The most complex
part of creating EJBs on the client is obtaining the object.

Building the Stateless Session Bean EJB
In the preceding section, you created the files necessary to construct an EJB.
In this section, you bring these files together and compile the EJB. The final

94 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 94

output from the compilation process is a JAR file. You can then deploy this
JAR file to WebLogic Server, a process shown in the next section.

To properly compile the EJB, you must have J2SE and J2EE installed on your
computer. You can download them from http://java.sun.com. These are
two separate downloads. Make sure that you install J2SE first.

Building an EJB requires several steps. To make this process easier, these
steps are often put in a script file, which you can then execute to build the
EJB JAR file whenever it’s needed. To build the example, you would use a
build script similar to the one shown in Listing 6-7. This script first compiles
the Java files to class files. The EJB is then built from these class files.

Listing 6-7: Script to Build Your Stateless EJB

@rem buildStatelessEJB.cmd
@echo off

@rem Set this to the location of your JDK installation
set JDK_HOME=C:\j2sdk1.4.1_01

@rem Set this to the location of your J2EE JAR file
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar

@rem Set this to the location for storing the class files
set CLASSES=.\CLASSES

@rem set up the directory structure
rmdir /q /s %CLASSES%
mkdir %CLASSES%
mkdir %CLASSES%\META-INF

@rem compile the classes
“%JDK_HOME%”\bin\javac .\src\com\dummies\ejb*.java -

classpath %CLASSPATH% -d %CLASSES%

@rem copy the config files
xcopy /y .\src\META-INF*.* %CLASSES%\META-INF\

@rem JAR it up
cd %CLASSES%
“%JDK_HOME%”\bin\jar -cvf ..\EJBSample.jar *.*
cd ..

You should change the first few lines of the build script to reflect the correct
paths on your computer. The first variable, JDK_HOME, contains the directory
that JDK was installed into. The second variable, CLASSPATH, contains a list
of all external JAR files required to compile this class:

95Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 95

set JDK_HOME=C:\j2sdk1.4.1_01
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar

The only external JAR file that’s referenced is the J2EE JAR file. This file
should have been installed automatically when you installed J2EE.

Next, the path that the class files will be compiled to is set. Don’t change this
directory:

@rem Set this to the location for storing the class files
set CLASSES=.\CLASSES

The script is now ready to create the directory structure. If a classes
directory already exists, it is deleted. Next, you create the classes directory
as well as a directory named META-INF inside the classes directory. The
META-INF directory is where you will store the ejb-jar.xml and weblogic-
ejb-jar.xml files:

@rem set up the directory structure
rmdir /q /s %CLASSES%
mkdir %CLASSES%
mkdir %CLASSES%\META-INF

Now that you’ve set the paths and created the directory structure, you can
begin to compile the files:

@rem compile the classes
“%JDK_HOME%”\bin\javac .\src\com\dummies\ejb*.java –
classpath %CLASSPATH% -d %CLASSES%

Next, you copy the two XML files to the classes directory so that they can
be included in the JAR file build:

@rem copy the config files
xcopy /y .\src\META-INF*.* %CLASSES%\META-INF\

Finally, after all the code has been compiled, the script creates a JAR file to
contain the entire EJB:

@rem JAR it up
cd %CLASSES%
“%JDK_HOME%”\bin\jar -cvf ..\EJBSample.jar *.*
cd ..

When the process is finished, you’re left with a file named EJBSample.jar. This
file contains your EJB and will be used when the EJB is deployed. When you
execute Listing 6-7, the screen shown in Figure 6-1 appears.

96 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 96

Deploying the Stateless Session EJB
Now that you’ve created your stateless session EJB, you must deploy it. Then
you can use the EJB in client programs. The following steps show you how to
deploy the EJB:

1. Start WebLogic Server.

To do so, choose Start➪All Programs➪BEA WebLogic Platform 8.1➪
User Projects➪mydomain. Replace mydomain with the name of the
domain to which you want to deploy the EJB.

2. Start WebLogic Server Console.

To do so, access the URL http://localhost:7001/console.

3. Type your user name and password.

4. On the left, under your domain, click Deployments and then click EJB
Modules.

The screen shown in Figure 6-2 appears.

5. Click the Deploy a new EJB Module link.

6. In the Step 1 section, choose to upload the EJBSample.jar file by click-
ing the upload file(s) link.

After the upload, your JAR file is visible under Step 2.

7. In the Step 2 section, select the EJBSample.jar file.

8. In the Step 3 section, select your server from the Available Servers list
and click the right arrow to move it to the Target Servers list.

9. In the Step 4 section, type a name for the application.

You can enter any name you like. To follow along with the example, type
EJBSample.

Figure 6-1:
Building
the EJB.

97Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 97

10. Click Configure and Deploy to complete the process.

Your EJB is now deployed and ready to be accessed. In the next section, you
create a simple class that tests the EJB.

Testing the Stateless Session EJB
Now that you’ve created your EJB, you need a class that calls it. You created
this class in Listing 6-6. Now you execute the class to see the stateless ses-
sion EJB in action. Just as you did when building the EJB, you will also create
a script that runs the EJB client. This program is shown in Listing 6-8.

Listing 6-8: Script to Run Your Stateless EJB Client

@rem runEJB.bat
@echo off

@rem Set this to the location of your JDK installation
set JDK_HOME=C:\j2sdk1.4.1_01

@rem Set this to the location of your J2EE JAR file
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar;.\EJBSample.jar;

Figure 6-2:
Deploying

the EJB.

98 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 98

C:\bea\weblogic81\server\lib\weblogic.jar

@rem compile the classes
“%JDK_HOME%”\bin\java com.dummies.ejb.SampleClient –classpath

%CLASSPATH%

The process for running a class that makes use of EJBs is similar to the
process you’d use for any other Java class. The only additional step that you
must be aware of is making sure that the correct JAR files are in CLASSPATH:

set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar;.\EJBSample.jar;
C:\bea\weblogic81\server\lib\weblogic.jar

If you issue this command, you’ll have all three required JAR files in
CLASSPATH. Of course, if you’ve stored these JAR files elsewhere, you must
change the preceding path.

You might need to change this CLASSPATH depending on the path structure of
your computer. As you can see, you must include three JAR files:

� J2EE JAR file (j2ee.jar)

� WebLogic JAR file (weblogic.jar)

� EJB JAR file (for example, EJBSample.jar)

For most EJB clients, you will need at least these three files. The name of the
EJB JAR file depends on what you called the EJB for your own application.

Adding State
The EJBs that you’ve seen so far are stateless, which means they remember
nothing from one page to the next. After the JSP on which you used the EJB
has finished displaying, any data stored in the bean is lost. You can add state
by creating a session EJB.

A session EJB holds the information stored in the bean until the user’s ses-
sion is terminated. (A user’s session is a special area of memory created for
each user who logs on to the web server.) This session information allows
the web server to store basic information about the current user.

Although session EJBs are a convenient way to store information about a
user, they should not be overused. Every piece of information that you add to
the session bean is additional information that the web server must store for
every user who logs on to the system. This can result in a large amount of
data if your system has a large number of simultaneous users.

99Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 99

For the example session EJB, you’ll create an EJB that implements a simple
counter. The class, named Counter, contains three methods named count,
reset, and getCount. The count method is called with an integer as the
parameter. This integer is added to Counter’s internal counter. To access
the value in this counter, you call the getCount method. The counter holds
its value as the EJB is used. You can use the reset method to set this count
back to 0.

You can specify an EJB as a session EJB with the J2EE deployment descriptor.
Whereas Listing 6-4 is a deployment descriptor for a stateless EJB, Listing 6-9
is a deployment descriptor for a session EJB.

Listing 6-9: J2EE Deployment Descriptor for Your Session EJB

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>CounterObject</ejb-name>
<home>com.dummies.ejb.CounterHome</home>
<remote>com.dummies.ejb.Counter</remote>
<ejb-class>com.dummies.ejb.CounterBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

</ejb-jar>

The one line that changes an EJB to a session EJB is the session-type tag.
Because the tag type is specified as Stateful, the EJB becomes a session EJB.

Just as was the case with the stateless EJB, the session EJB must also have a
WebLogic deployment descriptor. Listing 6-10 is a WebLogic deployment
descriptor that works with the session EJB that you’re creating.

Listing 6-10: WebLogic Deployment Descriptor for Your Session EJB

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>CounterObject</ejb-name>
<jndi-name>CounterObject</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

100 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 100

The WebLogic deployment descriptor for a session EJB is the same as the
one for a stateless bean. Aside from the difference in the name of the EJB
(SampleObject versus CounterObject), Listing 6-10 is the same as Listing 6-5.

Now that the configuration files are out of the way, you can construct the EJB.
Stateless and session EJBs have the same three Java files. The three files that
implement the Counter interface are shown in Listing 6-11.

Listing 6-11: Remote Interface for Your Session EJB

// Counter.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;

public interface Counter extends EJBObject
{
public void reset()
throws RemoteException;

public void count(int n)
throws RemoteException;

public int getCount()
throws RemoteException;

}

Here the signatures are given for all three methods used by the Counter EJB.
(The signature is the method header that specifies the method parameters,
return type, and exceptions thrown.) The interface for a session EJB is no dif-
ferent than that for a stateless EJB.

The next file to be considered is the home class, which is shown in Listing
6-12. Compare this listing with Listing 6-2, and you can see that the home
class for a session EJB and a stateless EJB is the same.

Listing 6-12: Home Interface for Your Session EJB

// CounterHome.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;

public interface CounterHome extends EJBHome
{
public Counter create()
throws RemoteException,CreateException;

}

101Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 101

Next is the session bean class, where you place all the work performed by the
session bean. This class, which is shown in Listing 6-13, must remember the
data stored in the session bean.

Listing 6-13: Class for Your Session EJB

// CounterBean.java
package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;
import javax.swing.*;

public class CounterBean implements SessionBean
{

private SessionContext stx;

//Required methods, not used by this type of bean
public void ejbCreate(){}
public void ejbRemove(){}
public void ejbActivate(){}
public void ejbPassivate(){}

// setter for the SessionContext
public void setSessionContext(SessionContext ctx)
{
ctx = this.stx;

}

// the session information
private int count = 0;

// the sample method

public void reset()
throws RemoteException

{
count = 0;

}

public void count(int n)
throws RemoteException

{
count+=n;

}

public int getCount()
throws RemoteException

102 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 102

{
return count;

}

}

The session EJB uses properties, also known as class-level variables, to store
the data that will be remembered. In the case of the Counter EJB, the session
information is stored in the count variable, as seen here:

private int count = 0;

Next you see how to call the session bean. The process is similar to calling a
stateless EJB. The client program calls the session bean. The client is shown
in Listing 6-14.

Listing 6-14: Client for Your Session EJB

// CounterClient.java
package com.dummies.ejb;

import javax.ejb.*;
import javax.rmi.*;
import java.rmi.*;
import java.util.*;
import javax.swing.*;
import javax.naming.*;

public class CounterClient
{
public static void main(String[] args)
{
try
{
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

h.put(Context.PROVIDER_URL, “t3://localhost:7001”);
Context initial = new InitialContext(h);
Object obj = initial.lookup(“CounterObject”);

CounterHome counterhome = (CounterHome)
PortableRemoteObject.narrow(obj , CounterHome.class);
Counter counter = counterhome.create();

int i = 1;

while(i!=0)
{

(continued)

103Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 103

Listing 6-14 (continued)

String str =
JOptionPane.showInputDialog(“Enter your number”);

if(str==null)
i=0;

else
i = Integer.parseInt(str);

counter.count(i);
JOptionPane.showMessageDialog(null,
“Current count = “ + counter.getCount());

}
System.exit(0);

}
catch(Exception e)
{
System.out.println(e);
JOptionPane.showMessageDialog(null ,
“Exception:”+e);

}
}

}

Session and stateless EJBs are instantiated in the same way. (Instantiation is
the process by which the EJB is allocated and assigned to a variable.) All
information about the fact that this is a session bean is contained in the EJB
itself.

The client program works by displaying a dialog box in which the user types
a number. As the user types more and more numbers, they’re added to the
counter bean. This program can be seen in Figure 6-3.

Accessing Data with Entity Beans
One powerful feature of EJBs is their capability to represent data stored in
relational databases. This type of bean is called an entity bean. The process
of storing this data is called persistence. Two types of entity beans follow:

Figure 6-3:
Testing the

stateless
EJB.

104 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 104

� Bean-managed persistence (BMP). BMP EJBs contain code inside the
bean class that allow the beans to be persisted. The beans may be per-
sisted to a relational database or some other source. If the beans are
persisted to a relational database, the EJB classes will contain methods
used to write the contents of the bean to the database. If a means other
than a relational database is used to persist the beans, the appropriate
methods must be included.

� Container-managed persistence (CMP). CMP EJBs don’t contain code
inside their classes to persist the data stored in them. Rather, CMP EJBs
are persisted to a relational database by using the SQL commands
embedded in the EJB’s configuration files.

Chapter 7 describes how to use both types of beans to interact with your
database and shows you how to decide which of the two types you should
use in your programs.

Configuring Message-Driven Beans
The EJBs discussed up to this point are all accessed like normal Java objects.
You can also configure EJBs to be accessed through messages. Using mes-
sages with EJBs requires Java Message Services (JMS). This type of EJB is dis-
cussed in Chapter 15.

105Chapter 6: Using EJBs

f524720 Ch06.qxd 5/20/03 8:38 AM Page 105

106 Part II: Understanding WebLogic Components

f524720 Ch06.qxd 5/20/03 8:38 AM Page 106

Chapter 7

Using Entity Beans
In This Chapter
� Accessing databases the WebLogic way

� Understanding the life cycle of a bean

� Constructing and compiling a BMP bean

� Constructing and compiling a CMP bean

In this chapter, you discover how to use J2EE entity beans. Entity beans
provide a convenient interface between your program and the database.

These beans are used to hold data that must eventually be stored in some
permanent form, most commonly a relational database. J2EE has two types of
entity beans: bean-managed persistence (BMP) beans and container-managed
persistence (CMP) beans. BMP entity beans open connections directly to the
database, whereas CMP entity beans rely on the server (container) for inter-
acting with the database. I discuss both types of beans in this chapter.

Understanding WebLogic
Database Access

The purpose of an entity bean is to allow Java data to move between memory
and permanent storage, such as a database. The entity bean examples in this
chapter write their data to a database, so you need to understand the basics of
connecting a database to WebLogic. A basic familiarity with SQL and relational
databases is assumed. A book such as Allen G. Taylor’s SQL For Dummies (pub-
lished by Wiley Publishing, Inc.) would be helpful for understanding the finer
points of SQL.

f524720 Ch07.qxd 5/20/03 8:38 AM Page 107

You can use nearly any sort of database with WebLogic. For the examples in
this book, I use the ODBC-JDBC bridge driver. Open Database Connectivity
(ODBC) is a common standard on the Microsoft platform. Java Database
Connectivity (JDBC) is the Java database standard. Using the ODBC-JDBC
bridge allows you to use ODBC drivers from Java. Everything that you need
to use the ODBC-JDBC bridge is already built into Java.

If you’re using a database such as Oracle, DB2, MySQL, or SQL Server, you
should use the appropriate driver. This will give better performance than the
ODBC-JDBC bridge. For specific instructions on how to use a particular data-
base with JDBC, refer to that database’s documentation. Database access is
covered in Chapter 12. More information about MySQL can be found at
http://www.mysql.org.

Regardless of which database you use, you must set up the appropriate
tables. In SQL, a table is a database construct that holds individual rows. For
example, if you were keeping an address book, the address book is the table
with individual names stored in rows. Listing 7-1 shows the SQL code neces-
sary to create the tables used in this chapter. For more information about
SQL, see Chapter 12.

Listing 7-1: Script to Create the Example Database

CREATE TABLE T_STUDENT (
F_ID INTEGER NOT NULL PRIMARY KEY,
F_FIRST VARCHAR(40),
F_LAST VARCHAR(40))

CREATE TABLE T_DEPARTMENT (
F_ID INTEGER NOT NULL PRIMARY KEY,
F_NAME VARCHAR(40))

CREATE TABLE T_COURSE (
F_ID INTEGER NOT NULL PRIMARY KEY,
F_NAME VARCHAR(40),
F_CREDIT INTEGER,
F_DEPARTMENT_ID INTEGER NOT NULL)

The SQL in Listing 7-1 should be generic enough to work with most data-
bases. Note that each table name is prefixed with T_ and each field name is
prefixed with F_. This notation ensures that a table or field name does not
accidentally use a reserved word. This is important when designing for multi-
ple databases, in which the collection of reserved words is different from
database to database.

As you can see from Listing 7-1, each table is made up of several fields. For
example, T_DEPARTMENT holds F_ID and F_NAME as fields. Every row in the
T_DEPARTMENT table will hold these two values.

108 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 108

Creating the connection pool
WebLogic communicates with the database through a connection pool. The
connection pool enables WebLogic to use a fixed number of connections to
databases rather than incur the overhead of constantly creating and dispos-
ing of connections. Because of this, you must establish a data connection
pool that accesses your database. To do so, follow these steps:

1. Start Administrative Console.

For more information on this step, see Chapter 4.

2. On the left side of the screen, click the Services folder, and then click
the JDBC folder.

On this page, you can choose connection pools and choose to create a
connection pool.

3. Type a name for the connection pool.

To follow along with the example, type SchoolPool for the connection
pool name. This name needs to be given to the data source you create in
the next section.

4. Choose your database type.

Your database type should match the database you’re using. To follow
along with the example, choose Other.

5. Set the driver class name and URL to whatever is appropriate for your
database.

The driver class name and URL in Figure 7-1 are for an ODBC DSN named
school.

6. Add this pool to your server.

To do so, click the Targets tab. Select your server, and then click the
right arrow button to assign it.

Creating the data source
After you create a connection pool, you must attach it to a data source. It is
through this data source that WebLogic can access your database. To create
a data source, follow these steps:

1. In Administrative Console, click the Services folder and then click the
data source you want to use.

If you choose the JDBC data source, the screen shown in Figure 7-2
appears.

109Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 109

Figure 7-2:
Create a

data source.

Figure 7-1:
Create a

connection
pool.

110 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 110

2. Type a name for your data source.

You can choose any name you want; the name is for your reference only.

3. Type a JNDI name.

To follow along with the example, type jdbc/SchoolDataSource for the
JNDI name.

4. Type a pool name.

This is the name you typed in Step 3 in the preceding section. To follow
along with the example, type SchoolPool for the pool name.

5. Add this data source to your server.

To do so, click the Targets tab. Select your server, and then click the
right arrow button to assign it.

111Chapter 7: Using Entity Beans

The life cycle of a bean
Two types of beans are available for your use:
bean-managed persistence (BMP) and con-
tainer-managed persistence (CMP). With BMP
beans, the bean handles the process of saving
data. With CMP beans, the container, in this
case WebLogic, handles the saving of bean
data. In addition, CMP beans, unlike BMP
beans, allow relationships between beans.

Regardless of which type of bean you use, it’s
helpful to understand the EJB life cycle, which
represents the stages that an entity bean goes
through as it’s used.

The first step in an entity bean’s life is its cre-
ation by WebLogic. When the bean is created,
the newInstance method is called. This call
is followed by a call to setEntityContext,
which gives the entity bean access to
WebLogic. At this point, the bean doesn’t con-
tain data. It has just been created and is said to
be in a pooled state.

To create a new instance of the entity bean, you
call a createmethod in the bean’s home inter-
face. Before the bean can be useful, it must load
its data from the database or become a new
object. To load an existing bean, you make a

call to a findBy method in the bean’s home
interface. (Both methods are discussed in this
chapter.)

Now that the bean has been created or loaded,
it’s ready for use. At this point, the programmer
can read data from the bean or change the field
values held inside the bean.

The bean can revert from a ready state to a
pooled state in three ways:

� You can call the ejbPassive method,
which disassociates the bean from the per-
sistent data. The bean is now free to be
used for another purpose.

� You can call the remove method, which
removes the bean from permanent storage.

� You can roll back the transaction. A roll-
back allows all the steps to either fail or
succeed as a whole.

As you create BMP and CMP beans, you’ll see
that the entity bean classes are similar. This can
make creating EJBs by hand tedious. To allevi-
ate this, use a development tool, such as
Borland JBuilder or WebLogic EJBGen, to auto-
matically generate your entity bean classes.

f524720 Ch07.qxd 5/20/03 8:38 AM Page 111

Now that you’ve set up the database connection, you’re ready to use beans
that interact with that database.

Constructing a BMP Bean
The first entity bean you’ll create is a BMP bean that represents a student.
You can use the student BMP bean to store and retrieve information about
students at a school. With a BMP bean, the bean class performs all the SQL
needed to read the object from and write the object to the database. Several
source files are needed to create a BMP bean. In this section, you find out
how to create each of them, starting with the bean interface.

Constructing the bean interface
The bean interface is what a programmer who is using your bean has access
to. Listing 7-2 shows the student bean interface. The bean interface contains
mainly getters and setters for the student data: getId, getFirst, getLast,
setFirst, and setLast. ID doesn’t have a set method because it’s the pri-
mary key in the database — the value that uniquely identifies the student —
and can’t be changed.

Listing 7-2: Student Bean Interface

package com.dummies.ejb;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Student extends EJBObject {
public int getId() throws RemoteException;
public String getFirst() throws RemoteException;
public void setFirst(String first) throws RemoteException;
public String getLast() throws RemoteException;
public void setLast(String last) throws RemoteException;

}

Constructing the home interface
The home interface is used to gain access to student entity beans. The main
task of the student home interface, which is shown in Listing 7-3, is to create
and access objects. Creating objects is accomplished by calling one of the
create methods. You should provide one create method for each of the
methods in which you would like to create an entity bean. By methods, I mean

112 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 112

the data that you would like to provide to create your bean. You may create a
method that accepts all the necessary information, and a second method that
accepts no information and creates a blank bean.

Listing 7-3: Student Home Interface

package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Enumeration;

public interface StudentHome extends EJBHome {
public Student create(Integer key)
throws CreateException, RemoteException;
public Student create(Integer key, String first, String

last)
throws CreateException, RemoteException;
public Student findByPrimaryKey(Integer key)
throws FinderException, RemoteException;
public Enumeration findAll()
throws FinderException, RemoteException;

}

In addition to the create method, there are two find methods. The
findByPrimaryKey method locates students based on their primary key,
which is their student number. The findAll method returns all student
records in the system.

Constructing the bean implementation
Perhaps the most important file to a BMP bean is the bean implementation
file. When the bean is used by a client program, this file performs the main
functions of the bean, namely storing and loading data. Listing 7-4 shows the
student bean implementation.

Listing 7-4: Student Bean Implementation

package com.dummies.ejb;

import javax.ejb.*;
import javax.naming.*;
import javax.sql.*;
import java.sql.*;
import java.rmi.RemoteException;
import java.util.Vector;

(continued)

113Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 113

Listing 7-4 (continued)

import java.util.Enumeration;

public class StudentBean implements EntityBean {

private EntityContext context;

// student attributes
private int id;
private String first;
private String last;

public int getId() { return id;}
public String getFirst() { return first;}
public void setFirst(String first) { this.first = first;}
public String getLast() { return last;}
public void setLast(String last) { this.last = last;}

public void setEntityContext(EntityContext context) {
this.context = context;}

public void unsetEntityContext() { this.context = null;}

public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbPostCreate(Integer id) {}
public void ejbPostCreate(Integer id, String first,String

last) {}

public Integer ejbCreate(Integer key) throws
CreateException {

return ejbCreate(key, “”,””);
}

public Integer ejbCreate(Integer key, String first, String
last) throws CreateException {

// set the beans fields
this.id = key.intValue();
this.first = first;
this.last = last;
Connection conn = null;
PreparedStatement ps = null;

try {
conn = getConnection();
String sql = “INSERT INTO t_student(f_id, f_first,

f_last) VALUES(?,?,?)”;
ps = conn.prepareStatement(sql);
ps.setInt(1,id);
ps.setString(2,first);
ps.setString(3,last);
ps.executeUpdate();

114 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 114

} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new CreateException(e.getMessage());

} finally {
handleCleanup(conn,ps,null);

}
return key;

}

public void ejbLoad() {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
Integer key = (Integer)context.getPrimaryKey();
conn = getConnection();
String sql = “SELECT f_id, f_first,f_last FROM

t_student WHERE f_id=?”;
ps = conn.prepareStatement(sql);
ps.setInt(1,key.intValue());
rs = ps.executeQuery();

if (!rs.next()) {
// not found in database
throw new NoSuchEntityException();

}
// set the beans fields with the data from the DB row
this.id = rs.getInt(1);
this.first = rs.getString(2);
this.last = rs.getString(3);

} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new EJBException(e.getMessage());

} finally {
handleCleanup(conn,ps,rs);

}
}

public void ejbStore() {
Connection conn = null;
PreparedStatement ps = null;
try {
conn = getConnection();
String sql = “UPDATE t_student SET f_first=?,f_last=?

WHERE f_id=?”;
ps = conn.prepareStatement(sql);
ps.setString(1,first);

(continued)

115Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 115

Listing 7-4 (continued)

ps.setString(2,last);
ps.setInt(3,id);
ps.executeUpdate();

} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new EJBException(e.getMessage());

} finally {
handleCleanup(conn,ps,null);

}
}

public void ejbRemove() throws RemoveException {
Connection conn = null;
PreparedStatement ps = null;
try {
conn = getConnection();
String sql = “DELETE FROM t_student WHERE f_id=?”;
ps = conn.prepareStatement(sql);
ps.setInt(1,id);
ps.executeUpdate();

} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new RemoveException(e.getMessage());

} finally {
handleCleanup(conn,ps,null);

}
}

public Integer ejbFindByPrimaryKey(Integer key) throws
FinderException {

Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
try {
conn = getConnection();
String sql = “SELECT f_id FROM t_student WHERE f_id=?”;
ps = conn.prepareStatement(sql);
ps.setInt(1,key.intValue());
rs = ps.executeQuery();
if (!rs.next()) {
throw new ObjectNotFoundException();

}
} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new FinderException(e.getMessage());

} finally {
handleCleanup(conn,ps,rs);

116 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 116

}
return key;

}

public Enumeration ejbFindAll() throws FinderException {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
Vector keys = null;
try {
conn = getConnection();
String sql = “SELECT f_id FROM t_student ORDER BY

f_id”;
ps = conn.prepareStatement(sql);
rs = ps.executeQuery();
keys = new Vector();
while (rs.next()) {
keys.add(new Integer(rs.getInt(1)));

}
} catch (Exception e) {
System.out.println(“Error:” + e);
e.printStackTrace();
throw new FinderException(e.getMessage());

} finally {
handleCleanup(conn,ps,rs);

}
return keys.elements();

}

// internal utility methods

private Connection getConnection() throws NamingException,
SQLException {

InitialContext ic = new InitialContext();
DataSource ds =

(DataSource)ic.lookup(“java:comp/env/jdbc/SchoolDa
taSource”);

return ds.getConnection();
}

private void handleCleanup(Connection
conn,PreparedStatement ps,ResultSet rs)

{
// make sure the connection is returned to the connection

pool
try {
if (rs!=null)
rs.close();

if (ps!=null)
ps.close();

(continued)

117Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 117

Listing 7-4 (continued)

if (conn!=null)
conn.close();

} catch (SQLException e) {
}

}
}

Two methods deal directly with the data source: getConnection and
handleCleanup. The getConnection method opens a connection to the
data source that you created earlier in this chapter. This connection is
returned to the method that called getConnection. All methods in the bean
implementation class call getConnection to gain access to the database.
The handleCleanup method closes the database objects created by these
methods.

Also implemented in this file are various find methods as well as methods
that handle the creation, deletion, modification, and retrieval of the student
records. Most of these methods do no more than use JDBC and SQL to access
the correct data. Chapter 12 covers JDBC in greater detail.

Constructing the bean configuration files
Finally, the BMP bean requires two configuration files. The first file, ejb-
jar.xml, is a J2EE standard file. It’s shown in Listing 7-5.

Listing 7-5: Student J2EE Configuration File

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//DTD

Enterprise JavaBeans 1.1//EN’
‘http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’>

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>StudentObject</ejb-name>
<home>com.dummies.ejb.StudentHome</home>
<remote>com.dummies.ejb.Student</remote>
<ejb-class>com.dummies.ejb.StudentBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>
<description>The reference to the

DataSource.</description>
<res-ref-name>jdbc/SchoolDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>

118 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 118

<res-auth>Container</res-auth>
</resource-ref>

</entity>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>StudentObject</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

This XML file has many settings, all of which are summarized in Table 7-1.

Table 7-1 J2EE Settings for BMP Beans
Entry What It Is

ejb-class The name of the bean implementation class. This
should be a full package name such as com.
mycompany.MyImplementationClass.

ejb-name The name of this bean. This can be any name, but it
should not be duplicated elsewhere in your program.

home The name of the home class. This should be a full
package name such as com.mycompany.
MyHomeClass.

persistence-type The type of persistence supported. This will be bean
for BMP and container for CMP.

prim-key-class The type used by the primary key. This will usually be
one of the wrapper classes, such as java.lang.
Integer or java.lang.String.

reentrant Whether the class thread is safe. As long as you don’t
call classes that are not thread safe or use static
variables, your code should be thread safe.

remote The name of the bean interface. This is the class that
implements the bean.

res-ref-name The data source to use. You set up this data source in
Administration Console.

res-type The object type of this data source. This is almost
always javax.sql.DataSource.

119Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 119

In addition to the J2EE standard configuration file, WebLogic adds some con-
figuration information that you must also provide. You store this information
in the weblogic-ejb-jar.xml file, which is shown in Listing 7-6. Only a few addi-
tional configuration items are stored in this file. The most important addi-
tional piece of information for a BMP bean is the JNDI name, which your
client programs use to access the bean.

Listing 7-6: Student WebLogic Configuration File

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC ‘-//BEA Systems, Inc.//DTD

WebLogic 5.1.0 EJB//EN’
‘http://www.bea.com/servers/wls510/dtd/weblogic-
ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>StudentObject</ejb-name>
<reference-descriptor>
<resource-description>
<res-ref-name>jdbc/StudentDataSource</res-ref-name>
<jndi-name>StudentDataSource</jndi-name>

</resource-description>
</reference-descriptor>
<jndi-name>StudentObject</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Compiling a BMP Bean
You’ve seen how to construct the BMP bean, so now you’re ready to compile
and test it. To do this, you need to construct a client program. This client
program will create an instance of the bean and cause it to load its data from
the database. Listing 7-7 is a short client program that uses the BMP bean.

Listing 7-7: Client Program

package com.dummies.ejb;

import javax.ejb.*;
import javax.rmi.*;
import java.rmi.*;
import java.util.*;
import javax.swing.*;
import javax.naming.*;

public class StudentClient {
public static void main(String[] args)

120 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 120

{
try {
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);
h.put(Context.PROVIDER_URL, “t3://localhost:7001”);
Context initial = new InitialContext(h);
Object obj = initial.lookup(“StudentObject”);

StudentHome studentHome = (StudentHome)

PortableRemoteObject.narrow(obj ,
StudentHome.class);

// First attempt to locate student number 1
Student student = null;

try {
student = studentHome.findByPrimaryKey(new

Integer(“1”));
} catch (FinderException e) {
System.out.println(“Does not yet exist”);

}

if (student!=null) {
System.out.println(“User already existed, delete

him!”);
student.remove();

}

student = studentHome.create(new
Integer(“1”),”John”,”Smith”);

System.out.println(“Created user”);
student.setLast(“Jones”);
System.out.println(“Change user’s last name to Jones”);

System.out.println(“Now find user by primary key”);

try {
student = studentHome.findByPrimaryKey(new

Integer(“1”));
} catch (FinderException e) {
System.out.println(“Something is not working, we did

not find him!”);
}

System.out.println(“Found:” + student.getLast() + “,” +
student.getFirst());

} catch (Exception e) {
System.out.println(e);

(continued)

121Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 121

Listing 7-7 (continued)

JOptionPane.showMessageDialog(null ,
“Exception:”+e);

}
}

}

The client program first gains access to the home interface for the bean.
(Home interfaces are discussed in Chapter 6.) After the home interface is
accessed, you can create and load beans. The program begins by trying to
load a student record with the ID number of 1. If the load is successful, the
student record is deleted. Next, a new student record with an ID of 1 is cre-
ated. This student’s last name is then modified and resaved. The last name is
modified as an example of how to process a change such as a correction.

Listing 7-8 shows a script that compiles the CMP bean into a JAR file. For
more information on this process, see Chapter 6.

Listing 7-8: Script to Compile the Student EJB

@echo off

@rem Set this to the location of your JDK installation
set JDK_HOME=C:\j2sdk1.4.1_01

@rem Set this to the location of your J2EE JAR file
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar

@rem Set this to the location where the class files will be
stored

set CLASSES=.\CLASSES

@rem set up the directory structure
rmdir /q /s %CLASSES%
mkdir %CLASSES%
mkdir %CLASSES%\META-INF

@rem compile the classes
“%JDK_HOME%”\bin\javac .\src\com\dummies\ejb*.java -

classpath %CLASSPATH% -d %CLASSES%

@rem copy the config files
xcopy /y .\src\META-INF*.* %CLASSES%\META-INF\

@rem JAR it up
cd %CLASSES%
“%JDK_HOME%”\bin\jar -cvf ..\BMPBean.jar *.*
cd ..

After you’ve built the JAR file, you must deploy it. For more information on
this task, see Chapter 6. After the bean has been deployed, you can test it.

122 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 122

Listing 7-9 shows how to properly set up classpath so that the client pro-
gram can run.

Listing 7-9: Script to Test the Student EJB

@echo off

@rem Set this to the location of your JDK installation
set JDK_HOME=C:\j2sdk1.4.1_01

@rem Set this to the location of your J2EE JAR file
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar;
.\BMPBean.jar;C:\bea\weblogic81\server\lib\weblogic.jar

@rem run the test client
“%JDK_HOME%”\bin\java com.dummies.ejb.CMPClient -classpath

%CLASSPATH%

Constructing a CMP Bean
As you saw in the preceding section, BMP beans must be saved and loaded
by the bean itself. In this section, you find out about CMP beans as well as the
capability of establishing relationships between CMP beans. The main differ-
ence between a CMP bean and a BMP bean is that a BMP bean stores its own
data, but a CMP bean uses WebLogic to store its data. As a result, the CMP
bean has less code than the BMP bean.

You’ll create two CMP beans called Department and Course and give the
Department class a one-to-many relationship with the Course class.

Constructing the value objects
As was the case with a BMP bean, several classes make up a CMP bean.
However, a CMP bean has a few additional class types. One of these is the
value object. Value objects in a CMP bean have only one job: storing all data
contained by the bean. The value object beans for both Course and
Department are shown in Listings 7-10 and 7-11.

Listing 7-10: Value Object for Course

package com.dummies.ejb;

public class CourseVO implements java.io.Serializable {
private Integer id;
private String name;

(continued)

123Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 123

Listing 7-10 (continued)

private int credit;

public CourseVO() {
}

public CourseVO(Integer id) {
this.id = id;

}

public Integer getId() {
return id;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

public void setCredit(int credit) {
this.credit = credit;

}

public int getCredit() {
return credit;

}
}

Listing 7-11: Value Object for Department

package com.dummies.ejb;

public class DepartmentVO implements java.io.Serializable {
private Integer id;
private String name;

public DepartmentVO()
{
}

public DepartmentVO(Integer id)
{
this.id = id;

}

public Integer getId()

{
return id;

124 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 124

}

public void setName(String newName)
{
name = newName;

}
public String getName()
{
return name;

}
}

Constructing the local bean interfaces
EJB 2.0 introduced the concept of local and remote interfaces. The main pur-
pose of these interfaces is to alleviate some of the overhead in having to call
every bean as though it were on a remote computer. Both the Course and
Department beans use local bean interfaces.

For the local interface to work, the bean must be called from the same Java
Virtual Machine (JVM) as the client program. This eliminates all overhead in
calling from one JVM to another. The Department and Course examples use
the local interface to enable fast access between the Department and Course
classes. The local interface for the Course and Department classes are
shown in Listings 7-12 and 7-13, respectively.

Listing 7-12: Local Bean Interface for Course

package com.dummies.ejb;

import javax.ejb.*;

public interface CourseLocal extends EJBLocalObject {
public CourseVO getCourseData();
public void setCourseData(CourseVO course);

public void setDepartment(DepartmentLocal dept);
public DepartmentLocal getDepartment();

}

Listing 7-13: Local Bean Interface for Department

package com.dummies.ejb;

import javax.ejb.*;

public interface DepartmentLocal extends EJBLocalObject {

}

125Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 125

The Course local bean contains methods required for Department to add
courses to itself. No local methods are made public in Department because it
is the top-level object and is not added to anything.

Constructing the remote bean interface
Because none of the methods were exposed for the Department bean inter-
face, they must be exposed in the remote interface for the Department bean,
which is shown in Listing 7-14. Most of these methods have already been dis-
cussed. A new one, the addCourse method, is used to add courses to the
department. To remove courses from the department, you simply call the
remove method for those particular courses.

Listing 7-14: Remote Bean Interface for Department

package com.dummies.ejb;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public interface DepartmentRemote extends EJBObject {
public DepartmentVO getDepartmentData()
throws RemoteException;
public void setDepartmentData(DepartmentVO dept)
throws RemoteException;

public void addCourse(CourseVO courseData)
throws NamingException, CreateException, RemoteException;

public CourseVO[] getAllCourses() throws RemoteException;
}

Constructing the local home interfaces
The local interface for the Course bean contains create and findBy meth-
ods. These methods enable the Department bean to both create and locate
Course beans. The source code for the Course bean is shown in Listing 7-15.

Listing 7-15: Local Home Interface for Course

package com.dummies.ejb;

import javax.ejb.*;

126 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 126

import java.util.*;

public interface CourseLocalHome extends EJBLocalHome {

public CourseLocal create(CourseVO course)
throws CreateException;

public CourseLocal findByPrimaryKey(Integer primaryKey)
throws FinderException;

}

The Department local bean needs to expose only the findByPrimaryKey
method, because Course never creates Department. The source code for the
Department bean’s local home interface is shown in Listing 7-16.

Listing 7-16: Local Home Interface for Department

package com.dummies.ejb;

import javax.ejb.*;
import java.util.*;

public interface DepartmentLocalHome extends EJBLocalHome {
public DepartmentLocal findByPrimaryKey(Integer primaryKey)
throws FinderException;

}

Constructing the remote home interface
The only bean that requires a remote home interface is the Department bean.
This is because the client program directly accesses the Department beans,
not the Course beans. The Course beans are owned by the Department
beans, and all access to the Course beans are through the Department beans.
The source code for the remote home interface is shown in Listing 7-17.

Listing 7-17: Remote Home Interface for Department

package com.dummies.ejb;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

public interface DepartmentRemoteHome extends EJBHome {

public DepartmentRemote create(DepartmentVO Department)

(continued)

127Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 127

Listing 7-17 (continued)

throws CreateException, RemoteException;

public DepartmentRemote findByPrimaryKey(Integer
primaryKey)

throws FinderException, RemoteException;

public Collection findAll()
throws FinderException, RemoteException;

public DepartmentRemote findByName(java.lang.String name)
throws FinderException, RemoteException;

}

Constructing the abstract bean
implementation
Finally, you come to the abstract bean implementation. It’s abstract because
you haven’t defined all the required methods of its parent class, which is
javax.ejb.EntityBean. WebLogic uses the abstract class internally and
makes it complete by adding the required methods. This is all accomplished
behind the scenes, so you don’t need to be concerned with it. The bean classes
are simply shortened versions of the bean classes used for the BMP beans.
Listings 7-18 and 7-19 show the abstract bean classes for the Course bean.

