

 [image: Third Edition]

 LPI Linux Certification in a Nutshell

Adam Haeder

Stephen Addison Schneiter

Bruno Gomes Pessanha

James Stanger

Editor
Andy Oram

Copyright © 2010 James Stanger, Adam Haeder, Stephen Schneiter, and Bruno Gomes Pessanha

This book uses RepKover™, a durable and flexible lay-flat
 binding.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. LPI Linux
 Certification in a Nutshell, the image of a bull, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Certification of professionals is a time-honored tradition in many
 fields, including medicine and law. As small computer systems and networks
 proliferated over the last decade, Novell and Microsoft produced extremely
 popular technical certification products for their respective operating
 system and network technologies. These two programs are often cited as
 having popularized a certification market for products that had previously
 been highly specialized and relatively rare. These programs have become so
 popular that a huge training and preparation industry has formed to service
 a constant stream of new certification candidates.
Certification programs, offered by vendors such as Sun and
 Hewlett-Packard, have existed in the Unix world for some time. However,
 since Solaris and HP-UX aren’t commodity products, those programs don’t draw
 the crowds that the PC platform does. Linux, however, is different. Linux is both a commodity operating
 system and is PC-based, and its popularity continues to grow at a rapid
 pace. As Linux deployment increases, so too does the demand for qualified
 and certified Linux system administrators.
A number of programs such as the Linux Professional Institute (LPI), the Red Hat Certified Engineer (RHCE) program, and CompTIA’s
 Linux+ have formed to service this new market. Each of these programs seeks
 to provide objective measurements of a Linux administrator’s skills, but
 they approach the problem in different ways.
The RHCE program requires that candidates pass multiple exam modules,
 including two hands-on and one written, whose goals are to certify
 individuals to use their brand of products. The Linux+ program requires a
 single exam and is focused at entry-level candidates with six months’
 experience. LPI’s program is a job-based certification and currently
 consists of three levels; this book focuses on the most basic level.
The Linux Professional Institute

The Linux Professional
 Institute is a nonprofit organization formed with the single goal
 of providing a standard for vendor-neutral certification. This goal is
 being achieved by certifying Linux administrators through a modified open
 source development process. LPI seeks input from the public for its exam
 Objectives and questions, and anyone is welcome to participate. It has
 both paid and volunteer staff and receives funding from some major names
 in the computer industry. The result is a vendor-neutral, publicly
 developed program that is offered at a reasonable price.
LPI currently organizes its most popular Linux Professional Institute Certification (LPIC) series in
 three levels. This book covers the LPIC Level 1 Exams 101 and 102.
Level 1 is aimed at junior to midlevel Linux administrators with
 about two years of practical system administration experience. The Level 1
 candidate should be comfortable with Linux at the command line as well as
 capable of performing simple tasks, including system installation and
 troubleshooting. Level 1 certification is required prior to obtaining
 Level 2 certification status.
All of LPI’s exams are based on a published set of technical
 Objectives. These technical Objectives are posted on LPI’s
 website and for your convenience printed at the beginning of each chapter
 within this book. Each Objective set forth by LPI is assigned a numeric weight, which acts as an
 indicator of the importance of the Objective. Weights run between 1 and 8,
 with higher numbers indicating more importance. An Objective carrying a
 weight of 1 can be considered relatively unimportant and isn’t likely to
 be covered in much depth on the exam. Objectives with larger weights are
 sure to be covered on the exam, so you should study these closely. The
 weights of the Objectives are provided at the beginning of each
 chapter.
LPI offers its exams through Pearson VUE,
 Thomson
 Prometric, and at on-site locations at special Linux events, such
 as trade shows. Before registering for any of these testing methods, you
 need to obtain an LPI ID number by registering directly with LPI. To
 obtain your LPI ID, visit http://www.lpi.org/register.html. Once
 you’ve received your LPI ID, you may continue your registration by
 registering with a testing center or special event. You can link to any of
 these registration options through LPI’s
 website.
In Vue and Prometric testing centers, the exams are delivered using
 a PC-based automated examination program. As of this writing, the exams
 are available in English, Japanese,
 Chinese (both Traditional and Simplified), German, Spanish, Portuguese,
 and French. Exam questions are presented in three different styles:
 multiple-choice single-answer, multiple-choice multiple-answer, and
 fill-in-the-blank. However, the
 majority of the questions on the exams are multiple-choice single-answer.
 Also, with the multiple-choice questions, the candidate is told exactly
 how many answers are correct.
For security purposes, multiple forms of each exam are available at
 testing centers to help minimize memorization and brain dumps of exams if
 candidates take them multiple times. Due to this, actual question numbers
 may vary slightly. LPI’s psychometric team develops these forms and
 adjusts the scoring appropriately so all forms are equally difficult. The
 scores are between 200 and 800, and passing score is 500.

Audience for This Book

The primary audience for this book is, of course, candidates seeking
 the LPIC certification. These may range from administrators of other
 operating systems looking for a Linux certification to complement an MSCE
 certification to Unix administrators wary of a growing pool of
 Linux-certified job applicants. In any case, this book will help you with
 the specific information you require to be successful with the Level 1
 Exams. Don’t be fooled, however, as book study will not be enough to pass
 your exams. Remember, practice makes perfect!
Due to the breadth of knowledge required by the LPI Objectives and
 the book’s one-to-one coverage, it also makes an excellent reference for
 skills and methods required for the day-to-day use of Linux. If you have a
 basic working understanding of Linux administration, the material in this
 book will help fill gaps in your knowledge while at the same time
 preparing you for the LPI Exams, should you choose to take them.
This book should also prove to be a valuable introduction for new
 Linux users and administrators looking for a broad, detailed introduction
 to Linux. Part of the LPI exam-creation process includes a survey of Linux
 professionals in the field. The survey results drive much of the content
 found on the exams. Therefore, unlike general-purpose introductory Linux
 books, all of the information in this book applies directly to running
 Linux in the real world.

Organization

This book is designed to exactly follow the Topics and Objectives
 established by LPI for Level 1. That means that the presentation doesn’t
 look like any other Linux book you’ve read. Instead, you can directly
 track the LPI Objectives and easily measure your progress as you
 prepare.
The book is presented in two parts, one for Exam 101 and the other
 for Exam 102. Each part contains chapters dedicated to the LPI Topics, and
 each of those sections contains information on all of the Objectives set
 forth for the Topic. In addition, each part contains a practice exam (with
 answers), review questions and exercises, and a handy highlighter’s index
 that can help you review important details.
Book Chapters

Each part of this book contains some combination of the following
 materials:
	Exam overview
	Here you find an introduction to the exam along with details
 about the format of the questions.

	Study guide
	This chapter offers a few tips to prepare for the LPI Exams
 and introduces the Objectives contained in the Topic chapters that
 follow.

	Topic chapters
	A separate chapter covers each of the Topic areas on the
 exam. These chapters provide background information and in-depth
 coverage for each Objective, with “On the Exam” (see bottom of
 this page) tips dispersed throughout.

	Review questions and exercises
	This chapter reinforces important study areas with review
 questions. The purpose of this section is to provide you with a
 series of exercises that can be used on a running Linux system to
 give you valuable hands-on experience before you take the
 exams.

	Practice test
	The practice test is designed to be similar in format and
 content to the actual LPI Exams. You should be able to attain at
 least an 80 percent score on the sample test before attempting the
 live exam.

	Highlighter’s index
	This unique chapter contains highlights and important facts
 culled from the Topic chapters. You can use this as review and
 reference material prior to taking the actual exams.

Conventions Used in This Book

This book follows certain typographical conventions:
	Italic
	Italic is used to indicate URLs, filenames, directories,
 commands, options, system components (such as usernames), and to
 highlight comments in examples.

	Constant Width
	Used to show the contents of files or the output from
 commands.

	Constant Width
 Bold
	Used in examples and tables to show commands or other text
 that should be typed literally by the user.

	Constant Width Italic
	Used to show arguments and variables that should be replaced
 with user-supplied
 values.

	#, $
	Used in some examples as the root shell prompt (#) and as the
 user prompt ($) under the
 Bourne or Bash shell.

On the Exam
Provides information about areas you should focus on when studying
 for the exam.

Note
Indicates a tip, suggestion, or general note.

Warning
Indicates a warning or caution.

A final word about syntax: in many cases, the space between an
 option and its argument can be omitted. In other cases, the spacing (or
 lack of spacing) must be followed strictly. For example,
 -wn (no intervening space)
 might be interpreted differently from -w
 n. It’s important to notice the spacing used in
 option syntax.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “LPI Linux Certification in a Nutshell, Third
 Edition, by Adam Haeder et al. Copyright 2010 Adam Haeder, Stephen Addison
 Schneiter, Bruno Gomes Pessanha, and James Stanger. ISBN:
 9780596804879.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best
 of our ability, but you may find that features have changed (or even that
 we have made mistakes!). As a reader of this book and as an LPI examinee,
 you can help us to improve future editions. Please let us know about any
 errors you find, as well as your suggestions for future editions, by
 writing to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreilly.com/catalog/9780596804879

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our website at:
	http://www.oreilly.com

If you have taken one or all of the LPIC Exams after preparing with
 this book and find that parts of this book could better address your exam
 experience, we’d like to hear about it. Of course, you are under
 obligation to LPI not to disclose specific exam details, but comments
 regarding the coverage of the LPI Objectives, level of detail, and
 relevance to the exam will be most helpful. We take your comments
 seriously and will do whatever we can to make this book as useful as it
 can be.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments

For the third edition, we thank reviewers Don Corbet, Jon Larsen,
 Gregor Purdy, Rick Rezinas, G. Matt Rice, and Craig Wolf.
Adam Haeder dedicates his work to Tina, Erin, Ethan, Stanley, and
 Stefon: the reason I work so late into the night.
Bruno dedicates his work to his grandfather, Oswaldo Cabral
 Pessanha, in memoriam.

Chapter 1. LPI Exams

LPI Exam 101 is one of two exams required for the LPIC Level 1
 (officially referred to as LPIC 1) certification. In total, ten major Topic
 areas are specified for Level 1; this exam tests your knowledge on four of
 them.
Exam Topics are numbered using the
 topic.objective notation (e.g., 101.1, 101.2, 102.1).
 The 100 series topics represent LPI Level 1 certification topics, which are
 unique to all levels of LPI exams (e.g., 101, 102, 201, 202, etc.). The
 objective number represents the Objectives that are associated with the
 Topic area (e.g., 1, 2, 3, 4, and so on).
The Level 1 Topics are distributed between the two exams to create
 tests of similar length and difficulty without subject matter overlap. As a
 result, there’s no requirement for or advantage to taking them in sequence,
 the only caveat being that you cannot be awarded an LPIC 2 or higher
 certifications until you pass the requirements for the lower-level
 certification.
Each Topic contains a series of Objectives covering specific areas of
 expertise. Each of these Objectives is assigned a numeric weight, which acts
 as an indicator of the importance of the Objective. Weights typically run
 between 1 and 8, with higher numbers indicating more importance. An
 Objective carrying a weight of 1 can be considered relatively unimportant
 and isn’t likely to be covered in much depth on the exam. Objectives with
 larger weights are sure to be covered more heavily on the exam, so you
 should study these Topics closely. The weights of the Objectives are
 provided at the beginning of each Topic section. In the current version of
 LPI exams, all of the weighting totals for each exam add up to 60. With 60
 questions per exam, this means that the weighting is exactly equivalent to
 how many questions the Objective will have in the exam.
The Topics for Exam 101 are listed in Table 1-1.
Table 1-1. LPI Topics for Exam 101
	Name
	Number of objectives
	Description

	System Architecture
	3
	These Objectives cover all the
 fundamentals of configuring common types of hardware on the system,
 managing the boot process, and modifying the runlevels of the system
 and the shut down or reboot process from the command line.

	Linux Installation and Package Management
	5
	Objectives for this Topic include the
 basics of getting any LSB-compliant Linux distribution installed and
 installing applications. Some of the basics include partitioning
 hard drives, installing your choice of boot managers, managing
 shared libraries, and using Debian’s dpkg and
 apt family of commands and RPM and Yellowdog
 Updater Modified (YUM) package management systems.

	GNU and Unix Commands
	8
	This heavily weighted Topic addresses the
 most utilized command-line tools used on standard Linux systems as
 well as most commercial Unix systems. The Objectives detail working
 on a command line, processing text streams using command-line tools,
 managing files, manipulating text with pipes and redirects,
 monitoring system processes, managing task priorities, using regular
 expressions, and editing files with vi,
 lilo, syslog, and runlevels.

	Devices, Linux Filesystems, and the Filesystem Hierarchy Standard
	8
	Objectives for this Topic include the
 creation of partitions and filesystems, filesystem integrity,
 mounting, quotas, permissions, ownership, links, and file location tasks.

As you can see from Table 1-1, the
 Topic numbers assigned by the LPI are not necessarily sequential. This is
 due to various modifications made by the LPI to its exam program as it
 developed. The Topic numbers serve only as reference and are not used on the
 exam.
Exam 101 lasts a maximum of 90 minutes and contains exactly 60
 questions. The exam is administered using a custom application on a PC in a
 private room with no notes or other reference material. The majority of the
 exam is made up of multiple-choice single-answer questions. These questions
 have only one correct answer and are answered using radio buttons. Some of
 them present a scenario needing administrative action. Others seek
 appropriate commands for a particular task or proof of understanding of a
 particular concept. Some people may get an exam with an additional 20 items.
 These items are used to test new questions and don’t count as part of the
 score. An additional 30 minutes is provided in this case, and there is no
 indication which items are unscored.
About 10 percent of the exam questions are multiple-choice
 multiple-answer questions, which are answered using checkboxes. These
 questions specify that they have multiple correct responses, each of which
 must be checked to get the item correct. There is no partial credit for
 partially answered items. This is probably the most difficult question style
 because the possibility of multiple answers increases the likelihood of
 forgetting to include an answer, even though the candidate is told in the
 question exactly how many answers to select. But they also are a good test
 of your knowledge of Unix commands, since an incorrect response on any one
 of the possible answers causes you to miss the entire question.
The exam also has fill-in-the-blank questions. These questions provide
 a one-line text area input box for you to fill in your answer. These
 questions check your knowledge of concepts such as important files and
 commands, plus common facts that you are expected to be aware of. Don’t let
 this scare you, however, since most of these items accept a variety of
 answers. Unless specified otherwise, they are not case-sensitive and do not
 require full paths in your answers.

Chapter 2. Exam 101 Study Guide

The first part of this book contains a section for each of the four
 Topics found on LPI Exam 101. Each section details certain Objectives, which
 are described here and on the LPI
 website.
Exam Preparation

LPI Exam 101 is thorough, but you should find it fairly
 straightforward if you have a solid foundation in Linux concepts. You
 won’t come across questions intended to trick you, and you’re unlikely to
 find ambiguous questions.
Exam 101 mainly tests your knowledge of facts, including commands
 and their common options, important file locations, configuration syntax,
 and common procedures. Your recollection of these details, regardless of
 your level of Linux administration experience, will directly influence
 your results.
For clarity, the material in the following sections is presented in
 the same order as the LPI Topics and Objectives. However, you may choose
 to study the Topics in any order you wish. To assist you with your
 preparation, Table 2-1
 through Table 2-4 list
 the Topics and Objectives found on Exam 101. Objectives within each Topic
 occupy rows of the corresponding table, including the Objective’s number,
 description, and weight. The LPI assigns a weight for
 each Objective to indicate the relative importance of that Objective on
 the exam on a scale of 1 to 8. We recommend that you use the weights to
 prioritize what you decide to study in preparation for the exams. After
 you complete your study of each Objective, simply check it off here to
 measure and organize your progress.
Table 2-1. System architecture (Topic 101)
	Objective
	Weight
	Description

	1
	2
	Determine and Configure Hardware
 settings

	2
	3
	Boot the System

	3
	3
	Change Runlevels and Shut Down or Reboot
 System

Table 2-2. Linux installation and package management (Topic 102)
	Objective
	Weight
	Description

	1
	2
	Design Hard Disk Layout

	2
	2
	Install a Boot Manager

	3
	1
	Manage Shared Libraries

	4
	3
	Use Debian Package
 Management

	5
	3
	Use RPM and YUM Package
 Management

Table 2-3. GNU and Unix commands (Topic 103)
	Objective
	Weight
	Description

	1
	4
	Work on the Command Line

	2
	3
	Process Text Streams Using
 Filters

	3
	4
	Perform Basic File
 Management

	4
	4
	Use Streams, Pipes, and
 Redirects

	5
	4
	Create, Monitor, and Kill
 Processes

	6
	2
	Modify Process Execution
 Priorities

	7
	2
	Search Text Files Using Regular
 Expressions

	8
	3
	Perform Basic File Editing Operations
 Using vi or vim

Table 2-4. Devices, Linux filesystems, and the Filesystem Hierarchy Standard
 (Topic 104)
	Objective
	Weight
	Description

	1
	2
	Create Partitions and
 Filesystems

	2
	2
	Maintain the Integrity of
 Filesystems

	3
	3
	Control Filesystem Mounting and
 Unmounting

	4
	1
	Set and View Disk Quotas

	5
	3
	Manage File Permissions and
 Ownership

	6
	2
	Create and Change Hard and Symbolic
 Links

	7
	2
	Find System Files and Place Files in the
 Correct Location

Chapter 3. System Architecture (Topic 101.1)

This Topic requires general knowledge of fundamental PC architecture
 facts that you must know before attempting any operating system
 installation. It includes this Objective:
	Objective 1: Determine and Configure Hardware
 Settings
	Candidates should be able to determine and configure fundamental
 system hardware. Weight: 2.

Objective 1: Determine and Configure Hardware Settings

Setting up a PC for Linux (or any other operating system)
 requires some familiarity with the devices installed in the system and
 their configuration. Items to be aware of include modems, serial and
 parallel ports, network adapters, SCSI adapters, hard drives, USB
 controllers, and sound cards. Many of these devices, particularly older
 ones, require manual configuration of some kind to avoid conflicting
 resources. The rest of the configuration for the system hardware is done
 in the PC’s firmware, or Basic Input/Output System (BIOS).
BIOS

The firmware located in a PC, commonly called the BIOS, is
 responsible for bringing all of the system hardware to a state at which
 it is ready to boot an operating system. Systems vary, but this process
 usually includes system initialization, the testing of memory and other
 devices, and ultimately locating an operating system from among several
 storage devices. In addition, the BIOS provides a low-level system
 configuration interface, allowing the user to choose such things as boot
 devices and resource assignments. Quite a few BIOS firmware vendors
 provide customized versions of their products for various PC system
 architectures. Exams do require an understanding of the basics. For
 example, a laptop BIOS may differ significantly from a desktop system of
 similar capability from the same manufacturer. Due to these variations, it’s impossible to test
 specifics, but the LPIC Level 1 exams do require an understanding of the
 basics.
At boot time, most PCs display a method of entering the BIOS
 configuration utility, usually by entering a specific keystroke during
 startup. Once the utility is started, a menu-based screen in which
 system settings can be configured appears. Depending on the BIOS vendor,
 these will include settings for disks, memory behavior, on-board ports
 (such as serial and parallel ports), and the clock, as well as many
 others.
Date and time

One of the basic functions of the BIOS is to manage the
 on-board hardware clock. This clock is initially set in the BIOS
 configuration by entering the date and time in the appropriate fields.
 Once set, the internal clock keeps track of time and makes the time
 available to the operating system. The operating system can also set
 the hardware clock, which is often useful if an accurate external time
 reference, such as an NTPD server (see Chapter 16), is available
 on the network while the system is running.

Disks and boot devices

Another fundamental configuration item required in BIOS settings
 is the selection of storage devices. Newer systems are able to detect
 and properly configure much of this hardware automatically. However,
 older BIOS versions require manual configuration. This may include the selection of
 floppy disk sizes and disk drive parameters.
Most PCs have at least three bootable media types: an internal hard disk (IDE or
 SCSI, or perhaps both), a CD-ROM drive (again IDE or SCSI), and a
 floppy disk. After initialization, the BIOS seeks an
 operating system (or an operating system loader, such as the
 Linux Loader [LILO]) on one or more of these media. By
 default, many BIOS configurations enable booting from the floppy or
 CD-ROM first, then the hard disk, but the order is configurable in the
 BIOS settings.
In addition to these default media types, many server motherboard BIOS (as well as high-end system
 motherboards) support booting from a network device such as a NIC with
 a bootable ROM. This is often used when booting diskless workstations such as Linux-based
 terminals.
On the Exam
You should be familiar with the general configuration
 requirements and layout of the BIOS configuration screens for a
 typical PC.

Using the /proc filesystem

When adding new hardware to an existing Linux system,
 you may wish to verify which resources the existing devices are using.
 The /proc filesystem, the kernel’s status
 repository, contains this information. The proc
 files, interrupts, dma, and
 ioports, show how system resources are currently
 utilized. (These files may not show devices unless their device
 files/drivers are open/active. This may make the problem harder to
 find if you’re experiencing resource conflicts.) The following is an
 example of /proc/interrupts from a dual-CPU
 system with an Adaptec dual-AIC7895 SCSI controller:
cat /proc/interrupts
 CPU0 CPU1
 0: 98663989 0 XT-PIC timer
 1: 34698 34858 IO-APIC-edge keyboard
 2: 0 0 XT-PIC cascade
 5: 7141 7908 IO-APIC-edge MS Sound System
 6: 6 7 IO-APIC-edge floppy
 8: 18098274 18140354 IO-APIC-edge rtc
 10: 3234867 3237313 IO-APIC-level aic7xxx, eth0
 11: 36 35 IO-APIC-level aic7xxx
 12: 233140 216205 IO-APIC-edge PS/2 Mouse
 13: 1 0 XT-PIC fpu
 15: 44118 43935 IO-APIC-edge ide1
NMI: 0
ERR: 0
In this example, you can see that interrupt 5 is used for the
 sound system, so it isn’t available for a second parallel port. The
 two SCSI controllers are using interrupts 10 and 11, respectively,
 while the Ethernet controller shares interrupt 10. You may also notice
 that only one of the two standard IDE interfaces is enabled in the
 system BIOS, freeing interrupt 14 use for another device.
Here are the /proc/dma and
 /proc/ioports files from the same system:
cat /proc/dma
0: MS Sound System
1: MS Sound System
2: floppy
4: cascade
cat /proc/ioports
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
02f8-02ff : serial(auto)
0370-0371 : OPL3-SAx
0376-0376 : ide1
0388-0389 : mpu401
03c0-03df : vga+
03f0-03f5 : floppy
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)
0530-0533 : WSS config
0534-0537 : MS Sound System
e800-e8be : aic7xxx
ec00-ecbe : aic7xxx
ef00-ef3f : eth0
ffa0-ffa7 : ide0
ffa8-ffaf : ide1
On the Exam
You should know how to examine a running Linux system’s
 resource assignments using the /proc
 filesystem.

Universal Serial Bus (USB) is a type of interface used to
 connect various types of peripherals, ranging from keyboards and mice
 to hard drives, scanners, digital cameras, and printers. The USB
 Objective covers the general architecture of USB, USB modules, and
 configuring USB devices.

USB Topology

USB devices are attached to a host in a tree through some number
 of hub devices. The lsusb command can be used to see how
 devices are physically attached to a Linux system.
lsusb -t
Bus# 4
'-Dev# 1 Vendor 0x0000 Product 0x0000
Bus# 3
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x046d Product 0xc501
 '-Dev# 3 Vendor 0x0781 Product 0x0002
Bus# 2
'-Dev# 1 Vendor 0x0000 Product 0x0000
 |-Dev# 2 Vendor 0x0451 Product 0x2036
 | |-Dev# 5 Vendor 0x04b8 Product 0x0005
 | '-Dev# 6 Vendor 0x04b8 Product 0x0602
 '-Dev# 3 Vendor 0x0451 Product 0x2046
 '-Dev# 4 Vendor 0x056a Product 0x0011
Bus# 1
'-Dev# 1 Vendor 0x0000 Product 0x0000

USB Controllers

There are three types of USB host controllers:
	Open Host Controller Interface (OHCI)

	Universal Host Controller Interface (UHCI)

	Enhanced Host Controller Interface (EHCI)

OHCI and UHCI controllers are both USB 1.1 controllers, which are
 capable of a maximum of 12 Mbps. EHCI controllers are USB 2.0
 controllers, which are capable of a theoretical maximum of 480 Mbps. To
 get greater than USB 1.1 speeds, you must have a USB 2.0 controller, as
 well as USB 2.0 devices, hubs, and cables. A USB 2.0 device attached to
 a USB 1.1 hub will only be able to run at USB 1.1 speeds.

USB Devices

There are several classes of USB devices, including the
 following:
	Human Interface Device (HID)
	Input devices (mice, keyboards, etc.)

	Communications device
	Modems

	Mass storage device
	Disk devices, flash readers, etc.

	Audio
	Sound devices

	IrDA
	Infrared devices

	Printer
	Printers and USB-to-parallel cables

USB Drivers

USB support was added to the Linux kernel in the 2.3.x
 development kernel series, then back-ported to 2.2.x, minus support for
 USB mass storage devices (due to SCSI changes in 2.3.x). The back-port
 was included in the 2.2.18 kernel release.
Note
There is no kernel USB support in 2.0.x and
 earlier.

The Linux kernel USB drivers fall into three categories:
	Host controller drivers
	The USB host controller drivers include
 usb-ohci.o (OHCI driver),
 usb-uhci.o (UHCI driver),
 uhci.o (old “alternate” UHCI driver), and
 ehci-hcd.o (EHCI driver).

	Class drivers
	The USB class drivers include
 hid.o, usb-storage.o
 (mass storage driver), acm.o (Automated
 Control Model [ACM] communications class driver, which deals with
 modems that emulate the standard serial modem AT command interface),
 printer.o, and
 audio.o.

	Other device drivers
	There are many drivers for devices that either don’t fit
 into one of the standard USB classes or don’t work with one of the
 standard class drivers. Examples include
 rio500.o (the driver for the Diamond Rio 500
 MP3 player) and pwc.o (the driver for various
 Philips webcams).

The Linux drivers implement USB support in layers. At the bottom
 is usbcore.o, which provides all of the generic USB
 support for the higher-level drivers as well as USB hub support. The
 host controller drivers load in the middle of the stack. On top are the
 device and class drivers and any modules they require.
The following is an example of what you might see in
 /proc/modules (or from the output of
 lsmod) on a system with several USB devices:
Module Size Used by
usb-storage 68628 0
scsi_mod 106168 2 [usb-storage]
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [usb-storage printer wacom hid ehci-hcd \
 usb-uhci]

USB Hotplug

Modularized USB drivers are loaded by the generic
 /sbin/hotplug support in the kernel, which is also
 used for other hotplug devices such as CardBus cards.
Note
Although not covered on the LPI exams, the Linux IEEE 1394 (also known as FireWire or i.Link) drivers have a similar design. If you understand
 how to set up USB devices, setting up IEEE 1394 devices should be
 easy.

Configuring specialized hardware has become easier and easier,
 even since the development of LPI’s Level 2 Exams. Items such as LCD
 panels and serial UPS devices used to not be as common in our homes and
 offices, but today they are considered standard equipment.
When you prepared for Level 1, you became familiar with a number
 of the tools you must utilize when adding new hardware to your systems. For the Level 2
 exams, you must be prepared to understand when to use them and the most
 efficient methods for installing your new devices.

Reporting Your Hardware

Before you tackle adding any new hardware devices to your
 system, it’s useful to obtain information about the hardware you have
 installed. Some useful tools to report this information include
 lsmod, lsdev, and
 lspci.

Manipulating Modules

A module is dynamically linked into the running kernel
 when it is loaded. Much of Linux kernel module handling is done
 automatically. However, there may be times when it is necessary for you
 to manipulate the modules yourself, and you may come across the
 manipulation commands in scripts. For example, if you’re having
 difficulty with a particular driver, you may need to get the source code
 for a newer version of the driver, compile it, and insert the new module
 in the running kernel. The commands listed in this section can be used
 to list, insert, remove, and query modules.

Device Management Definitions

Hotplugging is often taken to mean the opposite of
 coldplugging—in other words, the ability of a computer
 system to add or remove hardware without powering the system down.
 Examples of devices that are coldpluggable include PCI (some PCI
 chipsets have hotplug support, but these are very expensive and almost
 exclusively used in server systems), ISA devices, and PATA
 devices.
In most computer systems, CPUs and memory are coldpluggable, but
 it is common for high-end servers and mainframes to feature hotplug
 capability of these components.
sysfs is a RAM-based
 filesystem initially based on ramfs. It provides a means to export kernel data
 structures, their attributes, and the linkages between them to the user
 space. sysfs contains several
 directory hierarchies showing the available hardware devices and
 attributes of the modules/drivers. It can be accessed by running:
mount -t sysfs sysfs /sys
The udev process uses sysfs to
 get the information it needs about the hardware and creates dynamic
 device files as kernel modules are loaded. The directory /etc/udev.d holds all the rules to be applied
 when adding or removing a device.
D-Bus is an application that uses sysfs to implement a message bus daemon. It is
 used for broadcasting system events such as “new hardware device added”
 or “printer queue changed” and is normally launched by an init script
 called messagebus.
The hald process is the daemon that maintains a database of the
 devices connected to the system in real time. The daemon connects to the
 D-Bus system message bus to provide an API that applications can use to
 discover, monitor, and invoke operations on devices.

Name
lsmod

Syntax
lsmod [options]

Description
The lsmod command displays all
 the information available about currently loaded modules. Reviewing
 your loaded modules is often the first step in identifying possible
 problems, such as driver conflicts (quite frequently found with USB
 device drivers). This information can also be found in
 /proc/modules. lsmod has
 only two options, neither of them affecting its operation.

Options
	-h, --help
	Display help information.

	-V, --version
	Display the version.

The output of lsmod is a series of
 columns identifying the module name, its size, its use number, and
 its status. A sample of lsmod output looks like
 this:
Module Size Used by Not tainted
vfat 12844 0 (autoclean)
fat 38328 0 (autoclean) [vfat]
nfs 79960 0 (autoclean)
ide-scsi 11984 0 (autoclean)
ide-cd 35196 0 (autoclean)
cdrom 33440 0 (autoclean) [ide-cd]
tuner 11680 1 (autoclean)
tvaudio 14940 0 (autoclean) (unused)
bttv 73568 0 (autoclean)
videodev 8192 2 (autoclean) [bttv]
radeon 114244 28
agpgart 46752 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]

Name
lsdev

Syntax
lsdev

Description
The lsdev command displays
 information about your system’s hardware, such as interrupt
 addresses and I/O ports. The command is useful for obtaining
 information prior to installing devices that may have hardware
 addressing conflicts, such as ISA devices. This command uses DMA
 files in /proc to also report I/O addresses and
 IRQ and DMA channel information. There are no options for
 lsdev.
The output of lsdev is very simple,
 similar to lsmod. It lists information in four
 columns: device name, DMA address, IRQ address, and I/O ports. The
 following is some sample output from
 lsdev:
Device DMA IRQ I/O Ports
--
ATI c800-c8ff
bttv 10
Creative e800-e81f ec00-ec07
dma 0080-008f
dma1 0000-001f
dma2 00c0-00df
e100 e000-e03f
EMU10K1 11 e800-e81f
fpu 00f0-00ff
ide0 14 01f0-01f7 03f6-03f6 fc00-fc07
ide1 15 0170-0177 0376-0376 fc08-fc0f
Intel e000-e03f
keyboard 1 0060-006f
ohci1394 12
PCI 0cf8-0cff c000-cfff

Name
lspci

Syntax
lspci [options]

Description
The lspci command displays
 information about your system’s PCI buses and your installed PCI
 devices. This information is found primarily within
 /proc.

Options
	-t
	Show a treelike diagram containing all buses, bridges,
 devices, and connections between them.

	-vv
	Very verbose mode.

Name
lsmod

Syntax
lsmod

Description
For each kernel module loaded, display its name, size,
 use count, and a list of other referring modules. This command
 yields the same information as is available in
 /proc/modules.

Example
Here, lsmod shows that quite a few kernel
 modules are loaded, including filesystem (vfat,
 fat), networking (3c59x), and sound
 (soundcore, mpu401, etc.) modules, among
 others:
lsmod
Module Size Used by
radeon 112996 24
agpgart 45824 3
parport_pc 18756 1 (autoclean)
lp 8868 0 (autoclean)
parport 36480 1 (autoclean) [parport_pc lp]
e100 59428 1
ohci1394 19976 0 (unused)
ieee1394 48300 0 [ohci1394]
scsi_mod 106168 0
evdev 5696 0 (unused)
printer 8832 0
wacom 7896 0 (unused)
emu10k1 68104 1
ac97_codec 13512 0 [emu10k1]
sound 73044 0 [emu10k1]
soundcore 6276 7 [emu10k1 sound]
keybdev 2912 0 (unused)
mousedev 5428 1
hid 21700 0 (unused)
input 5824 0 [evdev wacom keybdev mousedev hid]
ehci-hcd 19432 0 (unused)
usb-uhci 25964 0 (unused)
usbcore 77760 1 [printer wacom hid ehci-hcd usb-uhci]
ext3 87240 3
jbd 51156 3 [ext3]

Name
insmod

Syntax
insmod [options] module

Description
Insert a module into the running kernel. The module is
 located automatically and inserted. You must be logged in as the
 superuser to insert modules.

Frequently used options
	-s
	Direct output to syslog instead of
 stdout.

	-v
	Set verbose mode.

Example
The msdos filesystem module is
 installed into the running kernel. In this example, the kernel was
 compiled with modular support for the msdos
 filesystem type, a typical configuration for a Linux distribution
 for i386 hardware. To verify that you have this module, check for
 the existence of
 /lib/modules/kernel-version/fs/msdos.o:
insmod msdos
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_add_cluster_Rsmp_eb84f594
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_cache_inval_inode_Rsmp_6da1654e
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_scan_Rsmp_d61c58c7
(... additional errors omitted ...)
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol \
 fat_date_unix2dos_Rsmp_83fb36a1
echo $?
This insmod msdos command yields a series
 of unresolved symbol messages and an exit status of 1, indicating an
 error. This is the same sort of message that might be seen when
 attempting to link a program that referenced variables or functions
 unavailable to the linker. In the context of a module insertion,
 such messages indicate that the functions are not available in the
 kernel. From the names of the missing symbols, you can see that the
 fat module is required to support the
 msdos module, so it is inserted first:
insmod fat
Now the msdos module can be
 loaded:
insmod msdos
Use the modprobe command to automatically
 determine these dependencies and install prerequisite modules
 first.

Name
rmmod

Syntax
rmmod [options] modules

Description
The rmmod command is used to
 remove modules from the running kernel. You must be logged in as the
 superuser to remove modules, and the command will fail if the module
 is in use or being referred to by another module.

Frequently used options
	-a
	Remove all unused modules.

	-s
	Direct output to syslog instead of
 stdout.

Example
Starting with both the fat and
 msdos modules loaded, remove the
 fat module (which is used by the
 msdos module):
lsmod
Module Size Used by
msdos 8348 0 (unused)
fat 25856 0 [msdos]
rmmod fat
rmmod: fat is in use
In this example, the lsmod command fails
 because the msdos module is dependent on the
 fat module. So, to unload the
 fat module, the msdos
 module must be unloaded first:
rmmod msdos
rmmod fat
The modprobe -r command can be used to
 automatically determine these dependencies and remove modules and
 their prerequisites.

Name
modinfo

Syntax
modinfo [options] module_object_file

Description
Display information about a module from its
 module_object_file. Some modules contain
 no information at all, some have a short one-line description, and
 others have a fairly descriptive message.

Options
	-a
	Display the module’s author.

	-d
	Display the module’s description.

	-p
	Display the typed parameters that a module
 supports.

Examples
In these examples, modinfo is run using
 modules compiled for a multiprocessing (SMP) kernel Version 2.2.5.
 Your kernel version, and thus the directory hierarchy containing
 modules, will be different.
modinfo -d /lib/modules/2.2.5-15smp/misc/zftape.o
zftape for ftape v3.04d 25/11/97 - VFS interface for the
 Linux floppy tape driver. Support for QIC-113
 compatible volume table and builtin compression
 (lzrw3 algorithm)
modinfo -a /lib/modules/2.2.5-15smp/misc/zftape.o
(c) 1996, 1997 Claus-Justus Heine
 (claus@momo.math.rwth-aachen.de)
modinfo -p /lib/modules/2.2.5-15smp/misc/ftape.o
ft_fdc_base int, description "Base address of FDC
 controller."
Ft_fdc_irq int, description "IRQ (interrupt channel)
 to use."
ft_fdc_dma int, description "DMA channel to use."
ft_fdc_threshold int, description "Threshold of the FDC
 Fifo."
Ft_fdc_rate_limit int, description "Maximal data rate
 for FDC."
ft_probe_fc10 int, description "If non-zero, probe for a
 Colorado FC-10/FC-20 controller."
ft_mach2 int, description "If non-zero, probe for a
 Mountain MACH-2 controller."
ft_tracing int, description "Amount of debugging output,
 0 <= tracing <= 8, default 3."

Name
modprobe

Syntax
modprobe [options] module [symbol=value ...]

Description
Like insmod, modprobe is used to
 insert modules. In fact, modprobe is a wrapper
 around insmod and
 provides additional functionality. In addition to loading single
 modules, modprobe has the
 ability to load modules along with their prerequisites or all
 modules stored in a specific directory. The
 modprobe command can also remove modules when
 combined with the -r option.
A module is inserted with optional
 symbol=value parameters. If the module is
 dependent upon other modules, they will be loaded first. The
 modprobe command determines prerequisite
 relationships between modules by reading
 modules.dep at the top of the module directory
 hierarchy (i.e.,
 /lib/modules/2.2.5-15smp/modules.dep).
You must be logged in as the superuser to insert
 modules.

Frequently used options
	-a
	Load all modules. When used with the
 -t moduletype,
 all is restricted to modules in the
 moduletype directory. This action
 probes hardware by successive module-insertion attempts for a
 single type of hardware, such as a network adapter (in which
 case the moduletype
 would be net, representing
 /lib/modules/kernel-version/kernel/net).
 This may be necessary, for example, to probe for more than one
 kind of network interface.

	-c
	Display a complete module configuration, including
 defaults and directives found in
 /etc/modules.conf (or
 /etc/conf.modules on older systems). The
 -c option is not used with
 any other options.

	-l
	List modules. When used with the -t
 moduletype, list only modules in
 directory moduletype. For example,
 if moduletype is net, then modules in
 /lib/modules/kernel-version/net
 are displayed.

	-r
	Remove module, similar to
 rmmod. Multiple modules may be
 specified.

	-s
	Direct output to syslog instead of
 stdout.

	-t
 moduletype
	Attempt to load multiple modules found in the directory
 moduletype until a module succeeds
 or all modules in moduletype are
 exhausted. This action “probes” hardware by successive
 module-insertion attempts for a single type of hardware, such
 as a network adapter (in which case
 moduletype would be net, representing
 /lib/modules/kernel-version/kernel/net).

	-v
	Set verbose mode.

Example 1
Install the msdos filesystem module into
 the running kernel:
modprobe msdos
Module msdos and its dependency,
 fat, will be loaded.
 modprobe determines that
 fat is needed by msdos
 when it looks through modules.dep. You can see
 the dependency listing using grep:
grep /msdos.o: /lib/modules/2.2.5-15smp/modules.dep
/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Example 2
Remove fat and msdos
 modules from the running kernel, assuming msdos
 is not in use:
modprobe -r fat msdos

Example 3
Attempt to load available network modules until one
 succeeds:
modprobe -t net

Example 4
Attempt to load all available network modules:
modprobe -at net

Example 5
List all modules available for use:
modprobe -l
/lib/modules/2.2.5-15smp/fs/vfat.o
/lib/modules/2.2.5-15smp/fs/umsdos.o
/lib/modules/2.2.5-15smp/fs/ufs.o
 . . .

Example 6
List all modules in the net directory for
 3Com network interfaces:
modprobe -lt net | grep 3c
/lib/modules/2.2.5-15smp/net/3c59x.o
/lib/modules/2.2.5-15smp/net/3c515.o
/lib/modules/2.2.5-15smp/net/3c509.o
/lib/modules/2.2.5-15smp/net/3c507.o
/lib/modules/2.2.5-15smp/net/3c505.o
/lib/modules/2.2.5-15smp/net/3c503.o
/lib/modules/2.2.5-15smp/net/3c501.o

Chapter 4. Change
 Runlevels and Shut Down or Reboot System (Topics 101.2 and 101.3)

This Topic continues the subject of general knowledge of fundamental
 PC architecture. It includes these Objectives:
	Objective 2: Boot the System
	Candidates should be able to guide the system through the
 booting process. Weight: 3.

	Objective 3: Change Runlevels and Shut Down or Reboot
 System
	Candidates should be able to manage the runlevel of the system.
 This objective includes changing to single-user mode, shutdown, or
 rebooting the system. Candidates should be able to alert users before
 switching runlevel and properly terminate processes. This objective
 also includes setting the default runlevel. Weight: 3.

Objective 2: Boot the System

It is the job of a boot loader, such as LILO or GRUB, to
 launch the Linux kernel at boot time. In some cases, the boot loader has
 to deliver information to the Linux kernel that may be required to
 configure peripherals or control other behavior. This information is
 called a kernel parameter.
Boot-time Kernel Parameters

By default, your system’s kernel parameters are set in
 your boot loader’s configuration file (/etc/lilo.conf or /boot/grub/menu.lst, and
 boot/grub/grub.conf on Red Hat and some other
 distributions). However, the Linux kernel also has the capability to
 accept information at boot time from a kernel command-line interface.
 You access the kernel command line through your installed boot loader.
 When your system boots, you can interrupt the “default” boot process
 when the boot loader displays and specify your desired kernel
 parameters. The kernel parameters on the command line look similar to
 giving arguments or options to a program during command-line
 execution.
For an example, let’s say you wanted to boot with a root partition
 other than your default, /dev/hda1. Using LILO, you could enter the following at the LILO prompt:
LILO: linux root=/dev/hda9
This command boots the kernel whose label is linux and overrides the default value of
 /dev/hda1 to /dev/hda9 for the
 root filesystem.
On the Exam
There are far too many kernel parameters to list in this book.
 Consequently, you must familiarize yourself with them in general terms
 so that you can answer questions on their form. Remember that they are
 specified to your boot loader as either a single item, such as
 ro, or
 name=value options such as root=/dev/hda2. Multiple parameters are
 always separated by a space.

Introduction to Kernel Module Configuration

Modern Linux kernels are modular, in that modules of code
 traditionally compiled into the kernel (say, a sound driver) are loaded
 as needed. The modules are separate from the kernel and can be inserted
 and removed by the superuser if necessary. Although parameters in the
 boot loader’s configuration file and the kernel command line affect the
 kernel, they do not control kernel modules.
To send parameters to a kernel module, they are inserted into the
 file /etc/modules.conf as text (in the
 past this configuration file was
 /etc/conf.modules). Common module options you may
 find in your module configuration file are I/O address, interrupt, and
 DMA channel settings for your sound device. This file will also probably
 carry PCMCIA driver information when installed on laptops.
 Module configuration will probably be handled by your distribution’s
 installation procedure but may require modifications if hardware is
 added or changed later. Example 4-1 shows a typical
 /etc/modules.conf file.
Example 4-1. A typical /etc/modules.conf file
alias parport_lowlevel parport_pc
alias eth0 8139too
alias sound-slot-0 via82cxxx_audio
post-install sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -L >/dev/null 2>&1 || :
pre-remove sound-slot-0 /bin/aumix-minimal \
 -f /etc/.aumixrc -S >/dev/null 2>&1 || :
alias usb-controller usb-uhci

On the Exam
Read questions that ask about kernel or module parameters
 carefully. Kernel options can be passed on the kernel command line;
 module options are specified in
 modules.conf.

In this example, note that an alias named sound-slot-0 is created for the audio driver
 via82cxxx_audio. Most devices won’t
 need any additional configuration, but systems with older ISA cards may
 still need to pass options for I/O port, IRQ, and DMA channel settings.
 In addition, some drivers may need options to specify nonstandard
 settings. For example, an ISDN board used in North America will need to
 specify NI1 signaling to the driver:
options hisax protocol=4 type=40
Kernel boot-time messages

As the Linux kernel boots, it gives detailed status of
 its progress in the form of console messages. Modules that are loaded
 also yield status messages. These messages contain important
 information regarding the health and configuration of your hardware.
 Generally, the kinds of messages you will see are:
	Kernel identification

	Memory and CPU information

	Information on detected hardware, such as pointers (mice),
 serial ports, and disks

	Partition information and checks

	Network initialization

	Kernel module output for modules that load at boot
 time

These messages are displayed on the system console at boot time
 but often scroll off the screen too quickly to be read. The messages
 are also logged to disk and can easily be viewed using the dmesg command, which displays
 messages logged at the last system boot. For example, to view messages
 from the last boot sequence, simply pipe the output of
 dmesg to less:
dmesg | less
It is also common to use dmesg to
 dump boot messages to a file for later inspection or
 archive, by simply redirecting the output:
dmesg > bootmsg.txt
Note
The kernel buffer used for log messages that
 dmesg displays is a fixed size, so it may lose
 some (or all) of the boot-time messages as the kernel writes runtime
 messages.

Reviewing system logs

In addition to kernel messages, many other boot-time messages
 will be logged using the syslog system. Such messages will be found in the system
 logfiles such as /var/log/messages. For example,
 dmesg displays information on your network
 adapter when it was initialized. However, the configuration and status
 of that adapter is logged in /var/log/messages as
 a result of the network startup. When examining and debugging boot
 activity on your system, you need to review both kinds of information.
 syslogd, its configuration, and logfile
 examination are covered in Chapter 16.

Objective 3: Change Runlevels and Shut Down or Reboot
 System

Linux has the same concept of runlevels
 that most Unix systems offer. This concept specifies different ways to use
 a system by controlling which services are running. For example, a system
 that operates as a web server is configured to boot and initiate
 processing in a runlevel designated for sharing data, at which point the
 web server is started. However, the same system could be booted into
 another runlevel used for emergency administration, when all but the most
 basic services are shut down, so the web server would not run.
One common use of runlevels is to distinguish between a system that
 offers only a text console and a system that offers a graphical user
 interface through the X Window System. Most end-user systems run the graphical
 user interface, but a server (such as the web server just discussed) is
 more secure and performs better without it.
Runlevels are specified by the integers 0 through 6. Runlevels 0 and
 6 are unusual in that they specify the transitional states of shutdown and
 reboot, respectively. When an administrator tells Linux to enter runlevel
 0, the operating system begins a clean shutdown procedure. Similarly, the
 use of runlevel 6 begins a reboot. The remaining runlevels differ in
 meaning slightly among Linux distributions and other Unix systems.
When a Linux system boots, the first process it begins is the
 init process, which starts all other
 processes. The init process is responsible for
 placing the system in the default runlevel, which is usually 2, 3, or 5
 depending on the distribution and the use for the machine. Typical
 runlevel meanings are listed in Table 4-1.
Table 4-1. Typical runlevels
	Runlevel
	Description

	0
	Halt the system. Runlevel 0 is a special
 transitional state used by administrators to shut down the system
 quickly. This, of course, shouldn’t be a default runlevel, because
 the system would never come up; it would shut down immediately
 when the kernel launches the init process. See also runlevel
 6.

	1, s, S
	Single-user mode, sometimes called
 maintenance mode. In this mode, system services such as network
 interfaces, web servers, and file sharing are not started. This
 mode is usually used for interactive filesystem maintenance. The
 three choices 1, s, and S all mean the same thing.

	2
	Multiuser. On Debian-based systems, this
 is the default runlevel. On Red Hat–based systems, this is
 multiuser mode without NFS file sharing or the X Window System
 (the graphical user interface).

	3
	On Red Hat–based systems, this is the
 default multiuser mode, which runs everything except the X Window
 System. This and levels 4 and 5 usually are not used on
 Debian-based systems.

	4
	Typically unused.

	5
	On Red Hat–based systems, full multiuser
 mode with GUI login. Runlevel 5 is like runlevel 3, but X11 is
 started and a GUI login is available. If your X11 cannot start for
 some reason, you should avoid this runlevel.

	6
	Reboot the system. Just like runlevel 0,
 this is a transitional device for administrators. It should not be
 the default runlevel, because the system would eternally
 reboot.

It is important to note that runlevels, like most things in Linux,
 are completely configurable by the end user. For the purposes of the LPIC
 test, it’s important to know the standard meanings of each runlevel on Red
 Hat–based and Debian-based systems and how the runlevels work. However, in
 a production environment, runlevels can be modified to do whatever the
 system administrator desires.
Single-User Mode

Runlevel 1, the single-user runlevel, is a bare-bones
 operating environment intended for system maintenance. In single-user
 mode, remote logins are disabled, networking is disabled, and most
 daemons are not started. Single-user mode is used for system
 configuration tasks that must be performed with no user activity. One
 common reason you might be forced to use single-user mode is to correct
 problems with a corrupt filesystem that the system cannot handle
 automatically.
If you wish to boot directly into single-user mode, you may
 specify it at boot time with the kernel’s command line through your boot
 loader. For instance, the GRUB boot loader allows you to pass arbitrary parameters
 to a kernel at boot time. In order to change the default runlevel, edit
 the line that boots your kernel in the GRUB interactive menu, adding a
 1 or the word single to the end of the line to indicate
 single-user mode. These arguments are not interpreted as kernel
 arguments but are instead passed along to the init process. For example,
 if your default GRUB kernel boot line looks like this:
kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda1 rhgb quiet
you can force the system to boot to runlevel 1 by changing this
 to:
kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda5 rhgb quiet 1
or:
kernel /vmlinuz-2.6.27.21-170.2.56.fc10.i686 ro root=/dev/hda5 rhgb \
 quiet single
To switch into single-user mode from another runlevel, you can
 simply issue a runlevel change command with init:
init 1
This is not the preferred way of taking a currently running system
 to runlevel 1, mostly because it gives no warning to the existing
 logged-in users. See the explanation of the shutdown command later in this
 chapter to learn the preferred way of handling system shutdown.

Overview of the /etc Directory Tree and the init Process

By themselves, the runlevels listed in Table 4-1 don’t mean much. It’s what the init process does as a result of a
 runlevel specification or change that affects the system. The actions of
 init for each runlevel are derived from the style
 of initialization in Unix System V and are specified in a series of directories
 and script files under the /etc directory.
When a Linux system starts, it runs a number of scripts in
 /etc to initially configure the system and switch
 among runlevels. System initialization techniques differ among Linux
 distributions. The examples in this section are typical of a Red
 Hat–based system. Any distribution compliant with the Linux Standards
 Base (LSB) should look similar. The following describe these
 files:
	/etc/rc.sysinit or
 /etc/init.d/rcS
	On Red Hat–based systems, rc.sysinit is
 a monolithic system initialization script. The Debian
 rcS script does the same job by running
 several small scripts placed in two different directories. In each
 case, the script is launched by init at boot
 time. It handles some essential chores to prepare the system for
 use, such as mounting filesystems. This script is designed to run
 before any system daemons are started.

	/etc/rc.local
	Not used on Debian-based systems. On Red Hat–based systems, this file is a script that is
 called after all other init scripts (after
 all system daemons are started). It contains local
 customizations affecting system startup and provides an
 alternative to modifying the other init
 scripts. Many administrators prefer to avoid changing rc.sysint because those changes will be
 lost during a system upgrade. The contents of rc.local are not lost in an
 upgrade.

	/etc/rc
	This file is a script that is used to change between
 runlevels. It is not provided on Debian.

The job of starting and stopping system services (also known as
 daemons, which are intended to always
 run in the background, such as web servers) is handled by the files and
 symbolic links in /etc/init.d and
 by a series of runlevel-specific directories named /etc/rc0.d through /etc/rc6.d. These are used as follows:
	/etc/init.d
	This directory contains individual startup/shutdown scripts
 for each service on the system. For example, the script /etc/init.d/httpd is a Bourne shell
 script that performs some sanity checks before starting or
 stopping the Apache web server.
These scripts have a standard basic form and take a single
 argument. Valid arguments include at least the words start and stop. Additional arguments are sometimes
 accepted by the script; examples are restart, status, and sometimes reload (to ask the service to reread its
 configuration file without exiting).
Administrators can use these scripts directly to start and
 stop services. For example, to restart Apache, an administrator
 could issue commands like these:
/etc/init.d/httpd stop
/etc/init.d/httpd start
or simply:
/etc/init.d/httpd restart
Either form would completely shut down and start up the web
 server. To ask Apache to remain running but reread its
 configuration file, you might enter:
/etc/init.d/httpd reload
This has the effect of sending the SIGHUP signal to the running httpd process, instructing it
 to initialize. Signals such as SIGHUP are covered in Chapter 6.
If you add a new service through a package management tool
 such as rpm or dpkg, one of these
 initialization files may be installed automatically for you. In
 other cases, you may need to create one yourself or, as a last
 resort, place startup commands in the rc.local
 file.
It’s important to remember that these files are simply shell
 scripts that wrap the various options accepted by the different
 daemons on Linux. Not all Linux daemons recognize the command-line
 arguments stop, start, etc., but the scripts in
 /etc/init.d make it easy to
 manage your running daemons by standardizing the commands that you use
 to control them.

	The directories /etc/rc0.d through /etc/rc6.d
	The initialization scripts in /etc/init.d are not directly executed
 by the init process. Instead, each of the
 directories /etc/rc0.d
 through /etc/rc6.d contains
 symbolic (soft) links to the scripts in the
 /etc/init.d directory. (These symbolic links
 could also be files, but using script files in each of the
 directories would be an administrative headache, because changes
 to any of the startup scripts would mean identical edits to
 multiple files.) When the init process enters
 runlevel N, it examines all of the
 links in the associated rcN.d directory. These links are given
 special names in the forms of KNNname and SNNname, described as follows:
	K and S prefixes
	These letters stand for kill and
 start, respectively. Each runlevel
 defines a state in which certain services are running and
 all others are not. The S prefix is used to mark files
 for all services that are to be running (started) for the
 runlevel. The K prefix
 is used for all other services, which should not be
 running.

	NN
	Sequence number. This part of the link name is
 a two-digit integer (with a leading zero, if necessary). It
 specifies the relative order for services to be started or
 stopped. The lowest number represents the first script
 executed by init, and the largest
 number is the last. There are no hard-and-fast rules for
 choosing these numbers, but it is important when adding a
 new service to be sure that it starts after any other
 required services are already running. If two services have
 an identical start order number, the order is indeterminate
 but probably alphabetical.

	name
	By convention, the name of the script being linked to.
 init does not use this name, but
 including it makes maintenance easier for human
 readers.

As an example, when init enters the
 default runlevel (3 for the sake of this example) at boot time,
 all of the links with the K
 and S prefixes in /etc/rc3.d will be executed in the
 order given by their sequence number (S10network, S12syslog,
 and so on). Links that start with S will be run with the single argument
 start to launch their
 respective services, and links that start with K will be run with the single argument
 stop to stop the respective
 service. Since K comes before S alphabetically, the
 K services are stopped before the
 S services are started. After the last of the
 scripts is executed, the requirements for runlevel 3 are
 satisfied.

Setting the Default Runlevel

To determine the default runlevel at boot time,
 init reads the configuration file /etc/inittab looking for a line containing
 the word initdefault, which will look
 like this:
id:N:initdefault:
In the preceding, N is a valid runlevel
 number, such as 3. This number is used as the default runlevel by init.
 The S scripts in the corresponding
 /etc/rcN.d directory are executed
 to start their respective services. If you change the default runlevel
 for your system, it will most likely be in order to switch between the
 standard text login runlevel and the GUI login runlevel. In any case,
 never change the default runlevel to 0 or 6, or your system will not
 boot to a usable state.

Determining Your System’s Runlevel

From time to time, you might be unsure just what runlevel your
 system is in. For example, you may have logged into a Linux system from
 a remote location and not know how it was booted or maintained. You may
 also need to know what runlevel your system was in prior to its current
 runlevel—perhaps wondering if the system was last in single-user mode
 for maintenance.
To determine this information, use the runlevel command. It displays the
 previous and current runlevel as integers, separated by a space, on
 standard output. If no runlevel change has occurred since the system was
 booted, the previous runlevel is displayed as the letter N. For a system that was in runlevel 3 and is
 now in runlevel 5, the output is:
runlevel
3 5
For a system with a default runlevel of 5 that has just completed
 booting, the output would be:
runlevel
N 5
runlevel does not alter the system runlevel.
 To do this, use the init command (or the historical
 alias telinit).
Changing runlevels with init and telinit

The init or telinit
 command sends signals to the executing init
 process, instructing it to change to a specified runlevel. You must be
 logged in as the superuser to use the init
 command.
Generally, you will use a runlevel change for the following
 reasons:
	To shut down the system using runlevel 0

	To go to single-user mode using runlevel 1

	To reboot the system using runlevel 6

Name
init

Syntax
init n

Description
The command puts the system into the specified
 runlevel, n, which can be an integer
 from 1 through 6. init also supports S and s, which are equivalent to runlevel 1,
 and q, which tells
 init to reread its configuration file,
 /etc/inittab.

Examples
Shut down immediately:
init 0
Reboot immediately:
init 6
Go to single-user mode immediately:
init 1
or:
init s

telinit
The telinit command may be used
 in place of init.
 telinit is simply a link to
 init, and the two may be used
 interchangeably.

System shutdown with shutdown
When shutdown is initiated, all users who are logged
 into terminal sessions are notified that the system is going down.
 In addition, further logins are blocked to prevent new users from
 entering the system as it is being shut down.

Syntax
shutdown [options] time [warning_message]

Description
The shutdown command brings the system
 down in a secure, planned manner. By default, it takes the system
 to single-user mode. Options can be used to halt or reboot the
 system instead. The command internally uses
 init with an appropriate runlevel argument to
 affect the system change.
The mandatory time argument tells
 the shutdown command when to initiate the shutdown procedure. It
 can be a time of day in the form hh:m,
 or it can take the form +n, where
 n is a number of minutes to wait.
 time can also be the word now, in which case the
 shutdown proceeds immediately.
warning_message is sent
 to the terminals of all users to alert them that the shutdown will
 take place. If the time specified is
 more than 15 minutes away, the command waits until 15 minutes
 remain before shutdown to make its first announcement. No quoting
 is necessary in warning_message unless the
 message includes special characters such as * or '.

Frequently used options
	-f
	Fast boot; this skips the filesystem checks on the
 next boot.

	-h
	Halt after shutdown.

	-k
	Don’t really shut down, but send the warning messages
 anyway.

	-r
	Reboot after shutdown.

	-F
	Force filesystem checks on the next boot.

Examples
To reboot immediately (not recommended on a system with
 human users, because they will have no chance to save their
 work):
shutdown -r now
To reboot in five minutes with a maintenance message:
shutdown -r +5 System maintenance is required
To halt the system just before midnight tonight:
shutdown –h 23:59
Following are the two most common uses of shutdown by people
 who are on single-user systems:
shutdown –h now
and:
shutdown –r now
These cause an immediate halt or reboots,
 respectively.
Although it’s not really a bug, the
 shutdown manpage notes that omission of the
 required time argument yields unusual
 results. If you forget the time
 argument, the command will probably exit without an error message.
 This might lead you to believe that a shutdown is starting, so
 it’s important to use the correct syntax.
On the Exam
You need to be familiar with the default runlevels and the
 steps that the init process goes through in switching between
 them.

Chapter 5. Linux
 Installation and Package Management (Topic 102)

Many resources, such as the book Running
 Linux (O’Reilly), describe Linux installation. This
 section of the test does not cover the installation of any particular Linux
 distribution; rather, its Objectives focus on four installation Topics and
 packaging tools.
	Objective 1: Design Hard Disk Layout
	This Objective covers the ability to design a disk partitioning scheme for a Linux system. The
 Objective includes allocating filesystems or swap space to separate
 partitions or disks and tailoring the design to the intended use of
 the system. It also includes placing /boot on a
 partition that conforms with the BIOS’s requirements for booting.
 Weight: 2.

	Objective 2: Install a Boot Manager
	An LPIC 1 candidate should be able to select, install,
 and configure a boot manager. This Objective includes providing
 alternative boot locations and backup boot options using either LILO
 or GRUB. Weight: 2.

	Objective 3: Manage Shared Libraries
	This Objective includes being able to determine the
 shared libraries that executable programs depend on and install them
 when necessary. The Objective also includes stating where system
 libraries are kept. Weight: 1.

	Objective 4: Use Debian Package
 Management
	This Objective indicates that candidates should be able
 to perform package management on Debian-based systems. This indication
 includes using both command-line and interactive tools to install,
 upgrade, or uninstall packages, as well as find packages containing
 specific files or software. Also included is obtaining package
 information such as version, content, dependencies, package integrity,
 and installation status. Weight: 3.

	Objective 5: Use Red Hat Package Manager
 (RPM)
	An LPIC 1 candidate should be able to use package
 management systems based on RPM. This Objective includes being able to
 install, reinstall, upgrade, and remove packages as well as obtain
 status and version information on packages. Also included is obtaining
 package version, status, dependencies, integrity, and signatures.
 Candidates should be able to determine what files a package provides
 as well as find which package a specific file comes from. Weight:
 3.

Objective 1: Design a Hard Disk Layout

Part of the installation process for Linux is designing the
 hard disk partitioning scheme. If you’re used to systems that reside on a
 single partition, this step may seem to complicate the installation.
 However, there are advantages to splitting the filesystem into multiple
 partitions and even onto multiple disks.
You can find more details about disks, partitions, and Linux
 filesystem top-level directories in Chapter 7. This Topic covers
 considerations for implementing Linux disk layouts.
System Considerations

A variety of factors influence the choice of a disk layout plan
 for Linux, including:
	The amount of disk space

	The size of the system

	What the system will be used for

	How and where backups will be performed

Limited disk space

Filesystems and partitions holding user data should be
 maintained with a maximum amount of free space to accommodate user
 activity. When considering the physical amount of disk space
 available, the system administrator may be forced to make a trade-off
 between the number of partitions in use and the availability of free disk
 space. Finding the right configuration depends on system requirements
 and available filesystem resources.
When disk space is limited, you may opt to reduce the number of
 partitions, thereby combining free space into a single contiguous
 pool. For example, installing Linux on a PC with only 1 GB of
 available disk space might best be implemented using only a few
 partitions:
	/boot
	50 MB. A small /boot filesystem in
 the first partition ensures that all kernels are below the
 1024-cylinder limit for older kernels and BIOS.

	/
	850 MB. A large root partition holds everything on the
 system that’s not in /boot.

	swap
	100 MB.

Larger systems

On larger platforms, functional issues such as backup strategies
 and required filesystem sizes can dictate disk layout. For example,
 suppose a file server is to be constructed serving 100 GB of
 executable data files to end users via NFS. Such a system will need
 enough resources to compartmentalize various parts of the directory
 tree into separate filesystems and might look like this:
	/boot
	100 MB. Keep kernels under the 1024-cylinder limit.

	swap
	1 GB, depending on RAM.

	/
	500 MB (minimum).

	/usr
	4 GB. All of the executables in /usr
 are shared to workstations via read-only NFS.

	/var
	2 GB. Since log files are in their own partition, they
 won’t threaten system stability if the filesystem is
 full.

	/tmp
	500 MB. Since temporary files are in their own partition,
 they won’t threaten system stability if the filesystem is
 full.

	/home
	90 GB. This big partition takes up the vast bulk of
 available space, offered to users for their home directories and
 data.

On production servers, much of the system is often placed on
 redundant media, such as mirrored disks. Large filesystems, such as
 /home, may be stored on some form of disk array
 using a hardware controller.

Mount points

Before you may access the various filesystem partitions
 created on the storage devices,
 you first must list them in a filesystem table. This process is
 referred to as mounting, and the directory you
 are mounting is called a mount point. You must
 create the directories that you will use for mount points if they do
 not already exist. During system startup, these directories and mount
 points may be managed through the /etc/fstab
 file, which contains the information about filesystems to mount when
 the system boots and the directories that are to be mounted.

Superblock

A superblock is a block on each filesystem that contains
 metadata information about the filesystem layout. The information contained in the
 block includes the type, size, and status of the mounted filesystem.
 The superblock is the Linux/Unix equivalent to Microsoft systems’ file
 allocation table (FAT), which contains the information about the
 blocks holding the top-level directory. Since the information about
 the filesystems is important, Linux filesystems keep redundant copies
 of the superblock that may be used to restore the filesystem should it
 become corrupt.

MBR

The master boot record (MBR) is a very small program
 that contains information about your hard disk partitions and loads
 the operating system. This program is located in the first sector of
 the hard disk and is 512 bytes. If this file becomes damaged, the
 operating system cannot boot. Therefore, it is important to back up
 the MBR so that you can replace a damaged copy if needed. To make a
 backup of the MBR from the hard drive and store a copy to your
 /home directory, use the dd command. An example of such a
 backup command is:
dd if=/dev/hda of=~/mbr.txt count=1 bs=512
The preceding example assumes that your hard drive is
 /dev/hda. With this command you are taking one
 copy (count=1) consisting of 512
 bytes (bs=512) from /dev/hda (if=/dev/hda) and copying it to a file named
 mbr.txt in /home (of=~/mbr.txt).
If you need to restore the MBR, you may use the following
 command:
dd if=~/mbr.txt of=/dev/hda count=1 bs=512

Booting from a USB device

Linux may be booted from a Live USB, similar to booting
 from a Live CD. One difference between booting to the USB opposed to
 the CD is that the data on the USB device may be modified and stored
 back onto the USB device. When using a Live USB distribution of Linux,
 you can take your operating system, favorite applications, and data
 files with you wherever you go. This is also useful if you have
 problems and are not able to boot your computer for some reason. You
 may be able to boot the system using the Live USB and access the hard
 drive and troubleshoot the boot issue.
In order to boot from the USB device, you will need to make the
 USB device bootable. This requires setting up at least one partition
 on the USB with the bootable flag set to the primary partition. An MBR
 must also write to the primary partition on the USB. There are many
 applications that can be used to create live USB distributions of
 Linux, including Fedora Live USB Creator and Ubuntu Live USB Creator.
 The computer may also need the BIOS to be configured to boot from
 USB.
Some older computers may not have support in the BIOS to boot
 from a USB device. In this case it is possible to redirect the
 computer to load the operating system from the USB device by using an
 initial bootable CD. The bootable CD boots the computer, loads the necessary USB
 drivers into memory, and then locates and loads the filesystem from
 the USB device.

System role

The role of the system should also dictate the optimal
 disk layout. In a traditional Unix-style network with NFS file
 servers, most of the workstations won’t necessarily need all of their
 own executable files. In the days when disk space was at a premium,
 this represented a significant savings in disk space. Although space
 on workstation disks isn’t the problem it once was, keeping
 executables on a server still eliminates the administrative headache
 of distributing updates to workstations.

Backup

Some backup schemes use disk partitions as the basic
 unit of system backup. In such a scenario, each of the filesystems
 listed in /etc/fstab is backed up separately, and
 they are arranged so that each filesystem fits within the size of the
 backup media. For this reason, the available backup device
 capabilities can play a role in determining the ultimate size of
 partitions.
Using the dd command as discussed earlier,
 you can back up each of the individual partitions. The command may
 also be used to back up the entire hard drive. To back up a hard drive
 to another hard drive, you would issue the following command, where
 if=/dev/hdx represents the hard
 drive you want to back up and of=/dev/hyd represents the target or
 destination drive of the backup:
dd if=/dev/hdx of=/dev/hyd
If you are just interested in making a backup of the partition
 layout, you can also use the sfdisk command to
 create a copy of the partition table:
sfdisk -d /dev/hda > partition_backup.txt
Then, if you need to restore the partition table, you can use
 the sfdisk command again:
sfdisk /dev/hda < partition_backup.txt

Swap Space

When you install Linux, you’re asked to configure a
 swap, or virtual memory, partition. This
 special disk space is used to temporarily store portions of main memory
 containing programs or program data that are not needed constantly,
 allowing more processes to execute concurrently. An old rule of thumb
 for Linux is to set the size of the system’s swap space to be double the
 amount of physical RAM in the machine. For example, if your system has
 512 MB of RAM, it would be reasonable to set your swap size to at least
 1 GB. These are just guidelines, of course. A system’s utilization of
 virtual memory depends on what the system does and the number and size
 of processes it runs. As hard disk and memory gets cheaper and Linux
 application footprints grow, the guidelines for determining swap sizes
 become more and more about personal preference. However, when in doubt,
 using twice the amount of main memory is a good starting point.

General Guidelines

Here are some guidelines for partitioning a Linux
 system:
	Keep the root filesystem (/) simple by
 distributing larger portions of the directory tree to other
 partitions. A simplified root filesystem is less likely to be
 corrupted.

	Separate a small /boot partition below
 cylinder 1024 for installed kernels used by the system boot loader.
 This does not apply to newer BIOS and kernels (e.g., 2.6.20).

	Separate /var. Make certain it is big
 enough to handle your logs, spools, and mail, taking their rotation
 and eventual deletion into account.

	Separate /tmp. Its size depends on the
 demands of the applications you run. It should be large enough to
 handle temporary files for all of your users simultaneously.

	Separate /usr and make it big enough to
 accommodate kernel building. Making it standalone allows you to
 share it read-only via NFS.

	Separate /home for machines with multiple
 users or any machine where you don’t want to affect data during
 distribution software upgrades. For even better performance (for
 multiuser environments), put /home on a disk
 array and use Logical Volume manager (LVM).

	Set swap space to at least the same size (twice the size is
 recommended) as the main memory.

On the Exam
Since a disk layout is the product of both system requirements
 and available resources, no
 single example can represent the best configuration. Factors to
 remember include placing the old 2.2.x kernel below cylinder 1024,
 effectively utilizing multiple disks, sizing partitions to hold
 various directories such as /var and
 /usr, and the importance of the root filesystem
 and swap space size.

Objective 2: Install a Boot Manager

Although it is possible to boot Linux from a floppy disk,
 most Linux installations boot from the computer’s hard disk. This is a
 two-step process that begins after the system BIOS is
 initialized and ready to run an operating system. Starting Linux consists
 of the following two basic phases:
	Run the boot loader from the boot
 device
	It is the boot manager’s job to find the selected kernel and
 get it loaded into memory, including any user-supplied
 options.

	Launch the Linux kernel and start
 processes
	Your boot loader starts the specified kernel. The boot
 loader’s job at this point is complete and the hardware is placed
 under the control of the running kernel, which sets up shop and
 begins running processes.

All Linux systems require some sort of boot loader, whether it’s
 simply bootstrap code on a floppy disk or an application such as LILO or
 GRUB. Because the popularity of GRUB has grown, LPI has added it to the
 second release of the 101 exams.
LILO

The LILO is a small utility designed to load the Linux
 kernel (or the boot sector of another operating system) into memory and
 start it. A program that performs this function is commonly called a
 boot loader. LILO consists of two parts:
	The boot loader
	This is a two-stage program intended to find and
 load a kernel. It’s a two-stage operation because the boot sector
 of the disk is too small to hold the entire boot loader program.
 The code located in the boot sector is compact because its only
 function is to launch the second stage, which is the interactive
 portion. The first stage resides in the MBR or first boot
 partition of the hard disk. This is the code that is started at
 boot time by the system BIOS. It locates and launches a second,
 larger stage of the boot loader that resides elsewhere on disk.
 The second stage offers a user prompt to allow boot-time and
 kernel image selection options, finds the kernel, loads it into
 memory, and launches it.

	The lilo command
	Also called the map installer, the
 lilo command is used to install and configure
 the LILO boot loader. The command reads a configuration file that describes where to find
 kernel images, video information, the default boot disk, and so
 on. It encodes this information along with physical disk
 information and writes it in files for use by the boot
 loader.

The boot loader

When the system BIOS launches, LILO presents you with the
 following prompt:
LILO:
The LILO prompt is designed
 to allow you to select from multiple kernels or operating systems
 installed on the computer and to pass parameters to the kernel when it
 is loaded. Pressing the Tab key at the LILO prompt yields a list of
 available kernel images. One of the listed images will be the default
 as designated by an asterisk next to the name:
LILO: <TAB>
linux* linux_586_smp experimental
Under many circumstances, you won’t need to select a kernel at
 boot time because LILO will boot the kernel configured as the default
 during the install process. However, if you later create a new kernel,
 have special hardware issues, or are operating your system in a
 dual-boot configuration, you may need to use some of LILO’s options to
 load the kernel or operating system you desire.

The LILO map installer and its configuration file

Before any boot sequence can complete from your hard disk, the
 boot loader and associated information must be installed by the LILO
 map installer utility. The lilo command writes
 the portion of LILO that resides to the MBR, customized for your
 particular system. Your installation program creates a correct MBR,
 but you’ll have to repeat the command manually if you build a new
 kernel yourself.

LILO locations

During installation, LILO can be placed either in the
 boot sector of the disk or in your root partition. If the system is
 intended as a Linux-only system, you won’t need to worry about other
 boot loaders, and LILO can safely be placed into the boot sector.
 However, if you’re running another operating system you should place
 its boot loader in the boot sector. Multiple-boot and multiple-OS
 configurations are beyond the scope of the LPIC Level 1 exams.
On the Exam
It is important to understand the distinction between
 lilo, the map installer utility run
 interactively by the system administrator, and the boot loader,
 which is launched by the system BIOS at boot time. Both are parts of
 the LILO package.

GRUB

GRUB is a multistage boot loader, much like LILO. It is
 much more flexible than LILO, as it includes support for booting
 arbitrary kernels on various filesystem types and for booting several
 different operating systems. Changes take effect at once, without the
 need for a command execution.
GRUB device naming

GRUB refers to disk devices as follows:
(xdn[,m])
The xd in this example will be either fd or hd—floppy disk or hard
 disk, respectively. The n refers
 to the number of the disk as seen by the BIOS, starting at 0. The optional ,m denotes the
 partition number, also starting at 0.
The following are examples of valid GRUB device names:
	(fd0)
	The first floppy disk

	(hd0)
	The first hard disk

	(hd0,1)
	The second partition on the first hard disk

Note that GRUB does not distinguish between IDE and SCSI/SATA
 disks. It refers only to the order of the disks as seen by the BIOS,
 which means that the device number that GRUB uses for a given disk
 will change on a system with both IDE and SCSI/SATA if the boot order
 is changed in the BIOS.

Installing GRUB

The simplest way to install GRUB is to use the grub-install script.
For example, to install GRUB on the master boot record of the
 first hard drive in a system, invoke grub-install
 as follows:
grub-install '(hd0)'
grub-install looks for a device map file
 (/boot/grub/device.map by default) to determine
 the mapping from BIOS drives to Linux devices. If this file does not
 exist, it will attempt to guess what devices exist on the system and
 how they should be mapped to BIOS drives. If
 grub-install guesses incorrectly, just edit
 /boot/grub/device.map and rerun
 grub-install.
The device map file contains any number of lines in this
 format:
(disk) /dev/device
So, for example, on a system with a floppy and a single SCSI
 disk, the file would look like this:
(fd0) /dev/fd0
(hd0) /dev/sda
GRUB can also be installed using the grub
 command. The grub-install example shown earlier
 could also have been done as follows, assuming
 /boot is on the first partition of the first hard
 disk:
grub
grub> root (hd0,0)
grub> setup (hd0)

Booting GRUB

If there is no configuration file (or the configuration file
 does not specify a kernel to load), when GRUB loads it will display a
 prompt that looks like this:
grub>
GRUB expects a certain sequence of commands to boot a Linux
 kernel. They are as follows:
	root
 device

	kernel
 filename
 [options]

	initrd
 filename – optional, only present if an
 initial ramdisk is required

	boot

For example, the following sequence would boot a stock Red Hat
 8.0 system with /boot on
 /dev/hda1 and / on
 /dev/hda2:
grub> root (hd0,0)
grub> kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
grub> initrd /initrd-2.4.18-14.img
grub> boot

The GRUB configuration file

GRUB can be configured to boot into a graphical menu, allowing
 the user to bypass the GRUB shell entirely. To display this menu, GRUB
 needs a specific configuration file,
 /boot/grub/menu.lst.
Note
The location of this file may be different on your system. For
 example, on Red Hat systems the default configuration file is
 /boot/grub/grub.conf.

The configuration file defines various menu options along with
 the commands required to boot each option. The earlier example of
 booting a stock Red Hat Fedora 8.0 system could have been accomplished
 with the following configuration file:
default=0
timeout=3
title Red Hat Linux (2.4.18-14)
 root (hd0,0)
 kernel /vmlinuz-2.4.18-14 ro root=/dev/hda2
 initrd /initrd-2.4.18-14.img
Note
GRUB has many more features, including serial console support,
 support for booting other operating systems, and so on. For more
 information about GRUB, see the info documentation (info
 grub or pinfo grub) or the online
 documentation.

Name
lilo

Syntax
lilo [options]
The lilo map installer reads a
 configuration file and writes a map file, which contains
 information needed by the boot loader to locate and launch Linux
 kernels or other operating systems.

Frequently used options
	-C config _ file
	Read the config _ file file
 instead of the default
 /etc/lilo.conf.

	-m map _ file
	Write map _ file in place of the
 default as specified in the configuration file.

	-q
	Query the current configuration.

	-v
	Increase verbosity.

LILO’s configuration file contains options and kernel image
 information. An array of options is available. Some are global,
 affecting LILO overall, whereas others are specific to a
 particular listed kernel image. Most basic Linux installations use
 only a few of the configuration options. Example 5-1 shows a
 simple LILO configuration file.
Example 5-1. Sample /etc/lilo.conf file
boot = /dev/hda
timeout = 50
prompt
read-only
map = /boot/map
install = /boot/boot.b

image=/boot/bzImage-2.6.0
 label=test-2.6.0
 root=/dev/hda1

Each line in the example is described in the following
 list:
	boot
	Sets the name of the hard disk partition device that
 contains the boot sector. For PCs with IDE disk drives, the
 devices will be /dev/hda,
 /dev/hdb, and so on.

	timeout
	Sets the timeout in tenths of a second (deciseconds)
 for any user input from the keyboard. To enable an
 unattended reboot, this parameter is required if the
 prompt directive is
 used.

	prompt
	Sets the boot loader to prompt the user. This behavior
 can be stimulated without the prompt directive if the user
 holds down the Shift, Ctrl, or Alt key when LILO
 starts.

	read-only
	Sets the root filesystem to initially be mounted
 read-only. Typically, the system startup procedure will
 remount it later as read/write.

	map
	Sets the location of the map file, which defaults to
 /boot/map.

	install
	Sets the file to install as the new boot sector, which
 defaults to /boot/boot.b.

	image
	Sets the kernel image to offer for boot. It points to
 a specific kernel file. Multiple image lines may be used to
 configure LILO to boot multiple kernels and operating
 systems.

	label
	Sets the optional label parameter to be used after an
 image line and offers a label for that image. This label can
 be anything you choose and generally describes the kernel
 image. Examples include linux and smp for a multiprocessing
 kernel.

	root
	Sets the devices to be mounted as root for the
 specified image (used after each image line).

There is more to configuring and setting up LILO, but a
 detailed knowledge of LILO is not required for this LPI Objective.
 It is important to review one or two sample LILO configurations to
 make sense of the boot process.

Objective 3: Manage Shared Libraries

When a program is compiled under Linux, many of the
 functions required by the program are linked from system
 libraries that handle disks, memory, and other
 functions. For example, when the standard C-language printf() function is used in a program, the
 programmer doesn’t provide the printf()
 source code, but instead expects that the system already has a library
 containing such functions. When the compiler needs to link the code for
 printf(), it can be found in a system
 library and copied into the executable. A program that contains executable
 code from these libraries is said to be statically
 linked because it stands alone, requiring no additional code at
 runtime.
Statically linked programs can have a few liabilities. First, they
 tend to get large because they include executable files for all of the
 library functions linked into them. Also, memory is wasted when many
 different programs running concurrently contain the same library
 functions. To avoid these problems, many programs are dynamically linked. Such programs
 utilize the same routines but don’t contain the library code. Instead,
 they are linked into the executable at runtime. This dynamic linking
 process allows multiple programs to use the same library code in memory
 and makes executable files smaller. Dynamically linked libraries are
 shared among many applications and are thus called shared
 libraries. A full discussion of libraries is beyond the scope
 of the LPIC Level 1 exams. However, a general understanding of some
 configuration techniques is required.
Shared Library Dependencies

Any program that is dynamically linked will require at
 least a few shared libraries. If the required libraries don’t exist or
 can’t be found, the program will fail to run. This could happen, for
 example, if you attempt to run an application written for the GNOME
 graphical environment but haven’t installed the required GTK+ libraries.
 Simply installing the correct libraries should eliminate such problems.
 The ldd utility can be used to determine
 which libraries are necessary for a particular executable.

Linking Shared Libraries

Dynamically linked executables are examined at runtime by
 the shared object dynamic linker, ld.so.
 This program looks for dependencies in the executable being loaded and
 attempts to satisfy any unresolved links to system-shared libraries. If
 ld.so can’t find a specified library, it fails, and
 the executable won’t run.
To find a new library, ld.so must be
 instructed to look in /usr/local/lib. There are a
 few ways to do this. One simple way is to add a colon-separated list of
 directories to the shell environment variable LD_LIBRARY_PATH, which will prompt
 ld.so to look in any directories it finds there.
 However, this method may not be appropriate for system libraries,
 because users might not set their LD_LIBRARY_PATH correctly.
To make the search of /usr/local/lib part of
 the default behavior for ld.so, files in the new
 directory must be included in an index of library names and locations.
 This index is /etc/ld.so.cache. It’s a binary file,
 which means it can be read quickly by ld.so. To add
 the new library entry to the cache, first add its directory to the
 ld.so.conf file, which contains directories to be
 indexed by the ldconfig utility.

Name
ldd

Syntax
ldd programs

Description
Display shared libraries required by each of the
 programs listed on the command line. The
 results indicate the name of the library and where the library is
 expected to be in the filesystem.

Example
The bash shell requires three shared
 libraries:
ldd /bin/bash
/bin/bash:
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40018000)
 libc.so.6 => /lib/libc.so.6 (0x4001c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Name
ldconfig

Syntax
ldconfig [options] lib_dirs

Description
Update the ld.so cache file with shared
 libraries specified on the command line in
 lib_dirs, in trusted directories
 /usr/lib and /lib, and in
 the directories found in
 /etc/ld.so.conf.

Frequently used options
	-p
	Display the contents of the current cache instead of
 recreating it.

	-v
	Verbose mode. Display progress during execution.

Example 1
Examine the contents of the ld.so library
 cache:
ldconfig -p
144 libs found in cache '/etc/ld.so.cache'
 libz.so.1 (libc6) => /usr/lib/libz.so.1
 libuuid.so.1 (libc6) => /lib/libuuid.so.1
 libutil.so.1 (libc6, OS ABI: Linux 2.2.5) => /lib/libutil.so.1
 libutil.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libutil.so \
 libthread_db.so.1 (libc6, OS ABI: Linux 2.2.5) => /lib/libthread_db.so.1
 libthread_db.so (libc6, OS ABI: Linux 2.2.5) => /usr/lib/libthread_db.so

Example 2
Look for a specific library entry in the cache:
ldconfig -p | grep ncurses
 libncurses.so.5 (libc6) => /usr/lib/libncurses.so.5

Example 3
Rebuild the cache:
ldconfig
After /usr/local/lib is added,
 ld.so.conf might look like this:
/usr/lib
/usr/i486-linux-libc5/lib
/usr/X11R6/lib
/usr/local/lib
Next, ldconfig is run to include
 libraries found in /usr/local/lib in
 /etc/ld.so.cache. It is important to run
 ldconfig after any changes in system libraries
 to be sure that the cache is up-to-date.

Objective 4: Use Debian Package Management

The Debian package management system is a versatile and
 automated suite of tools used to acquire and manage software packages for
 Debian Linux. The system automatically handles many of the management
 details associated with interdependent software running on your
 system.
Debian Package Management Overview

Each Debian package contains program and configuration files,
 documentation, and noted dependencies on other packages. The names of
 Debian packages have three common elements, including:
	Package name
	A Debian package name is short and descriptive. When
 multiple words are used in the name, they are separated by
 hyphens. Typical names include binutils,
 kernel-source, and
 telnet.

	Version number
	Each package has a version. Most package versions are the
 same as that of the software they contain. The format of package
 versions varies from package to package, but most are numeric
 (major.minor.patchlevel).

	A file extension
	By default, all Debian packages end with the
 .deb file extension.

Figure 5-1
 illustrates a Debian package name.
[image: The structure of a Debian GNU/Linux package name]

Figure 5-1. The structure of a Debian GNU/Linux package name

Managing Debian Packages

The original Debian package management tool is dpkg, which operates directly on
 .deb package files and can be used to automate the
 installation and maintenance of software packages. The alternative
 apt-get tool operates using package names,
 obtaining them from a predefined source (such as CD-ROMs, FTP sites,
 etc.). Both tools work from the command line.
The dselect command offers an interactive
 menu that allows the administrator to select from a list of available
 packages and mark them for subsequent installation. The
 alien command allows the use of non-Debian
 packages, such as the Red Hat RPM format.
For complete information on Debian package management commands,
 see details in their respective manpages.

Name
dpkg

Syntax
dpkg [options] action

Description
The Debian package manager command, dpkg,
 consists of an action that specifies a
 major mode of operation as well as zero or more
 options, which modify the action’s
 behavior.
The dpkg command maintains package
 information in /var/lib/dpkg. There are two
 files that are of particular interest:
	available
	The list of all available packages.

	status
	Contains package attributes, such as whether it is
 installed or marked for removal.

These files are modified by dpkg,
 dselect, and apt-get, and it is
 unlikely that they will ever need to be edited.

Frequently used options
	-E
	Do not overwrite a previously installed package of the
 same version.

	-G
	Do not overwrite a previously installed package with an
 older version of that same package.

	-R (also --recursive)
	Recursively process package files in specified
 subdirectories. Works with -i,
 --install, --unpack,
 and so on.

Frequently used options
	--configure
 package
	Configure an unpacked package. This involves setup of
 configuration files.

	-i
 package_file (also
 --install
 package_file)
	Install the package contained in
 package_file. This involves backing
 up old files, unpacking and installation of new files, and
 configuration.

	-l [pattern] (also --list
 [pattern])
	Display information for installed package names that
 match pattern.

	-L package
 (also --listfiles
 package)
	List files installed from
 package.

	--print-avail
 package
	Display details found in
 /var/lib/dpkg/available about
 package.

	--purge
 package
	Remove everything for
 package.

	-r package
 (also --remove
 package)
	Remove everything except configuration files for
 package.

	-s package
 (also --status
 package)
	Report the status of
 package.

	-S
 search_pattern (also
 --search
 search_pattern)
	Search for a filename matching
 search_pattern from installed
 packages.

	--unpack
 package_file
	Unpack package_file, but
 don’t install the package it contains.

Example 1
Install a package using dpkg -i with the
 name of an available package file:
dpkg -i ./hdparm_3.3-3.deb
(Reading database ... 54816 files and directories
 currently installed.)
Preparing to replace hdparm 3.3-3 (using hdparm_3.3-3.deb)
Unpacking replacement hdparm ...
Setting up hdparm (3.3-3) ...
Alternatively, use apt-get install with
 the name of the package. In this case, the package comes from the
 location or locations configured in
 /etc/apt/sources.list. For this example, the
 location is http://http.us.debian.org:
apt-get install elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 libncurses4 xlib6g
The following NEW packages will be installed:
 elvis
2 packages upgraded, 1 newly installed, 0 to remove
 and 376 not upgraded.
Need to get 1678kB of archives. After unpacking 2544kB
 will be used.
Do you want to continue? [Y/n] y
Get:1 http://http.us.debian.org stable/main
 libncurses4 4.2-9 [180kB]
Get:2 http://http.us.debian.org stable/main
 xlib6g 3.3.6-11 [993kB]
Get:3 http://http.us.debian.org stable/main
 elvis 2.1.4-1 [505kB]
Fetched 1678kB in 4m11s (6663B/s)
(Reading database ... 54730 files and directories
 currently installed.)
Preparing to replace libncurses4 4.2-3 (using
 .../libncurses4_4.2-9_i386.deb) ...
Unpacking replacement libncurses4 ...
(installation continues...)

Example 2
Upgrading a package is no different from installing one.
 However, you should use the -G option when
 upgrading with dpkg to ensure that the
 installation won’t proceed if a newer version of the same package is
 already installed.

Example 3
Use dpkg -r or dpkg
 --purge to remove a package:
dpkg --purge elvis
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(purge continues...)

Example 4
Use the dpkg -S command to find a package
 containing specific files. In this example,
 apt-get is contained in the
 apt package:
dpkg -S apt-get
apt: /usr/share/man/man8/apt-get.8.gz
apt: /usr/bin/apt-get

Example 5
Obtain package status information, such as version, content,
 dependencies, integrity, and installation status, using
 dpkg -s:
dpkg -s apt
Package: apt
Status: install ok installed
Priority: optional
Section: admin
Installed-Size: 1388
(listing continues...)

Example 6
List the files in a package using dpkg -L
 and process the output using grep or
 less:
dpkg -L apt | grep '^/usr/bin'
/usr/bin
/usr/bin/apt-cache
/usr/bin/apt-cdrom
/usr/bin/apt-config
/usr/bin/apt-get

Example 7
List the installed packages using dpkg
 -l; if you don’t specify a pattern, all packages will be
 listed:
dpkg -l xdm
ii xdm 3.3.2.3a-11 X display manager

Example 8
Use dpkg -S to determine the package from
 which a particular file was installed with the filename:
dpkg -S /usr/bin/nl
textutils: /usr/bin/nl

Name
apt-get

Syntax
apt-get [options] [command] [package_name ...]

Description
The apt-get command is part of the
 Advanced Package Tool (APT) management system. It does
 not work directly with .deb files like
 dpkg, but uses package names instead.
 apt-get maintains a database of package
 information that enables the tool to automatically upgrade packages
 and their dependencies as new package releases become
 available.

Frequently used options
	-d
	Download files, but do not install. This is useful when
 you wish to get a large number of package files but delay
 their installation to prevent installation errors from
 stopping the download process.

	-s
	Simulate the steps in a package change, but do not
 actually change the system.

	-y
	Automatically respond “yes” to all prompts, instead of
 prompting you for a response during package
 installation/removal.

Frequently used commands
	dist-upgrade
	Upgrade automatically to new versions of Debian
 Linux.

	install
	Install or upgrade one or more packages by name.

	remove
	Remove specified packages.

	update
	Fetch a list of currently available packages. This is
 typically done before any changes are made to existing
 packages.

	upgrade
	Upgrade a system’s complete set of packages to current
 versions safely. This command is conservative and will not
 process upgrades that could cause a conflict or break an
 existing configuration; it also will not remove
 packages.

Additional commands and options are available. See the
 apt-get manpage for more information.
apt-get uses
 /etc/apt/sources.list to determine where
 packages should be obtained. The file should contain one or more
 lines that look something like this:
deb http://http.us.debian.org/debian stable main contrib non-free

Example
Remove the elvis package using
 apt-get:
apt-get remove elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
 elvis
0 packages upgraded, 0 newly installed, 1 to remove
 and 376 not upgraded.
Need to get 0B of archives. After unpacking 1363kB
 will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(removal continues...)
In this example, the user is required to respond with
 y when prompted to continue.
 Using the -y option to
 apt-get would eliminate this
 interaction.

Name
dselect

Syntax
dselect

Description
dselect is an interactive,
 menu-driven, frontend tool for dpkg and is
 usually invoked without parameters. The dselect
 command lets you interactively manage packages by selecting them for
 installation, removal, configuration, and so forth. Selections are
 made from a locally stored list of available packages, which may be
 updated while running dselect. Package actions
 initiated by dselect are carried out using
 dpkg.

Name
alien

Syntax
alien [--to-deb] [--patch=patchfile] [options] file

Description
Convert to or install a non-Debian (or “alien”)
 package. Supported package types include Red Hat
 .rpm, Stampede .slp,
 Slackware .tgz, and generic
 .tar.gz files. rpm must also be installed on the system
 to convert an RPM package into a .deb package.
 The alien command produces an output
 package in Debian format by default after
 conversion.

Frequently used options
	-i
	Automatically install the output package and remove the
 converted package file.

	-r
	Convert package to RPM format.

	-t
	Convert package to a gzip
 tar archive.

Example
Install a non-Debian package on a Debian system using
 alien with the -i
 option:
alien -i package.rpm
On the Exam
dselect, apt-get, and
 alien are important parts of Debian package
 management, but detailed knowledge of dpkg is
 of primary importance for Exam 101.

Objective 5: Use Red Hat Package Manager (RPM)

The Red Hat Package Manager is among the most popular
 methods for the distribution of software for Linux and is installed by
 default on most distributions. It automatically handles many of the
 management details associated with interdependent software running on your
 system.
RPM Overview

RPM automates the installation and maintenance of software
 packages. Built into each package are program files, configuration
 files, documentation, and dependencies on other packages. Package files
 are manipulated using the rpm command, which
 maintains a database of all installed packages and their files.
 Information from new packages is added to this database, and the
 database is consulted on a file-by-file basis for dependencies when
 packages are removed, queried, and installed. As with Debian packages,
 RPM packages have four common elements:
	Name
	An RPM package name is short and descriptive. If multiple
 words are used, they are separated by hyphens (not underscores, as
 you might expect). Typical names include
 binutils,
 caching-nameserver, cvs,
 gmc, kernel-source, and
 telnet.

	Version
	Each package has a version. Most package versions are the
 same as that of the software they contain. The format of package
 versions varies from package to package, but most are numeric
 (major.minor.patchlevel).

	Revision
	The revision tag is simply a release number for the package.
 It has no significance except to determine whether one package is
 newer than another when the version number does not change.

	Architecture
	Packages containing binary (compiled) files are by their
 nature specific to a particular type of system. For PCs, the RPM
 architecture designation is i386, meaning the
 Intel 80386 and subsequent line of microprocessors and compatibles.
Packages optimized for later x86 CPUs will have an
 architecture tag appropriate for the specific CPU the code is
 compiled for, such as i586 for Intel Pentium
 (and compatible) processors, i686 for Intel
 Pentium Pro and later processors (Pentium II, Celeron, Pentium
 III, and Pentium 4), or athlon for AMD
 Athlon.
Other possible architecture tags include alpha,
 ia64, ppc, and sparc (for the
 Alpha, Itanium, PowerPC, and SPARC architectures, respectively).
 Another arch tag, noarch, is used to indicate
 packages that can install on any architecture.

While the filename of an RPM package is not significant, Red Hat
 does have a standard naming scheme for its packages that most of the
 other RPM-based distributions also follow. It is constructed by tying
 these elements together in one long string.

Running rpm

The rpm command provides for the
 installation, removal, upgrade, verification, and other management of
 RPM packages. rpm has a bewildering array of
 options, including the traditional single-letter style
 (-i) and the double-dash full word style (--install). In most
 cases, both styles exist and are interchangeable.
Although configuring rpm may appear to be a
 bit daunting, its operation is simplified by being segmented into
 modes. rpm modes are enabled using one (and only
 one) of the mode options. Within a mode, additional
 mode-specific options become available to modify the behavior of
 rpm. The major modes of rpm and some of the most frequently used
 mode-specific options follow. For complete information on how to use and
 manage RPM packages, see the rpm manpage or the
 synopsis offered by rpm --help.

YUM Overview

YUM (Yellowdog Updater Modified) is a package manager
 offering a fast way for installing, updating, and removing packages. The
 yum command has a very simple interface and
 functions similar to rpm, but
 yum additionally manages all of the dependencies
 for you. Yum will detect if dependencies are required for the
 installation of an application and, if need be, fetch the required
 dependency and install it. Yum has the ability to support multiple
 repositories for packages and has a simple configuration.
YUM is configured through the /etc/yum.conf
 configuration file. A sample of the configuration file follows.
 Repositories may be added and modified through the /etc/yum.repos.d
 directory:
cat /etc/yum.conf
[main]
cachedir=/var/cache/yum
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

This is the default. If you make this bigger yum won't see if the metadata
is newer on the remote and so you'll "gain" the bandwidth of not having to
download the new metadata and "pay" for it by yum not having correct
information.
It is especially important, to have correct metadata, for distributions
like Fedora that don't keep old packages around. If you don't like this
checking interrupting your command line usage, it's much better to have
something manually check the metadata once an hour (yum-updatesd will do this).
metadata_expire=90m

PUT YOUR REPOS HERE OR IN separate files named file.repo
in /etc/yum.repos.d
The most common commands used with yum
 are:
	install
	Install a package or packages on your system.

	erase
	Remove a package or packages from your system.

	update
	Update a package or packages on your system.

	list
	List a package or group of packages on your
 system.

	search
	Search package details for the given string.

Checking installed packages

Check installed packages with list:
yum list
This command will show all of the packages that are currently
 installed on your computer. It will also list available packages. In
 the following example the partial output is filtered through
 |more to display content one page at a time. Here
 you can see that some of the packages are installed (marked installed) and others are available through
 update (@update):
yum list |more
Loaded plugins: refresh-packagekit
Installed Packages
Canna-libs.i586 3.7p3-27.fc11 installed
ConsoleKit.i586 0.3.0-8.fc11 installed
ConsoleKit-libs.i586 0.3.0-8.fc11 installed
ConsoleKit-x11.i586 0.3.0-8.fc11 installed
DeviceKit.i586 003-1 installed
DeviceKit-disks.i586 004-4.fc11 @updates
DeviceKit-power.i586 009-1.fc11 @updates
GConf2.i586 2.26.2-1.fc11 installed
GConf2-gtk.i586 2.26.2-1.fc11 installed
ImageMagick.i586 6.5.1.2-1.fc11 installed
MAKEDEV.i586 3.24-3 installed
NetworkManager.i586 1:0.7.1-8.git20090708.fc11 @updates
NetworkManager-glib.i586 1:0.7.1-8.git20090708.fc11 @updates
...
You can also check to see if a particular package is installed
 or available for install using the list command.
 The following example checks to see whether Samba is installed. From
 the output you see that the samba package is not
 installed but available for installation through the
 repository:
yum list samba
Loaded plugins: refresh-packagekit
Available Packages
samba.i586 3.3.2-0.33.fc11 fedora
If you need to collect information about a particular package,
 use the info command. In this situation we
 ask for information about the httpd service:
yum info httpd
Loaded plugins: refresh-packagekit
Installed Packages
Name : httpd
Arch : i586
Version : 2.2.11
Release : 8
Size : 2.6 M
Repo : installed
Summary : Apache HTTP Server
URL : http://httpd.apache.org/
License : ASL 2.0
Description: The Apache HTTP Server is a powerful, efficient, and extensible
 : web server.

Checking for updates

yum may be used to check for
 available updates for packages running on the computer. You can run
 the check-updates command to perform a
 check for any available package or specify a particular package you
 want to update. This example checks for any available updates:
yum check-update
Loaded plugins: refresh-packagekit
gtk2.i586 2.16.5-1.fc11 updates
mysql-libs.i586 5.1.36-1.fc11 updates
selinux-policy.noarch 3.6.12-69.fc11 updates
selinux-policy-targeted.noarch 3.6.12-69.fc11 updates

Installing packages

Installing packages using yum is
 really quite straightforward. To install a package, you specify its
 name with the install command and the package
 name, along with any dependencies that will be downloaded and
 installed. This example installs the samba
 package:
yum install samba
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package samba.i586 0:3.3.2-0.33.fc11 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved
==
 Package Arch Version Repository Size
==
Installing:
 samba i586 3.3.2-0.33.fc11 fedora 4.4 M

Transaction Summary
==
Install 1 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 4.4 M
Is this ok [y/N]:
Downloading Packages:
samba-3.3.2-0.33.fc11.i586.rpm | 4.4 MB 00:06
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : samba-3.3.2-0.33.fc11.i586 1/1

Installed:
 samba.i586 0:3.3.2-0.33.fc11

Complete!

Removing packages

Removing a package from your system is similar to the
 installation process. Two options remove packages: remove and erase. They perform the same
 function, but remove should be used with caution
 because it also can uninstall dependent packages:
yum remove httpd
Loaded plugins: refresh-packagekit
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package httpd.i586 0:2.2.11-8 set to be erased
--> Processing Dependency: httpd >= 2.2.0 for package: \
 gnome-user-share-2.26.0-2.fc11.i586
--> Running transaction check
---> Package gnome-user-share.i586 0:2.26.0-2.fc11 set to be erased
--> Finished Dependency Resolution

Dependencies Resolved
===
 Package Arch Version Repository Size
===
Removing:
 httpd i586 2.2.11-8 installed 2.6 M

Removing for dependencies:
 gnome-user-share i586 2.26.0-2.fc11 installed 809 k

Transaction Summary
===
Install 0 Package(s)
Update 0 Package(s)
Remove 2 Package(s)

Is this ok [y/N]: Y

Name
rpm

Syntax
rpm -i [options]
(also rpm --install)
rpm -U [options] (also rpm --upgrade)
rpm -e [options] (also rpm --uninstall)
rpm -q [options] (also rpm --query)
rpm -V [options] (also rpm --verify)

Install/upgrade mode
The install mode (rpm
 -i) is used to install new packages. A variant of install
 mode is the upgrade mode (rpm
 -U), where an installed package is upgraded to a more
 recent version. Another variant is the freshen mode (rpm
 -F), which upgrades only packages that have an older
 version already installed on the system. But
 rpm’s -F option has
 limited value, since it doesn’t handle dependency changes at all. In other
 words, if a new version of a package requires that another package
 be installed, -F won’t automatically install
 the new package, even if it is listed on the command line.

Frequently used install and upgrade options
	--force
	Allows the replacement of existing packages and of files
 from previously installed packages; for upgrades, it allows
 the replacement of a newer package with an older one.
 (Literally, it is equivalent to setting all of the options
 --replacepkgs,
 --replacefiles, and --oldpackage.)
 Use this option with caution.

	-h (also
 --hash)
	Prints a string of 50 hash marks (#) during installation as a progress
 indicator.

	--nodeps
	Allows you to install a package without checking for
 dependencies. This command should be avoided because
 it makes the dependency database
 inconsistent.

	--test
	Runs through all the motions except for actually writing
 files; it’s useful to verify that a package will install
 correctly prior to making the attempt. Note that verbose and
 hash options cannot be used with --test,
 but -vv can.

	-v
	Sets verbose mode. (Package names are displayed as the
 packages are being installed.)

	-vv
	Sets really verbose mode. The manpage describes this as
 “print lots of ugly debugging information.”

Example 1
To install a new package, simply use the rpm
 -i command with the name of a package file. If the new
 package depends upon another package, the install fails, like
 this:
rpm -i gcc-2.96-113.i386.rpm
error: failed dependencies:
 binutils >= 2.11.93.0.2-6 is needed by gcc-2.96-113
 cpp = 2.96-113 is needed by gcc-2.96-113
 glibc-devel is needed by gcc-2.96-113
To correct the problem, the dependency must first be
 satisfied. In this example, gcc is dependent on
 binutils, cpp, and
 glibc-devel, which all must be installed first
 (or at the same time, as in this example):
rpm -i binutils-2.11.93.0.2-11.i386.rpm cpp-2.96-113.i386.rpm \
 glibc-devel-2.2.5-44.i386.rpm gcc-2.96-113.i386.rpm

Example 2
Upgrading an existing package to a newer version can be done
 with the -U option. Upgrade mode is really a
 special case of the install mode, where existing packages can be
 superseded by newer versions. Using -U, a
 package can be installed even if it doesn’t already exist, in which
 case it behaves just like -i:
rpm -U gcc-2.96-113.i386.rpm

Uninstall mode
This mode is used to remove installed packages from
 the system. By default, rpm uninstalls a
 package only if no other packages depend on it.

Frequently used uninstall options
	--nodeps
	rpm skips dependency checking with
 this option enabled. This command should be avoided
 because it makes the dependency database
 inconsistent.

	--test
	This option runs through all the motions except for
 actually uninstalling things; it’s useful to verify that a
 package can be uninstalled correctly without breaking other
 dependencies prior to making the attempt. Note that verbose
 and hash options cannot be used with --test, but
 -vv can.

Example
Package removal is the opposite of installation and has the
 same dependency constraints:
rpm -e glibc-devel
error: removing these packages would break dependencies:
 glibc-devel is needed by gcc-2.96-113

Query mode
Installed packages and raw package files can be
 queried using the rpm -q command. Query mode
 options exist for package and information selection.

Frequently used query package selection options
	-a (also --all)
	Display a list of all packages installed on the system.
 This is particularly useful when piped to
 grep if you’re not sure of the name of a
 package or when you want to look for packages that share a
 common attribute.

	-f
 filename (also
 --file)
	Display the package that contains a particular
 file.

	-p
 package_filename
	Query a package file (most useful with
 -i, described next).

Frequently used query information selection options
	-c (also --configfiles)
	List only configuration files.

	-d (also --docfiles)
	List only documentation files.

	-i
 package
	Not to be confused with the install
 mode. Display information about an installed
 package, or when combined with -p, about
 a package file. In the latter case,
 package is a filename.

	-l package
 (also --list)
	List all of the files contained in
 package. When used with
 -p, the
 package is a filename.

	-R (also --requires)
	List packages on which this package depends.

Example 1
To determine the version of the software contained in an RPM
 file, use the query and package information options:
rpm -qpi openssh-3.4p1-2.i386.rpm | grep Version
Version : 3.4p1 Vendor: Red Hat, Inc.
For installed packages, omit the -p
 option and specify a package name instead of a package filename.
 Notice if you have multiple versions of the same package installed,
 you will get output for all of the packages:
rpm -qi kernel-source | grep Version
Version : 2.4.9 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.
Version : 2.4.18 Vendor: Red Hat, Inc.

Example 2
List the files contained in a package:
rpm -qlp gnucash-1.3.0-1.i386.rpm
/usr/bin/gnc-prices
/usr/bin/gnucash
/usr/bin/gnucash.gnome
/usr/doc/gnucash
/usr/doc/gnucash/CHANGES
 (...output continues ...)
For an installed package, enter query mode and use the
 -l option along with the package name:
rpm -ql kernel-source
/usr/src/linux-2.4.18-14
/usr/src/linux-2.4.18-14/COPYING
/usr/src/linux-2.4.18-14/CREDITS
/usr/src/linux-2.4.18-14/Documentation
/usr/src/linux-2.4.18-14/Documentation/00-INDEX
/usr/src/linux-2.4.18-14/Documentation/BUG-HUNTING
/usr/src/linux-2.4.18-14/Documentation/Changes
 (...output continues ...)

Example 3
List the documentation files in a package:
rpm -qd at
/usr/doc/at-3.1.7/ChangeLog
/usr/doc/at-3.1.7/Copyright
/usr/doc/at-3.1.7/Problems
/usr/doc/at-3.1.7/README
/usr/doc/at-3.1.7/timespec
/usr/man/man1/at.1
/usr/man/man1/atq.1
/usr/man/man1/atrm.1
/usr/man/man1/batch.1
/usr/man/man8/atd.8
/usr/man/man8/atrun.8
Use -p for package filenames.

Example 4
List configuration files or scripts in a package:
rpm -qc at
/etc/at.deny
/etc/rc.d/init.d/atd

Example 5
Determine what package a particular file was installed from.
 Of course, not all files originate from packages:
rpm -qf /etc/fstab
file /etc/fstab is not owned by any package
Those that are package members look like this:
rpm -qf /etc/aliases
sendmail-8.11.6-15

Example 6
List the packages that have been installed on the
 system:
rpm -qa
(... hundreds of packages are listed ...)
To search for a subset with kernel in the name, pipe the previous
 command to grep:
rpm -qa | grep kernel
kernel-source-2.4.18-24.7.x
kernel-pcmcia-cs-3.1.27-18
kernel-utils-2.4-7.4
kernel-doc-2.4.18-24.7.x
kernel-2.4.18-24.7.x

Verify mode
Files from installed packages can be compared against
 their expected configuration from the RPM database by using
 rpm -V.