Listing 7-18: Abstract Bean Class for the Course Bean

package com.dummies.ejb;

import java.io.Serializable;
import java.util.*;

import javax.ejb.*;
import javax.naming.*;
import javax.sql.*;

abstract public class CourseEJB implements EntityBean {
private EntityContext ctx;

public void setEntityContext(EntityContext ctx) {
this.ctx = ctx;

}

public void unsetEntityContext() {
this.ctx = null;

}

public void ejbActivate() {}

128 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 128

public void ejbPassivate() {}
public void ejbLoad() {}
public void ejbStore() {}

public void ejbRemove()
throws RemoveException
{}

abstract public Integer getId();
abstract public void setId(Integer id);

abstract public String getName();
abstract public void setName(String name);

abstract public int getCredit();
abstract public void setCredit(int credit);

abstract public void setDepartment(DepartmentLocal dept);
abstract public DepartmentLocal getDepartment();

public Integer ejbCreate(CourseVO course)
throws CreateException
{
setCourseData(course);
return null;

}

public void ejbPostCreate(CourseVO course){}
public CourseVO getCourseData()
{
CourseVO course = new CourseVO(this.getId());
course.setName(this.getName());
course.setCredit(this.getCredit());
return course;

}

public void setCourseData(CourseVO course)
{
setName(course.getName());
setCredit(course.getCredit());

}
}

Listing 7-19: Abstract Bean Class for the Department Bean

package com.dummies.ejb;

import java.util.*;
import javax.ejb.*;

(continued)

129Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 129

Listing 7-19 (continued)

import javax.naming.*;

abstract public class DepartmentEJB implements EntityBean {
private EntityContext ctx;

public void setEntityContext(EntityContext ctx) {
this.ctx = ctx;

}
public void unsetEntityContext() {
this.ctx = null;

}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbLoad() {}
public void ejbStore() {}
public void ejbRemove() throws RemoveException
{
}

abstract public Integer getId();
abstract public void setId(Integer id);

abstract public String getName();
abstract public void setName(String val);

abstract public Collection getCourses();
abstract public void setCourses(Collection courses);

public DepartmentVO getDepartmentData()
{
DepartmentVO dept = new DepartmentVO(this.getId());
dept.setName(this.getName());
return dept;

}

public void setDepartmentData(DepartmentVO dept)
{
setName(dept.getName());

}

public Integer ejbCreate(DepartmentVO dept)
throws CreateException
{
setDepartmentData(dept);
return null;

}

public void ejbPostCreate(DepartmentVO dept)
throws CreateException

130 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 130

{
}

public CourseVO[] getAllCourses()
{
Collection courses = getCourses();
CourseVO[] courseArray = new CourseVO[courses.size()];
Iterator courseIterator = courses.iterator();
for (int i=0; courseIterator.hasNext(); i++) {
CourseLocal course = (CourseLocal)

courseIterator.next();
courseArray[i] = course.getCourseData();

}

return courseArray;
}

public void addCourse(CourseVO courseData) throws
NamingException, CreateException

{
Context ctx = new InitialContext();
CourseLocalHome courseHome = (CourseLocalHome)

ctx.lookup(“cmp.Course”);
CourseLocal course = courseHome.create(courseData);
getCourses().add(course);

}
}

As you can see in Listings 7-18 and 7-19, the abstract bean classes are imple-
mented as abstract Java classes. WebLogic extends these classes and adds
the appropriate methods to access the objects. These methods perform the
same functions as the BMP bean.

Constructing the bean configuration files
CMP beans use a total of three configuration files: the ejb-jar.xml and
weblogic-ejb-jar.xml files as were used by BMP beans and a database
mapping file called weblogic-rdbms-jar.xml. I start with the ejb-jar.xml
file, which is shown in Listing 7-20.

Listing 7-20: J2EE Standard Bean Configuration File

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/j2ee/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>

(continued)

131Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 131

Listing 7-20 (continued)

<entity>
<ejb-name>DepartmentEJB</ejb-name>
<home>com.dummies.ejb.DepartmentRemoteHome</home>
<remote>com.dummies.ejb.DepartmentRemote</remote>
<local-home>com.dummies.ejb.DepartmentLocalHome</local-

home>
<local>com.dummies.ejb.DepartmentLocal</local>
<ejb-class>com.dummies.ejb.DepartmentEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>DepartmentSchema</abstract-

schema-name>
<cmp-field>
<field-name>id</field-name>

</cmp-field>
<cmp-field>
<field-name>name</field-name>

</cmp-field>
<primkey-field>id</primkey-field>
<query>
<query-method>
<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql><![CDATA[SELECT OBJECT(d) FROM

DepartmentSchema AS d WHERE d.name = ?1]]></ejb-
ql>

</query>
<query>
<query-method>
<method-name>findAll</method-name>
<method-params/>

</query-method>
<ejb-ql><![CDATA[SELECT OBJECT(d) FROM

DepartmentSchema AS d]]></ejb-ql>
</query>

</entity>
<entity>
<ejb-name>CourseEJB</ejb-name>
<local-home>com.dummies.ejb.CourseLocalHome</local-

home>
<local>com.dummies.ejb.CourseLocal</local>
<ejb-class>com.dummies.ejb.CourseEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>

132 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 132

<cmp-version>2.x</cmp-version>
<abstract-schema-name>CourseSchema</abstract-schema-

name>
<cmp-field>
<field-name>id</field-name>

</cmp-field>
<cmp-field>
<field-name>name</field-name>

</cmp-field>
<cmp-field>
<field-name>credit</field-name>

</cmp-field>
<primkey-field>id</primkey-field>

</entity>
</enterprise-beans>
<relationships>
<ejb-relation>
<ejb-relation-name>Department-Course</ejb-relation-

name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Department-Has-Courses

</ejb-relationship-role-name>
<multiplicity>one</multiplicity>
<relationship-role-source>
<ejb-name>DepartmentEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>courses</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-
type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>
Course-Has-Department

</ejb-relationship-role-name>
<multiplicity>many</multiplicity>
<cascade-delete/>
<relationship-role-source>
<ejb-name>CourseEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>department</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>
<assembly-descriptor>
<container-transaction>

(continued)

133Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 133

Listing 7-20 (continued)

<method>
<ejb-name>DepartmentEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>
<method>
<ejb-name>CourseEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Many of these entries are the same as those in the BMP version of the file.
The first difference to note is the cmp-field tags, which specify the property
names for each bean. These fields are not database fields, but rather fields
mapped to the database. The cmp-field tags contain only the field names:

<cmp-field>
<field-name>...field name...</field-name>

</cmp-field>

Queries are also included that show WebLogic how to provide information to
the findBy methods in the home classes. This allows the findBy methods to
construct SQL queries to find the appropriate record. The following query
shows how you can implement findByName for the Department bean:

<query>
<query-method>
<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql><![CDATA[SELECT OBJECT(d) FROM DepartmentSchema AS

d WHERE d.name = ?1]]></ejb-ql>
</query>

You can specify multiple parameters in the ejb-ql tag. These will be filled in
with the value that you’re searching on. For example, the preceding code is
filling in the ?1 parameter to specify a name that’s being searched for. The
ejb-relationship-role tag specifies how the tables relate to each other.
The multiplicity tag specifies whether the relationship is to one object or
multiple objects. If the cascade-delete tag is specified, child objects are
deleted when the parent object is deleted.

134 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 134

The WebLogic-specific configuration file, which is shown in Listing 7-21, con-
tains additional information for CMP beans.

Listing 7-21: WebLogic Bean Configuration File

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC ‘-//BEA Systems, Inc.//DTD

WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-
ejb-jar.dtd’>

<weblogic-ejb-jar>

<weblogic-enterprise-bean>
<ejb-name>DepartmentEJB</ejb-name>
<entity-descriptor>
<persistence>

<persistence-type>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-

storage>
</persistence-type>

<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>

</persistence-use>
</persistence>

</entity-descriptor>
<jndi-name>cmp.Department</jndi-name>
<local-jndi-name>cmp.Department-Local</local-jndi-name>

</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
<ejb-name>CourseEJB</ejb-name>
<entity-descriptor>
<persistence>

<persistence-type>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-

storage>
</persistence-type>
<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>

</persistence-use>
</persistence>

</entity-descriptor>
<local-jndi-name>cmp.Course</local-jndi-name>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

135Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 135

You need to configure the persistence-type tags. Inside these tags, leave
the type-identifier and type-version tags as they are. You need to set
the type-storage tag to the path of your mapping file. Mapping files are dis-
cussed next.

The last configuration file is the database mapping file, which is shown in
Listing 7-22. This file specifies the table names and maps the bean properties
to the correct fields.

Listing 7-22: Database Mapping for WebLogic

<!DOCTYPE weblogic-rdbms-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS

Persistence//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-

persistence-600.dtd’>
<weblogic-rdbms-jar>
<weblogic-rdbms-bean>
<ejb-name>DepartmentEJB</ejb-name>
<data-source-name>jdbc/SchoolDataSourceTX</data-source-

name>
<table-name>t_department</table-name>
<field-map>

<cmp-field>id</cmp-field>
<dbms-column>f_id</dbms-column>

</field-map>
<field-map>
<cmp-field>name</cmp-field>
<dbms-column>f_name</dbms-column>

</field-map>

</weblogic-rdbms-bean>

<weblogic-rdbms-bean>
<ejb-name>CourseEJB</ejb-name>
<data-source-name>jdbc/SchoolDataSourceTX</data-source-

name>
<table-name>t_course</table-name>
<field-map>

<cmp-field>id</cmp-field>
<dbms-column>f_id</dbms-column>

</field-map>
<field-map>

<cmp-field>name</cmp-field>
<dbms-column>f_name</dbms-column>

</field-map>
<field-map>

<cmp-field>credit</cmp-field>
<dbms-column>f_credit</dbms-column>

136 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 136

</field-map>

</weblogic-rdbms-bean>

<weblogic-rdbms-relation>
<relation-name>Department-Course</relation-name>
<weblogic-relationship-role>
<relationship-role-name>Course-Has-

Department</relationship-role-name>
<column-map>
<foreign-key-column>f_department_id</foreign-key-
column>
<key-column>f_id</key-column>

</column-map>
</weblogic-relationship-role>

</weblogic-rdbms-relation>
</weblogic-rdbms-jar>

Tables are defined inside weblogic-rdms-bean tags. The tag contains the
following information:

<table-name>...the name of the table...</table-name>
<field-map>

<cmp-field>...property name of first field...</cmp-field>
<dbms-column>...database field name...</dbms-column>

</field-map>
<field-map>

...the second field...
</field-map>

By creating one field-map tag for each field in your table, you can map the
entire table. For every foreign key, you must also create a weblogic-rdbms-
relation tag. This specifies the foreign key relationship. As you can see,
weblogic-rdbms-relation specifies the foreign key using the foreign-
key-column tag and maps it to the primary key of that table.

Compiling a CMP Bean
You compile a CMP bean in the same way you compile a BMP bean. Listing 7-23
is a script that uses the correct names for the CMP bean you just created.

Listing 7-23: Script to Compile the CMP Bean

@echo off

@rem Set this to the location of your JDK installation

(continued)

137Chapter 7: Using Entity Beans

f524720 Ch07.qxd 5/20/03 8:38 AM Page 137

Listing 7-23 (continued)

set JDK_HOME=C:\j2sdk1.4.1_01

@rem Set this to the location of your J2EE JAR file
set CLASSPATH=C:\j2sdkee1.4\lib\j2ee.jar

@rem Set this to the location that the class files will be
stored

set CLASSES=.\CLASSES

@rem setup the directory structure
rmdir /q /s %CLASSES%
mkdir %CLASSES%
mkdir %CLASSES%\META-INF

@rem compile the classes
“%JDK_HOME%”\bin\javac .\src\com\dummies\ejb*.java -

classpath %CLASSPATH% -d %CLASSES%

@rem copy the config files
xcopy /y .\src\META-INF*.* %CLASSES%\META-INF\

@rem JAR it up
cd %CLASSES%
“%JDK_HOME%”\bin\jar -cvf ..\CMPBean.jar *.*
cd ..

CMP and BMP beans enable you to make data persistent, so you can isolate
your database code to the beans and keep it away from other beans dedi-
cated to business processing logic. This isolation means that you have fewer
places to change if you alter the structure of your database.

138 Part II: Understanding WebLogic Components

f524720 Ch07.qxd 5/20/03 8:38 AM Page 138

Chapter 8

Stepping Up to Enterprise
Applications

In This Chapter
� Getting your directories in order

� Creating deployment descriptors with tools or by hand

� Packaging an enterprise application

� Deploying an enterprise application

The term enterprise application is used by a variety of products. For
WebLogic and J2EE, an enterprise application is comprised of one or

more of the following technologies:

� Web application

� Enterprise JavaBeans

� Client application

If you’re already creating applications that use these components, you may be
wondering why you’d need an enterprise application. Well, enterprise applica-
tions provide a way to package all these components in a single archive. The
main advantage is that you would then have one file to manage and deploy. If
you’re still working on your application, however, you’ll find it easier to work
with the expanded version of your application, not one packaged into a single
enterprise application file.

Because it’s easier to develop an application using individual files and direc-
tories, compress your application into an enterprise archive file only after
you complete the development stage.

In this chapter, you discover how to create an enterprise application. Rather
than showing you how to create the components that make up an enterprise
application, however, I show you how to connect these pieces in an enterprise
application. To create the components of an enterprise application, refer to
Chapter 5 for details on web applications and Chapters 6 and 7 for information
on EJBs and client applications.

f524720 Ch08.qxd 5/20/03 8:38 AM Page 139

Creating an enterprise application consists of four major steps:

1. Arrange the components that make up the enterprise application into
the proper directory structure.

2. Create your deployment descriptors.

3. Compress the entire structure into a JAR file.

4. Deploy your enterprise application.

You go through each of these steps in this chapter.

Organizing Your Directories
The first step in creating an enterprise application is to organize your directo-
ries. You must move the files that make up your EJBs into a single directory
structure. If you’ve been developing your application’s individual compo-
nents, you’re probably close to finishing this step.

The structure of the WebLogic directory
Understanding the WebLogic directory structure is important when creating
an enterprise application because it helps you know where to place specific
file types. When you first create your WebLogic domain, as discussed in
Chapter 4, you specify a root directory for it. This directory is usually a sub-
directory of c:\bea\user_projects\.

The web applications directory (described in detail in Chapter 5) is stored in
a subdirectory named applications, which is in your domain directory.
WebLogic provides you with at least one web application, which is named
DefaultWebApp.

In this chapter, I assume that you’re using a web application named MyWebApp.
If you’re using the default web application, the instructions remain the same
except you use DefaultWebApp as the name of your web application.

The root directory of your web application forms the base from which you
package your enterprise application. For example, if you created a domain
named mydomain and are using the default web application, this root is

C:\bea\user_projects\mydomain\applications\DefaultWebApp

If your web application is named MyWebApp, the root is

C:\bea\user_projects\mydomain\applications\MyWebApp

140 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 140

These are Windows paths. UNIX users have a /user_projects subdirectory
to the directory that holds WebLogic.

The root directory
Everything that you store in the root directory of your WebLogic server can
be accessed by the user. Consider the example of WebLogic Server installed
in the following directory:

C:\bea\user_projects\mydomain\applications\MyWebApp

Your root directory is MyWebApp. Every file that you place in this directory is
exposed to the Internet. For example, if you stored the myfile.asp file in
MyWebApp, you could see this file by accessing the following page:

http://localhost:7001/myfile.asp

The same is true of directories that you place in the DefaultWebApp direc-
tory. For example, if you create a directory named images and place into it a
file named photo.jpg, you could see this file by accessing the following URL:

http://localhost:7001/images/photo.jpg

However, one directory is not exposed to the Internet: WEB-INF, which is in
your root directory. This directory holds configuration information and other
important subdirectories used by WebLogic.

Because every other directory in the root directory is exposed to the
Internet, be careful about what you place there. Configuration and other sen-
sitive information should be kept in the WEB-INF directory so that the infor-
mation can’t be downloaded by a malicious user.

Now that you’ve seen the purpose of the root and WEB-INF directories, you
can take a look at the directories inside the WEB-INF directory.

The WEB-INF/classes directory
This is the directory where you place the .class files, which are used to imple-
ment servlets. Any .class file in this directory is automatically available to
WebLogic.

When creating an enterprise application, make sure that your individual
.class files and servlets are in the WEB-INF/classes directory. This ensures
that they’re packaged to the correct location and that WebLogic can find
them when you deploy your enterprise web application.

141Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 141

You can’t just place the .class files in this directory. Like any Java .class file,
they must be placed in a subdirectory that corresponds to their package. For
example, if your .class file is in the com.dummies.ejb package, you have to
create the com/dummies/ejb directory structure under your classes direc-
tory. You then place your .class file in the ejb subdirectory.

The WEB-INF/lib directory
Your web application may use a variety of JAR files to perform its operations.
JAR files contain class libraries that give your program additional functional-
ity. These JAR files may have been created by you or by a third party.
Regardless of their source, JAR files must be placed in the WEB-INF/lib
directory if WebLogic is to make use of them.

One common use for the WEB-INF/lib directory is to store the JAR files
associated with tag libraries. A tag library is a class library contained in a JAR
file. Including the tag library in your application gives you access to addi-
tional tags that you can use in your JSP pages.

The WEB-INF/tlds directory
Tag libraries require additional setup beyond just placing their JAR files into
the lib directory. Tag libraries also require tag library descriptor (TLD) files.
These TLD files are placed in the WEB-INF/tlds directory.

Examining the directory structure
Now that you’ve seen the directories that make up an enterprise application,
it’s time to see how the files in those directories are laid out. Table 8-1 shows
some of the files in a typical enterprise application. This application has two
primary areas: the main area of the application, which stores its JSP files in
the root, and an administration area. The administration area would likely be
secured with a password by using logic contained in the JSP pages. This
application also makes use of one servlet and a tag library.

Table 8-1 File Structure of a Typical Web Application
File or Directory What It Is

MyWebApp/ The root directory of your web application

MyWebApp/index.jsp The index for your web application

MyWebApp/main.jsp A JSP page that’s part of your web application

MyWebApp/admin A programmer-defined directory containing the
JSP pages needed for the administration section
of your web application

142 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 142

File or Directory What It Is

MyWebApp/admin/ The index page displayed for the administration
index.jsp section

DefaultWebApp/ An HTML file that’s part of your web application
admin/info.html

MyWebApp/images A programmer-defined directory that contains the
image files for your web application

MyWebApp/images/ A graphics file used by your web application
logo.gif

MyWebApp/WEB-INF A directory that is not visible to the Internet and that
holds configuration files and other system directories

MyWebApp/WEB-INF/ J2EE standard configuration information for your
web.xml web application

MyWebApp/WEB-INF/ WebLogic-specific configuration information for
weblogic.xml your web application

MyWebApp/lib A directory that contains the JAR files for your
application

MyWebApp/lib/mytag A JAR file needed by your web application
lib.jar

MyWebApp/classes A directory that contains the .class files for your
application

MyWebApp/classes/ A class file needed by your web application
com/dummies/servlet/
myservlet.class

MyWebApp/tlds A directory that contains the tag library
descriptors for your web application

MyWebApp/tlds/my A tag library definition file for your web application
tags.tld

Note that throughout the folders used by this web application are numerous
configuration files, which are called descriptors. In the next section, you find
out the part that descriptors play in an enterprise application.

Creating Deployment Descriptors
The second step in creating an enterprise application is perhaps your biggest
task: creating your deployment descriptors. Deployment descriptors are XML

143Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 143

files that contain configuration information about your enterprise application
and its components. This section begins with an introduction to the individ-
ual deployment descriptors that WebLogic uses.

Understanding deployment descriptors
Deployment descriptors are not unique to WebLogic; they’re a J2EE concept.
However, WebLogic contains features that extend the capabilities of J2EE. You
can’t put non-compliant J2EE information in a J2EE deployment descriptor, so
WebLogic introduced a special XML file that contains WebLogic-specific infor-
mation. Because of this, all deployment descriptor files come in pairs: the J2EE
deployment descriptors and the WebLogic deployment descriptors. Table 8-2
summarizes these deployment descriptors.

Table 8-2 J2EE and WebLogic Deployment Descriptors
Purpose J2EE Descriptor WebLogic Descriptor

Client applications application-client.xml client-application.runtime.xml

Enterprise ../META-INF/ META-INF/application.xml
applications application.xml

Enterprise JavaBeans ../META-INF/ejb-jar.xml ../META-INF/weblogic-
ejb-jar.xml, ../META-
INF/weblogic-cmp-rdbns.xml

Resource adaptors ../META-INF/ra.xml META-INF/weblogic-ra.xml

Web applications ../WEB-INF/web.xml WEB-INF/weblogic.xml

When creating descriptors, you have two choices: You can use utilities pro-
vided with WebLogic to create your descriptors automatically or you can
create the descriptors by hand.

Even if you choose to create descriptors automatically, you still have to do
some configuration. When you use a tool to generate your descriptors, that
tool examines your files and directory structure and makes its best guess as
to how the deployment descriptor should be constructed. You can’t entirely
escape the process of creating descriptor files because the tool may not
always properly determine every unique aspect of your application. It would
be impossible for BEA to create a tool that can handle every conceivable way
that an enterprise application could be set up.

144 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 144

Although automatic generators often do not create perfect deployment
descriptors, they do generate descriptors that are a closer match to your
ideal descriptors than any sort of template descriptor. Because of this, you
should use the descriptor generators to generate the first version of your
deployment descriptors.

Creating descriptors using tools
WebLogic includes several tools that you can use to automatically generate
descriptors for your enterprise application. These tools are implemented as
command-line Java utilities. Before you can use these utilities, however, you
must make sure that CLASSPATH is set correctly.

Setting CLASSPATH
The utility classes are located in the weblogic.jar file, and you must make this
file part of CLASSPATH. You can do this by issuing the following command to
your command prompt:

set CLASSPATH=
%CLASSPATH%;C:\bea\weblogic81\server\lib\weblogic.jar

This adds the weblogic.jar file to CLASSPATH for the current command
prompt. If you close the command-prompt window, you must reissue the pre-
ceding command to use the utility classes again.

If you find that you’re using the descriptor generation utilities frequently, you
may want to permanently add weblogic.jar to your system CLASSPATH. To do
so, modify the CLASSPATH environmental variable on your system. The instruc-
tions for doing this vary depending on your operating system, so refer to your
operating system instructions for more information.

Invoking the descriptor generation utilities
WebLogic has four descriptor generation utilities, as shown in Table 8-3.
Which utility you should use depends on the type of descriptor that you want
to generate.

You invoke these utilities just as you would any other Java utility: by specify-
ing the main class. For example, to generate the web.xml and weblog.xml
descriptors for the web application stored at the following location:

145Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 145

Table 8-3 Deployment Descriptor Utilities
Application Main Class

Enterprise application weblogic.ant.taskdefs.ear.DDInit

Enterprise JavaBeans (EJB) 1.0 weblogic.ant.taskdefs.ejb.DDInit

Enterprise JavaBeans (EJB) 2.0 weblogic.ant.taskdefs.ejb20.DDInit

Web application weblogic.ant.taskdefs.war.DDInit

C:\bea\user_projects\mydomain\applications\MyWebApp

you would issue the following command:

java weblogic.ant.taskdefs.war.DDInit c:\bea\user_projects
\mydomain\applications\MyWebApp

Although this command spans more than one line, it must be entered as one
command. This command generates the web.xml and weblogic.xml files for
MyWebApp and places them in the WEB-INF directory.

Creating descriptors manually
In this section, you create by hand the application.xml file, the J2EE enterprise
descriptor for an enterprise application. You may include the weblogic.xml
descriptor as well. Both files are covered in this section.

The J2EE enterprise descriptor
The J2EE enterprise descriptor is named application.xml. An example appli-
cation.xml file is shown in Listing 8-1.

Listing 8-1: J2EE Enterprise Descriptor

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE application PUBLIC
‘-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN’
‘http://java.sun.com/dtd/application_1_3.dtd’>

<application>
<display-name>HomeMethods ejb20</display-name>

146 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 146

<description>HomeMethods ejb20</description>

<module>
<ejb>ejb20_homemethods.jar</ejb>

</module>

</application>

The main purposes of the application.xml file are to identify the EJBs used
with your web application and to tie together all the components that make
up the application. Table 8-4 lists the components in application.xml.

Table 8-4 XML Elements for application.xml
Element What It Does

application Contains the other elements described in this table. This is
the root element of the application deployment descriptor.

icon Specifies the locations of small and large images that
represent the application in a GUI tool. Currently,
WebLogic Server doesn’t use this element, so its inclusion
is optional.

small-icon Specifies the location for a small (16x16 pixel) .gif or .jpg
image that represents the application in a GUI tool.
Currently, WebLogic Server doesn’t use this element, so its
inclusion is optional.

large-icon Specifies the location for a large (32x32 pixel) .gif or .jpg
image that represents the application in a GUI tool.
Currently, WebLogic Server doesn’t use this element, so its
inclusion is optional.

display-name Describes the name of the application displayed by
GUI tools.

description Describes the application displayed by GUI tools.

module This element specifies EJBs, servlets, and other compo-
nents. One module element exists for every module in
WebLogic.

alt-dd Specifies an optional URI to the post-assembly version of
the deployment descriptor file for a particular J2EE module.
The URI must specify the full path name of the deployment
descriptor file relative to the application’s root directory. If
you do not specify alt-dd, the deployer must read the
deployment descriptor from the default location and file
name required by the respective component specification.

(continued)

147Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 147

Table 8-4 (continued)
Element What It Does

connector Specifies the URI of a resource adapter (connector)
archive file, relative to the top level of the application
package.

ejb Defines an EJB module in the application file. Contains the
path to an EJB JAR file in the application.

web-uri Defines the location of a web module in the application.xml
file. This is the name of the WAR file.

context-root Specifies the context root for the web application.

description Describes the security role.

role-name Defines the name of a security role or principal used for
authorization in the application.

As you can see from Table 8-4, you can specify security information as well as
information about the components of the enterprise application. Security is
discussed in Chapter 18.

The WebLogic-specific descriptor
The WebLogic-specific enterprise descriptor is named weblogic.xml. This
descriptor allows you to specify security settings that are not part of the J2EE
descriptor. You can use this descriptor to create security roles that govern the
abilities of users. An example weblogic.xml file is shown in Listing 8-2.

Listing 8-2: WebLogic Enterprise Descriptor

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE weblogic-web-app PUBLIC
“-//BEA Systems, Inc.//DTD Web Application 7.0//EN”
“http://www.bea.com/servers/wls700/dtd/weblogic700-web-

jar.dtd” >
<weblogic-web-app>

<security-role-assignment>
<role-name>GoodRole</role-name>
<principal-name>larry</principal-name>
<principal-name>moe</principal-name>

</security-role-assignment>

</weblogic-web-app>

Many of these elements are related to security, a topic discussed in Chapter 18.
Table 8-5 offers a brief description of the WebLogic elements.

148 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 148

Table 8-5 XML Elements for weblogic.xml
Element What It Does

weblogic-web-app Contains the other elements described in this table.
This is the root element of the WebLogic deployment
descriptor.

description Describes this enterprise application.

weblogic-version Specifies the version of WebLogic for which this file
was designed.

security-role- Specifies a security role assignment that can be used
assignment in the J2EE enterprise application descriptor.

reference- Matches resource-ref elements in the web.xml
descriptor descriptor to JNDI names.

session-descriptor Determines how WebLogic configures each session.

jsp-descriptor Determines how WebLogic handles JSP files.

auth-filter Specifies the full class name of a servlet that handles
authentication.

charset-params Determines charset mappings for GETs and POSTs.

Packaging Your Enterprise Application
The third step in creating an enterprise application is to package, or archive,
your enterprise application. The enterprise application is stored in a JAR file,
which is a special archive file used by Java. The file format of a JAR file is the
same as the format for a ZIP archive. JAR files usually end with the .jar exten-
sion, but the extension can be changed to anything you want.

Although enterprise applications are stored as JAR files, they use the .ear
extension, not the .jar extension. In this section, you find out how to convert
your enterprise application’s directory structure to an EAR file.

Follow these steps to package your enterprise application:

1. Create a temporary directory anywhere on your hard drive.

You’ll use this directory to stage the directories and files in your enter-
prise application.

2. Copy all web archives (WAR files) and EJB archives (JAR files) to the
staging directory.

149Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 149

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

If you’re using Windows, execute the setenv.cmd command, which is
in the “WebLogic Home”\bin\setenv.cmd directory. If you’re using
UNIX, execute the setenv.sh command, which is in the “WebLogic
Home”/bin/setenv.sh directory. For Windows or UNIX, replace
“WebLogic Home” with the directory that you installed WebLogic to.

5. Create the application.xml deployment descriptor file and place it in
the META-INF directory.

For more information on this step, see the preceding section.

6. Optionally create the weblogic.xml file and place it in the META-INF
directory.

For more information on this step, see the preceding section.

7. Create the Enterprise archive (EAR file) for the application, using the
following jar command:

jar cvf application.ear -C staging-dir

where application is the name of your application and staging is
your staging directory.

Now that you’ve created an EAR file, it’s time to deploy it.

JAR, WAR, and EAR files have the same format as a ZIP file. Therefore, you
can simply copy each to a new file — renaming it as .zip — and then use
WinZip to view the contents of the file. This is a fast way to look inside the
archive.

Deploying Your Enterprise Application
The fourth step in creating an enterprise application is to deploy it to
WebLogic Server.

After you’ve packaged your web application to an EAR file, you deploy it as
many times as needed. This provides a convenient way to distribute your
enterprise application to any number of servers.

Follow these steps to deploy an enterprise application:

1. Ensure that WebLogic Server is running.

2. Log on to Administration Console at http://localhost:7001/
console.

150 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 150

3. In the left pane, click the Deployments folder, and then click the
Applications folder.

The screen shown in Figure 8-1 appears.

4. Click the Deploy a new Application link.

The screen shown in Figure 8-2 appears.

5. Click the upload your file(s) link, type the name of the EAR file that
you’ll be uploading to the server, and then click the Upload button.

6. Click the radio button that appears next to your newly uploaded EAR
file, and then click Continue.

7. Type a name for your application.

8. Click the Deploy button.

The screen shown in Figure 8-3 appears. After a few moments, the
deployed status will go to the value of completed.

Your enterprise application is now deployed and ready for use. Now that
you’ve created an enterprise application, you’re ready to find out about some
of the services that WebLogic provides. That’s the topic of the next part of
the book.

Figure 8-1:
Viewing

enterprise
applications.

151Chapter 8: Stepping Up to Enterprise Applications

f524720 Ch08.qxd 5/20/03 8:38 AM Page 151

Figure 8-3:
Your

deployed
application.

Figure 8-2:
Deploying

a new
application.

152 Part II: Understanding WebLogic Components

f524720 Ch08.qxd 5/20/03 8:38 AM Page 152

Part III
Employing Web

Services

g524720 PP03.qxd 5/20/03 8:38 AM Page 153

In this part . . .

Web applications are programs that run on a web
server and are usually accessed by humans. A web

service is similar to a web application in that it can run
from a web server. However, web services are usually
accessed by computer programs, not humans. Additionally,
a web service can run over e-mail as well as the web. In this
part, you create a simple web service in WebLogic.

After you create a web service, you’ll want to access it,
so your next task is constructing a client program to do
just that.

Finally, you use Resource Workshop to create a web ser-
vice. Resource Workshop uses a GUI similar to Visual
Basic, so you can design your web service graphically.

g524720 PP03.qxd 5/20/03 8:38 AM Page 154

Chapter 9

Building and Deploying
Web Services

In This Chapter
� Defining what your web service will do

� Building the backend component

� Building synchronous and asynchronous web services

� Packaging web services

� Deploying web services

Web services have received a lot of media attention lately. But what
exactly is a web service? A web service is a remote procedure avail-

able to clients through TCP/IP, typically using HTTP or SMTP as the transport
and XML for encoding. The web service is described using standard XML
notation called a service description. A web service fulfills a single task or a
set of tasks.

All details of the web service are hidden from the user, and the service is
both hardware and software independent. This encourages software develop-
ers to build applications consisting of small, individual services, which can
then be used alone or in groups to perform even more complex tasks.

You can create a web service in two ways: manually, through the creation of
Java source and configuration files, or using a GUI system called WebLogic
Workshop. In this chapter, you create a web service manually. For more on
WebLogic Workshop, see Chapter 11.

WebLogic services are built on the Simple Object Access Protocol (SOAP),
a standard protocol upon which XML messages are exchanged between web
services and their clients. Generally, WebLogic deals with the details of the
SOAP protocol, freeing you to focus on building your web service. However,
if you’re interested in knowing more about SOAP, go to the site of the World
Wide Web consortium, the group that maintains the SOAP standard, at
http://www.w3.org/TR/SOAP/.

h524720 Ch09.qxd 5/20/03 8:38 AM Page 155

Defining a Web Service
Before you create your web service, you should define what it will do. This
allows you to properly construct the interface that other applications must
adhere to if they want to communicate with your web service.

The most basic design decision is which of the two general types of web ser-
vices you will create:

156 Part III: Employing Web Services

Understanding SOAP
SOAP is an XML-based, lightweight protocol
that’s used for information exchange. This pro-
tocol works in both decentralized and distrib-
uted environments. SOAP is decentralized in
that the provider of a SOAP service and the con-
sumer program can be run on two different
computers. SOAP is distributed in that many dif-
ferent computers can provide the same SOAP
service, which allows these computers to bal-
ance the load of requests to achieve maximum
performance.

SOAP consists of three main parts:

� SOAP envelope. The SOAP envelope por-
tion of the message describes what’s in a
message and how to process it. It contains
a target address specifying the server that
the SOAP message is targeted to and a
return address specifying where the server
should send its response. The encoding
rules are specified by the XML attribute
SOAP-ENV:Envelope.

� Encoding rules. For expressing the applica-
tion’s data types. Every SOAP message con-
tains the rules used to encode it. These
rules specify what version of SOAP was
used and how different components of the
SOAP message are represented. The
encoding rules are specified by the XML
attribute SOAP-ENV:encodingStyle.

� Method call. When a SOAP message is
sent, part of the message specifies the

methods that the server should execute.
The method being invoked is specified
inside the SOAP-ENV:Body XML tag.

Although SOAP can be used with a variety of
protocols, it’s almost always used only with
HTTP.

You may be wondering exactly what a SOAP
request looks like. The following is a simple
SOAP request to get the weather conditions for
a specific station. In the following example, I
request the weather for KSTL, or St. Louis,
Missouri:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://
schemas.xmlsoap.org/soap/
envelope/”

SOAP-ENV:encodingStyle=
”http://schemas.xmlsoap.org/
soap/encoding/”>
<SOAP-ENV:Body>
<m:GetCurrentTemperature

xmlns:m=”Some-URI”>

<symbol>KSTL</symbol>
</m:

GetCurrentTemperature >
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
I called the GetCurrentTemperature
method, passing it one parameter, which is
called symbol. This is the weather station I am
querying.

h524720 Ch09.qxd 5/20/03 8:38 AM Page 156

� Synchronous service

� Asynchronous service

A synchronous web service, which is the default, begins when the web service
receives a message. This web service responds immediately.

Synchronous web services are most useful when the client program requires
the data returned from the request immediately. An example of this type of
data is the current stock quote for a particular company.

An asynchronous web service is asynchronous, so messages can be
exchanged freely between the client and web service. A message from one
side does not oblige the other to send a corresponding message. When a
client sends a message to an asynchronous web service, the client doesn’t
wait for a message back from the web service. The web service may send a
message back to the client at a later time, but nothing inherently ties this
message to the original message that the client sent.

Asynchronous web services are a good choice when you’re sending informa-
tion that doesn’t require a response. For example, you may want to a send a
message to several of your servers, giving them a new greeting message to
display to users.

Choosing and Building a
Backend Component

The purpose of your web service is to allow remote clients to access services
that you provide. These services, called the backend component, take the
form of Java code. You can build your backend component as one of the
following:

� A method of a stateless session EJB

� A method of a Java class

� A JMS method consumer

WebLogic can make any of these items available as a web service. This
makes it convenient to package existing Java code as a web service. If you’ve
already created stateless session EJBs, you can package them as a web ser-
vice. Or if your code exists in regular Java classes, you can provide access to
your class as a web service. You can also use JMS messaging as a backend
service for your web service. JMS is covered in Chapter 15.

157Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 157

Building a Synchronous Web Service
In this section, you build a synchronous web service. I cover using and a regu-
lar Java class and then using a stateless session EJB. Later, you find out what
changes are necessary to make this web service an asynchronous service.

First you must write the backend component. This will be either a Java class,
a stateless EJB, or a JMS method consumer.

Working with a Java class
backend component
You must follow a few rules when implementing a web service operation
using a Java class:

� Do not start any threads. This rule applies to all Java code that runs on
WebLogic Server.

� Define a default no-argument constructor.

� Define as public the methods of the Java class that will be exposed as
web service operations.

You must write thread-safe Java code because WebLogic Server maintains
only a single instance of a Java class that implements a web service opera-
tion, and each invocation of the web service uses this same instance.

For an example of implementing a WebLogic web service operation with a
Java class, go to the following directory:

WL_HOME\samples\server\src\examples\webservices\basic\javacla
ss

where WL_HOME refers to the main directory of your WebLogic Server installa-
tion. On a Windows system, this directory is usually C:\bea\weblogic81.

Listing 9-1 shows a Java class that you could use as a backend component.
This Java class contains a single method, named sampleMethod, that accepts
an int and returns a String.

Listing 9-1: Java Class Backend Component

package com.dummies.ejb;

public class SampleBackendComponent
{

158 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 158

public String sampleMethod(int num)
{
switch(num)
{
case 1:return “One”;
case 2:return “Two”;
case 3:return “Three”;
case 4:return “Four”;
case 5:return “Five”;
case 6:return “Six”;
case 7:return “Seven”;
case 8:return “Eight”;
case 9:return “Nine”;
case 10:return “Ten”;
default:return “Some Number”;

}
}

}

Working with a stateless session EJB
backend component
You may also choose to build your backend component as a stateless session
EJB. Writing Java code for a stateless session EJB for a web service is no dif-
ferent than writing a stand-alone EJB.

In the web-services.xml deployment descriptor, you can specify that a web
service operation is one way, which means that the client application that
invokes the web service doesn’t wait for a response. When you write the Java
code for the EJB method that implements this type of operation, you must
specify that it returns void.

When choosing between using an EJB or a Java class backend component,
consider the other ways in which your backend component will be used. If
your backend component will be commonly accessed as an EJB, build it as an
EJB. This allows you to use the same code for both your EJB and web service.

Considerably more resources are required to call a web service than to call
an EJB. Because of this, it’s common to create all your backend components
as EJBs and then allow external applications to access your backend compo-
nents as web services. Your own local applications, which are running on the
same network as your WebLogic server, can use the faster EJB calling
method.

For the EJB in this section, you use the stateless EJB developed in Chapter 6.
You’ll see the highlights of that EJB and how they relate to the web service.
For complete information on creating an EJB, refer to Chapter 6.

159Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 159

Listing 9-2 shows the bean file that implements the EJB backend component.
The EJB backend component is nearly the same as the Java class backend com-
ponent. The main difference is the additional code used to support the EJB.

Listing 9-2: EJB Backend Component

package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;
import javax.swing.*;

public class SampleBean implements SessionBean
{

private SessionContext stx;

//Required methods, not used by this type of bean
public void ejbCreate(){}
public void ejbRemove(){}
public void ejbActivate(){}
public void ejbPassivate(){}

// setter for the SessionContext
public void setSessionContext(SessionContext ctx)
{
ctx = this.stx;

}

// the sample method

public String sampleMethod(int num)
throws RemoteException

{
switch(num)
{
case 1:return “One”;
case 2:return “Two”;
case 3:return “Three”;
case 4:return “Four”;
case 5:return “Five”;
case 6:return “Six”;
case 7:return “Seven”;
case 8:return “Eight”;
case 9:return “Nine”;
case 10:return “Ten”;
default:return “Some Number”;

}
}

}

160 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 160

You must specify that the bean is a stateless EJB in the ejb-jar.xml file,
which is shown in Listing 9-3. You can use many nodes and attributes.
For more information on the structure of an ejb-jar.xml file, refer to
Chapter 6.

Listing 9-3: ejb-jar.xml File for a Backend Component

<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN’

‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>SampleObject</ejb-name>
<home>com.dummies.ejb.SampleHome</home>
<remote>com.dummies.ejb.Sample</remote>
<ejb-class>com.dummies.ejb.SampleBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

</ejb-jar>

Building an Asynchronous Web Service
In general, you build the backend component for an asynchronous service
just as you would a synchronous service. When creating a backend compo-
nent for an asynchronous service, keep the following in mind:

� The backend component that implements the operation must explicitly
return void.

� You can’t specify out or in-out parameters to the operation; you can
specify only in parameters.

Asynchronous web services do not return a result when sent a request. Your
client will not even know whether the web service received the request.

Nearly all web services are synchronous style rather than asynchronous
style. Before you choose to create an asynchronous service, make sure
that it will truly fit your needs. Pure broadcast communication, in which
you expect no result and don’t care whether your message was received,
is the only appropriate time to choose an asynchronous service.

161Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 161

Packaging Your Web Service
In this section, you find out how to package your web service. Packaging is the
process that connects your backend component with WebLogic in such a way
that WebLogic makes the backend component available as a web service.

The packaging process that WebLogic uses for web services relies heavily on
Ant (developed by the Apache Software Foundation). Ant is a tool that exe-
cutes scripts designed to carry out tasks for Java programs. The most
common use for Ant is to create build scripts for Java programs.

The following steps assume that Ant is part of your system path. WebLogic
uses a customized version of Ant, and you must use their version.

Packaging a synchronous service
You must create a custom build.xml file to show Ant how to build your web
service. Such a build.xml file is shown in Listing 9-4.

Listing 9-4: build.xml File for a Synchronous Web Service

<project name=”buildWebservice” default=”ear”>
<target name=”ear”>
<servicegen
destEar=”TestWebService.ear”
contextURI=”testWebService” >

<service
ejbJar=”EJBSample.jar”
targetNamespace=
“http://localhost/webservices/TestWebService”
serviceName=”TestWebService”
serviceURI=”/TestWebService”
generateTypes=”True”
expandMethods=”True”
style=”rpc” >

<client
packageName=
“com.dummies.webservices.TestWebService”

/>
</service>
</servicegen>

</target>
</project>

162 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 162

A number of attributes are shown in the build.xml file. Attributes for the
servicegen node are listed in Table 9-1. Attributes for the service node are
listed in Table 9-2.

Table 9-1 servicegen Node Attributes
Attribute Required? Default What It Is

contextURI No value of Defines the URI used to access
warName the web service.

destEar Yes — Contains the name of the EAR
file that will contain the final
web service. This file is
deployed to WebLogic when
you deploy your web service.

overwrite No true Specifies whether you want to
overwrite any previous
versions of your web service.

warName No web- Specifies the name of the web
services. application. You should
war generally stick with the default

value for this attribute.

Table 9-2 service Node Attributes
Attribute Required? Default What It Is

ejbJar No — Specifies the name of the
JAR file that contains the
EJB — if the backend com-
ponent for this web service
is an EJB. If you don’t spec-
ify this attribute, you must
include the javaClass-
Components attribute.

excludeEJBs No — Contains a comma-
separated list of EJB
names for which non-
built-in data type compo-
nents should not be
generated.

(continued)

163Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 163

Table 9-2 (continued)
Attribute Required? Default What It Is

expandMethods No false Specifies whether a sepa-
rate <operation>
element for each method of
the EJB or Java class is
used, or whether the task
should implicitly refer to all
methods. This attribute
should be true or false.

generateTypes No true Specifies whether the
serialization class and Java
representations for non-
built-in data types should
be generated. This attribute
should be true or false.

includeEJBs No — Contains a list of the EJB
names that use non-built-in
data types.

javaClass- No Contains a comma-
Components — separated list of classes —

if the backend component
is one or more Java
classes. These classes
must be compiled and be
part of CLASSPATH. If you
don’t specify this attribute,
you must include the
ejbJar attribute.

JMSAction Yes, if — Specifies whether the
using JMS client application that

invokes this JMS-
implemented web service
sends messages to or
receives messages from
the JMS destination. This
attribute should contain the
value Send or Receive.

JMSConnection- Yes, if — Specifies the JNDI name of
Factory using JMS ConnectionFactory

used to create a connec-
tion to the JMS destination.

164 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 164

Attribute Required? Default What It Is

JMSDestination Yes, if Specifies the JNDI. This
using JMS attribute should contain the

name of a JMS topic or
queue.

JMSDestination- Yes, if Specifies the type of JMS
Type using JMS destination. This attribute

should contain the value
Queue or Topic.

JMSMessageType No java. Specifies the data type of
lang. the single parameter to the
String send or receive operation.

JMSOperation- No send or Specifies the name of the
Name receive, operation in the generated

depending Web Service Definition
on the value Language (WSDL) file,
of the which is the file that
JMSAction defines the methods of your
attribute web service.

protocol No http Contains the protocol over
which this web service is
deployed. This attribute
should be http or https.

serviceName Yes — Contains the name of the
web service that will be
published in the WSDL file.

serviceURI Yes — Contains the web service
URI portion of the URL used
by client applications to
access your web service.
Always include the leading
slash (/), for example
/TestWebService.

style No rpc Specifies whether RPC-
or documents-oriented
operations are used. This
attribute should be rpc or
document.

targetNamespace Yes — Contains the namespace
URI of the web service.

(continued)

165Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 165

Table 9-2 (continued)
Attribute Required? Default What It Is

typeMappingFile No — Specifies a file that
contains additional XML
data-type mapping infor-
mation. This data is added
to web-services.xml.

You can also define several attributes for the client node, as shown in Table
9-3. The client node allows you to automatically generate a stub that a
client would use to access the web service. A stub is a small class used to
interface to the web service. The client communicates with the stub, which in
turn communicates with the web service. This process is discussed in
greater detail in Chapter 10. If you don’t want to create an interface for the
client to use when accessing your web server, you’re not required to include
this client node. If you don’t create such an interface, you need to use the
clientgen utility later when you want to access this web service from a
client. Using web service clients is covered in Chapter 10.

Table 9-3 client Node Attributes
Attribute Required? Default What It Is

clientJarName No serviceName_ Contains the name of the
client.jar generated client JAR file.

packageName Yes — Contains the package
name into which the
generated client inter-
faces and stub files are
packaged.

saveWSDL No true Generates WSDL and
stores it in the JAR file.
This prevents clients
from having to generate
WSDL each time.

useServerTypes No false Specifies whether the
client should use the
definition for any
non–built-in types from
the EAR file.

166 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 166

To package your web service, follow these steps:

1. Set your environment.

• If you’re using Windows, execute the setEnv.cmd command,
located in C:\bea\weblogic81\server\bin.

• If you’re using UNIX, execute the setEnv.sh command, located in
C:\bea\weblogic81/server/bin.

2. Create a staging directory.

You need to create a temporary staging directory to hold the compo-
nents that will make up your web service. For this example, I assume
you’re using c:\staging as your staging directory.

3. Package the backend component.

• If the backend component is implemented using an EJB, make sure
that your EJB is packaged as an EJB JAR file. This is covered in
Chapter 6. Place the EJB JAR file in the staging directory.

• If the backend component is implemented using a Java class, com-
pile it to a Java .class file and place the .class file in the staging
directory.

4. Create an Ant build file and place it in the staging directory.

Create a custom build.xml file, as shown in Listing 9-1.

5. Execute the Ant build file by typing ant from the staging directory.

Ant builds your web service as an EAR file, as shown in Figure 9-1. You’re
now ready to deploy your web service.

After completing these steps, you have an EAR file that contains your web
application. You’re now ready to deploy this EAR file to your WebLogic Server.

Figure 9-1:
Running Ant
to generate

the web
service.

167Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 167

Packaging an asynchronous service
Packaging an asynchronous web service is nearly the same as building a syn-
chronous web service. The main difference is that the style attribute in the
build.xml file specifies message rather than rpc. This designates the web ser-
vice as an asynchronous web service.

Listing 9-5: build.xml File for an Asynchronous Service

<project name=”buildWebservice” default=”ear”>
<target name=”ear”>
<servicegen
destEar=”TestWebService.ear”
contextURI=”testWebService” >

<service
ejbJar=”EJBSample.jar”
targetNamespace=
“http://localhost/webservices/TestWebService”
serviceName=”TestWebService”
serviceURI=”/TestWebService”
generateTypes=”True”
expandMethods=”True”
style=”rpc” >

<client
packageName=
“com.dummies.webservices.TestWebService”

/>
</service>
</servicegen>

</target>
</project>

Deploying Your Web Service
A web service is packaged to an enterprise archive (EAR) file. Because of
this, the steps to deploy a web service are nearly the same as deploying an
enterprise application, as described in Chapter 8. In this section, I cover the
process from a web service point of view.

After you’ve packaged your web service to an EAR file, you can repeat the
deployment step as many times as needed. This provides a convenient way
to distribute your web service to any number of servers.

168 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 168

Follow these steps to deploy your web service:

1. Ensure that WebLogic Server is running, and log on to Administration
Console at http://localhost:7001/console.

2. In the left pane, click the Deployments folder, and then click the
Applications folder.

The screen shown in Figure 9-2 appears.

3. Click the Deploy a new Application link.

The screen shown in Figure 9-3 appears.

4. Upload your file.

Click the upload your file(s) link, type the name of the EAR file that
you’ll be uploading to the server, and then click Upload.

5. Click the radio button that appears next to your newly uploaded EAR
file, and then click Continue, as seen in Figure 9-4.

Figure 9-2:
Current

enterprise
applications.

169Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 169

Figure 9-4:
Selecting

your
application.

Figure 9-3:
Configuring

a new
application.

170 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 170

6. Type a name for your application, and then click Deploy.

After a few moments, the deployed status changes to Success, as shown
in Figure 9-5.

Your web service is deployed and ready for use. Chapter 10 describes how to
use your newly deployed web service.

Figure 9-5:
Your appli-

cation is
deployed.

171Chapter 9: Building and Deploying Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 171

172 Part III: Employing Web Services

h524720 Ch09.qxd 5/20/03 8:38 AM Page 172

Chapter 10

Accessing Web Services
In This Chapter
� Using a static client

� Using a dynamic client

Web services are an increasingly popular way to access remote applica-
tions. Web services exchange information with their clients using XML

constructed according to the SOAP protocol. (For more on the SOAP protocol,
see Chapter 10.) In this chapter, you find out how to access a web service using
WebLogic. If you’re interested in creating web services, refer to Chapter 9.

You can create two types of web service clients with WebLogic: a static client
that uses stub client interfaces created by WebLogic and a dynamic client
that learns about the web service as it runs. Static clients are easy to pro-
gram and use. Dynamic clients require more source code but add flexibility.
These are shortcuts that WebLogic provides to make it easier for WebLogic
developers to work with web services.

When accessing a WebLogic web service, always use a static client. Use a
dynamic client when you’re accessing a non-WebLogic web service or a web
service whose interface you may want to change as the program runs. In rare
situations, your program may not know the structure of the web service
beforehand. A dynamic client can adapt to many types of web services.

Using a Static Client
In this section, you find out how to create a static web service client. A static
client uses the web service EAR file to generate a client stub that you can use
to call the web service, just as if it were a local class. The main difference
between a static client and a dynamic client has to do with how you call the
web service. In a static client, you call a web service just like any other Java

h524720 Ch10.qxd 5/20/03 8:39 AM Page 173

method. In the dynamic client, you must call methods to specify the method
name, parameters, and return type. This allows these values to be different
each time the client runs.

Understanding WSDL
Web Service Definition Language (WSDL) provides instructions for accessing
a web service. You use the WSDL of your target web service to create a client
stub. After you generate this client stub, you can access the web service as
though it were a regular Java class.

WSDL is an XML-formatted description of a web service. This code contains
all the necessary information to access a web service. You can find out more
at http://www.w3.org/TR/wsdl.

To access the WSDL file contained in a web service, you first must make
sure that you have a web service deployed on WebLogic. For this example,
I assume that you’re using the TestWebService web service from Chapter 9.
You can access this web service with the following URL:

http://localhost:7001/testWebService/TestWebService

You can see the WSDL file for your web service by accessing the following URL:

http://localhost:7001/testWebService/TestWebService?WSDL

If your web service has been properly configured, the screen displays some-
thing similar to Figure 10-1. (If you don’t see your WSDL file, your web service
is not up and running. Review Chapter 9 for information on creating and
deploying your web service.)

The WSDL file in Figure 10-1 is complex, but you don’t need to be able to read
the file to access a web service. Reading this file is the job of the WebLogic
clientgen application. You find out how to use clientgen in the next section.

Following are the steps you need to take to create a static web service client:

1. Generate a client stub.

2. Create a client program that will use the client stub.

3. Start WebLogic Server.

4. Run the web service client application.

In the following sections, I expand upon these steps.

174 Part III: Employing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 174

Generating the client stub
To use the web service created in Chapter 9, you must create a client stub for
that application. This stub allows you to access the web service as though it
were a regular application. The client stub generation process that WebLogic
uses for web services relies heavily on Jakarta Ant. Ant is a tool that executes
scripts that carry out tasks for Java programs. The most common use for Ant
is to create build scripts for Java programs.

WebLogic uses a customized version of Ant, so you must use the version of
Ant provided by WebLogic. Ant is stored in the WebLogic bin directory. The
following steps assume that Ant is part of your system path.

You must create a custom build.xml file to show Ant the URL for which you
want to build a web service. Such a build.xml file is shown in Listing 10-1.

Listing 10-1: build.xml File for Client Stub Generation

<project
name=”buildWebservice”
default=”generate-client”>

(continued)

Figure 10-1:
Looking at a

WSDL file.

175Chapter 10: Accessing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 175

Listing 10-1 (continued)
<target name=”generate-client”>
<clientgen
ear=”TestWebService.ear”
serviceName=”TestWebService”
packageName=”com.dummies.webservices.TestWebService”
useServerTypes=”False”
clientJar=”TestWebServiceClient.jar” />

</target>
</project>

clientgen automates the creation of the client stub. To use clientgen, you
must create an Ant script. You can define quite a few attributes to control the
operation of clientgen. These attributes are summarized in Table 10-1.

Table 10-1 clientgen Attributes
Attribute What It Is

ear The enterprise application that contains the web
service. For more information on how to generate this
file, see Chapter 9.

serviceName The name of your web service.

packageName The package name that you want to place your client
stub into.

useServerTypes Determines whether custom data types should be used.
This attribute should contain true if you’re using the
data types of the server or false for customized data
types.

clientJar The name of the JAR file that you want the client stub
generated to.

After you create the build.xml file, you can execute it by typing the Ant com-
mand from the same directory as the build.xml file. When you do so, the
screen shown in Figure 10-2 appears.

Building the client application
Now that you’ve created the client stub file, you must create an application
that makes use of the web service. Listing 10-2 shows such an application.

176 Part III: Employing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 176

Listing 10-2: Web Service Client

import com.dummies.webservices.TestWebService.*;

public class StaticClient {
public static void main(String[] args) throws Exception {
// Set up the global JAXM message factory
System.setProperty(“javax.xml.soap.MessageFactory”,

“weblogic.webservice.core.soap.MessageFactoryImpl”
);

// Set up the global JAX-RPC service factory
System.setProperty(“javax.xml.rpc.ServiceFactory”,

“weblogic.webservice.core.rpc.ServiceFactoryImpl”)
;

// Parse the argument list
StaticClient client = new StaticClient();
String wsdl = (args.length > 0? args[0] : null);
client.example(wsdl);

}

public void example(String wsdlURI) throws Exception {
TestWebServicePort client = null;
if (wsdlURI == null) {
client = new

TestWebService_Impl().getTestWebServicePort();
} else {
client = new

TestWebService_Impl(wsdlURI).getTestWebServicePort
();

}
// call the method
System.out.println(trader.sampleMethod(3));

}

}

Figure 10-2:
Building the

client file.

177Chapter 10: Accessing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 177

The program works as follows. First, you set up the JAXM factory and the
RPC factory. A factory is a class designed to create other objects. For exam-
ple, JAXM uses the javax.xml.soap.MessageFactory class as a factory to
produce messages. You should not change anything in these lines, and they
must be included with a client application:

// Set up the global JAXM message factory
System.setProperty(“javax.xml.soap.MessageFactory”,

“weblogic.webservice.core.soap.MessageFactoryImpl”
);

// Set up the global JAX-RPC service factory
System.setProperty(“javax.xml.rpc.ServiceFactory”,

“weblogic.webservice.core.rpc.ServiceFactoryImpl”)
;

Next, you create an instance of the port class. This object is used to connect
to the web service, as seen here:

TestWebServicePort client = null;
if (wsdlURI == null) {
client = new TestWebService_Impl().getTestWebServicePort();

} else {
client = new

TestWebService_Impl(wsdlURI).getTestWebServicePort
();

}

In the preceding code, you check to see whether the user has passed in an
alternate URL to use with the service. If no alternate URL was passed in, you
use the URL built into the web service WSDL:

// call the method
System.out.println(trader.sampleMethod(3));

When you compile the program, make sure that both the J2EE and client stub
JAR files are in classpath. To do so, compile Listing 10-2 with the following
command:

javac -classpath TestWebServiceClient.jar;
C:\bea\weblogic81\server\lib\webserviceclient.jar

StaticClient.java

I included the webserviceclient.jar file in the command. You may need to
include a different version of this JAR file; refer to Table 10-2.

178 Part III: Employing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 178

Table 10-2 Web Service Client JAR Files
JAR File When to Use It

webserviceclient.jar When you don’t need SSL to access your web
service

webserviceclient+ssl.jar When you need SSL to access your web service

webserviceclient+ssl_pj.jar With the CDC profile of J2ME

Running the client application
To run your client application, you must execute it with the WebLogic web
services client and the client stub JAR files present. To do so, use the follow-
ing command:

java -classpath TestWebServiceClient.jar;
C:\bea\weblogic81\server\lib\webserviceclient.jar;.

StaticClient

After you execute your application, you’ll see the result of calling the web
service. Figure 10-3 shows the client program being executed.

You probably noticed a delay of a few seconds before the output was dis-
played. This is a result of the overhead that the web service incurs as the
JVM starts up and data is posted between the web server and web client. The
overhead for a web service is considerably more than that for an EJB. As a
result, you should use EJBs for your program’s internal use. Use web services
to allow external applications to access your EJBs through the Internet.

Figure 10-3:
Running

the client
application.

179Chapter 10: Accessing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 179

In this section, you found out how to call a client using a static connection to
the web service. You can also choose to call your web service dynamically, a
topic described in the next section.

Using a Dynamic Client
A dynamic client can change virtually anything about the way in which the
web service is accessed at run time. All information about which web service
to access is given dynamically to Java. I will begin by showing you how to
construct the dynamic client.

Constructing the dynamic client
Producing a dynamic client involves fewer steps than producing a static
client because a dynamic client doesn’t require a client stub file. However,
calling methods through the dynamic interface is not as natural for a Java
programmer.

In addition, method names and parameters are specified as strings, so you
won’t catch errors when compiling. If you specify the wrong method name for
the dynamic client, you won’t know until your program runs. Specifying an
invalid method name with a static client would cause a compile error. The
complete dynamic client source code is shown in Listing 10-3.

Listing 10-3: Dynamic Client

import java.util.Properties;
import java.net.URL;
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;
import weblogic.soap.SoapType;
import weblogic.soap.codec.CodecFactory;
import weblogic.soap.codec.SoapEncodingCodec;
import weblogic.soap.codec.LiteralCodec;

public class DynamicClient{

public static void main(String[] arg) throws Exception{

CodecFactory factory = CodecFactory.newInstance();

180 Part III: Employing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 180

factory.register(new SoapEncodingCodec());
factory.register(new LiteralCodec());

WebServiceProxy proxy = WebServiceProxy.createService(
new URL(

“http://localhost:7001/testWebService/TestWebServi
ce”));

proxy.setCodecFactory(factory);
proxy.setVerbose(true);

SoapType param = new SoapType(“intVal”, Integer.class);
proxy.addMethod(“sampleMethod”, null, new SoapType[]{

param });
SoapMethod method = proxy.getMethod(“sampleMethod”);

Object result = method.invoke(new Object[]{ new
Integer(3)});

}
}

First, you must register the correct codecs. A WebLogic codec, which stands
for code/decode, translates Java objects to and from SOAP XML. (When the
term codec is used with multimedia files such as MPEG and Quicktime, it
means compressor/decompressor.) If you’re missing a codec, you get an
error when you transmit your request:

CodecFactory factory = CodecFactory.newInstance();
factory.register(new SoapEncodingCodec());
factory.register(new LiteralCodec());

A proxy must be set up that will get your method context. The proxy is used
as an intermediary to connect to the web service and ultimately to allow you
to communicate with the web service. You use the method context to send
your method call:

WebServiceProxy proxy = WebServiceProxy.createService(
new URL(

“http://localhost:7001/testWebService/TestWebServi
ce”));

proxy.setCodecFactory(factory);

The method context is very important. The method context is the object that
you use to invoke methods on the web service. If any errors are reported,
they should be reported verbosely, which means with as much detail as possi-
ble. The following command sees to this:

proxy.setVerbose(true);

181Chapter 10: Accessing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 181

Next, parameters must be constructed. sampleMethod takes one parameter,
an int, and returns a string:

SoapType param = new SoapType(“intVal”, Integer.class);

Next, sampleMethod is obtained using the method name and parameter
array:

proxy.addMethod(“sampleMethod”, null, new SoapType[]{ param
});

SoapMethod method = proxy.getMethod(“sampleMethod”);

Finally the method is invoked, passing 3 as the parameter. The result is then
displayed:

Object result = method.invoke(new Object[]{ new Integer(3)}
);

System.out.println(result);

To compile this application, you must make sure that the WebLogic JAR file is
in classpath. The following command compiles the client:

javac -classpath
TestWebServiceClient.jar;C:\bea\weblogic81\server\
lib\weblogic.jar DynamicClient.java

Now that you’ve compiled the client, you’re ready to run it.

Running the dynamic client
To run the client application, the WebLogic JAR file must be in classpath.
The following command runs the client application:

java -classpath
TestWebServiceClient.jar;C:\bea\weblogic81\server\
lib\weblogic.jar;.DynamicClient

This program, like the static client example, outputs the word three to the
console.

In this chapter and in Chapter 9, you create and use web services. In Chap-
ter 11, you use WebLogic Workshop, which is a GUI tool provided by
WebLogic to assist in the creation of web services.

182 Part III: Employing Web Services

h524720 Ch10.qxd 5/20/03 8:39 AM Page 182

Chapter 11

Using WebLogic Workshop
In This Chapter
� Creating a web service with Workshop

� Debugging your web service

� Packaging and deploying your web service

Creating a web service can be difficult, especially for those unfamiliar with
J2EE. That’s why BEA introduced WebLogic Workshop, a full-featured IDE

for creating and debugging web services. WebLogic Workshop was designed
to help several groups of people:

� Non-J2EE programmers who want to create web services

� Non-technical designers who want to create web services

� Advanced J2EE developers who want to become more productive by
allowing debugging

Many non-Java languages that use web services include similar IDEs.
Resource Workshop simplifies Java web service programming. Regardless of
which group you’re in, read on to find out how to create your own web ser-
vice using WebLogic Workshop.

Creating a Web Service
The web service you create will be similar to the one in Chapter 9. But in
Chapter 9, you create the web service manually. In this chapter, you use
Workshop to perform many of the mundane tasks of setting up the web ser-
vice and the configuration files.

The following general steps are required when creating a web service:

1. Create a Workshop application.

2. Create your web service.

h524720 Ch11.qxd 5/20/03 8:39 AM Page 183

3. Add methods to your web service.

4. Test your web service.

Creating a Workshop application
and a web service
The first step in creating a web service with Workshop is to create an applica-
tion file. This file will hold not only web services, but also EJB and database
connections.

It’s not necessary to have WebLogic Server running to start WebLogic
Workshop. Instead, you can start WebLogic Server from WebLogic Workshop.

To create an application file and a web service, follow these steps:

1. Start BEA WebLogic Workshop.

Choose Start➪BEA WebLogic Platform 8.1➪WebLogic Workshop. The
screen shown in Figure 11-1 appears.

Figure 11-1:
The opening

screen
of BEA

WebLogic
Workshop.

184 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 184

2. Create an application by choosing File➪New➪Application.

3. Type a name for your application, and then click Create.

To follow along with the example, type WorkshopWebService for the
name, as shown in Figure 11-2.

4. Right-click WorkshopWebService (from the tree at the left under the
Application tab) and choose New➪Web Service.

The Create New File dialog box appears.

5. Type a name for the web service.

To follow along with the example, type MyService, as shown in
Figure 11-3.

6. Click OK.

The screen shown in Figure 11-4 appears. Your web service is set up.

At this point, you’ve created your application (WorkshopWebService) and
web service (MyService). In the next section, you add some methods.

Adding methods to your web service
For the web service to be of any use, you must add methods to it. Inside the
methods, you can place Java code that carries out the tasks needed by your
web service. The methods are called by the client programs that access your
web service. (For more information on web service clients, see Chapter 10.)

Figure 11-2:
Creating an
application.

185Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 185

Figure 11-4:
Your

new web
service.

Figure 11-3:
Creating

a web
service.

186 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 186

To add a method to the web service, follow these steps:

1. Add the method.

On the Design View tab in the center of the screen (see Figure 11-4), click
Add Operation and choose Add Method. A method name appears inside
the web service.

2. Type a new name for your method.

To follow along with the example, type myMethod. The screen shown in
Figure 11-5 appears. Now that you’ve created your method, you need to
give it some parameters and define its body.

3. Open the code editor.

Click the method name to display the code editor.

4. Program the method.

Move the cursor into the body of your method and specify a return type
of String and a single integer parameter, as shown in Figure 11-6. All
operations performed by the web service are specified using Java code.

Figure 11-5:
Creating the

method.

187Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 187

Your method should match Listing 11-1.

Listing 11-1: The myMethod Method

{
/** @common:context */
JwsContext context;

/**
* @common:operation
*/
public String myMethod(int i)
{

switch(i)
{

case 1:return “one”;
case 2:return “two”;
case 3:return “three”;
case 4:return “four”;
case 5:return “five”;
case 6:return “six”;
case 7:return “seven”;
default:return “Other Number”;

}
}

}

Figure 11-6:
Modifying

the method.

188 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 188

Now that you’ve created a method, you’re ready to test your web service by
accessing it using a browser.

Testing your web service
To test your web service, you must first start the web server. Simply choose
Tools➪Start WebLogic Server. The server starts and you remain in Workshop,
as shown in Figure 11-7.

You could test the web service by using a client program, such as the one in
Chapter 10, but a faster way is to use a browser.

The browser interface can be used for any WebLogic web service, not just
web services created with Workshop.

When you create a web service, it’s often for the benefit of some external
entity, such as a client or a vendor. Because of this, you will rarely develop
the client applications of a web server. However, you still need a client to test
your application.

Figure 11-7:
Running

WebLogic
from

Workshop.

189Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 189

If you access the URL of the web service from a browser, you enter a web
application that WebLogic provides for testing your web service. Using this
approach, you can quickly test your web application without the need to
create a client program.

By default, Workshop uses a web server running on the current machine,
using port 7001. If you already have WebLogic Server running on that
machine and port, Workshop fails to start the server.

Follow these steps to access your web service using its URL and a browser:

1. Make sure that your web service is running.

On the Workshop toolbar, click the light blue arrowhead, which is
labeled in Figure 11-8. Workshop automatically opens a browser window
to your web service, as shown in Figure 11-9.

Start web service

Figure 11-8:
Starting

your web
service.

190 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 190

2. Type the parameters for your web service.

Click the Test Form tab. If you’re using the example web service devel-
oped so far in this chapter, type 1.

3. Call your method and observe the results.

Click the button that has the same name as your method (myMethod).
The results page is shown in Figure 11-10.

4. End the service.

To do so, click the red x icon on the toolbar, which is labeled in
Figure 11-11.

These steps show you how to test the output that a web service returns for
the specified input. Although this can be a great aid in debugging, you often
need more information to debug a program. In the next section, you find out
how to use the WebLogic debugger.

Figure 11-9:
Accessing

your web
service.

191Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 191

Stop web service

Figure 11-11:
Stopping
your web

service.

Figure 11-10:
Viewing

the results.

192 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 192

Debugging Web Services
Workshop includes features that allow you to perform any of the following
debugging tasks:

� Set breakpoints to pause the web service on particular lines of code

� Inspect the values of variables used by your web service

� Evaluate exceptions thrown as your web service runs

In this section, you go through a typical debugging session. During this ses-
sion, you set a breakpoint in your web service. A breakpoint is placed on a
single line of code to pause program execution when the breakpoint line is
reached during execution. When the program is paused, you will be able to
inspect the values of variables and ultimately continue or end execution of
the web service.

1. Start your web service.

Click the Start web service icon, which is labeled in Figure 11-8.

2. Set a breakpoint.

Right-click to the left of the switch statement and choose Toggle
Breakpoint. The screen shown in Figure 11-12 appears.

Figure 11-12:
Setting a

breakpoint.

193Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 193

3. Use a web browser to execute your web service.

For more information, see the “Testing your web service” section.
When the web service reaches the breakpoint, the screen shown in
Figure 11-13 appears.

4. Check the values of your variables after the breakpoint.

5. To continue execution, click the green arrow. To stop execution, click
the red dot.

After you encounter a breakpoint, a number of actions are available by click-
ing tools on the toolbar:

� Stop. Stops debugging the web service. After you click Stop, you must
restart the web service to continue debugging.

Step Out

Step Over Continue

Toggle Breakpoint

Clear All Breakpoints

Step Into

Stop

Figure 11-13:
The

breakpoint
is reached.

194 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 194

� Step Into. If you’re positioned on a method call, clicking Step Into causes
the debugger to enter the method rather than pass over it.

� Step Over. If you’re positioned on a method call, clicking Step Over
causes the debugger to skip this method.

� Step Out. If you’re positioned inside a method call, clicking Step Out
causes you to leave that method.

� Continue. Allows the web service to run freely after being stopped. The
program continues until it reaches the next breakpoint.

Now that you’ve used Workshop to create, test, and debug your web service,
it’s time to see how to package and deploy it.

Packaging and Deploying Web Services
In the previous sections, you found out how to create and make use of web
services using only Workshop. Sometimes, however, you’ll want to package
your files for use elsewhere. For example, you might want to

� Archive your newly created web service

� Copy your web service to a different development server

� Copy your web service to a production server

In this section, you find out how to package and deploy your web service.
You begin by examining the directory structure Workshop creates when you
create a web service.

Directory locations
When you create a web service using Workshop, it creates a web application
to contain your web service. This web application is stored in the samples
directory of WebLogic. For example, if you created the WorkshopWebService
example in this chapter, this web service is stored in the following location:

C:\bea\weblogic81\samples\workshop\WorkshopWebService

If you examine this directory, you’ll see the same folder structure as was used
for a web application, as discussed in Chapter 5. The complete directory tree
used by a web service is shown in Figure 11-14.

195Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 195

Workshop stores your files in a subdirectory of the samples directory. This
might be confusing, in that you may assume that the samples directory con-
tains only WebLogic examples.

Packaging a web service
In this section, you package a web service created with Workshop. The final
product will be an EAR file. This EAR file contains the enterprise application
that contains the web service.

To create the EAR file, you use JwsCompile. This program, which is invoked
from a command prompt, has eighteen command-line options but you need
to concern yourself with only a few of them.

If you want to see what command-line options are available for JwsCompile,
issue the following command:

jwscompile -help

Figure 11-14:
The

directory
structure
of a web
service.

196 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 196

JwsCompile is in the bin directory of WebLogic Server. This directory must
be in your path if you want to execute JwsCompile from the command line.

The following command line compiles the sample web service created in this
chapter:

JwsCompile –p C:\bea\weblogic81\samples\workshop\
WebLogicWebService –a –ear
C:\WebLogicWebService.ear

The three options in this command follow:

� The –p option specifies the directory that contains the application
source. WebLogic Workshop placed the example application in the fol-
lowing directory:

C:\bea\weblogic81\samples\workshop\WebLogicWebService

� The –a option specifies that all the files that make up the application
should be compiled by JwsCompile.

� The–ear option instructs JwsCompile to create an EAR file as its output
and tells JwsCompile where to place that file. In this instance, the file is
called WebLogicWebService.ear, and it’s placed in the root directory of
the C: drive. This file contains your web service, packaged and ready to
deploy.

Packaging for a different host
When you execute JwsCompile, an EAR file is produced that will work for a
server running on a particular host name and port. The host name used is
whatever machine JwsCompile runs on. The default port is 7001, which is
standard for WebLogic Server. If you want your EAR to run on a different
machine, you must place the named weblogic-jws-config.xml configuration
file in the application’s WEB-INF directory.

In a multi-web service application, you might have more than one weblogic-
jws-config.xml file. You can easily allow more than one web service by speci-
fying appropriate parameters on the command line when running
JwsCompile. By doing this, you can specify an alternate name for the
weblogic-jws-config.xml file.

Listing 11-2 shows sample a weblogic-jws-config.xml file for deploying the
WorkshopWebService web service to a machine named MyServer.

197Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 197

Listing 11-2: Sample weblogic-jws-config.xml File

<config>

<protocol>http</protocol>
<hostname>MyServer</hostname>
<http-port>7001</http-port>
<https-port>7002</https-port>

<jws>

<class-name>WorkshopWebService</class-name>
<protocol>http</protocol>

</jws>

</config>

Table 11-1 describes the purpose of each of the tags in Listing 11-2.

Table 11-1 weblogic-jws-config.xml Attributes
Tag What It Is

protocol The protocol to use with this web service. This tag
usually contains the string http.

hostname The host name for the computer.

http-port The port used with the HTTP protocol.

https-port The port used with the HTTPS protocol.

class-name The name of the web service.

protocol The default protocol.

Now that you’ve seen how to package your web service, it’s time to find out
how to deploy it.

Deploying web services
Deploying a web service is the same process as deploying an enterprise
application. The web service is contained in an EAR file. When the EAR file is
deployed, it implements the web service.

198 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 198

The steps to deploy a web service follow:

1. Make sure that WebLogic Server is running, and log on to
Administration Console at http://localhost:7001/console.

2. Click the Deployments folder and then the Application folder.

3. Click the Configure a new Application link.

4. Type the name of the EAR file that you’ll be uploading to the server.

5. Upload your file, and then click the [select] link that appears next to
your newly uploaded file.

6. Target one or more servers by selecting the server on the left and
clicking the arrow to move it to the list on the right. Type a name for
your application. Then click Configure and Deploy.

After a few moments, the deployed status goes to the value of true.
Your application is now deployed.

For more information on how to deploy web services, refer to Chapter 8.

199Chapter 11: Using WebLogic Workshop

h524720 Ch11.qxd 5/20/03 8:39 AM Page 199

200 Part III: Employing Web Services

h524720 Ch11.qxd 5/20/03 8:39 AM Page 200

Part IV
The Forgotten

Services

i524720 PP04.qxd 5/20/03 8:39 AM Page 201

In this part . . .

Many message services are available with WebLogic.
In this part you find out how to use four of them:

JMS, JBDC, JTA, and JNDI.

JMS (Java Message Service) allows client programs to
send and receive messages. Messages can be sent from
one program to one or more programs. JDBC (Java
Database Connectivity) allows Java programs to access
database services. You set up JDBC for use with WebLogic
and use connection pools to more efficiently handle data-
base access.

JTA (Java Transactions) allows database requests to be
grouped into transactions, which will succeed or fail as a
whole. This allows you to prevent partial transactions
from occurring due to an error. JNDI (Java Naming and
Directory Interface) allows Java programs to locate
named resources on a network. WebLogic uses JNDI to
access EJBs, connection pools, and other services.

i524720 PP04.qxd 5/20/03 8:39 AM Page 202

Chapter 12

Accessing Data with JDBC
In This Chapter
� Configuring a connection pool for your database

� Creating a data source for your connection pool

� Using your data source and connection pool

� Monitoring your connection pool

Databases are a crucial component of nearly any successful web site
or business application. In a distributed application server such as

WebLogic, managing the connection between many concurrently executing
instances of an EJB and the database can be difficult. WebLogic acts as an
intermediary, allowing your EJBs to make the most efficient use of connec-
tions to the database.

To use a database from an EJB, you have two options. You can use JDBC to
directly connect to the database (also known as bean-managed persistence,
or BMP), just like you would in any other Java program, or you can use
WebLogic’s built-in connection pools to manage your database connections
(also known as container-managed persistence, or CMP). Regardless of the
strategy you choose, using WebLogic connection pools can enhance the per-
formance of your application considerably. In this chapter, you find out about
both approaches.

Creating a Connection Pool
To use a database in Java, you must first open a connection to that database.
A database connection is a resource in Java that adds processing overhead,
so you want to minimize the number of open connections to the database.
You might think that it would be best to open a database connection, perform
the operation, and then immediately close the connection. But this approach
introduces the overhead of opening and closing database connections. The
overhead of opening a connection can be ten to a hundred times as expen-
sive as the requested data transfer. The answer to the problem of opening
and closing connections is to use a connection pool.

j524720 Ch12.qxd 5/20/03 8:39 AM Page 203

A connection pool is a group of database connections that remains open to
the database. When your program needs to access the database, it requests
a connection from the connection pool. The program is then given a connec-
tion to use for its database operations. To your program, the connection
seems like a regular database connection. However, you don’t close the data-
base connection when you’re finished using it. Instead, you release the data-
base connection back to the connection pool, so it can be used later.

The connection pool prevents Java from having to deal with the overhead of
opening and closing connections. Further, the system is kept from creating
too many connections and degrading performance. The task of obtaining a
proper performance balance with the maximum allowable number of open
connections is left to the system administrator, not the web application logic.

To create a connection pool, follow these steps:

1. Log on to Administration Console as follows:

a. Make sure that WebLogic Server is running.

b. Start your favorite web browser.

c. In the browser, type the URL of your server’s Administration
Console, at http://localhost:7001/console.

d. Type your username and password, and then click Sign In.

For more information on using Administration Console, see Chapter 4.

2. On the left side of the screen, click the Services folder, then click the
JDBC folder, and then click the Connection Pools folder.

A screen similar to the one in Figure 12-1 appears. If you previously con-
figured any connection pools, they are listed instead, but you can still
create another connection pool.

3. Click the Configure a new JDBC Connection Pool link.

The screen shown in Figure 12-2 appears.

4. Enter the required information for your data source.

The two most important pieces of information are the driver class name
and the URL. Any database that you use with Java should provide these
two values in the documentation. The values entered in Figure 12-2 are
for the ODBC bridge driver, which enables you to access any ODBC-
compatible driver for which you have a DSN. In a production environ-
ment, you’d probably use Oracle, DB2, MySQL, or some other database.

If you enter invalid data while setting up your connection pool, you
won’t receive an immediate error. Instead, an exception is thrown when
you try to use the connection pool.

204 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 204

Figure 12-2:
Config-

uring the
connection

pool.

Figure 12-1:
Getting

ready to
create a

connection
pool.

205Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 205

5. Click Create.

You might need to click the scroll bar to see the Create button. Little will
change in the window. You’ll know that you’ve successfully created the
connection pool by the fact that you can no longer change the name of
the data source.

Defining a Data Source
After you have a connection pool, you must attach it to a data source. It’s
through this data source that WebLogic accesses your database. By having
the EJBs connect to data sources directly, you can quickly map data sources
to other connection pools. This can be useful if you need to temporarily con-
nect your application to a different database.

To create a data source, follow these steps:

1. Log on to Administration Console.

For details, see Step 1 in the preceding section.

2. On the left side of the screen, click the Services, JDBC, and then Data
Sources folders.

A screen similar to the one in Figure 12-3 appears. If you previously cre-
ated any data sources, they’re listed instead, but you can still create
another data source.

3. Click the Configure a new JDBC Data Source link.

The screen shown in Figure 12-4 appears.

4. Enter the required information for your data source.

The two most important pieces of information are the data source name
and the JNDI name. Administration Console uses the data source name
to refer to your data source. Java programs and EJBs use the JNDI name
to access your data source. Additionally, you must specify the name of
the pool that this data source will reference, which is the pool that you
created in the preceding section.

If you enter invalid data while setting up your data source, you won’t
receive an immediate error. When you try to use your data source,
however, an exception will be thrown.

5. Click Create.

After you create your data source, little will change in the window. You
will know that the procedure worked by the fact that you can no longer
change the name of the data source.

206 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 206

Figure 12-4:
Configuring

the data
source.

Figure 12-3:
Getting

ready to
create the

data source.

207Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 207

Now you’re ready to see whether your EJBs can access your newly created
data source and connection pool. This topic is covered in the next section.

Using JDBC with EJBs
In this section, you use the data source and connection pool that you just
created. You implement a simple EJB that makes use of JDBC. I show you
some of the most common ways that JDBC is used, providing examples of the
following:

� Executing SQL statements

� Working with a result set

� Using prepared statements

For this example, you need to create an EJB. I show you all the files necessary
to create this EJB, but I don’t go into the specific steps for compiling, deploy-
ing, and executing this bean. For more information about those tasks, see
Chapter 6.

To properly compile this bean, you need a J2EE bean descriptor. Listing 12-1
is the J2EE descriptor for the JDBC example.

Listing 12-1: J2EE EJB Descriptor

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>JDBCSampleObject</ejb-name>
<home>com.dummies.ejb.JDBCSampleHome</home>
<remote>com.dummies.ejb.JDBCSample</remote>
<ejb-class>com.dummies.ejb.JDBCSampleBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

</ejb-jar>

To compile the bean, you also need the WebLogic-specific bean descriptor.
Listing 12-2 is the WebLogic descriptor for the JDBC example.

208 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 208

Listing 12-2: WebLogic EJB Descriptor

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>JDBCSampleObject</ejb-name>
<jndi-name>JDBCSampleObject</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Listing 12-3 is the home class that’s compatible with the JDBC example.

Listing 12-3: JDBC Sample Home Class

package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;

public interface JDBCSampleHome extends EJBHome
{
public JDBCSample create()
throws RemoteException,CreateException;

}

Listing 12-4 is the bean interface that’s compatible with the JDBC example.

Listing 12-4: JDBC Example Bean Interface

package com.dummies.ejb;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

public interface JDBCSample extends EJBObject
{
public void execute()
throws RemoteException;

public void prepared()
throws RemoteException;

public Collection query()
throws RemoteException;

}

209Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 209

Finally, Listing 12-5 is the complete bean implementation class.