Frequently used verify options
	--nofiles
	Ignores missing files.

	--nomd5
	Ignores MD5 checksum errors.

	--nopgp
	Ignores PGP checking errors.

On the Exam
Make certain that you are aware of
 rpm’s major operational modes and their
 commonly used mode-specific
 options. Knowledge of specific options will be necessary. Read
 through the rpm manpage at least once.

Chapter 6. GNU and Unix Commands
 (Topic 103)

This Topic covers the essential skill of working interactively with
 Linux command-line utilities. Although it’s true that GUI tools are
 available to manage just about everything on a Linux system, a firm
 understanding of command-line utilities is required to better prepare you to
 work on any LSB-compliant Linux distribution.
The family of commands that are part of Linux and Unix systems have a
 long history. Individuals or groups that needed specific tools contributed
 many of the commands in the early days of Unix development. Those that were
 popular became part of the system and were accepted as default tools under
 the Unix umbrella. Today, Linux systems carry new and often more powerful
 GNU versions of these historical commands, which are
 covered in LPI Topic 103.1.
This LPI Topic has eight Objectives:
	Objective 1: Work on the Command Line
	This Objective states that a candidate should be able to
 interact with shells and commands using the command line. This
 includes using single shell commands and one-line command sequences to
 perform basic tasks on the command line, using and modifying the shell
 environment, including defining, referencing, and exporting
 environment variables, using and editing command history, and invoking
 commands inside and outside the defined path. Weight: 4.

	Objective 2: Process Text Streams Using
 Filters
	This Objective states that a candidate should be able to
 apply filters to text streams. Tasks include sending text files and
 output streams through text utility filters to modify the output, and
 using standard Unix commands found in the GNU
 coreutils package. Weight: 3.

	Objective 3: Perform Basic File
 Management
	This Objective states that candidates should be able to
 use the basic Linux commands to copy, move, and remove files and
 directories. Tasks include advanced file management operations such as
 copying multiple files recursively, removing directories recursively,
 and moving files that meet a wildcard pattern. The latter task
 includes using simple and advanced wildcard specifications to refer to
 files, as well as using find to locate and act on
 files based on type, size, or time. This also includes usage of the
 commands tar, cpio, and dd
 for archival purposes. Weight: 4.

	Objective 4: Use Streams, Pipes, and
 Redirects
	This Objective states that a candidate should be able to
 redirect streams and connect them to efficiently process textual data.
 Tasks include redirecting standard input, standard output, and
 standard error, piping the output of one command to the input of
 another command, using the output of one command as arguments to
 another command, and sending output to both
 stdout and a file. Weight: 4.

	Objective 5: Create, Monitor, and Kill
 Processes
	This Objective states that a candidate should be able to
 manage processes. This includes knowing how to run jobs in the
 foreground and background, bring a job from the background to the
 foreground and vice versa, start a process that will run without being
 connected to a terminal, and signal a program to continue running
 after logout. Tasks also include monitoring active processes, selecting and sorting processes for
 display, sending signals to processes, and killing processes. Weight:
 4.

	Objective 6: Modify Process Execution
 Priorities
	This Objective states that a candidate should be able to
 manage process execution priorities. The tasks include running a
 program with higher or lower priority, determining the priority of a
 process, and changing the priority of a running process. Weight:
 2.

	Objective 7: Search Text Files Using Regular
 Expressions
	This Objective states that a candidate should be able to
 manipulate files and text data using regular expressions. This
 includes creating simple regular expressions containing several
 notational elements, as well as using regular expression tools to perform searches
 through a filesystem or file content. Weight: 2.

	Objective 8: Perform Basic File Editing Operations Using
 vi
	This Objective states a candidate should be able to edit
 files using vi. This includes
 vi navigation, basic vi
 modes, and inserting, editing, deleting, copying, and finding text.
 Weight: 3.

The tools and concepts discussed here represent important and
 fundamental aspects of working with Linux and are essential for your success
 on Exam 101.
Objective 1: Work on the Command Line

Every computer system requires a human interface component.
 For Linux system administration, a text interface is typically used. The
 system presents the administrator with a prompt, which at its simplest is a
 single character such as $ or #. The prompt signifies
 that the system is ready to accept typed commands, which usually occupy
 one or more lines of text. This interface is generically called the
 command line.
It is the job of a program called a shell to
 provide the command prompt and to interpret commands. The shell provides
 an interface layer between the Linux kernel and the end user, which is how
 it gets its name. The original shell for Unix systems was written by
 Stephen Bourne and was called simply
 sh. The default Linux shell is bash, the Bourne-Again
 Shell, which is a GNU variant of sh. This
 chapter will not cover all aspects of the bash shell.
 At this point, we are primarily concerned with our interaction with
 bash and the effective use of commands.
The Interactive Shell

The shell is a powerful programming environment, capable
 of automating nearly anything you can imagine on your Linux system. The
 shell is also your interactive interface to your system. When you first
 start a shell, it does some automated housekeeping to get ready for your
 use, and then presents a command prompt. The command prompt tells you
 that the shell is ready to accept commands from its standard
 input device, which is usually the keyboard. Shells can run
 standalone, as on a physical terminal, or within a window in a GUI
 environment. Whichever the case, their use is the same.
Shell variable basics

During execution, bash maintains a
 set of shell variables that contain information
 important to the execution of the shell. Most of these variables are
 set when bash starts, but they can be set
 manually at any time.
The first shell variable of interest in this topic is called
 PS1, which simply stands for Prompt String
 1. This special variable holds the contents of the command
 prompt that are displayed when bash is ready to
 accept commands (there is also a PS2 variable, used when
 bash needs multiple-line input to complete a
 command). You can easily display the contents of PS1, or any other
 shell variable, by using the echo command with the
 variable name preceded by the $
 symbol:
$ echo $PS1
\$
The \$ output tells us that
 PS1 contains the two characters \
 and $. The backslash character
 tells the shell not to interpret the dollar symbol in any special way
 (that is, as a metacharacter, described later in
 this section). A simple dollar sign was the default prompt for
 sh, but bash offers options
 to make the prompt much more informative. On your system, the default
 prompt stored in PS1 is probably something like:
[\u@\h \W]\$
Each of the characters preceded by backslashes has a special
 meaning to bash, whereas those without
 backslashes are interpreted literally. In this example, \u is replaced by the username, \h is replaced by the system’s hostname,
 \W is replaced by the unqualified
 path (or basename) of the current working directory, and \$ is replaced by a $ character (unless you are
 root, in which case \$ is replaced by #). This yields a prompt of the form:
[adam@linuxpc adam]$
How your prompt is formulated is really just a convenience and
 does not affect how the shell interprets your commands. However,
 adding information to the prompt, particularly regarding system, user,
 and directory location, can make life easier when hopping from system
 to system and logging in as multiple users (as yourself and
 root, for example). See the online documentation on
 bash for more information on customizing
 prompts, including many more options you can use to display system
 information in your prompt.
Another shell variable that is extremely important during
 interactive use is PATH, which
 contains a list of all the directories that hold commands or other
 programs you are likely to execute. A default path is set up for you
 when bash starts. You may wish to modify the
 default to add other directories that hold programs you need to
 run.
Note
Every file in the Linux filesystem can be specified in terms
 of its location. The less program, for example,
 is located in the directory /usr/bin. Placing
 /usr/bin in your PATH enables you to execute
 less by simply typing less rather than the explicit /usr/bin/less.
Also be aware that "." (the current
 directory) is not included in the PATH either implicitly (as it is in
 DOS) or explicitly for security reasons. To
 execute a program named foo in the current
 directory, simply run ./foo.

For bash to find and execute the command
 you enter at the prompt, the command must be one of the
 following:
	A bash
 built-in command that is part of
 bash itself

	An executable program located in a directory listed in the
 PATH variable

	An executable program whose filename you specify
 explicitly

The shell holds PATH and
 other variables for its own use. However, many of the shell’s
 variables are needed during the execution of programs launched from
 the shell (including other shells). For these variables to be
 available, they must be exported, at which time
 they become environment variables. Environment
 variables are passed on to programs and other shells, and together
 they are said to form the environment in which
 the programs execute. PATH is
 always made into an environment variable. Exporting a shell variable
 to turn it into an environment variable is done using the
 export command:
$ export MYVAR
Do not include a preceding dollar sign when defining or
 exporting a variable (because in this command, you don’t want the
 shell to expand the variable to its value). When a variable is
 exported to the environment, it is passed into the environment of all
 child processes. That is, it will be available to all programs run by
 your shell. Here is an example that displays the difference between a
 shell variable and an environment variable:
$ echo $MYVAR
No output is returned, because the variable has not been
 defined. We give it a value, and then echo its value:
$ MYVAR="hello"
$ echo $MYVAR
hello
We’ve verified that the variable MYVAR contains the value “hello”. Now we
 spawn a subshell (or child process) and check the value of this
 variable:
$ bash
$ echo $MYVAR
Typing bash spawned another copy of the
 bash shell. This child process is now our current environment, and as
 you can see from the blank line that ends the example, the variable
 MYVAR is not defined here. If we
 return to our parent process and export the variable, it becomes an
 environment variable that can be accessed in all child
 processes:
$ exit
$ export MYVAR
$ bash
$ echo $MYVAR
hello
Typing the export command without any
 arguments will display all of the exported environment variables
 available to your shell. The env command will accomplish the
 same thing, just with slightly different output.
Along the same lines are the bash built-in commands set and unset. The command
 set with no arguments will display of list of
 currently set environment variables. The command
 unset will allow you to clear the value of an
 environment variable (assuming it is not read-only). The
 set command also gives you the ability to change
 the way bash behaves. The following are some
 examples of using set to modify your interactive
 shell.
To change to vi-style editing mode:
$ set –o vi
This example automatically marks variables that are modified or
 created for export to the environment of subsequent commands:
$ set –o allexport
To view the current settings for the variables that
 set can modify, run set
 –o.

Entering commands at the command prompt

Commands issued to the shell on a Linux system generally consist
 of four components:
	A valid command (a shell built-in, program, or script found
 among directories listed in the PATH, or an explicitly defined
 program)

	Command options, usually preceded by a dash

	Arguments

	Line acceptance (i.e., pressing the Enter key), which we
 assume in the examples

Each command has its own unique syntax, although most follow a
 fairly standard form. At minimum, a command is
 necessary:
$ ls
This simple command lists the contents of the current working
 directory. It requires neither options nor arguments. Generally,
 options are letters or words
 preceded by a single or double dash and are added after the command and
 separated from it by a space:
$ ls -l
The -l option modifies the behavior of
 ls by listing files in a longer,
 more detailed format. In most cases, single-dash options can be either
 combined or specified separately. To illustrate this, consider these
 two equivalent commands:
$ ls -l -a
$ ls -la
By adding the -a option,
 ls displays files beginning with a dot (which it
 hides by default). Adding that option by specifying
 -la yields the same result. Some commands offer
 alternative forms for the same option. In the preceding example, the
 -a option
 can be replaced with --all:
$ ls -l --all
These double-dash, full-word options are frequently found in
 programs from the GNU project. They cannot be combined like the
 single-dash options can. Both types of options can be freely
 intermixed. Although the longer GNU-style options require more typing,
 they are easier to remember and easier to read in scripts than the
 single-letter options.
Adding an argument further refines the
 command’s behavior:
$ ls -l *.c
Now the command will give a detailed listing only of C program
 source files, if any exist in the current working directory.
Note
Using the asterisk in *.c allows any file
 to match as long as it ends with a .c
 extension. This is known as file globbing. More
 information on file globbing and using wildcards can be found later
 in this chapter.

Sometimes, options and arguments can be mixed in any
 order:
$ ls --all *.c -l
In this case, ls was able to determine that
 -l is an option and not another file descriptor.
Some commands, such as tar and ps, don’t require the dash
 preceding an option because at least one option is expected or
 required. To be specific, ps doesn’t require a
 dash when it is working like BSD’s version of ps.
 Since the Linux version of ps is designed to be
 as compatible as possible with various other versions of
 ps, it sometimes does need a dash to distinguish
 between conflicting options. As an example, try ps
 -e and ps e. The first version invokes
 a Linux-specific option that shows everyone’s processes, not just your
 own. The second version invokes the original BSD option that shows the
 environment variables available to each of your commands.
Also, an option often instructs the command that the subsequent
 item on the command line is a specific argument. For example:
$ sort name_list

$ sort –k 2 name_list
These commands invoke the sort command to sort the lines in
 the file name_list. The first
 command just sorts beginning with the first character of each line,
 whereas the second version adds the options -k 2. The -k option tells the command to break each
 line into fields (based on whitespace) and to sort the lines on a
 particular field. This option requires a following option to indicate
 which field to sort on. In this case, we have told
 sort to sort on the second field, which is useful
 if name_list contains people’s
 names in a “Joe Smith” format.
Just as any natural language contains exceptions and variations,
 so does the syntax used for GNU and Unix commands. You should have no
 trouble learning the essential
 syntax for the commands you need to use often. The capabilities of the
 command set offered on Linux are extensive, making it highly unlikely
 that you’ll memorize all of the command syntax you’ll ever need. Most
 system administrators are constantly learning about features they’ve
 never used in commands they use regularly. It is standard practice to
 regularly refer to the documentation on commands you’re using, so feel
 free to explore and learn as you go.

Entering commands not in the PATH

Occasionally, you will need to execute a command that is not in
 your path and not built into your shell. If this need arises often, it
 may be best to simply add the directory that contains the command to
 your path. However, there’s nothing wrong with explicitly specifying a
 command’s location and name completely. For example, the
 ls command is located in
 /bin. This directory is most certainly in your
 PATH variable (if not, it should be!), which
 allows you to enter the ls command by itself on
 the command line:
$ ls
The shell looks for an executable file named
 ls in each successive directory listed in your
 PATH variable and will execute the
 first one it finds. Specifying the literal pathname for the command
 eliminates the directory search and yields identical results:
$ /bin/ls
Any executable file on your system may be started in this way.
 However, it is important to remember that some programs may have
 requirements during execution about what is listed in your PATH. A program can be launched normally but
 may fail if it is unable to find a required resource due to an
 incomplete PATH.

Entering multiple-line commands interactively

In addition to its interactive capabilities, the shell
 also has a complete programming language of its own. Many programming
 features can be very handy at the interactive command line as well.
 Looping constructs, including for,
 until, and while, are often used this way. (Shell
 syntax is covered in more detail in Chapter 13.) When you begin
 a command such as these, which normally spans multiple lines,
 bash prompts you for the subsequent lines until a
 valid command has been completed. The prompt you receive in this case
 is stored in shell variable PS2, which by default is >. For example, if you wanted to
 repetitively execute a series of commands each time with a different
 argument from a known series, you could enter the following:
$ var1=1
$ var2=2
$ var3=3
$ echo $var1
1
$ echo $var2
2
$ echo $var2
3
Rather than entering each command manually, you can
 interactively use bash’s for loop construct to do the work for you.
 Note that indented style, such as what you might use in traditional
 programming, isn’t necessary when working interactively with the
 shell:
$ for var in $var1 $var2 $var3
> do
> echo $var
> done
1
2
3
You can also write this command on one line:
$ for var in $var1 $var2 $var3; do echo $var; done
1
2
3
The semicolons are necessary to separate the variables from the
 built-in bash functions.

Entering command sequences

There may be times when it is convenient to place
 multiple commands on a single line. Normally,
 bash assumes you have reached the end of a
 command (or the end of the first line of a multiple-line command) when
 you press Enter. To add more than one command to a single line,
 separate the commands and enter them sequentially with the command separator, a semicolon.
 Using this syntax, the following commands:
$ ls
$ ps
are, in essence, identical to and will yield the same result as
 the following single-line command that employs the command
 separator:
$ ls ; ps
On the Exam
Command syntax and the use of the command line are very
 important topics. Pay special attention to the use of options and
 arguments and how they are differentiated. Also be aware that some
 commands expect options to be preceded by a dash, whereas other commands do not. The LPI exams do
 not concentrate on command options, so don’t feel like you need to
 memorize every obscure option for every command before taking the
 exams.

Command History and Editing

If you consider interaction with the shell as a kind of
 conversation, it’s a natural extension to refer back to things
 “mentioned” previously. You may type a long and complex command that you
 want to repeat, or perhaps you need to execute a command multiple times
 with slight variation.
If you work interactively with the original Bourne shell,
 maintaining such a “conversation” can be a bit difficult. Each
 repetitive command must be entered explicitly, each mistake must be
 retyped, and if your commands scroll off the top of your screen, you
 have to recall them from memory. Modern shells such as
 bash include a significant feature set called
 command history, expansion,
 and editing. Using these capabilities, referring
 back to previous commands is painless, and your interactive shell
 session becomes much simpler and more effective.
The first part of this feature set is command history. When
 bash is run interactively, it provides access to a
 list of commands previously typed. The commands are stored in the
 history list prior to any interpretation by the
 shell. That is, they are stored before wildcards are expanded or command
 substitutions are made. The history list is controlled by the HISTSIZE shell variable. By default, HISTSIZE is set to 1,000 lines, but you can
 control that number by simply adjusting HISTSIZE’s value. In addition to commands
 entered in your current bash session, commands from
 previous bash sessions are stored by default in a
 file called ~/.bash_history (or the file named in
 the shell variable HISTFILE).
Note
If you use multiple shells in a windowed environment (as just
 about everyone does), the last shell to exit will write its history to
 ~/.bash_history. For this reason you may wish to
 use one shell invocation for most of your work.

To view your command history, use the bash
 built-in history command. A line number will
 precede each command. This line number may be used in subsequent
 history expansion. History expansion
 uses either a line number from the history or a portion of a previous
 command to re-execute that command. History expansion also allows a fair
 degree of command editing using syntax you’ll find in the
 bash documentation. Table 6-1 lists the basic
 history expansion designators. In each case, using the designator as a
 command causes a command from the history to be executed again.
Table 6-1. Command history expansion designators
	Designator
	Description

	!!
	Spoken as
 bang-bang, this command refers to the most
 recent command. The exclamation point is often called
 bang on Linux and Unix
 systems.

	!n
	Refer to command
 n from the history. Use the
 history command to display these
 numbers.

	!-n
	Refer to the current command minus
 n from the history.

	!string
	Refer to the most recent command
 starting with string.

	!?string
	Refer to the most recent command
 containing string.

	^string1^string2
	Quick substitution. Repeat the last
 command, replacing the first occurrence of
 string1 with
 string2.

While using history substitution can be useful for executing repetitive
 commands, command history editing is much more interactive. To envision
 the concept of command history editing, think of your entire
 bash history (including that obtained from your
 ~/.bash_history file) as the contents of an
 editor’s buffer. In this scenario, the current command prompt is the
 last line in an editing buffer, and all of the previous commands in your
 history lie above it. All of the typical editing features are available
 with command history editing, including movement within the “buffer,”
 searching, cutting, pasting, and so on. Once you’re used to using the
 command history in an editing style, everything you’ve done on the
 command line becomes available as retrievable, reusable text for
 subsequent commands. The more familiar you become with this concept, the
 more useful it can be.
By default, bash uses key bindings like those found in the
 Emacs editor for command history editing. (An editing style similar to
 the vi editor is also available.) If you’re
 familiar with Emacs, moving around in the command history will be
 familiar and very similar to working in an Emacs buffer. For example,
 the key command Ctrl-p (depicted as C-p) will move up one line in your command
 history, displaying your previous command and placing the cursor at the
 end of it. This same function is also bound to the up-arrow key. The
 opposite function is bound to C-n
 (and the down arrow). Together, these two key bindings allow you to
 examine your history line by line. You may re-execute any of the
 commands shown simply by pressing Enter when it is displayed. For the
 purposes of Exam 101, you’ll need to be familiar with this editing
 capability, but detailed knowledge is not required. Table 6-2 lists some of the
 common Emacs key bindings you may find useful in
 bash. Note that C- indicates the Ctrl key, and M- indicates the Meta key, which is usually Alt on PC keyboards (since PC
 keyboards do not actually have a Meta key).
Note
In circumstances where the Alt key is not available, such as on
 a terminal, using the Meta key means pressing the Escape (Esc) key,
 releasing it, and then pressing the defined key. The Esc key is not a
 modifier, but applications will accept the Esc key sequence as
 equivalent to the Meta key.

Table 6-2. Basic command history editing Emacs key bindings
	Key
	Description

	C-p
	Previous line (also up
 arrow)

	C-n
	Next line (also down
 arrow)

	C-b
	Back one character (also left
 arrow)

	C-f
	Forward one character (also right
 arrow)

	C-a
	Beginning of line

	C-e
	End of line

	C-l
	Clear the screen, leaving the current
 line at the top of the screen

	M-<
	Top of history

	M->
	Bottom of history

	C-d
	Delete character from
 right

	C-k
	Delete (kill) text from cursor to end
 of line

	C-y
	Paste (yank) text previously cut
 (killed)

	M-d
	Delete (kill) word

	C-rtext
	Reverse search for
 text

	C-stext
	Forward search for
 text

Command substitution

bash offers a handy ability to do
 command substitution. This feature allows you to
 replace the result of a command with a script. For example, wherever
 $(command) is found, its output will be substituted.
 This output could be assigned to a variable, as in the system
 information returned by the command uname
 –a:
$ SYSTEMSTRING=$(uname -a)
$ echo $SYSTEMSTRING
Linux linuxpc.oreilly.com 2.6.24.7-92.fc8 #1 SMP Wed May 7 16:50:09 \
EDT 2008 i686 athlon i386 GNU/Linux
Another form of command substitution is `command`. The result is the same, except that the
 back quote (or backtick)
 syntax has some special rules regarding metacharacters that the $(command) syntax avoids. Refer to the
 bash manual at http://www.gnu.org/software/bash/manual/ for more
 information.

Applying commands recursively through a directory tree

There are many times when it is necessary to execute commands
 recursively. That is, you may need
 to repeat a command throughout all the branches of a directory tree.
 Recursive execution is very useful but also can be dangerous. It gives
 a single interactive command the power to operate over a much broader
 range of your system than your current directory, and the appropriate
 caution is necessary. Think twice before using these capabilities,
 particularly when operating as the superuser.
Some of the GNU commands on Linux systems have built-in
 recursive capabilities as an option. For example, chmod modifies permissions on files
 in the current directory:
$ chmod g+w *.c
In this example, all files with the .c
 extension in the current directory are given the group-write
 permission. However, there may be a number of directories and files in
 hierarchies that require this change. chmod
 contains the -R option (note the uppercase option
 letter; you may also use --recursive), which
 instructs the command to operate not only on files and directories
 specified on the command line, but also on all files and directories
 contained beneath the specified directories. For
 example, this command gives the group-write permission to all files in
 a source-code tree named /home/adam/src:
$ chmod -R g+w /home/adam/src
Provided you have the correct privileges, this command will
 descend into each subdirectory in the src
 directory and add the requested permission to each file and directory
 it finds. Other example commands with this ability include cp (copy), ls (list files), and rm (remove files).
A more general approach to recursive execution through a
 directory is available by using the find command.
 find is inherently recursive and is intended to
 descend through directories executing commands or looking for files
 with certain attributes. At its simplest, find
 displays an entire directory hierarchy when you simply enter the
 command and provide a single argument of the target directory. If no
 options are given to find, it prints each file it
 finds, as if the option -print were
 specified:
$ find /home/adam/src
...files and directories are listed recursively...
As an example of a more specific use, add the
 -name option to search the same directories for C
 files (this can be done recursively with the ls
 command as well):
$ find /home/adam/src -name "*.c"
....c files are listed recursively...
find also can be used to execute commands
 against specific files by using the -exec option.
 The arguments following -exec are taken as a
 command to run on each find match. They must be
 terminated with a semicolon (;),
 which needs to be escaped
 (\;, for example) because it is a
 shell metacharacter. The string {}
 is replaced with the filename of the current match anywhere it is
 found in the command.
To take the previous example a little further, rather than
 execute chmod recursively against all files in
 the src directory, find can
 execute it against the C files only, like this:
$ find /home/adam/src -name "*.c" -exec chmod g+w {} \;
The find command is capable of much more
 than this simple example and can locate files with particular
 attributes such as dates, protections, file types, access times, and
 others. Although the syntax can be confusing, the results are worth
 some study of find.

Manpages

Traditional computer manuals covered everything from
 physical maintenance to programming libraries. Although the books were
 convenient, many users didn’t always want to dig through printed
 documentation or carry it around. So, as space became available, the
 man (manual)
 command was created to put the books on the system, giving users
 immediate access to the information they needed in a searchable, quick-reference format.
There is a manpage for most commands on your
 system. There are also manpages for important files, library functions,
 shells, languages, devices, and other features. man
 is to your system what a dictionary is to your written language. That
 is, nearly everything is defined in detail, but you probably need to
 know in advance just what you’re looking for.

Name
man

Syntax
man [options] [section] name

Description
Format and display system manual pages from
 section on the topic of
 name. If
 section is omitted, the first manpage
 found is displayed.

Frequently used options
	-a
	Normally, man exits after
 displaying a single manpage. The -a
 option instructs man to display all
 manpages that match name, in a
 sequential fashion.

	-d
	Display debugging information.

	-k
	Search for manpages containing a given string.

	-w
	Print the locations of manpages instead of displaying
 them.

Example 1
View a manpage for mkfifo:
$ man mkfifo
...
Results for the first manpage found are scrolled on the
 screen.

Example 2
Determine what manpages are available for
 mkfifo:
$ man -wa mkfifo
/usr/share/man/man1/mkfifo.1
/usr/share/man/man3/mkfifo.3
This shows that two manpages are available, one in section 1
 (mkfifo.1) of the manual and another in section
 3 (mkfifo.3). See the next section for a
 description of manpage sections.

Example 3
Display the mkfifo manpage from manual
 section 3:
$ man 3 mkfifo

Manual sections
Manpages are grouped into sections, and there are times
 when you should know the appropriate section in which to search for
 an item. For example, if you were interested in the
 mkfifo C-language function rather than the
 command, you must tell the man program to
 search the section on library functions (in this case, section 3,
 Linux Programmer’s Manual):
$ man 3 mkfifo
An alternative would be to have the man
 program search all manual sections:
$ man -a mkfifo
The first example returns the mkfifo(3)
 manpage regarding the library function. The second returns pages for
 both the command and the function. In this case, the pages are
 delivered separately; terminating the pager on the first manpage
 with Ctrl-C causes the second to be displayed.
Manual sections are detailed in Table 6-3.
Table 6-3. Man sections
	Section
	Description

	1
	User programs

	2
	System calls

	3
	Library calls

	4
	Special files (usually found in
 /dev)

	5
	File formats

	6
	Games

	7
	Miscellaneous

	8
	System
 administration

Note
Some systems might also have sections 9, n, and
 others, but only sections 1
 through 8 are defined by the
 FHS.

The order in which man searches the
 sections for manpages is controlled by the MANSECT environment variable. MANSECT contains a colon-separated list of
 section numbers. If it is not set, man (as of
 version 1.5k) behaves as if it were set to 1:8:2:3:4:5:6:7:9:tcl:n:l:p:o.

Manpage format
Most manpages are presented in a concise format with
 information grouped under well-known standard headings such as those
 shown in Table 6-4. Other manpage
 headings depend on the context of the individual manpage.
Table 6-4. Standard manpage headings
	Heading
	Description

	Name
	The name of the item, along with a
 description

	Synopsis
	A complete description of syntax
 or usage

	Description
	A brief description of the
 item

	Options
	Detailed information on each
 command-line option (for commands)

	Return values
	Information on function return
 values (for programming references)

	See also
	A list of related items that may
 be helpful

	Bugs
	Descriptions of unusual program
 behavior or known defects

	Files
	A list of important files related
 to the item, such as configuration files

	Copying or
 copyright
	A description of how the item is
 to be distributed or protected

	Authors
	A list of those who are
 responsible for the item

man mechanics
System manpages are stored mostly in
 /usr/share/man, but may exist in other places
 as well. At any time, the manual pages available to the
 man command are contained within directories
 configured in your man
 configuration file, /etc/man.config. This file
 contains directives to the man, telling it
 where to search for pages (the MANPATH directive), the paging program to
 use (PAGER), and many others.
 This file essentially controls how man works on
 your system. To observe this, use the debug
 (-d) option to man to
 watch as it constructs a manpath (a directory search list)
 and prepares to display your selection:
$ man -d mkfifo

Objective 2: Process Text Streams Using Filters

Many of the commands on Linux systems are intended to be
 used as filters, meaning that multiple commands can
 be piped together to perform complex operations on text. Text fed into the
 command’s standard input or read from files is modified in some useful way
 and sent to standard output or to a new file, leaving the original source
 file unmodified. Multiple commands can be combined to produce text streams, which modify text at each
 step. This section describes basic use and syntax for the filtering
 commands important for Exam 101. Refer to a Linux command reference for
 full details on each command and the many other available commands.

Name
cat

Syntax
cut options [files]

Description
Concatenate files and print on the standard output. Cat
 is often used as the first command in a text stream, as it simply
 sends the contents of a file (or multiple files) to the standard
 output.

Frequently used options
	-s
	Never output more than one single blank line.

	-v
	Display nonprinting characters (these usually are not
 displayed).

	-A
	Display nonprinting characters, display $ at the end of each line, and display
 Tab characters as ^I.

Example
Send the contents of the file /etc/passwd to the file /tmp/passwd:
$ cat /etc/passwd > /tmp/passwd

Name
cut

Syntax
cut options [files]

Description
Cut out (that is, print) selected columns or fields from
 one or more files. The source file is not
 changed. This is useful if you need quick access to a vertical
 slice of a file. By default, the slices are delimited by
 a Tab character.

Frequently used options
	-blist
	Print bytes in list
 positions.

	-clist
	Print characters in list
 columns.

	-ddelim
	Set field delimiter (default is ;).

	-flist
	Print list fields.

Example
Show usernames (in the first colon-delimited field) from
 /etc/passwd:
$ cut -d: -f1 /etc/passwd

Name
expand

Syntax
expand [options] [files]

Description
Convert Tabs to spaces. Sometimes the use of Tab characters can make output that is attractive on one
 output device look bad on another. This command eliminates Tabs and
 replaces them with the equivalent number of spaces. By default, Tabs
 are assumed to be eight spaces apart.

Frequently used options
	-tnumber
	Specify Tab stops in place of the default 8.

	-i
	Initial; convert only at start of lines.

Name
fmt

Syntax
fmt [options] [files]

Description
Format text to a specified width by filling lines and
 removing newline characters. Multiple
 files from the command line are
 concatenated.

Frequently used options
	-u
	Use uniform spacing: one space between words and two spaces between
 sentences.

	-w
 width
	Set line width to width. The
 default is 75 characters.

Name
head

Syntax
head [options] [files]

Description
Print the first few lines of one or more files (the
 “head” of the file or files). When more than one file is specified, a
 header is printed at the beginning of each file, and each is listed in
 succession.

Frequently used options
	-c n
	Print the first n bytes, or if
 n is followed by k or m, print the first
 n kilobytes or megabytes,
 respectively.

	-nn
	Print the first n lines. The
 default is 10.

Name
join

Syntax
join [options] file1 file2

Description
Print a line for each pair of input lines, one each from
 file1 and file2,
 that have identical join fields. This function could be
 thought of as a very simple database table join, where the two files
 share a common index just as two tables in a database would.

Frequently used options
	-j1field
	Join on field of
 file1.

	-j2field
	Join on field of
 file2.

	-jfield
	Join on field of both
 file1 and
 file2.

Example
Suppose file1 contains the
 following:
1 one
2 two
3 three
and file2 contains:
1 11
2 22
3 33
Issuing the command:
$ join -j 1 file1 file2
yields the following output:
1 one 11
2 two 22
3 three 33

Name
nl

Syntax
nl [options] [files]

Description
Number the lines of files,
 which are concatenated in the output. This command is used for
 numbering lines in the body of text, including special header and
 footer options normally excluded from the line numbering. The
 numbering is done for each logical page, which is defined as
 having a header, a body, and a footer. These are delimited by the
 special strings \:\:\:, \:\:, and \:, respectively.

Frequently used options
	-b
 style
	Set body numbering style to
 style, which is t by default (styles are described
 next).

	-f
 style
	Set footer number style to
 style (n by default).

	-h
 style
	Set header numbering style to
 style, (n by default).

Styles can be in these forms:
	A
	Number all lines.

	t
	Number only nonempty lines.

	n
	Do not number lines.

	pREGEXP
	Number only lines that contain a match for regular
 expression REGEXP.

Example
Suppose file file1 contains the following
 text:
\:\:\:
header
\:\:
line1
line2
line3
\:
footer
\:\:\:
header
\:\:
line1
line2
line3
\:
footer
If the following command is given:
$ nl -h a file1
the output would yield numbered headers and body lines but no
 numbering on footer lines. Each new header represents the beginning of
 a new logical page and thus a restart of the numbering
 sequence:
 1 header
 2 line1
 3 line2
 4 line3
footer
 1 header
 2 line1
 3 line2
 4 line3
footer

Name
od

Syntax
od [options] [files]

Description
Dump files in octal and other formats. This program
 prints a listing of a file’s contents in a variety of formats. It is
 often used to examine the byte codes of binary files but can be used
 on any file or input stream. Each line of output consists of an octal
 byte offset from the start of the file followed by a series of tokens
 indicating the contents of the file. Depending on the options
 specified, these tokens can be ASCII, decimal, hexadecimal, or octal
 representations of the contents.

Frequently used options
	-t
 type
	Specify the type of
 output.

Typical types include:
	A
	Named character

	c
	ASCII character or backslash escape

	O
	Octal (the default)

	x
	Hexadecimal

Example
If file1 contains:
a1\n
A1\n
where \n stands for the
 newline character, the od command specifying
 named characters yields the following output:
$ od -t a file1
00000000 a 1 nl A 1 nl
00000006
A slight nuance is the ASCII character mode. This
 od command specifying named characters yields the
 following output with backslash-escaped characters rather than named
 characters:
$ od -t c file1
00000000 a 1 \n A 1 \n
00000006
With numeric output formats, you can instruct
 od on how many bytes to use in interpreting each
 number in the data. To do this, follow the type specification by a
 decimal integer. This od command specifying
 single-byte hex results yields the following output:
$ od -t x1 file1
00000000 61 31 0a 41 31 0a
00000006
Doing the same thing in octal notation yields:
$ od -t o1 file1
00000000 141 061 012 101 061 012
00000006
If you examine an ASCII chart with hex and octal
 representations, you’ll see that these results match those
 tables.

Name
paste

Syntax
paste [options] [files]

Description
Paste together corresponding lines of one or more
 files into vertical columns. Similar in
 function to the join command, but simpler in
 scope.

Frequently used options
	-dn
	Separate columns with character
 n in place of the default Tab.

	-s
	Merge lines from one file into a single line. When
 multiple files are specified, their contents are placed on
 individual lines of output, one per file.

For the following three examples, file1
 contains:
1
2
3
and file2 contains:
A
B
C

Example 1
A simple paste creates columns from each
 file in standard output:
$ paste file1 file2
1 A
2 B
3 C

Example 2
The column separator option yields columns separated by the
 specified character:
$ paste -d'@' file1 file2
1@A
2@B
3@C

Example 3
The single-line option (-s) yields a line
 for each file:
$ paste -s file1 file2
1 2 3
A B C

Name
pr

Syntax
pr [options] [file]

Description
Convert a text file into a paginated, columnar version,
 with headers and page fills. This command is convenient for yielding
 nice output, such as for a line printer from raw, uninteresting text
 files. The header will consist of the date and time, the filename, and
 a page number.

Frequently used options
	-d
	Double space.

	-hheader
	Use header in place of the
 filename in the header.

	-llines
	Set page length to lines. The
 default is 66.

	-o
 width
	Set the left margin to
 width.

Name
sort

Syntax
sort [options] [files]

Description
Write input to stdout (standard
 out), sorted alphabetically.

Frequently used options
	-f
	Case-insensitive sort.

	-kPOS1[,POS2]
	Sort on the key starting at
 POS1 and (optionally) ending at
 POS2.

	-n
	Sort numerically.

	-r
	Sort in reverse order.

	-tSEP
	Use SEP as the key separator.
 The default is to use whitespace as the key separator.

Example
Sort all processes on the system by resident size (RSS in ps):
$ ps aux | sort -k 6 -n
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 2 0.0 0.0 0 0 ? SW Feb08 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SWN Feb08 0:00 [ksoftirqd_CPU0]
root 4 0.0 0.0 0 0 ? SW Feb08 0:01 [kswapd]
root 5 0.0 0.0 0 0 ? SW Feb08 0:00 [bdflush]
root 6 0.0 0.0 0 0 ? SW Feb08 0:00 [kupdated]
root 7 0.0 0.0 0 0 ? SW Feb08 0:00 [kjournald]
root 520 0.0 0.3 1340 392 tty0 S Feb08 0:00 /sbin/mingetty tt
root 335 0.0 0.3 1360 436 ? S Feb08 0:00 klogd -x
root 1 0.0 0.3 1372 480 ? S Feb08 0:18 init
daemon 468 0.0 0.3 1404 492 ? S Feb08 0:00 /usr/sbin/atd
root 330 0.0 0.4 1424 560 ? S Feb08 0:01 syslogd -m 0
root 454 0.0 0.4 1540 600 ? S Feb08 0:01 crond
root 3130 0.0 0.5 2584 664 pts/0 R 13:24 0:00 ps aux
root 402 0.0 0.6 2096 856 ? S Feb08 0:00 xinetd -stayalive
root 385 0.0 0.9 2624 1244 ? S Feb08 0:00 /usr/sbin/sshd
root 530 0.0 0.9 2248 1244 pts/0 S Feb08 0:01 -bash
root 3131 0.0 0.9 2248 1244 pts/0 R 13:24 0:00 -bash
root 420 0.0 1.3 4620 1648 ? S Feb08 0:51 sendmail: accepti
root 529 0.0 1.5 3624 1976 ? S Feb08 0:06 /usr/sbin/sshd

Name
split

Syntax
split [option] [infile] [outfile]

Description
Split infile into a specified
 number of line groups, with output going into a succession of files,
 outfileaa,
 outfileab, and so on (the default is
 xaa, xab, etc.). The
 infile remains unchanged. This command is
 handy if you have a very long text file that needs to be reduced to a
 succession of smaller files. This was often done to email large files
 in smaller chunks, because at one time it was considered bad practice
 to a send a single large email message.

Frequently used option
	-n
	Split the infile into
 n-line segments. The default is
 1,000.

Example
Suppose file1 contains:
1 one
2 two
3 three
4 four
5 five
6 six
Then the command:
$ split -2 file1 splitout_
yields as output three new files,
 splitout_aa, splitout_ab,
 and splitout_ac.
The file splitout_aa contains:
1 one
2 two
splitout_ab contains:
3 three
4 four
and splitout_ac contains:
5 five
6 six

Name
tac

Syntax
tac [file]

Description
This command is named as an opposite for the
 cat command, which simply prints text files to
 standard output. In this case, tac prints the
 text files to standard output with lines in reverse order.

Example
Suppose file1 contains:
1 one
2 two
3 three
Then the command:
$ tac file1
yields as output:
3 three
2 two
1 one

Name
tail

Syntax
tail [options] [files]

Description
Print the last few lines of one or more
 files (the “tail” of the file or files).
 When more than one file is specified, a header is printed at the
 beginning of each file, and each is listed in succession.

Frequently used options
	-cn
	This option prints the last n
 bytes, or if n is followed by
 k or m, the last
 n kilobytes or megabytes,
 respectively.

	-nm
	Prints the last m lines. The
 default is 10.

	-f
	Continuously display a file as it is actively written by
 another process (“follow” the file). This is useful for watching
 logfiles as the system runs.

Name
tr

Syntax
tr [options] [string1 [string2]]

Description
Translate characters from
 string1 to the corresponding characters in
 string2. tr does
 not have file arguments and therefore must use
 standard input and output.
Note that string1 and
 string2 should contain the same number of
 characters since the first character in
 string1 will be replaced with the first
 character in string2 and so on.
Either string1 or
 string2 can contain several types of
 special characters. Some examples follow, although a full list can be
 found in the tr manpage.
	a-z
	All characters from a to
 z.

	\\
	A backslash (\)
 character.

	\nnn
	The ASCII character with the octal value
 nnn.

	\x
	Various control characters:

\a bell
\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab

Frequently used options
	-c
	Use the complement of (or all characters
 not in)
 string1.

	-d
	Delete characters in string1
 from the output.

	-s
	Squeeze out repeated output characters in
 string1.

Example 1
To change all lowercase characters in file1 to
 uppercase, use:
$ cat file1 | tr a-z A-Z
or:
$ cat file1 | tr '[:lower:]' '[:upper:]'

Example 2
To suppress repeated whitespace characters from
 file1:
$ cat file1 | tr -s '[:blank:]'

Example 3
To remove all non-printable characters from file1
 (except the newline character):
$ cat file1 | tr -dc '[:print:]\n'

Name
unexpand

Syntax
unexpand [options] [files

Description
Convert spaces to Tabs. This command performs the opposite action of
 expand. By default, Tab stops are assumed to be
 every eight spaces.

Frequently used options
	-a
	Convert all spaces, not just leading spaces. Normally
 unexpand will work only on spaces at the
 beginning of each line of input. Using the
 -a option causes it to replace spaces
 anywhere in the input.
Note
This behavior of unexpand differs
 from expand. By default,
 expand converts all Tabs to spaces. It
 requires the -i option to convert only
 leading spaces.

	-t
 number
	Specify Tab stops in place of the default 8.

Name
uniq

Syntax
uniq [options] [input [output]]

Description
Writes input (or
 stdin) to output (or
 stdout), eliminating adjacent duplicate
 lines.
Since uniq works only on adjacent lines of
 its input, it is most often used in conjunction with
 sort.

Frequently used options
	-d
	Print only nonunique (repeating) lines.

	-u
	Print only unique (nonrepeating) lines.

Examples
Suppose file contains the following:
b
b
a
a
c
d
c
Issuing the command uniq with
 no options:
$ uniq file
yields the following output:
b
a
c
d
c
Notice that the line with c
 is repeated, since the duplicate lines were not adjacent in the input
 file. To eliminate duplicate lines regardless of where they appear in
 the input, use sort on the input
 first:
$ sort file | uniq
a
b
c
d
To print only lines that never repeat in the input, use the
 -u option:
$ sort file | uniq -u
d
To print only lines that do repeat in the
 input, use the -d option:
$ sort file | uniq -d
a
b
c

Name
wc

Syntax
wc [options] [files]

Description
Print counts of characters, words, and lines for
 files. When multiple files are listed,
 statistics for each file output on a separate line with a cumulative
 total output last.

Frequently used options
	-c
	Print the character count only.

	-l
	Print the line count only.

	-w
	Print the word count only.

Example 1
Show all counts and totals for file1,
 file2, and file3:
$ wc file[123]

Example 2
Count the number of lines in
 file1:
$ wc -l file1

Objective 3: Perform Basic File Management

This section covers basic file and directory management,
 including filesystems, files and directories, standard file management
 commands, their recursive capabilities (where applicable), and wildcard
 patterns (also known as file globbing).
Filesystem Objects

Nearly every operating system in history structures its
 collection of stored objects in a hierarchy, which is a tree of objects
 containing other objects. This hierarchy allows a sane organization of
 objects and allows identically named objects to appear in multiple
 locations, an essential feature for multiuser systems such as Linux.
 Information about each object in the filesystem is stored in a table
 (which itself is part of the filesystem), and each object is numbered
 uniquely within that table. Although there are a few special object types on Linux systems, the two most common are
 directories and files.
Directories and files

A directory is a container intended to hold objects such as
 files and other directories. A directory’s purpose is primarily for
 organization. A file, on the other hand, exists within the directory,
 and its purpose is to store raw data. At the top of all Linux
 filesystem hierarchies is a directory depicted simply by
 /; this is known as the root
 directory. Beneath / are named directories and
 files in an organized and well-defined tree. To describe these
 objects, you simply refer to them by name separated by the
 / character. For example, the object
 ls is an executable program stored in a directory
 called /bin under the root directory; it is
 depicted simply as /bin/ls.
Note
Don’t confuse root directory with the
 username root, which is separate
 and distinct. There’s also often a directory named /root for the
 root user. Keeping /,
 /root, and the root user
 straight in a conversation can be a challenge.

Inodes

The identification information for a filesystem object
 is known as its inode. Inodes carry information
 about objects, such as where they are located on disk, their
 modification time, security settings, and so forth. Each Linux
 ext3 filesystem is created with a finite number
 of inodes that is calculated based on the size of the filesystem and
 other options that are given to mke2fs (the
 command used to create an ext2 or ext3 filesystem on a partition).
 Multiple objects in the filesystem can share the same inode; this
 concept is called linking.

File and directory management commands

Once a hierarchy is defined, there is a never-ending need to
 manage the objects in the filesystem. Objects are constantly created,
 read, modified, copied, moved, and deleted, so wisely managing the
 filesystem is one of the most important tasks of a system
 administrator. In this section, we discuss the basic command-line
 utilities used for file and directory management. There are GUI tools for this task, but the LPI Level 1 exams only
 test on command-line tools, and although GUI tools are sometimes
 more intuitive, a good system administrator should always be always be
 able to administer his or her system from the command line.

File-Naming Wildcards (File Globbing)

When working with files on the command line, you’ll often
 run into situations in which you need to perform operations on many
 files at once. For example, if you are developing a C program, you may
 want to touch all of your .c
 files in order to be sure to recompile them the next time you issue the
 make utility to build your program. There will also
 be times when you need to move or delete all the files in a directory or
 at least a selected group of files. At other times, filenames may be
 long or difficult to type, and you’ll want to find an abbreviated
 alternative to typing the filenames for each command you issue (see
 Table 6-5).
To make these operations simpler, all shells on Linux offer
 file-naming wildcards.
Note
Wildcards are expanded by the shell, not by commands. When a
 command is entered with wildcards included, the shell first expands
 all the wildcards (and other types of expansion) and passes the full
 result on to the command. This process is invisible to you.

Rather than explicitly specifying every file or typing long
 filenames, you can use wildcard characters in place
 of portions of the filenames, and the shell can usually do the work for
 you. For example, the shell expands *.txt to a list
 of all the files that end in .txt. File wildcard
 constructs like this are called file globs, and
 their use is awkwardly called globbing. Using file
 globs to specify multiple files is certainly a convenience, and in many
 cases is required to get anything useful accomplished. Wildcards for
 shell globbing are listed in Table 6-5.
Table 6-5. Common file-naming wildcards
	Wildcard
	Description

	*
	Commonly thought to “match anything,”
 it actually will match zero or more characters (which includes
 “nothing”!). For example, x*
 matches files or directories x, xy, xyz,
 x.txt, xy.txt, xyz.c,
 and so on.

	?
	Match exactly one character. For
 example, x? matches files or
 directories xx, xy, xz, but not
 x and not xyz. The
 specification x?? matches
 xyz, but not x and
 xy.

	[characters]
	Match any single character from among
 characters listed between the
 brackets. For example, x[yz]
 matches xy and
 xz.

	[!characters]
	Match any single character other than
 characters listed between the
 brackets. For example, x[!yz]
 matches xa and x1 but
 does not match xy or
 xz.

	[a-z]
	Match any single character from among
 the range of characters listed between the brackets and
 indicated by the dash (the dash character is not matched). For
 example, x[0-9] matches
 x0 and x1, but does
 not match xx. Note that to match both
 upper- and lowercase letters (Linux filenames are
 case-sensitive), you specify [a-zA-Z]. Using x[a-zA-Z] matches
 xa and
 xA.

	[!a-z]
	Match any single character from among
 the characters not in the range listed between the
 brackets.

	{frag1,frag2,frag3,...}
	Create strings
 frag1,
 frag2,
 frag3, etc. For example, file_{one,two,three} yields the
 strings file_one,
 file_two, and
 file_three. This is a special
 operator named brace expansion that can be
 used to match filenames but isn’t specifically a file wildcard
 operator and does not examine directories for existing files to
 match. Instead, it will expand any
 string.
 For example, it can be used with
 echo to yield strings totally
 unrelated to existing filenames:
 $ echo string_{a,b,c}
string_a string_b string_c

A few examples of the useful things you can do with wildcards
 follow:
	If you remember part of a filename but not the whole thing,
 use wildcards with the portion you remember to help find the file.
 For example, if you’re working in a directory with a large number of
 files and you know you’re looking for a file named for Linux, you
 may enter a command like this:
$ ls -l *inux*

	When working with groups of related files, wildcards can be
 used to help separate the groups. For example, suppose you have a
 directory full of scripts you’ve written. Some are Perl scripts, for
 which you’ve used an extension of .pl, and some
 are Python, which have a .py extension. You may
 wish to separate them into new, separate directories for the two
 languages like this:
$ mkdir perl python
$ mv *.pl perl
$ mv *.py python

	Wildcards match directory names as well. Suppose you have a
 tree of directories starting with contracting,
 where you’ve created a directory for each month (that is,
 contracting/january,
 contracting/february, through
 contracting/december). In each of these
 directories are stored invoices, named simply invoice_custa_01.txt,
 invoice_custa_02.txt,
 invoice_custb_01.txt, and so on, where
 custa and
 custb are customer names of some form. To
 display all of the invoices, wildcards can be used:
$ ls con*/*/inv*.txt
The con* matches
 contracting. The second * matches all
 directories under the contracting directory
 (january through
 december). The last * matches all the customers
 and each invoice number for each customer.

See the bash manpages or info page for
 additional information on how bash handles
 expansions and on other expansion forms.

Name
bzip2

Syntax
bzip2 [options] [filenames ...]
bunzip2 [options] [filenames ...]

Description
Compress or uncompress files using the Burrows-Wheeler block sorting text compression
 algorithm and Huffman coding. bzip2 is
 generally considered one of the most efficient compression
 programs available for Linux systems. Files compressed with
 bzip2 usually have the
 extension .bz2.

Frequently used options
	-d
	Decompress a file. bzip2 –d is
 the same as bunzip2.

	-1 to
 -9
	Set the block size to 100k, 200k, 300k...900k when
 compressing. This essentially means that -1 compresses faster but leaves
 larger compressed files, whereas -9 compresses more slowly but
 results in smaller files.

Example 1
Compress the file /etc/largefile using the highest level
 of compression. It will be compressed and renamed /etc/largefile.bz2:
$ bzip2 -9 /etc/largefile

Example 2
Uncompress /etc/largefile.bz2. It will be
 uncompressed and renamed /etc/largefile:
$ bunzip2 /etc/largefile.bz2
or:
$ bzip2 -d /etc/largefile.bz2

Name
cp

Syntax
cp [options] file1 file2
cp [options] files directory

Description
In the first command form, copy
 file1 to
 file2. If
 file2 exists and you have appropriate
 privileges, it will be overwritten without warning (unless you use
 the -i option). Both
 file1 and
 file2 can be any valid filename, either
 fully qualified or in the local directory. In the second command
 form, copy files to
 directory. Note that the presence of
 multiple files implies that you wish to copy the files to a
 directory. If directory doesn’t exist,
 an error message will be printed. This command form can get you in
 trouble if you attempt to copy a single file into a directory that
 doesn’t exist, as the command will be interpreted as the first
 form and you’ll end up with file2
 instead of directory.

Frequently used options
	-f
	Force an overwrite of existing files in the
 destination.

	-i
	Prompt interactively before
 overwriting destination files. It is common practice (and
 advised) to alias the cp command to
 cp -i to prevent accidental overwrites.
 You may find that this is already done for you for the
 root user on your Linux system.

	-p
	Preserve all information,
 including owner, group, permissions, and timestamps. Without
 this option, the copied file or files will have the present
 date and time, default permissions, owner, and group.

	-r, -R
	Recursively copy
 directories. You may use either upper- or lowercase for this
 option. If file1 is actually a
 directory instead of a file and the recursive option is
 specified, file2 will be a copy
 of the entire hierarchy under directory
 file1.

	-v
	Display the name of each file verbosely before
 copying.

Example 1
Copy the messages file to the local directory (specified by
 .):
$ cp /var/log/messages .

Example 2
Make an identical copy, including preservation of file
 attributes, of directory src in new
 directory src2:
$ cp -Rp src src2
Copy file1, file2, file5, file6,
 and file7 from the local directory into
 your home directory (in bash):
$ cp file1 file2 file[567] ~
On the Exam
Be sure to know the difference between a file destination and a directory destination and
 how to force an overwrite of existing objects.

Name
cpio

Syntax
cpio –o [options] < [filenames ...] > [archive]
cpio –i < [archive]
cpio –p [destination-directory] < [filenames...]

Description
cpio is used to create and extract archives, or copy files from one
 place to another. No compression is done natively on
 these archives; you must employ gzip or
 bzip2 if you desire compression.

Frequently used options
	-o
	Copy-out mode. This mode is used to create an
 archive.

	-i
	Copy-in mode. This mode is used to copy files out of
 an archive.

	-p
	Copy-pass mode. Don’t create an archive; just copy
 files from one directory tree to another.

Example 1
Create an archive that contains all the files in the current
 working directory:
$ ls | cpio –ov > /tmp/archive.cpio
Notice that instead of passing files to archive to
 cpio on the command line, we had the
 ls command create a list of files for us,
 which we then send to the cpio command via
 standard input using the |
 (vertical bar) character.

Example 2
Extract all the files from the archive we just
 created:
$ cpio –iv < /tmp/archive.cpio

Name
dd

Syntax
dd [options]

Description
dd converts and copies files.
 It is one of the few commands in the Linux world that can operate
 directly on block devices, rather than requiring access through
 the filesystem layer. This is especially useful when performing
 backups of block devices, such as hard drive partitions, CD-ROMs,
 or floppy disks.

Frequently used options
	-if=file
	Read from file instead of
 standard input.

	-of=file
	Output to file instead of
 standard output.

	-ibs=n
	Read n bytes at a
 time.

	-obs=n
	Write n bytes at a
 time.

	-conv=list
	Perform the conversions defined in
 list.

Example 1
Create an image of the compact disc currently in the default
 CD drive (/dev/cdrom):
$ dd if=/dev/cdrom of=/tmp/cd.img

Example 2
Copy /tmp/file to
 /tmp/file2, converting all
 characters to lowercase:
$ dd if=/tmp/file of=/tmp/file2 conv=lcase

Name
file

Syntax
file [options] [file]

Description
file is designed to determine
 the kind of file being queried. Because Linux (and other Unix-like
 systems) don’t require filename extensions to determine the type
 of a file, the file command is useful when
 you’re unsure what kind of file you’re dealing with.
 file accomplishes this by performing three
 sets of tests on the file in question: filesystem tests, magic
 tests, and language tests. Filesystem tests involved examining the output of
 the “stat” system call. Magic tests are used to check for files with data in
 particular fixed formats. If neither of these tests results in a
 conclusive answer, a language test is performed to determine whether the
 file is some sort of text file.

Frequently used options
	-f
 namefile
	Read the names of the files to be examined from
 namefile (one per line) before
 the argument list.

	-z
	Try to look inside compressed files.

Example 1
Determine the file type of the currently running
 kernel:
$ file /boot/vmlinuz-2.6.27.29-170.2.78.fc10.i686
/boot/vmlinuz-2.6.27.29-170.2.78.fc10.i686: Linux kernel x86 boot executable \
 RO-rootFS, root_
0x902, swap_dev 0x2, Normal VGA

Example 2
Determine the file type of /etc/passwd:
$ file /etc/passwd
/etc/passwd: ASCII text

Name
find

Syntax
find [options] [path...] [expression]

Description
find searches
 recursively through directory trees for files or directories that
 match certain characteristics. find can then either print the file or
 directory that matches or perform other operations on the
 matches.

Frequently used options
	-mount
	Do not recursively descend through directories on
 mounted filesystems. This prevents find
 from doing a potentially very long search over an
 NFS-mounted share, for example.

	-maxdepth
 X
	Descend at most X levels of
 directories below the command-line arguments. –maxdepth 0 eliminates all
 recursion into subdirectories.

Example 1
Find all files in /tmp
 that end in .c and print them
 to standard out:
$ find /tmp –name "*.c"
The expression "*.c"
 means “all files that end in .c”. This is an example of file globbing and is explained
 in detail later in this Objective.

Example 2
Find files (and only files) in /tmp older than seven days. Do not
 recurse into subdirectories of /tmp:
$ find /tmp -maxdepth 1 -type f -daystart -ctime +7

Example 3
Find files in /usr that
 have the setuid permission bit
 set (mode 4000):
$ find /usr -perm -4000

Name
gzip and gunzip

Syntax
gzip [options] [filenames ...]
gunzip [options] [filenames ...]

Description
Compress or uncompress files using Lempel-Ziv coding.
 gzip is one of the most common compression
 formats found on Linux systems, although it is starting to be
 replaced by the more efficient bzip2. Files
 compressed with gzip usually
 have the extension .gz.
 Command-line options for gzip are very
 similar to those for bzip2.

Frequently used options
	-d
	Decompress a file. gzip -d is the
 same as gunzip.

	-r
	Travel the directory structure recursively. If any of
 the filenames specified on the command line are directories,
 gzip will descend into the directory
 and compress all the files it finds there (or decompress
 them in the case of gunzip).

Example 1
Compress the file /etc/largefile. It will be compressed
 and renamed /etc/largefile.gz:
$ gzip /etc/largefile

Example 2
Uncompress /etc/largefile.gz. It will be
 uncompressed and renamed /etc/largefile:
$ gunzip /etc/largefile.gz
or:
$ gzip -d /etc/largefile.gz

Name
mkdir

Syntax
mkdir [options] directories

Description
Create one or more
 directories. You must have write
 permission in the directory where
 directories are to be created.

Frequently used options
	-mmode
	Set the access rights in the octal format
 mode for
 directories.

	-p
	Create intervening parent directories if they don’t
 exist.

Examples
Create a read-only directory named
 personal:
$ mkdir -m 444 personal
Create a directory tree in your home directory, as indicated
 with a leading tilde (~), using a single
 command:
$ mkdir -p ~/dir1/dir2/dir3
In this case, all three directories are created. This is
 faster than creating each directory individually.
On the Exam
Verify your understanding of the tilde
 (~) shortcut for the home directory, and
 the shortcuts . (for the
 current directory) and ..
 (for the parent directory).

Name
mv

Syntax
mv [options] source target

Description
Move or rename files and directories. For
 targets on the same filesystem
 (partition), moving a file doesn’t relocate the contents of the
 file itself. Rather, the directory entry for the target is updated
 with the new location. For targets on
 different filesystems, such a change can’t be made, so files are
 copied to the target location and the original sources are
 deleted.
If a target file or directory does not exist,
 source is renamed to
 target. If a
 target file already exists, it is
 overwritten with source. If
 target is an existing directory,
 source is moved into that directory. If
 source is one or more files and
 target is a directory, the files are
 moved into the directory.

Frequently used options
	-f
	Force the move even if
 target exists, suppressing
 warning messages.

	-i
	Query interactively before moving files.

Name
rm

Syntax
rm [options] files

Description
Delete one or more files from the filesystem. To
 remove a file, you must have write permission in the directory
 that contains the file, but you do not need write permission on
 the file itself. The rm command also removes
 directories when the -d, -r, or
 -R option is used.

Frequently used options
	-d
	Remove directories even if they are not empty. This
 option is reserved for privileged users.

	-f
	Force removal of write-protected files without
 prompting.

	-i
	Query interactively before removing files.

	-r,-R
	If the file is a directory, recursively remove the
 entire directory and all of its contents, including
 subdirectories.

Name
rmdir

Syntax
rmdir [option] directories

Description
Delete directories, which
 must be empty.

Frequently used option
	-p
	Remove directories and any
 intervening parent directories that become empty as a
 result. This is useful for removing subdirectory trees.

On the Exam
Remember that recursive remove using rm –R
 removes directories too, even if they’re not empty. Beware the
 dreaded rm –Rf /, which will remove your
 entire filesystem!

Name
touch

Syntax
touch [options] files

Description
Change the access and/or modification times of
 files. This command is used to refresh
 timestamps on files. Doing so may be necessary, for
 example, to cause a program to be recompiled using the
 date-dependent make utility.

Frequently used options
	-a
	Change only the access time.

	-m
	Change only the modification time.

	-t
 timestamp
	Instead of the current time, use
 timestamp in the form of [[CC]YY]MMDDhhmm[.ss]. For
 example, the timestamp for January 12, 2001, at 6:45 p.m. is
 200101121845.

Objective 4: Use Streams, Pipes, and Redirects

Among the many beauties of Linux and Unix systems is the
 notion that everything is a file. Things such as disk
 drives and their partitions, tape drives, terminals, serial ports, the
 mouse, and even audio are mapped into the filesystem. This mapping allows
 programs to interact with many different devices and files in the same
 way, simplifying their interfaces. Each device that uses the file metaphor
 is given a device file, which is a special object
 in the filesystem that provides an interface to the device. The kernel
 associates device drivers with various device files, which is how the
 system manages the illusion that devices can be accessed as if they were
 files. Using a terminal as an example, a program reading from the
 terminal’s device file will receive characters typed at the keyboard.
 Writing to the terminal causes characters to appear on the screen.
 Although it may seem odd to think of your terminal as a file, the concept
 provides a unifying simplicity to Linux and Linux programming.
Standard I/O and Default File Descriptors

Standard I/O is a capability of the
 shell, used with all text-based Linux utilities to control and direct
 program input, output, and error information. When a program is
 launched, it is automatically provided with three file descriptors. File descriptors
 are regularly used in programming and serve as a “handle” of sorts to
 another file. We have mentioned these already in our discussion of text
 streams and “piping” together programs on the command line. Standard I/O
 creates the following file descriptors:
	Standard input (abbreviated stdin)
	This file descriptor is a text input stream. By default it
 is attached to your keyboard. When you type characters into an
 interactive text program, you are feeding them to standard input.
 As you’ve seen, some programs take one or more filenames as
 command-line arguments and ignore standard input. Standard input is also known as
 file descriptor 0.

	Standard output (abbreviated stdout)
	This file descriptor is a text output stream for normal
 program output. By default it is attached to your terminal (or
 terminal window). Output generated by commands is written to
 standard output for display. Standard output is also known as
 file descriptor 1.

	Standard error (abbreviated stderr)
	This file descriptor is also a text output stream, but it is
 used exclusively for errors or other information unrelated to the
 successful results of your command. By default, standard error is
 attached to your terminal just like standard output. This means
 that standard output and standard error are commingled in your
 display, which can be confusing. You’ll see ways to handle this
 later in this section. Standard error is also known as
 file descriptor 2.

Standard output and standard error are separated because it is
 often useful to process normal program output differently from
 errors.
The standard I/O file descriptors are used in the same way as
 those created during program execution to read and write disk files.
 They enable you to tie commands together with files and devices,
 managing command input and output in exactly the way you desire. The
 difference is that they are provided to the program by the shell by
 default and do not need to be explicitly created.

Pipes

From a program’s point of view there is no difference
 between reading text data from a file and reading it from your keyboard.
 Similarly, writing text to a file and writing text to a display are
 equivalent operations. As an extension of this idea, it is also possible
 to tie the output of one program to the input of another. This is
 accomplished using a pipe symbol (|) to join two or more commands together,
 which we have seen some examples of already in this chapter. For
 example:
$ grep "01523" order* | less
This command searches through all files whose names begin with
 order to find lines containing the
 word 01523. By creating this pipe,
 the standard output of grep is sent to the standard
 input of less. The mechanics of this operation are
 handled by the shell and are invisible to the user. Pipes can be used in
 a series of many commands. When more than two commands are put together,
 the resulting operation is known as a pipeline or text stream, implying the flow of
 text from one command to the next.
As you get used to the idea, you’ll find yourself building
 pipelines naturally to extract specific information from text data
 sources. For example, suppose you wish to view a sorted list of
 inode numbers from among the files in your current
 directory. There are many ways you could achieve this. One way would be
 to use awk in a pipeline to extract the inode
 number from the output of ls, then send it on to
 the sort command and finally to a pager for viewing
 (don’t worry about the syntax or function of these commands at this
 point):
$ ls -i * | awk '{print $1}' | sort -nu | less
The pipeline concept in particular is a feature of Linux and Unix
 that draws on the fact that your system contains a diverse set of tools
 for operating on text. Combining their capabilities can yield quick and
 easy ways to extract otherwise hard-to-handle information. This is
 embodied in the historical “Unix Philosophy”:
	Write programs that do one thing and do it well.

	Write programs to work together.

	Write programs to handle text streams, because that is a
 universal interface.

Redirection

Each pipe symbol in the previous pipeline example
 instructs the shell to feed output from one command into the input of
 another. This action is a special form of
 redirection, which allows you to manage the origin
 of input streams and the destination of output streams. In the previous
 example, individual programs are unaware that their output is being
 handed off to or from another program because the shell takes care of
 the redirection on their behalf.
Redirection can also occur to and from files. For example, rather
 than sending the output of an inode list to the pager
 less, it could easily be sent directly to a file
 with the > redirection
 operator:
$ ls -i * | awk '{print $1}' | sort -nu > in.txt
When you change the last redirection operator, the shell creates
 an empty file (in.txt) and opens it for writing,
 and the standard output of sort places the results
 in the file instead of on the screen. Note that, in this example,
 anything sent to standard error is still displayed on the screen. In
 addition, if your specified file, in.txt, already existed in your current
 directory, it would be overwritten.
Since the > redirection
 operator creates files, the >> redirection
 operator can be used to append to existing files. For example, you could use the
 following command to append a one-line footnote to
 in.txt:
$ echo "end of list" >> in.txt
Since in.txt already exists, the quote will
 be appended to the bottom of the existing file. If the file didn’t
 exist, the >> operator would
 create the file and insert the text “end of list” as its
 contents.
It is important to note that when creating files, the output redirection operators are interpreted by the shell
 before the commands are executed. This means that
 any output files created through redirection are opened first. For this
 reason you cannot modify a file in place, like this:
$ grep "stuff" file1 > file1
If file1 contains something of importance,
 this command would be a disaster because an empty
 file1 would overwrite the original. The grep command would be last to
 execute, resulting in a complete data loss from the original
 file1 file because the file that replaced it was
 empty. To avoid this problem, simply use an intermediate file and
 then rename it:
$ grep "stuff" file1 > file2
$ mv file2 file1
Standard input can also be redirected, using the redirection operator <. Using a source other than the keyboard
 for a program’s input may seem odd at first, but since text programs
 don’t care about where their standard input streams originate, you can
 easily redirect input. For example, the following command will send a
 mail message with the contents of the file
 in.txt to user jdean:
$ mail -s "inode list" jdean < in.txt
Normally, the mail program prompts the user
 for input at the terminal. However, with standard input redirected
 from the file in.txt, no user
 input is needed and the command executes silently. Table 6-6
 lists the common standard I/O redirections for the
 bash shell, specified in the LPI Objectives.
Table 6-6. Standard I/O redirections for the bash shell
	Redirection function
	Syntax for bash

	Send stdout to
 file.
	$ cmd > file
$ cmd 1> file

	Send stderr to
 file.
	$ cmd 2> file

	Send both stdout
 and stderr to
 file.
	$ cmd > file 2>&1

	Send stdout to
 file1 and stderr
 to file2.
	$ cmd > file1 2> file2

	Receive stdin
 from file.
	$ cmd < file

	Append stdout to
 file.
	$ cmd >> file
$ cmd 1>> file

	Append stderr to
 file.
	$ cmd 2>> file

	Append both
 stdout and stderr to
 file.
	$ cmd >> file 2>&1

	Pipe stdout from
 cmd1 to
 cmd2.
	$ cmd1 | cmd2

	Pipe stdout and
 stderr from cmd1
 to cmd2.
	$ cmd1 2>&1 | cmd2

On the Exam
Be prepared to demonstrate the difference between filenames and
 command names in commands using redirection operators. Also, check the
 syntax on commands in redirection questions to be sure about which
 command or file is a data source and which is a destination.

Using the tee Command

Sometimes you’ll want to run a program and send its output to a
 file while at the same time viewing the output on the screen. The
 tee utility is helpful in this
 situation.

The xargs Command

Sometimes you need to pass a list of items to a command that is
 longer than your shell can handle. In these situations, the xargs command can be used to break
 down the list into smaller sublists.

Name
tee

Syntax
tee [options] files

Description
Read from standard input and write both to one or more
 files and to standard output (analogous
 to a tee junction in a pipe).

Option
	-a
	Append to files rather than
 overwriting them.

Example
Suppose you’re running a pipeline of commands
 cmd1, cmd2, and
 cmd3:
$ cmd1 | cmd2 | cmd3 > file1
This sequence puts the ultimate output of the pipeline into
 file1. However, you may also be interested in
 the intermediate result of cmd1. To create a
 new file_cmd1 containing those results, use
 tee:
$ cmd1 | tee file_cmd1 | cmd2 | cmd3 > file1
The results in file1 will be the same as
 in the original example, and the intermediate results of
 cmd1 will be placed in
 file_cmd1.

Name
xargs

Syntax
xargs [options] [command] [initial-arguments]

Description
Execute command followed by its
 optional initial-arguments and append
 additional arguments found on standard input. Typically, the
 additional arguments are filenames in quantities too large for a
 single command line. xargs runs
 command multiple times to exhaust all
 arguments on standard input.

Frequently used options
	-n
 maxargs
	Limit the number of additional arguments to
 maxargs for each invocation of
 command.

	-p
	Interactive mode. Prompt the user for each execution of
 command.

Example
Use grep to search a long list of files,
 one by one, for the word “linux”:
$ find / -type f | xargs -n 1 grep -H linux
find searches for normal files
 (-type f) starting at the root directory.
 xargs executes grep once
 for each of them due to the -n 1 option.
 grep will print the matching line preceded by
 the filename where the match occurred (due to the
 -H option).

Objective 5: Create, Monitor, and Kill Processes

This Objective looks at the management of
 processes. Just as file management is a fundamental
 system administrator’s function, the management and control of processes
 is also essential for smooth system operation. In most cases, processes
 will live, execute, and die without intervention from the user because
 they are automatically managed by the kernel. However, there are times
 when a process will die for some unknown reason and need to be restarted.
 Or a process may “run wild” and consume system resources, requiring that
 it be terminated. You will also need to instruct running processes to
 perform operations, such as rereading a configuration file.
Processes

Every program, whether it’s a command, application, or
 script, that runs on your system is a process. Your
 shell is a process, and every command you execute from the shell starts
 one or more processes of its own (referred to as child processes). Attributes and
 concepts associated with these processes include:
	Lifetime
	A process lifetime is defined by the length of time
 it takes to execute (while it “lives”). Commands with a short
 lifetime such as ls will execute for a very
 short time, generate results, and terminate when complete. User
 programs such as web browsers have a longer lifetime, running for
 unlimited periods of time until terminated manually. Long-lifetime
 processes include server daemons that run continuously from system
 boot to shutdown. When a process terminates, it is said to
 die (which is why the program used to
 manually signal a process to stop execution is called kill; succinct, though
 admittedly morbid).

	Process ID (PID)
	Every process has a number assigned to it when it
 starts. PIDs are integer numbers unique among all running
 processes.

	User ID (UID) and Group ID (GID)
	Processes must have associated privileges, and a
 process’s UID and GID are associated with the user who started the
 process. This limits the process’s access to objects in the
 filesystem.

	Parent process
	The first process started by the kernel at system start time
 is a program called init. This process has PID 1
 and is the ultimate parent of all other processes on the system.
 Your shell is a descendant of init and the
 parent process to commands started by the shell, which are its
 child processes, or subprocesses.

	Parent process ID (PPID)
	This is the PID of the process that created the
 process in question.

	Environment
	Each process holds a list of variables and their associated
 values. Collectively, this list is known as the
 environment of the process, and the variables
 are called environment variables. Child
 processes inherit their environment settings from the parent
 process unless an alternative environment is specified when the
 program is executed.

	Current working directory
	The default directory associated with each process.
 The process will read and write files in this directory unless
 they are explicitly specified to be elsewhere in the
 filesystem.

On the Exam
The parent/child relationship of the processes on a Linux
 system is important. Be sure to understand how these relationships
 work and how to view them. Note that the init
 process always has PID 1 and is the ultimate ancestor of all system
 processes (hence the nickname “mother of all processes”). Also
 remember the fact that if a parent process is killed, all its children
 (subprocesses) die as well.

Process Monitoring

At any time, there could be tens or even hundreds of
 processes running together on your Linux system. Monitoring these
 processes is done using three convenient utilities:
 ps, pstree, and
 top.

Signaling Active Processes

Each process running on your system listens for
 signals, simple messages sent to the process either
 by the kernel or by a user. The messages are sent through inter-process
 communication. They are single-valued, in that they don’t contain
 strings or command-like constructs.
 Instead, signals are numeric integer messages, predefined and known by
 processes. Most have an implied action for the process to take. When a
 process receives a signal, it can (or may be forced to) take
 action.
For example, if you are executing a program from the command line
 that appears to hang, you may elect to type Ctrl-C to abort the program. This action actually sends an
 SIGINT (interrupt signal) to the process, telling
 it to stop running.
There are more than 32 signals defined for normal process use in
 Linux. Each signal has a name and a number (the number is sent to the
 process; the name is only for our convenience). Many signals are used by
 the kernel, and some are useful for users. Table 6-7 lists popular signals
 for interactive use.
Table 6-7. Frequently used interactive signals
	Signal name[a]
	Number
	Meaning and use

	HUP
	1
	Hang up. This signal is sent
 automatically when you log out or disconnect a modem. It is also
 used by many daemons to cause the configuration file to be
 reread without stopping the daemon process. Useful for things
 like an httpd server that normally reads
 its configuration file only when the process is started. A
 SIGHUP signal will force it to reread the
 configuration file without the downtime of restarting the
 process.

	INT
	2
	Interrupt; stop running. This signal
 is sent when you type Ctrl-C.

	KILL
	9
	Kill; stop unconditionally and
 immediately. Sending this signal is a drastic measure, as it
 cannot be ignored by the process. This is the “emergency kill”
 signal.

	TERM
	15
	Terminate, nicely if possible. This
 signal is used to ask a process to exit gracefully, after its
 file handles are closed and its current processing is
 complete.

	TSTP
	20
	Stop executing, ready to continue.
 This signal is sent when you type Ctrl-Z. (See the later section “Shell Job Control” for more
 information.)

	CONT
	18
	Continue execution. This signal is
 sent to start a process stopped by SIGTSTP or SIGSTOP. (The shell sends this signal
 when you use the fg or
 bg commands after stopping a process with
 Ctrl-Z.)

	[a] Signal names often will be specified with a SIG
 prefix. That is, signal HUP is the same as signal
 SIGHUP.

As you can see from Table 6-7, some signals are
 invoked by pressing well-known key combinations such as Ctrl-C and
 Ctrl-Z. You can also use the kill command to send any message to a
 running process. The kill command is implemented
 both as a shell built-in command and as a standalone binary command. For
 a complete list of signals that processes can be sent, refer to the file
 /usr/include/bits/signum.h on your
 Linux install, which normally is installed with the
 glibc-headers package.

Terminating Processes

Occasionally, you’ll find a system showing symptoms of
 high CPU load or one that runs out of memory for no obvious reason. This
 often means an application has gone out of control on your system. You
 can use ps or top to identify processes that may be
 having a problem. Once you know the PID for the process, you can use the
 kill command to stop the process nicely with
 SIGTERM (kill
 -15 PID), escalating the signal to
 higher strengths if necessary until the process terminates.
Note
Occasionally you may see a process displayed by
 ps or top that is listed as
 a zombie. These are processes that
 are stuck while trying to terminate and are appropriately said to be
 in the zombie state. Just as in the cult classic
 film Night of the Living Dead, you can’t kill
 zombies, because they’re already dead!
If you have a recurring problem with zombies, there may be a bug
 in your system software or in an application.

Killing a process will also kill all of its child processes. For
 example, killing a shell will kill all the processes initiated from that
 shell, including other shells.

Shell Job Control

Linux and most modern Unix systems offer job
 control, which is the ability of your shell (with support of
 the kernel) to stop and restart executing commands, as well as place
 them in the background where they can be
 executed. A program is said to be in the foreground when it is attached to
 your terminal. When executing in the background, you have no input to
 the process other than sending it signals. When a process is put in the
 background, you create a job. Each job is assigned
 a job number, starting at 1 and numbering sequentially.
The basic reason to create a background process is to keep your
 shell session free. There are many instances when a long-running program
 will never produce a result from standard output or standard error, and
 your shell will simply sit idle waiting for the program to finish.
 Noninteractive programs can be placed in the
 background by adding a & character to the command. For example,
 if you start firefox from the command
 line, you don’t want the shell to sit and wait for it to terminate. The
 shell will respond by starting the web browser in the background and
 will give you a new command prompt. It will also issue the job number,
 denoted in square brackets, along with the PID. For example:
$ /usr/bin/firefox &
[1] 1748
Here, firefox is started as a
 background process. Firefox is assigned to job 1 (as denoted by [1]), and is assigned PID 1748. If you start a program and forget the
 & character, you can still put it
 in the background by first typing Ctrl-Z to stop it:
^Z
[1]+ Stopped firefox
Then, issue the bg command to restart the job
 in the background:
$ bg
[1]+ /usr/bin/firefox &
When you exit from a shell with jobs in the background, those
 processes may die. The utility nohup can be used to protect the
 background processes from the hangup signal
 (SIGHUP) that it might otherwise receive when the
 shell dies. This can be used to simulate the detached behavior of a
 system daemon.
Putting interactive programs in the background can be quite
 useful. Suppose you’re logged into a remote Linux system, running Emacs
 in text mode. Rather than exit from the editor when you need to drop
 back to the shell, you can simply press Ctrl-Z. This stops
 Emacs, puts it in the background, and returns you to a command prompt.
 When you are finished, you resume your Emacs session with the
 fg command, which puts your stopped job back into
 the foreground.
Background jobs and their status can be listed by issuing the
 jobs command. Stopped jobs can be
 brought to the foreground with the fg command and
 optionally placed into the background with the Ctrl-Z and bg sequence.

Name
ps

Syntax
ps [options]

Description
This command generates a one-time snapshot of the
 current processes on standard output.

Frequently used options
	-a
	Show processes that are owned by other users and
 attached to a terminal. Normally, only the current user’s
 processes are shown.

	-f
	“Full-format” listing. This option prints command
 arguments in addition to the command itself.

	-l
	Long format, which includes priority, parent PID, and
 other information.

	-u
	User format, which includes usernames and the start time
 of processes.

	-w
	Wide output format, used to eliminate the default output
 line truncation. Specify it twice (-ww)
 for unlimited width.

	-x
	Include processes without controlling terminals. Often
 needed to see daemon processes and others not started from a
 terminal session.

	-C
 cmd
	Display instances of command name
 cmd.

	-U
 user
	Display processes owned by username
 user.

Examples
Simply entering the ps command with no
 options will yield a brief list of processes owned by you and
 attached to your terminal:
$ ps
Use the -a, -u, and
 -x options to include processes owned by others
 and not attached to terminals as well as to display them in the
 “user” mode. The command is valid with or without the dash:
$ ps -aux
$ ps aux
In this case, the dash is optional. However, certain
 ps options require the dash. (See the manpage
 for details.)
If you are interested in finding process information on a
 particular command, use the -C option. This
 command displays all web server processes:
$ ps u -C httpd
You’ll note that the -C option
 requires the dash, but the
 u option won’t work with it if a dash is
 included. This confusion exists because the ps
 command as implemented on Linux understands options in three
 differing forms:
	Unix98 options
	These may be grouped and must be preceded by a
 dash.

	BSD options
	These may be grouped and must not
 be used with a dash.

	GNU long options
	These options are preceded by two dashes.

Note
The Linux ps tries to be compatible
 with ps from various other systems. How it
 interprets various command-line options, which determines how
 compatible it is with other versions of ps,
 can be controlled by setting I_WANT_A_BROKEN_PS, PS_PERSONALITY, and various other
 environment variables. See the ps manpage for
 details.

All of these option types may be freely intermixed. Instead of
 the -C option, you may wish to use
 ps with other options that you usually use and
 pipe the output to grep, searching for process
 names, PIDs, or anything else you know about the process:
$ ps aux | grep httpd
In this case, the result would be the same list of
 httpd servers, as well as the
 grep command itself.

Name
pstree

Syntax
pstree [options] [pid|user]

Description
This command displays a hierarchical list of processes
 in a tree format. pstree is very handy for
 understanding how parent/child process relationships are set up.
If the PID is specified, the displayed tree is rooted at that
 process. Otherwise, it is rooted at the init process, which has PID 1. If
 user (a valid username) is specified,
 trees for all processes owned by user are
 shown. The tree is represented using characters that appear as
 lines, such as | for vertical
 lines and + for intersections
 (VT100 line-drawing characters, displayed as solid lines by most
 terminals, are optional). The output looks similar to this:
httpd-+-httpd
 |-httpd
 |-httpd
 |-httpd
 '-httpd
By default, visually identical branches of the tree are merged
 to reduce output. Merged lines are preceded by a count indicating
 the actual number of similar processes. The preceding example is
 normally displayed on a single line:
httpd---5*[httpd]
This behavior can be turned off with the
 -c option.

Frequently used options
	-a
	Display command-line arguments used to launch
 processes.

	-c
	Disable the compaction of identical subtrees.

	-G
	Use the VT100 line-drawing characters instead of plain
 characters to display the tree. This yields a much more
 pleasing display but may not be appropriate for printing or
 paging programs.

	-h
	Highlight the ancestry of the current process (usually
 the shell). The terminal must support highlighting for this
 option to be meaningful.

	-n
	The default sort order for processes with the same
 parent is alphanumerically by name. This option changes this
 behavior to a numeric sort by PID.

	-p
	Include PIDs in the output.

Example
Display a process tree including PIDs:
pstree -p
init(1)-+-atd(468)
 |-bdflush(5)
 |-crond(454)
 |-httpd(440)-+-httpd(450)
 | |-httpd(451)
 | |-httpd(452)
 | |-httpd(453)
 | |-httpd(455)
 | |-httpd(456)
 | |-httpd(457)
 | '-httpd(458)
 |-keventd(2)
 |-kjournald(7)
 |-klogd(335)
 |-ksoftirqd_CPU0(3)
 |-kswapd(4)
 |-kupdated(6)
 |-login(475)---bash(478)---pstree(518)
 |-sendmail(420)
 |-sshd(385)
 |-syslogd(330)
 '-xinetd(402)

Name
top

Syntax
top [options]

Description
The top command offers output
 similar to ps, but in a continuously updated
 display. This is useful for situations in which you need to watch
 the status of one or more processes or to see how they are using
 your system.
In addition, a header of useful uptime, load, CPU status, and
 memory information is displayed. By default, the process status
 output is generated with the most CPU-intensive processes at the top
 of the listing (and is named for the “top” processes). To format the
 screen, top must understand how to control the
 terminal display. The type of terminal (or terminal window) in use
 is stored in the environment variable TERM. If this variable is not set or
 contains an unknown terminal type, top may not
 execute.

Popular command-line options
Dashes are optional in top
 options:
	-b
	Run in batch mode. This is useful for sending output
 from top to other programs or to a file.
 It executes the number of iterations specified with the
 -n option and terminates. This option is
 also useful if top cannot display on the
 terminal type you are using.

	-d
 delay
	Specify the delay in seconds
 between screen updates. The default is five seconds.

	-i
	Ignore idle processes, listing only the “interesting”
 ones taking system resources.

	-n
 num
	Display num iterations and
 then exit, instead of running indefinitely.

	-q
	Run with no delay. If the user is the superuser, run
 with highest possible priority. This option causes
 top to update continuously and will
 probably consume any idle time your CPU had. Running
 top -q as superuser will seriously affect
 system performance and is not recommended.

	-s
	Run in secure mode. Some of top’s
 interactive commands can be dangerous if running as the
 superuser. This option disables them.

Frequently used interactive options
Once top is running interactively, it can
 be given a number of commands via the keyboard to change its
 behavior. These commands are single-key commands, some of which
 cause top to prompt for input:
	spacebar
	Refresh the screen.

	h
	Generate a help screen.

	k
	Kill a process. You will be prompted for the PID of the
 process and the signal to send it. (The default signal is 15,
 SIGTERM.) See Terminating Processes.

	n
	Change the number of processes to show. You will be
 prompted to enter an integer number. The default is 0, which
 indicates that the screen should be filled.

	q
	Quit the program.

	r
	Change the priority of a process
 (renice). You will be prompted for the
 PID of the process and the value to nice it to (see
 nice and renice in
 Objective 6: Modify Process Execution Priorities).
 Entering a positive value causes a process to lose priority.
 If the superuser is running top, a
 negative value may be entered, causing a process to get a
 higher than normal priority. This command is not available in
 secure mode.

	s
	Change the delay in seconds between updates. You will be
 prompted for the delay value, which may include fractions of
 seconds (e.g., 0.5).

Example 1
Simply executing top without options
 gives a full status display updated every five seconds:
$ top
Use the q command to quit.

Example 2
To run top with a faster refresh rate,
 use the interval option, specified here with a one-second
 refresh:
$ top -d 1

Example 3
You may wish to use top to log its output
 to a file. Use the -b (batch) option for this
 purpose. In this batch example, the -i option
 eliminates idle processes, the -n option, with
 its argument, indicates five iterations, and the
 -d option indicates a one-second interval.
 Results will be redirected to file1. This
 command will take five seconds to execute and does not use the
 optional dashes:
$ top –bi -n 5 -d 1 > file1
The single-key interactive commands can be used when
 top is running interactively. For example, if
 you type the h command,
 top displays a help screen. If you enter the
 n command, top prompts you
 for the number of lines you wish to display.
Using top to change the
 nice (priority modifier) value for a process is
 discussed in Objective 6: Modify Process Execution Priorities.

Name
free

Syntax
free [options]

Description
Display amount of free and used memory in the
 system.

Frequently used options
	-b
	Show memory usage in bytes.

	-k
	Show memory usage in kilobytes.

	-m
	Show memory usage in megabytes.

	-t
	Display a line showing totals.

	-s
 X
	Continuous operation at X
 second intervals.

Example
Display current memory usage in megabytes and display a total
 line:
$ free –tm
 total used free shared buffers cached
Mem: 2023 1874 149 0 77 1089
-/+ buffers/cache: 707 1316
Swap: 4031 351 3680
Total: 6055 2225 3830
This tells me that I have 2,023 megabytes of system memory (2
 gigabytes) and 4,031 megabytes (about 4 gigabytes) of swap space.
 I’m currently using 1,874 megabytes of memory, leaving 149
 free.

Name
uptime

Syntax
uptime

Description
uptime gives a one-line display
 of the following information: the current time, how long the system
 has been running, how many users are currently logged on, and the
 system load averages for the past 1, 5, and 15 minutes.

Examples
$ uptime
13:17:57 up 214 days, 2:52, 4 users, load average: 0.09, 0.03, 0.01
Load average on a Linux system is defined as the number of
 blocking processes in the run queue averaged over a certain time
 period. A blocking process is a process that is waiting on a
 resource to continue, usually the CPU, disk I/O, or network. Many
 processes waiting in the run queue will drive up the load average of
 your system. It’s not uncommon to see a load average over 1; that
 just means for the designated time interval (1, 5 or 15 minutes)
 there was an average of at least one process waiting on resources in
 the run queue. This is usually indicative of a busy system and might
 not necessarily mean anything is amiss. However, high load averages
 will negatively affect system performance, so it’s always a good
 idea to be aware of what is causing them. Here is the uptime output
 of a relatively busy web server:
$ uptime
1:20pm up 3 days 15:49, 1 user, load average: 1.47, 1.10, 0.83

Name
kill

Syntax
kill [-s sigspec | -sigspec] [pids]
kill -l [signum]

Description
In the first form, kill is used
 with an optional sigspec. This is a
 signal value, specified as either an integer or the signal name
 (such as SIGHUP, or simply
 HUP). The sigspec is
 case-insensitive but is usually specified with uppercase letters.
 The bash built-in kill is
 case-insensitive, both when using the
 -ssigspec and the
 -sigspec forms, but the standalone
 kill is only case-insensitive in the
 -ssigspec form. For
 this reason, it is best to use uppercase signal names. You may use
 -ssigspec
 or simply -sigspec to
 make up the signal value or name. If a
 sigspec is not given, then
 SIGTERM (signal 15, “exit gracefully”) is
 assumed. The sigspec is followed by one
 or more PIDS to which the signal is to be sent. In the second form
 with the -l option, kill
 lists the valid signal names. If signum
 (an integer) is present, only the signal name for that number will
 be displayed.

Examples
This command displays the signal name
 SIGTERM, the name of signal 15, and the default
 when kill is used to signal processes:
$ kill -l 15
TERM
All of the following commands will send
 SIGTERM to the processes with PIDs 1000 and
 1001:
$ kill 1000 1001
$ kill -15 1000 1001
$ kill -SIGTERM 1000 1001
$ kill -sigterm 1000 1001
$ kill -TERM 1000 1001
$ kill -s 15 1000 1001
$ kill -s SIGTERM 1000 1001
If those two processes are playing nicely on your system,
 they’ll comply with the SIGTERM signal and
 terminate when they’re ready (after they clean up whatever they’re
 doing). Not all processes will comply, however. A process may be
 hung in such a way that it cannot respond, or it may have signal handling code written to
 trap the signal you’re trying to send. To force a process to die,
 use the strongest kill:
$ kill -9 1000 1001s
$ kill -KILL 1000 1001
These equivalent commands send the KILL
 signal to the process, which the process cannot ignore. The process
 will terminate immediately without closing files or performing any
 other cleanup. Because this may leave the program’s data in an
 inconsistent state, using the KILL signal
 should be a last resort. When a process is blocked waiting for I/O,
 such as trying to write to an unavailable NFS server or waiting for
 a tape device to complete rewinding, the KILL
 signal may not work. See below.
The httpd daemon will respond to the
 HUP signal by rereading its configuration
 files. If you’ve made changes and want httpd to
 reconfigure itself, send it the HUP
 signal:
$ kill -HUP 'cat /var/run/httpd.pid'
Many other daemons respond to SIGHUP this
 way.
The back quotes are replaced by the shell with the contents of
 the file httpd.pid, which
 httpd creates when it starts.
Other programs allow you to send signals to processes without
 indicating their PID. killall will send a signal to all
 processes that match a given name, and killproc will send a signal to
 all process that match a full pathname.
On the Exam
Note that kill is used for sending all
 kinds of signals, not just termination signals. Also, be aware of
 the difference between the PID you intend to kill and the signal
 you wish to send it. Since they’re both integers, they can
 sometimes be confused.

Name
bg

Syntax
bg [jobspec]

Description
Place jobspec in the
 background, as if it had been started with &. If
 jobspec is not present, then the shell’s
 notion of the current job is used, as indicated
 by the plus sign (+) in output
 from the jobs command. Using this command on a
 job that is stopped will allow it to run in the background.

Name
fg

Syntax
fg [jobspec]

Description
This command places the specified job in the
 foreground, making it the current job. If
 jobspec is not present, the shell’s
 notion of the current job is used.

Name
jobs

Syntax
jobs [options] [jobspecs]

Description
List the active jobs. The optional
 jobspecs argument restricts output to
 information about those jobs.

Frequently used option
	-l
	Also list PIDs.

Name
nohup

Syntax
nohup [options] [command] [args...]

Description
Run a command immune to hangups, with output to a non-TTY
 terminal.

Example 1
Run the command /opt/bin/myscript.sh in the background,
 with standard output and standard error redirected to nohup.out:
$ nohup /opt/bin/myscript.sh &
[1] 12611
On the Exam
Be sure to know how to display background jobs and how to switch among
 them.

Objective 6: Modify Process Execution Priorities

Part of Linux’s flexibility is to let users and
 administrators prioritize process execution. This feature is handy when
 you have a high-load machine and want to make sure special processes (like
 yours!) get more rights to use system resources than others. It also is
 useful if you have a process that’s gone haywire and you want to debug the
 problem prior to killing it. On the flip side, you can bury nonessential
 processes, giving them the lowest priority so they don’t ever conflict
 with other processes.
Generally, on a day-to-day basis, you don’t need to worry about
 execution priority, because the kernel handles it automatically. Each
 process’s priority level is constantly and dynamically raised and lowered
 by the kernel according to a number of parameters, such as how much system
 time it has already consumed and its status (perhaps waiting for I/O; such
 processes are favored by the kernel). Linux gives you the ability to bias
 the kernel’s priority algorithm, favoring certain processes over
 others.
The priority of a process can be determined by examining the PRI
 column in the results produced from issuing either the
 top or ps -l commands. The
 values displayed are relative; the higher the priority number, the more
 CPU time the kernel offers to the process. The kernel does this by
 managing a queue of processes. Those with high priority are given more
 time, and those with low priority are given less time. On a heavily loaded
 system, a process with a very low priority may appear stalled.
nice

One of the parameters used by the kernel to assign process
 priority is supplied by the user and is called a nice number. The
 nice command[1] is used to assign a priority number to the process. It is
 so named because it normally causes programs to execute with lower
 priority levels than their default. Thus, the process is being “nice” to
 other processes on the system by yielding CPU time. With this scheme,
 more “niceness” implies a lower priority, and less niceness implies a
 higher priority.
By default, user processes are created with a nice
 number of zero. Positive numbers lower the priority relative
 to other processes, and negative numbers raise it. For example, if you
 have a long-running utility and don’t want to impact interactive
 performance, a positive nice number will lower the job’s priority and
 improve interactive performance.
Nice numbers range from –20 to +19. Any user can start a process
 with a positive nice number, but only the superuser (root) can lower a process’s nice number and
 thus raise its priority. Remember, the lower the nice number, the higher
 the priority to the CPU.

[1] Some shells, not including bash, have a
 built-in nice command.

Name
nice

Syntax
nice [-n adjustment] [command]
nice [-adjustment] [command]

Description
The nice command alters another process’s
 nice number at start time. For normal users,
 adjustment is an integer from 1 to 19. If
 you’re the superuser, the adjustment
 range is from –20 to 19. If an adjustment
 number is not specified, the process’s nice number defaults to 10.
 The command consists
 of any command that you might enter on the command line, including
 all options, arguments, redirections, and the background character
 &.
If both adjustment and
 command are omitted,
 nice displays the current scheduling priority,
 which is inherited.

Example 1
The following command starts a program in the background with
 reduced priority, using the default nice number of 10:
$ nice somecmd -opt1 -opt2 arg1 arg2 &

Example 2
As superuser, you can start programs with elevated priority.
 These equivalent commands start the vi editor with a higher priority,
 which may be necessary for administrative purposes if the system is
 exceptionally slow:
nice --10 vi /etc/hosts.deny
nice -n -10 vi /etc/hosts.deny
Note the double dash (--10)
 in the first form. The first dash indicates that an option follows,
 whereas the second dash indicates a negative number.
Be careful when using nice on interactive
 programs such as editors, word processors, or browsers. Assigning a
 program a positive nice number will most likely result in sluggish
 performance. Remember, the higher the positive number, the lower the
 resulting priority level.
For that reason, you should try not to assign positive nice
 numbers to foreground jobs on your terminal. If the system gets
 busy, your terminal could hang awaiting CPU time, which has been
 sacrificed by nice.

Changing nice numbers on running processes
The nice command works to change the nice
 number for new processes only at the time that they’re started. To
 modify a running program, use the renice
 command.

Name
renice

Syntax
renice [+|-]nicenumber [option] targets

Description
Alter the nicenumber to set
 the scheduling priority of one or more running
 target processes. By default,
 renice assumes that the
 targets are numeric PIDs. One or more
 options may also be used to interpret
 targets as processes owned by specific
 users.

Frequently used options
	-u
	Interpret targets as
 usernames, affecting all processes owned by those
 users.

	-p
	Interpret targets as PIDs
 (the default).

Examples
This command will lower the priority of the process with PID
 501 by increasing its nice number to the maximum:
$ renice 20 501
The following command can be used to increase the priority of
 all of user adamh’s processes as well as the
 process with PID 501:
renice -10 -u adamh -p 501
In this command, -10
 indicates a nice value of negative 10, thus giving PID 501 a higher
 priority on the system. A dash isn’t used for the nice value,
 because the dash could be confused for an option, such as
 -u.
On the Exam
Be sure to know the range and meaning of nice numbers and
 how to change them for new and existing processes. Also note that
 nice and renice specify
 their numbers differently. With nice, a
 leading dash can indicate a nice number (e.g., -10), including a negative one with a
 second dash (e.g., --10). On
 the other hand, renice does not need the
 dash.

You can renice processes interactively using
 top’s text interface by using the
 single-keystroke r command. You will be
 prompted for the PID of the process whose nice number you wish to
 change and for the new nice number. If you are the superuser, you
 can enter negative values. The new nice number will be displayed by
 top in the column labeled
 NI for the process you
 specify.

Objective 7: Search Text Files Using Regular Expressions

Linux offers many tools for system administrators to use for
 processing text. Many, such as sed, awk, and
 perl, are capable of automatically editing multiple
 files, providing you with a wide range of text-processing capability. To
 harness that capability, you need to be able to define and delineate
 specific text segments from within files, text streams, and string
 variables. Once the text you’re after is identified, you can use one of
 these tools or languages to do useful things to it.
These tools and others understand a loosely defined pattern
 language. The language and the patterns themselves are collectively called
 regular expressions (often abbreviated just regexp or
 regex). Regular expressions are similar in concept to
 file globs, but many more special characters exist for regular
 expressions, extending the utility and capability of tools that understand
 them.
Two tools that are important for the LPIC Level 1 exams and that
 make use of regular expressions are grep and sed. These tools are useful for text
 searches. There are many other tools that make use of regular expressions,
 including the awk, Perl, and Python languages and
 other utilities, but you don’t need to be concerned with them for the
 purpose of the LPIC Level 1 exams.
Regular expressions are the topic of entire books, such as
 Mastering Regular
 Expressions (O’Reilly). Exam 101 requires the use of
 simple regular expressions and related tools, specifically to perform
 searches from text sources. This section covers only the basics of regular
 expressions, but it goes without saying that their power warrants a full
 understanding. Digging deeper into the regular expression world is highly
 recommended in your quest to become an accomplished Linux system
 administrator.
Regular Expression Syntax

It would not be unreasonable to assume that some
 specification defines how regular expressions are constructed.
 Unfortunately, there isn’t one. Regular expressions have been
 incorporated as a feature in a number of tools over the years, with
 varying degrees of consistency and completeness. The result is a
 cart-before-the-horse scenario, in which utilities and languages have
 defined their own flavor of regular expression syntax, each with its own
 extensions and idiosyncrasies. Formally defining the regular expression
 syntax came later, as did efforts to make it more consistent. Regular
 expressions are defined by arranging strings of text, or patterns. Those patterns are composed
 of two types of characters, literals (plain text or literal text)
 and metacharacters.
Like the special file globbing characters, regular
 expression metacharacters take on a special meaning in the context of
 the tool in which they’re used. There are a few metacharacters that are
 generally thought of to be among the “extended set” of metacharacters,
 specifically those introduced into egrep after grep
 was created.
The egrep command on Linux systems is simply
 a wrapper that runs grep -E, informing
 grep to use its extended regular expression
 capabilities instead of the basic ones. Examples of metacharacters
 include the ^ symbol, which means
 “the beginning of a line,” and the $
 symbol, which means “the end of a line.” A complete listing of
 metacharacters follows in Tables 6-8 through 6-11.
Note
The backslash character (\) turns off (escapes) the special meaning
 of the character that follows, turning metacharacters into literals.
 For nonmetacharacters, it often turns on some special meaning.

Table 6-8. Regular expression position anchors
	Regular expression
	Description

	^
	Match at the beginning of a line. This
 interpretation makes sense only when the ^ character is at the lefthand side of
 the regex.

	$
	Match at the end of a line. This interpretation
 makes sense only when the $
 character is at the righthand side of the
 regex.

	\<\>
	Match word boundaries. Word boundaries are defined
 as whitespace, the start of line, the end of line, or
 punctuation marks. The backslashes are required and enable this
 interpretation of < and
 >.

Table 6-9. Regular expression POSIX character classes
	Character class
	Description

	[:alnum:]
	Alphanumeric
 [a-zA-Z0-9]

	[:alpha:]
	Alphabetic [a-zA-Z]

	[:blank:]
	Spaces or Tabs

	[:cntrl:]
	Control characters

	[:digit:]
	Numeric digits [0-9]

	[:graph:]
	Any visible characters

	[:lower:]
	Lowercase [a-z]

	[:print:]
	Noncontrol characters

	[:punct:]
	Punctuation characters

	[:space:]
	Whitespace

	[:upper:]
	Uppercase [A-Z]

	[:xdigit:]
	Hex digits [0-9a-fA-F]

Table 6-10. Regular expression character sets
	Regular expression
	Description

	[abc][a-z]
	Single-character groups and ranges. In
 the first form, match any single character from among the
 enclosed characters a,
 b, or c. In the second form, match any
 single character from among the range of characters bounded by
 a and z (POSIX character classes can also be
 used, so [a-z] can be
 replaced with [[:lower:]]).
 The brackets are for grouping only and are not matched themselves.

	[^abc][^a-z]
	Inverse match. Match any single
 character not among the enclosed characters a, b, and c or in the range a-z. Be careful not to confuse this
 inversion with the anchor character ^, described earlier.

	.
	Match any single character except a
 newline.

Table 6-11. Regular expression modifiers
	Basic regular expression
	Extended regular expression
 (egrep)
	Description

	*
	*
	Match an unknown number (zero or more) of the
 single character (or single-character
 regex) that precedes
 it.

	\?
	?
	Match zero or one instance of the preceding
 regex.

	\+
	+
	Match one or more instances of the preceding
 regex.

	\{n,m\}
	{n,m}
	Match a range of occurrences of the
 single character or regex that
 precedes this construct. \{n\} matches
 n occurrences, \{n,\} matches at least
 n occurrences, and \{n,m\} matches any number of occurrences
 from n to
 m, inclusively.

	\|
	|
	Alternation. Match either the
 regex specified before or after the
 vertical bar.

	\(regex\)
	(regex)
	Grouping. Matches
 regex, but it can be modified as a
 whole and used in back-references. (\1 expands to the contents of the
 first \(\), and so on, up to
 \9.)

It is often helpful to consider regular expressions as their own
 language, where literal text acts as words and phrases. The “grammar” of
 the language is defined by the use of metacharacters. The two are
 combined according to specific rules (which, as mentioned earlier, may
 differ slightly among various tools) to communicate ideas and get real
 work done. When you construct regular expressions, you use
 metacharacters and literals to specify three basic ideas about your
 input text:
	Position anchors
	A position anchor is used to specify the position of
 one or more character sets in relation to the entire line of text
 (such as the beginning of a line).

	Character sets
	A character set matches text. It could be a series
 of literals, metacharacters that match individual or multiple
 characters, or combinations of these.

	Quantity modifiers
	Quantity modifiers follow a character set and
 indicate the number of times the set should be repeated.

Using grep

A long time ago, as the idea of regular expressions was
 catching on, the line editor ed
 contained a command to display lines of a file being edited that matched
 a given regular expression. The command is:
g/regular expression/p
That is, “on a global basis, print the current line when a match
 for regular expression is found,” or more
 simply, “global regular expression print.” This
 function was so useful that it was made into a standalone utility named,
 appropriately, grep. Later, the regular expression
 grammar of grep was expanded in a new command
 called egrep (for “extended
 grep”). You’ll find both commands on your Linux
 system today, and they differ slightly in the way they handle regular
 expressions. For the purposes of Exam 101, we’ll stick with
 grep, which can also make use of the “extended”
 regular expressions when used with the -E option.
 You will find some form of grep on just about every
 Unix or Unix-like system available.

Using sed

sed, the stream
 editor, is a powerful filtering program found on nearly every
 Unix system. The sed utility is usually used either
 to automate repetitive editing tasks or to process text in pipes of Unix
 commands (see “Objective 4: Use
 Streams, Pipes, and Redirects,” earlier in this chapter). The
 scripts that sed executes can be single commands or
 more complex lists of editing instructions.

Examples

Now that the gory details are out of the way, here are some
 examples of simple regular expression usage that you may find
 useful.

Name
grep

Syntax
grep [options] regex [files]

Description
Search files or standard input for
 lines containing a match to regular expression
 regex. By default, matching lines will be
 displayed and nonmatching lines will not be displayed. When multiple
 files are specified, grep displays the filename
 as a prefix to the output lines (use the -h option to
 suppress filename prefixes).

Frequently used options
	-c
	Display only a count of matched lines, but not the lines
 themselves.

	-h
	Display matched lines, but do not include filenames for
 multiple file input.

	-i
	Ignore uppercase and lowercase distinctions, allowing
 abc to match both abc and ABC.

	-n
	Display matched lines prefixed with their line numbers.
 When used with multiple files, both the
 filename and line number are prefixed.

	-v
	Print all lines that do not match
 regex. This is an important and
 useful option. You’ll want to use regular expressions not only
 to select information but also to
 eliminate information. Using
 -v inverts the output this way.

	-E
	Interpret regex as an
 extended regular expression. This makes
 grep behave as if it were
 egrep.

Examples
Since regular expressions can contain both metacharacters and
 literals, grep can be used with an entirely
 literal regex. For example, to find all
 lines in file1 that contain either
 Linux or linux, you could
 use grep like this:
$ grep -i linux file1
In this example, the regex is
 simply linux. The uppercase
 L in Linux will match since the command-line
 option -i was specified. This is fine for
 literal expressions that are common. However, in situations in which
 regex includes regular expression
 metacharacters that are also shell special characters (such as
 $ or *), the regex
 must be quoted to prevent shell expansion and pass the
 metacharacters on to grep.
As a simplistic example of this, suppose you have files in
 your local directory named abc,
 abc1, and abc2. When
 combined with bash’s echo
 built-in command, the abc*
 wildcard expression lists all files that begin with abc, as follows:
$ echo abc*
abc abc1 abc2
Now, suppose that these files contain lines with the strings
 abc, abcc, abccc, and so on, and you wish to use
 grep to find them. You can use the shell
 wildcard expression abc* to
 expand to all the files that start with abc as displayed with
 echo in the previous example, and you’d use an
 identical regular expression abc*
 to find all occurrences of lines containing abc, abcc, abccc, etc. Without using quotes to
 prevent shell expansion, the command would be:
$ grep abc* abc*
After shell expansion, this yields:
grep abc abc1 abc2 abc abc1 abc2 no!
This is not what you intended!
 grep would search for the literal expression
 abc, because it appears as the
 first command argument. Instead, quote the regular expression with
 single or double quotes to protect it (the difference between single
 quotes and double quotes on the command line is subtle and is
 explained later in this section):
$ grep 'abc*' abc*
or:
$ grep "abc*" abc*
After expansion, both examples yield the same results:
grep abc* abc abc1 abc2
Now this is what you’re after. The three files
 abc, abc1, and
 abc2 will be searched for the regular
 expression abc*. It is good to
 stay in the habit of quoting regular expressions on the command line
 to avoid these problems; they won’t be at all obvious, because the
 shell expansion is invisible to you unless you use the echo command.
On the Exam
The use of grep and its options is
 common. You should be familiar with what each option does, as well
 as the concept of piping the results of other commands into
 grep for matching.

Name
sed

Syntax
sed [options] 'command1' [files]
sed [options] -e 'command1' [-e 'command2'...] [files]
sed [options] -f script [files]

Description
The first form invokes sed with a
 one-line command1. The second form
 invokes sed with two (or more) commands. Note
 that in this case the -e parameter is required
 for each command specified. The commands are specified in quotes to
 prevent the shell from interpreting and expanding them. The last
 form instructs sed to take editing commands
 from file script (which does not need to
 be executable). In all cases, if files
 are not specified, input is taken from standard input. If multiple
 files are specified, the edited output of
 each successive file is concatenated.

Frequently used options
	-e
 cmd
	The -e option specifies that the
 next argument (cmd) is a
 sed command (or a series of commands).
 When specifying only one string of commands, the
 -e is optional.

	-f
 file
	file is a
 sed script.

	-g
	Treat all substitutions as global.

The sed utility operates on text through
 the use of addresses and editing commands. The address is
 used to locate lines of text to be operated on, and editing commands
 modify text. During operation, each line (that is, text separated by
 newline characters) of input to sed is
 processed individually and without regard to adjacent lines. If
 multiple editing commands are to be used (through the use of a
 script file or multiple -e options), they are
 all applied in order to each line before moving on to the next
 line.

Addressing
Addresses in sed locate lines of text to
 which commands will be applied. The addresses can be:
	A line number (note that sed counts
 lines continuously across multiple input files). The symbol
 $ can be used to indicate the
 last line of input. A range of line numbers can be given by
 separating the starting and ending lines with a comma
 (start,end). So,
 for example, the address for all input would be 1,$.

	A regular expression delimited by forward slashes
 (/regex/).

	A line number with an interval. The form is
 n~s, where
 n is the starting line number and
 s is the step, or interval, to apply.
 For example, to match every odd line in the input, the address
 specification would be 1~2
 (start at line 1 and match every two lines thereafter). This
 feature is a GNU extension to sed.

If no address is given, commands are applied to all input
 lines by default. Any address may be followed by the ! character,
 applying commands to lines that do not match
 the address.

Commands
The sed command immediately
 follows the address specification if present. Commands generally
 consist of a single letter or symbol, unless they have arguments.
 Following are some basic sed
 editing commands to get you started.
	d
	Delete lines.

	s
	Make substitutions. This is a very popular
 sed command. The syntax is as
 follows:
s/pattern/replacement/[flags]
The following flags can be
 specified for the s
 command:
	g
	Replace all instances of
 pattern, not just the
 first.

	n
	Replace nth instance of
 pattern; the default is
 1.

	p
	Print the line if a successful substitution is
 done. Generally used with the -n
 command-line
 option.

	w
 file
	Print the line to file
 if a successful substitution is done.

	y
	Translate characters. This command works in a
 fashion similar to the tr command,
 described earlier.

Example 1
Delete lines 3 through 5 of file1:
$ sed '3,5d' file1

Example 2
Delete lines of file1 that contain a
 # at the beginning of the
 line:
$ sed '/^#/d' file1

Example 3
Translate characters:
y/abc/xyz/
Every instance of a is
 translated to x, b to y,
 and c to z.

Example 4
Write the @ symbol for all
 empty lines in file1 (that is, lines with only
 a newline character but nothing more):
$ sed 's/^$/@/' file1

Example 5
Remove all double quotation marks from all lines in
 file1:
$ sed 's/"//g' file1

Example 6
Using sed commands from external file
 sedcmds, replace the third and fourth double
 quotation marks with (and
) on lines 1 through 10 in
 file1. Make no changes from line 11 to the end
 of the file. Script file sedcmds
 contains:
1,10{
s/"/(/3
s/"/)/4
}
The command is executed using the -f
 option:
$ sed -f sedcmds file1
This example employs the positional flag for the s (substitute) command. The first of the
 two commands substitutes (for
 the third double-quote character. The next command substitutes
) for the fourth double-quote
 character. Note, however, that the position count is interpreted
 independently for each subsequent command in
 the script. This is important because each command operates on the
 results of the commands preceding it. In this example, since the
 third double quote has been replaced with (, it is no longer counted as a double
 quote by the second command. Thus, the second command will operate
 on the fifth double quote character in the
 original file1. If the input line starts out
 with the following:
""""""
after the first command, which operates on the third double
 quote, the result is this:
""("""
At this point, the numbering of the double-quote characters
 has changed, and the fourth double quote in the line is now the
 fifth character. Thus, after the second command executes, the output
 is as follows:
""(")"
As you can see, creating scripts with sed requires that the sequential nature of
 the command execution be kept in mind.
If you find yourself making repetitive changes to many files
 on a regular basis, a sed script
 is probably warranted. Many more commands are available in sed than are listed here.

Name
Anchors

Description
Anchors are used to describe position information.
 Table 6-8, shown
 earlier, lists anchor characters.

Example 1
Display all lines from file1
 where the string Linux appears at
 the start of the line:
$ grep '^Linux' file1

Example 2
Display lines in file1 where the last
 character is an x:
$ grep 'x$' file1
Display the number of empty lines in
 file1 by finding lines with nothing between the
 beginning and the end:
$ grep -c '^$' file1
Display all lines from file1 containing
 only the word null by
 itself:
$ grep '^null$' file1

Name
Groups and ranges

Description
Characters can be placed into groups and ranges to
 make regular expressions more efficient, as shown in Table 6-10, previously.

Example 1
Display all lines from file1 containing
 Linux, linux, TurboLinux, and so on:
$ grep '[Ll]inux' file1

Example 2
Display all lines from file1 that contain
 three adjacent digits:
$ grep '[0-9][0-9][0-9]' file1

Example 3
Display all lines from file1 beginning
 with any single character other than a digit:
$ grep '^[^0-9]' file1

Example 4
Display all lines from file1 that contain
 the whole word Linux or linux, but not LinuxOS or TurboLinux:
$ grep '\<[Ll]inux\>' file1

Example 5
Display all lines from file1 with five or
 more characters on a line (excluding the newline character):
$ grep '.....' file1

Example 6
Display all nonblank lines from file1
 (i.e., that have at least one character):
$ grep '.' file1

Example 7
Display all lines from file1 that contain
 a period (normally a metacharacter) using an escape:
$ grep '\.' file1

Name
Modifiers

Description
Modifiers change the meaning of other characters in a
 regular expression. Table 6-11,
 shown previously, lists these modifiers.

Example 1
Display all lines from file1 that contain
 ab, abc, abcc, abccc, and so on:
$ grep 'abc*' file1

Example 2
Display all lines from file1 that contain
 abc, abcc, abccc, and so on, but not ab:
$ grep 'abcc*' file1

Example 3
Display all lines from file1 that contain
 two or more adjacent digits:
$ grep '[0-9][0-9][0-9]*' file1
or:
$ grep '[0-9]\{2,\}' file1

Example 4
Display lines from file1 that contain
 file (because ? can match zero occurrences), file1, or file2:
$ grep 'file[12]\?' file1

Example 5
Display all lines from file1 containing
 at least one digit:
$ grep '[0-9]\+' file1

Example 6
Display all lines from file1 that contain
 111, 1111, or 11111 on a line by itself:
$ grep '^1\{3,5\}$' file1

Example 7
Display all lines from file1 that contain
 any three-, four-, or five-digit number:
$ grep '\<[0-9]\{3,5\}\>' file1

Example 8
Display all lines from file1 that contain
 Happy, happy, Sad, sad, Angry, or angry:
$ grep -E '[Hh]appy|[Ss]ad|[Aa]ngry' file1

Example 9
Display all lines of file that contain
 any repeated sequence of abc
 (abcabc, abcabcabc, and so on):
$ grep '\(abc\)\{2,\}' file
You may find it useful to employ the GNU option
 --color to grep when
 working with regular expressions. It prints the section of the
 string that matched your regular expression in a different color, so
 you can see exactly what grep was looking
 for.

Name
Basic regular expression patterns

Example 1
Match any letter:
[A-Za-z]

Example 2
Match any symbol (not a letter or digit):
[^0-9A-Za-z]

Example 3
Match an uppercase letter, followed by zero or more lowercase
 letters:
[A-Z][a-z]*

Example 4
Match a U.S. Social Security Number (123-45-6789) by
 specifying groups of three, two, and four digits separated by
 dashes:
[0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}

Example 5
Match a dollar amount, using an escaped dollar sign, zero or
 more spaces or digits, an escaped period, and two more
 digits:
\$[0-9]*\.[0-9]\{2\}

Example 6
Match the month of June and its abbreviation, Jun. The question mark matches zero or one
 instance of the e:
June\?
On the Exam
Make certain you are clear about the difference between
 file globbing and the use of
 regular expressions.

Name
Using regular expressions as addresses in sed

These examples are commands you would issue to
 sed. For example, the commands could take the
 place of command1 in this usage:
$ sed [options] 'command1'[files]
These commands could also appear in a standalone sed script.

Example 1
Delete blank lines:
/^$/d

Example 2
Delete any line that doesn’t contain #keepme:
/#keepme/!d

Example 3
Delete lines containing only whitespace (spaces or Tabs). In
 this example, Tab means the
 single Tab character and is preceded by a single space:
/^[Tab]*$/d
Because GNU sed also supports character
 classes, this example could be written as follows:
/^[[:blank:]]*$/d

Example 4
Delete lines beginning with periods or pound signs:
/^[\.#]/d

Example 5
Substitute a single space for any number of spaces wherever
 they occur on the line:
s/ */ /g
or:
s/ \{2,\}/ /g

Example 6
Substitute def for abc from line 11 to 20, wherever it occurs
 on the line:
11,20s/abc/def/g

Example 7
Translate the characters a,
 b, and c to the
 @ character from line 11 to 20, wherever they
 occur on the line:
11,20y/abc/@@@/

Objective 8: Perform Basic File Editing Operations Using vi

vi is perhaps the most ubiquitous text editor
 available on Linux systems. Since most system administration tasks
 eventually require editing text files, being able to work effectively in
 vi is essential.
This Objective concentrates on a subset of vi
 functionality. Learning the vi and Vim
 Editors (O’Reilly) is an indispensable reference for
 anyone interested in learning more about vi and the
 enhancements available in its various implementations. There is also a
 large amount of documentation available at http://vimdoc.sourceforge.net and
 http://www.vim.org for the popular
 vi implementation Vim, most of which is applicable to
 any version of vi.
Invoking vi

To start vi, simply execute it. You will be
 editing a temporary file. To directly edit one or more files, give the
 names of the files on the command line:
$ vi file1.txt file2.txt
You are presented with a main window showing the contents of
 file1.txt, or if the specified files don’t already
 exist, a blank screen with tilde (~) characters
 running the length of the left column (they indicate areas of the screen
 containing no text, not even blank lines).

vi Basics

The vi editor has two modes of operation:
 command or insert. In command
 mode, vi allows you to navigate around your file
 and enter commands. To enter new text, put vi into
 insert mode. In command mode, the keyboard keys are interpreted as
 vi commands instead of text. The convenience of
 being able to manipulate the editor without moving your hands from the
 keyboard is considered one of vi’s
 strengths.
Commands are brief, case-sensitive combinations of one or more
 letters. For example, to switch from command to insert mode, press the
 “i” key. To terminate insert mode, press the Escape key (Esc), which
 puts you back in command mode.
Almost any command can be prefixed with a number to repeat the
 command that number of times. For example, r will replace the character at the current
 cursor position. To replace exactly 10 characters, use 10r. Commonly used vi
 commands are listed in Table 6-12.
Table 6-12. vi commands
	Key command
	Description

	h
 or left arrow
	Move left one
 character.

	j
 or down arrow
	Move down one line.

	k
 or up arrow
	Move up one line.

	l
 or right arrow
	Move right one
 character.

	H
	Move to the top of the
 screen.

	L
	Move to the bottom of the
 screen.

	G
	Move to the end of the
 file.

	w
	Move forward one word.

	b
	Move backward one word.

	0
 (zero)
	Move to the beginning of the current
 line.

	^
	Move to the first nonwhitespace
 character on the current line.

	$
	Move to the end of the current
 line.

	Ctrl-B
	Move up (back) one
 screen.

	Ctrl-F
	Move down (forward) one
 screen.

	i
	Insert at the current cursor
 position.

	I
	Insert at the beginning of the current
 line.

	a
	Append after the current cursor
 position.

	A
	Append to the end of the current
 line.

	o
	Start a new line after the current
 line.

	O
	Start a new line before the current
 line.

	r
	Replace the character at the current
 cursor position.

	R
	Start replacing (overwriting) at the
 current cursor position.

	x
	Delete the character at the current
 cursor position.

	X
	Delete the character immediately
 before (to the left) of the current cursor
 position.

	s
	Delete the character at the current
 cursor position and go into insert mode. (This is the equivalent
 of the combination xi.)

	S
	Delete the contents of the current
 line and go into insert mode.

	dX
	Given a movement command
 X, cut (delete) the appropriate
 number of characters, words, or lines from the current cursor
 position.

	dd
	Cut the entire current
 line.

	D
	Cut from the current cursor position
 to the end of the line. (This is equivalent to d$.)

	cX
	Given a movement command
 X, cut the appropriate number of
 characters, words, or lines from the current cursor position and
 go into insert mode.

	cc
	Cut the entire current line and go
 into insert mode.

	C
	Cut from the current cursor position
 to the end of the line and enter insert mode. (This is
 equivalent to c$.)

	yX
	Given a movement command
 X, copy (yank[a]) the appropriate number of characters, words, or
 lines from the current cursor position.

	yy
 or Y
	Copy the entire current
 line.

	p
	Paste after the current cursor
 position.

	P
	Paste before the current cursor
 position.

	.
	Repeat the last
 command.

	u
	Undo the last command.[b]

	/regex
	Search forward for
 regex.

	?regex
	Search backward for
 regex.

	n
	Find the next match.

	N
	Find the previous match. (In other
 words, repeat the last search in the opposite
 direction.)

	:n
	Next file; when multiple files are
 specified for editing, this command loads the next file. Force
 this action (if the current file has unsaved changes) with
 :n!.

	:e
 file
	Load file
 in place of the current file. Force this action with :e!
 file.

	:r
 file
	Insert the contents of
 file after the current cursor
 position.

	:q
	Quit without saving changes. Force
 this action with :q!.

	:w
 file
	Write the current buffer to
 file. To append to an existing file,
 use :w
 >>file. Force the
 write (when possible, such as when running as
 root) with :w!
 file.

	:wq
	Write the file contents and quit.
 Force this action with :wq!.

	:x
	Write the file contents (if changed)
 and quit (the ex equivalent
 of ZZ).

	ZZ
	Write the file contents (if changed)
 and quit.

	:!
 command
	Execute
 command in a subshell.

	[a] Emacs users should be careful not to confuse the
 vi definition of yank (copy) with that
 of Emacs (paste).

[b] Many of the popular vi
 implementations support multilevel undo. Vim breaks
 compatibility with traditional vi by
 making a repeated u
 perform another level of undo. Nvi uses . after u to do multilevel undo and, like
 traditional vi, uses a repeated
 u to redo (undo the undo,
 so to speak). This can cause some confusion when moving
 between Linux distributions that have different default
 implementations of vi.

Note
Keep in mind that this is not a complete
 list, but it is not necessary to know every vi
 command to use it effectively. In fact, even after using
 vi as your only editor for years, you may find
 yourself using only a small subset of the available commands.

There is a pattern in vi’s keyboard commands
 that makes them easier to remember. For every lowercase character that
 has some action assigned to it, the same uppercase character
 usually has some related action assigned to it. As
 an example, i and I both put vi in insert
 mode, at the current cursor position and at the beginning of the line,
 respectively.
On the Exam
You’ll need to be familiar with vi’s
 command and insert modes, how to switch between them, and how to
 perform basic navigation and editing tasks.

Chapter 7. Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104)

Filesystem management is among the most critical activities that you
 must perform to maintain a stable Linux system. In simple situations, after
 a successful installation, you may never have a problem or need to manage
 filesystem specifics. However, understanding how to configure and maintain
 Linux filesystems is essential to safely manage your system and to pass Exam
 101. This section contains the following Objectives:
	Objective 1: Create Partitions and
 Filesystems
	This Objective states that an LPIC 1 candidate should be
 able to configure disk partitions and create filesystems on media such
 as hard disks. It also includes using various
 mkfs commands to set up filesystems such as
 ext2, ext3,
 reiserfs, vfat, and
 xfs, in addition to managing swap partitions.
 Weight: 2.

	Objective 2: Maintain the Integrity of
 Filesystems
	A candidate should be able to verify the integrity of
 filesystems, monitor free space and inodes, and repair simple
 filesystem problems. This Objective includes the commands required to
 maintain a standard filesystem as well as the extra data associated
 with a journaling filesystem. Weight: 2.

	Objective 3: Control Filesystem Mounting and
 Unmounting
	Candidates should be able to manually mount and unmount
 filesystems, configure filesystem mounting on system boot, and
 configure user-mountable removable filesystems such as flash drives,
 floppies, and CDs. Weight: 3.

	Objective 4: Set and View Disk Quotas
	This Objective includes managing disk quotas for system
 users. You should be able to set up a disk quota for a filesystem,
 edit, check, and generate user quota reports. Weight: 1.

	Objective 5: Manage File Permissions and
 Ownership
	Candidates should be able to control file access through
 file permissions. This Objective includes access permissions on
 regular and special files as well as directories. Also included are
 access modes such as suid, sgid, and the
 sticky bit. You should also be aware of the use
 of the group field to grant file access to workgroups, the
 immutable flag, and the default file creation
 mode. Weight: 3.

	Objective 6: Create and Change Hard and Symbolic
 Links
	Candidates should be able to create and manage hard and
 symbolic links to a file. This Objective includes the ability to
 create and identify links, copy files through links, and use linked
 files to support system administration tasks. Weight: 2.

	Objective 7: Find System Files and Place Files in the
 Correct Location
	This Objective states that candidates should be
 thoroughly familiar with the FHS, including typical file locations and
 directory classifications. This includes the ability to find files and
 commands on a Linux System. Weight: 2.

Objective 1: Create Partitions and Filesystems

The term filesystem refers to two different
 things. First, it can mean the way files and directories are physically
 structured on a disk or other storage medium. Linux supports many
 different filesystems (in this sense of the word), including
 ext2 and ext3, the nonjournaled
 and journaled (respectively) native filesystems;
 msdos or vfat, the native MS-DOS
 and Windows (respectively) filesystems; JFS, a filesystem used on OS/2 and
 AIX; XFS, the native IRIX filesystem; and many, many others.
In the second sense of the word, it refers to the structure and
 contents of some storage medium. To view the contents of a filesystem (in
 this sense of the word) on a Linux system, the device must be mounted, or attached to the
 hierarchical directory structure on the system. Much of the strength and
 flexibility of Linux (and Unix) comes from the ability to mount any
 filesystem that it supports, whether that filesystem is somewhere remote
 on the network or on a locally attached disk, anywhere in its directory
 structure, in a way that is completely transparent to users. For example,
 the files under /usr will work
 equally well whether they are on a disk attached to the system or mounted
 from a master server. Even the /
 (root) filesystem can be located on a distant server if the system is
 properly configured.
Disk Drives Under Linux

Linux supports many types of disk devices and formats. Any
 SCSI or IDE hard disk will work with Linux, as will floppy disks,
 CD-ROMs, CD-Rs, USB flash drives, and other types of removable media.
 These media can contain the standard Linux ext2
 filesystem, FAT, FAT32, NTFS, as well as other filesystem types. This
 flexibility makes Linux coexist nicely with other operating systems on
 multiboot systems.
The most commonly found hard disks on PCs are IDE drives. These
 disks feature a relatively simple system interface, and most of the
 “smarts” of the disk are onboard the disk itself. The IDE standard
 allows disk manufacturers to sell their product at a very competitive
 price, expanding their markets to more consumers and limited-budget
 commercial customers.
A single IDE interface is capable of attaching two disk drives to
 a system. One device is named master and the other is the
 slave. Most PCs have a
 primary and secondary IDE interface. Together,
 these interfaces allow up to four devices (primary master, primary
 slave, secondary master, and secondary slave).
Also used on PCs are SCSI drives. SCSI is an older standard for connecting
 peripherals; however, modern SCSI versions are quite fast and flexible.
 Typically, SCSI devices are used for their increased speed and
 reliability in large-scale and high-end server environments. With the
 increased speeds, however, come increased prices—often two to five times
 the price of their IDE counterparts.
Compared to IDE, SCSI offers excellent performance, lower CPU
 utilization, and a much more flexible connection scheme capable of
 handling up to 15 devices on a single bus. These conveniences allow SCSI
 systems to grow as space requirements increase without major hardware
 reconfiguration.
A third option available on motherboards in recent years is the
 Serial ATA (SATA) interface. SATA is basically a newer version of the
 IDE standard, and allows for much faster communication between the
 controller and the physical disk. The Linux kernel currently uses the
 SCSI emulation layer to support SATA
 hard drives, so from a device standpoint, SATA disks are treated the
 same way as SCSI disks. It’s also important to note that some Linux
 distributions are configured to use the SCSI emulation layer for IDE
 disks as well, so you may be referring to your disks via the SCSI naming
 conventions even if you have IDE or SATA disks.
Hard disk devices

By default, Linux defines IDE device files as
 follows:
	/dev/hda
	Primary master IDE (often the hard disk)

	/dev/hdb
	Primary slave IDE

	/dev/hdc
	Secondary master IDE (often a CD-ROM)

	/dev/hdd
	Secondary slave IDE

SCSI device files (or any devices using the SCSI emulation
 layer) are similar, except that there is no four-device
 limitation:
	/dev/sda
	First SCSI drive

	/dev/sdb
	Second SCSI drive

	/dev/sdc
	Third SCSI drive (and so on)

Under Linux, a typical PC with a single hard disk on the
 primary IDE interface and a single CD-ROM on the
 secondary IDE interface would have disk drive
 /dev/hda and CD-ROM
 /dev/hdc.
On the Exam
You should be prepared to identify IDE and SCSI devices based
 on their device filenames.

Disk partitions

Almost every operating system supports a system for dividing a
 disk into logical devices, called partitions. Other terms for the
 same basic concept are slices and logical volumes, although logical
 volumes generally also imply the ability to span physical disks. Linux
 supports several different partitioning formats, but by default it
 uses the MS-DOS format. The MS-DOS partition table allows for up to
 four primary partitions. One of these four
 primary partitions can be replaced with an extended
 partition, which can contain up to 12 logical
 partitions, for a total of 15 possible usable partitions
 (16 if you count the extended partition “container,” but it is not
 usable for data).
The type of partition (as well as the type of device) affects
 the name of the device Linux uses to access the partition.
	Primary partitions
	This type of partition contains a filesystem. If
 all four primary partitions exist on an IDE drive, they are numbered as follows:
	/dev/hda1

	/dev/hda2

	/dev/hda3

	/dev/hda4

One of these primary partitions may be marked
 active, in which case the PC BIOS will be
 able to select it for boot.

	Extended partitions
	An extended partition is a variant of the primary
 partition but cannot contain a filesystem. Instead, it contains
 logical partitions. Only one extended
 partition may exist on a single physical disk. For example, the
 partitions on a disk with one primary partition and the sole
 extended partition might be numbered as follows:
	/dev/hda1 (primary)

	/dev/hda2 (extended)

	Logical partitions
	Logical partitions exist
 within the extended partition. Logical
 partitions are numbered from 5 to 16. The partitions on a disk
 with one primary partition, one extended partition, and four
 logical partitions might be numbered as follows:
	/dev/hda1 (primary)

	/dev/hda2 (extended)

	/dev/hda5 (logical)

	/dev/hda6 (logical)

	/dev/hda7 (logical)

	/dev/hda8 (logical)

If the partitions were made on a SCSI or SATA drive, the
 hda would be replaced by
 sda, for example,
 /dev/sda2.

On the Exam
Be sure that you understand how partition numbering works. In particular, pay
 attention to the differences in numbering between primary, extended,
 and logical partitions.

The root filesystem and mount points

As a Linux system boots, the first filesystem that
 becomes available is the top level, or root filesystem, denoted with a
 single forward slash. The root filesystem /, also
 known as the root directory, shouldn’t be
 confused with the root superuser account or the
 superuser’s home directory, /root. The distinct
 directories / and /root are
 unrelated and are not required to share the same filesystem. In a
 simple installation, the root filesystem could contain nearly
 everything on the system. However, such an arrangement could lead to
 system failure if the root filesystem fills to capacity. Instead,
 multiple partitions are typically defined, each containing one of the
 directories under /. As the Linux kernel boots,
 the partitions are mounted to the root
 filesystem, and together create a single unified filesystem (see Objective 3: Control Filesystem Mounting and Unmounting for a discussion
 about mounting). Everything on the system that is not stored in a
 mounted partition is stored locally in the /
 (root) partition. The mounted filesystems are placed on separate
 partitions and possibly multiple disk drives.
The choice of which directories are placed into separate
 partitions is both a personal and technical decision. Here are some
 guidelines for individual partitions:
	/ (the root directory)
	Since the only filesystem mounted at the start of the boot
 process is /, certain directories must be
 part of it to be available for the boot process. These
 include:
	/bin and
 /sbin
	Contains required system binary programs

	/dev
	Contains device files

	/etc
	Contains configuration information used on
 boot

	/lib
	Contains shared libraries

These directories are always part of the single
 / partition. See the description of the FHS
 in Objective 7: Find System Files and Place Files in the Correct
 Location
 for more on the requirements for the root filesystem.

	/boot
	This directory holds static files used by the boot loader,
 including kernel images. On systems where kernel development
 activity occurs regularly, making /boot a
 separate partition eliminates the possibility that
 / will fill with kernel images and
 associated files during development.

	/home
	User files are usually placed in a separate partition.
 This is often the largest partition on the system and may be
 located on a separate physical disk or disk array.

	/tmp
	This directory is often a separate partition used to
 prevent temporary files from filling the root filesystem. By
 default, all users have read/write access to files they create
 in /tmp.

	/var
	Logfiles are stored here. This is similar to the situation
 with /tmp, where user files can fill any
 available space if something goes wrong or if the files are not
 cleaned periodically.

	/usr
	This directory holds a hierarchy of directories containing
 user commands, source code, and documentation. It is often quite
 large, making it a good candidate for its own partition. Because
 much of the information stored under /usr is
 static, some users prefer that it be mounted as read-only,
 making it impossible to corrupt.

In addition to the preceding six partitions listed, a swap partition is also necessary
 for a Linux system to enable virtual memory. For information on
 determining the size of a swap partition, see Chapter 5.
Using these guidelines at installation time, the disk partitions
 for an IDE-based system with two physical disks (40 GB and 200 GB) on
 the primary IDE controller might look as described in Table 7-1.
Table 7-1. An example partitioning scheme
	Partition
	Type
	Mounted filesystem
	Size

	/dev/hda1
	Primary
	/boot
	1 GB

	/dev/hda2
	Primary
	/
	5 GB

	/dev/hda3
	Extended
	-
	-

	/dev/hda5
	Logical
	/usr
	10 GB

	/dev/hda6
	Logical
	/var
	10 GB

	/dev/hda7
	Logical
	/opt
	10 GB

	/dev/hda8
	Logical
	/tmp
	2 GB

	/dev/hda4
	Primary
	(swap
 partition)
	2 GB

	/dev/hdb1
	Primary
	/home
	200 GB

Once a disk is partitioned, it can be difficult or risky to
 change the partition sizes. Commercial and open source tools are
 available for this task, but a full backup is recommended prior to
 their use.
Note
If you are resizing your partitions, you may want to investigate
 setting up your system using Logical Volume Manager (LVM). LVM
 is currently not covered on the LPI exams, but its use is quickly
 growing. For more information, read the LVM-HOWTO at the Linux Documentation
 Project.

Managing partitions

Linux has two basic options for partitioning disk
 drives. The fdisk command is a text-based program
 that is easy to use and exists on every Linux distribution. It is also
 required for Exam 101. Another option you may wish to explore after
 mastering fdisk is cfdisk,
 which is still a text-mode program but uses the curses system to produce a
 GUI-style display.

Creating filesystems

Once a disk is partitioned, filesystems may be created
 in those partitions using the mkfs utility.
 mkfs is a frontend program for
 filesystem-specific creation tools such as
 mkfs.ext2 and mkfs.msdos,
 which are in turn linked to mke2fs and
 mkdosfs, respectively. mkfs
 offers a unified frontend, while the links provide convenient names.
 The choice of which executable to call is up to you.

Creating swap partitions

Swap partitions are necessary if you want your Linux
 system to have access to virtual memory. Virtual memory is a section
 of the hard disk designated for use as memory when the main system
 memory (the RAM) is all in use. The common formula for determining the
 amount of swap space you need has usually been twice the amount of
 RAM your system has. Although swap is not required by Linux, at least
 128 MB is recommended for some spooling functions. On the other hand,
 memory-intensive applications may recommend much more, based on
 variables such as the number of users, database tables/sizes, or other
 application configuration guidelines. It is important to know what the
 system will be used for when considering swap space.
The command to create a swap partition is
 mkswap. This command prepares a partition for use
 as Linux swap space and is needed if you plan to fully configure a
 disk from scratch. It is also required if you need to add an
 additional swap partition.

Name
fdisk

Syntax
fdisk [device]

Description
Manipulate or display the partition table for
 device using a command-driven
 interactive text interface. device is a
 physical disk such as /dev/hda, not a
 partition such as /dev/hda1. If omitted,
 device defaults to
 /dev/hda. Interactive commands to
 fdisk are a single letter followed by a
 carriage return. The commands do not take arguments, but instead
 start an interactive dialog. Commands that operate on a partition
 will request the partition number, which is an integer. For
 primary and extended partitions, the partition number is from 1 to
 4. For logical partitions, which are available only when the
 extended partition already exists to contain them, the partition
 number is from 5 to 16.
When making changes to the partition table,
 fdisk accumulates changes without writing
 them to the disk, until it receives the write command.

Frequently used commands
	a
	Toggle the bootable flag on/off
 for a primary partition.

	d
	Delete a partition. You are prompted for the partition
 number to delete. If you delete a logical partition when
 higher-numbered logical partitions exist, the partition
 numbers are decremented to keep logical partition numbers
 contiguous.

	l
	List the known partition types. A table of partition
 types is printed.

	m
	Display the brief help menu for these commands.

	n
	Add a new partition. You are prompted for the
 partition type (primary, extended, or logical). For primary
 and extended partitions, you are asked for the partition
 number (1–4). For logical partitions, the next logical
 partition number is selected automatically. You are then
 prompted for the starting disk cylinder for the partition
 and are offered the next free cylinder as a default.
 Finally, you are prompted for the last cylinder or a size,
 such as +300M. By
 default, new partitions are assigned as Linux
 ext2, type 83. To create another
 partition type, such as a swap partition, first create the
 partition with the n command, and then
 change the type with the t
 command.
Note
Note that fdisk displays
 options for extended and primary partition types if an
 extended partition does not yet exist. If the extended
 partition already exists, fdisk
 displays options for logical and primary partition
 types.

	p
	Display the partition table as it exists in memory.
 This depiction will differ from the actual partition table
 on disk if changes have not been saved.

	q
	Quit without saving changes.

	t
	Change a partition’s system ID. This is a hex number
 that indicates the type of filesystem the partition is to
 contain. Linux ext2 partitions are type
 83, and Linux swap partitions are type 82.

	w
	Write (save) the partition table to disk and exit. No
 changes are saved until the w command
 is issued.

Example 1
Display the existing partition table on
 /dev/hda without making any changes:
fdisk /dev/hda
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 250 2008093+ 83 Linux
/dev/hda2 251 280 240975 82 Linux swap
/dev/hda3 281 1027 6000277+ 5 Extended
/dev/hda5 281 293 104391 83 Linux
/dev/hda6 294 306 104391 83 Linux
/dev/hda7 307 319 104391 83 Linux
Command (m for help): q
#
In this configuration, /dev/hda has two
 primary partitions, /dev/hda1, which is
 bootable, and /dev/hda2,
 which is the swap partition. The disk also has an extended
 partition /dev/hda3, which contains three
 logical partitions, /dev/hda5,
 /dev/hda6, and
 /dev/hda7. All other primary and logical
 partitions are Linux ext2 partitions.

Example 2
Starting with a blank partition table, create a bootable
 primary partition of 300 MB on /dev/hda1, the
 extended partition on /dev/hda2 containing
 the remainder of the disk, a logical partition of 200 MB on
 /dev/hda5, a logical swap partition of 128 MB
 on /dev/hda6, and a logical partition on
 /dev/hda7 occupying the remainder of the
 extended partition:
fdisk /dev/hda
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)p
Partition number (1-4): 1
First cylinder (1-1027, default 1): Enter
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1027, default 1027): +300M
Command (m for help): a
Partition number (1-4): 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)e
Partition number (1-4): 2
First cylinder (40-1027, default 40): Enter
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): Enter
Using default value 1027
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (40-1027, default 40): Enter
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027, default 1027): +200M
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (79-1027, default 79): Enter
Using default value 79
Last cylinder or +size or +sizeM or +sizeK (79-1027, default 1027): +128M
Command (m for help): t
Partition number (1-6): 6
Hex code (type L to list codes): 82
Changed system type of partition 6 to 82 (Linux swap)
Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)l
First cylinder (118-1027, default 118): Enter
Using default value 118
Last cylinder or +size or +sizeM or +sizeK (118-1027, default 1027): Enter
Using default value 1027
Command (m for help): p
Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/hda1 * 1 39 313236 83 Linux
/dev/hda2 40 1027 7936110 5 Extended
/dev/hda5 40 65 208813+ 82 Linux swap
/dev/hda6 66 82 136521 83 Linux
/dev/hda7 83 1027 7590681 83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
#
Note the use of defaults for the partition start cylinders
 and for end cylinder selections, indicated by Enter in this example. Other partition
 sizes are specified in megabytes using responses such as +128M.
Note
If you are attempting to create partitions for other
 operating systems with the Linux fdisk
 utility, you could run into a few problems. As a rule, it is
 safest to prepare the partitions for an operating system using
 the native tools of that operating system.
As you might expect, using fdisk on a
 working system can be dangerous, because one errant
 w command can render your disk useless. Use
 extreme caution when working with the partition table of a
 working system, and be sure you know exactly what you intend to
 do and how to do it.

On the Exam
You should understand disk partitions and the process of
 creating them using fdisk.

Name
mkfs

Syntax
mkfs [-t fstype] [fs_options] device

Description
Make a filesystem of type
 fstype on
 device. If
 fstype is omitted,
 ext2 is used by default. When called by
 mkfs, these programs are passed any
 fs_options included on the command
 line. It is common to see references to commands such as
 mkfs.ext2, mkfs.ext4, or
 mkfs.xfs. These are all aliases for mkfs,
 specifying a specific kind of filesystem you wish to
 create.

Frequently used options
	-c
	Check device for bad blocks
 before building the filesystem.

	-L
 label
	Set the volume label for the filesystem (ext-based
 filesystems only).

	-n
 label
	Set the 11-character volume label for the filesystem
 (mkdosfs only).

	-q
	Uses mkfs in quiet
 mode, resulting in very little output.

	-v
	Used to enter verbose mode.

	-j
	Create an ext3 journal file
 (mkfs.ext2 only). Using -t
 ext3 or running mkfs.ext3
 has the same effect as using the -j
 option.

Example 1
Using defaults, quietly create an ext2
 partition on /dev/hda3:
mkfs -q /dev/hda3
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
#

Example 2
Create an ext2 filesystem labeled
 rootfs on existing partition
 /dev/hda3, checking for bad blocks and with
 full verbose output:
mkfs -t ext2 -L rootfs -cv /dev/hda3
mke2fs 1.27 (8-Mar-2002)
Filesystem label=rootfs
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
26208 inodes, 104422 blocks
5221 blocks (5.00%) reserved for the super user
First data block=1
13 block groups
8192 blocks per group, 8192 fragments per group
2016 inodes per group
Superblock backups stored on blocks:
 8193, 16385, 24577, 32769, 40961, 49153,
 57345, 65537, 73729, 81921, 90113, 98305
Running command: badblocks -b 1024 -s /dev/hda3 104422
Checking for bad blocks (read-only test): done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 28 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
Additional options are available in the
 mke2fs and mkdosfs
 programs, which may be needed to fine-tune specific filesystem
 parameters for special situations. In most cases, the default
 parameters are appropriate and adequate.

Name
mkswap

Syntax
mkswap device

Description
Prepare a partition for use as swap space. This
 command can also set up swap space in a file on another
 filesystem.

Example
On an existing partition, which should be set to type 82
 (Linux swap), ready swap space:
mkswap /dev/hda5
Setting up swapspace version 1, size = 139792384 bytes
#
Note
Running any of the filesystem creation programs is, like
 fdisk, potentially dangerous. All data in
 any previously existing filesystems in the specified partition
 will be deleted. Since mkfs does not warn
 you prior to creating the filesystem, be certain that you are
 operating on the correct partition.

On the Exam
The exam is likely to contain general questions about
 using mkfs and mkswap,
 although details such as inode allocation are beyond the scope
 of the LPIC Level 1 exams.

Objective 2: Maintain the Integrity of Filesystems

Over the course of time, active filesystems can develop
 problems, such as:
	A filesystem fills to capacity, causing programs or perhaps the
 entire system to fail.

	A filesystem is corrupted, perhaps due to a power failure or
 system crash.

	A filesystem runs out of inodes, meaning that new filesystem
 objects cannot be created.

Carefully monitoring and checking Linux filesystems on a regular
 basis can help prevent and correct these types of problems.
Monitoring Free Disk Space and Inodes

A read/write filesystem isn’t much good if it grows to the
 point where it won’t accept any more files. This could happen if the
 filesystem fills to capacity or runs out of inodes.
Inodes are the data structures within filesystems that describe
 files on disk. Every filesystem contains a finite number of inodes, set
 when the filesystem is created. This number is also the maximum number
 of files that the filesystem can accommodate. Because filesystems are
 created with a huge number of inodes, you’ll probably never create as
 many files as it would take to run out of inodes. However, it is
 possible to run out of inodes if a partition contains many small
 files.
It is important to prevent space and inode shortages from
 occurring on system partitions. The df command gives you the information
 you need on the status of both disk space utilization and inode
 utilization.

Monitoring Disk Usage

Have you ever found yourself wondering, “Where did all the disk
 space go?” Some operating systems make answering this question
 surprisingly difficult using only native tools. On Linux, the du command can help display disk
 utilization information on a per-directory basis and perhaps answer that
 question. du recursively examines directories and
 reports detailed or summarized information on the amount of space
 consumed.

Modifying a Filesystem

There are many cases where an administrator might want to
 make changes to an existing filesystem. For example, if the purpose of a
 particular filesystem changes, the volume label should be changed to
 match. This and many other ext2 filesystem settings
 can be viewed and modified using the tune2fs
 command.

Checking and Repairing Filesystems

No matter how stable, computers do fail, even due to
 something as simple as a power cable being accidentally unplugged.
 Unfortunately, such an interruption can make a mess of a filesystem. If
 a disk write operation is aborted before it completes, the data in
 transit could be lost, and the portions of the disk that were allocated
 for it are left marked as used. In addition, filesystem writes are
 cached in memory, and a power loss or other crash prevents the kernel
 from synchronizing the cache with the disk. Both of these scenarios lead
 to inconsistencies in the filesystem and must be corrected to ensure
 reliable operation.
Filesystems are checked with fsck. Like
 mkfs, fsck is a frontend to filesystem-specific
 utilities, including fsck.ext2, which is a link to
 the e2fsck program. (See its manpage for
 detailed information.)
Note
e2fsck can also check
 ext3 filesystems. When it finds an
 ext3 filesystem that was not cleanly unmounted,
 it first commits the journal, then checks the filesystem as it
 normally would with ext2.

Part of the information written on disk to describe a filesystem
 is known as the superblock, written in block 1 of the
 partition. If this area of the disk is corrupted, the filesystem is
 inaccessible. Because the superblock is so important, copies of it are
 made in the filesystem at regular intervals, by default every 8192
 blocks. The first superblock copy is located at block 8193, the second
 copy is at block 16385, and so on. As you’ll see,
 fsck can use the information in the superblock
 copies to restore the main superblock.

Name
df

Syntax
df [options] [file [file...]]

Description
Display overall disk utilization information for mounted
 filesystems on file. Usually,
 file is a device file for a partition,
 such as /dev/hda1. The
 file may also be the mount point or any
 file beneath the mount point. If file is
 omitted, information for mounted filesystems on all devices in
 /etc/fstab are displayed.

Frequently used options
	-h
	Displays results in a human-readable format, including
 suffixes such as M
 (megabytes) and G
 (gigabytes).

	-i
	Displays information on remaining inodes rather than the
 default disk space information.

Example 1
Check disk space utilization on all filesystems:
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 387M 56M 311M 15% /
/dev/sda5 296M 5.2M 276M 2% /boot
/dev/sda9 1.9G 406M 1.4G 22% /home
/dev/sda6 53M 12M 39M 23% /root
/dev/sda10 99M 104k 93M 0% /tmp
/dev/sda8 972M 507M 414M 55% /usr
/dev/sda7 296M 9.3M 272M 3% /var
This example shows that of the seven filesystems mounted by
 default, none exceeds 55 percent capacity.

Example 2
Check the same filesystems for inode utilization:
df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda1 102800 7062 95738 7% /
/dev/sda5 78312 29 78283 0% /boot
/dev/sda9 514000 934 513066 0% /home
/dev/sda6 14056 641 13415 5% /root
/dev/sda10 26104 60 26044 0% /tmp
/dev/sda8 257040 36700 220340 14% /usr
/dev/sda7 78312 269 78043 0% /var
Among these partitions, the largest consumption of inodes is a
 mere 14 percent. It is clear that none of the filesystems is
 anywhere near consuming the maximum number of inodes available. Note
 that the /usr partition (with 14 percent of
 inodes used) has used 55 percent of the disk space. With utilization
 like this, the /usr volume will most likely
 fill to capacity long before the inodes are exhausted.

Example 3
Quickly determine which partition the current working
 directory (represented simply by a single dot) is located:
df .
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 102800 7062 95738 7% /
When a filesystem is nearing capacity, files may simply be
 deleted to make additional space available. However, in the rare
 case in which an inode shortage occurs, the filesystem must be
 recreated with a larger number of inodes unless a significant number
 of files can be deleted.

Name
du

Syntax
du [options] [directories]

Description
Display disk utilization information for
 directories. If
 directories are omitted, the current
 working directory is searched.

Frequently used options
	-a
	Shows all files, not just directories.

	-c
	Produces a grand total for all listed items.

	-h
	Displays results in a human-readable format, including
 suffixes such as M
 (megabytes) and G
 (gigabytes).

	-s
	Prints a summary for each of the
 directories specified, instead of
 totals for each subdirectory found
 recursively.

	-S
	Excludes subdirectories from counts and totals, limiting
 totals to directories.

Example 1
Examine disk utilization in
 /etc/rc.d:
du /etc/rc.d
882 /etc/rc.d/init.d
1 /etc/rc.d/rc0.d
1 /etc/rc.d/rc1.d
1 /etc/rc.d/rc2.d
1 /etc/rc.d/rc3.d
1 /etc/rc.d/rc4.d
1 /etc/rc.d/rc5.d
1 /etc/rc.d/rc6.d
904 /etc/rc.d

Example 2
Display utilization by files in /etc,
 including subdirectories beneath it:
du -s /etc
13002 /etc

Example 3
Display utilization by files in /etc, but
 not in subdirectories beneath it:
du -Ss /etc
1732 /etc

Example 4
Show a summary of all subdirectories under
 /home, with human-readable output:
du -csh /home/*
42k /home/bsmith
1.5M /home/httpd
9.5M /home/jdean
42k /home/jdoe
12k /home/lost+found
1.0k /home/samba
11M total
This result shows that 11 MB of total disk space is
 used.

Example 5
Show the same summary, but sort the results to display in
 order of largest to smallest disk utilization:
du -cs /home/* | sort -nr
11386 total
9772 jdean
1517 httpd
42 jdoe
42 bsmith
12 lost+found
1 samba
This result shows that user jdean is
 consuming the largest amount of space. Note that the human-readable
 format does not sort in this way, since sort is unaware of the
 human-readable size specifications.

Name
tune2fs

Syntax
tune2fs [options] device

Description
Modify tunable parameters on the
 ext2 or ext3 filesystem on
 device.

Frequently used options
	-l
 device
	List the tunable parameters on
 device.

	-c
 n
	Set the maximum mount count to
 n. When the filesystem has been
 mounted this many times, the kernel will warn that the
 filesystem has exceeded the maximum mount count when the
 filesystem is mounted, and e2fsck will
 automatically check the filesystem. See the discussion of
 e2fsck in the next section, Checking and Repairing Filesystems.
Setting this value to 0 tells the kernel and
 e2fsck to ignore the mount count.

	-i
 n
	Set the maximum time between two filesystem checks to
 n. If n
 is a number or is followed by d, the value is in days. A value
 followed by w specifies
 weeks. A value followed by m specifies months.
The time since the last filesystem check is compared to
 this value by the kernel and e2fsck -p,
 much like the maximum mount count. A value of 0 disables this check.

	-L
 label
	Sets the volume label of the filesystem to
 label. The volume label can also be
 set with the e2label command.

	-j
	Adds an ext3 journal file to the
 filesystem and sets the has_journal feature flag.

	-m
 n
	Sets the reserved block percentage to
 n. By default,
 ext2 filesystems reserve 5 percent of the
 total number of available blocks for the
 root user. This means that if a
 filesystem is more than 95 percent full, only
 root can write to it. (It also means that
 df will report the filesystem as 100
 percent full when it is really only 95 percent full.)
On very large filesystems, or filesystems where only
 user data will be written, the reserved block percentage can
 be safely reduced to make more of the filesystem available for
 writing by regular users.

	-r
 n
	Sets the number of reserved blocks to
 n. This is similar to the
 -m option, except it specifies a number
 instead of a percentage.

Example 1
List the contents of the superblock on
 /dev/sda1:
tune2fs -l /dev/sda1
tune2fs 1.41.4 (27-Jan-2009)
Filesystem volume name: /boot
Last mounted on: <not available>
Filesystem UUID: 35f8a3e0-9257-4b71-913d-407bef4eeb90
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr resize_inode \
 dir_index filetype needs_recovery sparse_super
Filesystem flags: signed_directory_hash
Default mount options: user_xattr acl
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 50200
Block count: 200780
Reserved block count: 10039
Free blocks: 158854
Free inodes: 50152
First block: 1
Block size: 1024
Fragment size: 1024
Reserved GDT blocks: 256
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 2008
Inode blocks per group: 251
Filesystem created: Mon Dec 15 14:43:58 2008
Last mount time: Fri Jul 24 10:25:08 2009
Last write time: Fri Jul 24 10:25:08 2009
Mount count: 23
Maximum mount count: 20
Last checked: Mon Dec 15 14:43:58 2008
Check interval: 31536000 (12 months, 5 days)
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
Default directory hash: half_md4
Directory Hash Seed: 92b218b8-9e1f-4aab-b481-08bec3ea2946
Journal backup: inode blocks

Example 2
Turn off the maximum mount count and check interval tests on
 /dev/sda1:
tune2fs -i 0 -c 0 /dev/sda1
tune2fs 1.41.4 (27-Jan-2009)
Setting maximal mount count to -1
Setting interval between checks to 0 seconds

Name
xfs_info

Syntax
xfs_info device

Description
XFS is a filesystem type that was originally designed
 for use on the IRIX operating system. It has been ported to Linux
 and is a popular choice among Linux users for its large filesystem
 capacity and robust feature set. The xfs_info
 program will print out information about the XFS partition.

Examples
Create an XFS filesystem on
 /dev/sdb1:
mkfs.xfs –q /dev/sdb1
Query the filesystem for information:
xfs_info /dev/sdb1
meta-data=/dev/sdb1 isize=256 agcount=4, agsize=490108 blks
 = sectsz=512 attr=2
data = bsize=4096 blocks=1960432, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=0
realtime =none extsz=4096 blocks=0, rtextents=0

Name
fsck

Syntax
fsck [options] [-t type] [fs-options] filesystems

Description
Check filesystems for
 errors and optionally correct them. By default,
 fsck assumes the ext2
 filesystem type and runs interactively, pausing to ask for
 permission before applying fixes.

Frequently used options for fsck
	-A
	Run checks on all filesystems specified in
 /etc/fstab. This option is intended for
 use at boot time, before filesystems are mounted.

	-N
	Don’t execute, but show what would be done.

	-t
 type
	Specify the type of filesystem to check; the default is
 ext2. The value of
 type determines which
 filesystem-specific checker is called.

Frequently used options for e2fsck
	-b
 superblock
	Use an alternative copy of the superblock. In
 interactive mode, e2fsck automatically
 uses alternative superblocks. Typically, you’ll try
 -b 8193 in noninteractive mode to restore a
 bad superblock.

	-c
	Check for bad blocks.

	-f
	Force a check, even if the filesystem looks
 clean.

	-p
	Automatically repair the filesystem without
 prompting.

	-y
	Answers “yes” to all interactive prompts, allowing
 e2fsck to be used
 noninteractively.

Example 1
Check the ext3 filesystem on
 /dev/sda1, which is not mounted:
fsck /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
/boot: clean, 48/50200 files, 41926/200780 blocks
The partition was clean, so fsck didn’t
 really check it.

Example 2
Force a check:
fsck -f /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/boot: 48/50200 files (22.9% non-contiguous), 41926/200780 blocks

Example 3
Force another check, this time with verbose output:
fsck -fv /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

 48 inodes used (0.10%)
 11 non-contiguous files (22.9%)
 0 non-contiguous directories (0.0%)
 # of inodes with ind/dind/tind blocks: 22/12/0
 41926 blocks used (20.88%)
 0 bad blocks
 0 large files

 32 regular files
 6 directories
 0 character device files
 0 block device files
 0 fifos
 0 links
 1 symbolic link (1 fast symbolic link)
 0 sockets

 39 files

Example 4
Allow fsck to automatically perform all
 repairs on a damaged filesystem by specifying the
 -y option to run the command
 automatically:
fsck -y /dev/sda1
fsck 1.41.4 (27-Jan-2009)
e2fsck 1.41.4 (27-Jan-2009)
Couldn't find ext2 superblock, trying backup blocks...
/dev/sda1 was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
Block bitmap differences: +1 +2 +3 +4
Fix? yes
Inode bitmap differences: +1 +2 +3 +4 +5 +6
Fix? yes
/dev/sda1: ***** FILE SYSTEM WAS MODIFIED *****
/dev/sda1: 1011/34136 files (0.1% non-contiguous), 4360/136521 blocks
When Linux boots, the kernel performs a check of all
 filesystems in /etc/fstab using the
 -A option to fsck (unless
 the /etc/fstab entry contains the
 noauto option). Any filesystems that were not
 cleanly unmounted are checked. If that check finds any significant
 errors, the system drops into single-user mode so you can run
 fsck manually. Unfortunately, unless you have
 detailed knowledge of the inner workings of the filesystem, there’s
 little you can do other than to have fsck
 perform all of the repairs. As a result, it is common to use the
 -y option and hope for the best.
In some cases, a filesystem may be beyond repair or may even
 trigger a bug in e2fsck. In these (thankfully
 very rare) situations, there are a few commands
 that can help an ext2 filesystem wizard debug
 the problem. These commands are e2image,
 dumpe2fs, and debugfs. For more
 information on these tools, read their appropriate manpages.

Name
xfs_metadump

Syntax
xfs_metadump [options] device

Description
xfs_metadump is a debugging tool
 that copies the metadata from an XFS filesystem to a file. This is
 useful as a debugging tool when you suspect filesystem problems, or
 as a backup tool. Images created by
 xfs_metadump can be restored to a filesystem
 using the command xfs_mdrestore.

Frequently used options
	-e
	Stops the dump on a read error. Normally, it will ignore
 read errors and copy all the metadata that is
 accessible.

	-g
	Shows dump progress.

	-w
	Prints warnings of inconsistent metadata to
 stderr. Bad metadata is still
 copied.

On the Exam
Familiarity with du, df, and fsck is important. Be sure you
 understand the differences between the commands and when each is
 used.

Objective 3: Control Filesystem Mounting and Unmounting

As discussed in Objective 1: Create Partitions and Filesystems, the Linux directory
 hierarchy is usually made up of multiple partitions, each joined to the
 root filesystem. Filesystems on removable media, such as CD-ROMs, USB
 flash drives, and floppy disks, are joined in the same way, but usually on
 a temporary basis. Each of these separate filesystems is mounted to the parent filesystem as a
 directory (or mount point) in the unified
 hierarchy.
Directories intended as mount points usually don’t contain files or
 other directories. Instead, they’re just empty directories created solely
 to mount a filesystem. If a directory that already contains files is used
 as a mount point, its files are obscured and unavailable until the
 filesystem is unmounted. Typical mount points include the directories
 /usr, /home,
 /var, and others.
Managing the Filesystem Table

Since the Linux filesystem hierarchy is spread across
 separate partitions and/or multiple drives, it is necessary to
 automatically mount those filesystems at boot time. In addition,
 removable media and filesystems on remote NFS servers may be used
 regularly with recurring mount properties. All of this information is
 recorded in the /etc/fstab file.
 Filesystems defined in this file are checked and mounted when the system
 boots. Entries in this file are consulted for default information when
 users wish to mount removable media.
The /etc/fstab file (see Example 7-1) is plain text and
 consists of lines with six fields:
	Device
	This field specifies the device file of the partition
 holding the filesystem (for example,
 /dev/hda1). This may either be the device
 name (like /dev/hda1), the UUID of the device
 (like
 UUID=35f8a3e0-9257-4b71-913d-407bef4eeb90),
 or the partition label (like
 LABEL=/boot).

	Mount point
	This field specifies the directory on which the filesystem
 is to be mounted. For example, if /dev/hda1
 contains the root filesystem, it is mounted at
 /. The root filesystem will contain
 additional directories intended as mount points for other
 filesystems. For example, /boot may be an
 empty directory intended to mount the filesystem that contains
 kernel images and other information required at boot time.

	Filesystem type
	Next, the type of filesystem is specified. These may include
 ext2 filesystems, swap,
 nfs, iso9660 (CD-ROM),
 and others.

	Mount options
	This field contains a comma-separated list of options. Some
 options are specific to particular filesystem types. Options are
 described later in this Objective.

	Dump frequency
	The dump program, a standard
 Unix backup utility, will consult /etc/fstab
 for information on how often to dump each filesystem. This field
 holds an integer, usually set to 1 for native Linux filesystems such as
 ext2, and to 0 for others.

	Pass number for fsck
	This field is used by the fsck
 utility when the -A option is specified,
 usually at boot time. It is a flag that may contain only the
 values 0, 1, or 2.
	A 1 should be entered
 for the root filesystem and instructs
 fsck to check that filesystem
 first.

	A 2 instructs
 fsck to check corresponding filesystems
 after those with a 1.

	A 0 instructs
 fsck not to check the filesystem.

Example 7-1. Sample /etc/fstab file
/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /boot ext2 defaults 1 2
/dev/sda9 /home ext2 defaults 1 2
/dev/sda6 /root ext2 defaults 1 2
/dev/sda10 /tmp ext2 defaults 1 2
/dev/sda8 /usr ext2 defaults 1 2
/dev/sda7 /var ext2 defaults 1 2
/dev/sda11 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto,users 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro,users 0 0
/dev/hdd /mnt/zip vfat noauto,users 0 0
fs1:/share /fs1 nfs defaults 0 0

The fstab in Example 7-1 depicts a system with a
 single SCSI disk, /dev/sda. The first partition,
 /dev/sda1, contains an ext2
 root filesystem. Partition /dev/sda11 is swap.
 Partitions /dev/sda5 through
 /dev/sda10 contain ext2
 filesystems for /boot,
 /home, /root,
 /tmp, /usr, and
 /var, respectively. All of the local
 ext2 partitions are to be checked by
 fsck and dumped. Entries for the floppy disk
 (/dev/fd0), CD-ROM (/dev/hdc), and IDE Zip drive
 (/dev/hdd) hold appropriate mount properties,
 making manual mounting of these devices simple. Finally, this example
 shows a remote NFS mount of directory /share of
 system fs1. It is mounted locally at
 /fs1.
The /etc/fstab file is automatically created
 when Linux is installed and is based on the partitioning and mount point
 configuration specified. This file can be changed at any time to add
 devices and options, tailoring the filesystem to meet your specific
 needs.
On the Exam
You should memorize the functions of each column in /etc/fstab and be prepared to
 answer questions on each.

Mounting Filesystems

Filesystems are mounted using the
 mount command. At boot time, those filesystems with
 a nonzero pass number in /etc/fstab are checked and
 automatically mounted. Later, you can run mount
 manually to add other filesystems to the filesystem hierarchy.

Unmounting Filesystems

Filesystems can be unmounted using the umount command. When a filesystem is
 unmounted, the buffers of the filesystem are synchronized with the
 actual contents on disk and the filesystem is made unavailable, freeing
 the mount point. If the filesystem is busy,
 umount yields an error. This will happen, for
 example, when the filesystem contains open files or when a process has a
 working directory within the filesystem. Other less obvious errors can
 occur when removable media are exchanged without being unmounted
 first.

Name
mount

Syntax
mount [options] device
mount [options] directory
mount [options] device directory

Description
Used to mount filesystems into the filesystem hierarchy. The
 first and second forms consult /etc/fstab and
 mount the filesystem located on device or
 intended to be attached to directory,
 respectively. In both cases, information necessary to complete the
 mount operation is taken from /etc/fstab. The
 third form is independent of /etc/fstab and
 mounts the filesystem on device at mount
 point directory.
The mount command accepts two kinds of
 options: command-line and
 mount. The command-line options provide general
 direction for the mount command. The mount
 options are used to specify additional information about the device
 being mounted.

Command-line options
	-a
	Mounts all of the partitions specified in
 /etc/fstab, except those with the
 noauto option.

	-h
	Displays help on the mount
 command.

	-o
 mount_options
	Specifies mount options on the command line.

	-r
	Mounts the filesystem as read-only.

	-t
 fstype
	Specifies that the filesystem to be mounted is of type
 fstype. This option is typically
 used interactively when no entry for the mount exists in
 /etc/fstab.

	-v
	Sets verbose mode.

	-w
	Mounts the filesystem in read/write mode.

Mount options
A number of parameters are available as options for mounting
 filesystems. These options may be specified in
 /etc/fstab or as arguments of the
 -o command-line mount
 argument. These options modify the way mount
 configures the mounted filesystem. Some of the options can provide
 added security by controlling some operations on the filesystem.
 Others protect the filesystem from damage. Here is a partial
 list:
	async
	Establishes asynchronous I/O to the mounted filesystem.
 The opposite is sync.

	auto
	Enables a mount specification in
 /etc/fstab to be processed with the
 -a command-line option, as needed at boot
 time. The opposite is noauto.

	defaults
	Implies rw,
 suid, dev,
 exec, auto,
 nouser, and async.
 It is commonly found on /etc/fstab
 entries for ext2 and
 ext3 mount points.

	dev
	Interprets character or block special devices on the
 filesystem.

	exec
	Enables the execution of programs contained on the
 mounted partition. The opposite is
 noexec.

	noauto
	Prohibits automatic mounting with the
 -a option. This is usually specified for
 removable media.

	noexec
	Prohibits the execution of executable programs, a
 potential security measure.

	nosuid
	Disables the effect of suid or sgid bits on executable
 files.

	nouser
	Forbids nonroot users from mounting and unmounting the
 filesystem. See user and
 users for the opposite effect.

	ro
	Equivalent to specifying the command-line option
 -r.

	rw
	Equivalent to specifying the command-line option
 -w.

	suid
	Enables the effect of suid and sgid bits on executable
 files.

	sync
	Establishes synchronous I/O to the mounted filesystem.
 The opposite is async.

	user
	Allows an ordinary user to mount the filesystem but
 prohibits other ordinary users from unmounting it. This is
 useful for removable media that an individual requires control
 over. See also users.

	users
	Allows any user to mount and unmount the
 filesystem.

Note that the user and
 users options make the
 mount and umount commands
 available to nonroot users. This may be important for some systems
 where end users must have the ability to mount removable
 media.
The prevalence of removable media such as USB flash drives has
 caused the majority of Linux distributions to be configured by
 default to mount these devices automatically when they are plugged
 into a USB port. These devices are usually mounted under the
 directory /media and are given a directory name
 that matches the label name of the partition. For example, if the
 partition on my USB flash drive is labeled “USBDISK”, it will be
 automatically mounted under the directory
 /media/USBDISK when I plug it into a USB slot. Although the device is mounted
 automatically, there is no way to unmount it
 automatically, and you must be careful of potential data loss if you
 remove a device like this before Linux is done writing data to it.
 The umount command (described later
 in this chapter) is required in order to detach this device from the
 filesystem, flush all pending disk writes, and allow it to be safely
 removed. Most Linux distributions also have some sort of GUI tool to
 handle the unmounting of removable media.

Filesystem types
When mounting a filesystem, the filesystem
 type should be specified either by using the
 -t option to mount or in
 the third field in /etc/fstab. (If
 -t is omitted or auto is
 specified, the kernel will attempt to probe for the filesystem type.
 This can be convenient for removable media, where the filesystem
 type may not always be the same or even known.) Linux can mount a
 variety of filesystems. The following are some of the more popular
 ones:
	ext2
	The standard Linux filesystem.

	ext3
	A journaling filesystem that is backward-compatible with
 ext2.

	msdos
	The MS-DOS FAT filesystem, limited to “8.3” filenames
 (eight characters, a dot, and a three-character
 extension).

	vfat
	Virtual FAT, used instead of msdos
 when long filenames must be preserved. For example, you may
 wish to have access to Windows partitions on systems
 configured to boot both Linux and Windows.

	ntfs
	The native MS Windows partition since Windows
 2000.

	iso9660
	The CD-ROM format.

	nfs
	Remote servers.

	swap
	Swap partitions.

	proc
	This type represents the proc
 filesystem, which is not really a filesystem at all. The
 virtual files found in this virtual filesystem provide a
 window into the kernel. It is usually mounted on
 /proc.

Example 1
Display filesystems currently mounted on the system:
mount
/dev/sda1 on / type ext2 (rw)
none on /proc type proc (rw)
/dev/sda5 on /boot type ext2 (rw)
/dev/sda9 on /home type ext2 (rw)
/dev/sda6 on /root type ext2 (rw)
/dev/sda10 on /tmp type ext2 (rw)
/dev/sda8 on /usr type ext2 (rw)
/dev/sda7 on /var type ext2 (rw)
none on /dev/pts type devpts (rw,mode=0622)
/dev/hdd on /mnt/zip type vfat (rw,noexec,nosuid,nodev)
In this example, you can see that most of the filesystems
 specified in the /etc/fstab from Example 7-1 are already
 mounted.

Example 2
Mount the IDE CD-ROM device found on
 /dev/hdc to the existing directory
 /mnt/cdrom (read-only, of course):
mount -rt iso9660 /dev/hdc /mnt/cdrom
Note that without the -r option, you will
 receive a warning but still get appropriate results:
mount -t iso9660 /dev/hdc /mnt/cdrom
mount: block device /dev/hdc is write-protected,
mounting read-only
Another option would be to add the following to
 /etc/fstab:
/dev/hdc /mnt/cdrom iso9660 ro 0 0
Then the device can be mounted with just mount /mnt/cdrom.

Example 3
Mount an MS-DOS floppy in the first floppy disk drive
 /dev/fd0 (A:
 in MS-DOS) to the existing directory
 /mnt/floppy:
mount -t msdos /dev/fd0 /mnt/floppy

Example 4
The filesystems mounted at /home and
 /opt have been unmounted for some kind of
 maintenance and are now remounted using the -a
 option:
mount -av
mount: /dev/hda5 already mounted on /root
mount: /dev/hda9 already mounted on /usr
mount: /dev/hda7 already mounted on /var
mount: none already mounted on /proc
mount: none already mounted on /dev/pts
/dev/hda10 on /home type ext2 (rw)
/dev/hda8 on /opt type ext2 (rw)
Note that mount should work silently
 without the -v option. It also safely skips
 filesystems that have been previously mounted.

Name
umount

Syntax
umount [options] device
umount [options] directory

Description
Unmount the filesystem on device or
 mounted on directory.
	-a
	Unmounts all of the filesystems described in
 /etc/mtab. This file is maintained by the
 mount and umount
 commands and contains an up-to-date list of mounted
 filesystems. This option is typically used at shutdown
 time.

	-t
 fstype
	Unmounts only filesystems of type
 fstype.

Example 1
Unmount the CD-ROM mounted on /dev/hdc at
 /mnt/cdrom:
umount /mnt/cdrom
or:
umount /dev/hdc

Example 2
Unmount all NFS filesystems:
umount -at nfs
On the Exam
Be sure that you understand how to use
 mount and mount points and how /etc/fstab is used when
 mounting files.

Objective 4: Set and View Disk Quotas

Managing disk space can be a difficult problem. The
 available space is a finite resource and is often consumed at an alarming
 rate, turning today’s carefully sized filesystem into tomorrow’s expansion
 requirement. On multiuser systems—no matter how big the filesystem—users
 will find a way to fill it. The last thing you want is for a filesystem to
 fill to capacity too early. One way to prevent this from happening is to
 enforce disk quotas, which allow you to assign a
 limit to the amount of space individual users or groups have on a
 filesystem.
A typical quota size is usually much smaller than the filesystem it
 is configured on, thus preventing the user or group from consuming too
 much space. Quotas can be configured for each filesystem mentioned in
 /etc/fstab, though they are usually applied only
 where multiple end users store files (e.g.,
 /home/username). There is no need for a quota on
 /usr, for example, since end users cannot store files
 there. Quotas may be configured for individual users listed in
 /etc/passwd and for groups listed in
 /etc/group.
Quota Limits

Each filesystem has up to five types of quota limits that
 can be enforced on it. These limits are specified in disk
 blocks, usually 1,024 bytes each:
	Per-user hard limit
	The hard limit is the maximum amount of
 space an individual user can have on the system. Once the user
 reaches his quota limit, he won’t be allowed to write files to the
 disk.

	Per-user soft limit
	Each user is free to store data on the filesystem
 until reaching her soft limit. The soft limit
 implements a sort of warning zone, instructing the user to clean
 up while still allowing her to work. When the amount of data
 exceeds this limit but does not exceed the hard limit, a message
 is printed on the user’s terminal, indicating that her quota has
 been exceeded; however, the write operation will succeed.

	Per-group hard limit
	This is the final limit set for a group by the quota
 system. Once this limit has been reached, none of the users within
 that group will be allowed to write files to the disk—even if the
 user’s individual limits are not exceeded.

	Per-group soft limit
	This limit behaves in the same way as a user’s soft
 limit but is enforced based on group ownership instead of
 individual ownership.

	Grace period
	Once a soft limit is reached, the user or group enters the
 grace period. After the grace
 period expires, the soft limit becomes a hard limit until enough
 files are deleted to eliminate the over-quota situation. The grace
 period may be specified for any number of months, weeks, days,
 hours, minutes, or seconds. A typical value is seven days.

These limits are set using the edquota
 command, detailed in the next section.
Note
When a disk write exceeds a hard limit or an expired soft limit,
 only part of the write operation will complete, leaving a truncated
 and probably useless file. The messages reported to the user when a
 quota is exceeded may be lost if the shell he is using is hidden (for
 example, if the user is writing to the disk through an SMB share from
 a Windows system). This could confuse the user because the error
 message generated by the application indicates that the disk is full
 or write-protected.

Quota Commands

Linux offers a host of commands to manage, display, and report on
 filesystem quotas. Some of the
 setup required to initially enable quotas is done manually and without
 specific quota commands, a process that is covered in the next
 section.

Enabling Quotas

To use quotas, they must first be enabled. Quota support
 must also be compiled into the kernel. In the unlikely event that your
 kernel does not contain quota support, you will need to recompile the
 kernel. This is not a difficult process, but unfortunately it is not
 completely straightforward either. To clarify the procedure, this
 section provides a brief tutorial on how to enable user and group quotas
 for a filesystem on /dev/sda9 mounted under
 /home. Note that you may enable user quotas only,
 group quotas only, or both, as your needs dictate.
	Set options in /etc/fstab. On the line
 containing the /home filesystem, add the
 usrquota and grpquota options to the existing default option, like this:
/dev/sda9 /home ext2 defaults,usrquota,grpquota 1 2
These options tell quota configuration utilities which
 partitions should be managed when the utilities reference
 /etc/fstab.

	Create the quota.user and
 quota.group files at the top of the
 /home filesystem and set their protection bits
 for root access only:
touch /home/quota.user /home/quota.group
chmod 600 /home/quota.user /home/quota.group
These two files are the databases for user and group quotas.
 Each filesystem with quotas uses its own quota databases. When
 quotas are enabled, these files will contain binary data (that is,
 they’re not text files). Note that if you want end users to be able
 to examine quotas on groups to which they belong,
 quota.group will need a protection mode of 644
 instead of 600.

	Run quotacheck to initialize the
 databases:
quotacheck -avug
Scanning /dev/sda9 [/home] done
Checked 236 directories and 695 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group

	Then, verify that your quota database files have been
 initialized by noting that they are no longer of size zero (here
 they are 16,192 bytes each):
ls -al /home/quota.*
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.group
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.user

	Run quotaon to enable the quota
 system:
quotaon -a

	Verify that your system’s initialization script
 (/etc/rc.d/rc.sysinit or similar) will turn on
 quotas when your system boots. Something along these lines is
 appropriate, although your system may be very different:
if [-x /sbin/quotacheck]; then
 echo "Checking quotas."
 /sbin/quotacheck -avug
 echo " Done."
fi
if [-x /sbin/quotaon]; then
 echo "Turning on quotas."
 /sbin/quotaon -avug
fi

	Add a command script to a system crontab
 directory (such as the directory
 /etc/crontab.weekly) to execute
 quotacheck on a routine basis. An executable
 script file like the following will work:
#!/bin/bash
exec /sbin/quotacheck -avug
If you prefer, you could instead put
 /sbin/quotacheck in root’s
 crontab file (using the crontab
 -e command) for weekly execution, like this:
run quotacheck weekly
0 3 * * 0 /sbin/quotacheck -avug

At this point, the /home filesystem is ready
 to accept quotas on a per-user and per-group basis, enforce them, and
 report on them.
On the Exam
A general understanding of quotas is necessary for the exam. In
 particular, you should know the function of each command. Also
 remember that quotas are set on a per-filesystem basis.

Name
quota

Syntax
quota [-u] [options] user
quota -g [options] group

Description
Displays quota limits on user or
 group. The -u option
 is the default. Only the superuser may use the
 -u flag and user to
 view the limits of other users. Other users can use the
 -g flag and group to
 view only the limits of groups of which they are members, provided
 that the quota.group files are readable by
 them.

Frequently used options
	-q
	Sets quiet mode, which shows only over-quota
 situations.

	-v
	Enables verbose mode to display quotas even if no
 storage space is allocated.

Example 1
As root, examine all quotas for user
 jdoe:
quota -uv jdoe
Disk quotas for user jdoe (uid 500):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 9456 10000 10200 32 0 0
/dev/hda1 23 0 0 17 0 0
This example shows that jdoe is barely
 within her soft limit of 10,000 blocks, with a corresponding hard
 limit of 10,200 blocks on /dev/sda9, and has no
 quota on /dev/hda1. The entry for
 /dev/hda1 is displayed in response to the
 -v option. No values are shown for the grace
 periods, because the soft limit has not been exceeded.

Example 2
As user jdoe, examine quotas for the
 finance group, of which he is a member:
$ quota -gv finance
Disk quotas for group finance (gid 501):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 1000* 990 1000 6days 34 3980 4000
/dev/hda1 0 0 0 0 0 0
Here, the finance group has exceeded its
 meager soft limit of 990 blocks and has come up against its hard
 limit of 1,000 blocks. (The write operation that wrote the 1,000th
 block was probably incomplete.) The original grace period in this
 example was set to seven days and has six days remaining, meaning
 that one day has elapsed since the soft limit was exceeded.

Name
quotaon

Syntax
quotaon [options] [filesystems]
quotaon [options] -a

Description
Enable previously configured disk quotas on one or
 more filesystems.

Frequently used options
	-a
	Turns quotas on for all filesystems in
 /etc/fstab that are marked read-write
 with quotas. This is normally used automatically at boot time
 to enable quotas.

	-g
	Turns on group quotas. This option is not necessary when
 using the -a option, which includes both
 user and group quotas.

	-u
	Turns on user quotas; this is the default.

	-v
	Enables verbose mode to display a message for each
 filesystem where quotas are turned on.

Example 1
Turn on all quotas as defined in
 /etc/fstab:
quotaon -av
/dev/sda9: group quotas turned on
/dev/sda9: user quotas turned on
/dev/hda1: group quotas turned on
/dev/hda1: user quotas turned on

Example 2
Turn on user quotas only on the /home
 filesystem:
quotaon -gv /home
/dev/sda9: group quotas turned on

Name
quotaoff

Syntax
quotaoff [options] [filesystems]
quotaoff [options] -a

Description
Disables disk quotas on one or more
 filesystems.

Frequently used options
	-a
	Turns quotas off for all filesystems in
 /etc/fstab.

	-g
	Turns off group quotas. This option is not necessary
 when using the -a option, which includes
 both user and group quotas.

	-u
	Turns off user quotas; this is the default.

	-v
	Enables verbose mode to display a message for each
 filesystem where quotas are turned off.

Example
Turn off all quotas:
quotaoff -av
/dev/sda9: group quotas turned off
/dev/sda9: user quotas turned off
/dev/hda1: group quotas turned off
/dev/hda1: user quotas turned off

Name
quotacheck

Syntax
quotacheck [options] filesystems
quotacheck [options] -a

Description
Examine filesystems and compile quota databases. This
 command is not specifically called out in the LPI Objectives for
 Exam 101, but is an important component of the Linux quota system.
 You should run the quotacheck -a command on a
 regular basis (perhaps weekly) via cron.

Frequently used options
	-a
	Checks all of the quotas for the filesystems mentioned
 in /etc/fstab. Both user and group quotas
 are checked as indicated by the usrquota
 and grpquota options.

	-g
 group
	Compiles information only on
 group.

	-u
 user
	Compiles information only on
 user; this is the default action.
 However, if the -g option is specified,
 then this option also should be specified when both group and
 user quotas are to be processed.

	-v
	Enables verbose mode to display information about what
 the program is doing. This option shows activity by displaying
 a spinning character in the terminal. This is nice but could
 be a problem if you are logged in over a slow modem
 link.

Example 1
Initialize all quota files:
quotaoff -a
quotacheck -aguv
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group
Scanning /dev/hda1 [/mnt/hd] done
Checked 3534 directories and 72673 files
Using quotafile /mnt/hd/quota.user
Using quotafile /mnt/hd/quota.group
quotaon -a
By turning off quotas during the update, the quota database
 files are updated.

Example 2
With quotas active, update the user quotas in memory for
 /home:
quotacheck -v /home
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Updating in-core user quotas

Name
edquota

Syntax
edquota [-p proto-user] [options] names
edquota [options] -t

Description
Modify user or group quotas. This interactive command
 uses a text editor to configure quota parameters for users or
 groups. The vi editor is used by default unless
 either the EDITOR or VISUAL environment variables are set to
 another editor, such as emacs. When the command
 is issued, the editor is launched with a temporary file containing
 quota settings. When the temporary file is saved and the editor is
 terminated, the changes are saved in the quota databases.
In the first form, a space-separated list of users or groups
 specified in names is modified. If
 proto-user is specified with the
 -p option, quotas of that user or group are
 copied and used for names and no editor
 is launched. In the second form with the -t
 option, the soft limit settings are edited interactively for each
 filesystem.

Frequently used options
	-g
	Modify group quotas. If -g is
 specified, all names are assumed to
 be groups and not users, even if -u is
 also specified.

	-p
 proto-user
	Duplicate the quotas of the prototypical user or group
 proto-user for each user or group
 specified. This is the normal mechanism used to initialize
 quotas for multiple users or groups at the same time.

	-t
	Modify soft limits. Time units of
 sec(onds),
 min(utes),
 hour(s),
 day(s),
 week(s), and
 month(s) are understood.

	-u
	Modify user quotas. This is the default action. This
 option is ignored if -g is also
 specified.

Note
The following examples use the vi
 editor. The contents of the edit buffer, not program output, are
 shown after each example.

Example 1
Modify the user quotas for jdoe:
edquota -u jdoe
Quotas for user jdoe:
/dev/sda9: blocks in use: 87, limits (soft = 99900, hard = 100000)
 inodes in use: 84, limits (soft = 0, hard = 0)
/dev/hda1: blocks in use: 0, limits (soft = 0, hard = 0)
 inodes in use: 0, limits (soft = 0, hard = 0)
~
~
"/tmp/EdP.auHTZJ0" 5 lines, 241 characters
Here, jdoe has been allocated a soft
 limit of 99,900 blocks (which on a default Linux
 ext2 or ext3 filesystem
 with a 4k block size means 390 MB), a hard limit of 100,000 blocks
 (only 400 KB higher than the soft limit), and no limit on the number
 of files on /dev/sda9. She has no limits on
 /dev/hda1.

Example 2
Modify soft limits for users on all filesystems:
edquota -tu
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/dev/sda9: block grace period: 7 days,
 file grace period: 3 days
/dev/hda1: block grace period: 7 days,
 file grace period: 3 days
~
~
"/tmp/EdP.aiTShJB" 5 lines, 249 characters
Here, the user grace periods have been set to seven days for
 blocks (disk space) and three days for files (inodes).

Name
repquota

Syntax
repquota [options] filesystems
repquota -a [options]

Description
Used to report on the status of quotas. In the first
 form, repquota displays a summary
 report on the quotas for the given
 filesystems on a per-user or per-group
 basis. In the second form, the -a option causes
 a summary for all filesystems with quotas to be displayed. This
 command fails for nonroot users unless the quota database files are
 world-readable. The current number of files and the amount of space
 utilized are printed for each user, along with any quotas created
 with edquota.

Frequently used options
	-a
	Report on all of the quotas for the read-write
 filesystems mentioned in /etc/fstab. Both
 user and group quotas are reported as indicated by the
 usrquota and
 grpquota options.

	-g
	Report quotas for groups.

	-u
	Report quotas for users; this is the default
 action.

	-v
	Enable verbose mode, which adds a descriptive header to
 the output.

Example
Report user quotas for /home:
repquota -v /home
*** Report for user quotas on /dev/sda9 (/home)
 Block limits File limits
User used soft hard grace used soft hard grace
root -- 418941 0 0 269 0 0
328 -- 1411 0 0 20 0 0
jdean -- 9818 99900 100000 334 0 0
u1 -- 44 0 0 43 0 0
u2 -- 44 0 0 43 0 0
u3 -- 127 155 300 124 0 0
jdoe -- 87 99900 100000 84 0 0
bsmith -- 42 1990 2000 41 0 0

Objective 5: Manage File Permissions and Ownership

Filesystem security is a fundamental requirement for any
 multiuser operating system. The system’s files, such as the kernel,
 configuration files, and programs, must be protected from accidents and
 tampering by unauthorized people. Users’ files must be protected from
 modification by other users and sometimes must be kept completely private.
 In general, a form of access control must be
 implemented to allow secure operations.
Linux Access Control

Native Linux filesystem access control is implemented
 using a set of properties, maintained separately for each file. These
 properties are collectively called the access mode, or simply the
 mode, of the file. The mode is a part of the file’s
 inode, the information retained in the filesystem that describes the
 file. A file’s mode controls access by these three classes of
 users:
	User
	The user who owns the file

	Group
	The group that owns the file

	Other
	All other users on the system

Like the mode, user and group ownership properties are a part of
 the inode, and both are assigned when a file is created. Usually, the
 owner is the user who created the file. The file’s group is usually set
 to its creator’s default group. Group ownership adds flexibility in
 situations in which a team shares files. The “other” users are those who
 aren’t members of the file’s group and are not the file’s owner. For
 each of these three user classes, the access mode defines three types of
 permissions, which apply differently for files and directories. The
 permissions are listed in Table 7-2.
Table 7-2. File permissions
	Permission
	Mnemonic
	File permission
	Directory permission

	Read
	r
	Examine the contents of the
 file.
	List directory
 contents.

	Write
	w
	Write to or change the
 file.
	Create and remove files in the
 directory.

	Execute
	x
	Run the file as a
 program.
	Access (cd into) the directory.

These three permissions apply to the three different classes of users: user, group, and
 other. Each has read, write, and execute permissions, as shown in
 Figure 7-1.
[image: Access mode bits]

Figure 7-1. Access mode bits

All of the permissions are binary (either granted or not granted)
 and are thought of as single binary bits in the access mode. When
 displayed by commands such as ls, the permissions
 use the mnemonic in Table 7-2 for the true
 state and a hyphen for the false state. To represent only the read
 permission, for example, r-- would be
 used. Read and execute together, typical for directories, would be
 denoted r-x. These notations are
 usually offered in sets of three, such as:
rw-rw-r--
A file with this setting would give read/write permission to the
 user and group, and read-only permission to everyone else.
In addition to the nine bits for user, group, and other, the
 access mode contains three more bits, which control special attributes
 for executable files and directories:
	SUID
	The SUID property is for executable files only and
 has no effect on directories. Normally the user who launches a
 program owns the resulting process. However, if an executable file
 has its SUID bit set, the file’s owner owns the resulting process,
 no matter who launched it. When SUID is used, the file’s owner is
 usually root. This offers anyone temporary root access for the
 duration of the command. An example of an SUID program is
 passwd. This command needs special access to
 manipulate the shadow password file
 (/etc/shadow), and runs as user
 root.
Using the SUID bit in cases like passwd
 enhances security by allowing access to secure functions without
 giving away the root password. On the other hand, SUID can be a
 security risk if access is granted unwisely. For example, consider
 a situation where /bin/vi was set to SUID
 mode. Any user would be able to edit any file on the
 system!

	SGID
	The SGID property works the same way as SUID for
 executable files, setting the process group owner to the file’s
 group. In addition, the SGID property has a special effect on
 directories. When SGID is set on a directory, new files created
 within that directory are assigned the same group ownership as the
 directory itself. For example, if directory
 /home/fin has the group
 finance and has SGID enabled, then all files
 under /home/fin are created with group
 ownership of finance, regardless of the
 creator’s group. This is an important attribute for teams,
 ensuring that shared files all have the same group
 ownership.

	Sticky
	At one time, the sticky bit applied to
 executable programs, flagging the system to keep an image of the
 program in memory after the program finished running. This
 capability increased performance for subsequent uses by
 eliminating the programs’ load phase, and was applied to programs
 that were large or were run frequently. Modern virtual memory
 techniques have made this use unnecessary, and under Linux there
 is no need to use the sticky bit on executable programs.
When applied to a directory, the sticky bit offers
 additional security for files within the directory. Regardless of
 file permissions, the only users who can rename or delete the
 files from a directory with the sticky bit set are the file owner,
 the directory owner, and root. When used in a
 team environment, the sticky bit allows groups to create and
 modify files but allows only file owners the privilege of deleting
 or renaming them. The /tmp directory on Linux
 systems usually has the sticky bit set, to allow any user to write
 to it, but allow only the file owner to delete files or
 directories.

Like the other access controls, these special properties are
 binary and are considered bits in the access mode.
The mode bits

The special, user, group, and
 other permissions can be represented in a string
 of 12 binary bits, as shown in Figure 7-2.
[image: Changing permission bits to an octal number]

Figure 7-2. Changing permission bits to an octal number

It is common to refer to these bits in four sets of three,
 translated into four octal (base-8) digits. The first octal digit
 represents the special permissions SUID, SGID, and sticky. The other
 three represent the read, write, and execute permissions,
 respectively, in each of the user, group, and other user classes.
 Octal notation is used as shorthand for binary strings
 such as the access mode, and each group of three bits has
 23 = 8 possible values, listed in Table 7-3.
The read permission by itself is r--, which can be thought of as binary 100,
 or octal 4. Adding the write permission yields rw-, or binary 110, which is octal 6. Figure 7-2 shows how to
 total bit values into the octal equivalents. Memorizing, or even
 writing, the binary-to-octal equivalents may be easier on the exam
 than adding bit values. Use the technique that works best for
 you.
Table 7-3. Octal numbers
	Octal value
	Binary equivalent

	0
	000

	1
	001

	2
	010

	3
	011

	4
	100

	5
	101

	6
	110

	7
	111

To turn the mode bits 110111101001 into an octal representation,
 first separate them into chunks of three bits: 110, 111, 101, and 001. The first group, representing the
 special permissions, is 110. This can be thought of as 4 + 2 + 0 =
 6. The second group, representing user permissions, is 111, or 4 + 2 + 1 = 7. The third group,
 representing group permissions, is 101, or 4 + 0 + 1 = 5. The last group,
 representing other permissions, is 001, or 0 + 0 + 1 = 1. The mode string for
 this example can then be written as the octal 6751.
This is the form used to display the file mode in the output
 from the stat command. Here, the octal access
 mode for the mount command is 4755:
stat /bin/mount
 File: `/bin/mount'
 Size: 69100 Blocks: 144 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 14671934 Links: 1
Access: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2009-08-07 15:40:29.000000000 -0500
Modify: 2009-06-01 06:17:46.000000000 -0500
Change: 2009-06-29 14:37:58.000000000 -0500
The special permissions are represented in this example by octal
 4, or binary 100, indicating that the SUID permission is set (-rws). The user permission is octal 7, or
 binary 111, indicating read, write, and execute for the file’s owner
 (in this case, root). Both the group and other
 permissions are set to octal 5, or binary 101, indicating read and
 execute, but not write.

The mode string

As mentioned earlier, the user, group, and other
 permissions are often spelled out in symbolic mode descriptions such
 as rwxr-xr-x. This notation is
 found in the output of the ls -l and
 stat commands. As you can see in the access mode
 for mount, this scheme is modified slightly in
 the presence of special permissions. Instead of adding three more bits
 to the left of rwxr-xr-x, the SUID
 permission is indicated in the string by changing the user execute
 position from x to s. SGID permission is handled the same way.
 The sticky permission is indicated by replacing x in the other execute position with
 T. For example, an executable
 program with mode 6755 would have the following equivalent symbolic
 mode:
rwsr-sr-x
A directory with mode 1774 would have this equivalent
 string:
rwxr-xr-T
While this layering of special permissions may appear to obscure
 the underlying execute permissions, it makes sense. The special
 permissions are relatively rare in the filesystem, so depicting the
 three extra bits would waste space on your terminal or terminal
 window. When the executable bits are set, the setuid and setgid bits
 are represented with s. When the
 executable bits are not set, the setuid and setgid bits are
 represented with S. Similarly, the
 sticky bit is represented with either t or T.

Setting Access Modes

New files are created with a default access mode to automatically
 set the permission levels. Regardless of your default umask, access
 modes on existing files can be changed or modified at will.
New files

When new files are created, the protection bits are set
 according to the user’s default setting. That default is established using the
 umask command, probably in a
 startup script. This command accepts only one argument, which is a
 three-digit octal string that masks the user, group, and other
 permission bits for newly created files and directories. Without a
 value, umask reports the current value:
$ umask
0022
When provided with an integer, umask sets
 the value for the current shell:
$ umask 2
$ umask
0002
A umask of 22 can be rewritten as 022, or
 as 000010010 in binary.
The process of creating the initial mode for newly created files
 begins with a raw initial mode string, as defined in Table 7-4.
Table 7-4. Initial access modes
	Form
	For files
	For directories

	Symbolic
	rw-rw-rw-
	rwxrwxrwx

	Binary
	110110110
	111111111

	Octal
	6 6 6
	7 7 7

The special bits are always turned off and are not masked by the
 umask. When a file is created, the
 umask is subtracted from 666; for directories, it
 is subtracted from 777. This calculation yields the effective
 protection mode for the file or directory. For example, a
 umask of 22 (022) is applied to a new file,
 masking the write permission for group and other user classes:
 110 110 110
- 000 010 010

 110 100 100
This is the same as mode 644, or rw-r--r--.
Using the same mask on a directory yields a similar
 result:
 111 111 111
- 000 010 010

 111 101 101
This is the same as mode 755, or rwxr-xr-x, which is appropriate for
 directories. A umask of 002 or 022 is typical, although if you wish to
 ensure maximum privacy, a umask of 077 blocks all access except for
 the superuser. To set a custom umask, enter the
 umask command in a startup script, such as
 ~/.bash_profile. Here’s an example of the
 umask in action:
$ umask 27
$ touch afile
$ mkdir adir
$ ls -ld adir afile
drwxr-x--- 2 jdean jdean 1024 Jan 2 20:31 adir
-rw-r----- 1 jdean jdean 0 Jan 2 20:31 afile
In this case, the umask of 27 makes the
 file afile read-only to members of the group and
 disallows access to the file to all others.
As you can see in the output of the previous example,
 ls adds an extra letter at the beginning of the
 mode string for the adir directory. This symbol
 indicates the type of file being listed and is not part of the access
 mode. The letter d indicates a
 directory, a - indicates a file,
 the letter l indicates a symbolic
 link, a b indicates a block device
 (such as a disk), and a c indicates
 a character device (such as a terminal).

Changing access modes

Access modes can be changed with the chmod command, which accepts either
 octal or symbolic access
 mode specifications. Octal bits, as shown in the previous section, are
 specified explicitly. However, some people prefer to use symbolic
 forms because they usually modify an existing mode instead of
 completely replacing it. Symbolic mode specifications have three
 parts, made up of individual characters, as shown in Table 7-5.
Table 7-5. Symbolic modes for the chmod command
	Category
	Mode
	Description

	User class
	u
	User

	 	g
	Group

	 	o
	Other

	 	a
	All classes

	Operation
	-
	Take away permission

	 	+
	Add permission

	 	=
	Set permission
 exactly

	Permissions
	r
	Read permission

	 	w
	Write permission

	 	x
	Execute permission

	 	X
	Execute permission for directories
 and files with another execute permission, but not plain
 files

	 	s
	SUID or SGID
 permissions

	 	t
	Sticky bit

The individual user class characters and permissions characters
 may be grouped to form compound expressions, such as ug for user and group combined or rw for read and write. Here are some
 examples of symbolic mode specifications:
	u+x
	Add execute permission for the user.

	go-w
	Remove write permission from group and other
 classes.

	o+t
	Set the sticky bit.

	a=rw
	Set read and write, but not execute, permissions for
 everyone.

	a+X
	Give everyone execute permission for directories and for
 those files with any existing execute permission.

The chmod command is used to modify the
 mode.

Setting Up a Workgroup Directory

The steps you may use to create a useful workgroup
 directory for a small team of people are briefly described here. The
 goals of the directory are as follows:
	The workgroup is to be called sales and
 has members jdoe, bsmith,
 and jbrown.

	The directory is /home/sales.

	Only the creators of files in /home/sales
 should be able to delete them.

	Members shouldn’t worry about file ownership, and all group
 members require full access to files.

	Nonmembers should have no access to any of the files.

The following steps will satisfy the goals:
	Create the new group:
groupadd sales

	Add the existing users to the group:
usermod –a -G sales jdoe
usermod –a -G sales bsmith
usermod –a -G sales jbrown

	Create a directory for the group:
mkdir /home/sales

	Set the ownership of the new directory:
chgrp sales /home/sales

	Protect the directory from others:
chmod 770 /home/sales

	Set the SGID bit to ensure that the sales
 group will own all new files. Also set the sticky bit to protect
 files from deletion by nonowners:
chmod g+s,o+t /home/sales

	Test it:
su - jdoe
$ cd /home/sales
$ touch afile
$ ls -l afile
-rw-rw-r-- 1 jdoe sales 0 Jan 3 02:44 afile
$ exit
su - bsmith
cd /home/sales
rm afile
rm: cannot unlink 'afile': Operation not permitted

After the ls command, we see that the group
 ownership is correctly set to sales. After the
 rm command, we see that
 bsmith cannot delete afile,
 which was created by jdoe. We also note that
 although afile has mode 664, the directory
 containing it has mode 770, preventing other users from reading the
 file.
On the Exam
For the exam, you should be prepared to answer questions on file
 and directory permissions in both symbolic and numeric (octal) forms. You should also be
 able to translate between the two forms given an example.

Name
chmod

Syntax
chmod [options] symbolic_mode[,symbolic_mode]...files
chmod [options] octal_mode files
chmod [options] --reference=rfile files

Description
Modify the access mode on files.
 In the first form, use one or more comma-separated
 symbolic_mode specifications to modify
 files. In the second form, use an
 octal_mode to modify
 files. In the third form, use the mode
 of rfile as a template to be applied to
 files.

Frequently used options
	-c
	Like verbose mode, but report only changes.

	-R
	Use recursive mode, descending through directory
 hierarchies under files and
 making modifications throughout.

	-v
	Use verbose behavior, reporting actions for all
 files.

Example 1
Set the mode for a file to rw-r--r--, using an octal
 specification:
$ chmod 644 afile
$ ls -l afile
-rw-r--r-- 1 jdean jdean 0 Jan 2 20:31 afile

Example 2
Set the same permission using a symbolic specification,
 using the verbose option:
$ chmod -v u=rw,go=r afile
mode of afile retained as 0644 (rw-r--r--)

Example 3
Recursively remove all permissions for
 other on a directory:
$ chmod -R -v o-rwx adir
mode of adir retained as 0770 (rwxrwx---)
mode of adir/file1 changed to 0660 (rw-rw----)
mode of adir/file2 changed to 0660 (rw-rw----)
mode of adir/file3 changed to 0660 (rw-rw----)
mode of adir/file4 changed to 0660 (rw-rw----)
mode of adir/dir1 changed to 0770 (rwxrwx---)
mode of adir/dir1/file6 changed to 0660 (rw-rw----)
mode of adir/dir1/file5 changed to 0660 (rw-rw----)
mode of adir/dir2 changed to 0770 (rwxrwx---)

Example 4
Set the sticky bit on a directory:
$ chmod -v +t adir
mode of adir changed to 1770 (rwxrwx--T)
Modification of ownership parameters may become necessary
 when moving files, setting up workgroups, or working in a user’s
 directory as root. This is accomplished using
 the chown command, which can change
 user and group ownership, and the chgrp
 command for modifying group ownership.

Name
chown

Syntax
chown [options] user-owner files
chown [options] user-owner. files
chown [options] user-owner.group-owner files
chown [options] .group-owner files
chown [options] --reference=rfile files

Description
Used to change the owner and/or group of
 files to
 user-owner and/or
 group-owner. In the first form,
 user-owner is made the owner of
 files and the group is not affected. In
 the second form (note the trailing dot on
 user-owner), the
 user-owner is made the owner of
 files, and the group of the files is
 changed to user-owner’s default group.
 In the third form, both user-owner and
 group-owner are assigned to
 files. In the fourth form, only the
 group-owner is assigned to
 files, and the user is not affected. In
 the fifth form, the owner and group of
 rfile is used as a template and applied
 to files. Only the superuser may change
 file ownership, but group ownership may be set by anyone belonging
 to the target group-owner.
Note
Note that historically BSD systems have used the
 user.group
 syntax, but SysV-based systems have used
 user:group
 (: instead of .). Older versions of GNU
 chown accepted only the BSD syntax, but recent versions support
 both.

Frequently used options
	-c
	Like verbose mode, but report only changes.

	-R
	Use recursive mode, descending through directory
 hierarchies under files and
 making modifications throughout.

	-v
	Use verbose behavior, reporting actions for all
 files.

Example 1
As root, set the user owner of a file:
chown -v jdoe afile
owner of afile changed to jdoe

Example 2
As root, set the user and group owner of a file:
chown -v jdoe.sales afile
owner of afile changed to jdoe.sales

Name
chgrp

Syntax
chgrp [options] group-owner files
chgrp [options] --reference=rfile files

Description
Change the group owner of
 files to
 group-owner. In the first form, set the
 group-owner of
 files. In the second form, the group of
 rfile is used as a template and applied
 to files. Options and usage are the
 same as that of chown.

Example 1
Recursively change the group owner of the entire
 sales directory:
chgrp -Rv sales sales
changed group of 'sales' to sales
changed group of 'sales/file1' to sales
changed group of 'sales/file2' to sales
...

Objective 6: Create and Change Hard and Symbolic Links

Often it is useful to have access to a file in multiple
 locations in a filesystem. To avoid creating multiple copies of the file,
 use a link. Links don’t take up very much space, as
 they only add a bit of metadata to the filesystem, so they’re much more
 efficient than using separate copies.
There are two types of links used on Linux:
	Symbolic links
	A symbolic link is simply a pointer to another
 filename. When Linux opens a symbolic link, it reads the pointer and
 then finds the intended file that contains the actual data. Symbolic
 links can point to other filesystems, both local and remote, and
 they can point to directories. The ls -l
 command clearly lists them as links by displaying a special “l” (a
 lowercase L) in column one, and they have no
 file protections of their own (the actual file’s permissions are
 used instead).
A symbolic link can point to a filename that does not actually
 exist. Such a symbolic link is said to be
 broken or stale.

	Hard links
	A hard link is not really a link at all; it is simply
 another directory entry for an existing file. The two directory
 entries have different names but point to the same inode and thus to
 the same actual data, ownership, permissions, and so on. In fact,
 when you delete a file, you are only removing a directory entry (in
 other words, one hard link to the file). As long as any directory
 entries remain, the file’s inode is not actually deleted. In fact, a
 file is not deleted until its link count drops
 to zero (and the file is no longer open for reading or
 writing).
Hard links have two important limitations. First, because all
 of the links to a file point to the same inode, any hard links must
 by definition reside on the same filesystem. Second, hard links
 cannot point to directories. However, hard links take no disk space
 beyond an additional directory entry.

Why Links?

To see an example of the use of links in practice, consider the
 directories in /etc/rc.d on a typical RPM-based
 system:
drwxr-xr-x 2 root root 1024 Dec 15 23:05 init.d
-rwxr-xr-x 1 root root 2722 Apr 15 1999 rc
-rwxr-xr-x 1 root root 693 Aug 17 1998 rc.local
-rwxr-xr-x 1 root root 9822 Apr 13 1999 rc.sysinit
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc0.d
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc1.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc2.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc3.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc4.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc5.d
drwxr-xr-x 2 root root 1024 Dec 14 23:37 rc6.d
Inside init.d are scripts to start and stop
 many of the services on your system, such as httpd,
 crond, and syslogd. Some of these files
 are to be executed with a start argument, while others are run with a
 stop argument, depending on the runlevel of your
 system. To determine just which files are run and what argument they
 receive, a scheme of additional directories has been devised. These
 directories are named rc0.d through
 rc6.d, one for each runlevel (see Chapter 4 for a complete
 description of this scheme). Each of the runlevel-specific directories
 contains several links, each with a name that helps determine the
 configuration of services on your system. For example,
 rc3.d contains the following links, among many
 others:
S30syslog -> ../init.d/syslog
S40crond -> ../init.d/crond
S85httpd -> ../init.d/httpd
All of these links point back to the scripts in
 init.d as indicated by the arrows (->) after the script name. If these links
 were copies of the scripts, editing would be required for all of the
 runlevel-specific versions of the same script just to make a single
 change. Instead, links allow us to:
	Make changes to the original file once. References to the
 links will yield the updated contents as long as the filename
 doesn’t change.

	Avoid wasting disk space by having multiple copies of the same
 file in different places for “convenience.”

As another example, consider the directory for the kernel source,
 /lib/modules/kernel_version/build:
build -> /usr/src/linux-2.4.18
Makefiles and other automated tools for building third-party
 kernel modules can refer to /lib/modules/`uname
 –r`/build, but in reality they reference /usr/src/linux-2.4.18.
 If a new kernel is added, say, version 2.4.20, its source would be
 placed into an appropriately named directory and the
 build link in the new modules directory would be
 set, as follows:
build -> /usr/src/linux-2.4.20
Now the appropriate directory can be selected simply by changing
 the link. No files need to be moved or deleted. Once created, links are
 normal directory entries, which may be copied, renamed, deleted, and
 backed up.
Symbolic and hard links are created with the
 ln command.

Name
ln

Syntax
ln [options] file link
ln [options] files directory

Description
Create links between files. In the first form, a new
 link is created to point to
 file, which must already exist. In the
 second form, links are created in
 directory for all
 files specified.
Hard links are created unless the -s
 option is specified.

Frequently used options
	-f
	Overwrite (force) existing links or existing files in
 the destination directory.

	-i
	Prompt interactively before overwriting destination
 files.

	-s
	Create a symbolic link rather than a hard link.

Example 1
Note that the Bourne shell (sh) on a
 Linux system is a symbolic link to bash:
$ ls -l /bin/bash /bin/sh
-rwxr-xr-x 1 root root 626028 Feb 11 07:34 /bin/bash
lrwxrwxrwx 1 root root 4 Feb 23 10:24 /bin/sh -> bash

Example 2
Create a file named myfile, a symbolic
 link to that file named myslink, and a hard
 link to that file named myhlink, and then
 examine them:
$ touch myfile
$ ln -s myfile myslink
$ ln myfile myhlink
$ ls -l my*
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myfile
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myhlink
lrwxrwxrwx 1 jdoe jdoe 6 Jan 3 13:21 myslink -> myfile
Using the stat command on my* demonstrates that
 myfile and myhlink both
 ultimately reference the same inode (the inode numbers are the same) and indicates
 the number of hard links to the file:
stat my*
File: 'myfile'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600
 File: 'myhlink'
 Size: 0 Blocks: 0 IO Block: 4096 Regular File
Device: 3a05h/14853d Inode: 1212467 Links: 2
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600
 File: 'myslink' -> 'myfile'
 Size: 6 Blocks: 0 IO Block: 4096 Symbolic Link
Device: 3a05h/14853d Inode: 1213365 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-15 21:36:33.000000000 -0600
Modify: 2009-03-15 21:36:33.000000000 -0600
Change: 2009-03-15 21:36:33.000000000 -0600
Note that the symbolic link has an inode of its own, which can
 also be displayed using the -i option to
 ls:
ls -li my*
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myfile
1212467 -rw-r--r-- 2 root root 0 Mar 15 21:36 myhlink
1213365 lrwxrwxrwx 1 root root 6 Mar 15 21:36 myslink -> myfile
Here you can see that the directory entries for
 myfile and myhlink both
 point to inode 1212467, while the directory entry for
 myslink points to inode 1213365. That inode
 contains the symbolic link to myfile.
As another example, consider the two filesystems in Figure 7-3. The root partition on
 /dev/sda1 holds a file intended as an example
 bash startup file, located in
 /etc/bashrc_user. On the same filesystem, the
 root user has elected to use
 /etc/bashrc_user. Not wanting to maintain both
 files individually, root has created a hard
 link, /root/.bashrc, to the example
 file.
Both of the directory entries,
 /etc/bashrc_user and
 /root/.bashrc, point to the same text data in
 the same file, described by the same inode, on
 /dev/sda1. User jdoe has
 also elected to link to the example file. However, since his home
 directory is located in /home on
 /dev/sda9, jdoe cannot use
 a hard link to the file on /dev/sda1. Instead,
 he created a symbolic link, /home/jdoe/.bashrc,
 which points to a small file on /dev/sda9. This
 contains the pointer to directory entry
 /etc/bashrc_user, which finally points at the
 text. The result for root and
 jdoe is identical, though the two styles of
 links implement the reference in completely different ways.

Name
Preserving links

Programs such as tar and cp contain options that control
 whether symbolic links are followed during operation. In the
 case of a tar backup, this may be important if
 you have multiple links to large files, because you would get many
 redundant backups of the same data.
When a symbolic link is encountered with
 cp, the contents of the file to which the link
 points are copied, unless the -d option is
 specified. This “no dereference” operator causes cp
 to copy the links themselves instead. For example, consider a
 directory dir1 containing a symbolic link,
 which is recursively copied to other directories with and without
 the -d option:
ls -l dir1
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Dec 12 17:12 file2
cp -r dir1 dir2
ls -l dir2
total 3117
-rw-r--r-- 1 root root 3164160 Jan 4 02:43 file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2
cp -rd dir1 dir3
ls -l dir3
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2
Directory dir2 has a copy of the entire
 file1, which is large, probably wasting disk
 space. Directory dir3, created with
 cp -rd, is the same as
 dir1 (including the symbolic link) and takes
 very little space.
[image: Hard and symbolic links]

Figure 7-3. Hard and symbolic links

Name
Finding links to a file

Finding the file pointed to by a symbolic link is
 simple. The ls -l command displays a
 convenient pointer notation, indicating just where links are
 pointing:
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
Going the other way and finding symbolic links to a file is
 less obvious but is still relatively easy. The
 -lname option to the find utility locates them for you
 by searching for symbolic links containing the original filename.
 Here, the entire local filesystem is searched for
 myfile, turning up three symbolic links:
find / -lname myfile
/home/world/rootsfile
/home/finance/hisfile
/root/myslink
Remember that symbolic links could be anywhere, which includes
 a remote system (if you’re sharing files), so you may not be able to
 locate them all. (See Objective 3: Perform Basic File Management, for
 additional information on the find
 command).
Since hard links aren’t really links but duplicate directory
 entries, you can locate them by searching directory entries for the
 inode, which is identical in all the links. Unlike symbolic links,
 you are guaranteed to find all of the links since hard links cannot
 cross filesystem boundaries. First, identify the inode you’re
 interested in, as well as the filesystem that contains the
 links:
df file1
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda9 1981000 451115 1427473 24% /home
ls -i file
90469 file1file1 is on the /home filesystem, and its inode
number is 90469. Next, find is used with the -inum
option to locate all instances of inode 90469:
find /home -inum 90469
/home/world/file1
/home/finance/file1
/home/jdoe/private/.myfile1
This example turns up three links to
 file1, including one that user
 jdoe appears to be hiding!
On the Exam
You should be prepared to identify the differences between
 hard and symbolic links, when each is used, and their
 limitations.

Objective 7: Find System Files and Place Files in the Correct
 Location

In 1993, the Linux community formed a project to provide a
 standardized filesystem layout for all general-purpose distributions of Linux. The
 intent of this standardization was to provide advice on how to reduce the
 proliferation of proprietary Linux filesystem layouts and their possible
 contribution to market fragmentation.
The project released a document describing the Linux Filesystem
 Standard, usually abbreviated FSSTND, in 1994. The following year, the group began to
 reduce Linux-specific content and to refine the standard to include other
 Unix or Unix-like operating systems. As the FSSTND attracted broader
 appeal, it was renamed the Filesystem Hierarchy Standard.
 Although the FHS is not a requirement of Linux developers and
 distributors, the Linux community understands the importance of standards,
 and all major distributions support the standard.
Note
The full FHS specification is available at http://www.pathname.com/fhs/. The
 information in this chapter is consistent with version 2.3 of the
 specification.

Datatypes

To frame its recommendations, the FHS defines two
 categories of data use, each with two opposing subtypes:
	Data sharing
	This category defines the scope of data use in a
 networked environment:
	Sharable
	Sharable data can be used by multiple host
 systems on a network. Sharable files contain general-purpose
 information, without ties to any specific host. Examples
 include user data files, executable program files, and
 system documentation.

	Nonsharable
	Data is not sharable when linked to a specific
 host, such as a unique configuration file.

	Data modification
	This category specifies how data changes:
	Variable
	Data is considered variable when changed by
 natural, frequent processes. Examples include user files and
 system logfiles, such as
 /var/log/messages.

	Static
	Static data is left alone for the most part,
 remaining the same from day to day or even year to year.
 Examples include binary programs such as
 ls and bash, which
 change only when the system administrator performs an
 upgrade.