Listing 12-5: JDBC Example Implementation

package com.dummies.ejb;

import javax.ejb.*;
import javax.naming.*;
import javax.sql.*;
import java.sql.*;
import java.rmi.RemoteException;
import java.util.Vector;
import java.util.Enumeration;
import java.util.*;

public class JDBCSampleBean implements SessionBean
{

private SessionContext stx;

//Required methods, not used by this type of bean
public void ejbCreate(){}
public void ejbRemove(){}
public void ejbActivate(){}
public void ejbPassivate(){}

// setter for the SessionContext
public void setSessionContext(SessionContext ctx)
{
ctx = this.stx;

}

public void execute()
throws RemoteException

{
Connection conn = null;
Statement statement = null;

try {
conn = getConnection();
String sql = “INSERT INTO t_student(f_id, f_first,

f_last) VALUES(1,’John’,’Smith’)”;
statement = conn.createStatement();
statement.executeUpdate(sql);

} catch (Exception e) {
System.out.println(e);

} finally {
handleCleanup(conn,null,null,statement);

}

210 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 210

}

public void prepared()
throws RemoteException

{
Connection conn = null;
PreparedStatement ps = null;

try {
conn = getConnection();
String sql = “INSERT INTO t_student(f_id, f_first,

f_last) VALUES(?,?,?)”;
ps = conn.prepareStatement(sql);
ps.setInt(1,1);
ps.setString(2,”John”);
ps.setString(3,”Smith”);
ps.executeUpdate();

} catch (Exception e) {
System.out.println(“Error:” + e);

} finally {
handleCleanup(conn,ps,null,null);

}

}

public Collection query()
throws RemoteException

{
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
Collection result = new ArrayList();

try {
conn = getConnection();
String sql = “SELECT f_id, f_first,f_last FROM

t_student”;
ps = conn.prepareStatement(sql);
rs = ps.executeQuery();

while(rs.next()) {
result.add(rs.getString(3));

}
} catch (Exception e) {
System.out.println(e);

} finally {
handleCleanup(conn,ps,rs,null);

}

(continued)

211Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 211

Listing 12-5 (continued)

return result;

}

private Connection getConnection() throws NamingException,
SQLException {

InitialContext ic = new InitialContext();
DataSource ds =

(DataSource)ic.lookup(“java:comp/env/jdbc/SchoolDa
taSource”);

return ds.getConnection();
}

private void handleCleanup(Connection
conn,PreparedStatement ps,ResultSet rs,Statement
statement)

{
// make sure the connection is returned to the connection

pool
try {
if (rs!=null)
rs.close();

if(statement!=null)
statement.close();

if (ps!=null)
ps.close();

if (conn!=null)
conn.close();

} catch (SQLException e) {
}

}
}

Next, I will explain how this example was constructed, beginning with how you
obtain a connection from a data source. If you’re familiar with JDBC, you’ll find
that nothing is changed when you use JDBC from a WebLogic data source and
connection pool, except the method by which you obtain the connection.

Obtaining the connection
To perform any database operation, you must first obtain a database connec-
tion. This is a common process, so it will be placed in a method. This way,
you won’t have to duplicate the code everywhere that you need a connec-
tion. This method will be named getConnection, as follows:

212 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 212

private Connection getConnection() throws NamingException,
SQLException {

InitialContext ic = new InitialContext();
DataSource ds =

(DataSource)ic.lookup(“java:comp/env/jdbc/TestData
Source”);

return ds.getConnection();
}

The process for obtaining a connection using a WebLogic data source is
easy. JDBC data sources are obtained through JNDI, a service that allows
string-based names to be associated with services. First, an initial context is
obtained; this gives you access to JNDI. Then the data source name is looked
up using the java:comp/env/jdbc/TestData identifier. Although the data
source has this lengthy name, you specify only the TestData name when set-
ting up the data source. The comp/env/jdbc portion is added automatically.
The java: portion specifies the protocol; you should always use java:. For
more information about JNDI, refer to Chapter 13.

Closing the data source
When you’re finished with a data source, you should release your data source
back to the pool. The following method handles this task:

private void handleCleanup(Connection conn,PreparedStatement
ps,ResultSet rs,Statement statement)

{
// make sure the connection is returned to the connection

pool
try {
if (rs!=null)
rs.close();

if(statement!=null)
statement.close();

if (ps!=null)
ps.close();

if (conn!=null)
conn.close();

} catch (SQLException e) {
}

}

Connection, PreparedStatement, ResultSet, and Statement are passed
in. If any of these values is not null, the close method is called on each one.
SQLException errors are caught but ignored because you’re closing the data
source.

213Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 213

Executing an SQL statement
In the preceding example, you executed a SELECT statement that returns
data. The INSERT, DELETE, and UPDATE SQL statements do not return data.
These SQL statements are commands to alter the database, not requests for
data. When you execute an INSERT, DELETE, or UPDATE command, you should
execute the executeUpdate method, which doesn’t expect data to be
returned. The following code shows this:

public void execute()
throws RemoteException

{
Connection conn = null;
Statement statement = null;

try {
conn = getConnection();
String sql = “INSERT INTO t_student(f_id, f_first,

f_last) VALUES(1,’John’,’Smith’)”;
statement = conn.createStatement();
statement.executeUpdate(sql);

} catch (Exception e) {
System.out.println(e);

} finally {
handleCleanup(conn,null,null,statement);

}
}

You begin by getting the connection. Next, the SQL statement is assigned to
the sql String. A statement is created and the SQL is passed to the
executeUpdate method.

Note that John and Smith are inserted directly into the SQL. Because these
values will change, depending on what name you use, you should make them
parameters. This will allow you to use the same SQL no matter what name
you’re inserting. This technique is shown in the next section.

Using prepared statements
A prepared statement allows you to insert parameters into an SQL statement.
The following method uses a prepared statement named ps:

public void prepared()
throws RemoteException

{
Connection conn = null;

214 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 214

PreparedStatement ps = null;

try {
conn = getConnection();
String sql = “INSERT INTO t_student(f_id, f_first,

f_last) VALUES(?,?,?)”;
ps = conn.prepareStatement(sql);
ps.setInt(1,1);
ps.setString(2,”John”);
ps.setString(3,”Smith”);
ps.executeUpdate();

} catch (Exception e) {
System.out.println(“Error:” + e);

} finally {
handleCleanup(conn,ps,null,null);

}

}

This method starts out like the one before it. A connection is obtained and an
SQL is specified. Note, however, that this SQL includes question mark values.
These are parameters that will be added later by using the set methods of
the prepared statement.

If you use prepared statements, make sure that you’ve set the values of all
specified parameters. Otherwise, you’ll get an error.

Submitting a query
A query is an SQL statement that returns data. The following code performs a
query:

public Collection query()
throws RemoteException

{
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
Collection result = new ArrayList();

try {
conn = getConnection();
String sql = “SELECT f_id, f_first,f_last FROM

t_student”;
ps = conn.prepareStatement(sql);
rs = ps.executeQuery();

while(rs.next()) {

215Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 215

result.add(rs.getString(3));

}
} catch (Exception e) {
System.out.println(e);

} finally {
handleCleanup(conn,ps,rs,null);

}
return result;

}

This code uses PreparedStatement as well. A select statement retrieves
all the data from the table. To move through the returned data, you use a
result set named ResultSet. This result set allows you to access the rows
and fields of the database being returned. The next method of ResultSet is
used to move to the next row and also to verify that more data is coming.
This method copies every last name into a collection of strings.

Monitoring JDBC
One problem with connection pools is that they may have too many
requested connections to be effective. If you’re not aware of the number
of requested connections, you should monitor the current state of your con-
nection pools.

You monitor only at the connection pool level. You can’t monitor at the data
source level.

To monitor your connection pool, follow these steps:

1. Make sure that your connection pool and data source are set up and
targeted to the correct server.

2. Make sure that your server is running, and then log on to
Administrative Console.

For details on logging on, see the “Creating a Connection Pool” section.

3. On the left side of the screen, click the following folders: Services,
JDBC, Connection Pools, and then SchoolPool.

4. Click the Monitoring tab.

The screen shown in Figure 12-5 appears. From this screen, you can
monitor the usage of your connection pool.

216 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 216

Figure 12-5:
Monitoring

your con-
nection

pool.

217Chapter 12: Accessing Data with JDBC

j524720 Ch12.qxd 5/20/03 8:39 AM Page 217

218 Part IV: The Forgotten Services

j524720 Ch12.qxd 5/20/03 8:39 AM Page 218

Chapter 13

Finding EJBs with JNDI
In This Chapter
� Figuring out what JNDI is

� Listing an EJB in the JNDI phone book

� Finding an EJB in the JNDI phone book

Application servers, such as WebLogic, allow you to provide Enterprise
Java Beans (EJBs) to client programs that are often running on computers

other than the application server. These EJBs do the client programs no good if
the client can’t find them. In this chapter, I explain what you need to do so that
your client programs can find the EJBs made available through WebLogic.

This is not a complex process. In fact, the process that a client program uses
to find an EJB is similar to the process that you use to find the phone number
to a pizza parlor: You look it up in a directory. Just as the phone book enables
you to connect a pizza parlor’s name with its phone number, JNDI (Java
Naming and Directory Interface) enables your client programs to connect EJB
names with the more technical and difficult-to-remember numbers that the
program needs to find and use the EJBs.

In this chapter, you find out how to do two important tasks that enable your
client application to find and use EJBs:

� Making resources available with JNDI

� Finding resources with JNDI

As a WebLogic administrator, you’ll become pretty familiar with these two
tasks. WebLogic also uses JNDI with JMS (Java Message Service), which is
covered in Chapter 15.

Understanding JNDI
WebLogic administrators use JNDI to help others locate the EJBs stored on
WebLogic Server. That is the main purpose of JNDI — to locate Internet

j524720 Ch13.qxd 5/20/03 8:39 AM Page 219

resources, such as EJBs. Locating a resource based on its name is an impor-
tant function of the Internet. Every time you use a browser to access a web
site, you’re using a network name resolution system. The host name of the
server that you’re trying to access must be translated from a human readable
name (such as www.yahoo.com) to an IP address that the computer uses to
access the web site.

JNDI is a specification that Sun created for Java to standardize network name
resolution. Rather than having a variety of different interfaces for different
name resolution systems, JNDI gives you one standard application program-
ming interface (API) to program to. In this way, programmers don’t have to
waste time learning new interfaces to network name resolution software.

Many books about JNDI explain how to create your own JNDI-compatible
interface for your applications. In this book, however, you find out how to use
a JNDI interface, in particular the JNDI interface in WebLogic.

JNDI is more of a protocol than an actual program. Sun has defined a stan-
dard way for directories to work and any directory that adheres to this stan-
dard can be said to be JNDI compliant.

JNDI makes available two primary services:

� Naming service. Allows names to be used to locate and retrieve objects.

� Directory service. Allows attributes to be specified and a search to be
performed.

To understand the differences between the two, it helps to think of how you
use a phone book. The naming service is similar to the white pages, which
you use to look up a person or business when you know the exact name. The
directory service resembles the yellow pages, which you use when you know
what sort of a business you’re looking for but don’t know the exact name.
You look up a category, such as plumbing or picture framing, and then skim
the yellow pages looking at the advertisements and find one that most
closely matches that attributes that you’re looking for.

Understanding JNDI names
You use a JNDI name to reference an EJB. A JNDI name has no preset format,
but it does follow a few rules. The name must start with a letter. The rest of
the name can contain periods, hyphens, numbers, and letters, for example,
MyEJBCollection.My1stEJB. Now that you understand the format of a JNDI
name, you’re ready to begin using EJBs that have JNDI names.

220 Part IV: The Forgotten Services

j524720 Ch13.qxd 5/20/03 8:39 AM Page 220

JNDI as a universal naming service
DNS is only one of many naming services available on the Internet. The com-
mands to use naming services vary greatly from one service to the next. There
is already enough to learn without having to learn the idiosyncrasies of indi-
vidual name services. This is where JNDI comes in to make life easier.

JNDI provides a common programming interface to access different name
services. You have to understand only one programming interface to use
many services. Table 13-1 summarizes some of the common services that
JNDI gives you access to.

Table 13-1 Common Services Available Through JNDI
Abbreviation Name What It Does

COS Common Object Services Accesses CORBA resources, which
are an alternative to EJBs. When
using WebLogic, you usually use
EJBs over CORBA resources.

DNS Domain Name Service Looks up the IP address for
addresses, such as www.
dummies.com.

(continued)

221Chapter 13: Finding EJBs with JNDI

Understanding naming services
JNDI provides a standard way to access name
servers using Java. This means that if a Java
program is written to be compatible with JNDI,
this program is compatible with any other
naming system that is also compatible with JNDI.

Name services are common on the Internet. You
use a name service (DNS, or domain name ser-
vice) every time you launch your browser and
reach a web page.

If you open a browser and enter the URL
www.dummies.com, for example, you are taken

to the For Dummies home page. To find this page,
you remembered a uniform resource location, or
URL. This is just a fancy term for a name entry in
a DNS. But this is not the actual site address that
the computer uses. The actual address to this
site is the IP address 208.215.179.139. DNS
enables you to remember www.dummies.com
rather than the much longer IP address. The
naming service takes care of translating
between the two.

j524720 Ch13.qxd 5/20/03 8:39 AM Page 221

Table 13-1 (continued)
Abbreviation Name What It Does

LDAP Lightweight Directory Accesses named Internet resources.
Access Protocol LDAP is an alternative to DNS

developed by the University of
Michigan and endorsed by more
than 40 companies.

NIS Network Information System Accesses named Internet resources.
NIS is an alternative naming service
developed by Sun Microsystems.

Implementing JNDI Using WebLogic
WebLogic is fully compliant with the JNDI standard, which means that any
Java program designed to work with JNDI can be used also with WebLogic.
To be compliant with JNDI, WebLogic must:

� Allow client programs to access WebLogic name services

� Allow client programs to access WebLogic objects

By using the WebLogic implementation of JNDI, you can allow your WebLogic
resources to be accessed from client programs running on other computers.
As long as a client program knows the name that your WebLogic resource is
listed under, the program can find the resource.

In this section, you find out how to configure WebLogic to make your objects
available through JNDI. Then you find out how to access these objects from
Java programs.

Making WebLogic resources available
through JNDI
Before other programs can use your WebLogic objects, you must make those
objects available. This step is similar to adding a person’s name to a phone
book. When you add a WebLogic object to the JNDI directory, you associate
the name of the object with the object itself.

222 Part IV: The Forgotten Services

j524720 Ch13.qxd 5/20/03 8:39 AM Page 222

The objects that you make available through JNDI are called Enterprise Java
Beans (EJBs). If you need more information on how to obtain or construct
EJBs, refer to Chapter 6. This chapter assumes that you already have an EJB
that you want to make available under a JNDI name.

EJBs are made up of regular Java classes and configuration files. Like any
other Java class, the class files must be in the correct directory so that
WebLogic (in this case) can find these files and allow your EJB to be used.
You must place the class files to be used with an EJB in the WEB-INF/lib
directory. (For more information on this directory, see Chapter 5.)

The WEB-INF/lib directory is hidden to Internet users accessing your server,
so it’s safe to place files such as an EJB file there. It would be a security risk if
an Internet user were able to download your EJB file and examine it.

To add an EJB, you can use WebLogic Workshop, which is a development tool
that can help set up EJBs Here’s an overview of adding an EJB to WebLogic
using WebLogic Workshop:

1. Make sure that your EJB class files have been copied to WEB-INF/lib.

2. Start WebLogic Workshop.

3. Choose Add EJB from the Designer pull-down menu.

4. Enter the required information.

5. Restart WebLogic.

Now that you know generally how to assign a JNDI name to an EJB, you’re
ready to dive in. Follow these steps:

1. Place your EJB class files in the WEB-INF/lib directory.

On a Windows system with a typical installation of WebLogic, this direc-
tory is usually the following or something similar:

c:\bea\weblogic81\samples\workshop\YourApplication

In Figure 13-1, you can see the files that make up the EJBs that this
instance of WebLogic Server is using. EJBs are usually distributed as
Java archive files, which have the file extension .jar. You should place
your .jar file in the lib directory.

2. Start WebLogic Workshop.

WebLogic Workshop enables you to add an EJB to your application
server. If you need help starting WebLogic Workshop, see Chapter 11.

3. Choose Insert➪Controls➪Add EJB Control.

The screen shown in Figure 13-2 appears, providing many additional
configuration options. Note that the Insert EJB Control dialog box is
divided into three steps.

223Chapter 13: Finding EJBs with JNDI

j524720 Ch13.qxd 5/20/03 8:39 AM Page 223

Figure 13-2:
The EJB
configu-

ration
window.

Figure 13-1:
WebLogic
directory

structure.

224 Part IV: The Forgotten Services

j524720 Ch13.qxd 5/20/03 8:39 AM Page 224

4. In the Step 1 section, type a variable name to reference the EJB in
WebLogic.

The name should describe your EJB and should be unique.

5. In the Step 2 section, choose to use an EJB control or create an EJB
control.

If you’ve already worked with this EJB and created a control file, specify
the file that you would like to use. If you’re using a new EJB, choose to
create an EJB control.

6. In the Step 3 section, type the JNDI name and the class names.

a. In the jndi-name box, type the JNDI name that other applications
use to access this EJB.

Use a name that is meaningful to your application and that is not
duplicated by a similar resource. The name can contain periods,
hyphens, numbers, and letters, but it must start with a letter.

b. In the home interface box, type the name of your EJB’s home class.
In the bean interface box, type the name of your EJB’s bean class.

The home and bean interface boxes allow you to specify the exact
classes used for this EJB. EJBs always have both a home and bean
class. The documentation provided with your EJB should list the
home and bean name for the EJB.

7. Restart WebLogic Server.

You have to restart the server because you added a bean. After
WebLogic Server has been restarted, your EJBs are available.

Congratulations! You’ve finished the first part of the process. In the next sec-
tion, you delve into the second part.

Enabling JNDI to access WebLogic objects
When you create EJBs and make them available with WebLogic Server, other
applications access the functionality of these objects. In this section, you find
out how to use JNDI to access your WebLogic objects from other programs.
The process is summarized as follows:

1. Set up the InitialContext object.

2. Look up the required named object.

3. Use the remote object.

4. Complete the session.

225Chapter 13: Finding EJBs with JNDI

j524720 Ch13.qxd 5/20/03 8:39 AM Page 225

Set up InitialContext
First, you obtain an InitialContext object by providing information about
the object you’re seeking. This information is passed to the InitialContext
object using a hash table. After this table has been constructed, it’s passed to
the constructor of the InitialContext object. Listing 13-1 shows this process.

Listing 13-1: Obtaining an InitialContext

Context context;
Hashtable hashTable = new Hashtable();

hashTable.put(
Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

hashTable.put(Context.PROVIDER_URL,
“t3://localhost:7001”);

try
{
context = new InitialContext(ht);

}
catch (NamingException e)
{
System.out.println(“Error:” + e);

}
finally
{
try
{
context.close();

}
catch (Exception e)
{
System.out.println(“Error:” + e);

}
}

A java.util.Hashtable object is used to organize a collection of name-
value pairs. You can put any number of values into HashTable. Each value
is located using a name. For example, in the preceding code, the name
Context.INITIAL_CONTEXT_FACTORY is used to store the value “weblogic.
jndi.WLInitialContextFactory”. This allows JNDI to accept the following
parameters to control its operation:

� javax.naming.Context.INITIAL_CONTEXT_FACTORY. To access
WebLogic, set this parameter to weblogic.jndi.WLInitial
ContextFactory.

226 Part IV: The Forgotten Services

j524720 Ch13.qxd 5/20/03 8:39 AM Page 226

� javax.naming.Context.PROVIDER_URL. This property specifies the
URL of the WebLogic Server that provides the name service. The default
for this property is t3://localhost:7001.

Note the catch statements in Listing 13-1. The catch statements contain
blocks of code. If any error causes an exception to be raised, the program
immediately executes the catch block.

Look up the named object
Now that you have a context object, you can attempt to look up the object
that you need. Listing 13-2 shows a way to look up a named object.

Listing 13-2: Looking Up a Named Object

try
{
ServiceBean bean =

(ServiceBean)context.lookup(“ejb.serviceBean”);
}
catch (NameNotFoundException e)
{
System.out.println(“Error:” + e);

}
catch (NamingException e)
{
System.out.println(“Error:” + e);

}

An EJB named ejb.serviceBean is looked up. Two catch blocks handle two
types of errors that can occur. The first, NameNotFoundException, occurs
when an invalid EJB name has been specified. The second, NamingException,
handles more generic errors that may occur during the lookup, such as an
I/O error.

Use the remote object
You’re now ready to instantiate an EJB based on the object that you requested,
as shown in Listing 13-3. After you allocate this EJB, you can call the method
provided by the bean.

Listing 13-3: Using the Remote Object

ServiceBean bean =
ServiceBean.Home.create(“ejb.ServiceBean”);

bean.remoteMethod(“some parm”);

227Chapter 13: Finding EJBs with JNDI

j524720 Ch13.qxd 5/20/03 8:39 AM Page 227

An EJB named ejb.ServiceBean is loaded, and then the remoteMethod
method is called and passed a string. You’re now free to use the bean as you
would any other Java bean. When you’re finished with this bean, you should
close the connection.

This step is where you perform the work that you originally set out to do.
Often this step includes many calls to the remote bean. Calling Java beans
is similar to calling methods in regular classes.

One of the main features of beans is that they isolate you from what is going
on. All you have to do is call your bean object, just like you’d access any
other properly formatted object. A lot is going on in the background, as the
request is routed from one computer to the next using EJB and RMI. Usually,
you don’t need to worry about the exact file formats.

Close the connection
When you’re finished with the object, you need to close it. This frees up any
resources that this object was using. This can be seen in Listing 13-4.

Listing 13-4: Closing the Connection

finally
{
try
{
context.close();

}
catch (Exception e)
{
System.out.println(“Error: “ + e);

}
}

It’s a good idea to put the context close inside a finally block. That way,
you can be assured that the close was actually called.

If any exceptions are thrown by this operation, they’re caught by catch. After
a context has been closed, it should not be reused.

You should close the connection when you’re finished with it. A common mis-
conception is that Java does this for you. Although Java frees the memory
associated with the bean, it doesn’t free up any resources that have been
allocated to the bean. This can lead to incomplete results because the bean
was never given a chance to properly exit. Additionally, not calling the close
method causes these resources to never be freed. If this practice continues,
you eventually run out of resources and must restart your application server.

228 Part IV: The Forgotten Services

j524720 Ch13.qxd 5/20/03 8:39 AM Page 228

Chapter 14

Using Transactions with JTA
In This Chapter
� Understanding transactions and when to use them

� Finding out about bean-managed transactions

Transactions are a way to logically group database commands, so that
all commands are processed as a group. If any single command in the

transaction fails, all the other commands fail as well and the effects of those
commands are “rolled back.”

When a transaction is presented to WebLogic, one of two actions will occur:
a commit or a roll back. When a transaction is committed, the changes to the
database are made permanent. When a transaction is rolled back, the changes
to the database are discarded. In this chapter, you discover the basics of using
WebLogic transactions and find out when you should and shouldn’t use them.

Understanding Transactions
Transactions, which are a fundamental feature of WebLogic, allow database
changes to be completed accurately and reliably. These transactions are
based on the ACID (atomicity, consistency, isolation, and durability) proper-
ties for high-performance transaction processing:

� Atomicity. Changes that a transaction makes to a database are made as
a single unit. One failure results in the total failure of the transaction.

� Consistency. The database was valid before the transaction and will
remain valid after the transaction. The database may never enter an
invalid state.

� Isolation. As one operation performs a transaction, the transaction is vis-
ible to no other operations until the transaction completes successfully.

� Durability. A change to the database will survive future system or media
failures.

j524720 Ch14.qxd 5/20/03 8:39 AM Page 229

ACID ensures that database updates are performed as intended: completely
and accurately. To understand why this is important, consider a simple bank
transfer, in which you move $100 from your checking account to your money
market account. This transfer requires several database transactions:

1. Remove $100 from your checking account.

2. Add $100 to your money market account.

3. Add a line to the general ledger to reflect these transactions.

Each operation represents one or more separate database commands.
Consider if Step 1 failed and the operation aborted with only Step 2 complete.
The bank would have added $100 to your money market account, without
having adjusted your checking account. The bank would lose $100.

Transactions allow all three steps to execute as a unit. If one step fails, they
all fail. Additionally, no other operation can access the results of this change
until all three steps are complete.

WebLogic’s transaction implementation relies on Java Transaction Architecture
(JTA), a standard developed by Sun Microsystems. JTA specifies standard Java
interfaces between the transaction manager, the resource manager, the applica-
tion server, and transactional applications.

Two-phase commit
WebLogic uses transactions to guarantee that a single database server main-
tains its integrity even if part of the transaction fails. A single database
server, however, is not always the case.

Database servers can be clustered to allow more than one database server to
function as a single logical database server. This arrangement has several
advantages:

� Scalability. If one database server becomes overworked and impedes
system performance, another database server can be added to the cluster.

� Reliability. If one database server crashes, the other database servers
increase their load to account for the failed server.

� Performance. If your application runs at several geographic locations,
each location can have a local server. This improves performance for
read operations. Write operations synchronize among the databases.

To support distributed database access, WebLogic makes use of something
called a two-phase commit. The two-phase commit allows data to be written
to two or more databases while keeping both databases in sync.

230 Part IV: The Forgotten Services

j524720 Ch14.qxd 5/20/03 8:39 AM Page 230

Following are the participants of a two-phase commit:

� Recoverable resource. Provides permanent storage for data. The recov-
erable resource is almost always a relational database.

� Resource manager. Provides access to a collection of information and
processes. The resource manager is almost always a transaction-aware
JDBC driver.

� Transaction manager. Manages transactions for application programs.
This is the role that WebLogic plays.

� Transaction originator. Uses the transaction services. The transaction
originator can be an application, an Enterprise JavaBean, or a JMS client.

In the two-phase commit process, a transaction originator seeks to update a
number of recoverable resources. As its name implies, the two-phase commit
has two main steps:

� Prepare phase. During the prepare phase, the required updates are saved
in a transaction log file. The resources must “vote” on whether to commit
or roll back the changes.

� Finalization phase. The transaction manager evaluates the votes. If all
resources have voted to commit the changes, the changes are commit-
ted. If even one resource votes not to commit the changes, they are
rolled back to their previous state.

As you can see, the two-phase commit is essential when using multiple
databases.

When to use transactions
Like any technology, transactions are not a silver bullet designed to be used
in all cases. Knowing when to use transactions is just as important as know-
ing when not to use them. In this section, I describe a few examples that
should use transactions.

Transactions across multiple databases
The first model where a transaction is likely appropriate is when the client
application must perform operations on several objects stored in one or
more databases. If any one command is unsuccessful, the entire transaction
is rolled back.

For example, suppose that an insurance company has several branch offices,
each of which has a database server. When a new policy is issued, this trans-
action is added to the database server at each branch office. If one of the
database servers fails to update, the entire transaction fails.

231Chapter 14: Using Transactions with JTA

j524720 Ch14.qxd 5/20/03 8:39 AM Page 231

Accumulation transaction
The second model where a transaction is likely appropriate is when the client
application must communicate several times with a server object. The server
object accumulates these transactions and updates the database at some
point in the future, not on every communication with the client. Examples of
this situation include the following:

� Data is stored in memory or written to a database each time the server
method is called.

� Data is written to the database at the end of several exchanges with the
client application.

� The server object needs to maintain the data from each invocation of
its method and write the contents to a database at the end of the
conversation.

� The client application needs a way to cancel all previous communication
with the server object.

Each of these scenarios shares one similarity: committing the data to the data-
base is the last event to happen. Each stage accumulates data, but doesn’t
actually apply the changes to the full database until the final commit.

An example of this model is a shipping application in which the server object
is called several times to add items to the shipping list. The server method is
called for each item that is added. If one item fails to be added to the list, the
entire shipping list is rejected.

Multipart transaction
The third model where a transaction may be appropriate is when only a
single call is made to the server object, but the server object must make sev-
eral database calls to carry out the request. Because the transaction occurs
in several calls, it’s called a multipart transaction. If one of these database
calls fails, the entire transaction fails.

An example of this was discussed earlier in this chapter. A user wants to move
$100 from a checking account to a money market account. To be successful,
this transaction must decrease the checking account by $100, increase the
money market account by $100, and make an entry in the general ledger. If one
of these steps fails, the entire transaction fails.

When not to use transactions
Perhaps the biggest problem with transactions is that they are all or nothing.
You can’t partially roll back a transaction. Your business application may rep-
resent a chain of events, where a failure will likely occur at some point. If you

232 Part IV: The Forgotten Services

j524720 Ch14.qxd 5/20/03 8:39 AM Page 232

would like your data to be made permanent up to this point, a transaction is
not a good choice for your application.

Consider a shopping cart program that uses the accumulation model. As items
are added to the shopping cart, a failure may occur if an item is not recognized.
This failure may be acceptable because the customer may be willing to accept
a partial order.

Using Transactions
Using an EJB with transactions involves the following process:

1. Import packages.

2. Use JNDI to return an object reference.

3. Update the database.

4. Start the transaction.

5. Complete the transaction.

These same steps allow you to use your transaction connection also with an
RMI application.

The example in this section uses the UserTransaction object for bean-
managed transaction processing.

Importing packages
First, you must make sure that you import the correct classes. The following
import statements must appear at the top of the class that will make use of
transactions:

import javax.naming.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.IllegalStateException;
import javax.transaction.SecurityException;

And if any class itself requires other classes, be sure to import those as well.

233Chapter 14: Using Transactions with JTA

j524720 Ch14.qxd 5/20/03 8:39 AM Page 233

Some of the previously listed import statements reference classes that are
part of J2EE. Because of this, make sure that the J2EE JAR file is part of your
CLASSPATH. For more information on setting up J2EE, refer to Chapter 2.

Using JNDI to return an object reference
After you import the correct classes, you’re ready to use JNDI to obtain a
UserTransaction object.

In this section, you use JNDI to return an object reference. First, you create a
hash table that will contain the parameters used to create the object reference:

Context ctx = null;
Hashtable env = new Hashtable();

After you create Hashtable, you fill it with the appropriate configuration
information. First you specify the class name for the context factory. You
always specify this class when using transactions:

// Parameters for WebLogic Server
env.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

Next, you must specify the security provider, which is t3://localhost:7001
when using WebLogic. You must also specify your user ID and password:

env.put(Context.PROVIDER_URL, “t3://localhost:7001”);
env.put(Context.SECURITY_PRINCIPAL, “user”);
env.put(Context.SECURITY_CREDENTIALS, “password”);

After you’ve filled Hashtable with the required information, you’re ready to
create your Context:

ctx = new InitialContext(env);
UserTransaction tx = (UserTransaction)
ctx.lookup(“javax.transaction.UserTransaction”);

The javax.naming.Context object allows you to access a JNDI name. At
this point, you have access to a UserTransaction object, which will be used
to work with your transactions.

Starting the transaction
Now that you have a UserTransaction object, you can start your trans-
action. The transaction begins by calling the begin() method of the User

234 Part IV: The Forgotten Services

j524720 Ch14.qxd 5/20/03 8:39 AM Page 234

Transaction object. Any database operation that occurs after the begin()
method invocation and before the transaction completion is considered part
of this transaction. The following lines of code begin the transaction:

UserTransaction tx = (UserTransaction)
ctx.lookup(“javax.transaction.UserTransaction”);
tx.begin();

At this point, you may carry out the database commands that are considered
part of the transaction. After you complete the necessary database transac-
tions, you’re ready to complete the transaction.

Updating the database
At the heart of a transaction is the database update. First, you need to obtain
a database connection. This connection is a regular JDBC
java.sql.Connection object:

Connection connection;

Next, you obtain the connection. Because it is possible for exceptions to be
thrown during this process, you place this code in a try block:

try {

Driver driver = (Driver)
Class.forName(“weblogic.jdbc.jts.Driver”).newInstance();

This code obtains a JTS-capable driver from WebLogic. This driver will be
used to access your Tx connection pool.

A connection is obtained by specifying the name of the Tx data source that
you created earlier, which is the data source named MyTxPool:

connection = driver.connect(“jdbc:weblogic:jts:MyTxPool”);

You can now begin your transaction:

tx.begin();

Next, you build your SQL statement. The SQL statement shown here updates
the database used in Chapter 12:

String sql = “INSERT INTO t_student(f_id, f_first, f_last)”;
sql+=” VALUES(1,’John’,’Smith’)”;

235Chapter 14: Using Transactions with JTA

j524720 Ch14.qxd 5/20/03 8:39 AM Page 235

Now that the SQL has been prepared, you assign a statement from your driver:

Statement statement = connection.createStatement();

The SQL is executed with a call to executeUpdate:

statement.executeUpdate(sql);

Next, you can close the statement and commit the transaction:

statement.close();
tx.commit();

Now you close the connection and handle any exceptions:

connection.close();
}
catch(Exception e)
{
e.printStackTrace();

}

In many languages, memory leaks and resource leaks are common problems.
A leak occurs when a program allocates a memory or resource object and
never returns it. Although Java will not leak memory, it can leak resources.
Because of this, you should always close your database objects. Leaving
them open can cause WebLogic to run out of database resources.

To properly close all database resources, it’s often useful to implement a
cleanup method and include that method in a finally clause. You can then
close the database resources in the finally clause. Such a method is shown
in Chapter 8.

After you update the database, you’re ready to complete the transaction.
The code just examined completed its transaction with a call to commit().
However, this is not the only way a transaction is completed, as covered in
the next section.

Completing the transaction
When completing a transaction, you can either roll back or commit your
transaction. When you roll back a transaction, no permanent changes are
made to the database. To roll back a transaction, call the rollback()
method of the UserTransaction object:

tx.rollback();

236 Part IV: The Forgotten Services

j524720 Ch14.qxd 5/20/03 8:39 AM Page 236

When you commit a transaction, all changes are written to the database. To
commit a transaction, use the commit() method of the UserTransaction
object:

tx.commit();

Both the rollback() and commit() methods may throw an exception during
execution. If the rollback() method throws an exception, the data is not
written to the database.

If an exception occurs while the commit method is called, the update does not
occur. Exceptions can happen for many reasons. In a distributed database, all
underlying databases must agree to the commit for it to be successful.

237Chapter 14: Using Transactions with JTA

j524720 Ch14.qxd 5/20/03 8:39 AM Page 237

238 Part IV: The Forgotten Services

j524720 Ch14.qxd 5/20/03 8:39 AM Page 238

Chapter 15

Sending Messages Between
Programs with JMS

In This Chapter
� Accessing WebLogic’s message service

� Using the point to point domain

� Using the publish subscribe domain

� Administering and monitoring messaging

Software components can use many different methods to communicate
with each other. In this chapter, I show you a model for the exchange of

information between software components. This system is Java Messaging
Service, or JMS.

JMS clients connect to a JMS-compatible messaging server, such as WebLogic
JMS (a component of WebLogic Server). A messaging server, such as WebLogic,
provides facilities for sending and receiving messages. A JMS client can send
messages to, and receive messages from, any other JMS client. You can think
of the messaging service as the low-level infrastructure. The messaging
service delivers a message from one program to another. The messaging ser-
vice doesn’t get involved in the contents of the message. It only facilities the
message’s transfer.

One of the main differences between JMS and other models that software com-
ponents use to communicate is that JMS is asynchronous. In an asynchronous
model, a component simply sends a message to a destination. The message
recipient can then retrieve these messages from the destination. No direct
communication exists between the sender and the receiver. The sender knows
only that a destination exists to which it can send messages. Likewise, the
receiver knows only that a destination exists from which it can receive mes-
sages. As long as both sender and receiver agree upon a common message
format, the messaging system manages the message delivery.

j524720 Ch15.qxd 5/20/03 8:39 AM Page 239

Common concerns when working with asynchronous message systems are
reliability and acknowledgement. If a message is sent from sender to receiver,
with no required response, how can the sender know that the message was
reliably sent? The specific level of reliability is typically configurable on a
per-destination or per-client basis. However, messaging systems are capable
of guaranteeing that a message is delivered — and delivered to each intended
recipient exactly once.

WebLogic supports two styles of message-based communications:

� Point-to-point messaging. Point-to-point messaging is provided using
JMS queues. A queue is a named resource configured in a JMS server.
A JMS client exchanges messages with this queue.

Point-to-point messages have a single consumer: the Java program that
processes the messages. Multiple receivers may make use of the same
queue as they listen for messages. However, after any receiver retrieves
a message from the queue, that message is “consumed” and no longer
available to other potential consumers.

The message consumer must acknowledge receipt of every message it
receives. This is because the messaging system continues attempting to
resend a particular message until the message is retrieved. However, the
sender does not resend the message indefinitely. The message is no
longer sent after a predetermined number of retries.

� Publish-and-subscribe messaging. Publish-and-subscribe messaging is
accomplished using JMS topics. A topic is a named resource configured in
a JMS server. A JMS client publishes messages to a topic or subscribes to
a topic. Published messages may have multiple subscribers. All current
subscribers to a specific topic receive all messages published to that
topic after the subscription becomes active.

Creating a WebLogic Message Service
Before you can create JMS senders and receivers, you must create a message
service on your WebLogic Server. This process has a number of steps:

1. Create a connection factory.

A connection factory is used to grant connections to your messaging
service. The connection factory is identified by a JNDI name.

2. Optionally define backing stores for your messages.

WebLogic needs to store incoming messages. You can store these mes-
sages using a JDBC database or disk-based files. (Backing stores, which
allow incoming messages to be stored until processed, are discussed
later in this section.)

240 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 240

3. Optionally define destination keys.

Destination keys are a WebLogic extension to JMS that allows you to
control the order in which messages are delivered.

4. Optionally define templates.

Template keys are a WebLogic extension to JMS that allows you to group
destinations. This gives you the ability to send messages to the group.

5. Create a JMS server.

A JMS server contains your queues and topics. If you created an optional
backing store, the JMS server routes your messages there as well.

6. Create one or more queues or topics.

Queues or topics are mapped to your JMS server. Your clients, the
senders and receivers, communicate with these queues and topics.

The following sections discuss how to set up a WebLogic message service
using these steps.

Creating a connection factory
The first step in creating a message service is to create a connection factory. A
connection factory is an object used to create connections. Client programs use
the connection factory to access the JMS message service. Follow these steps:

1. Log on to Administration Console.

This allows you to configure your transactions. Administration Console
is typically at http://localhost:7001/console. For more informa-
tion, see Chapter 4.

2. On the left side of the screen, click the following folders: Services,
JMS, and then Connection Factories.

The screen shown in Figure 15-1 appears. From here, you can see all cur-
rent connection factories (if any) and create connection factories.

3. Click the Configure a new JMS Connection Factory link.

The screen shown in Figure 15-2 appears.

4. Configure your connection factory.

To follow along with the example, set the name and the JNDI name as
shown in Figure 15-2. Leave the other values as is. For a description of
all connection factory settings, see Table 15-1.

5. Click Create.

You now have a connection factory.

241Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 241

Figure 15-2:
A new

connection
factory.

Figure 15-1:
All current

connection
factories.

242 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 242

Table 15-1 Connection Factory Settings
Setting What It Is or Does

Name Identifies this connection factory; not used outside
Administration Console.

JNDI Name The JNDI name for this connection factory.

Client ID This field should be left blank unless you will be supporting
durable subscribers. Messages for a durable subscriber will be
held, even if the subscriber is not running.

Default Priority Assigns a priority to messages that don’t have a specified prior-
ity. This value should range between 0 and 9. This determines the
order in which messages will be processed as they are received.

Default Time The amount of time, in milliseconds, that the message is
to Live retransmitted. If a message fails to reach its destination, the

message is retransmitted until the time to live expires.

Default Time to The amount of time, in milliseconds, that must pass before a
Deliver message is delivered. The default value of 0 means instant.

Default Delivery The delivery mode, if no delivery mode is specified in the
Mode message. This value is either Persistent or Non-Persistent.

Default The time, in milliseconds, before a recovered message is
Redelivery Delay redelivered.

Maximum The maximum number of simultaneous messages supported.
Messages The default value is 10.

Overrun Policy Specifies what WebLogic should do if the maximum number of
messages is reached. This value is KeepOld or KeepNew. That
is, is it better to keep older or newer messages? You must decide
which one will affect the reliability of your applications the most.

Allow Close In Determines whether WebLogic allows a client to issue a close
OnMessage in the OnMessagemethod. This Boolean value is True or

False.

Acknowledge Allows compatibility with a pervious specification of JMS.
Policy This value should always be set to All.

Load Balancing Determines the degree to which load balancing is used in a
Enabled cluster. If true, each message is load balanced. Load balancing

refers to the process by which WebLogic chooses a server in
the cluster to handle the request. For more information on clus-
tering, see Chapter 16.

Server Affinity Determines whether subsequent requests should be handled
Enabled by the same machine when load balancing is enabled.

243Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 243

Defining a backing store
Now that you’ve created a connection factory, you can create a backing store.
The use of a backing store is optional. The steps to create the backing store
follow:

1. On the left side of the Administration Console screen, click the follow-
ing folders: Services, JMS, and then Stores.

The screen shown in Figure 15-3 appears. From here, you can see all
current stores and create connection factories.

2. Create a JDBC-based or file-based store.

To create a JDBC-based store, follow these steps:

a. Click the Configure a new JMS JDBC Store link.

b. Type a name such as MyJMS JDBC Store.

c. Select the connection pool to use, as shown in Figure 15-4.

For more information on connection pools, see Chapter 12.

d. If necessary, specify a prefix.

Some databases require a prefix. For example, SQL Server requires
the dbo prefix for all table names.

e. Click Create.

To create a file-based store, follow these steps:

a. Click the Configure a new JMS File Store link.

b. Type a name, such as MyJMS File Store.

c. Select a directory to hold the files, as shown in Figure 15-5.

You have to scroll down to see the directory.

d. Leave all other settings as is, and then click Create.

3. Configure your backing store, as follows:

a. Give your backing store a name.

You’ll use this name later to refer to the store.

b. Choose Cache-Flush, the default, because it usually provides the
best performance.

The synchronous write policy determines how WebLogic will
handle concurrent writes to the store.

c. Choose a directory.

This directory should be on the local hard drive because that loca-
tion will provide the fastest access.

244 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 244

Figure 15-4:
A JDBC-

based store.