Some directories in the Linux filesystem are intended to hold
 specific types of data. For example, the executable files in
 /usr are rarely changed, and thus could be defined
 as static because they are needed by all users on a
 network. Before disks were as large as they are today, the files
 commonly found in /usr were often mounted from
 remote servers to preserve local disk space. Thus, in addition to being
 static, /usr is said to be
 sharable. Keeping files organized with respect to
 these attributes can simplify file sharing, system administration, and
 backup complexity, as well as reduce storage requirements. The FHS
 arranges the preceding data categories into a 2 × 2 matrix, as shown
 with a few example directories in Table 7-6.
Table 7-6. FHS datatypes
	 	Sharable
	Nonsharable

	Static
	/usr

 /usr/local
	/etc

 /boot

	Variable
	/var/mail

 /home
	/var/log

 /proc

On many networks, /usr and
 /usr/local are mounted by individual workstations
 from an NFS server. This can save a considerable amount of local storage
 on the workstations. More importantly, placing these directories on
 another system can make upgrades and additions much simpler. These
 directories are usually shared as read-only filesystems because they are
 never modified by most end users. The /var/mail and
 /home directories, on the other hand, are shared
 but must be changed regularly by users. The /etc
 and /boot directories contain files that are static
 in the sense that only the administrator changes them, but sharing them
 is not necessary or advised, because they are local configuration files.
 The /var/log and /proc
 directories are very dynamic but also of local interest only.

The root Filesystem

The FHS offers a significant level of detail describing
 the exact locations of files, using rationale derived from the
 static/variable and sharable/nonsharable definitions. However, knowledge
 of the location of every file is not necessary or required for Exam 101.
 This section discusses the major portions of the FHS directory hierarchy
 overall, with specific example files offered as illustrations.
Note
Although the FHS is a defining document for the Linux
 filesystem, it does not follow that all directories described in the
 FHS will be present in all Linux installations. Some directory
 locations cited in the FHS are package-dependent or open to
 customization by the vendor.

The root filesystem is located at the top of the entire directory
 hierarchy. The FHS defines these goals for the root filesystem:
	It must contain utilities and files sufficient to boot the
 operating system, including the ability to mount other filesystems.
 This includes utilities, device files, configuration, boot loader
 information, and other essential start-up data.

	It should contain the utilities needed by the system
 administrator to repair or restore a damaged system.

	It should be relatively small. Small partitions are less
 likely to be corrupted due to a system crash or power failure than
 large ones are. In addition, the root partition should contain
 nonsharable data to maximize the remaining disk space for sharable
 data.

	Software should not create files or directories in the root
 filesystem.

Although a Linux system with everything in a single root partition
 may be created, doing so would not meet these goals. Instead, the root
 filesystem should contain only essential system directories, along with
 mount points for other filesystems. Essential root filesystem
 directories include:
	/bin
	The /bin directory contains
 executable system commands such as cp, date, ln, ls,
 mkdir, and more. These commands
 are deemed essential to system administration in case of a
 problem.

	/dev
	Device files, necessary for accessing disks and
 other devices, are stored in /dev. Examples include disk
 partitions, such as hda1, and terminals, such
 as tty1. Devices must be present at boot time
 for proper mounting and configuration. The exception to this rule
 is systems using devfs, which is a relatively
 recent addition to the Linux kernel that makes
 /dev a virtual filesystem, much like
 /proc, where device-special files are created
 by the kernel when drivers register devices. Use of
 devfs is currently not covered by the Level 1
 Objectives.

	/etc
	The /etc directory contains
 configuration information unique to the system and is required for
 boot time. No binary executable programs are stored here. Prior
 practice in various versions of Unix had administrative executable
 programs stored in /etc. These have been
 moved to /sbin under the FHS. Example files
 include passwd, hosts, and
 login.defs.

	/lib
	The /lib directory contains
 shared libraries and kernel modules, both essential for system
 initialization.

	/mnt
	This directory is provided for the local system
 administrator’s use. Generally, it is empty except for some mount
 points for temporary partitions, including
 cdrom and floppy.

	/root
	The recommended default (but optional) home
 directory for the superuser is /root. Although
 it is not absolutely essential for /root to
 be on the root filesystem, it is customary and convenient, because
 doing so keeps root’s configuration files available for system
 maintenance or recovery.

	/sbin
	Essential utilities used for system administration
 are stored in /sbin. Examples include
 fdisk, fsck, and
 mkfs.

The remaining top-level directories in the root filesystem are
 considered nonessential for emergency procedures:
	/boot
	The /boot directory contains
 files for the boot loader (such as LILO or GRUB). Because it is
 typically small, it can be left in the root filesystem. However,
 it is often separated to keep the boot loader files within the
 first 1,024 cylinders of a physical disk.

	/home
	The /home filesystem contains
 home directories for system users. This is usually a separate
 filesystem and is often the largest variable filesystem in the
 hierarchy.

	/opt
	The /opt directory is intended
 for the installation of software other than that packaged with the
 operating system. This is often the location selected by
 third-party software vendors for their products.

	/tmp
	The /tmp directory is for the
 storage of temporary files. The FHS recommends (but does not
 require) that its contents are deleted upon every system
 boot.

	/usr
	The /usr filesystem contains a
 significant hierarchy of executable programs deemed nonessential
 for emergency procedures. It is usually contained in a separate
 partition. It contains sharable, read-only data, and is often
 mounted locally read-only and shared via NFS read-only.
 /usr is described in detail in the next
 section.

	/var
	Like /usr, the
 /var filesystem contains a large hierarchy
 and is usually contained in a separate partition. It holds data
 that varies over time, such as logs, mail, and spools.

The /usr filesystem

The /usr filesystem hierarchy contains
 system utilities and programs that do not appear in the root
 partition. For example, user programs such as
 less and tail are found in
 /usr/bin. /usr/sbin contains system
 administration commands such as adduser and
 traceroute, and a number of daemons needed only
 on a normally operating system. No host-specific or variable data is
 stored in /usr. Also disallowed is the placement
 of directories directly under /usr for large
 software packages. An exception to this rule is made for X11, which
 has a strong precedent for this location.
The following subdirectories may be found under
 /usr:
	/usr/X11R6
	This directory contains files for XFree86. Because X is
 deployed directly under
 /usr on many Unix
 systems, X breaks the rule that usually prohibits a custom
 /usr directory for a
 software package.

	/usr/bin
	The /usr/bin directory is the primary
 location for user commands that are not considered essential for
 emergency system maintenance (and thus are stored here rather
 than in /bin).

	/usr/include
	/usr/include is the standard location
 for include or header
 files, used for C and C++ programming.

	/usr/lib
	This directory contains shared libraries that support
 various programs. FHS also allows the creation of
 software-specific directories here. For example,
 /usr/lib/perl5 contains the standard
 library of Perl modules that implement programming functions in
 that language.

	/usr/local
	/usr/local is the top level of
 another hierarchy of binary files, intended for use by the
 system administrator. It contains subdirectories much like
 /usr itself, such as /bin,
 /include, /lib, and /sbin. After
 a fresh Linux installation, this directory contains no files but
 may contain an empty directory hierarchy. Example items that may
 be found here are locally created documents in
 /usr/local/doc or
 /usr/local/man, and executable scripts and
 binary utilities provided by the system administrator in
 /usr/local/bin.

	/usr/sbin
	The /usr/sbin directory is the
 primary location for system administration commands that are not
 considered essential for emergency system maintenance (and thus
 are stored here rather than in
 /sbin).

	/usr/share
	/usr/share contains a hierarchy of
 datafiles that are independent of, and thus can be shared among,
 various hardware architectures and operating system versions.
 This is in sharp contrast to architecture-dependent files such
 as those in /usr/bin. For example, in an
 enterprise that uses both i386- and Alpha-based Linux systems,
 /usr/share could be offered to all systems
 via NFS. However, since the two processors are not
 binary-compatible, /usr/bin would have two
 NFS shares, one for each architecture.
The information stored in /usr/share
 is static data, such as the GNU info system
 files, dictionary files, and support files for software
 packages.

	/usr/src
	/usr/src is an optional directory on
 all modern glibc-based systems. On older libc4- and libc5-based
 systems, /usr/src/linux was expected to
 contain a copy of the kernel source, or at least the directories
 include/asm and
 include/linux for kernel header
 files.
On glibc-based systems, nothing should refer to the
 /usr/src/linux directory. In fact, leaving
 kernel source at that location is generally regarded as a bad
 practice, since it has the potential to confuse old
 software.

The /var filesystem

The /var filesystem contains data
 such as printer spools and logfiles that vary over time. Since
 variable data is always changing and growing,
 /var is usually contained in a separate partition
 to prevent the root partition from filling. The following
 subdirectories can be found under /var:
	/var/account
	Some systems maintain process accounting data in this
 directory.

	/var/cache
	/var/cache is intended for use by
 programs for the temporary storage of intermediate data, such as
 the results of lengthy computations. Programs using this
 directory must be capable of regenerating the cached information
 at any time, which allows the system administrator to delete
 files as needed. Because it holds transient data,
 /var/cache never has to be backed
 up.

	/var/crash
	This optional directory holds crash dumps for systems that
 support that feature.

	/var/games
	This optional directory is used to store state
 information, user score data, and other transient items.

	/var/lock
	Lock files, used by applications to signal their existence
 to other processes, are stored here. Lock files usually contain
 no data.

	/var/log
	The /var/log directory is the main
 repository for system logfiles, such as those created by the
 syslog system. For example, the default system logfile is
 /var/log/messages.

	/var/mail
	This is the system mailbox, with mail files for each user.
 /var/mail is a replacement for
 /var/spool/mail and aligns FHS with many
 other Unix implementations. You may find that your Linux
 distribution still uses
 /var/spool/mail.

	/var/opt
	This directory is defined as a location for temporary
 files of programs stored in /opt.

	/var/run
	/var/run contains various files
 describing the present state of the system. All such files may
 be deleted at system boot time. This is the default location for
 PID files, which contain the PIDs of the processes for which
 they are named. For example, if the Apache web server, httpd, is running as process number
 534, /var/run/httpd.pid will contain that
 number:
cat /var/run/httpd.pid
534
Such files are needed by utilities that must be able to
 find a PID for a running process. Also located here is the
 utmp file, used by commands such as
 who and last to
 display logged-in users.

	/var/spool
	The /var/spool directory contains
 information that is queued for processing. Examples include
 print queues, outgoing mail, and crontab
 files.

	/var/state
	The /var/state directory is intended
 to contain information that helps applications preserve state
 across multiple invocations or multiple instances.

	/var/tmp
	As with /tmp in the root filesystem,
 /var/tmp is used for storage of temporary
 files. Unlike /tmp, the files in
 /var/tmp are expected to survive across
 multiple system boots. The information found in
 /var/tmp could be considered more
 persistent than information in /tmp.
Although it is not specified this way in the FHS, some
 distributions use /var/tmp as a more secure
 temporary directory for use by root.

	/var/yp
	This optional directory contains the database files of the
 Network Information Service (NIS), if implemented. NIS was
 formerly known as yellow pages (not to be
 confused with the big yellow book).
This directory shouldn’t be confused with
 /var/nis, which is used by NIS+. Oddly,
 /var/nis is mentioned in a footnote in FHS
 2.3, but it does not have an entry in the specification.

Linux annex

Since FHS migrated away from being a Linux-only document and
 expanded to cover other operating systems, information specific to any
 one operating system was moved to an annex. The only annex listed in
 v2.3 of FHS is the Linux annex, which mentions a few guidelines and
 makes allowances for the placement of additional program files in
 /sbin. The Linux annex also mentions and supports
 the use of the /proc filesystem for the
 processing of kernel, memory, and process information.

Where’s that binary?

Compiled executable files, called binary files, or just
 binaries, can be located in a number of places in
 an FHS-compliant filesystem. However, it’s easy to become a little
 confused over why a particular executable file is placed where it is
 in the FHS. This is particularly true for bin and
 sbin directories, which appear in multiple
 locations. Table 7-7 lists these
 directories and shows how each is used.
Table 7-7. Binary file locations
	Type of file
	User commands
	System administration
 commands

	Vendor-supplied, essential (root
 filesystem)
	/bin
	/sbin

	Vendor-supplied, nonessential
 (/usr filesystem)
	/usr/bin
	/usr/sbin

	Locally supplied, nonessential
 (/usr filesystem)
	/usr/local/bin
	/usr/local/sbin

Locating Files

FHS offers the Linux community an excellent resource that
 assures consistency across distributions and other operating systems. In
 practice, however, file location problems can be frustrating, and the
 need arises to find files in the system quickly. These file location
 tools are required for Exam 101: which, find, locate,
 whereis, and type.
which uses the PATH variable to locate executable files.
 find searches specified areas in the filesystem.
 whereis searches in a small subset of common
 directories. locate offers a quick alternative to
 find for filename searches and is suited for
 locating files that are not moved around in the filesystem. Without a
 fresh database to search, locate is not suitable
 for files recently created or renamed.

Name
which

Syntax
which command

Description
Determine the location of
 command and display the full pathname of
 the executable program that the shell would launch to execute it.
 which searches only the user’s path.

Example
Determine the shell that would be started by entering the
 tcsh command:
which tcsh
/bin/tcsh
which is small and does only one thing:
 determines what executable program will be found and called by the
 shell. Such a search is particularly useful if you’re having trouble
 with the setup of your PATH
 environment variable or if you are creating a new version of an
 existing utility and want to be certain you’re executing the
 experimental version.

Name
find

Syntax
find paths expression

Description
Locate files that match an
 expression starting at
 paths and continuing recursively. The
 find command has a rich set of
 expression directives for locating just
 about anything in the filesystem.

Example
To find files by name located in the /usr
 directory hierarchy that might have something to do with the
 csh shell or its variants, you might use the
 -name filename
 directive:
find /usr -name "*csh*"
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c
Some of these results are clearly related to
 csh or to tcsh, whereas
 others are questionable. In addition, this command may take a while
 because find must traverse the
 entire /usr hierarchy, examining each filename
 for a match. This example demonstrates that if filename wildcards
 are used, the entire string must be quoted to prevent expansion by
 the shell prior to launching find.
find is among the most useful commands in
 the Linux administrator’s toolkit and has a variety of useful
 options. find is handy in certain cases. For
 example:
	You need to limit a search to a particular location in the
 filesystem.

	You must search for an attribute other than the
 filename.

	Files you are searching for were recently created or
 renamed, in which case locate may not be
 appropriate.

Refer to Chapter 6, for
 additional information on the find
 command.
On the Exam
You should have a general understanding of
 find. Remember that by default,
 find prints matching directory entries to the
 screen. However, detailed knowledge of find
 options and usage are beyond the scope of LPIC Level 1
 exams.

Name
locate

Syntax
locate patterns

Description
Locate files whose names match one or more
 patterns by searching an index of files
 previously created.

Example
Locate files by name in the entire directory hierarchy that
 might have something to do with the csh shell
 or its variants:
locate csh
/home/jdean/.tcshrc
/root/.cshrc
/root/.tcshrc
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/FAQ
/usr/doc/tcsh-6.08.00/NewThings
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/tcsh-6.08.00/eight-bit.txt
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c
/etc/csh.cshrc
/etc/profile.d/kde.csh
/etc/profile.d/mc.csh
/bin/csh
/bin/tcsh
The locate command must have a recent
 database to search, and that database must be updated periodically
 to incorporate changes in the filesystem. If the database is stale,
 using locate yields a warning:
locate tcsh
locate: warning: database /var/lib/slocate/slocate.db' is more \
 than 8 days old

Name
updatedb

Syntax
updatedb [options]

Description
Refresh (or create) the slocate
 database in /var/lib/slocate/slocate.db.

Option
	-e
 directories
	Exclude a comma-separated list of
 directories from the
 database.

Example
Refresh the slocate database, excluding
 files in temporary locations:
updatedb -e "/tmp,/var/tmp,/usr/tmp,/afs,/net,/proc"
updatedb is typically executed
 periodically via cron.

Additional options
Some Linux distributions (Debian, for example) come with a
 version of updatedb that accepts additional
 options that can be specified on the command line:
	--netpaths=‘path1 path2
 ... ’
	Add network paths to the
 search list.

	--prunepaths=‘path1
 path2 ... ’
	Eliminate paths from the
 search list.

	--prunefs=‘filesystems
 ... ’
	Eliminate entire types of
 filesystems, such as NFS.

These options modify the behavior of
 updatedb on some Linux systems by prohibiting
 the parsing of certain filesystem locations and by adding others.
 There are a few more of these options than those listed here, but
 these three are special in that they can also be specified through
 the use of environment variables set prior to
 updatedb execution. The variables are NETPATHS, PRUNEPATHS, and PRUNEFS. These variables and the options
 to updatedb are discussed here because this
 Objective makes specific mention of
 updatedb.conf, a sort of control file for
 updatedb. Despite its name,
 updatedb.conf isn’t really a configuration
 file, but rather a fragment of a Bourne shell script that sets these
 environment variables. Example 7-2 shows a sample
 updatedb.conf file.
Example 7-2. Sample updatedb.conf file
This file sets environment variables used by updatedb
filesystems which are pruned from updatedb database:
PRUNEFS="NFS nfs afs proc smbfs autofs auto iso9660"
export PRUNEFS
paths which are pruned from updatedb database:
PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /amd /alex"
export PRUNEPATHS
netpaths which are added:
NETPATHS="/mnt/fs3"
export NETPATHS

In this example, the PRUNEFS and PRUNEPATHS variables cause
 updatedb to ignore types of filesystems and
 particular paths, respectively. NETPATHS is used to add network paths from
 remote directory /mnt/fs3.
updatedb.conf doesn’t directly control
 updatedb, but eliminates the need for lengthy
 options on the updatedb command line, which can
 make crontab files a bit cleaner.
On the Exam
Remember that updatedb does not require
 configuration to execute. On systems that provide for
 configuration, updatedb.conf can specify a
 few extra options to updatedb by way of
 environment variables.

Name
whereis

Syntax
whereis [options] filename

Description
whereis locates source/binary and
 manuals sections for specified files.

Example
whereis ls
ls: /bin/ls /usr/share/man/man1p/ls.1p.gz /usr/share/man/man1/ls.1.gz

Name
type

Syntax
type [options] filename

Description
type is not actually a separate
 program, but a built-in part of the bash shell.
 type will tell you how a
 filename would be interpreted if used as
 a command name.

Example
type ls
ls is aliased to `ls --color=auto'
type grep
grep is hashed (/bin/grep)
type foo
-bash: type: foo: not found
On the Exam
You must be familiar with the FHS concept and the contents of its major
 directories. Be careful about the differences between (and reasons
 for) /bin and
 /sbin, root filesystem and
 /usr filesystem, and locally supplied
 commands. Also practice with various file location techniques and
 be able to differentiate among them.

Chapter 8. Exam 101 Review
 Questions and Exercises

This section presents review questions to highlight important
 concepts and hands-on exercises that you can use to gain experience with the
 topics covered on the LPI 101 Exam. The exercises can be particularly useful
 if you’re not accustomed to routine Linux administration and should help you
 better prepare for the exam. To complete the exercises, you’ll need a
 working Linux system that is not in production use. You might also find it
 useful to have a pen and paper handy to write down your responses as you
 work your way through the review questions and exercises.
System Architecture (Topic 101)

Review Questions

	Describe the boot process on a PC, and identify the
 order in which control passes as a system boots.

	Name three files in the /proc filesystem
 that contain information on system resource allocations.

	Which of the following SCSI interfaces has the fastest data
 transfer rates: SCSI-1, SCSI-2, Ultra SCSI, or Fast-Wide
 SCSI?

	What is the naming convention in /dev for
 the different hard disk interfaces?

	What command is used to obtain USB information on a Linux
 system?

	What driver is used for USB hard drives?

	What is your default runlevel? How can you tell?

Exercises

	Boot your PC and enter the BIOS configuration utility.
 Determine how to change the boot order and how to enable and disable
 peripherals built into the motherboard.

	Examine the enabled serial and parallel ports. Can you
 manually configure the interrupts and I/O ports assigned to
 them?

	Examine your modem and sound external interfaces on your PC.
 Are the devices built into your motherboard or independent expansion
 cards?

	If you have a SCSI controller, reboot your PC and enter the
 SCSI BIOS. What device number is selected, if any, for boot? How are
 the controller’s onboard terminators configured? What data rate is
 the controller configured for?

	If you have a RAID controller, reboot your PC and enter the
 RAID BIOS. What options do you have to configure RAID on your
 system?

	Examine the kernel’s interrupt assignments by executing
 cat /proc/interrupts. Are your devices reported
 correctly? Are any devices sharing interrupts?

	Review output from cat /proc/dma and
 cat /proc/ioports.

	Create a list of all installed PCI devices using
 lspci. Note the devices built into your
 motherboard.

	Run lsmod and match the loaded kernel
 modules with hardware in your system.

	Connect a USB device (mouse, printer, etc.) to your system.
 Run lsmod to verify that the appropriate driver
 loaded.

	Run the dmesg command and go through the
 hardware your kernel recognized at boot time.

	Reboot the system and modify the grub boot line to boot into
 single-user mode.

	At the root prompt, type kill 1. What
 happens? Why?

Linux Installation and Package Management (Topic 102)

Review Questions

	Why is the /var directory usually
 located in a partition of its own?

	As a system administrator for a network with many workstations
 and a central NFS file server, how can you safely share
 /usr with your users while still maintaining
 control of its contents?

	What is the recommended size for a swap partition, as a
 function of the memory in a system?

	Describe how to create a tar archive and
 how its contents are extracted.

	In general terms, describe the procedure used to compile and
 install free or open source software from source code.

	What is a shared library? How can you determine what library
 dependencies exist in a compiled executable?

	How does your system know where to look for shared
 libraries?

	Briefly describe the major functional modes of
 rpm.

	How do you add additional repositories to
 yum?

	What are the reasons to choose LILO over GRUB as a boot
 loader, or vice versa?

	Why might a Debian Linux administrator use dpkg
 -iG instead of simply dpkg -i to
 install a package?

Exercises

	In a shell, examine your disk layout using
 fdisk. For example:
fdisk /dev/sda
Command (m for help): p
Disk /dev/sda: 200.0 GB, 200049647616 bytes
255 heads, 63 sectors/track, 24321 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x0003bf13

 Device Boot Start End Blocks Id System
/dev/sda1 * 1 25 200781 83 Linux
/dev/sda2 26 89 514080 82 Linux swap / Solaris
/dev/sda3 90 24321 194643540 83 Linux
Is the entire disk consumed by the existing
 filesystems?

	Examine how system directories are mapped to disk partitions
 on your system. Are /var and
 /tmp in their own partitions? Is
 /boot in its own partition within cylinder
 1024? Is the root filesystem relatively small?

	Download a tarball (from http://sourceforge.net, for
 example), and install it on your system with the following
 steps:
	Unpack it using tar -xzvf file (or
 tar –xjvf file if it is compressed with
 bzip2).

	Configure it with ./configure.

	Build the software using make as
 directed in the documentation.

	Install the software using the instructions
 provided.

Were there any difficulties with this procedure?

	Use ldd to examine library dependencies
 of executable programs on your system. For example:
ldd `which gcc`
 linux-gate.so.1 => (0x00110000)
 libc.so.6 => /lib/libc.so.6 (0x00682000)
 /lib/ld-linux.so.2 (0x00663000)

	Using a system that utilizes dpkg, obtain
 a list of all packages installed under dpkg
 management with dpkg -l | less. Find a package
 in the list that looks unfamiliar, and query information about the
 package using dpkg -s pkg_name.

	Using a system that utilizes RPM, obtain a list of all
 packages installed under RPM management with rpm -qa |
 less. Find a package in the list that looks unfamiliar,
 and query information about the package using rpm -qi
 pkg_name.

	Using a system that utilizes RPM, obtain a list of all
 available packages that you can install from the currently
 configured repositories with yum list available |
 less.

GNU and Unix Commands (Topic 103)

Review Questions

	Describe the difference between shell variables and
 environment variables.

	Compare and contrast built-in and explicitly defined commands
 and those found in $PATH.

	After a lengthy session of file manipulation on the command
 line, what will !ls
 produce?

	What files does bash read when you log
 in?

	Explain the notion of pipes as they refer
 to shell capabilities, and illustrate using an example of two or
 more filter programs.

	Explain the -p option to
 cp and give an example of why it is
 necessary.

	Give two examples of files matched by the wildcard ??[!1-5].

	Name the three standard I/O streams and their
 functions.

	Give an example of the redirection operator, >, and describe how the outcome would
 be different using the >>
 operator.

	What process is the parent of all system processes? Give both
 the PID and the program name.

	Name three common utilities used for process
 monitoring.

	What happens to a typical daemon when it receives SIGHUP? How would the behavior be
 different if it received SIGKILL?

	Compare and contrast background and foreground jobs, and state
 the syntax to put a command in the background on the command
 line.

	What two classifications of characters make up regular
 expressions?

	How are the regular expressions [A-Z]* and ^[A-Z]*$ different?

	What is the difference between executing :q versus :q! in vi?

	What does it mean to put vi into
 command mode?

Exercises

	Start a bash shell in a console or
 terminal window and enter the following commands:
$ MYVAR1="Happy"
$ MYVAR2="Birthday"
$ export MYVAR1
$ bash
$ echo $MYVAR1 $MYVAR2
$ exit
$ echo $MYVAR1 $MYVAR2
	Was the behavior of the two echo
 commands identical?

	If so, why? If not, why not?

	What happened immediately after the
 bash command?

	Which variable is an environment variable?

	Continuing the previous exercise, press the up arrow until you
 see the last echo command. Press the up arrow
 again.
	What do you see?

	Why wasn’t it the exit
 command?

	Press the up arrow again so that the export command is displayed. Add a
 space and MYVAR2 so that the
 line now looks like this:
$ export MYVAR1 MYVAR2
What happens when you enter this command?

	Still continuing the previous exercise, enter the command
 !echo. Does anything change as a result of the
 revised export command?

	The file command is used to examine a
 file’s contents and displays the file type. Explain the result of
 using file as follows:
$ cd / ; file `ls | head -10`

	Execute this command on your system:
$ cut -d: -f1 /etc/passwd | fmt -w 20 | head -1
	What was displayed?

	How many lines of output did you see? Why?

	What was the width of the output? Why?

	Execute the following sed substitution
 command and explain why it might be used on
 /etc/passwd:
$ sed 's/:[^:]*:/:---:/' /etc/passwd | less

	Execute this command:
$ cd /sbin ; ls -li e2fsck fsck.ext2
	What is the significance of the first field of the
 output?

	Why is it identical for both listings?

	Why are the file sizes identical?

	Execute the following command sequence and explain the result
 at each step (this example assumes that cp is
 not aliased to cp -i, which is a common default
 alias):
$ cd
$ cp /etc/skel .
$ cp -r /etc/skel .
$ cp -rfv /etc/skel .
$ cp -rfvp /etc/skel .

	Remove the directory created in the previous exercise, using
 rmdir and/or rm. Which
 command can complete the task in a single step?

	Explain when the wildcard {htm,html} might be useful.

	Give an example of how the wildcard *.[Tt][Xx][Tt] could be used with
 directory listings.

	What can be said about filenames matched by the *.? wildcard?

	Experiment with redirecting the output of
 ls as follows:
$ cp /etc/skel . 2> info.txt
	How is the terminal output different than that observed in
 Exercise 8?

	What is written to info.txt ?

	Experiment with ps, pstree, and
 top to monitor active processes on your system.
 Include top’s interactive commands.

	If you have Apache running, use ps (and
 perhaps grep) to identify the
 httpd process and its PID, which is owned by
 root. Send that process the HUP
 signal as follows:
$ kill -SIGHUP pid
Using tail, examine the Apache error log
 (the location of your logfile may differ):
$ tail /var/log/httpd/error_log
What was the effect of HUP
 on Apache?

	While running X, start some interactive processes in the
 background and experiment with using jobs,
 bg, and fg. For
 example:
$ firefox &
$ xterm &
$ emacs &
$ jobs
$ fg 1
$ fg 2...
Were you able to bring each of the jobs to the foreground
 successfully?

	This exercise starts a process, using various methods to view
 and modify the process execution priority:
Start an editing session in the background using
 nice:
$ nice vi &
Observe that the process was nice’d using
 ps:
$ ps -u
Check it again using top:
$ top -i
Within top, renice the
 vi process using the r
 command and observe the effect on priority.
Exit top and use
 renice to set the nice value back to
 zero.

	Use a simple regular expression with grep
 to find bash users in
 /etc/passwd.

	Examine the difference between grep and egrep by issuing the
 following commands:
$ grep ".+:x:.+:/bin/bash$" /etc/passwd
$ egrep ".+:x:.+:/bin/bash$" /etc/passwd
How is the output of these commands different? Why?

	Determine the number of empty lines in
 /etc/inittab.

	Use vi to create a text file. Enter
 insert mode with i and insert text. Quit insert mode with
 Esc and move around using h,
 j, k, and l, then re-enter insert mode and add more
 text. End the session with ZZ.
 cat the file. Is it as expected?

Devices, Linux Filesystems, and the Filesystem Hierarchy Standard
 (Topic 104)

Review Questions

	What are the three types of disk partitions found on a
 Linux system? Which type can contain other partitions, and which
 type does it contain?

	Name the directories that must be within the
 / partition.

	Describe the differences between physical disks, partitions,
 and filesystems.

	What is a journaling filesystem and how does it differ from a
 nonjournaling filesystem?

	What is a swap partition used for? Why
 not just use swap files?

	What kind of output will df -h
 yield?

	Describe a common situation that is likely to cause the
 automatic use of fsck on the next system
 boot.

	Name the fields in /etc/fstab.

	Give the command to mount a CD-ROM drive on the secondary
 master IDE device, assuming that /etc/fstab
 does not contain a line for the device.

	If the ro option is used in
 /etc/fstab for /usr, what
 limitation is placed on that filesystem?

	Compare and contrast hard and soft quota limits.

	Name the symbolic permission that is equivalent to
 0754.

	Describe a situation that requires the SUID permission. What
 ramifications does this permission imply?

	How do you determine what binaries on your system have the
 SUID bit set?

	Compare and contrast the differences between hard and symbolic
 links.

	Name the document to which Linux directory assignments should
 conform.

	Compare and contrast the differences between the
 locate and find
 commands.

Exercises

	As root, run fdisk on your main hard
 drive and enter the p command to
 print the partition table. Examine your system’s configuration and
 make sure you understand everything you see. Enter the l command and review the many partition
 types Linux can accommodate. Enter the q command to quit without saving
 changes.

	If you have available disk space, use
 fdisk to create a new ext3
 partition, and then format it with mkfs. Pay
 close attention to the output from mkfs.

	Use a pager to examine /var/log/messages
 and search for entries made by fsck. Did it
 find any problems?

	If you created a new partition in the previous exercises,
 check it with fsck and observe the
 output:
$ fsck -f /dev/partition

	Check on the status of filesystems using
 df:
$ df -h
	How does the -h flag assist you with
 interpreting the results?

	Are any of your filesystems nearly full?

	Which are underutilized?

	As root, get a top-level view of disk usage by user using
 du:
$ du -s /home/*
Are there any surprises?

	How could you use sort to make the output
 from the previous exercise more useful?

	Review /etc/fstab. Be sure you can name
 all six fields and their order as well as describe their
 function.

	Examine the output of the mount command
 without options. Compare the output with the contents of
 /etc/fstab.

	If you created a new partition in the previous exercises,
 mount it on /mnt/new or some other location of
 your choosing:
$ mkdir /mnt/new
$ mount /dev/partition /mnt/new
$ df /mnt/new
	Did the filesystem mount correctly? Can you store files on
 it?

Next, unmount it:
$ umount /dev/partition /mnt/new
Add a line to /etc/fstab for the new
 partition:
/dev/partition /mnt/new ext3 defaults 1 2

	Test the quotas by setting them low for a particular user, and
 then start adding files as that user until the quota is exceeded.
 What is the observable consequence of exceeding the quota?

	Practice converting these file modes from octal to symbolic
 form:
	0777

	0754

	0666

	1700

	7777

	Practice converting these file modes from symbolic to octal
 form. You can assume that x bits
 are set under SUID, SGID, and sticky bits:
	-rwxr-xr-x

	-r--r--r--

	-rwsrwsrwx

	-rw-rw---t

	-rws-w--w-

	Create temporary files and use chmod with
 both symbolic and numeric mode modifications. Include SUID, SGID,
 and sticky bits.

	As root, create temporary files and use
 chown to modify user ownership and group
 ownership.

	Use chgrp to modify group ownership on
 the temporary files created in the previous exercise.

	Create a temporary file and links as follows:
$ touch a_file
$ ln -s a_file an_slink
$ ln a_file an_hlink
Now verify that the file and the hard link indeed share an
 inode and that the symbolic link points to the original file:
$ ls -li a_file an_slink an_hlink

	Review the latest version of the FHS at http://www.pathname.com/fhs/.

	Examine your filesystem. Does it match the FHS? If you find
 discrepancies, is it clear why they don’t?

	Use which to check on the location of
 executable files.

	Use find to search for
 bash:
$ find / -name bash
Now use locate for the same file:
$ locate bash
How are the results different? Describe a context in which
 each command would be useful.

	Update your locate database using
 updatedb. Note the amount of time this command
 takes and the resources it consumes on your system.

Chapter 9. Exam 101 Practice Test

This chapter will give you an idea of what kinds of questions
 you can expect to see on the LPI 101 test. All questions are either
 multiple-choice single answer, multiple-choice multiple answer, or fill in
 the blank.
The questions are not designed to trick you; they are designed to test
 your knowledge of the Linux operating system.
As of April 1, 2009, the exam weights for each LPI exam have been
 standardized to 60 weights. This means that if an Objective has a weight of
 2, there will be 2 questions on the test about items under that
 Objective.
The answers for these sample questions are at the end of the
 chapter.
Questions

	What kind of hardware is represented by the device name
 /dev/hda?
	Sound Card

	Modem

	IDE Hard Drive

	SCSI Hard Drive

	SATA Hard Drive

	What file should you query to determine whether there is an IRQ
 conflict on your system?
	/proc/ioports

	/proc/interrupts

	/proc/cpuinfo

	/proc/meminfo

	/proc/irqstatus

	Which of the following are arguments you can pass to the kernel
 at boot time to tell it to start in runlevel 1 (single-user
 mode)?
	one

	1

	safe

	single

	user

	Which process is referred to as the “mother of all processes”
 and always has PID 1?
	mother

	admin

	administrator

	init

	bios

	Which logfile should you examine for information about the
 hardware that the kernel initialized at boot time?
	/var/log/syslog

	/var/log/messages

	/var/log/lastlog

	/var/log/wtmp

	/var/log/cron

	If you want to change your system’s default boot device from the
 hard drive to the CD-ROM drive, where would you make that
 configuration change?
	The file /boot/grub/grub.conf

	The file /etc/lilo.conf

	An argument passed to the kernel at boot time

	The BIOS

	The file /etc/inittab

	What command line would reboot a running Linux system
 immediately, forcing an fsck of every drive on
 reboot?
	/sbin/shutdown –r –F now

	/sbin/shutdown –h –F now

	/sbin/shutdown

	/sbin/shutdown –r –f now

	/sbin/shutdown –t –f

	Which of the following are valid ways to interactively switch a
 running system to runlevel 3?
	chrunlevel 3

	runlevel 3

	init 3

	telinit 3

	init -3

	If you have created your own script that you wish to run every
 time your system boots, but it must run after all other processes have
 completed, where is the best place to reference it?
	/etc/inittab

	/etc/rc.d/rc.sysinit

	A symlink beginning with S in /etc/rc.d/rc5.d/

	/etc/rc.d/rc.local

	A symlink beginning with K in /etc/rc.d/rc5.d/

	Which command is used to display the current mounted partitions,
 their mount points, and the available free space on each?
	du

	df

	fdisk

	fsck

	mount

	Which partition is designed to hold data that changes often and
 is writable by all users?
	/var

	/home

	/tmp

	/opt

	/sys

	What does MBR stand for?
	Main Booting Runlevel

	Main Block Record

	Master Boot Record

	Master Block Record

	Master Boot Resource

	Which of the following lines in /boot/grub/grub.conf would tell GRUB to use
 the first partition of the first hard drive as the root
 partition?
	root (hd0,0)

	boot (hd0,0)

	root (hd1,1)

	boot (hd1,1)

	root (hd1,0)

	What file contains a list of directories that are searched to
 find shared libraries when a binary program is executed?
	/etc/loader.conf

	/etc/library/conf

	/etc/ld.so.cache

	/etc/ld.so.conf

	/etc/ld.conf

	For distributions that use the Debian package management system,
 what command will download and update all installed packages to the
 latest available version?
	apt-get install

	apt-cache update

	apt-get update

	apt-cache install

	dpkg –i

	If I download a .deb
 package (package.deb) and wish to install it, what’s the
 best command to use?
	dpkg –i package.deb

	apt-get install package.deb

	apt install package.deb

	dpkg package.deb

	None of the above

	For distributions that use the Red Hat package management
 system, what command will list all packages currently
 installed?
	rpm –qa

	rpm –i

	rpm –Uvh

	rpm –list

	rpm –all

	For distributions that use the Red Hat package management
 system, what command will download and update all installed packages
 to the latest available version?
	yum update

	yum install

	yum config

	yum list available

	yum download

	What option(s) to rpm will instruct
 rpm to run a verification check on all packages
 installed on the system?
	rpm –verify –all

	rpm –Va

	rpm –qa

	rpm –check

	rpm –c

	What command is used to display a list of directories the shell
 will search in to find a command that has been entered?
	show $MYPATH

	echo $PATH

	echo $MYPATH

	setenv

	set $PATH

	Which file(s) does the bash shell read at login to set
 environment variables?
	/etc/bashrc

	~/.bashrc

	~/.bash_profile

	All of the above

	None of the above

	What commands can be used to view a list of the last commands
 typed into the shell?
	history

	<Ctrl-R>

	<up arrow>

	All of the above

	None of the above

	If my current directory is /opt and I wish to run the command
 /opt/runme, what command(s) could I type
 (assuming /opt is
 not in your $PATH)?
	/opt/runme

	./runme

	runme

	opt/runme

	~/runme

	Which of the following commands will redirect the standard
 output of /bin/ls to /dev/null, while allowing standard error to
 display on the screen?
	/bin/ls > /dev/null 2>
 /dev/screen

	/bin/ls 1> /dev/null

	/bin/ls > /dev/null

	/bin/ls > /dev/null
 2>&1

	/bin/ls 2> /dev/null
 1>&2

	Which of the following command(s) will display the first 5 lines
 of the file /etc/passwd?
	cat -5 /etc/passwd

	more -5 /etc/passwd

	head -5 /etc/passwd

	cat /etc/passwd | head -5

	cat /etc/passwd | more -5

	Which commands can be used to perform a search and replace on a
 file or a text stream?
	sed

	tr

	search

	cat

	more

	What command(s) can be used to copy data to and from raw
 devices, bypassing the filesystem?
	cp

	tar

	dd

	mv

	sed

	What option can be passed to /bin/ls to display every file in a
 directory that ends in .txt?
	ls +.txt

	ls *.txt

	ls * txt

	ls [txt]

	ls *txt*

	What option can be passed to /bin/ls to display every file that starts
 with the letters a, b, or
 c?
	ls abc*

	ls a*b*c*

	ls ^abc

	ls [abc]+

	ls [abc]*

	Which file extensions are common for files or directories that
 have been concatenated with tar and then
 compressed with bzip2?
	.tar.bz2

	.tbz2

	.tbz

	All of the above

	None of the above

	What device should you redirect output to if you do not want to
 see it or save it?
	/dev/zero

	/dev/nothing

	/dev/empty

	/dev/null

	/dev/bitbucket

	Which of the following commands would list the contents of the
 directory /tmp, store that list in the file
 /root/tmp.txt, and display the
 list a screen at a time?
	ls –l /tmp | tee /root/tmp.txt |
 more

	ls –l /tmp | xargs /root/tmp.txt |
 more

	ls –l /tmp | more | tee
 /root/tmp.txt

	tee /root/tmp.txt | ls –l /tmp |
 more

	more /tmp | tee /root/tmp.txt

	What character is used after a command line to indicate that the
 command should run in the background and return shell control to the
 user?
	*

	+

	&

	–

	.

	What command is used at the beginning of a command line to
 detach the process from a terminal, allowing it to continue running
 after the user has logged out?
	hangup

	detach

	nohup

	background

	bg

	What command will display a full-screen, updated list of all
 running processes?
	kill

	ps

	list

	top

	free

	If a running process is not responding to a standard terminate
 signal from the /bin/kill command, what option
 can you pass to force the process to terminate immediately?
	kill -1

	kill --HUP

	kill --stop

	kill -9

	kill --now

	What command can be used to kill processes by name, rather than
 process ID?
	killproc

	killname

	killall

	kill –name

	killpath

	Which command line would start the program
 /usr/bin/top with the highest priority
 possible?
	nice --20 /usr/bin/top

	nice 20 /usr/bin/top

	nice 19 /usr/bin/top

	nice -20 /usr/bin/top

	None of the above

	Which command is used to modify the priority of a process
 already running?
	nice

	renice

	priority

	chage

	ps

	Which command(s) would display every line in /tmp/file.txt that begins with the letter
 h and ends with the letter
 t?
	grep "^h.+t$" /tmp/file.txt

	grep –E "^h.+t$" /tmp/file.txt

	grep –E "$h.+t^" /tmp/file.txt

	grep –E "$ht^" /tmp/file.txt

	grep –E "^h.*t$" /tmp/file.txt

	Which command(s) would display every line in /tmp/file.txt that contains at least one
 letter of the alphabet?
	grep " [a-zA-Z] " /tmp/file.txt

	grep " [:alpha:] " /tmp/file.txt

	grep " [:letters:] "
 /tmp/file.txt

	grep " (a-zA-Z) " /tmp/file.txt

	None of the above

	In the vi editor, what command sequence
 given in command mode will make a copy of the current line?
	yyp

	cp

	yp

	ccp

	None of the above

	In the vi editor, what command sequence
 given in command mode will save the current file and quit the
 editor?
	:qw

	:wq

	:WQ

	:pq

	None of the above

	In the vi editor, what command sequence
 given in command mode will quit a file without saving, even if changes
 have been made?
	:q

	:q1

	:q!

	:w

	:w!

	Which of the following are examples of journaling
 filesystems?
	ext2

	ext3

	xfs

	reiserfs

	vfat

	What command will create an ext3 partition on the first
 partition of the first SCSI hard drive?
	mkfs –t ext3 /dev/sda1

	fdisk –t ext3 /dev/sda1

	fsck –t ext3 /dev/sda1

	mkfs –s ext3 /dev/hda1

	mkfs –t ext3 /dev/hda1

	What command is used to convert an existing ext2 partition
 (/dev/sda1) to an ext3 (journaled)
 partition?
	tune2fs –j /dev/sda1

	dumpe2fs –j /dev/sda1

	fsck –j /dev/sda1

	mkfs.ext2 –j /dev/sda1

	None of the above

	What command is used to display the number of free inodes on an
 ext2 or ext3 partition?
	tune2fs

	dumpe2fs

	showe2fs

	fsck

	fdisk

	Which file defines what partitions are mounted at boot
 time?
	/etc/partitions

	/etc/mount

	/etc/mtab

	/etc/fstab

	/etc/filesystems

	Which command will mount all partitions of type nfs defined in
 /etc/fstab?
	mount –a –t nfs

	mount –a nfs –t

	mount –nfs

	mountall –nfs

	None of the above

	If you would like to give a normal (nonroot) user the ability to
 mount a device, what option should you define for that device in
 /etc/fstab?
	mountable

	noroot

	user

	ok

	mount

	Which option to chmod would assign
 read/write permission to the file owner, read-only permission to the
 group owner, and read-only permission to everyone else?
	chmod 644 file.txt

	chmod 755 file.txt

	chmod 466 file.txt

	chmod 777 file.txt

	None of the above

	Which option to umask would set my default
 file permissions such that files are created with these permissions:
 user has read/write, group has read/write, and everyone else has read
 only?
	umask 002

	umask 022

	umask 200

	umask 220

	umask 775

	Which command can be used to quickly tell you if an executable
 command is in any directory defined in your $PATH environment variable?
	find

	locate

	which

	who

	what

	Which directory, according to the Filesystem Hierarchy Standard,
 is designed to hold essential system binaries?
	/sbin

	/bin

	/usr/bin

	/opt/bin

	/usr/local/bin

	According to the Filesystem Hierarchy Standard, what directory
 (or directories) must hold the system kernel?
	/boot

	/

	/opt

	/sbin

	/kernel

	What command is used to maintain the filesystem index that the
 command /usr/bin/locate
 searches?
	update

	updatelocate

	locate –update

	updatedb

	update -db

Answers

	c. IDE Hard Drive

	b.
 /proc/interrupts

	b. 1 AND
 d. single.
 Both answers are correct.

	d. init

	b.
 /var/log/messages. This is the default logfile
 that syslogd saves to.

	d. The BIOS

	a. /sbin/shutdown
 –r –F now. This may seem like a small detail to have to
 remember, but this is an important command, and you should have its
 options memorized, particularly the difference between
 –F (force fsck on reboot)
 and –f
 (skip fsck on reboot).

	c. init
 3 AND d.
 telinit 3. Both answers are
 correct.

	a. A symlink beginning with
 S in /etc/rc.d/rc5.d/ AND
 b.
 /etc/rc.d/rc.local. Both answers are correct.
 Note that most distributions have an
 /etc/rc.d/rc.local file that runs after the
 default runlevel scripts are run.

	b.
 df

	c. /tmp.
 If the question was just about a partition where data changed often,
 that would be both /tmp and
 /var. But /tmp is the only
 partition that needs to be writable by all users.

	c. Master Boot Record

	a. root
 (hd0,0). GRUB (the Grand Unified Boot Loader) starts
 counting drives and partitions at 0, so the first partition on the
 first drive is 0,0.

	d.
 /etc/ld.so.conf. When modifications are made to
 this file, the command /sbin/ldconfig must be
 run.

	c. apt-get
 update

	a. dpkg –i package.deb

	a. rpm
 –qa

	a. yum
 update

	a. rpm –verify
 –all AND b.
 rpm –Va. Both of these commands are
 equivalent.

	b. echo
 $PATH

	d. All of the above. Remember
 that the ~ key indicates a user’s home directory.

	d. All of the above. The
 history command will list the last commands run
 (how many commands are listed is configurable), <Ctrl-R> will
 allow you to search the history by keyword, and <up arrow>
 cycles through the last command typed in the order in which they were
 typed.

	a.
 /opt/runme AND b. ./runme

	b. /bin/ls 1>
 /dev/null AND c.
 /bin/ls > /dev/null. The syntax
 > and 1> are
 equivalent. If you don’t redirect STDERR, it will
 display to the screen by default.

	c. head -5
 /etc/passwd AND d.
 cat /etc/passwd | head -5

	a. sed
 AND b.
 tr

	b. tar
 AND c. dd. The
 tar command is often used to talk directly to
 tape devices (tar –xvf /dev/st0), and
 dd can be used to make copies of devices. For
 example, to create a raw image of a 1.44 MB floppy disk, use dd if=/dev/fd0 of=/tmp/floppy.img

	c. ls *.txt. Remember that the syntax for file
 globbing is different from the syntax for regular expressions. In
 particular, the behavior of the asterisk (*) is vastly different
 between the two.

	e. ls
 [abc]*. Another file globbing example.

	d. All of the above. Since
 file extensions are not really necessary in the Linux world, there
 isn’t one single standard that covers them all. However, tar.bz2, tbz2, and
 .tbz are all examples of file
 extensions you might see to indicate that a file is tarred and
 bzipped.

	d.
 /dev/null. Also referred to as the “bit
 bucket.”

	a. ls
 –l /tmp | tee /root/tmp.txt | more. It’s
 important to remember the order of commands when you are piping
 multiple commands together, especially when the
 tee command is involved.

	c. &

	c.
 nohup. The nohup command is
 usually paired with & to put a process in the
 background and detach it from the current terminal. For example,
 nohup /opt/long_process.sh & would start the
 command /opt/long_process.sh and allow me to log
 out while the process remains running.

	d. top.
 There are many ways to view processes on a machine, but the
 top command is probably one of the most useful
 commands, giving you sort ability and process interaction
 capability.

	d. kill
 -9. Note that this might not kill a process that is waiting
 on disk I/O or some other kind of blocking, noninterruptible
 process.

	c.
 killall

	a. nice --20
 /usr/bin/top. This is a tricky one. First, you have to
 remember that priority values range from -20 (highest priority) to 19
 (lowest priority). So if I want to pass the highest priority to a
 process, I have to pass -20. However, options to
 commands start with the - (dash) character, so I
 need to make sure I type 2 dashes, the first to indicate that the next
 argument is an option, and the second to indicate that I’m passing a
 negative number to the nice command.

	b.
 renice

	e. grep –E "^h.*t$" /tmp/file.txt. This
 command literally means, “Search for the extended regular expression
 that matches h as the first character, followed
 by zero or more of any other character, and having
 t as the last character.” The –E option is required because the
 presence of the .* makes this an extended regular
 expression. The answer in a. is
 close, but the syntax .+ means “match 1 or more
 characters of any kind.” The regular expression in a. would not match the line “ht”, whereas the
 regular expression in e.
 would.

	a. grep " [a-zA-Z] " /tmp/file.txt AND
 b. grep "
 [:alpha:] " /tmp/file.txt. Become familiar with the sets
 that are defined with the syntax [:setname:];
 they are very useful in advanced regular expressions. You can see a
 complete list of them in the manpage for
 grep.

	a. yyp. An easy way to remember this:
 Yank-Yank-Put.

	b. :wq. The colon brings up the command entry
 line at the bottom of the vi screen, w stands for write, and q stands for quit.

	c. :q!. The vi editor has
 many, many commands, but if you become familiar with a few dozen,
 you’ll be able to accomplish 99 percent of what you will commonly need
 to accomplish in vi.

	b. ext3 AND c. xfs AND d. reiserfs. Ext3 is ext2 with journaling
 support added. Vfat is a Microsoft filesystem.

	a. mkfs –t ext3
 /dev/sda1. The command mkfs.ext3 is
 equivalent to mkfs –t ext3.

	a. tune2fs –j
 /dev/sda1. Technically, the command listed in d. (mkfs.ext2 –j
 /dev/sda1) will create an ext3 partition on
 /dev/sda1, but it will destroy whatever partition
 is there in the process.

	b.
 dumpe2fs

	d.
 /etc/fstab

	a. mount –a –t
 nfs

	c.
 user

	a. chmod 644 file.txt

	b. umask
 022

	c.
 which

	a.
 /sbin

	a. /boot
 AND b. /. Both
 directories are correct. Most Linux distributions will store the
 kernel in /boot; the presence of a kernel in
 / is deprecated.

	d.
 updatedb

Chapter 10. Exam 101 Highlighter’s Index

System Architecture

Objective 101.1: Determine and Configure Hardware
 Settings

PC BIOS

	The BIOS is the PC’s firmware.

	The BIOS sets date and time for on-board clock, storage
 device configuration, and so on, via menus.

Resource assignments

	Interrupts (IRQs) allow peripherals to interrupt the
 CPU.

	I/O addresses are locations in the processor’s
 memory map for hardware devices.

	Useful files to query for hardware information:
 /proc/interrupts,
 /proc/ioports, /proc/cpuinfo,
 /proc/devices.

	Useful commands to run for hardware information:
 /sbin/lspci,
 /sbin/lsusb.

	DMA allows certain devices to work directly with memory,
 freeing the processor (see Table 10-1).

Table 10-1. Common device settings
	Device
	I/O address
	IRQ
	DMA

	ttyS0 (COM1)
	3f8
	4
	NA

	ttyS1 (COM2)
	2f8
	3
	NA

	ttyS2 (COM3)
	3e8
	4
	NA

	ttyS3 (COM4)
	2e8
	3
	NA

	lp0 (LPT1)
	378-37f
	7
	3 (if configured in the
 BIOS)

	lp1 (LPT2)
	278-27f
	5
	NA

	fd0, fd1 (floppies 1 and
 2)
	3f0-3f7
	6
	2

Objective 101.2: Boot the System

Boot order

	Power on → BIOS
 → Boot Loader → Kernel →
 init → startup services → shell

Information

	The command dmesg can be used to view
 the output of the boot process.

	The init process is always PID 1 and is
 the parent of all other processes.

Objective 101.3: Change Runlevels and Shut Down or Reboot System

Runlevels

	Defaults are defined in Table 10-2.
Table 10-2. Default Runlevels
	Runlevel
	Description

	0
	Halt

	1
	Single-user mode

	2
	Multiuser, without
 NFS

	3
	Full multiuser mode, without
 X

	4
	Unused

	5
	Full multiuser mode, with
 X

	6
	Reboot

	Runlevels can be changed on-the-fly with init
 <runlevel> or telinit
 <runlevel>.

	The default runlevel is stored in the file
 /etc/inittab.

	The init process will run the scripts
 in /etc/rc.d/rcX.d (where X is your default
 runlevel) in order, sending a “stop” parameter to scripts that
 start with K and a “start” parameter to scripts that start with
 S.

Linux Installation and Package Management

Objective 102.1: Design Hard Disk Layout

	Keep / small by distributing
 larger parts of the directory tree to other filesystems.

	Separate a small /boot partition below
 cylinder 1024 for kernels.

	Separate /var into its own partition to
 prevent runaway logs from filling /.

	Separate /tmp.

	Separate /usr if it is to be shared
 read-only among other systems via NFS.

	Set swap size to be somewhere between one and two times the
 size of main memory.

/proc

	The /proc filesystem includes
 information on interrupts, I/O ports, and DMA in
 /proc/interrupts,
 /proc/ioports, and
 /proc/dma.

Objective 102.2: Install a Boot Manager

LILO

	LILO has historically been the default Linux boot
 loader.

	LILO consists of the lilo command,
 which installs the boot loader, and the boot loader itself.

	LILO is configured using
 /etc/lilo.conf.

	Any modification to the /etc/lilo.conf
 file requires the lilo command to be
 rerun.

GRUB

	GRUB can boot Linux as well as most other PC-based operating
 systems.

	GRUB relies on various files in the
 /boot/grub directory to support reading from
 various types of filesystems.

	GRUB is configured using
 /boot/grub/menu.lst (or
 /boot/grub/grub.conf on some
 distributions).

	GRUB can be configured to present a text or graphical menu
 interface and also has a command-line interface.

	Modifications to the GRUB configuration files do not require
 the grub command to be re-run (unlike
 LILO).

Objective 102.3: Manage Shared Libraries

Concepts

	System libraries provide many of the functions
 required by a program.

	A program that contains executable code from libraries is
 statically linked because it stands alone and contains
 all necessary code to execute.

	Since static linking leads to larger executable files and
 more resource consumption, system libraries can be shared among
 many executing programs at the same time.

Commands

	A program that contains references to external, shared
 libraries is dynamically linked at runtime by
 the dynamic linker, ld.so.

	New locations for shared libraries can be added to the
 LD_LIBRARY_PATH variable. As an
 alternative, the locations can be added to
 /etc/ld.so.conf, which lists library file
 directories. After this, you must run
 /sbin/ldconfig to translate this file into
 the binary index /etc/ld.so.cache.

Objective 102.4: Use Debian Package Management

Commands

	dpkg automates the installation
 and maintenance of software packages and offers a number of
 options.

	dselect uses a text-based interactive
 menu to select (or deselect) packages for installation.

	alien can convert packages to and from
 the RPM and Debian package format.

	apt-get is a powerful tool that
 interfaces with online repositories of Debian packages to install
 and upgrade packages by name and resolves each package’s
 dependencies automatically.

Objective 102.5: Use Red Hat Package Manager (RPM)

Concepts

	RPM automates the installation and maintenance of
 software packages.

	Package dependencies are defined but not resolved
 automatically.

	-i, -e,
 -U, -v,
 -h, --nodeps, and
 --force are common options.

	The yum command is a frontend to RPM,
 interacting with online software repositories to download and
 install software automatically.

	The command yum update will search for
 updates to installed packages, download them, resolve
 dependencies, and install them automatically.

GNU and Unix Commands

Objective 103.1: Work on the Command Line

The interactive shell and shell variables

	A shell provides the command
 prompt and interprets commands.

	A shell variable holds a value that is
 accessible to shell programs.

	PATH is a shell variable
 that contains a listing of directories that hold executable
 programs.

	Commands must be bash built-ins, found
 in the PATH, or explicitly
 defined in order to succeed.

	When shell variables are exported, they
 become part of the environment.

Entering commands

	Commands are comprised of a valid command, with or without
 one or more options and arguments, followed by a carriage
 return.

	Interactive commands can include looping structures more
 often used in shell scripts.

Command history, editing, and substitution

	Shell sessions can be viewed as a conversation.
 History, expansion, and editing make that dialog more
 productive.

	Commands can be reissued, modified, and edited. Examples are
 shown in Table 10-3.

	Command substitution allows the result
 of a command to be placed into a shell variable.

Table 10-3. Shell expansion, editing, and substitution examples
	History type
	Examples

	Expansion
	!!

	 	!n

	 	^string1^string2

	Editing
	Ctrl-P, previous line

	 	Ctrl-K, kill to end of
 line

	 	Ctrl-Y, paste (yank)
 text

	Substitution
	VAR=$(command) or VAR='command'

Recursive execution

	Many commands contain either a
 -r or -R option for
 recursive execution through a directory hierarchy.

	The find command is inherently
 recursive, and is intended to descend through directories looking
 for files with certain attributes or executing commands.

Objective 103.2: Process Text Streams Using Filters

The commands

The following programs modify or manipulate text from
 files and standard input:
	cat
 [file]
	Print file to standard
 output.

	cut
 [files]
	Cut out selected columns or fields from one or more
 files.

	expand
 [files]
	Convert Tabs to spaces in
 files.

	fmt
 [files]
	Format text in files to a
 specified width by filling lines and removing newline
 characters.

	head
 [files]
	Print the first few lines of
 files.

	join file1
 file2
	Print a line for each pair of input lines, one each from
 file1 and
 file2, that have identical join
 fields.

	nl
 [files]
	Number the lines of files,
 which are concatenated in the output.

	od
 [files]
	Dump files in octal,
 hexadecimal, ASCII, and other formats.

	paste
 files
	Paste together corresponding lines of one or more files
 into vertical columns.

	pr
 [file]
	Convert a text file into a paginated, columnar version,
 with headers and page fills.

	sort
 [file]
	Sort lines in file
 alphabetically, numerically, or other ways.

	split [infile]
 [outfile]
	Split infile into a specified
 number of line groups; the output will go into a succession of
 files: outfileaa,
 outfileab, and so on.

	tac
 [file]
	Print file to standard output
 in reverse line order.

	tail
 [files]
	Print the last few lines of one or more files.

	tr [string1
 [string2]]
	Translate characters by mapping from
 string1 to the corresponding
 character in string2.

	unexpand
 [files]
	Convert spaces to Tabs in
 files.

	uniq
 [files]
	Display only unique lines in
 files that are already sorted.

	wc
 [files]
	Print counts of characters, words, and lines for
 files.

The stream editor, sed

sed is a popular text-filtering program found on every Unix system. It
 has the following syntax:
sed command [files]
sed -e command1 [-e command2] [files]
sed -f script [files]
Execute sed
 commands, or those found in
 script, on standard input or
 files.

Objective 103.3: Perform Basic File Management

Concepts

	Filesystem creation prepares a disk device (or
 partition) for use. Linux usually uses the native
 ext3 (third extended) journaling filesystem,
 but it supports many other filesystem types. You can see a list of
 all the filesystems Linux supports by using the “l” option under
 the fdisk command.

	The Linux filesystem is arranged into a hierarchical
 structure anchored at the root directory, or
 /. Beneath this is a tree of directories and
 files.

	Identification information for a filesystem object is stored
 in its inode (index node), which holds
 location, modification, and security information. Filesystems are
 created with a finite number of inodes.

File and directory management commands

The following commands are essential for the management of files
 and directories:
	bzip2 [options]
 [pattern]
	Create or uncompress an archive with the bzip2
 algorithm.

	cp file1
 file2
	

	cp files
 directory
	Copy file1 to
 file2, or copy
 files to
 directory.

	cpio[options]
 [files]
	Create or extract a binary archive, containing
 either files or a recursive set of files and directories.

	dd [options]
 [files]
	Copy and convert files. The dd
 command can also copy data from raw devices, bypassing the
 filesystem layer.

	file
 [file]
	Determine the type of
 file by performing a number of
 tests.

	find [directory] [options]
 [pattern]
	Search through
 directory looking for objects that
 match pattern.

	gunzip [options]
 [file]
	Uncompress an archive created with
 gzip.

	gzip [options]
 [pattern]
	Create a compressed archive containing files and
 directories that match
 pattern.

	ls [options]
 [pattern]
	List the contents of a directory, or list only
 files that match [pattern].

	mkdir
 directories
	Create one or more
 directories.

	mv source
 target
	Move or rename files and directories.

	rm
 files
	Delete one or more
 files from the filesystem. When used
 recursively (with the -r option),
 rm also removes directories.

	rmdir
 directories
	Delete directories,
 which must be empty.

	tar [options]
 [files]
	Create or extract a Tape Archive, containing
 either files or a recursive set of files and directories.

	touch
 files
	Change the access and/or modification times of
 files by default to the present
 time.

File-naming wildcards

Wildcards (also called file globs) allow the specification
 of many files at once. A list of commonly used wildcards can be found
 in Table 10-4.
Table 10-4. File-naming wildcards
	Wildcard
	Function

	*
	Match zero or more
 characters.

	?
	Match exactly one
 character.

	[characters]
	Match any single character from
 among characters listed between
 brackets.

	[!characters]
	Match any single character other
 than characters listed between
 brackets.

	[a-z]
	Match any single character from
 among the range of characters listed between
 brackets.

	[!a-z]
	Match any single character from
 among the characters not in the range listed between
 brackets.

	{frag1,frag2,frag3,...}
	Brace expansion: create strings
 frag1,
 frag2, and
 frag3, etc., such that file_{one,two,three} yields file_one, file_two, and file_three.

Objective 103.4: Use Streams, Pipes, and Redirects

Concepts

	A central concept for Linux and Unix systems is that
 everything is a file.

	Many system devices are represented in the filesystem using
 a device file, such as
 /dev/ttyS0 for a serial port.

Standard I/O

	The shell provides the standard I/O
 capability, offering three default file descriptors to running
 programs:
	Standard input
 (STDIN) is a text input stream, by
 default attached to the keyboard.

	Standard output
 (STDOUT) is an output stream for normal
 program output. By default, this is the screen.

	Standard error
 (STDERR) is an output stream meant for
 error messages. By default, this is the screen.

Pipes and redirection

	It is possible to tie the output of one program to the input
 of another. This is known as a pipe and is
 created by joining commands using the pipe symbol (|).

	Pipes are a special form of redirection, which allows you
 to manage the origin of input streams and the destination of
 output streams. Redirection syntax for various shells differs
 slightly. See Table 10-5 for
 examples of common redirection operators.
Table 10-5. Common redirection operators
	Redirection
 function
	Syntax for
 bash

	Send STDOUT
 to file.
	$ cmd
 > file

	 	$ cmd
 1> file

	Send STDERR
 to file.
	$ cmd
 2> file

	Send both
 STDOUT and
 STDERR to
 file.
	$ cmd
 > file 2>&1

	 	$ cmd
 > file 2> file

	Receive
 STDIN from
 file.
	$ cmd
 < file

	Append
 STDOUT to
 file.
	$ cmd
 >> file

	 	$ cmd
 1>> file

	Append
 STDERR to
 file.
	$ cmd
 2>> file

	Append both
 STDOUT and
 STDERR to
 file.
	$ cmd
 >> file 2>&1

	Pipe STDOUT
 from cmd1 to
 cmd2.
	$ cmd1
 | cmd2

	Pipe STDOUT
 and STDERR from
 cmd1 to
 cmd2.
	$ cmd1
 2>&1 | cmd2

	Pipe STDOUT
 from cmd1 to
 cmd2 while simultaneously
 writing it to file1 using
 tee.
	$ cmd1
 | tee file1 | cmd2

Objective 103.5: Create, Monitor, and Kill Processes

Concepts

	Processes have:
	A lifetime

	A PID

	A UID

	A GID

	A parent process

	An environment

	A current working directory

Monitoring commands

	ps
	Generate a one-time snapshot of the current processes on
 standard output.

	pstree
	Display a hierarchical list of processes in a tree
 format.

	top
	Generate a continuous, formatted, real-time process
 activity display on a terminal or in a terminal window.

Signaling processes

	Processes listen for signals
 sent by the kernel or users using the kill
 command:
kill -sigspec [pids]
Send sigspec to
 pids.

	The killall command is used to send
 signals to processes by program name instead of PID.

	Common kill signals are listed in Table 10-6.

Table 10-6. Common signals
	Signal
	Number
	Meaning

	HUP
	1
	Hangup, reread
 configuration.

	INT
	2
	Interrupt, stop
 running.

	KILL
	9
	Exit immediately.

	TERM
	15
	Terminate nicely.

	TSTP
	18
	Stop executing.

Shell job control

Shells can run processes in the background,
 where they execute on their own, or in the
 foreground, attached to a terminal. Each process
 handled in this way is known as a job. Jobs are
 manipulated using job control commands:
	bg
 [jobspec]
	Place jobspec in the background
 as if it had been started with &.

	fg
 [jobspec]
	Place jobspec in the
 foreground, making it the current job.

	jobs
 [jobspecs]
	List jobspecs on standard
 output.

	nohup
 [command] &
	Execute command, detach it from
 the terminal, and allow it to continue running after the user
 logs out.

Objective 103.6: Modify Process Execution Priorities

Concepts

	A process’s execution priority
 is managed by the kernel.

	You can bias the execution priority by specifying a
 nice number in the range of –20 to +19
 (default is 0).

	Positive nice numbers reduce priority; negative nice numbers
 increase priority and are reserved for the superuser.

Commands

	nice -adjustment
 [command]
	Apply nice number adjustment to
 the process created to run
 command.

	renice [+|-]nicenumber
 targets
	Alter the nicenumber, and thus
 the scheduling priority, of one or more running
 target processes.

Objective 103.7: Search Text Files Using Regular
 Expressions

Concepts

	Regular expressions are used to
 match text. The term is used to describe the loosely defined
 text-matching language as well as the patterns themselves. A
 regular expression is often called a regex or
 a regexp.

	Regular expressions are made up of metacharacters (with special
 meaning) and literals (everything that is not
 a metacharacter).

	The backslash character (\) turns off (escapes) the special
 meaning of the character that follows, turning metacharacters into
 literals. For nonmetacharacters, it often turns on some special
 meaning.

Position anchors

The operators in Table 10-7 match line
 position.
Table 10-7. Regular expression position anchors
	Regular expression
	Description

	^
	Match the beginning of a
 line.

	$
	Match the end of a
 line.

	\<

 \>
	Match word boundaries. Word
 boundaries are defined as whitespace, start of a line, end of
 a line, or punctuation marks. The backslashes are required and
 enable this interpretation of < and >.

Character sets

The operators in Table 10-8 match
 text.
Table 10-8. Regular expression character sets
	Regular expression
	Description

	[abc]

 [a-z]
	Match any single character from
 among listed characters (abc) or from
 among the characters comprising a range
 (a–z).

	[^abc]

 [^a-z]
	Match any single character not among
 listed characters or ranges.

	.
	Match any single character except a
 newline.

Modifiers

The operators in Table 10-9 modify the way other
 operators are interpreted.
Table 10-9. Regular expression modifiers
	Basic regular expression
	Extended regular expression
	Description

	*
	*
	Match zero or more of the character
 that precedes it.

	\?
	?
	Match zero or one instance of the
 preceding regex.

	\+
	+
	Match one or more instances of the
 preceding regex.

	\{n,m\}
	{n,m}
	Match a range of occurrences of the
 single character or regex that precedes this construct.
 \{n\} matches
 n occurrences, \{n,\} matches at least
 n occurrences, and \{n,m\} matches any number of occurrences
 between n and
 m, inclusively.

	\|
	|
	Match the character or expression to
 the left or right of the vertical bar.

	\(regex\)
	(regex)
	Matches
 regex, but it can be modified as a
 whole and used in back-references. (\1 expands to the contents of the
 first \(\) and so on up to
 \9.)

Commands

	Many commands support the regular expression syntax, but the
 most commonly used is the command grep, which
 is designed to display lines from a file or files matching a given
 regular expression.

	There are multiple ways to call grep to
 change its behavior:
	grep
	Treat the pattern as a basic regular
 expression.

	egrep
	Treat the pattern as an extended regular expression.
 Same as grep –E.

	fgrep
	Treat the pattern as a list of fixed strings, any of
 which may be matched. Same as grep
 –F.

Objective 103.8: Perform Basic File Editing Operations Using
 vi

Subcommands

	Start vi with
 vi file1
 [file2 [...]]. See Table 10-10.
Table 10-10. Basic vi editing commands
	Command
	Description

	Esc
	Exit insert mode and put the
 editor into command mode.

	h or left arrow
	Move left one
 character.

	j or down arrow
	Move down one
 line.

	k or up
 arrow
	Move up one line.

	l or right arrow
	Move right one
 character.

	H
	Move to the top of the
 screen.

	L
	Move to the bottom of the
 screen.

	G
	Move to the end of the
 file.

	W
	Move forward one
 word.

	B
	Move backward one
 word.

	0 (zero)
	Move to the beginning of the
 current line.

	^
	Move to the first nonwhitespace
 character on the current line.

	$
	Move to the end of the current
 line.

	Ctrl-B
	Move up (back) one
 screen.

	Ctrl-F
	Move down (forward) one
 screen.

	i
	Insert at the current cursor
 position.

	I
	Insert at the beginning of the
 current line.

	a
	Append after the current cursor
 position.

	A
	Append to the end of the current
 line.

	o
	Start a new line after the
 current line.

	O
	Start a new line before the
 current line.

	r
	Replace the character at the
 current cursor position.

	R
	Start replacing (overwriting) at
 the current cursor position.

	x
	Delete the character at the
 current cursor position.

	X
	Delete the character immediately
 before (to the left) of the current cursor
 position.

	s
	Delete the character at the
 current cursor position and go into insert mode. (This is
 the equivalent of the combination xi.)

	S
	Delete the contents of the
 current line and go into insert mode.

	dX
	Given a movement command
 X, cut (delete) the appropriate
 number of characters, words, or lines from the current
 cursor position.

	dd
	Cut the entire current
 line.

	D
	Cut from the current cursor
 position to the end of the line. (This is equivalent to
 d$.)

	cX
	Given a movement command
 X, cut the appropriate number
 of characters, words, or lines from the current cursor
 position and go into insert mode.

	cc
	Cut the entire current line and
 go into insert mode.

	C
	Cut from the current cursor
 position to the end of the line and enter insert mode.
 (This is equivalent to c$.)

	yX
	Given a movement command
 X, copy (yank) the appropriate
 number of characters, words, or lines from the current
 cursor position.

	yy or Y
	Copy the entire current
 line.

	p
	Paste after the current cursor
 position.

	P
	Paste before the current cursor
 position.

	.
	Repeat the last
 command.

	u
	Undo the last
 command.

	/regex
	Search forward for
 regex.

	?regex
	Search backward for
 regex.

	n
	Find the next
 match.

	N
	Find the previous match. (In
 other words, repeat the last search in the opposite
 direction.)

	:n
	Next file; when multiple files
 are specified for editing, this command loads the next
 file. Force this action (if the current file has unsaved
 changes) with :n!.

	:e
 file
	Load
 file in place of the current
 file. Force this action with :e!
 file.

	:r
 file
	Insert the contents of
 file after the current cursor
 position.

	:q
	Quit without saving changes.
 Force this action with :q!.

	:w
 file
	Write the current buffer to
 file. To append to an existing
 file, use :w
 >>file. Force
 the write (when possible, such as when running as root)
 with :w!
 file.

	:wq
	Write the file contents and
 quit. Force this action with :wq!.

	:x
	Write the file contents (if
 changed) and quit (the ex equivalent of ZZ).

	ZZ
	Write the file contents (if
 changed) and quit.

	:!
 command
	Execute
 command in a
 subshell.

Devices, Linux Filesystems, and the Filesystem Hierarchy
 Standard

Objective 104.1: Create Partitions and Filesystems

Disk drives and partitions

	IDE disks are known as
 /dev/hda, /dev/hdb,
 /dev/hdc, /dev/hdd, and
 so on.

	Any disks using the SCSI emulation layer are known as
 /dev/sda, /dev/sdb,
 /dev/sdc, and so on. These include SCSI
 disks, SATA disks, and, in newer kernels, IDE disks.

	Three types of partitions:
	Primary
	Filesystem container. At least one must exist, and up
 to four can exist on a single physical disk. They are
 identified with numbers 1 to 4, such as /dev/hda1,
 /dev/hda2, and so on.

	Extended
	A variant of a primary partition, but it
 cannot contain a filesystem. Instead, it contains one or
 more logical partitions. Only one
 extended partition may exist, and it takes one of the four
 possible spots for primary partitions.

	Logical
	Created within the
 extended partition. From 1 to 12 logical partitions may be
 created. They are numbered from 5 to 16, such as
 /dev/hda5,
 /dev/hda6, and so on.

	Up to 15 partitions with filesystems may exist on a single
 physical disk.

Filesystems

	The Linux kernel supports many different kinds of
 filesystems:
	ext3
	The third extended filesystem. A journaling
 filesystem, this has been the default for most Linux
 distributions since the early 2000s.

	ext2
	The second extended filesystem. This was the initial
 default Linux filesystem. ext3 is
 basically ext2 with journaling
 support.

	xfs
	Journaling filesystem created by Silicon Graphics for
 IRIX and ported to Linux.

	reiserfs
	This was the first journaling filesystem introduced in
 the standard Linux kernel.

	vfat
	A Microsoft Windows filesystem for Windows 95, 98, and
 ME systems.

The root filesystem and mount points

	The top of the filesystem tree is occupied by the
 root filesystem. Other filesystems are
 mounted under it, creating a unified filesystem.

	/etc, /lib,
 /bin, /sbin, and
 /dev must be part of the root
 filesystem.

Partition and filesystem management commands

The following commands are commonly used to repair and manage
 filesystems:
	fdisk
 [device]
	Manipulate or display the partition table for
 device using a command-driven
 interactive text interface. device is
 a physical disk such as /dev/hda, not a
 partition such as /dev/hda1.

	mkfs
 device
	Make a filesystem on device,
 which must be a partition.

	mkswap
 device
	Prepare a partition for use as swap space.

Objective 104.2: Maintain the Integrity of Filesystems

Filesystem commands

	df
 [directories]
	Display overall disk utilization information for
 mounted filesystems on directories.

	du
 [directories]
	Display disk utilization information for
 directories.

	fsck
 filesystems
	Check filesystems for errors
 and optionally correct them.

	dumpe2fs
 filesystem
	Display the detailed information about the
 ext2 or ext3
 filesystem at filesystem.

	tune2fs
 filesystem
	Modify filesystem variables for the
 ext2 or ext3
 filesystem at filesystem.

Objective 104.3: Control Filesystem Mounting and
 Unmounting

Managing the filesystem table

	/etc/fstab contains mount
 information for filesystems. Each line contains a single
 filesystem entry made up of six fields, shown in Table 10-11.

	The /media directory is often used by
 distributions as a place to automount hotplug devices, such as USB
 drives.
Table 10-11. Fields found in the /etc/fstab file
	Entry
	Description

	Device
	The device file for the
 partition holding the filesystem.

	Mount point
	The directory upon which the
 filesystem is to be mounted.

	Filesystem type
	A filesystem type, such as
 ext3.

	Mount options
	A comma-separated
 list.

	Dump frequency
	For use with dump.

	Pass number for fsck
	Used at boot
 time.

Mounting and unmounting

The following commands are used to mount and unmount
 filesystems:
	mount
 device
	

	mount
 directory
	

	mount device
 directory
	Mount filesystems onto the hierarchy. The first and second
 forms consult /etc/fstab for additional
 information.

	umount
 device
	

	umount
 directory
	Unmount the filesystem on
 device or mount it on
 directory.

Filesystem types

Common filesystem types compatible with Linux include:
	ext2
	The standard Linux filesystem.

	ext3
	A journaling filesystem that is backward-compatible with
 ext2.

	iso9660
	The standard CD-ROM format.

	vfat
	The Microsoft Windows FAT filesystem.

	nfs
	Remote servers.

	proc
	A system abstraction for access to kernel
 parameters.

	swap
	Swap partitions.

Objective 104.4: Set and View Disk Quotas

Quota types

	Per-user hard
	The maximum size for an individual.

	Per-user soft
	A warning threshold.

	Per-group hard
	The maximum size for a group.

	Per-group soft
	A warning threshold.

	Grace period
	A time restriction on the soft limit.

Commands

	quota
 user
	

	quota -g
 group
	Display quota limits on user or
 group.

	quotaon
 [filesystems]
	Enable previously configured disk quotas on one or more
 filesystems.

	quotaoff
 [filesystems]
	Disable disk quotas on one or more
 filesystems.

	quotacheck
 [filesystems]
	Examine filesystems and compile quota databases. Usually
 run via cron.

	edquota
 names
	Modify user or group quotas by spawning a text
 editor.

	repquota
 filesystems
	Display a summary report of quota status for
 filesystems, or use
 -a for all filesystems.

Note
Enabling quotas requires usrquota and/or grpquota options in
 /etc/fstab, creation of
 quota.user and quota.group
 files at the top of the filesystem, a
 quotacheck, and a
 quotaon.

Objective 104.5: Manage File Permissions and Ownership

Access control

	Access control is implemented using a set of
 properties called the access mode, stored in
 the inode. Three classes of user are defined:
	User
	The user who owns the file.

	Group
	The group that owns the file.

	Other
	All other users on the system.

	Three permissions are either granted or not granted to each
 class of user:
	Read (r)
	Allows access to file contents and listing of
 directory contents.

	Write (w)
	Allows writing a file or creating files in a
 directory.

	Execute (x)
	Allows execution of a file and ability to read/write
 files in a directory.

	These comprise nine bits in the mode User rwx, Group rwx, and Other rwx.

	Three additional mode bits are defined:
	SUID
	To grant processes the rights of an executable file’s
 owner.

	SGID
	To grant processes the rights of an executable file’s
 group.

	Sticky bit
	Prohibits file deletion by nonowners.

	These 12-mode bits are often referred to in octal notation
 as well as with mnemonic constructs.

	Mode bits are displayed using such commands as
 ls and stat.

Setting access modes

	New files receive initial access mode as described by the
 umask.

	The umask strips specified bits from
 the initial mode settings. Typical umasks are 002 and 022.

	Existing file modes are changed using
 chmod with either symbolic or octal mode
 specifications:
	Symbolic:
[ugoa][-+=][rwxXst]

	Octal bits:
user r, w, x, group r, w, x, other r, w, x
rwxrwxrwx = 111111111 = 777
rwxr-xr-- = 111101100 = 751

chmod uses the following
 syntax:
	chmod mode
 files
	Modify the access mode on files
 using a symbolic or octal
 mode.

Commands for file ownership

	chown
 user-owner.group-owner
 files
	Change the owner and/or group of
 files to
 user-owner and/or
 group-owner.

	chgrp group-owner
 files
	Change the group ownership of
 files to
 group-owner.
chgrp functionality is included in
 chown.

Objective 104.6: Create and Change Hard and Symbolic
 Links

Concepts

	A link is a pseudonym for another file.

	Links take up very little space in the filesystem.

	A symbolic link is a tiny file that
 contains a pointer to another file. Symbolic links can span
 filesystems.

	A hard link is a copy of a file’s
 directory entry. Both directory entries point to the same inode
 and thus the same data, ownership, and permissions.

ln

ln has the following syntax:
	ln file
 link

	ln files
 directory

Create link to
 file or in
 directory for all
 files. Symbolic links are created with the
 -s
 option.

Objective 104.7: Find System Files and Place Files in the Correct
 Location

File Hierarchy Standard (FHS)

	The FHS is used by Linux distributions to
 standardize filesystem layout. It defines two categories of data
 use, each with opposing subtypes:
	Data sharing
	Sharable data can be used by multiple host systems on
 a network. Nonsharable data is unique to one particular host
 system.

	Data modification
	Variable data is changed continually by naturally
 occurring (i.e., frequent) processes. Static data is left
 alone, remaining unchanged over extended periods of
 time.

	The FHS seeks to define the filesystem contents in these
 terms and locate information accordingly.

The directory hierarchy

	The root filesystem (/):
	Must contain utilities and files sufficient to boot the
 operating system, including the ability to mount other
 filesystems.

	Should contain the utilities needed by the system
 administrator to repair or restore a damaged system.

	Should be relatively small.

	/usr contains system utilities and
 programs that do not appear in the / (root)
 filesystem. It includes directories such as
 bin, lib,
 local, and src.

	/var contains varying data such as
 printer spools and logfiles, including directories such as
 log, mail, and
 spool.

Locating files

	Various methods can be used to locate files in the
 filesystem:
	which
 command
	Determine the location of
 command and display the full
 pathname of the executable program that the shell would
 launch to execute it.

	find paths
 expression
	Search for files that match
 expression, starting at
 paths and continuing
 recursively.

	locate
 patterns
	Locate files whose names match one or more
 patterns by searching an index of
 files previously created.

	updatedb
	Refresh (or create) the slocate
 database, usually via cron.

	whatis
 keywords
	

	apropos
 keywords
	Search the whatis database for
 keywords.
 whatis finds only exact matches,
 whereas apropos finds partial word
 matches.

Chapter 11. Exam 102 Overview

LPI Exam 102 is the second of two exams required for the LPI’s
 Level 1 certification (officially referred to as LPIC 1). This exam tests
 your knowledge on 6 of the 10 major Topic areas specified for LPIC Level 1.
 Each section details certain Objectives, which are described here and on the
 LPI
 website.
Each Topic contains a series of Objectives covering specific areas of
 expertise. Each of these Objectives is assigned a numeric weight, which acts
 as an indicator of the importance of the Objective. Weights run between 1
 and 8, with higher numbers indicating more importance. An Objective carrying
 a weight of 1 can be considered relatively unimportant and isn’t likely to
 be covered in much depth on the exam. Objectives with larger weights are
 sure to be covered on the exam, so you should study these Topics closely.
 The weights of the Objectives are provided at the beginning of each Topic
 section.
Exam Topics are numbered using the
 topic.objective notation (e.g., 101.1, 101.2, 102.1).
 The 100 series topics represent LPI Level 1 certification topics, which are
 unique to all levels of LPI exams (e.g., 101, 102, 201, 202, etc.). The
 objective number represents the objectives that are associated with the
 Topic area (e.g., 1, 2, 3, 4, and so on).
The Level 1 Topics are distributed between the two exams to create
 tests of similar length and difficulty without subject matter overlap. As a
 result, there’s no requirement or advantage to taking the exams in sequence,
 the only caveat being that you cannot be awarded an LPIC 2 or higher
 certifications until you pass the requirements for the lower level
 certification.
The Topics for Exam 102 are listed in Table 11-1.
Table 11-1. LPI Topics for Exam 102
	Name
	Number of objectives
	Description

	Shells, Scripting, and Data Management
	3
	Covers the shell and its startup files and
 writing bash scripts, querying databases, and
 manipulating data using basic SQL commands.

	User Interfaces and
 Desktops
	3
	The X-based Objectives cover only subjects
 that every Level 1 sysadmin is expected to encounter. Some of these
 tasks include installing and configuring X11, setting up a display
 manager such as XDM, GDM, or KDM, and installing and understanding
 basic accessibility tools.

	Administrative Tasks
	3
	Covers all of the basic administrative
 tasks done by a junior level Linux sysadmin, including managing
 users and groups, user environment variables, job scheduling, and
 data backup.

	Essential System Services
	4
	Covers administering system services that
 must be configured, including maintaining system time, system logs,
 basic understanding of mail transfer agents, and managing
 printing.

	Networking Fundamentals
	3
	Explores TCP/IP, network interfaces, DHCP,
 and client-side DNS; includes troubleshooting
 commands.

	Security
	3
	Covers security issues such as SUID
 issues, ssh client use, GPG for data
 encryption, and user limits.

Exam 102 lasts a maximum of 90 minutes and contains exactly 60
 questions. The exam is administered using a custom application on a PC in a
 private room with no notes or other reference material. The majority of the
 exam is made up of multiple-choice single-answer questions. These questions
 have only one correct answer and are answered using radio buttons. A few of
 the questions present a scenario needing administrative action. Others seek
 the appropriate commands for performing a particular task or for proof of
 understanding of a particular concept. Some people may get an exam with an
 additional 20 items. These items are used to test new questions and don’t
 count as part of the score. An additional 30 minutes is provided in this
 case, and there is no indication of which items are unscored.
The exam also includes a few multiple-choice multiple-answer
 questions, which are answered using checkboxes. These questions can have
 multiple correct responses, each of which must be checked. These are
 probably the most difficult type of question to answer because the
 possibility of multiple answers increases the likelihood of mistakes. An
 incorrect response on any one of the possible answers causes you to miss the
 entire question.
The exam also has some fill-in-the-blank questions. These questions
 provide a one-line text area input box for you to fill in your answer. These
 questions check your knowledge of concepts such as important files,
 commands, or well-known facts that you are expected to know.

Chapter 12. Exam 102 Study Guide

The second part of this book contains a section for each of the six
 Topics found on Exam 102 for LPIC Level 1 certification. Each of the
 following tables details the Objectives described for the corresponding
 Topic on the LPI
 website.
Exam Preparation

LPI Exam 102 is thorough, but if you have a solid foundation
 in Linux concepts as described here, you should find it straightforward.
 If you’ve already taken Exam 101, you’ll find that Exam 102 covers a
 broader range of Linux administration skills. Included are user
 interfaces, printing, documentation, shells and scripting, administrative
 tasks, networking fundamentals, system services, and security. Exam 102 is
 quite specific on some Topics, such as network applications (for example,
 Sendmail), but you won’t come across questions intended to trick you, and
 you’re unlikely to find questions
 that you feel are ambiguous.
For clarity, this material is presented in the same order as the LPI
 Topics and Objectives. To assist you with your preparation, Table 12-1
 through 12-9 provide a complete listing of the Topics and Objectives for
 Exam 102. Because of changes made during test development, the final
 Objectives are not always in exact numerical order. After you complete
 your study of each Objective, simply check it off here to measure and
 organize your progress.
Table 12-1. Shells, Scripting, and Data Management (Topic 105)
	Objective
	Weight
	Description

	1
	4
	Customize and Use the Shell
 Environment

	2
	4
	Customize or Write Simple
 Scripts

	3
	2
	SQL Data Management

Table 12-2. The X Window System (Topic 106)
	Objective
	Weight
	Description

	1
	2
	Install and Configure X11

	2
	2
	Set Up a Display Manager

	3
	1
	Accessibility

Table 12-3. Administrative Tasks (Topic 107)
	Objective
	Weight
	Description

	1
	5
	Manage User and Group Accounts and
 Related System Files

	2
	4
	Automate System Administration Tasks by
 Scheduling Jobs

	3
	3
	Localization and
 Internationalization

Table 12-4. Essential System Services (Topic 108)
	Objective
	Weight
	Description

	1
	3
	Maintain System Time

	2
	2
	System Logging

	3
	3
	Mail Transfer Agent (MTA)
 Basics

	4
	2
	Manage Printers and
 Printing

Table 12-5. Networking Fundamentals (Topic 109)
	Objective
	Weight
	Description

	1
	4
	Fundamentals of Internet
 Protocols

	2
	4
	Basic Network
 Configuration

	3
	4
	Basic Network
 Troubleshooting

	4
	2
	Configuring Client Side
 DNS

Table 12-6. Security (Topic 110)
	Objective
	Weight
	Description

	1
	3
	Perform Security Administration
 Tasks

	2
	3
	Set Up Host Security

	3
	3
	Securing Data with
 Encryption

Chapter 13. Shells,
 Scripting, and Data Management (Topic
 105)

Depending upon the computing environments you’re used to, the concepts
 of shells and shell programs (usually called scripts) may be a little foreign. On
 Linux systems, the shell is a full programming environment that can be
 scripted or used interactively.
This chapter covers Topic 105 and its three Objectives:
	Objective 1: Customize and Use the Shell
 Environment
	This Objective covers your shell and basic scripting concepts,
 including environment variables, functions, and script files that
 control the login environment. Weight: 4.

	Objective 2: Customize or Write Simple
 Scripts
	Customization of the many scripts found on a Linux system is
 important for its management and automation. Topics for this Objective
 include shell syntax, checking the status of executed programs, and
 issues surrounding the properties of script files. Weight: 4.

	Objective 3: SQL Data Management
	This objective covers the basic use of SQL databases to store
 and query data. Topics for this Objective include communicating with a
 SQL database, basic queries, basic database concepts, and the
 relationship between data and tables. Weight: 2.

It is important for Linux administrators to become comfortable with at
 least one shell and its programming language. This can be an area of some
 concern to those used to graphics-only environments, where the use of a
 command interpreter is not a daily activity. As you’ll see, becoming adept
 at working with your favorite shell will allow you to customize many trivial
 tasks and become a more efficient system administrator.
Objective 1: Customize and Use the Shell Environment

This Objective could be considered a brief “getting started
 with shells” overview because it details many of the basic concepts
 necessary to utilize the shell environment on Linux. These concepts are
 fundamental and very important for system administrators working on Linux
 systems. If you’re new to shells and shell scripting, take heart. You can
 think of it as a combination of computer interaction (conversation) and
 computer programming (automation). It is nothing more than that, but the
 result is far more than this simplicity implies. If you’re an old hand
 with shell programming, you may want to skip ahead to brush up on some of
 the particulars necessary for Exam 102.
If you’ve never taken a computer programming course before, don’t be
 too discouraged. Shell programming is mostly automating repetitive tasks.
 Your shell scripts can conceivably become relatively complicated programs
 in their own right, but shell scripting does not have the learning curve
 of a “conventional” programming language such as C or C++.
An Overview of Shells

A shell is a fundamental and important part of your Linux
 computing environment. Shells are user programs not unlike other
 text-based programs and utilities. They offer a rich, customizable
 interface to your system. Some of the main items provided by your shell
 are:
	An interactive textual user interface to the operating
 system
	In this role, the shell is a command interpreter and display
 portal to the system. It offers you a communications channel to
 the kernel and is often thought of as the “shell around the
 kernel.” That’s where the name shell
 originates and is a good metaphor for conceptualizing how shells
 fit into the overall Linux picture.

	An operating environment
	Shells set up an environment for the
 execution of other programs, which affects the way some of them
 behave. This environment consists of any number of environment variables, each of
 which describes one particular environment property by defining a
 name=value pair. Other features such as
 aliases enhance your operating
 environment by offering shorthand notations for commonly used
 commands.

	A facility for launching and managing commands and
 programs
	Shells are used not only by users but also by the system to
 launch programs and support those programs with an operating
 environment.

	A programming language
	Shells offer their own programming languages. At its
 simplest, this feature allows user commands to be assembled into
 useful sequences. At the other end of the spectrum, complete
 programs can be written in shell languages, with loop control,
 variables, and all of the capabilities of Linux’s rich set of
 operating system commands.

All of the shells share some common concepts:
	They are all distinct from the kernel and run as user
 programs.

	Each shell can be customized by tuning the shell’s operating
 environment.

	Shells are run for both interactive use by end users and
 noninteractive use by the system.

	A shell can be run from within another shell, enabling you to
 try a shell other than your default shell. To do this, you simply
 start the other shell from the command line of your current shell.
 In fact, this happens constantly on your system as scripts are
 executed and programs are launched. The new shell does not replace
 the shell that launched it; instead, the new shell is a process
 running with the original shell as a parent process. When you
 terminate the child shell, you go back to the original one.

	Shells use a series of configuration files in order to
 establish their operating environment.

	Shells pass on environment variables to child
 processes.

The Bash Shell

bash is the GNU Project
 implementation of the standard Unix shell sh. Since
 the original sh was the “Bourne shell,”
 bash is the “Bourne again shell”. As the bash home
 page says:
Bash is an sh-compatible shell that
 incorporates useful features from the Korn shell
 (ksh) and C shell (csh). It
 is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and
 Tools standard. It offers functional improvements over
 sh for both programming and interactive
 use.

While there are a number of shells available to choose from on a
 Linux system, bash is very popular and powerful,
 and it is the default shell for new accounts. Bash has become popular
 enough that it is available on many other Unix flavors as well,
 including Sun’s Solaris and Hewlett-Packard’s HP/UX. Exam 102
 concentrates on its use and configuration. The next few sections deal
 with common shell concepts, but the examples are specific to
 bash.
Shells and environment variables

Many programs running under Linux require information
 about you and your personal preferences to operate sensibly. Although
 you could manually provide this information to each program you run,
 much of the information you’d convey would be redundant because you’d
 be telling every command you enter the same ancillary information at
 each invocation. For example, you’d need to tell your paging program
 about the size and nature of your terminal or terminal window each
 time you use it. You would also need to give fully qualified directory
 names for the programs you run.
Rather than force users to include so much detail to issue
 commands, the shell handles much of this information for you
 automatically. You’ve already seen that the shell creates an operating
 environment for you. That environment is made up of a series of
 variables, each of which has a value that is used
 by programs and other shells. The two types of variables used by most
 shells are:
	Environment variables
	These variables can be thought of as global variables because they
 are passed on to all processes started by the shell, including
 other shells. This means that child processes inherit the
 environment. By convention, environment variables are given
 uppercase names. bash doesn’t require the
 case convention; it is just intended for clarity to humans.
 However, variable names are case-sensitive. Your shell maintains
 many environment variables, including the following examples:
	PATH
	A colon-delimited list of directories through which
 the shell looks for executable programs as you enter them
 on the command line. All of the directories that contain
 programs that you’ll want to execute are stored together
 in the PATH environment
 variable. Your shell looks through this list in sequence,
 from left to right, searching for each command you enter.
 Your PATH may differ
 from the PATHs of other
 users on your system because you may use programs found in
 different locations or you may have a local directory with
 your own custom programs that need to be available. The
 PATH variable can
 become quite long as more and more directories are
 added.

	HOME
	Your home directory, such as
 /home/adamh.

	USERNAME
	Your username.

	TERM
	The type of terminal or terminal window you are
 running. This variable is likely to have a value such as
 xterm or xterm-color. If you are running
 on a physical VT100 (or compatible) terminal, TERM is set to vt100.

	Shell variables
	These variables can be thought of as local because they are
 specific only to the current shell. Child processes do not
 inherit them. Some shell variables are automatically set by the
 shell and are available for use in shell scripts. By convention,
 shell variables are given lowercase names.

To create a new bash shell variable, simply
 enter a name=value pair on the command
 line:
pi=3.14159
To see that this value is now assigned to the local variable
 pi, use the
 echo command to display its contents:
echo $pi
3.14159
The dollar sign preceding the variable name indicates that the
 name will be replaced with the variable’s value. Without the dollar
 sign, echo would just return the text that was
 typed, which in this case is the variable name pi. At this point, pi is a local variable and is not available
 to child shells or programs. To make it available to other shells or
 programs, the variable must be exported to the environment:
export pi

Aliases

Among the features missing from sh
 was the ability to easily make new commands or modify existing
 commands. bash has the ability to set an alias
 for commonly used commands or sequences of commands. For example, if
 you habitually call for the older pager more but
 actually prefer less, an alias can be handy to
 get the desired behavior, regardless of the command you use:
$ alias more='less'
This has the effect of intercepting any command entries for
 more, substituting less. The
 revised command is passed along to the shell’s command
 interpreter.
Another common use for an alias is to modify a command slightly
 so that its default behavior is more to your liking. Many people,
 particularly when operating with superuser privileges, will use this
 alias:
$ alias cp='cp -i'
With this alias in effect, the use of the
 cp (copy) command becomes safer, because with the
 -i option always enforced by the alias,
 cp prompts you for approval before overwriting a
 file of the same name. Additional options you enter on the command
 line are appended to the end of the new command, such that
 cp -p becomes cp -i -p, and so on.
If the righthand side of the aliased command is bigger than a
 single word or if it contains multiple commands (separated by
 semicolons, bash’s command terminator), you
 probably need to enclose it in single quotation marks to get your
 point across. For example, suppose you wished to use a single alias to
 pair two simple commands:
$ alias lsps=ls -l; ps
Your current bash process will interpret
 this command not as a single alias but as two separate commands. First
 the alias lsps will be created for ls
 -l, and then a ps command will be
 added for immediate execution. What you really want is:
$ alias lsps='ls -l; ps'
Now, entering the command lsps will be
 aliased to ls -l; ps, and will correctly generate
 ls output immediately followed by
 ps output, as this example
 shows:
$ lsps
total 1253
drwx------ 5 root root 1024 May 27 17:15 dir1
drwxr-xr-x 3 root root 1024 May 27 22:41 dir2
-rw-r--r-- 1 root root 23344 May 27 22:44 file1
drwxr-xr-x 2 root root 12288 May 25 16:13 dir3
 PID TTY TIME CMD
 892 ttyp0 00:00:00 bash
 1388 ttyp0 00:00:00 ps
Admittedly, this isn’t a very useful command, but it is built
 upon in the next section.
After adding aliases, it may become easy to confuse which
 commands are aliases or native. To list the aliases defined for your
 current shell, simply enter the alias command by
 itself. This results in a listing of all the aliases currently in
 place:
$ alias
alias cp='cp -i'
alias lsps='ls -l;ps'
alias mv='mv -i'
alias rm='rm -i'
Note that aliases are local to your shell and are not passed
 down to programs or to other shells. You’ll see how to ensure that
 your aliases are always available in the section Configuration files.
Aliases are mainly used for simple command replacement. The
 shell inserts your aliased text in place of your alias name before
 interpreting the command. Aliases don’t offer logical constructs and
 are limited to a few simple variable replacements. Aliases can also
 get messy when the use of complicated quoting is necessary, usually to
 prevent the shell from interpreting characters in your alias.

Functions

In addition to aliases, bash also
 offers functions. They work in much the same way
 as aliases, in that some function name of your choosing is assigned to
 a more complex construction. However, in this case that construction
 is a small program rather than a simple command substitution.
 Functions have a simple syntax:
[function] name () { command-list; }
This declaration defines a function called
 name. function
 is optional, and the parentheses after name
 are required if function is omitted. The
 body of the function is the command-list
 between the curly brackets ({ and
 }). This list is a series of
 commands, separated by semicolons or by newlines. The series of
 commands is executed whenever name is
 specified as a command. The simple lsps alias shown earlier could be
 implemented as a function like this:
$ lsps () { ls -l; ps; }
Using this new function as a command yields exactly the same
 result the alias did. However, if you implement this command as a
 function, parameters can be added to the command. Here is a new
 version of the same function, this time entered on multiple lines
 (which eliminates the need for semicolons within the function):
$ lsps () {
> ls -l $1
> ps aux | grep `/bin/basename $1`
> }
The > characters come from
 bash during interactive entry, indicating that
 bash is awaiting additional function commands or
 the } character, which terminates
 the function definition (this is called the secondary shell prompt).
 This new function allows us to enter a single argument to the function, which is
 inserted everywhere $1 is found in
 the function. These arguments are called positional parameters because each
 one’s number denotes its position in the argument list. This example
 uses only one positional parameter, but there can be many, and the
 number of parameters is stored for your use in a special variable
 $#.
The command implemented in the previous example function now
 prints to STDOUT a directory listing and process
 status for any program given as an argument. For example, if the
 Apache web server is running, the command:
$ lsps /usr/sbin/httpd
yields a directory listing for
 /usr/sbin/httpd and also displays all currently
 running processes that match httpd:
-rwxr-xr-x 1 root root 317072 2010-01-22 14:31 /usr/sbin/httpd
root 1882 0.0 1.5 22664 8088 ? Ss Aug10 0:14 /usr/sbin/httpd
apache 20869 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20870 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20872 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20874 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20875 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20876 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20877 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd
apache 20878 0.0 0.6 22664 3560 ? S 04:27 0:00 /usr/sbin/httpd

Configuration files

It’s a good assumption that every Linux user will want to define
 a few aliases, functions, and environment variables to suit his or her
 needs. However, it’s undesirable to manually enter them upon each
 login or for each new invocation of bash. To set
 up these things automatically, bash uses a number
 of configuration files to set its operating environment when it
 starts. Some of these files are used only upon initial login, whereas
 others are executed for each instance of bash you
 start, including at login time. Some of these configuration files are
 system-wide files for all users to use, whereas others reside in your
 home directory for your use alone.
bash configuration files important
 to Exam 102 are listed in Table 13-1.
Table 13-1. bash configuration files
	File
	Description

	/etc/profile
	This is the system-wide
 initialization file executed during login. It usually contains
 environment variables, including an initial PATH, and startup
 programs.

	/etc/bashrc
	This is another system-wide
 initialization file that may be executed by a user’s
 .bashrc for each
 bash shell launched. It usually contains
 functions and aliases.

	~/.bash_profile
	If this file exists, it is executed
 automatically after /etc/profile during
 login.

	~/.bash_login
	If
 .bash_profile doesn’t exist, this file is
 executed automatically during login.

	~/.profile
	If neither
 .bash_profile nor
 .bash_login exists, this file is executed
 automatically during login. Note that this is the original
 Bourne shell configuration file.

	~/.bashrc
	This file is executed automatically
 when bash starts. This includes login, as
 well as subsequent interactive and noninteractive invocations
 of bash.

	~/.bash_logout
	This file is executed automatically
 during logout.

	~/.inputrc
	This file contains optional key
 bindings and variables that affect how
 bash responds to keystrokes. By default,
 bash is configured to respond like the
 Emacs editor.

Note
The syntax ~ (the
 tilde) refers to the current user’s “home directory”
 (usually /home/username). Although this
 shortcut may not represent much of a savings in typing, some Linux
 configurations may place users’ directories in various and sometimes
 nonobvious places in the filesystem. Using the tilde syntax reduces
 the need for you to know exactly where a user’s home directory is
 located.

In practice, users will generally (and often unknowingly) use
 the system-wide /etc/profile configuration file
 to start. In addition, they’ll often have three personal files in
 their home directory: ~/.bash_profile,
 ~/.bashrc, and
 ~/.bash_logout. The local files are optional, and
 bash does not mind if one or all of them are not
 available in your directory.
Each of these configuration files consists entirely of plain
 text. They are typically simple, often containing just a few commands
 to be executed in sequence to prepare the shell environment for the
 user. Since they are evaluated by bash as lines
 of program code, they are said to be sourced, or
 interpreted, when bash executes them.
Like most programming languages, shell programs allow the use of
 comments. Most shells, including
 bash, consider everything immediately following
 the hash mark (#) on a single line
 to be a comment. An important exception is the $#
 variable, which has nothing to do with comments
 but contains the number of positional parameters passed to a function.
 Comments can span an entire line or share a line by following program
 code. All of your shell scripts and configuration files should use
 comments liberally.
Files sourced at login time are created mainly to establish
 default settings. These settings include such things as where to
 search for programs requested by the user (the PATH) and creation of shortcut names for
 commonly used tasks (aliases and functions). After login, files
 sourced by each subsequent shell invocation won’t explicitly need to
 do these things again, because they inherit the environment established
 by the login shell. Regardless, it isn’t unusual to see a user’s
 .bashrc file filled with all of their personal
 customizations. It also doesn’t hurt anything, provided the .bashrc file is small and quick to
 execute.
Although it is not necessary to have detailed knowledge of every
 item in your shell configuration files, Exam 102 requires that you
 understand them and that you can edit them to modify their behavior
 and your resulting operating environment. The following examples are
 typical of those found on Linux systems and are annotated with
 comments. Example 13-1 shows a
 typical Linux systemwide profile. This file is executed by
 every user’s bash process at login time. A few
 environment variables and other parameters are set in it.
Example 13-1. An example system-wide bash profile
#!/bin/bash
/etc/profile

pathmunge ()
{
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
}

ksh workaround
if [-z "$EUID" -a -x /usr/bin/id]; then
 EUID=`id -u`
 UID=`id -ru`
fi

Path manipulation
if ["$EUID" = "0"]; then
 pathmunge /sbin
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
fi

No core files by default
ulimit -S -c 0 > /dev/null 2>&1

if [-x /usr/bin/id]; then
 USER="`id -un`"
 LOGNAME=$USER
 MAIL="/var/spool/mail/$USER"
fi

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
 . $i
 fi
done

unset i
unset pathmunge

Example 13-2 shows a
 system-wide .bashrc file. This file is not
 executed by default when bash starts. Instead, it
 is optionally executed by users’ local .bashrc
 files.
Example 13-2. An example system-wide .bashrc file
/etc/bashrc
System wide functions and aliases
Environment stuff goes in /etc/profile

By default, we want this to get set.
Even for non-interactive, non-login shells.
if [$UID -gt 99] && ["`id -gn`" = "`id -un`"]; then
 umask 002
else
 umask 022
fi

are we an interactive shell?
if ["$PS1"]; then
 case $TERM in
 xterm*)
 if [-e /etc/sysconfig/bash-prompt-xterm]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
 else
 PROMPT_COMMAND='echo -ne "\033]0;${USER}@${HOSTNAME%%.*}:\
 ${PWD/#$HOME/~}"; echo -ne "\007"'
 fi
 ;;
 screen)
 if [-e /etc/sysconfig/bash-prompt-screen]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-screen
 else
 PROMPT_COMMAND='echo -ne "\033_${USER}@${HOSTNAME%%.*}:\
 ${PWD/#$HOME/~}"; echo -ne "\033\\"'
 fi
 ;;
 *)
 [-e /etc/sysconfig/bash-prompt-default] && PROMPT_COMMAND=\
 /etc/sysconfig/bash-prompt-default
 ;;
 esac
 # Turn on checkwinsize
 shopt -s checkwinsize
 ["$PS1" = "\\s-\\v\\\$ "] && PS1="[\u@\h \W]\\$ "
fi

if ! shopt -q login_shell ; then # We're not a login shell
 # Need to redefine pathmunge, it gets undefined at the end of /etc/profile
 pathmunge () {
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
 }

 for i in /etc/profile.d/*.sh; do
 if [-r "$i"]; then
 . $i
 fi
 done
 unset i
 unset pathmunge
fi
vim:ts=4:sw=4
alias more='less' # prefer the "less" pager
alias lsps='ls -l;ps' # a dubious command

Example 13-3 shows
 an example user’s local .bash_profile. Note that
 this file sources the user’s .bashrc file (which
 in turn sources the system-wide /etc/bashrc), and
 then goes on to local customizations.
Example 13-3. An example user’s .bash_profile file
.bash_profile
Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH
unset USERNAME

Example 13-4 shows
 an individual’s .bashrc file.
Example 13-4. An example user’s .bashrc file
.bashrc

User specific aliases and functions

alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi
lsps() { # Define a personal function
 ls -l $1
 ps aux | grep `/bin/basename $1`
}

Example 13-5 shows a short,
 simple, and not uncommon .bash_logout file.
 Probably the most likely command to find in a logout file is the
 clear command. Including a
 clear in your logout file is a nice way of being
 certain that whatever you were doing just before you log out won’t
 linger on the screen for the next user to ponder. This file is
 intended to execute commands for a logout from a text session, such as
 a system console or terminal. In a GUI environment where logout and
 login are handled by a GUI program, .bash_logout
 might not be of much value.
Example 13-5. A simple .bash_logout file
.bash_logout
This file is executed when a user logs out of the system
/usr/bin/clear # Clear the screen
/usr/games/fortune # Print a random adage

On the Exam
Make certain that you understand the difference between
 execution at login and execution at shell invocation, as well as
 which of the startup files serves each of those purposes.

.inputrc

Among the many enhancements added to
 bash is the ability to perform as if your history
 of commands is the buffer of an editor. That is, your command history
 is available to you, and you may cut, paste, and even search among
 command lines entered previously. This powerful capability can
 significantly reduce typing and increase accuracy. By default,
 bash is configured to emulate the Emacs editor,
 but a vi editing interface is also
 available.
The portion of bash that handles this
 function, and in fact handles all of the line input during interactive
 use, is known as readline. Readline may be
 customized by putting commands into an initialization file, which by
 default is in your home directory and called
 .inputrc. For example, to configure
 bash to use vi-style editing
 keys, add this line to .inputrc:
set editing-mode vi
Note
You may also set the INPUTRC variable to the name of another
 file if you prefer. On your system, this variable may be set to
 /etc/initrc by default,
 which would override any settings you put into a local
 .initrc. To use your own file, you must first
 explicitly place the command unset
 INPUTRC in your .bash_profile.

The default editing facilities enabled in
 bash are extensive and are beyond the scope of
 this section and Exam 102. However, you need to understand the
 concepts of adding your own custom key bindings to the
 .inputrc file and how they can help automate
 common keystrokes unique to your daily routine for the test.
For example, suppose you often use top to
 watch your system’s activity (top is a useful
 process-monitoring utility that is described in Chapter 6):
$ top -Ssd1
If you do this often enough, you’ll get tired of typing the
 command over and over and will eventually want an alias for it. To create the alias, simply alias this
 command to top:
$ alias top='/usr/bin/top -Ssd1'
Better yet, you can use .inputrc to create
 a key binding that will enter it for you. Here’s how the
 .inputrc file would look if you were to bind your
 top command to the key sequence Ctrl-T:
my .inputrc file
Control-t: "top -Ssd1 \C-m"
The lefthand side of the second line indicates the key
 combination you wish to use (Ctrl-T). The righthand side indicates
 what you wish to bind to that key sequence. In this case,
 bash outputs top -Ssd1 and a
 carriage return, denoted here by \C-m (Ctrl-M), when Control-T is
 pressed.
Through modifications of your local configuration files, you can
 customize your environment and automate many of your daily tasks. You
 may also override system-wide settings in your personal files simply
 by setting variables, aliases, and functions.
On the Exam
You won’t need to have detailed knowledge of this key-binding
 syntax, but be aware of the .inputrc file and
 the kinds of things it enables bash to
 do.

Objective 2: Customize or Write Simple Scripts

You’ve seen how the use of bash
 configuration files, aliases, functions, variables, and key bindings can
 customize and make interaction with your Linux system efficient. The next
 step in your relationship with the shell is to use its natural programming
 capability, or scripting language. The scripting
 language of the original Bourne shell is found throughout a Linux system,
 and bash is fully compatible with it. This section
 covers essential bash scripting language concepts as
 required for Exam 102.
In order to have a full appreciation of shell scripting on Linux,
 it’s important to look at your Linux system as a collection of unique and
 powerful tools. Each of the commands available on your Linux system, along
 with those you create yourself, has some special capability, and by
 combining them, you are able to have a productive and maintainable
 environment.
Script Files

Just as the configuration files discussed in the last
 section are plain text files, so are the scripts for your shell. In
 addition, unlike compiled languages such as C or Pascal, no compilation
 of a shell program is necessary before it is executed. You can use any
 editor to create script files, and you’ll find that many scripts you
 write are portable from Linux to other Unix systems.
Creating a simple bash script

The simplest scripts are those that string together some basic
 commands and perhaps do something useful with the output. Of course,
 this can be done with a simple alias or function, but eventually
 you’ll have a requirement that exceeds a one-line request, and a shell
 script is the natural solution. Aliases and functions have already
 been used to create a rudimentary new command,
 lsps. Now let’s look at a shell script (Example 13-6) that accomplishes the same thing.
Example 13-6. The lsps script
A basic lsps command script for bash
ls -l $1
ps -aux | grep `/bin/basename $1`

As you can see, the commands used in this simple script are
 identical to those used in the alias and in the function created
 earlier. To make use of this new file, instruct your currently running
 bash shell to source it, giving it an option for
 the $1 positional parameter:
$ source ./lsps /usr/sbin/httpd
If you have /usr/sbin/httpd running, you
 should receive output similar to that found previously for the alias.
 By replacing the word source with a
 single dot, you can create an alternate shorthand notation to tell
 bash to source a file, as follows:
$. ./lsps /usr/sbin/httpd
Another way to invoke a script is to start a new invocation of
 bash and tell that process to source the file. To
 do this, simply start bash and pass the script
 name and argument to it:
$ /bin/bash ./lsps /usr/sbin/httpd
This last example gives us the same result; however, it is
 significantly different from the alias, the function, or the sourcing
 of the lsps file. In this particular case, a new
 invocation of bash was started to execute the
 commands in the script. This is important, because the environment in
 which the commands are running is distinct from the environment in
 which the user is typing. This is described in more detail later in
 this section.
Note
The ./ syntax indicates
 that the file you’re referring to is in the current working
 directory. For security reasons, it is not advisable to add . to a user’s $PATH variable. Instead, either type the
 relative path to the command (./lsps) or the
 full path (/usr/bin/lsps).

Thus far, a shell script has been created and invoked in a
 variety of ways, but it hasn’t been made into a command. A script
 really becomes useful when it can be called by name like any other
 command.

Executable files

On a Linux system, programs are said to be executable if
 they have content that can be run by the processor (native execution)
 or by another program such as a shell (interpreted execution).
 However, in order to be eligible for execution when called at the
 command line, the files must have attributes that indicate to the
 shell that they are executable. To make a file executable, it must
 have at least one of its executable bits set. To
 turn the example script from a plain text file into an executable
 program, that bit must be set using the chmod
 command:
$ chmod a+x lsps
More information on chmod can be found in
 Chapter 7.
Once this is done, the script is executable by its owner, group
 members, and everyone else on the system. At this point, running the
 new command from the bash prompt yields the
 familiar output:
$./lsps /usr/sbin/httpd
When lsps is called by name, the
 commands in the script are interpreted and executed by the
 bash shell. However, this isn’t ultimately what
 is desired. In many cases, users will be running some other shell
 interactively but will still want to program in
 bash. Programmers also use other scripting
 languages such as Perl or Python. To have the scripts interpreted
 correctly, the system must be told which program should interpret the
 commands in the scripts.

Shebang!

Many kinds of script files are found on a Linux system,
 and each interpreted language comes with a unique and specific command
 structure. There needs to be a way to tell Linux which interpreter to
 use for each script. This is accomplished by using a special line at
 the top of the script naming the appropriate interpreter. Linux
 examines this line and launches the specified interpreter program,
 which then reads the rest of the file. The special line must begin
 with #!, a construct often called
 shebang, often thought of as being short for
 Sharp (#) Bang (!). For bash, the
 shebang line is:
#!/bin/bash
This command explicitly states that the program named
 bash can be found in the /bin directory and
 designates bash to be the interpreter for the
 script. You’ll also see other types of lines on script files,
 including:
	#!/bin/sh
	The Bourne shell

	#!/bin/csh
	The C-shell

	#!/bin/tcsh
	The enhanced C-shell

	#!/bin/sed
	The stream editor

	#!/usr/bin/awk
	The awk programming language

	#!/usr/bin/perl
	The Perl programming language

Each of these lines specifies a unique command interpreter for
 the script lines that follow. (bash is fully
 backward-compatible with sh;
 sh is just a link to bash on
 Linux systems.). Note that the full paths given here are the default;
 some distributions might have slight differences. For example, Perl is
 often in /bin/perl or even
 /usr/local/bin/perl.
On the Exam
An incorrectly stated shebang line can cause the wrong
 interpreter to attempt to execute commands in a script.

The shell script’s environment

When running a script with #!/bin/bash, a new invocation of
 bash with its own environment is started to
 execute the script’s commands as the parent shell waits. Exported
 variables in the parent shell are copied into the child’s environment;
 the child shell executes the appropriate shell configuration files
 (such as .bash_profile). Because configuration
 files will be run, additional shell variables may be set and
 environment variables may be overwritten. If you are depending upon a
 variable in your shell script, be sure that it is either set by the
 shell configuration files or exported into the environment for your
 use, but not both.
Another important concept regarding your shell’s environment is
 known as unidirectional or
 one-way inheritance. Although your current shell’s environment is passed
 into a shell script, that environment is
 not passed back to the original shell when your
 program terminates. This means that changes made to variables during
 the execution of your script are not preserved when the script exits.
 Instead, the values in the parent shell’s variables are the same as
 they were before the script executed. This is a basic Unix construct;
 inheritance goes from parent process to child process, and not the
 other way around.
On the Exam
It is important to remember how variables are set, how they
 are inherited, and that they are inherited only from parent process
 to child process.

Location, ownership, and permissions

The ability to run any executable program, including a
 script, under Linux depends in part upon its location in the
 filesystem. Either the user must explicitly specify the location of
 the file to run or it must be located in a directory known by the
 shell to contain executables. Such directories are listed in the
 PATH environment variable. For
 example, the shells on a Linux system (including
 bash) are located in /bin.
 This directory is usually in the PATH, because you’re likely to run programs
 that are stored there. When you create shell programs or other
 utilities of your own, you may want to keep them together and add the
 location to your own PATH. If you
 maintain your own bin directory, you might add
 the following line to your .bash_profile:
PATH=$PATH:$HOME/bin
This statement modifies your path to include your
 /home/username/bin directory. If you add personal
 scripts and programs to this directory, bash
 finds them automatically.
Execute permissions (covered in the section Objective 5: Manage File Permissions and Ownership) also affect
 your ability to run a script. Since scripts are just text files,
 execute permission must be granted to them before they are considered
 executable, as shown earlier.
You may wish to limit access to the file from other users with
 the following:
$ chmod 700 ~/bin/lsps
This prevents anyone but the owner from making changes to the
 script.
The issue of file ownership is dovetailed with making a script
 executable. By default, you own all of the files you create. However,
 if you are the system administrator, you’ll often be working as the
 superuser and will be creating files with username root as well. It is
 important to assign the correct ownership and permission to scripts to
 ensure that they are secured.

SUID and SGID rights

On rare occasions, it may become necessary to allow a
 user to run a program under the name of a different user. This is
 usually associated with programs run by nonprivileged users that need
 special privileges to execute correctly. Linux offers two such rights:
 SUID and SGID.
When an executable file is granted the SUID right, processes
 created to execute it are owned by the user who owns the file instead
 of the user who launched the program. This is a security enhancement,
 in that the delegation of a privileged task or ability does not imply
 that the superuser password must be widely known. On the other
 hand, any process whose file is owned by root and
 that has the SUID set will run as root for
 everyone. This could represent an opportunity to break the security of
 a system if the file itself is easy to attack (as a script is). For
 this reason, Linux systems will ignore SUID and SGID attributes for
 script files. Setting SUID and SGID attributes is detailed in Objective 5: Manage File Permissions and Ownership.
On the Exam
Be sure to think through any questions that require you to
 determine a user’s right to execute a file. Consider location,
 ownership, execute permissions, and SUID/SGID rights
 together.

Basic Bash Scripts

Now that some of the requirements for creating and using
 executable scripts are established, some of the features that make them
 so powerful can be introduced. This section contains basic information
 needed to customize and create new bash
 scripts.
Return values

As shell scripts execute, it is important to confirm
 that their constituent commands complete successfully. Most commands
 offer a return value to the shell when they
 terminate. This value is a simple integer and has a meaning specific
 to the program you’re using. Almost all programs return the value 0
 when they are successful and return a nonzero value when a problem is
 encountered. The value is stored in the special
 bash variable $?, which can be tested in your scripts to
 check for successful command execution. This variable is reset for
 every command executed by the shell, so you must test it immediately
 after execution of the command you’re verifying. As a simple example,
 try using the cat program on a nonexistent
 file:
$ cat bogus_file
cat: bogus_file: No such file or directory
Then immediately examine the status variable twice:
$ echo $?
1
$ echo $?
0
The first echo yielded 1 (failure) because the
 cat program failed to find the file you
 specified. The second echo yielded 0 (success) because the first
 echo command succeeded. A good script makes use
 of these status flags to exit gracefully in case of errors.
If it sounds backward to equate zero with success and nonzero
 with failure, consider how these results are used in practice:
	Error detection
	Scripts that check for errors include if-then code to evaluate a command’s
 return status:
command
if (failure_returned) ; then
 ...error recovery code...
fi
In a bash script, failure_returned is examining the
 value of the $? variable,
 which contains the result of the command’s execution.

	Error classification
	Since commands can fail for multiple reasons, many return
 more than one failure code. For example,
 grep returns 0 if matches are found and 1 if no matches are found; it returns
 2 if there is a problem with
 the search pattern or input files. Scripts may need to respond
 differently to various error conditions.

On the Exam
Make certain you understand the meaning of return values in
 general and that they are stored in the $? variable.

File tests

During the execution of a shell script, specific
 information about a file—such as whether it exists, is writable, is a
 directory or a file, and so on—may sometimes be required. In
 bash, the built-in command
 test performs this function. (There is also a
 standalone executable version of test available
 in /usr/bin for non-bash shells.)
 test has two general forms:
	test
 expression
	In this form, test and an
 expression are explicitly
 stated.

	[
 expression]
	In this form, test isn’t mentioned;
 instead, the expression is enclosed
 inside brackets.

The expression can be formed to look
 for such things as empty files, the existence of files, the existence
 of directories, equality of strings, and others. (See the more
 complete list with their operators in section, Abbreviated bash command reference. The bash manpage also
 details all the test options that are available.)
When used in a script’s if or
 while statement, the brackets
 ([and]) may appear to be grouping the test
 logically. In reality, [is simply
 another form of the test command, which requires
 the trailing]. A side effect of
 this bit of trickery is that the spaces around [and]
 are mandatory, a detail that is sure to get you into trouble
 eventually.

Command substitution

bash offers a handy ability to do
 command substitution with the
 $(command) or `command` syntax. Wherever $(command) is found, its output is substituted prior
 to interpretation by the shell. For example, to set a variable to the
 number of lines in your .bashrc file, you could
 use wc -l:
$ RCSIZE=$(wc -l ~/.bashrc)
Another form of command substitution encloses
 command in backquotes
 or backticks (`):
$ RCSIZE=`wc -l ~/.bashrc`
The result is the same, except that the backquote syntax allows
 the backslash character to escape the dollar symbol ($), the backquote (`), and another backslash (\). The $(command) syntax avoids this nuance by treating all
 characters between the parentheses literally.

Mailing from scripts

The scripts you write will often be rummaging around
 your system at night when you’re asleep or at least while you’re not
 watching. Since you’re too busy to check on every script’s progress, a
 script will sometimes need to send some mail to you or another
 administrator. This is particularly important when something big goes
 wrong or when something important depends on the script’s outcome.
 Sending mail is as simple as piping into the mail command:
echo "Backup failure 5" | mail -s "Backup failed" root
The -s option indicates that a quoted
 subject for the email follows. The recipient could be yourself,
 root, or if your system is configured correctly,
 any Internet email address. If you need to send a logfile, redirect
 the input of mail from that file:
mail -s "subject" recipient < log_file
or:
cat log_file | mail -s "subject" recipient
Sending email from scripts is easy and makes tracking status
 easier than reviewing logfiles every day. On the downside, having an
 inbox full of “success” messages can be a nuisance too, so many
 scripts are written so that mail is sent only in response to an
 important event, such as a fatal error.

Abbreviated bash command reference

This section lists some of the important
 bash built-in commands used when writing scripts.
 Please note that not all of the bash commands are
 listed here; for a complete overview of the bash
 shell, see Learning the bash
 Shell by Cameron Newham (O’Reilly).

Name
break

Syntax
break [n]

Description
Exit from the innermost (most deeply nested)
 for, while, or until loop or from the
 n innermost levels of the loop.

Name
case

Syntax
case string in
 pattern1)
 commands1
 ;;
 pattern2)
 commands2
 ;;
 ...
esac

Description
Choose string from among
 a series of possible patterns. These patterns use the same form as
 file globs (wildcards). If string
 matches pattern pattern1, perform the
 subsequent commands1. If string matches
 pattern2, perform
 commands2. Proceed down the list of
 patterns until one is found. To catch all remaining strings, use
 *) at the end.

Name
continue

Syntax
continue [n]

Description
Skip remaining commands in a for, while, or until loop, resuming with the next
 iteration of the loop (or skipping n
 loops).

Name
echo

Syntax
echo [options] [string]

Description
Write string to standard
 output, terminated by a newline. If no string is supplied, echo
 only a newline. Some Linux distributions have a version of
 echo at /bin/echo. If
 that is the case, the built-in bash version
 of echo will usually take precedence.

Frequently used options
	-e
	Enable interpretation of escape characters.

	-n
	Suppress the trailing newline in the output.

Useful special characters
	\a
	Sound an audible alert.

	\b
	Insert a backspace.

	\c
	Suppress the trailing newline (same as -n).

	\f
	Form feed.

Name
exit

Syntax
exit [n]

Description
Exit a shell script with status
 n. The value for
 n can be 0 (success) or nonzero
 (failure). If n is not given, the exit
 status is that of the most recent command.

Example
if ! test -f somefile
then
 echo "Error: Missing file somefile"
 exit 1
fi

Name
for

Syntax
for x in list
do
 commands
done

Description
Assign each word in list
 to x in turn and execute
 commands. If
 list is omitted, it is assumed that
 positional parameters from the command line, which are stored in
 $@, are to be used.

Example
for filename in bigfile* ; do
 echo "Compressing $filename"
 gzip $filename
done

Name
function

Syntax
function name
{
 commands
}

Description
Define function name.
 Positional parameters ($1,
 $2, ...) can be used within
 commands.

Example
function myfunc
{
 echo "parameter is $1"
}
myfunc 1
parameter is 1
myfunc two
parameter is two

Name
getopts

Syntax
getopts string name [args]

Description
Process command-line arguments (or
 args, if specified) and check for legal
 options. The getopts is used
 in shell script loops and is intended to ensure standard syntax
 for command-line options. The string
 contains the option letters to be recognized by
 getopts when running the script. Valid
 options are processed in turn and stored in the shell variable
 name. If an option letter is followed
 by a colon, the option must be followed by one or more arguments
 when the command is entered by the user.

Name
if

Syntax
if expression1
then
 commands1
elif expression2
then
 commands2
else
 commands
fi

Description
The if command is used to
 define a conditional statement. There are three possible formats
 for using the if command:
if-then-fi
if-then-else-fi
if-then-elif-then-...fi

Name
kill

Syntax
kill [options] IDs

Description
Send signals to each specified process or job ID,
 which you must own unless you are a privileged user. The default
 signal sent with the kill command is TERM, instructing processes to shut
 down.

Options
	-l
	List the signal names.

	-s
 signal or
 -signal
	Specify the signal number or name.

Name
read

Syntax
read [options] variable1 [variable2...]

Description
Read one line of standard input, and assign each
 word to the corresponding variable, with all remaining words
 assigned to the last variable.

Example
echo -n "Enter last-name, age, height, and weight > "
read lastname everythingelse
echo $lastname
echo $everythingelese
The name entered is placed in variable $lastname; all of the other values,
 including the spaces between them, are placed in $everythingelse.

Name
return

Syntax
return [n]

Description
This command is used inside a function definition to
 exit the function with status n. If
 n is omitted, the exit status of the
 previously executed command is returned.

Name
seq

Syntax
seq [OPTION]... LAST
seq [OPTION]... FIRST LAST
seq [OPTION]... FIRST INCREMENT LAST

Description
Print a sequence of numbers. This is useful in
 for and while loops.

Frequently used options
	-w
	Equalize the output’s width by padding with leading
 zeros.

	-f or
 --format=FORMAT
	Use the printf-style floating-point FORMAT.

Example
year=$(date +%Y) # get current year
for month in $(seq -w 1 12)
{
 monthname=$(date -d "${year}-${month}-01" +%B)
 echo "Month $month is $monthname"
}
Month 01 is January
Month 02 is February
Month 03 is March
Month 04 is April
Month 05 is May
Month 06 is June
Month 07 is July
Month 08 is August
Month 09 is September
Month 10 is October
Month 11 is November
Month 12 is December

Name
shift

Syntax
shift [n]

Description
Shift positional parameters down
 n elements. If
 n is omitted, the default is 1, so
 $2 becomes $1, $3 becomes $2, and so on.

Name
source

Syntax
source file [arguments]
. file [arguments]

Description
Read and execute lines in
 file. The
 file does not need to be executable but
 must be in a directory listed in PATH. The dot syntax is equivalent to
 stating source.

Name
test

Syntax
test expression
[expression]

Description
Evaluate the conditional expression and return a
 status of 0 (true) or 1 (false). The first form explicitly calls
 out the test command. The second form implies
 the test command. The spaces around
 expression are required in the second
 form. expression is constructed using
 options. Some Linux distributions have a version of
 test at /usr/bin/test.
 If that is the case, the built-in bash
 version of test will usually take
 precedence.

Frequently used options
	-d
 file
	True if file exists and is
 a directory

	-e
 file
	True if file exists

	-f
 file
	True if file exists and is
 a regular file

	-L
 file
	True if file exists and is
 a symbolic link

	-n
 string
	True if the length of
 string is nonzero

	-r
 file
	True if file exists and is
 readable

	-s
 file
	True if file exists and has
 a size greater than zero

	-w
 file
	True if file exists and is
 writable

	-x
 file
	True if file exists and is
 executable

	-z
 string
	True if the length of
 string is zero

	file1 -ot
 file2
	True if file1 is older than
 file2

	string1 =
 string2
	True if the strings are equal

	string1 !=
 string2
	True if the strings are not equal

Example
To determine if a file exists and is readable, use the
 -r option:
if test -r file
then
 echo "file exists"
fi
Using the [] form
 instead, the same test looks like this:
if [-r file]
then
 echo "file exists"
fi

Name
until

Syntax
until
 test-commands
do
 commands
done

Description
Execute test-commands
 (usually a test command), and if the exit
 status is nonzero (that is, the test fails), perform commands and repeat. Opposite of
 while.

Name
while

Syntax
while
 test-commands
do
 commands
done

Description
Execute test-commands
 (usually a test command), and if the exit
 status is nonzero (that is, the test fails), perform commands and repeat. Opposite of
 until.

Example
Example 13-7 shows a
 typical script from a Linux system. This example is
 /etc/rc.d/init.d/sendmail, which is the
 script that starts and stops Sendmail. This script demonstrates
 many of the built-in commands referenced in the last
 section.
Example 13-7. Sample sendmail startup script
#!/bin/bash
#
sendmail This shell script takes care of starting and stopping
sendmail.
#
chkconfig: 2345 80 30
description: Sendmail is a Mail Transport Agent, which is the program \
that moves mail from one machine to another.
processname: sendmail
config: /etc/mail/sendmail.cf
pidfile: /var/run/sendmail.pid

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
[-f /etc/sysconfig/network] && . /etc/sysconfig/network

Source sendmail configureation.
if [-f /etc/sysconfig/sendmail] ; then
 . /etc/sysconfig/sendmail
else
 DAEMON=no
 QUEUE=1h
fi
[-z "$SMQUEUE"] && SMQUEUE="$QUEUE"
[-z "$SMQUEUE"] && SMQUEUE=1h

Check that networking is up.
["${NETWORKING}" = "no"] && exit 0

[-f /usr/sbin/sendmail] || exit 0

RETVAL=0
prog="sendmail"

start() {
 # Start daemons.

 echo -n $"Starting $prog: "
 if test -x /usr/bin/make -a -f /etc/mail/Makefile ; then
 make all -C /etc/mail -s > /dev/null
 else
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then
 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 fi
 /usr/bin/newaliases > /dev/null 2>&1
 daemon /usr/sbin/sendmail $(["x$DAEMON" = xyes] && echo -bd) \
 $([-n "$QUEUE"] && echo -q$QUEUE) $SENDMAIL_OPTARG
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch /var/lock/subsys/sendmail

 if ! test -f /var/run/sm-client.pid ; then
 echo -n $"Starting sm-client: "
 touch /var/run/sm-client.pid
 chown smmsp:smmsp /var/run/sm-client.pid
 if [-x /usr/sbin/selinuxenabled] && /usr/sbin/selinuxenabled; then
 /sbin/restorecon /var/run/sm-client.pid
 fi
 daemon --check sm-client /usr/sbin/sendmail -L sm-msp-queue -Ac \
 -q$SMQUEUE $SENDMAIL_OPTARG
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && touch /var/lock/subsys/sm-client
 fi

 return $RETVAL
}

reload() {
 # Stop daemons.
 echo -n $"reloading $prog: "
 /usr/bin/newaliases > /dev/null 2>&1
 if [-x /usr/bin/make -a -f /etc/mail/Makefile]; then
 make all -C /etc/mail -s > /dev/null
 else
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then
 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 fi
 daemon /usr/sbin/sendmail $(["x$DAEMON" = xyes] && echo -bd) \
 $([-n "$QUEUE"] && echo -q$QUEUE)
 RETVAL=$?
 killproc sendmail -HUP
 RETVAL=$?
 echo
 if [$RETVAL -eq 0 -a -f /var/run/sm-client.pid]; then
 echo -n $"reloading sm-client: "
 killproc sm-client -HUP
 RETVAL=$?
 echo
 fi
 return $RETVAL
}

stop() {
 # Stop daemons.
 if test -f /var/run/sm-client.pid ; then
 echo -n $"Shutting down sm-client: "
 killproc sm-client
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f /var/run/sm-client.pid
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/sm-client
 fi
 echo -n $"Shutting down $prog: "
 killproc sendmail
 RETVAL=$?
 echo
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/sendmail
 return $RETVAL
}

See how we were called.
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 reload)
 reload
 RETVAL=$?
 ;;
 restart)
 stop
 start
 RETVAL=$?
 ;;
 condrestart)
 if [-f /var/lock/subsys/sendmail]; then
 stop
 start
 RETVAL=$?
 fi
 ;;
 status)
 status sendmail
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|condrestart|status}"
 exit 1
esac

exit $RETVAL

On the Exam
You should be familiar with a script’s general structure,
 as well as the use of shebang, test, if statements and their syntax
 (including the trailing fi),
 return values, exit values, and so on.

Objective 3: SQL Data Management

Up until this point, we have focused on data and code stored
 in text files, the standard method of data storage in the Unix world. This
 has worked well for many years. However, limitations of this format have
 required that Linux system administrators become familiar with basic
 database concepts. Specifically, the Structured Query Language (SQL)
 syntax that is shared among most database systems is an important tool to
 have in your sysadmin arsenal.
There are many SQL database options available in the Linux world.
 Arguably, the most popular are MySQL, PostgreSQL, and SQLite. Like the
 flamewars that often arise around the merits of various text editors
 (vi versus emacs being the
 historical Unix equivalent of the Hatfields versus the McCoys), the choice
 of a SQL database tends to bring out very strong feelings in Linux users.
 Due to its popularity among many database-backed open source projects,
 MySQL tends to be the SQL database that is most often seen on Linux
 systems (although the smaller footprint and rich API set of SQLite are
 making it a more popular choice every day). PostgreSQL is often touted as
 the only “real” Relational Database Management System (RDBMS) in the list
 of popular databases, and although that technically may be true, the
 ubiquity of MySQL means that PostgreSQL, at least for now, will continue
 to play a supporting role in the Linux database world.
For the sake of simplicity, this section will use MySQL as an
 example. However, the SQL commands given here should work across the
 majority of SQL databases.
Accessing a MySQL Server

MySQL is popular enough that it is distributed by default
 with most modern Linux distributions. Like many client-server
 applications, MySQL is usually distributed as multiple packages. Most
 often this means there are separate packages for the server binaries and
 the client binaries, although there may also be a third package that
 includes “common” code. Be sure to familiarize yourself with your
 distribution’s package management system so you can effectively
 determine what software is installed on your system. Refer to Chapter 5 for more
 information on the common Linux package managers.
Assuming that the MySQL server package is installed, the server is
 started the same way that most Linux services are started:
/etc/rc.d/init.d/mysqld start
Starting MySQL: [OK]
You should now have a running mysqld process, listening on TCP
 port 3306 by default. You can verify both of these with the
 ps and netstat commands,
 respectively:
ps aux | grep -i mysqld
root 1865 0.0 0.2 4656 1132 pts/0 S 22:20 0:00 /bin/sh \
 /usr/bin/mysqld_safe --datadir=/var/lib/mysql \
 --socket=/var/lib/mysql/mysql.sock --log-error=\
 /var/log/mysqld.log --pidfile=\
 /var/run/mysqld/mysqld.pid
mysql 1989 0.3 3.6 161508 19012 pts/0 Sl 22:20 0:00 \
 /usr/libexec/mysqld --basedir=/usr --datadir=\
 /var/lib/mysql --user=mysql --pid-file=\
 /var/run/mysqld/mysqld.pid --skipexternal-locking \
 --socket=/var/lib/mysql/mysql.sock
netstat -anp | grep "LISTEN" | grep "mysqld"
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN \
 1989/mysqld
By default, communication with the MySQL server takes place over
 the TCP port that the server listens on (normally tcp/3306). This
 communication can be either through the mysql
 command-line client program, a programming language such as PHP or Perl,
 or a GUI application. A number of useful GUI applications are available
 as free downloads from http://dev.mysql.com/downloads/gui-tools. This section
 will focus on using the mysql command-line program,
 both interactively and in shell scripts.
To access the MySQL server, use the mysql
 command-line program:
mysql –uroot –p –hlocalhost
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>
The options passed on the command line are:
	-u
	Username to connect as. This is not the same as the Linux
 username; MySQL uses its own username and password combinations.
 They are often similar to the Linux usernames (root, for example),
 but they bear no relation to them.

	-p
	Prompt for the password. The password can also be given on
 the command line, but this is considered insecure and is not
 recommended.

	-h
	What hostname (or IP address) to connect to. Useful if you
 are connecting to another server on your network. It is not
 recommended that you connect to MySQL servers over an unsecured
 network (such as the Internet) without using SSL or some other
 form of encryption. MySQL offers some basic SSL options, but that
 level of security is outside the scope of what will appear on the
 LPI 102 exam.

Now that we have successfully connected to our database, it’s time
 to review basic database concepts.

Database Overview

A full understanding of database management
 recommendations and design methodology is outside the scope of this book
 and outside the scope of the LPI 102 exam. However, you will need to
 know the basics of storing data in a MySQL table, managing that data
 (adding, updating, and deleting), and performing relatively complex
 queries on that data.
A MySQL server instance allows the creation and access of multiple
 databases simultaneously. The MySQL server actually creates a directory
 in the filesystem for each new database created. Each database may
 contain many tables, the layout of which is set upon initial table
 creation, but can be modified later. Although there are many options and
 pros and cons regarding database formats and storage engines, for the
 purposes of the LPI 102 exam we will assume the default storage engine
 (MyISAM) and concern ourselves more with table layout and querying. For
 more information on storage engines and other advanced MySQL topics,
 visit http://dev.mysql.com/doc/.
A table is made up of a number of columns, each given a certain
 datatype that defines what data may be stored in this column. Table 13-2 describes some of the more common
 MySQL datatypes.
Table 13-2. Common MySQL datatypes
	Datatype
	Description

	INTEGER
	A normal-size integer. The signed
 range is –2147483648 to 2147483647. The unsigned range is 0 to
 4294967295.

	FLOAT
	A floating-point
 number.

	BOOLEAN
	Stored as a single character integer.
 A value of zero is considered false. Nonzero values are
 considered true.

	DATE
	A date in the range of ‘1000-01-01’ to
 ‘9999-12-31’. Dates are displayed as YYYY-MM-DD by
 default.

	DATETIME
	A date and time combination in the
 range of ‘1000-01-01 00:00:00’ to ‘9999-12-31
 23:59:59’.

	CHAR
	A fixed-length string in the range of
 0–255 characters.

	VARCHAR
	A variable-length string. Before MySQL
 5.0.3, the maximum length of a VARCHAR was 255 characters. Since
 5.0.3, the maximum length is 65535.

	BLOB
	A binary format with a maximum size of
 65535 bytes.

	TEXT
	A text format with a maximum size of
 65535 characters.

Why are datatypes important? Wouldn’t it be easier if we had only
 two datatypes, ASCII and binary? It is important to specify datatypes
 because MySQL queries are datatype-aware. For example, if I want to
 create a query that says, “Give me all the records earlier than a
 certain date,” I can use the less-than operator (<) on a column that
 has a datatype of DATE. MySQL will know that less-than in this case
 means “on a date earlier than the one given.” This would be much more
 difficult to accomplish if we did not have strongly defined
 datatypes.
Let’s start with an example table and walk through the creation
 steps. For our example, we will create a database called
 community. In this database, our first table will
 be families, which will store names and birthdates
 for the members of a family:
mysql –uroot –p –hlocalhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 53
Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database community;
Query OK, 1 row affected (0.02 sec)

mysql> use community;
Database changed
mysql> CREATE TABLE families (
 -> id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 -> father_name VARCHAR(100),
 -> father_dob DATE,
 -> mother_name VARCHAR(100),
 -> mother_dob DATE,
 -> number_of_children INTEGER UNSIGNED,
 -> child1_name VARCHAR(100),
 -> child1_dob DATE,
 -> child2_name VARCHAR(100),
 -> child2_dob DATE,
 -> child3_name VARCHAR(100),
 -> child3_dob DATE,
 -> notes TEXT,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.05 sec)
The CREATE TABLE command is used to create a
 table in an existing database. Each column of the table is named and
 given a datatype. In addition, options can be given to columns to change
 their behavior. For example, we gave the id column
 the option AUTO_INCREMENT. This means that MySQL
 will automatically increment this integer value for every row added to
 the table. This is a common practice and ensures that every row will be
 unique, because even if all the other columns have the same data, the
 id field will always be different. This is enforced
 by the line “PRIMARY KEY (id)”. By naming the id
 field as the primary key, we’re instructing MySQL to enforce the
 uniqueness of this value for each row. This means that if we tried to
 add a row of data that included an id value that
 already existed, MySQL would display an error and the data would not be
 added.
The other fields added are names, which we defined as a varchar
 with an upper limit of 100 characters (more than enough to hold a first
 name, middle name and last name), dates of birth (denoted by the DATE
 datatype), and a notes field, which we defined as type TEXT.
To add data to this table, we use the INSERT
 command:
mysql> INSERT into families
-> (father_name, father_dob, mother_name, mother_dob,
-> number_of_children, child1_name, child1_dob,
-> child2_name, child2_dob, notes)
-> VALUES
-> ("Joe Smith", "1970-04-01", "Jan Smith", "1970-05-10",
-> "2", "Jimmy Smith","2000-08-10", "Janey Smith",
-> "2002-12-12", "This is the smith family
-> of Chicago, IL");
Query OK, 1 row affected, 0 warnings (0.02 sec)
Notice that we did not insert data into every column of the table.
 By identifying the fields we wished to use and then the values for each,
 we’re able to insert exactly the data we wish into the table. To view
 the data we just added, use the SELECT command:
mysql> SELECT id, father_name, mother_name, number_of_children from families;
+----+-------------+-------------+--------------------+
| id | father_name | mother_name | number_of_children |
+----+-------------+-------------+--------------------+
| 1 | Joe Smith | Jan Smith | 2 |
+----+-------------+-------------+--------------------+
1 row in set (0.00 sec)
In this case, we instructed the SELECT
 statement to show us only the columns id,
 father_name, mother_name, and
 number_of_children. If we had wished to see all of
 the columns, the command would have been SELECT * from families.
Notice that the id column has a value of 1.
 We did not insert this value; it was set by the MySQL server when we
 inserted our first record. Subsequent inserts will continue to increment
 this number. Let’s add one more row of data:
mysql> INSERT into families set
 -> father_name = "Ken Anderson",
 -> father_dob = "1971-06-06",
 -> mother_name = "Mary Anderson",
 -> mother_dob = "1971-01-29",
 -> number_of_children = "3",
 -> child1_name = "Shawn Anderson",
 -> child1_dob = "1999-10-17",
 -> child2_name = "Kyle Anderson",
 -> child2_dob = "2001-10-12",
 -> child3_name="Lillie Anderson",
 -> child3_dob = "2004-11-12",
 -> notes = "This is the Anderson family of Omaha, NE";
Query OK, 1 row affected (0.02 sec)
In this example, we accomplished the same goal as our original
 INSERT statement, but we used an alternate
 syntax.
Now repeat our SELECT query to verify that
 the table contains two rows:
mysql> SELECT id, father_name, mother_name, number_of_children from families;
+----+--------------+---------------+--------------------+
| id | father_name | mother_name | number_of_children |
+----+--------------+---------------+--------------------+
| 1 | Joe Smith | Jan Smith | 2 |
| 2 | Ken Anderson | Mary Anderson | 3 |
+----+--------------+---------------+--------------------+
2 rows in set (0.01 sec)
Now that we know how to add data to our table, the next step is
 modifying existing data. In our initial insert, we didn’t capitalize the
 last name “smith” in the notes column. Use the
 UPDATE command with a WHERE
 clause to correct this:
mysql> UPDATE families set
 -> notes = "This is the Smith family of Chicago, IL"
 -> WHERE id = "1";
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0
The UPDATE command is used to modify values
 in rows that already exist. In order to identify what rows to modify
 (assuming you don’t want to update all rows in the table), you need to
 give a WHERE clause that uniquely identifies the
 rows you wish to modify. In this instance, we took advantage of the fact
 that the id field is unique among rows to ensure
 that our modification affected only the row we wanted it to affect. Use
 the SELECT command again to verify our change took
 place:
mysql> select id, notes from families;
+----+--+
| id | notes |
+----+--+
| 1 | This is the Smith family of Chicago, IL |
| 2 | This is the Anderson family of Omaha, NE |
+----+--+
2 rows in set (0.00 sec)
To remove data from the table, the DELETE
 command is used. The syntax is similar to the
 UPDATE command:
mysql> delete from families where id = "2";
Query OK, 1 row affected (0.03 sec)

mysql> select id, notes from families;
+----+---+
| id | notes |
+----+---+
| 1 | This is the Smith family of Chicago, IL |
+----+---+
1 row in set (0.00 sec)
The SELECT command shows us that we’re back
 to one record in the table.
It is possible to alter the layout of a table after it has been
 created. You can either modify the datatype of an existing column or
 add/delete columns from the table. Be careful when you modify a datatype
 on a column that already contains data because you run the risk of
 losing your data! For example, if you change a column from
 varchar(255) to char(1), you will
 lose all but the first character of any data you had in that
 column.
The ALTER TABLE command is used to modify a
 table after it has been created. Let’s add two new columns to our table
 to track the city and state where the families live:
mysql> ALTER TABLE families
 -> ADD COLUMN city VARCHAR(100) AFTER notes,
 -> ADD COLUMN state CHAR(2) AFTER city;
Query OK, 1 row affected (0.00 sec)
Records: 1 Duplicates: 0 Warnings: 0
Reinsert our second family that we previously deleted:
mysql> insert into families set father_name = "Ken Anderson",
-> father_dob = "1971-06-06", mother_name = "Mary Anderson",
-> mother_dob = "1971-01-29", number_of_children = "3", child1_name =
-> "Shawn Anderson", child1_dob = "1999-10-17", child2_name =
-> "Kyle Anderson", child2_dob = "2001-10-12", child3_name=
-> "Lillie Anderson", child3_dob = "2004-11-12", notes =
-> "This is the Anderson family of Omaha, NE";
Use UPDATE to add city and state
 values:
mysql> update families set city = "Chicago", state = "IL" where id = "1";
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> update families set city = "Omaha", state = "NE" where id = "3";
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> select id, city, state, notes from families;
+----+---------+-------+--+
| id | city | state | notes |
+----+---------+-------+--+
| 1 | Chicago | IL | This is the Smith family of Chicago, IL |
| 3 | Omaha | NE | This is the Anderson family of Omaha, NE |
+----+---------+-------+--+
2 rows in set (0.00 sec)
Notice that the Anderson family is now id “3”
 instead of “2”. ID 2 was removed by our DELETE
 command. The autoupdate option of MySQL will never use the number 2
 again in this column.

Aggregate Functions

Aggregate functions allow you to group queried data in
 meaningful ways. SQL databases are more than just simple data stores;
 the complex functionality of SQL allows you to extract meaningful data
 very easily.
A common aggregate function is GROUP BY. This
 function allows you to perform operations on groups of data. Let’s add
 some more data to our example database and see what options
 GROUP BY gives us.
mysql> insert into families set father_name = "Adam White",
-> father_dob = "1969-06-08", mother_name = "Tina White",
-> mother_dob = "1969-01-30", number_of_children = "1",
-> child1_name = "Ed White", child1_dob = "1998-11-17",
-> notes = "This is the White family of Bellevue, NE",
-> city = "Bellevue", state = "NE";
Query OK, 1 row affected, 0 warnings (0.00 sec)
mysql> insert into families set father_name = "Bill Carpenter",
-> father_dob = "1968-06-01", mother_name = "Linda Carpenter",
-> mother_dob = "1970-02-30", number_of_children = "4",
-> child1_name = "Joe Carpenter", child1_dob = "1998-12-17",
-> child2_name = "Bob Carpenter", child2_dob = "1996-01-01",
-> child3_name = "Luke Carpenter", child3_dob = "2004-08-08",
-> notes = "This is the Carpenter family of Lincoln, NE",
-> city = "Lincoln", state = "NE";
Query OK, 1 row affected, 0 warnings (0.00 sec)

mysql> select id, father_name, city, state from families;
+----+----------------+----------+-------+
| id | father_name | city | state |
+----+----------------+----------+-------+
1	Joe Smith	Chicago	IL
3	Ken Anderson	Omaha	NE
4	Adam White	Bellevue	NE
5	Bill Carpenter	Lincoln	NE
+----+----------------+----------+-------+
4 rows in set (0.01 sec)

mysql> select count(state),state from families GROUP BY state;
+--------------+-------+
| count(state) | state |
+--------------+-------+
| 1 | IL |
| 3 | NE |
+--------------+-------+
2 rows in set (0.00 sec)
We’ve added two new families, so our table now contains four rows.
 The last query is an example of using the GROUP BY
 syntax. We asked MySQL, “How many different states are represented in
 our table?” You also could have achieved the same result with a
 combination of the mysql command-line program and
 some shell scripting knowledge:
echo "select state from families" |\
> mysql –s –uroot –ppassword –hlocalhost community |\
> sort | uniq –c
 1 IL
 3 NE
If you are more familiar with the Linux command-line text
 processing tools, you can oftentimes depend on them to parse the data
 that a SQL query will return. As you can see from this example, the
 mysql command-line program can process queries on
 standard input and return results on standard output. The
 -s option tells mysql to be
 “silent,” meaning not to return any column names and only return data,
 which is usually what you want if you’re going to be passing the results
 to another program for processing.
Another option MySQL gives you for outputting data is the
 ORDER BY function. This simply changes the sort
 order of the results. Let’s sort our families by the father’s date of
 birth, from youngest to oldest:
mysql> select id,father_name,father_dob from families ORDER BY father_dob asc;
+----+----------------+------------+
| id | father_name | father_dob |
+----+----------------+------------+
| 5 | Bill Carpenter | 1968-06-01 |
| 4 | Adam White | 1969-06-08 |
| 1 | Joe Smith | 1970-04-01 |
| 3 | Ken Anderson | 1971-06-06 |
+----+----------------+------------+
4 rows in set (0.00 sec)
MySQL understands that the father_dob column
 is type DATE and sorts accordingly. The modifiers to ORDER
 BY can be asc (ascending) or
 desc (descending).

Multitable Queries

The final concept to describe in our basic SQL overview is
 that of JOIN. So far, we have concerned ourselves
 with querying only one table. This is fine for simple data storage
 requirements, but as data complexity grows, so does the need for
 multiple tables. As long as there is a relationship between data
 elements in the tables, the table values can be
 JOINed in a query.
To see an example of this, we need to create another table that
 has a relationship with the first table. We will use this second table
 to store pet information for each family.
mysql> CREATE TABLE pets (
 -> id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 -> family_id INTEGER UNSIGNED NOT NULL,
 -> type VARCHAR(45) NOT NULL,
 -> name VARCHAR(45) NOT NULL,
 -> PRIMARY KEY (id)
 ->);
Query OK, 0 rows affected (0.02 sec)

mysql> show tables;
+---------------------+
| Tables_in_community |
+---------------------+
| families |
| pets |
+---------------------+
2 rows in set (0.00 sec)

mysql> describe pets;
+-----------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+------------------+------+-----+---------+----------------+
id	int(10) unsigned	NO	PRI	NULL	auto_increment
family_id	int(10) unsigned	NO			
type	varchar(45)	NO			
name	varchar(45)	NO			
+-----------+------------------+------+-----+---------+----------------+
4 rows in set (0.02 sec)

mysql> insert into pets (family_id,type,name) VALUES ("1","dog","Max");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("3","cat","Paws");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("4","cat","Muffy");
Query OK, 1 row affected (0.01 sec)

mysql> insert into pets (family_id,type,name) VALUES ("4","dog","Rover");
Query OK, 1 row affected (0.00 sec)
The important column in this second table is
 family_id. We need to ensure that as we add data to
 this table, we associate the data with the correct ID from the
 families table. This expresses the relationship
 between the families and their pets, and allows us to query against
 them. We have added four pets to our table: family ID #1 (the Smiths)
 have a dog named Max, family ID #3 (the Andersons) have a cat named
 Paws, and family ID #4 (the Whites) have a cat named Muffy and a dog
 named Rover. Here is a simple example of a join that queries values from
 both tables:
mysql> select a.id, a.father_name, a.mother_name, b.type, b.name
from families a, pets b where a.id = b.family_id;
+----+--------------+---------------+------+-------+
| id | father_name | mother_name | type | name |
+----+--------------+---------------+------+-------+
1	Joe Smith	Jan Smith	dog	Max
3	Ken Anderson	Mary Anderson	cat	Paws
4	Adam White	Tina White	cat	Muffy
4	Adam White	Tina White	dog	Rover
+----+--------------+---------------+------+-------+
4 rows in set (0.02 sec)
This syntax is slightly different from our previous
 SELECT statements. First, notice that we have to
 qualify the column names with a table identifier. In this case, we’re
 using a and b. After the FROM
 statement, we are aliasing the families table as
 a and the pets
 table as b. This is common shorthand
 that makes our SQL statements shorter; otherwise, we’d have to use
 families.id,
 families.father_name, etc. Finally, the
 WHERE clause of a.id =
 b.family_id expresses the relationship between the tables.
 This ensures that we know which pet belongs to which family. As you can
 see, the family_id column is not a primary key,
 because it does not need to be unique. Families can have multiple pets,
 as the White family does in our example.
Although this SELECT statement did not
 actually use the JOIN syntax, it is an example of
 the simplest kind of join. Notice that we are missing a family from our
 results, however: the Carpenter family does not have any pets, so our
 SELECT statement did not select them. If we want
 families to display in the output even if they do not have pets, we need
 to use the LEFT JOIN syntax. This is functionally
 very similar to the previous join of two tables, but it differs in two
 important ways: the syntax is quite a bit different, and because special
 consideration is given to the table on the LEFT, each item present in
 the left table will display in the results, even if
 there is not a match with the other joined table. Compare the output of
 this LEFT JOIN statement with the previous join
 output:
mysql> select families.id, families.father_name, families.mother_name,
 -> pets.type, pets.name from families
 -> LEFT JOIN pets on families.id = pets.family_id;
+----+----------------+-----------------+------+-------+
| id | father_name | mother_name | type | name |
+----+----------------+-----------------+------+-------+
1	Joe Smith	Jan Smith	dog	Max
3	Ken Anderson	Mary Anderson	cat	Paws
4	Adam White	Tina White	cat	Muffy
4	Adam White	Tina White	dog	Rover
5	Bill Carpenter	Linda Carpenter	NULL	NULL
+----+----------------+-----------------+------+-------+
5 rows in set (0.01 sec)
The Carpenter family now appears in the query results, but with
 NULL values for type and name,
 since they did not have a corresponding record in the
 pets table. We used the more detailed
 SELECT syntax in this example, keeping the full
 table names instead of aliasing them with a and b but
 the queries are the same; the aliasing is just for
 readability.
On the Exam
SQL can be a complicated subject, but the LPI 102 exam will test
 you only on the basic syntax of adding and querying data. Make sure
 you are familiar with the common elements of
 INSERT and SELECT
 statements, and can describe the various datatypes available in
 MySQL.

Chapter 14. The X Window System
 (Topic 106)

Unix has a long history that predates the popular demand for a
 graphical user interface (GUI). However, a GUI is an essential part of
 running desktop systems today, and the standard GUI on Linux systems is the
 X Window System, or more simply, X. Originally developed at MIT and Digital
 Equipment Corporation, X’s Version 11 Release 7 is the version most commonly
 seen in Linux distributions. This version is more commonly referred to as
 X11R7.4, or just X11. X is a
 complete windowing GUI and is distributable under license without cost. The
 implementation of X for Linux is X.Org Foundation, which
 is available for multiple computer architectures and is released under the
 GNU Public License. This section covers the following three Objectives on
 X.Org Foundation for LPI Exam 102:
	Objective 1: Install and Configure X11
	An LPIC 1 candidate should be able to configure and install X
 and an X font server. This Objective includes verifying that the video
 card and monitor are supported by an X server as well as customizing
 and tuning X for the video card and monitor. It also includes
 installing an X font server, installing fonts, and configuring X to
 use the font server (which may require manually editing
 /etc/X11/xorg.conf). Weight: 2.

	Objective 2: Set Up a Display Manager
	This Objective states a candidate should be able to set up and
 customize a display manager. This includes turning the display
 manager on or off and changing the display manager greetings. It also
 includes changing default bitplanes for the display manager and
 configuring display managers for use by X stations. This Objective
 covers the display managers: X Display Manager
 (xdm), Gnome Display Manager
 (gdm), and KDE Display Manager
 (kdm). Weight: 2.

	Objective 3: Accessibility
	Demonstrate knowledge and awareness of accessibility
 technologies. This objective requires the candidate to be familiar
 with the various technologies and how they may be configured in the X
 Window System. Topics include keyboard shortcuts, controlling visual
 settings and themes, and assistive technologies. Weight: 1.

An Overview of X

X is implemented using a client/server model. X servers and
 clients can be located on the same computer or separated across a network,
 so that computation is handled separately from display rendering. While X
 servers manage hardware, they do not define the look of the display, and
 they offer no tools to manipulate clients. The X server is responsible for
 rendering various shapes and colors on screen. Examples of X Servers
 include:
	Software from X.Org, which controls your Linux PC’s video
 cardX.Org software on a separate networked system, displaying output
 from a program running on your system

	Other networked Unix systems running their own X server
 software

	X implementations for other operating systems, such as Microsoft
 Windows

	An X Terminal, which is a hardware
 device with no computational ability of its own, built solely for
 display purposes

X clients are user programs, such as spreadsheets or CAD tools,
 which display graphical output. Examples of X clients are:
	A browser, such as Firefox or Opera

	A mail program, such as Evolution or Kmail

	Office applications, such as OpenOffice, Gnumeric, or
 AbiWord

	A terminal emulator, such as xterm, running within an X window

A special client program called a window manager is responsible for these
 functions and provides windows, window sizing, open and close buttons, and
 so forth. The window manager controls the other clients running under an X
 server. Multiple window managers are available for the X Window System,
 allowing you to choose an interface style that suits your needs and
 personal taste.
A few complete graphical desktop environments are also
 available. These packages can include a window manager and additional
 applications that work together to create a complete, unified working
 environment. Most Linux distributions ship with either the KDE or GNOME,
 or both, along with a number of standalone window managers. There is no
 standard window manager or environment for Linux. The selection is
 entirely up to the user.

Objective 1: Install and Configure X11

Most Linux distributions install and automatically configure X.Org,
 freeing users from much of its installation and configuration. However,
 Exam 102 requires specific knowledge of some of the underpinnings of X
 configuration.
Note
Be careful about installing an X server on a system that already
 has X installed. A backup should be made prior to the installation.

Selecting and Configuring an X Server

X.Org is the standard X Window System implementation for
 most distributions of Linux. X.Org is released and maintained by X.Org
 Foundation, which is a nonprofit community of developers and
 documentation writers. The X11 environment from X.Org is based on the
 code developed by XFree86, which was used as the X Windows implementation in
 many Linux distributions. Freedesktop.org is a
 collaborative project to develop software for X Window System computers.
 Get distribution files for X.Org at http://freedesktop.org.
The X.Org project provides support for an amazing array of
 graphics hardware. This outcome is possible partly due to cooperation by
 manufacturers through public release of graphics device documentation
 and driver software, and partly due to the tenacity of the X.Org
 developers. Fortunately, many manufacturers who were historically
 uninterested in offering technical information to the X.Org project have
 become cooperative. The result is that most recent video hardware is
 well-supported by X.Org.
Supported video hardware

To avoid problems, it is important to verify XFree86
 compatibility with your hardware prior to installation. At the very
 least, you should be aware of these items:
	Your X.Org version
	As with any software, improvements in X.Org are made over
 time, particularly in support for hardware devices. You should
 choose a version of X.Org that offers a good balance between the
 video support and stability you require. To determine which
 version of X you’re running, simply issue the following command:
$ X -version
X.org X Server 1.6.1.901 (1.6.2 RC1)
Release Date 2009-5-8
X Protocol Version 11, Revision 0

	The video chipset
	X.Org video drivers are written for graphics
 chipsets, not the video cards on which they’re installed.
 Multiple video cards from a variety of manufacturers can carry
 the same chipset, making those cards nearly identical in
 function. You must verify that the chipset on your video card is
 supported by X.Org to use advanced graphics features. Supported
 chipsets are listed on the X.Org wiki.

	Monitor type
	X.Org can be configured to handle just about any
 monitor, particularly the newer and very flexible multisync
 monitors sold today, which can handle preset configurations
 provided in the X.Org Foundation configuration utilities.
 However, if you have a
 nonstandard monitor, you need to know some parameters describing
 its capabilities before configuring X, including your monitor’s
 horizontal sync frequency
 (in kHz), vertical refresh frequency (in Hz), and resolution (in
 pixels). These items can usually be found in your monitor’s
 documentation, but since most monitors conform to standard
 display settings such as XGA (1024×768
 pixels at 60 Hz vertical refresh), you should be able to use a
 preset configuration.

Installing X.Org

It is rare that you’ll actually need to install X.Org by hand,
 as X.Org is typically installed during initial system installation for
 systems that plan to use X. Most Linux distributions include X.Org
 packages on the installation media so you can install them from there
 using your distribution’s choice of package managers.
Some applications might require that you install a new release
 or development version of X.Org that is not available as a package. In
 these cases, you can download the source files or precompiled binaries
 from X.Org mirror
 websites. Refer to Chapter 5 for more
 information on installing applications from packages or source
 files.

Configuring an X server and the xorg.conf file

X.Org configuration differs slightly among versions and
 among Linux distributions, but essentially involves the creation of
 the xorg.conf file customized for your system.
 The file is created during the system install as devices are
 automatically detected and configured. Typically there is no further
 need for modification to the file, as it will be managed by the
 system. The X server uses this configuration file when it starts to
 set such things as keyboard and mouse selections, installed fonts, and
 screen resolutions.
Example 14-1
 contains an xorg.conf file. (Note that the
 xorg.conf file shown contains example settings
 and is not intended for use on your system.)
Example 14-1. A sample xorg.conf file for XFree86 v3.3.3
/etc/X11/xorg.conf (xorg X Window System server configuration file)
This file was generated by dexconf, the Debian X Configuration tool, using
values from the debconf database.
Edit this file with caution, and see the /etc/X11/xorg.conf manual page.
(Type "man /etc/X11/xorg.conf" at the shell prompt.)
#
This file is automatically updated on xserver-xorg package upgrades *only*
if it has not been modified since the last upgrade of the xserver-xorg
package.
#
If you have edited this file but would like it to be automatically updated
again, run the following command:
sudo dpkg-reconfigure -phigh xserver-xorg

Section "Files"
FontPath "/usr/share/X11/fonts/misc"
FontPath "/usr/share/X11/fonts/cyrillic"
FontPath "/usr/share/X11/fonts/100dpi/:unscaled"
FontPath "/usr/share/X11/fonts/75dpi/:unscaled"
FontPath "/usr/share/X11/fonts/Type1"
FontPath "/usr/share/X11/fonts/100dpi"
FontPath "/usr/share/X11/fonts/75dpi"
FontPath "/usr/share/fonts/X11/misc"
path to defoma fonts
FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType"
EndSection

Section "Module"
Load "i2c"
Load "bitmap"
Load "ddc"
Load "dri"
Load "extmod"
Load "freetype"
Load "glx"
Load "int10"
Load "type1"
Load "vbe"
EndSection

Section "InputDevice"
Identifier "Generic Keyboard"
Driver "kbd"
Option "CoreKeyboard"
Option "XkbRules" "xorg"
Option "XkbModel" "pc105"
Option "XkbLayout" "us"
Option "XkbOptions" "lv3:ralt_switch"
EndSection

Section "InputDevice"
Identifier "Configured Mouse"
Driver "mouse"
Option "CorePointer"
Option "Device" "/dev/input/mice"
Option "Protocol" "ExplorerPS/2"
Option "ZAxisMapping" "4 5"
Option "Emulate3Buttons" "true"
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "stylus"
Option "Device" "/dev/wacom" # Change to
/dev/input/event
for USB
Option "Type" "stylus"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "eraser"
Option "Device" "/dev/wacom" # Change to
/dev/input/event
for USB
Option "Type" "eraser"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "InputDevice"
Driver "wacom"
Identifier "cursor"
Option "Device" "/dev/wacom" # Change to
/dev/input/event
for USB
Option "Type" "cursor"
Option "ForceDevice" "ISDV4" # Tablet PC ONLY
EndSection

Section "Device"
Identifier "VMWare Inc [VMware SVGA II] PCI Display Adapter"
Driver "vmware"
BusID "PCI:0:15:0"
EndSection

Section "Monitor"
Identifier "Generic Monitor"
Option "DPMS"
HorizSync 28-51
VertRefresh 43-60
EndSection

Section "Screen"
Identifier "Default Screen"
Device "VMWare Inc [VMware SVGA II] PCI Display Adapter"
Monitor "Generic Monitor"
DefaultDepth 24
SubSection "Display"
Depth 1
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 4
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 8
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 15
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 16
Modes "1024x768" "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 24
Modes "1024x768" "800x600" "640x480"
EndSubSection
EndSection

Section "ServerLayout"
Identifier "Default Layout"
Screen "Default Screen"
InputDevice "Generic Keyboard"
InputDevice "Configured Mouse"
InputDevice "stylus" "SendCoreEvents"
InputDevice "cursor" "SendCoreEvents"
InputDevice "eraser" "SendCoreEvents"
EndSection

Section "DRI"
Mode 0666
EndSection

Distribution-specific tools

Various Linux distributors provide their own
 configuration utilities. For example,
 system-config-display is distributed by
 Red Hat Software. It is an X-based GUI tool that can
 probe graphics chipsets and features. In Red Hat Fedora 10, the
 xorg.conf file was dropped. Instead, the
 operating system detects system components and configures the X system
 accordingly every time the system boots. If you need to configure a
 system component manually, you first need to create the
 xorg.conf file. This can be accomplished using
 different tools, such as the
 system-config-display package if it is installed.
 This can be run interactively as root from the command line, or it may
 be run from the display command in the System → Administration
 → Display menu. In either
 case, the graphical interactive control for video driver and monitor
 selection will open. You can install the
 system-config-display package using a package
 controller such as yum. Refer to Chapter 5 for more
 information about installing packages. To run the
 system-config-display package from the terminal,
 type the following:
system-config-display
The alternative is to manually create and edit the
 xorg.conf file. This may be done using the
 xorg –configure command, which will create a
 basic new xorg.conf file using information that
 is autodetected from the system. The file will be created in the local
 directory.
Example 14-2 shows
 the creation of the xorg.conf file using the
 –configure option in Fedora Linux.
Example 14-2. Creating the xorg.conf file in Fedora Linux
Xorg -configure
X.Org X Server 1.6.1.901 (1.6.2 RC 1)
Release Date: 2009-5-8
X Protocol Version 11, Revision 0
Build Operating System: Linux 2.6.18-128.1.6.el5 i686
Current Operating System: Linux Suffolk 2.6.29.6-213.fc11.i686.PAE #1 \
SMP Tue Jul 7 20:59:29 EDT 2009 i686
Kernel command line: ro root=/dev/mapper/vg_suffolk-lv_root rhgb quiet
Build Date: 18 May 2009 02:47:59PM
Build ID: xorg-x11-server 1.6.1.901-1.fc11
Before reporting problems, check http://wiki.x.org
to make sure that you have the latest version.
Markers: (--) probed, (**) from config file, (==) default setting,
(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.
(==) Log file: "/var/log/Xorg.1.log", Time: Wed Aug 12 06:32:31 2009
List of video drivers:
glint
nv
vmware
voodoo
radeon
mach64
geode
sisusb
intel
s3virge
siliconmotion
ati
mga
amd
savage
ast
v4l
i128
neomagic
sis
r128
dummy
rendition
nouveau
ztv
trident
tdfx
cirrus
i740
openchrome
apm
fbdev
vesa
(++) Using config file: "/root/xorg.conf.new"

Xorg detected your mouse at device /dev/input/mice.
Please check your config if the mouse is still not
operational, as by default Xorg tries to autodetect
the protocol.

Your xorg.conf file is /root/xorg.conf.new

To test the server, run 'X -config /root/xorg.conf.new'

The resulting xorg.conf.new
 file will need to be modified and then copied to the
 /etc/X11/ directory so it can be used the next
 time the system starts:
cp /root/xorg.conf.new /etc/X11/xorg.conf
The default location for the xorg.conf file
 is in /etc/X11. The file contains a number of
 sections, listed next, that describe various parameters of devices
 attached to the system. The sections may be in any order.
	Files
	This section is used to specify the default font path and
 the path to the RGB database. Using the FontPath
 "path" directive multiple times creates a
 list of directories that the X server will search for fonts. The
 RGB database is an equivalence table of numeric red/green/blue
 color values with names. Here’s a short excerpt of the RGB
 database:
255 228 196 bisque
255 218 185 peach puff
255 218 185 PeachPuff
255 222 173 navajo white
Hundreds of these names are defined and may be used in the
 configuration of X applications where color names are
 required.

	ServerFlags
	This section allows customization of X server
 options such as the handling of hotkeys.

	InputDevice
	This section may be used multiple times in the
 configuration file, depending on the types of devices connected
 to the system. Normally it will appear at least twice: once for
 the keyboard and again for the mouse.

	Monitor
	Multiple Monitor sections are used to define
 the specifications of monitors and a list of the video modes
 they can handle.

	Device
	Multiple Device
 sections are used to define the video hardware (cards)
 installed.

	Screen
	The Screen
 section ties together a Device with a corresponding Monitor and includes some
 configuration settings for them.

	ServerLayout
	This section ties together a Screen with one or more InputDevices. Multiple ServerLayout sections may be used for
 multiheaded configurations (i.e., systems with more than one
 monitor).

On the Exam
You don’t need to memorize details about
 xorg.conf, but it is an important file, and
 your familiarity with it will be tested. In particular, be aware of
 what each of the sections does for the X server, and remember that
 the Screen section ties together
 a Device and a Monitor.

X Fonts

X.Org is distributed with a collection of fonts for most
 basic purposes, including text displays in terminal windows and
 browsers. For many users, the default fonts are adequate, but others may
 prefer to add additional fonts to their system. A variety of fonts are
 available, both free and commercially, from many sources, such as Adobe.
 Some very creative fonts are created by individuals and distributed on
 the Internet (a search should return some useful links to a query such
 as “X.org fonts”).
X.Org makes fonts that it finds in the font
 path available to client programs. A basic font path is
 compiled into the X server, but you can specify your own font path using
 the FontPath directive in
 the Files section of
 xorg.conf. The simple syntax is:
FontPath "path"
For example:
Section "Files"
FontPath "/usr/share/X11/fonts/misc"
FontPath "/usr/share/X11/fonts/cyrillic"
FontPath "/usr/share/X11/fonts/100dpi/:unscaled"
FontPath "/usr/share/X11/fonts/75dpi/:unscaled"
FontPath "/usr/share/X11/fonts/Type1"
FontPath "/usr/share/X11/fonts/100dpi"
FontPath "/usr/share/X11/fonts/75dpi"
FontPath "/usr/share/fonts/X11/misc"
path to defoma fonts
FontPath "/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType"
EndSection
This group of FontPath
 directives creates a font path consisting of eight directories, all
 under /usr/share/X11/fonts. When X starts, it
 parses these font directories and includes their contents in the list of
 fonts available during the X session.
Installing fonts

Adding new fonts is straightforward. (For this brief
 discussion, we assume that we’re working with Type 1 fonts. Other
 types, such as TrueType fonts, may require additional configuration,
 depending on your version of XFree86.) First, a suitable directory should be created
 for the new fonts, such as
 /usr/share/X11/fonts/local or /usr/local/fonts. You may
 wish to separate your own fonts from the default X.Org directories to
 protect them during upgrades. After the fonts are installed in the new
 directory, the mkfontdir utility is run to
 catalog the new fonts in the new directory. New entries are added to
 the xorg.conf file to include the path for new
 fonts. For example:
FontPath "/usr/local/fonts"
At this point, the X server can be restarted to recognize the
 new fonts, or the fonts can be dynamically added using the
 xset command:
xset fp+ /usr/local/fonts
xset is beyond the scope of the LPIC Level
 1 exams.
On the Exam
Be sure you understand how the X font path is created and how
 to extend it to include additional directories. Knowledge of the
 internal details of font files is not necessary.

The X font server

On a network with multiple workstations, managing fonts manually
 for each system can be time consuming. To simplify this problem, the
 administrator can install all of the desired fonts on a single system
 and then run xfs, the X fonts server, on that
 system. On a local system, xfs off-loads the work
 of rendering fonts from the X server, which means the X server can do
 other tasks while fonts are being rendered. This is especially
 noticeable on slower systems or systems without a Floating Point Unit
 (FPU).
The X font server is a small daemon that sends fonts to clients
 on both local and remote systems. Some Linux distributions use
 xfs exclusively, without a list of directories in
 the manually created font path. To include xfs in
 your system’s font path, add a FontPath directive like this:
Section "Files"
 RgbPath "/usr/share/X11/fonts/rgb"
 FontPath "unix/:-1"
EndSection
If you install xfs from a package from your
 distribution, it is probably automatically configured to start at boot
 time and run continually, serving fonts to local and remote client
 programs. To start xfs manually, simply enter the
 xfs command. For security purposes, you may wish
 to run xfs as a nonroot user.
 xfs is configured using its configuration file,
 /etc/X11/fs/config.
On the Exam
Fonts are administered primarily through the local machine,
 reducing network services that need to be enabled on the remote
 server. Coverage here is for awareness that fonts may be
 administered remotely via xfs.

Controlling X Applications with .Xresources

The X Window System also has many built-in customization
 features. Many X applications are
 programmed with a variety of resources, which are
 configuration settings that can be externally manipulated. Rather than
 have a configuration utility built into each application, applications
 can be written to examine the contents of a file in the user’s home
 directory. The .Xresources file contains a line for
 each configured resource in the following form:
program*resource: value
This line can be translated as follows:
	program is the name of a
 configurable program, such as emacs or xterm.

	resource is one of the configurable
 settings allowed by the program, such as colors.

	value is the setting to apply to
 the resource.

For example, the following is an excerpt from
 .Xresources that configures colors for an xterm:
xterm*background: Black
xterm*foreground: Wheat
xterm*cursorColor: Orchid
xterm*reverseVideo: false
On the Exam
You should be aware of X resources and the function of the
 .Xresources file. In particular, you should
 understand that X applications will look in the .Xresources file
 for settings. You should also be able to construct a resource setting
 given a particular example, but you do not need to be able to generate
 a configuration file from scratch.

Objective 2: Set Up a Display Manager

The display manager is the tool to manage X sessions on
 physical displays both locally and across the network. Part of its job is
 to handle user authentication through a graphical login screen, which
 replaces the familiar text-mode login. There are three primary display
 managers implemented with Linux: xdm,
 kdm, and gdm.
Configuring xdm

The X display manager (xdm) is a
 program that allows for a graphical session to begin on an X
 server.
xdm is distributed as part of X.Org and is
 configured by a series of files located in /etc/X11/xdm. These
 files include:
	Xaccess
	This file controls inbound requests from remote
 hosts.

	Xresources
	This file is similar to
 .Xresources, discussed earlier. It holds
 configuration information for some xdm
 resources, including the graphical login screen. This file can be
 edited to modify the appearance of the xdm
 login screen.

	Xservers
	This file associates the X display names (:0, :1, ...) with either the local X server
 software or a foreign display, such as an X terminal.

	Xsession
	This file contains the script
 xdm launches after a successful login. It
 usually looks for .Xsession in the user’s
 home directory and executes the commands found there. If such a
 file doesn’t exist, Xsession starts a default
 window manager (or environment) and applications.

	Xsetup_0
	This file is a script started before the graphical
 login screen. It often includes commands to set colors, display
 graphics, or run other programs. This script is executed as
 root.

	xdm-config
	This file associates xdm
 configuration resources with the other files in this list. It
 usually isn’t necessary to make changes in this file unless an
 expert administrator plans to customize xdm
 configuration.

Running xdm manually

xdm uses the X server to run on your local
 display. Therefore, you must have a working X configuration prior to
 using a display manager. Then, to start xdm,
 simply enter it as root:
xdm
xdm launches the X server and displays the
 graphical login, and you can log in as usual. xdm
 then starts your graphical environment. After you log out,
 xdm resets and again displays the login
 screen.
Most Linux distributions enable virtual consoles. You can switch among them using the
 key combinations Ctrl-Alt-F1, Ctrl-Alt-F2, and so on. (The Ctrl is
 required only when switching from an X console to a text or other X
 console.) Typically, the first six consoles are set up as text-mode
 screens, and X launches on console 7 (Ctrl-Alt-F7) or the first TTY
 not running mingetty or some other
 getty process. This means that, as with
 startx, your original text-mode console remains
 unchanged after you manually start xdm.
 Therefore, you must log out of your text-mode console if you plan to
 leave the system unattended with xdm running
 manually.
If you want to stop xdm, you first must be
 sure that all of the X sessions under its management are logged out.
 Otherwise, they’ll die when xdm exits and you
 could lose data. Simply stop the xdm process
 using kill or killall from a
 text console:
killall xdm
Of course, xdm isn’t very useful for your
 local system if you must always start it manually. That’s why most
 Linux distributions include a boot-time option to start
 xdm for you, eliminating the text-mode login
 completely.

Running xdm automatically

For Linux systems using the System V–style initialization, a
 runlevel is usually reserved for login under xdm.
 This line at the bottom of /etc/inittab instructs
 init to start xdm for
 runlevel 5:
Run xdm in runlevel 5
x:5:respawn:/usr/X11R6/bin/xdm -nodaemon
Using this configuration, when the system enters runlevel 5,
 xdm starts and presents the graphical login as
 before. See Chapter 4 for more
 information on runlevels.
It’s also possible to automatically start
 xdm simply by adding it to the end of an
 initialization script, such as rc.local. This
 method offers less control over xdm but may be
 adequate for some situations and for Linux distributions that don’t
 offer runlevels.

Basic xdm customization

You may wish to personalize the look of xdm
 for your system. The look of the graphical login screen can be altered
 by manipulating the resources in
 /etc/X11/xdm/Xresources. (Note that
 Xresources uses ! to start comments.) For example, the
 following excerpt shows settings to control the greeting
 (Welcome to Linux on smp-pc), other prompts, and
 colors:
! Xresources file
xlogin*borderWidth: 10
xlogin*greeting: Welcome to Linux on CLIENTHOST
xlogin*namePrompt: Login:\040
xlogin*fail: Login incorrect - try again!
xlogin*failColor: red
xlogin*Foreground: Yellow
xlogin*Background: MidnightBlue
You can also include command-line options to the X server in
 /etc/X11/xdm/Xservers if you wish to
 override those found in /etc/X11/xorg.conf. For
 example, to change the default color depth, add the
 -bpp (bits per pixel) option for the local
 display:
Xservers file
:0 local /usr/X11R6/bin/X -bpp 24
To include additional X programs or settings on the graphical
 login screen, put them in /etc/X11/xdm/Xsetup_0.
 In this example, the background color of the X display is set to a
 solid color (in hexadecimal form), and a clock is added at the
 lower-righthand corner of the screen:
#!/bin/sh
Xsetup
/usr/X11R6/bin/xsetroot -solid "#356390"
/usr/X11R6/bin/xclock -digital -update 1 -geometry -5-5 &
Note that in this example, xsetroot exits
 immediately after it sets the color, allowing the
 Xsetup_0 script to continue.
 xclock, however, does not exit and must be put
 into the background using an &
 at the end of the command line. If such commands are not placed into
 the background, the Xsetup_0 script hangs, and
 the login display does not appear.

X Terminals

X terminals are a breed of low-cost
 display devices for X. They are usually diskless systems that implement
 an X server and drive a monitor. Such devices can be configured to
 access a remote host to find an xdm daemon or will
 broadcast to the entire network looking for a “willing host” to offer
 xdm services. The selected system will run an X
 session across the network with the X terminal as the target display.
 With this setup, a large number of relatively inexpensive X terminals
 can make use of a few high-powered host systems to run graphical
 clients.
xdm for X terminals

To use an X terminal with your host, xdm
 must first be running on the host machine. The host listens for
 inbound connections from the X terminals using
 XDMCP, the xdm Control
 Protocol (the default port for xdmcp is 177).
 When a request is received, xdm responds with the
 same graphical login screen that’s used on the local system. The
 difference is that the X server is implemented in the X terminal
 hardware, not in the XFree86 software on the xdm
 host, and all of the graphics information is transmitted over the
 network.
On the Exam
You should be aware of the configuration files for
 xdm, how they are used, and where they are
 located. In particular, remember that the
 Xresources file controls graphical login
 properties. Also remember that xdm can be
 started using a special runlevel and that xdm
 must be running for X terminals to connect via XDMCP.

You can configure access to your system’s
 xdm daemon in the /etc/X11/xdm/Xaccess file. This file is a
 simple list of hosts that are to be restricted or enabled. To enable a
 host, simply enter its name. To restrict a host, enter its name with
 an exclamation point (!) before it.
 The * wildcard is also allowed to handle groups of
 devices.
The following example allows access to all X terminals on the
 local domain but prohibits access from xterm1 on an outside domain:
*.example.com
!xterm1.anotherexample.com

Configuring KDM

KDM is built off the XDM design and
 is responsible for the graphical login screen that handles user
 authentication to the system and starts a user session. The
 KDM is the display manager for the
 KDE desktop environment.
KDM is distributed by KDE.org and is
 configured by a series of files located in
 /etc/X11/kdm. To see the version that is available
 for install, use the package manager to find this information and to
 install the package:
yum info kdm
Loaded plugins: refresh-packagekit
Available Packages
Name : kdm
Arch : i586
Version : 4.2.4
Release : 5.fc11
Size : 1.5 M
Repo : updates
Summary : The KDE login manager
URL : http://www.kde.org/
License : GPLv2
Description: KDM provides the graphical login screen, shown shortly after boot
 : up, log out, and when user switching.
Use the yum package manager to install the KDM interface.

yum install kdm
Loaded plugins: refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package kdm.i586 0:4.2.4-5.fc11 set to be updated
--> Processing Dependency: kdelibs4(x86-32) >= 4.2.4 for package: \
 kdm-4.2.4-5.fc11.i586
--> Processing Dependency: kde-settings-kdm for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkdeui.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkio.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libknewstuff2.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkde3support.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libkdecore.so.5 for package: kdm-4.2.4-5.fc11.i586
--> Processing Dependency: libqimageblitz.so.4 for package: kdm-4.2.4-5.fc11.i586
--> Running transaction check
---> Package kde-settings-kdm.noarch 0:4.2-10.20090430svn.fc11 set to be updated
--> Processing Dependency: kde4-macros(api) = 2 for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
--> Processing Dependency: leonidas-kde-theme for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
--> Processing Dependency: xterm for package: \
 kde-settings-kdm-4.2-10.20090430svn.fc11.noarch
--> Processing Dependency: xorg-x11-xdm for package: kde-settings-kdm-4.2-
10.20090430svn.fc11.noarch
---> Package kdelibs.i586 6:4.2.4-6.fc11 set to be updated
--> Processing Dependency: soprano(x86-32) >= 2.2 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: strigi-libs(x86-32) >= 0.6.3 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libsoprano.so.4 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: kde-settings for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libsopranoclient.so.1 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libstreams.so.0 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: kdelibs-common for package: \
 6:kdelibs-4.2.4-6.fc11.i586
--> Processing Dependency: libstreamanalyzer.so.0 for package: \
 6:kdelibs-4.2.4-6.fc11.i586
---> Package qimageblitz.i586 0:0.0.4-0.5.svn706674.fc11 set to be updated
--> Running transaction check
---> Package kde-filesystem.noarch 0:4-25.fc11 set to be updated
---> Package kde-settings.noarch 0:4.2-10.20090430svn.fc11 set to be updated
--> Processing Dependency: oxygen-icon-theme for package: kde-settings-4.2-
10.20090430svn.fc11.noarch
---> Package kdelibs-common.i586 6:4.2.4-6.fc11 set to be updated
---> Package leonidas-kde-theme.noarch 0:11.0.1-1.fc11 set to be updated
--> Processing Dependency: leonidas-backgrounds-kdm >= 11.0.0-1 \
 for package: leonidas-kde-theme-11.0.1-1.fc11.noarch
---> Package soprano.i586 0:2.2.3-1.fc11 set to be updated
--> Processing Dependency: libclucene.so.0 for package: \
 soprano-2.2.3-1.fc11.i586
---> Package strigi-libs.i586 0:0.6.5-2.fc11 set to be updated
--> Processing Dependency: libexiv2.so.5 for package: \
 strigi-libs-0.6.5-2.fc11.i586
---> Package xorg-x11-xdm.i586 1:1.1.6-10.fc11 set to be updated
---> Package xterm.i586 0:242-3.fc11 set to be updated
--> Running transaction check
---> Package clucene-core.i586 0:0.9.21-3.fc11 set to be updated
---> Package exiv2-libs.i586 0:0.18.2-2.fc11 set to be updated
---> Package leonidas-backgrounds-kdm.noarch 0:11.0.0-1.fc11 \
 set to be updated
---> Package oxygen-icon-theme.noarch 0:4.2.2-1.fc11 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
 Package Arch Version Repository Size
===
Installing:
 kdm i586 4.2.4-5.fc11 updates 1.5 M
Installing for dependencies:
 clucene-core i586 0.9.21-3.fc11 fedora 350 k
 exiv2-libs i586 0.18.2-2.fc11 updates 889 k
 kde-filesystem noarch 4-25.fc11 fedora 22 k
 kde-settings noarch 4.2-10.20090430svn.fc11 fedora 38 k
 kde-settings-kdm noarch 4.2-10.20090430svn.fc11 fedora 25 k
 kdelibs i586 6:4.2.4-6.fc11 updates 14 M
 kdelibs-common i586 6:4.2.4-6.fc11 updates 367 k
 leonidas-backgrounds-kdm noarch 11.0.0-1.fc11 fedora 4.6 M
 leonidas-kde-theme noarch 11.0.1-1.fc11 fedora 1.1 M
 oxygen-icon-theme noarch 4.2.2-1.fc11 fedora 15 M
 qimageblitz i586 0.0.4-0.5.svn706674.fc11 fedora 59 k
 soprano i586 2.2.3-1.fc11 fedora 692 k
 strigi-libs i586 0.6.5-2.fc11 updates 476 k
 xorg-x11-xdm i586 1:1.1.6-10.fc11 updates 139 k
 xterm i586 242-3.fc11 fedora 368 k

Transaction Summary
===
Install 16 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 39 M
Is this ok [y/N]:
This installation will also install the KDE
 window manager. Once this has been installed, you can select the session
 you wish to boot into at startup using the session menu. The main
 configuration file to control the way the KDM
 operates is called kdmrc, which is
 located in /etc/kde/kdm. The following is an
 example of the contents of this file:
KDM master configuration file
#
Definition: the greeter is the login dialog, i.e., the part of KDM
which the user sees.
#
You can configure every X-display individually.
Every display has a display name, which consists of a host name
(which is empty for local displays specified in {Static|Reserve}Servers),
a colon, and a display number. Additionally, a display belongs to a
display class (which can be ignored in most cases; the control center
does not support this feature at all).
Sections with display-specific settings have the formal syntax
"[X-" host [":" number ["_" class]] "-" sub-section "]"
You can use the "*" wildcard for host, number, and class. You may omit
trailing components; they are assumed to be "*" then.
The host part may be a domain specification like ".inf.tu-dresden.de".
It may also be "+", which means non-empty, i.e. remote displays only.
From which section a setting is actually taken is determined by these
rules:

Configuring GDM

GDM is the window manager for the
 GNOME desktop environment. GNOME is the default graphical
 desktop environment for Fedora and Ubuntu. The GDM
 window manager will be loaded automatically during the graphical
 installation of these operating systems. If you need to install the
 GNOME environment and the GDM manager, you can use
 the package manager by issuing a command similar to:
yum groupinstall "GNOME Desktop Environment"
The main configuration file for GDM is either
 gdm.conf or custom.conf, depending on the distribution of
 Linux. The configuration file will be located in
 etc/gdm/gdm.conf. This file contains sections for
 configuring the way the login process operates, the session
 environments, and the look and feel of the manager or “greeter” that the
 user is presented with at the initial login screen. The file is heavily
 commented for each section of the sections. The following is an example
 of this configuration file’s contents:
For full reference documentation see the GNOME help browser under
GNOME|System category. You can also find the docs in HTML form on
http://www.gnome.org/projects/gdm/
#
NOTE: Some values are commented out, but show their default values. Lines
that begin with "#" are considered comments.
#
Have fun!

[daemon]
Automatic login, if true the first local screen will automatically logged
in as user as set with AutomaticLogin key.
AutomaticLoginEnable=false
AutomaticLogin=

Timed login, useful for kiosks. Log in a certain user after a certain
amount of time.
TimedLoginEnable=false
TimedLogin=
TimedLoginDelay=30

The GDM configuration program that is run from the login screen, you
should probably leave this alone.
#Configurator=/usr/sbin/gdmsetup --disable-sound --disable-crash-dialog

The chooser program. Must output the chosen host on stdout, probably you
should leave this alone.
#Chooser=/usr/lib/gdm/gdmchooser

The greeter for local (non-xdmcp) logins. Change gdmlogin to gdmgreeter
to get the new graphical greeter.
Greeter=/usr/lib/gdm/gdmgreeter

The greeter for xdmcp logins, usually you want a less graphically
intensive greeter here so it's better to leave this with gdmlogin
#RemoteGreeter=/usr/lib/gdm/gdmlogin
Switching display managers

More than one desktop environment may be run on the
 Linux system at any time. If both the KDE and GNOME environments are
 installed, you may switch between them during the graphical login by
 selecting the environment from the session menu. Both the
 KDM and GDM managers will
 have the session menu available at startup. It is possible to run only
 one of the display managers, but you can change which display manager
 is presented during startup. In order to change from the default
 GDM manager, you will need to update the
 /etc/sysconfig/desktop file by
 editing the following:
desktop= "kde"
displaymanager= "kdm"
Another way to switch between the
 KDM and GDM managers is to
 install the switchdesk tool using a package
 manager and then execute the application.
 switchdesk allows users to simply switch between
 various desktop environments installed on the system. Not all display
 managers are supported; however, it does support KDE and GNOME:
$ switchdesk kde
Red Hat Linux switchdesk 4.0
Copyright (C) 1999-2004 Red Hat, Inc
Redistributable under the terms of the GNU General Public License
Desktop now set up to run KDE.
On the Exam
Remember that you may run more than one desktop environment at
 a time with Linux. You will need to know how you can switch
 environments and possibly make either the KDM or GDM the default
 window manager.

Objective 3: Accessibility

There are a wide range of physical disabilities that can
 impair a user’s ability to interact with computers and applications. Most
 of the Linux distributions come with some assistive technology tools built
 in for visually and physically challenged users. One of the earliest tools
 was Emacspeak (currently at version 31), a free screen reader
 that allows users to interact independently with the computer. It is
 available for most versions of Linux. The Emacspeak desktop works with a
 variety of applications, including browsers.
Screen readers are software applications that provide
 translation of the information on the computer screen to an audio output
 format. The translation is passed to the speech synthesizer, and the words
 are spoken out loud. Currently, fully functional screen readers are
 available for Linux only in console mode. The following are some of the
 most common screen readers:
	Emacspeak
	This tool is classified as a screen reader, but the creator
 calls it an “audio desktop.” It is an excellent nongraphical,
 text-based interface for users who are visually impaired. This
 application can be used as a screen reader in conjunction with a
 hardware synthesizer or IBM ViaVoice® Run-time text-to-speech
 application.

	Jupiter Speech System
	An older screen reader for Linux in console mode. This
 package also includes the ability to read logfiles of an interactive
 session and contains customizable speech commands.

	Speakup
	A screen review package for the Linux operating
 system. It requires a hardware speech synthesizer such as the
 DecTalk Express. It allows computer interaction by verbal commands,
 in addition to synthesized voice feedback from the console.

	Orca
	A screen reader designed to work with applications and
 toolkits that support the assistive technology service provider
 interface (AT-SPI). This includes the GNOME desktop and its
 applications, OpenOffice, Firefox, and the Java platform. Orca may
 be enabled under the system/preferences menu from the GNOME
 environment. Orca includes support for assistive tools for speech,
 Braille, and screen magnification.

Here are some other products that serve as screen magnifiers, which
 enable users who are partially blind to view selected areas of the screen,
 similar to using a magnifying glass:
	SVGATextmode
	This product enlarges or reduces the font size for
 users who prefer to work in console mode. The normal text screen
 that Linux provides is 80 characters across and 25 vertically. After
 SVGATextmode is installed, the text can be displayed much larger,
 for example, 50 characters across and 15 vertically. The program
 does not offer the ability to zoom in and out, but the user can
 resize when necessary. Do not run try to run SVGATextmode from an X
 Windows terminal; you must be in console mode for the display to
 function properly.

	Xzoom
	A screen magnifier that allows the user to magnify,
 rotate, or mirror a portion of the screen.

Some additional applications that may be used to support Braille
 devices in conjunction with the computer include:
	BrLTTY
	Supports parallel port and USB Braille displays and
 provides access to the Linux console. It drives the terminal and
 provides complete screen review capabilities. It is available at
 http://dave.mielke.cc/brltty/.

	Blind + Linux = BLINUX
	Provides documentation, downloads, and a mailing list
 that focus on users who are blind. Information and software packages
 are available at http://leb.net/blinux.

The Linux operating system also has built-in features that allow for
 additional keyboard configuration. In some of the X Windows desktops,
 these settings can be changed from the preferences menu. An application
 developed for X Windows called AccessX provides a graphical user interface
 for configuring all of the following AccessX keyboard settings:
	StickyKeys
	Enables the user to lock modifier keys (for example,
 Ctrl and Shift), allowing single-finger operations in place of
 multiple key combinations.

	MouseKeys
	Provides alternative keyboard sequences for cursor
 movement and mouse button operations.

	SlowKeys
	This setting requires the user to hold the key down
 for a specified period of time before the keystroke is accepted.
 This prevents keystrokes that are pressed accidentally from being
 sent.

	ToggleKeys
	Sounds an audio alert that warns the user that a
 keystroke created a locking state for keys, such as Caps Lock and
 Num Lock.

	RepeatKeys
	Allows a user with limited coordination additional
 time to release keys before multiple key sequences are sent to the
 application.

	BounceKeys or Delay Keys
	These settings have a delay between keystrokes. This
 function can help prevent the system from accepting unintentional
 keystrokes.

Onscreen keyboards enable a user to select keys using a pointing
 device, such as a mouse, trackball, or touch pad, and can be used in place
 of a standard keyboard.
	GTkeyboard
	An onscreen, graphical keyboard that can be downloaded
 at http://opop.nols.com/gtkeyboard.html.

	GNOME Onscreen Keyboard (GOK)
	An onscreen, graphical keyboard that enables users to
 control their computers without relying on a standard keyboard or
 mouse. More information is available at http://www.gok.ca.

Remember that most Linux distributions will have some form of
 assistive technology built into the GUI, accessible through system
 settings or preferences. Most of these include at least the ability to
 modify mouse and keyboard actions and to add a screen reader or
 magnification. Some, as with GNOME and the Orca project, will have more
 support, including the ability to add an onscreen keyboard.
On the Exam
You should be aware of the various assistive technology tools that
 are available for use in Linux. Many of the tools may be installed
 already in the operating system and just need to be enabled from the
 system settings or preferences menu. More information about assistive
 technology for Linux users may be found at Ability Net
 Gate.

Chapter 15. Administrative
 Tasks (Topic 107)

As a system administrator in a multiuser environment, much of
 your activity is related to users and
 their system accounts, the automation of routine tasks, and
 internationalization. This chapter covers these administrative aspects of
 Linux as required for Exam 102. This chapter has three Objectives:
	Objective 1: Manage User and Group Accounts and Related
 System Files
	Candidates should be able to add, remove, suspend, and change
 user accounts. Tasks to adding and removing groups, and changing
 user/group info in password/group databases. This Objective also
 includes creating special-purpose and limited accounts. Weight:
 5.

	Objective 2: Automate System Administration Tasks by
 Scheduling Jobs
	Candidates should be able to use cron or anacron to run jobs at regular
 intervals and to use at to run jobs at a specific
 time. Tasks include managing cron and
 at jobs and configuring user access to
 cron and at services.
 Weight. 4.

	Objective 3: Localization and
 Internationalization
	Candidates should be able to localize a system in a language
 other than English. Additionally, candidates should understand why
 LANG=C is useful when scripting. Weight: 3.

Objective 1: Manage User and Group Accounts and Related System
 Files

Whether on a corporate server or personal desktop machine,
 managing user accounts is an important aspect of running a Linux system.
 The root, or superuser, account is established when you first install
 Linux. Unlike single-user systems (such as MS-DOS), multiuser systems require the notion of an owner for files, processes, and other
 system objects. An owner may be a human system user or a system service,
 such as a web server. Each of these owners is differentiated from others
 by a unique user account, which is assigned to it
 by the system administrator.
User Accounts and the Password File

When a new user account is added to a Linux system, an entry is
 added to a list of users in the password file, which is stored in
 /etc/passwd. This file gets its name from its
 original use, which was to store user information, including an
 encrypted form of the user’s password. The password file is in plain
 text and is readable by everyone on the system. Each line in the
 password file contains information for a single user account, with
 fields separated by colons, as illustrated in Figure 15-1.
[image: Sample lines from a password file]

Figure 15-1. Sample lines from a password file

Each line in the file contains information for a single system
 account and includes the following pieces of information in
 colon-separated fields:
	Username
	The first field on a line is a unique
 username for the person or service using the
 account.

	Password
	Each username has an associated
 password. The password stored in this field
 is in a hashed (unreadable and unrecoverable) form. Despite the
 hash, for security reasons, most systems now store user passwords
 in a separate /etc/shadow file that has
 restricted permissions. If the password is not included, its field
 is filled by the letter x,
 which indicates that the shadow password system is in use.

	User ID
	Each username requires a unique user
 identifier, or UID. The UID is simply a nonnegative
 integer. The root account is assigned the UID
 of 0, which gives it global privilege on the system. By
 convention, the UID values from 0 to 99 are reserved for
 administrative use; those over 99 are for regular system users.
 It’s not unusual for new system accounts to start at 500.

	Group ID
	Each username has a default group
 identifier, or GID. The GID is also a nonnegative
 integer. Groups are a way of allowing users to share files through
 mutual group membership.
 Group numbers and their associated names are specified in the
 /etc/group file. The GID stored for each user
 in /etc/passwd is its default group ID,
 though a user may belong to many groups.

	Full name (or other comment)
	The user’s full name or other information is stored as plain
 text. This field may contain spaces.

	Home directory
	The home directory is the default
 directory in the filesystem for the user’s account. If a new
 account is meant for a person, a home directory will probably be
 created in the filesystem with standard configuration files that
 the user may then personalize. The full path to that home
 directory is listed here.

	Default shell
	This field specifies the default shell for the user
 or service, which is the shell that runs when the user logs in or
 opens a shell window. In most cases, the shell will be
 /bin/bash, but it can be any shell, or even
 another executable program. (Nonshell entries may be seen in the
 case of some services that should own files but never log in
 interactively. You may see the shell field filled with
 /bin/false, a small program that does nothing
 but yield an error and terminate. This ensures that a service
 account is secured from login.)

Looking back at Figure 15-1, the first line shows the
 definition of the root account with UID and GID of
 0, a name of root, a home directory of
 /root, and a default shell of
 /bin/bash. The second line shows a standard user
 account for Jeff Dean, with UID and GID of 500. The home directory is
 /home/jdean, and the default shell is
 /bin/tcsh.
More detailed information about /etc/passwd can be found in Chapter 22.

Groups and the Group File

In addition to ownership by individual system users, filesystem
 objects have separate ownership settings for groups of users. This
 group ownership allows an additional level of
 user-specific access control beyond that of a file’s individual owner.
 Groups are similar to users in their administration and are defined in
 the file /etc/group. Like the
 passwd file, the group file
 contains colon-separated fields:
	Group name
	Each group must have a unique name.

	Group password
	Just as user accounts have passwords, groups can have
 passwords for their membership. If the password field is empty,
 the group does not require a password.

	Group ID
	Each group requires a unique GID. Like a UID, a GID is a
 nonnegative integer.

	Group member list
	The last field is a list of group members by username,
 separated by commas.

Together, these pieces of information define a group; colons
 separate the fields. Here are a few sample lines from a group
 file:
root:x:0:root
pppusers:x:230:jdean,jdoe
finance:x:300:jdean,jdoe,bsmith
jdean:x:500:
jdoe:x:501:
bsmith:x:502:
In this example, both jdean and
 jdoe are members of the
 pppusers group (GID 230), and
 jdean, jdoe, and
 bsmith are all members of the
 finance group (GID 300). The remaining groups,
 root, jdean,
 jdoe, and bsmith, are
 single-user groups. These groups are not intended for multiple users and
 do not contain additional members. For security purposes, it is common
 to create new users with their own personal single-user group. Doing
 this enhances security because new files and directories will not have
 group privileges for other users. (Although the GID of these single-user
 groups may match the UID of the user for which they’re created, there is
 no direct relationship between the UID and GID.)

The Shadow Password and Shadow Group Systems

Encrypted passwords must be secure from all users on the
 system, while leaving the remainder of the information in
 /etc/passwd world-readable. To do this, the
 encrypted password is moved to a new file that
 shadows the password file line for line. The file
 is aptly called /etc/shadow and is generally said
 to contain shadow passwords. Here are a couple of
 example lines from a shadow file:
root:1oxEaSzzdXZESTGTU:10927:0:99999:7:-1:-1:134538444
jdean:1IviLopPn461z47J:10927:0:99999:7::11688:134538412
The first two fields contain the username and the encrypted
 passwords. The remaining fields contain optional additional information
 on password aging information.
Group passwords and shadow groups

Just as user accounts listed in /etc/passwd
 are protected by encrypted passwords, groups listed in
 /etc/group can also be protected by passwords. A
 group password can be used to allow access to a group by a user
 account that is not actually a member of the group. Account users can
 use the newgrp command to change their default
 group and enter the group password. If the password is correct, the
 account is granted the group
 privileges, just as a group member would be.
The group definition file, like the password file, is readable
 by everyone on the system. If group passwords are stored there, a
 dictionary attack could be made against them. To protect against such
 attacks, passwords in /etc/group can be shadowed.
 The protected passwords are stored in
 /etc/gshadow, which is readable only by
 root. Here are a few sample lines from a
 gshadow file:
root:::root
pppusers:!::
finance:0cf7ipLtpSBGg::
jdean:!::
jdoe:!::
bsmith:!::
In this example, the groups pppusers,
 jdean, jdoe, and
 bsmith do not have group passwords, as indicated
 by the ! in the password field. The
 finance group is the only one with a password,
 which is hashed.
More detailed information about shadow passwords can be found in
 Chapter 22.
On the Exam
A major contrast between passwd/group and
 shadow/gshadow is the permissions on the files.
 The standard files are readable by everyone on the system, but the
 shadow files are readable only by root, which
 protects encrypted passwords from theft and possible
 cracking.

User and Group Management Commands

Although possible, it is rarely necessary (or advised) to
 manipulate the account and group definition files manually with a text
 editor. Instead, a family of convenient administrative commands is
 available for managing accounts, groups, password shadowing, group
 shadowing, and password aging. Password aging (rules governing change
 intervals and automated expiration of passwords) is not an explicit
 Objective for the LPIC Level 1 Exams.

Name
useradd

Syntax
useradd [options] user

Description
Create the account user on
 the system. Both system defaults and specified
 options define how the account is
 configured. All system account files are updated as required. An
 initial password must subsequently be set for new users using the
 passwd command. It is the user’s responsibility
 to go back and change that password when he first logs into the
 system.

Frequently used options
	-c
 comment
	Define the comment field, probably the user’s
 name.

	-d
 homedir
	Use homedir as the user’s
 home directory.

	-m
	Create and populate the home directory.

	-s
 shell
	Use shell as the default for
 the account.

	-D
	List (and optionally change) system default
 values.

Example
Add a new user, bsmith, with all default
 settings:
useradd bsmith
Add a new user, jdoe, with a name,
 default home directory, and the tcsh
 shell:
useradd -mc "Jane Doe" -s /bin/tcsh jdoe

Name
usermod

Syntax
usermod [options] user

Description
Modify an existing user account. The
 usermod command accepts many of the same
 options useradd does.

Frequently used options
	-L
	Lock the password, disabling the account.

	-U
	Unlock the user’s password, enabling the user to once
 again log in to the system.

Examples
Change jdoe’s name in the comment
 field:
usermod -c "Jane Deer-Doe" jdoe
Lock the password for bsmith:
usermod -L bsmith

Name
userdel

Syntax
userdel [-r] user

Description
Delete an existing user account. When combined with
 the -r option, the user’s home directory is
 deleted. Note that completely deleting accounts may lead to
 confusion when files owned by the deleted user remain in other
 system directories. For this reason, it is common to disable an
 account rather than delete it. Accounts can be disabled using the
 chage, usermod, and
 passwd commands.

Example
Delete the user bsmith, including the
 home directory:
userdel -r bsmith

Name
groupadd

Syntax
groupadd group

Description
Add group to the system. In
 the rare case that a group password is desired on
 group, it must be added using the
 gpasswd command after the group is
 created.

Name
groupmod

Syntax
groupmod [option] group

Description
Modify the parameters of
 group.

Option
	-n
 name
	Change the name of the group to
 name.

Name
groupdel

Syntax
groupdel group

Description
Delete group from the
 system. Deleting groups can lead to the same confusion in the
 filesystem as described previously for deleting a user (see
 userdel).

Name
passwd

Syntax
passwd [options] username

Description
Interactively set the password for username. The password
 cannot be entered on the command line.

Option
	-l
	Available only to the superuser, this option locks the
 password for the account.

Name
gpasswd

Syntax
gpasswd groupname

Description
Interactively set the group password for
 groupname. The password cannot be entered
 on the command line.

Objective 2: Automate System Administration Tasks by Scheduling
 Jobs

There is a surprising amount of housekeeping that must be
 done to keep a complex operating system such as Linux running smoothly.
 Logfile rotation, cleanup of temporary files and directories, system
 database rebuilds, backups, and other tasks should be done routinely.
 Clearly such mundane things should be automated by the system, freeing
 weary system administrators for more interesting work. Fortunately, any
 system task that can be accomplished without real-time human intervention
 can be automated on Linux using the cron and
 at facilities. Both have the ability to
 execute system commands, which may start any executable program or script,
 at selectable times. Further, cron and
 at can execute these commands on behalf of any
 authorized system user. cron is intended mainly for
 regularly scheduled recurring activities, and at is
 most useful for scheduling single commands for execution in the
 future.
Using cron

The cron facility consists of two
 programs. (There is no individual program called
 cron, which is the overall name given to the
 facility. If you execute man cron, however, you
 will see the manpage for crond.)
	crond
	This is the cron daemon, which
 is the process that executes your instructions. It starts at
 system initialization time and runs in the background
 thereafter.

	crontab
	This is the cron table
 manipulation program. This program gives you access to your
 cron table or crontab
 file. Each authorized user may have his own
 crontab file to run commands and processes on
 a regular basis.

The cron daemon wakes up every minute and
 examines all crontab files, executing any commands
 scheduled for that time.
User crontab files

To use the cron facility, users do not need
 to interact directly with the crond daemon.
 Instead, each system user has access to the cron
 facility through her crontab file. These files
 are stored together in a single directory (usually
 /var/spool/cron) and are created and maintained
 using the crontab utility.

System crontab files

In addition to crontab files owned by
 individual users, crond also looks for the system
 crontab files /etc/crontab
 and files in the directory /etc/cron.d. The
 format for these system crontabs differs slightly
 from user crontabs. System
 crontabs have an additional field for a username
 between the time specifications and the command. For example:
/etc/crontab
run myprogram at 6:15am as root
15 6 * * * root myprogram
In this example, myprogram
 will be executed by cron as the
 root user.
System crontab files located in
 /etc/cron.d are of the same form as
 /etc/crontab, including the extra user field.
 These files are usually associated with some package or service that
 includes a system crontab. Allowing a collection
 of files in /etc/cron.d allows software
 installation and upgrade procedures to keep the
 cron configuration up-to-date on an individual
 package basis. In most cases, however, you won’t need to change the
 crontab files in
 /etc/cron.d.
On the Exam
Memorize the sequence of time/date fields used in
 crontab files.

On most Linux distributions, /etc/crontab
 contains some standard content to enable the execution of programs and
 scripts on the minute, hour, week, and month. These arrangements allow
 you to simply drop executable files into the appropriate directory
 (such as /etc/cron.hourly), where they are
 executed automatically. This eliminates cron
 configuration altogether for many tasks and avoids cluttering the root
 crontab file with common commands.

Using at

The cron system is intended for the
 execution of commands on a regular, periodic schedule. When you need to
 simply delay execution of a command or a group of commands to some other
 time in the future, you should use at. The
 at facility accepts commands from standard input or
 from a file.

Controlling User Access to cron and at

In most cases, it is safe to allow users to use the
 cron and at facilities.
 However, if your circumstances dictate that one or more users should be
 prohibited from using these services, two simple authorization files
 exist for each:
	cron.allow,
 cron.deny

	at.allow,
 at.deny

These files are simply lists of account names. If the
 allow file exists, only those users listed in the
 allow file may use the service. If the
 allow file does not exist but the
 deny file does, only those users not listed in the
 deny file may use the service. For
 cron, if neither file exists, all users have access
 to cron. For at, if neither
 file exists, only root has access to
 at. An empty at.deny file
 allows access to all users and is the default.

Name
crontab

Syntax
crontab [options]

Description
View or edit crontab files.

Frequently used options
	-e
	Interactively edit the crontab
 file. Unless otherwise specified in either the EDITOR or VISUAL environment
 variables, the editor is vi.

	-l
	Display the contents of the
 crontab file.

	-r
	Remove the crontab file.

	-u
 user
	Operate on user’s
 crontab file instead of your own. Only
 root can edit or delete the
 crontab files of other users.

Example
Display the crontab file for user
 jdoe:
crontab -l -u jdoe
Edit your own crontab file:
$ crontab -e
crontab files use a flexible format to
 specify times for command execution. Each line contains six
 fields:
minute hour day month dayofweek command
These fields are specified as follows:
	Minute (0 through 59)

	Hour (0 through 23)

	Day of the month (1 through 31)

	Month (1 through 12 or jan through dec)

	Day of the week (0 through 7—where 0 or 7 is Sunday—or
 sun through sat)

	Command (any valid command, including spaces and
 standard Bourne shell syntax)

For example, to execute myprogram once
 per day at 6:15 a.m., use this crontab
 entry:
run myprogram at 6:15am
15 6 * * * myprogram
Lines that begin with the pound sign (#) are comment lines and are ignored by
 crond. Comments must begin on a new line and
 may not appear within commands. The asterisks in this
 crontab are placeholders and match any date
 or time for the field where they’re found. Here, they indicate
 that myprogram should execute at 6:15 a.m. on
 all days of the month, every month, all days of the week.
Each of the time specifications may be single, list
 (1,3,5), or range (1-5 or wed-fri) entries or combinations
 thereof. To modify the previous example to execute at 6:15 and
 18:15 on the 1st and 15th of the month, use:
run myprogram at 6:15am and 6:15pm on the 1st and 15th
15 6,18 1,15 * * myprogram
As you can see, the time specifications are very
 flexible.
Because the cron daemon evaluates each
 crontab entry when it wakes up each minute,
 it is not necessary to restart or reinitialize
 crond when crontab
 entries are changed or new files are created.

Name
at

Syntax
at [-f file] time
at [options]

Description
In the first form, enter commands to the
 at queue for execution at
 time. at allows
 fairly complex time specifications. It accepts times of the form
 HH:MM to run a job at a specific time of
 day. (If that time is already past, the next day is assumed.) You
 may also specify midnight,
 noon, or teatime (4 p.m.), and you suffix a time of
 day with AM or PM for running in the morning or evening.
 You can also say what day the job will be run by giving a date in
 month-day form, with the year being optional, or by giving a date in
 MMDDYY,
 MM/DD/YY, or
 DD.MM.YY form. The date specification
 must follow the time-of-day specification. You can also give times
 such as now + count
 time-units, where
 time-units can be minutes, hours, days,
 or weeks. You can tell at to run
 the job today by suffixing the time with today, and you can tell it to run the job
 tomorrow by suffixing the time with tomorrow.
If -f file is
 given, commands are taken from the file;
 otherwise, at will prompt the user for
 commands.
In the second form, list or delete jobs from the
 at queue.

Frequently used options
	-d job1
 [,
 job2,
 ...]
	Delete jobs from the at queue by
 number (same as the atrm command).

	-l
	List items in the at queue (same as
 the atq command).

Example1
Run myprogram once at 6:15
 p.m. tomorrow:
$ at 6:15pm tomorrow
at> myprogram
at> ^D
In the previous code listing, ^D indicates that the user typed Ctrl-D on
 the keyboard, sending the end-of-file character to terminate the
 at command.

Example2
Run commands that are listed in the file
 command_list at 9 p.m. two days from
 now:
$ at -f command_list 9pm + 2 days
List items in the at queue
 (root sees all users’ entries):
$ at -l
Remove job number 5 from the at
 queue:
$ at -d 5
Using at to schedule jobs for delayed
 execution, such as while you’re asleep or on vacation, is simple and
 doesn’t require creation of a recurring cron
 entry.

Objective 3: Localization and Internationalization

In computing, internationalization and localization are
 means of adapting computer software to different languages and regional
 differences. Internationalization is the process of designing a software
 application so that it can be adapted to various languages and regions
 without engineering changes. Localization is the process of adapting
 internationalized software for a specific region or language by adding
 locale-specific components and
 translating text.
The terms are frequently abbreviated to the numeronyms i18n (where
 18 stands for the number of letters between the first “i” and last “n” in
 internationalization, a usage coined at Digital Equipment Corporation in
 the 1970s or 1980s) and L10n respectively, due to the length of the words.
 The capital “L” in L10n helps to distinguish it from the lowercase “i” in
 i18n.
Since open source software can generally be freely modified and
 redistributed, it is more amenable to internationalization. The KDE
 project, for example, has been translated into over 100 languages.
The time zone under Linux is set by a symbolic link from
 /etc/localtime to a file in the
 /usr/share/zoneinfo directory that corresponds to
 your specific time zone. Generally this is defined during the installation
 process in order to provide the correct information to the system.
 However, manually running the command tzconfig can
 also do the job, and you won’t have to remember the path to the time
 zones.
The tzselect program is a menu-based script
 that asks the user for information about the current location, and then
 sends the resulting time zone description to standard output. The output
 is suitable as a value for the TZ environment
 variable:
$ tzselect

Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.