Figure 15-3:
All current

JMS stores.

245Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 245

Backing stores are used also for paging stores. If you’ll be using a paging store,
you have to go through the preceding steps twice to create an additional back-
ing store for your paging store. Paging stores are discussed later in this section.

You may be wondering what tables are used by a JDBC-based store. The next
time you restart WebLogic, several system tables are automatically created to
hold the message store.

Defining destination keys
If you want, you can create destination keys to determine the order in which
messages are delivered. Destination keys operate on the user-definable proper-
ties stored in a message. Follow these steps if you want to define a destination
key:

1. On the left side of the screen, click the following folders: Services,
JMS, and then Destination Keys.

The screen shown in Figure 15-6 appears. From here, you can see all
current destination keys (if any) and create destination keys.

2. Click the Configure a new JMS Destination Key link.

The screen shown in Figure 15-7 appears.

Figure 15-5:
A file-based

store.

246 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 246

Figure 15-7:
Creating a

destination
key.

Figure 15-6:
All current

destination
keys.

247Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 247

3. Configure your destination key.

a. Type a name for the destination key.

This is for your reference in Administration Console.

b. Type the name of the Sort Key to filter on.

c. Using the Key Type field, select the type of data that you expect
the Sort Key to be.

d. Choose the direction in which you want sorting to take place.

4. Click Create.

You now have a destination key that sorts messages as you’ve instructed.

Defining templates
If you have a number of destination keys that you want to apply to one or
more JMS servers, queues, or topics, templates can make this process much
easier. Creating a template is an optional step and makes sense only if you’ve
defined quite a few destination keys.

To create a template, follow these steps:

1. On the left side of the Administration Console screen, click the follow-
ing folders: Services, JMS, and then Templates.

The screen shown in Figure 15-8 appears. From here, you can see all cur-
rent templates (if any) and create templates.

2. Click the Configure a new JMS Template link.

3. Type a name for your template.

To follow along with the example, type MYJMS Template.

4. Click Create.

5. Add keys to your template.

Select a key, and click the right-facing arrow to move the keys from the
Available list to the Chosen list. See Figure 15-9. Then click Apply.

You now have a template that allows you to easily group multiple destination
keys.

248 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 248

Figure 15-9:
Add Keys.

Figure 15-8:
Create a

template.

249Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 249

Creating a JMS server
Now you’re ready to create your JMS server, tying together — in one server —
many of the components you created previously. To create a JMS server, follow
these steps:

1. On the left side of the Administration Console screen, click the follow-
ing folders: Services, JMS, and then Servers.

The screen shown in Figure 15-10 appears. From here, you can see all
current servers (if any) and create servers.

2. Click the Configure a new JMSServer link.

3. Configure your server as follows:

a. Select a name for your JMS server, such as MyJMS Server (see
Figure 15-11).

b. Select a store.

This is the store that you created previously. Using a store is
optional.

c. Select a paging store. (This step is optional.)

A paging store uses the same type of store as a backing store. If
you choose to use a paging store, you should create two backing
stores. (See the “Defining a backing store” section for more infor-
mation.) This paging store holds messages as they come in and are
waiting to be processed.

d. Specify a temporary template. (This step is optional.)

If you specify a value for a temporary template, it will be used to
create temporary destinations, which are destinations created by
Java programs, without Administration Console.

The paging store stores messages that can’t fit into memory. This allows you
to handle more simultaneous messages than your current memory allows.

Because of the heavy use that a paging store receives, always choose to make
your paging store file based, rather than JDBC based.

After you’ve completed these steps, you have a JMS server ready for use.
You’re now ready to create queues or topics for this server.

250 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 250

Figure 15-11:
Creating a

server.

Figure 15-10:
All current

servers.

251Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 251

Creating queues and topics
As mentioned, WebLogic supports two styles of message-based communica-
tions. You use a queue with point-to-point communications or a topic with
publish-and-subscribe communications. Your client programs communicate
directly with the JMS queue. In this section, you find out how to create both
queues and topics.

Here you tie many of the components that you previously created together
into one server. To create a JMS queue or a topic, follow these steps:

1. On the left side of the Administration Console screen, click the follow-
ing folders: Services, JMS, and Servers. Then click your server name,
and finally click the Destinations folder.

2. Click the Configure a new JMSQueue or Configure a new JMS Topic
link.

The screen shown in Figure 15-12 appears if you chose to configure a
queue.

Figure 15-12:
Creating a

queue.

252 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 252

3. Type the configuration information for the queue or topic as follows:

a. Type a name for the queue or topic.

b. Type a JNDI name that clients can use to locate this queue or
topic.

c. Click Apply to enable your store.

d. Choose your template.

e. Choose the destination keys.

4. Click Create.

You’ve created a JMS message service with either a queue or a topic. Now
you’re ready to begin using this message store from client programs.

Accessing Your Message Service
In this section, you construct a Java application that can access the message
service that you just created. To begin, review Table 15-2, which lists many of
the classes used to construct a client program for JMS.

Table 15-2 JMS Classes
JMS Class What It Does

Connection Represents an open communication channel to the mes-
saging system. The Connection object is used to
create sessions.

ConnectionConsumer Represents a consumer that retrieves server sessions to
process messages concurrently.

ConnectionFactory Encapsulates connection configuration information. A
connection factory is your entry point into the JMS
server, as the connection factory is used to create con-
nections. You look up a connection factory using JNDI.

Destination Identifies a queue or topic by its address.

Message Holds the message being sent.

MessageProducer Specifies the interface for sending and receiving
and MessageConsumer messages. The MessageProducer class sends mes-

sages to a queue or topic; the MessageConsumer
class receives messages from a queue or topic.

(continued)

253Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 253

Table 15-2 (continued)
JMS Class What It Does

ServerSession1 Associates a thread with a JMS session.

ServerSession Holds a pool of server sessions that can be used to
Pool1 process messages concurrently for connection

consumers.

ServerSessionPool Encapsulates configuration information for a server-
Factory managed pool of message consumers. Used to create

server session pools.

Session Specifies a serial order for the messages produced
and consumed.

The following sections describe these classes in greater detail. After that,
you create a simple example that accesses a queue and a topic.

ConnectionFactory
The ConnectionFactory class is your entry into the JMS server. After you
obtain ConnectionFactory, you can establish connections to the queues
and topics of a JMS server. The ConnectionFactory class supports concur-
rent access, so you can use one ConnectionFactory object for multiple
threads.

Connection factories are created by the systems administrator. All
ConnectionFactory objects are identified using WebLogic JNDI names.
A client program looks up ConnectionFactory using its unique JNDI name.

By default, WebLogic JMS provides one connection factory. It can be accessed
by using the JNDI name weblogic.jms.ConnectionFactory. You need to
define a connection factory only if the default provided by WebLogic JMS is
not suitable for your application.

Connection
You use the ConnectionFactory object to obtain a Connection object, which
is an open communications channel between an application and the messag-
ing system. From this Connection object, you create Session objects for pro-
ducing and consuming messages. A connection creates both server-side and
client-side objects that manage the messaging between the application and
JMS. Like ConnectionFactory, Connection objects support concurrent use,
enabling multiple threads to access the object simultaneously.

254 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 254

Connections require considerable resources. Because of this, most applica-
tions use one connection for all JMS processing.

Session
Session objects are obtained from Connection objects by calling the
createQueueSession or createTopicSession method. A Session object
defines the order that messages are produced and consumed. A Session
object can create multiple message producers and message consumers.

Session objects should not be shared across threads. It’s okay for the same
thread to both produce and consume messages. However, if an application
wants a separate thread for producing and consuming messages, the applica-
tion should also create separate sessions for producing and consuming
threads. Creating threads is illegal in EJBs.

Destination
A Destination object represents either a queue or topic. Destinations refer
to destination keys, which you set up earlier using Administration Console.
The Destination object allows the application program to communicate
with the topic or queue.

A Destination object supports concurrent use. This allows multiple threads
to access the object simultaneously.

MessageProducer and MessageConsumer
You use the Session object to create the MessageProducer and Message
Consumer objects, which are attached to queues and topics. A Message
Producer object sends messages to a queue or topic. A MessageConsumer
object receives messages from a queue or topic.

The MessageProducer and MessageConsumer objects operate independently.
The MessageProducer object sends messages regardless of whether a
MessageConsumer object has been created and is waiting for a message and
vice versa.

Message
The Message class holds the information to be exchanged by applications.
Following are the three main components to a Message object:

255Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 255

� Standard header fields

� Application-defined properties

� The message body

The following sections examine the header fields and the message body .

Message header fields
JMS messages contain a standard set of header fields by default. Some of
these fields can be modified by the sender. Table 15-3 describes the fields in a
JMS message.

Table 15-3 Message Header Fields
Field Defined By What It Does

JMSCorrelation Application Relates messages to each other. This field
ID is often used to relate a reply message to the

original request message.

JMSDelivery send() Specifies a PERSISTENTmessage,
Mode method which is stored by JMS and is not consid-

ered successful until sent, or a NON-
PERSISTENTmessage, which is simply
transmitted and requires much less overhead.

JMSDeliveryTime send() Specifies the time at which the message
method was sent. This field is used to sort messages.

JMSDestination send() Stores the destination queue or topic to
method which this message is targeted.

JMSExpiration send() Specifies the expiration time for the mes
method sage. After the expiration time is reached,

the message is no longer delivered.

JMSMessageID send() Uniquely identifies this message.
method

JMSPriority Message Specifies the priority for this message.
Consumer Priority levels range from 0 to 9, with 0 the

lowest priority.

JMSRedelivered WebLogic Specifies whether this message was redeliv
JMS ered due to non-receipt.

JMSReplyTo Application Specifies what message this message is a
reply to, if it is a reply.

256 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 256

Field Defined By What It Does

JMSTimeStamp Message Contains the time at which the message was
Consumer sent.

JMSType Application Specifies an application-defined type.

Message body
The body of a message contains the content that’s being delivered. JMS sup-
ports a variety of content types, as shown in Table 15-4.

Table 15-4 JMS Message Types
Type What It Is

javax.jms. A stream of bytes. There is no implied meaning. Data in this
BytesMessage form is accessed using stream-oriented readers and writ-

ers based on java.io.DataInputStream and java.
io.DataOutputStream.

javax.jms. A set of name/value pairs in which the names are strings
MapMessage and the values are Java primitive types.

javax.jms. A single serializable Java object.
ObjectMessage

javax.jms. A stream where only Java primitive types are written to or
StreamMessage read from the stream.

javax.jms. A string message.
TextMessage

weblogic.jms. XML content. Although XML can be stored in
extensions. TextMessage, XMLMessage allows message filtering.
XMLMessage

Creating a Point-to-Point JMS Client
In this section, you create a simple point-to-point (P2P) JMS client that sends
text messages from one client to another. You can build on this simple example
to create a more complex messaging system.

257Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 257

Creating the receiver
The receiver program, shown in Listing 15-1, waits for messages. The receiver
is a regular Java application that you can run from the command line. Unlike
an EJB, the receiver doesn’t have to run in the context of WebLogic. In this
example, both the sender and receiver are standalone Java applications that
run outside WebLogic. WebLogic is only providing the infrastructure to pass
the messages.

Listing 15-1: P2P Receiver

import javax.jms.*;
import javax.naming.*;
import java.util.*;

public class SampleQueueReceiver implements MessageListener {
private boolean done = false;
private Context ctx = null;
private QueueConnectionFactory connectionFactory = null;
private QueueConnection connection = null;
private QueueSession session = null;
private QueueReceiver receiver = null;
private Queue queue = null;
private Hashtable ht = null;

public void init() {
try {

ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

ht.put(Context.PROVIDER_URL, “t3://localhost:7001”);

ctx = new InitialContext(ht);
connectionFactory =(QueueConnectionFactory)
ctx.lookup(“weblogic.jms.ConnectionFactory”);

connection = connectionFactory.createQueueConnection();
session = connection.createQueueSession(
false,
javax.jms.QueueSession.AUTO_ACKNOWLEDGE);

queue = (Queue) ctx.lookup(“MyJMSQueue”);
receiver = session.createReceiver(queue);

receiver.setMessageListener(this);

connection.start();
} catch (Exception e) {
System.out.println(e);

}

258 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 258

}

public void close() throws JMSException {

try {
receiver.close();
session.close();
connection.close();

} catch (Exception e) {
System.out.println(e);

}
}

public void onMessage(Message message) {

if (message instanceof TextMessage) {
try {
TextMessage textMessage = (TextMessage) message;
String msg = textMessage.getText();

System.out.println(“Received message: “ + msg);

if (msg.equals(“exit”)) {
synchronized (this) {
done = true;
this.notifyAll();

}
}

} catch (Exception e) {
System.out.println(e);

}
}

}

public static void main(String[] args) {

try {
SampleQueueReceiver sqr = new SampleQueueReceiver();

sqr.init();
System.out.println(“Waiting for messages....”);

synchronized (sqr) {
while (!sqr.done) {
try {
sqr.wait();

} catch (InterruptedException ie) {
}

}
}

(continued)

259Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 259

Listing 15-1 (continued)

sqr.close();
} catch (Exception e) {
System.out.println(e);

}
}

}

The program begins execution at the main method, which instantiates an
object of the sample receiver and begins waiting for messages. The class
implements the MessageListener interface. This allows the class to receive
messages. Implementing this interface requires that the onMessage method
be provided by your class.

Next, the init method is called. The init method contains the code that
registers this object to receive messages from the MyJMSQueue queue. The
connection is retrieved from the connection factory and is started by calling
the start method of the connection object.

When a message is received, the onMessage method is called. All message pro-
cessing takes place inside this message. This program deals with only Text
Message type messages. The program begins by examining the object sent to
onMessage to determine whether it was TextMessage. If it was TextMessage,
the message is displayed. If the message was not TextMessage, the message is
ignored. After you execute the receiver, it begins waiting for messages.

Creating the sender
In this section, you create a sender that works with the receiver you created
in the preceding section. The sender is shown in Listing 15-2.

Listing 15-2: P2P Sender

import javax.jms.*;
import javax.naming.*;
import java.util.*;

public class SampleQueueSender {

public static void main(String[] args) {

Context ctx = null;
Hashtable ht = new Hashtable();
QueueConnectionFactory connectionFactory = null;
QueueConnection connection = null;
QueueSession session = null;
QueueSender sender = null;
Queue queue = null;

260 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 260

TextMessage message = null;

try {
ht.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);
ht.put(Context.PROVIDER_URL, “t3://localhost:7001”);

ctx = new InitialContext(ht);
connectionFactory =
(QueueConnectionFactory)

ctx.lookup(“weblogic.jms.ConnectionFactory”);
connection = connectionFactory.createQueueConnection();
session = connection.createQueueSession(false,
javax.jms.QueueSession.AUTO_ACKNOWLEDGE);

queue = (Queue) ctx.lookup(“MyJMSQueue”);
sender = session.createSender(queue);

System.out.println(“Sending messages...”);

message = session.createTextMessage();

for (int i = 1; i <= 10; i++) {
String str = “Message “ + i;

message.clearBody();
message.setText(str);
System.out.println(“Sending message: “ + str);
sender.send(message);

}

message.clearBody();
message.setText(“exit”);
message.setIntProperty(“severity”, 0);
System.out.println(“Sending message: exit”);
sender.send(message);

} catch (Exception e) {
e.printStackTrace();

} finally {
try {
sender.close();
session.close();
connection.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}
}

The sender is somewhat simpler than the receiver, containing only one
method, the main method. The sender simply opens a connection, sends
some messages, and exits.

261Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 261

After the queue is located using JNDI and the connection is opened, the client
program transmits ten messages. First a message is created:

message = session.createTextMessage();

This message is reused multiple times to send each message. The program
loops through and sends the text message ten times:

for (int i = 1; i <= 10; i++) {
String str = “Message “ + i;

The message is cleared, and then the text is defined. Then the message is
sent using the send method of the sender:

message.clearBody();
message.setText(str);
System.out.println(“Sending message: “ + str);
sender.send(message);

}

The sender and receiver transmit ten messages, as shown in Figure 15-13.
The P2P sender and receiver model works well when you want to send mes-
sages between two programs. You can also send a message from one sender
to many receivers. You find out how to do this in the next section.

Figure 15-13:
A P2P

message.

262 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 262

Creating a Publish-and-Subscribe
JMS Client

In this section, you use the publish-and-subscribe model. In this model, you
have many subscribers and one publisher. (This is similar to a newspaper.)
The same message is sent from the publisher to all the subscribers. You
begin by constructing the subscriber.

Creating the subscriber
The subscriber for a publish-and-subscribe model is similar to the receiver
discussed in the preceding section. The subscriber receives messages using a
MessageListener interface. See Listing 15-3.

Listing 15-3: Subscriber

import javax.jms.*;
import javax.naming.*;
import java.util.*;

public class SampleTopicSubscriber implements MessageListener
{

private boolean done = false;
private Context ctx = null;
private Hashtable ht = null;
private TopicConnectionFactory connectionFactory = null;
private TopicConnection connection = null;
private TopicSession session = null;
private TopicSubscriber subscriber = null;
private Topic topic = null;

public void init() {

try {
ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory”);

ht.put(Context.PROVIDER_URL, “t3://localhost:7001”);

ctx = new InitialContext(ht);
connectionFactory = (TopicConnectionFactory)

ctx.lookup(“weblogic.jms.ConnectionFactory”);

(continued)

263Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 263

Listing 15-3 (continued)

connection = connectionFactory.createTopicConnection();
session = connection.createTopicSession(false,
javax.jms.QueueSession.AUTO_ACKNOWLEDGE);

topic = (Topic) ctx.lookup(“MyJMSTopic”);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);

connection.start();
} catch (Exception e) {
System.out.println(e);

}
}

public void close() throws JMSException {

try {
subscriber.close();
session.close();
connection.close();

} catch (Exception e) {
e.printStackTrace();

}
}

public void onMessage(Message message) {

if (message instanceof TextMessage) {
try {
TextMessage textMessage = (TextMessage) message;

String msg = textMessage.getText();

System.out.println(“Received message: “ + msg);

if (msg.equals(“exit”)) {
synchronized (this) {
done = true;

this.notifyAll();
}

}
} catch (Exception e) {
e.printStackTrace();

}
}

}

public static void main(String[] args) {

264 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 264

try {
SampleTopicSubscriber ts = new SampleTopicSubscriber();

ts.init();
System.out.println(“Waiting for messages....”);

synchronized (ts) {
while (!ts.done) {
try {
ts.wait();

} catch (InterruptedException ie) {
}

}
}

ts.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

The program is nearly the same as the receiver in Listing 15-1. The main dif-
ference is that the other program connects to a queue, and this program con-
nects to a topic. By connecting to a topic, you establish a nonexclusive
relationship to the publisher. After the connection is established, you receive
messages in the same way as any other subscribers.

Creating the publisher
The publisher for a publish-and-subscribe model is similar to the sender in
the preceding section. The publisher sends messages, except these messages
can be sent to many subscribers. Listing 15-4 shows a publisher.

Listing 15-4: Publisher

import javax.jms.*;
import javax.naming.*;
import java.util.*;

public class SampleTopicPublisher {

public static void main(String[] args) {

Context ctx = null;
Hashtable ht = new Hashtable();
TopicConnectionFactory connectionFactory = null;

(continued)

265Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 265

Listing 15-4 (continued)

TopicConnection connection = null;
TopicSession session = null;
TopicPublisher publisher = null;
Topic topic = null;
TextMessage message = null;

try {
ht.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);
ht.put(Context.PROVIDER_URL, “t3://localhost:7001”);

ctx = new InitialContext(ht);
connectionFactory = (TopicConnectionFactory)
ctx.lookup(“weblogic.jms.ConnectionFactory”);

connection = connectionFactory.createTopicConnection();
session = connection.createTopicSession(
false,
javax.jms.TopicSession.AUTO_ACKNOWLEDGE);

topic = (Topic) ctx.lookup(“MyJMSTopic”);
publisher = session.createPublisher(topic);

System.out.println(“Publishing messages...”);

message = session.createTextMessage();

for (int i = 1; i <= 10; i++) {
String str = “Message “ + i;

message.clearBody();
message.setText(str);
System.out.println(“Publishing message: “ + str);
publisher.publish(message);

}

} catch (Exception e) {
System.out.println(e);

} finally {
try {
publisher.close();
session.close();
connection.close();

} catch (Exception e) {
System.out.println(e);

}
}

}
}

266 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 266

The program is nearly the same as the sender in Listing 15-2. The main differ-
ence is that the other program connects to a queue whereas this program
connects to a topic. By connecting to a topic as a publisher, you can send
your messages to many clients. You receive messages the same way as any
other subscribers does.

The sender and receiver transmit ten messages, as shown in Figure 15-14.
As you can see from the figure, one publisher is sending messages to two
subscribers.

As you’ve found in this chapter, you can easily use WebLogic as the infra-
structure to send messages between programs. You can do this using either a
point-to-point or a publish-and-subscribe model.

Figure 15-14:
A publish/
subscribe
message.

267Chapter 15: Sending Messages Between Programs with JMS

j524720 Ch15.qxd 5/20/03 8:39 AM Page 267

268 Part IV: The Forgotten Services

j524720 Ch15.qxd 5/20/03 8:39 AM Page 268

Part V
Big-Time,

Heavy-Duty Server
Configuration

k524720 PP05.qxd 5/20/03 8:39 AM Page 269

In this part . . .

Here is where you find out about more advanced con-
figuration options. For example, WebLogic allows

you to combine individual servers into one large virtual
server. This feature, called clustering, enables you to
expand your system by adding hardware rather than by
completely replacing your existing system.

Security is very important to any web application. In this
part, you find out about the WebLogic features that allow
you to secure data exchanged with your system and con-
trol how users access your system. You also find out how
to tune your system for maximum performance.

k524720 PP05.qxd 5/20/03 8:39 AM Page 270

Chapter 16

Working with Server Clusters
In This Chapter
� Understanding the benefits of clustering

� Naming the components of WebLogic clustering

� Configuring clustering

� Using JDBC resources with clustering

The old saying that there’s strength in numbers applies to computers as
well as to humans. You can achieve considerable advantages by using

many computers together to run WebLogic. These groups of computers are
called clusters. These clusters can appear as a single server, which delegates
tasks to the appropriate computer in the cluster.

In this chapter, you discover the advantages and disadvantages of using clus-
tering. You uncover the components that make up a cluster, and then you set
up a cluster.

Understanding Clustering
A cluster is a group of computers that collectively perform the same task.
In the case of a WebLogic cluster, the tasks performed by the cluster include
all the tasks that you might assign to one WebLogic Server. These tasks are
covered throughout this book.

The two main reasons why you might want to create a WebLogic cluster are
performance and reliability The disadvantages to setting up a cluster have to
do with the costs of hardware, software, and administration:

� Hardware cost. A cluster contains at least twice the amount of computer
hardware that you would have with a single computer system. You also
have additional repair costs to keep these computers up and running.

l524720 Ch16.qxd 5/20/03 8:39 AM Page 271

� Software cost. You need a cluster license for WebLogic. This increases
the amount of money that it costs to purchase your server software. In
addition to WebLogic, other third-party software that you’re using may
require additional license fees when used with a cluster.

� Administration cost. Every network administrator knows that more
computers means more support time. It takes time to install the required
software to the additional computer systems in your cluster.

Even if your system easily fits on one machine, you should still be aware of
how clustering works. There may come a point when your application has
grown large enough that clustering will be needed. If you know how clustering
works, you can construct your application so that it can support clustering
when it’s needed.

Performance through clustering
Clustering can increase performance because you have additional computers
to handle requests, rather than just one computer. However, clustering doesn’t
necessarily result in an increase in speed. The amount of performance gain
from clustering is determined by the type of application you’re running.

When clustering can’t improve performance
Consider a system that calculates economic forecasts when given current
market conditions. This program must access a large amount of historical
data to produce its output. This program is hosted on WebLogic Server. Only
a few users will access this program throughout the day. The response time
is slow, in that the program takes a while to generate the forecast.

A cluster would not likely increase the speed of this application. Clusters
improve performance primarily when they serve a large number of concurrent
requests. In this example, a lengthy process is executed by just a few users. If
an additional computer were added to the system to form a cluster, the second
computer would sit idle while the first performed the forecast. A server cluster
is not capable of splitting a single request among the cluster members. The
only case where the cluster would speed up this process is if several users
where submitting requests at the same time.

To speed up the forecast application, you’d need to buy a larger, faster server
or rewrite the application to be more efficient.

When clustering can improve performance
Now consider a system that allows users to look up information about any of
the products that their company produces. This program allows the user to
view sales reports on each item. This system is accessed by users throughout

272 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 272

the company. Additionally, many automated programs access the system
through EJB calls to obtain sales information.

The system has been giving unacceptably bad response times, especially
during peak usage. Additionally, the server sometimes goes off-line from
excessive use.

A cluster would improve the performance of this application. By having more
than one server available to process the requests, no individual server would
be overworked. This would result in faster responses, and the system wouldn’t
go off-line due to one overloaded server.

Perhaps the most important thing to keep in mind when deciding whether to
use a cluster to improve performance is that a cluster will only allow the
system to handle more requests faster. It will not often speed up requests
when these requests come in one at a time. A cluster is used to increase the
performance for many concurrent accesses.

Reliability through clustering
Performance is not the only reason to consider clustering. Reliability is
another factor. A cluster can increase reliability because several computer
systems handle the requests sent to the server. If one computer in the cluster
crashes, the cluster remains operational.

Reliability, unlike performance, is always improved by clustering. Therefore,
whether or not to run a cluster to increase reliability boils down to a question
of cost.

Components of WebLogic Clustering
Unfortunately, clustering is not something that you can set up by changing a
simple configuration setting. Many related systems are used to set up a cluster:

� Node Manager

� Clustered domain

� Clustered JDBC

� Load balancing

� Connection proxy

In this section, I explain each of these systems and how they fit together to
allow you to create a cluster of WebLogic servers.

273Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 273

Node Manager
Node Manager is a standalone Java application that allows you to manage the
servers that make up your cluster. There are two immediate benefits to this.
You can

� Manage the cluster from one computer

� Automatically restart crashed cluster computers

When you create a cluster, it will be made up of several computers. This can
be somewhat difficult to manage because you will need to start and stop
server instances on each machine. Additionally, you now have log files on
each machine. Node Manager allows you to work with the computers in the
cluster as though they were a single unit. You can quickly restart individual
cluster computers or obtain information about any machine in the cluster.

You may choose to use Node Manager after your system is up and running.
Node Manager is more beneficial when your system has settled into a routine.
When you’re first setting up your system, it’s better to directly control the
computers that make up the cluster.

Clustered domain
In other chapters, you work with WebLogic domains. In this chapter, you’re
introduced to the concept of a clustered domain. The clustered domain com-
bines the computers of the domain into one virtual computer. This makes the
fact that you’re using a cluster nearly invisible to a client program accessing
your server. To the client program, your cluster looks like one very fast
single-server system.

Clustered domains are configured in much the same way as non-clustered
domains. You can set up both using WebLogic Domain Wizard.

Clustered JDBC
Clustered JDBC allows you to use JDBC resources across the cluster.
WebLogic manages the concurrent access to the connection pools on each
managed server. Clustered JDBC is set up just like regular JDBC, except the
JDBC resources are assigned to a cluster rather than to individual servers.

274 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 274

Load balancing
Load balancing allows WebLogic to send requests to servers that aren’t
working as hard as other servers. This prevents one overworked server from
becoming a bottleneck. As RMI and EJB requests come in, the load-balancing
algorithm determines which managed server will handle the request.

WebLogic provides several algorithms for load balancing. You use Adminis-
tration Console to choose the one you want. These methods are discussed
later in this chapter.

Connection proxy
Clustering is not just for RMI and EJB requests. You may also choose to cluster
your JSP and servlet requests. WebLogic provides for a connection proxy that
routes servlet and JSP requests to a managed server that’s not overloaded.

The connection proxy feature of WebLogic is extendable. You may choose to
write your own, buy a third-party proxy, or use the connection proxy built
into WebLogic.

Configuring WebLogic Clustering
Now that you understand the components that make up a WebLogic cluster,
it’s time to see the steps required to install one. These steps are summarized
as follows:

1. Install WebLogic Server.

2. Create a clustered domain.

3. Start the WebLogic Server cluster.

4. Configure Node Manager (optional).

5. Configure load balancing.

6. Configure proxy plug-ins (optional).

7. Configure clustered JDBC.

In the following sections, you examine each step in detail.

275Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 275

Installing WebLogic Server
You must install WebLogic Server on each machine that you want to run it on.
You must use the same version of WebLogic on each machine and pay for the
necessary WebLogic licenses.

Although not required, try to make the environment of each cluster machine
as close to identical as possible. The directory structure and location of
WebLogic and your application should be the same on each system.

The machines that make up the cluster don’t need to be identical, but they
must meet the following minimum requirements:

� Static IP address. A managed server must have permanently assigned,
static IP addresses. Dynamically assigned IP addresses are not allowed
in a cluster environment.

� Client accessible. The server computers must be accessible to clients.
You may not place server computers behind a firewall and clients in
front of the firewall. This is because each server instance must have a
public IP address that can be reached by the clients.

� Multicast accessible. The managed servers must be located on the same
local area network (LAN) and must be reachable by IP multicast. This
means that the IP address configured for each server machine must
have the same submit mask.

You shouldn’t use a shared file system to run multiple WebLogic Server
instances on separate machines. This creates a bottleneck because all server
instances must compete to access this area. Additionally, concurrent access
to the log files may cause some logging information to become unreliable.
Always install a separate copy of WebLogic for each server, preferably on the
server’s local hard drive.

Creating a clustered domain
After your software is installed, you’re ready to create a clustered domain. In
other chapters, you create a domain for a single-computer WebLogic installa-
tion. Here, you create a domain that works with a clustered environment.

A number of steps are involved in setting up a clustered domain. Here’s an
overview:

A. Configure your Administration Server. Each domain must have one
server that you configure as your Administration Server. (See Step 4 in
the next numbered list.)

276 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 276

B. Configure your managed servers (optional). You can add managed
servers or change existing ones. (See Step 6 in the next list.)

C. Assign servers to clusters (optional). You can group your managed
servers into clusters or change existing groupings of servers. (See
Step 10.) If you choose this option, you must first configure your cluster.
(See Step 8.)

D. Associate servers to machines (optional). You can assign your servers
and clusters to machines or change existing assignments. (See Step 14.)
If you choose this option, you must first configure the machine. (See
Step 12.)

You begin creating a clustered domain in Domain Configuration Wizard, as
follows:

1. Start Configuration Wizard.

Choose Start➪Programs➪BEA WebLogic Platform➪Domain
Configuration Wizard.

2. Select the Create a new WebLogic configuration link, and then click
Next.

The screen shown in Figure 16-1 appears.

Figure 16-1:
Choose a

domain
type.

277Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 277

3. Choose a type of domain, and then click Next.

To follow along with the example, click Basic WebLogic Server Domain.

4. Choose Customized Configuration, and then click Next.

The screen shown in Figure 16-2 appears.

5. Configure your Administration Server as follows:

a. For the Name box, type a unique name for your server.

b. Leave the ListenAddress box blank, unless your computer has
multiple IP addresses.

c. Leave the ListenPort at 7001 and the SSL Listen Port at 7002.

d. If you will be using SSL, click the SSL Enabled box.

For more information about SSL, see Chapter 17.

e. Click Next.

The screen shown in Figure 16-3 appears.

6. Click Yes to begin configuring your managed server, and then click
Next.

The screen shown in Figure 16-4 appears.

Figure 16-2:
Configure

your server.

278 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 278

Figure 16-4:
Configure a

managed
server.

Figure 16-3:
Choosing a

managed
server.

279Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 279

7. For each managed server that you want to add, do the following:

a. Click Add.

b. Under Name, type a unique name for your server.

c. Under Listen Address, use the IP address of the server that’s
being added.

This should be the unique IP address that you assigned to the
server when you installed the operating system and networking
support on the server.

d. Under Listen Port, use the port that the computer listens over.

The range of allowable values is 1 to 65,535. You should accept the
default value.

e. Under SSL Listen Port, use the port that the computer listens over.

The range of allowable values is 1 to 65,535. You should accept the
default value.

8. When you have finished adding servers, click Next.

The screen shown in Figure 16-5 appears.

Figure 16-5:
Configure

the cluster.

280 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 280

9. Configure your cluster as follows:

a. Click Add.

b. Under Name, type a unique name for your cluster.

c. MulticastAddress should specify the IP addresses of your man-
aged machines.

MulticastAddress contains a range of IP addresses that the man-
aged machines are located on. A multicast address is a special IP
address that broadcasts to all IP addresses on its network. Your
network administrator will be able to give you the cluster address
and multicast addresses for your server.

d. Leave MulticastPort at its default value of 7777.

The cluster address contains the address and ports for each
server instance.

10. When you have finished configuring your cluster, click Next.

The screen shown in Figure 16-6 appears.

Figure 16-6:
Assign

servers to
clusters.

281Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 281

11. For each server that you want to assign to a cluster, do the following:

a. On the left, click the server that you want to assign.

b. On the right, click the cluster that you want to assign the
server to.

c. Click the right arrow to make the assignment.

12. When you’ve finished assigning servers to clusters, click Next.

The screen shown in Figure 16-7 appears.

13. For each machine that you want to configure, do the following:

a. Click Add.

b. Under name, type a unique name for your machine.

c. Under ListenAddress, type the IP address of the machine you
are adding.

d. Under ListenPort, accept the default.

14. When you’ve finished configuring machines, click Next.

The screen shown in Figure 16-8 appears.

Figure 16-7:
Configure
machines.

282 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 282

15. For each server that you want to assign to a machine, do the following:

a. On the left side of the screen, click the server you want to assign.

b. On the right side, click the machine you wish to assign the
server to.

c. Click the right arrow to make the assignment.

16. When you have finished assigning servers to machines, click Next.

Now that you’ve set up your distributed domain, you’re ready to start your
cluster. This is discussed in the next section.

Starting the WebLogic Server cluster
To start a cluster, you first start Administration Server for the cluster, and
then start each of the managed servers in the cluster. Each server instance is
started with a command that you execute in a separate command shell. (For
a comprehensive discussion of procedures for starting and stopping server
instances, see Chapter 3.)

Follow these steps:

Figure 16-8:
Assign

servers to
machines.

283Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 283

1. Open a command shell.

2. Move to the domain directory.

Change the directory to the domain directory that you created with
Configuration Wizard by issuing the following command:

cd \bea\user_projects\mycluster

where mycluster is the name of your cluster.

3. Start Administration Server by typing StartWebLogic at the command
prompt.

4. Type the user name and password.

5. Observe the Administration Server startup.

The command shell displays messages that report the status of the
startup process.

6. Start a managed server as follows:

a. Open a command shell.

b. Change the directory to the domain directory that you created
with Configuration Wizard.

c. Type the following command:

StartManagedWebLogic server_name address:port

Replace server_name with the name of your managed server, and
replace address:port with the address and port of
Administration Server.

d. To start another server instance in the cluster, return to Step 6c.

If you have no additional managed servers to start, your startup is
now complete.

You may run one managed server on the same computer as Administration
Server. Because Administration Server doesn’t require much processing
power, this allows you to take full advantage of the computer.

Configuring Node Manager
As you saw in the preceding section, the process of starting your cluster
involves starting up managed servers on all machines in the cluster. This can
be tedious and time consuming. Node Manager alleviates this tedium.

Node Manager, which is covered in Chapter 3, is a standalone Java program
that you can use to start managed servers on remote machines. Node Manager
can also restart managed servers that may have crashed. You’re not required
to use Node Manager to set up a cluster.

284 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 284

Configuring load balancing
Load balancing allows WebLogic to better allocate the machines in the server
cluster. This prevents machines from becoming overloaded with tasks. One of
the biggest tasks for these machines is servicing requests to EJB and RMI
objects. In this section, you find out how to load balance the machine to
handle EJB and RMI requests.

WebLogic uses the following three methods to load balance EJB and RMI
requests:

� Weight-based load balancing. New requests are sent to the server that’s
currently processing the least.

� Random load balancing. The next incoming request is sent to a server
chosen at random.

� Round-robin load balancing. The incoming request is given to the
next server in line. Round-robin load balancing is the default balancing
algorithm.

WebLogic uses the round-robin load-balancing method by default. To use a
different method, you must explicitly configure WebLogic as follows:

1. Start Administration Console.

For more information on this task, refer to Chapter 4.

2. Select your cluster.

On the left side of the screen, click the Clusters folder, and then click
your cluster name.

3. Select a load algorithm in the drop-down Default Load Algorithm list.

4. Click Apply to save your changes.

Configuring proxy plug-ins
In addition to load balancing EJB and RMI requests, you may also want to
load balance servlet and JSP requests. This is accomplished by using a proxy
plug-in. A proxy plug-in sends, or proxies, requests from a web server to
WebLogic Server instances in a cluster. In the process, the plug-in provides
load balancing and failover for the proxied HTTP requests. This allows your
JSP pages and servlets to be handled by multiple machines in your cluster.

You can choose from two categories of proxy plug-ins:

� The WebLogic HttpClusterServlet plug-in

� A third-party proxy plug-in

285Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 285

You set up HttpClusterServlet in this chapter. For third-party plug-ins, refer to
their documentation.

To use a proxy with your web application, you must first set up the proxy.
The steps to set up HttpClusterServlet are summarized as follows:

1. Create a web application that includes HttpClusterServlet.

2. Create a deployment descriptor file.

3. Create a web.xml file.

4. Configure your application.

For information on creating a web application, see Chapter 5. The deploy-
ment descriptor file must contain the elements described in this section,
specifically the servlet-mapping and servlet tags. For more on creating
descriptors, see Chapter 8.

Step 3, creating a web.xml file that’s designed to use the proxy, is covered
next. Information on configuring web applications is in Chapter 4.

To make use of the HttpClusterServlet proxy plug-in, you must add it to the
<servlet> element of web.xml. The following code segment shows how to
do this:

<servlet-name>
HttpClusterServlet
</servlet-name>

<servlet-class>
weblogic.servlet.proxy.HttpClusterServlet
</servlet-class>

Now you must map URLs to the proxy based on the file extension. This allows
you to configure the proxy to handle *.jsp or *.html.

If you set <url-pattern> to /, you’ll divert all requests that are not covered
by another handler to the proxy. The following shows how to do this:

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

286 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 286

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

Listing 16-1 incorporates this configuration into a complete web.xml file for
proxy support.

Listing 16-1: Sample web.xml for Proxy Support

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc. //DTD Web
Application 2.2//EN”
“http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

<servlet>

<servlet-name>HttpClusterServlet</servlet-name>
<servlet-

class>weblogic.servlet.proxy.HttpClusterServlet</s
ervlet-class>

<init-param>

<param-name>WebLogicCluster</param-name>

<param-value>
myserver1:7736:7737|myserver2:7736:7737|myserver:7
736:7737

</param-value>

</init-param>

<init-param>
<param-name>DebugConfigInfo</param-name>
<param-value>ON</param-value> </init-param>
</servlet>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>

(continued)

287Chapter 16: Working with Server Clusters

l524720 Ch16.qxd 5/20/03 8:39 AM Page 287

Listing 16-1 (continued)

<url-pattern>*.jsp</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.htm</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.html</url-pattern>
</servlet-mapping>

</web-app>

You can use Listing 16-1 as a starting point for your own web.xml file. Listing
16-1 supports JSP, HTM, and HTML files. You could add support for additional
files simply by adding servlet mappings with the <servlet-mapping> tag.

Configuring clustered JDBC
Data access is usually a significant part of any WebLogic-based application.
Because of this, you must properly cluster your data-related resources when
clustering your server. In this section, you find out what you must do to keep
your database connections compatible with your cluster.

Two JDBC resources are commonly assigned to clusters: connection pools
and data sources. When you create a connection pool or a data source, you
assign it to a server, as discussed in Chapter 12. To use these resources with
clustering, you simply assign them to a cluster rather than to a server.

To use a connection pool or a data source with clustering, follow these basic
steps:

1. Create a connection pool.

2. Assign the connection pool to the cluster.

3. Create the data source.

4. Assign the data source to the cluster.

After you set up your connection, you’re ready to use distributed JDBC.
Clustered JDBC is accessed the same way as regular JDBC through WebLogic.
The fact that you’re using clustering is transparent to your application.

288 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch16.qxd 5/20/03 8:39 AM Page 288

Chapter 17

Tuning WebLogic Server
In This Chapter
� Using performance packs

� Changing thread settings

� Modifying JDBC and EJB performance settings

� Changing the startup script

� Switching your Java compiler

Performance is an important consideration in any enterprise application.
For your enterprise application to be successful, it must respond to user

requests in a reasonable amount of time. Your application must hold up to
even demanding heavy-use situations.

You can increase the performance of your application in two primary ways:
through the use of hardware and software. Using hardware to increase perfor-
mance is covered in Chapter 16. In this chapter, you find out how you can use
your existing hardware to increase performance by adjusting performance
settings in WebLogic Server.

WebLogic Server Performance Packs
Java uses a virtual machine to execute its code, so Java code can execute on a
variety of hardware platforms. The price for platform independence, however,
is performance. To overcome this limitation in Java, you can use performance
packs.