 1) Africa

 2) Americas

 3) Antarctica

 4) Arctic Ocean

 5) Asia

 6) Atlantic Ocean

 7) Australia

 8) Europe

 9) Indian Ocean

10) Pacific Ocean

11) none - I want to specify the time zone using the Posix TZ format.

#?
The date command can be used to print the
 current Coordinated Universal Time (UTC):
$ date -u
and also to show the time zone abbreviation:
$ date +%Z
CET
A locale is a set of information that most programs use for
 determining country- and language-specific settings. The following
 environment variables are used to store locale
 settings:
	LANG
	Defines all locale settings at once, while allowing further
 individual customization via the LC_* settings
 described next.

	LC_COLLATE
	Defines alphabetical ordering of strings. This affects the
 output of sorted directory listings, for example.

	LC_CTYPE
	Defines the character-handling properties for the system. This
 determines which characters are seen as alphabetic, numeric, and so
 on. This also determines the character set used, if
 applicable.

	LC_MESSAGES
	This defines the programs’ localizations for applications that
 use a message-based localization scheme. This includes the majority
 of GNU programs.

	LC_MONETARY
	Defines currency units and the formatting of currency type
 numeric values.

	LC_NUMERIC
	Defines formatting of numeric values that aren’t monetary.
 This affects things such as the thousands separator and decimal
 separator.

	LC_TIME
	Defines the formatting of dates and times.

	LC_PAPER
	Defines the default paper size.

	LC_ALL
	A special variable for overriding all other settings.

The locale utility writes information about
 the current locale environment, or all public locales, to the standard
 output. For the purposes of this section, a public locale is one provided
 by the implementation that is accessible to the application. Issuing the
 locale command without any flags will output the
 current configuration:
$ locale
LANG=
LC_CTYPE="POSIX"
LC_NUMERIC="POSIX"
LC_TIME="POSIX"
LC_COLLATE="POSIX"
LC_MONETARY="POSIX"
LC_MESSAGES="POSIX"
LC_PAPER="POSIX"
LC_NAME="POSIX"
LC_ADDRESS="POSIX"
LC_TELEPHONE="POSIX"
LC_MEASUREMENT="POSIX"
LC_IDENTIFICATION="POSIX"
LC_ALL=
The C locale, also known as the POSIX locale, is the POSIX system
 default locale for all POSIX-compliant systems.
The iconv utility converts the encoding of
 characters in a file from one codeset to another and writes the results to
 standard output.
The following example converts the contents of the file in.txt from the ISO/IEC 6937:1994 standard
 codeset to the ISO/IEC 8859-1:1998 standard codeset, and stores the
 results in the file out.txt:
$ iconv -f IS6937 -t IS8859 in.txt > out.txt

Chapter 16. Essential
 System Services (Topics 108.1 and
 108.2)

As a system administrator in a multiuser environment, much of
 your activity is related to maintaining various system services. These
 services include accurate system time and logging of system events. The
 following two Objectives are covered in this chapter:
	Objective 1: Maintain System Time
	Candidates should be able to properly maintain the system time
 and synchronize the clock over NTP. Tasks include setting the system
 date and time, setting the hardware clock to the correct time in UTC,
 configuring the correct time zone for the system, and configuring the
 system to correct clock drift to match the NTP clock. Weight:
 3.

	Objective 2: System Logging
	Candidates should be able to configure system logs. This
 Objective includes managing the type and level of information logged,
 manually scanning logfiles for notable activity, monitoring logfiles,
 arranging for automatic rotation and archiving of logs, and tracking
 down problems noted in logs. Weight: 2.

Objective 1: Maintain System Time

An accurate system clock is important on a Linux system for
 a variety of reasons. Log entries need to be accurate so you can
 accurately determine what system events occurred. Programs such as
 make and anacron require
 accurate modification times on files. Network file sharing (such as NFS)
 requires both client and server to keep accurate time so file operations
 are kept in sync.
The most popular way to keep accurate time on an Internet-connected
 Linux system is to use the Network Time Protocol (NTP) and the NTP software package
 from http://www.ntp.org.
NTP Concepts

NTP is used to set and synchronize the internal clocks of
 network-connected systems. When properly configured, systems running the
 NTP daemon can be synchronized within a few milliseconds (or better),
 even over relatively slow WAN connections.
The NTP daemon also supports synchronization with an external time
 source, such as a GPS receiver. Systems directly connected to an
 external time source (and properly configured) are the most accurate, so
 they are designated stratum 1 servers. Systems
 synchronizing to stratum 1 servers are designated stratum
 2, and so on, down to stratum 15.
Note
The NTP software package has support for cryptographic key-based
 authentication, although setting this up is outside the scope of the
 LPI Level 1 Exams and will not be covered here.

The NTP Software Package Components

The NTP software package consists of several programs, including
 the NTP daemon and a number of programs used to configure and query NTP
 servers. The more commonly used programs from the package are listed
 here.

The Hardware Clock

Computer motherboards all contain a small battery that is
 used to power the hardware clock. This ensures that the computer can
 successfully keep track of the time even when it is powered off. In
 Linux, you can configure this hardware clock and synchronize your system
 clock to it (or vice versa). The importance of the hardware clock has
 been somewhat minimized with the widespread use of NTP and easily
 available, reliable time servers. However, for systems that aren’t
 always connected to the Internet, an accurate hardware clock is an
 important thing to have. Syncing a hardware clock is also required when
 working with old hardware that suffers from time issues, such as BIOSes
 that are not Y2K-aware.
Hardware clocks can suffer from the same drifts that system clocks
 experience, causing them to slowly lose (or gain) time over a certain
 period. The hwclock command is used in Linux to
 control the hardware clock.

Time Zones

As stated previously, a time zone is just a positive or negative
 value combined with UTC. Once you set the time zone on a Linux system,
 applications will honor that positive or negative offset when they need
 to use a timestamp. The time zone on a Linux system is identified by the
 file /etc/localtime. This can be
 either a data file itself or a symbolic link to a data file in the
 directory /usr/share/zoneinfo.
/usr/share/zoneinfo contains files that
 represent every time zone. In order to set the time zone on your Linux
 system, you must either copy one of these files to
 /etc/localtime or create a symbolic link from
 /etc/localtime to one of these files. For example, if your system is in the United
 States in the Central time zone, your
 /etc/localtime file would look like this:
$ ls –l /etc/localtime
lrwxrwxrwx 1 root root 30 Sep 12 13:56 \
 /etc/localtime -> /usr/share/zoneinfo/US/Central
On the Exam
Make sure you understand the difference between system time and
 the hardware clock, and the importance of keeping good system time.
 Also remember the difference between local time and UTC, and how it
 affects the time configuration on your Linux system.

Name
ntpd

Syntax
ntpd [options]

Description
ntpd is the heart of the NTP
 software package. It performs the following functions:
	Synchronizes the PC clock with remote NTP servers

	Allows synchronization from other NTP clients

	Adjusts (skews) the rate of the kernel’s clock tick so
 that it tracks time accurately

	Reads time synchronization data from hardware time sources
 such as GPS receivers

Frequently used options
	-c
 file
	This option tells ntpd to use
 file as its configuration file
 instead of the default
 /etc/ntpd.conf.

	-g
	This option will let ntpd start on
 a system with a clock that is off by more than the panic
 threshold (1,000 seconds by default).

	-n
	Normally ntpd runs as a daemon, in
 the background. This option disables that behavior.

	-q
	This option tells ntpd to exit
 after setting the time once.

	-N
	When this option is specified, ntpd
 attempts to run at the highest priority possible.

ntpd is configured using the file
 /etc/ntp.conf. The file is fully documented in
 a series of files linked to from the ntpd
 documentation, found in the software distribution or at http://www.eecis.udel.edu/~mills/ntp/html/ntpd.html.
The most important configuration options are restrict, which is used to implement
 access controls, and server,
 which is used to direct ntpd to an NTP server.
 Another often-used configuration option (not mentioned in the sample
 ntp.conf in Example 16-1) is peer, which is used
 much like server, but implies
 that the system is both a client and a server. A peer is usually a system that is nearby on
 the network, but uses different time sources than the local
 system.
Example 16-1. Sample /etc/ntp.conf
Prohibit general access to this service.
restrict default ignore

Permit all access over the loopback interface. This could
be tightened as well, but to do so would affect some of
the administrative functions.
restrict 127.0.0.1

-- CLIENT NETWORK -------
Permit systems on this network to synchronize with this
time service. Do not permit those systems to modify the
configuration of this service. Also, do not use those
systems as peers for synchronization.
restrict 192.168.1.0 mask 255.255.255.0 notrust nomodify notrap

--- OUR TIMESERVERS -----
Permit time synchronization with our time source, but do not
permit the source to query or modify the service on this system.

time.nist.gov
restrict 192.43.244.18 mask 255.255.255.255 nomodify notrap noquery
server 192.43.244.18

time-b.nist.gov
restrict 129.6.15.29 mask 255.255.255.255 nomodify notrap noquery
server 129.6.15.29

--- GENERAL CONFIGURATION ---
#
Undisciplined Local Clock. This is a fake driver intended for backup
and when no outside source of synchronized time is available.
#
server 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10

#
Drift file. Put this in a directory which the daemon can write to.
No symbolic links allowed, either, since the daemon updates the file
by creating a temporary in the same directory and then renaming
it to the file.
#
driftfile /etc/ntp/drift
broadcastdelay 0.008

Example
Normally ntpd consistently adjusts the
 time, depending on how far out-of-sync the server is from the
 stratum source, to the correct time. To force the system time to the
 right time (for example, when occasionally setting the correct time
 from cron), use the following:
ntpd -g -n -q
Why are IP addresses used in the configuration file instead of
 fully qualified domain names? The answer is security. System time is
 an extremely important service, and as a system administrator, you
 must always be very careful trusting data you are receiving from an
 outside system. When you query a time server, you need to make sure
 that you’re querying the correct time server. If you are querying a
 fully qualified domain name instead of an IP address, you are
 potentially vulnerable to a domain name poisoning attack. If someone
 has compromised the DNS server of the time server in question, they
 could be relaying your request to any system on the Internet. By
 querying directly to an IP address, you are eliminating the
 possibility of this kind of spoofing.

Name
ntpdate

Syntax
ntpdate [options] server [server [...]]

Description
ntpdate is used to set the time
 of the local system to match a remote NTP host.
The maintainers of the ntp code intend to drop
 ntpdate in the future since
 ntpd can perform essentially the same function
 when used with the -q option.

Frequently used options
	-b
	Using this option, the system time is set instead of
 being slowly adjusted, no matter how far off the local time
 is.

	-d
	This option enables debugging mode.
 ntpdate goes through the motions and
 prints debugging information, but does not actually set the
 local clock.

	-p
 n
	Use this option to specify the number of samples (where
 n is from 1 to 8) to get from each
 server. The default is 4.

	-q
	This option causes ntpdate to query
 the servers listed on the command line without actually
 setting the clock.

	-s
	This option causes all output from
 ntpdate to be logged via syslog instead
 of being printed to stdout.

	-t
 n
	This option sets the timeout for a response from any
 server to n seconds.
 n may be fractional, in which case
 it will be rounded to the nearest 0.2 second. The default
 value is 1 second.

	-u
	Normally ntpdate uses a privileged
 port (123/tcp) as the source port for outgoing packets. Some
 firewalls block outgoing packets from privileged ports, so
 with this option, ntpdate uses an
 unprivileged port above 1024/tcp.

	-v
	This option makes ntpdate more
 verbose.

	-B
	Using this option, the system time is slowly adjusted to
 the proper time, even if the local time is off by more than
 128 ms. (Normally the time is forcibly set if it is off by
 more than 128 ms.)
If the time is off by very much, it can take a very long
 time to set it with this option.

Example
Quietly sync the local clock with two stratum 1 NTP
 servers:
ntpdate -s time.nist.gov time-b.nist.gov

Name
ntpq

Syntax
ntpq [options] [host]

Description
ntpq is the standard NTP query
 program. It is used to send NTP control messages to
 host (or localhost
 if no host is specified), which can be
 used to check the status of ntpd on
 host or change its configuration.
The commands that can be used with ntpq
 are documented in the NTP software documentation included with the
 distribution and at http://www.eecis.udel.edu/~mills/ntp/html/ntpq.html.

Frequently used options
	-c
 command
	Execute command as if it were
 given interactively.

	-i
	Enter interactive mode. This is the default.

	-n
	Suppress reverse DNS lookups. Addresses are printed
 instead of hostnames.

	-p
	Query the server for a list of peers. This is equivalent
 to the peers interactive command
 or -c
 peers on the command line.

Example
Print the list of peers known to the server by IP
 address:
ntpq -p –n pool.ntp.org
or:
ntpq -c peers –n pool.ntp.org
or:
ntpq –n pool.ntp.org
ntpq> peers
 remote refid st t when poll reach delay offset jitter
==
*64.90.182.55 .ACTS. 1 u - 1024 377 2.983 3.253 0.014
+209.51.161.238 .CDMA. 1 u - 1024 377 2.456 -2.795 0.096
-128.118.25.3 147.84.59.145 2 u - 1024 377 18.476 -2.586 0.446
+67.128.71.75 172.21.0.13 2 u - 1024 377 8.195 -2.626 0.194
-66.250.45.2 192.5.41.40 2 u - 1024 377 8.119 -6.491 0.421
ntpq>
The system pool.ntp.org
 is a pointer to a collection of systems that have volunteered to be
 publicly available time servers. Round robin DNS is used to share the request load
 among these servers. This kind of setup is usually sufficient for
 end users, but in a corporate environment, it’s usually advisable to
 query a stratum 2 time server from a designated server on your
 network, and then have your other servers query that server. More
 information on pooling is available at http://support.ntp.org/bin/view/Servers/WebHome.

Name
ntpdc

Syntax
ntpdc [options] [host]

Description
ntpdc is much like
 ntpq, except that it supports some extended
 commands. For this reason, it is likely to work only when talking to
 ntpd from the same version of the NTP software
 package.
For the most part, the command-line options it supports are
 the same as those of ntpq. Full documentation
 for ntpdc can be found in the NTP software distribution or at http://www.eecis.udel.edu/~mills/ntp/html/ntpdc.html.

Name
ntptrace

Syntax
ntptrace [options] server [server [...]]

Description
Traces a chain of NTP servers back to the primary
 source.

Frequently used options
	-n
	Turn off reverse DNS lookups.

Examples
To see where the local system is synchronizing its lock to,
 run ntptrace with no options:
$ /usr/sbin/ntptrace
localhost: stratum 4, offset 0.000109, synch distance 0.16133
ntp1.example.net: stratum 3, offset 0.004605, synch distance 0.06682
ntp-1.example.edu: stratum 2, offset 0.001702, synch distance 0.01241
stratum1.example.edu: *Timeout*
In this example, the stratum 1 server is not directly
 accessible.
ntptrace can also be used on any
 arbitrary NTP server, assuming it is accessible. This example
 queries two publicly accessible stratum 2 NTP servers:
$ /usr/sbin/ntptrace ntp0.cornell.edu
cudns.cit.cornell.edu: stratum 2, offset -0.004214, synch distance 0.03455
dtc-truetime.ntp.aol.com: stratum 1, offset -0.005957, synch distance
0.00000, refid 'ACTS'
$ /usr/sbin/ntptrace ntp-2.mcs.anl.gov
mcs.anl.gov: stratum 2, offset -0.004515, synch distance 0.06354
clepsydra.dec.com: stratum 1, offset 0.002045, \
 synch distance 0.00107, refid 'GPS'

Name
hwclock

Syntax
hwclock –-show
hwclock --systohc
hwclock –-hctosys
hwclock --adjust
hwclock --version

Description
Query and/or set the hardware clock.

Examples
Query the system’s hardware clock:
/sbin/hwclock --show
Sat 12 Sep 2009 12:49:43 PM CDT -0.216537 seconds
Set the hardware clock to the current value of the system
 clock:
/sbin/hwclock –-systohc
All time values in the hardware clock are stored as the number
 of seconds since January 1, 1970. This number is then converted to
 the output format desired. Time is represented as either Coordinated Universal Time (UTC) or local time. UTC is
 a universal time standard that is the same across all time zones. Local time is simply UTC combined with
 either a positive or negative offset to reflect the current time
 zone. For example, in the United States, the Central Time Zone is
 actually UTC-6 (six hours behind Coordinated Universal Time).
As a system administrator, you have the option of setting your
 hardware clock to either UTC or your own local time. Some
 administrators prefer to use UTC for this, and then reflect their
 current time zone in the system software. The
 hwclock command allows you to indicate how your
 hardware clock is set. Compare the output of these two
 commands:
/sbin/hwclock –show --localtime
Sat Sep 12 13:33:35 2009 -0.766111 seconds
/sbin/hwclock –-show --utc
Sat Sep 12 08:33:37 2009 -0.048881 seconds
Telling hwclock that our hardware clock
 was set to UTC time resulted in a different answer when we asked to
 show the time.

Objective 2: System Logging

Many events occur on your Linux system that should be logged
 for administrative purposes. Linux uses the syslogd
 service to display and record messages describing these events. This
 system allows finely controlled logging of messages from the kernel as
 well as processes running on your system and remote systems. Messages can
 be placed on the console display, in logfiles, and on the text screens of
 users logged into the system.
What are the advantages of the syslogd service
 over applications maintaining their own logfiles?
	All logfiles are centralized, either in one directory or on one
 server.

	The client/server nature of syslogd allows
 for machines to log events to a centralized log server for easier
 monitoring and reporting.

	Syslogd allows multiple processes to write
 to the same logfile, while avoiding file-locking issues.

There are a number of different applications available for Linux
 that implement the syslogd functionality and offer
 additional functionality. Some examples are rsyslog
 (native database logging support) and syslog-ng
 (regular expression matching). For the purposes of the LPI exam, we cover
 only the basic syslogd server.
Configuring syslogd

The behavior of syslogd is controlled
 by its configuration file, /etc/syslog.conf. This
 text file contains lines indicating what is to be logged and where. Each
 line contains directives in this form:
facility.level action
The directives are defined as follows:
	facility
	This represents the creator of the message (that is,
 the kernel or a process) and is one of the following: auth (the facility security is equivalent to auth, but its use is deprecated),
 authpriv, cron, daemon, kern, lpr, mail, mark (the mark facility is meant for
 syslogd’s internal use only), news, syslog, user, uucp, or local0 through local7. The use of these facility
 designators allows you to control the destination of messages
 based on their origin. Facilities local0 through local7 are for any use you may wish to
 assign to them in your own programs and scripts. It’s possible
 that your distribution has assigned one or more of the local
 facilities already. Check your configuration before using a local
 facility.

	level
	Specifies a severity threshold beyond which messages
 are logged, and is one of the following (from lowest to highest
 severity): debug, info, notice, warning (or warn), err (or error), crit, alert, or emerg (or panic). (warn, error, and panic are all deprecated, but you might
 see them on older systems.) There is also a special level called
 none that will disable a
 facility. The level defines the amount of detail recorded in the
 logfile. A single period separates the facility from the level,
 and together they comprise the message
 selector. The asterisk (*) can be used to describe all
 facilities or all levels.

	action
	The action directive is
 arguably misnamed. It represents the destination for messages that
 correspond to a given selector
 (facility.level). The action can be a
 filename (including the full pathname), a hostname preceded by the
 @ sign, or a comma-separated
 list of users or an asterisk (this means all logged-in users will
 receive the logged line on their consoles).

For example, if you wanted to create a separate logfile for
 activity reported by the scripts you write, you might include a line
 like this in /etc/syslog.conf:
Define a new log file for the local5 facility
local5.* /var/log/local5
You could then use the logger utility to
 write messages to the facility from your shell script
 (syslogd must be restarted or signaled to
 reinitialize before the new logfile is created):
$ logger -p local5.info "Script terminated normally"
The message “Script terminated normally” would be placed into
 /var/log/local5, along with a timestamp and the
 hostname that sent the message. Example 16-2 contains an
 example /etc/syslog.conf file.
Example 16-2. Sample /etc/syslog.conf file
Log everything except mail & authpriv of level info
or higher to messages.
*.info;mail.none;authpriv.none /var/log/messages
The authpriv file has restricted access.
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
Everybody gets emergency messages.
*.emerg *
Save boot messages also to boot.log
local7.* /var/log/boot.log

If you examine this syslog.conf file, you’ll
 see that nearly all system messages are sent to the
 /var/log/messages file via the *.info message selector. In this case, the
 asterisk directs syslogd to send messages from all
 facilities except mail and authpriv, which are excluded using the special
 none level. The
 /var/log/messages file is the default system
 message destination, and you will consult it frequently for information
 on processes running (or failing to run) and other events on your
 system. In this example, the low severity level of info is used for the
 messages file, which logs all but debugging
 messages. On heavily loaded servers, this may result in an unwieldy file
 size due to message volume. Depending upon your available disk space,
 you may choose to save less information by raising the level for the
 messages file.
The syslogd server keeps the file handles
 open for all files defined in /etc/syslog.conf.
 This means that the only process that can write to these files is
 syslogd. Do not configure your programs to write
 directly to these files! Instead, call a program such as
 logger, or use one of the many syslog API
 interfaces available for your language of choice.
The syslog service is actually made up of two processes,
 syslogd and klogd.
 Syslogd is used to log events from user process,
 whereas klogd is used to log events from kernel
 processes. They work in tandem and use the same configuration file, so
 you really just need to make sure they are both running:
$ ps ax | egrep -i "(syslogd|klogd)"
2078 ? Ss 0:04 syslogd -m 0
2081 ? Ss 0:00 klogd -x

Client/Server Logging

Syslogd also has the ability to log
 messages across the network. If a syslogd process is started with the
 -r option, it will listen on the network for
 incoming syslogd messages. By default,
 syslogd uses UDP port 514 for this communication. A
 common practice is to set up one master logging server that receives all
 syslogd messages from all clients. On the client
 side, you would configure the local syslogd service
 to log events locally, and to log everything to the master logging
 server. This would be accomplished by adding the following line to the
 example syslog.conf file shown in Example 16-2:
. @10.0.0.1
This means that messages matching all facilities and levels should
 be sent to the IP address 10.0.0.1.
You can determine whether a syslogd server is
 listening for remote log entries by running
 netstat:
netstat -anp | grep -i ":514"
udp 0 0 0.0.0.0:514 0.0.0.0:* 26645/syslogd

Logfile Rotation

Most distributions will install a default
 syslog configuration for you, including logging to
 messages and other logfiles in
 /var/log. To prevent any of these files from
 growing unattended to extreme sizes, a logfile rotation scheme should be
 installed as well. The cron system issues commands on a
 regular basis (usually once per day) to establish new logfiles; the old
 files are renamed with numeric suffixes. With this kind of rotation,
 yesterday’s /var/log/messages file becomes today’s
 /var/log/messages.1, and a new
 /var/log/messages file is created. The rotation is
 configured with a maximum number of files to keep, and the oldest
 logfiles are deleted when the rotation is run.
The utility that establishes the rotation is logrotate. This privileged command is
 configured using one or more files, which are specified as arguments to
 the logrotate command. These configuration files
 can contain directives to include other files as well. The default
 configuration file is /etc/logrotate.conf. Example 16-3 depicts a sample
 logrotate.conf file.
Example 16-3. Sample /etc/logrotate.conf file
global options
rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4
send errors to root
errors root
create new (empty) log files after rotating old ones
create
compress log files
compress
specific files
/var/log/wtmp {
 monthly
 create 0664 root utmp
 rotate 1
}
/var/log/messages {
 postrotate
 /usr/bin/killall -HUP syslogd
 endscript
}

This example specifies rotations for two files,
 /var/log/wtmp and
 /var/log/messages. Your configuration will be much
 more complete, automatically rotating all logfiles on your system. A
 complete understanding of logrotate configuration
 is not necessary for LPIC Level 1 Exams, but you must be familiar with
 the concepts involved. See the logrotate manpages
 for more information.

Examining Logfiles

You can learn a lot about the activity of your system by reviewing
 the logfiles it creates. At times, it will be necessary to debug
 problems using logged information. Since most of the logfiles are plain
 text, it is very easy to review their contents with tools such as
 tail, less, and
 grep.
Syslogd stores the messages it creates with
 the following information, separated by (but also including)
 spaces:
	Date/time

	Origin hostname

	Message sender (such as kernel, sendmail, or a username)

	Message text

Typical messages will look like this:
Aug 3 18:45:16 moya kernel: Partition check:
Aug 3 18:45:16 moya kernel: sda: sda1 sda2 sda3 < sda5 sda6 sda7 \
 sda8 sda9 sda10 > sda4
Aug 3 18:45:16 moya kernel: SCSI device sdb: 195369520 512-byte \
 hdwr sectors (100029 MB)
Aug 3 18:45:16 moya kernel: sdb: sdb1
Aug 3 18:45:16 moya kernel: Journalled Block Device driver loaded
Aug 3 18:45:16 moya kernel: kjournald starting. Commit interval 5 seconds
Aug 3 18:45:16 moya kernel: EXT3-fs: mounted filesystem with ordered data
 mode.
Aug 3 18:45:16 moya kernel: Freeing unused kernel memory: 116k freed
Aug 3 18:45:16 moya kernel: Adding Swap: 1044216k swap-space (priority -1)
In this case, moya is the
 hostname, and the messages are coming from the kernel. At any time, you
 can review the entire contents of your logfiles using
 less:
less /var/log/messages
You can then page through the file. This is a good way to become
 familiar with the types of messages you’ll see on your system. To
 actively monitor the output to your messages file, you could use
 tail:
tail -f /var/log/messages
This might be useful, for example, to watch system activity as an
 Internet connection is established via modem. To look specifically for
 messages regarding your mouse, you might use
 grep:
grep '[Mm]ouse' /var/log/messages
Dec 8 00:15:28 smp kernel: Detected PS/2 Mouse Port.
Dec 8 10:55:02 smp gpm: Shutting down gpm mouse services:
Often, if you are using grep to look for a
 particular item you expect to find in
 /var/log/messages, you will need to search all of
 the rotated files with a wildcard. For example, to look for all messages
 from sendmail, you can issue a command like
 this:
grep 'sendmail:' /var/log/messages*
Or, if you’ve enabled compression for the rotated logfiles:
zgrep 'sendmail:' /var/log/messages*
When you note problems in logfiles, look at the hostname and
 sender of the message first, and then the message text. In many cases,
 you will be able to determine what is wrong from the message. Sometimes
 the messages are only clues, so a broader review of your logs may be
 necessary. In this case, it may be helpful to temporarily turn on more
 messaging by using the debug level in
 /etc/syslog.conf to help yield additional
 information that can lead you to the problem.
On the Exam
If you’re not yet familiar with syslogd,
 spend some time with it, modifying
 /etc/syslog.conf and directing messages to
 various files. An understanding of syslogd is
 critical because so many programs depend on it. It is also the first
 place to look when troubleshooting problems you are having with your
 system.

Chapter 17. Mail Transfer Agent (MTA)
 Basics (Topic 108.3)

Mail Transfer Agents (MTAs) are a crucial part of an Internet-enabled
 system. The delivery and sending of email has been a key part of the
 Internet since its inception. For the LPI 102 exam, you must be familiar
 with the common MTAs available on modern Linux distributions, and some basic
 configuration of each. MTAs are complicated programs, but the LPI 102 exam
 will only question you on the basics.
This chapter covers Objective 3 of Topic 108:
	Objective 3: Mail Transfer Agent (MTA)
 Basics
	Candidates should be aware of the commonly available MTA
 programs and be able to perform basic forward and alias configuration
 on a client host. Other configuration files are not covered. Weight:
 3.

Objective 3: Mail Transfer Agent (MTA) Basics

The four main MTAs commonly available on Linux systems are
 sendmail, postfix, qmail, and exim. Each has its own differences, mainly
 with regard to the format of configuration files. Each MTA performs the
 basic functions of a mail transfer agent: the sending and receiving of
 Internet mail.
	Sendmail
	Sendmail was one of the first MTAs used on Unix
 systems. It was derived from the original program “delivermail,”
 which shipped with an early version of BSD Unix in 1979. Sendmail
 has grown over the years into quite a complicated program—as
 evidenced by the O’Reilly book sendmail,
 Fourth Edition, which weighs in at a whopping 1,312
 pages—and is often quite challenging to configure correctly. That
 fact, combined with the history of security vulnerabilities that
 have plagued sendmail over the years, has caused its popularity to
 decrease over the last decade. Although most major Linux
 distributions provide a package for sendmail, none of them currently
 ship with sendmail as the default MTA.

	Postfix
	Postfix was originally designed in the late 1990s as a
 more secure alternative to sendmail. It shares many of the same
 configuration options as sendmail, but does not share any code. At
 the time of this writing, postfix is currently very popular in the
 Linux world, and is the default MTA shipped with the most popular
 Linux distributions.

	Qmail
	In response to the increasing number of security
 incidents involving MTAs, qmail was developed in the mid 1990s to be
 as secure as a mail transfer agent can be. Qmail is small,
 efficient, and secure, making it a popular choice for
 resource-strapped systems. However, qmail has not been actively
 developed since 1997, and its lack of support for modern options
 such as IPv6 has limited its usefulness. Qmail still enjoys an
 active following, but is not commonly seen on newer Linux
 distributions.

	Exim
	Exim is another example of an MTA that was developed
 in direct response to the security issues with sendmail. For this
 reason, it is essentially a drop-in replacement for sendmail. It is
 designed to be a general-purpose mailer for Unix-like systems, and
 is widely used in relatively high-volume environments. It was
 originally written in 1995 and still enjoys active development to
 this day. Exim is currently the default MTA for the Debian GNU/Linux
 distribution.

Configuration of Sendmail

The overall configuration of sendmail is beyond the scope of this
 book and the LPI 102 test. We will instead focus on email address
 aliasing and mail forwarding, in addition to monitoring logfiles and
 basic troubleshooting.
Sendmail is a monolithic tool, with a single binary handling the
 sending and receiving of Internet email. For the purposes of this
 chapter, we will assume Simple Mail Transport Protocol (SMTP) email, but
 sendmail supports many other types of mail relaying.
By default, sendmail will listen for an incoming SMTP connection
 (on TCP port 25). When a connection is received, sendmail starts the
 SMTP conversation and accepts the email. It checks addresses and domains
 for validity, honors aliasing and mail forwards, and then hands the mail
 off to a local delivery agent for local processing. Sendmail logs all
 activity through the syslog service, which is
 normally configured to store mail-related logs in the file /var/log/maillog. Here is an example of
 verifying a sendmail instance and sending a test mail.
netstat -anpl --tcp | grep sendmail
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN \
 1847/sendmail: accepting connections
ls -l /var/spool/mail/adamh
-rw-rw---- 1 adamh mail 0 2009-04-24 01:23 /var/spool/mail/adamh
echo "This is a test email" | mail adamh
ls -l /var/spool/mail/adamh
-rw-rw---- 1 adamh mail 689 2010-02-07 13:21 /var/spool/mail/adamh
tail /var/log/maillog
Feb 7 13:22:42 server sendmail[5387]: o17JMgbM005387: from=root, \
size=32, class=0, nrcpts=1, msgid=<201002071922.o17JMgbM005387\
@server>, relay=root@localhost
Feb 7 13:22:42 server sendmail[5388]: o17JMghc005388: \
from=<root@server>, size=353, class=0,nrcpts=1, \
msgid=<201002071922.o17JMgbM005387@server>, proto=ESMTP, \
daemon=MTA, relay=server [127.0.0.1]
Feb 7 13:22:42 server sendmail[5387]: o17JMgbM005387: to=adamh, \
ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, \
pri=30032, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent \
(o17JMghc005388 Message accepted for delivery)
Feb 7 13:22:42 server sendmail[5389]: o17JMghc005388: \
to=<adamh@server>, ctladdr=<root@server> (0/0), \
delay=00:00:00, xdelay=00:00:00, mailer=local, pri=30607, \
dsn=2.0.0, stat=Sent
cat /var/spool/mail/adamh
From root@server Sun Feb 7 13:22:42 2010
Return-Path: <root@server>
Received: from server (server [127.0.0.1])
 by server (8.14.2/8.14.2) with ESMTP id o17JMghc005388
 for <adamh@server>; Sun, 7 Feb 2010 13:22:42 -0600
Received: (from root@localhost)
 by server (8.14.2/8.14.2/Submit) id o17JMgbM005387
 for adamh; Sun, 7 Feb 2010 13:22:42 -0600
Date: Sun, 7 Feb 2010 13:22:42 -0600
From: root <root@server>
Message-Id: <201002071922.o17JMgbM005387@server>
To: adamh@server

This is a test email
In this example, we verified that sendmail was listening on TCP
 port 25, and we used the standard Linux command
 mail to send an email address through sendmail.
 Sendmail saves mail to /var/spool/mail/$username
 by default, so we saw the size of /var/spool/mail/adamh increase from
 0 bytes to 689 bytes. Viewing this file shows us the mail header
 information that sendmail stores in this file, which is in “mbox”
 format. Finally, we saw what mail logging looks like by examining the
 file /var/log/maillog.
The mail command can be used to both
 send mail and read mail that is stored in mbox format. The easiest way
 to send mail is by piping it to the mail command,
 as shown in the previous example. The mail command
 has many other options, and is a useful command to have in your arsenal.
 This command is not sendmail-specific, and is designed to work with any
 standards-compliant MTA.

Configuration of Postfix

Postfix was created as a replacement for sendmail, and
 therefore it maintains a mostly “sendmail-compatible” interface. In most
 cases, postfix can act as a drop-in replacement for sendmail, and
 scripts that had called sendmail directly with various command-line
 options will continue to work. Postfix accomplishes this by including
 with its distribution a program called
 /usr/sbin/sendmail, which exists to act as a
 “bridge” between calls to sendmail and the postfix utility. Because of
 this, many of the commands you are used to in sendmail will work with
 postfix:
which sendmail
/usr/sbin/sendmail
for file in /usr/sbin/sendmail /usr/bin/mailq /usr/bin/newaliases; { echo -n
"$file: " && rpm -q --whatprovides ${file}; }
/usr/sbin/sendmail: postfix-2.3.2-32
/usr/bin/mailq: postfix-2.3.2-32
/usr/bin/newaliases: postfix-2.3.2-32
The postfix system is made up of a number of different
 applications, as opposed to the monolithic nature of sendmail. The main
 program is /usr/lib/postfix/master, which is the
 daemon that listens on TCP port 25 for incoming SMTP connections and
 accepts mail. Other applications are listed in Table 17-1. These applications live in /usr/lib/postfix/ unless otherwise
 indicated.
Table 17-1. Postfix programs
	Program name
	Description

	anvil
	Maintains statistics about client
 connection counts or client request rates. This information can
 be used to defend against clients that hammer a server with
 either too many simultaneous sessions or too many successive
 requests within a configurable time interval (hence the name
 “anvil”). Run by the Postfix master server.

	bounce
	Maintains per-message log files with
 delivery status information. Run by the Postfix master
 server.

	cleanup
	Processes inbound mail, inserts it
 into the incoming mail queue, and informs the queue manager of
 its arrival.

	discard
	Processes delivery requests from the
 queue manager that should be discarded.

	error
	Processes delivery requests from the
 queue manager that should be logged as errors.

	flush
	Maintains a record of deferred mail by
 destination.

	lmtp
	Implements the SMTP and LMTP mail
 delivery protocols to deliver mail.

	local
	Processes delivery requests from the
 queue manager that should be delivered locally.

	pickup
	Moves mail from the
 maildrop directory to the cleanup
 process.

	pipe
	Handles delivery of mail to an
 external command.

	proxymap
	Handles lookup tables between the
 postfix programs.

	qmgr
	Waits for incoming mail from the
 master server and hands it to the delivery
 process.

	qmqpd
	Daemon for the “Quick Mail Queueing
 Protocol.” Designed to be a centralized mail queue for a number
 of hosts. This prevents having to run a full-blown mail server
 on each and every host.

	scache
	Maintains a shared multisession cache
 that can be used by the different postfix
 programs.

	showq
	Emulates the sendmail
 mailq command.

	smtp
	Alias for
 lmtp.

	smtpd
	The actual process that handles
 incoming mail. Can be run as a standalone process instead of
 being called by the master program.

	spawn
	Postfix version of
 inetd.

	tlsmgr
	Handles caching of TLS
 connections.

	trivial-rewrite
	Handles address rewriting and domain
 resolving before mail is delivered.

	verify
	Email address
 verification.

	virtual
	Handles virtual domain name mail
 hosting.

	/usr/bin/newaliases
	Backward-compatible with the sendmail
 newaliases command. Converts the text file
 /etc/aliases into a binary file that is
 parsable by postfix.

Configuration of Qmail

Qmail is similar to postfix in that it was designed as a
 sendmail replacement and is a collection of smaller programs instead of
 one large one. The design goal behind Qmail is security, so often the
 smaller programs will run as lower-privileged users. Some of the more
 common Qmail programs are listed in Table 17-2.
Table 17-2. Qmail programs
	Program name
	Description

	tcpserver
	Listens for incoming TCP connections
 and hands them off to the appropriate program. Similar to
 inetd or
 xinetd.

	qmail-smtpd
	Handles incoming email.

	qmail-inject
	Injects outgoing email into the mail
 queue.

	qmail-send
	Delivers mail messages currently in
 the queue.

	qmail-queue
	Formats mail correctly and places it
 in the queue for delivery.

	qmail-lspawn
	Invokes
 qmail-local to handle local
 delivery.

	qmail-rspawn
	Invokes
 qmail-remote to handle remote
 delivery.

	qmail-local
	Delivers email locally.

	qmail-remote
	Delivers email
 remotely.

	qmail-qmqpd
	Receives mail via the Quick Mail
 Queueing Protocol and invokes qmail-queue
 to put mail in the outgoing
 queue.

	qmail-qstat
	Summarizes the current contents of the
 mail queue.

	qmail-qread
	Lists messages and recipients of
 emails in the outgoing queue.

	qmail-tcpto
	Lists hosts that have timed out on
 mail delivery attempts.

	qmail-tcpok
	Clears the host timeout
 list.

	qmail-showctl
	Analyzes the current qmail
 configuration files and explains the setup.

	qmail-start
	A wrapper program that starts
 qmail-send,
 qmail-lspawn,
 qmail-rspawn, and
 qmail-clean with the appropriate user IDs
 so mail delivery can happen.

Qmail also handles sendmail compatibility in ways similar to
 postfix. Qmail comes with the program
 /var/qmail/bin/sendmail, which is designed to take
 the same command-line options that
 sendmail takes and pass them to qmail. The program dot-forward is used to read a user’s
 .forward file, and the program
 fastforward will read the sendmail
 /etc/aliases file. More information
 on qmail can be found at the author’s site.

Configuration of Exim

Exim, like postfix and qmail, was designed to be a
 sendmail replacement. Therefore, it has helper programs and supports
 command-line options to enable a smooth transition from sendmail. Exim
 is monolithic like sendmail, in that the exim program handles the
 acceptance of email on TCP port 25 and the delivery of mail. There are a
 number of helper programs that come with exim, however. Some of the more
 common ones are listed in Table 17-3.
Table 17-3. Exim programs
	Program name
	Description

	/usr/bin/mailq.exim
	Drop-in replacement for sendmail’s
 mailq command.

	/usr/bin/newaliases.exim
	Drop-in replacement for sendmail’s
 newaliases command.

	/usr/bin/runq.exim
	Alias for
 /usr/sbin/exim. Running this command is the
 same as running exim –q. This forces a
 single run through the mail queue, attempting a resend on every
 item.

	/usr/lib/sendmail.exim
	Handles sendmail command-line options
 and passes them to exim.

	/usr/sbin/exim
	The main exim binary, this process
 listens on TCP port 25 for incoming SMTP connections and hands
 incoming mail to the local delivery agent.

	/usr/sbin/eximstats
	Generates statistics from exim
 mainlog or syslog
 files.

	/usr/sbin/exiwhat
	Describes what the exim process is
 currently doing.

	/usr/sbin/exinext
	Gives specific information about retry
 efforts for an email address.

	/usr/sbin/exipick
	Displays individual messages from the
 exim mail queue.

	/usr/sbin/exiqgrep
	Searches for strings in the mail
 queue.

	/usr/sbin/exiqsumm
	Summarizes the current contents of the
 mail queue.

On the Exam
It is not necessary to know the detailed configuration options
 of each MTA for the LPI 102 exam. You need to understand the basic
 purpose of an MTA and know how to handle aliasing and email
 forwarding. You should also be familiar with the
 sendmail-compatibility commands included with qmail, postfix, and
 exim.

Name
mail

Syntax
mail [options]

Description
A mail processing system that can be used to both send and
 read Internet mail.

Example
Start mail in interactive mode to read your mail:
mail
Send an email from the command line:
mail -s "This is the subject" -c "root" adamh
Hello
.
Cc: root
This example shows some command-line options of
 mail, specifically the ability to indicate a
 subject and Cc: list. In this example, the body of the message was
 given interactively, ending with a “.” on a line by itself. You
 could also cat an existing file and redirect
 STDOUT to the mail program
 to make this noninteractive:
echo "Message body" > /tmp/body.msg
cat /tmp/body.msg | mail –s "This is the subject" –c "root" adamh
This email was delivered successfully because there was a user
 account named adamh on this system. What if we
 want to create aliases for this user so he can get email to the same
 inbox via a number of different email addresses? Sendmail handles
 aliasing with the file /etc/aliases:
cat /etc/aliases
#
Aliases in this file will NOT be expanded in the header from
Mail, but WILL be visible over networks or from /bin/mail.
#
>>>>>>>>>> The program "newaliases" must be run after
>> NOTE >> this file is updated for any changes to
>>>>>>>>>> show through to sendmail.
#

Basic system aliases -- these MUST be present.
mailer-daemon: postmaster
postmaster: root

General redirections for pseudo accounts.
bin: root
daemon: root
adm: root
lp: root

User maintained aliases
adam: adamh
adam.haeder: adamh
haeder: adamh
The lines in this file take the format “alias: user account”.
 After you make modifications to this file, you must run the command
 newaliases as root. The
 newaliases command will take the /etc/aliases file and convert it to a
 hashed Berkeley DB file. This is a standard method of configuration
 for sendmail; changes are made to text-based configuration files,
 and are then converted to Berkeley DB files for quicker parsing.
 Emails that are sent to adam,
 adam.haeder, or haeder
 will all be delivered to the user adamh.
What if you want to forward all emails sent to a specific user
 account to another account, either on the same system or to a
 different email address? The easiest way to accomplish this is with
 the file ~/.forward. This is
 simply a text file that lives in a user’s home directory and
 contains one or more email addresses to forward all mail to. These
 can be either local addresses (usernames) or complete Internet email
 addresses (user@hostname.com). The advantage of
 the ~/.forward file is that the
 user can maintain it himself, whereas the /etc/aliases file must be maintained by
 the root user.

Name
Mail queuing

Description
Sendmail is an intelligent mail agent, and it tries to
 deliver mail even when failures occur. For example, if a user
 attempts to send email to user@hostname.com,
 and the mail server for hostname.com is turned off, sendmail will be
 unable to make a connection to TCP port 25 on the mail server for
 hostname.com and consequently won’t be able to deliver the mail.
 Instead of giving up, sendmail will place the email in a queue and
 attempt redelivery. The default action of sendmail is to attempt
 redelivery of queued mail every 4 hours for 5 days before giving up
 and sending a “Delivery Failure” notification to the original
 sender. Queued mail is stored in the directory /var/spool/mqueue and is managed by the
 program mailq.

mailq
Syntax
mailq [options]

Description
Displays the items in the mail queue.

Example
Attempt to send mail to a host that is not currently
 accepting email:
echo "Failure Test" | mail user@unknown.com

View the mail queue
mailq
o1591AmX005615 7182 Fri Feb 5 03:01 MAILER-DAEMON
 8BITMIME (Deferred: Connection refused by unknown.com.)
 <user@unknown.com>
This mail will remain in the queue for a default time of 5
 days, with retry attempts every 4 hours. You can force sendmail to
 attempt a resend of every item in the mail queue with the command
 sendmail –q –v.

Chapter 18. Manage
 Printers and Printing (Topic 108.4)

Chapter 18 contains
 the final Objective in Topic 108:
	Objective 4: Manage Printers and
 Printing
	Candidates should be able to manage print queues and user print
 jobs using CUPS and the LPD compatibility interface. Weight: 2.

Objective 4: Manage Printers and Printing

As long as the paperless office remains a myth, printing will be an
 important aspect of the computing experience. Even if you don’t deal with
 it on a daily basis, as a system administrator printing will inevitably be
 an important part of your job.
This topic also covers the setup, administration, and use of the
 Common Unix Protocol (CUPS) and the Line Printer Daemon (LPD) legacy
 interface (lpr, lprm,
 lpq, etc.). Although they are not covered in the
 current LPI Objectives, this chapter also includes an introduction to
 other printing systems that may be used on Linux systems.
In the current LPI exams, this objective weight was changed, the
 content shrank from three objectives to one, and the objective was moved
 to the Essential System Services topic. Bear in mind that CUPS is the main
 thing to know here, but CUPS’s compatibility with the legacy LPD protocol
 are also required.

An Overview of Printing

The various printing implementations available for Linux
 systems have a basic architecture in common. In every printing system, a
 central daemon (or service) receives print jobs, via either a user command
 (such as lpr) or the network. The print job is then
 processed through input filters if necessary, and sent to either a local
 printer or another printing daemon.
Printing documents is a slow and error-prone process. Printers
 accept data in small amounts. They are prone to run out of paper, jam, and
 go offline for other reasons. Printers also must accept requests from
 multiple system users. As a result, by design, the end user is isolated
 from printing functions on most computer systems. This isolation comes in
 the form of a print queue, which holds print requests
 until the printer is ready for them. It also manages the order in which
 print jobs are processed. Feeding print jobs to printers is often called
 spooling, and the program that manages
 the print queues is sometimes called a spooler. It
 can also be called a scheduler.
BSD and System V Interfaces

Historically, there have been two competing printing
 implementations on Unix systems, one invented for BSD Unix and another
 for System V (SysV) Unix. Although the implementations are similar, they
 have completely different commands. The BSD printing commands include
 lpd, lpr,
 lprm, and lpc. The System V
 printing commands include lp,
 enable, disable,
 cancel, lpstat, and
 lpadmin. On System V-based systems, the
 lpadmin command manages print queues. There is no
 equivalent to it on BSD-based systems, other than to simply edit
 /etc/printcap. Other than
 lpadmin, there is a one-to-one relationship between
 BSD and System V printing commands. However, the internal details, such
 as files used, vary considerably.
Older Linux distributions tended to use a port of the BSD
 lpd code (and related commands). Due to various
 security issues with the BSD code (mostly the overuse of the
 root account through SUID executables), current
 distributions have largely dropped the BSD code in favor of CUPS.

LPRng

LPRng is a complete rewrite of the BSD utilities. It is
 designed to be portable and secure. Unlike the BSD utilities, the client
 programs do not need to run SUID. The server (still called
 lpd) is a complete implementation of the RFC 1179
 Line Printer Daemon Protocol. It also includes lp
 and lpstat commands for System V compatibility.
Although LPRng is a complete rewrite, configuration is still
 mostly the same as for the BSD utilities. It still uses
 /etc/printcap (described later in this chapter). It
 also has two additional configuration files:
 /etc/lpd.conf, which controls details of LPRng’s
 lpd, and /etc/lpd.perms, which
 configures access controls for lpd.
Sometimes it’s necessary to integrate the printing server into a
 heterogeneous infrastructure, such as to serve systems using the LPD
 legacy protocol. The embedded package cups-lpd is
 the CUPS Line Printer Daemon (LPD) mini-server supporting these legacy
 client systems. cups-lpd does not act as a
 standalone network daemon, but instead operates using the Internet
 inetd or xinetd
 super-server.
The LPD server will listen on the default port specified in the
 /etc/services
 file:
printer 515/tcp spooler # line printer spooler
printer 515/udp spooler # line printer spooler
LPRng is available from http://www.lprng.com.

CUPS

CUPS is a more recent printing system that was initially
 designed to support the Internet Printing Protocol (IPP) but has evolved
 into a drop-in replacement for both the BSD and System V utilities,
 including client replacements for RFC 1179 (lpd
 protocol) support.
Although it retains backward compatibility with older printing
 systems, the internal details of CUPS are significantly different. The
 server component cupsd handles queuing, and
 includes a web server for configuration and management. Nearly
 everything can be configured through the web interface or the included
 lpadmin command. The various configuration files in
 the /etc/cups directory rarely need to be edited by
 hand.
The CUPS web interface, shown in Figure 18-1, is available on the machine
 at http://localhost:631.
[image: CUPS management web interface]

Figure 18-1. CUPS management web interface

In order to implement or troubleshoot a printing system, it’s very
 important to understand the data flow and the steps taken on the server
 and client side. In the case of CUPS, these are:
	A print job is generated by an application locally on the
 client side.

	The print job is sent to the print server specified by the
 protocol selected for that queue (e.g., IPP or CIFS).

	On the CUPS server, the spooler process
 cupsd fetches the data stream and saves it in
 the print spool directory. The default directory is /var/spool/cups.

	If an input filter is specified in the configuration,
 CUPS will pass the job to it. In any case, after any filtering, the
 job is sent to the backend. Many filters create formats for
 particular printers from generic input, such as PostScript or a
 PDF.

	The backend sends the printer-specific data to the
 printer.

	Once the job is completed, cupsd removes
 the respective files from the spool directory, depending on the
 retention time configured.

CUPS is available from http://www.cups.org.
CUPS printing overview

On Linux, the CUPS printing system consists of the following
 elements:
	cupsd
	This daemon is started at boot time and runs
 continuously, listening for print requests directed at multiple
 printers. When a job is submitted to a print queue,
 cupsd handles jobs on that queue. The copy
 exits when the queue is emptied.

	/etc/cups/cupsd.conf
	This file configures the cupsd
 daemon. It is normally located in the /etc/cups directory.
Each line in the file can be a configuration directive, a
 blank line, or a comment. The configuration directives are
 intentionally similar to those used by the popular Apache web
 server software.

	/etc/cups/printers.conf
	This file defines available local printers. It is
 generated automatically by cupsd when
 printers are added, deleted, or changed. This file shouldn’t be
 changed manually.

	/etc/printcap
	This file is still present on the system to allow older
 printing applications that rely on it to keep functioning. Under
 CUPS, the file is automatically generated by
 cupsd from the /etc/cups/printers.conf file. All
 changes to the file are lost if the CUPS service is
 restarted.

	lp
	The lp (line print) program
 submits both files and information piped to its standard input
 to print queues.

	lpq
	This program queries and displays the status and
 contents of print queues.

	lprm
	This program removes print jobs from print
 queues.

	lpadmin
	This program configures printer and class queues
 provided by CUPS. It can also be used to set the server default
 printer or class.

	lpc
	Nowadays, lpc provides
 limited control over printer and class queues provided by CUPS.
 It can also be used to query the state of queues. The command
 lpadmin should be used instead.

	Spool directories
	The cupsd daemon uses
 /var/spool/cups for the spooling of data
 awaiting printing.

	Print jobs
	Each print request submitted is spooled to a queue
 and assigned a unique number. The print jobs can be examined and
 manipulated as needed.

Other files are also used by particular parts of the system,
 such as input filters.

CUPS backends

Several backends are available for CUPS: parallel,
 serial, SCSI, and USB ports, as well as network backends that operate
 via the Internet Printing Protocol (HTTP, HTTPS, and IPP), JetDirect
 (AppSocket port 9100), Line Printer Daemon (LPD), CIFS (which used to
 be called SMB) protocols, and more. PDF generators are also available. These backends
 usually live in the directory /usr/lib/cups/backend, and can be compiled
 programs or scripts written in any scripting language, such as Perl or
 Python.
The backend is always the last program executed for processing a
 print job. Table 18-1 lists the
 most popular backends.
Table 18-1. Backend processors under CUPS
	Backend
	URI syntax
	Example URI

	Parallel
	parallel:/dev/lpnumber
	parallel:/dev/lp0

	USB
	usb://make/model?serial=
 number
	usb://vendor/printer%201000?serial=A1B2C3

	ipp
	ipp://host/printers/queue
	ipp://host/printers/printer1000

	LPD
	lpd://host/queue
	lpd://host/printer

	socket
	socket://host:port
	socket://ip:9100

	CIFS (Common Internet Filesystem,
 the protocol Microsoft Windows-based systems use for file and
 printer communication across a network)
	see the
 smbspool(8) manpage
	smb://user:password@workgroup/host/share

CUPS filters

The core of the CUPS filtering system is based on
 Ghostscript, part of the GNU project. It consults PPD
 files, which are an industry standard for representing printer
 capabilities (two-sided printing, four-to-a-page, etc.).
For PostScript printers, the PPD file contains the printer-specific options (and
 nothing else) together with the corresponding PostScript code snippets
 that must be sent to the PostScript interpreter in order to activate a
 certain option.
For non-PostScript printers, the PPD file contains additional
 information about which printer driver program to use and the options
 available for the particular driver. If several drivers can be used
 for a given printer, several PPD files are found on the system.
Depending on the printer-specific options set for a certain
 print job (e.g., -o PageSize=A4),
 the filter system reads the suitable PostScript code snippets (the
 so-called “PostScript invocation values”) from the PPD file and
 inserts them in the PostScript data stream.
The original data has a MIME type determined by configuration
 options in /etc/cups/mime.types.
 If the type is not application/postscript, the data is
 converted to PostScript according to the /etc/cups/mime.convs configuration file.
 For example, text/plain is
 converted to PostScript with the
 /usr/lib/cups/filter/texttops program.
These filter files are usually found in the directory /usr/lib/cups/filter and, like CUPS
 backends, can be compiled code or shell scripts.

Managing CUPS print queues

As a system administrator, you’ll likely be asked to
 manage and manipulate printer more often. On Linux, the
 lp, lpq,
 lpstat, lprm, and
 lpadmin commands are your tools. Other tools
 include lpoptions, accept,
 reject, and cancel.

Name
lp

Syntax
lp [-E] [-U username] [-c] [-d destination[/instance]]
 [-h hostname[:port]] [-m]
 [-n num-copies] [-o option[=value]] [-q priority] [-s] [-t title]
 [-H handling] [-P page-list] [--] [file(s)]

Description
lp submits files for printing
 or alters a pending job.

Options
	--
	Prints from standard input.

	-d
 destination
	Prints files to the named printer.

	-o
 "name=value
 [name=value
 ...]”
	Sets one or more job options.

Example 1
Print a double-sided legal document to a printer called
 “foo”:
$ lp -d foo -o media=legal -o sides=two-sided-long-edge filename

Example 2
Print an image across four pages:
$ lp -d bar -o scaling=200 filename

Example 3
Print a text file with 12 characters per inch, 8 lines per
 inch, and a 1-inch left margin:
lp -d bar -o cpi=12 -o lpi=8 -o page-left=72 filename

Name
cancel

Syntax
cancel [-E] [-U username] [-a] [-h hostname[:port]] [-u username] [id]
 [destination
] [destination-id]

Description
cancel removes the specified
 print jobs from the queue.

Options
	-a
	Cancels all jobs on the named destination, or all jobs
 on all destinations if no destination is provided.

Name
lpstat

Syntax
lpstat [-E] [-U username] [-h hostname[:port]] [-l] [-W which-jobs]
 [-a [destination(s)]] [-c [class(es)]] [-d]
 [-o [destination(s)]]
 [-p [printer(s)]] [-r] [-R] [-s] [-t] [-u [user(s)]]
 [-v [printer(s)]]

Description
lpstat displays status
 information about the current classes, jobs, and printers. When
 run with no arguments, it lists jobs queued by the current
 user.

Options
	-a
 [printer(s)]
	Shows the accepting state of printer queues. If no
 printers are specified, shows all printers.

	-t
	Shows all status information. This option is very
 useful for troubleshooting.

Name
lpadmin

Syntax
lpadmin [-E] [-U username] [-h server[:port]] -d destination
lpadmin [-E] [-U username] [-h server[:port]] -p printer option(s)
lpadmin [-E] [-U username] [-h server[:port]] -x destination

Description
lpadmin configures printer and
 class queues provided by CUPS. It can also be used to set the
 server default printer or class.

Options
	-m model
	Sets a standard System V interface script or PPD file
 from the model directory.

	-v
 device-uri
	Sets the device URI attribute of the printer queue. If
 device-uri is a filename, it is
 automatically converted to the form file:///file/name.
 Use the lpinfo(8) command for a list of
 supported device URIs and schemes.

	-E
	Enables the printer and accepts jobs; this is the same
 as running the accept and
 cupsenable programs for a specific
 printer.

Name
lpq

Syntax
lpq [options] [users] [job#s]

Description
Query a print queue. If numeric
 job#s are included, only those jobs are
 listed. If users are listed, only jobs
 submitted by those users are listed.

Options
	-l
	Long output format. This option results in a multiline
 display for each print job.

	-P
 name
	This specifies the print queue
 name. In the absence of
 -P, the default printer is
 queried.

Example 1
Examine active jobs:
$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active root 193 filter 9443 bytes
1st root 194 resume.txt 11024 bytes
2nd root 196 (standard input) 18998 bytes
Here, filter is currently being
 printed. resume.txt is up next, followed by
 the 18,998 bytes of data piped into lpr’s
 standard input.

Example 2
Examine those same jobs using the long format:
$ lpq -l
lp is ready and printing
root: active [job 193AsJRzIt]
 filter 9443 bytes
root: 1st [job 194AMj9lo9]
 resume.txt 11024 bytes
root: 2nd [job 196A6rUGu5]
 (standard input) 18998 bytes

Example 3
Examine queue lp, which
 turns out to be empty:
$ lpq -Plp
no entries

Example 4
Examine jobs owned by bsmith:
$ lpq bsmith
Rank Owner Job Files Total Size
7th bsmith 202 .bash_history 1263 bytes
9th bsmith 204 .bash_profile 5676 bytes
Using the job numbers reported by lpq,
 any user may remove her own print jobs from the queue, or the
 superuser may remove any job.

Name
lprm

Syntax
lprm [-Pname] [users] [job#s]
lprm -ly

Description
Remove jobs from a print queue. In the first form,
 remove jobs from queue name or from the
 default queue if -P is omitted. If
 users or
 jobs are specified, only those jobs
 will be removed. In the second form, all of a normal user’s jobs
 will be omitted; for the superuser, the queue will be
 emptied.

Example 1
As a normal user, remove all of your print jobs:
$ lprm -

Example 2
As the superuser, remove all jobs from queue
 ps:
lprm -Pps -
You may occasionally be surprised to see a no entries response from lpq, despite observing that the printer
 is dutifully printing a document. In such cases, the spool has
 probably been emptied into the printer’s buffer memory, and the
 result is that the job is no longer under the control of the
 printing system. To kill such jobs, you need to use the printer’s
 controls to stop and delete the job from memory.

Name
lpr

Syntax
lpr [options] [files]

Description
Send files or standard
 input to a print queue. A copy of the input source is placed in
 the spool directory under /var/spool/lpr
 until the print job is complete.

Frequently used options
	-#number
	Send number copies of the
 print job to the printer.

	-s
	Instead of copying a file to the print spooling area,
 make a symbolic link to the file, thereby eliminating
 transfer time and storage requirements in
 /var/spool/lpr. This can relieve load
 on the daemon’s system for very large files.

	-Pname
	Specify the print queue
 name. In the absence of
 -P, the default printer is
 queried.

Example 1
Print the file /etc/fstab on the
 default print queue:
lpr /etc/fstab

Example 2
Print a manpage by piping to lpr’s
 standard input:
man -t 5 printcap | lpr

Example 3
Disable a print queue:
lpc disable lp
Then, attempt to print three copies of a file to the
 disabled queue as superuser:
lpr -#3 /etc/fstab
This succeeds, despite the disabled printer queue. Now try
 as a regular user:
$ lpr -#3 ~/resume.txt
lpr: Printer queue is disabled
As expected, normal users can’t print to the disabled
 queue.
On the Exam
You must be familiar with lp and its use with both
 files and standard input. Also remember that
 lp doesn’t send data to the printer but to
 the printer daemon (cupsd on Linux), which
 handles sending it to the printer backend and then to the
 printer.

Troubleshooting General Printing Problems

Logfiles are the first, and sometimes the best, guide to
 solving problems with printing. Many people still make the basic mistake
 of forgetting to check logfiles. These files are rotated, so that you can
 find recent events in the main file and older events in gzipped backup
 files. If you need even more detail, change the LogLevel line in /etc/cups/cupsd.conf to the value
 debug. It will dump loads of extra
 information into the logfiles for subsequent print operations.
You should also know about the cups-config
 command, which has some options that show you information about the
 current state of the system.
The Error Logfile

Recent errors and related information can be found in
 /var/log/cups/error_log. This file
 lists messages from the scheduler, which includes both errors and
 warnings. You can view detailed and real-time information about data
 transferring, filtering, etc. Sample messages generated by one typical
 job are:
I [16/Nov/2009:11:19:07 +0100] [Job 102] Adding start banner page "none".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Adding end banner page "none".
I [16/Nov/2009:11:19:07 +0100] [Job 102] File of type application/postscript
queued by "brunop".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Queued on "PDF" by "brunop".
I [16/Nov/2009:11:19:07 +0100] [Job 102] Started filter
/usr/libexec/cups/filter/pstops (PID 18223)
I [16/Nov/2009:11:19:07 +0100] [Job 102] Started backend
/usr/libexec/cups/backend/cups-pdf (PID 18224)
I [16/Nov/2009:11:19:07 +0100] [Job 102] Completed successfully.
I [16/Nov/2009:11:20:17 +0100] [Job ???] Request file type is
application/postscript.
I [16/Nov/2009:11:20:17 +0100] [Job 103] Adding start banner page "none".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Adding end banner page "none".
I [16/Nov/2009:11:20:17 +0100] [Job 103] File of type application/postscript
queued by "brunop".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Queued on "PDF" by "brunop".
I [16/Nov/2009:11:20:17 +0100] [Job 103] Started filter
/usr/libexec/cups/filter/pstops (PID 18340)
I [16/Nov/2009:11:20:17 +0100] [Job 103] Started backend
/usr/libexec/cups/backend/cups-pdf (PID 18341)
I [16/Nov/2009:11:20:17 +0100] [Job 103] Completed successfully.
The I that starts each line
 stands for “information.” In this case, no errors or warnings were
 generated.

The Page Logfile

This logfile can be found in /var/log/cups/page_log. It keeps information
 from each page sent to a printer. Each line contains the following
 information (when applicable):
printer user job-id date-time page-number num-copies job-billing \
job-originating-host-name jobname media sides
A sample excerpt follows:
Photosmart_C4500 brunop 86 [31/Oct/2009:12:48:36 +0100] 1 1 - localhost
Photosmart_C4500 brunop 86 [31/Oct/2009:12:48:52 +0100] 2 1 - localhost
adamp23 brunop 87 [02/Nov/2009:13:40:33 +0100] 1 1 - localhost
adamp23 brunop 87 [02/Nov/2009:13:40:33 +0100] 2 1 - localhost
adamp23 brunop 88 [09/Nov/2009:09:31:11 +0100] 1 1 – localhost
PDF root 100 [16/Nov/2009:11:11:52 +0100] 1 1 - localhost
PDF brunop 101 [16/Nov/2009:11:16:38 +0100] 1 1 - localhost

The Access Logfile

This file can be found in /var/log/cups/access_log. It lists each HTTP
 resource accessed by a web browser or client. Each line is in an
 extended version of the so-called “Common Log Format” used by many web
 servers and web reporting tools. A sample follows (lines broken to fit
 the page of this book):
localhost - - [16/Nov/2009:17:28:29 +0100] "POST / HTTP/1.1" 200 138 \
 CUPS-Get-Default successful-ok
localhost - - [16/Nov/2009:17:28:29 +0100] "POST / HTTP/1.1" 200 552 \
 CUPS-Get-Printers successful-ok
localhost - root [16/Nov/2009:17:28:29 +0100] "GET /printers HTTP/1.1" \
 200 11258 - -
localhost - root [16/Nov/2009:17:28:29 +0100] "GET \
 /images/button-search.gif HTTP/1.1" 200 332 - -
localhost - root [16/Nov/2009:17:28:29 +0100] "GET \
 /images/button-clear.gif HTTP/1.1" 200 279 - -

Using the cups-config Utility for Debugging

The cups-config utility has several
 parameters that can be handy while troubleshooting. The options are
 described in Table 18-2.
Table 18-2. Options to cups-config
	Option
	Description

	--cflags
	Displays the necessary compiler
 options.

	--datadir
	Displays the default CUPS data
 directory.

	--help
	Displays the program usage
 message.

	--ldflags
	Displays the necessary linker
 options.

	--libs
	Displays the necessary libraries to
 link to.

	--serverbin
	Displays the default CUPS binary
 directory, where filters and backends are stored.

	--serverroot
	Displays the default CUPS
 configuration file directory.

On the Exam
Be familiar with the CUPS logfiles, and how to interpret them to
 troubleshoot printing issues.

Chapter 19. Networking
 Fundamentals (Topic 109.1)

Although it is not necessary for you to be a networking expert
 to pass the LPIC Level 1 Exams, you must be familiar with networking,
 network-related vocabulary, and basic Linux networking configuration. This
 chapter introduces fundamental networking and troubleshooting concepts
 specifically included in the exams. However, it is not a complete
 introductory treatment, and you are encouraged to review additional material
 for more depth. This chapter covers this Objective:
	Objective 1: Fundamentals of Internet
 Protocols
	Candidates should demonstrate a proper understanding of
 network fundamentals. This Objective includes the understanding of IP
 addresses, network masks, and what they mean (i.e., determine a
 network and broadcast address for a host based on its subnet mask in
 dotted quad or abbreviated
 notation, or determine the network address, broadcast address, and
 netmask when given an IP address and number of bits). It also covers
 the understanding of the network classes and classless subnets (CIDR) and the reserved addresses for private
 network use. IPv6 is also discussed, along with how this addresses
 some of the limitations of IPv4. It includes the understanding of the
 function and application of a default route. It also includes the
 understanding of basic Internet protocols (IP, ICMP, TCP, UDP) and the
 more common TCP and UDP ports (20, 21, 23, 25, 53, 80, 110, 119, 139,
 143, 161). Weight: 4.

Objective 1: Fundamentals of Internet Protocols

The TCP/IP suite of protocols was adopted as a military
 standard in 1983 and has since become the world standard for network
 communications on the Internet and on many LANs, replacing proprietary
 protocols in many cases. This section covers TCP/IP basics cited by the
 LPI Objectives.
Network Addressing

For several years IPv4 has been the standard method for
 assigning a unique address that identifies the host on the network and
 the Internet. The 32-bit IP address, also referred to as a
 dotted quad, is composed of four 8-bit fields
 divided by a period. These fields identify first the network and then
 the host for a device on the network. IPv4 provides 4.29 billion
 addresses.
The IP address 192.168.1.150 and the binary equivalent would
 be:
	11000000 10101000 00000001 10010110

IPv4 addresses are categorized into classes to provide structure.
 There are five classifications of networks defined by IP addresses.
 Table 19-1 identifies the address
 ranges for the classes that are primarily used.
Table 19-1. IPv4 address ranges by class
	Address class
	IP address range

	Class A
	0.0.0.0 to
 127.255.255.255

	Class B
	128.0.0.0 to
 191.255.255.255

	Class C
	192.0.0.0 to
 223.255.255.255

	Class D
	224.0.0.0 to
 239.255.255.255

	Class E
	240.0.0.0 to
 247.255.255.255

Every device on a network or connected to the Internet needs a
 unique IP address, including printers and fax machines; consequently,
 the supply of available IP addresses will run out eventually. There have
 been many technologies developed to reduce the exhaustion of available
 IP addresses, including network address translation (NAT), Classless
 Inter-Domain Routing (CIDR), and IPv6.
Private IP addresses and NAT

One of the early attempts of handling the exhaustion of
 IP addresses was the implementation of private IP addresses. Private
 IP addresses are not globally assigned, which means that different
 organizations may use the same private IP addresses. Private IP
 addresses are not routable, and therefore they are not accessible
 across the Internet. Organizations using private IP address internally
 for network connectivity use a process called network address
 translation (NAT) gateway or a proxy server to provide connectivity to
 the Internet. Each IP address class has a range of IP addresses that
 are reserved as private addresses. Table 19-2 lists the ranges for
 private IP addresses.
Table 19-2. IPv4 private network address ranges
	Class
	Private IP address
 range

	Class A
	10.0.0.0 to
 10.255.255.255

	Class B
	172.16.0.0 to
 172.31.255.255

	Class C
	192.168.0.0. to
 192.168.255.255

Classless Inter-Domain Routing (CIDR)

In the 1990s it became apparent that the exhaustion of
 the IPv4 addresses would be reached in a few years with the
 ever-growing expansion of Internet technology. The move was made away
 from assigning IP addresses based on classes to a method that uses
 ranges of address. IPv4 addresses are now specified using the CIDR
 notation that specifies subnet masks. The CIDR notation uses the
 format
 address/prefix.
The prefix designates the number
 of bits that will be used by the subnet mask. Let’s say we have a
 range of IP addresses consisting of 206.24.94.105 and a subnet mask of
 255.255.255.0. We would note this address using CIDR as:
	206.24.94.105/24

Using the CIDR notation allows for custom subnet masks to be
 created without tying them to the limitations of classes.

Internet Protocol Version 6 (IPv6)

The Internet Engineer Task Force (IETF) defined IPv6 in
 1995. While IPv4 still has the majority of addressing, all network
 operating systems and hardware device manufacturers support IPv6. IPv6
 increases the size of IP addresses from 32 bits to 128 bits, or 16
 octets. This increases the possible number of available addresses to a
 maximum of 2128, or
 3.42×1038, unique addresses. With the
 large number of available IPv6 addresses, it is not necessary to
 implement addressing conservation methods such as NAT and CIDR. This
 will help reduce the administration overhead of managing
 addresses.
The IPv6 address is composed of hexadecimal digits representing
 4-bit sections separated by a colon. The addresses are represented by
 the format
 xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx.
 An example of the preferred format for IPv6 addresses would look like
 the following:
	2130:0000:0000:0000:0003:0040:150c:235b

IPv6 may be abbreviated by removing the leading zeros from the
 address, so if applied to the previous example, the address could
 appear as follows:
	2130:0:0:0:3:40:150c:235b

Another shorthand version of the IPv6 address uses double-colon
 notation, wherein address sections that consist of a series of zeros
 may be replaced with a double colon. In the instance of the IPv6
 address 2130:0000:0000:0000:0003:0040:150c:235b, it could be shortened
 to:
	2130::3:40:150c:235b

IPv6 address several disadvantages of IPv4 addressing,
 including:
	Limited addresses
	As mentioned previously, IPv4 has only about
 109 available addresses, and this
 supply is expected to be exhausted in the near future. IPv6 has
 a much larger addressing capability with
 1038 addresses.

	Security
	IPsec was designed to be integrated into IPv6 addressing
 and is mandated to be used with the protocol, whereas IPv4
 treats it as an optional function. Encryption processes are also
 mandated to be included into IPv6 addressing.

	Configuration
	IPv6 devices will autoconfigure themselves when connected
 to an IPv6-routed network. This process is a cleaner version of
 the IPv4 DHCP process discussed later in this chapter. The
 autoconfiguration functionality also improves addressing
 assignments of mobile devices because these devices are assigned
 to a “home” address where it remains always reachable. When the
 mobile device is at home, it connects using the home address.
 When the mobile device is not at home, a home agent, typically a
 router, will relay messages between the mobile device and the
 nodes it is communicating with.

	Performance
	IPv6 headers have been modified to fixed widths to work
 with high-speed routers, increasing speed and performance when
 moving data packets across Internet backbones.

On the Exam
Prepare to discuss the difference between public and private
 IP addresses on the Internet. Also be able to discuss the major
 differences between IPv4 and IPv6 addressing.

Masks

The early specification of the IP recognized that it would
 be necessary to divide one’s given allotment of IP addresses into
 manageable subnetworks. Such division allows for distributed management,
 added security (fewer hosts can potentially snoop network traffic), and
 the use of multiple networking technologies (Ethernet, Token Ring, ATM,
 etc.). IP also enables convenient partitioning of the physical portions
 of a network across physical and geographical boundaries. To provide the
 capability to locally define networks, IP addresses are considered as
 having two distinct parts: the part that specifies a
 subnet and the one that specifies a network interface. (Remember that IP addresses are
 assigned to network interfaces, not host computers, which can have
 multiple interfaces. For this discussion, however, we assume a
 one-to-one relationship between hosts and interfaces.) The boundary
 between the network and host portions of an IP address is delineated by
 a subnet mask, required by the TCP/IP configuration
 of any network interface. Like the IP address, the subnet mask is simply
 a 32-bit number specified in four 8-bit segments using dotted
 quad decimal notation. The familiar class A, B, and C
 networks have these subnet masks:
	Class A: 255.0.0.0 (binary
 11111111.00000000.00000000.00000000)
	8-bit network address and 24-bit host address

	Class B: 255.255.0.0 (binary
 11111111.11111111.00000000.00000000)
	16-bit network address and 16-bit host address

	Class C: 255.255.255.0 (binary
 11111111.11111111.11111111.00000000)
	24-bit network address and 8-bit host address

When logically AND’d with an IP address, the bits set to 0 in the subnet mask obscure the host portion
 of the address. The remaining bits represent the network address. For
 example, a host on a class C network might have an IP address of
 192.168.1.127. Applying the class C subnet mask 255.255.255.0, the
 network address of the subnet would be 192.168.1.0, and the host address
 would be 127, as depicted in Figure 19-1.
[image: Host interface address calculation]

Figure 19-1. Host interface address calculation

Although it is typical to use the predefined classes (A, B, and
 C), the boundary can be moved left or right in the IP address, allowing
 for fewer or more subnets, respectively. For example, if a single
 additional bit were added to the class C subnet mask, its IP address
 would be:
	255.255.255.128 (binary
 11111111.11111111.11111111.10000000)
	25-bit network address and 7-bit host address

With such a subnet defined on an existing class C network such as
 192.168.1.0, the 256-bit range is split into two subnets, each with 7
 host bits. The first of the two subnets begins at 192.168.1.0 (the
 subnet address) and continues through 192.168.1.127 (the subnet
 broadcast address). The second subnet runs from 192.168.1.128 through
 192.168.1.255. Each of the two subnets can accommodate 126 hosts. To
 extend this example, consider two additional bits:
	255.255.255.192 (binary
 11111111.11111111.11111111.11000000)
	26-bit network address and 6-bit host address

When applied to a class C network, four subnets are created, each
 with 6 host bits. Just as before, the first subnet begins at 192.168.1.0
 but continues only through 192.168.1.63. The next subnet runs from
 192.168.1.64 through 192.168.1.127, and so on. Each of the four subnets
 can accommodate 62 hosts. Table 19-3
 shows more detail on class C subnets, considering only the host portion
 of the address.
Table 19-3. Class C IP subnet detail
	Subnet mask
	Number of subnets
	Network address
	Broadcast address
	Minimum IP address
	Maximum IP address
	Number of hosts
	Total hosts

	128
	2
	0
	127
	1
	126
	126
	
	 	 	128
	255
	129
	254
	126
	252

	192
	4
	0
	63
	1
	62
	62
	
	 	 	64
	127
	65
	126
	62
	
	 	 	128
	191
	129
	190
	62
	
	 	 	192
	255
	193
	254
	62
	248

	224
	8
	0
	31
	1
	30
	30
	
	 	 	32
	63
	33
	62
	30
	
	 	 	64
	95
	65
	94
	30
	
	 	 	96
	127
	97
	126
	30
	
	 	 	128
	159
	129
	158
	30
	
	 	 	160
	191
	161
	190
	30
	
	 	 	192
	223
	193
	222
	30
	
	 	 	224
	255
	225
	254
	30
	240

On the Exam
Be prepared to define network and host addresses when provided
 an IP address and a subnet mask. Practice with a few subnet sizes
 within at least one classification (A, B, or C). Also, because the use
 of decimal notation can cloud human interpretation of IP addresses and
 masks, be ready to do binary-to-decimal conversion on address
 numbers.

As you can see, as the number of subnets increases, the total
 number of hosts that can be deployed within the original class C address
 range reduces. This is due to the loss of both broadcast addresses and
 network addresses to the additional subnets.

Protocols

TCP/IP is a suite of Internet protocols, including the
 Transmission Control Protocol (TCP), Internet Protocol (IP), User
 Datagram Protocol (UDP), and Internet Control Message Protocol (ICMP),
 among others. Some protocols use handshaking (the exchange of control
 information among communicating systems) to establish and maintain a
 connection. Such a protocol is said to be connection-oriented and
 reliable, because the protocol itself is responsible for handling
 transmission errors, lost packets, and packet arrival order. A protocol
 that does not exchange control information is said to be connectionless
 and unreliable. In this context, “unreliable” simply means that the
 protocol doesn’t handle transmission problems itself; they must be
 corrected in the application or system libraries. Connectionless
 protocols are simpler and have fewer overheads than connection-oriented
 protocols. TCP/IP is a stack of protocols because protocols
 are built in a hierarchy of layers. Low-level protocols are used
 by higher-level protocols on adjacent layers of the protocol
 stack:
	TCP
	TCP is a connection-oriented transport agent used by
 applications to establish a network connection. TCP transports
 information across networks by handshaking and retransmitting
 information as needed in response to errors on the network. TCP
 guarantees packet arrival and provides for the correct ordering of
 received packets. TCP is used by many network services, including
 FTP, Telnet, and SMTP. By using TCP, these applications don’t need
 to establish their own error-checking mechanisms, thus making
 their design simpler and easier to manage.

	IP
	IP can be thought of as the fundamental building
 block of the Internet. IP, which is connectionless, defines
 datagrams (the basic unit of transmission), establishes the
 addressing scheme (the IP address), and provides for the routing
 of datagrams between networks. IP is said to provide a datagram delivery service.
 Other higher-level protocols use IP as an underlying
 carrier.

	UDP
	UDP is a connectionless transport agent. It provides
 application programs direct access to IP, allowing them to
 exchange information with a minimum of protocol overhead. On the
 other hand, because UDP offers no assurance that packets arrive at
 destinations as intended, software must manage transmission errors
 and other problems such as missing and incorrectly ordered
 packets. UDP is used by applications such as DNS and NFS.

	ICMP
	ICMP is a connectionless transport agent that is
 used to exchange control information among networked systems. It
 uses IP datagrams for the following control, error-reporting, and
 informational functions:
	Flow control
	Sometimes inbound traffic becomes too heavy
 for a receiving system to process. In such cases, the
 receiving system can send a message via ICMP to the source
 instructing it to temporarily stop sending datagrams.

	Detecting unreachable destinations
	Various parts of network infrastructure are
 capable of detecting that a network destination is
 unreachable. In this case, ICMP messages are sent to the
 requesting system.

	Redirecting routes
	ICMP is used among network components to
 instruct a sender to use a different gateway.

	Checking remote hosts
	Hosts can transmit echo messages via ICMP to
 verify that a remote system’s Internet Protocol is
 functioning. If so, the original message is returned. This
 is implemented in the ping command.

	PPP
	Point-to-Point Protocol (PPP) is used for TCP/IP
 dial-up network access via modem.

On the Exam
You will need a general understanding of the control messages
 sent via ICMP. In particular, note that ICMP does not transmit data
 and that it is used by ping.

Services

When an inbound network request is made, such as that from
 a web browser or FTP client, it is sent to the IP address of the server.
 In addition, the request carries inside it a port number (or just
 port), which is a 16-bit value placed near the
 beginning of a network packet. The port number defines the type of
 server software that should respond to the request. For example, by
 default, web browsers send requests encoded for port 80. Web servers “listen” to
 port 80 and respond to incoming requests. The encoded port can be
 considered part of the address of a request. While the IP address
 specifies a particular interface (or host), the port specifies a
 specific service available on that host. Many port numbers are
 predefined, and the list is expanded as needed to accommodate new
 technologies. The official list of port number assignments is managed by
 the Internet Assigned Numbers Authority (IANA). The ports known by your
 system are listed in /etc/services.
Port numbers 1 through 1023 are often referred to as privileged ports because the services
 that use them often run with superuser authority. Many of these, such as
 ports used for FTP (21), Telnet (23), and HTTP (80), are often referred
 to as well-known ports because they are
 standards. Port numbers from 1024 through 65535 (the maximum) are
 unprivileged ports and can be used by
 applications run by ordinary system users.
During the initial contact, the client includes a local (randomly
 selected) unprivileged port on the client machine for the server to use
 when responding to the request. Client-to-server communications use the
 well-known port, and the server-to-client communications use the
 randomly selected port. This Objective requires you to be familiar with
 the privileged port numbers detailed in Table 19-4.
Table 19-4. Common privileged port numbers
	Port
 number
	Assigned use
	Description

	20 and 21
	FTP data FTP control
	When an FTP session is opened, the
 binary or ASCII data flows to the server using port 20, while
 control information flows on port 21. During use, both ports are
 managed by an FTP daemon, such as
 vftpd.

	23
	Telnet server
	Inbound Telnet requests are sent to
 server port 23 and processed by
 telnetd.

	25
	SMTP server
	This port is used by mail transfer
 agents (MTAs), such as Sendmail.

	53
	DNS server
	Used by the Domain Name System (DNS)
 server, named.

	67
	BOOTP/DHCP server
	Hands out IP addresses to workstations
 dynamically.

	68
	BOOTP/DHCP client
	The client side for
 BOOTP/DHCP.

	80
	HTTP server
	Web servers, such as Apache
 (httpd), usually listen in on this
 port.

	110
	POP3
	The Post Office Protocol (POP) is used
 by mail client programs to transfer mail from a
 server.

	119
	NNTP server
	This port is used by news servers for
 Usenet news.

	139
	NetBIOS
	Reserved for Microsoft’s LAN
 Manager.

	143
	IMAP
	An alternate to POP3, Internet Message
 Access Protocol (IMAP) is another type of mail
 protocol.

	161
	SNMP
	Agents running on monitored systems
 use this port for access to the Simple Network Management
 Protocol (SNMP).

This list is a tiny fraction of the many well-known ports, but it
 may be necessary for you to know those in the list both by name and by
 number.
On the Exam
You should commit the list of ports in Table 19-4 to memory so you can
 recognize a type of network connection solely by its port number. Your
 exam is likely to have at least one question on how a specific port is
 used.

Utilities

The following popular applications, although not strictly
 a part of TCP/IP, are usually provided along with a TCP/IP
 implementation.

Name
dig

Syntax
dig hostname

Description
dig obtains information from DNS
 servers. Note that additional command-line arguments and options are
 available for dig but are beyond the scope of
 Exam 102.

Example
$ dig redhat.com
; <<>> DiG 9.3.2 <<>> redhat.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41163
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;redhat.com. IN A

;; ANSWER SECTION:
redhat.com. 60 IN A 209.132.177.50

;; Query time: 43 msec
;; SERVER: 68.87.68.166#53(68.87.68.166)
;; WHEN: Fri Sep 18 06:28:08 2009
;; MSG SIZE rcvd: 44

Name
ftp

Syntax
ftp [options] host
...interactive commands...

Description
Establish an interactive FTP connection with
 host to transfer binary or text files.
 FTP creates an interactive dialog and allows for two-way file
 transfer. The dialog includes username/password authentication, user
 commands, and server responses.

Frequently used options
	-i
	Turn off interactive prompting during multiple file
 transfers (also see the prompt command in
 the next list).

	-v
	Set verbose mode; display server responses and transfer
 statistics.

Frequently used commands
	ascii,
 binary
	Establish the transfer mode for files.
 ASCII mode is provided to correctly transfer
 text among computer architectures where character encoding
 differs.

	get
 file
	Receive a single file
 from the server.

	mget
 files
	Receive multiple
 files from the server.
 files can be specified using normal
 file glob patterns.

	ls
 [files]
	Obtain a directory listing from the server,
 optionally listing files.

	put
 file
	Send a single file to
 the server.

	mput
 files
	Send multiple files
 to the server.

	prompt
	Toggle on and off interactive prompting during
 mget and mput (also
 see the -i option in the previous
 list).

	pwd
	Print the working remote directory.

	quit, exit
	Cleanly terminate the FTP session.

Example 1
Get a file from machine smp:
$ ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): jdean
331 Password required for jdean.
Password:<password here>
230 User jdean logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls myfile
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-r--r-- 1 jdean jdean 29 Jan 24 01:28 myfile
226 Transfer complete.
ftp> binary
200 Type set to I.
ftp> get myfile
local: myfile remote: myfile
200 PORT command successful.
150 Opening BINARY mode data connection for myfile
(29 bytes).
226 Transfer complete.
29 bytes received in 0.000176 secs (1.6e+02 Kbytes/sec)
ftp> quit
221-You have transferred 29 bytes in 1 files.
221-Total traffic for this session was 773 bytes in 3 transfers.
221-Thank you for using the FTP service on smp.
221 Goodbye.

Example 2
Many FTP servers are set up to receive requests from
 nonauthenticated users. Such public access is said to be anonymous.
 Anonymous FTP is established just like any other FTP connection,
 except that anonymous is used as
 the username. An email address is commonly used as a password to let
 the system owner know who is transferring files:
ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): anonymous
331 Guest login OK, send your complete e-mail address as password.
Password: me@mydomain.com
230 Guest login OK, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> <commands follow...>

Name
ping

Syntax
ping hostname

Description
The ping command is used to send
 an ICMP echo request to a host and report on how long it takes to
 receive a corresponding ICMP echo reply. Much as sonar systems send
 a pulse (or “ping”) to a target and measure transit time,
 ping sends a network packet to test the
 availability of a network node. This technique is often used as a
 basic debugging technique when network problems arise.

Frequently used options
	-c
 count
	Send and receive count
 packets.

	-q
	Quiet output. Display only summary lines when
 ping starts and finishes.

Example
Ping a remote host and terminate using Ctrl-C after five
 packets are transmitted:
$ ping lpi.org
PING lpi.org (24.215.7.162) 56(84) bytes of data.
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=1 ttl=52 time=68.2 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=2 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=3 ttl=52 time=63.2 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=4 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=5 ttl=52 time=65.8 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=6 ttl=52 time=63.6 ms
64 bytes from clark.lpi.org (24.215.7.162): icmp_seq=7 ttl=52 time=56.8 ms

--- lpi.org ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6016ms
rtt min/avg/max/mdev = 56.894/64.230/68.202/3.374 ms

Name
telnet

Syntax
telnet [host] [port]

Description
Establish a connection to a
 host (either a system name or IP address)
 using port. If a specific port is
 omitted, the default port of 23 is assumed. If
 host is omitted,
 telnet goes into an interactive mode similar to
 FTP.

Name
traceroute

Syntax
traceroute hostname

Description
Attempt to display the route over which packets must
 travel to reach a destination hostname.
 It is included here because it is mentioned in this Objective, but
 Objective 3 also requires traceroute. See
 Chapter 21 for more
 information.

Name
whois

Syntax
whois target[@server]

Description
Pronounced, “who is,” whois is a
 query/response protocol used to determine information about Internet
 resources. The information returned includes contact information,
 domain names, IP addresses, and DNS servers. Note that many websites
 are available for whois searches as well,
 particularly for checking on domain name availability.

Example
$ whois lpi.org
NOTICE: Access to .ORG WHOIS information is provided to assist persons in
determining the contents of a domain name registration record in the
Public Interest Registry registry database. The data in this record is provided
by Public Interest Registry for informational purposes only, and Public Interest
Registry does not guarantee its accuracy. This service is intended only for
query-based access. You agree that you will use this data only for lawful
purposes and that, under no circumstances will you use this data to:
(a) allow, enable, or otherwise support the transmission by e-mail, telephone,
or facsimile of mass unsolicited, commercial advertising or solicitations to
entities other than the data recipient's own existing customers; or (b) enable
high volume, automated, electronic processes that send queries or data to
the systems of Registry Operator or any ICANN-Accredited Registrar,
except as reasonably necessary to register domain names or modify existing
registrations. All rights reserved. Public Interest Registry reserves the right
to modify these terms at any time. By submitting this query, you agree
to abide by this policy.

Domain ID:D3725290-LROR
Domain Name:LPI.ORG
Created On:18-Feb-1999 05:00:00 UTC
Last Updated On:31-Oct-2008 17:00:45 UTC
Expiration Date:18-Feb-2011 05:00:00 UTC
Sponsoring Registrar:Tucows Inc. (R11-LROR)
Status:CLIENT TRANSFER PROHIBITED
Status:CLIENT UPDATE PROHIBITED
Registrant ID:tuIqxUrdqeRMHH1m
Registrant Name:DNS Admin
Registrant Organization:Linux Professional Institute Inc.
Registrant Street1:161 Bay Street, 27th Floor
Registrant Street2:
Registrant Street3:
Registrant City:Toronto
Registrant State/Province:ON
Registrant Postal Code:M5J2S1
Registrant Country:CA
Registrant Phone:+1.9163576625
Registrant Phone Ext.:
Registrant FAX:
Registrant FAX Ext.:
Registrant Email:dns@lpi.org
Admin ID:tujWL5NRmQ4MqjwW
Admin Name:DNS Admin
Admin Organization:Linux Professional Institute Inc.
Admin Street1:161 Bay Street, 27th Floor
Admin Street2:
Admin Street3:
Admin City:Toronto
Admin State/Province:ON
Admin Postal Code:M5J2S1
Admin Country:CA
Admin Phone:+1.9163576625
Admin Phone Ext.:
Admin FAX:
Admin FAX Ext.:
Admin Email:dns@lpi.org
Tech ID:tursNOD6OBDmUsSl
Tech Name:DNS Admin
Tech Organization:Linux Professional Institute Inc.
Tech Street1:161 Bay Street, 27th Floor
Tech Street2:
Tech Street3:
Tech City:Toronto
Tech State/Province:ON
Tech Postal Code:M5J2S1
Tech Country:CA
Tech Phone:+1.9163576625
Tech Phone Ext.:
Tech FAX:
Tech FAX Ext.:
Tech Email:dns@lpi.org
Name Server:NS.STARNIX.COM
Name Server:SERVER1.MOONGROUP.COM

Chapter 20. Basic
 Network Configuration (Topics 109.2 and 109.4)

A Linux system that is not connected to a network is a rare sight.
 Configuring a system for network access is one of the first things done
 within the normal installation process. This chapter covers the following
 Objectives:
	Objective 2: Basic Network
 Configuration
	Candidates should be able to view, change, and verify
 configuration settings and operational status for various network
 interfaces. This Objective includes manual and automatic configuration
 of interfaces and routing tables. This would include steps to add,
 start, stop, restart, delete, or reconfigure network interfaces by
 modifying the appropriate configuration files. It also means to
 change, view, or configure the routing table and to correct an
 improperly set default route manually. Candidates should be able to
 configure Linux as a DHCP client and a TCP/IP host and to debug
 problems associated with the network configuration. Weight: 4.

	Objective 4: Configuring Client Side
 DNS
	Candidates should be able to configure DNS on a client host.
 Weight: 2.

Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS

Linux distributions offer various automation and startup
 techniques for networks, but most of the essential commands and concepts
 are not distribution-dependent. The exam tests fundamental concepts and
 their relationships to one another as well as to system problems. These
 Objectives cover the configuration of IPv4 TCP/IP on common network
 interfaces, such as Ethernet.
On the Exam
One of the reasons Linux is so popular as a server operating
 system is its ability to operate on many different kinds of networks
 utilizing many different kinds of interfaces. Protocols such as
 AppleTalk, IPX, and even NetBEUI are available to Linux machines, as
 well as interfaces such as Token Ring, FDDI, and many others. However,
 the LPI exams focus on the TCP/IP protocol on Ethernet interfaces, so
 in-depth knowledge of the other networking options is not necessary in
 order to become LPI certified.

Network Interfaces

A computer must contain at least one network
 interface to be considered part of a network. The network
 interface provides a communications link between the computer and
 external network hardware. This could mean typical network adapters such
 as Ethernet or Token Ring, point-to-point dial-up connections, parallel
 ports, wireless, or other networking forms.
Configuration files

The following files contain important information about
 your system’s network configuration:
	/etc/hosts
	This file contains simple mappings between IP addresses
 and names and is used for name resolution. For very small
 private networks, /etc/hosts may be
 sufficient for basic name resolution. For example, this file associates
 the local address 192.168.1.30 with the system smp and also with smp.mydomain.com:
127.0.0.1 localhost localhost.localdomain
192.168.1.1 gate
192.168.1.30 smp smp.mydomain.com

	/etc/nsswitch.conf
	This file controls the sources used by various system
 library lookup functions, such as name resolution. It allows the
 administrator to configure the use of traditional local files
 (/etc/hosts,
 /etc/passwd), an NIS server, or DNS.
 nsswitch.conf directly affects network
 configuration (among other things) by controlling how hostnames
 and other network parameters are resolved. For example, this
 fragment shows that local files are used for password, shadow
 password, group, and hostname resolution; for hostnames, DNS is
 used if a search of local files doesn’t yield a result:
passwd: files nisplus nis
shadow: files nisplus nis
group: files nisplus nis
hosts: files dns nisplus nis
For more information, view the manpage with man
 5 nsswitch. The nsswitch.conf
 file supersedes host.conf. In the majority
 of setups, this file does not need to be modified, as the
 defaults are usually sufficient.

	/etc/host.conf
	This file controls name resolution sources for
 pre-glibc2 systems. It should contain:
order hosts,bind
multi on
This configuration has the resolver checking
 /etc/hosts first for name resolution, then
 DNS. multi on enables
 multiple IP addresses for hosts. Newer Linux system libraries
 use /etc/nsswitch.conf instead of
 /etc/host.conf.

	/etc/resolv.conf
	This file controls the client-side portions of the DNS
 system, which is implemented in system library functions used by
 all programs to resolve system names. In particular,
 /etc/resolv.conf specifies the IP addresses
 of DNS servers. For example:
nameserver 192.168.1.5
nameserver 192.168.250.2
Additional parameters are also available. For more
 information, view the manpage with man 5
 resolver.

	/etc/networks
	Like /etc/hosts, this file sets up
 equivalence between addresses and names, but here the addresses
 represent entire networks (and thus must be valid network
 addresses, ending in 0). The result is that you can use a
 symbolic name to refer to a network just as you would a specific
 host. This may be convenient (though not required) in NFS or
 routing configuration, for example, and will be shown in
 commands such as netstat. For
 example:
loopback 127.0.0.0
mylan 192.168.1.0
It’s not unusual for /etc/networks to
 be left blank.

You’ll notice most of the previous configuration files concern
 themselves with mapping an IP address to aliases or names. This is not
 required for most network-enabled applications to work, as the
 operating system and network-enabled applications are really only
 concerned with the IP address for this level of data communication.
 The name lookups are there for us humans, who find it easier to
 remember names rather than numbers. Here is an example of what is
 going on “behind the scenes” when a web browser requests a web page
 from a remote server:
	A user types http://www.oreilly.com into the browser
 address bar and hits Enter.

	The system needs to resolve this hostname to an IP address
 in order to make the request. The file
 /etc/nsswitch.conf
 (/etc/host.conf in pre-glibc2 systems) is
 consulted to determine what subsystems to ask and in what order to
 resolve this hostname. The default entry for hosts in
 /etc/nsswitch.conf is usually:
hosts: files dns
This tells the system to first look in files
 (/etc/hosts) and then query DNS.

	If there is an entry in the file
 /etc/hosts for www.oreilly.com, that IP address will
 be used to make this HTTP request. If not, then the second option
 is to query DNS.

	The file /etc/resolv.conf is consulted
 to determine the primary DNS to query. A DNS request is made to
 the primary DNS server. If a response is received (in the form of
 an IP address), that IP address is used to make the HTTP request.
 If a response is not received (either because the DNS server did
 not have an entry for that hostname or the DNS server did not
 respond to the request), then the next name server listed in
 /etc/resolv.conf is queried. This process
 repeats until all name servers have been queried.

	If all attempts at name resolution fail, the web browser
 will return an error.

As you can see, something as simple to the end user as typing a
 hostname into a web browser requires a number of steps behind the
 scenes. It’s important to understand these steps and the order in
 which they occur for troubleshooting situations. It’s an all too
 common occurrence for an end user to report, “The network is down!”
 when it’s really just a matter of a bad entry in
 /etc/hosts or a misconfigured DNS server.
On the Exam
Be familiar with all the files listed in this section; each
 contains specific information important for network setup. Watch for
 questions on /etc/host.conf, which is not used
 in newer glibc2 libraries.

Configuration commands

The commands listed in this section are used to
 establish, monitor, and troubleshoot a network configuration under
 Linux.

DHCP

The Dynamic Host Configuration Protocol (DHCP) is a
 protocol extension of the BOOTP protocol, which provides automated IP
 address assignment (among other things) to client systems on a network.
 It handles IP address allocation in one of three ways:
	Dynamic allocation
	In this scheme, a DHCP server maintains a preset
 list of IP addresses designated by the system administrator. IP
 addresses are assigned as clients request an address from the
 available addresses in the pool. The address can be used, or
 leased, for a limited period of time. The
 client must continually renegotiate the lease with the server to
 maintain use of the address beyond the allotted period. When the
 lease expires, the IP address is placed back into the pool for use
 by other requesting clients and a new IP address is
 assigned.

	Manual allocation
	The system administrator may wish to designate
 specific IP addresses to specific network interfaces (for example,
 to an Ethernet MAC address) while still using DHCP to deliver the
 address to the client. This allows the convenience of automated
 address setup and assures the same address each time.

	Automatic allocation
	This method assigns a permanent address to a client.
 Typically DHCP is used to assign a temporary address (either
 dynamically or statically assigned) to a client, but a DHCP server
 can allow an infinite lease time.

DHCP can be configured to assign not only the IP address to the
 client but also such things as name servers, gateways, and
 architecture-specific parameters. Here’s an overview of how it
 works:
	A DHCP client sends a broadcast message to the network to
 discover a DHCP server.

	One or more DHCP servers respond to the request via their own
 broadcast messages, offering an IP address to the client.

	The client chooses one of the servers and broadcasts an
 acknowledgment, requesting the chosen server’s identity.

	The selected server logs the connection with the client and
 responds with an acknowledgment and possibly additional information.
 All of the other servers do nothing, because the client declined
 their offer.

Subnets and relays

Because DHCP communications are initiated using
 broadcasts, they are normally confined to a single subnet. To
 accommodate DHCP clients and servers separated by one or more routers,
 a DHCP relay system can be established on subnets
 without DHCP servers. A relay system listens for DHCP client
 broadcasts, forwards them to a DHCP server on another subnet, and
 returns DHCP traffic back to the client. This configuration can
 centralize DHCP management in a large routed environment.

Leases

As already mentioned, when a client receives a
 dynamically assigned IP address from a DHCP server, the address is
 said to be leased for a finite duration. The
 length of a DHCP lease is configurable by the system administrator and
 typically lasts for one or more days. Shorter leases allow for faster
 turnover of addresses and are useful when the number of available
 addresses is small or when many transient systems (such as laptops)
 are being served. Longer leases reduce DHCP activity, thus reducing
 broadcast traffic on the network.
When a lease expires without being renegotiated by the client,
 it as assumed that the client system is unavailable, and the address
 is put back into the free pool of addresses. A lease may also be
 terminated by a client that no longer needs the IP address, in which
 case it is released. When this occurs, the DHCP
 server immediately places the IP address back in the free pool.

dhcpd

The DHCP server process is called
 dhcpd. It is typically started at boot time and
 listens for incoming DHCP request broadcasts.
 dhcpd can serve multiple subnets via multiple
 interfaces, serving a different pool of IP addresses to each.
dhcpd is configured using the text
 configuration file /etc/dhcpd.conf, which
 contains one or more subnet declarations. These are text lines of the
 following form:
subnet network-address netmask subnet-mask {
 parameter...
 parameter...
 ...
}
Each subnet declaration encloses parameters for each subnet
 between curly braces. Parameters include one or more ranges of IP
 addresses to serve, lease times, and optional items such as gateways
 (routers), DNS servers, and so forth. Each parameter line is
 terminated with a semicolon. For example:
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.204;
 default-lease-time 600;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.25;
}
In this example, the private class C network 192.168.1.0 is
 served five IP addresses, 200 through 204. The default DHCP lease is
 600 seconds (10 minutes). Options are also set for the subnet mask,
 broadcast address, router (or gateway), and DNS server. For full
 information on dhcpd.conf, see related manpages
 for dhcpd(8) and
 dhcpd.conf(5).
The preceding option lines are not required to create a minimal
 DHCP setup that simply serves IP addresses. Details on the daemon
 follow.

A Standard Linux Network Configuration

A very common setup for a Linux system is to have a single
 Ethernet interface and be a member of a network, as either a client, a
 server, or both. Here are the network settings that must be configured
 in order for a Linux system to communicate via TCP/IP over an Ethernet
 network:
	A compatible Ethernet card must be installed and recognized by
 the kernel. See information about the commands lsmod,
 lspci, and dmesg in previous
 chapters for more information about hardware troubleshooting.

	An IP address and subnet mask must be assigned to the Ethernet
 interface (eth0). These can be assigned
 manually (static values saved in a configuration file) or assigned
 from a DHCP server on the local subnet. On RPM-based systems such as
 CentOS, Red Hat, and Fedora Linux, the network configuration file is
 /etc/sysconfig/network-scripts/ifcfg-eth0.
 Values from this file are read by the startup script
 /etc/init.d/network, which in turn calls the
 command ifconfig with the appropriate
 values.

	In order to communicate with other subnets, a default gateway
 route must be configured. This is the IP address of the device on
 the local network that will send your packets on to other networks.
 This may be a dedicated device, such as a router, or it may be a
 general-purpose computer (with multiple Ethernet cards) running
 routing software. A lower-end PC running Linux is often a good
 choice for a router in this instance. The default gateway route is
 defined in the file /etc/sysconfig/network.
 This value is read by the startup script
 /etc/init.d/network, which in turn calls the
 route command to set this as the default
 gateway route.

	Finally, a default nameserver should be configured so
 applications can successfully resolve hostnames to IP addresses. As
 stated previously, this is defined in the file
 /etc/resolv.conf.

If all of these settings are in place, your Linux system should be
 able to communicate successfully with other computers over a TCP/IP
 network.

Name
ifconfig

Syntax
ifconfig interface parameters

Description
Configure network interfaces.
 ifconfig is used to create and configure
 network interfaces and their parameters, usually at boot time.
 Without parameters, the interface and its configuration are
 displayed. If interface is also
 omitted, a list of all active interfaces and their configurations
 is displayed.

Frequently used parameters
	address
	The interface’s IP address.

	netmask
 mask
	The interface’s subnet mask.

	up
	Activate an interface (implied if
 address is specified).

	down
	Shut down the interface.

Example 1
Display all interfaces:
ifconfig
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1521805 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715468 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:366567 errors:0 dropped:0 overruns:0 frame:0
 TX packets:366567 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Example 2
Shut down eth0:
ifconfig eth0 down
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1521901 errors:37 dropped:0 overruns:0 frame:37
 TX packets:715476 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00
Note in the emphasized line the lack of the UP indicator, which is present in
 Example 1. The missing UP
 indicates that the interface is down.

Example 3
Configure eth0 from scratch:
ifconfig eth0 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.25
Although this is a perfectly valid command, network
 interfaces on Linux are rarely configured directly this way from
 the command line. It is much more common to store the network
 configuration options in a configuration file (often in the
 directory /etc/sysconfig/network-scripts) and
 use a script file in /etc/init.d to control
 the network interfaces. For example, on RPM-based systems such as
 CentOS, RedHat, or Fedora Linux, the configuration settings for
 eth0 are stored in
 /etc/sysconfig/network-scripts/ifcfg-eth0 and
 the status of the network interfaces is changed by calling the
 script /etc/init.d/network. The command
 ifconfig is most often used with no arguments
 to list information about the available network interfaces.
 However, it is useful to know this syntax, especially when you’re
 working with different Linux distributions that store network
 configurations in different places.

Name
ping

Syntax
ping [options] destination

Description
Send an ICMP ECHO_REQUEST datagram to
 destination, expecting an ICMP ECHO_RESPONSE. ping
 is frequently used to test basic network connectivity. See Chapter 19 for a more
 complete description.

Name
route

Syntax
route [options]
route add [options and keywords] target
route del [options and keywords] target

Description
In the first form, display the IP routing table. In
 the second and third forms, respectively, add or delete routes to
 target from the table.
 target can be a numeric IP address, a
 resolvable name, or the keyword default. The route
 program is typically used to establish static routes to specific
 networks or hosts (such as the default gateway) after an interface
 is configured. On systems acting as routers, a potentially complex
 routing scheme can be established initially, but this is beyond
 the scope of the LPIC Level 1 Exams.

Frequently used options and keywords
	-h
	Display a usage message.

	-n
	Numeric mode; don’t resolve hostnames.

	-v
	Verbose output.

	-C
	Display the kernel routing cache.

	-F
	Display the kernel routing table (the default behavior
 without add or
 delete keywords).

	-host
	Specify that target is a
 single host. Mutually exclusive with
 -net.

	-net
	Specify that target is a
 network. Mutually exclusive with
 -host.

	gw
 gateway
	IP packets for target are
 routed through the gateway, which must be reachable.

	netmask
 mask
	Specify the mask of
 the route to be added. Often, the netmask is not required,
 because it can be determined to be class A, B, or C,
 depending on the target
 address.

When used to display routes, the following routing table
 columns are printed:
	Destination
	The destination network or host.

	Gateway
	The gateway address. If no gateway is set for
 the route, an asterisk (*) is displayed by default.

	Genmask
	The netmask for the destination.
 255.255.255.255 is used for a host, and 0.0.0.0 is used for
 the default route.

	Route status flags
	! Reject route.
D Dynamically installed by daemon or redirect.
G Use gateway.
H Target is a host.
M Modified from routing daemon or redirect.
R Reinstate route for dynamic routing.
U Route is up.

	Metric
	The distance in hops to the target.

	Ref
	Number of references to this route. This is displayed
 for compatibility with other route commands, but is not used
 in the Linux kernel.

	Use
	A count of lookups for the route. Depending on the use
 of -F and -C, the
 Use is either route cache
 misses (-F) or hits
 (-C).

	Iface
	The interface to which packets for this route
 are sent.

Example 1
Display the current routing table for a workstation:
route
Kernel IP routing table
Destination Gateway Genmask Flags Met Ref Use Iface
192.168.1.30 * 255.255.255.255 UH 0 0 0 eth0
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 - 255.0.0.0 ! 0 - 0 -
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default gate 0.0.0.0 UG 0 0 0 eth0
In this example, the route to the local host 192.168.1.30
 uses interface eth0. Note the mask
 255.255.255.255 is used for host routes. The route to the local
 subnet 192.168.1.0 (with corresponding class C mask 255.255.255.0)
 is also through eth0. The route to 10.0.0.0
 is rejected, as indicated by the ! flag. The class A loopback network
 route uses device lo. The last route shows
 the default gateway route, which is
 used when no others match. This default uses
 eth0 to send data to router
 gate. The mask 0.0.0.0 is used for the
 default route.

Example 2
Display the current routing cache; the Metric (M) and Reference (R) columns are abbreviated here:
route -C
Kernel IP routing cache
Source Destination Gateway Flg M R Use Iface
smp 192.168.1.255 192.168.1.255 bl 0 0 1 eth0
192.168.1.102 192.168.1.255 192.168.1.255 ibl 0 0 0 lo
192.168.1.102 smp smp il 0 0 1 lo
192.168.1.50 smp smp il 0 0 224 lo
smp 192.168.1.102 192.168.1.102 0 1 0 eth0
smp ns1.mynet.com gate 0 0 2 eth0
smp 192.168.1.50 192.168.1.50 0 1 0 eth0
localhost localhost localhost l 0 0 15 lo
ns1.mynet.com smp smp l 0 0 6 lo
smp ns1.mynet.com gate 0 0 6 eth0

Example 3
Add the default gateway 192.168.1.1 via
 eth0:
route add default gw 192.168.1.1 eth0

Name
dhcpd

Syntax
dhcpd [options] [interface [...]]

Description
Launch the DHCP server daemon. dhcpd
 requires that both its configuration file
 (/etc/dhcpd.conf) and its lease logfile
 (which by default is
 /var/state/dhcp/dhcpd.leases, although many
 distributions use /var/lib/dhcp/dhcpd.leases)
 exist. The daemon puts itself in the background and returns
 control to the calling shell.

Frequently used options
	-cf
 config-file
	Use config-file instead of
 the default /etc/dhcpd.conf.

	-lf
 lease-file
	Use lease-file instead of
 the default to store lease information.

	-q
	Use quiet mode. This option suppresses the default
 copyright message, keeping logfiles a little cleaner.

	interface
	By default, dhcpd will attempt to
 listen for requests on every network interface that is
 configured up. It can be limited to specific network
 interfaces by including one or more interface names on the
 command line.

A full and detailed description of the configuration file
 syntax can be found in the dhcpd.conf
 manpage. When dhcpd runs, it sends output,
 including information on each transaction, to
 syslogd. For example, this series of four log
 entries in /var/log/messages shows a
 successful exchange between dhcpd and a
 requesting DHCP client:
Apr 24 02:27:00 rh62 dhcpd: DHCPDISCOVER
 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:00 rh62 dhcpd: DHCPOFFER
 on 192.168.1.200 to 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPREQUEST
 for 192.168.1.200 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPACK
on 192.168.1.200 to 00:60:97:93:f6:8a via eth0
On the Exam
For the LPI Level 1 Exams, you should be familiar with
 both the manual and automatic network interface configuration,
 and how interfaces can be started, stopped, and
 configured.

Chapter 21. Basic
 Network Troubleshooting (Topic 109.3)

Even the simplest of network installations will at times require
 troubleshooting. Every Linux system administrator needs to understand not
 only where to start the troubleshooting process but also what tools are
 available to aid in this endeavor. This chapter covers the following
 Objective:
	Objective 3: Basic Network
 Troubleshooting
	Candidates should be able to perform basic
 troubleshooting steps in diagnosing network connectivity issues and
 configuration. This Objective includes tools that show information
 about local computer configuration and the testing communication with
 computers on local network and remote connections. Some of these tools
 may also be used for network configuration, as discussed in the
 previous Objective. Candidates should be able to view, change, and
 verify configuration settings and operational status for various
 network interfaces. Weight: 4.

Objective 3: Basic Network Troubleshooting

One important part of an administrator’s role is troubleshooting
 connectivity issues and tracking down sources of problems. Many of the
 tools introduced earlier in this book may also be used as troubleshooting
 tools to assist in this process. This objective revisits some of these
 commands and discusses how they may be used as diagnostic resources in
 addition to configuration resources.

Name
ping

Syntax
ping [options] destination

Description
Send an ICMP ECHO_REQUEST datagram to
 destination, expecting an ICMP ECHO_RESPONSE. ping is
 frequently used to test basic network connectivity. See Objective 1: Fundamentals of Internet Protocols for a more
 complete description.

Name
host

Syntax
host [options] name [server]

Description
Look up the system with IP address or
 name on the DNS
 server.

Frequently used options
	-l
	List the entire domain, dumping all hosts registered on
 the DNS server (this can be very long).

	-v
	Set verbose mode to view output.

Example 1
$ host oreilly.com
oreilly.com has address 208.201.239.37
oreilly.com has address 208.201.239.36

Example 2
$ host -v oreilly.com
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60189
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN A

;; ANSWER SECTION:
oreilly.com. 877 IN A 208.201.239.100
oreilly.com. 877 IN A 208.201.239.101

Received 61 bytes from 192.168.1.220#53 in 0 ms
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1045
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN AAAA

;; AUTHORITY SECTION:
oreilly.com. 3577 IN SOA nsautha.oreilly.com. \
 nic-tc.oreilly.com. 86 600 1800 604800

Received 80 bytes from 192.168.1.220#53 in 0 ms
Trying "oreilly.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18547
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
;oreilly.com. IN MX

;; ANSWER SECTION:
oreilly.com. 3577 IN MX 20 smtp1.oreilly.com.
oreilly.com. 3577 IN MX 20 smtp2.oreilly.com.

;; ADDITIONAL SECTION:
smtp1.oreilly.com. 3577 IN A 209.204.146.22
smtp2.oreilly.com. 3577 IN A 216.204.211.22

Received 105 bytes from 192.168.1.220#53 in 0 ms

Name
traceroute

Syntax
traceroute [options] destination

Description
Display the route that packets take to reach
 destination, showing intermediate gateways
 (routers). There is no direct way to make this determination, so
 traceroute uses a trick to obtain as much
 information as it can. By using the time-to-live (TTL) field in the IP
 header, traceroute stimulates error responses
 from gateways. The time-to-live field specifies the maximum number of
 gateway hops until the packet should expire. That number is
 decremented at each gateway hop, with the result that all packets will
 die at some point and stop roaming the Internet. To get the first
 gateway in the route, traceroute sets the
 time-to-live parameter to 1. The first gateway in the route to
 destination decrements the counter, and
 finding a zero result, reports an ICMP TIME_EXCEEDED message back to the sending
 host. The second gateway is identified by setting the initial
 time-to-live value to 2, and so on. This continues until a PORT_UNREACHABLE message is returned,
 indicating that the host has been contacted. To account for the
 potential for multiple gateways at any one hop count, each probe is
 sent three times.
The display consists of lines showing each gateway, numbered for
 the initial time-to-live value. If no response is seen from a
 particular gateway, an asterisk is printed. This happens for gateways
 that don’t return “time exceeded” messages, or do return them but set
 a very low time-to-live on the response. Transit times for each probe
 are also printed.

Frequently used options
	-f
 ttl
	Set the initial probe’s time-to-live value to
 ttl, instead of 1.

	-n
	Display numeric addresses instead of names.

	-v
	Use verbose mode.

	-w
 secs
	Set the timeout on returned ICMP packets to
 secs, instead of 5.

Example
$ traceroute lpi.org
traceroute to lpi.org (24.215.7.162), 30 hops max, 40 byte packets
1 96.64.11.1 (96.64.11.1) 12.689 ms 5.018 ms 9.861 ms
2 ge-1-28-ur01.east.tn.knox.comcast.net (68.85.206.181) \
 8.712 ms * 10.868 ms
3 te-8-1-ar01.bluelight.tn.knox.comcast.net (68.86.136.30) \
 15.109 ms 6.932 ms 24.996 ms
4 * te-0-8-0-4-crs01.b0atlanta.ga.atlanta.comcast.net (68.85.232.97) \
 41.966 ms 51.914 ms
5 pos-1-4-0-0-cr01.atlanta.ga.ibone.comcast.net (68.86.90.121) \
 38.775 ms 26.511 ms 32.650 ms
6 68.86.86.86 (68.86.86.86) 41.428 ms 40.369 ms 46.387 ms
7 75.149.230.74 (75.149.230.74) 56.789 ms 29.051 ms 28.835 ms
8 xe-5-3-0.chi10.ip4.tinet.net (89.149.185.37) 84.556 ms \
 123.707 ms 123.579 ms
9 peer1-gw.ip4.tinet.net (77.67.71.22) 70.550 ms 39.203 ms 39.795 ms
10 oc48-po1-0.tor-1yg-cor-1.peer1.net (216.187.114.142) \
 52.049 ms 80.272 ms 68.667 ms
11 10ge.xe-0-0-0.tor-151f-cor-1.peer1.net (216.187.114.134) \
 67.809 ms 45.667 ms 45.157 ms
12 oc48-po7-0.tor-151f-dis-1.peer1.net (216.187.114.149) \
 97.586 ms 48.451 ms 45.559 ms
13 peer1-tor-gw.colosseum (66.199.142.250) \
 56.156 ms 93.090 ms 78.800 ms
14 core-main.mountaincable.net (24.215.3.185) \
 59.369 ms 52.889 ms 111.326 ms
15 24.215.7.110 (24.215.7.110) 50.487 ms 114.975 ms 44.655 ms
16 clark.lpi.org (24.215.7.162) 54.705 ms 84.838 ms 46.562 ms
In this example, there are 15 hops to http://www.lpi.org, reached with a time-to-live value
 of 16. All three probes of all time-to-live counts are
 successful.

Name
netstat

Syntax
netstat [options]

Description
Depending on options, netstat
 displays network connections, routing tables, interface statistics,
 masqueraded connections, and multicast memberships. Much of this is
 beyond the scope of the LPIC Level 1 Exams, but you must be aware of
 the command and its basic use.

Frequently used options
	-c
	Continuous operation. This option yields a
 netstat display every second until
 interrupted with Ctrl-C.

	-i
	Display a list of interfaces.

	-n
	Numeric mode. Display addresses instead of host, port, and
 usernames.

	-p
	Programs mode. Display the process ID (PID) and process
 name.

	-r
	Routing mode. Display the routing table in the format of
 the route command.

	-v
	Verbose mode.

Examples
Display the interfaces table and statistics (the example output
 is truncated):
netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK
eth0 1500 0 1518801 37 0 0 713297
lo 3924 0 365816 0 0 0 365816
To show all current connections without resolving hostnames and
 protocol names:
netstat -an --tcp
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:34031 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
tcp 1 0 10.41.81.148:59667 10.41.0.47:3268 CLOSE_WAIT
tcp 0 0 10.41.81.148:45449 64.4.34.61:1863 ESTABLISHED
tcp 0 0 10.41.81.148:53284 10.41.0.32:143 ESTABLISHED
tcp 0 0 10.41.81.148:33722 10.41.0.38:22 ESTABLISHED
tcp 0 0 10.41.81.148:42261 74.125.77.83:443 ESTABLISHED
tcp 0 0 10.41.81.148:54879 83.85.96.153:3490 ESTABLISHED
tcp 0 0 10.41.81.148:42262 74.125.77.83:443 ESTABLISHED
tcp 0 0 10.41.81.148:34054 195.86.128.44:22 ESTABLISHED
tcp 0 0 10.41.81.148:46150 212.100.160.43:5222 ESTABLISHED
tcp 0 0 :::6000 :::* LISTEN
udp 0 0 127.0.0.1:46958 0.0.0.0:*
udp 0 0 0.0.0.0:34031 0.0.0.0:*
udp 0 0 0.0.0.0:631 0.0.0.0:*
To show the PID and name of the process to which each socket
 belongs, to identify what could be causing a problem:
$ netstat -p

(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)

Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address \
 State PID/Program name
tcp 0 0 server01.domain.:60032 ew-in-f18.1e100.n:https \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:40343 messaging.n:xmpp-client \
 ESTABLISHED 4680/pidgin
tcp 0 0 server01.domain.:53533 srdc-mail-01 :imap \
 ESTABLISHED 4679/evolution
tcp 0 0 server01.domain.:40292 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60209 ew-in-f147.1e100.n:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60031 ew-in-f18.1e100.n:https \
 TIME_WAIT -
tcp 0 0 server01.domain.:55647 ew-in-f83.1e100.n:https \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:35718 ew-in-f102.1e100.n:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:57265 sn1msg2010707.phx.:1863 \
 TIME_WAIT - netstat
tcp 0 0 server01.domain.:58931 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:47146 backup2. :ssh \
 ESTABLISHED 5113/ssh
tcp 0 0 server01.domain.:52707 g199040.upc-g.chel:4130 \
 ESTABLISHED 4682/skype
tcp 0 0 server01.domain.:56608 bay5-terminal.bay5:1863 \
 ESTABLISHED 4680/pidgin
tcp 1 0 server01.domain.:51980 server02 :3268 \
 CLOSE_WAIT 4709/evolution-data
tcp 0 0 server01.domain.:36070 195.86.25.214:http \
 ESTABLISHED 4698/firefox-bin
tcp 0 0 server01.domain.:60212 ew-in-f147.1e100.n:http \
 ESTABLISHED 4698/firefox-bin
On the Exam
While the creation of complete network management scripts from
 scratch is beyond the scope of the LPIC Level 1 Exams, you must be
 familiar with these commands individually, their functions, how they
 are used, and when to use them. For example, you must be familiar
 with route and its use in establishing routes
 to the loopback device, the localhost, and the gateway machine, and
 the creation of the default gateway route. A general understanding
 of the routing table display is also required. Questions may ask you
 to determine the cause of a network problem based on the routing
 configuration (such as a missing default route).

Common Manual Network Interface Tasks

Network interfaces are established in the kernel at boot
 time by probing Ethernet hardware. As a result, these interfaces always
 exist unless the hardware or kernel module is removed. The interfaces
 are transient and exist only when they are in use.
To list interface parameters, use ifconfig
 with the interface name:
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1857128 errors:46 dropped:0 overruns:0 frame:46
 TX packets:871709 errors:0 dropped:0 overruns:0 carrier:0
 collisions:2557 txqueuelen:100
 Interrupt:10 Base address:0xef00
If you run ifconfig without any parameters,
 it displays all active interfaces, including the loopback interface
 lo and perhaps a PPP interface if a modem is dialed
 into a service provider or a wireless interface such as
 ath0 if you have an active wireless card.
To shut down a network interface that is currently running, simply
 use ifconfig with the down
 keyword:
ifconfig eth0 down
When the interface goes down, any routes associated with it are
 removed from the routing table. For a typical system with a single
 Ethernet interface, this means that the routes to both the interface and
 the default gateway will be lost. Therefore, to start a previously
 configured network interface, ifconfig is used with
 up, followed by the necessary
 route commands. For example:
ifconfig eth0 up
route add -host 192.168.1.30 eth0
route add default gw 192.168.1.1 eth0
To reconfigure interface parameters, follow those same procedures
 and include the changes. For example, to change to a different IP
 address, the address is specified when bringing up the interface and
 adding the interface route:
ifconfig eth0 down
ifconfig eth0 192.168.1.60 up
route add -host 192.168.1.60 eth0
route add default gw 192.168.1.1 eth0
Your distribution probably supplies scripts to handle some of
 these chores. For example, Red Hat systems come with scripts such as
 ifup and ifdown, which handle
 all the details necessary to get an interface and its routes up and
 running, based on configuration files in
 /etc/sysconfig/network-scripts/.
On the Exam
Be prepared to answer questions on the use of
 ifconfig and route for basic
 interface manipulation. Also remember that scripts that use these
 commands, both manually and automatically, are usually available at
 boot time.

dig

dig is the most complete and powerful
 DNS utility and is available in most Unix/Linux systems. The tool will
 use the default nameservers defined in the
 resolv.conf file:
dig www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> www.oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17863
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 161 IN CNAME oreilly.com.
oreilly.com. 448 IN A 100.201.239.100
oreilly.com. 448 IN A 100.201.239.101

;; Query time: 4 msec
;; SERVER: 100.100.0.43#53(100.100.0.43)
;; WHEN: Mon Dec 14 14:48:55 2009
;; MSG SIZE rcvd: 79
Sometimes it’s also useful to query nameservers other than the
 default. This can be done without changing the default address in
 resolv.conf, by using @ plus
 the nameserver’s IP address:
dig @10.20.10.10 www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> www.oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17863
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 161 IN CNAME oreilly.com.
oreilly.com. 448 IN A 100.201.239.100
oreilly.com. 448 IN A 100.201.239.101

;; Query time: 4 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 14:48:55 2009
;; MSG SIZE rcvd: 79
If PTR (reverse) records are missing, this can affect many network
 services that rely on these records, such as SSH. PTR records provide a
 way to map an IP address back to a fully qualified domain name. All
 reverse lookups should be configured when adding new addresses or
 changing addresses on the server. dig can be used
 to validate the presence of the PTR records:
dig –x 208.201.239.100

; <<>> DiG 9.4.3-P1 <<>> -x 208.201.239.100
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 28685
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;100.239.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
100.239.201.208.in-addr.arpa. 3600 IN PTR oreilly.com.

;; Query time: 298 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 15:01:01 2009
;; MSG SIZE rcvd: 71
The mail exchange (MX) record for a domain defines the server that
 accepts SMTP email for that domain. To search for the MX records for a
 specific domain, use:
dig mx www.oreilly.com

; <<>> DiG 9.4.3-P1 <<>> mx oreilly.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31415
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN MX

;; ANSWER SECTION:
oreilly.com. 3600 IN MX 20 smtp10.oreilly.com.
oreilly.com. 3600 IN MX 20 smtp20.oreilly.com.

;; Query time: 153 msec
;; SERVER: 10.20.10.10#53(10.20.10.10)
;; WHEN: Mon Dec 14 15:08:19 2009
;; MSG SIZE rcvd: 73
On the Exam
Be familiar with the basics of the dig
 syntax and how it’s used to query DNS information.

Chapter 22. Security (Topic 110.1)

A system is only as secure as the administrator. Although some
 operating systems may claim better security than others, this is always the
 “out-of-the-box” type of security. Any system, no matter how secure
 initially, can become insecure if poorly maintained. It is the
 responsibility of the system administrator to take an active hand in
 security, and address both active and passive threats. As with most things,
 the first step is knowledge. Understanding how your system works and what
 tools are available is fundamental to securing your system. This chapter
 covers the first Objective of Topic 110:
	Objective 1: Perform Security Administration
 Tasks
	Candidates should know how to review system configuration to
 ensure host security in accordance with local security policies. This
 includes topics such as SUID/SGID bits, password aging and good
 password policy, discovery tools such as nmap,
 netstat, and lsof, limiting
 user actions, and giving select users elevated privileges. Weight:
 3.

Objective 1: Perform Security Administration Tasks

Since everything in Linux is a file, filesystem level
 security is a core concept that must be understood and implemented
 properly. The standard Unix security model (which most Linux file systems
 adopt) is a relatively simple permissions-based model, but it is
 sufficient for most permissions needs. For more information on the details
 of the Unix permissions-based security model, refer to the section Changing access modes.
When a user executes a program in Linux, that program is spawned as
 a subprocess (or subshell) of the user’s current shell. This subprocess is
 known as a child process, and is defined in depth
 in the section Objective 5: Create, Monitor, and Kill Processes. From a security
 standpoint, the important thing to remember about child processes is that
 they inherit the security context of the parent process. So if the user
 adam executes a program, that program
 will have access to the same files and directories that the user
 adam normally has (no more, and no less).
However, this is not always a desirable situation. One of the
 criticisms of the standard Linux
 security model is that it is not fine-grained enough, i.e., you’re either
 a regular user with little or no privileges, or you are the superuser
 (root) with all privileges. Often, we want the ability to elevate certain
 users to superuser status for short periods of time, or to execute certain
 commands, or we want certain commands themselves to execute with elevated
 privileges, regardless of who executes them. There are ways to handle all
 of these situations in Linux: SUID and SGID bits, and the commands
 sudo and su.
Changing access modes describes the different
 security modes that are available to files in Linux. These are normally
 read, write, or execute. One of the “special” modes available is
 s. When the mode s is assigned
 to owner permissions on an executable file, we say that file has the SUID
 (or SetUID) bit set. When the mode s is assigned to
 group permissions on an executable file, we say that file has the SGID (or
 SetGID) bit set.
SUID means that no matter the security context of the parent process
 running the executable, the executable will run with the security context
 of the owner of the executable file. This is most commonly used to give
 regular users the ability to run programs that require root access without
 actually giving them access to the root account. So if an executable file
 has the SUID bit set and the file is owned by root, then no matter who
 executes that file, the resulting process will have root-level permissions.
An example of this is the ping command. ping
 is used to send ICMP packets to hosts on a network and report back on
 replies. It is primarily a network testing tool, and is a standard part of
 every operating system that supports TCP/IP. Ping
 needs the ability to open a raw network socket in order to do its job, and
 that kind of low-level access is reserved for the root user. However, it’s
 such a useful and ubiquitous tool, it’s common to want to make it
 available to all users on a system. So in many Linux distributions,
 ping has the SUID bit set by default. Any user that
 runs the ping command will run it in the security
 context of the root user.
Here is what a directory entry for ping looks
 like:
$ ls -l /bin/ping
-rwsr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping
The s in the user section of the
 file security setting means that the SUID bit is set.
SGID works in the same way, but for group ownership instead of user
 ownership.
The (In)Security of SUID

Although SUID is a useful option when it comes to
 delegating roles to nonroot users, its potential security
 vulnerabilities should not be overlooked. A program marked with the SUID
 bit and owned by root will run as root. Everything that that program is
 able to do will be done as the root user. This has large implications
 for the overall security of a system. Think of this example:
 vi is a common editor that is found on most Linux
 systems. If /bin/vi is SUID, every user who edits
 any file with vi will have the privileges of the
 root user, meaning that any user could edit any
 file on the system. This is the kind of thing that makes SUID so
 potentially dangerous. There is a situation worse than being able to
 edit any file as root: spawning a subshell from an SUID program. We can
 use vi as our example here again. The editor
 vi allows you to issue a command to spawn a
 subshell while you are in the editor. We know that a child process
 inherits the security context of the parent process. So if
 vi is SUID and it spawns an interactive shell child
 process, that interactive shell has a security context of
 root. So the simple act of making
 /bin/vi SUID has given all users on the system an
 easy way to access an interactive shell prompt as the root user,
 completely undermining all other security protocols that might be in
 place.
Because of this potentially dangerous situation, a good system
 administrator must be aware of what programs on his system have the SUID
 and/or SGID bit set. The find command (described in
 depth in Chapter 6)
 has an option to search for files based on their permissions. Here is an
 example:
find /bin -perm -4000 -type f
/bin/mount
/bin/su
/bin/ping
/bin/ping6
/bin/umount
/bin/fusermount
The -perm -4000 option to
 find says, “Only display files that have the SUID
 bit set.” The number 4000 is the octal representation of the security
 mode for a file. Reading from right to left, the first 0 is for “other”
 permissions, the next 0 is for “group” the third 0 is for “owner,” and
 the 4 represents SUID. An equivalent way to write this using symbolic
 modes instead of the octal representation is -perm
 –u=s, as in “find all files that have the ‘s’ bit set in the
 user mode section.”
It is important to understand why some programs have the SUID bit
 set. Some programs (such as ping) are not required
 by the operating system, and it is therefore safe to remove the SUID bit
 from them. Some programs (such as passwd) need to
 be SUID to ensure they function correctly on the operating system (if
 you remove the SUID bit from the passwd command,
 then users cannot change their own passwords). If the SUID bit is not
 required in your situation, remove it:
ls -l /bin/ping
-rwsr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping
chmod -s /bin/ping
ls -l /bin/ping
-rwxr-xr-x 1 root root 42360 2008-09-26 01:02 /bin/ping
#
Now only the superuser will be able to use the
 ping command.
In addition to the SUID and SGID bit, the commands
 su and sudo can be used to
 elevate the privileges of a regular user.

User IDs and Passwords

Users in the Unix world are most commonly referred to by
 their usernames, but that is not how the underlying operating
 system sees them. Every user on a system is assigned a user ID (UID)
 that uniquely identifies that user. UIDs are integers ranging from 0 to
 65535. UID 0 is reserved for the superuser (commonly named
 root, but the name can in fact be anything, as long
 as the UID is 0). Convention dictates that “system” users (user accounts
 that represent system processes, not actual human beings) have UIDs
 below 100.
Because everything in Unix is a file, the file security
 permissions are of utmost importance. The owner and group owner of a
 file is stored in the inode (index node) at the filesystem level. This
 is stored as the UID integer, not as the username. To see an example of
 this, do a long directory listing on a directory where some files are
 owned by users that no longer exist on the system:
cd /var/spool/mail/
ls -l
total 1295140
-rw-rw---- 1 adamh mail 0 Jan 6 11:04 adamh
-rw-rw---- 1 alex mail 86311334 Jan 8 06:27 alex
-rw-rw---- 1 2047 mail 0 Dec 2 2006 alice
-rw-rw---- 1 2003 mail 1600945 Jan 7 2009 bob
-rw-rw---- 1 2080 mail 95086 Sep 9 2008 carol
In this example, we are looking in the directory /var/spool/mail, where the mail spool files
 for each user are stored, with filenames corresponding to user account
 names. The files adamh and
 alex are owned by users
 adamh and alex, respectively,
 whereas the file alice is owned by
 UID 2047, bob is owned by 2003, and
 carol is owned by 2080. This reflects the fact that
 ownership is stored in the inode by integer (the UID). In this case, the
 users alice, bob, and
 carol no longer have accounts on the system, but
 these files still reflect that they are owned by these (now unassigned)
 UIDs. The ls command will display the username
 instead of the UID by default in a long directory listing (unless the
 -n option is passed to ls)
 because we human beings are better at remembering names than numbers. If
 ls is able to resolve a UID to a username, it will
 display the username; if not, it displays the UID.
The file /etc/passwd acts as
 the source for username-to-UID mapping (unless a system such as NIS is
 in use, which is not covered on LPI 102). This file is the source for
 all user accounts on the system, and contains not only username
 information, but also other information about the user account, such as
 that user’s home directory and default shell. The following is an
 example section from /etc/passwd:
more /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
adamh:x:500:504:Adam Haeder:/home/adamh:/bin/bash
Each colon-delimited line represents one user account. Table 22-1 defines these
 fields.
Table 22-1. Fields in /etc/passwd
	Field position
	Name
	Description

	1
	Username
	A human-readable name, 1–32 characters
 in length. Only letters, numbers, underscores, and dashes are
 allowed.

	2
	Password
	Formerly stored a user’s encrypted
 password string. If shadow passwords are in use, this field
 always contains the placeholder x. (Shadow passwords are covered in
 more depth later in this chapter.)

	3
	User ID (UID)
	The integer from 0–65535 that
 identifies a user.

	4
	Group ID (GID)
	The integer from 0–65535 that
 identifies the user’s primary group membership.

	5
	Comments
	Textual information about a user. This
 field usually contains a user’s full name or possibly his phone
 number. Referred to as the GECOS field for historical reasons
 (early Unix machines used a General Electric Comprehensive
 Operating Supervisor machine for printing, so this field was
 created to store a Unix user’s GECOS identity).

	6
	Home directory
	The absolute path to the directory the
 user will be in upon successful login. This directory commonly
 is owned by that user.

	7
	Default shell
	The program that runs when the user
 logs in. When this program is exited, the user is logged out of
 the system. This is usually an interactive shell program (such
 as /bin/bash) but it can be another
 executable program as well.

Let’s take a look at the user adamh from our
 previous example:
adamh:x:500:504:Adam Haeder:/home/adamh:/bin/bash
Field 3 tells us that the UID for adamh is
 500, and field 4 tells us that the GID for adamh is
 504. Many Linux distributions will start “normal” user UIDs at 500,
 reserving UIDs from 1–499 for system accounts. Field 5 tells us that his
 full name is Adam Haeder, field 6 says his home directory is /home/adamh, and finally, field 7 says that
 when he successfully logs in, the program /bin/bash
 will be executed.
/etc/passwd is a text file,
 and therefore it can be edited like any other text file. However, that
 is a bad practice to get into because a syntax error in this file can
 prevent users (even root) from logging into the
 system. A much better way to maintain the
 /etc/passwd file is with the command
 /usr/sbin/usermod.

Shadow Passwords

Why is there an x in
 the password field (field 2) of the previous example? When Unix was
 originally designed, the /etc/passwd file stored a
 user’s encrypted password string in field 2 of
 /etc/passwd. The password was encrypted using an
 algorithm known as a one-way hash (the crypt
 algorithm), meaning that while it was trivial to convert a string to a
 hashed value, it was mathematically difficult (i.e., it would take an
 extremely long time) to convert the hashed value back to the original
 string. This is a common function of algorithms used in the security
 world, especially for things such as passwords. If you can’t determine
 the original password when you only know the hashed value, then we don’t
 have to worry about the security around the hashed value itself, because
 it is too difficult mathematically to derive the password from the
 hashed value. So this hashed value can be stored in a world-readable
 file such as /etc/passwd without compromising the
 security of the system.
If it’s very difficult to derive a password from its hashed value,
 how does the system know I’m typing in the right password when I log in?
 The login process on a Linux system follows these steps:
	Prompt user for a username and password.

	Look in /etc/passwd to see whether the
 user account exists.

	If it does, encrypt the string given as the password using the
 crypt algorithm.

	Compare the encrypted string given by the user with the
 encrypted string stored in field 2 of the
 /etc/passwd entry for that username. If they
 match, then the user gave the correct password, and she is allowed
 to log in. If they did not match, present an error and ask the user
 for the password again.

In this way, a Linux system is able to determine whether a user
 provided the correct password without having to “recover” the original
 password from the encrypted string.
Although this solution is effective, it does pose security risks.
 By storing the encrypted string in the world-readable
 /etc/passwd file, any user on the system has access
 to every other user’s encrypted password. It may be extremely difficult
 for a user to mathematically derive the original password from the
 encrypted string, but she can use the same crypt
 algorithm to encrypt random strings and compare the resultant encrypted
 string with the encrypted strings for other users (following the same
 process that the login program
 uses). If the user is patient enough and tries enough combinations of
 letters and numbers, she could eventually find a string that, after
 encryption, exactly matches the encrypted string for a user account.
 This is called a brute force attack, because the
 user is forced to try every possible combination of potential passwords
 to determine which one is correct.
If this seems like a daunting and time-consuming task, that’s
 because it is. Or at least it was, if we’re talking about the computing
 power that was available to the average user in the 1960s through the
 1980s. However, as the 1980s turned into the 1990s, and computers not
 only got much faster but also much cheaper, the average user had access
 to relatively powerful computational machines that could encrypt strings
 and compare them against other encrypted strings at the rate of
 thousands (or hundreds of thousands) per second. This posed a problem
 for the system administrators of the day; the encrypted hash was stored
 in a world-readable file (/etc/passwd), and every
 user could now copy this file, take it back to their personal computers,
 and run brute force attacks against it.
The solution to this was to move the encrypted password string to
 a file that is not world-readable. Thus the concept of shadow
 passwords was born, and the file
 /etc/shadow was created. This file contains not
 only the encrypted password but also other user account fields that are
 important (such as password age and account expiration dates), without
 requiring a modification to the format of
 /etc/password. Plus, only the root user can read
 /etc/shadow, preventing brute force attacks by
 normal users.
The /etc/shadow file is colon-delimited, like
 /etc/passwd, and contains the fields described in
 Table 22-2.
Table 22-2. Fields in /etc/shadow
	Field position
	Name
	Description

	1
	Username
	Must match a username in
 /etc/passwd.

	2
	Password
	Encrypted password string. Other
 special options here are:
 	! or null:
 This account has no password.

	*: Account is disabled.

	!<encrypted password>:
 Account is locked.

	!!: Password has never been
 set.

	3
	Last Changed
	The number of days (since January 1,
 1970) since the password was last changed.

	4
	Minimum
	The number of days before a user may
 change his password. A value of 0 means the user may change his
 password at any time.

	5
	Maximum
	The number of days a user can keep the
 same password. After this limit is reached, the user must change
 his password. Usually set to 99999 if password changes are not
 required.

	6
	Warn
	The number of days before password
 expiration that a user starts to receive
 warnings.

	7
	Inactive
	The number of days after password
 expiration that an account is automatically
 disabled.

	8
	Expire
	A number indicating when the account
 will be disabled. This is represented as the number of days
 since January 1, 1970.

	9
	Reserved
	Reserved for possible future
 use.

Here is the section of /etc/shadow that corresponds to the section
 of /etc/passwd listed
 previously:
root:$1$8jp/RdHb$D1x/6Xr2.puE0NX3nIgdX/:14617:0:99999:7:::
bin:*:13993:0:99999:7:::
daemon:*:13993:0:99999:7:::
adm:*:13993:0:99999:7:::
lp:*:13993:0:99999:7:::
adamh:1IqH21LHP$BJPha9o6/XoOsSoJfWLfZ0:14617:0:99999:7:::
Note
These are actual encrypted password strings. Break out your
 favorite brute-force password-cracking program and see if you can
 figure out the passwords.

We can see from this file that the root account has a password,
 the password was last changed 14,617 days after January 1, 1970, this
 user can change her password at any time, she does not have to change
 her password until 99,999 days after January 1, 1970, and if her
 password is ever set to expire, she will start getting notices 7 days
 before the actual expiration.
You can use the date command to determine the
 actual dates those integer values represent:
echo "The password for the root account was last changed \
on `date -d "1970/01/01 +14617 days"`"
The password for the root account was last changed \
on Fri Jan 8 00:00:00 CST 2010
echo "The password for the bin account was last changed \
on `date -d "1970/01/01 +13993 days"`"
The password for the bin account was last changed \
on Thu Apr 24 00:00:00 CDT 2008
The accounts for bin,
 daemon, adm, and
 lp are all examples of system accounts. These
 accounts are never meant to have interactive logins; they exist to run
 system processes and to maintain ownership of files. The * in the encrypted password fields means that
 these accounts are disabled from logging in interactively.
Although this file is a text file and can be edited directly to
 modify these values, the command /usr/bin/chage
 should be used to maintain the password aging settings for
 accounts.

Setting Limits on Users

So far, the security concerns we have discussed regarding
 a Linux system have all revolved around the filesystem. Since everything
 in Linux is a file, this makes sense. However, security isn’t solely
 concerned with which user can access what resource at what time.
 Security must also take into consideration the sharing of resources
 among users (both system and human users). A good security administrator
 will ensure that no insecure SUID or SGID binaries exist on his system
 that could give a normal user root access. But what measures are in
 place to ensure that a normal user doesn’t run so many processes that a
 server is ground to a halt? What exists to make sure a user doesn’t open
 so many network sockets that no memory is available to allocate to new
 connections? At first these might seem like capacity planning issues,
 but when we are dealing with systems that reside in a hostile
 environment (such as the Internet), they become the responsibility of
 the security administrator.
The Linux kernel has the ability to control many limits on what
 users can and can’t do. These limits are defined in the file /etc/security/limits.conf and are viewed or
 modified interactively by the ulimit command.
 ulimit is a command built into the bash shell, so
 it does not exist as a separate binary on a Linux system.

Querying System Services

Previous chapters have discussed the importance of the
 /bin/ps command. It is vitally important that a
 system administrator knows exactly what processes are running on her
 machine and why. The first step toward maintaining a secure system is
 knowledge about that system. However, in this age of always-connected
 systems, understanding processes by themselves is not enough; you must
 also understand how they interact across the network. This can be
 accomplished with these Linux utilities: netstat,
 nmap, and lsof.

Name
su

Syntax
su [OPTION]... [-] [USER [ARG]...]

Description
The su command (short for
 substitute user) allows
 you to run a shell with substitute user and group IDs. It is most
 commonly used to allow a normal user to “become” the root user
 (assuming they know the root password). It is also used by the root
 user to “become” a regular user.

Frequently used options
	-
	Make the shell that is spawned a login shell (i.e.,
 process .bash_profile and set appropriate
 login environment variables, such as
 $PATH)

	-cCOMMAND
	Pass a single command to the shell, useful for one-line
 commands that need to be run as
 root.

Examples
A normal user becoming root:
$ whoami
adam
$ su -
Password: <root password given here>
whoami
root
Running a command as the root user:
$ wc -l /etc/shadow
wc: /etc/shadow: Permission denied
$ su -c wc -l "/etc/shadow"
Password: <root password given here>
48 /etc/shadow
Root becoming a regular user:
whoami
root
su – adam
$ whoami
adam
The - (or -l) option
 to su determines whether or not the new shell
 is a login shell. The most obvious impact of this decision is the
 $PATH variable. The most common usage of
 su is for a regular user to become the root
 user, to enable that user to run a command or perform a task that
 only root can do. By default, the
 $PATH environment variable contains different
 directories for the root user than for regular users. Specifically,
 the directories /sbin and
 /usr/sbin store binary programs that only the
 superuser should run. Regular users can read these directories, but
 it doesn’t make sense to have those directories in a regular user’s
 $PATH, because they will never need to use
 them.
If a regular user uses the command su to
 become root, the $PATH environment variable
 does not change, because this is not a login shell. This means that
 the directories /sbin and
 /usr/sbin are not in that user’s
 $PATH. This is often a source of confusion for
 new system administrators. Note the following example:
$ whoami
adam
$ su
Password: <root password given here>
fdisk –l /dev/sda
bash: fdisk: command not found
which fdisk
/usr/bin/which: no fdisk in
(/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/adam/bin)
exit
$ su –
Password: <root password given here>
fdisk –l /dev/sda
Disk /dev/sda: 200.0 GB, 200049647616 bytes
....etc....
which fdisk
/sbin/fdisk
echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:\
/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
Initially, the fdisk command by itself
 did not work because it was not in the $PATH
 variable. Once the user returned to her user shell and used
 su to become root, the
 $PATH environment variable then contained the
 /sbin and /usr/sbin
 directories, so fdisk was found.

Name
sudo

Syntax
sudo [OPTION]... [-a auth_type] [-c class] [-p prompt] [-u username]

Description
sudo
 (substitute user
 do) allows a permitted user to execute a
 command as the superuser or another user, as specified in the
 /etc/sudoers file.

Frequently used options
	-b
	Run the given command in the background.

	-uUSERNAME
	Attempt to run the command as user
 USERNAME instead of root.

The sudo command lives somewhere between
 SUID and su. sudo is used
 when you want to give certain users (or groups of users) access to
 run certain commands with elevated privileges (usually as
 root). Sudo is extremely
 useful for a number of reasons:
	You don’t have to hand out the root password to people
 just so they can run a few commands.

	It logs every command (completed and attempted).

	In the /etc/sudoers
 file, you can limit its use by user account, by group, by
 machine, or by pathname.

	The design of /etc/sudoers is such that you can
 replicate it across multiple systems without modification of the
 file.

The /etc/sudoers
 configuration file is a standard text file (like most other Linux
 configuration files), but the syntax for the rules that define the
 behavior of sudo is formatted in Extended
 Backus-Naur Form (EBNF), which is a way to describe the grammar of a
 language. This is relatively unique to the Linux configuration file
 world, so your /etc/sudoers
 file will look quite a bit different than other configuration files
 you are used to. Because of the security implications of
 sudo, and the somewhat challenging format of
 the file itself, it is recommended that the command
 visudo be used to edit /etc/sudoers instead of editing the file
 directly. visudo will not only make a backup
 copy of the /etc/sudoers file
 for editing (replacing the previous version of /etc/sudoers when the backup
 copy is saved), but it also does syntax checking of the format of
 the file, warning you if the syntax is incorrect. If you prefer an
 editor other than vi, just make sure your
 $EDITOR environment variable contains the path
 to your preferred editor, and visudo will
 invoke that editor instead of vi.
On the Exam
The configuration options available in /etc/sudoers can be very complicated.
 You will not be required to answer questions about every possible
 option on the LPI exams. You should know what
 sudo is for and some example command-line
 usage, and have a general idea of what the /etc/sudoers file should look
 like.

Example 1
A simple /etc/sudoers
 file:
Format is:
user MACHINE=COMMANDS
#
The COMMANDS section may have other options added to it.
#
Defaults requiretty,passwd_timeout=10
Allows members of the users group to mount and unmount the cdrom as root
%users ALL=/sbin/mount /mnt/cdrom, /sbin/umount /mnt/cdrom
Allow the user adam to run the dumpe2fs command on any locally attached
disk using scsi emulation (/dev/sd*) on the computer 'fileserv',
don't prompt for a password
adam fileserv=NOPASSWD: /sbin/dumpe2fs /dev/sd*
The NOPASSWD option will allow the user
 adam to run the dumpe2fs
 command without being prompted for a password. Normally,
 sudo will prompt a user for his password (not
 the root password! If the user knew the root password, he wouldn’t
 need sudo, would he?). Once the user’s password
 is given correctly, sudo will cache the
 password and not ask again for a default of five minutes
 (configurable in the /etc/sudoers file). Setting the
 NOPASSWD option allows the
 sudo command to be called from
 cron and other noninteractive, scripted
 situations.
The detailed logging that sudo offers by
 default is another reason why it is so popular. It is a common
 scenario to have multiple people acting as system administrators in
 a corporate environment. If all of these people log in as
 root to perform maintenance, there is no way to
 tell exactly which user was logged in as root
 and ran what command at a certain time. sudo
 handles this for you. It is good practice to use
 sudo to run superuser commands when you are in
 a shared administrator environment.

Example 2
A sample log line from sudo:
Dec 4 15:07:20 fileserv sudo: adam : TTY=pts/0 ; PWD=/sbin ; USER=root ; \
COMMAND=/sbin/dumpe2fs /dev/sda3
By default, sudo uses the
 syslog service to log all events. Depending
 upon your syslog configuration, these events
 will probably be logged to either /var/log/messages or /var/log/secure.
sudo will also log instances when a user
 attempts to run a command and is denied, shown next.

Example 3
Sudo denying access to user joe, who
 tried to run sudo /bin/ls /tmp:
Dec 4 15:27:29 fileserv sudo: joe : user NOT in sudoers ; TTY=pts/0 ; \
PWD=/home/joe ; USER=root ; COMMAND=/bin/ls /tmp
Other important things to remember about
 sudo:
	Be sure you are giving the exact path to applications in
 the /etc/sudoers file. The
 visudo command will give you an error if
 you try to use relative path names.

	Be aware of commands that spawn subshells! This is the
 same issue that was discussed earlier with regards to SUID
 programs and subshells. A subshell (or child process) will
 always inherit the security context of the parent process. So if
 you have a line in /etc/sudoers that looks like
 this:
adam ALL=NOPASSWD: /bin/vi
then the user “adam” will be able to run
 /bin/vi as root. By typing
 !bash in a vi session,
 adam will have an interactive shell as root. If you are in a
 situation where you need to let non-root users edit protected
 files, use the command sudoedit (an alias
 to “sudo –e”). This tells
 sudo that a file needs to be edited. The
 sudo command will make a temporary copy of
 the file and open an editor in the security context of the user
 (not root). Once the temporary file is saved,
 sudo will copy the temporarily file over
 the original file. This bypasses the root subshell
 dilemma.

	The file /etc/sudoers
 can be a little daunting at first, but remember it was designed
 to allow you to have one copy of /etc/sudoers work across multiple
 servers. If this is not your situation, you can follow the
 simple examples above to create and maintain an /etc/sudoers file that is a little
 easier to read.

Name
usermod

Syntax
chage [OPTIONS] [USERNAME]

Description
usermod is used to maintain the
 settings for accounts in /etc/passwd and /etc/group (and, by extension, /etc/shadow and /etc/gshadow).

Frequently used options
	-c
 COMMENT
	Set or change the value of the Comment field (field
 5).

	-d
 HOMEDIRECTORY
	Set or change the value of the user’s home directory
 (field 6).

	-g
 GROUPID
	Set the primary GID (group ID) of the user.

	-G comma-delimited
 GROUPID(S)
	Set the supplementary group ID(s) for a user.

	-l
 USERNAME
	Change the username to
 USERNAME.

	-s
 SHELL
	Change the user’s shell to
 SHELL.

Name
chage

Syntax
chage [OPTIONS] [USERNAME]

Description
chage (change aging) is used to
 maintain the password aging limits on a user account.

Frequently used options
	-d
 LASTDAY
	Set the number of days (since January 1, 1970) when the
 password was last changed.

	-E
 EXPIREDATE
	Set a user account to expire on a certain date.

	-I
 INACTIVEDAYS
	How many days of inactivity after a password has expired
 must pass before the account is locked.

	-l
	Show password aging information for an account. A
 nonprivileged user can run this to view his password aging
 status.

	-m
 MINDAYS
	Set the minimum number of days between password
 changes.

	-M
 MAXDAYS
	Set the maximum number of days a password is
 valid.

	-W
 WARNDAYS
	The number of days before the password expiration that
 the system will start warning the user.

Examples
View the password aging information for the
 root user:
chage -l root
Last password change : Jan 08, 2010
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
Force a user to change his password on the next login:
chage -d 0 adamh
chage -l adamh
Last password change : password must be changed
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expires : 7
Now when the user adamh next logs in, he
 will see:
login as: adamh
adamh@server's password: <current password>
You are required to change your password immediately (root enforced)
Last login: Fri Jan 8 14:50:42 2010 from 10.0.0.112
WARNING: Your password has expired.
You must change your password now and login again!
Changing password for user adamh.
Changing password for adamh.
(current) UNIX password: <current password>
New UNIX password: <new password>
Retype new UNIX password: <new password>
On the Exam
The chage command can be a little
 confusing. Take the time to learn its different options and
 practice configuring different password aging settings on a test
 Linux system. It is likely that you will encounter questions about
 the syntax of the chage command on the LPI
 exams.

Name
ulimit

Syntax
ulimit [OPTIONS] limit

Description
Provides control over the resources available to the
 shell and to processes started by it, on systems that allow such
 control.

Frequently used options
	-a
	Report all current limits.

	-u
 NUMBER
	The maximum number of processes available to a single
 user.

	-x
 NUMBER
	The maximum number of file locks.

	-v
 NUMBER
	The maximum amount of memory available to the shell, in
 kilobytes.

	-H
	Indicates that a hard limit is being specified.

	-S
	Indicates that a soft limit is being specified.

Example
View the current limits for a user:
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
Limits are defined on Linux as being either hard or soft
 limits. A hard limit is set by the superuser for a user or group of users and cannot be
 exceeded. A soft limit is also set by the superuser, but it may be
 temporarily overridden by a user if the need arises (by the user
 calling the ulimit command). For example, a
 user may have a soft limit of 100 on the maximum number of open
 files, with a hard limit of 1,000. If the user is running a
 short-term process that needs to open 200 files, they can
 temporarily increase her limit in order for that program to run.
 That increase lasts only for the life of the user’s shell. Hard and
 soft limits are set up by the superuser for all users in the file
 /etc/security/limits.conf.
The file limits.conf takes four values,
 space- or Tab-delimited, on each line:
<domain> <type> <item> <value>
Table 22-3
 describes the options for entries in
 limits.conf.
Table 22-3. Options in /etc/security/limits.conf
	Field name
	Possible values

	Domain
		Username

	Group name, prefixed by @

	* to indicate the default

	Type
		hard

	soft

	Item
		core (limits the core file
 size, set in KB)

	data (maximum data size in
 KB)

	fsize (maximum file size in
 KB)

	memlock (maximum
 locked-in-memory address space in KB)

	nofile (maximum number of
 open files)

	rss (maximum resident set
 size in KB)

	stack (maximum stack size
 in KB)

	cpu (maximum CPU time in
 minutes)

	nproc (maximum number of
 processes

	as (address space limit in
 KB)

	maxlogins (maximum number
 of logins for this user)

	maxsyslogins (maximum
 number of logins on the system)

	priority (the priority with
 which to run the user process)

	locks (maximum number of
 file locks the user can hold)

	sigpending (maximum number
 of pending signals)

	msgqueue (maximum memory
 used by POSIX message queues in bytes)

	nice (maximum nice priority
 allowed)

	rtprio (maximum real-time
 priority)

	Value
	Integer

Here are some example lines from a
 limits.conf file:
user adamh cannot create a file larger than 200 MB
adamh hard fsize 204800
user adamh cannot create a file larger than 100 MB
unless he increases his own ulimit value
adamh soft fsize 102400
don't create core files for any user unless they
change this ulimit value for themselves
* soft core 0
limit all users in the group 'students' to no more
than 20 processes running at once
@student hard nproc 20
limit all users in the group 'faculty' to no more
than 20 processes running at once, but allow
them to increase their own limit temporarily
@faculty soft nproc 20
Let’s see ulimit in action with the user
 adamh, given the example limits.conf file just shown. First, prove
 that user adamh cannot create a file larger
 than 102400 blocks (100 MB, assuming we’re dealing with blocks that
 are each 1 KB in size):
$ whoami
adamh
$ ulimit –a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) 102400
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$ dd if=/dev/zero of=largefile bs=1M count=200
File size limit exceeded
$ ls -lh largefile
-rwxrwxrwx 1 root root 100M 2010-01-08 16:09 largefile
The dd command used in this
 example is attempting to create a 200 MB file by copying the
 contents of /dev/zero (a
 special device that returns zero-valued bytes to all read requests)
 to the file largefile. It is
 doing this by attempting to copy 200 1-megabyte segments. After
 dd has reached 100 MB, the copy is aborted and
 the error “File size limit exceeded” appears. An
 ls of the file shows that user
 adamh was allowed to create a 100 MB file, but
 no larger. Now adamh will use
 ulimit to increase his file size limit to 200
 MB and try the command again:
$ ulimit -f 204800
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) 204800
pending signals (-i) 8192
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 8192
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$ dd if=/dev/zero of=largefile bs=1M count=200
200+0 records in
200+0 records out
209715200 bytes (210 MB) copied, 13.0589 s, 16.1 MB/s
$ ls -lh largefile
-rwxrwxrwx 1 root root 200M 2010-01-08 16:14 largefile
This time, the dd command completed
 without an error, and adamh was allowed to
 create a 200 MB file. However, if he tries to use
 ulimit to increase the limit beyond the hard
 limit, he is denied:
$ ulimit -f 204801
-bash: ulimit: file size: cannot modify limit: Operation not permitted
On the Exam
Setting limits for users is an often-overlooked activity,
 but it will appear on the LPI exam. Be familiar with the format of
 the /etc/security/limits.conf file and some
 of the more common options for ulimit. Also
 be sure to understand the difference between hard and soft limits
 and how those differences affect a user’s ability to use system
 resources.

Name
netstat

Description
The command /bin/netstat is a
 generic, all-purpose network information tool. It will give you
 information about network connections, routing tables, interface
 statistics, and many other low-level details of your current network
 configuration. From a security standpoint, one of the most useful
 options of netstat is its ability to tell you
 what network ports are currently “open” on your system, what network
 connections exist, and what state those connections are in.
 netstat was defined, with examples, in Chapter 21. Here are few
 more examples, focusing on the security-related information provided
 by netstat.

Examples
Show protocol statistics. This is an example from a moderately
 busy public web server that has been up for 41 days:
netstat -s
Ip:
 996714394 total packets received
 0 forwarded
 0 incoming packets discarded
 996354233 incoming packets delivered
 743668424 requests sent out
Icmp:
 308127 ICMP messages received
 488 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 669
 timeout in transit: 2
 redirects: 277573
 echo requests: 29877
 echo replies: 6
 48625 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 destination unreachable: 18748
 echo replies: 29877
Tcp:
 4092366 active connection openings
 6613024 passive connection openings
 28785 failed connection attempts
 479914 connection resets received
 46 connections established
 995776060 segments received
 742269993 segments send out
 1026415 segments retransmitted
 7056 bad segments received.
 135994 resets sent
Udp:
 30804 packets received
 18657 packets to unknown port received.
 0 packet receive errors
 323385 packets sent
TcpExt:
 77483 invalid SYN cookies received
 22981 resets received for embryonic SYN_RECV sockets
 ArpFilter: 0
 6555736 TCP sockets finished time wait in fast timer
 2463 time wait sockets recycled by time stamp
 1004 packets rejects in established connections because of timestamp
 17501900 delayed acks sent
 24177 delayed acks further delayed because of locked socket
 Quick ack mode was activated 92779 times
 16609 times the listen queue of a socket overflowed
 16609 SYNs to LISTEN sockets ignored
 465508199 packets directly queued to recvmsg prequeue.
 2188914674 packets directly received from backlog
 1015042059 packets directly received from prequeue
 414843326 packets header predicted
 421778135 packets header predicted and directly queued to user
 TCPPureAcks: 52593173
 TCPHPAcks: 313477583
 TCPRenoRecovery: 3251
 TCPSackRecovery: 109485
 TCPSACKReneging: 219
 TCPFACKReorder: 409
 TCPSACKReorder: 61
 TCPRenoReorder: 287
 TCPTSReorder: 1367
 TCPFullUndo: 1433
 TCPPartialUndo: 5607
 TCPDSACKUndo: 75787
 TCPLossUndo: 60128
 TCPLoss: 93645
 TCPLostRetransmit: 31
 TCPRenoFailures: 1693
 TCPSackFailures: 44900
 TCPLossFailures: 10718
 TCPFastRetrans: 182057
 TCPForwardRetrans: 21100
 TCPSlowStartRetrans: 167274
 TCPTimeouts: 428080
 TCPRenoRecoveryFail: 2148
 TCPSackRecoveryFail: 19641
 TCPSchedulerFailed: 107692
 TCPRcvCollapsed: 0
 TCPDSACKOldSent: 89093
 TCPDSACKOfoSent: 1003
 TCPDSACKRecv: 165272
 TCPDSACKOfoRecv: 521
 TCPAbortOnSyn: 0
 TCPAbortOnData: 11898
 TCPAbortOnClose: 2165
 TCPAbortOnMemory: 0
 TCPAbortOnTimeout: 11617
 TCPAbortOnLinger: 0
 TCPAbortFailed: 0
 TCPMemoryPressures: 0
Display all the active TCP connections:
netstat --tcp -n
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.23.11:80 209.34.195.194:4898 SYN_RECV
tcp 0 0 192.168.23.11:80 71.126.90.107:50254 SYN_RECV
tcp 0 0 192.168.23.11:769 192.168.23.10:2049 ESTABLISHED
tcp 0 0 192.168.23.11:992 192.168.23.10:2049 ESTABLISHED
tcp 0 0 192.168.23.11:80 66.199.0.164:32211 TIME_WAIT
tcp 0 0 192.168.23.11:80 68.13.184.187:3249 ESTABLISHED
tcp 0 0 192.168.23.11:80 68.13.85.103:2972 TIME_WAIT
tcp 0 0 192.168.23.11:80 70.165.111.157:14068 TIME_WAIT
tcp 0 0 192.168.23.11:80 68.110.27.241:32808 TIME_WAIT
tcp 0 0 192.168.23.11:80 71.199.119.34:49469 TIME_WAIT
<output truncated>
This output shows us that there are a number of connections to
 TCP port 80 on our server (192.168.23.11). These connections are
 from many different hosts, as is typical with a busy web server. One
 of the interesting things about a report like this is the “State”
 information. A TCP connection goes through a number of different
 states as the connection is requested and created, data is
 transmitted, and the connection is completed and closed. From a
 security standpoint, it’s a good idea to be familiar with the
 different states a TCP connection will be in. Some high-profile
 denial of service attacks in the past have taken advantage of the
 relatively long timeout values in TCP connections to completely
 exhaust the kernel memory of a system, by making thousands of TCP
 connections but never completing the response, and thus causing the
 system under attack to hold these thousands of TCP connections open
 until they finally time out. If you see a lot of connections in the
 “TIME_WAIT” state for long periods, you may be the victim of such an
 attack. To modify the default value, edit the file /proc/sys/net/ipv4/tcp_fin_timeout. For
 more information on the /proc
 filesystem and how to use it to tune your running system, refer to
 the text file Documentation/filesystems/proc.txt in
 your Linux kernel source.
Table 22-4 displays the
 different states a TCP connection goes through.
Table 22-4. States of a TCP connection
	State name
	Description

	CLOSED
	The connection is
 closed.

	LISTEN
	Listening for an incoming
 connection.

	SYN_RCVD
	SYN stands for SYNCHRONIZE, used
 to initiate and establish a connection. Named for the
 synchronization of sequence numbers that takes place
 throughout a TCP connection. This state indicates the
 connection is receiving packets.

	SYN_SENT
	This state indicates the
 connection is sending packets.

	ESTABLISHED
	In this state, the TCP three-way
 handshake has been completed, and a TCP connection is now
 established.

	FIN_WAIT_1
	FIN stands for FINISH, meaning
 that one of the devices wants to terminate the
 connection.

	FIN_WAIT_2
	After one end receives an
 acknowledgement (ACK) of a FIN, it goes into state
 FIN_WAIT_2.

	CLOSING
	The connection is in the process
 of closing.

	CLOSE_WAIT
	The state a connection is in after
 sending an ACK in response to an initial FIN.

	LAST_ACK
	One end of the connection is in
 the process of sending a FIN.

	TIME_WAIT
	After a TCP connection is closed,
 the kernel will keep the connection around in TIME_WAIT
 state, waiting for any delayed duplicate packets. This
 prevents another socket from using this same port and
 receiving data meant for an old connection.

On the Exam
netstat is an important tool that you
 will encounter often in your Linux career. Become familiar with
 the more common command-line options, and understand when it is
 appropriate to use the netstat command,
 because you will see a number of references to it on the LPI
 exams.

Name
nmap

Syntax
nmap [scan type] [options] (target specifications)

Description
nmap (the network mapper) is a
 very powerful port-scanning tool. Its primary purpose is to scan a
 remote host (or entire subnet) and report back what TCP or UDP ports
 are open on each system. However, this powerful tool can do much
 more, including OS fingerprinting and vulnerability scanning.

Frequently used options
	-sP
	Don’t port scan; just report what hosts respond to a
 ping request. This is commonly called a ping sweep. See the later
 examples.

	-n
	Don’t do DNS resolution.

	-sS
	Perform a TCP SYN scan (the default).

	-sU
	Perform a UDP scan.

	-p
 port_range
	Scan only the specified ports.

	-sV
	Perform a service or version scan on open ports. This is
 useful when attempting to determine what software is running
 on the remote machine.

	-O
	Attempt to determine the operating system of the system
 being scanned.

Example 1
Perform a “standard” TCP scan on a remote system:
nmap 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:11 CST
Interesting ports on server.domain.com (192.168.1.220):
Not shown: 979 closed ports
PORT STATE SERVICE
42/tcp open nameserver
53/tcp open domain
80/tcp open http
88/tcp open kerberos-sec
135/tcp open msrpc
139/tcp open netbios-ssn
389/tcp open ldap
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
1025/tcp open NFS-or-IIS
1029/tcp open ms-lsa
1084/tcp open ansoft-lm-2
1090/tcp open unknown
1094/tcp open unknown
1121/tcp open unknown
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3389/tcp open ms-term-serv
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)

Nmap done: 1 IP address (1 host up) scanned in 1.39 seconds
nmap performs its work relatively
 quickly, and lets us know that of the 1,700 or so common ports that
 were scanned, 21 ports were found open that
 nmap considers “interesting.” If you want to
 scan every possible open TCP port (from 1 to 65535), give the
 –p option:
nmap -p 1-65535 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:15 CST
Interesting ports on server.domain.com (192.168.1.220):
Not shown: 65512 closed ports
PORT STATE SERVICE
42/tcp open nameserver
53/tcp open domain
80/tcp open http
88/tcp open kerberos-sec
135/tcp open msrpc
139/tcp open netbios-ssn
389/tcp open ldap
445/tcp open microsoft-ds
464/tcp open kpasswd5
593/tcp open http-rpc-epmap
636/tcp open ldapssl
1025/tcp open NFS-or-IIS
1029/tcp open ms-lsa
1084/tcp open ansoft-lm-2
1090/tcp open unknown
1094/tcp open unknown
1121/tcp open unknown
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3389/tcp open ms-term-serv
4601/tcp open unknown
9675/tcp open unknown
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)

Nmap done: 1 IP address (1 host up) scanned in 17.80 seconds
This scan took a little bit longer, but it showed us an
 additional three open TCP ports that the default scan did not
 show.

Example 2
Attempt to perform an “OS fingerprint” on a remote system:
nmap -O 192.168.1.220

Starting Nmap 5.00 (http://nmap.org) at 2010-01-14 21:18 CST
Interesting ports on server.domain.com (192.168.1.220):
Not shown: 979 closed ports
PORT STATE SERVICE
42/tcp open nameserver
<...output truncated...>
10000/tcp open snet-sensor-mgmt
MAC Address: 00:07:E9:82:6B:D8 (Intel)
Device type: general purpose
Running: Microsoft Windows 2003
OS details: Microsoft Windows Server 2003 SP1 or SP2
Network Distance: 1 hop

OS detection performed. Please report any incorrect results \
at http://nmap.org/submit/.
nmap performs some interesting
 manipulations of the standard TCP connection states in an attempt to
 guess what operating system the scanned host is running. For more
 information, visit the nmap
 site.

Example 3
Discover what hosts are “up” on a subnet (or at least which
 ones are responding to ping). This example was
 run on a different machine, so the version of
 nmap and the IP subnet are different from the
 previous example:
nmap -sP 10.0.0.0/24

Starting Nmap 4.52 (http://insecure.org) at 2010-01-14 21:21 CST
Host 10.0.0.1 appears to be up.
Host 10.0.0.100 appears to be up.
MAC Address: 00:1B:EA:F2:C4:70 (Nintendo Co.)
Host 10.0.0.101 appears to be up.
MAC Address: 00:21:00:9E:45:15 (Unknown)
Host 10.0.0.102 appears to be up.
MAC Address: 00:21:00:72:54:4A (Unknown)
Host 10.0.0.103 appears to be up.
MAC Address: 00:21:85:C2:2D:A5 (Unknown)
Host 10.0.0.104 appears to be up.
MAC Address: 00:19:21:27:8E:83 (Elitegroup Computer System Co.)
Host 10.0.0.106 appears to be up.
MAC Address: 00:14:22:61:E3:D9 (Dell)
Host router (10.0.0.210) appears to be up.
MAC Address: 00:12:17:30:B4:9C (Cisco-Linksys)
Nmap done: 256 IP addresses (8 hosts up) scanned in 4.928 seconds

Name
lsof

Syntax
lsof [options] [names]

Description
lsof lists open files. Since
 everything in Linux is a file, this tool can tell you a fantastic
 amount of information about your running system. It is primarily
 used to tell what processes have what files open, but it can also be
 used to view TCP and UDP connection information, among other
 things.

Frequently used options
	-c
 x
	Only show files that are open by processes whose
 executable starts with the character(s) specified by
 x.

	-i
 x
	Instead of showing open files, show sockets whose
 Internet address is x. If
 x is not specified, show all IP
 connections. This is functionally equivalent to netstat –anp.

	-u
 username
	Show only the files that
 username has open.

	-P
	Do not convert port numbers to port names (for example,
 show 25 instead of smtp).

Example 1
The lsof command is often used to
 determine what processes have files open on removable media so they
 can be terminated, allowing the media to be unmounted:
pwd
/public
umount /public
umount: /public: device is busy
lsof | grep "/public"
smbd 17728 adamh cwd DIR 8,65 8192 5 /public
bash 21712 root cwd DIR 8,65 8192 5 /public
lsof 21841 root cwd DIR 8,65 8192 5 /public
grep 21842 root cwd DIR 8,65 8192 5 /public
lsof 21843 root cwd DIR 8,65 8192 5 /public
This shows us that the smbd process
 (controlled by user adamh) and a
 bash, lsof, and
 grep process all have the file handle for the
 directory /public open. Now we’ll change
 directories and run lsof again:
cd /
lsof | grep "/public"
smbd 17728 adamh cwd DIR 8,65 8192 5 /public
We see now that only smdb has a file open
 on the /public directory.

Example 2
In this example, we’ll see how lsof can
 be used to determine what connections exist between a machine and a
 remote host. Our machine in this case has an IP address of 10.0.0.1
 and is running the Samba daemon (smbd). The
 remote machine at 10.0.0.104 is connected to the Samba daemon:
lsof -P -i@10.0.0.104
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
smbd 1329 root 5u IPv4 252713 TCP 10.0.0.1:139->\
 10.0.0.104:1568 (ESTABLISHED)
The machine at 10.0.0.104 is connected to TCP port 139 on
 10.0.0.1, and is communicating with the processes named
 smbd, which has a PID of 1329.
On the Exam
The lsof command is an important tool
 for any good system administrator to have in his arsenal. Be
 prepared to answer questions about its general usage, and be
 familiar with common options, including viewing socket information
 and files open by process name and username.

Chapter 23. Set Up Host
 Security (Topic 110.2)

This chapter describes the practical steps one needs to take to begin
 to secure a Linux system. The important thing to remember regarding security
 is that it is a process, not a destination. Maintaining a secure system is a
 job that is never complete. This chapter covers the second objective of
 Topic 110:
	Objective 2: Set Up Host Security
	Candidates should know how to set up a basic level of host
 security. Weight: 3.

Objective 2: Set Up Host Security

As mentioned previously, the key to good host security is
 knowledge. A good system administrator knows at all times what is
 happening on systems he manages, and has processes in place to tell him
 when things stray from the norm.
Previous chapters have covered the topics of shadow passwords,
 knowledge of the /proc filesystem,
 maintaining startup services in /etc/rc.d, and other areas of host-based
 security. This chapter will finish this topic by discussing the
 inetd and xinetd services, and their role in system
 security.
The Super-Server

Modern Linux systems are often asked to perform many
 functions. Because of the broad appeal of Linux, its use is in
 everything from firewalls to set-top boxes. Because of this, there are
 many network services that are commonly seen on a Linux system. These
 services oftentimes do not see constant use, but need to be active and
 available when the need arises. Some examples of these important but
 often seldom used services are ftp,
 finger, telnet,
 imap, and pop3.
You may notice that these examples all represent network services
 that are considered relatively “old” (at least in terms of modern day
 computing). This is essentially true. Years ago, when hardware was more
 expensive and harder to come by, the amount of system resources,
 especially memory, that each process consumed was of great importance.
 The problem was that administrators wanted to consolidate a lot of their
 network services on one Linux machine, but were running into memory
 limitations. The solution was to come up with a listening service, or
 “super-server,” that handled incoming connections and started the
 correct networking service to handle them. Thus the
 inetd service was born.
The inetd service has two important
 characteristics: It is a single process that can listen on multiple
 ports for incoming connections, starting the appropriate service when a
 connection comes in and connecting the inbound connection with the
 service. Also,
 inetd supports a sophisticated security scheme for
 allowing and disallowing access to these “simpler” networking services,
 many of which don’t have advanced access controls built into them. So
 the creation of inetd solved two problems: limited
 memory was conserved, and administrators gained a finer level of control
 over what systems or networks could access their services.
inetd syntax

The main configuration file for inetd is
 /etc/inetd.conf. An example looks
 like this:
#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal
#
These are standard services.
#
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
#
Shell, login, exec, comsat and talk are BSD protocols.
#
#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd in.comsat
#talk dgram udp wait root /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait root /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody /usr/sbin/tcpd in.dtalkd
#
Pop and imap mail services et al
#
#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd
#
The Internet UUCP service.
#
#uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico -l
#
Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers." Do not uncomment
this unless you *need* it.
#
#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
#bootps dgram udp wait root /usr/sbin/tcpd bootpd
#
Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.
#
#finger stream tcp nowait root /usr/sbin/tcpd in.fingerd
#cfinger stream tcp nowait root /usr/sbin/tcpd in.cfingerd
#systat stream tcp nowait guest /usr/sbin/tcpd /bin/ps -auwwx
#netstat stream tcp nowait guest /usr/sbin/tcpd /bin/netstat -f inet
#
Authentication
#
#auth stream tcp nowait nobody /usr/sbin/in.identd in.identd -l -e -o
#
End of inetd.conf
Like most Linux configuration files, a line starting with a
 # symbol denotes a comment. In this
 example, only the ftp,
 telnet, and imap services
 are active. Each line of the file describes a unique service and is
 made up of seven sections, described in Table 23-1.
Table 23-1. Fields in /etc/inetd.conf
	Field position
	Name
	Description

	1
	Service name
	The name of the service, which must
 correspond to a name in the file /etc/services. This determines what
 port inetd will listen on for requests to
 this service.

	2
	Socket type
	One of stream,
 dgram, raw, or
 seqpacket. TCP services use
 stream, whereas UDP services use
 dgram.

	3
	Protocol
	One of the following:

 	tcp,tcp4 = TCP IPv4

	udp,udp4 = UDP IPv4

	tcp6 = TCP IPv6

	udp6 = UDP IPv6

	tcp46 = Both TCP IPv4 and
 v6

	udp46 = Both UDP IPv4 and
 v6

	4
	Connection options
	{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]
 The
 wait or
 nowait option defines how
 inted handles the incoming connection. If
 wait is indicated,
 inetd will hand off multiple incoming
 requests to a single daemon, whereas
 nowait means that
 inetd should start a new server process
 for each incoming connection.

 /max-child limits the amount
 of connections that will be accepted at one time.

 /max-connections-per-ip-per-minute
 and /max-child-per-ip are optional
 limits you can place on this resource, to prevent abuse and
 denial of service attacks.

	5
	User
	What user account the service should
 start as.

	6
	Server
	Full path to the service that
 inetd should start.

	7
	Server options
	Command-line arguments (if any) that
 should be passed to the server.

Using this table as a guide, if we want to enable the
 imap service in our inetd
 configuration but limit imap to a maximum of 10
 concurrent connections and prevent more than 5 concurrent connections
 from a single IP address, the line would look like this:
imap stream tcp nowait/10/0/5 root /usr/sbin/tcpd imapd
Notice that we’re not actually starting the
 imapd service, but instead the server
 /usr/sbin/tcpd with an argument of
 imapd. This is the TCP_WRAPPERS service, which is
 described later in this chapter.
The real advantage of inetd comes into play
 only when you have many services enabled, thus maximizing the amount
 of memory you are saving by not running all of these little-used
 services all the time, listening for connections.

xinetd

The original inetd service is
 seldom seen in more recent Linux distributions. It has been replaced
 with xinetd, the Extended Internet Daemon.
 xinetd improves upon the original goals of
 inetd by increasing the logging and access
 control ability around the managed services, in addition to adding
 defense mechanisms to protect against attacks, such as port scanners
 or denial of service.
The xinetd configuration file is /etc/xinetd.conf, but most services are
 configured as individual files in the directory /etc/xinetd.d. This makes adding and
 removing services much easier
 for a distribution’s package management utility. The /etc/xinetd.conf file contains global
 configuration options, as seen in this example:
This is the master xinetd configuration file. Settings in the
default section will be inherited by all service configurations
unless explicitly overridden in the service configuration. See
xinetd.conf in the man pages for a more detailed explanation of
these attributes.

defaults
{
The next two items are intended to be a quick access place to
temporarily enable or disable services.
#
enabled =
disabled =

Define general logging characteristics.
 log_type = SYSLOG daemon info
 log_on_failure = HOST
 log_on_success = PID HOST DURATION EXIT

Define access restriction defaults
#
no_access =
only_from =
max_load = 0
 cps = 50 10
 instances = 50
 per_source = 10

Address and networking defaults
#
bind =
mdns = yes
 v6only = no

setup environmental attributes
#
passenv =
 groups = yes
 umask = 002

Generally, banners are not used. This sets up their global defaults
#
banner =
banner_fail =
banner_success =
}

includedir /etc/xinetd.d
As you can see, xinetd offers some more
 advanced configuration options, such as cps
 (connections per second) and the ability to set the
 umask for files created by the managed services.
 Here is the example imap configuration file at
 /etc/xinetd.d/imap:
service imap
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/imapd
 log_on_success += HOST DURATION
 log_on_failure += HOST
 disable = no
}
Table 23-2
 describes the different popular configuration options available in
 these service files. For a complete list of options, consult the
 manpage for xinetd.conf.
Table 23-2. Popular fields in /etc/xinetd.d/servicename
	Field name
	Description

	id
	Name of the service.

	flags
	Common flags are:

 	NORETRY = Don’t retry in case of a service
 failure.

	KEEPALIVE = Set the keepalive flag on the TCP
 socket.

	SENSOR = Don’t run a service; just listen on this
 port and log all attempts to access.

	IPv4 = Use IPv4 only.

	IPv6 = Use IPv6 only.

	disable
	Boolean option determining whether
 this service is on.

	socket_type
		stream

	dgram

	raw

	seqpacket

	protocol
	Must be a valid protocol listed in
 /etc/protocols.

	wait
	Normally, TCP services have wait set
 to ‘no’, whereas UDP services have wait set to
 ‘yes’.

	user
	Username the service runs
 as.

	group
	Group the service runs
 as.

	instances
	The number of services that can run
 at once. The default is no limit.

	nice
	Server priority (nice
 value).

	server
	Full path to the server program that
 will run.

	server_args
	Command-line arguments passed to the
 server.

	only_from
	Allows you to restrict access by IP
 address, network, or hostname.

	no_access
	Deny access from this IP address,
 network, or hostname.

	access_times
	Determines what hours of the day
 this service is available, in the form HH:MM –
 HH:MM.

	log_type
	Options are SYSLOG or
 FILE.

	log_on_success
	What variables will be logged on a
 successful connection.

	log_on_failure
	What variables will be logged on a
 failed connection.

	port
	What port
 xinetd should listen on for this
 service.

	bind
	What IP address
 xinetd should listen on. Useful for
 multihomed machines.

	per_source
	Maximum number of connections from a
 single IP address.

	max_load
	After the one-minute load average of
 the machine reaches this amount, stop accepting connections
 until the load goes below this number.

Once the disable = no option is set in our
 /etc/xinetd.d/imap file and the
 xinetd service is restarted, we can use the
 netstat command to verify that
 xinetd is ready for incoming
 imap connections:
netstat --tcp -anp | grep ":143"
tcp 0 0 :::143 :::* LISTEN 15959/xinetd

Security with TCP_WRAPPERS

With the original inetd service, the
 servers that were managed rarely had any advanced access control options
 of their own. These services were often remnants of the early days of
 the Internet, when systems were a little more trusted than they are
 today. Examples of these mostly deprecated services are
 finger, echo,
 daytime, telnet,
 shell, exec, and
 talk, to name a few. xinetd
 added some more advanced controls, but both inetd
 and xinetd are able to utilize the TCP_WRAPPER
 service to aid in access control.
In order to utilize TCP_WRAPPERS, inetd needs
 to call the user-space program /usr/bin/tcpd with an
 argument of the desired service, in order to “wrap” that service in the
 access control. This is not necessary with xinetd,
 as the xinetd binary has TCP_WRAPPERS support
 built-in, by nature of its link with the libwrap
 library. You can see this with the /usr/bin/ldd
 command:
ldd /usr/sbin/xinetd
 linux-gate.so.1 => (0x0012d000)
 libselinux.so.1 => /lib/libselinux.so.1 (0x0012e000)
 libwrap.so.0 => /lib/libwrap.so.0 (0x00149000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00151000)
 libm.so.6 => /lib/libm.so.6 (0x0016a000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00193000)
 libc.so.6 => /lib/libc.so.6 (0x001c5000)
 libdl.so.2 => /lib/libdl.so.2 (0x0031e000)
 /lib/ld-linux.so.2 (0x00110000)
Other services also have native TCP_WRAPPERS support by nature of
 their links to libwrap.so, including
 /usr/sbin/sshd and
 /usr/sbin/sendmail. You can run a simple shell
 script to determine what binaries in /usr/sbin/ are
 linked against libwrap.so:
cd /usr/sbin
for file in *
> {
> if [-f $file]; then
> result=`ldd $file | grep -c libwrap`
> if ["$result" -gt "0"]; then
> echo "/usr/sbin/$file is linked to libwrap.so"
> fi
> fi
> }
/usr/sbin/exportfs is linked to libwrap.so
/usr/sbin/gdm-binary is linked to libwrap.so
/usr/sbin/mailstats is linked to libwrap.so
/usr/sbin/makemap is linked to libwrap.so
/usr/sbin/praliases is linked to libwrap.so
/usr/sbin/rpcinfo is linked to libwrap.so
/usr/sbin/rpc.mountd is linked to libwrap.so
/usr/sbin/rpc.rquotad is linked to libwrap.so
/usr/sbin/sendmail is linked to libwrap.so
/usr/sbin/sendmail.sendmail is linked to libwrap.so
/usr/sbin/smrsh is linked to libwrap.so
/usr/sbin/snmpd is linked to libwrap.so
/usr/sbin/snmptrapd is linked to libwrap.so
/usr/sbin/sshd is linked to libwrap.so
/usr/sbin/stunnel is linked to libwrap.so
/usr/sbin/vsftpd is linked to libwrap.so
/usr/sbin/xinetd is linked to libwrap.so
Configuration

TCP_WRAPPERS is configured in two files, /etc/hosts.allow and /etc/hosts.deny. These files contain rules
 that govern either all services or individual services. Like a
 firewall, it is usually good practice to adopt either a “block
 everything, only open what you need” mentality or an “open everything,
 block only what you don’t need” mentality when it comes to
 TCP_WRAPPERS. Here is an example of a sample configuration that blocks
 everything by default, but opens up access for a few services:
more /etc/hosts.deny
ALL: ALL

more /etc/hosts.allow
sshd: ALL EXCEPT 192.168.1.10
vsftpd: 192.168.1.0/24 EXCEPT 192.168.1.10
The TCP_WRAPPERS files are read in real time by the servers that
 support them, so changes made to these files go into effect
 immediately. The example configuration denies all access by default,
 and then opens it up specifically for the sshd
 and vsftpd services. Users from everywhere except
 the system 192.168.1.10 are allowed to connect to the sshd service, and all users on the
 192.168.1.0/24 network, except for 192.168.1.10, are allowed to
 connect to vsftpd.
Let’s assume that we have xinetd configured
 and running, with the imap configuration as
 listed earlier. In addition, the /etc/hosts.deny and /etc/hosts.allow files are the same as our
 example. Our server system has an IP address of 10.0.0.1, and our
 client system has an IP address of 10.0.0.112. When an attempt is made
 to connect to the imap server on 10.0.0.1 from
 10.0.0.112, the connection times out. We can see the details in
 /var/log/messages on the
 server:
tail /var/log/messages
Jan 26 15:22:42 server xinetd[15959]: xinetd Version 2.3.14 started with \
libwrap loadavg labelednetworking options compiled in.
Jan 26 15:22:42 server xinetd[15959]: Started working: 1 available service
Jan 26 15:23:23 server xinetd[15959]: START: imap pid=15975 \
from=::ffff:10.0.0.112
Jan 26 15:23:28 server xinetd[15959]: EXIT: imap status=1 pid=15975 \
duration=5(sec)
Jan 26 15:26:30 server xinetd[15959]: START: imap pid=16035 \
from=::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[16035]: libwrap refused connection to \
imap (libwrap=imapd) from ::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[16035]: FAIL: imap libwrap \
from=::ffff:10.0.0.112
Jan 26 15:26:30 server xinetd[15959]: EXIT: imap status=0 \
pid=16035 duration=0(sec)
We can see from the syslog messages that
 our attempt to connect to imapd was denied. In
 order to enable this access, we need to add the following line to
 /etc/hosts.allow:
imapd: ALL
or, if we want to limit it somewhat:
imapd: 10.0.0.0/24
After this change, we try our imap
 connection from the client again, and we get a connection. Logfiles on
 the server show our success:
tail /var/log/messages
Jan 26 15:34:37 fileserv xinetd[15959]: START: imap pid=16083 \
from=::ffff:10.0.0.112
Jan 26 15:34:42 fileserv xinetd[15959]: EXIT: imap status=1 \
pid=16083 duration=5(sec)

Remember that you need to do more than simply configure
 /etc/hosts.deny and /etc/hosts.allow to secure your system.
 Many popular applications, such as the Apache web server, do not link
 against libwrap.so, so they do not honor the
 entries you place in these configuration files.
Also, it is more and more common on network-enabled Linux
 machines (especially those connected directly to the Internet) to not
 run inetd or xinetd at all.
 If there are services that need to be run, such as
 imapd or ftpd, they are
 often run as standalone daemons, largely because the lack of necessary
 memory in a server is not as much of a concern as it was years ago,
 and many of these newer services have built-in access controls that
 rival the ability of TCP_WRAPPERS. So if you are in doubt about
 whether or not you need a service that is handled by
 xinetd, you are probably safe to disable it,
 rather than having to worry about securing a service that might not be
 necessary.
On the Exam
Although the inetd service has largely been
 replaced by xinetd, be familiar with the syntax
 of the inetd.conf file, because
 there is a good chance you will encounter questions about it on the
 LPI exams. The syntax of the /etc/hosts.deny and /etc/hosts.allow files also will be a
 focus.

Chapter 24. Securing
 Data with Encryption (Topic 110.3)

This Topic focuses on the methods used to secure Linux servers
 and workstations. Securing servers includes two basics steps: communicating
 between servers in a secure way, and then encrypting data on the servers
 themselves. The LPI knows that SSH is the most common method for
 communicating securely between servers. Therefore, the topic is covered
 fairly extensively on the exam and in this chapter.
SSH is used for many more purposes than simply communicating across
 insecure networks; it is used throughout the industry to configure remote
 systems and tunnel all sorts of traffic, from X Windows to email and
 FTP.
The second part of securing a server—making sure that stored data is
 properly encrypted—can be handled in
 myriad ways. However, the LPI recognizes that GNU Privacy Guard (GPG) has
 become the standard. Before we take a deep look at how SSH and GPG work,
 make sure that you understand this LPI Objective’s description
 perfectly:
	Objective 3: Securing Data with
 Encryption
	The candidate should be able to use public key techniques to
 secure data and communication. The key knowledge areas are:
	Perform basic OpenSSH 2 client configuration and
 usage.

	Understand the role of OpenSSH 2 server host keys.

	Perform basic GnuPG configuration and usage.

	Understand SSH port tunnels (including X11 tunnels).

Following is the list of the used files, terms, and
 utilities:
	ssh

	ssh-keygen

	ssh-agent

	ssh-add

	~/.ssh/id_rsa and
 id_rsa.pub

	~/.ssh/id_dsa and
 id_dsa.pub

	/etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_rsa_key.pub

	/etc/ssh/ssh_host_dsa_key and /etc/ssh/ssh_host_dsa_key.pub

	~/.ssh/authorized_keys
 and ~/.ssh/authorized_keys2

	/etc/ssh_known_hosts

	gpg

	~/.gnupg/*

Objective 3: Securing Data With Encryption

As you can see from this Objective, you need to know more than how
 to issue a couple of commands on a remote system. You also have to
 understand how to configure systems for public key encryption and how to
 use common SSH and encryption commands, including GPG.

Using Secure Shell (SSH)

SSH, also known as Secure Shell, is a replacement for the
 obsolete telnet command and
 rsh/rlogin/rcp suite. The primary use for SSH is to
 conduct encrypted shell sessions to remote hosts. However, it can also be
 used to copy files and to tunnel other protocols.
SSH is a server/client protocol offering sshd as the server and the
 ssh and scp commands as the
 client. The client connects to the server, they establish an encrypted
 session, and then the server demands authentication before finally logging
 in the client.
The ssh command can be used either to execute a
 single command and return to the local terminal, or to establish a remote
 session that acts and feels just like logging into the remote system. In
 this regard, ssh acts like the obsolete
 rsh command; used to log in, ssh
 acts like rlogin and
 telnet.
The scp command copies files and directories to
 or from a remote system, acting like the obsolete rcp
 command.
In addition to simple login sessions and file copying, SSH can also
 provide transparent port forwarding, and as an extension of this, X
 authentication and forwarding. When you have an SSH session, you can start an X client on the remote
 machine, and the X Window System protocol will travel encrypted over your
 connection and display on your local machine without the need for settings
 such as DISPLAY=foo:0 or the
 xhost or xauth commands.
The implementation of SSH generally used on Linux systems is
 OpenSSH.
Installation and Configuration

OpenSSH may or may not be installed on your system by default.
 When the SSH server (sshd) runs for the first time,
 it generates a host key for your machine. This key will serve to
 authenticate your host in subsequent SSH sessions. Then you will
 typically want to create SSH authentication keys for your own personal
 account, as well as the root account. After that, as the administrator
 you should review the configuration of sshd, to see
 that you are comfortable with it.
The standard place for the central configuration of OpenSSH is the
 /etc/ssh directory. Here you will find the server
 configuration in sshd_config and default client
 configuration in ssh_config. Here are some
 highlights from the server configuration as installed on Debian:
What ports, IPs and protocols we listen for
Port 22
Protocol 2
Port 22 is the standard port for the SSH protocol. Version 2 of
 the protocol is the most secure, whereas version 1 has some flaws that
 were hard to overcome. It is recommended to accept only version 2 now.
 To support both versions, put 2, 1 on
 the Protocol line of the
 configuration file.
On the Exam
SSH uses TCP port 22. Be prepared to know the preferred version
 of SSH (2) as well. The second version of SSH is preferable, because
 version 1 has long been known to have a weak encryption algorithm that
 has been broken.

Example /etc/ssh/sshd_config file

Authentication:
PermitRootLogin yes

PubkeyAuthentication yes

rhosts authentication should not be used
RhostsAuthentication no
Don't read the user's ~/.rhosts and ~/.shosts files
IgnoreRhosts yes
For this to work you will also need host keys in /etc/ssh_known_hosts
(for protocol version 2)
HostbasedAuthentication no

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication yes
OpenSSH ignores the host operating system setting for permitting
 root logins on nonconsole terminals. Instead, OpenSSH has its own
 setting in PermitRootLogin. The
 PubkeyAuthentication setting allows
 or denies login authentication based purely on public-key cryptography. You can trust this as far as
 you can trust the host on which the private parts of those keys are
 stored (unless they are protected by passphrases, in which case you
 can trust them a bit further).
IgnoreRhosts allows or denies
 the old-fashioned—and very insecure—rhosts authentication, used by the
 rsh/rlogin/rcp suite. This way of authenticating
 connections is not only insecure, but also made obsolete by public-key
 authentication. If you combine rhosts authentication with public-key
 authentication of the connecting host, on the other hand, it’s
 immediately a lot more secure—but host keys cannot be protected by
 passphrases. Use of the rhosts authentication is still not
 recommended, but in some settings it is appropriate, and HostbasedAuthentication enables it.
PasswordAuthentication allows
 or denies authentication by the old-fashioned passwords read and
 stored by rhosts authentication. This requires that your users
 exercise good password maintenance, as with all other password-based
 authentication schemes.
X11Forwarding yes
If X11 forwarding is enabled on the server and your client
 requests it (using the -X option),
 the client and server will forward traffic from a port on the server
 side to your DISPLAY. The server
 sets the remote DISPLAY to the
 local port that sshd uses to transfer X Window
 System traffic to your local screen, as well as to accept input from
 your local devices. To secure this forwarding activity, the server
 will install an xauth authentication token that it
 will enforce for all new connections. This port forwarding and extra
 authentication, which we’ll return to, makes OpenSSH a very versatile
 remote terminal program.

DSA and RSA Overview

The Digital Signature Algorithm (DSA) is an open standard
 used for creating digital signatures based on public key encryption. DSA
 is used in many different applications, including SSH and GPG, because it
 is an open standard and not subject to traditional copyright. The Rivest,
 Shamir, Adleman (RSA) algorithm is the first algorithm widely used to
 create digital signatures, but it is subject to copyright restrictions
 that some developers find onerous.
You will find that SSH uses RSA by default, whereas GPG uses DSA. As
 with many algorithms, you can specify various bit lengths; 1024 and 2048
 are common lengths, but given the increase in processor speeds that permit
 ever-faster brute force attacks, 2048 is currently considered the minimal
 length to provide acceptable security.
Generating and Using Keys

In most cases, you will want to generate SSH keys for your own
 accounts and perhaps your root account. Use
 ssh-keygen for this. A
 reference for the needed commands appears at the end of this section
 (the short of it is: run ssh-keygen -t dsa and
 press the Enter key at all the prompts). This key allows password-less
 remote logins, as long as PubkeyAuthentication is enabled in the server
 configuration file.
In ~/.ssh/id_dsa.pub you can find the
 public key you’ve generated through
 ssh-keygen. You need to transport this key to the
 remote machine. Because it’s a public key, it does not need to be
 secure. On the remote machine, put the key at the end of
 ~/.ssh/authorized_keys2. Once the key is in that
 file, all users who have the private-key counterpart will be able to log
 in to that remote account without a password.
Enabling bulk logins on multiple hosts for multiple
 users

Sometimes it makes sense to let users log into other
 machines without having to set up authentication themselves. The
 easiest way to do this is to create and modify all the files on one
 machine, as described in the following procedure, and then use
 tar and ssh in a pipe to
 transfer them to the other hosts.
	Enable HostbasedAuthentication in
 /etc/ssh/sshd_config configuration files on
 all hosts.
On the Exam
The exam may ask you about the HostbasedAuthentication feature and
 its purpose. Make sure that you know its purpose, as well as the
 exact location of the /etc/ssh/sshd_config
 file.

	Your client configuration is in
 /etc/ssh/ssh_config. All hosts should have
 HostbasedAuthentication yes set
 there, and if they have a PreferredAuthentications statement, it
 should list hostbased first.
 The hosts’ private keys should be readable only by
 root (otherwise, the key would not be all
 that secret). Exactly what is needed to get SSH access to the keys
 depends on the version. If your SSH package includes an executable
 called ssh-keysign, it must be SUID root (it
 may not be installed that way, so you must check this manually)
 and must provide the signing service that proves the host’s
 identity in the key exchange. If the package does not contain
 ssh-keysign, make sure the
 ssh executable is SUID root through
 chmod u+s /usr/bin/ssh.

	On each host, create
 /etc/ssh/shosts.equiv. This file defines the
 hosts with equivalent security levels. In these files, enter the
 hostnames of all the hosts as they appear in reverse
 lookups.

	On each host, create
 /etc/ssh/ssh_known_hosts. This file must
 contain the host keys of all the hosts involved, under the names
 you used in the previous item. The easiest way to do this is to
 connect to all the hosts using the right names. After doing that,
 the user account that made the connections will have all the
 correct entries in its ~/.ssh/known_hosts
 file. Simply transfer the entries to the system file.

After the previous steps are carried out on all the hosts, all
 ordinary users should be able to use ssh back and
 forth between all the nodes with no other authentication. However,
 this is not true for the root user; she still
 needs user key or password authentication. Trusting a remote
 root is far more serious than trusting a mundane
 remote user.

Using the RSA algorithm

The RSA algorithm has become the de
 facto standard used in SSH and is employed by default,
 although it is possible to use additional algorithms. When it comes
 time to save the key you generate using RSA, you can use any name you
 wish. However, most people stick to the defaults:
	~/.ssh/id_rsa
	The name of the file that contains the private key. This
 file should be readable and writable only by the owner and no
 one else. If anyone else were to obtain a copy of this file, he
 would be able to decipher all communications encrypted by your
 copy of SSH.

	~/.id_rsa.pub
	The name of the file that contains the public key. You can
 give this key to anyone you wish. Individuals will import this
 key into their keychains. Once a user imports this key, they can
 decipher encrypted text or files that you send to them.

The Server Public and Private Key

When SSH first starts after installation, it will create a
 key pair, namely /etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_rsa_key.pub, assuming that
 the server is using the default RSA algorithm. This public key always
 has a .pub ending, and resides in the
 /etc/ssh/ directory. The SSH server on your system
 uses this file to authenticate itself to anyone who logs on. The
 ssh-keygen command can be used to view the contents
 of the public key file:
$ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub
1024 98:2g:h8:k9:de:9f:fg:90:34:v3:35:3j:26:24:26:7k ssh_host_rsa_key.pub
If the server is using the DSA algorithm, the key names will be as
 follows:
	/etc/ssh/ssh_host_dsa_key

	/etc/ssh/ssh_host_dsa_key.pub

On the Exam
Make sure that you know the syntax for the -t option of
 ssh-keygen. Make sure that you understand the
 differences in filenames created between specifying the dsa and the default rsa arguments to the -t option.

ssh-agent

ssh-agent makes it practical to use
 passphrases on your private keys. The principle is to use
 ssh-agent to add your keys to a background agent on
 the system that will hold them in escrow. You give your passphrase only
 once, when you add the key. The agent will give the keys out to other
 processes owned by you that request the keys. You should be aware that
 the root user can also request the keys without
 your noticing, so you must trust the root
 user.
The process is quite simple; start the agent, and then add the
 passphrase you used to create the key:
$ eval `ssh-agent`
Agent pid 11487
$ ssh-add
Enter passphrase for /home/janl/.ssh/id_dsa: passphrase
Identity added: /home/janl/.ssh/id_dsa (/home/janl/.ssh/id_dsa)
By default, all your keys will be added. If several of your keys
 have the same passphrase, they will all be added without further
 questions. If they have different passphrases,
 ssh-add will be prompted for them. If you include a
 file on the ssh-add command line, the key in that
 file will be added and the command will not prompt for keys.
ssh-agent works by setting two environment
 variables: SSH_AUTH_SOCK, which names
 the socket on which to communicate with the agent, and SSH_AGENT_PID, which makes it easy to kill the
 agent. That is also why the PID (process ID) shows up in the previous
 listing. The agent emits a shell script that, when evaluated, sets those
 variables correctly.
Since using passphrases makes remote logins immeasurably more
 convenient, it may be a good idea to make it simple for your users to
 use passphrases by starting ssh-agent whenever they
 log in. However, the users’ .bashrc or
 .login scripts are not a good place for the
 command, nor is the system /etc/profile, because
 you don’t need the command to run every time a new terminal is started.
 A good place to put it is in the system-wide
 Xsession scripts. Exactly which script is used to
 start an X session depends on which distribution and which desktop
 people use (KDE, GNOME, classical X, their own custom session). But on
 Debian-based and Red Hat-based systems, there are standard ways to do
 it.
On Debian-based systems, if you put use-ssh-agent on a line by itself in
 /etc/X11/xdm/xdm.options, anyone who later logs in
 with the X Window System will cause the script
 /etc/X11/Xsession.d/90xfree86-common_ssh-agent to
 run. It is reproduced here for convenience:
STARTSSH=
SSHAGENT=/usr/bin/ssh-agent
SSHAGENTARGS=

if grep -qs ^use-ssh-agent "$OPTIONFILE"; then
 if [-x "$SSHAGENT" -a -z "$SSH_AUTH_SOCK" -a -z "$SSH2_AUTH_SOCK"]; then
 STARTSSH=yes
 if [-f /usr/bin/ssh-add1] && cmp -s $SSHAGENT /usr/bin/ssh-agent2; then
 # use ssh-agent2's ssh-agent1 compatibility mode
 SSHAGENTARGS=-1
 fi
 fi
fi

if [-n "$STARTSSH"]; then
 REALSTARTUP="$SSHAGENT $SSHAGENTARGS $REALSTARTUP"
fi
This script first looks for the system-wide use-ssh-agent setting, then very carefully
 checks whether any of the ssh-agent-related
 variables are set already, because if they are set, an agent should
 already be running. Finally, it redefines REALSTARTUP so that the agent will be started
 later in the Debian scripts. The script could just as well have run
 eval 'ssh-agent' directly.
On Red Hat–based systems, you can accomplish the same effect by
 adding the preceding script to
 /etc/X11/xinit/xinitrc.d, but it should be changed
 to run the agent directly, as Red Hat–based systems do not set up all
 the environment variables that Debian-based systems do. In most versions
 of Linux, the agent is started automatically. This includes, for example,
 all recent versions of Ubuntu and other Debian-based systems.
But none of these automated systems adds any keys to the agent.
 That means that users will still be prompted for a passphrase. Users can
 run ssh-add (perhaps in their
 .bashrc files) and enter their passphrases once
 into a shell terminal each time X starts.
It may be a good idea to doctor the automated X setup further with
 an ssh-add command. If run without a terminal,
 ssh-add pops up a graphical passphrase input
 box.
On the Exam
You may be asked to provide the proper syntax for making sure
 ssh-agent is running (which is eval `ssh-agent`). Also be ready to show how
 to use ssh-add after the user has generated a
 key.

Other SSH Tricks

OpenSSH respects TCP wrapper configurations, described in Chapter 23.
sshd, like the Linux
 login program, denies logins when the file
 /etc/nologin exists. When remotely maintaining
 hosts in a way that may disrupt user activities, you should create this
 file with a helpful explanation of what is happening. This will stop all
 nonroot logins by any method, so you can do your maintenance
 undisturbed. The file is usually created by the
 shutdown command as well, to keep users from
 logging in while the machine is shutting down. The file is removed after
 a complete boot:
cat >/etc/nologin
If there is any reason to suspect that your maintenance work can
 disconnect you or break the login mechanism, you should keep multiple
 login sessions open while doing the work. Test logging in again before
 closing them. Otherwise, doing a tiny PAM change that breaks all
 authentication could force you to reboot the machine into single-user
 mode to recover.
Consider scheduling an at or cron job to remove
 /etc/nologin at a particular time, in the event you
 log yourself out. Such a job can be handy when restarting
 sshd from a remote location as well.

SSH Port Forwarding

ssh has the ability to forward
 arbitrary IP-based protocols. The syntax is given next.

Name
ssh-keygen

Syntax
ssh-keygen [-b bits] -t type
ssh-keygen -p [-t type]
ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C '' -N ''
ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C '' -N ''
ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_dsa_key -C '' -N ''

Description
ssh-keygen generates keys to
 identify hosts or users in the SSH protocol, versions 1 and
 2.
The first form creates a key. For version 1 of the protocol,
 the type should be rsa1. For
 version 2, it can be either rsa
 or dsa. The -b option sets the number of bits in the
 keys: 512 is the minimum, and 1024 bits is the default. In
 general, you can use as many bits as you like. During key generation, you will be asked to give a
 passphrase. A passphrase is different from a password in that it
 is a phrase, not simply a word, and is expected to be long. If a
 key pair has a passphrase associated with it, you
 will be expected to provide that passphrase interactively every
 time you need to access that key pair. If this is undesirable (for
 example, if you have unattended processes accessing the key pair),
 you don’t want to provide a passphrase.
The second form is used to change your passphrase.
The three last forms are used to generate the three
 different kinds of host keys. The first is for version 1 of the
 protocol; the two others are for version 2. The -f option sets the output filename; if
 you omit the option, you will be prompted for the name. The
 -C option sets a comment on the
 key, and -N sets the
 passphrase.

Example
Generate a private key and then change its
 passphrase:
$ ssh-keygen -t dsa -b 2048
Generating public/private dsa key pair. Enter file in which to save the key
(/home/janl/.ssh/id_dsa): <Press the Enter key>
Created directory '/home/janl/.ssh'.Enter passphrase \
 (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved in /home/janl/.ssh/id_dsa.
Your public key has been saved in /home/janl/.ssh/id_dsa.pub.
The key fingerprint is:
c2:be:20:4a:17:2e:3f:b2:73:46:5c:00:ef:38:ca:03 janl@debian
$ ssh-keygen -p -t dsa
Enter file in which the key is (/home/janl/.ssh/id_dsa): <Press the Enter key>
Enter old passphrase: passphrase
Key has comment '/home/janl/.ssh/id_dsa'
Enter new passphrase (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved with the new passphrase.

Name
ssh -R|L

Syntax
ssh -R|L port:host:host_port [user@]hostname [command]

Description
When the main option is -L,
 ssh redirects traffic from the local port
 port to the remote machine and port given
 by host:host_port. The
 host is resolved by the resolver on the
 host you connect to. For security reasons, it binds only to the
 localhost address, not to any ethernet or other interfaces you may
 have.
When a program connects to the localhost port, the connection
 is forwarded to the remote side. A very useful application for this
 is to forward local ports to your company’s mail server so you can
 send email as if you were at the office. All you have to do then is
 configure your email client to connect to the right port on localhost. This is shown by the example in
 the following section.
When using -R, the reverse happens. The
 port port of the remote host’s localhost
 interface is bound to the local machine, and connections to it will
 be forwarded to the local machine given by
 host:host_port.

Example
Log into login.example.com. Then, forward
 connections that come into localhost port 2525 to port 25 on
 mail.example.com, which would otherwise reject
 relaying for you. The reason for binding to port 2525 is that you
 need to be root to bind to port 25:
$ ssh -L 2525:mail.example.com:25 login.example.com

Configuring OpenSSH

This section explains how to acquire, compile, install, and
 configure OpenSSH for Linux, so that you can use it in place of
 telnet, rsh, and
 rlogin.
In the unlikely event that your Linux distribution does not include
 OpenSSH, it is available at http://www.openssh.com/portable.html and at many mirror
 sites around the world. It is a simple matter to compile and install
 OpenSSH if you have gcc, make,
 and the necessary libraries and header files installed. The OpenSSH build
 uses autoconf (the usual
 configure, make, and so on) like
 most other free software/open source projects.
To enable login from remote systems using OpenSSH, you must start
 sshd, which may be done simply by issuing the
 following command:
sshd
Note that you do not need to put this command in the background, as
 it handles this detail itself. Once the sshd daemon
 is running, you may connect from another SSH-equipped system:
ssh mysecurehost
The default configuration should be adequate for basic use of
 SSH.
On the Exam
SSH is an involved and highly configurable piece of software, and
 detailed knowledge of its setup is not required. However, SSH is an
 important part of the security landscape. Be aware that all
 communications using SSH are encrypted using public/private key
 encryption, which means that plain-text passwords are not exposed by SSH
 and are therefore unlikely to be compromised.

Configuring and Using GNU Privacy Guard (GPG)

This book isn’t the place for a full GPG tutorial. However,
 the LPI 102 exam requires you to understand how to use the standard GPG
 command to:
	Generate a key pair

	Import (i.e., add) a public key to a GPG keyring

	Sign keys

	List keys

	Export both a public and private key

	Encrypt and decrypt a file

You will also be expected to troubleshoot a standard implementation, which means that
 you’ll need to understand the files in the ~/.gnupg/ directory.
Generating a Key Pair

Following is an example of the sequence necessary for
 generating a key pair in GPG:
$ gpg --gen-key
pg (GnuPG) 1.2.1; Copyright (C) 2008 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

gpg: keyring '/home/james/.gnupg/secring.gpg' created
gpg: keyring '/home/james/.gnupg/pubring.gpg' created
Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection? 5
What keysize do you want? (1024) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 3y
Key expires at Fri Sep 18 00:23:00 2009 CET
Is this correct (y/n)? y

You need a User-ID to identify your key; the software constructs the user id
from Real Name, Comment and Email Address in this form:
 "James Stanger (James Stanger) <stangernet@comcast.net>"
Real name: James Stanger
Email address: stangernet@comcast.net
Comment: <nothing>
You selected this USER-ID:
 "James Stanger <stangernet@comcast.net>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
Enter passphrase: <passphrase>
Repeat passphrase: <passphrase>

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
..+++++
+++++
public and secret key created and signed.
key marked as ultimately trusted.

pub 2048R/97DAFDB2 2004-01-12 James Stanger <stangernet@comcast.net>
Key fingerprint = 85B2 0933 AC51 430B 3A38 D673 3437 9CAC 97DA FDB2

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a secondary key for this purpose.
Notice that you have several options when you first issue the
 gpg --gen-key command:
	DSA and ElGamal
	A DSA key pair is created for making signatures to sign
 files, and an ElGamal key pair is created to encrypt files.

	DSA sign only
	A faster method, but only creates a key pair that can sign
 files.

	RSA sign only
	Same as option 2 but uses RSA encryption instead of
 DSA.

On the Exam
You will only need to know about option 1, DSA and ElGamal. You
 will not be expected to know how to use GPG with email applications,
 such as Mozilla Thunderbird.

Importing a Public Key to a GPG Keyring

The GPG public key repository is called a “keyring.” The
 keyring contains your private key (or multiple private keys), plus all
 of the public keys of individuals you wish to communicate with. To add a
 public key to your keyring, you generally obtain a text file that
 contains the public key. If, for example, the file were named andy_oram_oreilly.asc, you would issue the
 following command:
$ gpg --import andy_oram_oreilly.asc

Signing Keys

Before you can safely use an imported key, you need to
 sign it. To do so, issue the following command from your
 terminal:
$ gpg --edit-key username
If, for example, you wished to sign the key within the andy_oram_oreilly.asc file, you would need to
 obtain the username of that key. Let’s assume that the username is
 Andyo. You would then issue the following
 command:
$ gpg --edit-key "Andyo"
You will then be asked if you wish to really sign the key. As your
 reply, you need to provide the password for your private key. Once you
 do this, GPG will sign the key you have just imported.

Listing Keys

Once you have imported keys, you can then list all of them
 by using the --list-keys option:
$ gpg --list-keys
This command lists both your private key (you usually have only
 one, but you can have as many as you like) as well as the public keys
 you have imported. An example of output from the command on a keyring
 that contains keys for James Stanger and Andy Oram would appear as
 follows:
/home/james/.gnupg/pubring.gpg

pub 2048g/CC7877gh 2009-09-11 James (Stanger) <stangernet@comcast.net>
sub 2048g/89G5B4KM 2009-09-11

pub 2048D/4g37NJ27 2009-12-09 Andyo (Oram) <andyo@oreilly.com>
sub 2048D/4g37GK38 2009-12-09
The pub defines the DSA master
 signing key, and the sub defines the
 ElGamal encryption subkey.
If you wish to list just the private keys, or what GPG calls
 “secret keys,” use the --list-secret-keys
 option. To list just the public keys, use the
 --list-public-keys option.

Export both a Public and Private Key

Exporting your private key is useful because you will want
 to create a backup should your system somehow become unavailable or
 experience a problem. To create a backup of all keys to a single file,
 issue the following command:
$ gpg --export -o gpg_backup_file
If, for example, your username were James Stanger, the following
 command would export only your private key to a file named private.key:
$ gpg --export-secret-key -a "James Stanger" -o private.key
To export your public key, you would issue the following
 command:
$ gpg -- export-public-key -a "James Stanger" -o stanger.pub

Encrypting a File

Now suppose that you wish to encrypt a file named
 chapter24.odt so that only the user named Andy Oram
 can use it. You would issue the following command:
$ gpg -e -u "James Stanger" -r "Andy Oram" chapter24.odt
The resulting file would be called
 chapter24.odt.gpg.
Once Andy receives this file, he would issue the following
 command:
$ gpg -d chapter24.odt.gpg
He would then be able to read the file using OpenOffice.

Troubleshooting Files in the ~/.gnupg/ Directory

The LPI exam also expects you to identify the files in the
 ~/.gnupg directory, mainly because
 you may need to troubleshoot an installation or obtain a private key.
 Following is a listing of the files found in a typical GPG
 implementation, regardless of Linux distribution:
	gpg.conf
	Allows you to create default settings for GPG, including a
 preferred key server. A key server contains the public keys of
 any user who wishes to upload her keys.

	pubring.gpg
	Contains the public keys that you have imported.

	random_seed
	A text file containing settings that enable GPG to create
 random numbers more quickly and easily.

	secring.gpg
	Contains the private key that determines your
 identity.

	trustdb.gpg
	The trust database, which contains the information
 concerning the trust values you have assigned to various public
 keys. A user may set variable levels of trust to public keys in
 his key ring. More information on trust can be found in the
 GPG
 documentation.

On the Exam
Make sure that you understand how to import a public key and
 export both public and private keys.

Chapter 25. Exam 102 Review
 Questions and Exercises

This chapter presents review questions to highlight important
 concepts and hands-on exercises that you can use to gain experience with the
 Topics covered on the LPI Exam 102. The exercises can be particularly useful
 if you’re not accustomed to more advanced Linux administration, and they
 should help you better prepare for the exam. To complete the exercises, you
 need a working Linux system that is not in production use. You might also
 find it useful to have a pen and paper handy to write down your responses as
 you work your way through the review questions and exercises.
Shells, Scripting, and Data Management (Topic 105)

Review Questions

	Why is it dangerous to have “.” (the current working
 directory) in your $PATH variable?

	What characteristic of a bash variable
 changes when the variable is exported?