WebLogic performance packs contain native code for specific hardware systems.
Native code refers to low-level instructions unique to a given platform. Native
code has been crafted to pull the most performance possible out of a platform.

Most benchmarks provided by BEA show that you can reap major perfor-
mance improvements by using native performance packs on machines that
host WebLogic Server instances. These packs use a platform-optimized,
native-socket multiplexor to improve server performance. However, if you

l524720 Ch17.qxd 5/20/03 8:40 AM Page 289

use a performance pack, you’re no longer working in a “pure Java” environ-
ment. This isn’t usually an issue, unless you want to execute WebLogic on a
platform that doesn’t have a native performance pack.

In nearly all cases, you’ll want to use a performance pack if one is available
for your platform. Performance packs result in one of the easiest perfor-
mance gains.

Follow these steps to use a native performance pack:

1. Make sure that your server is running.

The server that you want to configure must be running. For a refresher
on starting your server, see Chapter 3.

2. Log on to Administration Console.

Administration Console is usually at http://localhost:7001/console.
For more information on Administration Console, see Chapter 4.

3. Select your server.

On the left side of the screen, click the Servers folder and then click
your server. Your server’s configuration page appears.

4. Click the Tuning tab.

The screen shown in Figure 17-1 appears.

Figure 17-1:
Tuning your

server.

290 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 290

5. Make sure that the Enable Native IO option is selected, and then
click Apply.

6. Restart your server.

These changes take effect when your server is restarted.

Thread Settings
Threads are an important aspect of WebLogic. Many performance settings
are related to threads. In this section, you work with some of the thread set-
tings that you can use to improve WebLogic Server’s performance.

Setting thread count
Requests to WebLogic are processed through execute queues. When you first
install your server, you are given two execute queues named __weblogic_
admin_html_queue and __weblogic_admin_rmi_queue. These queues are
reserved for communicating with Administration Console. If you don’t config-
ure additional execute queues, all web applications and RMI objects use the
default queues.

The size of the default execute queue is set to 15 threads. You can change
this value if needed, but be careful. If you set this value too high, WebLogic
spends most of its time switching between threads rather than performing
real work. If you set the value too low, WebLogic may not be able to respond
to requests in a timely manner.

The value of the ThreadCount attribute of an ExecuteQueue element in
the config.xml file equals the number of simultaneous operations that can be
performed by applications that use the execute queue. As work enters an
instance of WebLogic Server, it’s placed in an execute queue. This work is
then assigned to a thread. Threads consume resources, so handle the
ThreadCount attribute with care — you can degrade performance by
increasing the value unnecessarily.

If native performance packs are not being used for your platform, you may
need to change the default number of execute queue threads and the percent-
age of threads that act as socket readers to achieve optimal performance.

Thread count considerations
Before you modify the thread count, you should consider several things.
Simply adding threads to the queue will not necessarily increase perfor-
mance. Although threads allow a program to do more than one thing at time,
you’re still ultimately limited by the processing power of your computer.

291Chapter 17: Tuning WebLogic Server

l524720 Ch17.qxd 5/20/03 8:40 AM Page 291

Two types of applications that often require more threads are

� Thin client applications that perform much of their processing on the
application server.

� Applications in which the calls to the application server may take a long
time to execute. This is because the calls are usually waiting on an exter-
nal event, such as a database query.

Determining an optimal thread count
To determine the optimal thread count for an execute queue, monitor the
queue’s throughput while all applications in the queue are operating at maxi-
mum load. Now increase the number of threads in the queue. At some point,
you reach the optimal throughput for the queue.

To monitor the throughput or change the number of threads, follow these steps:

1. Make sure your server is running, and log on to Administration Console.

2. Select your server.

On the left side of the screen, click the Servers folder and then click
your server. You now see your server’s configuration page.

3. Display the execute queues that can be modified.

Click the Monitoring tab, which is shown in Figure 17-2. Then click the
Monitor all Active Queues link. The screen shown in Figure 17-3 appears.

4. Create and modify a queue as follows:

a. Click the Configuration tab.

b. Click the Configure a new Execute Queue link.

This will allow you to create a new execute queue. From this
screen you can specify the maximum and minimum number of
threads. How to choose these values will be discussed next.

c. Click Create.

The screen shown in Figure 17-4 appears.

d. Modify any of the parameters shown.

5. Scroll down and click Apply to apply your changes.

6. Restart your server.

These changes take effect when your server is restarted.

292 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 292

Figure 17-3:
Active

queues.

Figure 17-2:
Monitoring

your server.

293Chapter 17: Tuning WebLogic Server

l524720 Ch17.qxd 5/20/03 8:40 AM Page 293

The number of CPUs in your system has a big effect on the number of threads
that you should be using. Consider the following CPU scenarios:

� Thread count less than the number of CPUs. Your thread count may be
too low. This is true if the CPU is waiting to do work, but there is work
that could be done. Your thread count is too low also if you never reach
100 percent CPU utilization rate. If this is the case, increase your thread
count and compare performance results.

� Thread count equal to the number of CPUs. In theory, this is the ideal
situation. It’s most likely, however, that each CPU is underutilized.
Increase the thread count and compare performance results.

� Thread count moderately larger than the number of CPUs. This could
be an ideal setup if there is a moderate amount of thread switching and
a high CPU utilization rate. If this is the case, tune the moderate number
of threads and compare performance results.

� Thread count greatly larger than the number of CPUs. An excess
amount of thread switching is probably taking place, adding overhead to
the system. Decrease the number of threads and compare performance
results.

Figure 17-4:
The execute

queue
attributes.

294 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 294

Detecting stuck threads
Occasionally, a thread becomes stuck — that is, it no longer executes additional
tasks. When a thread is stuck, it’s wasting system resources. The server can
continue as long as all threads have not entered a stuck state.

A thread can become stuck for many reasons. WebLogic Server automatically
detects when a thread in an execute queue becomes stuck and gives the
stuck threads a certain amount of time to continue. If the thread exceeds this
amount of time, the thread is restarted.

To configure WebLogic Server thread detection behavior, follow these steps:

1. Make sure that your server is running, and then log on to
Administration Console.

2. Select your server.

On the left side of the screen, click the Servers folder, and then click
your server. You now see your server’s configuration page.

3. Click the Tuning tab.

This tab was shown in Figure 17-1.

4. Set the stuck thread properties.

In the Stuck Thread Max Time box, type the maximum amount of time
before the thread is restarted. In the Stuck Thread Timer Interval box,
type the time between the thread scans.

5. Restart your server.

These changes take effect when your server is restarted.

JDBC Performance Settings
Most enterprise applications use the database and JDBC for their data
access. Because of this, you can achieve great performance gains by simply
setting up the JDBC performance settings properly.

JDBC connection pools
You should always use JDBC connection pools when accessing databases
from server components such as EJBs. It’s easy to set up connection pools

295Chapter 17: Tuning WebLogic Server

l524720 Ch17.qxd 5/20/03 8:40 AM Page 295

using Administration Console. For more information on setting up a JDBC
connection pool, see Chapter 12.

For each connection to a database, a certain amount of overhead is incurred.
This can add up considerably if many connections are opened to the same
database. A connection pool opens up multiple connections to a database,
and the EJBs share this access.

You have the option of setting how many connections a pool allows. The pool
can grow and shrink between the configured minimum and maximum values.
In general, the best performance occurs when the connection pool has as
many connections as there are concurrent client sessions.

Connection pool initial capacity
Connection pools have a defined initial capacity. This value represents the
smallest number of connections that the pool can have.

If you set the connection pool initial capacity too high and WebLogic can’t
initialize that number of connections, the connection pool fails to start.

During development, you may want to set the pool initial capacity lower so
that the server starts faster.

Pool maximum capacity
The pool maximum capacity specifies the maximum size that a connection
pool can reach.

In production systems, the pool maximum capacity and the initial capacity
are often set to the same number. This causes the server to create all connec-
tion objects immediately.

Caching prepared statements
The prepared statement object allows you to define SQL with parameter
values. In this way, JDBC can compile the SQL statement once and use the
object to execute the statement over and over. However, it’s not always the
same statement, because of the parameters you can specify. To create a pre-
pared statement, you use the PreparedStatement class.

WebLogic caches these prepared statements so that they don’t have to be recre-
ated each time they’re used. You can define the size of this cache of prepared
statements. If you set the value too low, prepared statements are not cached.
If you set the value too high, the system is processing needless overhead.

296 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 296

EJB Performance Settings
EJBs are a major component of WebLogic, and you can set many performance
options for them. These settings are stored in the weblogic-ejb-jar.xml deploy-
ment file, which contains information specific to WebLogic Server. It contains
also the descriptors that map available WebLogic Server resources to EJBs.
WebLogic Server resources include security role names and data sources such
as JDBC pools, JMS connection factories, and other deployed EJBs.

Like any other XML file, the weblogic-ejb-jar.xml file can be loaded with a reg-
ular text editor. To change parameters in the file, you use the editor, save the
file, and then restart WebLogic Server.

Setting EJB pool size
For every stateless session bean class, WebLogic keeps a free pool for EJBs.
The max-beans-in-free-pool element of the weblogic-ejb-jar.xml file speci-
fies the size of this pool. The default is no limit, which means the pool is limited
only by available memory.

You shouldn’t change the value of the max-beans-in-free-pool parameter
unless your program frequently creates session beans and then discards
them. If this is the case, enlarge the free pool by 25 to 50 percent and see
whether performance improves. If object creation represents a small fraction
of your workload, increasing this parameter will not significantly improve
performance. For database-intensive EJBs, do not change the value of this
parameter.

Tuning max-beans-in-free-pool too high uses extra memory. Tuning it too
low causes unnecessary object creation. If in doubt, leave it unchanged.

Allocating pool size for session and
message beans
When an EJB is created, the session bean is given an identity. When the client
program removes this bean, it’s placed back in the free bean pool. When sub-
sequent beans of the same type are created, the original bean is used, thus
saving the overhead of recreating the bean. The max-beans-in-free-pool
element, which controls the size of this pool, can improve performance if the
same EJBs are frequently created and removed.

297Chapter 17: Tuning WebLogic Server

l524720 Ch17.qxd 5/20/03 8:40 AM Page 297

EJB instances are created as needed by the container for message process-
ing. The max-beans-in-pool element establishes an absolute limit on the
number of these instances created. WebLogic may override this setting
according to available runtime resources.

In general, for the best performance when using stateless session and message
beans, you should use the default setting for the max-beans-in-free-pool
element. The default is optimized to allow you to run beans in parallel, using as
many threads as possible. The only reason you would change this setting is to
limit the number of beans running in parallel.

Allocating pool size for anonymous
entity beans
Anonymous entity beans are beans without a primary key assigned to them.
The max-beans-in-free-pool element controls the size of not only the free
bean pool but also the pool of anonymous entity beans. If you’re running
many finders or home methods or creating lots of beans, you may want to
tune the max-beans-in-free-pool element so that enough beans are avail-
able for use in the pool.

Tuning initial beans in the free pool
The initial-beans-in-free-pool element of the weblogic-ejb-jar.xml file
specifies the number of stateless session bean instances in the free pool at
startup. If you specify a value for initial-beans-in-free-pool, WebLogic
Server populates the free pool with the specified number of bean instances.
Populating the free pool ahead of time is a way to improve initial response
time for the EJB, because initial requests for the bean can be satisfied with-
out generating a new instance.

Setting EJB caching size
WebLogic Server allows you to set the number of active beans present in the
EJB cache. The max-beans-in-cache element of the weblogic-ejb-jar.xml file
specifies the maximum number of objects of this class that are allowed in
memory. The value of this element sets the cache size for both stateful session
and entity beans.

298 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 298

Starting WebLogic Server with
Performance Options

WebLogic requires that you specify certain Java parameters when it starts.
For simple startups, you can specify these parameters on the command line.
However, WebLogic usually requires many parameters, so using a script
makes more sense. (For more information about starting WebLogic, see
Chapter 3.)

Two startup scripts are automatically provided when you install WebLogic. The
Administration Server scripts are startWLS.sh (UNIX) and startWLS.cmd
(Windows). These two scripts are in the WebLogic bin directory.

You can modify some of the default Java values in these scripts to fit your
environment and applications. The important performance-tuning parameters
in these files are the JAVA_HOME parameter and the Java heap size. Change the
value of the JAVA_HOME variable to the location of your JDK. For example:

JAVA_HOME=C:\bea\jdk131_03

For even higher performance throughput, set the minimum Java heap size
equal to the maximum heap size. For example:

“%JAVA_HOME%\bin\java” -hotspot -Xms512m -Xmx512m -classpath
%CLASSPATH% -

Setting Your Java Compiler
JSP pages and servlets must be compiled on-the-fly, as they’re needed by a
WebLogic process. By default, the standard Java compiler is used. You can
improve performance significantly by setting your server’s Java compiler to
one that’s faster than Sun’s javac. One common replacement is IBM’s jikes:

http://oss.ibm.com/developerworks/opensource/jikes

Follow these steps to change your compiler:

1. Make sure that your server is running, and log on to Administration
Console.

2. Select your server.

Click the Servers folder, and then click your server.

299Chapter 17: Tuning WebLogic Server

l524720 Ch17.qxd 5/20/03 8:40 AM Page 299

3. Click the Compilers tab.

4. In the Java Compiler box, type the full path to your compiler.

5. Specify the library location.

In the Append to Classpath box, type the full path to the JRE rt.jar
library. This allows you to access the runtime library from Java.

6. Click Apply.

7. Restart your server.

Now you know some of the software items that you can configure to make
your application run faster. In addition to the software changes that you can
make, you’ve seen how you can tune WebLogic at the server level.

300 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch17.qxd 5/20/03 8:40 AM Page 300

Chapter 18

Implementing Security
In This Chapter
� Reviewing WebLogic security

� Uncovering the Secure Socket Layer (SSL)

� Entering the user realm

Security is an important part of any web application. You’ve probably
read some of the highly publicized cases of corporate computer systems

compromised by hackers. Many more go unreported. In this chapter, you find
out how to use some of the many features in WebLogic that help you enhance
the security of your application.

Understanding WebLogic Security
WebLogic has many built-in features to enhance security, but you must be
aware of them to properly defend your system. Many of these security fea-
tures must be customized to suit your particular application. Security is not
automatic; you must take steps to ensure that your system is secure.

WebLogic’s security architecture is open and flexible. It delivers advantages
to all levels of users and provides an advanced security design for applica-
tion servers.

In this chapter, you examine some of the common security features of
WebLogic. For information on features not covered here, refer to the online
help included with WebLogic.

Secure Sockets Layer (SSL)
Secure Socket Layer (SSL) is one of the most common forms of web security.
SSL is usually used through Hyper Text Transfer Protocol Secure (HTTPS). If
you log on to almost any financial web site to check your account, for example,

l524720 Ch18.qxd 5/20/03 8:40 AM Page 301

you’ll see the URL change to one that begins with https. HTTPS and SSL provide
the following advantages:

� Host verification

� Data encryption

HTTPS allows you to be sure that you’re connecting to the intended host. If
you enter the URL https://www.weblogic.com, for example, SSL ensures
that you’re using that site. A domain name such as http://www.weblogic.
com is mapped to an IP address by domain name service (DNS). If a hacker
tampers with the DNS, you could be taken to an IP address other than the one
you were expecting. SSL ensures you’re accessing the correct IP address,
which ensures that you’re accessing the correct server.

Data encryption is another valuable feature provided by SSL. If you log on to
your bank’s web site to view your account, for example, you must enter your
user ID and password. Without SSL, this user ID and password would be
transmitted, unencrypted, across the Internet. Your password and ID could
be intercepted by a malicious user. SSL encrypts your password and user ID
so that they’re not visible to someone monitoring the packets between the
user and web server.

Setting up SSL on WebLogic Server involves a number of steps. These steps
are summarized here and explained in more detail in the next sections:

1. Obtain an identity and a trust.

An identity is a private key and a digital certificate. The trust is a certificate
issued to you by a trusted certificate authority (CA). Digital certificates,
private keys, and trusted CA certificates can be obtained from the
WebLogic Server kit, the Cert Gen utility, Sun Microsystem’s keytool
utility, or a reputable certificate authority such as Entrust or Verisign.

2. Store the keys and certificates.

You must store the private keys, digital certificates, and trusted CA cer-
tificates in a location accessible by WebLogic. Digital certificates are
stored in a file in the domain directory of WebLogic Server. Private keys
and trusted CA certificates are stored in a keystore.

3. Enable SSL on your server.

You must set SSL attributes for the server’s identity and trust locations
in WebLogic Server’s Administration Console or in a server start script.
The SSL attributes define the location of the private key, digital certifi-
cate, and trusted CA certificates.

302 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 302

Obtaining an identity
The first step in setting up SSL on WebLogic Server is obtaining a certificate
from a certificate authority. This CA certificate, which contains your key, is
used to ensure web visitors that you really are who you say you are.
WebLogic includes a tool to help you generate a request form that can be
used to obtain a certificate from a CA. To use this tool, follow these steps:

1. Make sure that your server is running.

The server that you want to configure must be running. For a refresher
on starting your server, refer to Chapter 3.

2. Log on to Certificate Generator.

Certificate Generator is usually at http://localhost:7001/
certificate. You have to enter the administrator user ID and
password. The screen shown in Figure 18-1 appears.

3. Enter the required information.

Scroll down so that you can see the form for entering information about
your web site. Figure 18-2 shows how I filled out the form for my web site.

Figure 18-1:
Certificate

request
generator.

303Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 303

4. Click Generate to generate a certificate.

The screen shown in Figure 18-3 appears. This is the request certificate
that you send to a certificate authority, such as Verisign.

After you obtain your certificate, you must store it into the keystore. This is
explained in the next section.

Storing keys and certificates
Certificates must be stored in a keystore. The keystore is managed using the
Java keytool command. If you’ve added the WebLogic bin directory to your
path, you can access the keytool command from the command prompt.
Some of the common tasks that you can perform with the keytool command
are described next.

Figure 18-2:
Certificate

request
generator.

304 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 304

Creating a keystore
The first thing you should do is create a new keystore for WebLogic’s use. You
need to do this only once. To create the keystore, use the following command:

keytool -genkey -keystore keystorename -storepass
keystorepassword

Replace keystorename with the path and file name of the file you want to use
as the keystore. The keystore also needs to have a password, which you
should use in place of keystorepassword. You’ll use that password to
access the keystore.

Loading a private key
When you ran the certificate generator in the preceding section, one result
was that a private key was generated in a file whose name ends in the .pem
extension. This file should be added to the keystore using the following com-
mand line:

Figure 18-3:
Output

from the
certificate

request
generator.

305Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 305

keytool -alias aliasforprivatekey -import -file
privatekeyfile.pem -keypass privatekeypassword -
keystore keystorename -storepass keystorepassword

To add the private key, you need to know the file name of the keystore
(keystorename) and its password (keystorepassword). You also need
the name of the file containing the private key (privatekeyfile.pem) and
the password for that file (privatekeypassword). You also specify an alias
(aliasforprivatekey) by which this private key will be known in the
keystore.

When you’re finished adding a private key to your keystore, copy the .pem
file to a backup device (such as a floppy disk) and store it someplace safe.
You’ll need this file if your keystore becomes damaged.

Loading a trusted CA certificate
When a certificate is granted to you by a certificate authority, you need to
load that certificate into the keystore. To do so, use this command line:

keytool -alias aliasfortrustedca -trustcacerts -import -file
trustedcafilename.pem -keystore keystorename -
storepass keystorepassword

Again, you use keystorename and keystorepassword to specify the key-
store’s location and password, respectively. You also need to specify an alias
by which the certificate will be known in the keystore (aliasfortrustedca)
and the path and file name of the certificate file (trustedcafilename.pem).

Displaying keystore contents
To display the complete contents of the keystore, use the following command:

keytool -list -keystore keystorename

Deleting a key
To delete a private key that you no longer need, use the following command.
You delete a key by referring to its alias:

keytool -keystore keystorename -storepass keystorepassword -
delete -alias aliasforprivatekey

306 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 306

You can’t undo a delete operation. If you decide you still want to use the pri-
vate key, you must add it to the keystore again. (This is one reason why you
should store the .pem file for the private key on a floppy disk and put it in a
safe place.)

Displaying help
If you need a short refresher on how to use keytool, use the following
command:

keytool -help

Enabling SSL on your server
Now that you have obtained the needed certificates, you can enable SSL in
WebLogic. Follow these steps:

1. Make sure that your server is running.

The server that you would like to configure must be running. For a
refresher on starting your server, refer to Chapter 3.

2. Log on to Administration Console.

Administration Console is usually at http://localhost:7001/
console. If you need a refresher on getting into the administration
console, refer to Chapter 4.

3. Select your server.

Click the Servers folder, and then click your server’s name.

4. Configure SSL.

Click the Keystores & SSL tab. The screen shown in Figure 18-4 appears.
Provide the alias that you used for your certificate when you added it to
your keystore.

5. Change your keystore.

WebLogic uses a demo keystore by default. When you want to specify
your own keystore, click the Change link in Figure 18-4 and configure the
keystore.

307Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 307

Introduction to Security Realms
WebLogic allows you to lock down certain resources of WebLogic called secu-
rity realms. You can create users, groups, and roles to manage access to the
following security realms:

� Administrative resources such as the WebLogic Server Administration
Console

� Enterprise applications

� Component Object Model (COM) resources

� Enterprise Information System (EIS) resources

� Enterprise JavaBean (EJB) resources

� Java DataBase Connectivity (JDBC) resources

� Java Naming and Directory Interface (JNDI) resources

� Java Message Service (JMS) resources

� MBean resources

Figure 18-4:
Configure

SSL.

308 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 308

� Server resources related to WebLogic Server instances, or servers

� URL resources related to web applications

� Web services resources

You can control access to each of these resources by using Administration
Console. You discover how to secure these resources later in the chapter. Next,
you find out how to create the different entities that inhabit security realms.

Users
Users are the most basic type of entity that can be authenticated in a
security realm. A user is not necessarily a person. User are typically one of
the following:

� A developer or an administrator

� An application end user

� A client application

� Other instances of WebLogic Server

When a user wants to access a specific resource, the user must be authenti-
cated in one of two ways:

� Using a password

� Using a digital certificate

Just like groups, users must have unique names. Further, a user and a group
may not have the same name.

Follow these steps to create a user:

1. Make sure that your server is running, and log on to Administration
Console.

2. Select the Users folder.

Click the following folders: mydomain, Security, Realms, myrealm, and
then Users. The screen shown in Figure 18-5 appears, listing all current
users.

3. Click the Configure a new User link.

The screen shown in Figure 18-6 appears.

309Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 309

Figure 18-6:
A new user.

Figure 18-5:
Realm
users.

310 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 310

4. Create the user.

Type a name and password for the user. (You must type the password
twice: once in the Password box and once in the Confirm Password box.)
Then click Apply.

5. Assign the user to one or more groups.

Click the Groups tab. The screen shown Figure 18-7 appears. Assign the
user to whatever groups you want. Then click Apply.

Groups
A group is another entity used in a domain. A group is made up of users that
have something in common. These users usually share a common level of
access. This allows the WebLogic administrator to quickly assign users to the
correct groups. It’s much more efficient to manage a large number of users
through the use of a group.

Just like users, a group must have a unique name. Further, a user and a group
can’t have the same name.

Figure 18-7:
Assign

groups.

311Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 311

Groups enable you to quickly configure settings for many users.

To create a new group, follow these steps:

1. Make sure that your server is running, and log on to Administration
Console.

2. Select the Groups folder.

Click the following folders: mydomain, Security, Realms, myrealm, and
then Groups. The screen shown in Figure 18-8 appears, listing all current
groups.

3. Click the Configure a new Group link.

The screen shown in Figure 18-9 appears.

4. Create a group.

Type a name for the group, and then click Apply.

5. Assign other groups to the group.

Click the Membership tab. The screen shown in Figure 18-10 appears.
Assign another group or groups to this group. For example, if you want
everyone in this group to be an administrator, assign the Administrators
group to the Current Groups list.

Figure 18-8:
Realm

groups.

312 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 312

Figure 18-10:
Assigning

users to the
groups.

Figure 18-9:
A new
group.

313Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 313

Security roles
Security roles grant privileges to users and groups based on specific condi-
tions. Like groups, security roles allow users to be grouped. Unlike groups,
however, security roles are calculated dynamically, as the server runs.

To create a security role, follow these steps:

1. Make sure that your server is running, and log on to Administration
Console.

2. Select the Global Roles folder.

Click the following folders: mydomain, Security, Realms, myrealm, and
then Global Roles. The screen shown in Figure 18-11 appears, displaying
all current roles.

3. Click the Configure a new Global Role link.

The screen shown in Figure 18-12 appears.

Figure 18-11:
Realm roles.

314 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 314

4. Create a role.

Type a name for the role, and then click Apply.

5. Create conditions.

Click the Conditions tab. The screen shown in Figure 18-13 appears.
Assign any of the following conditions, and then click Add:

• User name of the caller. You can require that the user’s name is a
certain value. If you select this option, you’re prompted for the
user name that you want to compare against.

• Caller is a member of the group. You can require that the user be
a member of a certain group. If you select this option, you’re
prompted for the group name that you want to compare against.

• Hours of access are between. You can specify a range of time
during which the system can be accessed. If you select this option,
you’re prompted for the time range.

Figure 18-12:
A new role.

315Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 315

Security policies
Security policies are the connection between WebLogic resources and users,
roles, and groups. Using security policies, you can define which resources are
available to which users, and under what conditions.

Security policies, introduced in WebLogic Server 7.0, replaced access control
lists (ACLs), a feature in WebLogic Server 6.x.

Security policies are not configured from one central location in
Administration Console. Rather, you can right-click nearly any resource in the
Administration Console tree and set up a policy for it.

To create a security policy, follow these steps:

1. Make sure that your server is running, and log on to Administration
Console.

2. Select the resource for which you want to set a policy.

To follow along with the example, select the EJB Modules folder. To do
so, click the following folders: mydomain, Deployments, and then EJB
Modules.

Figure 18-13:
Conditions.

316 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 316

3. Define a policy.

Right-click EJB Modules, and choose Define Security Policy. The screen
shown in Figure 18-14 appears. Choose one or more of the following poli-
cies and then click the Add button:

• User name of the caller. Allows you to require that the user’s
name is a certain value. If you select this option, you’re prompted
for the user name that you want to compare against.

• Caller is a member of the group. Allows you to require that the user
be a member of a certain group. If you select this option, you’re
prompted for the group name that you want to compare against.

• Caller is granted the role. Allows you to specify a role that the
caller must match to be able to access the specified resource. If
you select this option, you’re prompted for the role that you want
to compare against.

• Hours of access are between. Allows you to specify a range of
time that the system can be accessed. If you select this option,
you’re prompted for the time range during which this resource
will function.

For the user to be able to access the resource, all specified conditions
must be met.

Figure 18-14:
Define a
security

role.

317Chapter 18: Implementing Security

l524720 Ch18.qxd 5/20/03 8:40 AM Page 317

You’ve examined how to define a policy for a web resource. You can also
modify the policy of nearly every folder in the Deployments folder.

As you can see from this chapter, WebLogic provides a number of security
features. You saw how SSL can make transmissions to and from the server
more secure. You also saw how realms can control how WebLogic resources
are accessed.

318 Part V: Big-Time, Heavy-Duty Server Configuration

l524720 Ch18.qxd 5/20/03 8:40 AM Page 318

Part VI
The Part of Tens

m524720 PP06.qxd 5/20/03 8:40 AM Page 319

In this part . . .

Over time, you’ll discover many techniques pertaining
to WebLogic and programming in general. Here, I pass

along some of these techniques that I’ve found while work-
ing with WebLogic. I provide ten suggestions for developers
and administrators as well as ten suggestions to follow
before going live with your application.

m524720 PP06.qxd 5/20/03 8:40 AM Page 320

Chapter 19

Ten Best Practices for Developers
In This Chapter
� Keep adequate documentation

� Use Usenet

� Don’t over-engineer

� Isolate development, testing, and production

� Know what you’re developing

� Take the time to understand tools

� Create modular, decoupled applications

� Be mindful of security

� Test your software

� Manage your build process

As a WebLogic developer, it’s important to know how to structure your
applications and development environment. You must also know how to

reach out to the WebLogic community when you run into problems. In this
chapter, I discuss these recommendations and other information that has
helped me over the years as a developer.

Keep Adequate Documentation
Documentation is an important part of any application. As a developer, you
should do your part to ensure that your application is properly documented.
Documentation falls into several categories:

� Program code documentation. The most obvious form of documentation
consists of the comments in the source code. Javadoc is a good way to
provide this documentation.

n524720 Ch19.qxd 5/20/03 8:40 AM Page 321

� Developer handbook. A basic but often overlooked use for documenta-
tion is bringing new programmers up to speed. On mature applications,
developers’ computers often contain a mix of files used as the application
was developed. This environment can be difficult for a new developer to
recreate. The developer’s handbook describes the process needed to set
up the development environment on a new machine.

� Program specification. Changes to the specifications of your application
must be communicated to all who are involved in these changes.

� End user documentation. This is the documentation that your users
refer to for information on how to use your system. As features are
added to the system and existing features changed, make sure that you
update the user documentation.

By keeping all forms of documentation properly maintained, developers and
users can stay current with the application.

Use Usenet
One of the greatest benefits of the Internet is the sense of global community.
And no single portion of the Internet embodies this more than Usenet, which
consists of a large collection of messages posted by Internet users on a variety
of topics.

You can access Usenet in several ways. You can install client programs that
download and filter Usenet postings for you. You can also use web-based
portals. One of the most common web portals is Google, at http://groups.
google.com.

Don’t Over-Engineer
WebLogic provides you with a wealth of technologies. EJBs allow you to dis-
tribute your processing tasks and skip writing database caching code. Web
services allow you to make your application available over a standard SOAP
interface. XML allows you to design standard content structures for your data.

However, you should avoid the temptation to use a technology just because
WebLogic makes it available. For example, web services have a specific pur-
pose. They enable you to expose your application to other applications that
must use it across the Internet. In general, web services shouldn’t be used

322 Part VI: The Part of Tens

n524720 Ch19.qxd 5/20/03 8:40 AM Page 322

internally by your application. I came across an application that used web
services for all communication between the back-end EJB components and
the front-end JSP pages. This resulted in many web service calls for each dis-
played page, a slow process that led to bottlenecks and an overall poor site.

Set Up Development Environments
WebLogic allows you to create multiple servers that run from the same
machine. This provides a convenient way to provide several development
environments, such as the following:

� Development. The development environment is where developers test
their code. This allows developers to test their code in a controlled envi-
ronment. Stable versions on the development server are usually rolled
over to the test server.

� Test. Your project team will likely consist of quality assurance (QA) people
who test the software and report new bugs. QA people shouldn’t be test-
ing from your development server because the server is too volatile.
Rather, you should roll out a stable version from your development server
to the test server. This version can then be tested by your QA staff.

� Demo. You’ll have to demo your software, either to clients to show the
progress of the system you’re creating, or to internal users who will
soon be using your system. If you don’t create a demo server and a
developer destabilizes your development server, your demo is shot.

� Documentation. It’s likely that a group of people will be creating the
documentation for your application. They’ll be logging on to the server
and taking screen shots and performing other activities related to the
end-user documentation. It is important to give your tech writers a
stable environment from which to develop their documentation.

� Beta. When you think that your application is ready for production, have
your end users test the software one final time before it’s rolled out to
production. This process is called end user acceptance testing. It’s a good
idea to perform this testing from a special beta server.

� Production. The production version of your program is the one that’s
used by end users. It’s up to your server administrators to make sure
that the production server stays available to them. This will be the last
stop that any version of your software is rolled to.

It’s not necessary to set up all these environments on different machines.
Several of these environments can be combined on a single machine.

323Chapter 19: Ten Best Practices for Developers

n524720 Ch19.qxd 5/20/03 8:40 AM Page 323

Know What You’re Developing
As a developer, you should understand the problem you’re trying to solve.
This may seem obvious, but developers on large applications can easily lose
sight of the goal for several reasons:

� Unclear program specifications

� Developers who are aware of only their own local areas of the program

� Poor access to business users who understand the specifications

Understand the Tools
Many tools are available to make the developer’s life easier. Unfortunately,
you can spend a lot of time learning to use these tools before you realize any
gain in programming time. In effect, your time to learn a tool is an investment.
A developer should at least have the following tools:

� A text file editor

� An integrated development environment (IDE) that supports debugging

� A build tool, such as ANT

� A source code beautifier

� WebLogic Resource Workshop

� Version control

Create Modular, Decoupled Systems
A large application will have many classes and intertwined systems. Creating
a system comprised of many modules has several advantages:

� Common modules can be reused.

� The program is easier to understand because large problems are broken
into many smaller problems.

� Different programmers can be working on different modules without
interfering with each other.

324 Part VI: The Part of Tens

n524720 Ch19.qxd 5/20/03 8:40 AM Page 324

As the system grows, specific modules will move from active development to
maintenance mode. Make sure that these modules are constructed in such a
way that ongoing development doesn’t cause errors to occur in previously
working code. Such errors are called regression errors.

Be Mindful of Security
The media is filled with reports of people exploiting security faults in soft-
ware. As you design and implement your application, you must be mindful of
security. Security faults can creep into your system in many ways:

� Taking advantage of unvalidated parameters

� URL tampering

� Buffer overruns

� Injecting commands into parameters that may make their way to SQL

� Exploiting known security flaws in the operating system or server
software

To cover all of these is beyond the scope of this chapter. However, one
common security issue for web applications is tampering with the URL.
Consider a program that allows users to view information about their bank
accounts. As soon as users log on, they’re shown a list of all their accounts.
They can then click one account and get detailed information about it. The
program was implemented to redirect the user to a page named display-
account.jsp?number=201, which displays account 201. But what if the user
doesn’t own account 201? You may think that you’re safe because the system
provides hyperlinks only to accounts that the user owns. However, the user
could just edit the URL line to display, for example, account number 202. If
the web application doesn’t check ownership on the account, someone else’s
account information would now be available to the unauthorized user. This
same type of exploit can be used against hidden form variables.

Tools can scan for various security deficiencies in a web server. For example,
an open source scanner called Web Scarab can automate such checking. You
can get this tool from the Open Web Application Security Project at
http://www.owasp.org.

Many security flaws are the result of not having the latest patches for your
operating system or server software. Make sure that you have the most cur-
rent patches.

325Chapter 19: Ten Best Practices for Developers

n524720 Ch19.qxd 5/20/03 8:40 AM Page 325

Test Your Software
As a developer, you should always test your modules as well as you can
before they’re integrated with the other modules. This is called unit testing.
When you first create a module, you should do all unit testing by hand.

When you’re satisfied with the results of the unit test, you’re ready to integrate
your module with those developed by others. This process is called integration
testing. Integration testing involves teamwork with other developers as your
components are put together for the first time.

In addition to testing performed by the developers, there will be testing per-
formed by QA people and end users. As these users test your software, they’ll
find bugs. If you have a number of QA people and developers, a bug-tracking
tool can be handy. In addition, bug-tracking tools allow notes to be attached to
individual bugs. When developers or users find a bug, they can document the
resolution. This is important because not all bugs are a result of programming
errors.

When the system is almost ready to be run from the production server, you
should perform end user acceptance testing. This gives end users one final
chance to test the system before it is rolled into production.

Manage Your Build Process
The build process is one of the most important aspects of software develop-
ment. The build process is what creates compiled files that will be run by
WebLogic Server. The most common build method is to use operating system
scripts to execute the commands necessary to build your application.

Most new Java projects, including WebLogic, use Apache Ant, a tool that
allows you to create XML script files that control how your application is
built. Ant provides many features, including the following:

� Compiles Java files

� Creates and removes directories

� Copies files

� Converts text files between UNIX and Windows formats

� Archives files into JARs

Another big advantage to ANT is that WebLogic uses it for many command-line
utilities, such as those that create the files necessary for web services. Because
of this, it’s a great advantage to be able to call these WebLogic utilities from
your own ANT build script.

326 Part VI: The Part of Tens

n524720 Ch19.qxd 5/20/03 8:40 AM Page 326

Chapter 20

Ten Tips for Administrators
In This Chapter
� Document procedures

� Define a service level agreement

� Set up on-call procedures

� Plan for growth

� Monitor your servers

� Back up your servers

� Keep your systems secure

� Understand log files

� Test with multiple machines

� Keep WebLogic up-to-date

AWebLogic administrator’s job has many facets. And as you administer
systems, you gain experience of what works and what doesn’t work. In

this chapter, I provide some tips for WebLogic administration that I’ve found
useful.

Document Procedures
As a WebLogic administrator, you’ll follow many procedures, including tasks
such as

� Restarting the server

� Shutting down the server for routine maintenance

� Deploying new versions of WebLogic

� Backing up the server

� Installing the latest patches

� Creating WebLogic resources such as data sources

n524720 Ch20.qxd 5/20/03 8:40 AM Page 327

You should have written instructions for each of these procedures. This
enables you to follow the same procedure each time, ensuring consistency.

Written procedures also enable your company to perform these operations
when you’re away. In addition, if you take a new position in the company or
with a new firm, having written procedures enables you to fulfill your respon-
sibility to transfer knowledge to the new administrator.

Define a Service Level Agreement
A service level agreement (SLA) helps to define what end users expect from
your server in terms of reliability. Most users expect that a system will be
up and running 24 hours a day, 7 days a week. Such a schedule is simply not
possible. Many events will cause your system to be down for a period of time.
For example:

� Dealing with hardware failures

� Routine updates

� Installing new versions of WebLogic or patches to the existing version

� Monitoring for acceptable performance

� Rebooting your server

The service level agreement is the contract between you and the users that
your system supports. This contract should specify the amount of time that
your system will be allowed to be down through the year.

In addition to defining maintenance periods, a properly written service level
agreement should also specify the following:

� When maintenance will be performed

� How many minutes of unexpected outage are allowed per year

� How soon the system must return after an unexpected outage

� How often backups will be performed

� The overall percent of time that the server should be up

Set Up On-Call Procedures
At some point, the system will go down unexpectedly. When an unexpected
outage occurs, you and your staff must be ready to deal with it. The outage
might be something that the administrator can handle or something related

328 Part VI: The Part of Tens

n524720 Ch20.qxd 5/20/03 8:40 AM Page 328

to the software. If the outage is caused by a software error, a developer will
need to get involved in the solution. Additionally, these outages may occur
outside regular business hours. This is especially true if you work for a multi-
national corporation.

Plan for Growth
When your system is first deployed, you may not be thinking about growth.
But you should have a plan when your current system is outgrown. In general,
you have two choices when your system can no longer handle the amount of
processing required:

� Upgrade your server to a faster machine.

� Add additional servers to your cluster.

Perhaps one of the simplest ways to handle more requests is to upgrade to a
faster machine. This may mean the purchase of a new server or simply adding
another processor to your current server. When you upgrade to a faster
machine, you must make sure that your server is properly copied across the
network to the new machine. All configuration settings and installed packages
should be copied to the new machine.

If you’re running a cluster of servers, you can simply add another server. If
you’re not running a cluster of servers and your request volume is becoming
too high, you should consider using a cluster of servers. Adding another server
to the cluster causes WebLogic to have another server that can share some of
the workload. This allows the application as a whole to be able to accept more
connections.

Monitor Your Servers
Monitoring your sever is an important task that every WebLogic administra-
tor must deal with. You’ll monitor whether your server is up as well as the
server load.

Monitoring server availability makes sure that your server is up and properly
responding. You can choose from many software packages for monitoring
servers. When the software detects that your server is no longer accessible,
an e-mail message is sent to the administrator.

WebLogic gives you many tools to monitor the load placed on a server. These
tools are accessible from Administrative Console. For more information on
using the monitoring tools in Administrative Console, refer to Chapter 4.

329Chapter 20: Ten Tips for Administrators

n524720 Ch20.qxd 5/20/03 8:40 AM Page 329

Back Up Your Servers
Backing up data is an important part of any administrator’s job. In this section,
I describe backing up WebLogic. You will need to back up the part of your web
application that changes. This is the SQL database. If this data is already being
backed up by a database administrator, you don’t need to worry about backing
up application data.

If you lose the hard drive on your WebLogic server, you’ll be expected to
reinstall everything and get the server running again. If your application
was packaged as a WAR file, you can quickly get your application back up by
redeploying the WAR file.

Keep Your Systems Secure
Security has become an increasingly important topic. As an administrator,
you must keep your system secure. This is accomplished through passwords,
firewalls, and other measures.

When you create your server, you are allowed to create an administrative
user. You should ensure that you enter a hard-to-guess password for your
user. Never set the password to the same value as the user ID. The adminis-
trative user’s password allows you to access Administrative Console, from
which a person can perform any administrative task. Because of this, keep
your password secure.

Passwords should never be words contained in the dictionary. If your pass-
word does exist in the dictionary, your account is vulnerable to a number of
cracking systems. A good method for choosing passwords is to use a diction-
ary word with a few digits on the end.

You should make sure that your database server and application server are
behind a firewall. You then expose port 80 of your web server to the outside
world. Hackers will be able to access the database only through the vulnera-
bilities of the application on the web server — they won’t be able to connect
directly to the database.