	What configuration files will bash read
 when a shell is started?

	Describe the concept of shell aliases.

	When is a shell function more suitable than a shell
 alias?

	Describe the function of
 /etc/profile.

	What must the author of a new script file do to the file’s
 mode in order to make it executable?

	How does the shell determine what interpreter to execute when
 starting a script?

	How can a shell script use return values of the commands it
 executes?

	What are some common open source databases available on Linux
 systems?

	Describe the common MySQL datatypes and when they are
 appropriate to use.

	What is the difference between a join and a left join in a SQL
 query?

Exercises

	Using bash, enter the
 export command and the set
 command. Which set of variables is a subset of the other? What is
 the difference between the variables reported by
 export and those reported by
 set? Finally, enter which
 export. Where is the export command
 located?

	Examine /etc/profile. How is the default
 umask set? What customizations
 are done in the file for system users?

	Create a simple bash script using the
 #!/bin/bash syntax, set the
 executable mode bits, and execute the shell. If it runs correctly,
 add errors to see the diagnostic messages. Have the script report
 both exported and nonexported variables. Verify that the nonexported
 variables do not survive the startup of the new shell.

	Create some bash aliases in your current shell. Start a new
 shell by running the command bash in your
 current shell. Do your aliases work in this child shell? Why or why
 not?

	Create a MySQL table structure that could be used to store the
 fields in the file /etc/passwd.
 Write a shell script to parse this file, one line at a time, and
 call the mysql command-line program to insert
 the users defined in /etc/passwd into your table. Once this is
 complete, write a SQL query to list all usernames that have a shell
 of /bin/bash.

The X Window System (Topic 106)

Review questions

	What is the main X Windows configuration file?

	What are the troubleshooting steps you need to take when X
 Windows won’t start?

	How can you switch between desktop environments (for example,
 running KDE instead of Gnome)?

	What are some common functions that can be used to assist
 visually impaired users with using X Windows?

	What file would you edit to make an application run every time
 you log into X Windows?

Exercises

	Boot your system into runlevel 3. Log in as root and type the
 command /usr/bin/startx. Exit X Windows and
 examine the logfile /var/log/Xorg.0.log. What specific things
 does this file tell you about your graphical environment? From this
 file, can you determine what video card you have and what
 resolutions it supports?

	Exit X Windows and use the /sbin/init
 command to change your system to runlevel 5. Once X Windows starts,
 hit the key combination Ctrl-Alt-backspace. What happens to X
 Windows? Why does this happen?

Administrative Tasks (Topic 107)

Review questions

	What would happen to a user account if the default
 shell were changed to /bin/false?

	When a new account is created with useradd
 -m, what files are used to populate the new home
 directory?

	Compare and contrast the execution of
 /etc/profile and
 /etc/bashrc.

	Compare and contrast cron and
 at.

	Is there a cron command?

	Describe the format of a crontab file,
 describing each of the six fields.

	What does an asterisk mean in crontab
 fields 1 through 5?

Exercises

	Add a user with useradd, including a new
 home directory populated with files from
 /etc/skel.

	Add a group with groupadd.

	Use usermod to add your new user to the
 new group.

	Set the new user’s password using
 passwd.

	Log into the new account, and use newgrp
 to change to the new group.

	Delete the new group and user (including home directory) using
 groupdel and
 userdel.

	Examine the contents of /etc/skel. How
 similar are they to your own home directory?

	Review the contents of /etc/profile and
 /etc/bashrc.

	Add an entry in your personal crontab
 file to perform a task, such as sending you an email message.
 Confirm that the action occurs as expected. Experiment with the five
 time specifiers.

	Schedule a command in the future with at.
 How is at different from
 cron?

Essential System Services (Topic 108)

Review Questions

	Why is accurate time important on a Linux system? What
 options exist to keep time in sync?

	Describe the difference between system time and the hardware
 clock.

	How is time stored on a Linux system? How is the time zone
 used to modify this value?

	What two things does the syslogd server
 use to categorize log entries? What are the limitations of this
 format?

	Give some examples of what kinds of messages you would expect
 to see in /var/log/messages.

	What does lpd do to handle incoming print
 jobs destined for empty print queues?

	Describe the kinds of information included in
 /etc/printcap.

	What is the function of a print filter?

	What does the -P option specify to the
 print commands?

	When is it useful to pipe into the standard input of
 lpr instead of simply using a filename as an
 argument?

	How is the Ghostscript program used in printing to a
 non-PostScript printer?

	What filter is used on a Linux system to print to remote
 printers on Windows clients?

	What are the common Mail Transport Agents (MTAs) used on Linux
 systems? Give a brief description of each.

	What command would you use to view the contents of the mail
 queue on a system running sendmail? What command would you use to
 force a resend of that queue?

	What is the easiest way to forward all email coming into an
 account to another email address?

	What file is used to maintain email aliases for local users?
 Describe the maintenance procedure for this file.

Exercises

	Run the date command on your system. Is
 your system clock accurate? Run the command ntpd
 –gnq. Did you system time change? By how much?

	Add this line:
. /var/log/everything
to /etc/syslog.conf and
 restart syslog. Now run tail –f
 /var/log/everything. What kinds of things do you see? How
 often are events written to this log?

	Add the local5 facility to
 your configuration. Use logger to write to your
 new logfile, and verify its contents. Compare your log entries with
 those in /var/log/messages.

	Examine /etc/logrotate.conf. What happens
 after /var/log/messages is rotated?

	On a system with an existing printer, examine
 /etc/printcap. Which print filter is used for
 the printer? Which queue or queues are directed at the
 printer?

	Check the printer status with lpq -P
 printer and lpc
 status. Print to the queue using lpr
 -P printer file.

	Examine /var/spool/lpd for the spool
 directory of your print queue. Examine the files you find
 there.

	Determine what MTA is installed on your system. Is it
 listening on TCP port 25? How can you tell?

	Type the command telnet localhost 25.
 What do you see?

	Type the command echo “test” | mail root.
 Now type tail /var/log/maillog. Was your mail
 delivered? How can you tell?

Networking Fundamentals (Topic 109)

Review Questions

	Describe how the subnet mask affects the maximum
 number of hosts that can be put on a TCP/IP network.

	Name the three default address classes and the subnet masks
 associated with them.

	Identify the IPv4 private address ranges.

	What are some advantages IPv6 has over IPv4?

	The UDP protocol is said to be connectionless. Describe this
 concept and its consequences for applications that use UDP.

	What is a TCP port? Give some examples of common TCP ports and
 the applications and protocols that use them.

	What user command is frequently used to send ICMP messages to
 remote hosts to verify those hosts’ connectivity?

	Describe the contents and use of
 /etc/hosts.

	In what configuration file are DNS servers listed? What is
 intended if the local loopback address is included there on a
 workstation?

	Name two modes of the netstat command and
 the program’s output in each case.

	Describe why the route command is needed
 for a single interface on a nonrouting workstation.

	How does traceroute determine the
 identities of intermediate gateways?

	Describe the advantages and consequences of implementing
 DHCP.

Exercises

	Examine your system’s TCP/IP configuration using
 ifconfig eth0 or a similar command for your
 network interface. Are you using DHCP? What type of subnet are you
 running with? Is it a class A, B, or C address? Are you using a
 private address? Experiment with taking the interface offline using
 ifconfig eth0 down and ifconfig eth0
 up.

	Examine the contents of /etc/services.
 How many protocols do you recognize?

	Use the dig command to locate information
 from DNS servers about a domain name.

	Examine your /etc/hosts file. How much
 name resolution is accomplished in this file manually?

	Examine your /etc/resolv.conf file. How
 many DNS servers do you have available?

	Execute netstat -r. How many routes are
 reported? What are the routes to the local network and interface
 for?

	Use traceroute to examine the route to a
 favorite website.

Security (Topic 110)

Review Questions

	What daemon is associated with the control files
 /etc/hosts.allow and
 /etc/hosts.deny?

	In general terms, describe a method to locate SUID programs in
 the local filesystem. Why might an administrator do this
 routinely?

	What is the danger of making /bin/vi
 SUID?

	Why should a user run ssh instead of
 telnet?

	Describe shadow passwords and the file where the passwords are
 stored. Why don’t we store encrypted password strings in /etc/passwd anymore?

	How can the tool /usr/sbin/lsof help you
 identify potential security issues?

	What is the difference between a hard limit and a soft limit,
 with regard to the ulimit command?

	Why is it advisable to use sudo rather
 than su in an environment with multiple
 administrators?

	What kinds of things can you ascertain about a remote system
 with the nmap command?

	Describe the process of key-based authentication between
 systems using ssh.

	What is the difference between a public and a private key?
 What are they used for?

	Describe how to encrypt a file with
 gpg.

Exercises

	Use find as described in Chapter 22 to locate SUID
 files. Is the list larger than you expected? Are the entries on your
 list justifiably SUID programs?

	Create an entry in /etc/sudoers that lets your user account
 run any command as root. Run some commands through
 sudo and watch the file /var/log/messages. What entries do you
 see? How would this be useful in a multiadministrator
 environment?

	Look at the file /etc/shadow. What user accounts do not
 have passwords? Why don’t they?

	Experiment with the chage command to set
 the password age for your account.

	Run ulimit –a. What default limits are
 set? What would be some useful limits to place on users?

	Run netstat --tcp –anp | grep LISTEN.
 What processes on your system are listening on TCP ports? If you
 were to harden this system, how would you change this
 configuration?

	Run nmap localhost. Does this output
 match what you saw from the previous netstat
 command? Why or why not?

	If you have xinetd installed, go to the
 /etc/xinetd.d directory and
 determine what services are enabled.

	Run ssh-keygen –t dsa. What files were
 created in ~/.ssh? What are the
 permissions on those files?

On the Exam
Practice, practice, practice! The best way to get familiar with
 Linux is by interacting with a working Linux system. Become familiar
 with the command line and how to read logfiles. Nothing is hidden from
 you in Linux; if you know where to look, simple tools such as
 cat, ls, and
 grep will tell you everything you need to know
 about your system. Spend as much time as you can working hands-on with
 a Linux system before you take the LPI 102 exam.

Chapter 26. Exam 102 Practice Test

This chapter will give you an idea of what kinds of questions
 you can expect to see on the LPI 102 test. All questions are either
 multiple-choice single answer, multiple-choice multiple answer, or fill in
 the blank.
The questions are not designed to trick you; they are designed to test
 your knowledge of the Linux operating system.
As of April 1, 2009, all exam weights for LPI exams have been
 standardized to 60 weights.
Regardless of weight totals, each exam score is between 200 and 800. A
 passing score is 500. However, the number of correct questions required to
 achieve a score of 500 varies with the overall difficulty of the specific
 exam that is taken.
The number of questions on the exam is also tied to the total of the
 weights of the Objectives on the exam. With a total weight count of 60, the
 exam will have 60 questions. For each weighting, there will be one question.
 For example, if an Objective has a weight of 4, there will be 4 questions on
 the exam related to the objective.
The answers for these sample questions are at the end of this
 chapter.
Questions

	What environment variable holds the list of all directories that
 are searched by the shell when you type a command name?
	$LIST

	$VIEW

	$PATH

	$ENV

	None of the above

	In the bash shell, entering the !! command has the same effect as which one
 of the following (assuming bash is in emacs
 mode)?
	Ctrl-P and Enter

	Ctrl-N and Enter

	Ctrl-U and Enter

	!-2

	!2

	Name the command that displays pages from the online user’s
 manual and command reference.

	Which of the following commands displays the comments from a
 bash script? Select all that apply.
	find “^#” /etc/rc.d/rc.local

	sed ‘/^#/ !d’ /etc/init.d/httpd

	grep ^# /etc/init.d/httpd

	grep ^# /etc/passwd

	locate “^#” /etc/skel/.bashrc

	Which one of the following answers creates an environment
 variable VAR1, present in the
 environment of a bash child process?
	VAR1="fail" ; export VAR1

	VAR1="fail" \ export VAR1

	VAR1="fail"

	set VAR1="fail" ; enable VAR1

	export VAR1 \ VAR1="fail"

	What SQL command is used to modify data present in a
 table?
	INSERT

	WHERE

	UPDATE

	OVERWRITE

	JOIN

	What output will the following command generate: seq
 -s";" -w 1 10
	01;02;03;04;05;06;07;08;09;10

	1;2;3;4;5;6;7;8;9;10

	1;10

	01;02;03;04;05;06;07;08;09;010

	None of the above

	Adam wants to protect himself from inadvertently overwriting
 files when copying them, so he wants to alias cp
 to prevent overwrite. How should he go about this? Select one.
	Put alias cp='cp -i' in
 ~/.bashrc

	Put alias cp='cp -i' in
 ~/.bash_profile

	Put alias cp='cp -p' in
 ~/.bashrc

	Put alias cp='cp -p' in
 ~/.bash_profile

	Put alias cp = 'cp -I' in
 ~/.bashrc

	Consider the following script, stored in a file with proper
 modes for execution:
#!/bin/bash
for $v1 in a1 a2
do
echo $v1
done
Which one of the following best represents the output produced
 on a terminal by this script?
	in
a1
a2

	a1
a2

	$v1
$v1
$v1

	No output is produced, but the script executes
 correctly.

	No output is produced, because the script has an
 error.

	Monica consults the /etc/passwd file
 expecting to find encrypted passwords for all of the users on her
 system. She sees the following:
jdoe:x:500:500::/home/jdoe:/bin/bash
bsmith:x:501:501::/home/bsmith:/bin/tcsh
Which of the following is true? Select one.
	Accounts jdoe and
 bsmith have no passwords.

	Accounts jdoe and
 bsmith are disabled.

	The passwords are in
 /etc/passwd-.

	The passwords are in
 /etc/shadow.

	The passwords are in
 /etc/shadow-.

	What is the main configuration file for X Windows?
	/etc/xorg.conf

	/etc/x11.conf

	/etc/X11/x11.conf

	/etc/X11/xorg.conf

	None of the above

	What file in the user’s home directory will an X Windows
 application look to for configuration settings such as color and video
 mode?
	~/.xinitrc

	~/.xconfig

	~/.Xresources

	~/.xorg.conf

	~/.bashrc

	What is the protocol XDMCP used for?
	Remote logging of X Windows events.

	Remote control of a running X Windows display.

	Graphical login support for the local host.

	Graphical login support for remote hosts on the
 network.

	None of the above.

	Which of the following are not commonly
 used display managers for X Windows? Choose two.
	xdm

	gdm

	kdm

	xfce

	X11

	Emacspeak is:
	A popular text editor for Linux.

	A window manager.

	An assistive technology that handles screen reading for a
 number of console applications.

	An assistive technology that provides a user with an
 on-screen keyboard.

	None of the above.

	Which one of the following outcomes results from the following
 command?
chmod g+s /home/software
	The SUID bit will be set for
 /home/software.

	The SGID bit will be set for
 /home/software, preventing access by those
 not a member of the software group.

	The SGID bit will be set for
 /home/software, to keep group membership of
 the directory consistent for all files created.

	The sticky bit will be set for
 /home/software.

	The sticky bit will be applied to all files in
 /home/software.

	Which one of these files determines how messages are stored
 using syslogd?
	/etc/sysconfig/logger.conf

	/etc/syslog.conf

	/etc/syslogd.conf

	/etc/conf.syslog

	/etc/conf.syslogd

	Which MTA was designed specifically with security in
 mind?
	Sendmail

	Postfix

	Qmail

	Exim

	None of the above

	Where are mail logs usually stored in a standard
 syslog setup?
	/var/log/messages

	/var/log/secure

	/var/log/dmesg

	/var/log/maillog

	/var/maillog

	How many hosts can exist on a subnet with mask 255.255.255.128?
 Select one.
	512

	256

	128

	127

	126

	For an Internet workstation with a single network interface,
 what routes must be added to interface eth0 after
 it is initialized? Select one.
	None

	Interface

	Interface and default gateway

	Interface, local network, and default gateway

	On a Linux server, what service is most likely “listening” on
 port 25? Select one.
	Apache

	SSHd

	Postfix

	Samba

	FTP

	Which one of these protocols is a Layer 4 connection-oriented
 protocol? Select one.
	TCP

	IP

	UDP

	ICMP

	Which command will display information about Ethernet interface
 eth0? Select one.
	cat /proc/eth/0

	ifconfig eth0

	ipconfig eth0

	ipconfig /dev/eth0

	cat /etc/eth0.conf

	What does the printcap entry sd indicate? Select one.
	The system default printer

	A printer’s spool directory

	A device file for the printer

	A location where errors are stored

	The printer driver

	Which of the following is a valid entry in
 /etc/fstab for a remote NFS mount from server
 fs1? Select one.
	fs1:/proc /mnt/fs1 nfs defaults 9
 9

	/mnt/fs1 fs1:/proc nfs defaults 0
 0

	fs1:/home /mnt/fs1 nfs defaults 0
 0

	/mnt/fs1 fs1:/home nfs defaults 0
 0

	/home:fs1 /mnt/fs1 nfs defaults 0
 0

	Which network protocol is used by SSH and FTP? Select
 one.
	ICMP

	UDP

	TCP

	DHCP

	PPP

	Which of the following programs will display DNS information for
 a host? Choose all that apply.
	host

	nslookup

	nsstat

	dig

	ping

	Which of the following statements regarding the ICMP protocol is
 not true? Select one.
	ICMP is connectionless.

	ICMP provides network flow control.

	ICMP is also known as UDP.

	ICMP is used by ping.

	What server daemon resolves domain names to IP addresses for
 requesting hosts?

	What function does a print filter serve? Select one.
	It collates output from multiple users.

	It translates various data formats into a page description
 language.

	It rejects print requests from unauthorized users.

	It rejects print requests from unauthorized hosts.

	It analyzes print data and directs print requests to the
 appropriate lpd.

	Consider the following excerpt from the file
 /etc/resolv.conf on a Linux workstation:
nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2
What can be said about this configuration? Select one.
	Two DNS servers on the public network are being used for
 resolution.

	One DNS server on the local network is being used for
 resolution.

	The configuration contains errors that will prevent the
 resolver from functioning.

	A caching-only nameserver is the first nameserver
 queried.

	The resolver library will consult nameserver 192.168.250.2 first.

	Name the file that contains simple mappings between IP addresses
 and system names.

	What program can be used to interactively change the behavior of
 a print queue? Select one.
	lpd

	lpr

	lpq

	lprm

	lpc

	What program will display a list of each hop across the network
 to a specified destination? Select one.
	tracert

	rttrace

	traceroute

	routetrace

	init

	What is the system-wide bash configuration
 file called? Include the entire path.

	How can a nonprivileged user configure
 sendmail to forward mail to another account?
 Select one.
	She can add a new entry in
 /etc/aliases.

	She can create a .forward file
 containing the new address.

	She can create an .alias file
 containing the new address.

	She can create a sendmail.cf file
 containing the new address.

	She cannot forward mail without assistance from the
 administrator.

	How does a process indicate to the controlling shell that it has
 exited with an error condition? Select one.
	It prints an error message to
 stderr.

	It prints an error message to
 stdout.

	It sets an exit code with a zero value.

	It sets an exit code with a nonzero value.

	It causes a segmentation fault.

	Consider the following trivial script called
 myscript:
#!/bin/bash
echo "Hello"
echo $myvar
Also consider this command sequence and result:
set myvar='World'
./myscript
Hello
The script ran without error but didn’t
 echo World.
 Why not? Select one.
	The syntax of the set command is
 incorrect.

	The script executes in a new shell, and myvar wasn’t exported.

	The #!/bin/bash syntax is
 incorrect.

	The $myvar syntax is
 incorrect.

	The script is sourced by the current shell, and myvar is available only to new
 shells.

	Consider the following line from
 /etc/passwd:
adamh:x:500:1000:Adam Haeder:/home/adamh:/bin/bash
What does the number 1000 mean?
	User adamh has a UID of 1000.

	The primary group that adamh belongs to
 is group 1000.

	User adamh was the 1000th user created
 on this system

	The password for adamh expires in 1000
 days.

	The secondary group that adamh belongs
 to is group 1000.

Answers

	c. $PATH

	a. The !! command history expansion executes the
 previous command. Entering the Ctrl-P keystroke uses the Emacs
 key-binding bash to move up one line in the
 history; pressing Enter executes that command.

	The man command displays manpages.

	b AND c. find and
 locate do not search the contents of files.
 /etc/passwd is not a script.

	a. The variable must be set
 and exported. The semicolon separates the two commands.

	c. UPDATE

	a. 01;02;03;04;05;06;07;08;09;10. The
 -w option to seq instructs
 it to pad with zeros.

	a. cp
 should be aliased to the interactive mode with the
 -i option in .bashrc.
 .bash_profile normally doesn’t include
 aliases.

	e. The script has an error
 and will not produce the expected output. In a for statement, the loop variable does not
 have the dollar sign. Changing line 2 to for v1 in a1 a2 will correct the error and produce
 the output in answer b.

	d. The shadow password system
 has been implemented, placing all passwords in
 /etc/shadow as denoted by the x following the username.

	d.
 /etc/X11/xorg.conf

	c.
 ~/.Xresources

	d. Graphical login support
 for remote hosts on the network

	d. xfce
 and e. X11.

	c. An assistive technology
 that handles screen reading for a number of console
 applications

	c. The g indicates that we’re operating on the
 group privilege, and the +s
 indicates that we should add the “set id” bit, which means that the
 SGID property will be applied.

	b.
 /etc/syslog.conf

	c. Qmail

	d.
 /var/log/maillog

	e. With the top bit of the
 last byte set in the subnet mask (.128), there are 7 bits left.
 27 is 128, less the network address and
 broadcast address, leaving 126 addresses for hosts.

	d. Routes to the interface
 and the network are required to exchange information on the local LAN.
 To access the Internet or other nonlocal networks, a default gateway
 is also necessary.

	c. As defined in
 /etc/services, port 25 is the SMTP port, often
 monitored by postfix.

	a. TCP. UDP is also a Layer 4
 protocol, but it is connectionless.

	b. The
 ifconfig command is used to configure and display
 interface information. ipconfig is a Windows
 utility.

	b. The spool directory
 directive looks like this:
sd=/var/spool/lpd/lp

	c. Answer a attempts to mount
 the /proc filesystem. Answers b, d, and e have
 incorrect syntax.

	c. Both Telnet and FTP are
 connection-oriented and use TCP for reliable connections.

	a, b, d, AND
 e.

	c. Although both ICMP and UDP
 are connectionless, they are different protocols.

	The DNS daemon is named. It is included in
 a package called BIND.

	b. A print server translates
 formats, such as PostScript to PCL.

	d. The presence of the
 localhost address 127.0.0.1 indicates that
 named is running. Since the system is a
 workstation, it’s safe to assume that it is not serving DNS to a wider
 community.

	/etc/hosts.

	e. lpc
 is the line printer control program.

	c.
 traceroute. tracert is a
 Windows utility with the same function as
 traceroute.

	The file is /etc/profile.

	b. The
 .forward file is placed in the home directory
 containing a single line with the target email address.

	d. Zero exit values usually
 indicate success.

	b. Instead of using
 set, the command should have been:
export myvar='World'
This gives the myvar variable
 to the new shell.

	b. The primary group that
 adamh belongs to is group 1000.

Chapter 27. Exam 102 Highlighter’s Index

Shells, Scripting, and Data Management

Objective 105.1: Customize and Use the Shell Environment

	A shell presents an interactive Textual User
 Interface, an operating environment, a facility for launching
 programs, and a programming language.

	Shells can generally be divided into those derived from the
 Bourne shell, sh (including
 bash), and the C-shells, such as tcsh.

	Shells are distinct from the kernel and run as user
 programs.

	Shells can be customized by manipulating variables.

	Shells use configuration files at startup.

	Shells pass environment variables to child processes,
 including other shells.

Bash

	bash is a descendant of
 sh.

	Shell variables are known only to the local shell and are
 not passed on to other processes.

	Environment variables are passed on to other
 processes.

	A shell variable is made an environment variable when it is
 exported.

	This sets a shell variable:
PI=3.14

	This turns it into an environment variable:
export PI

	This definition does both at the same time:
export PI=3.14

	Shell aliases conveniently create new commands or modify
 existing commands:
alias more='less'

	Functions are defined for and called in scripts. This line
 creates a function named lsps:
lsps () { ls -l; ps; }

	bash configuration files control the
 shell’s behavior. Table 13-1
 contains a list of these files.

Objective 105.2: Customize or Write Simple Scripts

	Scripts are executable text files containing
 commands.

	Scripts must have appropriate execution bits set in the file
 mode.

	Scripts may define the command interpreter using the syntax
 #!/bin/bash on the first
 line.

Environment

	A script that starts using #!/bin/bash operates in a new invocation
 of the shell. This shell first executes standard system and user
 startup scripts. It also inherits exported variables from the
 parent shell.

	Like binary programs, scripts can offer a return value after
 execution.

	Scripts use file tests to examine and check for specific
 information on files.

	Scripts can use command substitution to utilize
 the result of an external command.

	Scripts often send email to notify administrators of errors
 or status.

	Refer to Chapter 13 for details
 on bash commands.

Objective 105.3: SQL Data Management

	Common MySQL datatypes are integer, float, boolean,
 date, timestamp, datetime, char, varchar, blob, and text.

	The SQL syntax for creating a table with one varchar column
 and one auto-increment integer column (which is also the primary
 key) is:
CREATE TABLE test (id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, \
column1 varchar(255), PRIMARY KEY (id));

	INSERT is used to insert data into a table, UPDATE is used to
 modify a data value in an existing table row, and SELECT is used to
 display values from a table.

	ALTER TABLE is used to add/remove columns to a table, or
 modify a datatype.

	A LEFT JOIN is used when we want to display items from two or
 more tables connected by a relationship, where each item present in
 the left table will display in the results, even if there is not a
 match with the other table being joined.

The X Window System

Objective 106.1: Install and Configure X11

	X.Org is the most popular X Windows implementation on
 Linux, replacing XFree86.

	Window managers handle the functions of creating and managing
 windows and things such as minimization, maximization, and screen
 placement.

	Desktop environments are collections of common desktop
 programs that work together to create a unified desktop experience.
 These will include applications such as window managers, file
 managers, launch bars, screensavers, and session managers. The two
 most common desktop environments are Gnome and KDE.

	The main configuration file for X.Org is
 /etc/X11/xorg.conf.

	X Windows can be configured to either read fonts from a local
 directory or access a font server, such as xfs,
 running either on the local machine or on another machine on the
 network.

Objective 106.2: Set Up a Display Manager

	Display managers are GUI programs that handle the user
 login process. They are most often invoked when a Linux system
 enters runlevel 5. Common display managers are
 xdm, gdm, and
 kdm. They can all be configured to support
 remote graphical logins from other terminals through the XDMCP
 protocol.

Objective 106.3: Accessibility

	Many applications exist to assist with accessibility
 in Linux, including Emacspeak, Orca, and BLINUX. In addition to
 these separate applications, most desktop environments support
 assistive technologies such as StickyKeys, MouseKeys, and
 RepeatKeys. On-screen keyboards are also a commonly used assistive
 technology.

Administrative Tasks

Objective 107.1: Manage User and Group Accounts and Related
 System Files

passwd and group

	User account information is stored in
 /etc/passwd.

	Each line in /etc/passwd contains a
 username, password, UID, GID, user’s name, home directory, and
 default shell.

	Group information is stored in
 /etc/group.

	Each line in /etc/group contains a
 group name, group password, GID, and group member list.

	passwd and group
 are world-readable.

Shadow files

	To prevent users from obtaining encrypted passwords from
 passwd and group, shadow
 files are implemented.

	Encrypted passwords are moved to a new file, which is
 readable only by root.

	The shadow file for /etc/passwd is
 /etc/shadow.

	The shadow file for /etc/group is
 /etc/gshadow.

User and group management commands

The following commands are commonly used for manual user and
 group management:
	useradd
 user
	Create the account user.

	usermod
 user
	Modify the user account.

	userdel
 user
	Delete the user account.

	groupadd
 group
	Add group.

	groupmod
 group
	Modify the parameters of
 group.

	groupdel
 group
	Delete group.

	passwd
 username
	Interactively set the password for
 username.

	chage user
	Modify password aging and expiration settings for
 user.

Objective 107.2: Automate System Administration Tasks by Scheduling Jobs

	Both cron and
 at can be used to schedule jobs in the
 future.

	Scheduled jobs can be any executable program or script.

Using cron

	The cron facility consists of
 crond, the
 cron daemon, and crontab files containing
 job-scheduling information.

	cron is intended for the execution of
 commands on a periodic basis.

	crond examines all
 crontab files every minute.

	Each system user has access to cron
 through a personal crontab file.

	The crontab command allows the
 crontab file to be viewed and, with the
 –e option, edited.

	Entries in the crontab file are in the
 form of:
minute hour day month dayofweek command

	Asterisks in any of the time fields match all possible
 values.

	In addition to personal crontab files,
 the system has its own crontab files in
 /etc/crontab, as well as files in
 /etc/cron.d.

Using at

	The at facility, shown here, is
 for setting up one-time future command execution:
	at
 time
	Enter an interactive session with
 at, where commands may be entered.
 time is of the form
 hh:mm,
 midnight,
 noon, and so on.

	The atd daemon must be running in order
 for at commands to be processed.

User access

	Access to cron can be controlled using
 lists of users in cron.allow and
 cron.deny.

	Access to at can be controlled using
 lists of users in at.allow and
 at.deny.

Objective 107.3: Localization and Internationalization

	The suite of programs that comes with the Network Time
 Protocol (NTP) allow you to keep your system and hardware clocks in
 sync with accurate time servers over the Internet.

	ntpd –q will update a system clock
 against an NTP server and then exit.

	Hardware clocks are configured to reflect either local time or
 Universal Coordinated Time (UTC) plus a time zone offset. The
 command hwclock can be used to manipulate a
 hardware clock from within Linux.

	The file /etc/localtime should be a
 symbolic link to the time zone configuration file appropriate for
 your locale. For example, in the central United States:
ls –l /etc/localtime
lrwxrwxrwx 1 root root 30 Sep 12 13:56 /etc/localtime \
 -> /usr/share/zoneinfo/US/Central

	The command tzselect can be used to
 change your system’s time zone.

Essential System Services

Objective 108.1: Maintain System Time

	Refer to the previous section on localization and
 internationalization.

Objective 108.2: System Logging

Syslog

	The syslog system displays and records messages
 describing system events.

	The syslog program is made up of two processes:
 syslogd, which logs user-level events, and
 klogd, which logs kernel events.

	Messages can be placed on the console, in logfiles, and on
 the text screens of users.

	Syslog is configured by
 /etc/syslog.conf in the form
 facility.level
 action:
	facility
	The creator of the message, selected from among
 auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog, user, or local0 through local7.

	level
	Specifies a severity threshold beyond which messages
 are logged and is one of (from lowest to highest severity)
 debug, info, notice, warning, err, crit, alert, or emerg. The special level none disables a facility.

	action
	The destination for messages that correspond to a
 given selector. It can be a filename, @hostname, a
 comma-separated list of users, or an asterisk (meaning all
 logged-in users).

	Together, facility.levels
 comprise the message selector.

	Most syslog messages go to
 /var/log/messages.

Logfile rotation

	Most system logfiles are rotated to expire old information
 and prevent disks from filling up.

	logrotate accomplishes log rotation and
 is configured using
 /etc/logrotate.conf.

Examining logfiles

	Files in /var/log (such as
 messages) and elsewhere can be examined using
 utilities such as tail,
 less, and grep.

	Information in syslogd logfiles
 includes date, time, origin hostname, message sender, and
 descriptive text.

	To debug problems using logfile information, first look at
 the hostname and sender, and then at the message text.

Objective 108.3: Mail Transfer Agent (MTA) Basics

	The most common MTAs on Linux are sendmail, postfix,
 qmail, and exim.

	sendmail, being the oldest MTA, has influenced current MTAs
 greatly. The other three popular MTAs all have sendmail
 “compatibility programs” to enable them to act as drop-in
 replacements for sendmail.

	The file /etc/aliases stores aliases for
 inbound mail addresses; it can redirect mail to one or more
 users.

	Whenever /etc/aliases is modified,
 newaliases must be executed.

	Each user can forward his own mail using a
 .forward file, containing the forwarding email
 address, in his home directory.

	Outbound mail that is trapped due to a network or other
 problem will remain queued; it can be examined using the
 mailq command.

Objective 108.4: Manage Printers and Printing

CUPS

	The Common Unix Printing System (CUPS) is the
 current standard for printing on Linux.

	The cupsd daemon handles print
 spooling. Configuration files are stored in /etc/cups/, and configuration usually
 happens through a web interface accessed through http://localhost:631/.

	CUPS maintains backward compatibility with
 lpd.

	CUPS supports printer configuration in the file /etc/printcap for backward compatibility.

Legacy printing (lpd)

	Printers are assigned to queues, which are managed
 by lpd, the print daemon.
 lpd listens for inbound print requests,
 forking a copy of itself for each active print queue.

	lpr submits jobs to print
 queues.

	lpq queries and displays queue
 status.

	lprm allows jobs to be removed from
 print queues.

	lpc allows root to administer queues;
 it has both interactive and command-line forms.

	Filters translate data formats into a printer definition
 language.

	Spool directories hold spooled job data.

/etc/printcap

	New printer definitions are added to
 /etc/printcap:
lp|ljet:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:
The lines in this example are defined as follows:
	lp|ljet:\
	This parameter defines two alternate names for the
 printer, lp or
 ljet.

	sd=spool_directory
	This parameter specifies the spool directory, under
 /var/spool/lpd.

	mx=max_size
	The maximum size of a print job in blocks. Setting
 this to #0 indicates no
 limit.

	sh
	Suppress header pages. Placing this attribute in
 printcap sets it, eliminating the
 headers.

	lp=printer_device
	The local printer device, such as a parallel
 port.

	if=input_filter
	The input filter to be used. See CUPS filters for additional information.

	lf=log_file
	The file where error messages are logged.

Networking Fundamentals

Objective 109.1: Fundamentals of Internet Protocols

Addressing and masks

	An address mask separates the network portion from
 the host portion of the 32-bit IP address.

	Class A addresses have 8 bits of network address and 24 bits
 of host address.

	Class B addresses have 16 bits of network address and 16
 bits of host address.

	Class C addresses have 24 bits of network address and 8 bits
 of host address.

	Subnets can be defined using the defined “class” schemes or
 using a locally defined split of network/host bits.

	The all-zero and all-ones addresses are reserved on all
 subnets for the network and broadcast addresses,
 respectively. This implies that the maximum number of hosts on a
 network with n bits in the host portion
 of the address is 2n–2. For example, a
 class C network has 8 bits in the host portion. Therefore, it can
 have a maximum of 28–2=254
 hosts.

Protocols

TCP/IP is a name representing a larger suite of network
 protocols. Some network protocols maintain a constant connection,
 whereas others do not.
	IP
	The Internet Protocol is the fundamental building
 block of the Internet. It is used by other protocols.

	ICMP
	This connectionless messaging protocol uses IP. It
 is used for flow control, detection of unreachable destinations,
 redirecting routes, and checking remote hosts (the ping utility).

	UDP
	The User Datagram Protocol is a connectionless
 transport agent. It is used by applications such as DNS and
 NFS.

	TCP
	The Transmission Control Protocol is a
 connection-oriented transport agent. It is used by applications
 such as FTP and Telnet.

	PPP
	The Point-to-Point Protocol is used over serial
 lines, including modems.

TCP/IP services

	Inbound network requests to a host include a
 port number.

	Ports are assigned to specific programs. Definitions are
 stored in /etc/services.

	Ports 1–1023 are privileged ports, owned by superuser
 processes.

TCP/IP utilities

	ftp implements the File
 Transfer Protocol client for the exchange of files to and from
 remote hosts.

	The ssh client program
 implements a secure shell session to a remote host.

	A web browser, such as Firefox, implements an
 http connection to a remote
 http server.

	ping sends ICMP echo requests
 to a remote host to verify functionality.

	dig obtains information from
 DNS servers.

	traceroute attempts to display
 the route over which packets must travel to a remote host.

	fwhois queries a
 whois database to determine the owner of a
 domain or IP address.

Objective 109.2: Basic Network Configuration

	The ifconfig command is used to both
 view information about an interface in addition to changing the
 network configuration of an interface.

	The program dhclient will query the local
 network for IP addressing information over dhcp
 and use this information to configure the settings for an
 interface.

	The command route will display
 the path that packets will take when they leave the system. It is
 also used to manually add routes.

Objective 109.3: Basic Network Troubleshooting

	Interfaces are configured through a number of
 configuration files.

	/etc/hostname contains the assigned
 hostname for the system.

	/etc/networks sets up equivalence between
 addresses and names for entire networks.

	The host command returns DNS
 information.

	The hostname, domainname, and dnsdomainname commands set or
 display the current host, domain, or node name.

	The netstat command displays network
 connections, routing tables, interface statistics, masquerade
 connections, and multicast memberships.

Objective 109.4: Configuring Client Side DNS

	/etc/hosts contains static
 mappings between IP addresses and names.

	/etc/nsswitch.conf directs system library
 functions to specific nameserver methods such as local files, DNS,
 and NIS.

	/etc/host.conf controls name resolution
 for older libraries.

	/etc/host.conf is rarely used and is
 replaced by /etc/nsswitch.conf.

	/etc/resolv.conf contains information to
 direct the resolver to DNS servers.

Security

Objective 110.1: Perform Security Administration Tasks

	find can perform searches for
 file attributes such as SUID using the -perm
 option.

	The chage command is used to maintain
 password aging on user accounts.

	The nmap program can be used to port
 scan local or remote systems for open ports.

	The sudo command is used to give
 elevated privileges to a defined set of users for a limited command
 set. The configuration file is /etc/sudoers.

	The ulimit command is used to
 view and modify limits placed on users. The superuser maintains user
 limits in the file /etc/security/limits.conf.

	Hard limits are limits that users cannot exceed, whereas soft
 limits are limits that users can exceed temporarily by calling the
 ulimit program.

Objective 110.2: Set Up Host Security

TCP wrappers

	Configuring TCP wrappers (tcpd) using
 /etc/hosts.allow and
 /etc/hosts.deny can enhance security for
 daemons controlled by inetd or xinetd.

	tcpd is often configured to deny access
 to all systems for all services (a blanket deny), and then
 specific systems are specified for legitimate access to services
 (limited allow).

	tcpd logs using syslog, commonly to
 /var/log/secure.

Shadow passwords

	Enabling the use of shadow
 passwords can enhance local security by making
 encrypted passwords harder to steal.

	The use of shadow passwords causes the removal of password
 information from the publicly readable passwd
 file and places it in shadow, readable only
 by root.

	A similar system is implemented for shadow groups, using the
 gshadow file.

Objective 110.3: Securing Data with Encryption

	The best way to communicate securely between two Linux
 systems is via SSH. SSH can be run either as a command line, opening
 up a shell into another system, or as a wrapper around other
 TCP-based applications.

	SSH supports multiple authentication schemes, including
 standard username/password and public/private key authentication.

	The command ssh-keygen –t dsa will create
 a public/private keypair. The keys are stored as ~/.ssh/id_dsa (private key) and ~/.ssh/id_dsa.pub (public key).

	Placing a copy of your public key in the file
 ~/.ssh/authorized_keys2 on a remote machine
 will allow you to perform passwordless, key-based authentication
 with that machine.

	The command gpg --gen-key will create a
 public/private key pair to use with the Gnu Privacy Guard (GPG).
 These keys will be stored in ~/.gnupg/.

	To encrypt a file with another user’s public key, you
 must:
	Import the user’s public key into your keyring:
 gpg --import bobskey.asc

	Use that key to encrypt a file: gpg –e –u “My
 Name” –r “Bobs Name” /tmp/filename.txt

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! (bang) no
 match, Addressing
	# (hash mark) root shell prompt, Conventions Used in This Book, Objective 1: Work on the Command Line
	$ (dollar sign) command substitution, Command substitution
	$ (dollar sign) user prompt, Conventions Used in This Book, Objective 1: Work on the Command Line, Regular Expression Syntax
	$# variable, Configuration files
	$? variable, Return values
	* (asterisk) regex modifier, Regular Expression Syntax
	+ (plus) regex modifier, Regular Expression Syntax
	- single dash character, Entering commands at the command prompt, Entering command sequences
	-- double dash character, Entering commands at the command prompt, Examples, Example 2
	. (period) shortcut, Examples, Regular Expression Syntax
	/etc directory, Boot-time Kernel Parameters
	< redirection operator, Redirection
	> redirection operator, Redirection
	>> redirection operator, Redirection
	? (question mark) regex modifier, Regular Expression Syntax
	\ (backslash) escape, Regular Expression Syntax
	\<\> match word boundaries, Regular Expression Syntax
	^
 caret, Regular Expression Syntax
	| vertical line, Regular Expression Syntax
	~ (tilde) shortcut, Examples, Invoking vi, Configuration files

A
	access control, Linux Access Control, The mode string, Access control, Security with TCP_WRAPPERS, Configuration
	access logfile, The Access Logfile
	access mode, Linux Access Control, The mode string, Example 1
	access time, changing, Description
	accessibility, Objective 3: Accessibility, Objective 3: Accessibility, Objective 106.3: Accessibility
	action directive, Configuring syslogd
	addresses, Frequently used options, , Network Addressing, Internet Protocol Version 6 (IPv6), DHCP, Frequently used options, Addressing and masks
		IP allocation, DHCP, Frequently used options
	masks, Addressing and masks
	network, Network Addressing, Internet Protocol Version 6 (IPv6)
	in sed, Frequently used options,

	administrative tasks, Administrative
 Tasks (Topic 107), Objective 3: Localization and Internationalization, Review questions, passwd and group
	Advanced Package Tool (APT), Description
	aggregate functions, Aggregate Functions, Aggregate Functions
	aliases, An Overview of Shells, Aliases, .inputrc, Example, Bash
	alien, Description
	anacron, Administrative
 Tasks (Topic 107)
	anchors, Description
	annex, Linux annex
	Apache web server, Overview of the /etc Directory Tree and the init Process
	APT (Advanced Package Tool), Description
	apt-get, Description
	archives, creating/extracting, Description
	arguments, Entering commands at the command prompt, Functions
	ASCII mode, Frequently used commands
	at facility, Objective 2: Automate System Administration Tasks by Scheduling
 Jobs, Using at, Using at
	authentication rhosts, Example /etc/ssh/sshd_config file
	automate sysadmin tasks by scheduling jobs, Objective 2: Automate System Administration Tasks by Scheduling
 Jobs, Controlling User Access to cron and at, Objective 107.2: Automate System Administration Tasks by Scheduling Jobs
	automatic allocation, DHCP

B
	backends, CUPS backends
	background, Shell Job Control, Example 1
	backup schemes, Backup
	bash (Bourne-Again Shell), Example, Objective 1: Work on the Command Line, Redirection, The Bash Shell, .inputrc, Configuration files, Basic Bash Scripts, Mailing from scripts, Abbreviated bash command reference, Example, Bash
		basic scripts, Basic Bash Scripts, Mailing from scripts
	built-in commands, Abbreviated bash command reference, Example
	configuration files, Configuration files, Bash
	overview, The Bash Shell, .inputrc
	shared libraries, Example
	shell variables, Objective 1: Work on the Command Line
	standard I/O redirections for, Redirection

	.bashrc file, Configuration files, Configuration files
	Basic Input/Output System (BIOS), BIOS, Using the /proc filesystem
	basic network configuration, Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS, A Standard Linux Network Configuration
	basic network troubleshooting, Basic
 Network Troubleshooting (Topic 109.3), dig
	basic regular expression patterns, Example 1
	bg command, Description
	/bin directory, The root Filesystem
	/bin versus /sbin, Example
	binary, Frequently used commands
	binary files, Where’s that binary?
	BIOS (Basic Input/Output System), BIOS, Using the /proc filesystem
	BLINUX, Objective 3: Accessibility
	block devices, backing up, Description
	/boot directory, Boot-time Kernel Parameters, The root Filesystem
	boot loader, LILO
	boot manager, Linux
 Installation and Package Management (Topic 102), Objective 2: Install a Boot Manager, The GRUB configuration file, LILO
	boot time, BIOS, Boot-time Kernel Parameters, Kernel boot-time messages
		entering BIOS at, BIOS
	kernel parameters, Boot-time Kernel Parameters
	messages, Kernel boot-time messages

	bootable media types, Disks and boot devices, Booting from a USB device
	booting, Objective 2: Boot the System, Reviewing system logs, Booting from a USB device, Boot order
		the system, Objective 2: Boot the System, Reviewing system logs, Boot order
	from USB device, Booting from a USB device

	BOOTP protocol, DHCP
	BounceKeys, Objective 3: Accessibility
	Bourne, Stephen, Objective 1: Work on the Command Line
	Bourne-Again Shell, The Bash Shell (see bash)
	break command, Description
	BrLTTY, Objective 3: Accessibility
	brute force attacks, Shadow Passwords
	BSD and System V interfaces, BSD and System V Interfaces
	BSD syntax, Description
	bulk logins, Enabling bulk logins on multiple hosts for multiple
 users
	Burrows-Wheeler block sorting, Description
	bzip2 command, Description, File and directory management commands

C
	C-shells, Objective 105.1: Customize and Use the Shell Environment
	cancel command, Description
	case command, Description
	case, changing, Example 1
	cat command, Description
	chage, Description, Examples, Objective 110.1: Perform Security Administration Tasks
	character sets, Regular Expression Syntax
	check-updates command, Checking for updates
	checking remote hosts, Protocols
	chgrp command, Description
	child processes, Processes, Objective 1: Perform Security Administration Tasks
	chipset, video, Supported video hardware
	chmod command, Applying commands recursively through a directory tree, Changing access modes
	chown command, Example 4
	CIDR (classless inter-domain routing), Classless Inter-Domain Routing (CIDR)
	class drivers, USB Drivers
	classes, user, Linux Access Control
	classless inter-domain routing (CIDR), Classless Inter-Domain Routing (CIDR)
	clear command, Configuration files
	client side DNS, Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS, A Standard Linux Network Configuration, Objective 109.4: Configuring Client Side DNS
	client/server logging, Client/Server Logging
	clock, Date and time, NTP Concepts, Examples, The Hardware Clock
	coldplugging, Device Management Definitions
	command history and editing, Command History and Editing, Applying commands recursively through a directory tree
	command line, GNU and Unix Commands
 (Topic 103), Objective 1: Work on the Command Line, man mechanics, File and directory management commands, The interactive shell and shell variables
	command separator, Entering command sequences
	command substitution, Command History and Editing, Command substitution, Environment
	commands, Entering command sequences, Recursive execution, User and Group Management Commands, Description
		recursive, Recursive execution
	sequencing, Entering command sequences
	user and group management, User and Group Management Commands, Description

	comments, Configuration files
	common code, Accessing a MySQL Server
	compressing files, Description, Description
	concatenation, Description
	configuration files, LILO, An Overview of Shells, Configuration files, Configuration files
	configuring client side DNS, Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS, A Standard Linux Network Configuration, Objective 109.4: Configuring Client Side DNS
	continue command, Description
	control characters, Description
	control mounting and unmounting of filesystems, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 3: Control Filesystem Mounting and Unmounting, Example 2, Managing the filesystem table
	Coordinated Universal Time (UTC), Examples
	cp command, Applying commands recursively through a directory tree, Description, , File and directory management commands
	cpio command, Description, File and directory management commands
	create and change hard and symbolic links, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 6: Create and Change Hard and Symbolic Links, , Concepts
	create partitions and filesystems, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 1: Create Partitions and Filesystems, Example, Disk drives and partitions
	create, monitor, and kill processes, GNU and Unix Commands
 (Topic 103), Objective 5: Create, Monitor, and Kill Processes, Example 1, Concepts
	cron facility, Administrative
 Tasks (Topic 107), Using cron, Controlling User Access to cron and at, Logfile Rotation, Other SSH Tricks, Using cron
	crond, Using cron, Using cron
	crontab, Using cron, Using cron
	cryptography, public-key, Example /etc/ssh/sshd_config file
	Ctrl-C, Signaling Active Processes
	Ctrl-Z, Signaling Active Processes, Shell Job Control
	CUPS, CUPS, Example 3, CUPS
	cups-config utility, Using the cups-config Utility for Debugging
	cupsd, CUPS printing overview
	current working directory, Processes
	curses system, Managing partitions
	customize and use the shell environment, Objective 1: Customize and Use the Shell Environment, .inputrc, Objective 105.1: Customize and Use the Shell Environment
	customize or write simple scripts, Objective 2: Customize or Write Simple Scripts, Example, Objective 105.2: Customize or Write Simple Scripts
	cut command, Description

D
	D-Bus, Device Management Definitions
	daemons, Overview of the /etc Directory Tree and the init Process
	data modification, Datatypes
	data sharing, Datatypes
	databases, Database Overview, Database Overview
	datagram delivery service, Protocols
	datatypes, Database Overview
	date settings, Date and time
	dd command, MBR, Backup, Description, File and directory management commands, Example
	Debian package management, Linux
 Installation and Package Management (Topic 102), Objective 4: Use Debian Package Management, Example, Commands
	Debian-based systems, Overview of the /etc Directory Tree and the init Process, Objective 4: Use Debian Package Management, Example
	debugging, Using the cups-config Utility for Debugging
	default file descriptors, Standard I/O and Default File Descriptors
	default gateway, Example 1
	default runlevel, Setting the Default Runlevel
	default shell, User Accounts and the Password File
	DelayKeys, Objective 3: Accessibility
	dereference,
	design a hard disk layout, Linux
 Installation and Package Management (Topic 102), Objective 1: Design a Hard Disk Layout, General Guidelines, Objective 102.1: Design Hard Disk Layout
	desktop environments, An Overview of X
	destination, file versus directory, Example 2
	detecting unreachable destinations, Protocols
	determine and configure hardware settings, Objective 1: Determine and Configure Hardware Settings, Device Management Definitions, PC BIOS
	/dev directory, Boot-time Kernel Parameters, The root Filesystem
	device drivers, USB Drivers
	device files, Objective 4: Use Streams, Pipes, and Redirects, Disk Drives Under Linux
	device management definitions, Device Management Definitions
	df command, Monitoring Free Disk Space and Inodes, Frequently used options
	DHCP (Dynamic Host Configuration Protocol), DHCP, Frequently used options
	dhcpd command, dhcpd, Frequently used options
	dig command, Description, dig, dig, TCP/IP utilities
	Digital Signature Algorithm (DSA), DSA and RSA Overview, Example
	directories, Filesystem Objects, Description, Description, Description, The root filesystem and mount points, The root Filesystem, Where’s that binary?
		creating, Description
	moving/renaming, Description
	removing, Description
	root filesystem, The root filesystem and mount points, The root Filesystem, Where’s that binary?

	disk drives, Disks and boot devices, Linux
 Installation and Package Management (Topic 102), Limited disk space, Disk Drives Under Linux, Hard disk devices, Managing partitions, Disk drives and partitions
		interfaces, Hard disk devices
	under Linux, Disk Drives Under Linux
	parameters, Disks and boot devices
	partitioning, Linux
 Installation and Package Management (Topic 102), Limited disk space, Managing partitions, Disk drives and partitions

	disk quotas, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 4: Set and View Disk Quotas, Example, Quota types
	disk space, Limited disk space, Monitoring Free Disk Space and Inodes
	diskless workstations, Disks and boot devices
	display managers, The X Window System
 (Topic 106), Objective 2: Set Up a Display Manager, Switching display managers, Objective 106.2: Set Up a Display Manager
	distribution-specific tools, Distribution-specific tools, Distribution-specific tools
	dmesg command, Kernel boot-time messages
	dnsdomainname command, Objective 109.3: Basic Network Troubleshooting
	domain names, Example
	domainname command, Objective 109.3: Basic Network Troubleshooting
	dot-forward command, Configuration of Qmail
	dotted quad, Networking
 Fundamentals (Topic 109.1)
	dpkg command, Overview of the /etc Directory Tree and the init Process, Managing Debian Packages
	drives, Disk drives and partitions (see disk drives)
	DSA (Digital Signature Algorithm), DSA and RSA Overview, Example
	dselect, Description
	du command, Monitoring Disk Usage, Frequently used options
	dump frequency, Managing the Filesystem Table
	dumps, Kernel boot-time messages, Description, Description
	dynamic allocation, DHCP
	Dynamic Host Configuration Protocol (DHCP), DHCP, Frequently used options
	dynamically linked programs, Objective 3: Manage Shared Libraries

E
	e2fsck command, Checking and Repairing Filesystems
	echo command, Shell variable basics, Examples, Description
	editing commands, Frequently used options
	edquota command, Description
	egrep command, Regular Expression Syntax
	EHCI (Enhanced Host Controller Interface), USB Controllers
	Emacspeak, Objective 3: Accessibility
	email, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Exim
	emulation layer, SCSI, Disk Drives Under Linux
	encryption, Encrypting a File
	Enhanced Host Controller Interface (EHCI), USB Controllers
	env command, Shell variable basics
	environment variables, Shell variable basics, Processes, An Overview of Shells, Shells and environment variables, Objective 3: Localization and Internationalization, Bash
	environment, shell, Objective 1: Customize and Use the Shell Environment, .inputrc, The shell script’s environment, Objective 105.1: Customize and Use the Shell Environment, Environment
	erase command, Removing packages
	error detection/classification, Return values
	error logfile, The Error Logfile
	essential system services, Essential
 System Services (Topics 108.1 and
 108.2), Examining Logfiles, An Overview of Printing, Using the cups-config Utility for Debugging, Review Questions, Objective 108.1: Maintain System Time
	/etc directory, Overview of the /etc Directory Tree and the init Process, Managing the Filesystem Table, Example 2, The root Filesystem
	Exam 101, LPI Exams, LPI Exams, LPI Exams, Exam Preparation, Exam Preparation, Exam 101 Review
 Questions and Exercises, Exercises, Exam 101 Practice Test, Answers, PC BIOS, Locating files
		format, LPI Exams
	highlighter’s index, PC BIOS, Locating files
	objectives/topics, LPI Exams, Exam Preparation
	physical setting, LPI Exams
	practice test, Exam 101 Practice Test, Answers
	preparation for, Exam Preparation
	review and exercises, Exam 101 Review
 Questions and Exercises, Exercises

	Exam 102, Exam 102 Overview, Exam 102 Overview, Exam 102 Overview, Exam Preparation, Exam Preparation, Exam 102 Review
 Questions and Exercises, Exercises, Exam 102 Practice Test, Answers, Objective 105.1: Customize and Use the Shell Environment, Objective 110.3: Securing Data with Encryption
		format, Exam 102 Overview, Exam 102 Overview
	highlighter’s index, Objective 105.1: Customize and Use the Shell Environment, Objective 110.3: Securing Data with Encryption
	objectives/topics, Exam Preparation
	physical setting, Exam 102 Overview
	practice test, Exam 102 Practice Test, Answers
	preparation for, Exam Preparation
	review and exercises, Exam 102 Review
 Questions and Exercises, Exercises

	exam preparation, Exam Preparation
	executable files, Executable files
	execute command line instructions, GNU and Unix Commands
 (Topic 103), Objective 1: Work on the Command Line, man mechanics, The interactive shell and shell variables
	execute permissions, Linux Access Control
	exim, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Exim
	exit command, Description, Frequently used commands
	expand command, Description
	export command, Shell variable basics
	exporting keys, Export both a Public and Private Key
	extended partitions, Disk partitions, Disk drives and partitions

F
	facility directive, Configuring syslogd
	fastforward command, Configuration of Qmail
	fdisk command, Description
	fg command, Description
	FHS (Filesystem Hierarchy Standard), Datatypes, Where’s that binary?, Example, Review Questions
	file command, Description, File and directory management commands
	file descriptors, Standard I/O and Default File Descriptors
	file globbing, Example 1, File-Naming Wildcards (File Globbing), File-Naming Wildcards (File Globbing), Regular Expression Syntax, Example 6, File-naming wildcards
	file management, GNU and Unix Commands
 (Topic 103), Objective 3: Perform Basic File Management, File-Naming Wildcards (File Globbing), Concepts
	file tests, File tests
	file-naming wildcards, File-Naming Wildcards (File Globbing), File-Naming Wildcards (File Globbing)
	files, GNU and Unix Commands
 (Topic 103), Filesystem Objects, Description, Redirection, Redirection, Locating Files, Subcommands
		appending to, Redirection
	creating, Redirection
	deleting, Description
	editing using vi/vim, GNU and Unix Commands
 (Topic 103), Subcommands
	locating, Locating Files

	Filesystem Hierarchy Standard (FHS), Datatypes, Where’s that binary?, Example, Review Questions
	filesystems, Superblock, Filesystem Objects, Frequently used options, Inodes, Description, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 1: Create Partitions and Filesystems, Creating filesystems, Monitoring Free Disk Space and Inodes, Modifying a Filesystem, Checking and Repairing Filesystems, Frequently used options, Managing the Filesystem Table, Mounting Filesystems, Example 2, Filesystem types, Objective 4: Set and View Disk Quotas, Example, Objective 6: Create and Change Hard and Symbolic Links, Objective 6: Create and Change Hard and Symbolic Links, Objective 7: Find System Files and Place Files in the Correct
 Location, Review Questions, Managing the filesystem table, Quota types, File Hierarchy Standard (FHS)
		checking and repairing, Checking and Repairing Filesystems, Frequently used options
	creating, Creating filesystems
	defined, Objective 1: Create Partitions and Filesystems
	disk quotas, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 4: Set and View Disk Quotas, Example, Quota types
	hard links, Objective 6: Create and Change Hard and Symbolic Links
	inodes, Inodes, Monitoring Free Disk Space and Inodes
	layouts, Superblock, Objective 7: Find System Files and Place Files in the Correct
 Location, File Hierarchy Standard (FHS)
	managing the table, Managing the Filesystem Table
	modifying, Modifying a Filesystem
	mounting/unmounting, Mounting Filesystems, Example 2, Managing the filesystem table
	objects, Filesystem Objects, Frequently used options
	review questions/exercises, Review Questions
	symbolic links, Objective 6: Create and Change Hard and Symbolic Links
	tests of, Description
	types of, Filesystem types

	filters, GNU and Unix Commands
 (Topic 103), Objective 2: Process Text Streams Using Filters, Using sed, The commands, The stream editor, sed, CUPS, CUPS filters, Example 1, CUPS
		CUPS, CUPS filters, Example 1
	printer, CUPS, CUPS
	text stream, GNU and Unix Commands
 (Topic 103), Objective 2: Process Text Streams Using Filters, Using sed, The commands, The stream editor, sed

	find command, Applying commands recursively through a directory tree, Description, , Description, File and directory management commands, Objective 110.1: Perform Security Administration Tasks
	find system files and place files in the correct
 location, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 7: Find System Files and Place Files in the Correct
 Location, Example, File Hierarchy Standard (FHS)
	FireWire drivers, USB Hotplug
	floppy disks, Disks and boot devices, GRUB device naming
	flow control, Protocols
	fmt command, Description
	font installation, Installing fonts
	font path, X Fonts
	for command, Description
	foreground, Shell Job Control
	free command, Description
	freshen mode, Install/upgrade mode
	fsck command, Description, Frequently used options
	FSSTND (Linux Filesystem Standard), Objective 7: Find System Files and Place Files in the Correct
 Location
	ftp command, Description, TCP/IP utilities
	fully qualified domain names, Example
	function command, Description
	functions, Functions
	fundamentals of internet protocols, Networking
 Fundamentals (Topic 109.1), Example, Addressing and masks
	fwhois command, TCP/IP utilities

G
	Gateway, Frequently used options and keywords
	GDM, Configuring GDM
	Genmask, Frequently used options and keywords
	get command, Frequently used commands
	getopts command, Description
	Ghostscript, CUPS filters
	global variables, Shells and environment variables
	globbing, File-Naming Wildcards (File Globbing), File-Naming Wildcards (File Globbing), Regular Expression Syntax, Example 6, File-naming wildcards
	GNOME, Configuring GDM
	GNOME onscreen keyboard (GOK), Objective 3: Accessibility
	GNU and Unix commands, GNU and Unix Commands
 (Topic 103), Objective 1: Work on the Command Line, man mechanics, Objective 2: Process Text Streams Using Filters, Example 2, Objective 3: Perform Basic File Management, File-Naming Wildcards (File Globbing), Objective 4: Use Streams, Pipes, and Redirects, Example, Objective 5: Create, Monitor, and Kill Processes, Example 1, Objective 6: Modify Process Execution Priorities, Objective 7: Search Text Files Using Regular Expressions, Example 7, Review Questions, Exercises, The interactive shell and shell variables
		command line, Objective 1: Work on the Command Line, man mechanics
	create, monitor, and kill processes, Objective 5: Create, Monitor, and Kill Processes, Example 1
	highlighter’s index, The interactive shell and shell variables
	modify process execution priorities, Objective 6: Modify Process Execution Priorities
	perform basic file editing operations using
 vi/vim, GNU and Unix Commands
 (Topic 103)
	perform basic file management, Objective 3: Perform Basic File Management, File-Naming Wildcards (File Globbing)
	process text streams using filters, Objective 2: Process Text Streams Using Filters, Example 2
	review questions/exercises, Review Questions, Exercises
	search text files using regular expressions, Objective 7: Search Text Files Using Regular Expressions, Example 7
	streams, pipes, and redirects, Objective 4: Use Streams, Pipes, and Redirects, Example

	GNU Privacy Guard (GPG), Configuring and Using GNU Privacy Guard (GPG), Troubleshooting Files in the ~/.gnupg/ Directory
	GOK (GNOME onscreen keyboard), Objective 3: Accessibility
	gpasswd command, Description
	GPG (GNU Privacy Guard), Configuring and Using GNU Privacy Guard (GPG), Troubleshooting Files in the ~/.gnupg/ Directory
	grace period, Quota Limits
	grep command, Redirection, Objective 7: Search Text Files Using Regular Expressions, Using grep, Examples, Example 1, Example 9
	group accounts, Objective 1: Manage User and Group Accounts and Related System
 Files, Description
	group ID (GID), Processes
	group quota limits, Quota Limits
	groupadd command, Description
	groupdel command, Description
	groupmod command, Description
	groups and ranges, Description
	GRUB, Single-User Mode, GRUB, The GRUB configuration file
	GTkeyboard, Objective 3: Accessibility
	GUI versus command-line tools, File and directory management commands
	gunzip command, Description, File and directory management commands
	gzip command, Description, File and directory management commands

H
	handshaking, Protocols
	hard disk devices, Single-User Mode, GRUB, The GRUB configuration file, Disk Drives Under Linux, Hard disk devices
		GRUB, Single-User Mode, GRUB, The GRUB configuration file
	IDE, Disk Drives Under Linux
	SCSI, Hard disk devices

	hard disk layout, Linux
 Installation and Package Management (Topic 102), Objective 1: Design a Hard Disk Layout, General Guidelines
	hard limits, Quota Limits, Example
	hard links, Objective 6: Create and Change Hard and Symbolic Links
	hardware, Objective 1: Determine and Configure Hardware Settings, Device Management Definitions, USB Hotplug, Reporting Your Hardware, Options
		adding, USB Hotplug
	determining and configuring settings, Objective 1: Determine and Configure Hardware Settings, Device Management Definitions
	reporting, Reporting Your Hardware, Options

	hardware clock, The Hardware Clock
	head command, Description
	HID (human interface device), USB Devices
	hierarchy, Filesystem Objects
	highlighter’s index, PC BIOS, Locating files, Objective 105.1: Customize and Use the Shell Environment, Objective 110.3: Securing Data with Encryption
		Exam 101, PC BIOS, Locating files
	Exam 102, Objective 105.1: Customize and Use the Shell Environment, Objective 110.3: Securing Data with Encryption

	history command, Command History and Editing
	history expansion, Command History and Editing
	/home directory, The root Filesystem
	host command, Description, Objective 109.3: Basic Network Troubleshooting
	host controller drivers, USB Drivers
	host interface address calculation, Masks
	host security, Objective 2: Set Up Host Security, Configuration, TCP wrappers
	HostbasedAuthentication, Enabling bulk logins on multiple hosts for multiple
 users
	hostname command, Objective 109.3: Basic Network Troubleshooting
	hotplug devices, USB, USB Hotplug
	hotplugging, Device Management Definitions
	http, TCP/IP utilities
	httpd, Overview of the /etc Directory Tree and the init Process, Checking installed packages, Examples
	Huffman coding, Description
	human interface device (HID), USB Devices
	hwclock command, The Hardware Clock

I
	i.Link drivers, USB Hotplug
	I/O addresses, Resource assignments
	ICMP, Protocols, Protocols
	iconv command, Objective 3: Localization and Internationalization
	IDE device files, Disk Drives Under Linux, Disk partitions
	IEEE 1394, USB Hotplug
	if command, Description
	Iface, Frequently used options and keywords
	ifconfig command, Description, Objective 109.2: Basic Network Configuration
	inetd, The Super-Server, inetd syntax, Configuration, TCP wrappers
	info command, Checking installed packages
	inheritance, Configuration files, The shell script’s environment
	init command, Single-User Mode, Description
	init process, Objective 3: Change Runlevels and Shut Down or Reboot
 System, Overview of the /etc Directory Tree and the init Process, Processes, Description
	init.d, Why Links?
	inodes, Inodes, Pipes, Monitoring Free Disk Space and Inodes, Example 2, Concepts
	InputDevice, Distribution-specific tools
	.inputrc, .inputrc
	insmod command, Description
	install command, Installing packages
	installation, Linux
 Installation and Package Management (Topic 102), Install/upgrade mode, Installing packages, An Overview of X, Controlling X Applications with .Xresources, Installing fonts, Objective 106.1: Install and Configure X11
		fonts, Installing fonts
	install/upgrade mode, Install/upgrade mode
	X11, An Overview of X, Controlling X Applications with .Xresources, Objective 106.1: Install and Configure X11
	with yum, Installing packages

	interactive shell, The Interactive Shell, Entering command sequences
	internal clock, Date and time, NTP Concepts, Examples
	internationalization, Objective 3: Localization and Internationalization, Objective 3: Localization and Internationalization, Objective 107.3: Localization and Internationalization
	Internet Printing Protocol (IPP), CUPS
	Internet Protocol Version 6 (IPv6), Internet Protocol Version 6 (IPv6)
	IP (Internet Protocol), Masks, Protocols, Protocols
	IP address allocation, DHCP, Frequently used options
	IPv6 (Internet Protocol Version 6), Internet Protocol Version 6 (IPv6)
	IrDA, USB Devices

J
	job control, Shell Job Control
	jobs command, Shell Job Control, Description
	jobs, scheduling, Objective 2: Automate System Administration Tasks by Scheduling
 Jobs, Controlling User Access to cron and at
	join command, Description
	join fields, Description
	Jupiter speech system, Objective 3: Accessibility

K
	KDM, Configuring KDM, Configuring KDM
	kernel, USB Drivers, Introduction to Kernel Module Configuration, Reviewing system logs, Objective 2: Install a Boot Manager
		launching, Objective 2: Install a Boot Manager
	module configuration, Introduction to Kernel Module Configuration, Reviewing system logs
	USB support in, USB Drivers

	kernel parameters, Boot-time Kernel Parameters
	key bindings, Command History and Editing
	key generation, Description
	key pairs, Description, Generating a Key Pair
	key server, Troubleshooting Files in the ~/.gnupg/ Directory
	keyboard settings, Objective 3: Accessibility
	keyring, Importing a Public Key to a GPG Keyring
	keys, public/private, Export both a Public and Private Key, Objective 110.3: Securing Data with Encryption
	kill command, Processes, Signaling Active Processes, Description, Description
	killall command, Examples
	killproc command, Examples
	KNNname, Overview of the /etc Directory Tree and the init Process

L
	language test, Description
	launching the Linux kernel, Objective 2: Install a Boot Manager
	layers, Protocols
	ldconfig command, Linking Shared Libraries
	ldd command, Shared Library Dependencies
	Learning the bash Shell (Newham), Abbreviated bash command reference
	Learning the vi and Vim Editors (Robbins et
 al.), Objective 8: Perform Basic File Editing Operations Using vi
	leases, DHCP, Leases
	legacy printing, Legacy printing (lpd)
	level directive, Configuring syslogd
	/lib directory, The root Filesystem
	libraries, Linux
 Installation and Package Management (Topic 102), Objective 3: Manage Shared Libraries, Example 3, Concepts
	lifetime, Processes
	lilo command, Syntax
	LILO Linux Loader, Disks and boot devices, Boot-time Kernel Parameters, LILO, LILO locations
	links, Linking Shared Libraries, Inodes, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 6: Create and Change Hard and Symbolic Links, , , , Concepts
		finding,
	hard and symbolic, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 6: Create and Change Hard and Symbolic Links, , Concepts
	multiple objects, Inodes
	preserving,
	shared libraries, Linking Shared Libraries

	Linux, Preface
	Linux installation and package management, Linux
 Installation and Package Management (Topic 102), Review Questions, Objective 102.1: Design Hard Disk Layout
	Linux Loader (LILO), Disks and boot devices, Boot-time Kernel Parameters, LILO, LILO locations
	Linux Professional Institute (LPI), Preface
	Linux Professional Institute Certification (LPIC), The Linux Professional Institute
	list command, YUM Overview
	listing keys, Listing Keys
	literals, Regular Expression Syntax
	ln command, Description
	local variables, Shells and environment variables
	locale utility, Objective 3: Localization and Internationalization
	localization and internationalization, Objective 3: Localization and Internationalization, Objective 3: Localization and Internationalization, Objective 107.3: Localization and Internationalization
	locate command, Description
	location, ownership, and permissions, Location, ownership, and permissions
	logfiles, Logfile Rotation, Examining Logfiles, Troubleshooting General Printing Problems, Examining logfiles
	logging, Reviewing system logs, Description, Syslog
		DHCP server daemon, Description
	syslog, Reviewing system logs, Syslog

	logical pages, Description
	logical partitions, Disk partitions, Disk drives and partitions
	Logical Volume Manager, The root filesystem and mount points
	logical volumes, Disk partitions
	logrotate utility, Logfile Rotation
	lowercase, Example 1
	lp, CUPS printing overview, Example 3
	lp command, Description
	lpadmin, CUPS printing overview
	lpadmin command, Description
	lpc, CUPS printing overview
	LPI, Preface
	LPI Exam 101, The Linux Professional Institute (see Exam 101)
	LPI Exam 102, The Linux Professional Institute (see Exam 102)
	LPIC, The Linux Professional Institute
	lpq command, CUPS printing overview, Description
	lpr command, Description
	lprm command, CUPS printing overview, Description
	LPRng, LPRng
	lpstat command, Description
	ls command, Entering commands at the command prompt, Applying commands recursively through a directory tree, Setting Up a Workgroup Directory, , File and directory management commands, Frequently used commands
	lsdev command, Description
	lsmod, Description, Description
	lsof command, Description
	lspci command, Description
	lsusb command, USB Topology
	LVM (Logical Volume Manager), The root filesystem and mount points

M
	magic tests, Description
	mail command, Redirection, Mailing from scripts, Configuration of Sendmail, Example
	mail queuing, Description
	mail transfer agent (MTA) basics, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Exim, Objective 108.3: Mail Transfer Agent (MTA) Basics
	mailing from scripts, Mailing from scripts
	mailq command, Description
	maintain system time, Objective 1: Maintain System Time, Examples, Objective 108.1: Maintain System Time
	maintain the integrity of filesystems, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 2: Maintain the Integrity of Filesystems, Frequently used options, Filesystem commands
	make utility, Description
	man command, Manpages, man mechanics
	management, Linux
 Installation and Package Management (Topic 102), Linux
 Installation and Package Management (Topic 102), Objective 3: Manage Shared Libraries, Example 3, Objective 4: Use Debian Package Management, Example, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Managing partitions, Objective 4: Set and View Disk Quotas, Example, Objective 5: Manage File Permissions and Ownership, Setting Up a Workgroup Directory, Concepts, Commands, Quota types, Access control, Objective 1: Manage User and Group Accounts and Related System
 Files, Description, An Overview of Printing, Using the cups-config Utility for Debugging, passwd and group, CUPS
		Debian-based, Linux
 Installation and Package Management (Topic 102), Objective 4: Use Debian Package Management, Example, Commands
	disk quotas, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 4: Set and View Disk Quotas, Example, Quota types
	file permissions and ownership, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 5: Manage File Permissions and Ownership, Setting Up a Workgroup Directory, Access control
	partitions, Managing partitions
	printers and printing, An Overview of Printing, Using the cups-config Utility for Debugging, CUPS
	shared libraries, Linux
 Installation and Package Management (Topic 102), Objective 3: Manage Shared Libraries, Example 3, Concepts
	users and group accounts, Objective 1: Manage User and Group Accounts and Related System
 Files, Description, passwd and group

	manager, boot, Linux
 Installation and Package Management (Topic 102), Objective 2: Install a Boot Manager, The GRUB configuration file, LILO
	manpages, Manpages, man mechanics
	manpath, man mechanics
	manual allocation, DHCP
	manual BIOS configuration, Disks and boot devices
	map installer, LILO
	masks, Masks, Masks, Addressing and masks
	master boot record (MBR), MBR
	master devices, Disk Drives Under Linux
	Mastering Regular Expressions, Objective 7: Search Text Files Using Regular Expressions
	MBR (master boot record), MBR
	message-bus, Device Management Definitions
	messages file rotation, Logfile Rotation
	Meta key, Command History and Editing
	metacharacters, Command substitution, Regular Expression Syntax, Concepts
	mget command, Frequently used commands
	mkdir command, Description, File and directory management commands
	mkfs command, Description
	mkswap command, Description
	/mnt directory, The root Filesystem
	mode, Linux Access Control, The mode string, Example 1
	mode bits, The mode bits
	mode strings, The mode string
	modification time, changing, Description
	modifiers, Description
	modify process execution priorities, GNU and Unix Commands
 (Topic 103), Objective 6: Modify Process Execution Priorities, Examples, Concepts
	modinfo command, Description
	modprobe command, Description, Device Management Definitions
	modularity, Introduction to Kernel Module Configuration
	modules, manipulating, Manipulating Modules, Device Management Definitions
	modules.conf, Introduction to Kernel Module Configuration
	monitoring disk space, Monitoring Free Disk Space and Inodes
	monitors, Supported video hardware, Distribution-specific tools
	mount command, Mounting Filesystems, Example 2, The mode bits
	mount points, Mount points, The root filesystem and mount points, Objective 3: Control Filesystem Mounting and Unmounting, Unmounting Filesystems
	mounting, Mount points, Objective 1: Create Partitions and Filesystems, The root filesystem and mount points, Objective 3: Control Filesystem Mounting and Unmounting
	MouseKeys, Objective 3: Accessibility
	mput command, Frequently used commands
	msdos filesystem module, Example
	multiple-line commands, Entering multiple-line commands interactively
	multitable queries, Multitable Queries, Multitable Queries
	multiuser systems, Objective 1: Manage User and Group Accounts and Related System
 Files
	mv command, Description, File and directory management commands
	MySQL server, Accessing a MySQL Server

N
	name resolution, Configuration files
	netmask mask, Frequently used options and keywords
	netstat command, Description, Examples, Description, Examples, Objective 109.3: Basic Network Troubleshooting
	network addressing, Network Addressing, Internet Protocol Version 6 (IPv6)
	network configuration, Objective 2: Basic Network Configuration and Objective 4: Configuring Client Side DNS, A Standard Linux Network Configuration, Objective 109.2: Basic Network Configuration
	network interfaces, Masks, Network Interfaces, Configuration files, Common Manual Network Interface Tasks, dig, Objective 109.3: Basic Network Troubleshooting
	Network Time Protocol (NTP), NTP Concepts, Examples
	network troubleshooting, Basic
 Network Troubleshooting (Topic 109.3), dig, Objective 109.3: Basic Network Troubleshooting
	networking fundamentals, Networking
 Fundamentals (Topic 109.1), Example, A Standard Linux Network Configuration, Review Questions, Addressing and masks
		highlighter’s index, Addressing and masks
	review and exercises, Review Questions
	standard Linux configuration, A Standard Linux Network Configuration

	Newham, Cameron, Abbreviated bash command reference
	newline characters, removing, Description
	nice numbers, nice, Commands
	nice/renice commands, nice, Examples
	nl command, Description
	nmap command, Description, Configuration, Objective 110.1: Perform Security Administration Tasks
	nohup command, Shell Job Control, Example 1
	non-printable characters, Example 3
	nonsharable data, Datatypes
	ntpd command, Description, Example
	ntpdate command, Description
	ntpdc command, Description
	ntpq command, Description
	ntptrace command, Description

O
	object types, Filesystem Objects
	objectives, exam, The Linux Professional Institute
	objects, Linking Shared Libraries, Filesystem Objects, Frequently used options
		filesystem, Filesystem Objects, Frequently used options
	shared, Linking Shared Libraries

	octal notation, The mode bits, Setting access modes
	od command, Description
	OHCI (Open Host Controller Interface), USB Controllers
	one-way inheritance, The shell script’s environment
	Open Host Controller Interface (OHCI), USB Controllers
	OpenSSH, Other SSH Tricks, Configuring OpenSSH
	/opt directory, The root Filesystem
	options, Entering commands at the command prompt
	Orca, Objective 3: Accessibility
	OS fingerprints, Description, Example 2
	output redirection operators, Redirection
	overwrite, forcing, Example 2
	ownership, managing, Objective 5: Manage File Permissions and Ownership, Setting Up a Workgroup Directory, Location, ownership, and permissions, Objective 1: Manage User and Group Accounts and Related System
 Files

P
	packages, Debian, Linux
 Installation and Package Management (Topic 102), Objective 4: Use Debian Package Management, Example, Managing Debian Packages, Commands
	page logfile, The Page Logfile
	parent process ID (PPID), Processes
	parent/child relationship, Processes, Description
	partitioning, Linux
 Installation and Package Management (Topic 102), Limited disk space, Managing partitions, Disk drives and partitions
	partitions, General Guidelines, Disk partitions, Disk partitions, Disk partitions, The root filesystem and mount points, Disk drives and partitions
		defined, Disk partitions
	extended, Disk partitions, Disk drives and partitions
	guidelines, General Guidelines
	numbering of, Disk partitions
	resizing, The root filesystem and mount points

	pass number, Managing the Filesystem Table
	passwd command, Description
	password file, User Accounts and the Password File
	password, shadow, The Shadow Password and Shadow Group Systems, Shadow Passwords, Examples
	paste command, Description
	patterns, Regular Expression Syntax
	PCMCIA driver information, Introduction to Kernel Module Configuration
	PDF generators, CUPS backends
	Pearson VUE, The Linux Professional Institute
	peer, Frequently used options, Frequently used options
	perform basic file editing operations using
 vi/vim, GNU and Unix Commands
 (Topic 103), Subcommands
	perform basic file management, GNU and Unix Commands
 (Topic 103), Objective 3: Perform Basic File Management, File-Naming Wildcards (File Globbing), Concepts
	perform security administration tasks, Objective 1: Perform Security Administration Tasks, Example 2, Objective 110.1: Perform Security Administration Tasks
	permissions, Objective 5: Manage File Permissions and Ownership, Setting Up a Workgroup Directory, Linux Access Control, New files, Setting Up a Workgroup Directory, Setting Up a Workgroup Directory, Access control, Location, ownership, and permissions
		default setting, New files
	list of, Linux Access Control
	managing file, Objective 5: Manage File Permissions and Ownership, Setting Up a Workgroup Directory, Access control, Location, ownership, and permissions
	symbolic and numeric, Setting Up a Workgroup Directory
	workgroup directory, Setting Up a Workgroup Directory

	PID (Process ID), Processes, Description
	ping command, Protocols, Description, Description, Description, Objective 1: Perform Security Administration Tasks, TCP/IP utilities
	ping sweep, Frequently used options
	pipeline, Pipes
	pipes, Pipes
	pooling, Example
	port numbers, Services
	position anchors, Regular Expression Syntax
	positional parameters, Functions
	POSIX character classes, Regular Expression Syntax
	postfix, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Postfix, Configuration of Postfix
	PostScript printers, CUPS filters
	PPD files, CUPS filters
	PPP, Protocols, Protocols
	pr command, Description
	practice tests, Exam 101 Practice Test, Answers, Exam 102 Practice Test, Answers
		Exam 101, Exam 101 Practice Test, Answers
	Exam 102, Exam 102 Practice Test, Answers

	prefix, Classless Inter-Domain Routing (CIDR)
	primary IDE interface, Hard disk devices
	primary partitions, Disk partitions, Disk drives and partitions
	printing, An Overview of Printing, Using the cups-config Utility for Debugging, An Overview of Printing, CUPS printing overview, Managing CUPS print queues, Managing CUPS print queues, Troubleshooting General Printing Problems
		overview, An Overview of Printing, Using the cups-config Utility for Debugging
	print jobs, Managing CUPS print queues
	queues, An Overview of Printing, CUPS printing overview, Managing CUPS print queues
	troubleshooting, Troubleshooting General Printing Problems

	priorities, Objective 6: Modify Process Execution Priorities, Examples
	private IP addresses, Private IP addresses and NAT
	private key, The Server Public and Private Key, Importing a Public Key to a GPG Keyring, Export both a Public and Private Key
	privileged ports, Services, TCP/IP services
	/proc filesystem, Using the /proc filesystem, Using the /proc filesystem
	process execution priorities, GNU and Unix Commands
 (Topic 103), Objective 6: Modify Process Execution Priorities, Objective 6: Modify Process Execution Priorities, Examples, Concepts
	process ID (PID), Processes
	process lifetime, Processes
	process monitoring, Process Monitoring, Examples
	process text streams using filters, GNU and Unix Commands
 (Topic 103), Objective 2: Process Text Streams Using Filters, Example 2, The commands
	processes, Processes
	profiles, Configuration files
	prompt, Objective 1: Work on the Command Line, Frequently used commands
	protocols, Protocols, Protocols, Protocols
	ps command, Entering commands at the command prompt, Description, Terminating Processes
	PS1, Shell variable basics
	pstree command, Description
	public key, Generating and Using Keys, The Server Public and Private Key, Importing a Public Key to a GPG Keyring, Export both a Public and Private Key
	public-key cryptography, Example /etc/ssh/sshd_config file
	put command, Frequently used commands
	pwd, Frequently used commands

Q
	qmail, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Qmail
	quantity modifiers, Regular Expression Syntax
	query mode, Query mode, Example 6
	querying system services, Querying System Services, Example 2
	quit, Frequently used commands
	quotacheck command, Description
	quotaoff command, Description
	quotaon command, Description
	quotas, Quota Limits, Enabling Quotas
		enabling, Enabling Quotas
	limits, Quota Limits

R
	ramfs, Device Management Definitions
	rc.local, Overview of the /etc Directory Tree and the init Process
	read command, Description
	read permissions, Linux Access Control
	readline, .inputrc
	reboot system, Objective 3: Change Runlevels and Shut Down or Reboot
 System
	recursive copying, Frequently used options
	recursive execution, Applying commands recursively through a directory tree, Recursive execution
	recursive remove, Frequently used option
	Red Hat Certified Engineer, Preface
	Red Hat-based systems, Overview of the /etc Directory Tree and the init Process, Distribution-specific tools
	redirection, Redirection, Pipes and redirection, Protocols
	redirection operators, Redirection
	regular expressions (regex), Regular Expression Syntax, Regular Expression Syntax, Example 1, Concepts
	relays, Subnets and relays
	remote hosts, Protocols
	remove command, Removing packages
	renice command, Description
	RepeatKeys, Objective 3: Accessibility
	repquota command, Description
	return command, Description
	return values, Return values
	review questions, Exam 101 Review
 Questions and Exercises, Exercises, Exam 102 Review
 Questions and Exercises, Exercises
	RHCE program, Preface
	rhosts authentication, Example /etc/ssh/sshd_config file
	rm command, Applying commands recursively through a directory tree, Description, Setting Up a Workgroup Directory, File and directory management commands
	rmdir command, Description, File and directory management commands
	rmmod command, Description
	root directory, Directories and files, The root filesystem and mount points, The root Filesystem
	root filesystem, The root filesystem and mount points, The root Filesystem, Where’s that binary?
	round robin DNS, Example
	route, Objective 109.2: Basic Network Configuration
	route command, Description, Example 3
	route status flags, Frequently used options and keywords
	RPM (Red Hat) and YUM package manager, Linux
 Installation and Package Management (Topic 102), Objective 5: Use Red Hat Package Manager (RPM), Removing packages, Concepts
	rpm command, Overview of the /etc Directory Tree and the init Process, Running rpm, Removing packages
	RSA algorithm, Using the RSA algorithm
	runlevel command, Determining Your System’s Runlevel
	runlevels, Objective 3: Change Runlevels and Shut Down or Reboot
 System, Examples
	Running Linux (Dalheimer & Welsh), Linux
 Installation and Package Management (Topic 102)

S
	/sbin directory, The root Filesystem
	scheduler, An Overview of Printing
	scheduling jobs, Objective 2: Automate System Administration Tasks by Scheduling
 Jobs, Controlling User Access to cron and at
	screen readers, Objective 3: Accessibility
	Screen section, Distribution-specific tools
	script files, Shells,
 Scripting, and Data Management (Topic
 105), Script Files, SUID and SGID rights, Objective 105.1: Customize and Use the Shell Environment
	scripting and data management, Review Questions
	scripting language, Objective 2: Customize or Write Simple Scripts
	SCSI device files, Disk Drives Under Linux
	search text files using regular expressions, GNU and Unix Commands
 (Topic 103), Objective 7: Search Text Files Using Regular Expressions, Example 7, Concepts
	secondary IDE interface, Disk Drives Under Linux, Hard disk devices
	sections, man, Manual sections
	Secure Shell (SSH), Using Secure Shell (SSH), Configuring OpenSSH, TCP/IP utilities
	securing data with encryption, Securing
 Data with Encryption (Topic 110.3), Troubleshooting Files in the ~/.gnupg/ Directory, Objective 110.3: Securing Data with Encryption
	security administration tasks, Objective 1: Perform Security Administration Tasks, Example 2, The (In)Security of SUID, Example 3, User IDs and Passwords, Frequently used options, Shadow Passwords, Examples, Setting Limits on Users, Example, Querying System Services, Example 2, Objective 110.1: Perform Security Administration Tasks
		querying system services, Querying System Services, Example 2
	setting limits on users, Setting Limits on Users, Example
	shadow passwords, Shadow Passwords, Examples
	SUID, The (In)Security of SUID, Example 3
	user IDs and passwords, User IDs and Passwords, Frequently used options

	security, host, Objective 2: Set Up Host Security, TCP wrappers
	sed (stream editor), Objective 7: Search Text Files Using Regular Expressions, Using sed, Examples,
	sendmail, Objective 3: Mail Transfer Agent (MTA) Basics, Configuration of Postfix
	sendmail (Costales), Objective 3: Mail Transfer Agent (MTA) Basics
	seq command, Description
	sequence number, Overview of the /etc Directory Tree and the init Process
	server key pair, The Server Public and Private Key
	server motherboard BIOS, Disks and boot devices
	ServerFlags, Distribution-specific tools
	ServerLayout, Distribution-specific tools
	services, Services
	set and view disk quotas, Objective 4: Set and View Disk Quotas, Example
	set command, Shell variable basics
	set up a display manager, Objective 106.2: Set Up a Display Manager
	set up host security, Objective 2: Set Up Host Security, Configuration, TCP wrappers
	SGID, Linux Access Control, SUID and SGID rights
	shadow password and groups, The Shadow Password and Shadow Group Systems, Shadow Passwords, Examples, Shadow passwords
	sharable data, Datatypes
	shared libraries, Linux
 Installation and Package Management (Topic 102), Objective 3: Manage Shared Libraries, Example 3, Concepts
	shared library dependencies, Shared Library Dependencies
	shebang, Shebang!
	shell, The Interactive Shell, Shell variable basics, Entering command sequences, Shell Job Control, Command history, editing, and substitution, Command history, editing, and substitution, Objective 1: Customize and Use the Shell Environment, .inputrc, Shells and environment variables, Executable files, Objective 105.1: Customize and Use the Shell Environment
		(see also bash (Bourne-Again Shell))
	defined, The Interactive Shell
	environment, Objective 1: Customize and Use the Shell Environment, .inputrc, Objective 105.1: Customize and Use the Shell Environment
	job control, Shell Job Control
	scripts, Executable files
	sessions, Command history, editing, and substitution
	variables, Shell variable basics, Entering command sequences, Shells and environment variables

	shells, scripting and data management, Review Questions
	shift command, Description
	shutdown command, Single-User Mode, System shutdown with shutdown, Examples
	SIGHUP signal, Overview of the /etc Directory Tree and the init Process
	signal handling code, Examples
	signaling active processes, Signaling Active Processes, Example 1, Signaling processes
	signing keys, Signing Keys
	single-user mode, Single-User Mode
	slave devices, Disk Drives Under Linux
	slices, Description, Disk partitions
	SlowKeys, Objective 3: Accessibility
	SNNname, Overview of the /etc Directory Tree and the init Process
	soft limits, Quota Limits, Example
	sort command, Entering commands at the command prompt, Description, Example 5
	source command, Description
	space character, Frequently used options, Description
	space, swap, Swap Space, Creating swap partitions
	Speakup, Objective 3: Accessibility
	special permissions, The mode bits, The mode bits
	split command, Description
	spooling, An Overview of Printing, CUPS printing overview
	SQL data management, Objective 3: SQL Data Management, Multitable Queries, Objective 105.3: SQL Data Management
	SSH (Secure Shell), Using Secure Shell (SSH), Configuring OpenSSH, TCP/IP utilities
	ssh port forwarding, SSH Port Forwarding
	ssh-agent, ssh-agent, ssh-agent
	ssh-keygen, Description
	sshd command, Configuration, Using Secure Shell (SSH), Other SSH Tricks
	stacks, Protocols
	standard I/O, Standard I/O and Default File Descriptors
	start processes, Objective 2: Install a Boot Manager
	“stat” system
 call, Description
	static data, Datatypes
	static linking, Concepts
	sticky bit, Linux Access Control
	StickyKeys, Objective 3: Accessibility
	stratum 1/2 servers, NTP Concepts
	stream editor (sed), Using sed, Examples
	streams, pipes, and redirects, GNU and Unix Commands
 (Topic 103), Objective 4: Use Streams, Pipes, and Redirects, Example
	streams, text, Objective 2: Process Text Streams Using Filters, Example 2
	subdirectory trees, Frequently used option
	subnet mask, Masks, Masks
	subnets and relays, Networking
 Fundamentals (Topic 109.1), Subnets and relays, Frequently used options, Addressing and masks
	subprocesses, Processes
	sudo command, Description, Example 3, Objective 110.1: Perform Security Administration Tasks
	SUID, Linux Access Control, SUID and SGID rights, The (In)Security of SUID, Example 3
	super-servers, The Super-Server, xinetd
	superblock, Superblock, Checking and Repairing Filesystems
	superuser, The root Filesystem, SUID and SGID rights, Objective 1: Manage User and Group Accounts and Related System
 Files, Example
	SVGATextmode, Objective 3: Accessibility
	swap partitions, The root filesystem and mount points, Creating swap partitions
	swap space, Swap Space, Creating swap partitions
	switchdesk tool, Switching display managers
	switching display managers, Switching display managers
	symbolic links, Devices, Linux
 Filesystems, and the Filesystem Hierarchy
 Standard (Topic 104), Objective 6: Create and Change Hard and Symbolic Links, , Concepts
	sysfs, Device Management Definitions
	syslog system, Reviewing system logs
	syslogd, Configuring syslogd, Configuring syslogd
	system architecture, Objective 1: Determine and Configure Hardware Settings, Device Management Definitions, Review Questions, PC BIOS
	system initialization, Overview of the /etc Directory Tree and the init Process
	System V interfaces, BSD and System V Interfaces
	systems, Reviewing system logs, System role, General Guidelines, Objective 2: System Logging, Examining Logfiles, Syslog
		logging, Reviewing system logs, Objective 2: System Logging, Examining Logfiles, Syslog
	partitioning, General Guidelines
	role of, System role

T
	Tab characters, Description, Description
	tac command, Description
	tail command, Description
	tar command, , File and directory management commands
	TCP, Protocols, Protocols
	TCP wrappers, Security with TCP_WRAPPERS, Configuration, Other SSH Tricks
	TCP/IP, Objective 1: Fundamentals of Internet Protocols, Protocols, TCP/IP services
	tcpd command, TCP wrappers
	tcsh command, Example, Objective 105.1: Customize and Use the Shell Environment
	tee command, Using the tee Command
	telinit command, telinit
	telnet command, Description
	terminating processes, Terminating Processes
	test command, Description
	text streams, Objective 2: Process Text Streams Using Filters, Pipes
	Thomson Prometric, The Linux Professional Institute
	tilde, Examples, Invoking vi, Configuration files
	time settings, Date and time
	time zones, Examples
	timestamps, Description
	/tmp directory, The root Filesystem
	ToggleKeys, Objective 3: Accessibility
	top command, Description, Example 3, Terminating Processes, Examples
	touch command, Description, File and directory management commands
	tr command, Description
	traceroute command, Description, Description, TCP/IP utilities
	troubleshooting, Troubleshooting General Printing Problems, Using the cups-config Utility for Debugging, Configuration commands, Basic
 Network Troubleshooting (Topic 109.3), dig, Configuring and Using GNU Privacy Guard (GPG), Troubleshooting Files in the ~/.gnupg/ Directory
		basic network, Basic
 Network Troubleshooting (Topic 109.3), dig
	in ~/.gnupg
 directory, Troubleshooting Files in the ~/.gnupg/ Directory
	printing, Troubleshooting General Printing Problems
	using configuration commands, Using the cups-config Utility for Debugging, Configuration commands, Configuring and Using GNU Privacy Guard (GPG)

	tune2fs command, Description
	type command, Description

U
	UDP, Protocols, Protocols
	UHCI (Universal Host Controller Interface), USB Controllers
	ulimit command, Description, Example, Objective 110.1: Perform Security Administration Tasks
	umask command, New files
	umount command, Mount options, Unmounting Filesystems
	uncompressing files, Description, Description
	unexpand command, Description
	unidirectional inheritance, The shell script’s environment
	uninstall mode, Uninstall mode
	uniq command, Description
	Universal Host Controller Interface (UHCI), USB Controllers
	Universal Serial Bus (USB), USB Controllers, USB Hotplug, Booting from a USB device, Mount options
	Unix System V, Overview of the /etc Directory Tree and the init Process
	unmounting, Unmounting Filesystems
	unprivileged ports, Services
	unreachable destinations, Protocols
	unset command, Shell variable basics
	until command, Description
	updatedb command, Description
	updates, checking for, Checking for updates
	upgrade mode, Install/upgrade mode
	uppercase, Example 1
	uptime command, Description
	URLs, The Linux Professional Institute, The Linux Professional Institute, The Linux Professional Institute, Exam 101 Study Guide, The GRUB configuration file, Objective 8: Perform Basic File Editing Operations Using vi, The root filesystem and mount points, The root filesystem and mount points, Objective 7: Find System Files and Place Files in the Correct
 Location, Exercises, Exam 102 Overview, The Bash Shell, The X Window System
 (Topic 106), Selecting and Configuring an X Server, Installing X.Org, Objective 3: Accessibility, Objective 3: Accessibility, Objective 3: Accessibility, Objective 1: Maintain System Time, Example, Description, Configuration of Qmail, LPRng, CUPS, Example 2, Using Secure Shell (SSH), Troubleshooting Files in the ~/.gnupg/ Directory
		assistive technology, Objective 3: Accessibility
	bash home page, The Bash Shell
	BrLITTY, Objective 3: Accessibility
	CUP, CUPS
	FHS specification, Objective 7: Find System Files and Place Files in the Correct
 Location
	Freedesktop, Selecting and Configuring an X Server
	GPG, Troubleshooting Files in the ~/.gnupg/ Directory
	GRUB, The GRUB configuration file
	implementation of X, The X Window System
 (Topic 106)
	Linux Documentation Project, The root filesystem and mount points
	Linux Professional Institute, The Linux Professional Institute
	LPI Objectives detailed, Exam 101 Study Guide, Exam 102 Overview
	LPRng, LPRng
	LVM-HOWTO, The root filesystem and mount points
	Network Time Protocol (NTP), Objective 1: Maintain System Time
	nmap site, Example 2
	NTP documentation, Description
	onscreen graphical keyboard, Objective 3: Accessibility
	OpenSSH, Using Secure Shell (SSH)
	Pearson VUE, The Linux Professional Institute
	pooling, Example
	qmail, Configuration of Qmail
	tarball example, Exercises
	Thomson Prometric, The Linux Professional Institute
	Vim documentation, Objective 8: Perform Basic File Editing Operations Using vi
	X.Org mirror websites, Installing X.Org

	USB (Universal Serial Bus), USB Controllers, USB Hotplug, Booting from a USB device, Mount options
	use Debian package management, Linux
 Installation and Package Management (Topic 102), Objective 4: Use Debian Package Management, Example, Commands
	use RPM (Red Hat) and YUM package manager, Linux
 Installation and Package Management (Topic 102), Objective 5: Use Red Hat Package Manager (RPM), Removing packages, Concepts
	use streams, pipes, and redirects, GNU and Unix Commands
 (Topic 103), Objective 4: Use Streams, Pipes, and Redirects, Example, Concepts
	user access, Controlling User Access to cron and at, Setting Limits on Users
	user accounts, Objective 1: Manage User and Group Accounts and Related System
 Files
	user ID (UID), Processes, User IDs and Passwords, Frequently used options
	user quota limits, Quota Limits
	user.group versus user:group syntax, Description
	useradd command, Description
	userdel command, Description
	usermod command, Description, Description
	username, Directories and files, Location, ownership, and permissions, Description, User IDs and Passwords
	users, classes of, Linux Access Control
	/usr directory, The root Filesystem
	UTC (Coordinated Universal Time), Examples
	utilities, Utilities, Example

V
	/var directory, Reviewing system logs, The root Filesystem, The /var filesystem
	variable data, Datatypes
	variables, Shell variable basics, Entering command sequences, Processes, Shells and environment variables, Shells and environment variables
		environment, Processes, Shells and environment variables
	shell, Shell variable basics, Entering command sequences, Shells and environment variables

	verify mode, Verify mode
	vi editor, Example 2, vi Basics
	video chipset, Supported video hardware
	video hardware, Supported video hardware
	virtual consoles, Running xdm manually
	virtual memory, Swap Space

W
	warning_message, Description
	wc command, Description
	websites, The Bash Shell (see URLs)
	well-known ports, Services
	whereis command, Description
	which command, Description
	while command, Description
	whitespace characters, Example 2
	whois, Description
	wildcards, File-Naming Wildcards (File Globbing), File-Naming Wildcards (File Globbing), File-naming wildcards, xdm for X terminals
	window managers, An Overview of X
	work on the command line, GNU and Unix Commands
 (Topic 103), Objective 1: Work on the Command Line, man mechanics, File and directory management commands, The interactive shell and shell variables
	workgroup directory, Setting Up a Workgroup Directory
	write permissions, Linux Access Control

X
	X display manager (xdm), Configuring xdm, xdm for X terminals
	X fonts, X Fonts
	X Server, selecting and configuring, Selecting and Configuring an X Server, Distribution-specific tools
	X terminals, An Overview of X, X Terminals
	X Window System, Objective 3: Change Runlevels and Shut Down or Reboot
 System, An Overview of X, An Overview of X, Controlling X Applications with .Xresources, Objective 2: Set Up a Display Manager, Switching display managers, Objective 3: Accessibility, Objective 3: Accessibility, Using Secure Shell (SSH)
		accessibility, Objective 3: Accessibility, Objective 3: Accessibility
	install and configure, An Overview of X, Controlling X Applications with .Xresources
	overview, An Overview of X
	set up a display manager, Objective 2: Set Up a Display Manager, Switching display managers
	SSH session, Using Secure Shell (SSH)

	X Window system, Review questions, Objective 106.1: Install and Configure X11
		highlighter’s index, Objective 106.1: Install and Configure X11
	review and exercises, Review questions

	X.Org, Selecting and Configuring an X Server, Distribution-specific tools
	Xaccess file, Configuring xdm
	xargs command, The xargs Command
	xauth authentication, Using Secure Shell (SSH), Example /etc/ssh/sshd_config file
	xdm (X display manager), Configuring xdm, xdm for X terminals
	xdm-config file, Configuring xdm
	XFree86, Selecting and Configuring an X Server, Installing fonts
	xfs_info command, Description
	xfs_metadump command, Description
	xinetd command, xinetd, xinetd, TCP wrappers
	xorg.conf, Configuring an X server and the xorg.conf file, Configuring an X server and the xorg.conf file
	.Xresources, Controlling X Applications with .Xresources
	Xresources file, Configuring xdm
	Xservers file, Configuring xdm
	Xsession file, Configuring xdm
	Xsetup_0 file, Configuring xdm
	Xzoom, Objective 3: Accessibility

Y
	YUM (Yellowdog Updater Modified), YUM Overview, Removing packages

Z
	zombies, Terminating Processes

About the Authors
As the Vice President of Information Technology for the AIM Institute, Adam Haeder's responsibilities include management of the IT department and all related technology ventures. He has been the lead instructor in AIM's Cisco Regional Networking Academy and is the Vice President of the Omaha Linux Users Group. Adam has written books about the IT job market and Linux certification. He serves on the technology advisory councils of Omaha Public Schools, Millard Public Schools, the University of Nebraska Lincoln and Omaha campuses, and the Linux Professional Institute. Adam has a Bachelor of Science degree in Computer Science from the University of South Dakota.
Stephen Schneiter is currently the Certification Specialist with Certification Partners, LLC, having been with the company since 2005. Previously, Stephen was a tenured faculty member at the Tennessee Technology Center in Harriman for nine years. Stephen's wide range of expertise includes web-focused customer service, teaching post-secondary students, working with instructors one-on-one, network management and security issues working with Microsoft Windows and Linux, and web site development. Stephen is an effective and talented instructor internationally, and his attributes have lead to his participation in numerous national conference presentations and the coordination of the 2007 and 2008 Certified Internet Web Professional (CIW) National Conferences. Stephen serves on the Advisory Boards of several academic institutions, and lives with his wife and daughter on a their small farm in east Tennessee.
Bruno Gomes Pessanha has been a collaborating translator for the Linux Professional Institute since 2002. He also worked as a consulting analyst for a Brazilian government petroleum enterprise, covering Linux migration and initiatives and administering high-end performance projects, high availability clusters, and mission critical services. He currently lives with his family in Amsterdam.
James Stanger is an accomplished Web technologist, educator, writer,open source advocate, and security consultant. Active in the ITcertification community for nearly twenty years, he is currentlyPresident and Chief Certification Architect for Certification PartnersLLC, owners of the CIW (Certified Web Professional) and CTP(Convergence Technologies Professional) certifications.

James currently serves as Chair of the Linux Professional Institute(LPI) Advisory Council, and also works on the CompTIA Network+ andServer+ advisory committees. He also serves on advisory councils forKaplan University, American Public University System (APUS), MidSouthCommunity College, Snow College, and others. Over the years, he hashelped design certifications and curriculum for IBM, Symantec,CompTIA, and the Telephony Industry Association (TIA).

An award-winning author and blogger, Dr. Stanger has written titlesfor O'Reilly, McGraw-Hill, Wiley, and Elsevier Press. His writingshave been translated into over a dozen languages. As of April 2010,Linux Pro Magazine, the premier resource for Linux administrators inthe world, has asked Dr. Stanger to be a regular columnist. He hasalso spent the last two decades writing, lecturing and consultingworldwide about Web design, e-commerce, network security,convergence/VoIP, open source, and Linux system administration.

An in-demand speaker and consultant, Dr. Stanger has presented invenues across the world, from San Francisco to Edinburgh, Tokyo andBeijing. He received his PhD in English from the University ofCalifornia at Riverside in 1997. He lives and plays near the PugetSound in Washington State. For more information about Dr. Stanger, goto http://en.wikipedia.org/wiki/James_​Stanger.

Colophon
The animal on the cover of LPI Linux Certification in a
 Nutshell is a bull, an adult male animal of the species
 Bos primigenius.
Cattle were domesticated early in human history, perhaps more than
 8,000 years ago. They are used as work animals, as well as to produce meat,
 milk, leather, manure, and fuel. Their longstanding economic importance is
 evident in the etymological relationship of the word “cattle” to “chattel”
 and “capital.” The world cattle population is approximately 1.3
 billion.
Cattle are ruminants, meaning that they regurgitate and rechew their
 food as cud. They spend six hours a day eating and another eight chewing.
 They may drink 25 to 50 gallons of water a day and produce 15 to 20 gallons
 of saliva.
The animals are significant in many cultural traditions. The Minotaur,
 half bull and half man, guards the labyrinth in Greek myth. The
 constellation Taurus represents a bull, and an ox (the term for cattle used
 as draft animals) appears in the Chinese zodiac. Cattle are considered
 sacred in Hinduism, and in Masai myth, all the cattle on earth are believed
 to be a gift to the Masai people from their god. Bullfighting and the
 running of the bulls continue to be strongly identified with Spanish
 culture, as is bull riding in American rodeos.
Though cattle ranching and cowboys are strongly associated with the
 history of the western United States, domesticated cattle are not native to
 the Americas. Spanish strains of cattle brought by Columbus and the
 conquistadores interbred with English strains brought by the pilgrims and
 other early settlers in the United States, giving rise to some of the iconic
 American breeds.
The cover image is an original illustration created by Lorrie LeJeune.
 The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the
 heading font is Adobe Myriad Condensed; and the code font is LucasFont’s
 TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages629584.png.jpg
o §4t spre tybery Mockmein Jech e
DO R 6 s LG 2

adamp23

i sarezs
ot e G et oy e e

frtibbatrktetoy

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages629582.png
root:x:0:0:root:/root:/bin/bash

T e ey

Usemame | Password | UID| GID| name directory shell
7 1
00:500:Jeff Dean:/home/jdean:bin/tcsh

jdean:

OEBPS/httpatomoreillycomsourceoreillyimages629576.png
execute (user)- ‘read (other)
write (user) write (other)
read(um)l ;mam (other)

o o|o|ofo[o[o[o[o[a]o]o

suip -execute (group)
s6ip—— ——write (group)
Sticky ————— L read (group)

OEBPS/httpatomoreillycomsourceoreillyimages629580.png
/ on /dev/sdal

< /home on /dev/sdaq

ome —

CrD symbolicink

jdoe—— /home/jdoe
e I:nme =

Shrcuser: slink
oy Dashic user—b

pmﬁlel “fle”|

OEBPS/httpatomoreillycomsourceoreillyimages629586.png
Address 192.168.1.127 11000000.10101000.00000001.01111111

Mask 255.255.255.0 11111111.11111111.11111111. 00000000

Network address 192.168.1.0 11000000.10101011.00000001. 00000000

Host interface address 127 01111111

OEBPS/httpatomoreillycomsourceoreillyimages629569.jpg
INUX
GKRITFILATION

A Desktop Quick Reference

® Adam Haeder, Stephen Addison Schneiter,
O REILLY Bruno Gomes Pessanha & James Stanger

OEBPS/httpatomoreillycomsourceoreillyimages629568.png

OEBPS/httpatomoreillycomsourceoreillyimages629574.png
Version Architecture

foo, VWV-RRR, 'AAA. deb

OEBPS/httpatomoreillycomsourceoreillyimages629578.png
iffirstbitis 1, add 4 to the octal number
if second bit s 1, add 2 to the octal number

rtfmwbnki,mmmmamm
modebits 9 | 1 1|

mode bits = 11|11 0 (0|1 ocalnumber=6751