Understand Log Files
When something does go wrong, the log files should be one of the first places
that you check. Log files should contain the full stack trace for any exceptions
thrown, so you can quickly determine which module caused the exception.

330 Part VI: The Part of Tens

n524720 Ch20.qxd 5/20/03 8:40 AM Page 330

When you do find an error in a log file, you can often find a solution at
groups.google.com. Simply paste the error message in the input box.

Log files contain a large amount of information, such as

� Exceptions that were thrown

� Beans that failed to deploy

� Other resources that failed to deploy

These errors can be tracked down by a developer. Copy the log information
that contains the exception and send it to the developer. Make sure that you
include the stack trace, which can help the developer. A stack trace looks like
this:

at weblogic.jdbc.common.internal.JdbcInfo.validateConnectionPool
(JdbcInfo.java:127)
at weblogic.jdbc.common.internal.JdbcInfo.startDataSource(JdbcInfo.java:260)
at weblogic.jdbc.common.internal.JDBCService.addDeployment
(JDBCService.java:293)
at weblogic.jdbc.common.internal.JDBCService.addDeployment
(JDBCService.java:270)
at weblogic.management.mbeans.custom.DeploymentTarget.addDeployment
(DeploymentTarget.java:375)
at weblogic.management.mbeans.custom.DeploymentTarget.addDeployment
(DeploymentTarget.java:154)

Test with Clusters
If your system was developed on a single machine, it may not function
with a cluster. Clustering has issues that don’t exist with a single machine
applications. Clustering is discussed in Chapter 16.

If you think you’ll be using a cluster to improve access, you should be devel-
oping with two machines. Clusters provide many benefits, such as

� Performance. You’ll have more than one server that can handle a
request.

� Reliability. If one server fails, other servers can pick up for that server.

If you’d like to ensure that your system stays compatible with clustering, test
using at least two computers.

331Chapter 20: Ten Tips for Administrators

n524720 Ch20.qxd 5/20/03 8:40 AM Page 331

Keep WebLogic Up-to-Date
You should be aware of any patches as well as the current version of WebLogic.
Patches correct errors and security issues that occur between major releases
of WebLogic. You should download and install patches for WebLogic as well as
other system components. This is particularly true of the Windows operating
system, which has many security patches available.

When the security of a system is compromised, it’s often because the admin-
istrator didn’t have the most up-to-date patch installed.

Upgrading to the current version of WebLogic is much less critical than apply-
ing operating system and WebLogic patches. Sometimes it takes a redesign of
the source code to get the current version to work properly. After the initial
release of a new version, many companies prefer to wait until the release has
been proven. When you decide to upgrade to the latest version of WebLogic,
you should do so on a test server. Then, after you verify that the test server is
performing well, you can put the new version onto your production system.

332 Part VI: The Part of Tens

n524720 Ch20.qxd 5/20/03 8:40 AM Page 332

Chapter 21

Ten Tasks Before Going Live
In This Chapter
� Test your system

� Conduct a stress test

� Set up a parallel environment

� Perform fault testing

� Set up a bug tracking system

� Formulate a disaster recovery plan

� Pick your date

� Keep the lines of communication open

� Be ready for anything

� Be ready with support

Sooner or later, you’ll determine that your system is ready to enter
production. The process by which you take your system into production

is referred to as going live. This process can be stressful to users, administra-
tors, and programmers alike. To help minimize that stress, follow the ten tips
in this chapter before you go live.

Test Your System
It may sound obvious, but you should test your system before it rolls into
production. By testing, I don’t mean that the developers haven’t seen the
system crash in awhile. I mean real solid testing that mimics how your appli-
cation will be used.

Because you can’t test for everything, you must provide a way for problems
to be resolved. Ask yourself the following:

n524720 Ch21.qxd 5/20/03 8:40 AM Page 333

� Have you provided a support e-mail for users to report bugs?

� Are errors and exceptions logged and dealt with?

� What do you do with reported bugs? Are they tracked?

� Are you monitoring your system? How quickly would you know about
a problem?

Ask your QA people to produce a test script for your system. A test-scripting
program also allows you to retest the entire system quickly. This can be
useful when a programmer submits a change and you need to analyze the
change’s effect on the system.

Conduct a Stress Test
A system that’s going live will face many stresses that a development system
never encountered. For example, when your system was being developed,
WebLogic Server probably handled requests from only the developers. When
the system goes live, large numbers of users may access the system. These
additional users will place stress on WebLogic Server.

Every system has a breaking point, where it can handle no more users. If your
site’s initial users push the server beyond its limits, it will go down. The first
step in conducting a stress test is to try to estimate how many users your
system will likely have at a time. If the system is a replacement, you can use
statistics from the previous system. If this is a new system, you’ll have to esti-
mate as best you can.

After you estimate the amount of traffic that your site will likely see, test
that your site is up to the challenge. Testing tools simulate the load of many
simultaneous users and tell you the breaking point of your server. Here are a
few examples:

� WebStone at www.mindcraft.com/webstone/

� Paessler at www.paessler.com/

� Web Performance at www.webperformanceinc.com/

Don’t conduct a stress test just to prove that your current system can handle
the expected amount of traffic. Stress tests should determine the breaking
point of your server. After you know this breaking point, you can plan accord-
ingly as you approach that point.

334 Part VI: The Part of Tens

n524720 Ch21.qxd 5/20/03 8:40 AM Page 334

Set Up a Parallel Environment
Give your users a way back as you roll out the new production system. The
most common way of doing this is a parallel system deployment. That is, you
keep the old system up for some specific amount of time, while the users
adjust to the new system — and while bugs are fixed. A parallel rollout gives
you the following benefits:

� Minimizes interruption to business processes

� Allows you time to fix initial bugs in the new system

� Uses the old system to verify the results of the new system

You should specify the amount of time that you will leave the old system up.
If that amount of time is too long, users might delay adopting the new system.

Perform Fault Testing
Most likely, your new server has been designed to withstand some degree of
hardware failure. Such systems include the following:

� A battery backup power supply in the event of a power failure

� A generator in the event of an extended power failure

� Redundant web, application, and database servers

� Co-location in the event of failure of the entire main facility

� Redundant Internet connections

You should have documented procedures that test the performance of each
system. Whichever of these systems you have in place, make sure that
they’re functioning. You don’t want to test such systems when the first hard-
ware or power outage occurs.

Excessive testing on some uninterruptible power supply (UPS) systems can
greatly shorten the battery life — and replacement batteries can be expensive.
Check with your vendor to determine the recommended frequency of testing.

Set Up a Bug Tracking System
No system is perfect. Your system will have bugs, and you should have a pro-
cedure for tracking them. Many bug-tracking systems are available, such as
the following:

335Chapter 21: Ten Tasks Before Going Live

n524720 Ch21.qxd 5/20/03 8:40 AM Page 335

� Bug Collector Pro at www.nesbitt.com

� FogBugz at www.fogcreek.com/FogBUGZ/

� Aardvark at www.red-gate.com/bug_tracking.htm

These systems often manage the entire life of a bug, as follows:

1. The bug is reported.

2. The bug is assigned to a developer.

3. The developer corrects the bug.

4. The bug is QA tested.

5. The bug issue is closed.

Another important consideration when tracking bugs is to separate issues
into two categories: true bugs and suggestions for improvement. A bug
occurs when the program does not perform as it was designed. A suggestion
for improvement, also known as a feature request, is something beyond the
original scope of the program.

Programmers find it daunting when they have to treat everything as a bug,
which implies that they did something wrong. Additional features, although
perhaps just as pressing as bugs, should be recognized as a shortcoming in
the requirement-gathering phase.

Some bug-collection packages offer Web access, which allows your users to
report bugs from a simple browser. This can be a big help because most bug-
collection packages require users to be on the same network.

Formulate a Disaster Recovery Plan
Any number of issues can affect your main data center, such as a backed-up
sewer that floods your computer room or a nearby transformer that explodes
and leaves you without power for nearly a day. Disaster recovery means that
your application could continue, even after a total loss of your main facility.
You should assume that all computer systems and data from that site are
gone. You should also assume that you won’t be able to reach employees
from the main site for some time.

The most common solution to disaster recovery is co-location, whereby you
set up a separate data center. Often, a vendor company will lease computer
equipment to get your system up and running from a remote location.

336 Part VI: The Part of Tens

n524720 Ch21.qxd 5/20/03 8:40 AM Page 336

Disaster recovery must be tested just like any other business process. You
don’t want to wait until your first disaster to discover that your disaster
recovery plan doesn’t work.

Choose Your Date
You should choose a go-live date well in advance. Those who will be using
the system should know this date, so that they can plan accordingly. Try not
to schedule the go-live date at a busy time of the year. Coordinate the go-live
date so that it occurs on the first day of a quarter or the first day of the
month, depending on how your company does its accounting.

Keep the Lines of Communication Open
After your system goes live, keep in contact with the users of your system.
Being able to quickly contact someone who is knowledgeable about the new
program will make users feel much better about the new system. And being
in contact with users will give you valuable feedback about the program and
what can be improved.

Be Ready for Anything
Be ready for long hours during the first few weeks when you go live. Never
forget Murphy’s law: Whatever can go wrong, will go wrong — and at the
worst possible time. Although you can’t anticipate every problem that can
occur after you go live, you should have procedures in place for dealing with
most problems.

Be Ready with Support
You will never be totally ready to go live. There is always more testing or
more preparation to do. Eventually, however, the go-live date will arrive and
users will begin using your system. Now is the time to provide support to the
users. Collect and correct bugs. Explain features of the system that users
don’t understand — many times, users mistake unknown functions as bugs.

337Chapter 21: Ten Tasks Before Going Live

n524720 Ch21.qxd 5/20/03 8:40 AM Page 337

338 Part VI: The Part of Tens

n524720 Ch21.qxd 5/20/03 8:40 AM Page 338

• A •
–a option (JwsCompile program), 197
Aardvark tool, 336
abstract bean implementation, 128–131
acceptance testing, 326
access control lists (ACLs), 316
access times, 315, 317
accumulation transactions, 232
ACID properties, 229–230
Acknowledge Policy setting, 243
ACLs (access control lists), 316
Add EJB Control option, Insert menu

(WebLogic Workshop), 223
Add EJB option, Designer pull-down

menu, 223
Add Method command (WebLogic

Workshop), 187
Add Operation command (WebLogic

Workshop), 187
addCourse method, 126
ADMIN_HOST_NAME_OR_IP property

(Configuration Wizard), 31
Administration Console

adding performance packs with, 290–291
backing store creation, 244–246
basic functions, 16, 47–50
connection factory creation, 241, 242
connection pool creation, 204–206
connection pool monitoring, 216–217
data source creation, 206–208
deploying enterprise applications with,

150–152
deploying web applications with, 75–77
deploying web services with, 199
editing Java compilers from, 299–300
enabling SSL with, 307–308
group creation with, 312, 313
JMS template creation, 248, 249
messaging server creation, 250, 251
monitoring functions, 65, 292, 293
password protecting, 330
queues and topics configuration, 252–253

security policy creation, 316–318
security role creation, 314–316
thread detection behavior, 295
user creation with, 309–311
web services deployment, 168–171

administration costs of clusters, 272
Administration Server

basic functions, 53
configuring clustered domains, 278
SSL configuration, 56
starting clusters, 284

administration (WebLogic Server), 45–47
administrative resources, as security

realm, 308
Administrative Tools icon (Control Panel),

43, 73
administrative users, 26, 330
ADMIN_LISTEN_PORT property

(Configuration Wizard), 31
AIX operating system, 18
algorithms, load balancing, 275
aliases, 306
Allow Close In OnMessage setting, 243
alt-dd element, application.xml file, 147
alternate URLs, 178
anonymous entity beans, 298
Ant

client stub generation, 175–176
main features, 326
web services packaging with, 162, 167

Apache server, 69
Append to Classpath box

(Administration Console), 300
application element, application.xml

file, 147
application files, for web services, 184–185,

186
application servers

basic functions, 9–11, 70
Java 2 platform components, 12–13
web application setup, 70–77
web servers versus, 69–70

application-client.xml file, 144

Index

o524720 Index.qxd 5/20/03 8:40 AM Page 339

applications directory
creating application directories in, 72
in WebLogic directory structure, 140

Applications folder (Administration
Console), 151

application.xml file, 146–148
archiving. See packaging
asynchronous messaging model, 239–240
asynchronous web services

building, 161
packaging, 168
synchronous versus, 157

atomicity of transactions, 229
auth-filter element, weblogic.xml

file, 149
automatic startup, 40–44

• B •
backend component creation

asynchronous web services, 161
Java class, 158–159
overview, 157
stateless session beans, 159–161

backing stores, 240, 244–246
backing up servers, 330
bank transfers, database transactions,

230, 232
battery backup systems, 335
BEA home directory

creating during GUI installation, 22
silent installation instructions, 30
WebLogic subdirectory, 23

BEA Systems web site, 20
BEA WebLogic Server. See WebLogic Server
BEA WebLogic Workshop. See WebLogic

Workshop
BEAHOME property, silent installation, 30
bean class, 88, 90–91
bean descriptors, 208–209. See also

deployment descriptors
bean implementation class, 119, 210–212
bean implementation files, 113–118
bean interface

adding name for EJB controls, 225
creating, 112, 125–128
Java Database Connectivity (JDBC)

sample, 209

bean-managed persistence (BMP)
bean creation, 112–120
compilation, 120–123
defined, 105, 111

begin() method (UserTransaction
object), 234–235

beta servers, 323
bin directory (WebLogic Server), 197
.bin files, 27
BMP. See bean-managed persistence (BMP)
breakpoints, 193–95
broadcast communication, web services

for, 161
browsers. See also clients

accessing Administration Console, 47
debugging web services with, 194
network name resolution system, 220, 221
reporting bugs from, 336
testing web services with, 189–192

Bug Collector Pro, 336
bug-tracking systems, 335–336
bug-tracking tools, 326
build process management, 326
build scripts, 95–96, 326
build.xml file

client stub generation, 175–177
for synchronous web service, 162–166

business logic, 11

• C •
CA certificates

loading into keystore, 306
obtaining, 303–304

cache size, 298
cached statements, 296
Cache-Flush setting, backing stores, 244
cascade-delete tag, 134
catch statements, 227
caution icon, network channel

configuration, 51
CD (WebLogic Server)

.bin installation, 27
GUI installation, 21–24
Windows installation, 28–29

C_domainName property (Configuration
Wizard), 31

340 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 340

central processing units (CPUs), basing
thread count on number, 294

certificate files
loading into keystore, 306
SSL encryption, 55–56, 302–304

Change link (Administration Console),
307, 308

charset-params element, weblogic.xml
file, 149

.class files, directories for, 141–143, 223
classes directory, 96
classes, importing for transactions, 233
-classic option (JAVA_VM variable), 38
class-name tag, weblogic-jws-config.xml

file, 198
classpath method, 123
CLASSPATH variable

backend components, 164
EJB JAR files in, 95–96, 99
Node Manager, 62
setting for descriptor generators, 145

client accessibility (clustered servers), 276
client class

stateful session beans, 103–104
stateless session beans, 88, 93–94

Client ID setting, connection
factories, 243

client node attributes, for synchronous
web service, 166

-client option (JAVA_VM variable), 38
client stub generation, 175–176
client-application.runtime.xml file, 144
clientgen node, 176
clientJar attribute (clientgen node),

176
clientJarName attribute (client node),

166
clients. See also browsers

basic functions, 10
deployment descriptors, 144
dynamic, 180–182
static, 173–180
for testing BMP beans, 120–122

close method
for JDBC data sources, 213, 228
transactions, 236

clustered domains
creating, 276–283
overview, 274

clustered JDBC, 274, 288
clustering

basic advantages, 11, 16, 47, 271–273
Configuration Wizard properties, 31–32
creating domains, 276–283
of database servers, 230, 231
growth plans, 329
load balancing configuration, 285
Node Manager configuration, 53, 284
proxy plug-in configuration, 285–288
starting clusters, 283–284
testing applications for, 331
WebLogic components, 273–275
WebLogic Server support, 16

ClusterMCAddr property (Configuration
Wizard), 31

ClusterName property (Configuration
Wizard), 31

ClusterPort property (Configuration
Wizard), 31

clusters
defined, 11, 47, 271
testing with, 331

clusterServerHostIP property
(Configuration Wizard), 32

clusterServerListenPort property
(Configuration Wizard), 32

clusterServerRegName property
(Configuration Wizard), 32

CMP. See container-managed persistence
(CMP)

cmp-field tags, ejb-jar.xml, 134
code editor, 187–188
codecs, 181
co-location of servers, 335, 336
color depth, 19
COM. See Component Object Model
command-line installation, 27–29
command-line options (JwsCompile

program), 196–197
command-line properties (Node

Manager), 59
comments in source code, 321
commit() method (UserTransaction

object), 237
committed transactions, 229, 236
Common Object Services (COS), 221
\common\nodemanager\config

directory, 55

341Index

o524720 Index.qxd 5/20/03 8:40 AM Page 341

compilation
bean-managed persistence beans,

120–123
container-managed persistence beans,

137–138
dynamic web service clients, 182
editing for performance, 299–300
stateless session beans, 94–97

Compilers tab (Administration
Console), 300

completing transactions, 236–237
Component Object Model (COM)

resources, 308
Conditions tab, security role configuration

(Administration Console), 315, 316
configuration

backing stores, 244
clustered domains, 276–283
clustered JDBC, 288
connection factories, 241, 242
connection pools, 204–206
data sources, 206–207
destination keys, 248
load balancing, 285
messaging servers, 250, 251
Node Manager, 284
proxy plug-ins, 285–288
queues and topics, 252–253
thread detection behavior, 295
web application directory structure, 77–78
web applications, 75–77, 199

configuration files
bean-managed persistence beans, 118–120
container-managed persistence beans,

131–137
configuration (WebLogic Server)

Administration Console functions, 47–50,
75–77

common tasks, 45
levels of, 46–47
network channels, 50–52
Node Manager, 54–60

Configuration Wizard
creating clustered domains, 276–283
creating domain with, 24–26
template file properties for silent

installation, 30–33
Configure a new Application link

(Administration Console), 199

Configure a new Execute Queue link
(Administration Console), 292

Configure a new Global Role link
(Administration Console), 314, 315

Configure a new Group link
(Administration Console), 312, 313

Configure a new JDBC Connection Pool link
(Administration Console), 204, 205

Configure a new JDBC Data Source link
(Administration Console), 206, 207

Configure a new JMS Connection Factory
link (Administration Console), 241, 242

Configure a new JMS Destination Key link
(Administration Console), 246, 247

Configure a new JMS File Store link
(Administration Console), 244

Configure a new JMS JDBC Store link
(Administration Console), 244

Configure a new JMSQueue link
(Administration Console), 252

Configure a new JMSServer link
(Administration Console), 250, 251

Configure a new JMS Template link
(Administration Console), 248

Configure a new JMS Topic link
(Administration Console), 252

Configure a new Network Channel link
(Administration Console), 51, 52

Configure a new User link (Administration
Console), 309, 310

Congratulations message, GUI installation,
23, 24

Connection class (Java Messaging
Service), 253–255

connection factories
basic functions, 240, 254
creating, 241–243

Connection Factories folder, 241, 242
connection pools

assigning to clustered servers, 288
basic functions, 203–204
creating, 109, 110, 204–206
monitoring, 216–217
opening and closing data sources, 212–213
performance settings, 296–298
WebLogic Server support, 15

connection proxy, 275
ConnectionConsumer class (Java

Messaging Service), 253

342 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 342

ConnectionFactory class (Java
Messaging Service), 164, 253, 254

connections
closing, 213, 228
monitoring, 65–66
obtaining, 212–213, 235

connector element, application.xml
file, 148

consistency of transactions, 229
console installation, 17, 26–29
container-managed persistence (CMP)

abstract bean implementation, 128–131
bean configuration files, 131–137
compilation, 137–138
connection pool creation, 203–206
data source definition, 206–208
defined, 105, 111
interface construction, 125–128
value object construction, 123–125

containers, defined, 10
context close, 228
context factory, 234
Context objects, 94
context-root element, application.xml

file, 148
contextURI attribute, servicegen

node, 163
Continue action (WebLogic Workshop

debugger), 194
control machine, configuration for Node

Manager, 56–58
Control Panel, Services applet, 42–43, 73
Controls ➪ Add EJB Control option, Insert

menu (WebLogic Workshop), 223
COS. See Common Object Services
costs of clusters, 271–272
“count to ten” example (JSTL), 85–86
count variable (session EJBs), 103
Counter example (session EJBs), 100–104
C_password property (Configuration

Wizard), 31
Crawford, William (Java Servlet

Programming), 83
Create a new WebLogic configuration link

(Domain Configuration Wizard), 277
Create a new WebLogic configuration

option (Configuration Wizard), 25

create method
home interface creation, 112–113
for new instance of entity bean, 111
samplehome object, 94

Create New File dialog box (WebLogic
Workshop), 185

createQueueSession method, 255
createTopicSession method, 255
C_serverListenAddress property

(Configuration Wizard), 31
C_serverListenPort= property

(Configuration Wizard), 31
C_serverName property (Configuration

Wizard), 31
C_serverSSLListenPort= property

(Configuration Wizard), 31
C_username property (Configuration

Wizard), 31
custom data types, 176
custom files, 78–86
custom installation, 22–23
custom startup scripts

creating, 37–39
disadvantages, 34–35

Customized Configuration option (Domain
Configuration Wizard), 278

• D •
daemons (UNIX), 40, 43–44
data encryption. See encryption
data sources. See also connection pools;

databases
assigning to clustered servers, 288
closing, 213
connecting to, 212–213
creating for database access, 109–111
defining, 206–208
driver class names, 204
getConnection method, 118

database connection pooling. See
connection pools

database mapping file, 136–137
database servers

basic functions, 9
clustering, 230, 231
WebLogic Server support, 15

343Index

o524720 Index.qxd 5/20/03 8:40 AM Page 343

database updates, 235–236
databases. See also entity beans;

transactions
backing up, 330
basic entity bean functions and, 104–105
connection pool creation, 109, 110,

203–206
data source definition, 206–208
resource leaks, 236
WebLogic Server fundamentals, 107–112,

203
DB_EMAIL_ADDRESS property

(Configuration Wizard), 32
DB_EMAIL_HOST property (Configuration

Wizard), 32
debugging

service and daemon disadvantages, 41, 43
tools, 326
tracking systems for, 335–336
web services in WebLogic Workshop,

193–195
Default Delivery Mode setting

(connection factories), 243
Default Load Algorithm list, 285
default no-argument constructors, 158
Default Priority setting (connection

factories), 243
Default Redelivery Delay setting

(connection factories), 243
Default Time to Deliver setting

(connection factories), 243
Default Time to Live setting

(connection factories), 243
DefaultWebApp/admin/info.html file, 143
DefaultWebApp directory, 140
Define Security Policy screen, 317
DELETE SQL statement, 214
demo servers, 323
democert.pem file, 55
demokey.pem file, 55
Deploy a new Application link

(Administration Console), 75, 151, 169
Deploy a new EJB Module link (WebLogic

Server Console), 97
deployment

enterprise applications, 150–152
stateless session beans, 97–98
web applications, 75–77
web services, 168–171, 198–199

deployment descriptors
enterprise applications, 143–149
with HttpClusterServlet, 286
stateful session beans, 100–101
stateless session beans, 88, 91–92, 159

description element
application.xml file, 147, 148
weblogic.xml file, 149

descriptor generators, 144–146
Design View tab (WebLogic Workshop), 187
Designer pull-down menu, 223
destEar attribute, servicegen node, 163
Destination class (Java Messaging

Service), 253, 255
destination keys

basic functions, 241
creating, 246–248
Destination class, 253, 255
templates for, 248–249

Destination Keys folder, 246, 247
developer’s handbook, 322
development environments, 323
development license, 20–21
development mode, specifying in startup

script, 38
development servers, 323
development tools, 324
dictionary words as passwords, 330
digital certificates, 302
directory services, 220
directory structures

clustered machines, 276
enterprise applications, 140–143
web applications, 77–78
web services, 195–196

disaster recovery plans, 336–337
display-name element, application.xml

file, 147
DNS name, Configuration Wizard

property, 31
documentation

importance to developers, 321–322
procedures, 327–328
servers for, 323

documents-oriented operations, 165
Domain Configuration Wizard

configuring new Windows service, 41
to create web servers, 71
creating clustered domains, 276–283

344 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 344

Domain Log Filters configuration area,
49, 50

domain name service (DNS), 221, 302
domain names

Configuration Wizard property, 31
domains versus, 48
unauthorized tampering with, 302, 325

domain.directory property
(Configuration Wizard), 32

domains
clustered, 274, 276–283
creating with Configuration Wizard, 24–26
defined, 47
domain names versus, 48

downloading WebLogic Server, 20
driver class names, 204
driver software, 108
durability of transactions, 229
durable subscribers, 243
-Dweblogic.nodemanager.

keyPassword property, 59
-Dweblogic.nodemanager property, 59
-Dweblogic.nodemanager.keyFile

property, 59
-Dweblogic.nodemanager.

sslHostNameVerificationEnabled
property, 59

-Dweblogic.security.SSL.
trustedCAKeyStore property, 59

dynamic clients
creating, 180–182
running, 182
static versus, 173, 180

dynamic IP addresses, 276

• E •
ear attribute (clientgen node), 176
EAR files

creating, 149–150
web services, 163, 196–199

–ear option (JwsCompile program), 197
economic forecasting applications, 272
EJB application server, 10
ejb element, application.xml file, 148
ejb-class element

EJB deployment descriptors, 92
ejb-jar.xml file, 119

EJBHome class, 89

ejbJar attribute (service node), 163
ejb-jar.xml file

backend component, 161
basic functions, 91–92
sample scripts, 118–119, 131–134, 161

ejb-name element, 92, 119
ejbPassive method, 111
ejb-ql tag, 134
ejb-relationship-role tag, 134
EJBs. See Enterprise JavaBeans (EJB)
Enable Native IO option (Administration

Console), 290–291
encoding rules, Simple Object Access

Protocol (SOAP), 156
encryption, 55–56, 302
end user acceptance testing, 326
end user documentation, 322
enterprise applications

basic functions, 13
deploying, 150–152
deployment descriptors, 143–149
directory structure, 140–143
overview, 139–140
packaging, 149–150
as security realm, 308
when to create, 139

Enterprise Information System (EIS)
resources, 308

Enterprise JavaBeans (EJB)
accessing through JNDI, 222–228
adding state, 99–104
basic functions, 9–10, 12–13
bean life cycle, 111
data access with, 104–105
defined, 87
deployment descriptors, 144–146
load balancing requests, 285
overhead requirements versus web

services, 179
performance settings, 297–298
resources, 308
stateless session backend components,

159–161
stateless session bean creation, 88–97
stateless session bean deployment and

testing, 97–99
transactions with, 233–237
using JDBC with, 208–216
WebLogic Server support, 14–15

345Index

o524720 Index.qxd 5/20/03 8:40 AM Page 345

entity beans
basic functions, 87, 104–105, 107
compiling bean-managed persistence

beans, 120–123
compiling CMP beans, 137–138
creating bean-managed persistence beans,

112–120
life cycle, 111

environment variables
defined, 62
setting in Node Manager, 61–64
setting to package web services, 167
for startup scripts, 38

error detection. See also debugging
creating system for, 333–334
dynamic web service clients, 180, 181

exception handling, 236, 237
excludeEJBs attribute (service

node), 163
.exe files, 28–29
execute queues, 291–294
executeUpdate method, 214, 236
expandMethods attribute (service

node), 164
expiration time, JMS messages, 256
exploded web applications, 71–72
Express configuration, 25
extendability, 275
extensions. See file name extensions

• F •
factories, defined, 178
fault testing, 335
feature requests, bugs versus, 336
field-map tags, 137
file name extensions

installer files, 27–29
packaged enterprise applications, 149

file servers, 9. See also servers
file-based backing stores, 244, 246
finalization phase of two-phase commit, 231
finally blocks, 228
finally clauses, 236
find methods, 113
findAll method, 113
findBy methods, 111, 134
findByPrimaryKey method, 113

firewalls, 330
FogBugz tool, 336
For Dummies home page, 221
foreign keys, 137

• G •
Ganguli, Madhushree (Making Use of JSP),

79, 80
generateTypes attribute (service

node), 164
generators (electric), 335
GET requests, 81–82
getConnection method, 118
Global Roles folder (Administration

Console), 314
going live, 333–337
Google, 322, 331
graphical user interface (GUI), 17, 21–24
groups

assigning new users to, 311, 313
creating, 312, 313
defined, 311
membership as security policy

condition, 317
membership as security role

condition, 315
Groups folder (Administration

Console), 312
growth plans, 329
GUI (graphical user interface), 17, 21–24

• H •
handleCleanup method, 118
hard drive space, 18–19
hardware costs, 271
hardware failure testing, 335
hardware requirements, 18–19
hash tables, 226, 234
HEAD requests, 81
header fields (JMS), 256–257
heap size, 62, 299
Heaton, Jeff (JSP Standard Tag Library Kick

Start), 79, 86
“Hello World” servlet, 82–83
hidden form variables, 325
home class, 119, 209

346 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 346

home directory
BEA, 22, 23, 30
Java, 63

home element, 92, 119
home interface

adding name for EJB controls, 225
bean-managed persistence beans, 112–113
container-managed persistence beans,

126–128
stateful session beans, 101
stateless session beans, 88, 89

host name verification, 64
host name, weblogic-jws-config.xml file,

197, 198
hosts file, 54–55, 64
hours of access, 315, 317
HP-UX operating system, 18
HTML code, in JavaServer Pages, 81, 83
HTML editors, 79
HTML pages, JavaServer Pages versus, 79
HTTP. See HyperText Transport Protocol

(HTTP)
HttpClusterServlet configuration, 285–288
http-port tag, weblogic-jws-config.xml

file, 198
https-port tag, weblogic-jws-config.xml

file, 198
Hunter, Jason (Java Servlet

Programming), 83
HyperText Transport Protocol (HTTP)

request types, 81–82

• I •
IBM AIX operating system, 18
icon element, application.xml file, 147
icons

to start web service in WebLogic
Workshop, 190

to stop web service in WebLogic
Workshop, 192

in this book, 5
identity, obtaining, 302–304
if statements, 86
IIS (Microsoft Internet Information

Server), 69
image files, 143, 147
importing packages for transactions,

233–234

includeEJBs attribute (service
node), 164

index files, 72
init method, 260
initial capacity (connection pools), 296
initial-beans-in-free-pool element,

weblogic-ejb-jar.xml deployment
file, 298

InitialContext object, 226–227
Insert EJB Control dialog box, 223–225
Insert menu (WebLogic Workshop), 223
INSERT SQL statement, 214
install command (Windows), 41
installation (JSP Standard Tag Library),

83–85
installation (WebLogic Server)

clustering requirements, 276
console instructions, 26–29
GUI instructions, 21–24
overview, 17–21
silent mode instructions, 29–34

installer properties files. See templates
installNodeMgrSvc.cmd, 61
INSTALL_NT_SERVICE property

(Configuration Wizard), 32
INSTALL_WINDOWS_STARTUP_MENU

property (Configuration Wizard), 32
instances (WebLogic Server)

existing, as Windows service, 41, 73
new, as Windows service, 41
as security realm, 309
starting from Windows Start menu, 39
turning off as Windows service, 41–42

instantiation (EJBs), 104
integration testing, 326
IP addresses

clustered machines, 276
as multicast addresses, 281
as server listen addresses, 280
unauthorized tampering with, 302
URLs versus, 221

isolation of transactions, 229

• J •
jar command, 74–75
JAR files
CLASSPATH variable for location, 62
compiling for BMP beans, 122

347Index

o524720 Index.qxd 5/20/03 8:40 AM Page 347

JAR files (continued)
compiling for stateless session beans,

94–97
directories for, 78, 142, 143
for enterprise applications, 149–150
installers, 28
web service clients, 179
web services, 163

Java class backend components, 158–159
Java code

for backend components, 158–159
documentation, 321–322
in JavaServer Pages, 81, 83
for web service operations, 187

Java compilers, editing for performance,
299–300

Java Database Connectivity (JDBC)
clustered, 274
connection pool creation, 109, 110,

203–206
data source definition, 206–208
monitoring, 216–217
overview, 108
performance settings, 295–296
resources, as security realm, 308
using with Enterprise JavaBeans, 208–216

Java Development Kit (JDK)
home directory, 95
with some UNIX installations, 19, 27
system requirements, 19

Java heap size, editing for performance, 299
Java home directory, 63
Java interface, defined, 88
Java Messaging Service (JMS)

accessing, 253–257
backing store creation, 244–246
basic functions, 13
connection factory creation, 241–243
creating queues and topics, 241, 252–253
destination key creation, 246–248
destination specified in service node, 165
overview, 239–240
point-to-point client creation, 257–262
publish-and-subscribe client creation,

263–267
resources as security realm, 308
server creation, 250, 251
steps in creating services, 240–241

Java Naming and Directory Interface (JNDI)
basic functions, 13, 219
elements of, 219–222
implementing with WebLogic, 222–228
to obtain UserTransaction object, 234
obtaining JDBC data sources via, 213
resources as security realm, 308
specified in service node, 165

Java Servlet Programming Bible
(Rajagopalan, Suresh, Rajamani,
Ramesh, Krishnaswamy, Ramesh, and
Vijendran, Sridhar), 79

Java Servlet Programming (Hunter, Jason
and Crawford, William), 83

Java Transaction Architecture (JTA)
applying, 233–237
elements of, 230–233

Java Transaction Service (JTS), 13
Java 2 Platform, Enterprise Edition (J2EE)

basic elements, 12–13
bean descriptors, 208–209
deployment descriptors, 144
JAR file in CLASSPATH, 234

Java Virtual Machine (JVM), 62
javaClass-Components attribute

(service node), 164
Javadoc, 321
JAVA_HOME parameter, editing for

performance, 299
JAVA_HOME variable, 62
JAVA_OPTIONS variable, 38, 39
JavaServer Pages (JSP)

basic functions, 12, 78–79
creating web applications with, 79–82
WebLogic Server support, 14

java.util.Hashtable object, 226
JAVA_VM variable, 38
javax.jms.BytesMessage, 257
javax.jms.MapMessage, 257
javax.jms.ObjectMessage, 257
javax.jms.StreamMessage, 257
javax.jms.TextMessage, 257
javax.naming.Context object, 234
javax.naming.Context.INITIAL_

CONTEXT_FACTORY parameter, 226
javax.naming.Context.PROVIDER_URL

property, 227

348 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 348

javax.xml.soap.MessageFactory
class, 178

JAXM message factory, 178
JBoss server software, 9, 70
JDBC. See Java DataBase Connectivity
JDBC-based backing stores, 244, 245
JDK. See Java Development Kit (JDK)
jikes (IBM), 299
JMS. See Java Messaging Service (JMS)
JMSAction attribute (service node), 164
JMSConnection-Factory attribute

(service node), 164
JMSCorrelationID field (JMS message

headers), 256
JMSDeliveryMode field (JMS message

headers), 256
JMSDeliveryTime field (JMS message

headers), 256
JMSDestination attribute (service

node), 165
JMSDestination field (JMS message

headers), 256
JMSDestination-type attribute (service

node), 165
JMSExpiration field (JMS message

headers), 256
JMSMessageID field (JMS message

headers), 256
JMSMessageType attribute (service

node), 165
JMSOperation-Name attribute (service

node), 165
JMSPriority field (JMS message headers),

256
JMSRedelivered field (JMS message

headers), 256
JMSReplyTo field (JMS message headers),

256
JMSTimeStamp field (JMS message

headers), 257
JMSType field (JMS message headers), 257
JNDI. See Java Naming and Directory

Interface (JNDI)
JNDI names

for connection factories, 243, 254
for data sources, 111, 120, 206
for Enterprise JavaBeans, 225
queues and topics, 253

JNDI Name setting, 243
JSP. See JavaServer Pages (JSP)
JSP Standard Tag Library (JSTL)

basic functions, 79
creating web applications with, 83–86

JSP Standard Tag Library Kick Start (Heaton,
Jeff), 79, 86

jsp-descriptor element, weblogic.xml
file, 149

JTS (Java Transaction Service), 13
J2EE. See Java 2 Platform, Enterprise

Edition (J2EE)
J2EE JAR file, in EJB JAR build script, 96
JwsCompile program, 196–198

• K •
key files, SSL encryption, 55–56
keystorename, 306
keystorepassword, 306
keystores, 56, 304–307
Keystores & SSL tab (Administration

Console), 307
keytool command, 304–307
kill scripts, 44
Krishnaswamy, Ramesh (Java Servlet

Programming Bible), 79

• L •
large-icon element, application.xml

file, 147
leaks, resource, 236
licenses (software), 20–21, 272
Lightweight Directory Access Protocol

(LDAP), 222
line breaks, in command line, 56
listen address, 280, 282
listen port

Administration Server, 278, 280
clustered machines, 282
network channel configuration, 51

ln -s command, 44
load balancing

configuration, 285
connection factories, 243
overview, 275

Load Balancing Enabled setting, 243

349Index

o524720 Index.qxd 5/20/03 8:40 AM Page 349

local bean interfaces, 125–126
log files

Domain Log Filters configuration area, 49
Node Manager advantages with, 274
specifying path for Node Manager, 63
using, 330–331

logging on (Administration Console), 47–48

• M •
machines

assigning clustered servers to, 283
definitions, 57
multiple development environments

on, 323
servers versus, 47

main method, 261
mainframe operating systems, 14
maintenance periods, 328
Making Use of JSP (Ganguli, Madhushree),

79, 80
managed servers

configuring, 58–60, 278–283
defined, 53
starting clusters, 283–284

managedServerHostIP property
(Configuration Wizard), 32

managedServer-ListenPort property
(Configuration Wizard), 32

MANAGED_SERVER_REGISTERED_NAME_IN_
ADMIN property (Configuration
Wizard), 32

managedServerRegName property
(Configuration Wizard), 32

managedServerSSLListenPort property
(Configuration Wizard), 32

mandatory properties (silent
installation), 30

manual descriptor creation, 146–148
mapping files, 136–137
max-beans-in-cache element, weblogic-

ejb-jar.xml deployment file, 298
max-beans-in-free-pool element,

weblogic-ejb-jar.xml deployment file,
297–298

maximum capacity of connection pools, 296
Maximum Messages setting (connection

factories), 243

MBean resources, as security realm, 308
MEM_ARGS variable, for startup script, 38, 39
Membership tab, group configuration

window (Administration Console),
312, 313

memory leaks, 236
memory requirements, 19
message beans, 87
Message class (Java Messaging Service),

253, 255–257
message header fields (Java Messaging

Service), 256–257
message priority settings, 243, 256
MessageConsumer class (Java Messaging

Service), 253, 255
MessageListener interface, 260
MessageProducer class (Java Messaging

Service), 253, 255
messaging. See Java Messaging Service

(JMS)
messaging servers

basic functions, 239
creating, 250, 251

messaging services
accessing, 253–257
backing store creation, 244–246
connection factory creation, 241–243
creating queues and topics, 241, 252–253
destination key creation, 246–248
point-to-point client creation, 257–262
publish-and-subscribe client creation,

263–267
server creation, 250, 251
steps in creating, 240–241

META-INF directory, 96
META-INF subdirectory, 150
META-INF/application.xml file, 144
META-INF/ejb-jar.xml file, 144
META-INF/ra.xml file, 144
META-INF/weblogic-cmp-rdbns.xml file, 144
META-INF/weblogicejb-jar.xml file, 144
META-INF/weblogic-ra.xml file, 144
method calls

for dynamic web services, 181
Simple Object Access Protocol

(SOAP), 156
in structured query language, 214
WebLogic Workshop, 191, 194

350 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 350

methods
adding to new web service files, 185–189
for closing data sources, 213
for database connections, 212–213
debugging in WebLogic Workshop,

193–195
testing in WebLogic Workshop, 191

Microsoft Internet Information
Server (IIS), 69

Microsoft Windows
automatic WebLogic Server startup,

40–43, 73
database standard, 108
editing startup scripts in, 37
Node Manager startup script, 61
security patches, 332
setting environment, 167
shell environment command, 150
silent installation instructions, 34
standard startup script, 36–37, 299
starting WebLogic Server from Start menu,

39, 73
WEB-INF/lib directory, 223
WebLogic Server installation, 28–29
WebLogic Server system requirements, 18

minimum heap size, 62
modularity, 11, 324–325
module element, application.xml file, 147
module testing, 326
monitoring pages, 65–66
monitoring server availability, 329
Monitoring tab (Administration Console),

292, 293
multicast IP addresses

clustered domains, 281
clustered servers, 276
Configuration Wizard property, 31

multipart transactions, 232
multiple database transactions, 230, 231
multiplicity tag, 134
Murphy’s law, 337
MySQL web site, 108
MyWebApp/ directory, 142
MyWebApp/admin directory, 142
MyWebApp/admin/index.jsp file, 143
MyWebApp/classes directory, 143
MyWebApp/classes/com/dummies/servlet/

myservlet.class file, 143

MyWebApp/images directory, 143
MyWebApp/images/logo.gif file, 143
MyWebApp/index.jsp file, 142
MyWebApp/lib directory, 143
MyWebApp/lib/mytaglib.jar file, 143
MyWebApp/main.jsp file, 142
MyWebApp/tlds directory, 143
MyWebApp/tlds/mytags.tld file, 143
MyWebApp/WEB-INF directory, 143
MyWebApp/WEB-INF/weblogic.xml file, 143
MyWebApp/WEB-INF/web.xml file, 143

• N •
Name setting (connection factories), 243
named objects, 227
NameNotFoundException catch block, 227
namespace URI, 165
naming services, 220–222
NamingException catch block, 227
native code performance packs, 289–290
net installer, 20
Network Access Point section

(Administration Console), 51
network channels, 50–52
Network Information System (NIS), 222
network name resolution systems, 220. See

also Java Naming and Directory
Interface (JNDI)

New Application dialog box (WebLogic
Workshop), 185

New File - Choose Type dialog box
(WebLogic Workshop), 186

new versions (WebLogic), upgrading to, 332
newInstance method, bean life cycle, 111
Node Manager

basic functions, 53, 274, 284
control machine configuration, 56–58
setup, 54–60
startup, 60–64

nodemanager.hosts file, 54, 55
NodeManager_localhost_5555, 61
nodes, defined, 53
nonbuilt-in data types, 164
non-native mode, running Node

Manager in, 63
Notepad (Windows), 37

351Index

o524720 Index.qxd 5/20/03 8:40 AM Page 351

• O •
object oriented programming (OOP), 11
object type, in ejb-jar.xml file, 119
objects. See also Enterprise

JavaBeans (EJB)
accessing through JNDI, 222–228, 234
creating EJB as, 94

on-call procedures, 328–329
online banking security, 325
onMessage method, 260
OOP. See object oriented programming

(OOP)
Open Database Connectivity (ODBC)

bridge driver to JDBC, 108, 204
overview, 108

Open Web Application Security Project, 325
operating system build scripts, 326
operating system patches, 325
operating systems, WebLogic Server

requirements and support, 14, 18
<operation> elements, 164
outages, on-call procedures for, 328–329
out-of-memory errors, 39
over-engineering, 322–323
overhead requirements. See also

performance
database connections, 203–204
importance of closing connections, 228
prepared statements cache, 296
web services versus EJBs, 179

Overrun Policy setting (connection
factories), 243

overwrite attribute (servicegen
node), 163

• P •
–p option (JwsCompile program), 197
package installer, 20
packageName attribute, 166, 176
packages, importing for transactions,

233–234
packaging

enterprise applications, 149–150
web applications, 74–75
web services, 162–168, 194–198

Paessler tool, 334

paging stores, 246, 250
parallel system deployment, 335
passwords

Administration Console login, 47–48
Configuration Wizard property, 31
encryption, 302
entering for new users, 311
guidelines for creating, 330
JSP form for entering, 80–81
for keystores, 305
specifying for Node Manager, 63
specifying in startup script, 39

patches, 325, 332
PATH variable (Node Manager), 62
.pem extension, 305
performance

clustering for, 230, 272–273
Enterprise JavaBeans settings, 297–298
Java Database Connectivity settings,

295–296
performance packs, 289–291
startup script options, 299
thread settings, 291–295

persistence
defined, 104
JMS messages, 256

persistence-type element, ejb-jar.xml
file, 119

persistence-type tags, weblogic-
ejb-jar.xml file, 136

pico (UNIX), 37–38
platform support

performance packs, 289–290
WebLogic Server, 14, 18

plug-ins, proxy, 285–288
point-to-point messaging

creating client, 257–262
elements of, 240

policies, 316–318
pool name, 111
pooled state, 111
port class, creating instance, 178
POST requests, 81–82
prefixes (databases), 244
prepare phase, of two-phase commit, 231
prepared statements

caching, 296
inserting parameters in SQL statements

with, 214–216

352 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 352

PreparedStatement class, 296
presentation logic, 11
primary keys, 112
prim-key-class element, ejb-jar.xml

file, 119
priority of messages, 243, 256
private directories, 78
private keys

deleting, 306–307
loading into keystore, 302, 305–306
specifying path for Node Manager, 63

procedures
documenting, 327–328
hardware failure testing, 335
on-call, 328–329

processing overhead. See overhead
requirements

product directory
creating during GUI installation, 23, 24
silent installation instructions, 30

production license (WebLogic Server), 20
production mode, 38
production server, 323, 333–337
program code documentation, 321
program goals, 324
program specifications, 322
programming

JNDI interface, 221–222
when to begin, 74

properties files
Configuration Wizard silent installer, 33
starting Node Manager with, 62–64

Properties menu, configuring service start
type (Windows), 43

Properties objects, for EJB clients, 94
protocol attribute (service node), 165
protocol tag, weblogic-jws-config.xml

file, 198
protocols

network channels for, 50–52
for web service deployment, 165, 198

proxies, for dynamic web services, 181
proxy plug-ins, configuring, 285–288
public key infrastructure (SSL encryption),

55–56
public methods, for backend

components, 158
publish-and-subscribe messaging, 240,

263–267

publisher program, 265–267
pure broadcast communication, 161

• Q •
quality assurance (QA) people, 323, 326
queries, 134, 215–216
queues

creating, 241, 252–253
defined, 240
execute, 291–294
sending and receiving messages, 255

• R •
RAID arrays, 18–19
Rajagopalan, Suresh (Java Servlet

Programming Bible), 79
Rajamani, Ramesh (Java Servlet

Programming Bible), 79
random access memory (RAM), 19, 39
random load balancing, 285
ready state (entity beans), 111
receiver programs, point-to-point

messaging, 258–260
recoverable resource, of two-phase

commit, 231
redundancy, 10, 335
reentrant element, ejb-jar.xml file, 119
reference-descriptor element,

weblogic.xml file, 149
regression errors, 325
reliability

as application server advantage, 10
asynchronous messaging model, 240
clustering for, 16, 47, 230, 273

remarks, in startup script, 37
Remember icon, 5
remote element, 92, 119
remote interface. See also web services

container-managed persistence beans,
126, 127–128

stateless session beans, 88–89
using objects with JNDI, 227–228

remoteMethod method, 228
remove command (Windows), 41–42
remove method (entity beans), 111

353Index

o524720 Index.qxd 5/20/03 8:40 AM Page 353

request traffic
cluster advantages, 272–273
estimating, 334

request types (HTTP), 81–82
resource adaptors, 144
resource leaks, 236
resource manager, of two-phase

commit, 231
Resource Workshop, 183
res-ref-name element, ejb-jar.xml file, 119
res-type element, ejb-jar.xml file, 119
ResultSet, 216
retransmission of messages, 240, 243
reverse DNS lookup, enabling, 54–55
RMI applications, 233
role-name element, application.xml

file, 148
rollback() method, UserTransaction

object, 236, 237
roll-backs

entity beans, 111
transactions, 229, 236

root directory
JSPs under, 79
web applications, 74, 79
WebLogic domain, 140–141

round-robin load balancing, 285
RPC-oriented operations, 165
RUN_DOMAIN_WIZARD property (silent

installation), 30

• S •
sample security files (SSL encryption),

55–56
samplehome object (create method), 94
sampleMethod, obtaining for dynamic web

service clients, 182
samples directory, 195, 196
saveWSDL attribute (client node), 166
scalability

as application server advantage, 11
clustering for, 11, 47, 230

SchoolPool folder (Administration
Console), 216–217

scripts
Administration Server startup, 56
bean descriptors, 208–209
bean implementation file, 113–118

bean interface, 112, 209
bean-managed persistence bean

compilation, 122
bean-managed persistence client, 120–122
build.xml file for an asynchronous

service, 168
build.xml file for client stub generation,

175–176
closing connections, 228
container-managed persistence bean

abstract bean implementation, 128–131
container-managed persistence bean

compilation, 137–138
container-managed persistence bean

local bean interface, 125–126
container-managed persistence bean

local home interface, 126–127
container-managed persistence bean

remote bean interface, 126
container-managed persistence bean

remote home interface, 127–128
container-managed persistence bean

value objects, 123–125
to create database example, 108
dynamic web service client example,

180–181
ejb-jar.xml, 118–119, 131–134
Enterprise JavaBeans backend

component, 160–161
Enterprise JavaBeans JAR build, 95–96
home class sample, 209
home interface, 113
InitialContext object hash table, 226
Java class backend components, 158–159
kill (UNIX daemon), 44
looking up named objects, 227
Node Manager startup, 60–61
point-to-point receiver sample, 258–260
point-to-point sender sample, 260–261
prepared statements example, 214–215
publish-and-subscribe publisher, 265–266
to run EJB clients, 98–99
sample application.xml file, 146–147
setting <url-pattern> to /, 286–287
SQL query sample, 215–216
try block, 235
web service client, 177–179
web service methods, 188
WebLogic Server startup, 34–39, 44

354 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 354

weblogic-ejb-jar.xml, 120, 135–136
weblogic-jws-config.xml file, 198
weblogic-rdbms-jar.xml, 136–137
weblogic.xml file, 148
web.xml file for proxy support, 287–288

Secure Socket Layer (SSL) protocol
configuring for Node Manager, 55–56
overview, 301–302
specifying paths for Node Manager, 63

security. See also user access control
Administration Console login, 47–48
basic WebLogic Server features, 16, 301
disaster recovery, 336–337
of EJB files, 223
of groups, 311–313
policies, 316–318
roles, 314–316
security realms listed, 308–309
specifying for JNDI object reference, 234
SSL encryption, 55–56, 301–308
types of errors in, 325
of users, 309–311

security realms
group access control, 311–313
listed, 308–309
policies for, 316–318
roles in, 314–317
user access control, 309–311

security roles, 314–317
security-role-assignment element,

weblogic.xml file, 149
select statement, 216
selectedJar property (Configuration

Wizard), 32
sender programs, 260–262
serialization class, 164
Server Affinity Enabled setting

(connection factories), 243
server clusters. See clusters
server listen port (Configuration Wizard

property), 31
server name (Configuration Wizard

property), 31
-server option (JAVA_VM variable), 38
server software patches, 325
SERVER-RUN-AS property (Configuration

Wizard), 33

servers
basic functions, 9–10
creating for web applications, 71
defined, 9, 47
for different development

environments, 323
growth plans, 329
machines versus, 47
monitoring, 64–66, 329
nodes versus, 53

ServerSession1 class (Java Messaging
Service), 254

ServerSession Pool1 class (Java
Messaging Service), 254

ServerSessionPool Factory class (Java
Messaging Service), 254

server-side class files, 78
server-to-cluster assignments, 282
server-to-machine assignments, 283
service descriptions, 155
service level agreements (SLAs), 328
service method, 83
service node attributes, 163–165
servicegen node attributes, 163
serviceName attribute (clientgen

node), 176
serviceName attribute (service

node), 165
Services applet (Control Panel), 42–43, 73
services (WebLogic), finding monitoring

pages, 65–66
services (Windows)

basic features, 40
configuring WebLogic as, 40–43, 73
starting Node Manager as, 61

serviceURI attribute (service node), 165
<servlet> element, web.xml file, 286
<servlet-mapping> tag, 288
ServletRequest parameter, 83
ServletResponse object, 83
servlets, 79, 82–83
session bean class, 102–103
Session class (Java Messaging Service),

254, 255
session EJBs, 99–104
SessionBean class, 90–91
SessionContext object, 91

355Index

o524720 Index.qxd 5/20/03 8:40 AM Page 355

session-descriptor element,
weblogic.xml file, 149

sessions, 99
session-type element, 92
session-type tag, 100
setEntityContext method, 111
setenv.cmd command, 150
setEnv.cmd command, 167
setenv.sh command, 150
setEnv.sh command, 167
setSessionContext method, 91
setup. See also configuration

Node Manager, 54–60
web applications, 70–77

shared file systems, clustered servers, 276
shipping applications, transactions for, 232
shopping cart programs, 233
signatures, 101
silent installation

instructions, 29–34
overview, 17
package installer required, 20

Simple Object Access Protocol (SOAP)
as basis of web services, 155
elements of, 156
WebLogic Server support, 15

SLAs (service level agreements), 328
small-icon element, application.xml

file, 147
SOAP envelope, 156
software costs, 272
Solaris operating system, 18
sorting, 246–248
SQL code. See structured query

language (SQL)
SQL For Dummies (Taylor, Allen G.), 107
SSL Enabled box (Administration

Server), 278
SSL Listen Port (Administration

Server), 278, 280
SSL protocol. See Secure Socket Layer

(SSL) protocol
SSL server listen port (Configuration

Wizard), 31
SSL/HTTPS, WebLogic Server support, 16
stack traces, 331
staging directories

for enterprise applications, 149
for web services, 167

standard startup script, 36–37
Start menu

opening command prompt, 28
opening Domain Configuration Wizard

from, 277
starting WebLogic Server from, 39, 73
starting WebLogic Workshop from, 184

starting server clusters, 283–284
STARTMODE variable, 38
startNodeManager.cmd script, 61
startNodeManager.sh script, 61
startup arguments, 58–60
startup scripts. See also WebLogic Server

startup
Administration Server, 56
daemons (UNIX), 44
Node Manager, 60–61
performance options, 299
WebLogic Server options, 34–39

startWebLogic.cmd script, 36–37
startWLS.cmd file, 37
startWLS.cmd script, 299
startWLS.sh script, 299
stateful session beans

basic functions, 87
creating, 99–104

stateless session beans
for backend components, 159–161
compiling, 94–97
creating components, 88–94
defined, 87, 88
deploying, 97–98
free EJB pool, 297
testing, 98–99

statements, prepared. See prepared
statements

static clients, 173–180
static IP addresses, 276
Step Into action (WebLogic Workshop

debugger), 194
Step Out action (WebLogic Workshop

debugger), 194
Step Over action (WebLogic Workshop

debugger), 194
Stop action (WebLogic Workshop

debugger), 194
Stores folder (Administration Console),

244–246
stress tests, 334

356 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 356

String return type, 187
strings, 180
structured query language (SQL)

cached statements, 296
executing statements in JDBC, 214–216
table creation code, 108
transaction statements, 235–236

stuck threads, detecting, 295
style attribute (service node), 165
su command (UNIX), 43
subscriber program, 263–265
suggestions for improvement,

bugs versus, 336
superuser, 43
support for users, 337
switch statements, breakpoints with, 193
symbolic links to startup scripts, 44
synchronous web services

asynchronous versus, 157
building, 158–161
packaging, 162–167

synchronous write policies, 244
system requirements (WebLogic Server),

18–19

• T •
tables (database), 108, 137
tag libraries, 142, 143
tag library descriptor (TLD) files, 142
targetNamespace attribute (service

node), 165
Tasks configuration area, 49, 50
Taylor, Allen G. (SQL For Dummies), 107
TCP/IP ports, specifying, 51, 63
Technical Stuff icon, 5
templates

creating for silent mode installation, 30–33
EJB remote interface, 88
messaging services, 241, 248–249
server domains, 25

Templates folder (Administration
Console), 248, 249

temporary directories
for enterprise applications, 149
for web services, 167

TestData identifier, 213

testing
approaches, 326
with clusters, 331
creating system for, 333–334
JSTL installation, 85–86
servers, 323
stateless session beans, 98–99
web applications, 73–74
web services, 189–192

test-scripting programs, 334
text editors

creating JSP files with, 79
to edit weblogic-ejb-jar.xml, 297
to modify hosts file, 54
to modify startup script, 37

TextMessage type messages, 260
thin client applications, 292
thread count, 291–294
threads

performance improvements, 291–295
safe code, 119, 158
sharing session objects prohibited, 255

Tip icon, 5
TLD (tag library descriptor) files, 142
Toggle Breakpoint command (WebLogic

Workshop), 193
Tomcat server, 70
tools

debugging, 326
required for developers, 324
testing, 334

Tools ➪ Start WebLogic Server option
(WebLogic Workshop), 189

topics
connecting to, 267
creating, 241, 252–253
defined, 240

traffic
cluster advantages, 272–273
estimating, 334

transactions
applying, 233–237
basic functions, 229–231
when to use or not use, 231–233

transaction-type element, 92
trust, obtaining, 302
trusted CA certificates, 302

loading into keystore, 306
obtaining, 303–304

357Index

o524720 Index.qxd 5/20/03 8:40 AM Page 357

try block, 235
Tuning tab (Administration Console),

290–291, 295
two-phase commit, 230–231
typeMappingFile attribute (service

node), 166
typical installation, 22–23

• U •
uniform resource locations (URLs)

alternate, 178
naming services and, 221
as security realm, 309
tampering with, 302, 325

uninstallNodeMgrSvc.cmd, 61
uninterruptible power supply (UPS)

systems, 335
unit testing, 326
UNIX

automatic WebLogic Server startup, 43–44
editing startup scripts in, 37
Node Manager startup script, 61
setting environment, 167
shell environment command, 150
silent installation instructions, 34
standard startup script, 299
WebLogic Server installation, 26–28

UPDATE SQL statement, 214
upgrades, planning for, 329
upload your files link (Administration

Console)
enterprise applications, 151, 152
web applications, 75, 76
web services, 169, 170

UPS (uninterruptible power supply)
systems, 335

<url-pattern>, 286–287
Usenet resources, 322, 331
user acceptance testing, 326
user access control. See also security

Administration Console login, 47–48
JSP form for, 80–81
Secure Socket Layer (SSL) protocol,

301–308
in startup script, 39
WebLogic Server support, 16

user documentation, 322

user ID
Administration Console login, 47–48
encryption, 302
entering for new users, 311
JSP form for entering, 80–81
specifying in startup script, 39

user names
Configuration Wizard property, 31
security policy conditions, 317
security role conditions, 315

User Projects command (Windows Start
menu), 39

USER_INSTALL_DIR property (silent
installation), 30

usernames. See user ID
/user_projects subdirectory, 141
users

creating, 309–311
service level agreements with, 328
support for, 337

Users folder (Administration Console),
309, 310

UserTransaction object
Java Naming and Directory Interface

(JNDI) to obtain, 234
rollback() method, 236, 237

useServerTypes attribute
client node, 166
clientgen node, 176

• V •
value object construction, 123–125
verbose reporting, 181
versions (WebLogic), upgrading, 332
vi (UNIX), 37–38
Vijendran, Sridhar (Java Servlet

Programming Bible), 79

• W •
WAR files. See web archive (WAR) files
warName attribute (servicegen node), 163
Warning icon, 5
web application descriptors, 72
Web Application Modules folder

(Administration Console), 75, 76

358 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 358

web applications
creation and setup, 70–77
custom files overview, 78–86
defined, 69
deployment descriptor utility, 146
deployment descriptors, 144
directory structure, 77–78, 142–143
HttpClusterServlet, 286
web services in, 195

web archive (WAR) files
contents, 71
packaging instructions, 74–75
redeploying applications as, 330

web browsers. See browsers
Web Performance tool, 334
Web Scarab tool, 325
web servers

application servers versus, 69–70
basic functions, 9, 69
presentation logic in, 11
WebLogic Server functions, 14

Web Service Definition Language (WSDL)
file, 165, 166, 174–175

web services
backend component creation, 157
building asynchronous services, 161
building synchronous services, 158–161
building with WebLogic Workshop,

183–192
debugging in WebLogic Workshop,

193–195
defining, 156–157
deploying, 168–171, 198–199
dynamic clients, 180–182
overhead requirements versus EJBs, 179
overuse of, 322–323
overview, 155
packaging, 162–168, 194–198
as security realm, 309
static clients, 173–180
WebLogic Server support, 15–16

web sites
Aardvark tool, 336
BEA Systems, 20
Bug Collector Pro, 336
FogBugz tool, 336
For Dummies, 221
Google, 322
IBM jikes, 299

JSTL download, 83
J2SE and J2EE download, 94
MySQL, 108
Open Web Application Security Project,

325
Paessler tool, 334
Sun, 5
Web Performance tool, 334
Web Service Definition Language

(WSDL), 174
WebLogic documentation, 5
WebStone tool, 334
World Wide Web Consortium, 155

web-based Usenet portals, 322, 331
WEB-INF directory

copying JSTL TLD files to, 84
creating for web applications, 72
inaccessible from Internet, 141

WEB-INF/classes directory
basic functions, 141–142
web applications, 78

WEB-INF/lib directory
basic functions, 142
copying JSTL JAR files to, 84
EJB files in, 223
web applications, 78

WEB-INF/tlds directory, 142
WEB-INF/weblogic.xml file, 78, 144
WEB-INF/web.xml file, 78, 144
WebLogic objects, accessing through JNDI,

222–228
WebLogic performance packs, 289–291
WebLogic Server. See also installation

(WebLogic Server)
database access fundamentals, 107–112
deployment descriptors, 144
GUI installation, 21–24
installing on clusters, 276
J2EE components, 12–13
major features, 14–16
monitoring activities, 64–66
updating, 332

WebLogic Server Console, starting, 97
WebLogic Server startup

automatic, 40–44
startup scripts, 34–39
from Windows Start menu, 39

359Index

o524720 Index.qxd 5/20/03 8:40 AM Page 359

WebLogic Workshop
adding EJBs with, 223–225
basic functions, 16, 183
creating web service, 183–192
opening screen, 184
packaging and deploying web services,

194–199
__weblogic_admin_rmi_queue, 291
weblogic.ant.taskdefs.ear.DDInit

utility, 145
weblogic.ant.taskdefs.ejb.DDInit

utility, 145
weblogic.ant.taskdefs.ejb20.DDInit

utility, 146
weblogic.ant.taskdefs.war.DDInit

utility, 146
WebLogic-compatible deployment

descriptors, 92
weblogic-ejb-jar.xml file

basic functions, 91
pool size element, 297–298
sample scripts, 120, 135–136
WebLogic configuration information in, 120

weblogic.jar file, 145
weblogic.jms.ConnectionFactory, 254
weblogic.jms.extensions.

XMLMessage, 257
weblogic-jws-config.xml file, 197–198
weblogic.ListenAddress property

(Node Manager), 63
weblogic.ListenPort property (Node

Manager), 63
weblogic.nodemanager.certificate

File property (Node Manager), 63
weblogic.nodemanager.javaHome

property (Node Manager), 63
weblogic.nodemanager.keyFile

property (Node Manager), 63
weblogic.nodemanager.keyPassword

property (Node Manager), 63
weblogic.nodemanager.nativeVersion

Enabled property (Node Manager), 63
weblogic.nodemanager.reverseDns

Enabled property (Node Manager), 63
weblogic.nodemanager.savedLogs

Directory property (Node
Manager), 63

weblogic.nodemanager.sslHostName
VerificationEnabled property
(Node Manager), 64

weblogic.nodemanager.startTemplate
property (Node Manager), 64

weblogic.nodemanager.trustedHosts
property (Node Manager), 64

weblogic.nodemanager.weblogicHome
property (Node Manager), 64

weblogic-rdbms-jar.xml file, 136–137
weblogic-rdbms-relation tags (foreign

keys), 137
weblogic-version element, weblogic.xml

file, 149
weblogic-web-app element, weblogic.xml

file, 149
weblogic.xml file, 78, 148–149
webserviceclient.jar file, 179
webserviceclient+ssl.jar file, 179
webserviceclient+ssl_pj.jar file, 179
web-services.xml file, 159
WebSphere server software, 9, 70
WebStone tool, 334
web-uri element, application.xml file, 148
web.xml file

basic functions, 78
JSTL entries in, 84–85
proxy plug-ins, 286–288
samples, 72, 84–85

weight-based load balancing, 285
Welcome screen, GUI installation, 21
Windows. See Microsoft Windows
WinZip, 150
WL_HOME variable (Node Manager), 62
WLS_PW variable (for startup script), 38, 39
WLS_USER variable (for startup script),

38, 39
World Wide Web Consortium web site, 155
written procedures, 327–328

• X •
XML files

EJB deployment descriptors, 88, 91
enterprise application deployment

descriptors, 143–149
service descriptions, 155
Web Service Definition Language (WSDL),

174–175
WebLogic Server support, 15

XML Spy, 24

360 BEA WebLogic Server 8 For Dummies

o524720 Index.qxd 5/20/03 8:40 AM Page 360

PERSONAL FINANCE

Also available:

Estate Planning For Dummies
(0-7645-5501-4)
401(k)s For Dummies
(0-7645-5468-9)
Frugal Living For Dummies
(0-7645-5403-4)
Microsoft Money “X” For
Dummies
(0-7645-1689-2)
Mutual Funds For Dummies
(0-7645-5329-1)

Personal Bankruptcy For
Dummies
(0-7645-5498-0)
Quicken “X” For Dummies
(0-7645-1666-3)
Stock Investing For Dummies
(0-7645-5411-5)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:

Business Plans Kit For
Dummies
(0-7645-5365-8)
Consulting For Dummies
(0-7645-5034-9)
Cool Careers For Dummies
(0-7645-5345-3)
Human Resources Kit For
Dummies
(0-7645-5131-0)
Managing For Dummies
(1-5688-4858-7)

QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)
Selling For Dummies
(0-7645-5363-1)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business For
Dummies
(0-7645-1547-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

BUSINESS & CAREERS

Also available:

Controlling Cholesterol For
Dummies
(0-7645-5440-9)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Martial Arts For Dummies
(0-7645-5358-5)
Menopause For Dummies
(0-7645-5458-1)

Nutrition For Dummies
(0-7645-5180-9)
Power Yoga For Dummies
(0-7645-5342-9)
Thyroid For Dummies
(0-7645-5385-2)
Weight Training For Dummies
(0-7645-5168-X)
Yoga For Dummies
(0-7645-5117-5)

HEALTH, SPORTS & FITNESS

0-7645-5231-7 0-7645-2431-3 0-7645-5331-3

0-7645-5314-3 0-7645-5307-0 0-7645-5471-9

0-7645-5167-1 0-7645-5146-9 0-7645-5154-X

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 361

Also available:

America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)
France For Dummies
(0-7645-6292-4)

London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts For
Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)
Walt Disney World & Orlando
For Dummies
(0-7645-5444-1)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

A world of resources to help you grow

HOME, GARDEN & HOBBIES

Also available:

Auto Repair For Dummies
(0-7645-5089-6)
Chess For Dummies
(0-7645-5003-9)
Home Maintenance For
Dummies
(0-7645-5215-5)
Organizing For Dummies
(0-7645-5300-3)
Piano For Dummies
(0-7645-5105-1)

Poker For Dummies
(0-7645-5232-5)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Roses For Dummies
(0-7645-5202-3)
Sewing For Dummies
(0-7645-5137-X)

Also available:

Bartending For Dummies
(0-7645-5051-9)
Chinese Cooking For
Dummies
(0-7645-5247-3)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Low-Fat Cooking For
Dummies
(0-7645-5035-7)
Slow Cookers For Dummies
(0-7645-5240-6)

FOOD & WINE

TRAVEL

0-7645-5295-3 0-7645-5130-2 0-7645-5106-X

0-7645-5250-3 0-7645-5390-9 0-7645-5114-0

0-7645-5453-0 0-7645-5438-7 0-7645-5448-4

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 362

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Plain-English solutions for everyday challenges

COMPUTER BASICS

Also available:

PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Pocket PC For Dummies
(0-7645-1640-X)
Treo and Visor For Dummies
(0-7645-1673-6)
Troubleshooting Your PC For
Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)

Also available:

Excel Data Analysis For
Dummies
(0-7645-1661-2)
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Excel 2002 For Dummies
Quick Reference
(0-7645-0829-6)
GoldMine “X” For Dummies
(0-7645-0845-8)

Microsoft CRM For Dummies
(0-7645-1698-1)
Microsoft Project 2002 For
Dummies
(0-7645-1628-0)
Office XP For Dummies
(0-7645-0830-X)
Outlook 2002 For Dummies
(0-7645-0828-8)

BUSINESS SOFTWARE

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0822-9 0-7645-0839-3 0-7645-0819-9

• Find listings of even more For Dummies titles

• Browse online articles

• Sign up for Dummies eTips™

• Check out For Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 363

Also available:

Adobe Acrobat 5 PDF For
Dummies
(0-7645-1652-3)
Fireworks 4 For Dummies
(0-7645-0804-0)
Illustrator 10 For Dummies
(0-7645-3636-2)

QuarkXPress 5 For Dummies
(0-7645-0643-9)
Visio 2000 For Dummies
(0-7645-0635-8)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

Helping you expand your horizons and realize your potential

INTERNET

Also available:

America Online 7.0 For
Dummies
(0-7645-1624-8)
Genealogy Online For
Dummies
(0-7645-0807-5)
The Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)
Internet Explorer 6 For
Dummies
(0-7645-1344-3)

The Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Researching Online For
Dummies
(0-7645-0546-7)
Starting an Online Business
For Dummies
(0-7645-1655-8)

Also available:

CD and DVD Recording For
Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
Digital Photography For
Dummies Quick Reference
(0-7645-0750-8)
Home Recording for
Musicians For Dummies
(0-7645-1634-5)

MP3 For Dummies
(0-7645-0858-X)
Paint Shop Pro “X” For
Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Scanners For Dummies
(0-7645-0783-4)

DIGITAL MEDIA

GRAPHICS

0-7645-0894-6 0-7645-1659-0 0-7645-1642-6

0-7645-1664-7 0-7645-1675-2 0-7645-0806-7

0-7645-0817-2 0-7645-1651-5 0-7645-0895-4

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 364

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct.

The advice and explanations you need to succeed

Also available:

Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
The GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For
Dummies
(0-7645-5426-3)
The SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

SELF-HELP, SPIRITUALITY & RELIGION

Also available:

The Bible For Dummies
(0-7645-5296-1)
Buddhism For Dummies
(0-7645-5359-3)
Christian Prayer For Dummies
(0-7645-5500-6)
Dating For Dummies
(0-7645-5072-1)
Judaism For Dummies
(0-7645-5299-6)

Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Spirituality For Dummies
(0-7645-5298-8)
Weddings For Dummies
(0-7645-5055-1)

Also available:

Labrador Retrievers For
Dummies
(0-7645-5281-3)
Aquariums For Dummies
(0-7645-5156-6)
Birds For Dummies
(0-7645-5139-6)
Dogs For Dummies
(0-7645-5274-0)
Ferrets For Dummies
(0-7645-5259-7)

German Shepherds For
Dummies
(0-7645-5280-5)
Golden Retrievers For
Dummies
(0-7645-5267-8)
Horses For Dummies
(0-7645-5138-8)
Jack Russell Terriers For
Dummies
(0-7645-5268-6)
Puppies Raising & Training
Diary For Dummies
(0-7645-0876-8)

PETS

EDUCATION & TEST PREPARATION

0-7645-5302-X 0-7645-5418-2 0-7645-5264-3

0-7645-5255-4 0-7645-5286-4 0-7645-5275-9

0-7645-5194-9 0-7645-5325-9 0-7645-5210-4

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 365

WEB DEVELOPMENT

Also available:

ASP.NET For Dummies
(0-7645-0866-0)
Building a Web Site For
Dummies
(0-7645-0720-6)
ColdFusion “MX” For
Dummies (0-7645-1672-8)
Creating Web Pages
All-in-One Desk Reference
For Dummies
(0-7645-1542-X)

FrontPage 2002 For Dummies
(0-7645-0821-0)
HTML 4 For Dummies Quick
Reference
(0-7645-0721-4)
Macromedia Studio “MX”
All-in-One Desk Reference
For Dummies
(0-7645-1799-6)
Web Design For Dummies
(0-7645-0823-7)

Also available:

Beginning Programming For
Dummies
(0-7645-0835-0)
Crystal Reports “X”
For Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)
JavaScript For Dummies
(0-7645-0633-1)
Oracle9i For Dummies
(0-7645-0880-6)

Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)
SQL For Dummies
(0-7645-0737-0)
VisualBasic .NET For
Dummies
(0-7645-0867-9)
Visual Studio .NET All-in-One
Desk Reference For Dummies
(0-7645-1626-4)

We take the mystery out of complicated subjects

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct.

PROGRAMMING & DATABASES

Also available:

CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies with CD-ROM
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
TCP/IP For Dummies
(0-7645-1760-0)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1643-4 0-7645-0723-0 0-7645-1630-2

0-7645-0746-X 0-7645-1657-4 0-7645-0818-0

0-7645-1545-4 0-7645-0772-9 0-7645-0812-1

p524720 Cross Sell.qxd 5/20/03 8:40 AM Page 366

	BEA WebLogic

Server. 8

FOR

DUMmIES‰
	BEA WebLogic

Server. 8

FOR

DUMmIES‰
	Copyright
	About the Author
	Dedication
	Author¡¯s Acknowledgments
	Contents at a Glance
	Table of Contents

	Introduction
	About This Book
	Conventions Used in This Book
	What You Don¡¯t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Part I: Installing and Configuring WebLogic
	Part II: Understanding WebLogic Components
	Part III: Employing Web Services
	Part IV: The Forgotten Services
	Part V: Big- Time, Heavy- Duty Server Configuration
	Part VI: The Part of Tens

	Icons Used in This Book
	Where to Go from Here

	Part I: Installing and Configuring WebLogic
	Chapter 1: Introducing Application Servers
	Application Server Basics
	Achieving reliability through redundancy
	Making applications scalable
	Improving modularity

	J2EE, Java’s Approach to

 Application Servers
	JavaServer Pages
	Enterprise JavaBeans
	Java Transaction Service
	Java Message Service
	Java Naming and Directory Interface
	Enterprise applications

	Major Features of WebLogic Server
	Platform support
	Web applications
	EJB support
	Database connectivity
	Web services
	Clustering
	Security

	Chapter 2: Installing WebLogic Server
	Installation Overview
	System requirements
	Getting WebLogic
	Understanding licensing

	Using the GUI Mode Installer
	Using Configuration Wizard
	Using the Console Mode Installer
	Installing under UNIX
	Installing under Windows

	Using the Silent Mode Installer
	Creating a template file
	Invoking the silent mode
	installation program

	Chapter 3: Gentlemen, Start Your WebLogic Engines
	Writing a WebLogic Startup Script
	The standard startup script
	Constructing your own startup script

	Starting WebLogic from the
	Windows Start Menu
	Starting WebLogic Server Automatically
	Configuring WebLogic as a Windows service
	Running WebLogic as a UNIX daemon

	Chapter 4: Configuring and Administering WebLogic
	Understanding Domains, Clusters,Servers, and Machines
	Using Administration Console
	Logging on to Administration Console
	Using Administration Console

	Defining Network Channels
	Introducing Node Manager
	Setting Up Node Manager
	Setting up the Node Manager hosts file
	Configuring SSL for Node Manager
	Configuring a control machine to use Node Manager
	Configuring startup arguments for managed servers

	Starting Node Manager
	Starting Node Manager using start scripts
	Starting Node Manager as a Windows service
	Setting Node Manager environment variables

	Monitoring the Server

	Part II: Understanding WebLogic Components
	Chapter 5: Creating Web Applications
	Server Basics
	Setting Up a Web Application
	Creating your server
	Creating your web application
	Testing your web application
	Programming your web application
	Packaging your web application
	Deploying your web application

	Directory Structure for Your
	Web Application
	The Files in a Web Application
	Using JSP
	A quick look at servlets
	Using JSTL

	Chapter 6: Using EJBs
	Creating Stateless Session Beans
	Creating the remote interface
	Creating the home interface
	Creating the bean class
	Creating deployment descriptors
	Creating the client class

	Building the Stateless Session Bean EJB
	Deploying the Stateless Session EJB
	Testing the Stateless Session EJB
	Adding State
	Accessing Data with Entity Beans
	Configuring Message- Driven Beans

	Chapter 7: Using Entity Beans
	Understanding WebLogic
	Database Access
	Creating the connection pool
	Creating the data source

	Constructing a BMP Bean
	Constructing the bean interface
	Constructing the home interface
	Constructing the bean implementation
	Constructing the bean configuration files

	Compiling a BMP Bean
	Constructing a CMP Bean
	Constructing the value objects
	Constructing the local bean interfaces
	Constructing the remote bean interface
	Constructing the local home interfaces
	Constructing the remote home interface
	Constructing the abstract bean implementation
	Constructing the bean configuration files

	Compiling a CMP Bean

	Chapter 8: Stepping Up to Enterprise Applications
	Organizing Your Directories
	The structure of the WebLogic directory
	Examining the directory structure

	Creating Deployment Descriptors
	Understanding deployment descriptors
	Creating descriptors using tools
	Creating descriptors manually

	Packaging Your Enterprise Application
	Deploying Your Enterprise Application

	Part III: Employing Web Services
	Chapter 9: Building and Deploying Web Services
	Defining a Web Service
	Choosing and Building a
	Backend Component
	Building a Synchronous Web Service
	Working with a Java class backend component
	Working with a stateless session EJB backend component

	Building an Asynchronous Web Service
	Packaging Your Web Service
	Packaging a synchronous service
	Packaging an asynchronous service

	Deploying Your Web Service

	Chapter 10: Accessing Web Services
	Using a Static Client
	Understanding WSDL
	Generating the client stub
	Building the client application
	Running the client application

	Using a Dynamic Client
	Constructing the dynamic client
	Running the dynamic client

	Chapter 11: Using WebLogic Workshop
	Creating a Web Service
	Creating a Workshop application and a web service
	Adding methods to your web service
	Testing your web service

	Debugging Web Services
	Packaging and Deploying Web Services
	Directory locations
	Packaging a web service
	Packaging for a different host
	Deploying web services

	Part IV: The Forgotten Services
	Chapter 12: Accessing Data with JDBC
	Creating a Connection Pool
	Defining a Data Source
	Using JDBC with EJBs
	Obtaining the connection
	Closing the data source
	Executing an SQL statement
	Using prepared statements
	Submitting a query

	Monitoring JDBC

	Chapter 13: Finding EJBs with JNDI
	Understanding JNDI
	Understanding JNDI names
	JNDI as a universal naming service

	Implementing JNDI Using WebLogic
	Making WebLogic resources available through JNDI
	Enabling JNDI to access WebLogic objects

	Chapter 14: Using Transactions with JTA
	Understanding Transactions
	Two- phase commit
	When to use transactions
	When not to use transactions

	Using Transactions
	Importing packages
	Using JNDI to return an object reference
	Starting the transaction
	Updating the database
	Completing the transaction

	Chapter 15: Sending Messages Between Programs with JMS
	Creating a WebLogic Message Service
	Creating a connection factory
	Defining a backing store
	Defining destination keys
	Defining templates
	Creating a JMS server
	Creating queues and topics

	Accessing Your Message Service
	ConnectionFactory
	Connection
	Session
	Destination
	MessageProducer and MessageConsumer
	Message

	Creating a Point- to- Point JMS Client
	Creating the receiver
	Creating the sender

	Creating a Publish- and- Subscribe JMS Client
	Creating the subscriber
	Creating the publisher

	Part V: Big-Time, Heavy-Duty Server Configuration
	Chapter 16: Working with Server Clusters
	Understanding Clustering
	Performance through clustering
	Reliability through clustering

	Components of WebLogic Clustering
	Node Manager
	Clustered domain
	Clustered JDBC
	Load balancing
	Connection proxy

	Configuring WebLogic Clustering
	Installing WebLogic Server
	Creating a clustered domain
	Starting the WebLogic Server cluster
	Configuring Node Manager
	Configuring load balancing
	Configuring proxy plug- ins
	Configuring clustered JDBC

	Chapter 17: Tuning WebLogic Server
	WebLogic Server Performance Packs
	Thread Settings
	Setting thread count
	Detecting stuck threads

	JDBC Performance Settings
	JDBC connection pools
	Caching prepared statements

	EJB Performance Settings
	Setting EJB pool size
	Allocating pool size for session and message beans
	Allocating pool size for anonymous entity beans
	Tuning initial beans in the free pool
	Setting EJB caching size

	Starting WebLogic Server with
	Performance Options
	Setting Your Java Compiler

	Chapter 18: Implementing Security
	Understanding WebLogic Security
	Secure Sockets Layer (SSL)
	Obtaining an identity
	Storing keys and certificates
	Enabling SSL on your server

	Introduction to Security Realms
	Users
	Groups
	Security roles
	Security policies

	Part VI: The Part of Tens
	Chapter 19: Ten Best Practices for Developers
	Keep Adequate Documentation
	Use Usenet
	Don¡¯t Over- Engineer
	Set Up Development Environments
	Know What You¡¯re Developing
	Understand the Tools
	Create Modular, Decoupled Systems
	Be Mindful of Security
	Test Your Software
	Manage Your Build Process

	Chapter 20: Ten Tips for Administrators
	Document Procedures
	Define a Service Level Agreement
	Set Up On- Call Procedures
	Plan for Growth
	Monitor Your Servers
	Back Up Your Servers
	Keep Your Systems Secure
	Understand Log Files
	Test with Clusters
	Keep WebLogic Up- to- Date

	Chapter 21: Ten Tasks Before Going Live
	Test Your System
	Conduct a Stress Test
	Set Up a Parallel Environment
	Perform Fault Testing
	Set Up a Bug Tracking System
	Formulate a Disaster Recovery Plan
	Choose Your Date
	Keep the Lines of Communication Open
	Be Ready for Anything
	Be Ready with Support

	Index
	. A .
	. B .
	. C .
	. D .
	. E .
	. G .
	. F .
	. H .
	. I .
	. J .
	. K .
	. L .
	. M .
	. N .
	. O .
	. P .
	. Q .
	. R .
	. S .
	. T .
	. U .
	. V .
	. W .
	. X .

